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Part I

Building Blocks of Monetary Policy Models

Context of macro models:

New Classical Synthesis:
IS-LM framework ⇒ AD curve
AS curve defined by LR AS (Perf. Inelastic/Natural rate
hyp. - Classics), SR-AS (Perf. Elastic/Nominal Rigidi-
ties - Keynesians).
Adjustment (SR to LR): π = α(y−yn)/ π = −β(u−un)

Breakdown: Stagflation (70’s)
Friedman (1968) critique: Adj. of prices is not con-
sistent with natural rate hyp. ⇒ Exp. Aug. PC:
π = α(y − yn) + Eπ (Include Expectations)

Lucas (1973): Need to include feedback of policies
with expectations (Rational expectations), Microfounded
models instead of reduced form models (agents’ under-
standing of structural relations in the economy was more
important than deducting expectations from past obser-

vations (adaptative). Identification is key)
Split of schools: NC focused on stochastic properties of
Ramsey model (RBC), NK started to study nature of
imperfections, Growth theorists: explored extensions of
Ramsey NGM.

New-New classical synthesis: RBC model + w,p
Rigidities (New Keynesians)
B.Cycles are caused only by real shocks but nominal
rigidities lead to inef. outcomes ⇒ role for policy.
Lags of w,p included in models⇒ stabilizing role of mon-
etary policy

Financial Crisis:
Financial Frictions (from 2008) - Unconventional mon-
etary policy Financial Regulation Debt management -
Fiscal multiplier

General picture:

• Technological progress goes through waves (medium-long term) ⇒ they alone don’t explain fluctuations.

• Expectations affect AD contemporaneously

• b/c of nominal rigidities AD affects AS in the SR.

This leads to anticipations playing a big role:

• AD: Output is demand-determined. AD depends on anticipations of future output and interest rates.

• PC: Inflation depends on output and anticipations of future inflation.

• MP: Mon. Pol. affects real interest rates (due to nom. rigidities).

This led to a synthesis:

NK model:

RBC + two imperfections: Monopolistic Competition (goods markets), Partially sticky prices (Calvo).

Equations:

AD: Derived from FOC of HH, gives Output as function of real interest rate and future expected output.

PC: given Calvo pricing gives Inflation as f/n of expected inflation and output gap.

MP: Taylor R., i.e., interest rate as f/n of inflation and output gap (money demand is not explicit anymore).

Tools: Log-normal distribution: X ∼ lognormal if Z ∼ N(µ, σ2) with Z = log(X)
Property: E[exp(Z)] = exp(µ+ 1

2σ
2)

X,Y jointly normal, then E[X|Y ] = µx + σ12

σ2
2
(y − µy)

Taylor Expansion: f(x) = f(x0) + f ′(x0)(x− x0) +
∑∞

n=2
f(n)(x0)

n! (x− x0)
n
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1 Modelling the Aggregate Supply

Modelling AS:

Table 1: Approaches to model AS

Do markets clear

Yes No

Is monetary
policy neutral

Yes
Classical RBC
(Kydland and Prescott)

Real rigidity
(e.g.) efficiency wage
(Akerlof, Yellen)

No
Imperfect information
(Friedman, Lucas ’77)

Nominal rigidity
Nominal contracts,
menu costs (Fischer,
Taylor, Calvo)

1.1 Imperfect information approaches

1.1.1 Lucas Island Model

(Imperfect Information)

Q: How to model that money affects output with Rational Expectations (RE)
Goal: Preserve frictionless market assumption but allow ∆M → ∆Y Implication: Sargent-Wallace policy
irrelevance result

• J islands each produces a different product j

• Supply: f/n of relative prices yj ≈ pj − P

• Information: pj obs only by j, P unobserved ⇒ yj = γ(pj − E[P |Ij ])

• Shocks: (Note: corr(zj , P ) = 0, corr(pj , P ) ̸= 0 )

– General monetary shock P̃ ∼ N(µt, σ
2)

– Factor specific shock z̃j ∼ N(0, τ2)

pj ≡ P̃ + z̃ ⇒ if yj reacts to pj monetary policy can affect output (since type of shock is not discernible).

To choose yj producers need E[P |Ij ], consider a linear approach:

pt = α+ βpjt + εt ⇒ p̂t = α̂+ β̂pjt = E[Pt|Ijt]

β̂ =
Cov(pjt,P )
var(pjt)

=
Cov(Z̃j+P,P )

V ar(Z̃j+P )
=�����: 0

Cov(z̃j ,P )+V ar(P )

V ar(Z̃j)+V ar(P )
= σ2

σ2+τ2

(assume α = 0) ⇒ yj = γ(pj − E[P |Ij ]) = γ(pj − β̂pj) = γ τ2

σ2+τ2 pj .

(key) Signal to noise ratio: τ2

σ2 (0: all noise, high: Reaction of output to shocks in pj , reaction is given by β̂).

AS: Y =
∫
yjdj = γ τ2

σ2+τ2

∫
pjdj −→ Y = θP

Yt = γ τ2

σ2+τ2 (Pt − Et−1[Pt]) (Lucas supply function)
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1.1.2 Sargent - Wallace policy irrelevance result

AD: mt + vt︸ ︷︷ ︸
policy + demand shocks

= pt + yt︸ ︷︷ ︸
Nominal GDP

AS: yt = θ(pt − Et−1[pt])

Et−1Pt = Et−1(mt + vt − yt) From (AD):

yt = θ(pt − Et−1(mt + vt − yt)) plug in (AS):

yt = θ(mt + vt − yt)− θEt−1(mt + vt − yt) replace pt:

solve for yt:

(1 + θ)yt −�����:0
θEt−1yt = θ(mt + vt − Et−1(mt + vt))

yt =
θ

1+θ [(mt − Et−1mt) + (vt − Et−1vt)] (Output changes only due to unexpected monetary policy or de-

mand).

Suppose policy is: mt = δQt−1 + εt (systematic policy + policy error).
Under RE: Et−1mt = δQt−1 then: yt =

θ
1+θ (εt+vt−Et−1vt) (systematic policy rules are irrelevant, only shocks

matter).

In AS: Slope ∝ σ2 then if MP is stable (σ2 small) then AS flatter and AD shocks have larger effects on prices.

Lucas cross regime text: x = p + y (nom. gdp.), take ∆x as proxy of demand shocks. Compare 18 countries
with different σ2

∆x, look how real output reacts to shocks: ∆y ≈ β∆x.
Finding: Countries with larger σ2

∆x have smaller β (steeper AS) as expected.

Critiques: Corr ̸= Causation, omitted variables, e.g. due to more volatile π firms don’t sign long term contracs
or with higher π firms may be willing to assume menu costs (in both cases there’s less nominal rigidity).

Consistency with optimizing behaviour is not explicit. Elasticity of supply to prices is huge (not plausible, CPI
changes monthly and by a little amount).

1.2 Non-Market Clearing approaches

1.2.1 Fischer (’77), Taylor - Contract models

RE implies policy irrelevance by continuous market clearing via contracts that allowed for flexible prices.

Claim: If wage contracts are long enough a determininistic MP can have stabilizing effects. How: Nominal
contracts that last longer than the time MP reacts to the economy state. Finding: SW assumptions (RE,MP
rule based on lagged variables) are necessary but not sufficient for irrelevance.

Simple contract model (pre-Fischer)
wt = Et−1pt (1) [one period wage stickyness]
yt = −(wt − pt) (2) [AS]
yt + pt = mt − ṽt (3) [AD]
ṽt = D(L)vt−1 + ηt, ηt ∼WN (4)
mt = b(L)vt−1 (5) [Deterministic MP rule]
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subs (1) in (2): yt = −(Et−1pt − pt) (6)
subs (6) in (3): −(Et−1pt − pt) + pt = mt − ṽt → pt =

1
2 (mt + ṽt) +

1
2Et−1pt (7)

take Et−1[·]: Et−1pt = (b(L) +D(L))vt−1 (8)
(8),(7) in (6): yt =

ηt
2

(only surprises matter)

Explanation: (y = f(η)) rational agents set wages at t − 1, they already observe vt−1 so predict vt, pt
undoing serial correlation, leaving only ηt.
Notice with no nominal friction: wt = pt → yt = 0 (flexible price)

Fischer two-period staggered contracts

• 1/2 population sets wages in odd periods, 1/2 in even.

• each contract lasts two periods

wi
t = Et−ipt for i = 1, 2 (1) wages

yt =
1
2 (w

1
t − pt)− 1

2 (w
2
t − pt) (2) AS

yt + pt = mt − vt (3) AD
mt = b(L)vt−1 (4) MP

(1)→ (2): yt = − 1
2 (Et−1pt − pt)− 1

2 (Et−2pt − pt) (5)
(2)→ (3): 2pt = mt + vt +

1
2Et−1pt +

1
2Et−2pt

take Et−1 and Et−2:
Et−1pt = Et−1mt + Et−1vt
Et−2pt = Et−2mt + Et−2vt
subs in (5) after evaluating expectations (Et−1mt = mt, Et−2mt, Et−1vt = D(L)vt−1, Et−2vt = D(L)vt−2):

yt =
1
4
(mt − Et−2mt) +

1
2
ηt +

1
4

∑∞
i=2 ηt−i

How to set MP?: compare mt = m̄ and mt = −D1ηt−1 in once case variance can be minimized with respect
to a constant. Therefore MP can have an stabilizing effect
Conditions: Central bank has information advantage (knows ηt−1 before half of agents). Given wage
setting scheme sharing that information wouldn’t change the outcome (unlike Lucas Island model). Extra
info should be relevant.

Indexation: If only real wage matters why not to index it to pt?

Question (Gray): Why contracts may not be fully indexed

1.2.2 Gray Indexing model

p+ y = m+ v = µ̃ (1) AD
y = βL+ ε̃ (2) AS (w/ product. shock)
L = −α(w − p) + αε̃ (3) Labor Demand
wt = (1− θ)Et−1pt + θpt (4) Wage rule

Wage contract is set a period in advance but degree of indexation θ can be chosen (if zero we are in the
former case).
Aim: Choose optimal θ to min V ar(L)

minV ar(L) s.t. Ew = Ep
Ey = 0

Ey = 0 with Eµ̃ = 0 implies in (AD) Ep = 0⇒ wt = θpt
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in (LD): L = −α(θ − 1)p+ αε̃
subs in (AS): y = αβ(1− θ)p+ (1 + αβ)ε̃
in (AD): p = 1

1+αβ(1−θ) [µ̃− (1 + αβ)ε̃]

Note we have two shocks (µ̃, ε̃) and only one instrument (θ):

if θ = 1 p moves 1 to 1 with µ̃ → y = (1 − αβ) but AS is perfectly elastic (90 degrees AS) (nom. shock
adressed, but unable to addressed real shocks (MPL)).
0 < θ < 1 and AS has ≈ 45 degrees slope but L = α

1+αβ(1−θ) [(1− θ)µ̃+ θε̃], (Doesn’t minimize variance)

Conclusion: Agents don’t fully index because they face tradeoff b/w adjusting to nominal shocks and real
shocks (MPL).

Critics: Contracs are not rational (ex-ante is better to take spot wages, ex-post there should be renegotia-
tion after one period to adjust to new shocks), agents are not optimizing.
Response: Long term contracs are observed, possible explained by costs of renegotiation or long term
relationships that make firms not adjust to ST LD curve.

(More importantly) real wage is countercyclical in Fischer model: (+AD shock) ↑ p, same w then ↓
real wage →↑ L⇒ y (disagrees with data).

How to make w
p procyclical?:

- Drop competitive markets (p = MC) for Mark-up scheme (p = µMPL)

- Include real rigidities: p, w sticky (lags in adjustment). Still effects of MP should go beyond contracts.

- Add technology (↑ y but ↑ MPL via efficiency).

1.2.3 Taylor pre-fixed prices model

• persistent effects of MP: Staggered adjustment of firms’ prices (firm’s adjust prices just once per year)

• w, p fixed within contract

• Continuum of firms [0,1]

y + p = m̃t (1) AD
p∗i,t = mt (2) Optimal price for firm i

pi,t =
∫ 1

s=0
Etp

∗
i,t+sds =

∫ 1

s=0
Etmt+sds (3) Stagg. adjustment of firms∫ 1

i=0
pi,tdi =

∫ ∫
Etmt+sdsdi (4) Aggregate price

i.e. pt ∝ Etmt+s and since y = m− p then output depends on unexpected MP.

Improvement but MP effects are short ⇒ Add Stragegic Complementarity (firms care about relative
price).

p∗i,t = θmt + (1− θ)pt (prices now take more time to adjust)

(Fixed length (prefixed contracts) + Stagg. adjustment with Strategic Complementarity)

1.2.4 Menu Cost Model (Mankiw)

Firms choose not to change pi in some neighborhood [p∗i ± z] where z is a menu cost.
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Set up:

N Firms have some monopolistic power (i = 1, . . . , N).
Individual pi decisions have aggregate effects (externalities).

Partial eq: At t = 0 firm sets p0, then ↓ mS , ↓ Dem, then ↓ p∗

Given a marginal cost MCi the profit changes by B-A, fac-
ing menu cost Z firm will adjust prices only if B −A > Z.

Social loss (change in social surplus): B + C. If it is too

large then there is an inefficient outcome.

Claim: Decision to change prices has 1st order affects on social welfare but only 2nd order effect in firms’ profit.

(Proof) Taylor exp. of π(p0) about p
∗: π(p0) ≈ π(p∗) +����: 0

π′(p∗)(p0 − p∗) + 1
2π

′′(p∗)(p0 − p∗)2

∆π = π(p0)− π(p∗) ∝ (p0 − p∗)2 whereas ∆SW ∝ (p0 − p∗) + (p0 − p∗)2

(if ∆p is small 1st order effect >> 2nd order effect. Only the latter matters for firms so they won’t be willing to adjust prices and

social welfare would be hurt)

1.2.5 Blanchard - Kiyotaki

Firms exert AD externalities on each other.
Dixit-Stiglitz setup with differentiated goods:

• Differentiated goods

• Monopolistic competition

• N firms (large)

yi = Di(
pi

P , M
P )

Continuum of HH- producers: [0,1]

maxU(Ci,
mi

P , Li) = (Ci

α )α(Mi/P
1−α )1−α − Lβ

i

β (MIU).

Ci =

[∫ 1

0
c
σ−1
σ

ij dj

] σ
σ−1

(consumption over varieties).

piyi =
∫ 1

0
pjcjdj +Mi (BC)

Production f/n: yi = Li

Equilibrium: {yi, pi} s.t. Si = Di ∀i ∈ [0, 1] and πi is

maximized. → P =
[∫ 1

0
p1−σ
j dj

] 1
1−σ

, yi = D(pi

P , Y )

(Y is the AD and M
P

= Y )

↓ Ms, decision: (p0, Q1) vs (p2, Q2) (latter is optimal w/o
costs).

Without menu cost: at (p0, Q1) MR > MC then ↑ Q ⇒↓
pi ∀i →↓ P ⇒ Ms

P
goes back up →↑ Di →↑ Qi ⇒↑ Y

Output returns to initial level.

(key: If prices are adjusted then output goes to Q2 > Q1 there

are gains in profit given by △ABC and afterwards output re-

turns no normal. )

With menu cost: If Z > △ABC firms may not change

prices ⇒↓ Y
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Results:

Monetary non neutrality: ∆Ms ⇒ ∆Y due to p̄i (potential justification for monetary expansion).
Pro-cyclical real wage: (yi = Li) ↓ Y →↓ LD →↓ w, P̄ ⇒↓ w

P .
Large shocks are always socially costly as it may force firms to pay the menu cost.

Ball and Romer’s critique:

Ls is inelastic (↓ Ms → P̄ →↓ Y →↓ LD ⇒↓ w ⇒↓ MC ⇒ △ABC is larger ∴ Z must be very large not to
change pi)

Reply: that assumes Labor market clears which is not always the case ⇒ in SR add L rididities (real rigidities,
real wage sticky in the SR).

Possible causes: efficiency wages, unions, search-matching process, long term contracts.

1.3 Real rigidities approach

Efficiency wages (EW): Nutrition story (pay to gain in productivity), moral-hazard problem.

1.3.1 Shapiro-Stiglitz

Micro foundations for real wage rigidity via EW + Imperfect monitoring.

Set up:
- Firms face monitoring cost (cannot observe effort).
- at t workers choose effort et (either ē > 0 or 0)

Workers Utility: ut = wt − et (if employed), ut = 0 (if unemployed)
UMP: maxU =

∫∞
t=0

e−ρtut(wt, et)dt

Three states at t:
- Not Shirking (NS): et = ē −→ V NS

E

- Shirking (S): et = 0 −→ V S
E

- Unemployed −→ VU

Transition probabilities:
NS → U : b (exog)
S → U : b+ q (exog)
U → (NS, S) : a (endog)

Firms PMP: max
wt

π = F (ēLt)− wt(Lt + St) (Lt is the quantity of non-shirking and St that of shirkers)

Asset eq: Vt = contemp. payoff + expected discounted continuation payoff (ρEtVt+1)

consider a small unit of time dt = [0, t] and approximate discount factor as e−ρt ≈ 1− ρt

V NS
E = (w − ē)t+ (1− δt)[btVU + (1− bt)V NS

E ] ⇒ V NS
E = (w−ē)t+(1−ρt)btVU

1−(1−ρt)(1−bt)

t→0→ 0
0

L’Hop−→ V NS
E = (w−ē)+bVU

ρ+b (eval. at t = 0). Solving analogously in each case:

ρV NS
E = (w − ē) + b(VU − V NS

E ) (1)

ρV S
E = w + (b+ q)(VU − V S

E ) (2)

ρV U = 0 + a(VE − VU ) (3)

In an equilibrium implementing No Shirking we have: V NS = V S = VE , i.e. (1)=(2):

w − ē+ b(VU − VE) = w + (b+ q)(VU − VE) ⇒ VE − VU = e
q

then from (1) and (3): ρ ē
q = w − ē− (a+ b) ēq ⇒ w = ē+ ē

q
(a+ b+ ρρρ)
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wage is increasing in the effort (ē), the probatility of finding a job (a), the probability of break up (b) and
decreasing in the probatility of detecting shirkers (q).

To put wage in terms of labor force: In SS,

job creation = job destruction

a(L̄−NL) = (NL)b ⇒ a = NL
L̄−NL

b→ a+ b = L
L̄−NL

b then: w = ē+ (ρρρ+ L
L̄−NL

b) ē
q

Wage is increasing in the employment (N: number of firms, L: employed by firm). At full employ-
ment (L̄ = NL) unemployed workers find work instantly and there is no cost of being fired then
no wage can deter shirking.

Figure 1: No Shirking Condition: Drop in LD

Notice that ∆wNSC < ∆w implied by inelastic labor
supply.

Other shocks:

Increase in monitoring quality (↑ q): Makes NSC
curve closer to Labor Supply curve.

No turnover (b = 0): unemployed are never hired,
base wage increases to ē + ρ ē

q this is also the NSC
wage.

In the SR firms hire based in NSC
In the LR monitoring is perfect and firms hire based on LS (w = ē).
here w is real wage.

(Monetary policy) Combine Blanchard-Kiyotaki menu cost model to justify MP non neutrality:
↓MS → p̄i due to z ⇒ P̄ →↓ Y (↓ LD due to NSC that prevents complete wage adjustment ↓ w)

1.4 Nominal Rigidities

1.4.1 Price Rigidities: State-Contingent scheme

Capling and Spulber ’87

Endogenous price adjustment ([s,S] scheme, elevator model)

Set up:

- Heterogeneous firms facing fixed menu cost.

- Initial distribution of prices uniform [M − s,M + s].

- On aggregate P = M and P ∗
i = M but due to menu costs firm may not price at P ∗

i if Pi ∈ [M − s,M + s]

- Upon ∆M only firms dropped out of the interval would find worthwhile to adjust prices. They adjust de-
pending on E[M ] and not on current M . If a permanent increase of M is expected then in anticipation, to
avoid incurring in more menu costs, firms move to the end of the interval. They preserve the same uniform
distribution around the new M ⇒ P = M still and Y = M − P = 0, i.e. prices adjust to MP at once.
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Problems:

- CS doesn’t generalize state-contingent models.

-One sided MP framework (↑M).

- Menu cost is fixed: Infrequent larger adjustments. If convex adjustment cost are considered then there are
frequent small changes.

- Firms are heterogeneous but face the same common shock (not consistent in terms of signal to noise, e.g.
Lucas Island model).

Then there is NO relationship between infrequent price adjustment and dynamic response of P to MP. Some
price stickyness is regained only by relaxing assumptions.

Findings:

- price is three times as flexible as the frequence of microeconomic price adjustment (many firms don’t move
but aggregate price is still flexible).

- Strategic complementarities may reduce flexibility but less than in Calvo type models.

1.4.2 Time-contingent scheme (Calvo and Yun)

Calvo (1993) and Yun (1996)

NK-PC microfounded, firms adjust prices randomly in staggered fashion. Price stickyness is costly (friction of
the model). Alternative: Rotemberg (82) slow price adjustment due to convex costs.

Prob. of changing price at t: (1-θ)

Expected duration:

E[t] =
∑

tPr(x ≤ t) = (1− θ) + 2θ(1− θ) + 3θ2(1− θ) + · · · = 1− θ + 2θ − 2θ2 + 3θ2 − 3θ3 + · · · = 1
1−θ

Price output trade off:

p∗t,j = pt+ϕyt (same as Taylor p∗t,i = λMt+(1−λ)Pt substituting Mt−Pt = yt then ϕ means real rigidity2).

Profit loss in period t from setting a price xt is:

π(p∗t )− π(xt) =����: 0
π′(p∗t )(p

∗
t − xt) + π′′(p∗t )(p

∗
t − xt)

2 ⇒ κ
2 (p

∗
t − xt)

2 (loss function)

Problem of the firm: (minimize expected loss)

min
xt

∑∞
j=0(1− θ)θjβi κ

2 (EtP
∗
t+j − xt)

2

FOC: κ(1− θ)
∑∞

j=0 θ
jβj(Etp

∗
t+j − xt) ⇒ xt = (1− θβ)

∑∞
j=0 θ

jβjEtp
∗
t+j

forward xt to t+ 1, fix the sum indexes so it starts at j = 1, multiply times θβ, take expectations (Et(·)), and
rearrange:

(θβ)Etxt+1 = (1− θβ)
∑∞

j=1 θ
jβjEtp

∗
t+j

rearrange xt:

xt = (1− θβ)θ0β0Etp
∗
t + (1− θβ)

∑∞
j=1 θ

jβjEtp
∗
t+j = (1− βθ)p∗t + βθEtxt+1

replace p∗t = pt + ϕyt:

2p∗t,i = λ(yt + Pt) + (1− λ)Pt = Pt + λyt then ϕ = λ.
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xt = (θβ)Etxt+1 + (1− θβ)pt + (1− θβ)ϕyt

rearrange to get: xt − pt − θβEtxt+1 = −θβpt + (1− θβ)ϕyt

xt − pt − θβEtxt+1 + θβEtpt+1 = θβEtpt+1 − θβpt + (1− θβ)ϕyt
zt − θβEtzt+1 = θβπt+1 + (1− θβ)ϕyt (⋆)

aggregrate prices are also given by:

pt = (1− θ)
∑∞

j=0 θ
jxt−j = (1− θ)xt + θ(1− θ)

∑∞
j=0 θ

jxt−1−j

i.e. pt = (1− θ)xt + θpt−1

get an expression for the inflation:

(1− θ)pt + θpt = (1− θ)xt + θpt−1

θ(pt − pt−1) = (1− θ)(xt − pt)
θπt = (1− θ)zt

forward, take Et and multiply by −θβ, getting −βθ2Etπt+1 = −βθ(1− θ)Etzt+1, add it to the inflation eq:

(1− θ)(zt − βθEtzt+1) = θ(πt − βθEtπt+1) (♣)

subs. (⋆) in the LHS of (♣):

(1− θ)(θβπt+1 + (1− θβ)ϕyt) = θ(πt − βθEtπt+1)
θβEtπt+1 + (1− θ)(1− θβ)ϕyt = θπ

π = βEtπt+1 +
(1−θ)(1−θβ)

θ ϕyt

finally πt = βEtπt+1 + λyt with λ = (1−θ)(1−θβ)
θ ϕ

λ: output-inflation trade-off (the smaller, the larger real effect of inflation on output).

↓ λ when:
- ↓ ϕ i.e. more real rigidity (prices are not adjusted by (real) money, think of Taylor strat. compl. pricing
eq.)
- ↑ θ i.e. more nominal ridigity, prices become too unlikely to change.

1.5 Financial Frictions

Credit frictions channel of Monetary Policy

Credit Channel of MP: Imperfect info and other frictions in credit markets.

(Context) Miller-Modigliani (1958) theorem: Capital structure irrelevance, i.e., value of firms doesn’t depend
on how it’s financed, i.e., Debt/Equity ratio, or leverage won’t matter.

- This result does not hold with other imperfections, e.g. asymetric information, agency costs and the consequent
external finance premium (EFP).

- Explanation: In real sector (AD) investment is sensitive to financial variables (net worth, cash flow). This
phenomenom leads to an amplification of the transmission of MP to the investment and output.

- MP should affect only SR FFR and not LR rates, however it impacts purchases of long lived assets and
therefore affects the magnitude, timing and composition of MP transmission.

