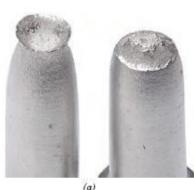
Ductility in steel reinforcement

Dr.Fahmida Gulshan

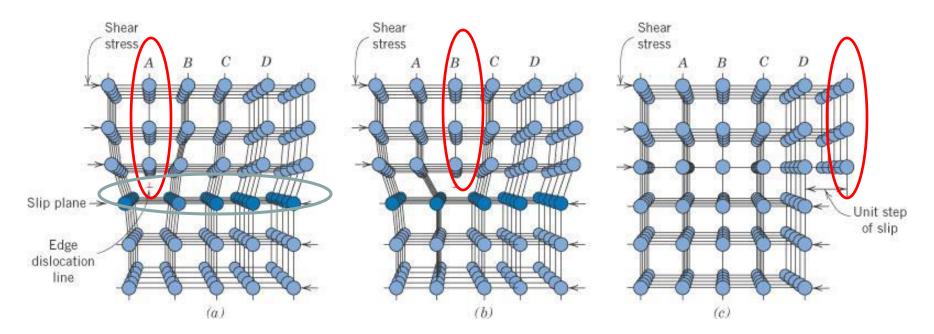

Assistant Professor

Department of Materials and Metallurgical Engineering Bangladesh University of Engineering and Technology

Ductile and Brittle material

- Ductility is a measure of the ability of a material to sustain plastic deformations before collapse.
- A material that experiences very little or no plastic deformation upon fracture is termed brittle.
- Concrete is a brittle material. The ductility within a reinforced

