A case study of intragenomic ITS variation in bryophytes: Assessment of gene flow and role of polyploidy in the origin of European taxa of the Tortula muralis (Musci: Pottiaceae) complex

Jiří Košnar, ${ }^{1}$ Miroslava Herbstová ${ }^{1,2}$ Filip Kolář ${ }^{3,4}$ Petr Koutecký1 ${ }^{1}$ J Jan Kučera ${ }^{1}$
1 Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
2 Institute of Plant Molecular Biology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 37005 České Budějovice, Czech Republic
3 Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 12801 Prague, Czech Republic
4 Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, 25243 Průhonice, Czech Republic
Author for correspondence: Jiří Košnar, jirikosnar@seznam.cz

Abstract

For the first time in bryophyte studies, we performed comprehensive cloning of the ITS region to reveal intraindividual variation of ITS sequences. We assessed relationships among morphologically defined taxa of the polyploid complex of the moss Tortula muralis. Our results detected a monophyletic T. muralis complex comprising T. muralis subsp. muralis, T. muralis subsp. obtusifolia, T. lingulata, T. israelis, and T. edentula. The single accession of T. edentula was found nested within T. obtusifolia, and biphyletic T. israelis was found to be nested within T. muralis. With the exception of T. lingulata, intragenomic ITS sequence variation was high in the T. muralis complex. Most intraindividual sequences were nevertheless only weakly divergent, suggesting their origin via mutations exceeding the rates of concerted evolution. Markedly divergent sequences found within a single individual most probably resulted from gene flow among distant lineages of the complex. Such pattern of ITS variation challenges the traditional morphology-based taxonomy. No phylogenetic signal was associated with ploidy-level variation, suggesting a polytopic origin of the diploids. Interestingly, the pattern of ITS variation together with morphological evidence indicate the autopolyploid origin of some lineages, which renders the T. muralis complex the first group of mosses in which autopolyploidy is implied by molecular markers.

Keywords bryophytes; gene flow; intragenomic variation; ITS; Tortula
Supplementary Material Figures S1-S3 (in the Electronic Supplement) and the alignment are available in the Supplementary Data section of the online version of this article (http://www.ingentaconnect.com/content/iapt/tax).

■ INTRODUCTION

The internal transcribed spacer (ITS) of 18S-26S nuclear ribosomal DNA is one of the most widely used sequence markers in bryophyte studies (Stech \& Quandt, 2010). As a non-coding part of the $18 \mathrm{~S}-26 \mathrm{~S}$ operon, the ITS region is a true multi-copy marker with hundreds to thousands of copies arranged in tandem arrays of the operon (Álvarez \& Wendel, 2003). Despite its multi-copy nature, the homogeneity of individual ITS copies is driven by concerted evolution (Arnheim, 1983; Elder \& Turner, 1995). However, the rate of concerted evolution varies greatly, and intragenomic variation of ITS copies (ITS paralogs sensu Álvarez \& Wendel, 2003) is not exceptional (Buckler \& al., 1997; Álvarez \& Wendel, 2003; Nieto Feliner \& Rosselló, 2007).

There are two main possible explanations for the occurrence of intragenomic ITS variation, both assuming incomplete concerted evolution of nrDNA arrays. First, the occurrence of intragenomic ITS variation might result from the hybridization between parents containing different ITS sequences (Baldwin \& al., 1995; Sang \& al., 1995). Second, divergent intraindividual sequences might arise by molecular processes unrelated
to hybridization, such as the accumulation of mutations that exceeds the rate of concerted evolution, nrDNA array multiplication, or pseudogenization (Álvarez \& Wendel, 2003; Nieto Feliner \& Rosselló, 2007). These molecular mechanisms might result in polymorphisms which together with incomplete lineage sorting processes may obscure phylogenetic analysis, especially when non-orthologous sequences or apparent pseudogenes are not recognized (Buckler \& al., 1997). The intragenomic variation of ITS sequences is challenging, because the assumption of orthology is crucial for the correct reconstruction of phylogeny. Numerous studies addressed intragenomic ITS variation in vascular plants (Álvarez \& Wendel, 2003). However, little is known about intragenomic ITS variation in bryophytes. To the best of our knowledge, this phenomenon has been detected only in the genus Plagiomnium T.J. Kop. (Harris, 2008).

Recently, we have found intragenomic ITS variation in the European taxa of the Tortula muralis complex. According to a morphological study by Košnar \& Kolár (2009), the complex was defined to include T. muralis Hedw. subsp. muralis with var. muralis and var. aestiva Brid. ex Hedw., T. muralis subsp. obtusifolia (Schwägr.) Culm., and T. lingulata Lindb. The detected clinal variation and poor morphological differentiation
among the taxa of the T. muralis complex might result from gene flow among taxa, or might reflect cryptic speciation, i.e., the existence of additional, genetically divergent lineages that are poorly or not at all defined morphologically, as has been revealed frequently in all major groups of bryophytes studied using molecular markers (Shaw, 2001). The latter hypothesis was proposed in a study of molecular variation in Tortula muralis using rps 4 sequences (Werner \& Guerra, 2004), where several morphologically undefined lineages were detected. These lineages were hypothesized to represent putative cryptic species because one of the nested clades included the morphologically well-defined and generally accepted Tortula vahliana (Schultz) Mont. Unfortunately, low variability of chloroplast rps4 sequences poorly reflects patterns of genetic variability in closely related taxa of Pottiaceae (Köckinger \& Kučera, 2011). Therefore, such hypothesis needs to be substantiated using more variable molecular markers.

In addition, a distinct pattern of ploidy variation and habitat preferences has been detected among subspecies and varieties of T. muralis (Košnar \& Kolář, 2009). Plants evaluated as subsp. obtusifolia were exclusively haploid, whereas both haploid and diploid cytotypes were found in both varieties of T. muralis subsp. muralis. The morphological variability in the broader distribution area in Eurasia comprises several other taxa, including T. israelis Bizot \& F. Bilewski, known from the Mediterranean region and the Near East, and the recently described T. edentula Ignatova \& Ignatov from the Kuril Islands. Other putatively closely related taxa, including, e.g., T. vahliana and T. brevissima Schiffn. (Werner \& al., 2002a; Werner \& Guerra, 2004), were also included for further consideration, as described below.

The objectives of the current study were to: (i) evaluate intragenomic ITS variation in the T. muralis complex and related taxa; (ii) determine the phylogeny of the T. muralis complex, including putatively related Eurasian species of Tortula and related genera; and (iii) determine the relationship between ploidy level and genetic lineages in the T. muralis complex, i.e., determine whether diploids arose recurrently from different haploid ancestors.

■ MATERIALS AND METHODS

Plant material. - A total of 159 herbarium specimens were selected for molecular analysis (Appendix). Most specimens were collected in Europe but a few were from Asia. Definition of the taxa in the T. muralis complex followed the morphological concept suggested in our previous study (Košnar \& Kolář, 2009). In cases when plants from a single collection were markedly heterogeneous morphologically, plants of each analysed morphotype were considered a separate sample. Samples of morphologically uniform plants collected at one locality were treated as a population.

To incorporate our data into a broader phylogenetic context, we included samples of other species of Tortula sensu Zander (1993), together with selected taxa of Crossidium Jur., Pterygoneurum Jur. and Stegonia latifolia (Schwägr.) Venturi ex Broth. The nomenclature follows Zander (1993) and Cano (2006).

