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A B S T R A C T

Controversial hairpin-shaped trace fossils (Myxomitodes stirlingensis) and discoid fossils (Cyclomedusa davidi) are
here reinterpreted in a reassessment of sedimentology and paleosols of the 1.9 ± 0.1 Ga Stirling Range
Formation of Western Australia. Paleosols in the Stirling Range Formation were recognized from complex
cracking patterns (peds and cutans), chemical and mineralogical zonation (soil horizons), and poikiloblastic
crystals (desert roses). Redox profiles of the paleosols are evidence of well-drained profiles of a coastal plain
under a low oxygen (433 ± 116 ppmv) and carbon dioxide (564 ± 64 ppmv) atmosphere. Gypsum pseudo-
morphs in paleosols that are deeply weathered chemically, represent a persistence of acid sulfate weathering,
better known in Archean paleosols before the Great Oxidation event at 2.45 Ga. Chemical composition of the
paleosols is evidence of a humid (1478 ± 182mm mean annual precipitation) temperate (11.3 ± 0.5 °C mean
annual temperature) paleoclimate. Their paleoenvironmental setting was a coastal plain on a passive tectonic
margin. Megafossils were found on paleosols of western red sandstones of the Stirling Range Formation, not in
gray shales and sandstones of marine facies to the east. Trace fossils (Myxomitodes stirlingensis) and discoid fossils
are both found at the surface of well drained paleosols, and so were not metazoan trails, nor sea jellies.
Myxomitodes was more likely a grex (“slug”) trail of soil slime molds, and the Cyclomedusa discoids, were
probably microbial colonies. Pervasive microfilamentous structures in the paleosol surface are additional evi-
dence of Paleoproterozoic microbial earth ecosystems.

1. Introduction

Paleoproterozoic (ca. 1.9 Ga) hairpin-like trace fossils of
Myxomitodes stirlingensis (Bengtson et al., 2007) have been controversial
as the oldest complex, and thus eukaryotic, fossils visible with the
naked eye. That distinction has been eclipsed by 2.2 Ga terrestrial
Diskagma (Retallack et al., 2013), 2.1 Ga intertidal-marine Franceville
biota (El Albani et al., 2010, 2014, 2019), and perhaps 1.9 Ga lacustrine
Grypania (Han and Runnegar, 1992; redated by Schneider et al., 2002),
but their affinities remain problematic. Myxomitodes and associated
Cyclomedusa discoid fossils were first compared with supposed marine
animal “Ediacaran fossils” (Cruse et al., 1993; Cruse and Harris, 1994),
or “vendobionts” (Seilacher, 1992, 2007; Fedonkin et al., 2007). Sub-
sequent radiometric dating revealed that they were Paleoproterozoic
(ca. 1.9 Ga), much older than the 635–541Ma Ediacaran Period
(Rasmussen et al., 2004). The hairpin-like trails Myxomitodes have been
attributed to slime molds (Bengtson et al., 2007), marine worms
(Rasmussen et al., 2002a), giant aquatic Gromia-like protists
(Rasmussen et al., 2002b), or wind-driven gas bubbles (Seilacher,
2007). Associated fossil discoid fossils have been interpreted as sea jelly

medusae (Cruse et al., 1993; Cruse and Harris, 1994), or as microbial
colonies (Grazhdankin and Gerdes, 2007). Our study presents, addi-
tional microstratigraphic information on the provenance of fossils
within the Stirling Range Formation, in order to assess paleoenviron-
ment and biological affinities of the fossils.

2. Geological setting and age

The Stirling Range Formation of southern Western Australia (Fig. 1),
is at least 1600m thick, and mostly quartz-rich sandstone, with inter-
bedded shales (Muhling and Brakel, 1985). This weather-resistant unit
forms an iconic Australian landscape of conical hills (Fig. 2A), topo-
graphically and structurally above, and to the north of, metamorphic
rocks of the Albany Mobile Belt to the south, from which it is separated
by a major east-west fault (Fig. 1). To the north, the Stirling Range
Formation unconformably overlies high-grade metamorphic rocks of
the Archean Yilgarn Craton (Muhling and Brakel, 1985). Sedimentary
structures have been used to infer fluvial, intertidal and shallow marine
paleoenvironments (Cruse et al., 1993; Cruse and Harris, 1994;
Bengtson et al., 2007). Planar and trough cross bedding indicates
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paleocurrents from the west and southwest (Bengtson et al., 2007).
Together with quartz-rich composition, and detrital xenotime and
zircon ages (Rasmussen et al., 2004), this indicates provenance from the
Yilgarn Craton to the north. The Stirling Range Formation thus formed
on a passive continental margin predating deformation, metamorphism,
and uplift of the Albany Mobile Belt to the south, which sutured the
conjoined Yilgarn-Pilbara Craton to the Mawson (Gawler-East Ant-
arctic) Craton (Dawson et al., 2002, 2003; Rasmussen and Muhling,
2007) into the supercontinent of Rodinia (Evans, 2009).

The Stirling Range Formation was considered Proterozoic in age
because unfossiliferous and greenschist rather than amphibolite facies
metamorphism (Woolnough, 1920), but discovery of discoid fossils
later suggested an Ediacaran age (635–542Ma: Cruse et al., 1993; Cruse
and Harris, 1994), and subsequent deformation during a Pan-African
assembly of Gondwana (Harris and Beeson, 1993; Harris, 1994). This
was untenable because Turek and Stephenson (1966) had already ob-
tained RbeSr metamorphic ages of 1124Ma and depositional ages of
1340Ma, in accord with a tectonothermal event during Rodinian as-
sembly at 1300–1140Ma inferred from RbeSr whole rock and UePb
zircon analyses of gneiss, granite and metasediment elsewhere in the
Albany Mobile Belt (Black et al., 1993; Clark et al., 1999, 2000). Do-
lerite dikes intruding the Stirling Range Formation had been considered
Cambrian-Ordovician based on paleomagnetic inclination (Harris and
Beeson, 1993; Harris and Li, 1995), but these too proved to be much
older, at 1218 ± 3Ma from SHRIMP UePb dating of zirconolite
(Rasmussen and Fletcher, 2004). There was a possibility that the rocks
with Ediacaran-style fossils were unconformable on the older rocks

(Cruse and Harris, 1994), but this unconformity eluded detailed map-
ping (Bengtson et al., 2007). Instead, SHRIMP UePb dating indicated
metamorphic monazite rims dated to 1.2 Ga around cores of 1.9–2.6 Ga
detrital monazite (Rasmussen et al., 2002a). Finally, SHRIMP UePb
dating of detrital xenotime grains (3120–2100Ma) and detrital zircon
grains (3460–1960Ma), and of xenotime overgrowths of two distinct
populations (1800 ± 14Ma and 1662 ± 15Ma), suggest an age of the
Stirling Range Formation between 2.0 and 1.8 Ga (Rasmussen et al.,
2004; Rasmussen and Muhling, 2007).

