
Computer architectureELECTA01

H4
The processor

ELECTA01
Hogeschool Rotterdam

Opleiding Elektrotechniek
Minor Embedded Systems

J.W. Peltenburg / J.Z.M. Broeders (brojz@hr.nl)

Planning CTA01

• Week 1: Introduction, Performance & Parallelism

• Week 2: Instructions for arithmetic and memory

• Week 3: Instructions for decisions and procedures

• Week 4: Computer arithmetic

• Week 5: Single cycle LEGv8, intro pipelining

• Week 6: Pipelined LEGv8, hazards and forwarding

• Week 7: Memory architecture

• Week 8: Guest lecture (multicore and parallelism)

CTA01 H4 V 2.3 2

COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

ARM

Edition

Chapter 4

The Processor

Introduction

◼ CPU performance factors
◼ Instruction count

◼ Determined by ISA and compiler

◼ CPI and Cycle time
◼ Determined by CPU hardware

◼ We will examine two LEGv8 implementations
◼ A simplified version

◼ A more realistic pipelined version

◼ Simple subset, shows most aspects
◼ Memory reference: LDUR, STUR

◼ Arithmetic/logical: ADD, SUB, AND, ORR

◼ Control transfer: CBZ

§
4
.1

 In
tro

d
u
c
tio

n

CTA01 H4 V 2.34

Instruction Execution

◼ PC → instruction memory, fetch instruction

◼ Register numbers → register file, read registers

◼ Depending on instruction type

◼ Use ALU to calculate

◼ Arithmetic or logic result for R-type (ADD, SUB, AND, ORR)

◼ Memory address for D-type instructions (LDUR, STUR)

◼ Register equals zero for CB-type (CBZ)

◼ For CB-type (CBZ) calculate branch target address

◼ Access data memory for D-type (LDUR, STUR)

◼ Write to register file for R-type (ADD, SUB, AND, ORR)

and load (LDUR)

◼ PC PC + 4 or PC Branch target address
CTA01 H4 V 2.35

In

parallel

In

parallel

CPU Overview

CTA01 H4 V 2.36

Multiplexers

CTA01 H4 V 2.37

◼ Can’t just join

wires together

◼ Use multiplexers

Control

CTA01 H4 V 2.38

Logic Design Basics
§
4
.2

 L
o
g
ic

 D
e
s
ig

n
 C

o
n
v
e
n
tio

n
s

◼ Information encoded in binary

◼ Low voltage = 0, High voltage = 1

◼ One wire per bit

◼ Multi-bit data encoded on multi-wire buses

◼ Combinational element

◼ Operate on data

◼ Output is a function of input

◼ State (sequential) elements

◼ Store information

>>

CTA01 H4 V 2.39

Combinational Elements

◼ AND-gate

◼ Y = A & B

A

B
Y

I0

I1
Y

M

u

x

S

◼ Multiplexer

◼ Y = S ? I1 : I0

A

B

Y+

A

B

YALU

F

◼ Adder

◼ Y = A + B

◼ Arithmetic/Logic Unit

◼ Y = F(A, B)

>>

CTA01 H4 V 2.310

Sequential Elements

◼ Register: stores data in a circuit

◼ Uses a clock signal to determine when to

update the stored value

◼ Edge-triggered: update when Clk changes

from 0 to 1

D

Clk

Q

Clk

D

Q

>>

CTA01 H4 V 2.311

Sequential Elements

◼ Register with write control

◼ Only updates on clock edge when write

control input is 1

◼ Used when stored value is required later

D

Clk

Q

Write

Write

D

Q

Clk

>>

CTA01 H4 V 2.312

Clocking Methodology

◼ Combinational logic transforms data during
clock cycles

◼ Between clock edges

◼ Input from state elements, output to state
element

◼ Longest delay determines clock period

>>

CTA01 H4 V 2.313

Building a Datapath

◼ Datapath

◼ Elements that process data and addresses

in the CPU

◼ Registers, ALUs, mux’s, memories, …

◼ We will build a LEGv8 datapath

incrementally

◼ Refining the overview design

§
4
.3

 B
u
ild

in
g
 a

 D
a
ta

p
a
th

CTA01 H4 V 2.314

Instruction Fetch

64-bit

register

Increment by

4 for next

instruction

CTA01 H4 V 2.315

R-type Instructions ADD, SUB, AND, ORR

◼ Read two register operands

◼ Perform arithmetic/logical operation

◼ Write register result

CTA01 H4 V 2.316

Multiport register file:

