Differences in the spatial structure of the primary and secondary tropical rain forests

Pavel Fibich*, Jan Lepš, Vojtěch Novotný, Petr Klimeš, Jakub Těšitel, Goerge Weiblen

\author{

* Department of Botany, University of South Bohemia
}

The Czech republic

pavel.fibich@prf.jcu.cz

Spatial analyses and TRFs

We expect that during stand aging

- patterns start from clumped (aggregated) and change to random or regular
- decreasing autocorrelation of plant sizes

Focus on the spatial patterns in TRFs

- the first analyses by Greig-Smith in Trinidad in early 50s
- strong aggreation observed (Hubbell 1979; Condit et al. 2000) explained due to environmental heterogeneity (Bagchi et al. 2011)
after separating environmental heterogeneity interactions of individuals should remain

Diversity of TRFs and Questions

- the most of species is diversity neutral (Wiegand et al. 2007)
- segregation and aggregation decrease with species richness (Wiegand et al. 2012)

Our questions
Using homogeneous TRF plots

- what spatial differences and which species interactions we can observe in different successional stages of TRF?
- what are spatial diversity patterns of successional stages of TRF?

Study sites

- tropical rain forest (TRF) in Papua New Guinea
- two homogeneous 1 ha plots
- 100-200 m above sea level
- annual rainfall of 3500 mm
- annual mean monthly temperature around 26.5 C
- primary TRF "late succession"
minimally >60 years no human disturbance
- secordary RF "early succession" abandoned garden for a decade
- 2456 trees with DBH $\geq 5 \mathrm{~cm}$:
position, species identity, DBH, height

Border of primary TRF

Myristicaceae, Horsfieldia basifissa, Teijsmanniodendron bogoriense '5/26

Border of secondary TRF

Euphorbiaceae, Macaranga tanarius, Ficus variegata

Study sites - field work F. nodosa

7/26

Study sites - common species

Horsfieldia basifissa (Primary), Ficus pungens (Secondary)

Marked points pattern analyses

Individuals pattern

- pair correlation function

Marks pattern

- mark correlation function
- mark variogram (mark autocorrelation)
- spatial diversity function ("K-function + SAR")
- species number and Simpson diversity along spatial scale
Null models
- no-mar : random and inhomogeneous positions
- marks: random relabelling and species shifting

Comparison in numbers

Characteristics	Primary TRF	Secondary TRF
\# individuals	1255	1201
Basal area (m²/ha)	29.9	13.6
\# species	198	88
\# species with 1 indi-	64	36
vidual		
\# species with ≥ 20	12	12
individuals	562	
- \# these individuals	45	974
\# shared species	579	45
- \# these individuals		821

Number of individuals per species

11/26

Plots and their pair corr. functions

(b) Secondary TRF

gray area = null model, solived line = observed pattern

Inhomogeneous pair corr. functions

(b) Secondary TRF

Proportions of patterns of 12 most common species

Primary TRF

Secondary TRF

Random

| Clumped |
| :--- | :--- |
| Regular |
| Random |

Height and DBH histograms

15/26

$\gamma(r)$ - vario., $\kappa(r)$ - corr. marks DBH

(b) Primary TRF

(c) Secondary TRF

(d) Secondary TRF

16/26

$\gamma(r)$ - vario., $\kappa(r)$ - corr. marks height

(a) Primary TRF

(c) Secondary TRF

(b) Primary TRF

(d) Secondary TRF

17/26

$\kappa(r)$ mark corr. of species identity

Species number and diversity

random labelling

inhom. positions

shifting o pecies

light gray = primary TRF, dark gray = secondary TRF

Spatial div. - Primary TRF shifting

Horsfieldia basifissa (122 inds.)

Teijsmanniodendron bogoriense (66 inds.)

Gymnacranthera paniculata (61 inds.)

Spatial div. - Primary TRF shifting

Pometia pinnata (53 inds.)

Pimelodendron amboinicum (50 inds.)

Mastixiodendron pachyclados inds.)

21/26

Spatial div. - Secondary TRF shifting

Macaranga tanarius (275 inds.)

Ficus variegata (220 inds.)

inds.)
Trichospermum pleiostigma

Spatial div. - Secondary TRF shifting

Macaranga aleuri-

 toides (81 inds.)

Vitex cofassus (47 inds.)

Trema orientalis (34 inds.)

Spatial patterns, DBH and height

 -conclusions- in the homogeneous primary TRF, there was mostly random pattern of all and within the most common species individuals
- early succession stage, the secondary TRF, was clumped (all and the most common species individuals), even if inhomogeneity was filtered out
- distribution of DBH and height
- random in the primary TRF
- clumps of thin and clumps of high individuals in the secondary TRF

Spatial diversity - conclusions

- the results out of confidence envelopes mostly at the lager scales
- in the secondary TRF, clumps of conspecific neighbours followed by low spatial diversity mostly due to dominant species functioning as "diversity repellers"
- in the primary TRF, less negative or more positive inter-specific interactions than intra-specific interactions, some of dominant species were "diversity accumulators"

Future work and Questions

Spatial investigation of

- plant traits
- phylogeny
- herbivory

THANK YOU FOR ATTENTION. Questions

 and/or comments?26/26