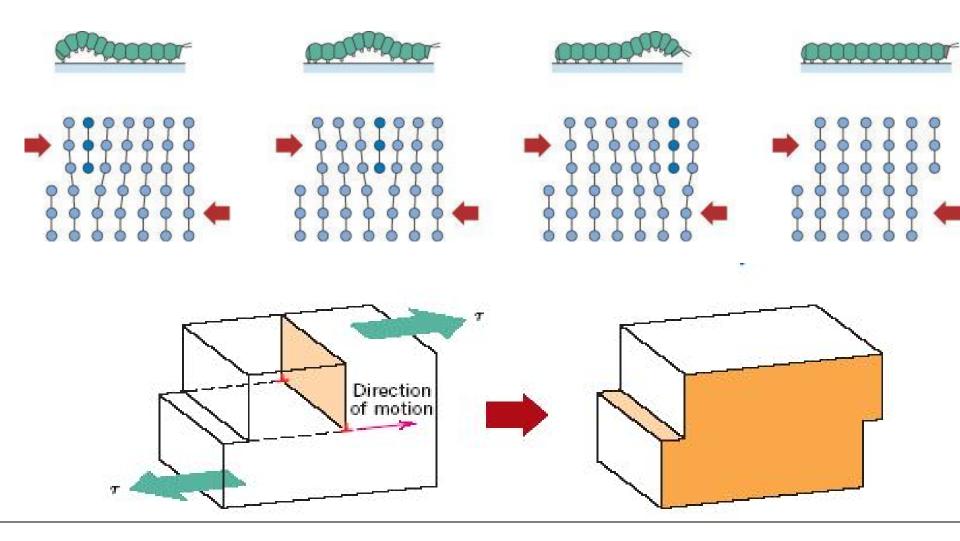
provided by


С

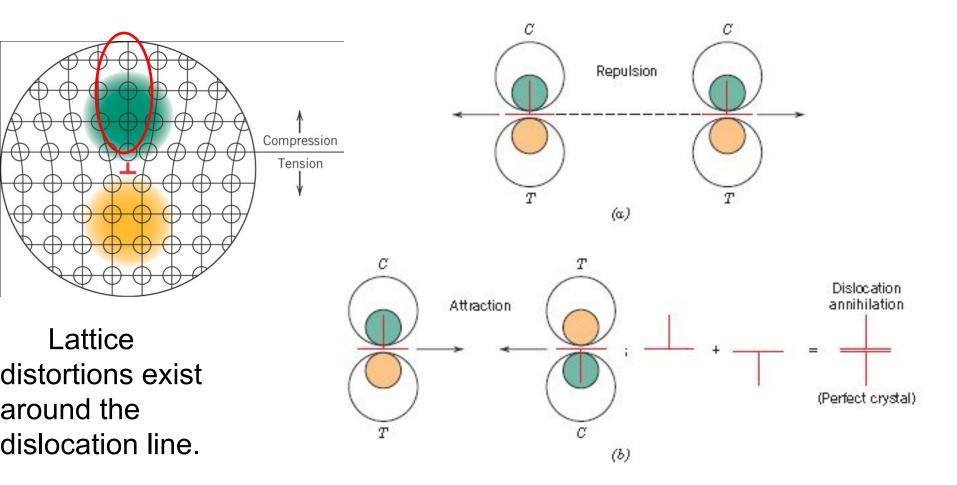
Cup and cone fracture

Brittle fracture

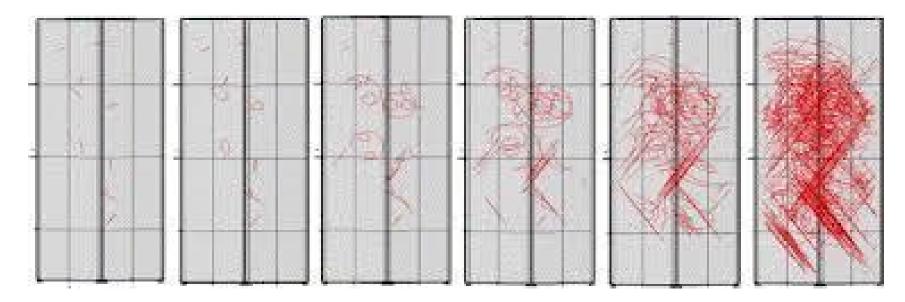
How a material deforms



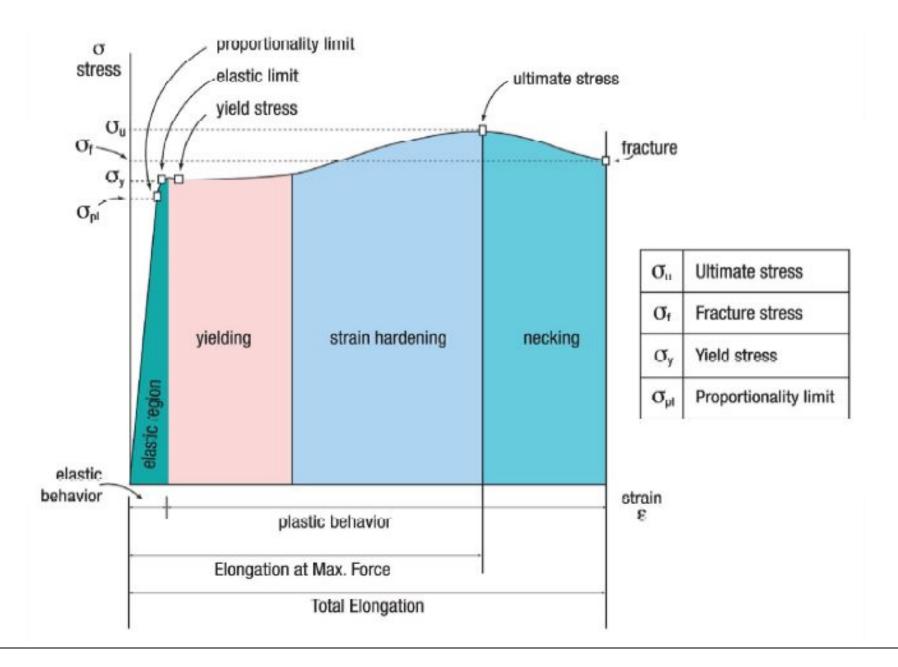
•Atomic rearrangements that accompany the motion of dislocation as it moves in response to an applied shear stress.