2 read ports, 1 write port

◼ Read register operands

◼ Calculate address using 9-bit offset
◼ Use ALU, but sign-extend offset

◼ LDUR: Read memory and update register

◼ STUR: Write register value to memory

CTA01 H4 V 2.317

D-type Instructions LDUR, STUR

CB-type Instruction CBZ

◼ Read register operand

◼ Compare operand to zero

◼ Use ALU pass input and check Zero output

◼ Calculate target address

◼ Sign-extend 19-bit displacement field

◼ Shift left 2 places (word displacement)

◼ Add to PC

CTA01 H4 V 2.318

Branch Instructions

Just

re-routes

wires

CTA01 H4 V 2.319

Corrected version of Figure 4.9 page 268.

Composing the Elements

◼ First-cut data path does an instruction in

one clock cycle

◼ Each datapath element can only do one

function at a time

◼ Hence, we need separate instruction and data

memories

◼ Use multiplexers where alternate data

sources are used for different instructions

CTA01 H4 V 2.320

R-Type/D-Type Datapath

CTA01 H4 V 2.321

ADD, SUB, AND, ORR, LDUR, STUR

Full Datapath

CTA01 H4 V 2.322

ADD, SUB, AND, ORR, LDUR, STUR, CBZ

ALU Control

◼ ALU used for

◼ D-type LDUR, STUR: Function = add

◼ CB-type CBZ: Function = pass

◼ R-type ADD, SUB, AND, ORR: Function

depends on opcode

§
4
.4

 A
 S

im
p
le

 Im
p
le

m
e
n
ta

tio
n
 S

c
h
e
m

e

ALU control F = Function

0000 AND

0001 OR

0010 add

0110 subtract

XX11 pass input b

CTA01 H4 V 2.323

See ALU design Figure A.5.12 page A-35

ALU Control

◼ Assume 2-bit ALUOp derived from opcode

◼ Combinational logic derives ALU control

opcode ALUOp Operation Opcode field ALU function

ALU

control

LDUR 00 load register XXXXXXXXXXX add 0010

STUR 00 store register XXXXXXXXXXX add 0010

CBZ 01 compare and

branch on zero

XXXXXXXXXXX pass input b XX11

R-type

ADD, SUB,

AND, ORR

10 add 10001011000 add 0010

subtract 11001011000 subtract 0110

AND 10001010000 AND 0000

OR 10101010000 OR 0001

CTA01 H4 V 2.324

The Main Control Unit

◼ Control signals derived from instruction

CTA01 H4 V 2.325

Datapath With Control

CTA01 H4 V 2.326

Control signals

CTA01 H4 V 2.327

Implementing B-type (B)

◼ Branch uses word offset

◼ PC PC + (sign extended offset) x 4

◼ Need an extra control signal decoded from

opcode

000101 offset

31:26 25:0

B

CTA01 H4 V 2.328

Datapath With B Added

CTA01 H4 V 2.329

Performance Issues

◼ Longest delay determines clock period

◼ Critical path: load instruction

◼ Instruction memory → register file → ALU →

data memory → register file

◼ Not feasible to vary period for different

instructions

◼ Violates design principle

◼ Making the common case fast

◼ We will improve performance by pipelining

CTA01 H4 V 2.330

Pipelining Analogy

◼ Pipelined laundry: overlapping execution

◼ Parallelism improves performance

§
4
.5

 A
n
 O

v
e
rv

ie
w

 o
f P

ip
e
lin

in
g◼ Four loads:

◼ Speedup

= 8/3.5 = 2.3

◼ Non-stop:

◼ Speedup

= 2n/0.5n + 1.5 ≈ 4

= number of stages

CTA01 H4 V 2.331

Speedup?

