
CS356: Discussion #10
Cache Lab and Virtual Memory

Marco Paolieri (paolieri@usc.edu)
Illustrations from CS:APP3e textbook



Schedule: Exams and Assignments

● Week 1: Binary Representation   HW0 . 
● Week 2: Integer Operations
● Week 3: Floating-Point Operations   Data Lab 1 .
● Week 4: Assembly (Arithmetic Instruction)  
● Week 5: Assembly (Debugging with GDB)   Data Lab 2 .
● Week 6: Assembly (Function Calls)
● Week 7:  Bomb Lab .(Oct. 1),  Exam I  (Oct. 4), Security Vulnerabilities
● Week 8: Memory Organization
● Week 9: Caching   Attack Lab .
● Week 10: Virtual Memory
● Week 11: Dynamic Memory Allocation and Linking
● Week 12: Processor Organization and  Exam II  (Nov. 8)   Cache Lab .
● Week 13: Processor Organization
● Week 14: Code Optimization and Thanksgiving
● Week 15: Cache Coherency and Review   Allocation Lab .
● Week 16: Study Days and  Final  (Dec. 6)



Last Time: Direct-Mapping Cache Simulation

Address breakdown
● C1 has no block offset, 3-bit set address
● C2 has 1-bit block offset, 2-bit set address
● C3 has 2-bit block offset, 1-bit set address

How to run a trace: extract set address (3, 2, 1 
bits) from LSB; on miss, load (1, 2, 4) bytes.

Running C3:
● Get 1: miss. Put bytes 0-3 in bucket 0.
● Get 134: miss. Put 132-135 in bucket 1.
● Get 212: miss. Put 212-215 in bucket 1.
● Get 1: hit.
● Get 135: miss. Put 132-135 in bucket 1.
● Get 213: miss. Put 212-215 in bucket 1.
● Get 162: miss. Put 160-163 in bucket 0.
● Get 161: hit.

Trace

MEM     LSB     C1 C2  C3

  1  0000 0001  1m 0m  0m

134  1000 0110  6m 3m  1m

212  1101 0100  4m 2m  1m

  1  0000 0001  1h 0h  0h

135  1000 0111  7m 3h  1m

213  1101 0101  5m 2h  1m

162  1010 0010  2m 1m  0m

161  1010 0001  1m 0m  0h

  2  0000 0010  2m 1m  0m

 44  0010 1100  4m 2m  1m

 41  0010 1001  1m 0m  0m

221  1101 1101  5m 2m  1m

m_rate: 11/12 9/12 10/12



Goal
● To write a small C simulator of caching strategies.
● Expect about 200-300 lines of code.
● Starting point in your repository.

Traces
● The traces directory contains program traces generated by valgrind
● The format of each line is: <operation> <address>,<size>

For example:  “I 0400d7d4,8” “M 0421c7f0,4” “L 04f6b868,8”
● Operations

○ Instruction load: I (ignore these)
○ Data load: ␣L (hit, miss, miss/eviction)
○ Data store: ␣S (hit, miss, miss/eviction)
○ Data modify: ␣M (load+store: hit/hit, miss/hit, miss/eviction/hit)

http://bytes.usc.edu/cs356/assignments/cachelab.pdf 

Cache Lab

http://bytes.usc.edu/cs356/assignments/cachelab.pdf


Reference Cache Simulator

 ./csim-ref [-hv] -s <s> -E <E> -b <b> -t <tracefile> (-L|-F)

-h print usage information
-v display trace information
-s <s> select the number of set bits (i.e., use S = 2s sets)
-E <E> select the number of lines per set (associativity)
-b <b> select the number of block bits (i.e., use B = 2b bytes / block)
-t <tracefile> select a trace
-L select the LRU policy
-F select the FIFO policy

$ ./csim-ref -s 4 -E 1 -b 4 -L -t traces/yi.trace

hits:4 misses:5 evictions:3

$ ./csim-ref -s 4 -E 1 -b 4 -L -t traces/yi.trace -v

 L 10,1 miss

 M 20,1 miss hit

 L 210,1 miss eviction

 M 12,1 miss eviction hit



Your Simulator

Fill in the csim.c file to:
● Accept the same command-line options.
● Produce identical output.