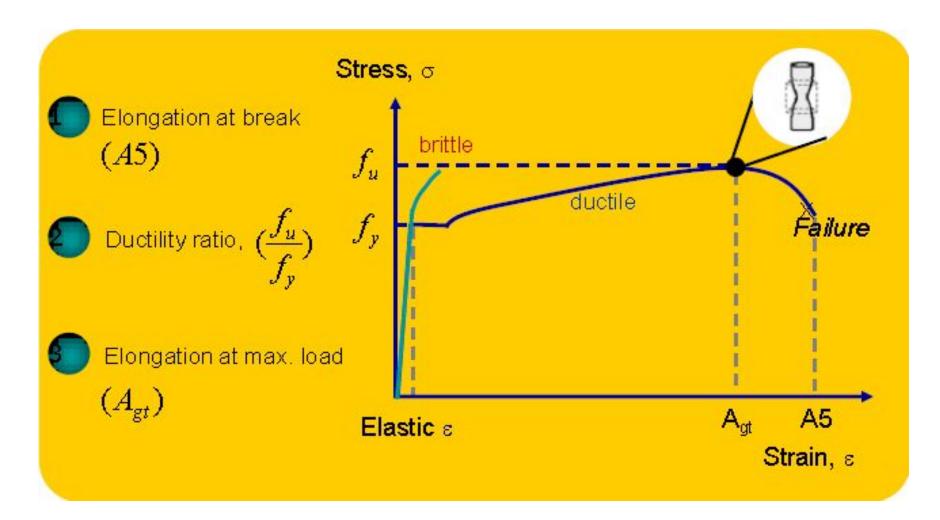

•The process by which plastic deformation is produced by dislocation motion is called slip (movement of dislocations).

•The extra ¹/₂-plane moves along the slip plane.

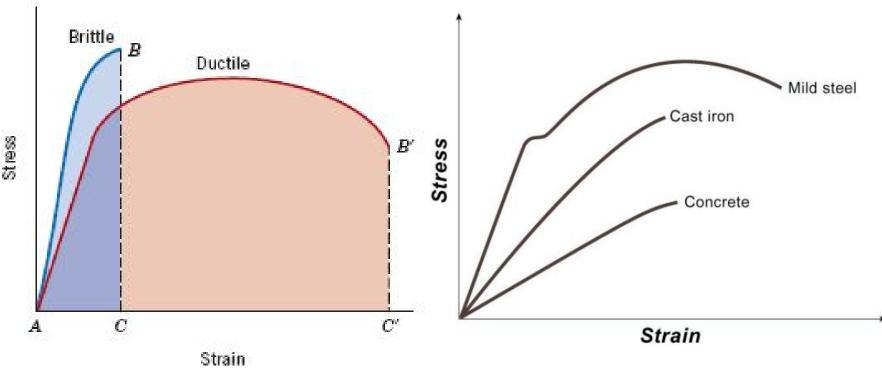

How and the sector ms

How a material deforms


How a material deforms


Dislocation density (ρ_d) increases in a material due to dislocation multiplication.

The motion of a dislocation is hindered by the presence of other dislocations.


Carefully prepared sample: $\rho_d \sim 10^3 \text{ mm/mm}^3$ Heavily deformed sample: $\rho_d \sim 10^{10} \text{ mm/mm}^3$

Measure of Ductility

Importance of ductility

Ductile materials

- Show large displacements before collapse (as opposed to a *brittle* material, which fails suddenly)

- Dissipate energy as the steel yields (important for resisting earthquakes and other overloading)

Global civil engineering demand

A low cost reinforcing bar that has higher strength combined with good ductility and weldability.