3. Materials and methods

Fieldwork involved observations and collections on Mondurup,
Barnett Peak, Tondurup, Mt. Hassell, and Bluff Knoll, and a detailed
section was measured on Barnett Peak (Fig. 4), where most of the fossils
had been found. The sequence included microstratigraphic patterns of
texture and color sampled as putative paleosols for laboratory studies of
bulk chemical composition, thin section petrography, and mineral
composition (Fig. 5). Thin sections were used to quantify grain size
(sand/silt/clay) and mineral compositions (quartz, feldspar, mica,
opaque, rock fragment) by point counting (500 points) using a Swift
automated point counter on a Leitz Orthoplan Pol research microscope.
Accuracy of such point counts is± 2% for common constituents
(Murphy, 1983). Major element chemical analysis was used to char-
acterize chemical weathering trends and metamorphic alteration, and
determined by XRF at ALS Chemex in Vancouver, Canada. Bulk density
was measured from weight in and out of chilled water of untreated and

Fig. 1. Geological map and study localities of the Stirling Range Formation (1.9 Ga) in southwestern Australia (modified from Cruse and Harris, 1994).
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then paraffin-coated clods (Retallack, 1997). Rare earth element ana-
lyses were normalized to post-Archean Australian sediments (Nance
and Taylor, 1976). A Cameca SX100 ion microprobe was used for ele-
ment mapping of polished sections. Rock specimens and thin sections
are archived in the Condon Collection of the Museum of Natural and

Cultural History of the University of Oregon.

4. Metamorphic and diagenetic alteration

Reconstructing ancient sedimentary environments of metamorphic

Fig. 2. Field photos of prospective paleosols and sedimentary structures of exposure in the ca. 1.9 Ga Stirling Range Formation of Barnett Peak (A–D, F, I), summit of
Mondurup (G specimen R3818) and south saddle of Toolbrunup Peak (E). Hammer for scale has handle 25 cm long, graduations in image F and G are in mm.
Stratigraphic levels in Barnett Peak section (Fig. 4) are 85m (A–B), 80m (C), 5 m (D), 2m (F specimen R3817), and 20m (I).
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rocks requires attention to early diagenetic changes, as well as late
diagenetic and metamorphic transformations. Three common early di-
agenetic alterations are common in the Stirling Range Formation: (1)
drab upper portions of beds due to burial gleization of buried organic
matter, (2) dark purple-red color from dehydration reddening of ferric
hydroxide minerals, and (3) substantial lithostatic compaction
(Retallack, 1991). Burial gleization is chemical reduction of oxides and
hydroxides of iron by anaerobic bacteria on subsidence below water
table, and is especially suggested by drab mottles and tubular features
radiating down from bed tops (Figs. 2A,C, 6F,G), well documented in
Cambrian (Álvaro et al., 2003; Retallack, 2008) and Proterozoic red
beds (Driese et al., 1995; Mitchell and Sheldon, 2009; Retallack, 2013a,
2016a, 2016b).

Also evident is potash enrichment by diagenetic illitization and
metamorphic sericitization (Rasmussen and Muhling, 2019), which can
be assessed from deviation of chemical analyses toward illite compo-
sition and away from a weathering trend toward alumina enrichment
(Nesbitt and Young, 1989). Illitization is also indicated by potash mass
fraction increase (Novoselov and de Souza Filho, 2015). By both mea-
sures, the Stirling Range Formation has suffered significant illitization
and sericitization, with compositions clustering around illite (Fig. 3A),
and significant potash assays in many samples (Fig. 3B). Because of the
strong covariance of alumina and potash (Fig. 3B), illitization can be
attributed to retention of potash in clays dewatered of other alkalies
and recrystallized by Ostwald ripening, rather than due to introduction
of potash in hydrothermal or groundwater solutions (Eberl et al., 1990;
Novoselov and de Souza Filho, 2015). Illitization and late diagenetic
dewatering may also explain the very low analytical values for calcium,
which may have been there in gypsum sand crystals now pseudo-
morphed by silica (Figs. 2C, 6H). Silicification by silica derived from
burial pressure solution (McBride, 1989) is also likely for these sand
crystal pseudomorphs.

Rasmussen and Muhling (2019) have made a provocative case for
metamorphic oxidation of the Stirling Range Formation from what they
presume was a gray protolith rich in organic fragments observed in thin
section along with hematite within diagenetic rims of monazite around
detrital monazite grains. The rims themselves are evidence against this,
because monazite dissolves under oxygen fugacity above the fayalite-
magnetite-quartz buffer, which in turn is about 5 orders of magnitude
less oxygen than above the magnetite-hematite buffer needed to pro-
duce observed hematite (Trail, 2018). Metamorphic oxidation has also

been challenged from the perspective of diffusion rates and times in
such low permeability rocks (Robbins et al., 2019). The Stirling Range
hematite grains may have been recrystallized, reoriented into cleavage,
and paleomagnetically reset by metamorphism, but were more likely
engulfed by later monazite, and not oxidized during diagenesis or
metamorphism, because of the following observations. Red hematite-
rich clayey clasts are common in green sandstones (figs 2G, 6B, see also
fig 5C of Rasmussen and Muhling, 2019) in the western Stirling Ranges,
but gray clasts in gray sandstones remain in the eastern Stirling Ranges
(Fig. 2H). Unoxidized coarse grained matrix to these fine-grained he-
matite-bearing clasts is evidence against pervasive oxidation during
metamorphism, because permeable rocks of coarse grain size would be
more oxidized than fine-grained rocks by oxidizing fluids, the opposite
of observation. Pervasive oxidation, with gray sandstone filling mud
cracks (Fig. 2F), local burial gleization around filamentous organic
matter (Figs. 2A,C, 6F,G, see also fig 2C of Rasmussen and Muhling,
2019), and varied ferrous/ferric iron ratios (Fig. 5), are comparable
with many other examples of Proterozoic red beds (Dreise et al., 1995;
Álvaro et al., 2003; Retallack, 2013a, 2016a, 2016b).