Rules
● Include name and username in the header.
● Use only C code (must compile with gcc -std=c99)
● Use malloc to allocate data structures for arbitrary s, E, b
● Implement both LRU and FIFO policies.
● Ignore instruction cache accesses (starting with I).
● Assume that memory accesses never cross block boundaries:

⇒ Ignore request sizes.
● At the end of your main function, call:

printSummary(hit_count, miss_count, eviction_count)



Evaluation

16 test cases:
● 8 for LRU
● 8 for FIFO

Two case are worth 6 points, others 3 points.
⇒ Total of 2 ⨯ 6 + 14 ⨯ 3 = 54 points.

You only need to output the correct number of cache hits, misses, evictions.
● Each gives you 1/3 of the points for that test.
● You can run csim-ref -v  to check the expected behavior.
● Start from small traces such as traces/dave.traces
● Use the getopt library to parse command-line arguments.

○ int s = atoi(arg_str); int S = pow(2, s);

Compile and autograde using test-csim.



Running csim-test

$ make; ./test-csim

EP: LRU                    Your simulator        Reference simulator

Points (s,E,b)     Hits   Misses   Evicts     Hits   Misses   Evicts

     3 (1,1,1)        9        8        6        9        8        6  traces/yi2.trace

     3 (4,2,4)        4        5        2        4        5        2  traces/yi.trace

     3 (2,1,4)        2        3        1        2        3        1  traces/dave.trace

     3 (2,1,3)      167       71       67      167       71       67  traces/trans.trace

     3 (2,2,3)      201       37       29      201       37       29  traces/trans.trace

     3 (2,4,3)      212       26       10      212       26       10  traces/trans.trace

     3 (5,1,5)      231        7        0      231        7        0  traces/trans.trace

     6 (5,1,5)   265189    21775    21743   265189    21775    21743  traces/long.trace

EP: FIFO                   Your simulator        Reference simulator

Points (s,E,b)     Hits   Misses   Evicts     Hits   Misses   Evicts

     3 (4,2,4)        7        5        2        7        5        2  traces/fifo_s1.trace

     3 (4,2,4)       11        7        3       11        7        3  traces/fifo_s2.trace

     3 (4,4,4)        6       11        7        6       11        7  traces/fifo_s3.trace

     3 (5,2,2)       59      354      298       59      354      298  traces/fifo_m1.trace

     3 (3,4,2)       51      362      330       51      362      330  traces/fifo_m1.trace

     3 (5,2,2)      191      188      142      191      188      142  traces/fifo_m2.trace

     3 (3,4,2)      164      215      184      164      215      184  traces/fifo_m2.trace

     6 (4,2,4)   263447    28255    28223   263447    28255    28223  traces/fifo_l.trace

TEST_CSIM_RESULTS=54

     



Problems

● How to parse the input traces?
○ fopen (open a file), fgets (read a line), sscanf (parse a line), fclose

● How to represent the cache? How to allocate memory for any s, E, b?
○ Cache = S sets
○ Each set = E cache lines
○ Use malloc and free

● What needs to be stored in a cache line?
○ Valid bit, tag, and what else?
○ How to keep track of statistics for LRU and FIFO policies?

● How to retrieve data at a memory address?
○ How to extract tag / set / block bits from an input address?
○ How to select the correct set? And how to look for a hit?
○ What to update in case of hit (in addition to hit counter)?
○ What to do in case of miss?

● Useful: Print the content of the cache after each request in a trace



Virtual Memory and Address Translation

One more level of indirection 
● Compile programs with virtual addresses
● Use a Memory Management Unit (MMU) to convert them 

into physical addresses during each memory access...  must be fast!

Why?
● To use main memory as a cache for disk memory, when main memory is 

limited and many memory-intensive processes are running.
● To isolate different processes, with fine-grained access control and 

sharing of memory blocks, map I/O devices, and more.