Trends in rebars:

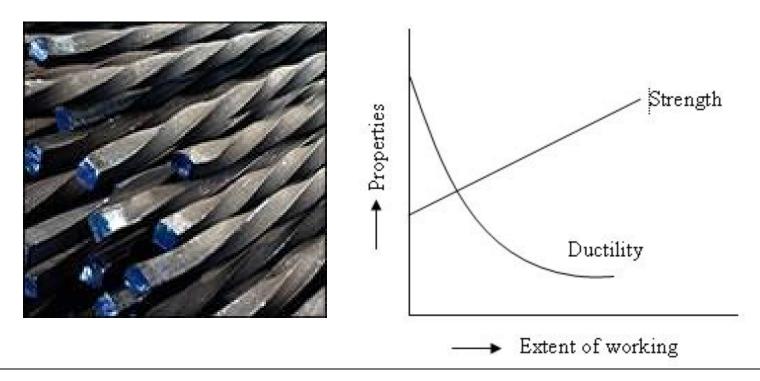
Cold twisting Microalloying Heat treatment

Plain mild steel rebars:

Until 1960 Yield strength 250 N/mm²

Ribbed mild steel bars:

Around 1960 Better bond with concrete


Both the plain and ribbed bars had very high ductility

Cold twisted deformed bars (CTD bars):

In late 1960

Yield strength of around 400 N/mm²

High strength was achieved at the cost of ductility

Steel reinforcement: The quest for strength and ductility TS 24%CW 600 %EL or %RA 4%CW 500 0%CW Stress 100 YS Acent 00 0.05 0.1 0.15 0.2 0.25 Strain Strain

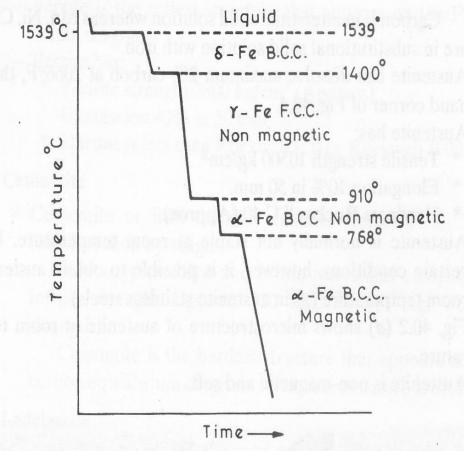
Strain Hardening

CTD bars....

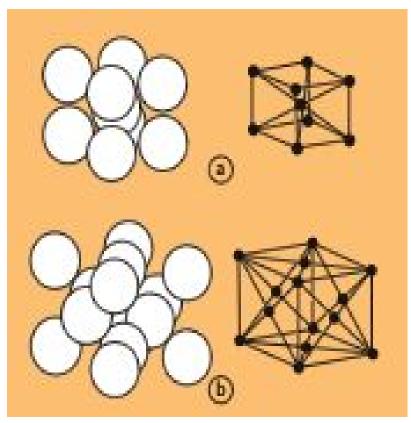
- Europe, where the CTD process was developed gave up its use in the 1970s
- The demand of civil engineers for rebars of yield strength 500 N/mm2 with sufficient ductility remained unfilled.

Microalloying:

In recent years Addition of alloying elements as: C, Mn, V, Nb etc. Yield strength of 500 - 550 N/mm2 Production cost is high and ductility is low


The Quench and Temper (Q and T) Technology :

Developed in the 1980s can produce higher strength bars with adequate ductility.


Received global acceptance among the civil engineers because it met all their requirements.

Steel is an alloy of iron and carbon.