The Stirling Range Formation has undergone two generations of
folding, formation of multiple cleavages, and is sliced into several
northward thrust sheets, yet most exposures have low (5–28°) dips and
gentle upright folds (Boulter, 1979; Muhling and Brakel, 1985). Shaley
beds of the Stirling Range Formation are mainly sericite and muscovite,
with chlorite in cleavage fractures, and biotite limited to isolated rare
flakes (Rasmussen and Muhling, 2019). Metamorphic paleo-
temperatures calculated from Stirling Range Formation chlorites of
Barnett Peak are unlikely maxima, because all iron was assumed ferrous
despite abundant hematite, but found peak temperatures of
368 ± 56 °C for Fe-chlorites, and 288 ± 36 °C for later Mg-chlorites
(Rasmussen and Muhling, 2019). A temperature of 400 °C would give
burial depth of 10 km at the 40 °C/km maximum used in Himalayan
geothermal calculations (McQuarrie et al., 2014). This is unlikely, be-
cause three clastic dikes at 20.5 m in the measured section (Fig. 2I) are
compacted to only 73 ± 2% of their ptygmatically folded length, and
this corresponds to burial depth of 0.85 km using an equation (Table 1)
of Sheldon and Retallack (2001). A single thick clastic dike with
sandstone fill at 32.1 m is compacted to 82%, corresponding to 0.49 km
burial. Thus the 98m measured section was in the upper half of the
observed 1.6 km of Stirling Range Formation to the east (Muhling and
Brakel, 1985), and observed heating at 1.2 Ga was not simply due to

Fig. 3. Geochemical indication of illitization from major element composition (A) and tau analysis (B).
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Fig. 4. Measured section of Stirling Range Formation on Barnett Peak. Pedotype names are to the left of the development boxes (black rectangular boxes), based on
the soil maturity (Retallack, 2001). Calcification as a guide to aridity is based on field reaction with dilute HCl (Retallack, 2001). Hue as a guide to waterlogging is
based on Munsell Color Chart.

G.J. Retallack and X. Mao Palaeogeography, Palaeoclimatology, Palaeoecology 532 (2019) 109266

6



burial, but from coeval intrusion of Albany Granite to the south (Turek
and Stephenson, 1966).

5. New observations of the Stirling Range Formation

Bengtson et al. (2007) interpret the sedimentary environment of the
Stirling Range Formation as tidal flat, coastal plain and shallow marine,
but our observations revealed a variety of features unexpected in
marine-influenced environments within the same measured section of
Barnett Peak. These features, are described and then interpreted in each
of the following sections, and apply only to red beds of Barnett Peak,
Mondurup, and the tops of Toolbrunup and Mt. Hassell. The various
intertidal to marine facies envisaged by Bengtson et al. (2007) were
confirmed by examination of gray parts of the Stirling Range Formation
on Bluff Knoll, and the lower parts of Toolbrunup and Mt. Hassel.

5.1. Crack patterns

Red beds of the Stirling Range Formation include multiple horizons
of shrinkage cracks (Fig. 2A–B, F), which have the v-shaped profile of
true desiccation cracks in clay (Weinberger, 2001). These cracks also
emanated from the most hematite-rich upper portions of sandy beds,
which were the most oxidized (Fig. 2A–C,H). Some cracks had dis-
placive fabric, where a portion of the surface rotated into a cavity under
low confining pressure (Fig. 6C), unlike sheared cracks formed during
deep burial or metamorphism. The cracks are also complex, with en-
terolithic deformation of sandstone fill (Fig. 6F,G), collapsing into open
spaces.

These v-shaped cracks evidently opened and closed many times, as
in a soil alternately wet and dry. A comparable phenomenon is oscil-
lating desiccation cracks of modern intertidal flats (Noffke, 2008, 2009)
and mukkara structure of Vertisols (Retallack, 1997).

5.2. Sand crystals

Cracked surfaces with bedding obscured by ferruginization are
above a subsurface layer with white patches (Fig. 2A, C). The white
patches are areas without pervasive red hematite cement and have ei-
ther the rounded shape of nodules or the elongate shape of monoclinic
crystals with many included sand grains (Fig. 6H). The nodules and
crystal pseudomorphs are largely silica now (56–91wt% Table S3), but
electron microprobe mapping (Fig. 7) reveals slight enrichment in
calcium, rather than barium, magnesium or sodium. This increase in
calcium, together with sharp interfacial angles (Fig. 6H), support in-
terpretation of the dissolved salt as gypsum, rather than barite, kie-
serite, bassanite, or nahcolite common in Precambrian rocks (Retallack,
2014a, 2018; Retallack et al., 2016; Retallack and Noffke, 2019).

Sand crystals differ from marine or lacustrine evaporites in which
the force of crystallization from an extended aqueous medium creates
clear crystals without inclusions (Renaut and Tiercelin, 1994;
Ziegenbalg et al., 2010). Arrangement of sand crystals in a diffuse
horizon below the truncated upper surface of beds is comparable with
gypsic horizons of desert soils (Retallack and Huang, 2010). The
abundant included quartz grains within crystal pseudomorphs are
comparable with desert roses or sand crystals of gypsic soils (Jafarzadeh
and Burnham, 1992; Almohandis, 2002).

5.3. Ripple and scour marks

Ripple marks in the Stirling Range Formation are of three main
types (Bengtson et al., 2007): (1) straight-crested asymmetric, with
sinuous profile, (2) straight to scalloped with symmetrical profile, and
(3) straight-crested strongly asymmetric with angular profile (Fig. 2E).
In thin section the angular asymmetric type also show inverse grading
of laminae characteristic of climbing translatent cross stratification
(Fig. 6E).

The first two ripple types are identical to shallow current ripples and
oscillation ripples, which form in shallow running and standing water
(Allen, 1963; Miller and Komar, 1980). The third angular asymmetric
bedforms have climbing translatent cross stratification diagnostic of
wind ripples (Allen, 1963; Hunter, 1977; Miller and Komar, 1980).
Some of these ripples also show strong orthogonal erosional dissection
by wind scouring (Fig. 2D), as noted in other alluvial sandstones
(Hocking, 1991; Retallack, 2009a).

