Parabolic Dish Antenna Masterclass Amy 12/5/13

Paraboloid

- A dish antenna follows the shape of a paraboloid
- The shape swept out by a parabola $y=a x^{2}$ rotated about the z axis

- This shape is chosen because a plane wave incident on a parabolic reflector focuses at a point
- Or in our case, a transmitter at the focal point aimed at the dish produces a plane wave

Dish Antenna

- A dish antenna is a paraboloid that has been sliced by a plane
- This center-feed dish antenna is probably a paraboloid that has been sliced by a plane perpendicular to the paraboloid's axis of rotation

- Its "feed" sits at the focal point of the paraboloid, which sits along the paraboloid's axis of rotation

Problems with center-feed antennas

- There are a couple of issues with "center-feed" antennas
- The feed is in the way!
- The reflected wave can interact with the feed antenna which is supposed to be just transmitting
- So what do you do?

Offset feed antenna

- An offset feed antenna is also a paraboloid sliced by a plane but at an oblique angle:

- Turns out this is always an ellipse
- But if you are looking parallel to the axis of the paraboloid, it is a circle

Picture from: http://math.stackexchange.com/questions/149645/calculate-the-volume-of-a-zone

- In other words, its projection on the $x-y$ plane is a circle

Intersection of paraboloid and plane projects to a circle on the $x-y$ plane

Find the intersection between the plane and paraboloid:

$$
z=x^{2}+y^{2}=2 a x+2 b y
$$

Or

$$
\begin{aligned}
x^{2}-2 a x+y^{2}-2 b y & =0 \\
\left(x^{2}-2 a x+a^{2}\right)+\left(y^{2}-2 b y+b^{2}\right) & =a^{2}+b^{2} \\
(x-a)^{2}+(y-b)^{2} & =a^{2}+b^{2}
\end{aligned}
$$

In the $x y$ plane, this is a disk centered at (a, b) with $R=\sqrt{a^{2}+b^{2}}$:

$$
\mathcal{A}=\left\{(x, y) \in \mathbb{R}^{2}:(x-a)^{2}+(y-b)^{2} \leq a^{2}+b^{2}\right\}
$$

http://math.stackexchange.com/questions/ 149645/calculate-the-volume-of-a-zone

Offset feed

- Feed antenna still sits at focal point
- Reflector still follows paraboloid shape \rightarrow produces a plane wave
- But now the feed antenna is out of the way

Axial or
Front feed

Off-axis or Offset feed

Thanks Wikipedia!

Offset feed antenna

Geometry of Offset Parabolic Dish Antenna http://www.qsl.net/n1bwt/chap5.pdf

Andersen Inc. dish that we will use

- Parabolic 2.4 m dish antenna with offset feed
- $F / D=0.610$
- Bottom of the antenna is the vertex of the paraboloid
- Measured distance from vertex to feed is $146 \mathrm{~cm}=2.4 \mathrm{~m} * 0.610$
- Angle of offset 23°

Andersen Inc. Dish that we will use

- The feed does sit at the focal point
- Our plane wave will propagate vertically in this picture
- Green lines are the feed brackets
- So for a plane wave emitted horizontally, the lower bracket should be parallel with the ground

Drawing from Andersen Inc.

The Wallops hangar (from Frank)

Diameter of feed: 2.94 meter
Balloon Height: 3.9 m
Balloon Dram: 5.876 m
Floor to crane: 7.6 mm

Height: 7.6 m .