Standard MP transmission channel: ↓ m→↑ i→↓ (I, C,ER)⇒↓ y



13

Amplification: ↓ m→↓ (πe, cash flow)→ ∆borrowers balance sheet + asym. info (Adv.S., MH) ⇒↓ Lending→↓
I ⇒↓ y.

Policy implications: Justification for financial stability policies (capital requirements, FX reserve requirements among

others.)

1.5.1 Bernanke, Gertler and Gilchrist (1999)

Costly state verification model (principal-agent type).

t = 0, 1

QK = N +B (Q: Price of capital, K: Capital, N: Net worth, B: Debt)

w̃RkQK (project payoff E(w̃) = 1, ∈̃[w, w̄], H(w̃) = P (w̃ < w), h(w̃) = dH
dw , Rk: Avg. gross return of

capital)

First Best: (symmetric info) Entrepreneur operates if Rk > R (R: Oportunity cost), by perfect competition:
Rk = R

then the benchmark case bears no friction: Investment decisions is independent of financial structure of
firms.

Second Best: (private info and limited liability)

Lenders pay a cost of monitoring, a fraction of return: µw̃RkQK

LL: Entrepr. payoff bounded at zero → agent has incentives to misreport returns.

Agent UMP: Choice of K
Constraint: Lender receives oportunity cost in expectation.
Contract: Payment based on w and decision to monitor.

Optimal contract: Induced truth-telling, minimizes expected monitoring costs.

D = w∗RkQK where D: face value of debt, w∗: cutoff value of w and w: obs. return multiplier.

if w ≥ w∗ =

{
lender: D = w∗RkQK

borrower: (w − w∗)RkQK
if w < w∗ =

{
lender: (1− µ)wRkQK

borrower: 0

∴ deadweight bankrupcy cost: µwRkQK
in OC:

- No incentive to lie (non default states payment for lender is fixed, O.W. there is monitoring).
- Non Default state D is minimized by giving the lender everything in default states.
- Given D = w∗RkQK bankrupcy prob.: H(w∗) = H( D

RkQK ) (increasing in D).

Lender expected gross payoff:
∫ w̄

w∗ w
∗RkQKdH +

∫ w∗

w
wRkQKdH ≡ Γ(w∗)RkQK

Lender expected net payoff:
∫ w̄

w∗ w
∗RkQKdH +

∫ w∗

w
(1−µµµ)wRkQKdH ≡ [Γ(w∗)− µG(w∗)]RkQK

Entrepreneur UMP: max{[1− Γ(w∗)]RkQK −RN, 0}
w∗,K

s.t. [Γ(w∗)− µG(w∗)]RkQK = R (QK −N)︸ ︷︷ ︸
B
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L = [1− Γ(w∗)]RkQK −RN + λ([Γ(w∗)− µG(w∗)]RkQK −R(QK −N))

FOC:

[w∗] : Γ′(w∗) = λ(Γ′(w∗))

[k] : ([1− Γ(w∗)] + λ[Γ(w∗)− µG(w∗)])Rk = λR −→ Rk − λ
[1−Γ(w∗)]+λ[Γ(w∗)−µG(w∗)]R = 0

⇒ Rk − χ(w∗)R = 0 with χ(w∗) > 1, χ′(w∗) > 0

[λ] : [Γ(w∗)− µG(w∗)]Rk = R(1− N
QK ) (Lender’s participation constraint)

from [λ] : QK
N = 1

1−[Γ(w∗)−µG(w∗)]
Rk

R

⇒ QK
N = ϕ

(
Rk

R

)
with ϕ′(·) > 0

Then the Optimal leverage ratio is a positive f/n of the EFP (spread).

Aggregrating: QK̄ = ϕ(Rk

R )N̄

Relationship between balance sheet strength and spread (EFP):

QK̄
N̄

= ϕ
(
Rk

R

)
⇒ Rk

R = φ
(

QK̄
N̄

)
with φ′(·) > 0 (Spread is a decreasing function of balance sheet strength).

Bottom line: EFP, due to agency costs, becomes countercyclical.

1.6 Monopolistic Competition (methodology)

- Dixit-Stiglitz preferences + MIU

- HH in [0, 1] each producing differentiated good (imperfect substitutes)

- Each HH consumes Ci =

[∫ 1

0
C

σ−1
σ

ij dj

] σ
σ−1

(love for variety)

Preferences: U(Ci,
Mi

P , Li) =
(
Ci

α

)α (Mi/P
1−α −

Lβ
i

β

)
with Ci =

[∫ 1

0
C

σ−1
σ

ij dj

] σ
σ−1

, P =
[∫ 1

0
P 1−σ
j dj

] 1
1−σ

(CES, σ > 1 is the elast. of substitution b/w goods

j and k, if large they are close substitutes).

[BC]:
∫ 1

0
PjCijdj +Mi = PiYi + M̄i (M̄i: Initial money holdings).

Technology: Yi = Li

Solution:

1. Solve for consumption demand for each good Cij

2. Solve for HH allocation between consumption and money

3. Solve for production and pricing decisions (here is key to remember we assume homogeneous firms).
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1. Consumption for each good: Two steps decision, how big is Ci and demand for each good given relative
prices:

HH maximizes consumption: maxCi =

[∫ 1

0
C

σ−1
σ

ij dj

] σ
σ−1

s.t.
∫ 1

0
PjCijdj = Xi (Xi: HH spending)

(given σ > 1) an analogous but simpler problem is:

max

[∫ 1

0
C

σ−1
σ

ij dj

]
s.t.

∫ 1

0
PjCijdj = Xi

L =
∫ 1

0
C

σ−1
σ

ij dj + λ
(
Xi −

∫ 1

0
PjCijdj

)
FOC:

[Cij ] :
σ−1
σ C

−1
σ

ij = λPj ⇒ Cij

Cik
=
(

Pj

Pk

)−σ

(∗)

rewrite as:
(

Cij

Cik

)σ−1
σ

=
(

Pj

Pk

)1−σ

integrate over j:
C

σ−1
σ

i

C
σ−1
σ

ik

= P 1−σ

P 1−σ
k

when integrating over j we used that from definitions of Ci and Pi: C
(σ−1)/σ
i =

∫ 1
0 C

(σ−1)/σ
ij dj and P 1−σ =

∫ 1
0 P 1−σ

j dj

then, Cik =
(
Pk

P

)−σ
Ci

It follows (by multiplying by Pk and integrating over k) that Xi = PCi

2. Allocation between Ci and Mi:

With PCi = Xi rewrite original UMP as:

max
(
Ci

α

)α (Mi/P
1−α

)α
− Lβ

i

β s.t.

Xi︷︸︸︷
CiP +Mi = PiYi + M̄i

(given Yi, M̄i) the standard CD solutions are:

PCi = α(PiYi + M̄i) Mi = (1− α)(PiYi + M̄i)

then, subs. in (+): Cij =
α

1−α
Mi

P

(
Pj

P

)−σ

3. Production and pricing decisions

Replace Ci,Mi and Yi = Li in the utility function:

U =
(
�α
P

(PiYi+M̄i)

�α

)α (
1
P

1
��1−α (�

��1− α)(PiYi + M̄i)
)1−α

− Y β
i

β ⇒ U = PiYi

P − Yβ
i

β + M̄i

P

Total demand for each good i is the sum over the k households demands:

Yi =
∫ 1

0
Ckidk =

∫ 1

0
α

1−α
Mk

P

(
Pi

P

)−σ
dk = α

1−α
1
P

(
Pi

P

)−σ ∫ 1

0
Mkdk ⇒ Yi =

α
1−α

M
P

(
Pi

P

)−σ
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thus we get the typical downward sloping AD curve
(
Qi = Di

(
Pi

P , M
P

))
Maximizing the new transformed U(·) gives (from the FOC):

Pi

P = σ
σ−1Y

β−1
i Price = markup x marginal cost

replace Yi:

Pi

P =

[
σ

σ−1

(
α

1−α

)β−1 (
M
P

)β−1
] 1
1+σ(β−1)

∴ when ∆M the effect on Y and Pi

P depends on
β, σ. If β = 1 the relative price doesn’t change and
∆M is accomodated by ∆Y .

As β > 1, ∆M leads to ∆Pi

P together with quantity
adjustment.

General equilibrium

With symmetric HH relative price is 1:

1 = σ
σ−1

Y β−1 P = α
1−α

M
Y
∝M

Output is a constant markup and money is neu-
tral, i.e., ∆M ⇒ ∆P proportionally and the effect
on Y is null.

with menu cost the models implies monetary non neutrality. Intuition: ∆M small then P̄ ⇒ non neutrality. Again,

deviations from optimal price have only second order effects on profits whereas first and second on social welfare.

Extra:
Monopolistic Competition - Supply Side Demand Derivation
(complementary, not included in the course)
Source: Chugh 2015, Modern Macroeconomics.

Retail firms:

max
{yit}∞

i=0

Pt [yt]−
∫ 1

0

Pityitdi

max
{yit}∞

i=0

Pt

[∫ 1

0

y
1/ε
it di

]ε
−
∫ 1

0

Pityitdi

F.O.C.:

[yit] : εPt

[∫ 1

0

y
1/ε
it di

]ε−1
1

ε
y
1/ε−1
it − Pit = 0

Rearrange and substitute y
1/ε
t =

∫ 1

0
y
1/ε
it yit to obtain the firm’s optimal demand function for the wholesale

good:

y
1−ε
ε

it =
Pit

Pt

(
y
1/ε
t

)1−ε

yit =

(
Pit

Pt

) ε
1−ε

yt

The intuition is straightforward, the demand depends negatively on its relative price and positively on the
aggregate demand.

Wholesale Firms

The i-th wholesale firm will set prices to maximize its profits:

max
Pit

πit = Pityit − Ptmcityit
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Where mcit is the real marginal cost of the i firm, Pt should be multiplied to put it in units of the final
consumption good (or in nominal terms).

Substitute the monopolist optimal demand:

max
Pit

πit = Pit

(
Pit

Pt

) ε
1−ε

yt − Ptmcit

(
Pit

Pt

) ε
1−ε

yt

= P
1

1−ε

it P
ε

ε−1

t yt −mctP
ε

1−ε

it P
2ε−1
ε−1

t yt

Where we assumed mcit = mct∀i.

F.O.C.:

[Pit] :
1

1− ε
P

ε
1−ε

it P
ε

ε−1

t yt −
ε

1− ε
P

2ε−1
1−ε

it P
2ε−1
ε−1

t ytmct = 0

Rearranging to get rid of the constants and prices exponents:

P
−ε
1−ε

it P
ε

1−ε

it P
ε

ε−1

t − εP−1
it P

2ε−1
ε−1

t mct = 0

1− εP−1
it Ptmct = 0

Pit = εPtmct

In terms of relative prices (pit =
Pit

Pt
):

pit = εmct
Other frequently used notation: ε = θ

θ−1 , i.e., pit =
θ

θ−1mct

Key result: The profit maximizing price is a single, constant, mark-up over the marginal cost.

2 Consumption

Intro: Pre-RE context: Keynes, Friedman, Fisher.

(context) Pre-rational expectations: (Keynes, Fisher, Friedman) SR and LR relationship between Y and C, e.g.
Lyfe-cycle hypothesis, Permanent Income hypothesis.

Keynes: ad-hoc linear relationship C(Y ) = a+ bY

• MPC less than 1 (0 < b < 1)

• Avg PC is decreasing in income: APC = C
Y = a

Y + b

• Interest rate doesn’t play a role

In the SR all three claims seem to hold. In the LR a decreasing APC in income is no longer true.

Friedman/Modigliani/Fisher: (explanation) C shifts over time, people make consumption decision over life-time
income (PI), then C,S is not a period by period decision.

Fisher:

Agent UMP is max
{ct}T

t=0

(1 + ρ)−tu(ct) s.t.
∑T

t=0(1 + r)−tYt +W0 =
∑T

t=0(1 + r)−tct (lifetime BC)

FOC: [ct+j ] : u′(ct+j) = λ
(

1+ρ
1+r

)t+j

if r = ρ ⇒ u′(ct+j) = constant ∀t
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⇒ ct = c, plug in BC and solve for consumption: c = 1∑T
t=0(1+r)−t

[∑T
t=0(1 + r)−tYt +W0

]
Then C decision is dynamic and depends on income over time and not over a single period.

Modigliani: Life-cycle pattern of income path

Friedman: PIH (Permanent vs Transitory income )

C = CP + CT

Y = Y P + Y T

Fisher’s relation holds only for the permanent component, i.e., CP = Y P (with a = 0, b = 1)

However, empirically only the sum is observed (Y,C). Then by estimating C = â+ b̂Y you get,

b̂ = cov(C,Y )
V ar(Y ) = Cov(Y P ,CP )

V ar(Y P )+V ar(Y T )

Assume CT , Y T are white noise: Cov(Y T , CP ) = 0, Cov(CT , CP ) = 0, and CP = Y P then,

b̂ = V ar(Y P )
V ar(Y P )+V ar(Y T )

< 1 â = C̄ −ˆ̄Y = (1− b̂)Ŷ ̸= 0 ⇒↓ APC as ↑ Y

then in the LR and under the structural model CP = Y P and a = 0, b = 1, but in the SR we get the Keynesian
result (a > 0, b < 1) due to noise variables (temporary shocks). .

In summary, in the SR: V (Y T ) matters (no change in Y P ), but in the LR: V (Y P ) > V (Y T ) and bLR ≈ 1.

2.1 Framework with Rational Expectations:

Set up: UMP by HH is,

v(x0) = max
{ct}∞

t=0

E0

∑∞
t=0 β

tu(ct, . . . ) s.t. ct ∈ Γc(xt)
xt+1 ∈ Γx(xt, ct, R̃t,t+1, ỹt+1, ỹt)

here xt: Assets, ỹt: income, R: gross return.

Usual assumptions: u(·) concave, Inada conditions, No ponzi game: lim
T→∞

(
1

1+r

)T
xT ≤ 0

Discount factor: β, Discount rate: (perc. change of discount factor) δ = βt−1−βt

βt = 1
β − 1

[BE]: v(xt) = max{u(ct) + βEv(xt+1)}
ct ∈ Γ(xt) = [0, xt]

xt+1 = R̃t+1(xt − ct) + ỹt+1

x0 = y + 0

FOC: u′(ct) = βEtv
′(xt + 1)R̃t+1

Envelope: v′(xt+1) = u′(ct+1) ⇒
[EE]: u′(ct) = βββEtR̃t+1u

′(ct+1)

Perturbation argument for EE: start with {c∗t }∞t=0, apply a small perturbation at t to c∗t such that ∆c∗t = −δ,
save it and consume it in t + 1: ∆ct+1 = δ(EtR̃t+1) → ∆v(x) = −δu′(c∗t ) + βδ(EtR̃t+1), take δ small, i.e.,



19

∆v(x) ≈ 0 ⇒ u′(ct) = βEtR̃t+1u
′(ct+1), also, if the latter equation holds with inequality then shift ct, ct+1

until they are equal.

2.1.1 Empirical tests

Testing the EE: u′(ct) =
1

1+δEt[u
′(ct+1(1 + rt))]

Simplifying assumptions: Non stochastic rt and rt = δ ⇒ u′(ct) = E(u′(ct+1)) and by law of iterated
expectations u′(ct) = Eu′(ct+n) ∀n⇒ MU is a RW.

Also if u(·) is quadratic then u′(·) is linear, u′(·) = a + 2bct ⇒ ct = Etct+1 and ct is a RW. Using the BC

we solve for c∗t : ct =
1∑∞

t=0(1+r)−s

[∑∞
t=0(1 + r)−sEtỸt+s + xt

]
Hall’s test: Excess Sensitivity

Given ct = Etct+1 ⇒ ∆ct+1 = εt+1 (RE)

Test: ∆ct+1 = α+ β′xt + et+1 (Joint test of: Euler Eq, r = ρ,quadratic utility, rational exp.)

H0 : α = β = 0 and R2 ≈ 0 or low.

however the result is that ∆yt is significant, i.e., βy > 0 ⇒ E(∆ct+1|zt ∈ It) (excess sensitivity: change in
consumption is sensitive to exogenous variables.)

Linearizing the EE

• CRRA u(·) : u(c) = c1−γ−1
1−γ , u′(c) = c−γ

replace in EE : u′(c) = βE
[
(1 + rt+1)c

−γ
t+1

]
c−γ
t = 1

1+ρE
[
(1 + rt+1)c

−γ
t+1

]
1 = E

[(
ct+1

ct

)−γ (
1+rt+1

1+ρ

)]
1 = Ete

ln
[
(

ct+1
ct

)
−γ
(

1+rt+1
1+ρ

)]

1 = Ete
(rt+1−ρ−γ∆ln ct+1) (since ln(ct+1/ct) = ∆lnct+1, ln(1 + x) ≈ x)

• rt+1 known at t

• ∆ ln ct+1 ∼ N and ln c ∼ N i.e., consumption is lognormal, its log is normal and then: Eeln c =

eE ln c+
1
2var(ln c)

1 = e

[
Etrt+1−ρ−γEt∆ ln ct+1+

1
2γ

2V art∆ ln ct+1

]
⇒ Et∆ ln ct+1 = 1

γ (Etrt+1 − ρ) +
1

2
γV art∆ ln ct+1︸ ︷︷ ︸

Precautionary Savings
with RE: ∆ ln ct+1 = 1

γ (Etrt+1 − ρ) + 1
2γV art∆ ln ct+1 + εt+1

• Assume precautionary savings are constant over time

∆ ln ct+1 = α+ 1
γ rt+1 + εt+1

Conclusion: C depends on rt, if rt = ρ or another constant then the consumption would be a RW but
this is not generally the case. When rt+1 is high then giving up current consumption yields more in the
future, then an increase in ∆ ln ct+1 is to be expected.
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- Empirical test of linearized EE:

Estimate elasticity of intertemporal substitution:3

EIS ≡ ∂∆ ln ct+1

∂rt.t+1
= 1

γ (under CRRA)

Test of Orthogonality restriction Ω ⊥ εt+1 (no exogenous variable matters, e.g. add β∆ ln yt+1)
Result: ∆ ln ct+1 = α = 1

γ rt + β∆ ln yt+1 (income matters!)
1
γ ≈ 0 (huge γ) and β > 0, β ∈ [0.1, 0.8]

Why Expected Income predicts consumption?:

- Leisure and consumption are substitutes

- Lifecycle: household supports more people when in-
come is high.

- Precautionary savings not constant overtime → om-
mited variable bias.

- Alternative preference specifications: Non additive
separable utility, need a more general u(·) than CRRA.

- Buffer stock models: (liquidity constraints + im-

patience) Agents face borrowing constraints and then
cannot smooth consumption, consumers are also im-
patient (ρ > r) then there is a buffer stock type of
consumption, i.e., agents accumulate small stock of as-
sets to buffer transitory income shocks, after that they
just consume yt leftover.

- People don’t optimize (subrationality) but follows
rules of thumb.

- rt is stochastic.

2.2 Link with Asset Returns (CAPM based models and Puzzles)

Consumption CAPM: Multiple assets with stochastic return r̃it

EE holds for each asset i: Et

[
u′(ct+1)
u′(ct)

1+r̃it
1+ρ

]
= 1 ∀i

Stochastic Discount Factor (pricing kernel): M̃t =
u′(ct+1)
u′(ct)

1
1+ρ , then:

Et

[
M̃t(1 + r̃it)

]
= 1 (replace SDF)

EtM̃tEt(1 + r̃it) + Cov
(
M̃t, 1 + r̃it

)
= 1 (Rewrite Expectation of a product)

Et(1 + r̃it) =
1

EtM̃t

[
1− Cov

(
M̃t, 1 + r̃it

)]
Et(1 + r̃it) =

1
EtM̃t

[
1− βCov

(
1 + r̃it,

(
ct+1

ct

)−γ
)]

under CRRA, replacing: M̃t = β( ct+1

ct
)−γ

Et(1 + r̃it) =
β

EtM̃t

[
1 + ρ+ γCovt

(
r̃it,∆ ln ct+1

)]
where 1/β = 1 + ρ

Therefore for the agent to hold an asset i (LHS) there should be an increase/compensation in the return the
more risk averse and the more correlated the return with the consumption growth (RHS). The intuition behind
is that any agent would prefer to diversify their assets by holding assets negatively correlated with his income
so that they would be covered in recessions.

Assuming log normality of asset return and consumption growth we can approximate:

E
(
1 + r̃it

)
≈ 1 + ρ+ γCov

(
r̃it,∆ ln ct+1

)
− γ(1+γ)

2 V ar(∆ ln ct+1) + γE (∆ ln ct+1)

3Generally EISxy = −
∂ ln

(
x
y

)
∂ ln

(
ux
uy

)
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Then with stochastic returns the return reflects more than just the impatience. Depending on the degree
of risk aversion it is influenced by the covariance with consumption and the variance of consumption growth
(precautionary savings term).

2.2.1 Equity Premium Puzzle (EPP)

Risk free asset: f; Risky asset (equity): e

Using C-CAPM: E(r̃et )− r̃ft ∝ γCov(r̃et ,∆ ln ct+1) = γσec

This equation is tested/estimated. Empirically LHS ≈ 0.06 whereas the covariance term (σec) lies around
0.0003 − 0.0024 (low covariance), which leads to the EPP: γ = 0.06

σec
= [20, 200] i.e. a huge risk aversion

coefficient (the expected is 2 or 3).

A high γ is a problem since it implies indifference conditions in lotteries that yield an extremely low profit
(Mankiw, Zeldes 1991). An explanation for this troublesome result is that the consumption doesn’t move much,
causing the covariance to be very small.

2.2.2 Risk free rate puzzle

: discount rate becomes negative (ρ < 0)

Return observed in equity markets is not consistent with C-smoothing behavior.

Use C-CAPM with the risk free asset: E∆ ln ct+1 =
rft −ρ

γ + 1+γ
2 V ar(∆ ln ct+1) (the covariance term is zero)

solve for discount rate: ρ = rft − γE∆ ln ct+1 +
(1+γ)γ

2 V ar∆ ln ct+1

Puzzle: if you take γ = 20, rft = 0.01,∆ ln ct+1 ≈ 0.018, V ar(∆ ln ct+1) ≈ 0.001 ⇒ ρ ≈ −0.15 < 0 (negative
DF, i.e., marginal utility in the future is higher.)

Possible explanations for EPP:

- Calibration done with aggregate data ignores hetero-
geneous agents and individual dynamics (averaging dis-
cards consumption movement).

- Only a small fraction of HH hold equities and they
have higher covariance.

- Rare events: small chances of catastrophic events
lead to overestimation of average return E(redata) >
E(remarket distribution)

- Consumption response could be delayed so Cov(·) es-
timates could be biased downwards.

- Loss aversion: households weight losses twice as heav-
ily than gains.

- Survivorship bias: stock markets have broke down
and surviving stocks are not a random sample (same as
rare events, implies overestimation of returns or higher
premium).

Extra:
Hansen-Jagannathan Bound: the Aim is to set the Stochastic Discount Factor that is consistent with
the data (reverse direction than before, i.e., Data → implications on model (SDF)).
Source: Pennachi, Theory of Asset Pricing (2007)

(context) EPP: for reasonable levels of risk aversion, aggregate consumption appears to vary too little to
justify the high Sharpe ratio (excess return over volatility) for the market portfolio of stocks.
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Aim: in a complete market, create a portfolio that replicates the SDF m̃, i.e., create an asset with return
R̃m s.t. Cov(R̃m, m̃t+1) = V ar(R̃m)

Depart from the basic Pricing Equation Pt = E[m̃t+1Xt+1] where Xt+1 denotes future cashflows.

Express it in terms of returns and rearrange (we drop the time subscripts for simplicity):

1 = E[m̃R̃]

1 = E[m̃]E[R̃] + Cov(m̃, R̃)

1 =
1

RF
R̄+ Cov(m̃, R̃)

R̄−RF = −RFCov(m̃, R̃)

Apply it to the replicated portfolio with return R̃m:

R̄m −RF = −RFσ
2
m ⇒ R̄m −RF

σm︸ ︷︷ ︸
Sharpe Ratio of m

= −RFσm

For every other asset/portfolio: R̄−RF

σ = −RF ρm,Rσm = R̄m−RF

σm

Apply absolute value and consider the maximum correlation:

|R̄−RF |
σ

≤ |R̄m −RF |
σm︸ ︷︷ ︸

H-J Upper Bound

Use the CRRA and the observed values for some parameters:

|R̄m −RF |
σm

= RFσm = (eγ
2σ2

c − 1)
1
2 ≥

Empirical Mkt.

Sharpe Ratio

1

2

eγ
2σ2

c ≥ 1

4
+ 1

γ2σ2
c ≥ log(

5

4
) ≈ 0.223

Therefore for σc = 0.04 we have γ ≥ 12.

Intuition: (i) Given the volatility of the SDF, sets an upper bound on the Sharpe ratio an asset can attain; or (ii)

Given an asset’s Sharpe ratio and the risk free rate, sets a lower bound on the feasible volatility of the economy’s

SDF.

Problem: Even after considering this bound, i.e., rationalizing higher values of risk aversion to provide some
explanation to the EPP, the risk-free rate puzzle remains (r < 0 or β > 1).

Key issue: most of these puzzling results obey to the fact that by construction the CRRA links the risk
aversion (γ) and the IES ( 1γ ). This lacks empirical support since it implies that the more risk averse, the
lower the degree of substitution for an agent.

Answer to this problem: use Epstein-Zin preferences (recursive formulation).