5.4. Mineral weathering trends

Beds with sand crystals show surface enrichment of clay and de-
pletion of feldspar (Fig. 4A, C, D) The clay is now illite, but because of
burial illitization (Fig. 3), it may not have been entirely illite originally.
Other beds not showing these trends (Fig. 4B, D) have thin profiles with
relict cross bedding or lamination.

On tidal flats and sea floors, beds can be homogenized by deep
burrows, not evident in the Stirling Range Formation, but without co-
ordinated clay gain and feldspar loss. Furthermore, clay formation is
asymmetric below sharp grainsize discontinuities and confined to in-
tervals only 5–15 cm thick, unlike alteration by hydrothermal or me-
tamorphic alteration, which would be more diffuse and symmetrical
around fluid flow-paths. These combinations of mineral and textural
change are evidence of hydrolytic weathering of feldspar to clay in soils
with sand crystals and obscured bedding from a long duration of soil
formation (Retallack, 2018). Beds with relict bedding and mudcracks
by this interpretation, would thus be insufficiently developed to show
significant mineral weathering.

5.5. Chemical weathering trends

Molar weathering ratios display abrupt changes between beds, but
there also are subtle and consistent changes within beds (Fig. 4A, C, D).
There is negligible change in soda/potash and alkaline earths/alumina,
and thus no evidence for marine early diagenetic enrichment of alkalies
and alkaline earths (halmyrolysis of Clauer et al., 1990; Setti et al.,
2004).

Surficial increases in alumina/silica and alumina/ bases at the tops
of profiles with sand crystals is evidence, additional to that of mineral
trends, for hydrolysis of feldspar to clay within soil profiles. Other
profiles with obvious relict bedding and no sand crystals, so formed
over a shorter time frame, show more erratic or muted trends in alu-
mina enrichment. Generally high Ba/Sr is evidence of unusually high
chemical leaching, but lack of systematic variation of Ba/Sr within
profiles can be taken as evidence that this chemical leaching was not so
much during the intervals between deposition, as created during for-
mation of the mineralogically mature quartz-rich, sedimentary parent
material. Declining ferrous/ferric iron toward the surface of profiles is
evidence of surface oxidation, but subsurface chemical reduction
(gleization: Retallack, 1997). Negligible changes in soda/potash and
alkaline earths/alumina are evidence against salinization or calcifica-
tion in soils.

5.6. Tau analysis

Molar weathering ratios of alluvial paleosols can be subtle, but a
definitive method to disentangle soil formation from sedimentation is
tau analysis (Brimhall et al., 1992). This analysis deconstructs two se-
parate aspects of weathering: mass transport (τj, w) of a mobile element
and strain (εi, w) of an immobile element (Table 1). Soils and paleosols
lose mass with weathering and so have negative strain (εi, w<0), and
also lose nutrient cations and silica, so negative mass transfer (τj,
w<0). In contrast, sediment accumulation and diagenetic alteration
other than weathering has positive strain and mass transfer. Tau ana-
lysis has been widely used for Precambrian paleosols (Retallack and
Mindszenty, 1994; Driese, 2004), as well as Miocene paleosols
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(Bestland et al., 1996; Sheldon, 2003), and modern soils (Chadwick
et al., 1990; Brimhall et al., 1992; Merritts et al., 1992). On this basis,
most analyses of Stirling Range Formation paleosols are within the
collapse and loss quadrant, with the exception of two samples, which
can be taken as evidence of eolian additions to the surface (Fig. 8).

5.7. Rare earth element analysis

Rare earth chemical analysis of individual beds in the Stirling Range
Formation has a slight to negligible negative europium anomaly
(Fig. 9), like that of sediments from granitic (Foden et al., 1984), but
not mafic rocks (Bavinton and Taylor, 1980) of the Yilgarn Craton to
the north. Stirling Range Formation lacks marked enrichment in euro-
pium or other rare earth elements found in hydrothermally altered
rocks (Bolhar et al., 2005; Sugahara et al., 2010). The even distribution
of rare earth elements normalized to post-Archean Australian sediment
(Nance and Taylor 1976) is compatible with sandstone mineral com-
positions of a geologically diverse recycled orogen, like the Yilgarn
Craton to the north (Fig. 10).

Within many beds there is overall rare earth element enrichment of
surface horizons compared with bases of beds, and also light rare earth
enrichment. These trends are most apparent in red beds (Kumbar,
Wiluk, Yaly and Tulborr of Fig. 9A–C), but not in red-green mottled
beds (Budgar of Fig. 9D), which may have been intermittently water-
logged to form reduction spots (Vepraskas and Sprecher, 1997).

Marine diagenesis of sediments (halmyrolysis) does not change rare
earth concentrations significantly over short (10–20 cm) thicknesses
(Clauer et al., 1990; Setti et al., 2004). LREE enrichment like that of
Stirling Range Formation beds has been observed in Archean alluvial
paleosols (Retallack, 2018). Comparable REE enrichment favoring
LREE is also seen in modern aridland loessial soils (Ramakrishnan and
Tiwari, 1999; Compton et al., 2003), but is distinct from REE depletion
seen in humid granitic soils (Kurtz et al., 2001; Aubert et al., 2001; de
Sá Paye et al., 2016).

5.8. Biotic microstructures

Surface horizons of the beds chosen for petrographic study do not
show stromatolites, rollups, detached mat fragments, or other features
of microbial mats in aquatic environments (Noffke, 2009), but rather a
variety of features of microbial earth soils (Retallack, 2012). Thin
section micromorphology shows tufted and irregular surface organic
matter (Fig. 6A–B), and near vertical microtubular structures running
across bedding (Fig. 6,D). These are hallmarks of microbial biomass
organized to withstand surface disruption, to grow through later layers,
and to persist despite surface cracking, comparable with microbial trace
fossils documented from Ediacaran to Cambrian paleosols (Retallack,
2008, 2009b, 2011). Microbial earths include a variety of thread-
forming, tufted, and globular masses of interstitial microbes (Belnap,
2003).