LEGv8 Pipeline

◼ Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

CTA01 H4 V 2.332

Pipeline Performance

◼ Assume time for stages is

◼ 100 ps for register read or write

◼ 200 ps for other stages

◼ Compare pipelined datapath with single-cycle

datapath

Instr Instr fetch Register

read

ALU op Memory

access

Register

write

Total time

LDUR 200ps 100 ps 200ps 200ps 100 ps 800ps

STUR 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

CBZ 200ps 100 ps 200ps 500ps

CTA01 H4 V 2.333

Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

CTA01 H4 V 2.334

Pipeline Speedup

◼ If all stages are balanced

◼ i.e., all take the same time

◼ Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

◼ If not balanced, speedup is less

◼ Speedup due to increased throughput

◼ Latency (time for each instruction) does not

decrease

CTA01 H4 V 2.335

Pipelining and ISA Design

◼ LEGv8 ISA designed for pipelining

◼ All instructions are 32-bits
◼ Easier to fetch and decode in one cycle

◼ c.f. x86: 1- to 17-byte instructions

◼ Few and regular instruction formats
◼ Can decode and read registers in one step

◼ Load/store addressing
◼ Can calculate address in 3rd stage, access memory

in 4th stage

◼ Alignment of memory operands
◼ 64-bit Memory access takes only one cycle

CTA01 H4 V 2.336

Hazards

◼ Situations that prevent starting the next
instruction in the next cycle

◼ Structure hazards

◼ A required resource is busy

◼ Data hazard

◼ Need to wait for previous instruction to
complete its data read/write

◼ Control hazard

◼ Deciding on control action depends on
previous instruction

CTA01 H4 V 2.337

Structure Hazards

◼ Conflict for use of a resource

◼ In LEGv8 pipeline with a single memory

◼ Load/store requires data access

◼ Instruction fetch would have to stall for that

cycle

◼ Would cause a pipeline “bubble”

◼ Hence, pipelined datapaths require

separate instruction/data memories

◼ Or separate instruction/data caches

CTA01 H4 V 2.338

Structure Hazards

◼ Conflict for use of a resource

◼ In LEGv8 the registers are used in stages

ID (read) and WB (write)

◼ Assumed time for stages is

◼ 100 ps for register read or write

◼ 200 ps for other stages

◼ Hence, write and read can be combined in

one pipeline slot

◼ write in first 100 ps, read in last 100 ps

CTA01 H4 V 2.339

Data Hazards

◼ An instruction depends on completion of

data access by a previous instruction

◼ ADD X1, X2, X3
SUB X4, X1, X5

CTA01 H4 V 2.340

Data can not move backward in time!

Stalling (aka insert bubbles)

◼ wait for the data to be stored in a register

◼ Requires extra control logic

CTA01 H4 V 2.341

Data now moves forward in time!

Forwarding (aka Bypassing)

◼ Use result when it is computed

◼ Don’t wait for it to be stored in a register

◼ Requires extra connections in the datapath

and extra control logic

CTA01 H4 V 2.342

Load-Use Data Hazard

◼ Can’t always avoid stalls by forwarding

◼ If value not computed when needed

◼ Can’t forward backward in time!

CTA01 H4 V 2.343

Load-Use Data Hazard

◼ Can’t avoid stalls by forwarding

◼ Stall can be limited to one cycle by using

forwarding.

