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Abstract. This study investigates the application and challenges of
compactness indexes in computational urban design. It begins with a
conceptual review and application analysis of six urban form
compactness indexes, classified into four categories. The study then
identifies several issues in their current application, including imprecise
referencing conditions, interpretational discrepancies, and opacity in
computational parameters. Using actual blocks in Shanghai as case
studies, it further verifies that parameter settings significantly influence
calculation outcomes. This work emphasizes the importance of rigorous
analysis of index application conditions in block-scale morphological
measurements to prevent biases in computational design results.
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1. Introduction

As computational design expands from individual buildings to the block scale,
computational urban design emerges as a pivotal trend. Computable urban indexes,
crucial for design evaluation and generation, face challenges when applied across
different scales, especially from urban to block scale.

This study examines compactness indexes which are crucial for evaluating urban
form and fostering sustainable urban development. The existing compactness indexes
vary significantly in terms of definitions and applicability. Drawing from 34
publications (1950-2023), the study identifies six representative compactness indexes
across four categories. It introduces their development, definitions, and logic, and
emphasizes the application issues and risks. aiming to clarify measurement methods
and contribute to computable index development at the block scale.

2. Background
Compactness indexes are primarily used to measure the aggregation or dispersion of

urban spatial structures and play a key role in morphological and correlation studies at
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both urban and block scales. At the urban scale, these indexes quantify the layout of
urban land, public green spaces, and facilities, and explore their distribution
characteristics in relation to environmental and economic factors (Y. Liu et al., 2014;
Mansour, 2016). At the block scale, compactness indexes are applied to assess the
layout of buildings and small green spaces, analyzing their relationships with energy
efficiency and environmental sustainability (Zhuang & Zhou, 2019; X. Li et al., 2016;
Akrofi & Okitasari, 2023; Ji et al., 2023).

Compactness is fundamental to urban form analysis, and its accurate measurement
is crucial. While urban-scale development is well-established, recent attention has
shifted towards the block scale. Given the diverse methods of measuring compactness
and the challenge of selecting appropriate indexes, further research is needed to clarify
the specific meanings and practical utility of these indexes.

3. Four Typical Categories of Urban Compactness Indexes

This study categorizes the current main indexes into four types based on compu-
tational logic: Spatial Autocorrelation, Nearest Neighbor Distance, Shape In-
dexes, and Gravitation Indexes.

Categories Indexes Author and Time Objects Types Level Interpretations
(H. Liu et al, 2021) CI(1) Cen
(Sikder et al., 2019) Px Us Cm
Spatial Moran’s | (Yan etal., 2013) CIQ) p
Autocorrelation (Rahman et al., 2022) BS Cnc & Cont
(Zhuang & Zhou, 2019) P SDP
(Falahatkar & Rezaei, 2020) | Cen
ENN (F. Lietal., 2021) CA A us Cmp
(Zhou et al., 2011) SDP
. (Thompson et al., 2022) Cmp
I[\J)ciesat;enséeNelt,hbor (Nagshbandi et al., 2016) cp us
ANN (Almohamad et al., 2018) UF P SDP
(Mansour, 2016)
(Akrofi & Okitasari, 2023) CP BS Cmp
(Zhang et al., 2022) CA
COLE (Y. Liu et al., 2014) A us Cmp
Sligrs linitres (Dai et al., 2022) oL
(Thinhetal.2000) | ~
T (L. Liu etal. 2023) Cl Px us Cmp
(Zhao et al., 2011) Us Cmp
Gravitation Indexes NCI (Jietal., 2023) CI Px Conn
(Wang et al., 2021) BS Cm
(X. Lietal., 2016) OL p

Note:

Objects (The following classifications are based on specific content and expressions in the literature):

CI: Construction Intensity, which includes the area of urban construction land per unit area, building footprint area,
total building area, number of buildings, and green space area.

Conceptualization of Spatial Relationships: (1) Contiguity edges (2) Distance threshold

CA: Construction Areas, which encompass urban and rural construction lands, and urban patches.

CP: Core Points, including urban central points, residential cluster centers, and ground floor centroids of buildings.
OL: Outlines, which cover town outlines and ground floor outlines of buildings.

UF: Urban Facilities, including urban green spaces and health facility points.

Types: P: Point Data A: Areal Data Px: Pixel

Level:

US: Urban Scale, in this paper, includes research at regional, national, city, county town, and other larger scales.
BS: Block Scale, in this paper, includes research at the scale of blocks, communities, and other smaller scale scales.
Interpretations :

Cmp: Compactness, describes the degree of compactness or dispersion.

SDP: Spatial Distribution Patterns, assesses whether the spatial elements are clustered, random, or dispersed (uniform).