In iron the arrangement of atoms is dependent on temperature

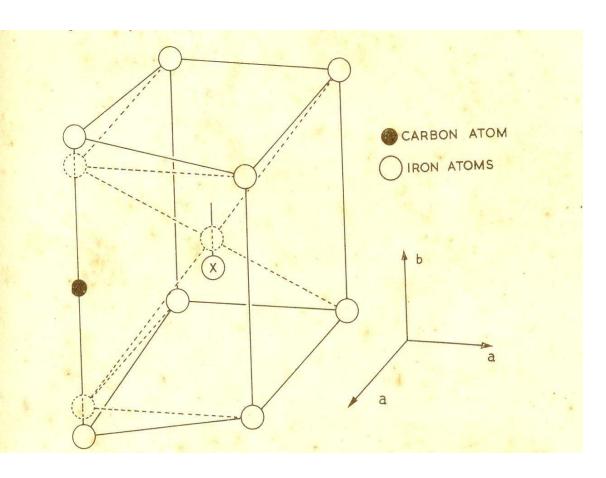
Cooling curve for pure iron

B.C.C.. Structures

At room temperature α -iron can contain in solution upto 0.025% C

F.C.C.. Structures

At high temperature γ -iron can contain in solution a maximum of 1.7% C

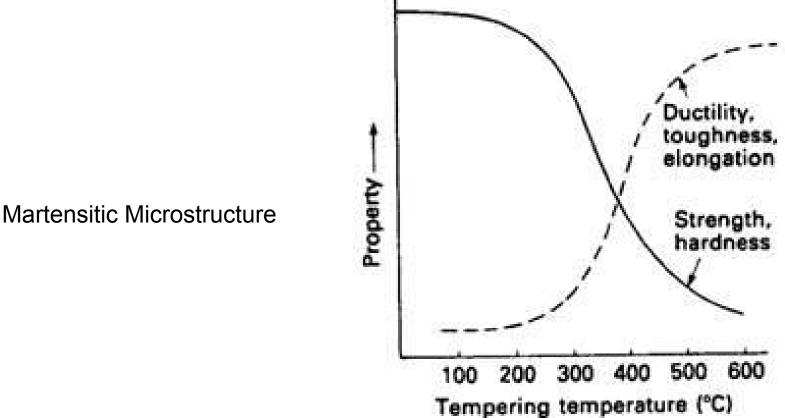

C- atoms have to move out to allow transformations at low temperatures.

This allotropic change in iron and the resultant change of solubility of C in iron make it possible to change the properties of iron by controlling the rate of cooling.

If a γ-iron is quenched in water then C-atoms do not have enough time to move out.

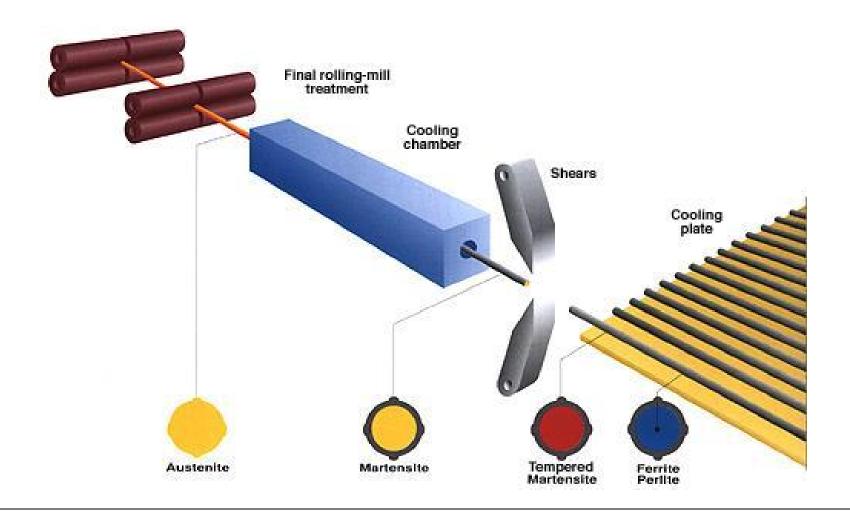
C- atoms get trapped in the structure, set up local strains that block movement of dislocation.

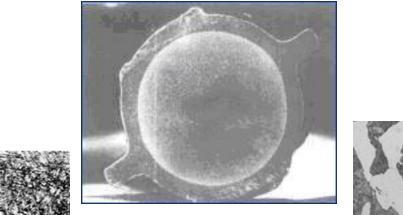
The structure becomes extremely hard and strong but very brittle.