Flow cytometry. - Ploidy levels of plants tentatively assigned to the T. muralis complex were determined using flow cytometry (FCM). Usually 1 to 3 moss shoots were chopped together with the internal standard (Glycine max (L.) Merr. 'Polanka', 2C $=2.50 \mathrm{pg}$) in LB01 buffer (Doležel \& al., 1989) containing 4,6-diamidino-2-phenylindol (DAPI). Analyses were performed on a Partec PA II flow cytometer (Partec, Münster, Germany), and data were processed using Partec FloMax v.2.4d software. For details on the FCM protocols, see Košnar \& Kolář (2009).

Molecular protocols. - Total genomic DNA was extracted from one moss shoot or occasionally from 2 to 10 shoots (see Appendix) using the NaOH method (Werner \& al., 2002b) or the Invisorb Spin Plant Mini Kit (Invitek, Berlin, Germany). In addition to ITS, 17 samples including all morphologically defined taxa of the T. muralis complex were selected for preliminary analysis of the rps 4 chloroplast region. The PCRs for ITS were performed according to the protocol by Köckinger \& Kučera (2011), and the protocol by Werner \& Guerra (2004) for rps4. Direct sequencing was performed as described in Köckinger \& Kučera (2011).

When data obtained from direct ITS sequencing indicated a mixed template, and more than two polymorphic positions within one sequence were detected, molecular cloning was performed. For approximately half of the cloned samples, both DNA extraction and PCR reactions were repeated on a different day to ensure reproducibility (see below). Repeated PCR reactions were performed as above, except that only 30 cycles and a 2-minute cycle extension step were used in order to reduce formation of chimeric sequences. PCR products were cloned using the pGEM-T Vector System I (Promega, Madison, Wisconsin, U.S.A.). Clone sampling and sequencing were usually performed until all variation detectable on direct sequences was recovered. No differences were found between sequences and clones obtained from repeated DNA extractions and PCR reactions of the same sample, indicating the absence of artificial ITS variation originating from sample cross-contaminations or other sources.

Data analysis. - Sequences were edited using BioEdit v.7.0.9.0 (Hall, 1999) and preliminarily aligned using Clustal W v.1.4 with default options (Thompson \& al., 1994). The raw alignments were trimmed according to the shortest sequence in the dataset. This led to exclusion of the first 9 bp of ITS1 and the last 7 bp of ITS2, which could not be aligned with certainty. The first 22 bp of the rps 4 amplicon were excluded because of the shorter length of some of the sequences. The ITS dataset was subsequently aligned by MAFFT v. 6 (Katoh \& al., 2002; available online at http://mafft.cbrc.jp/alignment/server/) using the Q-INS-i algorithm with the 200PAM/ $\kappa=2$ scoring matrix. The gap opening penalty was set to 1 , and the offset value was set to 0.0 . For accessions in which up to two polymorphic sites within one direct sequence were detectable in both forward and reverse directions, reconstructed sequences with all possible combinations of polymorphic sites were used. For accessions obtained by cloning, autapomorphic changes unique to a single accession at a non-variable position of the alignment were considered Taq errors (Hengen, 1995) and were overwritten
according to the direct sequence. The rps 4 dataset was aligned manually, and sequences were assigned to haplotypes following Werner \& Guerra (2004).

Using ITS data, phylogenetic relationships were assessed using maximum parsimony (MP) as implemented in TNT v.1.1 (Goloboff \& al., 2008) and Bayesian inference as implemented in MrBayes v.3.1.2. (Huelsenbeck \& al., 2001). All characters were given equal weight, and gaps were coded as missing data. The MP analysis was run using the heuristic New Technology search with the following settings: Sectional Search $=$ ON (including active RSS, CSS, and XSS), Ratchet $=$ ON, Drift $=$ ON, Tree Fusing $=$ ON, Maxtrees $=10,000$, random additions with 10,000 replicates. A bootstrap analysis (Felsenstein, 1985) was performed with 1000 replicates using the heuristic search strategy as described, except for random addition with 20 replicates. For Bayesian inference, the best-fit model of sequence evolution was selected using the Bayesian information criterion (Schwarz, 1978) calculated in jModelTest v.0.1.1 (Posada, 2008). The general time-reversible model (Rodríguez \& al., 1990) with a discrete gamma distribution was selected. Two runs with $10,000,000$ generations starting with a random tree and employing 12 simultaneous chains each (one hot, eleven cold) were executed. The temperature of a hot chain was set empirically to 0.01 , and every 100 th tree was saved. The analysis was considered to be completed when the average standard deviation of split frequencies dropped below 0.01 . The first 25,000 trees (25%) were discarded as the burn-in phase, and the remaining 75,000 trees were used for construction of a 50% majority consensus tree. Based on recent phylogenetic studies (Werner \& al., 2002a, 2004) and our preliminary analysis of ITS data of related taxa, Chenia leptophylla was used as outgroup. To test the phylogenetic signal in intragenomic ITS variation, alternative topological hypotheses were evaluated. For Bayesian inference, monophyly of markedly polyphyletic intraindividual ITS sequences (see Appendix) was tested by calculating the posterior probability (PP) of the set of trees containing such monophyly (Huelsenbeck \& Imennov, 2002).

TCS v.1.18 (Clement \& al., 2000) was used to produce a parsimony network of $r p s 4$ haplotypes with a 95% confidence limit. Based on results by Werner \& Guerra (2004), suggesting that rps 4 sequences of T. muralis and T. vahliana are closely related, the rps 4 dataset included taxa of the T. muralis complex together with T. vahliana. Gaps were treated as missing data, but potentially informative indels were scored (present/ absent) and the data were added to the matrix.

■ RESULTS

All products of the ITS amplification were full length, spanning the ITS1 region, the 5.8 S rDNA gene, and the ITS2 region. The aligned sequences had a length of 1036 bp , of which 382 characters were variable and 300 parsimony-informative. The lowest variation was observed in the 5.8S gene, which had only two variable positions. The strict consensus tree obtained from MP was generally more resolved than the 50% consensus Bayesian tree (Figs. S1-S2 in the Electronic Supplement;
and Figs. 1-2, respectively). Both trees showed similar general topologies and differed only in poorly supported internal branches, which were better resolved by MP. For simplicity, only the Bayesian tree is presented here (Figs. 1-2), and only those groups resolved by both methods are discussed.

The aligned rps 4 data matrix contained 655 characters, of which 37 were variable and 17 parsimony-informative.

Occurrence of intragenomic ITS variation. - Intragenomic variation was detected in approximately 46% of the samples belonging to the T. muralis complex and in 50% of the samples of the taxa related to the complex. For the T. muralis complex, the intraindividual ITS sequences of 22 samples (16%) were markedly polyphyletic and caused eight reticulations among the most distinct lineages (Fig. 2; see below). As evaluated using posterior probability, hypotheses assuming monophyly of such markedly polyphyletic sequences were found to be significantly worse than the topology observed in the 50% consensus Bayesian tree. The highest PP of monophyly of intraindividual ITS sequences was found in sample M37 (PP $=0.026$), and in other samples the PP was lower than 0.000 (for list of analysed samples, see Appendix).