6. Paleosol interpretation

The preceding paragraphs presented evidence that the western
Stirling Range Formation red beds are a sequence of fossil soils, passing
eastward into gray marine to intertidal facies at Bluff Knoll, rather than
marine rocks oxidized by northward-declining metamorphism only in
the west (Rasmussen and Muhling, 2019). The remainder of this paper
explores the significance of this conclusion, by assuming that the red
beds were paleosols. The various kinds of beds analyzed as putative
paleosols have been named (Table 2) using the Nungar aboriginal
language (Douglas, 1991). Despite burial illitization and greenschist
facies metamorphism, these pedotypes can now be interpreted in terms
of soil taxonomy and various soil-forming factors to build a detailed
model of the paleoenvironmental setting of fossils in the Stirling Range
Formation (Table 3, Fig. 12). Ta
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6.1. Paleosol identification

Beds with cracked surface (A horizon) over a diffuse horizon with
mottles and sand crystsls (By or gypsic) are most like Gypsids (Soil
Survey Staff, 2014). Comparable considerations can be used to classify
the paleosols in classifications of Australia (Stace et al., 1968; Isbell,
1996) and of the Food and Agriculture Organization (1974). Classifi-
cation of Kumbar paleosols in the FAO system as a Solonchak (among
others in Table 2) allows use of modern soil maps to find modern
soilscapes comparable with the Stirling Range paleosol assemblage,
which can be described by the FAO code as Zo with inclusions of Zg, Jd,
and Rc (Orthic Solonchak, with Gleyic Solonchak, Dystric Fluvisol and
Eutric Regosol). A match to this is map unit Zo36-2a, with associated
Zg, and inclusions of Rc, Rd, Xk and Yh (Calcaric Regosol, Dystric Re-
gosol, Haplic Xerosol, and Haplic Yermosol) widespread in Western
Australia from Lake Disappointment in the Pilbara region south to Lake
Lefroy in the Yilgarn region (Food and Agriculture Organization, 1978).
These distinctive soils range from regions of desert shrubland into the
formerly wooded “wheat belt”, under a mean annual precipitation
range of 260–340mm (Benison and Bowen, 2013, 2015). This region
has mean annual temperature of 18–20 °C (Bureau of Meteorology,
2016). These parts of Western Australia have a mix of desert soils de-
veloped on siliceous sands, as well as lateritic residuum from thick
Ultisol and Oxisol paleosols of the Miocene (McKenzie et al., 2004).
These Solonchak soils are also called “acid saline lakes” (Benison et al.,
2007; Benison and Bowen, 2013), even though dry more often than
flooded. Despite abundant salts, these lakes have very acidic waters
(pH 1.4–3.9), due to oxidation of sulfides unbuffered by carbonate in
soils or bedrock (Benison and Bowen, 2015). Halite and gypsum are the
principal evaporite minerals (Benison and Bowen, 2013).

6.2. Original parent material

Parent materials to the paleosols were mostly sands and silts of
arkosic composition, with the feldspars dominated by K-felspar. Biotite
and muscovite mica also was prominent in the sands and silts. Clays are
mainly illitic, and all the sediments show a high chemical index of al-
teration (Fig. 3). These sediments were from a low relief, granitic-me-
tamorphic terrain of the Yilgarn Craton to the north. This was evidently
not a deeply weathered terrain with Oxisols as it is today (McKenzie
et al., 2004), because the Stirling Range Formation lacks kaolinite,
gibbsite, or boehmite.

6.3. Reconstructed sedimentary setting

Our analysis of putative paleosol beds does not support the inter-
pretation of red beds on Barnett Peak as marine offshore, tidal inlets,
tidal flats, and flood tidal deltas by Bengtson et al. (2007), although we
do recognize intertidal facies and found no paleosols in gray shales and
sandstone of Bluff Knoll to the east. The mud-draped gutter detailed by
Bengtson et al. (2007, fig. 4–5) and here (Fig. 11A), was thus not

intertidal, but a fluvial levee swale. We support the interpretation of
Cruse et al. (1993; Cruse and Harris, 1994) of an array of eolian, fluvial,
intertidal, and shallow marine paleoenvironments. To the east near
Bluff Knoll and Toolbrunup are gray tidalite and turbidite facies,
whereas to the west near Barnett Peak are red beds with trough cross-
bedded sandstones filling what appear to be fluvial paleochannels.
Toolbrunup and Mt. Hassell also have eolian ripples and paleosols in
red beds near the summits (Fig. 2E), but gray sandstones and shales
below, so that the paleoshoreline was near a current longitude of 118°E.

Within this coastal plain, Wiluk and Kumbar paleosols have sand
crystals as evidence of floodplains that were stable for millennia. All the
paleosols were oxidized and well drained, because red with pervasive
hematite. Although there are Cenozoic lateritic paleosols (Woolnough,
1920; Muhling and Brakel, 1985), notably around the carpark below
Bluff Knoll, lateritization is not responsible for red color of the Stirling
Range Formation because paleosol clasts have remained red within
light gray sandstone on Tondurup, Barnett Peak, and Mondurup
(Fig. 2G). Kumbar paleosols lack the surface drab mottles of Wiluk
paleosols. Thus, Kumbar profiles were well drained, but Wiluk paleosols
formed in parts of floodplains that suffered burial gleization when
subsiding below a shallow water table (Retallack, 1991). Water table
was at least 15 cm deep in Wiluk paleosols, judging from ptygmatically
folded clastic dikes, and at least 20 cm in the weakly developed Tulborr
profile. The Tulborr profile at the Myxomitodes locality is a red shale
drape to a small erosional swale with relief of a meter into channel
sandstone (Bengtson et al., 2007). The swale was part of a channel
margin, which also included weakly developed Budgar and very weakly
developed Yaly profiles in areas with high water table, leaving drab
mottles due to burial gleization (Retallack, 1991).

