CS356: Discussion #10

Cache Lab and Virtual Memory

Marco Paolieri (paolieri@usc.edu)
lllustrations from CS:APP3e textbook

W
)

USC University of

Southern California

Schedule: Exams and Assignments

Week 1: Binary Representation HWO

Week 2: Integer Operations

Week 3: Floating-Point Operations Data Lab 1

Week 4: Assembly (Arithmetic Instruction)

Week 5: Assembly (Debugging with GDB) Data Lab 2

Week 6: Assembly (Function Calls)

Week 7: Bomb Lab (Oct. 1), Exam | (Oct. 4), Security Vulnerabilities
Week 8: Memory Organization

Week 9: Caching Attack Lab

Week 10: Virtual Memory

Week 11: Dynamic Memory Allocation and Linking

Week 12: Processor Organization and Exam Il (Nov. 8) Cache Lab
Week 13: Processor Organization

Week 14: Code Optimization and Thanksgiving

Week 15: Cache Coherency and Review Allocation Lab

Week 16: Study Days and Final (Dec. 6)

Last Time: Direct-Mapping Cache Simulation

Address breakdown Trace
e C1 has no block offset, 3-bit set address
e (2 has 1-bit block offset, 2-bit set address
e (3 has 2-bit block offset, 1-bit set address

MEM LSB Cl1 C2 (3
1 0000 0001 1m Om Om
134 1000 0110 6m 3m 1m

How to run a trace: extract set address (3, 2, 1 212 1101 0100 4m 2m 1m

bits) from LSB; on miss, load (1, 2, 4) bytes. 1 ©000 0001 1h 6h ©h
135 1000 0111 7m 3h 1m

213 1101 0101 5m 2h 1m
162 1010 0010 2m 1m Om
161 1010 0001 1m Om Oh

2 0000 0010 2m 1m Om
44 0010 11060 4m 2m 1m
41 0010 1001 1m Om Om
221 1101 1101 5m 2m 1m

Running C3:

e Get 1: miss. Put bytes 0-3 in bucket 0.
Get 134: miss. Put 132-135 in bucket 1.
Get 212: miss. Put 212-215 in bucket 1.
Get 1: hit.

Get 135: miss. Put 132-135 in bucket 1.
Get 213: miss. Put 212-215 in bucket 1.

Get 162: miss. Put 160-163 in bucket O.
Get 161: hit. m _rate: 11/12 9/12 10/12

Cache Lab

Goal
e To write a small C simulator of caching strategies.
e Expect about 200-300 lines of code.
e Starting point in your repository.

Traces
e The traces directory contains program traces generated by valgrind
e The format of each lineis: <operation> <address>,<size>
For example: “I 0400d7d4,8" “M 0421c7f0,4" “L 04f6b868,8"
e Operations
Instruction load: I (ignore these)
Data load: _ L (hit, miss, miss/eviction)
Data store: .S (hit, miss, miss/eviction)
Data modify: ..M (load+store: hit/hit, miss/hit, miss/eviction/hit)

o O O O

http://bytes.usc.edu/cs356/assignments/cachelab.pdf

http://bytes.usc.edu/cs356/assignments/cachelab.pdf

Reference Cache Simulator

./csim-ref [-hv] -s <s> -E <E> -b -t <tracefile> (-L|-F)

-h print usage information

-v display trace information

-s <s> select the number of set bits (i.e., use S = 2° sets)

-E <E> select the number of lines per set (associativity)

-b select the number of block bits (i.e., use B = 2° bytes / block)
-t <tracefile> select atrace

-L select the LRU policy

-F select the FIFO policy

$./csim-ref -s 4 -E 1 -b 4 -L -t traces/yi.trace
hits:4 misses:5 evictions:3

$./csim-ref -s 4 -E 1 -b 4 -L -t traces/yi.trace -v
L 10,1 miss

M 20,1 miss hit

L 210,1 miss eviction

M 12,1 miss eviction hit

Your Simulator

Fill in the csim. c file to:
e Accept the same command-line options.
e Produce identical output.