CTA01 H4 V 2.344

Code Scheduling to Avoid Stalls

◼ Reorder code to avoid use of load result in

the next instruction

◼ C code for A[3]=A[0]+A[1]; A[4]=A[0]+A[2];

LDUR X1, [X0,#0]

LDUR X2, [X0,#8]

ADD X3, X1, X2

STUR X3, [X0,#24]

LDUR X4, [X0,#16]

ADD X5, X1, X4

STUR X5, [X0,#32]

stall

stall

LDUR X1, [X0,#0]

LDUR X2, [X0,#8]

LDUR X4, [X0,#16]

ADD X3, X1, X2

STUR X3, [X0,#24]

ADD X5, X1, X4

STUR X5, [X0,#32]

11 cycles13 cycles

CTA01 H4 V 2.345

Control Hazards

◼ Branch determines flow of control

◼ Fetching next instruction depends on branch
outcome

◼ Pipeline can’t always fetch correct instruction
◼ Still working on ID stage of branch

◼ In LEGv8 pipeline

◼ Need to compare registers and compute
target early in the pipeline

◼ Add hardware to do it in ID stage

CTA01 H4 V 2.346

Stall on Branch

◼ Wait until branch outcome determined

before fetching next instruction

CTA01 H4 V 2.347

Branch Prediction

◼ Longer pipelines can’t readily determine

branch outcome early

◼ Stall penalty becomes unacceptable

◼ Predict outcome of branch

◼ Only stall if prediction is wrong

◼ In LEGv8 pipeline

◼ Can predict branches not taken

◼ Fetch instruction after branch, with no delay

CTA01 H4 V 2.348

More-Realistic Branch Prediction

◼ Static branch prediction

◼ Based on typical branch behavior

◼ Example: loop and if-statement branches

◼ Predict backward branches taken

◼ Predict forward branches not taken

◼ Dynamic branch prediction

◼ Hardware measures actual branch behavior

◼ e.g., record recent history of each branch

◼ Assume future behavior will continue the trend

◼ When wrong, stall while re-fetching, and update history

CTA01 H4 V 2.349

Pipeline Summary

◼ Pipelining improves performance by

increasing instruction throughput

◼ Executes multiple instructions in parallel

◼ Each instruction has the same latency

◼ Subject to hazards

◼ Structure, data, control

◼ Instruction set design affects complexity of

pipeline implementation

The BIG Picture

CTA01 H4 V 2.350

Planning CTA01

• Week 1: Introduction, Performance & Parallelism

• Week 2: Instructions for arithmetic and memory

• Week 3: Instructions for decisions and procedures

• Week 4: Computer arithmetic

• Week 5: Single cycle LEGv8, intro pipelining

• Week 6: Pipelined LEGv8, hazards and forwarding

• Week 7: Memory architecture

• Week 8: Guest lecture (multicore and parallelism)

CTA01 H4 V 2.3 51

LEGv8 Pipelined Datapath
§
4
.6

 P
ip

e
lin

e
d
 D

a
ta

p
a
th

 a
n
d
 C

o
n
tro

l

WB

MEM

Right-to-left

flow leads to

hazards

CTA01 H4 V 2.352

Pipeline registers

◼ Need registers between stages

◼ To hold information produced in previous cycle

CTA01 H4 V 2.353

Pipeline Operation

◼ Cycle-by-cycle flow of instructions through

the pipelined datapath

◼ “Single-clock-cycle” pipeline diagram

◼ Shows pipeline usage in a single cycle

◼ Highlight resources used

◼ “Multi-clock-cycle” diagram

◼ Graph of operation over time

◼ We’ll look at “single-clock-cycle” diagrams

for load & store

CTA01 H4 V 2.354

IF for Load, Store, …

CTA01 H4 V 2.355

ID for Load, Store, …

CTA01 H4 V 2.356

EX for Load

CTA01 H4 V 2.357

MEM for Load

CTA01 H4 V 2.358

WB for Load

Wrong

register

number

CTA01 H4 V 2.359

Corrected Datapath for Load

CTA01 H4 V 2.360

EX for Store

CTA01 H4 V 2.361

MEM for Store

CTA01 H4 V 2.362

WB for Store

CTA01 H4 V 2.363

Multi-Cycle Pipeline Diagram

◼ Form showing resource usage

CTA01 H4 V 2.364

Multi-Cycle Pipeline Diagram

◼ Traditional form

CTA01 H4 V 2.365

Single-Cycle Pipeline Diagram

◼ State of pipeline in a given cycle, e.g. CC 5

CTA01 H4 V 2.366

Pipelined Control (Simplified)

CTA01 H4 V 2.367

Pipelined Control

◼ Control signals derived from instruction

◼ As in single-cycle implementation

CTA01 H4 V 2.368

Pipelined Control

CTA01 H4 V 2.369

Data Hazards in ALU Instructions

◼ Consider this sequence:

SUB X2,X1,X3
AND X12,X2,X5
OR X13,X6,X2
ADD X14,X2,X2
STUR X15,[X2,#100]

◼ We can resolve hazards with forwarding

◼ How do we detect when to forward?