CPU and OS cooperate to make VM very fast
● Latency: 1 ns (L1), 100 ns (RAM), 50 μs (SSD), 20 ms (magnetic disk)
● Page size should be fairly large (4 kB)
● Translation Lookaside Buffer (TLB) to cache address translations



Page Table: Mapping Virtual Addresses

Idea: break virtual and physical address spaces in blocks with same size (4 kB) 
● Pages of virtual address space
● Physical block frame of physical address space

Load virtual pages into physical block frames when needed.
● CPU generates a “page fault exception”
● OS loads the page into a frame (possibly evicting another)

Physical memory acts like a cache 
for virtual memory pages.
● Fully associative, write-back
● Same-size pages / frames
● Page table keeps track of 

pages and their location: 
look-up table, not tag+frame#

● Read by HW, updated by OS



Single-Level Page Table: PTBR[VPN] | VPO

Example: 32 bit virtual address, 4 kB pages ⇒ 20 bit VPN, 1M page table entries
● Only 1 GB of physical memory ⇒ 18 bit PPN (translated address is 00...)



Example: Single-Level Page Table

8-bit virtual addresses, 10-bit physical addresses, 32-byte pages
● Physical address of virtual address 0x2D?  00101101 => 0 0011 1100 1101
● Physical address of virtual address 0x7A?  01111010 => 0 0000 1101 1010
● Physical address of virtual address 0xEF?  11101111 => 
● Physical address of virtual address 0xA8?  10101000 =>           0 1000

Index Valid PPN

0 0 0x0E

1 1 0x1E

2 1 0x16

3 1 0x06

4 0 0x0B

5 1 0x1F

6 0 0x15

7 0 0x0A



A page table for each process

Page-level memory protection and sharing (page tables in kernel memory).
Context switch: load PTBR from Global Descriptor Table (GDT) to CR3 register. 



Multi-Level Page Table: More indirections

The virtual address space can be very large for a single process.
⇒ Most of the page table entries are not used
⇒ Idea: use a page directory where entries point to next-level tables (if 
present)
⇒ Each level contains base of next table (if present), last level contains PPN



Multi-Level Page Table: Space savings

Drawback: more memory accesses, more latency...



Problem: Three-Level Page Table

Consider a 3-level VM system with:
● 36-bit physical address space
● 32-bit virtual address space
● 4 kB pages
● Page tables implemented as look-up tables
● 256 entries for page directory
● 64 entries in second-level page table

Find out:
● The layout of virtual addresses (1st / 2nd / 3rd table offset, page offset)
● The number of entries in third-level page table
● The size of each page table (assume 4 bytes for each entry)
● Minimum size of entries of third page table?



Translation Lookaside Buffer

A k-level page table requires k memory accesses in the worse case.
Idea: cache address mappings inside the CPU (10 ns hit time).
● VPN is the cache tag, PPN is the entire cache block
● High degree of associativity (4-way or fully-associative: low miss rate)
● Usually smaller than data cache (fast lookup, low hit time)

Average Access Time = (Hit Time) + (Miss Rate) ⨯ (Miss Penalty) 



K-way Set Associative Caches (1 < K < C/B)

Differences of TLB
● No block offset: cache block is the entire PPN
● TLB is usually smaller/faster than caches



Example: 2-way set associative TLB

16-bit virtual and physical addresses, 256-byte pages
● Physical address of virtual address 0x7E85 == 0111 1110 1000 0101
● Virtual address of physical address 0x3020 == 0011 0000 0010 0000

Index Valid Tag PPN

0
1 0x13 0x30

0 0x34 0x58

1
0 0x1F 0x80

1 0x2A 0x72

2
1 0x1F 0x95

0 0x20 0xAA

3
1 0x3F 0x20

0 0x3E 0xFF



Intel Core i7: Address Translation



Intel Core i7: TLB and translation before L1



More Exercises

http://bytes.usc.edu/cs356/docs/cs356_vm_sol.pdf

Virtual Memory
32-bit virtual addresses, 36-bit physical addresses, 16 kB pages
● Bits of page offset? VPN bits? PPN bits?
● Number of pages in virtual and physical memory?
● Page table size with 4 byte entries?
● VPN bits breakdown for 3-level (32 / 64 / unknown)-entries?

○ Worst-case size with 4 byte entries and 10 pages in use?
● 4-way set associative TLB with 128 total entries

○ VPN bits mapping to tag / set / page offset?