6.4. Time for formation

Clear relict bedding in Tulborr and Yaly pedotypes marks them as
very weakly developed, and modest destruction of bedding in Budgar
paleosols are evidence of weakly developed profiles, which form in as
little as 100 to 1000 years (Retallack, 2001). Chronofunctions of
modern aridland soils can be used to constrain time for formation of
Wiluk and Kumbar profiles. An upper limit of 23,111 ± 15,000 yrs
(average of 227 with range 20,327–26,147 years) comes from com-
paction corrected percent surface area of sulfate nodules in Wiluk pa-
leosols, compared with well dated modern aridland soils (Retallack,
2013a) using equations shown in Table 2. Comparable calculations for
Kumbar paleosols give 17,624 ± 15,000 yrs (average of 14 with range
14,505–23,237 years). A lower limit of 3690 ± 1800 years (average of
22 with range 2603–4170) comes from diameter of nodules in Wiluk
paleosols, compared with calcite nodules in aridland soils (Retallack,
2005). Comparable calculations for Kumbar paleosols gives
3772 ± 1800 yrs (average of 14 with range 3295–4395 years). Neither
estimate is satisfactory for a variety of reasons, including differences
between sand crystals in the paleosols and nodules in modern soils, and
the very different biota of land plants in modern analogs. Nevertheless,

Table 3
Summary of Stirling Range Formation paleosol interpretation.

Pedo-type O2 (ppm) CO2 (ppm) Paleoclimate Organisms Topography Parent material Soil duration (yrs)

Budgar Not known Not known Humid (MAP 1415 ± 182mm)
temperate (MAT 10.9 ± 0.5 °C)

Microbial earth Well-drained
floodplain

Clayey silt 500

Kumbar 433
±116

564
±64

Humid (MAP 1509 ± 182mm)
temperate (MAT 11.5 ± 0.5 °C)

Large microbial colony
(Cyclomedusa davidi)

Well-drained levee Quartzofeld-spathic
sand

3772 ± 1800

Tulborr Not known Not known Not known Slime mold (Myomitodes
stirlingensis)

Seasonally wet
floodplain swale

Clayey silt 100

Wiluk Not known Not known Humid (MAP 1493 ± 182mm)
temperate (MAT 11.4 ± 0.5 °C)

Small microbial colony
(Cyclomedusa davidi)

Well drained
floodplain

Clayey silt 3690 ± 1800

Yaly Not known Not known Not known Microbial earth Well drained levee Quartzofeld-spathic
sand

100
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the millennial exposure times of the nodular paleosols are likely, and
the whole sequence of paleosols represents more time than the
ephemeral surfaces of tidal deltas and flats envisaged by Bengtson et al.
(2007).

6.5. Paleoclimate

Gypsic soils are today mainly found in arid regions where soils are
also rich in other nutrient cations (Navarro-González et al., 2003;
Ewing et al., 2006), but the paleosols have high chemical index of al-
teration of humid climate soils (Fig. 3), with much feldspar, and no
kaolinite, gibbsite and boehmite of paleosols formed on redeposited
Oxisols (Mao and Retallack, 2019). Gypsic horizons form by acid sulfate
weathering in modern climates as humid as 1287mm mean annual

precipitation (Retallack and Huang, 2010; Benison and Bowen, 2013,
2015). Archean paleosols rich in gypsum and barite also reveal a
paradox of sulfate-rich soils without base-rich composition of aridland
soils (Nabhan et al., 2016; Retallack et al., 2016; Retallack, 2018). A
better paleoprecipitation proxy for acid sulfate soils is CIA-K chemical
composition of B horizons (Sheldon et al., 2002), which removes potash
from the normal computation for chemical index of alteration (Table 1),
because of likely alteration due to deep burial diagenesis (Fig. 3). This
chemical proxy gives mean annual precipitation of 1509 ± 182mm for
the upper Bg horizon of the Kumbar paleosol at 61.5 m in Fig. 4,
1415 ± 182mm for the Bw horizon of the Budgar paleosol at 8.9 m,
and an average of 1493 ± 182mm for three Bg horizons of Wiluk
paleosols at 9.3, 9.8 and 20.5 m.

A rough guide to paleotemperatures is chemical index of alteration

Fig. 5. Field observations, grain size and mineral content by point counting under petrographic thin section, and molecular weathering ratios of pedotypes in Stirling
Range Formation.
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(Table 1) which is now<65% in glacial-frigid climates and>80% in
tropical climates, but between these limits in temperate climates
(Nesbitt and Young, 1989). This proxy can be computed for soils and
sediments indiscriminately, and for our 26 analyses of the Stirling
Range Formation is 76.2 ± 1.2%, which suggests temperate paleocli-
mate. Other pedogenic paleothermometers are based on soils of modern
woody vegetation (Sheldon et al., 2002; Gallagher and Sheldon, 2013)
are not applicable to likely microbial earths of Precambrian paleosols
(Retallack, 2014b). A paleothermometer based on modern soils under
lichen-shrub tundra vegetation of Iceland (Óskarsson et al., 2012) is the
best currently available option, predicting temperature (T in °C) from
chemical index of weathering (W), which is another base depletion
metric (Table 1). This chemical proxy gives mean annual temperature
of 11.5 ± 0.5 °C for the upper Bg horizon of the Kumbar paleosol at
61.5 m in Fig. 4, 10.9 ± 0.5 °C for the Bw horizon of the Budgar pa-
leosol at 8.9m, and an average of 11.4 ± 0.5 °C for three Bg horizons
of Wiluk paleosols at 9.3, 9.8 and 20.5m. These are all temperate pa-
leoclimates.

Equatorial temperatures may have been low during deposition of
the Stirling Range Formation in tropical paleolatitudes. The 1.8–1.9 Ga
Frere Formation of the northern Yilgarn Craton had a paleolatitude of
13 ± 1.5 °C (Williams et al., 2004). The Frere Formation is 890 km and
8° of latitude north of the Stirling Range, which could have been at a
paleolatitude of no more than 21° at 1.8 Ga, depending on plate or-
ientation. The 1.89 Ga Boonadgin dikes of the southwestern Yilgarn
Craton also had a paleolatitude of 13 ± 6 °C (Liu et al., 2019), only
200 km and 1.2° latitude north of the Stirling Range.

6.6. Paleoatmospheric carbon dioxide

A modelling approach of Sheldon (2006) for calculating ancient
atmospheric CO2 from paleosols uses measured depletion of cationic
bases (Ca2+, Mg2+, Na+, K+) within the paleosol profile, assuming
that each electrical equivalent was displaced by hydronium (H+) from

carbonic acid. The integrated milliequivalent loss of all four bases
within the profile is assumed equal to moles of carbonic acid used over
the lifetime of the soil. These calculations are complex, involving also
gas constants, and independent estimates of depth to water table, mean
annual precipitation, and duration of soil development (Table 1).
Gaussian error propagation of so many variables can be done by partial
differential equations in quadrature (Supplementary Tables S6–7;
Hughes and Hase, 2010). Calculations for the Kumbar paleosol, as-
suming 3772 years duration of formation (Section 6.4), 150.9 cm mean
annual precipitation (Section 6.5), and decompacted depth to water
table of 71 cm (Fig. 5A, Table 1), is 564 ± 46 ppm CO2 (2 PAL, or
twice preindustrial atmospheric level).