Another one: ”Asset Pricing with Garbage”, Savov, JoF 2011. Uses garbage data by household as proxy to consumption and

obtains new data for consumption that is more volatile and is compatible with 17 < γ < 87 and evades the risk free rate

puzzle. This is the current closest approach to solve (empirically) the EPP.
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Note: above we used the CRRA so that the following results hold,

mt+1 = β

(
ct+1

ct

)−γ

E[mt+1] = βE[e−γz̃] = βe−γµ+γ2σ2/2

m2
t+1 = β2

(
ct+1

ct

)−2γ

E[m2
t+1] = β2e−2γµ+4γ2σ2/2

V ar(mt+1) = E[m2
t+1]− E[mt+1]

2 = β2e−2γµ+γ2σ2

(eγ
2σ2

− 1)

σmt+1

E[mt+1]
=

�
���

��
βe−γµ+γ2σ2/2

βe−γµ+γ2σ2/2
(eγ

2σ2

− 1)
1
2
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2.3 Intertemporal Elasticity of Substitution (methodology)

iest(ct+1, ct) = −

d

(
ct+1
ct

)
ct+1
ct

d


∂u(c)
∂ct+1
∂u(c)
∂ct


∂u(c)
∂ct+1
∂u(c)
∂ct



= −



d


∂u(c)
∂ct+1
∂u(c)
∂ct


d

(
ct+1
ct

)
∂u(c)
∂ct+1
∂u(c)
∂ct
ct+1
ct



−1

i.e. the IES is the inverse of the percentage change
in the marginal rate of substitution between con-
sumption at t and t+ 1 in response to a percentage
change in the consumption ratio ct+1

ct

for the CRRA utility function:

∂u(c)
∂ct+1

∂u(c)
∂ct

= MRS(ct+1, ct) = β
(

ct+1

ct

)−σ

then:

iest(ct+1, ct) = −

−σβ
( ct+1

ct

)−σ−1

β
( ct+1

ct

)−σ

ct+1

ct

 = 1
σ

the intertemporal elasticity of substitution is con-
stant and equal to 1

σ .

The IES measures the curvature of the utility func-
tion: If σ = 0 consumption is adjacent periods are
perfect substitutes and ies =∞, if σ →∞ the utility
function converges to a Leontieff function, consump-
tion in adjacent periods are perfect complements,
ies = 0.

Additionally from the FOC of the HH UMP we get:

∂u(c)
∂ct+1

∂u(c)
∂ct

= pt+1

pt
= 1

1+rt+1

and then we can write the IES as:

iest(ct+1, ct) = −

d

(
ct+1
ct

)
ct+1
ct

d


∂u(c)
∂ct+1
∂u(c)
∂ct


∂u(c)
∂ct+1
∂u(c)
∂ct



= −


d

(
ct+1

ct

)
ct+1

ct

d

(
1

rt+1

)
1

rt+1



i.e. the IES can also be expressed as the percentual
change in the consumption growth with respect to
the percentual change in the gross real interest rate.

Notice that for the CRRA the EE is:

(1 + rt+1)β
(

ct+1

ct

)σ
= 1

take logs:

ln(1 + rt+1) + lnβ = σ[ln ct+1 − ln ct]

rearrange:

ln ct+1 − ln ct =
1
σ lnβ + 1

σ ln(1 + rt+1)

this equation is the basis from IES estimates.

Finally with the CRRA the attitute of the HH to-
wards risk is measured by the risk aversion coefficient
σ and the attitude towards consumption smoothing
is measures by the IES 1

σ . The fact that these two
are determined by the same parameter is an unde-
sirable restriction that generates all the problems
mentioned in the consumption exercises above.

3 Labor Frictions: DMP search and matching model

Matching function: m(ut, vt) = kuα
t v

1−α
t (u: unemployed workers, v: vacancies)

Probabilities:
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• of being matched: xt =
m(ut,vt)

ut
= k

uα
t v1−α

t

ut
=

v1−α
t

u1−α
t

= kθ1−α

• of filling a vacancy: yt =
m(ut,vt)

vt
= k

uα
t v1−α

t

vt
= k

uα
t

vα
t
= kθ−α

then: xt = kθ1−α and yt = kθ−α where θ : tightness of labour market (vacancies by unemployed).

Break up rate: s

Value functions:

• Firm: J(pt, w) = pt − w + δ(1− s)E(J(pt+1, w))

• Worker: W (pt, w) = w + δsE[U(pt+1)] + δ(1− s)E[W (pt+1, w)]

• Unemployed: U(pt) = z + δ [xtE(W (pt+1, w)) + (1− xt)E(U(pt+1))]

from these values funtions we can determine:

∂J(pt,w)
∂w = −1 + δ(1− s)E

[
∂J(pt+1,w)

∂w

]
→ ∂J(pt)

∂w = −1
1−δ(1−s) < 0

∂W (pt,w)
∂w = 1 + δ(1− s)e

[
∂w(pt+1,w)

∂w

]
→ ∂W (pt,w)

∂w = 1
1−δ(1−s) > 0

The surplus of a match is given by: S(pt, w) = w(pt, w)− U(pt) + J(pt, w)

Let the surplus at the optimal wage be: V (pt) ≡ S(pt, w
∗)

Assume the optimal wage is chosen by Nash bargaining: w = argmax
ŵ

(W (pt, ŵ)− U(pt))
β
J(pt, ŵ)

FOC:

[w] : β ∂W (pt,w)
∂w

(W (pt, w)− U(pt, w))β−1J(pt, w)1−β = − ∂J(pt,w)
∂w

(1− β)(W (pt, w)− U(pt, w))β−1J(pt, w)1−β

β 1
1−δ(1−s)

(W (pt, w)− U(pt, w))β−1J(pt, w)1−β = 1
1−δ(1−s)

(1− β)(W (pt, w)− U(pt, w))β−1J(pt, w)1−β

(1− β)
(
W−U

J

)β
= β

(
J

W−U

)1−β

⇒ J(pt, w) =
1−β
β (W (pt, w)− U(pt))

Subs. in S(pt, w) : S(pt, w) =
W (pt,w)−U(pt)

β (+)

Also:
S(pt, w) = w−z+pt−w+δ(1−s) (E [W (pt+1, w)] + E [J(pt+1, w)]− E [U(pt+1)])−δkθ1−α

t (E [W (pt+1,w)]− E [U(pt+1,w)])

using (+): S(pt, w) = pt − z + δ(1− s)E [V (pt+1)]− δkθ1−α
t βE [V (pt+1)]

S(pt, w) = pt − z − δ(βkθ1−α
t − 1 + s)E [V (pt+1)] (⋆)

Free entry condition:

Exp. benefits of filling a vacancy = Cost of filling a vacancy

ytJ(pt, w) + (1− yt)0 = C

yt(1− β)V (pt) = C (replace J in terms of V)

k
θα
t
(1− β)V (pt) = C (subs. yt = θ1−α)

V (pt) =
θα
t C

k(1−β)∀t → V (pt+1) =
θα
t+1C

k(1−β)

subs. in value function for surplus from (⋆):
Cθα

t

k(1−β) = pt − z − δ(βkθ1−α
t −1+s)

k(1−β) E
[
Cθαt+1

]
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In SS: e
[
θαt+1

]
= θαt ⇒ Cθα

t

k(1−β) = pt − z − Cδβkθt−Cδ(1−s)θα
t

k(1−β) (♣)

find ∂θt
∂(pt−z) :

Cαθα−1
t

k(1−β)
∂θt

∂pt−z = 1−
(

Cδβk−Cδ(1−s)αθα−1
t

k(1−β)

)
∂θt

∂pt−z

at θ = 1 : Cα
k(1−β)

∂θt
∂pt−z = 1−

(
Cδβk−Cδ(1−s)α

k(1−β)

)
∂θt

∂pt−z

then, ∂θt
∂pt−z = k(1−β)

C(α+δ(βK−(1−s)α))

Now we can find the elasticity of market tightness to produvity (pt − z):

εθt,pt−z|θ=1 = (pt − z) ∂θt
∂pt−z = C+Cδβk−Cδ(1−s)

K(1−β)
k(1−β)

C(α+δ(βk−(1−s)α))

εθt,pt−z|θ=1 = 1+δ(βk−(1−s))
α+δ(βk−(1−s)α)

Only if θ = 1 the elasticity to vacancies-unemployed ratio to productivity would be 1 which means that
one would expect the vacancies to respond strongly to changes in productivity, potentionally explaining
changes in the business cycle. However, when the rest of calibrated parameters are taken into account the
elasticity is roughly above 1 (εθ,p−z ≈ 1.03) which means that vacancies don’t really react strongly after
changes in productivity have taken place.

4 Dynamic Programming

(SP ←→ BE):

v(x0) = max
x+1∈Γ(x)

∑
δtF (x, x+1) ←→ v(x) = max

x+1∈Γ(x)
F (x0, x1) + δv(x+1)

”→”

v(x0) = max
x+1∈Γ(x)

∑∞
t=0 δ

tF (xt, xt+1)

= max
x+1∈Γ(x)

{F (x0, x1) +
∑∞

t=1 δ
tF (xt, xt+1)}

= max
x+1∈Γ(x)

{F (x0, x1) + δ
∑∞

t=1 δ
t−1F (xt, xt+1)}

= max
x+1∈Γ(x)

{F (x0, x1)+δ max
x+2∈Γ(x+1)

∑∞
t=0 δ

tF (xt+1, xt+2)}

= max
x+1∈Γ(x)

{F (x0, x1) + δv(x1)}

”←”

v(x0) = max
x1∈Γ(x0)

{F (x0, x1) + δv(x1)}

= max
x1∈Γ(x0)

{F (x0, x1) + δ [F (x1, x2) + δv(x2)]}

...

= max
x1∈Γ(x0)

{F (x0, x1)+· · ·+δn−1F (xn−1, xn)+δnv(xn)}

= max
x1∈Γ(x0)

{
∑∞

t=0 δ
tF (xt, xt+1)}

where ”←” holds if lim
n→∞

δnv(xn) = 0

Example: Optimal growth

In SP notation:

v(k0) = max
{kt+1}∞

t+0

∑∞
t=0 δ

t ln(kδt − kt+1)

s.t. k+1 ∈ Γ(k) ≡ [0, kα] and k0 given.

In BE notation:

v(k) = max
k+1∈Γ(k)

{ln(kα − k+1)}
∀k

4.1 Methods of solution:

Guess a form and check, iterative solution, numerical solution.
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4.1.1 Guess and check

V (xt) = sup
xt+1∈Γ(xt)

{F (xt, xt+1) + βV (xt+1)}

FOC:

[xt+1] :
∂F (xt,xt+1)

∂xt+1
+ βV ′(xt+1) = 0

Envelope condition: (derivative of whole expression —on both sides— wrt xt. Implies using chain rule as xt also affects xt+1 = Γ(xt))

V ′(xt) =
∂F (xt,xt+1)

∂xt
+ ∂F (xt,xt+1)

∂xt+1

dxt+1

dxt
+ βV ′(xt+1)

dxt+1

dxt

= ∂F (xt,xt+1)
∂xt

+

[
∂F (xt, xt+1)

∂xt+1
+ βV ′(xt+1)

]
︸ ︷︷ ︸

FOC w.r.t. xt+1=0

dxt+1

dxt
⇒ V ′(xt) =

∂F (xt,xt+1)
∂xt

forward: V ′(xt+1) =
∂F (xt+1,xt+2)

∂xt
, subs. in FOC:

∂F (xt,xt+1)
∂xt+1

= −β ∂F (xt+1,xt+2)
∂xt+1

(Euler Equation)

4.1.2 Iteration of the Bellman equation

Bellman functional operator: T

(Tw)(x) = sup
x+1∈Γ(x)

{F (x, x+1)+ βw(x+1)} ∀x, T maps a funtion w(·) to Tw(·) (functional operator). Let v

be a solution and a fixed point, i.e., if w = v then Tw = w:

(Tv)(x) = sup
x+1∈Γ(x)

{F (x, xt+1) + β (sup{F (x+1, x+2) + βv(x+2)})︸ ︷︷ ︸
v(x+1)

}

(Tv)(x) = sup
x+1∈Γ(x)

{F (x, xt+1) + βv(x+1)} = v(x)

Solution by iteration

Pick some v0 and iterate Tnv0 ultil convergence:

(Tw)(x) = sup
x+1∈Γ(x)

{F (x, x+1) + βw(x+1)}

(T (Tw))(x) = sup
x+1∈Γ(x)

{F (x, x+1) + β(Tw)(x+1)}

...

(T (Tnw))(x) = sup
x+1∈Γ(x)

{F (x, x+1) + β(Tnw)(x+1)}

where lim
n→∞

Tnv0 = v and Tnv0 is a Cauchy sequence.

Convergence is guaranteed by the Contraction Mapping Theorem (CMT).

Contraction Mapping Theorem: Let (S,d) be a metric space. The function T : S → S is a contraction
mapping if for some β ∈ (0, 1), d(Tf, Tg) ≤ βd(f, g) for any f, g ∈ S.

Theorem: If (S,d) is a complete metric space and T : S → S is a contraction mapping then,

i. T has a unique fixed point v ∈ S

ii. ∀ v0 ∈ S lim
n→∞

Tnv0 = v

iii. Tnv0 has an exponential convergence rate at least as great as − ln(β)
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the functional operator is a contracting mapping if it satisfies the Blackwell Sufficiency Conditions. The itera-
tion method may not work otherwise.

Blackwell Sufficiency Conditions: Let X ∈ RL and let C(X) be a space of bounded functions f : X → R
with the sup-metric. Let T : C(X)→ C(X) be an operator satisfying:

Monotonicity: if f, g ∈ C(X) and f(x) < g(x) ∀x ∈ X then (Tf)(x) < (Tg)(x) ∀x ∈ X
Discounting: there exists some δ ∈ (0, 1) such that (T (f + a))(x) ≤ (Tf)(x) + δa ∀f ∈ C(X), a ≥ 0, x ∈ X

Then T is contraction mapping with modulus δ.

Proof : For any f, g ∈ C(X), f(x) ≥ g(x) + d(f, g)∀x, relaxing notation,

f ≤ g + d(f, g), monotonicity and discounting imply:

Tf ≤ T (g + d(f, g)) ≤ Tg + δd(f, g)

Tg ≤ T (f + d(f, g)) ≤ Tf + δd(f, g)

Combining the last two lines,

Tf − Tg ≤ δd(f, g)

Tg − Tf ≤ δd(f, g)

|(Tg)(x)− (Tf)(x)| ≤ δd(f, g)∀x

sup
x
|(Tg)(x)− (Tf)(x)| ≤ δd(f, g) ⇒ d(Tf, Tg) ≤ δd(f, g)

4.1.3 Example: NGM

Here we apply the solution methods to the benchmark NGM model.4

U(c) = ln c

F (k, n) = καn1−α

δ = 1 ⇒ f(k) = F (k) + (1− δ)kold = kα

Then:
v(k) = max

0≤k′≤kα
{ln(kα − k′) + βv(k′)}

Guess and Verify (method of undetermined coefficients)

1. guess a functional form: v(k) = A+B ln k

2. Solve maximization problem after substituting the guess:

max
k′

ln(kα − k′) + β[A+B ln k′]

FOC:

[k′] : 1
κα−k′ =

βB
k′ ⇒ k′ = βBkα

1+βB

3. evaluate the RHS in the optimal solution:

RHS = ln

(
kα

1 + βB

)
+ βA+ βB ln

(
βBkα

1 + βB

)
= α ln(k)− ln(1 + βB) + βA+ βB ln

(
βB

1 + βB

)
+ αβB ln(k)

4source: Krueger notes, Chapter 3.
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4. Equal LHS and group constant terms:

A+B ln(k) = − ln(1 + βB) + βA+ βB ln

(
βB

1 + βB

)
︸ ︷︷ ︸

A

+ [α+ αβB]︸ ︷︷ ︸
B

ln(k)

Then: B = α
1−αβ

A = − ln(1 + βB) + βA+ βB ln
(

βB
1+βB

) Subs. B=
α

1−αβ−−−−−−−−−−→ A = 1
1−β

[
ln(1− αβ) + αβ ln(αβ)

1−αβ

]
Replace A and B in the policy function:

g(k) = k′ =
βBkα

1 + βB
=

βαkα

1−αβ

1 + βα
1−βα

= βαkα ⇒ g(k) = αβkα

then, in this example, the optimal policy consists on saving a fraction αβ of the output as capital stock
and consuming a fraction 1−αβ in each period. The rule doesn’t depend on the level of the state variable
(capital) but this may change in other setups.

5. construct sequence {kt+1} with the policy function:

k1 = g(k0) = αβkα0

k2 = g(k1) = αβkα1 = (αβ)1+αkα
2

0

...

kt = (αβ)
∑t−1

j=0 αj

kα
t

0

with lim
t→∞

kt = αβ
1

1−α = k∗, k∗ is also a fixed point, i.e., the solution of g(k) = k.

Value function iteration (analytical approach)

1. guess an arbitrary function v0(k), e.g., v0(k) = 0

2. solve the optimization problem:

v1(k) = max
0≤k′≤kα

{ln(kα − k′) + β����*0
v0(k

′)}

= max
0≤k′≤kα

ln(kα − k′)

the solution is given by k′ = 0. Substitute it in the objective function:

v1(k) = ln(kα − 0) + βv0(0) = α ln k

we can use this functional form for v1(·) in the next iteration involving v2(·).

3. iterate and continue solving:

v2(k) = max
0≤k′≤kα

{ln(kα − k′) + βv1(k
′)}

= max
0≤k′≤kα

{ln(kα − k′) + βα ln k′}

...

vn+1 = max
0≤k′≤kα

{ln(kα − k′) + βvn(k
′)}

this process is done until convergence, i.e., until the sequences {vn}∞n=0 → v∗ and {gn}∞n=0 → g∗.
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Value function iteration (numerical approach)

Suppose that k and k′ take values if K = {0.04, 0.08, 0.12, 0.16, 0.2} only. With that the value function will
consist of five numbers (vn(0.04), vn(0.08), vn(0.12), vn(0.16), vn(0.2)). Let α = 0.3, β = 0.6

1. make an initial guess v0(k) = 0 ∀k ∈ K

2. Solve v1(k) = maxk′∈K{ln(k0.3 − k′) + 0.6 · 0}. Out of the possible k, the solution is given by k′ = 0.04 .
(notice k′ = 0 is not allowed now)

3. plug k′ = 0.04 and obtain v1(·) for the next iteration:

v1(k) = ln(k0.3 − 0.04)

The numerical values for v1(k) are (remember at this point we are not interested in the functional form
as much as the numerical values):

v1(0.04) = ln(0.040.3 − 0.04) = −1.077

v1(0.08) = ln(0.080.3 − 0.04) = −0.847

v1(0.12) = ln(0.120.3 − 0.04) = −0.715

v1(0.16) = ln(0.160.3 − 0.04) = −0.622

v1(0.2) = ln(0.20.3 − 0.04) = −0.55

4. continue with more steps: v2(k) = maxk′∈K,k′∈[0,k0.3]{ln(k0.3− k′) + 0.6v1(k
′)}. For each k ∈ K get v2(k),

use v1(k
′) from the last step. Notice that getting v2(k) for a given k implies testing each k′ and picking

the maximum. e.g., for k = 0.04, v2(0.04) = −1.723 if k′ = 0.04, v2(0.04) = −1.710 if k′ = 0.08 and so on:

for k = 0.04:

v2(0.04) = ln(0.040.3 − 0.04) + 0.6 ·
v1(0.04)

(−1.077) = −1.723, for k′ = 0.04

v2(0.04) = ln(0.040.3 − 0.08) + 0.6 ·
v1(0.08)

(−0.847) = −1.710, for k′ = 0.08

v2(0.04) = ln(0.040.3 − 0.12) + 0.6 · (−0.715) = −1.773, for k′ = 0.12

v2(0.04) = ln(0.040.3 − 0.16) + 0.6 · (−0.622) = −1.884, for k′ = 0.16

v2(0.04) = ln(0.040.3 − 0.2) + 0.6 · (−0.55) = −2.041, for k′ = 0.2

i.e., for k = 0.04 the optimal choice is k′(0.04) = g2(0.04) = 0.08 which yields a value of v2(0.04) = −1.710.

This process should be carried for every k (and each k′ within) yielding:

k \ k’ 0.04 0.08 0.12 0.16 0.2

0.04 -1.723 -1.710 -1.773 -1.884 -2.041

0.08 -1.493 -1.453 -1.482 -1.548 -1.644

0.12 -1.361 -1.308 -1.322 -1.369 -1.441

0.16 -1.268 -1.207 -1.212 -1.247 -1.305

0.2 -1.196 -1.130 -1.128 -1.156 -1.205

→

k v2(k) g2(k)

0.04 -1.710 0.08

0.08 -1.453 0.08

0.12 -1.308 0.08

0.16 -1.207 0.08

0.2 -1.128 0.12

5. this process is continued until convergence, i.e., about n times until vn−1 ≈ vn ∀k ∈ K.

We can try to generalize what is done in this example in the summary below:
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Algorithm 1 Value function interation (numerical approach for NGM model)

Initialization: Guess v0(k), evaluate all k (these values are used in the next iteration.)
Iteration 1:
For each k, determine optimal policy (decision) k′. In this step, replace v0(k

′) on the RHS of function to
maximize from values obtained at the end of past iteration.
Replace (values for k′ for each k) and get v1(k), evaluate for all k (these values are used in next iteration)
⇒ you got the value function evaluated in the grid for k and the optimal (k′) decision: v1(k), g1(k) = k′

Iteration 2:
For each k, determine optimal policy (decision) k′. Make sure to use the appropriate v1(k

′) obtained at
the end of previous iteration for the continuation values in the last part of the RHS.

(This determination implies evaluating, for every k in the grid, the function for every k′ in the grid. The same was done in previous

iterations before implicitly, but if the initial guess is simple, the large quantity of evaluations implied becomes evident only until now.)

Replace and get v2(k), evaluate for all k (these values are used in next iteration —as v2(k
′) in RHS.)

After the last step, you obtained the optimal value function and optimal policies (decisions): v2(k), g2(k).
repeat
Continue iterations

until convergence: vn−1 ≈ vn, gn−1 ≈ gn for all k in the grid.

4.2 Discrete choice DP: Optimal stopping

The choice might be discrete, e.g., determine the moment to sign a contract, buy/sell a lottery or any one-time
decision. A typical example is given by:

An agent draws an offer, x, from an uniform distribution in the unit interval. The agent can either accept
the offer and get x or reject and draw a period later (i.e. get the expected continuation value of the game).
Rejections are costly because the agent discounts the future exponentially.

If v(x) = max
Accept,Reject

{x, δEv(x+1)} then ∃x∗ s.t. x∗ = δE[v(x+1)] the stationary threshold implies there exists

a constant v s.t.

the goal is to find g(x) that maps x to A or R depending of v(x) optimally. The strategy followed is: 1. Show
continuity of v(x), 2. Conjecture a threshold strategy, 3. Use the indifference threshold to choose either A or
R.

Conjecture threshold rule x∗: There is some x∗ s.t.

g(x) =

{
Accept if x ≥ x∗

Reject if x < x∗

g(·) would then generate the value function as:

v(x) =

{
x if x ≥ x∗

x∗ if x < x∗

in other words, to find x∗ we use the indifference condition (at x∗ it holds that x∗ = δE[v(x+1)]), i.e., when
x = x∗ either R or A. Assuming x is uniform in [0,1]:

v(x∗) = x∗ = δE[v(x+1)] = δ
[∫ x=x∗

x=0
x∗f(x)dx+

∫ 1

x=x∗ xf(x)dx
]

then: x∗ = δx∗2 + δ 1
2 (1− x∗2) = δ

2 (1 + x∗2) ⇒ x∗ = 1−
√
1−δ2

δ

Notice that as δ → 0 it’s better to accept (A), whereas if δ → 1 it’s better to Reject (R).

Solution by iteration

Start at v0(x) = 0, the Bellman operator is (Bw)(x) = max
A,R
{x, δE[w(x′)]}
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First iteration: v1(x) = (Bv0)(x)
= max{x, δEv0(x

′)}
= max{x, 0} = x

Since the threshold (x1) is 0 (continuation value is always 0), v1(x) = x, i.e., A all offers greater or equal to 0.

Second iteration: v2(x) = (B2v0)(x)
= B(Bv0)(x

′)
= max{x, δEBv0(x

′)}
= max{x, δEv1(x

′)}
= max{x, δEx′} ⇒ x2 = δEx′ = δ

2

In general: vn(x) = (Bnv0)(x)
= B(Bn−1v0)(x)
= max{x, δEBn−1v0(x

′)} ⇒ xn = δEBn−1v0(x
′)

then vn(x) = (Bnv0)(x) =

{
xn if x ≤ xn

x if x > xn

xn = δEBn−1v0(x
′) with Bn−1v0(x) =

{
xn if x ≤ xn

x if x > xn

= δ
[∫ x=xn−1

x=0
xn−1f(x)dx+

∫ x=1

x=xn−1
xf(x)dx

]
= δ

2 (1 + δ2)

if there is convergente xn = xn−1 as n→∞, then limn→∞ xn = 1−
√
1−δ2

δ as before in the guessed solution.

5 Basic DSGE Model

- RBC scheme + New Keynesian insights (frictions).

- Business cycles is caused by real shocks but nominal rigidity leads to inefficient outcomes, hence, there is a
role for policy.

