Ascomycete plant pathogens

Unlike human and animal pathogens, widely distributed throughout the Ascomycota

numerous genera and species that cause plant disease both host-specific and opportunistic parasites

Association between plants and fungi is ancient, parasitism has evolved and been lost repeatedly in fungal lineages

Plant pathogens classified according to the types of disease they cause, plant organs or tissues affected root, shoot, foliage disease, dieback seed rots, seedling diseases ("damping off") fruit rots, storage rots canker diseases of woody hosts

Plant pathogens

Pathogenicity: the ability to cause disease

Disease: A deviation from normal physiological function

The ability of fungi to cause disease is usually a direct result of parasitism

Parasite: an organism that obtains its nutrition from another organism

Biotrophic parasites do not immediately kill their hosts, have a prolonged association with living host tissue.

Necrotrophic parasites kill host tissue in advance of occupation. Often involves phytotoxins.

Plant pathogens

Some pathogens produce toxins that facilitate infection host selective toxins are highly specific, affect only a single host species, and often a specific genotype

- host selective toxins interact with specific host gene product
- nonselective toxins are general phytotoxins

Some pathogens produce chemical analogs of plant growth regulators, cause galls and abnormal growth
Gibberellin was discovered from bakanae disease of rice, caused by *Gibberella fujikoroi* "green islands" cytokinins prevent host tissue from sensescence

Gibberellin plant growth regulators were discovered from *Gibberella fujikoroi*, which causes bakanae ('foolish seedling') disease of rice

Factors affecting disease development and severity are often represented by a disease triangle

Disease results from interaction of: susceptible host virulent pathogen conducive environment

All three factors affect disease

Host susceptibility and pathogen virulence are often genetically determined:

pathogen avirulence genes (AVR) host resistance genes (R)

Plant pathogens, plant defenses

How do plants defend themselves from pathogens?

Plants defend themselves from fungal plant pathogens by:

Physical barriers, cell walls, cuticle etc
Preformed chemical substances, fungal toxins
incorporated in cells, released when cells are wounded

Actively formed chemical substances, active defenses

e.g. phytoalexins, antifungal substances synthesized in response to wounds and specific fungal elicitor molecules

Hypersensitive response—death of particular cells or tissues in response to attempted infection by a pathogen

Hypersensitive response, programmed cell death

Gene for Gene concept

H. H. Flor 1942 demonstrated heritable resistance to a plant pathogen, "the Mendel of plant pathology"

Used the system flax and flax rust (Melampsora lini)

Varieties of flax differed in susceptibility to infection by different <u>races</u> of rust

Flor crossed rust races and tested offspring for ability to infect different flax varieties

Gene for Gene concept

The number of host resistance (R) genes in flax varieties determined the maximum number of pathogen avirulence (AVR) genes.

For every <u>resistance</u> gene in host there is a corresponding <u>avirluence</u> gene in the pathogen. Resistance is a <u>dominant</u> trait in host, <u>avirulence</u> is a dominant trait in the rust—a gene product is produced if gene is dominant.

The <u>resistance reaction</u> occurs only when a host resistance (R) gene and a corresponding dominant pathogen avirulence (AVR) gene are present in the interaction—both dominant genes.

Flor demonstrated inheritance of **avirulence** and was able to assign genotypes to different pathogenic races of *M. lini*.

Gene for Gene concept

Resistance occurs when the product of a pathogen avirulence gene (AVR) interacts with a product of a plant resistance gene (R).

Certain fungi have evolved to be capable of parasitizing certain plants by adaptations that allow them to circumvent or suppress host defense reactions. A fungal pathogen able to colonize and parasitize a plant is **compatible**, i.e. disease occurs.

Parasitism of plants by fungi imposes selection pressure on hosts for development of resistance mechanisms. Resistance/ susceptibility may be specific to certain genotypes (races) of pathogen.

An evolutionary "arms race" between pathogens and hosts "Red Queen" hypothesis

recessive alleles in host for R genes means the pathogen can cause disease, even if pathogen has dominant AVR allele

Plant pathogens in Ascomycota

Taphrinomycotina (Archaeascomycetes) includes closely related human pathogen *Pneumocystis carinii*

Taphrinales

Protomycetaceae

Protomyces

Cause galls and deformities of Umbelliferae and some Compositae, no economically important hosts

Taphrina

many species in the genus that cause defomities on foliage, catkins of some Betulaceae, ferns, "plum pocket" and witch's brooms of some woody hosts

Peach leaf curl and almond leaf curl caused by T. deformans

Taphrinomycotina--Protomyces

Gall symptoms of Protomyces

Taphrinomycotina--Taphrina

Taphrina on leaf surface

Taphrinomycotina--Taphrina

Saccaromycotina, ascomycetous yeasts

Plant pathogenic yeasts

Classified in genera *Ashbya, Nematospora, Eremothecium* Kurztmann (1995) suggested including all under *Eremothecium*