Rules
e Include name and username in the header.
Use only C code (must compile with gcc -std=c99)
Use malloc to allocate data structures for arbitrary s, E, b
Implement both LRU and FIFO policies.
Ignore instruction cache accesses (starting with I).
Assume that memory accesses never cross block boundaries:
= Ignore request sizes.
e At the end of your main function, call:
printSummary(hit_count, miss count, eviction count)

Evaluation

16 test cases:
e 8 forLRU
e 8 forFIFO

Two case are worth 6 points, others 3 points.
= Total of 2 x 6 + 14 x 3 = 54 points.

You only need to output the correct number of cache hits, misses, evictions.

e Each gives you 1/3 of the points for that test.
You can run csim-ref -v to check the expected behavior.

o

e Start from small traces such as traces/dave.traces

e Usethe getopt library to parse command-line arguments.
o int s = atoi(arg_str); int S = pow(2, s);

Compile and autograde using test-csim.

Running csim-test

$ make; ./test-csim

EP: LRU Your simulator Reference simulator
Points (s,E,b) Hits Misses Evicts Hits Misses Evicts
3 (1,1,1) 9 8 6 9 8 6 traces/yi2.trace
3 (4,2,4) 4 5 2 4 5 2 traces/yi.trace
3 (2,1,4) 2 3 1 2 3 1 traces/dave.trace
3 (2,1,3) 167 71 67 167 71 67 traces/trans.trace
3 (2,2,3) 201 37 29 201 37 29 traces/trans.trace
3 (2,4,3) 212 26 10 212 26 10 traces/trans.trace
3 (5,1,5) 231 7 0 231 7 © traces/trans.trace
6 (5,1,5) 265189 21775 21743 265189 21775 21743 traces/long.trace
EP: FIFO Your simulator Reference simulator
Points (s,E,b) Hits Misses Evicts Hits Misses Evicts
3 (4,2,4) 7 5 2 7 5 2 traces/fifo_sl.trace
3 (4,2,4) 11 7 3 11 7 3 traces/fifo_s2.trace
3 (4,4,4) 6 11 7 6 11 7 traces/fifo_s3.trace
3 (5,2,2) 59 354 298 59 354 298 traces/fifo_mil.trace
3 (3,4,2) 51 362 330 51 362 330 traces/fifo_ml.trace
3 (5,2,2) 191 188 142 191 188 142 traces/fifo_m2.trace
3 (3,4,2) 164 215 184 164 215 184 traces/fifo_m2.trace

6 (4,2,4) 263447 28255 28223 263447 28255 28223 traces/fifo_l.trace
TEST_CSIM_RESULTS=54

Problems

e How to parse the input traces?
o fopen (open a file), fgets (read a line), sscanf (parse a line), fclose

e How to represent the cache? How to allocate memory for any s, E, b?
o Cache =S sets
o Each set = E cache lines
o Usemalloc and free

e What needs to be stored in a cache line?
o Valid bit, tag, and what else?
o How to keep track of statistics for LRU and FIFO policies?

e How to retrieve data at a memory address?

How to extract tag / set / block bits from an input address?
How to select the correct set? And how to look for a hit?
What to update in case of hit (in addition to hit counter)?
What to do in case of miss?

O O O O

e Useful: Print the content of the cache after each request in a trace

Virtual Memory and Address Translation

One more level of indirection
e Compile programs with virtual addresses
e Use a Memory Management Unit (MMU) to convert them
into physical addresses during each memory access... must be fast!

Why?
e To use main memory as a cache for disk memory, when main memory is
limited and many memory-intensive processes are running.
e Toisolate different processes, with fine-grained access control and
sharing of memory blocks, map I/0 devices, and more.