§
4
.7

 D
a
ta

 H
a
z
a
rd

s
: F

o
rw

a
rd

in
g
 v

s
. S

ta
llin

g

CTA01 H4 V 2.370

Dependencies & Forwarding

CTA01 H4 V 2.371

Detecting the Need to Forward

◼ Pass register numbers along pipeline
◼ e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register

◼ ALU operand register numbers in EX stage
are given by
◼ ID/EX.RegisterRn1, ID/EX.RegisterRm2

◼ Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRn1

1b. EX/MEM.RegisterRd = ID/EX.RegisterRm2

2a. MEM/WB.RegisterRd = ID/EX.RegisterRn1

2b. MEM/WB.RegisterRd = ID/EX.RegisterRm2

Fwd from

EX/MEM

pipeline reg

Fwd from

MEM/WB

pipeline reg

CTA01 H4 V 2.372

Detecting the Need to Forward

◼ But only if forwarding instruction will write

to a register!

◼ EX/MEM.RegWrite, MEM/WB.RegWrite

◼ And only if Rd for that instruction is not

XZR

◼ EX/MEM.RegisterRd ≠ 31,

MEM/WB.RegisterRd ≠ 31

CTA01 H4 V 2.373

Forwarding Paths

CTA01 H4 V 2.374

Forwarding Conditions

Mux control Source Explanation

ForwardA = 00 ID/EX The first ALU operand comes from the register

file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the

prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data

memory or an earlier ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the

register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the

prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data

memory or an earlier ALU result.

CTA01 H4 V 2.375

Forwarding Condition EX hazard

◼ EX hazard

◼ if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd ≠ 31)

and (EX/MEM.RegisterRd = ID/EX.RegisterRn1)) ForwardA = 10

◼ if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd ≠ 31)

and (EX/MEM.RegisterRd = ID/EX.RegisterRm2)) ForwardB = 10

CTA01 H4 V 2.376

Forwarding Condition MEM hazard

◼ MEM hazard

◼ if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠ 31)

and (MEM/WB.RegisterRd = ID/EX.RegisterRn1)) ForwardA = 01

◼ if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠ 31)

and (MEM/WB.RegisterRd = ID/EX.RegisterRm2)) ForwardB = 01

CTA01 H4 V 2.377

Dit is nog niet helemaal correct!

Zie volgende slide.

Double Data Hazard

◼ Consider the sequence:

add X1,X1,X2
add X1,X1,X3
add X1,X1,X4

◼ Both hazards occur

◼ Want to use the most recent

◼ Revise MEM hazard condition

◼ Only fwd if EX hazard condition isn’t true

CTA01 H4 V 2.378

Revised Forwarding Condition

◼ MEM hazard

◼ if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠ 31)

and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 31)

and (EX/MEM.RegisterRd = ID/EX.RegisterRn1))

and (MEM/WB.RegisterRd = ID/EX.RegisterRn1)) ForwardA = 01

◼ if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠ 31)

and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 31)

and (EX/MEM.RegisterRd = ID/EX.RegisterRm2))

and (MEM/WB.RegisterRd = ID/EX.RegisterRm2)) ForwardB = 01

CTA01 H4 V 2.379

Datapath with Forwarding

CTA01 H4 V 2.380

Datapath Detail

CTA01 H4 V 2.381

Load-Use Hazard Detection

◼ Check when using instruction is decoded
in ID stage

◼ ALU operand register numbers in ID stage
are given by

◼ IF/ID.RegisterRn1, IF/ID.RegisterRm2

◼ Load-use hazard when

◼ ID/EX.MemRead and
((ID/EX.RegisterRd = IF/ID.RegisterRn1) or
(ID/EX.RegisterRd = IF/ID.RegisterRm2))