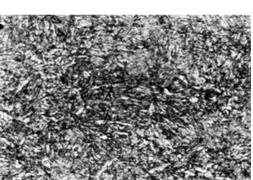


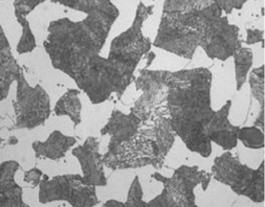
Microstructure of Rapid Cooled/quenched Steel at RT

Microstructure of Slow Cooled Steel at RT


Among all structures of steel **Martensite** is the hardest, strongest and most brittle one –Difficult to exploit in practice.


Tempering reduces residual stress, breaks Martensite needles to fine ferrite and cementite, increases ductility and toughness.




(Tempered Martensite)

martensite (BCT, single phase) \rightarrow tempered martensite (α + Fe₃C phases)

Outer case: Tempered Martensite

Core: Ferrite/Pearlite

Microstructure of quenched and tempered bar

Producti on process	Treatment	Cost	Mech	nanical Properties
			Ductilit	Weld-ability
Cold Twisting	Cold work hardening	High	Poor	Good
Micro Alloying	Addition of alloying elements as: C, Mn, V, Nb etc.	High	Good	Poor (Due to high carbon equivalent)
Q and T Process	Rapid cooling and controlled cooling from rolling heat	Low	Excelle nt	Excellent (Due to low carbon equivalent)

Concluding remarks

•Demand for still higher strength rebars with adequate ductility and weldability has led to interesting developments in the technology of rebar production.

•In Bangladesh it is time for us to rise and face this reality and prepare ourselves to make our contributions to future developments in the field of production of rebars with still higher strength and ductility.

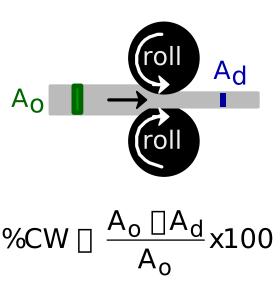
Thank You

Some of the more internationally recognized 'Ductile' also literally known as earthquake grades of steel are shown below

Attribute	ASTM 706 Grade 60	AS/NZS 4671 Grade500E	BS4449 Grade 500C	ЛЅ G3112 SD 490
ORIGIN	U.S.A.	Australia-New Zea- land	U.K.	Japan
Yield strength, Fy,MPa	540≥Fy≥420	600≥Fy≥500	650≥ Fy≥ 485	625≥Fy≥49 0
Ultimate strength Ts, MPa	550 Min ≥1.25Fy	1.40Fy ≥Ts≥1.15Fy	1.38Fy≥Ts≥1.13F y	620 Min
Elongation Gauge	200 mm	5d	5d	5d
Elongation: Fracture	10% - 14%			12% Min.
Elongation: Max. Force	-	≥10%	6% Min.	

Country	8tandard	Quality	Yield	Tensile	Elongation	% Agt	Re/Rm	Carbon %	Carbon Eq. %
USA	ASTM A 708	Gr 80	420-540	650	14		≥1.26	0,30	0,66
Australia	A8 4671	GR 500 E	600-800			10	≥1.15 - 1.40	0,22	0,60
U.K.	B8 4449	B 600 C	600-860		4	7,6	≥1.16 - <1.86	0,22	0,60
Norway	N8 3676-3	B 600 C	600-860		(c)	7,6	≥1.16 - <1.86	0,22	0,60
Greece	Elot 1421-3	B 600 C	600-826	2	÷	7,6	≥1.16 - <1.86	0,22	0,60
Italy	UNI 6407	FeB 44 K	450-560	1		7	≥1.18 - <1.86	0,22	0,60
0-sis	LINE SOLAT	B 400 SD	400-480	480	20	9	≥1.16 - <1.86	0,22	0,60
spain	8pain UNE 36065	B 600 8D	600-826	676	16	8	≥1.16 - ≤1.86	0,22	0,60
	E 466	A 400 NR 8D	400-480			8	>1.16 - <1.86	0,22	0,60
Portugal	E 460	A 500 NR 8D	600-800			8	>1.16 - <1.86	0,22	0,60
New Zealand	NSZ 4671	GR 500 E	600-800		2	10	≥1.15 - 1.40	0,22	0,60
1000	Canada C8A.G.30.18-M82	Gr 400	400-626	660	13		≥1.16	0,30	0,66
Canada		Gr 600	600-826	626	12		≥1.16	0,30	0,66
Colombia	NTC 2289	Diaco 60	420-540	660	14		≥1.26	0,30	0,66
israel	81 4466-3	400 W	400-520	600	12	22 	≥1.26	0,24	0,66
is the second		Weo	415-540	620	14		≥1.26	0,30	0,66
Venezuela	Covenin 316	W70	490-837	620	14		≥1.26	0,30	0,66
EKSISMIK			600-860	600		8	≥1.16 - <1.35	0,22	0,60