- Seminal contributions: Clarida, Gertler (1999), Woodford (2003), Gali (2007), Obstfeld and Rogoff (2006).

- Optimization behavior for consumers (HH), producers (Firms) and policy makers.

- Solution methods: Tipically get FOC + log linearization around SS and solve the model. Other solution
methods are Blanchard and Kahn, Ulhig, Klein, Sims and Dynare.

Example: Basic NK model

xt = Etxt+1 − ϕ[it − Etπt+1] + εx,t [Dynamic IS (AD)]

πt = βEtπt+1 + κxt + επ,t [NKPC (AS)]

it = φππt + φxxt + εi,t [Monetary Policy Rule]

5.1 Dynamic IS

max
Ct,Nt

E0

∑∞
t=0 β

t
[
C1−σ

t

1−σ −
N1+θ

t

1+θ

]
(Alternative: add M

P (MIU)).

s.t. PtCt +
Bt

1+it
= wtNt +Bt−1 B are units of bonds purchased at price Qt =

1
1+it

CES preferences:
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Ct =
[∫ 1

0
Ct(z)

ε−1
ε dz

] ε
ε−1

Pt =
[∫ 1

0
Pt(z)

1−εdz
] 1

1−ε

then demand for good i: cit =
[
P i

t

Pt

]−ε

Ct

Set up BE: Take FOC and re-arrange to get EE (intertemporal trade-off) and intratemporal trade-off:

[Ct ]: Et

{
β(1 + it)

[
Ct+1

Ct

]−σ
Pt

Pt+1

}
= 1

[Intra ]jocagraca :
−UN,t

UC,t
= wt

Pt

Log-linearize around SS: css

ct = Etct+1 − 1
σ [it − Etπt+1 − ρ] (⋆)

where ct is a log deviation of c from css.

Market-Clearing:

cit = yit

Output gap definition:

xt = yt − ȳt (Natural output defined as flexible price level of output, i.e., no nom rigidities).

subs. and (⋆) becomes:

xt = Etxt+1 − 1
σ [it − Etπt+1] + εx,t [Dynamic IS (AD)]

Notice: this equation is now denoted in terms of deviations. To obtain it we needed to subtract the same equation in the steady

state, cancelling out the constants like ρ.

5.2 NK Phillips Curve (AS)

- 1− θ: probability of price adjustment each period. fraction θ keeps fixed prices.

- Expected time between changes: 1
1−θ

- Aggregate prices: Pt =
[
θP 1−ε

t−1 + (1− θ)P ∗1−ε
t

] 1
1−ε (+)

- Prod. function: Y i
t = N i

t

Optimal price without nominal rigidity:

max P i
tY

i
t − Sn

t Y
i
t s.t. Y i

t =
[
P i

t

Pt

]−ε

Yt

where Sn
t is the marginal cost of the n good and the BC is defined using the definition of Ci(Yt = Ci

t , Yt = Ct)
as before.

FOC: after subs. Y i
t ,

[P i
t ]: P i∗

t =

mark-up︷ ︸︸ ︷
ϵ

ϵ− 1
Sn
t
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Sticky prices:

max
P∗

t

Et

∑∞
t=0(βθ)

kQt.t+k

{
P∗

t

Pt
Yt+k(P

∗
t )−

Sn
t+k

Pt+k
Yt+k(P

∗
t )
}

s.t. Yt+k(P
∗
t ) =

(
P∗

t

Pt+k

)−ε

Yt+k

here: Qt.t+k ≡ Uc(Ct+k)
Uc(ct)

=
[
Ct+k

Ct

]−σ

i.e. βkQt.t+k ≡ Stochastic Discount Factor between t and t+ k.

replace Yt+k(P
∗
t ), (here if Y is not a function of optimal price it refers to the aggregate price)

max
P∗

t

Et

∑∞
t=0(βθ)

kQt.t+kYt+k

{
P∗

t

Pt+k

[
P∗

t

Pt+k

]−ε

− Sn
t+k

Pt+k

[
P∗

t

Pt+k

]−ε
}

FOC:

[P ∗
t ]: P ∗

t Et

∑∞
k=0(βθ)

kQt.t+kYt+kP
ε−1
t+k = ε

ε−1Et

∑∞
k=0(βθ)

kQt.t+kYt+kS
n
t+kP

ϵ−1
t+k

log-linearization:

p∗t = (1− βθ)Et

∑∞
k=0(βθ)

k

real marginal cost︷ ︸︸ ︷
[St+k + Pt+k]

Rearrange:

p∗t = (1− βθ)[st + pt] + βθ

Et
∑∞

t=1[... ]︷ ︸︸ ︷
Etp

∗
t+1 (X)

On the other hand, log linerarize (+):

pt = θpt−1 + (1− θ)p∗t ⇒ p∗t = 1
1−θ −

θ
1−θpt−1

subs. in (X): 1
1−θpt −

θ
1−θpt−1 = (1− βθ)st +

βθ
1−θEtpt+1 − βθ

1−θpt

with πt = pt − pt−1:
θ

1−θπt = (1− βθ)st +
βθ
1−θEtπt+1

to obtain the prices in terms of the output consider st = (ϕ+ σ)xt and add a ’cost push’ shock ũt:

πt = βEtπt+1 + κxt + ũt with k = (1−βθ)(1−θ)(ϕ+σ)
θ

Notes:

- output gap: xt = yt − ynt , where the flexible prices output level can be derived from the EE:

yt − yn
t = Et[yt+1 − yn

t+1]− 1
σ [i− ρ− Etπt+1] + Et∆yt+1n

and then the IS curve can be alternatively set as: xt = Etxt+1 − 1
σ [it − Etπt+1 − rnt ] + εt where rnt =

ρ+ σEt∆ynt+1

- Inflation is forward looking only, has no inertia from past prices.

- The higher nominal rigidity the less sensitive the inflation to the output gap: ↑ θ →↓ κ ⇒ π less sensitive to
x.

- cost push supply shock can be motivated by time-varying mark-up, imperfections in the labor market, labor
income tax, etc.
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5.3 Monetary Policy rule

- Rule vs. discretion: Discretion if time consistent leads to inflation biases (inefficient outcome) whereas a rule
with commitment to time inconsistent rule leads to better outcomes.

- Discretion: each t choose optimally

- Time inconsistent: preferences or choices for action at t+ 1 is different ex-ante at t and expost at t+ 1.

Mechanism: Monetary policy is given by: yt = Mt − Et−1P̄t

- at t = 0 both firms and Central Bank (CB) want low π (low M)

- at t = 1 firms have already commited to P̄t (set the period before). CB has incentive to ↑Mt boosting Yt

- knowing this firms anticipate higher Mt and set higher Et−1Pt ⇒ suboptimal outcome: higher π (inflationary
bias)

- solution: Rule or concervative CB (Rogoff).

How to set interest rate: Instrument vs. Targeting rule

Instrument rule: use i as a policy instrument.
e.g. it = (1− γi)(απt + βxt) + γiit−1

Taylor rule (1993): it = α+ βπ(πt − π∗) + βy(yt − y∗)

Taylor principle: βπ > 1 to ensure equilibrium, i.e. βπ ≈ 1.5, βy ≈ 0.5

Targeting rule: spell out objective explicitly and then make an optimal decision

MP problem: Quadratic loss function

min
{xt,πt}∞

t=0

E0

∑∞
k=0 β

k
[
(πt+k − π∗

t )
2 + λ(xt+k − x∗

t+k)
2
]

s.t. Dynamic IS
NKPC

Here π∗, x∗ are the policy targets. The quadratic loss function was initially ad-hoc, however it can be derived
from a second order approximation of a representative agent’s UMP (i.e. is microfounded).

5.3.1 MP under discretion (No commitment)

- CB chooses {it, πt, xt} to optimize the quadratic objective function. Under discretion CB chooses the
current value of the policty instrument it be reoptimizing each period.

• First find optimal πt and xt subject to NKPC

• Use IS curve to determine it

• it supports the optimal choices of πt, xt

For simplicity assume: π∗ = 0, x∗ = 0, y∗ = yn, the optimization becomes:

min
{xt,πt}

π2
t + λx2

t s.t. πt = κxt + Etπt+1 and Dyn. IS.

Subs. π from the constraint (NKPC) and optimize,
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FOC:

[xt] : κ(κxt +Etπt+1) = −λxt ⇒ xt = −κ
λ
πt (↑ κ(↓ θ), ↓ λ: larger output response to inflation)

Equilibrium:

Assume a cost push process: ut = ρuut−1 + ût, then solve for output and inflation:

πt =
λ

κ2+λ(1−ρuβ)
ût = λϕût

xt = −κϕût

Derive the interest rate from the IS: it =
λρu+κσ(1−ρu)
κ2+λ(1−βρu)

<1

ût + σg̃t

Notice:

- The rational expectations equilibrium has the property that the CB has no incentive to change its path even
if possible

- Therefore the emerging policy is denoted ’Time Consistent’

- Mechanically CB computes optimal geedback rule taking expectations or future prices as given

- Given optimal feedback rule, private sector forms its expectations rationally

- Taylor principle is accomplished

- Policy brings inflation back to target by pushing output gap in opposite direction

- Trade-off between variability (V ar(πt) vs. V ar(xt)); trade-off depends on λ

5.3.2 Optimal MP under commitment

- Credibility and gains from commitment. The context is that one of persistent inflation bias under discretion,
CB target exceeds natural output leading to inflation bias without commitment.

- Set output target k > 0, now: x∗ = k

- CB chooses a plan for the path of interest rates and sticks to it forever

- With a rule, the binding commitment makes believable the policy that emerges in equilibrium

Note:

- CB no longer takes expectations as given, now its policy helps determine expectations

- CB now chooses optimal sequence of π and x subject to NKPC each period

CB solves: min
xt,πt

Et

∑∞
k=0 β

k
[
π2
t+k + λ(xt+k − k)2

]
s.t. πt = βEtπt+1 + κxt + ut

L = − 1
2E0

∑∞
t=0 β

t
(
λx2

t + π2
t + 2γt(πt − κxt − βπt+1)

)
FOC:

[xt] : λxt − κγt = 0 ∀t

[πt] : πt + γt − γt−1 = 0

then from the first equation at t = 0: x0 = −κ
λπ0
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at t = 1, 2, 3, . . . : xt = xt−1 − k
λπt ⇒ ∆xt = − k

λπt

Note:

- History dependence (last equation).

- Time inconsistency (decision is not the same for all t).

Part II

Continuous time models

6 Intro: Optimization in continuous time

The framework is analogous to discrete optimization but the length of the period tends to zero. Consider the
problem with a period of length h = T

n for some n ∈ N:

max
xt,kt

∑
t=0,h,2h,...,T−h

hU(kt, xt, t)

s.t. k0 = k̄

kt+h − kt = hA(kt, xt, t)

kT ≥ 0

L =
∑

hU(kt, xt, t) + λ0(k0 − k̄)

+ λh[hA(kh, xh, h) + k0 − kh]

+ λ2h[hA(k2h, x2h, 2h) + k0 − k2h]

...

+ λT+hkT

FOC:

h[Ux(kt, xt, t) + λt+1Ax(kt, xt, t)] = 0

λt+h − λt = −h[Uk(kt, xt, t) + λt+hAk(kt, xt, t)]

λT kT = 0

λT ≥ 0

The second equation shows that, as h→ 0, λt+h → λt.

Dividing the first two equations by h and taking the limit as h→ 0 we get a continuous time FOC:

Ux(kt, xt, t) + λtAx(kt, xt, t) = 0

Finally taking the time derivative, the continuous time Euler Equation is obtained from the second equation:

λ̇t = −[Uk(kt, xt, t) + λtAk(kt, xt, t)]

in summary, as h→ 0 the continuous time model can be written as:

max
x

∫ T

0
U(k, x, t)dt

k0 = k̄
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k̇ = A(k, x, t)
kT ≥ 0

here variables moving according to dynamic differential equations as k are called state variables, choice vari-
ables that the agent can manipulate are called control variables and multipliers as λ are called co-state variables.

Key results:

• FOC: Ux + λAx = 0

• Euler Equation: λ̇ = −[Uk + λAk]

• Transversality condition: λT kT = 0

• Non-negativity: kT ≥ 0

Hamiltonian

Analogous (not identical) to Lagrangian. The Hamiltonian H is given by:

H = U(k, x, t) + λA(k, x, t)

Hx = 0

Hk = −λ̇

Hλ = k̇

7 Investment model (Tobin-q)

Firm PMP: max
∫∞
t=0

[F (K)− C(I)]e−rtdt

H = [F (K)− C(I)]e−rt + qe−rt[I − K̇]

C(I) = I + h
2 I

2 (cost of adjustment: C(0) = 0, C ′(0) = 1, C ′′(·) > 0)

FOC:

[I] : HI = 0→ −C ′(I)e−rt = −qe−rt → I = q−1
h

[K] : Hk = − ˙(qe−rt)→ F ′
k = rq − q̇ → q̇ = qr − F ′(k)

TVC: lim
t→∞

kqe−rt = 0

K̇ = I then K̇ = q−1
h

Linearize dynamic system:

K̇

q̇

 =

 0 1
h

−F ′′(K) r


K − K̃

q − q̃


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Solve for normalized eigenvector v:

 0−µµµ 1
h

−F ′′(K) r −µµµ


1

v

 =

0

0

 ⇒ v = hµ or v = F ′′(k)
r−µ

therefore solution is: K(t) = K̃ +A1e
µ1t

q(t) = q̃ + vA1e
µ1

where µ1 is the negative eigenvalue
from K(0): A1 = K(0)− K̃

replace A1 = (K̃ −K(0)) and v = F ′′(K)
r−µ1

= µ1h:

q(t) = q̃ + v(K̃ −K(0))eµ1t = q̃ + v(K̃ −K(t)) = q̃ + (K̃ −K(t))F
′′(K)
r−µ1

Phase diagram:

To get the slopes of the dynamic equations use the linearized equations at 0 (SS):

The slope of the stable arm can be obtained from the K and q solution:

q(t)−q̃

K(t)−K̃
= F ′′(K)

r−µ1
= µ1h < 0

Slope of the K̇ = 0 line: K̇ = 0 = 0(K − K̃) + 1
h (q − q̃) then q−q̃

K−K̃
= 0

Slope of the q̇ = 0 line: =̇0 = −F ′′(K)(K − K̃) + r(q − q̃) then q−q̃

K−K̃
= F ′′(K)

r

Slope of stable arm vs. Slope of q̇ = 0: F ′′(K)
r−µ1

< F ′′(K)
r (stable arm is steeper)

Figure 2: Phase diagram - investment model

Shocks:

Differentiate k̇ = 0, q̇ = 0 to get dq̃
dr and dK̃

dr :
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K̇ = 0 = q−1
h ⇒ dq̃

dr̃ = 0

q̇ = 0 = qr − F ′(K̃)→ q̃ +
�
�7

0

dq̃
dr̃ r = F ′′(K̃)dK̃dr

therefore: dK̃
dr = q̃

F ′′(K̃)
< 0

Figure 3: Effect of increase in r

7.1 Set up with labor (L):

V (0) =
∫∞
0

[F (K,L)− wL−H( I
K )K]e−rtdt

s.t. K̇ = I where5: C = I − h
2
I2

K =
(

I
K + h

2
I2

K2K
)

H = [F (K,L)− wL−H
(

I
K

)
K]e−rt + q[I − K̇]e−rt

FOC: (L: control, K: state)

[HL = 0] : FL = w
[HI = 0] : H ′( I

K ) = q

[HK = − ˙(qe−rt)] : FK −H +H ′ I
K = −q̇ + qr

Assuming F (·) is HOD in K,L and substituting FOC:

F (K,L)− wL−H( I
K )K = FkK +���FLL−��wL

= K[−q̇ + qr − q K̇
K ]

= r(qK)− ˙(qK) (product rule reversed in last term)

Then the problem becomes: V (0) =
∫∞
0

[r(qK)− ˙(qK)]e−rtdt

Integrating by parts: V (0) =
∫∞
0

r(qK)e−rtdt−�������: qKe−rt|∞0∫∞
0

˙(qK)e−rt

5H is just the cost function of capital transformed in terms of the ratio investment to capital
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8 Representative Agent model

HH UMP: max
∫∞
0

U(c, l, g)e−βtdt s.t. c+ k̇ + ḃ = wl + rk + rb− T

g: real government expenditure (not a choice variable)
Uc > 0, Ucc < 0
Ug > 0, Ugg < 0
Ul < 0, Ull < 0

Agents: Households (HH), Firms, Government.
choice variables: c, l, k, b where k,b are sluggish variables (states).

H = U(c, l, g)e−βt + qe−βt
[
F (k, l) + rb− T − c− k̇ − ḃ

]
[Hc = 0] : Uc(c, l, g) = λ
[HI = 0] : Ul(c, l, g) = −λFl(k, l)

[Hk = − ˙(qe−rt)] : Fk(k, l) = β − λ̇
λ

[Hb = − ˙(qe−rt)] : r = β − λ̇
λ

(remember the last two come from λr = −λ̇ + λβ)

(Important) from the first two conds: c = c(λ,k,g)
(system is function of λ, k) l = l(λ,k,g)

Gov. BC: ḃ+ T = g + rb
subs. in HH BC: F(k, l)− c− g = k̇ (total feasibility)

The model has multiple variables, to understand the dynamics in terms of λ, k we need to get the partial
effects of the other variables w.r.t. these. Taking g as given we fully differentiate the FOC:

w.r.t. λλλ:

Ucc
∂c
∂λ + Ucl

∂l
∂λ = 1

Ulc
∂c
∂λ + Ull

∂l
∂λ = −Fl(k, l)− λFll

∂l
∂λ

Matricially:Ucc Ucl

Ulc Ull + λFll


 ∂c

∂k

∂l
∂k

 =

 1

−Fl


by Cramer rule we get:

cλ =

∣∣∣∣∣∣∣
1 Ucl

−Fl Ull + λFll

∣∣∣∣∣∣∣
Ucc(Ull+λFll)−U2

cl
= Ull+λFll+FlUcl

Det < 0

Since Det < 0 due to Ucl < 0 (MU of consumption increases in leisure, leisure (labor) and consumption are
complementary (suplementary) goods).
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lλ =

∣∣∣∣∣∣∣
Ucc 1

Ulc −Fl

∣∣∣∣∣∣∣
Ucc(Ull+λFll)−U2

cl
= −UccFl−Ulc

Det > 0

w.r.t. k:

Ucc
∂c
∂k + Ucl

∂l
∂k = 0

Ulc
∂c
∂k + Ull

∂l
∂k = −λFlk(k, l)− λFll(k, l)

∂l
∂k

Matricially:Ucc Ucl

Ulc Ull + λFll


 ∂c

∂k

∂l
∂k

 =

 0

−λFlk


Analogously: ck < 0 and lk > 0 assuming Flk > 0

Therefore the labor and capital are complementary goods. In the same fashion if the capital increases and
labor also does, consumption decreases. Intuitively that can also be thought as the direct effect on the BC
of increasing the capital.

w.r.t. g:

In the same way we get:Ucc Ucl

Ulc Ull + λFll


 ∂c

∂g

∂l
∂g =


−Ucg

−Ulg


with Det = Ucc(Ull + λFll)− U2

cl > 0 (we assume the first term dominates).

The statics cannot be signed unless we know sgn(Ucg)).

Dynamic Equations:

λ̇ = λ[β − Fk(k, l)] gotten from FOC

k̇ = F (k, l)− c− g (gotten from joint BC)

in SS:

F (k̃, l̃(λ̃, k̃, g)) = c(λ̃, k̃, g) + g

β = Fk(k, l(λ̃, k̃, g)) = r

Linearize the equations at SS (i.e. k̇, λ̇ = 0):

k̇

λ̇

 =

 Fk + Fllk − ck Fllλ − cλ

−λ(Fkk + Fkllk) −λFkllλ


k − k̃

λ− λ̃


Notice the a22 term is −λFkllλ instead of β − Fk − λFkllλ, here it is used that β − Fk = 0 in SS.
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We find the standarized eigenvector associated to the negative eigenvalue:

v = µ1−a11

a12
= a21

µ1−a22

v = µ1−Fk−Fllk+ck
Fllλ−cλ

= −λ(Fkk+Fkllk)
µ1+λFkllλ

The solution is given by:

k(t) = k̃ + (k(0)− k̃)eµ1t

λ(t) = λ̃+ v(k(t)− k̃)

Phase diagram

Slope of the Stable Arm:

λ(t)−λ̃

k(t)−k̃
= v = µ1−Fk−Fllk+ck

Fllλ−cλ
= (−)

(+) < 0

Note: the other version of v is consistent, either can be used to determine the sign. The other one, in this
case, allows to determine the positive slope of the unstable arm, i.e., the slope of the solution with the
positive eigenvalue.

Slope of the k̇ = 0 line:

k̇ = 0 = a11(k − k̃) + a12(λ− λ̃) ⇒ λ−λ̃
k−k̃

= a11

−a12

λ−λ̃
k−k̃

= −Fk+Fllk−ck
Fllλ−cλ

< 0

Slope of the λ̇ = 0 line:

λ̇ = 0 = a21(k − k̃) + a22(λ− λ̃) ⇒ λ−λ̃
k−k̃

= −a21

a22

λ−λ̃
k−k̃

= −−λ(Fkk+Fkllk)
−λFkllλ

> 0

Notice that here we assume that Fkllk < Fkk.

Slope of the stable arm vs. Slope of the k̇ = 0 line:

µ1−Fk−Fllk+ck
Fllλ−cλ

> −Fk+Fllk−ck
Fllλ−cλ

⇒ Stable arm is steeper.

Slope of the unstable arm vs. Slope of the λ̇ = 0:

− −λFkllλ
µ2−λ(Fkk+Fkllk)

< − −λFkllλ
−λ(Fkk+Fkllk)

⇒ then λ̇ = 0 line is steeper (more positive).

Figure 4: Effect of increase in r
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Effects of an permanent increase in g: ∆g

We total differentiate the SS equations (i.e. k̇, λ̇ = 0):

(Fk + Fllk − ck)
∂k
∂g + (Fl − cλ)

∂λ
∂g = 1 + cg − Fllg

(Fkk + Fkllk)
∂k
∂g + Fkllλ

∂λ
∂g = −Fkllg

Matricially,Fk + Fllk − ck Fl − cλ

Fkk + Fkllk Fkllλ


 ∂k

∂g

∂λ
∂g

 =

1 + cg − Fllg

−Fkllg


Det = (Fk + Fllk − ck)Fkllλ − (Fkk + Fkllk)(Fl − cλ) > 0

Using Cramer’s method we get expressions for ∂k
∂g ,

∂λ
∂g . Unfortunately, with no further information on lg, cg

these cannot be signed.

However we can still use an additive separable version of the model to do so:

Additive Separable model: U(c, l) + v(g)

Using the same procedure we get: c = c(λ,k)
(notice g is not present) l = l(λ,k)

Then the SS equations gotten are:

F (k̃, l̃(λ̃, k̃)) = c(λ̃, k̃) + g

β = Fk(k, l(λ̃, k̃))

by differentiating the equations we get (same LHS, different RHS due no to partial g effects):

Fk + Fllk − ck Fl − cλ

Fkk + Fkllk Fkllλ


 ∂k

∂g

∂λ
∂g

 =

1

0


using Cramer’s rule:

∂k
∂g = Fkllλ

Det > 0
∂λ
∂g = −Fkk+Fkllk

Det > 0

where we assume |Fkk| > Fkllk

to get the jump in λ we differentiate the solution for λ(t) at t = 0 w.r.t. g:
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λ(t) = λ̃+ v(k(t)− k̃)

∂λ(0)
∂g = ∂λ̃

∂g + v(
�
��>

0
∂k(0)
∂g −

∂k̃
∂g ) > 0

here we observe the resource withdrawal effect: ∆g →↑ T →↓ wealth ⇒↑ λ→↑ L→↑ k ⇒ k̃ > 0, λ̃ > 0

Intertemporal BC:

before k̇ = F (k, l)− c
now ḃ+ k̇ = wl + rk + rb− T − c
let W ≡ b+ k, then:

Ẇ = r

W︷ ︸︸ ︷
(b+ k)+wL− T − c

Ẇ − rW = wL− T − c (diff. eq. form: the function in the LHS)
ė−rt(W − rW ) = e−rt(wL− T − c) (e−rt is the integrating factor)
dWe−rt

dt = e−rt(wL− T − c)

We−rt =
∫ t

0
(wL− T − c)e−rτdτ +W0

W0 is the constant of integration, by taking the limit as t→∞ the LHS tends to zero (assuming W doesn’t
blow up), therefore it must hold that:

W0 = −
∫∞
0

(wL− T − c)e−rτdτ

subs W0 :

We−rt =
∫ t

0
(wL− T − c)e−rτdτ −

∫∞
0

(wL− T − c)e−rτdτ

W = −[
∫∞
t
(wL− T − c)e−rτdτ ]ert

replace the consumption function c(τ) = c(t)e(r−β)(τ−t)

W = −ert
∫∞
t

(
wl − T − c(t)e(r−β)(τ−t)

)
e−rτdτ

solve for c(t): c(t) =
b(t)+k(t)+ert

∫∞
t

(wl−T )e−rτdτ

ert
∫∞
t

e−rt−β(τ−t)

Note: The consumption funtion replaced comes from assuming an additive separable utility function of the
form U = ln(c) + ln(l) and manipulating its FOC:

λ̇ = λ[β − r]
1
c = λ

˙( 1
c

)
= λ̇

− 1
c2 ċ = λ̇

− 1
λ

1
c2 ċ =

λ̇
λ

− ċ
c = λ̇

λ
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using the other FOC:

ċ = c[r − β]
ċ− c[r − β]
d
dt

(
c(t)e−(r−β)t

)
= 0

c(t)e−(r−β)t = c0 ⇒ c(t) = c0e
(r−β)t

then: c(τ) = c(t)e(r−β)(τ−t)

8.1 Rep. Agent model applications

Optimal Taxation

- Set with an additive separable utility for simplicity. HH optimization with taxes:

H = [U(c, l) + V (g)]e−βt + λe−βt[r(1− τk)k + w(1− τw)l − c− k̇]

FOC:
[c] : Uc = λ
[l] : Ul = −λFl = −λw(1− τw)

[k] : r(1− τk) = β − λ̇
λ

in SS: r(1− τk) = β (⋆1)

Getting the implementability constraint: We want to get a BC consistent with an optimizing behaviour
that considers taxes. In order to do that we replace in the regular BC the FOC of the HH UMP with taxes.
That will be a constraint of the central planner afterwards.

k̇ = (β − λ̇
λ )k −

Ul

λ l − c

multiply by λ:

λk̇ + λ̇k = λβk − Ull − λc

Define6 µ ≡ Uck,

µ̇ = βµ− Ull − Ucc [IC: Implementability constraint]

Central Planner optimization:

The central planner tries to get the best possible result maximizing the HH utility subject to both MC and the IC:

H = [U(c, l) + V (g)]e−βt + S1e
−βt[F (k, l)− c− k̇] + S2e

−βt[βµ− Ull − Ucc− µ̇] + θe−βt[Uck − µ]

FOC:

[c] : Uc − S1 − S2[Ulcl + Uc + Uccc] + θUcck = 0
[l] : Ul + S1Fl − S2[Ulll + Ul + Uclc] + θUclk = 0

6new accumulative variable that mimics optimization with taxes
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[k] : S1Fk + θUc = S1β − Ṡ1

[µ] : S2β − θ = Ṡ2 − βS2 → Ṡ2 = θ ⇒ in SS: θ = 0

in the equilibrium at the SS:

k̇ = 0 ⇒ F (k̃, l) = c̃
Ṡ2 = 0 ⇒ θ̃ = 0

Ṡ1 = 0 ⇒ S̃1Fk(k̃, l) + θ̃Uc = S̃1β ⇒ Fk(k̃, l) = β (⋆2)

(⋆1) and (⋆2) are compatible iff τk = 0 (then the optimal allocation implies not taxing the capital).