◼ If detected, stall and insert bubble

CTA01 H4 V 2.382

How to Stall the Pipeline

◼ Force control values in ID/EX register

to 0

◼ EX, MEM and WB do nop (no-operation)

◼ Prevent update of PC and IF/ID register

◼ Using instruction is decoded again

◼ Following instruction is fetched again

◼ 1-cycle stall allows MEM to read data for

LDUR

◼ Can subsequently forward to EX stage

CTA01 H4 V 2.383

Load-Use Data Hazard

Stall inserted

here

CTA01 H4 V 2.384

Datapath with Hazard Detection

CTA01 H4 V 2.385

Stalls and Performance

◼ Stalls reduce performance

◼ But are required to get correct results

◼ Compiler can arrange code to avoid

hazards and stalls

◼ Requires knowledge of the pipeline structure

The BIG Picture

CTA01 H4 V 2.386

Branch Hazards

◼ If branch outcome determined in MEM

§
4
.8

 C
o
n
tro

l H
a
z
a
rd

s

PC

Flush these

instructions

(Set control

values to 0)

CTA01 H4 V 2.387

Reducing Branch Delay

◼ Move hardware to determine outcome to ID

stage

◼ Target address adder

◼ Register comparator

◼ Example: branch taken
36: SUB X10, X4, X8
40: CBZ X1, X3, 8
44: AND X12, X2, X5
48: ORR X13, X2, X6
52: ADD X14, X4, X2
56: SUB X15, X6, X7

...
72: LDUR X4, [X7,#50]

CTA01 H4 V 2.388

Example: Branch Taken

CTA01 H4 V 2.389

Example: Branch Taken

CTA01 H4 V 2.390

Dynamic Branch Prediction

◼ In deeper and superscalar pipelines, branch

penalty is more significant

◼ Use dynamic prediction

◼ Branch prediction buffer (aka branch history table)

◼ Indexed by recent branch instruction addresses

◼ Stores outcome (taken/not taken)

◼ To execute a branch

◼ Check table, expect the same outcome

◼ Start fetching from fall-through or target

◼ If wrong, flush pipeline and flip prediction

CTA01 H4 V 2.391

1-Bit Predictor: Shortcoming

◼ Inner loop branches mispredicted twice!

outer: …
…

inner: …
…
CBZ …, …, inner
…
CBZ …, …, outer

◼ Mispredict as taken on last iteration of

inner loop

◼ Then mispredict as not taken on first

iteration of inner loop next time around

CTA01 H4 V 2.392

2-Bit Predictor

◼ Only change prediction on two successive

mispredictions

CTA01 H4 V 2.393

Calculating the Branch Target

◼ Even with predictor, still need to calculate

the target address

◼ 1-cycle penalty for a taken branch

◼ Branch target buffer

◼ Cache of target addresses

◼ Indexed by PC when instruction fetched

◼ If hit and instruction is branch predicted taken, can

fetch target immediately

CTA01 H4 V 2.394

Fallacies

◼ Pipelining is easy (!)

◼ The basic idea is easy

◼ The devil is in the details

◼ e.g., detecting data hazards

◼ Pipelining is independent of technology

◼ So why haven’t we always done pipelining?

◼ More transistors make more advanced techniques

feasible

◼ Pipeline-related ISA design needs to take account of

technology trends

◼ e.g., predicated instructions

§
4
.1

4
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

CTA01 H4 V 2.395

Concluding Remarks

◼ ISA influences design of datapath and control

◼ Datapath and control influence design of ISA

◼ Pipelining improves instruction throughput

using parallelism

◼ More instructions completed per second

◼ Latency for each instruction not reduced

◼ Hazards: structural, data, control

§
4
.1

4
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

CTA01 H4 V 2.396