CPU and OS cooperate to make VM very fast
e Latency: 1 ns(L1), 100 ns (RAM), 50 ps (SSD), 20 ms (magnetic disk)
e Page size should be fairly large (4 kB)
e Translation Lookaside Buffer (TLB) to cache address translations

Page Table: Mapping Virtual Addresses

Physical page Physical memory
number or (DRAM)
disk address
Valid / x:; ;
PTEO| O null
1i — VP 7
1 — VP 4
0 .
1 —
0 nul > Virtual memory
0 . - (disk)
PTE 71 < N VP 1

Memory residenf‘\\ VP 2

page table X VP 3

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

A

VP 6

|
\
|
| VP 4
\
|

VP7

PP O

Physical memory acts like a cache

for virtual memory pages.

PP3 ~

Fully associative, write-back
Same-size pages / frames
Page table keeps track of
pages and their location:
look-up table, not tag+frame#
Read by HW, updated by OS

Idea: break virtual and physical address spaces in blocks with same size (4 kB)

e Pages of virtual address space

e Physical block frame of physical address space

Load virtual pages into physical block frames when needed.
e CPU generates a “page fault exception”
e OS loads the page into a frame (possibly evicting another)

Single-Level Page Table: PTBR[VPN] | VPO

Virtual address

Page table n—1 p p—1 0
base register e Virtual page number (VPN) Virtual page offset (VPO)
(PTBR)
I ~Valid Physical page number (PPN)
"j— ., Page
The VPN acts table
as index into

the page table

If valid = 0 «———

then page
not in memory m—1 y p p-1 v 0
(page fault) Physical page number (PPN) | Physical page offset (PPO)

Physical address

Example: 32 bit virtual address, 4 kB pages = 20 bit VPN, 1M page table entries
e Only 1 GB of physical memory = 18 bit PPN (translated address is 00...)

Example: Single-Level Page Table

Index Valid PPN
(%] %] OXOE
1 1 Ox1E
2 1 0x16
3 1 0x06
4 %] Ox0B
5 1 Ox1F
6 %] 0x15
7 %] OX0A

8-bit virtual addresses, 10-bit physical addresses, 32-byte pages

e Physical address of virtual address ©x2D? 00101101 => © 0011 1100 1101
e Physical address of virtual address 9x7A? 01111010 => 0 0000 1101 1010
e Physical address of virtual address @xEF? 11101111 =>

e Physical address of virtual address 0xA8? 10101000 => 0 1000

A page table for each process

Process /:

Process j:

VP 0:
VP 1:
VP 2:

VP 0:
VP 1:
VP 2:

Page tables with permission bits
SUP READ WRITE Address

No Yes | No PP 6 .
No | Yes | Yes PP4 e«
Yes | Yes | Yes PP2 e

SUP READ WRITE Address

No | Yes | No PP9 .
Yes | Yes | Yes PP6 o
No Yes | Yes PP 11 o

>
/:
P,

Physical memory

PP 0
PP 2
PP 4

PP 6

PP 9

PP 11

Page-level memory protection and sharing (page tables in kernel memory).
Context switch: load PTBR from Global Descriptor Table (GDT) to CR3 register.

Multi-Level Page Table: More indirections

Virtual address

n—1 p—1 0
e VPN 1 e VPN2 e VPN k VPO
——
Level 1 Level 2 Level k
page table | page table page table
[
> (=
~[PPN |}
m—1 ! p—1] 0
PPN PPO

Physical address

The virtual address space can be very large for a single process.
= Most of the page table entries are not used

= Idea: use a page directory where entries point to next-level tables (if
present)

= Each level contains base of next table (if present), last level contains PPN

Multi-Level Page Table: Space savings

Level 1 Level 2 Virtual
page table page tables memory
/ =2
__’-___,_,...-—-——'P
PTEO FIEO VP 1023
PIE] - VP 1024
PTE 2 (null) PTE 1023
PTE 4 (null) PTEO
PTE 5 (null)
PTE 6 (null) PTE 1023
PTE 7 (null) Gap
PTE 8 »
1023 null
(1 K= 9) PTEs
null PTEs PTE 1023 1023
unallocated
pages

VP 9215

0~

2K allocated VM pages
[for code and data

> 6K unallocated VM pages

/
3

j 1023 unallocated pages

} 1 allocated VM page
for the stack

Drawback: more memory accesses, more latency...