Delimitation of the T. muralis complex based on ITS data. — Taxa of the T. muralis complex together with T. israelis and T. edentula form a poorly supported ($\mathrm{PP}=0.92, \mathrm{BS}=$ 51%) monophyletic group, here called the "T. muralis clade" (Figs. 1-2). This clade notably does not include T. vahliana and T. brevissima, and is sister to a clade comprising the remaining taxa of Tortula and related genera ($\mathrm{PP}=0.81, \mathrm{BS}<$ 50%) with the exception of T. marginata. The genera Tortula, Crossidium, and Pterygoneurum are apparently polyphyletic. The most distinct lineage in the ITS tree is a long and wellsupported "Pottia clade" ($\mathrm{PP}=1.00, \mathrm{BS}=69 \%$), comprising Crossidium squamiferum, Stegonia latifolia, Pterygoneurum taxa, and several terricolous Tortula taxa, belonging to section Pottia (Rchb.) Kindb., together with Hilpertia velenovskyi, T. brevissima, and T. mucronifolia. Interestingly, ITS sequences of T. brevissima appeared to be polyphyletic. Although three of the four cloned sequences obtained from two Spanish samples of T. brevissima cluster together in a well-supported clade, the remaining sequence is sister to a clade consisting of T. acaulon, T. mucronifolia, Crossidium squamiferum, Stegonia latifolia, and Pterygoneurum taxa.

Relationships within the \boldsymbol{T}. muralis complex based on ITS data. - The pattern of relationships based on the analysis of ITS sequences (Fig. 2) does not agree with the previously suggested classification based on a morphometric analysis. An exception to this is T. lingulata, which forms a monophyletic clade ($\mathrm{PP}=0.98, \mathrm{BS}=69 \%$) consisting of two haplotypes that differ by a single nucleotide substitution. No intragenomic ITS variation was detected in T. lingulata.

The most distinct ITS clade, hereafter called the "obtusifolia 1 clade", is a well-supported branch ($\mathrm{PP}=0.98, \mathrm{BS}=95 \%$) that contains a high frequency of T. muralis subsp. obtusifolia morphotypes (Fig. 2). Sequences from 70% of the populations identified morphologically as subsp. obtusifolia belong here, together with sequences from 23% of populations of morphs intermediate between T. muralis subsp. obtusifolia and T. muralis
subsp. muralis var. aestiva. Nevertheless, the obtusifolia 1 clade also contains sequences from 30% of the populations of T. $m u-$ ralis subsp. muralis morphs (both varieties and irrespective of ploidy level). The single sequence of T. edentula, which morphologically resembles T. muralis subsp. obtusifolia, is also nested in the obtusifolia 1 clade. ITS sequences of T. muralis subsp. muralis and T. muralis subsp. obtusifolia commonly were part of markedly polyphyletic assemblages of intragenomic ITS variation from individual amplifications. Thus, 36% of T. muralis subsp. muralis and one sample of T. muralis subsp. obtusifolia nested in the obtusifolia 1 clade are parts of intraindividual ITS variation appearing on distant branches of the
T. muralis clade. Those polyphyletic sequences were strongly divergent, sharing a rather low number of identical nucleotides with obtusifolia 1 sequences ($86.2 \%-92.2 \%$).

Tortula muralis subsp. obtusifolia is clearly polyphyletic because accessions not contained in the obtusifolia 1 clade appear in other lineages (Fig. 2). Although most accessions from the "obtusifolia 2 clade" contain the sequences from morphs of subsp. obtusifolia, the frequency of plants with the clear morphology of subsp. obtusifolia in this clade (sequences from 30% of its populations) was lower than in the obtusifolia 1 clade (sequences from 70% of its populations; Fig. 2), while the frequency of plants intermediate between subsp. obtusifolia

$\stackrel{\square}{0.2}$ 0.92

Fig. 1. Phylogenetic tree of the Tortula muralis complex and related taxa based on ITS sequence data. The tree was constructed using Bayesian inference and was rooted with Chenia leptophylla. Numbers on branches indicate posterior probabilities. Dotted lines indicate branches with posterior probabilities <0.90, and bold lines indicate branches with posterior probabilities >0.95. Sequences obtained by molecular cloning are in italics. Samples containing polyphyletic intragenomic sequences belonging to different major clades are in bold. Monophyletic clades containing sequences that originated from a single specimen with intragenomic ITS variation were compressed and considered a single sequence; numbers in square brackets indicate the number of such monophyletic sequences. Numbers after taxa correspond to GenBank accession numbers. For detailed voucher information, see Appendix.

Fig. 2. Subtree showing the Tortula muralis clade of the ITS tree. The tree was constructed using Bayesian inference. Numbers on branches of major lineages indicate posterior probabilities. Dotted lines indicate branches with posterior probabilities <0.90, and bold lines indicate branches with posterior probabilities >0.95. Graphs indicate the percentage of populations of a given morphotype containing the ITS sequence of each particular group (only percentages $>10 \%$ are shown). Sequences obtained by molecular cloning are in italics. Samples containing polyphyletic intragenomic sequences belonging to different major clades are in bold. Lines in the right part of the figure indicate reticulations among main groups caused by samples containing markedly polyphyletic intragenomic sequences of different clades of the tree (numbers refer to number of such samples). Monophyletic clades containing sequences that originated from a single specimen with intragenomic ITS variation were compressed and considered a single sequence; numbers in square brackets indicate the number of such monophyletic sequences. Known rps4 haplotypes are underlined and in parentheses. "x" indicates haploid cytotypes, and " 2 x " diploid cytotypes (for detailed voucher information, see Appendix).
- M47-2x [3]

$\frac{\text { obtusifolia } 1 \text { clade }}{62 \% \text { haploids, } 38 \%}$ diploids

M30-2x, M31-2x, M28-2x
obtusifolia 2 clade
$\left[\begin{array}{l}\mathrm{O} 3(\mathrm{M} 18) \\ \mathrm{O} 3\left(\begin{array}{l}(\mathrm{L}(\mathrm{M} 18) \\ -O 3(\mathrm{M} 18) \\ 010\end{array}\right)\end{array}\right.$

Fig. 1

and subsp. muralis (sequences from approximately 38% of its populations) was somewhat higher than in the obtusifolia 1 clade (sequences from 23% of its populations, Fig. 2). In a single collection from France, plants of both the obtusifolia 1 and obtusifolia 2 clades were detected. This collection was morphologically heterogeneous, containing plants with the morphology of subsp. obtusifolia (O 4 ; obtusifolia 1 clade) together with plants intermediate between subsp. obtusifolia and subsp. muralis (AO12; obtusifolia 2 clade).

Although some clades contained plants with the morphology of var. muralis ("muralis 1 clade", "muralis 2 clade", "muralis 3 clade"), both varieties of T. muralis subsp. muralis are apparently polyphyletic. Moreover, several ITS sequences were shared by plants which morphologically belonged to one or the other variety.

A biphyletic nature was observed for T. israelis, which is nested within one of the moderately supported T. muralis subsp. muralis clades that contained mostly var. muralis morphotypes ("muralis $4+$ israelis clade", $\mathrm{PP}=0.97, \mathrm{BS}=52 \%$).

Only one major clade (considering those with sequences from more than two samples) was completely free of reticulations caused by intragenomic ITS variation. This clade, here called the "aestiva haploids clade" ($\mathrm{PP}=1.00, \mathrm{BS}=84 \%$), consists predominantly of var. aestiva samples. Interestingly, plants of this clade tend to occur in natural habitats (base-rich rocks).

