Differences in the spatial structure of the primary and secondary tropical rain forests

Pavel Fibich*, Jan Lepš, Vojtěch Novotný, Petr Klimeš, Jakub Těšitel, Goerge Weiblen

*Department of Botany, University of South Bohemia The Czech republic

pavel.fibich@prf.jcu.cz

Spatial analyses and TRFs

We expect that during stand aging

- patterns start from clumped (aggregated) and change to random or regular
- decreasing autocorrelation of plant sizes
 Focus on the spatial patterns in TRFs
- the first analyses by Greig-Smith in Trinidad in early 50s
- strong aggreation observed (Hubbell 1979; Condit et al. 2000) explained due to environmental heterogeneity (Bagchi et al. 2011)

 after separating environmental heterogeneity interactions of individuals should remain

Diversity of TRFs and Questions

- the most of species is diversity neutral (Wiegand et al. 2007)
- segregation and aggregation decrease with species richness (Wiegand et al. 2012)

Our questions

Using homogeneous TRF plots

- what spatial differences and which species interactions we can observe in different successional stages of TRF?
- what are spatial diversity patterns of successional stages of TRF?

Study sites

- tropical rain forest (TRF) in Papua New Guinea
 - two homogeneous 1ha plots
 - 100-200 m above sea level
 - annual rainfall of 3500 mm
 - annual mean monthly temperature around 26.5 C
- primary TRF "late succession" minimally >60 years no human disturbance
- secondary TRF "early succession" abandoned garden for a decade
 2456 trees with DBH ≥5cm : position, species identity, DBH, height

Border of primary TRF

Myristicaceae, Horsfieldia basifissa, Teijsmanniodendron bogoriense 5/26

Border of secondary TRF

Euphorbiaceae, Macaranga tanarius, Ficus variegata

Study sites - field work F. nodosa

Study sites - common species

Horsfieldia basifissa (Primary), Ficus pungens (Secondary)

Marked points pattern analyses

Individuals pattern

- pair correlation function
- Marks pattern
- mark correlation function
- mark variogram (mark autocorrelation)
- spatial diversity function ("K-function + SAR")
 - species number and Simpson diversity along spatial scale

Null models

- no-marks: random and inhomogeneous positions
- marks: random relabelling and species shifting

Comparison in numbers

Characteristics	Primary TRF	Secondary TRF
# individuals	1255	1201
Basal area (m²/ha)	29.9	13.6
# species	198	88
# species with 1 indi-	64	36
vidual	10	10
# species with \geq 20 individuals	12	12
- # these individuals	562	974
<pre># shared species</pre>	45	45
- # these individuals	579	821

Number of individuals per species

Plots and their pair corr. functions

gray area = null model, solived line = observed pattern

Inhomogeneous pair corr. functions

Proportions of patterns of 12 most common species

Height and DBH histograms

γ (r) - vario., κ (r) - corr. marks DBH

γ (r) - vario., κ (r) - corr. marks height

$\kappa(\mathbf{r})$ mark corr. of species identity

Species number and diversity

random labelling

inhom. positions

shifting of species

0.6 0.4

 \sim

10 15 20 25

r (m)

20 25 15

r (m)

Spatial div. - Primary TRF shifting

Horsfieldia basifissa (122 inds.)

Teijsmanniodendron bogoriense (66 inds.)

Gymnacranthera paniculata (61 inds.)

Spatial div. - Primary TRF shifting

Pometia pinnata (53 inds.)

Pimelodendron amboinicum (50 inds.)

Mastixiodendron pachyclados (50 inds.)

Spatial div. - Secondary TRF shifting

Macaranga tanarius (275 inds.)

Ficus variegata (220 inds.)

Trichospermum pleiostigma (164 inds.)

Spatial div. - Secondary TRF shifting

Macaranga aleuritoides (81 inds.)

Vitex cofassus (47 inds.)

Trema orientalis (34 inds.)

Spatial patterns, DBH and height –conclusions

- in the homogeneous primary TRF, there was mostly random pattern of all and within the most common species individuals
- early succession stage, the secondary TRF, was clumped (all and the most common species individuals), even if inhomogeneity was filtered out
- distribution of DBH and height
 - random in the primary TRF
 - clumps of thin and clumps of high individuals in the secondary TRF

Spatial diversity – conclusions

- the results out of confidence envelopes mostly at the lager scales
- in the secondary TRF, clumps of conspecific neighbours followed by low spatial diversity mostly due to dominant species functioning as "diversity repellers"
- in the primary TRF, less negative or more positive inter-specific interactions than intra-specific interactions, some of dominant species were "diversity accumulators"

Future work and Questions

Spatial investigation of

- plant traits
- phylogeny
- herbivory

THANK YOU FOR ATTENTION. Questions and/or comments?