Cen: Centrality Cnc: Concentrated Cont: Continuous Conn: Connectivity

Figure 1. Table of compactness indexes application
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Six representative indexes are selected, which are widely applied and effectively
embody the characteristics of each category. In the following sections, the paper first
summarizes and compares the specific research applications of these six representative
indexes based on 22 articles from the Web of Science database (Figure 1), and then
provides a detailed introduction to each category of indexes.

3.1. SPATIAL AUTOCORRELATION

Spatial Autocorrelation Indexes assess urban spatial layout compactness by assessing
the correlation of adjacent variables, with compactness indicated by adjacent high or
low values. Key indexes include Global Moran's Index (MORAN, 1950) and Geary's
C (Geary, 1954), with the former often preferred for its better statistical distribution
and effectiveness in differentiating urban forms (Tsai, 2005; Wang & He, 2007).

The Global Moran's Index (Moran's I), proposed by Patrick Alfred Pierce Moran
in 1950 (MORAN, 1950), is applicable to spatial data such as points, areas, and pixels.
Its formula, illustrated for pixel data, is as follows:

N XL, X)oy Wy (X — X)(X; — X)

1
(B, ) W) (K — 002 W

In the formula: N is the number of grids, X;and X; are the construction intensities
of the i-th and j-th grids respectively, X is their average value, and W;; is the spatial
weight between grids i and j (Figure 2a). Moran's | values range from -1 to 1, with
higher values indicating more compact distributions.

Moran's I is a key tool in urban analysis, effectively used for spatial autocorrelation
studies at different scales (Griffith & Chun, 2014; Rahman et al., 2022). At the urban
scale, it evaluates urban compactness, distinguishing various urban forms (Tsai, 2005),
and assessing spatial distribution patterns in relation to urban elements (Sikder et al.,
2019; Liu et al., 2021). At the block scale, it measures the compactness of buildings
and community development (Zhuang & Zhou, 2019; Rahman et al., 2022).

Moran's I =

Moran’s I/T T, ENN/ANN COLE
— d
is A« \ bk -t a;
« JdGh) Ay \
vi \“j' ) A A,
/
/
N —~

(a) (b) (c) (d)

Figure 2. Indicator calculation process diagram

3.2. NEAREST NEIGHBOR DISTANCE

Nearest Neighbor Distance indexes evaluate spatial distribution by measuring the
distance between a point and its nearest neighbor. Common indexes include Euclidean
Mean Nearest Neighbor Distance (ENN), Average Nearest Neighbor Ratio (ANN), G
function, and F function (Wang & He, 2007), with ENN and ANN being particularly
popular for their intuitiveness. The formula for calculating ENN is:



328 C. SUN, X. WANG AND Y. MENG

n o4

ENN = % (2)

In the formula: d; is the distance between a element and its nearest neighboring

element, and n is the number of elements (Figure 2c). A lower ENN value indicates a
higher degree of compactness.

In urban studies, ENN is a foundational index, extensively used in research on
urban patterns (Li etal., 2021; Zhou et al., 2011). Notably, in landscape pattern analysis,
the elements are predominantly areal rather than point data, thus the focus is on
calculating the nearest edges of areal data, emphasizing 'continuity'.

In 1954, Clark and Evans developed ANN based on ENN (Wang & He, 2007).
This index first calculates the ENN for all elements within a region, then determines
the expected ENN under a Complete Spatial Randomness (CSR) model. By comparing
these two distances, ANN quantifies the spatial compactness and identifies distribution
patterns. The formula for ANN is:

ENN 2yn/AYY d; 3
E(ENN) n )

In the formula: E(ENN) is the expected distance under CSR, and A is the area
(Figure 2c). Higher ANN values indicate more dispersion, with values below 1
indicating clustering, 1 indicating randomness, and above 1 indicating uniformity.

Compared to ENN, ANN provides a standardized result, enabling comparisons
across different studies and spatial scales, mitigating the impact of raw distance
variations. It helps determine whether spatial distribution is clustered, random, or
dispersed. At the urban scale, ANN measures the distribution of facilities (Mansour,
2016), green spaces (Almohamad et al., 2018), and explores urban (Nagshbandi et al.,
2016) and settlement patterns (Thompson et al., 2022). At the block scale, it assesses
communities and buildings compactness (Akrofi & Okitasari, 2023).