No geographical pattern was detected in the phylogenetic relationships based on ITS sequences of the Tortula muralis complex. The only exception to this was the clade that contained predominantly eastern European samples of T. lingulata.

Distribution of ploidy levels on the ITS tree of the T. muralis complex. - No phylogenetic pattern was detected in the distribution of haploids and diploids on the phylogenetic tree constructed with ITS data (Fig. 2). Both cytotypes were detected in six of the nine major subclades of the T. muralis clade. Moreover, nine haplotypes were shared by haploid and diploid individuals, including four diploid samples without intragenomic variation of ITS.

Intragenomic variation in ITS was more frequent in diploids (71% of the analysed samples) than in haploids (30\%). The same was also true for markedly polyphyletic intragenomic ITS sequences (i.e., sequences of the major well-supported lineages).

No intermediate (triploid) ploidy level was detected in the T. muralis clade.

Variation in the chloroplast rps4 region. - Among the 17 samples sequenced, six rps 4 haplotypes were revealed. Interestingly, two of them (M18, M19) were not recorded in the earlier study by Werner \& Guerra (2004), while the remaining four had been previously recorded among the 17 haplotypes detected among samples of the world-wide distribution area. The distribution of rps4 haplotypes is not consistent with the ITS tree (Fig. 2; Fig. S3 in the Electronic Supplement). The most common haplotype M2 was found in 10 samples that included both cytotypes and morphotypes of T. muralis subsp. obtusifolia and T. muralis subsp. muralis var. aestiva, morphotypes intermediate between T. muralis subsp. obtusifolia and T. muralis subsp. muralis var. aestiva, morphotypes intermediate between both varieties of T. muralis subsp. muralis, and
T. lingulata. Similarly, haplotype M4 (differing by a single mutation from M2) was found in three samples from two independent ITS lineages, including both cytotypes and plants of different morphotypes. Haplotypes M1 and M11 were each found in a single sample.

■ DISCUSSION

Origin of intragenomic ITS variation in Tortula and related taxa. - When investigating intragenomic ITS variation, it is necessary to use a single individual for molecular analysis. Even in small bryophytes, one shoot is usually sufficient for DNA extraction. In our study we used a single moss shoot for most DNA extractions, and it is therefore unlikely that variation in sequences was caused by sampling of several individuals with different genotypes. This is especially evident for those samples in which markedly polyphyletic intraindividual ITS sequences were detected; in all these cases, only one shoot was used for DNA extraction (see Appendix for details).

Sampling of pseudogenes is also improbable in our study, because all the obtained sequences have signs of functional nrDNA, including a conserved 5.8S gene (Harpke \& Peterson, 2008). In approximately 50% of our samples, the non-identical ITS sequences from a single sample proved to be more or less closely related and often were resolved within a monophyletic clade. This pattern indicates a rather recent differentiation, which resulted from only few mutations within nrDNA arrays. In other cases, however, we observed relatively large differences among intragenomic ITS sequences, which are difficult to explain by stepwise molecular processes or ancestral polymorphism and rather might result from hybridization. According to Nieto Feliner \& al. (2004), the existence of concerted evolution affecting multicopy regions reduces the possibility of incomplete lineage sorting of ancestral polymorphisms. The presence of concerted evolution in our case can be inferred from the existence of plants lacking intragenomic ITS variation. The probable existence of gene flow among ITS lineages is in accordance with the usually sexual reproduction within the T. muralis complex. In addition, the poorly resolved topologies with low support that were detected in our dataset might also be caused by occasional ITS recombination following hybridization, because recombinant signal in some cases may result in more trees with a larger number of polytomies (Funk, 1985; McDade, 1992).

Remarks on the phylogeny of Tortula and related taxa inferred from ITS data. - The phylogeny inferred from the ITS sequences was partly different from that based on rps4 (Werner \& al., 2002a). Both phylogenies contain a well-supported Pottia clade, which comprises Tortula sect. Pottia sensu Zander (1993), i.e., a clade that includes Protobryum sensu Guerra \& Cano (2000) together with Stegonia latifolia. According to the ITS data, this clade moreover contains Hilpertia, Tortula mucronifolia, Crossidium squamiferum (type of Crossidium), Pterygoneurum ovatum (type of Pterygoneurum), and P. subsessile, which were not analysed by Werner \& al. (2000a). However, several taxa had different relationships in
the two phylogenies. Discrepancies between ITS and rps4 data notably include Tortula brevissima and T. acaulon (Phascum cuspidatum sensu Guerra \& Cano, 2000, the type species of Phascum), which are nested within Pottia according to ITS but appear in a sister clade (T. acaulon) or even in different clades of Pottioideae (T. brevissima) according to rps 4 .

Evolution of the T. muralis complex and taxonomic implications. - ITS data demonstrated that the morphologically defined T. muralis complex, as delimited by Košnar \& Kolář (2009), is indeed monophyletic. The complex further includes T. israelis and T. edentula but not T. vahliana, as postulated by Werner \& Guerra (2004). Taxa of the complex share the usually epilithic growth, small $(9-12 \mu \mathrm{~m})$ and densely papillose leaf cells, markedly revolute leaf margins, isodiametric marginal leaf cells, absence of photosynthetic outgrowths on the ventral side of the costa, and rather small spores ($8.5-12.0 \mu \mathrm{~m}$, but $11-15 \mu \mathrm{~m}$ in T. lingulata). These characters allow to distinguish superficially similar but phylogenetically distant taxa, such as T. brevissima, T. vahliana, or T. marginata. Although the monophyly of the T. muralis complex received poor statistical support in the ITS analysis, it is supported by the pattern of intragenomic ITS variation. Even though the intraindividual sequences detected in taxa within the T. muralis clade were commonly recorded on distant branches within this clade, they never occurred in other clades of Tortula.

As discussed above, phylogenetic analysis of ITS data resulted in a complex pattern suggesting the existence of gene flow among lineages of the T. muralis complex, together with some level of ancestral polymorphism. Thus, with the exception of T. lingulata, the taxonomic status of the taxa analysed remains critical. The variability of chloroplast $r p s 4$ sequences was too low for reconstructing the species-level phylogeny of the T. muralis complex. Our sampling, however, did not include non-European plants (except for T. edentula, which was nested within T. muralis subsp. obtusifolia in the ITS tree). In consequence, we refrain from drawing conclusions about possible cryptic speciation within T. muralis, as hypothesized by Werner \& Guerra (2004). On the other hand, the virtual absence of reproductive isolation among lineages can be considered important evidence contradicting the cryptic speciation hypothesis in the T. muralis complex, at least within the geographical scope of our analysis.

Evolutionary relationships between haploids and diploids in the T. muralis complex. - In most cases, both haploids and diploids were found in individual subclades (Fig. 2), which suggests a polytopic and recurrent origin of diploids. Recurrent polyploidization enhances unidirectional inter-ploidy gene flow, which might be followed by homoploid hybridization among the distinct polyploid (in our case gametophytic diploid) lineages, further increasing their variability (Soltis \& Soltis, 1999). Such processes might have further obscured the relationships within the T. muralis complex.