Finally with this result the MC condition becomes:

k̇ = rk +w(1− τw)l− c and in SS: rw+wl−wlτw − c → τw = g
wl or rather said g = wlτw, i.e., the public

expenditure should be funded entirely by taxes on labor.

Bond - Equity financing

Capital is financed only by bonds (public, private) and equity. In the following model s is the price of equity
stocks, bp, bg are private and public bonds, τc are taxes on capital/stocks gains and τp are taxes on profits.

HH UMP: max
∫∞
0

U(c, l,m, g)e−βtdt

s.t. c+ ḃg + ḃp + ṁ+ sĖ = wl + rgbg + rpbp − p(bg + bp +m) + isE − Th

where Th = τy[wl − rgbg + rpbb + isE]︸ ︷︷ ︸
taxes on income

+ τ [ṡ+ sθ]E︸ ︷︷ ︸
taxes on capital gains

(Taxes paid by firms)

also: Tf = τp[y − wl − rpbp] (Taxes paid by firms)

Bond financing:

FOCs of Firm and HH optimization problem wrt bp evaluated at SS:

(1− τp)fk(k)︸ ︷︷ ︸
tax deduced returns on capital

= rp(1− τp)︸ ︷︷ ︸
returns paid to bond holders

− p︸︷︷︸
inflation: in SS→ Ṁ

M =θ=p

(Firm)

rp(1− τy)− p︸︷︷︸
θ

= β (HH)

From the HH condition: rp = θ+β
1−τy

subst. in the Firm condition: (1− τp)fk(k) = β
(

1−τp
1−τy

)
+

θ(τy−τp)
1−τy

(♣)
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if the last term of the RHS is positive depends on the sign of τy − τp. We will see that depending on the
magnitude of taxes either form of financing can be the optimal one.

Financing with equities:

(1− τp)fk(k) = ī+ ṡ
s (Firms)

ī(1− τy) +
Ṡ
S − τcθ = β (HH)

here: S = sp and Ṡ
S = ṡ

s + p = ṡ
s + θ

then:

ī(1− τy) + (1− τc)
ṡ
s − τcθ = β (HH)

rearrange: ī+ ṡ
s = β+τcθ

1−τc
+

ī(τy−τc)
1−τc

subs. in the firms FOC: (1− τp)fk(k) =
β+τcθ
1−τc

+
ī(τy−τc)
1−τc

(♠)

Miller-Modigliani result: Notice that without taxes we get in each case that fk(k) = β, i.e. the marginal
product of capital is equal as the discount factor as expected. That means that with no distortions how the
firms are financed is irrelevant.

Super neutrality

with bond financing: we take the derivative of (♣):

dk
dθ

= 1
(1−τp)fkk

τy−τp
1−τy

with equity financing: we take the derivative of (♠):

dk
dθ

= 1
(1−τp)fkk

τc
1−τc

Therefore money is not neutral in either case and withouth taxes we have that money is neutral (dkdθ = 0)

Heterogeneity in the Representative agent model

The source of heterogeneity in this model is the endowments of capital:

k̇i = rki + w − ci

Notice the labor provided per agent is 1.

H = 1
γ c

γ
i e

−βt + λie
−βt[rki − w − ci − k̇i]

FOC:

[c] : cγ−1
i = λi

[k] : r = β − λ̇
λ

then, (γ − 1)cγ−2
i ċi = λ̇i

1

cγ−1
i

(γ − 1)cγ−2
i ċi =

1
λ λ̇i

ċi
ci

= λ̇
λ

1
(γ−1) =

r−β
1−γ = ċ

c (constant)

since ċi
ci

is constant (the consumption grows at a constant rate):

ci(t)e
−ct = ci0 and in aggregate terms: c(t)e−ct = c0, then the individual consumption function is:
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ci(t) =
c(t)
L

ci0
c0/L

⇒ the consumption depends on the relative initial endowment with respect to the
population average (θ = ci0

c0/L
).

9 Sidrausky model: Money in Utility

- Money included in utility
- As before, the model is set in real terms but with money holdings involved, the BC is set in terms of the
inflation rate, this rate is present in the dynamics of the real money and bond holdings.

Nominal BC → Real BC

Ḃ + Pc+ P k̇ + Ṁ = PF (k, l) + iB − PT
Ḃ
P + c+ k̇ + Ṁ

P = F (k, l) + iB
P − T

Ḃ
P + c+ k̇ + Ṁ

P = F (k, l) + iB
P − T

Now consider real money/bond holdings dynamics:

˙(M
P

)
= ṀP−MṖ

P 2 ⇒ ṁ = Ṁ
P −m

�
��
ρ

Ṗ
P →

Ṁ
P = ṁ+mρ

then,

ḃ+ bρ+ c+ k̇ + ṁ+mρ = F (k, l) + ib− T
ḃ+ c+ k̇ + ṁ+mρ = F (k, l) + (i− ρ)︸ ︷︷ ︸

r

b− T

ḃ+ c+ k̇ + ṁ+mρ = F (k, l) + rb− T (Real BC)

The UMP is the following:

H = U(c, l,m, g)e−βt + λe−βt(F (k, l) + rb− ρm− c− T − k̇ − ḃ− ṁ)

FOC: (c, l: control; m, k, b: state. FOC: Hcontrol = 0, Hstate = − ˙(λe−βt))

[c] : Uc(c, l,m, g) = λ
[l] : Ul(c, l,m, g) = −λFl(k, l)

[m] : Um(c,l,m,g)
λ − ρ = β − λ̇

λ

[k] : Fk(k, l) = β − λ̇
λ

[b] : r = β − λ̇
λ

From these equations we state that:

c = c(λ, k,m, g)
l = l(λ, k,m, g)
ρ = ρ(λ, k,m, g)
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Therefore the dynamic equations driving the system are: k, λ,m

Goods market clearing conditions: (Gov BC + HH BC)

Goverment Nominal BC: Ḃ + Ṁ = iB − PT + Pg
real BC: ḃ+ bρ+ ṁ+mρ = ib− T − g

subs in HH BC:

k̇ + c+��rb−�T − g = F (k, l) +��rb−�T

k̇ = F (k, l)− c− g

from the FOCs: λ̇ = λ(β − Fk(k, l))

Finally letting Ṁ
M = ϕ (constant growth of money) and rearranging the expression for Ṁ

P :

Ṁ
P = ṁ+mρ
P
M

Ṁ
P = P

M ṁ+ P
M

M
P ρ

ϕ = ṁ
m + ρ

then: ṁ = m(ϕ− ρ)

then the dynamic equations characterizing the system of variables are given by:

k̇ = F (k, l(λ, k,m, g))− c(λ, k,m, g)− g

λ̇ = λ(β − Fk(k, l(λ, k,m, g)))
ṁ = m(ϕ− ρ(λ, k,m, g))

In SS:

F(k̃, l(λ̃, k̃, m̃,g)) = c(λ̃, k̃, m̃,g) + g

Fk(k̃, l(λ̃, k̃, m̃,g)) = βββ

ϕϕϕ = ρρρ(λ̃, k̃, m̃,g)

Linearization:


k̇

λ̇

ṁ

 =


Fk + Fllk − ck Fllλ − cλ Fllm − cm

−λ̃(Fkk + Fkllk) −λ̃(Fkllλ) −λ̃(Fkllm)

−m̃ρk −m̃ρλ −m̃ρm




k − k̃

λ− λ̃

m− m̃


Effects of money in the LR are captured by the elements a13, a2,3 in this matrix. Hence we can see that in
the standard non-separable utility case the money is not neutral in the LR.

Additively separable utility:
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H = [U(c, l, g) + V (m)]e−βt + λe−βt[F (k, l) + rb− c− ρm− T − k̇ − ṁ− ḃ]

FOC:

[c] : Uc(c, l, g) = λ
[l] : Ul(c, l, g) = −λFk(k, l)

[m] : V ′(m)
λ − ρ = β − λ̇

λ

[k] : Fk(k, l) = β − λ̇
λ

[b] : r = β − λ̇
λ

therefore the system is solved for:

c = c(λ, k, g)
l = l(λ, k, g)
ρ = ρ(λ, k,m, g)

See how money doesn’t appear in the SR demands.

The dynamic equations are:

k̇ = F (k, l(λ, k, g))− c(λ, k, g)− g
λ̇ = λ[β − Fk(k, l(λ, k, g))]
ṁ = m[ϕ− ρ(λ, k,m, g)]

Equilibrium (SS):

F (k̃, l(λ̃, k̃, g)) = c(λ̃, k, g) + g
Fk(k̃, l(λ̃, k̃, g)) = β
ϕ = ρ(λ̃, k̃, m̃, g)

In the first two equations is seen how the real part of the economy does not respond to m, effects as dk̃
dg

will not depend on m.

the linearized matrix is:


k̇

λ̇

ṁ

 =


Fk + Fllk − ck Fllλ − cλ 0

−λ̃(Fkk + Fkllk) −λ̃(Fkllλ) 0

−m̃ρk −m̃ρλ −m̃ρm




k − k̃

λ− λ̃

m− m̃


we can see that money is super neutral (”super” because in the linearized matrix we are seeing the effects
of the deviations/variations of m in the dynamics of the system).

Multiplicately separable utility:

H = [U(c, l, g)V (m)]e−βt + λe−βt[F (k, l) + rb− ρm− c− T − k̇ − ḃ− ṁ]
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FOC:

[c] : Uc(c, l, g)V (m) = λ
[l] : Ul(c, l, g)V (m) = −λFk(k, l)

[m] : U(c,l,g)V ′(m)
λ − ρ = β − λ̇

λ

[k] : Fk(k, l) = β − λ̇
λ

[b] : r = β − λ̇
λ

the SR equations have the form:

c = c(λ, k, g,m)
l = l(λ, k, g,m)
ρ = ρ(λ, k,m, g)

The consumption and labor are functions of money. Then the transition path (linearized matrix) will be
affected by money.

However notice how the MRS evaluated at the steady state does not depend m: Uc(c̃,l̃,g)V (m̃)

Ul(c̃,l̃,g)V (m̃)
= − 1

Fl(k̃,l̃)

Then in the LR labor, and consumption don’t depend on m: l = l(λ̃, k̃, g), c = c(λ̃, k̃, g)

Additionally the dynamic equations in the SS don’t depend on m:

F (k̃, l(λ̃, k̃, g)) = c(λ̃, k̃, g) + g
β = Fk(k̃, l(λ̃, k̃, g))

Non-separable utility with inelastic labor:

H = [U(c,m, g)]e−rt + λe−rt[F (k, l) + rb− ρm− c− T − k̇ − ḃ− ṁ]

FOC:

[c] : Uc(c,m, g) = λ

[m] : Um(c,m,g)
λ = β − λ̇

λ

[k] : Fk(k) = β − λ̇
λ

[b] : r = β − λ̇
λ

then the SR optimal conditions are solved for:

c = (λ, k,m, g)
ρ = ρ(λ, k,m, g)

The dynamic equations are:
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k̇ = F (k)− c(λ,m, k, g)− g
λ̇ = λ(β − Fk(k))
ṁ = m(ϕ− ρ(λ, k,m, g))

the LR equilibrium is given by:

F (k̃) = c(λ̃, k̃, m̃, g) + g
Fk(k̃) = β
ϕ = ρ(λ̃, k̃, m̃, g)

therefore with inelastic labor money could impact SR and the transition path, however it doesn’t have
effects in the LR steady state. This is observed in the fact that β determines the marginal product of
capital Fk which determines the capital level and by feasibility the subsequent consumption level (provided
g doesn’t change as stated before).

Summary:

Case Utility f/n Effect of money

General, non-separable U(c, l,m, g) Money is not neutral, nor super neutral

Additive separable U(c, l, g) + V (m) Money is neutral and super neutral (both
in transition path and SS)

Multiplicatively sepa-
rable

U(c, l, g)V (m) Money affects SR and transition path but
money is super neutral in the LR

Non separable with in-
elastic labor

U(c, g,m) Money can impact SR and transition path
but won’t affect LR (in LR marginal prod-
uct of k is determined only by β, setting
k at a certain level, hence doing the same
with c).

10 OLG models (two periods and continuous)

Diamond

HH UMP: max
ct,ct+1

U(ct) +
1

1+θU(ct+1)

s.t ct + st = wt

ct+1 = (1 + rt+1)st

The lifetime BC is: ct +
ct+1

1+rt+1
= wt

then the problem to solve is:

L = U(ct) +
1

1+θU(ct+1) + λ
[
wt − ct +

ct+1

1+rt+1

]
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[ct] : U ′(ct) = λ
[ct+1] :

1
1+θU

′(ct+1) =
λ

1+rt+1

the EE is: U′(ct) =
1+rt+1

1+θ
U′(ct+1)

Firm PMP: maxπ = F (K,N)− rK − wN

using HDO property:

F (K,N) = Nf(k)
FK = Nf ′(k) 1

N = f ′(k)

FN = f(k) +Nf ′(k) K
N2 (−1)→ FN = f(k)− f ′(k)k

Then: r = f ′(k) and w = f(k)− f ′(k)k

Capital market:

Kt+1 = Ntst
Kt+1

Nt

Nt+1

Nt+1
= st ⇒ kt+1 = st

1+n

To go further assume an specific utility function: U = ln(·)

L = ln(ct) +
1

1+θ ln(ct+1) + λ[wt − ct − ct+1

1+rt+1
]

[ct] :
1
ct

= λ

[ct+1] :
1

1+θ
1

ct+1
= λ

1+rt+1

Inverting the EE: ct =
1+θ

1+rt+1
ct+1 (+)

Also assume a CD production function:

maxπ = AKαN1−α − rK − wN

f(k) = Akα and then,
r = f ′(k) = αAkα−1

w = (1− α)Akα

use the (+) in the lifetime BC:

1+θ
1+rt+1

ct+1 +
ct+1

1+rt+1
= wt

ct+1 = 1+rt+1

2+θ (1− α)Akαt and ct =
1+θ
2+θ (1− α)Akαt

also savings are given by:

st = wt − ct = wt − 1+θ
2+θwt ⇒ st =

1
2+θ (1− α)Akαt
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the capital is:

kt+1 = st
1+n ⇒ kt+1 = (1−α)

1+n
1

2+θAkαt

Additionally at the SS: kt+1 = kt = k̃

k̃ = (1−α)
1+n

1
2+θAk̃α

⇒ k̃ =
[

A(1−α)
(1+n)(1+θ)

] 1
1−α

10.1 Social Security schemes

PayGo

HH UMP: max
ct,ct+1

U(ct) +
1

1+θU(ct+1)

s.t ct + st + τττ = wt

ct+1 = (1 + rt+1)st + (1+ n)τττ

subs. st in period one BC,

ct +
ct+1−(1+n)τ

1+rt+1
= wt − τ

ct +
ct+1

1+rt+1
= wt +

τ(n−rt+1)
1+rt+1

[Lifetime BC]

assume U = ln(·):

[ct] :
1
ct

= λ

[ct+1] :
1

1+θ
1

ct+1
= λ

1+rt+1

as before: ct =
1+θ

1+rt+1
ct+1 (+)

subs. for ct+1 in the lifetime BC:

ct +
1

1+rt+1

1+rt+1

1+θ ct︸ ︷︷ ︸
ct+1

= wt +
τ(n−rt+1)
1+rt+1

then,

ct =
(
wt +

τ(n−rt+1)
1+rt+1

)(
1+θ
2+θ

)
ct+1 =

(
wt +

τ(n−rt+1)
1+rt+1

)(
1+rt+1

2+θ

)
the savings are:

st = wt − τ − ct = wt − τ −
(
wt +

τ(n−rt+1)
1+rt+1

)(
1+θ
2+θ

)
and the effect of the social security fee in the savings is:
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∂st
∂τ = −1− (n−rt+1)

1+rt+1

(
1+θ
2+θ

)
< 0 Savings and SS are substitutes

Fully Funded

HH UMP: max
ct,ct+1

U(ct) +
1

1+θU(ct+1)

s.t ct + st + bt = wt

ct+1 = (1+ rt+1)(st + bt)

the EE inverted is: ct =
1+θ

1+rt+1
ct+1

subs. from the periodwise BC: ct = wt − st − bt and ct+1 = (1 + rt+1)(st + bt),

wt − st − bt =
1+θ

���1+rt+1�����(1 + rt+1)(st + bt)

wt = (2 + θ)(st + bt)

st + bt =
wt

2+θ

before (w/o SS): st =
wt

2+θ

therefore if bt <savings w/o SS (compulsory savings are lower than initially planned savings) then the
agent will choose the same aggregate savings as before.

Otherwise the SS system creates a distortion.

Summary

Scheme Return Decision

PayGo 1 + n if r > n the capital
generated using
PayGo is lesser.Fully

Funded
1 + rt+1

10.2 Blanchard (1985) (adding demographic features)

1. Setup

Cohorts are born at period v, there is a constant probability of death at each period p. Then the relevant
discount factor is e−θ(t−v)e−p(t−v) = e−(p+θ)(t−v).

Notice that 1−
∫ t

s
pe−p(τ−s)dτ = e−p(t−v) is the probability of being alive at period t.

H = ln(c(v, t))e−(p+θ)(t−v) + λ(v, t)e−(p+θ)(t−v) [y(v, t) + (r(t)+p)w(v, t)− c(v, t)− wt(v, t)]

w is the wealth (sluggish variable), wt the time derivative and the probability of death is p, the latter
enters in the BC as a premium multiplying the wealth.



57

FOC: (Hc = 0, Hw = −µ̇)

[c] : 1
c(v,t) = λ(v, t)

[w] : λt(v, t) = λ(v, t)[θ − r(t)]

[TV C] : limt→∞ λ(v, t)w(v, t)e−
∫ t
v
(r(s)+p)ds = 0

2. Consumption growth:

− 1
c(v,t)

ct(v,t)
c(v,t) = λt(v, t)

− ct(v,t)
c(v,t) = λt(v,t)

λ(v,t) ⇒ ct(v, t) = [r(t)− θ]c(v, t)

therefore: c(v, τ) = c(v, t)e
∫ τ
t [r(s)−θ]ds

3. Intertemporal Budget Constraint:

wt(v, t) = y(v, t) + (r(t) + p)w(v, t)− c(v, t)

(wt(v, t)− (r(t) + p)w(v, t))e−
∫ t
v
[r(s)+p]ds = (y(v, t)− c(v, t))e−

∫ t
v
[r(s)+p]ds

d
dt

(
w(v, t)e−

∫ t
v
[r(s)+p]ds

)
= (y(v, t)− c(v, t))e−

∫ t
v
[r(s)+p]ds

w(v, t)e−
∫ t
v
[r(s)+p]ds =

∫ t

v
(y(v, τ)− c(v, τ)) e−

∫ τ
v
[r(s)+p]dsdτ + w0

Apply TVC to the LHS and get RHS = 0 as t→∞, then:

w0 = −
∫∞
v

(y(v, τ)− c(v, τ)) e−
∫ τ
v
[r(s)+p]dsdτ

w(v, t)e−
∫ t
v
[r(s)+p]ds = −

∫∞
t

(y(v, τ)− c(v, τ)) e−
∫ τ
v
[r(s)+p]dsdτ

then:

w(v, t) = −
∫∞
t

(y(v, τ)− c(v, τ)) e−
∫ τ
t
[r(s)+p]dsdτ

w(v, t) +

∫ ∞

t

y(v, τ)e−
∫ τ
t
[r(s)+p]dsdτ︸ ︷︷ ︸

h(v,t)

=
∫∞
t

c(v, τ)e−
∫ τ
t
[r(s)+p]dsdτ

w(v, t) + h(v, t) =
∫∞
t

c(v, τ)e−
∫ τ
t
[r(s)+p]dsdτ

subs. c(v, τ) = c(v, t)e
∫ τ
t
[r(s)−θ]ds

w(v, t) + h(v, t) =
∫∞
t

c(v, t)e
∫ τ
t
[r(s)−θ]dse−

∫ τ
t
[r(s)+p]dsdτ

w(v, t) + h(v, t) = c(v, t)
∫∞
t

e
∫ τ
t

−[p+θ]dsdτ

w(v, t) + h(v, t) = c(v, t) 1
p+θ

c(v, t) = (p+ θ)[w(v, t) + h(v, t)]
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4. Aggregation of variables:

- The aggregation is done through cohorts’ birth dates v

The size of population is: P (t) =
∫ t

−∞ pe−p(t−v)dv

in the same fashion the rest of variables are aggregated:

C(t) =
∫ t

−∞ c(v, t)pe−p(t−v)dv

W (t) =
∫ t

−∞ w(v, t)pe−p(t−v)dv

H(t) =
∫ t

−∞ h(v, t)pe−p(t−v)dv =
∫ t
−∞

∫∞
t y(v, τ)e−

∫ τ
t [r(s)+p]dsdτpe−p(t−v)dv

then: C(t) = (p+ θ)[W (t) +H(t)]

5. Dynamic Equations

To get the dynamic equations we use the Leibniz rule for differentiation:(
d
dt

∫ b(t)

a(t)
f(x, t)dx

)
=
∫ b(t)

a(t)
∂f
∂t dx+ f(b(t), t)ḃ′(t)− f(a(t), t)ȧ′(t)

Wealth:

Ẇ (t) = p����: 0
w(t, t)−

∫
pw(vt)(−p)e−p(t−v)dv +

∫ t

−∞ wt(v, t)pe
−p(t−v)dv

Ẇ (t) = −pW (t) +
∫ t

−∞ wt(v, t)pe
−p(t−v)dv

replace wt(v, t) = y(v, t) + (r(t) + p)w(v, t)− c(v, t) from the BC:

Ẇ (t) =
∫ t

−∞[y(v, t)− c(v, t)]pe−p(t−v)dv + (r(t) + �p− �p)W (t)

Ẇ (t) =
∫ t

−∞[y(v, t)− c(v, t)]pe−p(t−v)dv + r(t)W (t)

Ẇ (t) = Y (t) + r(t)W (t)− C(t)

Income:

H(t) =
∫ t

−∞ h(v, t)pe−p(t−v)dv

H(t) =
∫ t

−∞

(∫∞
t

y(v, τ)e−
∫ τ
t
[r(s)+p]dsdτ

)
pe−p(t−v)dv

Change the order of integration,

H(t) =
∫∞
t

(∫ t

−∞
y(v, τ)pe−p(t−v)dv

)
︸ ︷︷ ︸

Y (τ)

e−
∫ τ
t
[r(s)+p]dsdτ

Assume y(v, t) = Y (t) ∀t then Y (τ)
�������: 1∫ t

−∞ pe−p(t−v) = Y (τ)

H(t) =
∫∞
t

Y (τ)e−
∫ τ
t
[r(s)+p]dsdτ

Now using the Leibniz rule:
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for the interior derivative in the following function notice that:
d
dt

(
−

∫ τ
t (r(s) + p)ds

)
= d

dt
(−(R(τ)−R(t))− P (τ − t)) = r(t) + p

Ḣ(t) = 0− Y (t)e������: 0

−
∫ t
t (r(s)+p)ds + (r(t) + p)

∫∞
t Y (τ)e−

∫ τ
t [r(s)+p]dsdτ

Ḣ(t) = (r(t) + p)H(t)− Y (t)

finally,

Ċ(t) = (p+ θ)[Ẇ (t) + Ḣ(t)]

subs. Ẇ (t), Ḣ(t):

·C(t) = (p+ θ)(��Y (t) + r(t)W (t)− C(t) + (r(t) + p)H(t)−��Y (t))
= (p+ θ)(r(t)W (t)− C(t)) + (r(t) + p) [C(t)− (p+ θ)W (t)]︸ ︷︷ ︸

(p+θ)H(t)

Ċ(t) = (r(t)− θ)C(t)− p(p+ θ)W (t)

Example: Small Open Economy dynamics

- r(t) = r (small economy)
- Assets: F = W
- Non asset income: Y (t) = w

Ċ(t) = (r + θ)C(t)− p(p+ θ)F (t)

Ḟ (t) = w + r · F (t)− C(t)

Slope of Ċ = 0 line:

dC
dF

=
p(p+θ)
(r−θ)

Slope of Ḟ = 0 line:

dC
dF

= r

11 Growth Models

11.1 Harrod-Domar

Y = vK
I = S = ∆K
S = sY

⇒ ∆Y = v∆K = v · I = v · sY ⇒ ∆∆∆Y
Y = vs

then output rate is the output to capital ratio times
the savings rate.