SEISMIC STANDARDS


Agt = Percentage total elongation at maximum force

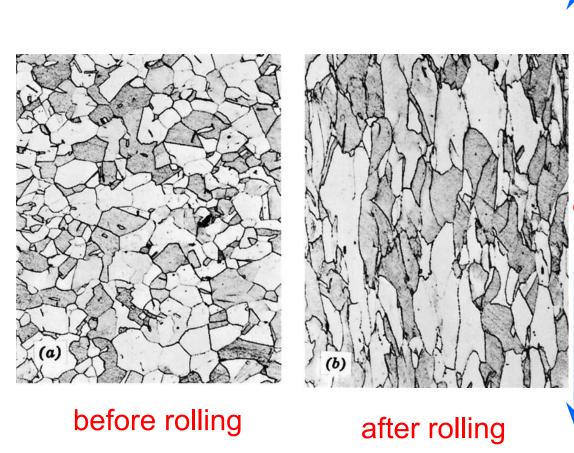
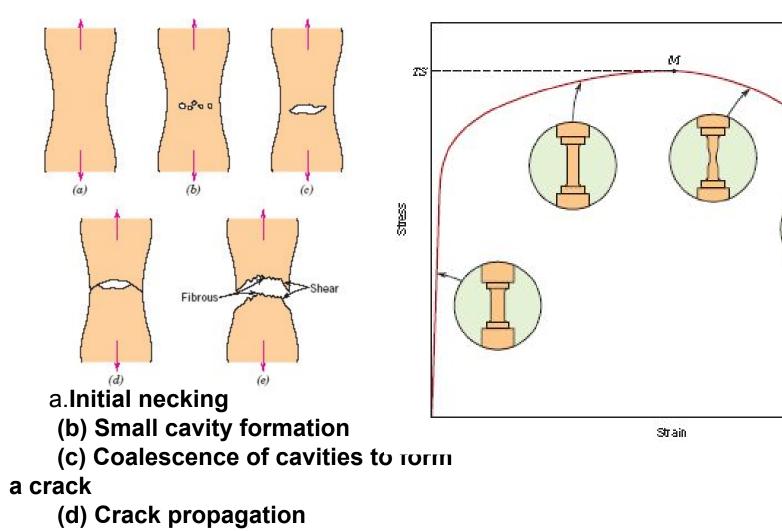

Chemical Composition	ASTM A 615 Grade 60	ISO 6935 Grade 500W		
Carbon %	No limit	0.24% Max		
Manganese %	No limit	1.65% Max		
Silicon %	No limit	0.60% Max 0.06% Max 0.06% Max 0.51% Max		
Phosphorous%	0.06% Max.			
Sulphur %	No limit			
Carbon Eqv.	No limit			

Table 2 Chemistry of ASTM and ISO Standards

Strain Hardening/Cold working



rolling direction -Grains are elongated

Dhaka, Bangladesh. March 28, 2013

Ductile fracture

(e) Final shear fracture

Dhaka, Bangladesh. March 28, 2013