In some clades, one cytotype prevails. Tortula lingulata, as discussed above, seems to be strictly diploid. Interestingly, one German population, previously considered to be probably T. lingulata by Meinunger \& Schröder (2007), contains both haploids and diploids. These plants were collected far from
the distribution centre of T. lingulata, which lies in the eastern Baltic region. Their morphology is intermediate between T. muralis subsp. obtusifolia and T. lingulata, but the spores are heterogeneous in size. Spore size was found to be the most important character for distinguishing between the two taxa (Košnar \& Kolář, 2009). The spore size of haploid plants was within the range of T. muralis subsp. obtusifolia, whereas the diploid plants had the larger spores typical of T. lingulata. The ITS haplotype of both cytotypes was identical. Therefore, the likely explanation is that the German population consists of haploid plants of T. muralis subsp. obtusifolia that in situ gave rise to autodiploid progeny. The same explanation might apply to T. edentula, which is reported to differ from T. muralis subsp. obtusifolia by having larger spores (typical for diploids) and by lacking a peristome. Unfortunately, the T. edentula material was too old to provide FCM data, but the variation of all important morphological characters, including the absence of a peristome, is identical to that of the above-described German 'T. lingulata'. An autodiploid origin is thus a plausible hypothesis to explain the larger spores. Moreover, the phylogenetic analysis places T. edentula within the obtusifolia 1 clade, and we therefore consider T. edentula to be identical with T. muralis subsp. obtusifolia (see Taxonomic Changes below).

The overall frequency of markedly divergent intragenomic ITS sequences was considerably higher in diploids (38% of the samples) than in haploids (3\%). Diploids with intragenomic ITS variation are most likely hybrids of different lineages of the ITS tree; although divergent, all are nested within the T. muralis clade. On the other hand, approximately 29% of the diploids lacked intragenomic ITS variation, and four of them shared ITS sequences with haploids. This is consistent with the autopolyploid origin of diploids from closely related haploids. Autopolyploidy is clearly evident at least in two cases of mixed populations of both cytotypes sharing the same ITS sequence: the above discussed German population of T. muralis subsp. obtusifolia, and a Czech population of T. muralis var. muralis, i.e., samples M9 and M32, respectively. Even when the intragenomic ITS sequences isolated from diploid individuals were not identical, they had not diverged much, which also indicates an autopolyploid origin. Autopolyploidy is further supported by the almost identical morphology of both cytotypes (Košnar \& Kolář, 2009) and the frequent existence of populations with mixed ploidy (J. Košnar \& al., unpub. data). Based on these facts, we consider the T. muralis complex to be the first case of autopolyploidy in mosses that is supported by molecular marker data. The demonstration of autopolyploidy in mosses contrasts with the allopolyploid (i.e., hybrid polyploid) origin proposed for almost all other bryophyte groups that have been studied by molecular markers (Såstad, 2005; Shaw, 2009).

■ TAXONOMIC CHANGES

Tortula muralis subsp. obtusifolia (Schwägr.) Culm. in Rev. Bryol. 48: 22. 1921 = Tortula edentula Ignatova \& Ignatov in Arctoa 18: 135. 2010 ('2009').

- ACKNOWLEDGEMENTS

We thank the curators of MUB and TAM herbaria for the loan of material; Renée Skrzypczak, Michael Ignatov, Alain Vandernpoorten, and Philippe De Zuttere for the loan of material from their personal herbaria; and Ester Ekrtová, Libor Ekrt, and Tamara Malinová for collecting herbarium specimens. The work was supported by grant no. IAA601410703 from the Academy of Sciences of the Czech Republic, no. 053/2008/P and 138/2010/P from the University of South Bohemia, and no. MSM6007665801 from the Ministry of Education, Youth and Sports of the Czech Republic.

LITERATURE CITED

Álvarez, I. \& Wendel, J.F. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molec. Phylogenet. Evol. 29: 417-434.
Arnheim, N. 1983. Concerted evolution of multigene families. Pp. 38-61 in: Nei, M. \& Koehn, R.K. (eds.), Evolution of genes and proteins. Sunderland, Massachusetts: Sinauer.
Baldwin, B.G., Sanderson, M.J., Porter, J.M., Wojciechowski, M.F., Campbell, C.S. \& Donoghue, M.J. 1995. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 82: 247-277.
Buckler, E.S., Ippolito, A. \& Holtsford, T.P. 1997. The evolution of ribosomal DNA: Divergent paralogues and phylogenetic implications. Genetics 145: 821-832.
Cano, M.J. 2006. Tortula. Pp. 146-176 in: Guerra, J., Cano, M.J. \& Ross, R.M. (eds.), Flora briofitica ibérica, vol. 3, Pottiales: Pottiaceae; Encalyptales: Encalyptaceae. Murcia: Sociedad Española de Briologia.
Clement, M., Posada, D. \& Crandall, K.A. 2000. TCS: A computer program to estimate gene genealogies. Molec. Ecol. 9: 1657-1660.
Doležel, J., Binárová, P. \& Lucretti, S. 1989. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Pl. 31: 113-120.
Elder, J.F. \& Turner, B.J. 1995. Concerted evolution of repetitive DNA sequences in eukaryotes. Quart. Rev. Biol. 70: 297-320.
Felsenstein, J. 1985. Confidence-limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.
Funk, V.A. 1985. Phylogenetic patterns and hybridization. Ann. Missouri Bot. Gard. 72: 681-715.
Goloboff, P.A., Farris, J.S. \& Nix $0 n$, K.C. 2008. TNT, a free program for phylogenetic analysis. Cladistics, 24: 774-786.
Guerra, J. \& Cano, M.J. 2000. A taxonomic contribution on the European cleistocarpous species of Pottiaceae (Musci). J. Bryol. 212: 91-97.
Hall, T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41:95-98.
Harpke, D. \& Peterson, A. 2008. 5.8S motifs for the identification of pseudogenic ITS regions. Botany 86: 300-305.
Harris, E.S.J. 2008. Paraphyly and multiple causes of phylogenetic incongruence in the moss genus Plagiomnium (Mniaceae). Taxon 57: 417-433.
Hengen, P.N. 1995. Methods and reagents-fidelity of DNA polymerases for PCR. Trends Biochem. Sci. 20: 324-325.
Huelsenbeck, J.P. \& Imennov, N.S. 2002. Geographic origin of human mitochondrial DNA: Accommodating phylogenetic uncertainty and model comparison. Syst. Biol. 51: 673-688.
Huelsenbeck, J.P., Ronquist, F., Nielsen, R. \& Bollack, J.P. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310-2314.
Ignatova, E.A. \& Ignatov, M.S. 2009. Two new taxa of Pottiaceae (Bryophyta) from the Kuril Islands. Arctoa 18: 135-140.