11.2 Solow-Swan

- Exogenous savings rate
- Model with depreciation δ and population growth n

Y = F (K,L) (F is assumed to be HOD1)
S = sF (K,L)
K̇ = I − δK
S = I
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L̇
L = n

put the dynamic equation in per-capita terms:

K̇
L = sF (K,L)

L − δK
L

k̇ + nk = sf(k)− δk

k̇ = sf(k)− (δ + n)k

Linearize the equation:

k̇ = (sf ′(k)− (δ + n))[k − k̃]

at the SS:

sf ′(k) = δ + n

other than in k∗ the depreciation exceeds the level of invest-

ment of the opposite, making k∗ the only level of percapita

capital that is steady.

in the SS all variable grow at the same rate:

K̇
K = n:

0 = k̇ = K̇
L − nk

1
K

K̇
L = nK

L
1
K ⇒ K̇

K = n

Ẏ
Y = n: by HOD1 output grows at the rate that factors grow times their shares. Since both L, K grow at n
then output does it as well.

finding the max. level of consumption:

c(k∗) = f(k∗)− (δ + n)k∗︸ ︷︷ ︸
sf(k)

c′(k∗) = f ′(k∗)− (δ + n) = 0 ⇒ f ′(k∗) = (δ + n) Golden rule: Level of k that maximizes c.

such k∗ is denoted as the dynamically efficient capital level.

Savings rate (optimal):
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c =

f︷ ︸︸ ︷
���f ′ · k +

w︷ ︸︸ ︷
(f − f ′ · k)−����(n+ δ)k

= f − f ′ · k = w

f − c = f ′ · k

sf(k∗) = f ′(k∗)k∗ ⇒ s = f ′(k∗)k∗

f(k∗)

since f ′(k∗)k = (n+ δ)k the optimal savings rate is set such that just compensates for depreciation and aging
(pop. growth).

11.3 Ramsey

- First growth model based on intertemporal optimization (microfounded).

HH UMP:

Budget Constraint:

K̇ = wL+ rK − C

in per-capita terms: K̇
L = w + rk − c

rearrange in terms of k̇ (since k̇ = ˙(K
L

)
): k̇ + nk = w + rk − c

k̇ = w + (r − n)k − c

H = ln ce−βt + λe−βt[w + (r + n)k − c− k̇]

FOC:
[c] : 1

c = λ

[k] : λ(r − n) = −(λ̇− βλ) ⇒ (r − n) = β − λ̇
λ

Firm PMP:

π = f(k)− (r+ δ)k − w Notice: Firms discount depreciation (δ) from their profits.

[k] : f ′(k) = r + δ ⇒ w = f(k)− f ′(k) · k

Dynamic equations

subs. r = f ′(k)− δ in the second FOC:

f ′(k)− δ − n = β − λ̇
λ ⇒ − λ̇

λ = f ′(k)− δ − n− β

Consumption growth:

˙( 1
c

)
= λ̇

− 1
c2 ċ = λ̇ ⇒ ċ

c = − λ̇
λ
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ċ
c = f ′(k)− (δ + n+ β)

ċ = c[f ′(k)− (δ + n+ β)]

Capital:

Replace w = f − f ′k and r = f ′ − δδδ in the HH BC:

k̇ = w + (r − n)k − c

k̇ = f(k)− (n+ δ)k − c

In SS:

k̇ = 0 ⇒ f(k) = (δ + n)k + c

ċ = 0 ⇒ f ′(k) = n+ δ + β

Ramsey capital at the SS, i.e., dynamic inefficiency outcome. The resulting capital is lower than optimal.

11.4 Romer

- There are capital (K) externalities externalities, i.e., ceteris paribus a country (even in per-capita terms) is
better the more capital they have (scale effect).
- Given this setup the model is known as AK-model
- This model doesn’t have population growth

y = AkαK1−α

= Akαk1−αN1−α

= AN1−αk

The scale effects are seen here as well (are a consequence of externalities in aggregate K) but given the produc-
tion function it implies the more population the greater the per capita output.

Since there is no population growth notice that the per-capita output grows at the same rate that the per-capita
capital,

ẏ = AN1−αk̇ ⇒ ẏ
y = k̇

k

HH UMP:

BC: taxes are included (both proportional and lump sum)

(1− τ)AkαK1−α − c− T − k̇ = 0

H = ln ce−βt + λe−βt[(1− τ)AkαK1−α − c− T − k̇]

FOC: (Hc = 0, Hk = −µ̇)

[c] : 1
c = λ
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[k] : (1− τ)Aαkα−1K1−α = β − λ̇
λ → (1− τ)AαN1−α = β − λ̇

λ

given that ċ
c = − λ̇

λ ⇒ ċ
c = (1− τ)AαN1−α = ϕ

ċ
c = ϕ (consumption grows at a constant rate)

Consumption function

ċ = cϕ
ċ− ϕc = 0
d
dt

(
ce−ϕt

)
= 0

ce−ϕt = c0 ⇒ c(t) = c0e
ϕt

Capital

HH BC: k̇ = (1− τ)AN1−αk − c− T
Gov BC: τAN1−αk = −T

Summing the BC we get the global feasibility constraint:

k̇ = AN1−αk − c

subs. c(t),

k̇ = AN1−αk − c0e
ϕt

let AN1−α = θ,

k̇ − θk = −c0eϕt

(k̇ − θk)e−θt = −c0eϕte−θt

d
dt

(
ke−θt

)
= −c0eϕte−θt

ke−θt = k0 −
∫ t

0
c0e

(ϕ−θ)sds

by applying the TVC we know that k0 =
∫∞
0

c0e
(ϕ−θ)sds then,

ke−θ =
∫∞
t

c0e
(ϕ−θ)sds

ke−θ = co

[
e(ϕ−θ)s

ϕ−θ

]∞
t

ke−θt = − c0
ϕ−θ e

(ϕ−θ)t

k(t) = c0
θ−ϕ

eϕt
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additionally,

k̇ = ϕ c0
θ−ϕe

θt = ϕk ⇒ k̇ = ϕk

k̇
k = ϕ ⇒ ẏ

y = ϕ

11.5 Comparison between growth models:

The golden rule states that: f ′(k) = n+ δ

or in the Ramsey model (where the firm discount the depreciation from their profits) that:

r︷ ︸︸ ︷
f ′(k)− δ = n, this

can be tested in a basic OLG setup.

U = ln ct +
1

1+θ ln ct+1 s.t. ct +
ct+1

1+rt+1
= wt (Lifetime BC)

FOC: [ct] :
1
ct

= λ

[ct + 1] : 1
1+θ

1
ct

= 1
1+rt+1

λ

⇒ ct+1 =
(

1+rt+1

1+θ

)
ct

subs in the definition of ct+1:

ct+1 = (1 + rt+1)st =
(

1+rt+1

1+θ

)
ct ⇒ ct = (1 + θ)

subs ct in the BC for the first period:

ct + st = wt ⇒ (2 + θ)st = wt

st =
wt

2+θ
= (1−α)Akα

2+θ
where wt = f(k)− f ′(k) · k

Also, assume we are about the SS so that kt = kt+1 and therefore:

(1 + n)kt = st

(1 + n)kt =
(1−α)Akα

2+θ ⇒ (1+n)(2+θ)
(1−α) = Akα−1

t

Now let us consider:

f(k) = Akα − δk (net output given depreciation - Ramsey prod. f/n.).

Notice this function is consistent with the definition of wt above. It is important to mention that the depreciation
of k can be taken out from the output function directly or from the return of capital (as long as it is only taken
out once), in both cases it must hold that r = αAkα−1 − δ

r = αAkα−1 − δ

r = (1−α)Akα

2+θ ⇒ (1+n)(2+θ)
(1−α) − δ ⋛ n
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compared with the golden rule (r − δ = n) we obtain that the OLG model can be dinamically inefficient.

Golden rule in Ramsey model

in Solow model we have: k̇ = sf(k) − (n + δ)k and in Ramsey model the same statement is obtained:
k̇ = f(k)− c− (n+ δ)k.

Therefore the Golden rule is be the same (i.e. the level of capital that maximizes the consumption is the same
in both models): k∗ is such that f(k∗) = n+ δ

However in the Ramsey model the consumption growth is given by:

ċ
c = f ′(k)− (n+ δ + β) and then in SS the level of capital is such that: f ′(kss) = n+ δ + β .

Given that fkk < 0 and f ′(k∗) < f ′(kss) we get that k∗ > kss, i.e., the level of capital obtained in the SS of the
Ramsey model implies a dynamic inefficient result (the optimal accumulated capital should be greater).

Comparison between Romer and Harrod-Domar

- H-D is a labor neutral model (only capital implied) whereas Romer has both factors but externalities on
aggregate capital. Such externalities leads to the AK representation, i.e., in percapita terms the effects of labor
are not present and we are just left with a scale effect.

- These features make the models similar and we will see how in the Romer model we also get that the rate of

change of capital depends on the savings rate times the ratio capital to output: k̇
k = s · v

In H-D Ẏ
Y = sv:

Y = vK → Ẏ = vK̇ = vsY ⇒ Ẏ
Y = v · s

whereas in the Romer model:

y = AN1−αk
ϕ = AαN1−α − β

k = c(0)eϕt

ϕ−θ

k̇ = ϕk

y = AN1−α

k︷ ︸︸ ︷
c(0)eϕt

ϕ− θ

k̇
y = ϕk

AN1−αk = ϕ
AN1−α = s

On the other hand,

Y
K = y

k = AN1−αk
k = AN1−α = v

then: k̇
k = k̇

y
y
k = s · v

Notice that the results are analogous since the Romer

model doesn’t have population growth so that: K̇
K = k̇

k

Other comparisons

H-D: K̇
K = Ẏ

Y − sv ∝ s the savings rate is constant through time and exogenous so there are no transition
dynamics and no population growht in this model.

Solow: k̇
k = ẏ

y = L̇
L = n (exogenous)

The level of capital in the Solow model is the one implied by the golden rule: f ′(k) = n + β. Such level of
capital is greater than in the Ramsey model (kgolden > kss,ramsey) and can be greater than the one implied in
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the OLG model (depends on the parameters).

Extensions to the growth models

Several extensions change the form of the production function: e.g. they can include other factors F (K,L, t)

Y = T (t)F (K,L) Hicks neutral (ratios of factors don’t change)

Y = F (K,A(t)L) Harrod neutral (labor augmented)

Y = F (B(t)K,L) K augmenting

Part III

Workhorses for the RBC model

12 Arrow-Debreu Economy

A competitive Arrow-Debreu (A-D) equilibrium are prices {p̂t}∞t=0 and allocations
(
{ĉit}∞t=0

)
i=1,2

such that:

1. Given p̂, for all i, {ĉit}∞t=0 solves:

max
{cit}∞

t=0

∞∑
t=0

βt ln(cit)

s.t.

∞∑
t=0

p̂tc
i
t ≤

∞∑
t=0

p̂te
i
t

cit ≥ 0 ∀t

2.
ĉ1t + ĉ2t = e1t + e2t ∀t

Solving for the equilibrium:
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assume the deterministic endowment stream given by:

e1t =

{
2 if t is even

0 if t is odd
, e2t =

{
0 if t is even

2 if t is odd

L =
∑

t β
t ln cit + λi

(∑
t pt(e

i
t − cit)

)
[cit] :

βt

cit
= λipt

[cit+1] :
βt+1

cit+1
= λipt+1

then: pt+1c
i
t+1 = βptc

i
t

sum over i: pt+1

(
c1t+1 + c2t+1

)︸ ︷︷ ︸
e1t+1+e2t+1=2

= βpt
(
c1t + c2t

)︸ ︷︷ ︸
e1t+e2t=2

hence: pt+1 = βpt
in general: pt = βtp0

Normalize p0 = 1 ⇒ p̂t = βt,
subs. in pt+1c

i
t+1 = βptc

i
t → βt+1cit+1 = ββtcit

we get that cit+1 = cit

subs. in the LHS of the BC:
∑∞

t=0 p̂tc
i
t = ci0

∑∞
t=0 β

t

= ci0
1

1−β

Now consider the RHS:

for i = 1,∑
ê1t = (β02 + β10 + β22 + β30 + · · · )
= 2(1 + β2 + β4 + · · · )
= 2

∑
β2t = 2

1−β2

for i = 2,∑
ê2t = (β00 + β12 + β20 + β32 + · · · )
= 2β(1 + β2 + β4 + · · · )
= 2β

∑
β2t = 2β

1−β2

therefore: LHS = RHS

c1t = c10 = (1− β) 2
1−β2 = 2

1+β
> 1

c2t = c20 = (1− β) 2β
1−β2 = 2β

1+β
< 1

then in the equilibrium the first agent is better off due
to the fact that he receives positive endowments sooner,
when they are better regarded. Additionally trade is the
best option because in autharky the logaritmic function
implies a lifetime utility of u(ei) = −∞

Pareto Optimal Allocation and First Welfare Theorem:

Pareto Optimal allocation: ĉi is P.O. if feasible (
∑

cit ≤
∑

eit ∀t, i) and ∄c̃i that is feasible and u(c̃i) ≥ u(c̃i) ∀i
with at least one strict inequality for some i.

First Welfare Theorem: Let ĉi be a W.E. then it is also a P.O.

Proof: (by contradiction)

Suppose not, then ∃ a c̃i that is feasible and: u(c̃i) ≥ u(c̃i) ∀i with some strict inequality. WLOG suppose
the strict inequality holds for i = 1.

we have that necessarily:
∑

p̂tc̃
1
t >

∑
p̂tĉ

1
t if not then a better allocation could be bought

also:
∑

p̂tc̃
2
t ≥

∑
p̂tĉ

2
t

If not, i.e.
∑

p̂tc̃
2
t <

∑
p̂tĉ

2
t then ∃δ > 0 s.t.

∑
p̂tc̃

2
t + δ =

∑
p̂tĉ

2
t

then let č2t = c̃20 + δ for t = 0 and č2t = c̃2t for t ≥ 1 ⇒ u(č2) > u(c̃2) ≥ u(ĉ2) which is contradictory since ĉ2

is an equilibrium allocation.

then summing we have:
∑

t p̂t(c̃
1
t + c̃2t ) >

∑
t p̂t(ĉ

1
t + ĉ2t )

Also by feasibility: c̃1t + c̃2t = ĉ1t + ĉ2t = e1t + e2t then:
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∑
t

p̂t(e
1
t + e2t ) >

∑
t

p̂t(e
1
t + e2t ) →← ■

Negishi’s method: Method to compute equilibria for economies in which the welfare theorems hold, the idea
is to get P.O. allocations solving a social planner’s problem, i.e., with no prices involved.

Social Planner’s Problem (SPP):

max
{c1t ,c2t}∞

t=0

α1u(c1) + α2u(c2) =
∑
t

βt
[
α1 ln c1t + α2 ln c2t

]
s.t.

cit ≥ 0

c1t + c2t = e1t + e2t ≡ 2 ∀t

Proposition: Any c1, c2 that solves the SPP for some α > 0 is P.O.
Proposition: Any P.O. allocation c1, c2 is the solution to the SPP for some α ≥ 0, α ̸= 0

Solving the problem above:

L =
∑

t β
t
[
α1 ln c1t + α2 ln c2t

]
+
∑

t
µt

2 (2− c1t − c2t )

[c1t ]
α1βt

c1t
= µt

2

[c2t ]
α2βt

c2t
= µt

2

c1t
c2t

= α1

α2 → c1t = α1

α2 c
2
t ,

subs. in the BC: c1t + c2t = 2
α1

α2 c
2
t + c2t = 2

⇒ c2t = 2

1+
α1

α2

= c2t (α), c1t (α) =
2

1+
α2

α1

Summing FOCs (1) and (2):

µt = (α1 + α2)βt or µt = βt with
∑

i α
i = 1

then: PO: (c1, c2) :

{
c2t = 2

1+
α1

α2

= c2t (α), c1t (α) =
2

1+
α2

α1

for α1

α2
∈ [0,∞)

}
also notice that if pareto weights αi and the Lagrange multipliers λi are related by λi =

1
2αi the FOC of both

SPP and UMP are the same.

before we saw that in the AD equilibrium the prices were p̂t = βt, i.e., pt = µt. It remains to show that the
allocation found is feasible, to do so let us define a function of transfers for a given α:

ti(α) =
∑

t µt[c
i
t(α)− eit] (transfer function)

we look for α s.t. ti(α) = 0
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the transfers are the amount of numeraire good that the agent needs to be transferred to be able to afford the
P.O. allocation given α

subs. the condition µt = (α1 + α2)βt: ti(α) =
∑

t(α
1 + α2)βt[cit(α)− eit]

we can sum both transfer functions, they add to zero and can be expressed in terms of the resource constraint:

∑2
i=1 t

i(α) =
∑2

i=1

∑
t µt[c

i
t(α) − eit] =

∑2
i=1 µt

∑
t

[cit(α)− eit]︸ ︷︷ ︸
0

= 0 with this we have effectively one less

equation, e.g. (t1(α) = 0) and one unknown α1/α2

then reconsider normalization (α1 + α2 = 1) :

t1(α) =
∑

t β
t[c1t (α)− e1t ]

subs. c1t (α) =
2

1+α2/α1
,

t1(α) =
∑

t β
t[ 2

1+α2/α1
− e1t ] =

2
(1−β)(1+α2/α1) −

2

1− β2︸ ︷︷ ︸
(1−β)(1+β)

= 0

rearrange:

1
1+α2/α1 = 1

1+β ⇒ α2

α1
= β

then: c1t = 2
1+β and c2t = 2β

1+β

with pt = µt = βt

Summary: (Negishi’s method)

1. Solve SPP for the P.O. allocations with α = (α1, α2) > 0

2. Compute transfers ti(α) that make the allocation affordable. As prices use the lagrange multipliers.

3. Find normalized pareto relative weights that makes transfers be zero (α̂).

4. P.O. are the equilibrium allocations after substituting α. The supporting prices are the lagrange multipliers
µt.

Note: to solve for the equilibrium directly involves solving an infinite number of equations in an infinite number
of unknowns. The Neguishi methods reduces the computation to a finite number of equations and unknows in
the step 3.

13 Sequential Markets

- Trade has place each period (not all predetermined at period 0 as before).

- Change is carried out using bonds. The bond is a claim to pay 1 unit of consumption good in period t+ 1 in
exchange for 1

1+rt+1
units of the good in period t.
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Sequential Markets equilibrium (SM)

SM equilibrium is allocations {(ĉit, âit+1)i=1,2}∞t=0 and interest rates {r̂t+1}∞t=0 such that for all i:

1. given interest rates {r̂t+1}∞t=0, the allocation {(ĉit, âit+1)i=1,2}∞t=0 solves:

max

∞∑
t=0

βt ln cit

s.t.

cit +
ait+1

1 + rt+1
≤ eit + ait

cit ≥ 0 ∀i, t

ait+1 ≥ −A−i (Borrowing constraint)

2. MC: for all t ≥ 0:
2∑

i=1

ĉit =

2∑
i=1

eit

2∑
i=1

at+1i = 0

Proposition: An allocation forming an A-D equilibrium can be supported as a SM equilibrium

Let {(ĉit)i=1,2}∞t=0, {p̂t}∞t=0 form an equilibrium with p̂t+1

p̂t
≤ ε < 1 ∀t then ∃(Āi)i=1,2 and a SM equilibrium

{(c̃it, ãit+1)}∞t=0 and {rt+1}∞t=0 s.t. c̃it = ĉit ∀i, t.

Reversely, let (ĉit, â
i
t+1)

∞
t=0, {r̂t+1}∞t=0 be a SM equilibrium. Suppose it satisfies âit+1 > −Āi and r̂t+1 ≥ ε >

0 ∀i, t ⇒ ∃ and A-D equilibrium c̃i, p̃ such that ĉit = c̃it ∀t.

Sketch of the proof:

1. Show that BCAD = BCSM

2. Find Āi large enough such that AD solution doesn’t violate the no Ponzi condition when made a SM equi-
librium.
3. Show SM equilibrium can be made into an AD equilibrium. This will be given because the additional con-
straint âit+1 ≥ −Āi is not binding, then even if the set over which the maximization is done is bigger in the AD
framework, the additional constraint is not conflicting and the optimal would be the same in both cases.

The most important part is the step 1, the rest can be argued more briefly.

Step 1: BCAD = BCSM

Set p̂0 = 1

use 1 + r̂t+1 = p̂t

p̂t+1

and consider the sequence of SM BC:

ci0 +
ai
1

1+r̂1
= ei0

ci1 +
ai
2

1+r2
= ei1 + ai1

...

cit +
ai
t+1

1+r̂t+1
= eit + ait

subs. for ai1 in first BC from the second one:

ci0 +
ci1

1+r̂1
+

ai
2

(1+r̂1)(1+r̂2)
= ei0 +

ei1
1+r̂1

keep doing the same procedure to leave only the last
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bond present in the BC:∑T
t=0

cit∏t
j=1(1+r̂j)

+
ai
T+1∏T+1

j=1 (1+r̂j)
=
∑T

t=0
eit∏t

j=1(1+r̂j)

Note:
∏t

j=1(1 + r̂j) =
p̂0

p̂1

p̂1

p̂2

p̂2

p̂3
· · · p̂t−1

p̂t
= p0

pt
= 1

p̂t

subs. and take limits as T →∞,∑∞
t=0 p̂tc

i
t + lim

T→∞

ai
T+1∏T+1

j=1 (1+r̂j)
=
∑∞

t=0 p̂te
i
t

also:

lim
T→∞

ai
T+1∏T+1

j=1 (1+r̂j)
≥ 0 (the expression is at the least

zero)

lim
T→∞

∏T+1
j=1 (1 + r̂j) =∞ (the denominator explodes)

then taking out the bond term we have:

∑∞
t=0 p̂tc

i
t ≤

∑∞
t=0 p̂te

i
t

14 New-classical Growth Model (NGM)

- 3 goods: labor nt, capital kt and final good ouput yt
- yt can be consumed ct or invested it
- Technology: yt = F (kt, nt)

yt = ct + it
kt+1 = (1− δ)kt + it ⇒ it = kt+1 − (1− δ)kt

- kt+1 ≥ 0 but not necessarilly it ≥ 0, i.e., capital can be disinvested and eaten.
- Information: No risk, HH and firms have perfect foresight
- Preferences: u(c) =

∑∞
t=0 β

tU(ct)

SPP - Sequential formulation:

w(k̄0) = max
ct,kt,nt

∞∑
t=0

βtU(ct)

s.t. F (kt, nt) = ct + kt+1 − (1− δ)kt

ct ≥ 0, kt ≥ 0, 0 ≤ nt ≤ 1

k0 ≤ k̄0

U(·) ⊂ C functions (continuously, differentiable), F (·) is HOD1 and both safisfy the inada conditions. Using
these properties define:

f(k) = F (k, 1) + (1− δ)k (amount of final good available for c or i)

with f the consumption can be expressed as: ct = f(kt)− kt+1

then SPP can be simplified to:

w(k̄0) = max
kt+1

∞∑
t=0

βtU(f(kt)− kt+1)

s.t. 0 ≤ kt+1 ≤ f(kt)

k0 ≤ k̄0 given

as stated before in the Dynamic Programming section this problem is equivalent to the following Bellman
equation:

w(k0) = max
0≤k1≤f(k0)

U(f(k0)− k1) + βw(k1)
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The solution methods for the former are the guess and verify method, the analytical method and the numerical
approach. Refer to the DP section for further details.

Euler Equation and Transversality condition approach

In general the numerical approach will approximate the solution to the SPP problem. Notwithstanding, in some
cases the sequential problem can be solved directly too. In such setup the finite and infinite horizon problems
are similar except that the latter uses the TVC condition.