ANN =

3.3. SHAPE INDEXES

The Shape Indexes measure urban compactness by contrasting irregular urban forms
with regular geometric shapes, particularly circles as the most compact benchmark.
Included are Richardson's perimeter compactness, Gibbs' longest axis compactness,
Cole's minimum circumscribing circle compactness (COLE index) (Chen, 2011; Lin,
1998), perimeter-based CI index (Huang et al., 2007; Li & Yeh, 2004), and the convex
hull-based CHAD index (Colaninno et al., 2011). Among these, COLE, introduced in
1964 (Cole, 1964), is widely used for its simplicity and effectiveness (Lin, 1998). The
formula for COLE is:

A o 11'1=1 a;
COLE a. A (4)
In the formula: A , is the measured area of the region, A .. is the area of the region's
minimum circumscribing circle, a; is the area of the i-th element, and n is the number
of elements (Figure 2d). The values range from 0 to 1, with higher values indicating
more compact distributions.
COLE, integrating both location and area information, is frequently used for

measuring urban spatial compactness at the urban scale (Dai et al., 2022; Liu et al.,
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2014), with a particular focus on axial expansion attributes (Zhang et al., 2022). As the
circumscribing circle's diameter increases, the COLE index decreases, hitting the
lowest in linear urban forms. This indicates that COLE not only reflects the
compactness but also the tendency towards circular or band-like structures.

3.4. GRAVITATION INDEXES

Newton's law of universal gravitation, adapted in various disciplines including urban
studies, offers a new perspective for measuring urban compactness. This approach uses
the average gravitational pull of urban spaces to define compactness, which is directly
proportional to construction intensities and inversely proportional to the square of
distance. Common Gravitation Indexes include T (Thinh et al., 2002), NCI (Zhao et al.,
2011), NVCI (Wang et al., 2021), and PROX (Colaninno et al., 2011), with T and NCI
being particularly widely discussed and applied.

In 2002, Thinh et al. introduced the Average Gravitation Index (T) to address the
lack of distance measurement in compactness assessments (Thinh et al., 2002). The
formula for T is:

1 XX
_ @) )
N(N-1)/2

In the formula: N, X;, and X; are the same as in formula (1), d(i, j)is the geometric
distance between the i-th and j-th grids, and c is a constant for dimensionless results
(Figure 2a). T values are greater than 0, with higher values indicating more compact
distributions.

The T index's 'gravity' between any two elements is inversely proportional to the
square of their distance. Consequently, as a city expands, increasing average distances
between elements lead to reduced gravitational pull, potentially lowering the T value.
This suggests a bias in measuring compactness across cities of different sizes:
underestimating larger cities and overestimating smaller ones. To address this bias,
Zhao et al. (2011) introduced the Normalized Compact Index (NCI) in 2011,
standardizing the T index using an equivalent circle. The formula for NCl is:

N o Xk
T MM-1) Z=Xi=@g )
Tmax NN —1) N N Xi’Xj’

NCI =

(6)

In the formula: N, X;, X;,and d (i, j)are the same as in formula (6), M is the number
of grids in the equivalent circle, X; and X;" are the construction intensities of grids i
and j' within the equivalent circle, and d’ (i’, j") is their geometric distance (Figure 2b).
NCI values range from 0 to 1, with higher values indicating more compact distributions.

NCI, recognized as a mature compactness index (Jia et al., 2018), is used at the
urban scale for measuring urban forms (Zhao et al., 2011), and at the block scale for
assessing building layout compactness and green space connectivity (Li et al., 2016;
Wang et al., 2021; Ji et al., 2023).
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4. Common Issues in the Application of Indexes

Upon reviewing current applications of compactness indexes, this study identifies three
main issues: imprecise referencing conditions, interpretational discrepancies, and
opaque computational parameters, which may mislead research outcomes.

4.1. LACK OF VERIFICATION FOR APPLICABILITY

Some studies, when selecting indexes, do not fully consider their applicability across
disciplines, subjects, and scales. For instance, in assessing the compactness of buildings
at the block scale, literatures have adopted indexes like ANN (from biological
distribution studies) (Akrofi & Okitasari, 2023), CHAD (from architectural form
studies) (Colaninno et al., 2011), and Moran's I (from urban scale studies) (Zhuang &
Zhou, 2019). However, the suitability of these indexes for the specific research context
and content remains questionable due to the lack of a rigorous verification process.

4.2. CONFUSION IN INTERPRETATION

We also found interpretational discrepancies and ambiguities in index results (see
Figure 1, 'Interpretation’). For instance, Moran’s I is typically viewed as indicating
spatial patterns or compactness, but some interpret it as urban centrality (H. Liu et al.,
2021) or continuity (Rahman et al., 2022). Moreover, the concepts of compactness and
density are frequently confused, exhibiting significant 'collinearity' in real urban
environments. This poses a question: if compactness and density are interchangeable,
why not simplify compactness calculations with density measurements? Thus,
clarifying these concepts is crucial to prevent data misinterpretation.