Katoh, K., Misawa, K., Kuma, K. \& Miyata, T. 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl. Acids Res. 30: 3059-3066.
Köckinger, H. \& Kučera, J. 2011. Hymenostylium xerophilum, sp. nov., and H. gracillimum, comb. nov., two neglected European mosses and their molecular affinities. J. Bryol. 33: 195-209.
Košnar, J. \& Kolář, F. 2009. A taxonomic study of selected European taxa of the Tortula muralis (Pottiaceae, Musci) complex: Variation in morphology and ploidy level. Preslia 81: 399-421.
McDade, L.A. 1992. Hybrids and phylogenetic systematics II. The impact of hybrids on cladistic analysis. Evolution 46: 1329-1346.
Meinunger, L. \& Schröder, W. 2007. Verbreitungsatlas der Moose Deutschlands, hrsg. von O. Dürhammer für die Regensburgische Botanische Gesellschaft von 1790 e.V., Bd. 2. Regensburg.
Nieto Feliner, G. \& Rosselló, J.A. 2007. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in specieslevel evolutionary studies in plants. Molec. Phylogenet. Evol. 44: 911-919.
Nieto Feliner, G., Gutiérrez Larena, B. \& Fuertes Aguilar, J. 2004. Fine-scale geographical structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armeria (Plumbaginaceae). Ann. Bot. 93: 189-200.
Posada, D. 2008. jModelTest: Phylogenetic model averaging. Molec. Biol. Evol. 25: 1253-1256.
Rodríguez, F., Oliver, J.L., Marín, A. \& Medina, J.R. 1990. The general stochastic model of nucleotide substitution. J. Theor. Biol. 142: 485-501.
Sang, T., Crawford, D.J. \& Stuessy, T.F. 1995. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implications for biogeography and concerted evolution. Proc. Natl. Acad. Sci. U.S.A. 92: 6813-6817.
Såstad, S.M. 2005. Patterns and mechanisms of polyploid speciation in bryophytes. Pp. 317-333 in: Bakker, F.T., Chatrou, L.W., Gravendeel, B. \& Pelser, P. (eds.), Plant species-level systematics: New perspectives on pattern \& process. Ruggell: Gantner.
Schwarz, G. 1978. Estimating the dimension of a model. Ann. Statist. 6: 461-464.
Shaw, A.J. 2001. Biogeographic patterns and cryptic speciation in bryophytes. J. Biogeogr. 28: 253-261.
Shaw, A.J. 2009. Bryophyte species and speciation. Pp. 445-486 in: Goffinet, B. \& Shaw, A.J. (eds.), Bryophyte biology, 2nd ed. New York: Cambridge University Press.
Soltis, D.E. \& Soltis, P.S. 1999. Polyploidy: Recurrent formation and genome evolution. Trends Ecol. Evol. 14: 348-352.
Stech, M. \& Quandt, D. 2010. 20,000 species and five key markers: The status of molecular bryophyte phylogenetics. Phytotaxa 9: 196-228.
Thompson, J.D., Higgins, D.G. \& Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-4680.
Werner, O. \& Guerra, J. 2004. Molecular phylogeography of the moss Tortula muralis Hedw. (Pottiaceae) based on chloroplast rps 4 gene sequence data. Pl. Biol. (Stuttgart) 6: 147-157.
Werner, O., Ros, R.M., Cano, M.J. \& Guerra, J. 2002a. Tortula and some related genera (Pottiaceae, Musci): Phylogenetic relationship based on chloroplast rps4 sequences. Pl. Syst. Evol. 235: 197-207.
Werner, O., Ros, R.M., Cano, M.J. \& Guerra, J. 2004. Molecular phylogeny of Pottiaceae (Musci) based on chloroplast $r p s 4$ sequences. Pl. Syst. Evol. 243: 147-164.
Werner, O., Ros, R.M. \& Guerra, J. 2002b. Direct amplification and NaOH extraction: Two rapid and simple methods for preparing bryophyte DNA for polymerase chain reaction (PCR). J. Bryol. 24: 127-131.
Zander, R.H. 1993. Genera of the Pottiaceae: Mosses of harsh environments. Bull. Buffalo Soc. Nat. Sci. 32: 1-378.

Appendix. List of herbarium specimens used for sequencing and FCM analysis. Samples with ITS paralogs appearing markedly polyphyletic in the ITS phylogeny are in bold. +, more than one moss shoot used for DNA extraction; *, sample tested for monophyly of intraindividual ITS sequences by calculating the posterior probability of monophyly using Bayesian inference; x, haploid gametophyte; $2 x$, diploid gametophyte; $3 x$, triploid gametophyte. GenBank accession numbers of ITS are in normal font, $r p s 4$ sequences are in italics, with haplotype designations in brackets; for accession numbers of previously published sequences, see Fig. 1 and Fig. S1. Specimens collected by Košnar and Kučera are deposited in CBFS.

Tortula lingulata

L1+	-	JN544837	Czech Rep.: Peruc	Sandstone boulder	Košnar 577
L2+	-	JN544837	Latvia: Krimulda	Sandstone rock	Košnar 772
L3+	-	JN544837	Latvia: Sigulda	Sandstone rock	Košnar 786
L4+	-	JN544837	Latvia: Ieriķi	Sandstone rock	Košnar 795
L5+	$2 x$	JN544837	Latvia: Kārli	Sandstone rock	Košnar 797
L6+	-	JN544837	Estonia: Toila	Wall (sandstone)	Ingerpuu 24.6.2005 (TU)
L7+	-	JN544838	Russia: Sablino	Sandstone rock	Abramov \& Abramova s.n. (TAM)
L8+	$2 x$	JN581668 (M2)	Latvia: Cīrulǐsi	Sandstone rock	Košnar 802
Tortula muralis subsp. muralis var. aestiva					
A1+	x	JN544804, JN581673 (M2)	Czech Rep.: Dolní Adršpach	Wall (sandstone)	Košnar 724
A2	x	JN544804	Czech Rep.: České Žleby	Wall (granite)	Košnar 1647
A3	x	JN544804	Czech Rep.: Vilémovice	Limestone rock	Košnar 1713
A4	x	JN544771, JN544789, JN544790, JN544793	Czech Rep.: Trhanov	Bridge (concrete)	Košnar 1888
A5	x	JN544763	Czech Rep.: Velké Hydčice	Limestone rock	Košnar 1904
A6	x	JN544773, JN544774	Germany: Neusatz	Wall (granite)	Košnar 1601
A7	x	JN544808	Hungary: Dömös	Andesite rock	Košnar 746
A8	x	JN544766, JN544768	Hungary: Hont	Andesite rock	Košnar 1825
A9	x	JN544804	Hungary: Királyháza	Wall (andesite)	Košnar 1838
A10	x	JN544804	Latvia: Krimulda	Wall (limestone)	Košnar 775
A11	x	JN544764	Romania: Băile Olăneşti	Wall	Košnar 1918
A12	x	JN544765, JN544767	Romania: Cozia	Sandstone rock	Košnar 1920
A13	x	JN544767, JN544768	Romania: Cozia	Sandstone rock	Košnar 1921
A14	x	JN544771, JN544781, JN544782	Slovakia: Čabrad'	Wall (andesite?)	Košnar 635
A15	$2 x$	JN544769, JN544770, JN544771, JN544775, JN544776	Czech Rep.: Nebákov	Wall (Sandstone)	Košnar 560
A16*	$2 x$	JN544771, JN544775	Czech Rep.: Kost	Wall (sandstone)	Košnar 561
A17	$2 x$	JN544845, JN581680 (M11)	Czech Rep.: Kralupy n. Vltavou	Wall (sandstone)	Košnar 817
A18	$2 x$	JN544775, JN544793, JN544805	Czech Rep.: Bohumilice	Wall (concrete)	Košnar 1294
A19	$2 x$	JN544775, JN544890	Czech Rep.: Bílek	Wall (mortar)	Košnar 1508
A20	$2 x$	JN544771, JN544775, JN544785, JN544815	Czech Rep.: Rabštejn n. Střelou	Phyllitic schist rock	Košnar 1572
A21	$2 x$	JN544771, JN544775	Czech Rep.: Josefov	Wall (mortar)	Košnar 1723
A22	$2 x$	JN544775, JN544785	Hungary: Mt. Csóványos	Andesite boulder	Košnar 1842
A23+	$2 x$	JN544771, JN544777	Hungary: Mt. Csóványos	Andesite rock	Košnar 1847
A24	$2 x$	JN544771, JN544775, JN544786, JN544787	Latvia: Krimulda	Wall (limestone)	Košnar 778
A25+	$2 x$	JN544771, JN544777, JN581667 (M2)	Slovakia: Čabrad'	Wall (andesite?)	Košnar 648
A26	$2 x$	JN544771, JN544785	Slovakia: Kečovo	Wall (concrete)	Košnar 1007
A27	$2 x$	JN544771, JN544778, JN544793, JN544814	Slovakia: Buková	Wall (limestone)	Košnar 1017