The SPP is:

wT (k̄0) = max
{kt+1}T

t=0

T∑
t=0

βtU(f(kt)− kt+1)

s.t. 0 ≤ kt+1 ≤ f(kt)

k0 ≤ k̄0 given

L = U(f(k0)− k1) + · · ·+ βtU(f(kt)− kt+1) + βt+1U(f(kt+1)− kt+2) + · · ·+ βTU(f(kT )− kT+1)

FOC:

[kt+1] : U ′(f(kt)− kt+1) = βU ′(f(kt+1)− kt+2)f
′(kt+1) ∀t = ¯0, T (Euler Equation)

Ex: U(c) = ln(c), f(k) = kα then the EE is:

1

kαt − kt+1
= β

1

kαt+1 − kt+2
αkα−1

t+1

rerranging: kαt+1 − kt+2 = αβdα−1
t+1 (k

α
t − kt+1)

define zt =
kt+1

kα
t

(fraction of output saved). Divide by kt+1:

1− zt+1 =
αβ(kαt − kt+1)

kt+1
= αβ

(
1

zt
− 1

)
zt =

αβ

1 + αβ − zt+1

then:

kt+1 = αβ
1− (αβ)T−t

1− (αβ)T−t+1
kαt

ct =
1− αβ

1− (αβ)T−t+1
kαt

for the infinite take logs of the variables ln ct, ln kt, replace that of capital in the former and replace in the value
function.
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In this specific case we can also find the limit as T →∞ of the kt+1 function:

lim
T→∞

kt+1 = lim
T→∞

αβ
1− (αβ)T−t

1− (αβ)T−t+1
kαt

lim
T→∞

kt+1 = αβkαt

it is important to mention that is not the case in general that the optimal policy is the limit of the optimal
policy for the T-horizon case.

Infinite horizon case

wT (k̄0) = max
{kt+1}∞

t=0

T∑
t=0

βtU(f(kt)− kt+1)

s.t. 0 ≤ kt+1 ≤ f(kt)

k0 ≤ k̄0 given

the period utility is strictly concave and the constraint set is convex, then the first order conditions are nec-
essary conditions to characterize an optimal sequence {kt+1}∞t=0. The FOC w.r.t. kt+1 gives the Euler Equation:

U ′(f(kt)− kt+1) = βU ′(f(kt+1)− kt+2)f
′(kt+1) ∀t = 0, 1, · · · , t, · · ·

instead of a terminal condition (absent because of the infinite nature of the problem) we use a transversality
condition:

lim
t→∞

βtU ′(f(kt)− kt+1)f
′(kt)kt = 0

The TVC says that the value of the capital stock measured in terms of discounted utility goes to zero as time
goes to infinity.

TVC (standard definition)

the TVC stated above is lim
t→∞

βtU ′(f(kt)− kt+1)f
′(kt)kt = 0 this is analog to the its common definition:

lim
t→∞

λtkt+1 = 0

where λt is the Lagrange multiplier on the ocnstraint ct + kt+1 = f(kt).

The FOCs of the SPP state that:

βtU ′(ct) = λt

βtU ′(f(kt)− kt+1) = λt

then the TVC is:

lim
t→∞

βtU ′(f(kt)− kt+1) = λt
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this TVC is equivalent to the initially stated, to get from one to the other we can rearrange the expression
and use the EE:

lim
t→∞

βtU ′(f(kt)− kt+1)kt+1 = 0

lim
t→∞

βt−1U ′(f(kt−1)− kt)kt = 0 (in t-1)

lim
t→∞

βt−1

RHS of EE︷ ︸︸ ︷
βU ′(f(kt)− kt+1)f

′(kt) kt = 0 (using EE in t-1)

lim
t→∞

βtU ′(f(kt)− kt+1)f
′(kt)kt = 0

[Theorem] Sufficiency of the EE and TVC

let U(·), F (·), β (and thus f(·)) satisfy the assumptions 1 and 2 (U,F is a C1 function satisfying the inada
conditions and F is HOD1) then an allocation {kt+1}∞t=0 that satisfies the Euler equations and the TVC solves
the sequential social planners problem, for a given k0.

with these result we can continue the example for the logaritmic utility and CD production function. The TVC
is:

lim
t→∞

βtU ′(f(kt)− kt+1)f
′(kt)kt = lim

t→∞

αβtkαt
kαt − kt+1

= lim
t→∞

αβt

1− kt+1

kα
t

= lim
t→∞

αβt

1− zt

also the EE stated that: zt+1 = 1 + αβ − αβ
zt

Now, we can solve the EE guessing an initial value for z0, it turns that only one gues doesn’t violate the TVC
or the non-negativity constraint on capital or consumption: z0 = αβ

lim
t→∞

αβt

1− zt
= lim

t→∞

αβt

1− αβ
= 0

therefore from the definition of zt we have that kt+1 = αβkαt

Steady State:

in the SS ct+1 = ct and the EE becomes:
βf ′(k∗) = 1

f ′(k∗) = 1 + ρ

and since f ′(k∗) = Fk(k, 1) + 1− δ then:
Fk(k

∗, 1)− δ = ρ (modified golden rule)

in the example:

αk∗α−1 =
1

β
⇒ k∗ = (αβ)

1
1−α

we can get the same result using the optimal policy function with kt+1 = kt = k∗:
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k = αβkα ⇒ k∗ = (αβ)
1

1−α

finally the modified golden rule comes from the fact that in this case the social planner finds optimal to set the
capital k∗ < kgolden as seen in previous sections (dynamically inefficient outcome). This means that the social
planner considers the impatience of the representative agent.7

Remark on balanced growth

Consider populatin growth and labor augmenting technology: Nt = (1 + n)t

Labor augmenting technology: F (Kt, (1 + g)tNt)

In such case we define the growth adjusted per capita variables as:

c̃t =
ct

(1+g)t

k̃t =
kt

(1+g)t = Kt

(1+n)t(1+g)t

with these transformations the model with growth and technology is no harder to analyze than the benchmark
model. To do this we have to redefine the time discount factor, deflate all per-capita variables by technological
progress, all aggregate variables in addition population growth, and pre-multiply effective capital tomorrow by
(1 + n)(1 + g).

Competitive equilibrium growth

A-D equilibrium

prices {pt, wt, rt}∞t=0, allocations for the firm {ct, it, xt+1, k
s
t , n

s
t} and alocations for the HH {ct, it, xt+1, k

s
t , n

s
t}

such that:

1. Given prices {pt, wt, rt}∞t=0 the allocation of the reprsentative firm {ct, it, xt+1, k
s
t , n

s
t} solves PMP:

π = max
{yt,kt,nt}

∞∑
t=0

pt(yt − rtkt − wtnt)

s.t. yt = F (kt, nt) ∀t

yt, kt, nt ≥ 0

2. Given prices {pt, wt, rt}∞t=0 the allocation of the HH solves UMP:

max
{ct,it,xt+1,kt,nt}

∞∑
t=0

βtU(ct)

s.t.
∞∑
t=0

pt(ct + it) ≤
∞∑
t=0

pt(rtkt + wtnt) + π

xt+1 = (1− δ)xt + it

0 ≤ nt ≤ 1, 0 ≤ kt ≤ xt

3. MC

7Recall that the consumption is c = f(k) − k and the capital that maximizes the consumption satisfies f ′(kgolden) = 1 or
Fk(k

golden,1)− δ = 0
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yt = ct + it (Goods mkt)

nd
t = ns

t (Labor mkt)

kdt = kst (Capital services mkt)

in the equilibrium we will have:
kt = kdt = kst

nt = nd
t = ns

t

Also from the FF optimization and given the production function F (·) is HOD1:

rt = Fk(kt, nt)

wt = Fn(kt, nt)

then by Euler’s Theorem F (kt, nt) = rtkt + wtnt ⇒ π = 0

On the HH side we will have nt = 1, kt = xt and therefore it = kt+1 − (1− δ)kt and hence,

F (kt, 1) = ct +

it︷ ︸︸ ︷
kt+1 − (1− δ)kt

f(kt) = ct + kt+1

then we can rewrite the HH UMP as:

max
{ct,kt+1}

∞∑
t=0

βtU(ct)

s.t.
∞∑
t=0

pt(ct + kt+1 − (1− δ)kt) ≤
∞∑
t=0

pt(rtkt + wt)

ct, kt+1 ≥ 0 ∀t ≥ 0

k0 given

FOC:

[ct] : βtU ′(ct) = µpt
[ct+1] : βt+1U ′(ct+1) = µpt+1

[kt+1] : µpt = µ(1− δ + rt+1)pt+1

The corresponding EE is:

βU ′(ct+1)

U ′(ct)
=

pt+1

pt
=

1

1 + rt+1 − δ

this is the identical EE shown in the SPP:8

f ′(kt+1)︷ ︸︸ ︷
(1 + rt+1 − δ)βU ′(ct+1) =

U ′(f(kt)−kt+1)︷ ︸︸ ︷
U ′(ct)

8rt = Fk(kt, 1) = f ′(kt)− (1− δ) ⇒ f ′(kt) = rt + (1− δ)
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also the TVC is:

lim
t→∞

ptkt+1 = 0

using the EE from the SPP, this condition is shown equivalent to the one in the SPP:

lim
t→∞

ptkt+1 =
1

µ
lim
t→∞

βtU ′(ct)kt+1 =
1

µ
lim
t→∞

βtU ′(f(kt)− kt+1)f
′(kt)kt+1 = 0

then we have the same EE and TVC which means that {kt+1} is a P.O. if it is a Competitive Equilibrium
allocation.

After the solution is found the rest of the equilibrium can be tracked down easily:

ct = f(kt)− kt+1

yt = F (kt, 1)
it = yt − ct
nt = 1

the same with factor prices:

rt = Fk(kt, 1) and wt = Fn(kt, 1)

finally prices are derived from the EE given p0 = 1:

pt+1

pt

pt
pt−1

pt−1

pt−2
· · · p1

p0
= βt+1U

′(ct+1)

U ′(ct)

U ′(ct)

U ′(ct−1)
· · · U

′(c1)

U ′(c0)

pt+1 = βt+1U
′(ct+1)

U ′(c0)
=

t∏
τ=0

1

1 + rτ+1 − δ

Sequential Markets Equilibrium

Prices {wt, rt}∞t=0, HH allocations {ct, kst+1} and firm allocations {nd
t , k

d
t } s.t.

1. Given k0 and prices {wt, rt}∞t=0, the allocation {ct, kst+1} solves the sequential HH-UMP:

max
{ct,kt+1}

∞∑
t=0

βtU(ct)

s.t. ct + kt+1 − (1− δ)kt ≤ rtkt + wt

ct, kt+1 ≥ 0

k0 given

2. Given prices {wt, rt}∞t=0, for each t ≥ 0, the firm allocation {nd
t , k

d
t } solves the PMP:

max
kt,nt≥0

F (kt, nt)− wtnt − rtkt

3. MC: for all t ≥ 0
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nd
t = 1

kdt = kst

F (kdt , n
d
t ) = ct + kst+1 − (1− δ)kst

Recursive competitive equilibrium

In general the SPP needs to be solved recursively. In models where the equilibrium is not P.O. (some of the
assumptions of the welfare theorems is not satisfied) is necessary to use a recursive framework via the Bellman
equation.

14.1 General NGM setup with leisure-labor tradeoff and population growth

- In general as stated before the model can include non stationary variables. All we need is to re state the
problem in terms of efficiency variables (stationary or growth deflated).

Competitive equilibrium

sequences {ct, hs
t , k

s
t+1, Nt+1,K

d
t , H

d
t }∞t=0 and prices {pt, rt, wt}∞t=0 such that:

1. Given the prices {pt, rt, wt}∞t=0 the sequences prices {ct, hs
t , k

s
t+1}∞t=0 solve the HH-UMP,

max
{ct,kt+1,ht}∞

t=0

∞∑
t=0

βtNtu(ct,1− ht)

s.t.
∞∑
t=0

ptNt(ct + (1+ n)kt+1) =

∞∑
t=0

ptNt[wtht + (rt + 1− δ)kt]

ct, kt > 0, 0 < ht < 1 ∀t

2. Given prices {pt, rt, wt}∞t=0, the sequences {Kd
t , H

d
t }∞t=0 solve the firm’s PMP for each t:

max
Kt,Ht

F (Kt,Ht, t)− rtKt − wtHt

3. MC:

hs
tNt = Kd

t

kstNt = Kd
t

ctNt +Ks
t+1 − (1− δ)Ks

t = F (Kd
t , H

d
t , t)

4. Population evolves according to Nt+1 = Nt(1 + n)

Solving for the equilibrium conditions: Set the Lagrangian,

L =

∞∑
t=0

βtNtu(ct, 1− ht)− λ

∞∑
t=0

ptNt[ct + kt+1 − wtht − (rt + 1− δ)kt]
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FOC

[ct]: βtu1(ct, 1− ht)Nt = λptNt

[ht]: −βtu2(ct, 1− ht)Nt = −λptNtwt

[kt+1]: λptNt(1 + n) = λpt+1Nt+1(rt+1 + 1− δ)

from these equations we get the intratemporal (H1) and intertemporal (H2) tradeoff equations:

u2(ct, 1− ht) = wtu1(ct, 1− ht) [H1]

u1(ct, 1− ht) = βu1(ct+1, 1− ht+1)(rt+1 + 1− δ) [H2]

Also from the firm’s PMP FOC we have:

rt = F1(Kt, Ht, t) = F1(kt, ht, t) [F1]

wt = F2(Kt, Ht, t) = F2(kt, ht, t) [F2]

On the other hand the aggregate goods market MC condition is:

Ct +Kt+1 = F (Kt, Ht, t) + (1− δ)Kt

in per-capita terms (divide by (Nt)):

ct + kt+1(1 + n) = F (kt, ht, t) + (1− δ)kt [M]

Finally the remaining condition is the TVC:

lim
t→∞

ptkt+1 = 0

lim
t→∞

pt−1kt = 0

lim
t→∞

βt−1u1(ct−1, 1− ht−1)

λ
kt = 0

lim
t→∞

βtu1(ct, 1− ht)(rt + 1− δ)

λ
kt = 0 [TVC]

the equilibrium would be a path that satisfies [H1], [H2], [F1], [F2], [M ], [TV C]

Solving for the equilibrium

Suppose the following functional forms

u(c1, 1− ht) = ln ct + η ln(1− ht)

F (kt, ht, t) = Akαt ((1 + g)tht)
1−α

the equilibrium conditions becomes:
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η

1− ht
=

wt

ct
[H1]

1

ct
=

β

ct+1
(rt+1 + 1− δ) [H2]

rt = Aα(1 + g)t(1−α)

(
ht

kt

)1−α

[F1]

wt = A(1− α)(1 + g)t(1−α)

(
kt
ht

)α

[F2]

ct + kt+1(1 + n) = Akαt ((1 + g)tht)
1−α + (1− δ)kt [M]

Proposition: most of the variables grow at the same rate and the rest do not grow. That is: 1 + γc = 1+ γk =
1 + γw = 1 + γy = 1 + g and γr = γh = 0

Proof: Assume the proposition is correct (balanced growth - BG) then the equations can be writen as:

ηct = wt − htwt [H1BG]

1 + γc = β(rt+1 + 1− δ) [H2BG]

1 + γr =

(
(1 + g)(1 + γh)

1 + γk

)1−α

[F1BG]

1 + γw = (1 + g)(1−α)

(
1 + γk
1 + γh

)α

[F2BG]

ct
kt
+(1 + γk)(1 + n) =

rt
α

+ (1− δ) [MBG]

where the equations [F1BG], [F2BG] where put in terms of growth rates by dividing the equations in t+ 1 over
the corresponding in the t, the equation [H2BG] was rearranged and the equation [MBG] was divided by kt:

from [H2BG]: γr = 0

then from [F1BG]: (1 + g)(1 + γh) = 1 + γk

subs. in [F2BG]: 1 + γw = 1 + g

from [MBG]: the RHS is still (γr = 0) and then the LHS too which implies ct
kt

is constant through t then
γc = γk

also [H1BG] implies that γh = 0 since it should hold that 1 + γc = 1 + γw = (1 + γw)(1 + γh)

finally from yt = Akαt ((1 + g)tht)
1−α in t, t+ 1: 1 + γy = (1 + γk)

α((1 + g)(1 + γh))
1−α = 1 + g ■

This property (all variables growing at the same positive rate or being still) can be used to redefine the model
and using the standard procedure for the model with g = 0.

Re-define the variables as efficiency variables dividing by (1 + g)t:
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ĉt =
ct

(1 + g)t

k̂t =
kt

(1 + g)t

ŵt =
wt

(1 + g)t

ĥt = ht

r̂t = rt

the equilibrium conditions in terms of the efficiency variables are:

η

1− ĥt

=
ŵt

ĉt
[H1]

ĉt+1(1 + g)

βĉt
= r̂t+1 + 1− δ [H2]

r̂t = Aα

(
ĥt

k̂t

)1−α

[F1]

ŵt = A(1− α)

(
k̂t

ĥt

)α

[F2]

ĉt + k̂t+1(1 + g)(1 + n) = Ak̂αt ĥ
1−α
t + (1− δ)k̂t [M]

here the efficiency variables will converge to an steady state and therefore the original per-capita variables
converge to a BGP.

Proposition: k̂t cannot grow unboundedly.

Proof: (by contradiction) Suppose not, then k̂t →∞.

since ĥt < 1 then from (F1) r̂t → 0

in (H2) it implies that ĉt+1

ĉt
= β(1−δ)

1+g < 1 then the consumption will be shrinking

finally divide (M) by k̂t(1 + g)(1 + n): ĉt
k̂t

1
(1+g)(1+n) +

k̂t+1

k̂t
= A

(
ĥt

k̂t

)1−α
1

(1+g)(1+n) +
1−δ

(1+g)(1+n)

in this expression the RHS → 1−δ
(1+g)(1+n) whereas the LHS →∞ →← ■

Steady State

to find the SS we solve the system of equations:

η

1− ĥss

=
ŵss

ĉss
[H1]

(1 + g) = r̂ss + 1− δ [H2]

r̂ss = Aα

(
ĥss

k̂ss

)1−α

[F1]

ŵt = A(1− α)

(
k̂ss

ĥss

)α

[F2]

ĉss + k̂ss((1 + g)(1 + n)− 1 + δ) = Ak̂αssĥ
1−α
ss [M]
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in this case we can find the solution analitically. Subs. (F1) into (H2) to get ĥss in terms of k̂ss:

1 + g = β

Aα

(
ĥss

k̂ss

)1−α

+ 1− δ


ĥss =

[(
1+g
β − 1 + δ

)
1

Aα

] 1
1−α︸ ︷︷ ︸

ε1

k̂ss = ε1k̂ss

replace in (H1) and also use (F2) (wage):

ĉss =
(1− ĥss)

η
ŵss

=
(1− ĥss)

η
(̂1− α)A

 k̂ss

�
��

ε1k̂ss

ĥss


= (1− ε1k̂ss)

(1− α)A

ηεα1︸ ︷︷ ︸
ε2

= (1− ε1k̂ss)ε2

subs. in (M):

(1− ε1k̂ss)ε2 + k̂ss((1 + g)(1 + n)− 1 + δ) = Aε1−α
1 k̂ss

k̂ss =
ε2

1− δ +Aε1−α
1 + ε1ε2 − (1 + g)(1 + n)

the parameters for this economy are {β, η, α,A, g, δ, n} with numerical values for these the economy can be find
for the assumed functional form.

Example: define the economy by the functional forms u(ct, 1 − ht) = ln ct + η ln(1 − ht) and F (kt, ht, t) =
Akαt ((1 + g)tht)

1−α and A = 1, δ = 0.015, η = 1, g = 0.005, α = 0.3, β = 0.99, n = 0.001.

then:

ε1 =
[(

1+g
β − 1 + δ

)
1

Aα

] 1
1−α

=
[(

1+.005
.99 − 1 + .005

)
1
.3

] 1
1−.3 = .0375

ε2 =
(1− α)A

ηεα1
=

1− .3

.0375.3
= 1.874

k̂ss =
1.874

1− .015 + .03751−.3 + (.0375)(1.874)− (1.005)(1.001)
= 12.505

ĉss = (1− ε1k̂ss)ε2 = (1− .375(12.505))1.874 = .994

ĥss = ε1k̂ss = .375(12.505) = .469

r̂ss = Aα

(
ĥss

k̂ss

)1−α

= .3

(
.469

12.505

)1−.3

= .03

ŵss = A(1− α)

(
k̂ss

ĥss

)α

= (1− .3)

(
12.505

.469

).

3 = 1.874
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additionally the balanced growth path per-capita variables are:

kBGP
t = k̂ss(1 + g)t = 12.505(1.005)t

cBGP
t = ĉss(1 + g)t = .994(1.005)t

wBGP
t = ŵss(1 + g)t = 1.874(1.005)t

hBGP
t = ĥss = 0.469

rBGP
t = r̂ss = 0.03

14.2 Welfare analysis

Building on the former results we can compare different growth paths and apply welfare comparisons after
different shocks with respect to a benchmark in terms of a scale factor of lifetime consumption. The former will
be our measure of welfare to determine in which economies there are better life standards.

Solving for lifetime utility implied by the BGP

Assuming we are on the BGP since the initial period:

UBGP =

∞∑
t=0

βtNt

[
ln cBGP

t + η ln(1− hBGP
t )

]
=

∞∑
t=0

βtN0(1 + n)t
[
ln(ĉss(1 + g)t) + η ln(1− ĥss)

]
= N0

∞∑
t=0

(β(1 + n))t
[
ln ĉss + t ln(1 + g) + η ln(1− ĥss)

]
= N0

(
ln ĉss + η ln(1− ĥss)

) ∞∑
t=0

(β(1 + n))t +N0 ln(1 + g)

∞∑
t=0

t(β(1 + n))t

= N0

(
ln ĉss + η ln(1− ĥss)

) 1

1− β(1 + n)
+N0 ln(1 + g)

β(1 + n)

[1− β(1 + n)]
2

Solving for lifetime utility implied by any equilibrium path

For any other path we just need to partitionate the periods in a part in which the variables haven’t reached
the BGP (denote this part A) and the remaining periods when the economy has already converged to the BGP.
Assume t∗ is a period in which the economy already has converged to its BGP:

U =

∞∑
t=0

βtNt[ln ct + η ln(1− ht)]

=

t∗−1∑
t=0

[ln ct + η ln(1− ht)] +

∞∑
t=t∗

βtNt[ln ct + η ln(1− ht)]

= A+B
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B =

∞∑
t=t∗

βtNt[ln ct + η ln(1− ht)]

=

∞∑
t=t∗

βtN0(1n)
t[ln(ĉss(1 + g)t) + η ln(1− ĥss)]

= N0

∞∑
t=t∗

(β(1 + n))t
[
ln ĉss + t ln(1 + g) + η ln(1− ĥss)

]
= N0

(
ln ĉss + η ln(1− ĥss)

) ∞∑
t∗

(β(1 + n))t +N0 ln(1 + g)

∞∑
t∗

t(β(1 + n))t

= N0

(
ln ĉss + η ln(1− ĥss)

) (β(1 + n)t
∗
)

1− β(1 + n)
+N0 ln(1 + g)

[
(β(1 + n))t

∗

(1− β(1 + n))2
+

(t∗ − 1)(β(1 + n))t
∗

1− β(1 + n)

]

Example: Increase of 30% in productivity

Assume the Japanese economy is described by the following parametrization: A = 1, δ = 0.05, η = 1.44, g =
0.02, θ = 0.3, β = 0.9, n− 0, N0 = 1, k0 = k̂ss.

Suppose the economy is subject to a 30% increase in its productivity, then Anew = 1.3

1. Compute the initial SS:

Original Steady State (A=1)

k̂ss ĉss ĥss

0.716 0.388 0.354

this implies that,

cBGP
t = ĉss(1 + g)t = 0.388(1.02t)

hBGP
t = ĥss = 0.3544

Nt = N0(1 + n)t = 1(1 + 0)t = 1

also the lifetime utility in the BGP is given by:

UBGP = N0

(
ln ĉss + η ln(1− ĥss)

) 1

1− β(1 + n)
+N0 ln(1 + g)

β(1 + n)

[1− β(1 + n)]
2

UBGP = (ln 0.388 + 1.44 ln(1− 0.3544))
1

1− .9
+ ln(1.02)

.9

[1− .9]
2 = −13.997

2. Compute the lifetime utility of the economy when the shock is observed (A=1.30)

New Steady State (A=1)

k̂ss ĉss ĥss

1.042 0.564 0.354
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Remember that the initial value for capital is still k0 = 0.7162 (the old initial BGP value).

we find manually the initial part: A = U t=30
t=0 = −10.8232

and for B we use our formula:

B = U t=∞
t=31 = (ln 0.564 + 1.44 ln(1− 0.354))

.931

1− .9
+ (ln 1.02)

(
.931

(1− .9)2
+

30(.931)

1− .9

)
= −0.1568

then the lifetime utility of the economy with the shock is:

UA=1.30 = A+B +−10.8232− 0.1568 = −10.98

which means that the economy had an improvement given his utility in the former state was UBGP = −13.997

3. Welfare analysis: Calculate the scale factor ϕ of lifetime consumption in the original economy that would
equate the new utility after the shock.

what we look is for ϕ such that UA=1
(
ϕcBGP

t , hBGP
t

)
= UA=1.30,

∞∑
t=0

βt
[
ln(ϕcBGP

t ) + η ln(1− hBGP
t )

]
= UA=1.30

∞∑
t=0

βt
[
ln(ϕĉss(1 + g)t) + η ln(1− ĥss)

]
= UA=1.30

∞∑
t=0

0.9t
[
ln(ϕ(0.388)1.02t) + 1.44 ln(1− 0.3544)

]
= −10.98

∞∑
t=0

0.9t [lnϕ+ ln(0.388) + t ln 1.02 + 1.44 ln(1− 0.3544)] = −10.98

∞∑
t=0

0.9t [lnϕ+ t ln 1.02− 1.578] = −10.98

∞∑
t=0

0.9t [lnϕ+ t ln 1.02− 1.578] = −10.98

(lnϕ− 1.578)
1

1− 0.9
+ (ln 1.02)

0.9

(1− 0.9)2
= −10.98

ϕ = 1.352

therefore, an increase in the productivity of 30% implies a welfare improvement equivalent to increasing the
agents lifetime consumption 35%.