4.3. NEGLECT OF PARAMETER SETTING

4.3.1. Parameter Settings in Existing Studies

In the computation of indexes, parameter setting clarity and transparency are often
neglected. For example, in Moran’s I, Tsai suggested that distance thresholds are more
effective than mere adjacency at the urban scale (Tsai, 2005). These thresholds can be
based on city size (Yan et al., 2013) or incremental spatial autocorrelation (Rahman et
al., 2022). However, the lack of detailed parameter settings in some studies (Sikder et
al., 2019; Zhuang & Zhou, 2019) may impact research accuracy and sustainability.

Moreover, the sensitivity of indexes to grid sizes is a commonly ignored issue,
which has been discussed by original proposers and validators. Thinh et al. calculated
the T values for cities at ten grid sizes and found a significant correlation of the value
at the 500x500m scale with the average, thus choosing it as the study size (Thinh et al.,
2002). Zhao et al. observed non-monotonic variations in NCI values across grid sizes
(Zhao et al., 2011), and Yan et al. found that Moran's 1 values maintain good
consistency across grid sizes in Nanjing and Suzhou studies (Yan et al., 2013). Yet,
scale sensitivity is frequently neglected in practical applications.

It is noted that indexes within the aforementioned two categories, calculated using
pixel data, are prone to issues with parameter settings. To further explore the impact of
parameter settings on computational results, this study employs actual blocks in
Shanghai for calculations.
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4.3.2. Method

This study selected two typical spatial configurations in Shanghai as calculation
samples: one is residential buildings (s1) with small individual areas and numerous
units, and the other is office buildings (s2) with large individual areas but fewer units.
Four commonly used grid sizes of 20m, 30m, 40m, and 50m were employed.
Consequently, a square region measuring 600 meters in length, divisible by each of
these sizes, was selected as the calculation area. Based on the original building layout
(Least Compact), each building unit was moved towards the center of the calculation
range to form two comparison groups - More compact and Most compact - to observe
the differences in the indexes responses to various parameter settings. The sample setup
is detailed in Figure 3.

The calculations were performed in ArcGISPro3.0.2 software, using Python scripts
to invoke geographical processing tools and index calculation formulas. The study
calculated three indexes, among which Moran's I used two different spatial weights:
'Contiguity edges only' and 'Inverse distance=200m' (one-third of the calculation range
side length).

]QOm ZQOm 390111 4(I)0m 590m IQOm ZQOm 3(|)0m 4(IJOm 590m
500m - 500m - —_ B B
1 - e T
400m - 400m - ““-‘
300m - 300m - "—‘-“‘
200m - 200m - ‘J -
100m - 100m - L 3 ‘
sl - Residential buildings s2 - Office buildings
(in Shanghai Expo Park B) (East Suburb Garden, Hesheng East Suburb
Number of buildings: 82 Yupin Garden, Huazhou Junting)
Average area: 358.6 Number of buildings: 27

Average area: 1,963.4

Figure 3. Diagram of block sample layouts

4.3.3. Results

The computation results are depicted in Figure 4, where the horizontal axis represents
grid size, and the vertical axis denotes the indicator values. Clearly, different grid sizes
and spatial weight settings of indexes indeed affect the compactness calculation
outcomes, and this impact varies across different types of blocks, exhibiting diverse
range intervals and trends.

Notably, at the block scale, Moran's I values do not monotonically change with grid
size, inconsistent with Yan et al.'s findings. Moreover, the distinction of setting
adjacency only or distance thresholds on compactness measurements is not substantial,
contradicting Tsai's observations. Instead, the type of samples has a more pronounced
effect. These discrepancies underline that index calculations and their applicability
differ between block and urban scales.
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Figure 4. Calculation results of the indexes

5. Conclusion and Future Work

This study conducted a conceptual review and application analysis of six compactness
indexes, categorized into four types. The research identified issues in the application of
these indexes, including imprecise reference conditions, interpretation disparities, and
opaque computational parameters.

Using actual blocks in Shanghai, the study further examined the impact of
parameter settings on calculation results. The results confirm the influence of parameter
settings and their variability across different calculation scales and building types,
highlighting the risks of blindly adopting parameters from different research contexts.
It is suggested that researchers conduct pre-calculations to determine the optimal grid
size and other parameter settings that best suit specific objects and research objectives.

At present, research on urban compactness at the block scale is limited (Rahman et
al., 2022). However, as computable urban design evolves, refining indexes for this
scale becomes a key direction in the field of urban form measurement. This study's
insights aim to provide valuable guidance and inspiration for subsequent research.
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