Most important species is *Eremothecium* (=*Nematospora*) *coryli*, which causes stigmatomycosis of hazelnut, pistachio, pecan

also can affect cotton, soybean, citrus, tomato

transmitted by Hemiptera (stink bugs)

Rancid pistachio caused by E. coryli

Dry rot of citrus

Stigmatomycosis of pistachio caused by *Eremothecium coryli*

Saccharomycotina--Dipodascaceae

Galactomyces anamorph: Geotrichum

Causes Geotrichum (watery) rot of tomato, also infects ripe lemon, peach, muskmelon; sour rot of citrus fruit. The yeast is spread by flies.

Ascomycete Pathogens I. Species with apothecial ascocarps

Images: APSnet

Plant pathogens in Ascomycota Pezizomycetes & Leotiomycetes "Discomycetes"

Sexual fruiting structure an apothecium, disc like with exposed fertile surface (hymenium) with asci

hymenium: asci and paraphyses

epithecium: tips of paraphyses above asci

hypothecium: tissues immediately beneath the hymenium

excipulum: sterile tissue

clypeus: a stromatic cov

apothecial ascoms

Operculate asci are only found in Pezizomycetes, "operculate discomycetes"

close relatives are morels, which are tasty but not pathogenic

Fungal pathogens in Pezizales, Caloscypha

Causes pre-emergence losses of seed in conifer nurseries
The fungus attacks seeds in cones that contact the forest duff
Can spread from infected seed to healthy seeds in cold storage

Caloscypha fulgens, a cold adapted pathogen, attacks seeds in stratification or sown in cold soils

Figure 41. *Caloscypha fulgens* conidiophore and conidia (X 2400), bar is 10 μ m (J.R. Sutherland, CFS).

Pezizomycetes--Rhizina root disease, Rhizina root rot

Rhizina undulata: ascomycete fungus, fruiting body an apothecium

Hosts

western redcedar, Englemann, Sitka, lodgepole, Douglas-fir, larch, western hemlock

Primary damage is to seedlings planted soon after fire, can also affect larger trees after fire damage, trees near edge of burned area

Apothecium next to seedling

Pezizomycetes--*Urnula craterium* "Strumella canker"

Urnula and its anamorph *Conoplea globosa* can be found sporulating on symptomatic (cankered) trees.

Susceptible hosts are oaks, maple and other hardwoods (hickory, beech, chestnut, mainly affects young trees (< 10 cm diam)

Found in NE USA and E Canada, also reported from PNW, but uncommon

Anamorph is Conoplea (aka Strumella), its role in epidemiology is unknown

Leotiomycetes--Erysiphales, powdery mildews Cleistothecial ascocarps (now called "chasmothecia") but related to fungi with apothecial ascocarps

Specialized foliage parasites, host specific, obligate biotrophs

Many plant species affected

Abundant conidia on leaves makes a white dust, hence "powdery mildews

Figure 15-8 Conidiophore and conidium development in *Erysiphe polygoni*. [From E. Foex. 1912. *Ann. École Nat. Agr. Montpellier* 11:246–264. Redrawn from Yarwood (1957) by R. W. Scheetz. By permission of the *Botanical Review*.]

The Oidium anamorph of *Erysiphe*

All Leotiomycetes have apothecial ascocarps except Erysiphales

Ascocarps of Erysiphales have straightm curved, or branched hairs or appendages.

Taxonomy of Eryisiphales is based on whether ascocarp has a single ascus or multiple asci, and on shapes of appendages

Appendages function in dispesal of Phyllactinia; the whole ascocarp can be a dispersal structure. Function of appendages of other Erysiphales is not known.

Dispersal of entire ascocarps of *Phyllactinia guttata* on *Corylus* (hazel)

Erysiphales have distinctive lobed haustoria

Images APSnet

Soybean powdery mildew

Image APSnet

powdery mildew on melons

Image APSnet

Diseases caused by Sclerotiniaceae

Important life stage is a sclerotium, survival or overwintering structure

Sclerotinia white mold
Monilinia brown rot
Botrytis/Botryotinia gray mold
Mummyberry
Peach mummy

Sclerotiniaceae apothecia from germinating sclerotia

Sclerotinia sclerotiorum—white mold, very broad host range, many important annual, agriculturally important plants: carrot, bean, sunflower, broccoli, strawberry, many others

Sclerotinia

sclerotia of *S. sclerotiorum* on brussels sprouts

Symptoms and sclerotia of white mold on sunflower

white mold Sclerotinia sclerotiorum

Tomato stem rot

white mold of beans

Sclerotinia sclerotiorum on strawberry

sclerotium

H. Costa, F. Ávila Rodrigues, L Zambolim. APSnet

Botrytis cinerea an opportunist with broad host range Teleomorph is Botryotinia, but rarely seen

many different plants.