This is surprisingly low compared with another Paleoproterozoic
(2.1 Ga) estimates of atmospheric CO2 of 6440 ± 194 ppm or 23 PAL
(Sheldon, 2006) using the same model for the Waterval Onder paleosol
(Retallack et al., 2013), and a comparable but different model yielding
1500–9000 ppmv (5–32 PAL) CO2 for the Archean (3.0 Ga) Jerico Dam
paleosol of South Africa (Grandstaff et al., 1986). This calculation could
be improved with more accurate estimates of time for soil formation
(Sheldon, 2006). Even the most extreme of these estimates is short of
the amount needed for a greenhouse capable of maintaining temperate
paleotemperatures given the faint young sun (Fiorella and Sheldon,
2017). Other greenhouse gases are needed, including water vapor, CH4,
C2H6, SO2, and COS (carbonyl sulfide: Kasting and Kirschvink, 2012;
Ohmoto et al., 2014). An atmosphere with three times the current mass
of N2 and a H2 mixing ratio of 0.1, would also have created an adequate
greenhouse (Wordsworth and Pierrehumbert, 2013). Overall atmo-
spheric pressures estimated for the late Archean (2.7 Ga) were no> 1.1
bars judging from size of raindrop prints (Som et al., 2012), and
no>0.5 bars judging from basaltic vesicle sizes at sea level (Som et al.,
2016). Lower than modern atmospheric pressure and temperate equa-
torial paleoclimate (Section 6.5) mitigates this greenhouse paradox.

Fig. 6. Petrographic thin sections cut perpendicular to bedding showing discoid fossils in surface horizon (A), mat-controlled desiccation cracks (C), microtubular
structures (D), coearsneing upwards eolian beds (E)., surface enterolithic structure (F–G)., and sand crystal pseudomorphs (H) from the Stirling Range Formation.
Specimens are R3840 (A), R3823 (B), R3830 (C), R3469 (D), R3845 (E), R3826 (F), R3828 (G), R3850 (H).
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6.7. Paleoatmospheric oxygen

Atmospheric O2 also can be calculated in a comparable way from
oxidation and retention of Mn4+ and Fe3+ (Retallack, 2018). The

integrated profile gain of these common redox-sensitive elements are
assumed equivalent to the availability of oxygen as an oxidant over the
lifetime of the soil. Other variables needed and Gaussian error propa-
gation are comparable to the calculations for CO2 (Section 6.6), and for

Fig. 7. Microprobe elemental maps of sand crystal pseudomorph in specimen R3850 for (clockwise from top left) Mg, Ca, Ba, Na.

Fig. 8. Mass transport (mole fraction) and strain (mole fraction) plotted as deviation from parent materials at origin within paleosols of the Stirling Range Formation.
Strain in soils (y-axis) is usually negative, meaning collapse of volume. Mass transfer (x-axis) in soils is also negative, meaning loss, but can be gain (positive) for
redox-sensitive oxides.
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the Kumbar paleosol give 433 ± 116 ppm O2 (0.002 PAL). Very low
levels of atmospheric oxygen are indicated by high ferrous to ferric iron
ratios of paleosols in the Stirling Range Formation (Fig. 5), comparable
with swamp soils today exhausted of oxygen by microbial respiration
(Vepraskas and Sprecher, 1997). However, paleosols of the Stirling
Range Formation were not waterlogged, as indicated by red color
(Fig. 2A–C), and sand crystals of gypsum (Fig. 6H).

These estimates of atmospheric O2 are very low considering that
they postdate the Great Oxidation Event at 2.45 Ga, when O2 may have
risen from 21 to 210 ppm (10−7–10−8 PAL) during the Archean, to
2100–84,0000 ppm (0.01–0.4 PAL) during the Paleoproterozoic (Kump,
2008). However, this transition is no longer seen as a simple step
function, but a series of oxygenation events corresponding to glacia-
tions and isotopic transients between 2.0 and 2.7 Ga (Lyons et al.,
2014), and it is unclear when exactly within these oscillations the

Stirling Range Formation was deposited. Widespread marine anoxia,
and sedimentary Cr isotopic fractionation are evidence for Paleopro-
terozoic O2 levels of< 2100 ppm (Planavsky et al., 2018), compatible
with our estimate here. Paleosols in the 1.8 Ga Stirling Range Formation
are red with hematite, but also contain much reduced iron (Fig. 5), as is
common in Proterozoic paleosols (Planavsky et al., 2018).

6.8. Life on land

Fieldwork in the Stirling Range confirmed geographic distribution
of megafossils mainly toward the west: they were seen on Mondurup,
Barnett Peak, and near the summits of Mt. Hassell and Toolbrunup, but
not in the extensive exposures or rubble of Bluff Knoll. The location of
the Myxomitodes stirlingensis fossils of Bengtson et al. (2007) on Barnett
Peak is 50m east of the main section line but at a stratigraphic level of

Fig. 9. Rare earth element and trace element distribution patterns of Stirling Range Formation pedotypes.

Fig. 10. Tectonic setting (A) and sandstone classification (B) based on point counting of sandstones from the Stirling Range Formation.
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54m. They are in claystones of a Tulborr pedotype lining a shallow
(1m amplitude) erosional swale. Discoids, referred to Cyclomedusa
davidi by Cruse et al. (1993; Cruse and Harris, 1994), also were found in
place at three levels in the measured section: atop Wiluk paleosols at 10
and 20.5m, and atop a Kumbar paleosol at 72.2 m.