Tortula muralis subsp. muralis var. muralis

M1	x	JN544812	Bosnia and Hercegovina: Vlasenica	Limestone rock	Košnar 1360
M2	x	JN544813	Bosnia and Hercegovina: Police	Limestone rock	Košnar 1363
M3	x	JN544829, JN544831	Czech Rep.: Templštejn	Wall (concrete)	Košnar 418

Appendix. Continued.

Sample	Ploidy	GenBank accession	Locality	Substrate	Voucher
M4+	x	JN544813	Czech Rep.: Ždárky	Concrete	Košnar 741
M5	x	JN544813	Czech Rep.: Zlatý kůň	Limestone rock	Košnar 1263
M6*	x	JN544791, JN544792, JN544828	Czech Rep.: Srbsko	Limestone rock	Košnar 1280
M7	x	JN544813	Czech Rep.: Sudslavice	Limestone rock	Košnar 1301
M8	x	JN544830	Czech Rep.: České Žleby	Wall (granite)	Košnar 1648
M9	x	JN544813	Czech Rep.: Bechyně	Granite rock	Košnar 1897
M10	x	JN544829	Czech Rep.: Nerestce	Limestone rock	Košnar 1899
M11	x	JN544813	Czech Rep.: Nerestce	Limestone rock	Košnar 1900
M12	x	JN544812	Switzerland: Meiringen	Bridge (concrete)	Košnar 990
M13	x	JN544772	Germany: Neusatz	Wall (granite)	Košnar 1599
M14	x	JN544827, JN544830	Hungary: Drégelyvár	Wall (andesite)	Košnar 1831
M15	x	JN544817	Italy: Anguillara Sabazia		Košnar 1907
M16	x	JN544847, JN544848, JN544854, JN544855, JN544856, JN544857	Montenegro: Mratinje	Wall (concrete)	Košnar 1365
M17	x	JN544812	Montenegro: Plav	Wall (concrete)	Košnar 1392
M18	x	JN544839	Montenegro: Djurkovići	Wall (mortar)	Košnar 1405
M19	x	JN544816	Montenegro: Žabljak	Wall (concrete)	Košnar 1409
M20	x	JN544862, JN544870, JN544871, JN544872, JN544873, JN544874	Norway: Runde	Concrete	Košnar 1906
M21	x	JN544813	Romania: Măcin	Granite rock	Košnar 1188
M22	x	JN544811	Romania: Răstoliţa	Bridge (concrete)	Košnar 1348
M23	x	JN544813	Slovakia: Čenkov	Wall (concrete)	Košnar 993
M24	x	JN544813	Slovakia: Turňa n. Bodvou	Wall (limestone)	Košnar 1010
M25	x	JN544813, JN581666 (M1)	Slovakia: Buková	Limestone rock	Košnar 1016
M26	x	JN544813	Switzerland: Luzern	Wall (mortar)	Košnar 991
M27	$2 x$	JN544813, JN544843	Armenia: Tatev	Wall	Košnar 1646
M28	$2 x$	JN544836, JN544846	Czech Rep.: Senorady	Wall (concrete)	Košnar 416
M29	$2 x$	JN544795, JN581679 (M4)	Czech Rep.: Tachov	Wall (concrete)	Košnar 771
M30*	$2 x$	JN544834, JN544835, JN544836	Czech Rep.: Peruc	Sandstone rock	Košnar 874
M31	$2 x$	JN544836	Czech Rep.: Český Krumlov	Wall (mortar)	Košnar 885
M32	$2 x$	JN544812	Czech Rep.: Bechyně	Granite rock	Košnar 1898
M33	$2 x$	JN544842	Czech Rep.: Nerestce	Limestone rock	Košnar 1901
M34	$2 x$	JN544841	Czech Rep.: Nerestce	Limestone rock	Košnar 1902
M35	$2 x$	JN544792, JN544889	France: Montpellier	Wall	Košnar 1033
M36	$2 x$	JN544833, JN544875, JN544876	Hungary: Drégelyvár	Wall (andesite)	Košnar 1832
M37*	$2 x$	JN544791, JN544792, JN544892, JN544893, JN544894, JN544895, JN544896	Hungary: Poroszló		Košnar 1912
M38	$2 x$	JN544771, JN544794, JN544817	Italy: Monte Chianti		Košnar 1908
M39	$2 x$	JN544865, JN544866, JN544867, JN544868	Italy: Sicily, Police		Košnar 1909
M40	$2 x$	JN544771, JN544775	Latvia: Krimulda	Wall (limestone)	Košnar 777
M41	$2 x$	JN544833	Montenegro: Mratinje	Wall (concrete)	Košnar 1367
M42*	$2 x$	JN544810, JN544840	Montenegro: Djurkovići	Wall (limestone)	Košnar 1404
M43*	$2 x$	JN544878, JN544884, JN544885	Montenegro: Žabljak	Wall (concrete)	Košnar 1408
M44	$2 x$	JN544858, JN544859, JN544860, JN544861	Montenegro: Riječani	Wall (concrete)	Košnar 1417
M45	$2 x$	JN544779, JN544780, JN544785, JN544795, JN544891	Poland: Wisełka	Concrete	Košnar 1905
M46	$2 x$	JN544778, JN544779, JN544780, JN544795	Romania: Răstoliţa	Bridge (concrete)	Košnar 1347
M47	$2 x$	JN544869, JN544886, JN544887, JN544888	Romania: Capaţini Mts., Stogsoara	Limestone rock	Košnar 1916
M48	$2 x$	JN544792	Spain: Madrid	Wall (concrete)	Košnar 1255
M49	$2 x$	JN544863, JN544864	Spain: Bullas, Río Mula	Concrete	Кис̆еra 13671
M50	$2 x$	JN544761, JN544762	Slovakia: Čenkov	Brick	Košnar 992
M51+	$2 x$	JN544844	Slovakia: Turňa n. Bodvou	Wall (limestone)	Košnar 1009

Appendix. Continued.