Botrytis squamosa blight of garlic. A, Initial foliar symptoms (left) on a garlic leaf compared with a healthy garlic leaf (right); B, Sporulation of B. squamosa on a dead leaf (top, compared with a healthy leaf (bottom); C, Three black sclerotia produced by B. squamosa on a dead leaf (left); D, A sclerotium of B. squamosa germinated to produce profuse conidiophores and conidia; E, A conidiophore of B. squamosa with clusters of ellipsoidal conidia. Mr. M. D. Wu and Dr. G. Q. Li. APSnet.

Botrytis affects many different hosts

Bunch rot of grape

Douglas-fir dieback after frost injury; tissue susceptible to infection by B. cinerea

fruit rot

rose blight

Ciborinia petal blight of Camellia

Ciborinia camelliae

Brown rot of stone fruits *Monilinia fructicola, M. laxa*

Peach mummy disease
Affects stone fruits, peaches, apricots, nectarines, almonds, plums prunes, cherries
Also affects apples and pears

Four species of *Monilinia* affect Rosaceae fruits:

Monilinia fructicola widespread in NA, infects blossoms, twigs, fruits; primary host *Prunus* spp. but also apple, pear

M. fructigena occurs in Europe, primary host is apple, pear; does not infect blossoms or twigs *M. laxa* infects both blossoms, twigs, fruits; co-occurs with *M. fructicola* in PNW, affects *Prunus* but also apple, pear

Monilia polystroma known only from anamorph, cause of brown fruit rots in Japan

Monilinia

M. fructigena

Powdery appearance on infected fruit is the *Monilia* anamorph. The fruit mummys become sclerotia

Monilia anamorph—the mold of brown mold

Floral mimicry: mummyberry disease

Monilinia vaccinii-corymbosi

Blueberry mummies, entire berry becomes a sclerotium, survives in soil over winter and germinates in spring

Mummy berry disease, flower mimicry

Both leaves and flowers can be infected, only infected flowers produce mummies (sclerotia). Infected foliage wilts and is attractive to pollinator insects like bees.

Bees visit the infected foliage, contact the conidia and carry them to flowers, which become infected. Developing berries from infected flowers become mummies.

Disease cycle of mummy berry.

Lachnellula willkommii Larch canker

Cenangium ferruginosum diel

dieback and canker of pine

Affects lodgepole, ponderosa, eastern white pine
Trees under drought stress or winter cold injury are predisposed to infection
"endophytic", inconspicuous colonist of bark that causes disease when trees are stressed
Impact is greater in NE USA, Asia (Korea, Japan)

Gremmeniella abietina
Anamorph Brunchorstia pinea
Scleroderris canker

Affects pines in areas that have substantial winter snowpack

varieties abietina and balsamea in NA

Asian, NA and European races are recognized that differ in aggressiveness and host range

NA race affects lodgepole and jack pine, Eur race affects red pine and white pine in eastern NA

cold adapted (psychrophilic) grows at -6 to 5 C, on snow covered parts of trees

Gremmeniella abietina

Brunchorstia conidia

Dermateaceae

Blumeriella jaapii Anamorph Phloeosporella padi

Cherry leaf spot

Phloeosporella padi

A coelomycete with pycnidia

masses of condia

Diplocarpon black spot of rose

Figure 1. Spores of Diplocarpon rosae stained with cotton blue.

Diplocarpon black spot of rose

Entomosporium anamorph of Diplocarpon

Pezicula cinnamomea, anamorph
Cryptosporiopsis, canker of apple and
pear
Also causes canker of Quercus robur in
Europe

Leptotrochila medicaginis Yellow leaf blotch of alfalfa

Pseudopeziza alfalfae alfalfa leaf spot

Image: Rothamstead Research

Pyrenopeziza brassicae Light leaf spot of winter oilseed rape, Brassica napus

Rhytisma punctatum tar spot of maple

Lophodermella and
Cyclaneusma needle casts of
Monterey,
lodgepole and ponderosa pine

Cyclaneusma minus

Also known by its older name Naemacyclus minor

Numerous pine species are hosts, including P. radiata, P. ponderosa

Can be a significant cause of defoliation in young plantations when several consectutive years of favorable conditions occur.

Cyclaneusma minus apothecia

Lophodermium on pine

L. pinastri L. seditiosum L. australe

Ploioderma lethale foliage blight of loblolly pine