Myxomitodes has been considered the trail of a worm-like metazoan
(Rasmussen et al., 2002a), the trace of gas bubbles driven by wind
(Seilacher, 2007), the rolling trace of cyanobacterial or algal ball
(Rasmussen et al., 2002b; Bengtson and Rasmussen, 2009), or a grex
(slug) trail of a slime mold (Bengtson et al., 2007). Our demonstration
of a paleosol setting confirms interpretation as slime molds (Myce-
tozoa), which are usually dispersed amoeboid soil organisms, but ag-
gregate into a slug to move short distances before putting up a spor-
ulating stalk (Bonner, 2015). Other likely fossil slime-mold slug trails

have recently been found in the 2.1 Ga Franceville Formation of Gabon
(El Albani et al., 2019), and 0.55 Ga Shibantan Member of the Doush-
antou Formation in China (Retallack, 2013b). Plasmodial slime molds
may be represented by the enigmatic Nilpenia rossi from the 0.55 Ga
Ediacara Member of South Australia (Droser et al., 2014). These are all
eukaryotic organisms, but not the oldest soil eukaryotes, which are
2.2 Ga Diskagma (Retallack et al., 2013). Other eukaryotes of compar-
able antiquity are 2.1 Ga intertidal-marine Franceville biota (El Albani
et al., 2010, 2014, 2019), and perhaps 1.9 Ga lacustrine Grypania (Han
and Runnegar, 1992; redated by Schneider et al., 2002).

Cyclomedusa is an extinct genus, proposed originally for fossils of
Ediacaran age, and regarded as sea jellies (Sprigg, 1947; Glaessner and
Wade, 1966). Like Ediacaran fossils, the Stirling Range discoids are
positive impressions on the underside of covering sandstone, so

Fig. 11. Fossils from the Stirling Range Formation: clay-lined paleogully (to left of hammer) with Myxomitodes stirlingensis at 53.8 m on Barnett Peak (A), hairpin-like
trace Myxomitodes stirlingensis from Barnett Peak (B–C), discoids Cyclomedusa davidi from 75.2m and 10m (respectively) on Barnett Peak (D–E), microbially induced
sedimentary structure Rugalichnus matthewi (F) and Rivularites repertus (G) from float on Barnett Peak (F) and summit outcrop of Mt. Hassell (G). Living green crustose
lichens in panel E are Rhizocarpon geographicum.
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collapsed with compression (Retallack, 1994). This distinguishes them
from other discoidal fossils such as Aspidella, which form negative im-
pressions resistant to compaction on bed soles, and also have small
patches of pleating not seen in Cyclomedusa (Retallack, 2016a). Also
like the Ediacaran fossils, the Stirling Range fossils lack radial division,
musculature, or gonads of sea jellies (Seilacher, 1992). Such amorphous
discoids are now widely regarded as microbial colonies, like those of
cyanobacteria (Grazhdankin and Gerdes, 2007). Although different
bacteria make morphologically different colonies, local environment
shapes them also (Ben-Jacob et al., 1994; Shapiro, 1995). Thus biolo-
gical affinities of Cyclomedusa are unknown.

In addition to these problematic megafossils, the paleosols included
microbially induced sedimentary structures (MISS of Noffke, 2009).
Common on the paleosol surfaces are complex textures (Figs. 2A, 11G),
that have been referred to “old elephant skin” and the ichnotaxon
Rivularites repertus (Retallack, 2012, 2013a). “Old elephant skin” refers
to a complex pattern of cracks, but there is also evidence of push-up
ridges and domes, and thus alternating tension and compression. In
describing desiccation-cracked sandstones like these (Fig. 2A–B), but
from the Torridonian Supergroup (1 Ga) of Scotland, Prave (2002)
emphasized how unusual it is for sand to crack as if it were clay. He
argued that this was evidence that the soil was bound by a desiccation
prone matrix, such as a biological soil crust. The term biological soil
crust has been used for such communities in modern deserts, ac-
knowledging that they include not only common cyanobacteria and
other microbes, but lichens, liverworts, mosses, lycopsids and ephem-
eral angiosperms (Belnap, 2003). Here we use the term microbial earth
(Retallack, 1992), because the paleosols were well drained (Section

6.3), as distinct from microbial mats, marsh, salt marsh and fen of
waterlogged soils (Retallack, 2012). Microbial mats of local aquatic
communities were also recognized in the Stirling Range Formation
(Fig. 11F), as an ichnotaxon Rugalichnus matthewi (Stimson et al., 2017).
Unlike terrestrial Rivularites, aquatic Rugalichnus has undulose detach-
ments from the substrate (Retallack, 2012). Both cracked and undulose
mats are widely recognized in Paleoproterozoic non-marine rocks
(Eriksson et al., 2012; Simpson et al., 2013).

Also found in paleosols of the Stirling Range Formation were sub-
vertical microfilamentous structures filled with red claystone (Fig. 6D),
similar to lichen rhizines (Vogel, 1955; Poelt and Baumgärtner, 1964),
slime molds (Martin et al., 1983; Stephenson and Stempen, 1994), and
cyanobacterial ropes (Garcia-Pichel and Wojciechowski, 2009)
common in biological soil crusts today (Belnap, 2003). It is not possible
to distinguish between these alternatives given the indifferent quality of
preservation of such tubular structures in paleosols (Driese et al., 1995;
Retallack, 2008, 2009b).

7. Conclusions

This study addresses what, if anything, lived on land during the
Paleoproterozoic. Besides cyanobacteria and fungi expected from other
evidence, this may have included megascopic slime molds (Mycetozoa),
which left fossil trails referred to the ichnotaxon Myxomitodes stirlin-
gensis Bengtson et al. (2007). Mycetozoa are amoeba-like organisms
living in soils as dispersed predators of bacteria and other microbes, but
when food is short they coalesce into a slug-like body (grex), and mi-
grate along the surface to a point where they form a column with

Fig. 12. Reconstructed Paleoproterozoic (1.9 Ga) paleoenvironment of Stirling Range Formation paleosols.
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terminal sporangium. Also megascopic were discoidal fossils referred to
Cyclomedusa davidi and here regarded as microbial colonies of uncertain
biological affinity. Although the Stirling Range Formation with these
controversial fossils has been considered marine to intertidal, our var-
ious analyses confirm that these ca. 1.9 Ga slime molds lived in soil like
modern slime molds. Evidence for this conclusion comes from a variety
of paleosols found along with the fossils: complex cracking patterns,
sand crystals of gypsum, within-bed production of clay at expense of
feldspar, alumina enrichment with cation depletion, loss of volume as
well as weatherable cations, and light rare earth enrichment. Further-
more, the megafossils are found in association with wind ripples and
other indications of non-marine habitats, in red beds of western out-
crops of Stirling Range National Park, rather than in intertidal facies of
eastern outcrops.
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