Problem: Three-Level Page Table

Consider a 3-level VM system with:

36-bit physical address space

32-bit virtual address space

4 kB pages

Page tables implemented as look-up tables
256 entries for page directory

64 entries in second-level page table

Find out:
e The layout of virtual addresses (1st/ 2nd / 3rd table offset, page offset)
e The number of entries in third-level page table
e The size of each page table (assume 4 bytes for each entry)
e Minimum size of entries of third page table?

Translation Lookaside Buffer

31 12: 11 0
Virtual Page Number Offset w/in page | Virtual Address
20, 7 £Jf e 1 6 d| 8
Tag = VPN Page Frame# V D
Ox7ffel 0x308ac 1o
TLB 31 / 12 4 J, 0
Phys. Frame # Offset w/in page

Physical Address
3 6 8 a ¢ 6 d 8

A k-level page table requires k memory accesses in the worse case.

Idea: cache address mappings inside the CPU (10 ns hit time).
e VPN is the cache tag, PPN is the entire cache block
e High degree of associativity (4-way or fully-associative: low miss rate)
e Usually smaller than data cache (fast lookup, low hit time)

Average Access Time = (Hit Time) + (Miss Rate) x (Miss Penalty)

K-way Set Associative Caches (1 < K< C/B)

Valid Tag Cache block
Set O:
Valid Tag Cache block
Selected set . Valid Tag Cache block
. | [Valid Tag Cache block
Valid Tag Cache block
: S AT : Set S—1:
tbits S bits b bits valid| | Tag Cache block
I [00001 | |
m—1 0

Tag Set index Block offset

Differences of TLB
e No block offset: cache block is the entire PPN
e TLB is usually smaller/faster than caches

Example: 2-way set associative TLB

Index Valid Tag PPN
1 0x13 0x30

0
0 0x34 0x58
%) Ox1F 0x80

1
1 Ox2A 0x72
1 Ox1F 0x95

2
0 0x20 OxAA
1 Ox3F 0x20

3
(%] Ox3E OXFF

16-bit virtual and physical addresses, 256-byte pages
e Physical address of virtual address @x7E85 == 0111 1110 1000 0101
e Virtual address of physical address ©x3020 == 0011 0000 0010 0000

Intel Core i/7: Address Translation

12

VPN 1 VPN 2 VPN 3 VPN 4 VPO Virtual address
L1 PT L2 PT L3 PT L4 PT
Page global Page upper Page middle Page
40 directory 40 directory 40 directory 40 lable
CR3 s # 7 /
Physical
address
of L1 PT 9 9 4 9 ;
La{ L1 PTE H Laf 2 PTE H Lol L3 PTE H Lo L4 PTE Offset into
12 physical and
virtual page
512 GB 1 GB 2MB 4 KB Physical
region region region region address
per entry per entry per entry per entry of page
40
40 12
PPN PPO Physical address

Intel Core i7;: TLB and translation before L1

32/64
CPU Result L2, L3, and
osu main memory
Virtual address (VA)
36 12
VPN VPO L
k; miss
32 4
TLBT | TLBI
| L1 d-cache
TLB (64 sets, 8 lines/set)
hit
TLB
miss :
| | | | J I I I | I\I |
L1 TLB (16 sets, 4 entries/set)
9 9 9 9 40 12 40 6| 6
VPN1 | VPN2 | VPN3 | VPN4 PPN PPO | s—) CT Cl |CO
Physical
CRS address
SIPTEL S PTEHL SPTEH »{PTE

Page tables

More Exercises

http://bytes.usc.edu/cs356/docs/cs356_vm_sol.pdf

Virtual Memory
32-bit virtual addresses, 36-bit physical addresses, 16 kB pages

Bits of page offset? VPN bits? PPN bits?
Number of pages in virtual and physical memory?
Page table size with 4 byte entries?
VPN bits breakdown for 3-level (32 / 64 / unknown)-entries?
o Worst-case size with 4 byte entries and 10 pages in use?
4-way set associative TLB with 128 total entries
o VPN bits mapping to tag / set / page offset?