Sample	Ploidy	GenBank accession	Locality	Substrate	Voucher
M52	$2 x$	JN544829	Slovakia: Stakčín	Wall (concrete)	Košnar 1018
M53	$2 x$	JN544782, JN544783, JN581678 (M4)	Slovakia: Belina	Wall (concrete)	Košnar 1021
M54	$2 x$	JN544833, JN544852, JN544853	Slovakia: Hajnáčka	Basalt rock	Košnar 1023
M55	-	JN544827	Slovakia: Devín	Limestone boulder	Košnar 1042

Tortula muralis subsp. muralis-plants intermediate between var. aestiva and var. muralis

AM1	x	JN544830, JN544831, JN544832	Czech Rep.: Luže	Wall (brick)	Košnar 466
AM2	x	JN544767	Czech Rep.: Karlštejn	Limestone rock	Košnar 1287
AM3	x	JN544862, JN544877	Germany: Neusatz	Wall (granite)	Košnar 1600
AM4	x	JN544768, JN581674 (M2)	Hungary: Dömös	Andesite rock	Košnar 747
AM5	x	JN544766	Romania: Capaţini, Stogsoara	Limestone rock	Košnar 1917
AM6	x	JN544798	Slovakia: Stožok	Andesite rock	Košnar 630
AM7	$2 x$	JN544771, JN544788	Czech Rep.: Hrubá Vrbka	Concrete	Košnar 710
AM8*	$2 x$	JN544780, JN544795, JN544796, JN544797,	Czech Rep.: Kralupy n. Vltavou	Sandstone rock	Košnar 832
		JN544850, JN544851			Wall (sandstone)

Tortula muralis subsp. obtusifolia

O1	x	JN544751	Austria: Zalußenalm	Base-rich schist rock	Košnar 926
O2	-	JN544751	France: Mt. Cenis		De Zuttere 22169 (priv. herb.)
O3	-	JN544800, JN544801, JN544802, JN544803, JN581681 (M18)	France: Mt. Cenis		Skrzypczak 03424 (priv. herb.)
O4	-	JN544821	France: Mt. Cenis, Grotte percée		Skrzypczak 98395 (priv. herb.)
O5	x	JN544825	Germany: Schwarzwald	Sandstone rock	Košnar 1586
O6	x	JN544825	Germany: Schwarzwald	Sandstone rock	Košnar 1588
07	x	JN544825	Germany: Schwarzwald	Sandstone rock	Košnar 1589
08+	$2 x$	JN544825, JN581676 (M2)	Germany: Schwarzwald	Sandstone rock	Košnar 1587
O9+	x	JN544824	Hungary: Mt. Csóványos	Andesite rock	Košnar 1845
O10*	-	JN544758, JN544759, JN544760	Iceland: Rangárvallasýsla	Rock	Johansson s.n. (S)
011	x	JN544822	Romania: Călimani Mts.	Andesite rock	Košnar 1324
O12+	x	JN544822, JN581675 (M2)	Romania: Călimani Mts.	Andesite rock	Košnar 1330
013	-	JN544807	Romania: Răstoliţa	Andesite rock	Košnar 1349
014	x	JN544824, JN581671 (M2)	Slovakia: Stožok	Andesite rock	Košnar 631
015	-	JN544824, JN581669 (M2)	Slovakia: Čabrad'	Andesite rock	Košnar 639

Plants intermediate between Tortula muralis subsp. muralis var. aestiva and Tortula muralis subsp. obtusifolia

AO1+	-	JN544818, JN544819, JN544820	Armenia: Garni		Vas̆ák s.n. (B)
AO2	x	JN544752, JN544753	Armenia: Tatev	Wall	Košnar 1646
AO3	x	JN544757	Austria: Mt. Leiterkopf	Base-rich schist rock	Košnar 1543
AO4	x	JN544804	Austria: Leiterbach	Base-rich schist rock	Košnar 1551
AO5	x	JN544756	Austria: Kleinfleißbach	Base-rich schist rock	Košnar 1556
A06+	x	JN544757	Austria: Kleinfleißbach	Base-rich schist rock	Košnar 1565
A07+	x	JN544804, JN544806, JN581670 (M2)	Czech Rep.: Lažánky	Limestone rock	Košnar 601
A08	-	JN544771, JN544775, JN544784, JN544785, JN544785, JN544786	Czech Rep.: Kralupy	Sandstone rock	Košnar 824
A09	x	JN544767	Czech Rep.: Holštejn	Limestone rock	Košnar 1533
AO10	x	JN544804	Czech Rep.: Přiběnice	Erlan rock	Košnar 1903
A011	-	JN544751, JN581682 (M19)	France: Mt. Cenis	Rock	Skrzypczak 03455 (priv. herb.)
AO12	-	JN544754, JN544755	France: Mt. Cenis, Grotte percée		Skrzypczak 98395 (priv. herb.)
AO13	x	JN544809, JN581677 (M4)	Hungary: Dömös	Andesite rock	Košnar 749
AO14	x	JN544824	Hungary: Dömös	Andesite rock	Košnar 750
AO15	x	JN544823, JN581672 (M2)	Hungary: Visegrád	Andesite rock	Košnar 756

Appendix. Continued.

Sample	Ploidy	GenBank accession	Locality	Substrate	Voucher
Crossidium aberrans	-	JN544730, JN544731	Spain: Sierra de Cazorla	Rock	Kučera 5747
C. crassinerve	-	JN544732, JN544733	Spain: Las Torres de Cotillas	Calcareous soil	Kučera 13662
C. squamiferum	-	JN544723, JN544724	Montenegro: Virpazar	Limestone rock	Košnar 1414
Pterygoneurum ovatum	-	JN544737, JN544738	Czech Rep.: Němčiččy	Loess	Košnar 319
P. subsessile	-	JN544739, JN544740	Czech Rep.: Čejkovice	Loess	Košnar 1913
Stegonia latifolia	-	JN544715, JN544716	Austria: Mt. Hohe Dock	Bare soil	Košnar 1448
Tortula acaulon	-	JN544743, JN544744, JN544745, JN544746	Czech Rep.: Horní Bojanovice	Bare soil	Košnar 317
T. atrovirens	-	JN544712, JN544713, JN544714	Spain: Cabo de Gata		Kučera 5338
T. brevissima 1	$3 x$	JN544726, JN544727	Spain: Las Torres de Cotillas	Calcareous soil	Kučera 13662
T. brevissima $\mathbf{2}^{+}$	-	JN544722, JN544725	Spain: Cabo de Gata	Soil	Kučera 5332
T. cernua	-	JN544736	Norway: Svalbard, Petuniabukta	Soil	Košnar 1914
T. hoppeana	-	JN544710	Austria: Mt. Waldhorn	Gneiss rock	Kučera 12892
T. lanceola	-	JN544717, JN544718	Czech Rep.: Nové Dobrkovice	Soil	Košnar 245
T. laureri	-	JN544711	Austria: Mt. Scharnock	Soil	Kučera 9218
T. leucostoma	-	JN544734, JN544735	Norway: Svalbard, Petuniabukta	Soil	Košnar 1915
T. marginata	-	JN544747, JN544748, JN544749	Italy: Sicily, Scopello	Wall	Košnar 1910
T. modica	-	JN544719, JN544720	Czech Rep.: Nové Dobrkovice	Soil	Košnar 250
T. protobryoides	-	JN544721	Czech Rep.: Horní Němčí	Soil	Košnar 1245
T. revolvens	-	JN544729	Spain: Rambla de Tabernas		Kučera 5386
T. systylia	-	JN544750	Italy: Mt. Col del Cuc	Soil	Kučera 7278
T. truncata	-	JN544741, JN544742	Germany: Hub	Soil	Košnar 1605
T. vahliana	-	JN544728, JN581683 (V2)	Netherlands		Vanderpoorten 4835 (priv. herb.)