14.3 NGM model with taxes

Government and taxes are introduced to the NGM model. The taxes are the following: tax on labor income
τht, tax on capital income τkt, tax on consumption spending τct, tax on investment expenditures τxt and lump-
sum taxes T . On the other hand the goverment consumes gt (gov. spending per-capita) and the remainder is
distributed to the HH via transfers (lump-sum taxes). Hence the government BC is:

∞∑
t=0

pt(gt + Tt) =

∞∑
t=0

pt(τctct + τxtxt + τktrtkt + τhtwtht) [BCg]
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Notice the BC is writen as Gov Transfers to HH = Gov Revenues

HH UMP

taking fiscal policy as given, the HH solves the following UMP:

max
{ct,xt,kt+1,ht}

∞∑
t=0

βtu(ct, 1− ht)

s.t.
∞∑
t=0

pt[(1 + τct)ct + (1 + τxt)xt] =

∞∑
t=0

pt[(1− τht)wtht + (1− τkt)rtkt + Tt] [BCHH ]

kt+1 = (1− δ)kt + xt [CA]

ct, kt > 0, 0 < ht < 1

set the lagrangian:

L =

∞∑
t=0

βtu(ct, 1−ht)−λ
∞∑
t=0

pt[(1+τct)ct+(1+τxt)xt−(1−τht)wtht−(1−τkt)rtkt−Tt]−βββtµµµt(kt+1−(1−δ)kt−xt)

FOC:

[ct] : βtu1(ct, 1− ht) = λ(1 + τct)pt
[ht] : βtu2(ct, 1− ht) = λ(1− τht)ptwt

[xt] : −λpt(1 + τxt) + βtµt = 0
[kt+1] : λpt+1(1− τkt+1)rt+1 − βtµt + βt+1µt+1(1− δ) = 0

replace βtµt and βt+1µt+1 from [xt] in [kt+1]:

pt
pt+1

=
1

1 + τxt
[(1− τkt+1)rt+1 + (1− τxt+1)(1− δ)]

this is known as the no arbitrage condition: relative price of capital = return on saving

Combine the first two FOC:

u2(ct, 1− ht)

u1(ct, 1− ht)
=

(1− τht)wt

(1− τct)
[H1]

Also use the first FOC in t and t+1 as well as the no arbitrage condition to get the intertemporal trade-off
(Euler Eq.):

u1(ct, 1− ht)

βu1(ct+1, 1− ht+1)
=

(1 + τct)

(1 + τct+1)

pt
pt+1

u1(ct, 1− ht)

βu1(ct+1, 1− ht+1)
=

(1 + τct)

(1 + τct+1)

1

1 + τxt
[(1− τkt+1)rt+1 + (1− τxt+1)(1− δ)]

u1(ct, 1− ht)
(1 + τxt)

(1 + τct)
=

βu1(ct+1, 1− ht+1)

(1 + τct+1)
[(1− τkt+1)rt+1 + (1 + τxt+1)(1− δ)] [H2]

Also the prices are pinned down from the consumption FOC in periods t and 0:
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βtu1(ct, 1− ht)

u1(c0, 1− h0)
=

(1 + τct)

(1 + τc0)

pt
p0

normalize by p0 = 1 and then,

pt =
βtu1(ct, 1− ht)

u1(c0, 1− h0)

(1 + τc0)

(1 + τct)
[P]

Firm’s PMP

the firm maximizes profits as before, yielding the same equilibrium conditions:

max
Kt,Ht

F (Kt, Ht, t)− rtKt − wtHt

FOC:

rt = F1(Kt, Ht, t) = F1(kt, ht, t) [F1]

wt = F2(Kt, Ht, t) = F2(kt, ht, t) [F2]

The goods market MC condition is obtained by subs. the taxes from the government into the BC for the HH:

ct + xt + gt = F (kt, ht) [MC]

The former optimization problems and fiscal policy form the Tax Distorted Competitive Equilibrium (TDCE),
an important result is that the TDCE resulting allocation is inefficient, this is because the taxes distort the
relative prices and agents optimal decisions.

Tax Distorted Competitive Equilibrium TDCE

for a given fiscal policy {τct, τht, τxt, τkt, Tt, Gt} the TDCE is given by the sequences {ct, hS
t , k

s
t+1,K

d
t , H

d
t }∞t=0

and {pt, rt, wt}∞t=0 such that:

1. Given {pt, rt, wt}, the sequences {ct, hs
t , k

s
t+1} solves the HH UMP.

2. Given {pt, rt, wt}, the sequences (KD
t , HD

t ) solve the firm’s PMP for each t.
3. All markets clear (MC) for each t:

hs
tNt = HD

t

kstNt = KD
t

cstNt +Ks
t+1 − (1− δ)Ks

t +Gt = F (Kd
t , H

d
t , t)

Lemma: A TDCE doesn’t exist for all fiscal policies

Proof: E.g. gt > 0 ∀t but all tax rates (including Lump-sum) are zero. In such case the government’s BC
cannot be balanced. ■

Lemma: [BCHH ], [MC] ⇒ [BCg], also [BCg], [MC] ⇒ [BCHH ]
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Proof: Expand taxes in [BCHH ],

∞∑
t=0

pt[ct + τctct + xt + τxtxt] =

∞∑
t=0

pt[wtht − τhtwtht + rtkt − τktrtkt + Tt]

∞∑
t=0

pt[ct + xt + τctct + τxtxt] =

∞∑
t=0

pt[F (kt, wt)︸ ︷︷ ︸
wtht+rtkt

−τhtwtht − τktrtkt + Tt]

∞∑
t=0

pt[ F (kt, ht)− gt︸ ︷︷ ︸
ct+xt (in [MC])

+τctct + τxtxt] =

∞∑
t=0

pt[F (kt, wt)− τhtwtht − τktrtkt + Tt]

∞∑
t=0

pt[�����F (kt, wt) + τctct + τxtxt] =

∞∑
t=0

pt[�����F (kt, wt) + gt − τhtwtht − τktrtkt + Tt]

∞∑
t=0

pt[τctct + τxtxt + τhtwtht + τktrtkt] =

∞∑
t=0

pt[gt + Tt] [BCg]

Summary: the equilibrium paths in a TDCE must satisfy the following conditions:

u2(ct,1−ht)
u1(ct,1−ht)

= (1−τht)wt

(1+τct)
[H1]

u1(ct, 1− ht)
(1+τxt)
(1+τct)

= β
(1+τct+1)

u1(ct+1, 1− ht+1)[(1− τkt+1)rt+1 + (1 + τxt+1)(1− δ)] [H2]

rt = F1(kt, ht) [F1]

wt = F2(kt, ht) [F2]

ct + xt + gt = F (kt, ht) [MC]

kt+1 = (1− δ)kt + xt [CA]

pt =
βtu1(ct,1−ht)
u1(c0,1−h0)

(1 + τc0)

(1 + τct)
[P]

∞∑
t=0

pt[(1 + τct)ct+(1 + τxt)xt] =

∞∑
t=0

pt[(1− τht)wtht + (1− τkt)rtkt + Tt] [BCHH ]

as seen bellow the last equation can be simplified to:

(1 + τc0)

u1(c0, 1− h0)

∞∑
t=0

βt[u1(ct, 1−ht)ct−u2(ct, 1−ht)ht] = (1−τk0)r0k0+(1−δ)(1+τx0)k0+

∞∑
t=0

ptTt [BCHH
FOCs]

we can simplify the [BCHH ] condition by replacing other FOCs in it. This will get us closer to state the
implementability constraint: a BC compatible with the TDCE.

Substitute xt (from [CA]) in [BCHH ] and rearrange:

∑
pt[(1 + τct)ct − (1− τht)wtht)] =

∑
pt[−(1 + τxt)(kt+1 − (1− δ)kt) + (1− τkt)rtkt + Tt]

let us rearrange both sides of this expression:
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For the LHS replace pt from [P] and (1− τht)wt from [H1]

LHS =
∑

pt[(1 + τct)ct − (1− τht)wtht]

=
∑

βtu1(ct,1−ht)
u1(c0,1−h0)

(1 + τc0)

(1 + τct)︸ ︷︷ ︸
pt

[(1 + τct)ct − (1− τht)wtht]

=
∑ βtu1(ct, 1− ht)

u1(c0, 1− h0)

(1 + τc0)

(1 + τct)

[
(1 + τct)ct −

u2(ct, 1− ht)(1 + τct)

u1(ct, 1− ht)︸ ︷︷ ︸
(1−τht)wt

ht

]

=
∑ βt(1 + τc0)

u1(c0, 1− h0)

[
u1(ct, 1− ht)ct − u2(ct, 1− ht)ht

]
The RHS can be expanded:

RHS =

∞∑
t=0

pt[−(1− τxt)(kt+1 − (1− δ)kt) + (1− τkt)rtkt + Tt]

= p0(1− τx0)r0k0 + p0(1− δ)(1 + τx0)k0 + [(−p0(1 + τx0) + p1(1 + τk1)r1 + p1(1− τx1)(1− δ))k1]

+ [(−p1(1 + τx1) + p2(1− τk2)r2 + p2(1 + τx2)(1− δ))k2]

+ [(−p2(1 + τx2) + p3(1− τk3)r3 + p3(1 + τx3)(1− δ))k3]

...

+

∞∑
t=0

ptTt

= p0(1− τx0)r0k0 + p0(1− δ)(1 + τx0)k0 +

∞∑
t=0

ptTt

notice that all intermediate terms are zero according to the arbitrage (price-ratio) condition:

pt

pt+1
= 1

1+τxt
[(1− τkt+1)rt+1 + (1+ τxt+1)(1− δ)] ⇒ pt(1 + τxt) = pt+1[(1− τkt+1)rt+1 + (1+ τxt+1)(1− δ)]

Theorem: Ricardian Equivalence

The timing of transfers (via lump-sum taxes) is irrelevant, i.e., that fiscal policies with the same tax rates and
differing in the lump-sum transfers, such that

∑∞
t=0 p

∗
tTt =

∑∞
t=0 p

∗
t T̃t are equivalent and yield the same TDCE.

Proof: In the equilibrium conditions
∑∞

t=0 ptTt only appears in one equation, the rest of conditions are the same
in both policies and then Tt doesn’t change the allocations, we just need the present value of the transfers to
be equal.9 ■

In general to prove the Fiscal Policy is implementable:

1. Look for {ct, ht, kt} that satisfy [H1].[H2], [MC]
2. Get rt, wt from [F1], [F2]
3. Get xt from [CA]

9this holds partly because the consumers are identical and infinite lived, also because credit markets work perfectly in the model
(consumers save and borrow as much as they want), with borrowing constraints the results would matter.
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4. Get pt from [P ]
5. Back out

∑
ptTt from [BCHH ]

Of course, the order of the steps matter and reflects that the timing of the transfers is irrelevant (final step).

Proposition: Lump-sum taxes Tt are non distortionary: Assume τct = τxt = τkt = τht = 0 so only Tt is used to
finance gt. Then the TDCE allocation solves:

max

∞∑
t=0

βtu(ct, 1− ht)

s.t. ct + kt+1 − (1− δ)kt = F̂ (kt, ht)︸ ︷︷ ︸
F (kt,ht)−gt

∀t

k0 given

Proof: (Sketch) Notice that given the proportional taxes are not present in general then the FOC of both
problems, characterizing the unique solution due to the strict concavity of the utility and production function,
would be the same and will support the same allocation. The proportional taxes don’t enter in the price ratio
equations so are not distortionary.

Proposition: Assume τct = τxt = Tt = 0 and τkt = τwt = τt > 0 and gt = (wtht + rtkt)τt, i.e., the gov. budget
is balanced each period. Then the TDCE allocation solves:

max

∞∑
t=0

βtu(ct, 1− ht)

s.t. ct + kt+1 − (1− δ)kt = (1− τt)F (kt, ht) ∀t
k0 given

Proof: (sketch) Notice gt = τtF (kt, ht) then the [MC] condition would be the same that in the TDCE and the
rest of FOC will be analogous too, supporting the same optimal allocation.

Theorem: There are too many taxes

Consider:

fiscal policy 1: τct, τxt, τkt, τht, gt > 0 with Tt = 0
fiscal policy 2: τ̃kt, τ̃ht, gt > 0 with T̃t = 0

Any allocation supported through FP1 can be supported through FP2 (notice the same gt).

Proof: (sketch) with the FP2 set the taxes τ̃kt, τ̃ht in a way that the same allocation are supported in the FOC.
Given the same gt is present in both FP then the overall solution is the same.

Theorem: Other FP equivalencies

Consider:

fiscal policy 1: τkt, τht, gt > 0 with Tt = 0
fiscal policy 2: τ̃ct, τ̃ht, gt > 0 with T̃t = 0

1. Any given allocation supported through FP1 can be supported with FP2 and viceversa.
2.
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• τkt → 0 ⇔ τ̃ct → τ̃c

• τkt → τk > 0 ⇒ τ̃ct →∞

Solving for the Steady State

If we assume that tax rates and government consumption converge to some constant rates, then equilibrium
paths converge to a SS. There is no need to assume that transfers are constant.

assume the CD production function and the logaritmitc utility with parameter η as before, then in the SS:

ηcss
1− hss

=
(1− τh)wss

(1 + τc)
[H1]ss

1

β
=

1

(1 + τx)
[(1− τk)rss + (1 + τx)(1− δ)] [H2]ss

rss = Aα

(
hss

kss

)1−α

[F1]ss

wt = A(1− α)

(
kss
hss

)α

[F2]ss

css + xss + g = Akαssh
1−α
ss [MC]ss

δkss = xss [CA]ss

pt+1

pt
= β ⇒ pt = βt [P ]ss

∞∑
t=0

βt[(1 + τct)ct + (1 + τxt)xt] =

∞∑
t=0

βt[(1− τht)wtht + (1− τkt)rtkt + Tt] [BCHH ]ss

in this system of equations is possible to find an analytic solution just as before:

Subs. (F1) into (H2) ⇒ hss = ε1kss
then from (H1) we get: css = (1− ε1kss)ε2
subs. these results in (MC) and subs. the investment using (CA) ⇒ kss =

ε2+g

Aε1−α
1 −δ+ε1ε2

finally xss = δkss

Welfare analysis

If the economy starts at the BGP, i.e., is in the SS from period t=0 and onwards the lifetime utility is:

Uss =

∞∑
t=0

(βt ln ct + η ln(1− ht)) =

∞∑
t=0

βt(ln css + η ln(1− hss)) =
1

1− β
(ln css + η ln(1− hss))

starting at k0 ̸= kss:

U =

∞∑
t=0

(βt ln ct + η ln(1− ht)) =

t∗−1∑
t=0

(βt ln ct + η ln(1− ht)) +

∞∑
t=t∗

(βt ln ct + η ln(1− ht)) = A+B

A is the utility during the transitional period and is computed numerically whereas B can be obtained analyti-
cally as:

B =

∞∑
t=t∗

(βt ln ct + η ln(1− ht)) =
βt∗

1− β
(ln css + η ln(1− hss))
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14.4 Optimal taxation policy: the Ramsey problem

Ramsey problem refers to the optimization problem of the benevolent tax designer: Given {gt}∞t=0 choose the
tax policy to maximize consumer utility, that in turn is determined by the TDCE allocations.

First Best: Use only transfers, i.e., lump-sum taxes given they aren’t distortionary.

Second Best: When FB is not possible proportional taxes are applied.

the focus is in τkt, τht, according to the previous results, analyzing this is enough to characterize any other fiscal
policy reviewed. Additionally τk0 = 1, this will be optimal since k0 is already given and increasing the tax
won’t affect the allocation decisions on capital, or relative prices for that period.

Setup of problems

[RP1] : Given g ≡ {gt}∞t=0 choose τ ≡ {τkt, τht}∞t=0 to maximize:

max

∞∑
t=0

βtu(ct(τ), 1− ht(τ))

s.t. {ct(τ), ht(τ)} are the TDCE allocations with fiscal policy (g, τ)

the equilibrium conditions for this model are:

u2(ct, 1− ht)

u1(ct, 1− ht)
= (1− τht)wt [H1]

u1(ct, 1− ht) = βu1(ct+1, 1− ht+1)[(1− τkt+1)rt+1 + (1− δ)] [H2]

rt = F1(kt, ht) [F1]

wt = F2(kt, ht) [F1]

ct + xt + gt = F (kt, ht) [MC]

kt+1 = (1− δ)kt + xt [CA]

pt =
βtu1(ct,1−ht)
u1(c0,1−h0)

[P]

1

u1(c0, 1− h0)

∞∑
t=0

βt[u1(ct, 1− ht)ct − u2(ct, 1− ht)ht] = (1− τk0︸︷︷︸
1

)r0k0 + (1− δ)k0 [IC]

How to get the equilibrium:

- [MC], [CA], [IC]: provide the allocations, this is easier since they have not taxes
- [P] gives the prices
- [F1], [F2] are used to obtain {wt, rt}
- Finally given allocation and factor prices we use [H1] to solve for τht and [H2] for τkt+1

Proposition: An allocation {ct, ht, xt, kt+1} is a TDCE for the economy with fiscal policty (g, τ) if and only if
[MC], [CA] and [IC] hold for all t.

Proof: ⇒ is given by definition. ⇐: show there are prices and τ that support {c∗t , h∗
t , x

∗
t , k

∗
t+1} as an equilib-

rium allocation, i.e., this equations alone pin down the allocations that are also consistent with the whole system.
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The latter can be seen in the box above. See how the allocations come from the conditions [MC], [CA], [IC]
only. This doesn’t mean that the rest are meaningless but that the IC is made in a way that already takes into
account the rest of conditions.

Intuition: (i) In principle what we do when solving the RP is: 1. finding optimal the allocation as function
of the policy instruments (taxes), this is done by the usual private agents optimization, and, 2. based on
that solution, optimizing over the instruments. (ii) the implementability constraint [IC] is a household
lifetime budget constraint that already incorporates optimal decisions of private agents that took taxes as
given. Therefore, if we solve the planner problem subject to the IC, our solution of the RP2 and RP3 (that
are more similar to typical SPP, i.e., max. welfare s.t. feasibility) will be already consistent and compatible
with the TDCE.

The former is a loose version of the Ramsey problem, an analogous one, yet more rigorous is:

[RP2] :

max
ct,xt,kt+1,ht

∞∑
t=0

βtu(ct, 1− ht)

s.t. [MC],[CA],[IC] hold ∀t

this problem, i.e., the RP, is different from the regular SPP because of the [IC] (there we have the standard
budget constraint), therefore, the resulting allocation is different.

L =

∞∑
t=0

βtu(ct, 1− ht)− λ

( ∞∑
t=0

βt[u1(ct, 1− ht)ct − u2(ct, 1− ht)ht]− u1(c0, 1− h0)(1− δ)k0

)
+ [MC], [CA] terms

= u(c0, 1− h0)− λ(u1(c0, 1− h0)c0 − u2(c0, 1− h0)h0 − u1(c0, 1− h0)(1− δ)k0)︸ ︷︷ ︸
W (c0,h0,k0,λ)

+

∞∑
t=1

βt [u(ct, 1− ht)− λu1(ct, 1− ht)ct − λu2(ct, 1− ht)ht]︸ ︷︷ ︸
V (ct,ht,λ)

+[MC], [CA] terms

= W (c0, h0, k0, λ) +

∞∑
t=1

V (ct, ht, λ) + [MC], [CA] terms

the lagrangian became:

V̂ ({ct, ht}∞t=0) = W (c0, h0, k0, λ) +

∞∑
t=1

V (ct, ht, λ) + [MC], [CA] terms

and with this function we can formulate an equivalent problem:

[RP3] :
max

ct,xt,kt+1,ht

V̂ ({ct, ht, λ}∞t=0)

s.t. [MC], [CA] ∀t

Equilibrium conditions:



94

V2(t)

V1(t)
= −F2 for t ≥ 1 [RP1]

V1(t+ 1)

V1(t)
= β(1− δ + F1) for t ≥ 1 [RP2]

ct + xt + gt = F (kt, ht) [MC]

kt+1 = (1− δ)kt + xt [CA]

Note that:

V1(ct, ht, λ) = u1(ct, 1− ht)− λ(u11(ct, 1− ht)ct + u1(ct, 1− ht)− u21(ct, 1− ht)ht)
V2(ct, ht, λ) = −u2(ct, 1− ht)− λ(−u12(ct, 1− ht)ct + u22(ct, 1− ht)ht − u2(ct, 1− ht))

Chamley-Judd result on optimal taxation

Assume we are in the SS: cRP
t → cRP , hRP

t → hRP , kRP
t → kRP , xRP

t → xRP then in the limit [RP2]:

���
��*

1
V1(t+ 1)

V1(t)
= β(1− δ + F1)

1 = β(F1(k
RP , hRP ) + 1− δ)

The Ramsey allocation is a TDCE allocation that supports (g, τ) so it should be consistent with [H2]:

u1(c
RP
t , 1− hRP

t ) = βu1(c
RP
t+1, 1− hRP

t+1)[(1− τRP
kt+1)F2(k

RP
t+1, h

RP
t+1) + 1− δ]

which in the limit becomes:

1 = β
[
(1− lim

t→∞
τkt+1)F1(k

RP , hRP ) + 1− δ
]

both conditions in the boxes ([RP2] and [H2] in the limit) are compatible (supporting the same allocation) only
if:

lim
t→∞

τkt+1 = 0

What about labor?: The Ramsey problem equilibrium condition ([RP1]) and TDCE condition ([H1]) are not
conflicting with τht > 0,

the [RP1] is:

V2(ct, ht, λ)

V1(ct, ht, λ)
= −F2(kt, ht)

−u2(ct, 1− ht)− λ(−u12(ct, 1− ht)ct + u22(ct, 1− ht)ht − u2(ct, 1− ht))

u1(ct, 1− ht)− λ(u11(ct, 1− ht)ct + u1(ct, 1− ht)− u21(ct, 1− ht)ht)
= −F2(kt, ht)

u2(ct, 1− ht)− λ(u12(ct, 1− ht)ct − u22(ct, 1− ht)ht + u2(ct, 1− ht))

u1(ct, 1− ht)− λ(u11(ct, 1− ht)ct + u1(ct, 1− ht)− u21(ct, 1− ht)ht)
= F2(kt, ht)
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whereas the [H1] is:
u2(ct, 1− ht)

u1(ct, 1− ht)
= (1− τht)F2(kt, ht)

For this two conditions to be compatible and support the same allocation we need τht → 0 only if λ = 0, i.e., if
the [IC] is slack. That is the case when τk0 is enough to pay for all {gt}. This is not tipically the case and we
will have τht > 0 in the limit.

14.5 OLG models in the NGM in discrete time

The NGM allows to analyse setups with homogeneous agents. Jointly with productivity shocks and uncertainty
the RBC model can be formulated. Relevant results have been concluded from such model, e.g., that the
volatility of investement is way greater than that of consumption as well as other results in monetary policy
analysis.

However with homogeneous agents is not possible to model lifecycle behaviour and social security frameworks.
To do this we will use the Overlapping Generations Model (OLG) where agents are born in different periods
and live a finite amount of time.

Here markets are incomplete so the results won’t be efficient. By incomplete we mean that agent won’t
be able to transfer resources among each other but will be quite limited in that regard instead: Agents die
and then do not overlap among all of each other. Then we will need government to intervene (the
government would redistribute wealth and induce optimal savings behavior), the existence of money or some
type of contracts.

Setup:

Endowments: e = (ey, eo) = (1, 0) (the endowments are in terms of working time)

Initially old agent UMP:

max
co0

u(co0)

s.t. co0 = s−1R0

the solution is straightforward: co0 = s−1R0

Agents born at t ≥ 0 UMP:

max
cyt ,c

o
t+1

u(cyt ) + βu(c0t+1)

s.t. cyt + st = wt [BCy]

cot+1 = Rt+1st [BCo]

Lifetime BC: cyt +
1

Rt+1
cot+1 = wt

FOC:

u′(cyt )

u′(cot+1)
= βRt+1 [EE]

cyt + st = wt [BCy]

cot+1 = Rt+1st [BCo]
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Population dynamics: Nt+1

Nt
= 1 + n

Firms: F (K,N) where i. F (·) is HOD1, ii. F (0, N) = F (K, 0) = 0, iii. FK > 0, FN > 0, iv. FKK < 0.FNN < 0,
v. lim

K→0
F (K,N) = 0, lim

N→0
F (K,N) = 0

with a HOD1 production function we will have HOD0 partial derivatives as well as zero profit conditions (given
by Euler Theorem):

F (K,N)− wN − rK = 0

with
r = F1(K,N) = F1(k, 1) = f ′(k)

then in per-capita terms:
r = f ′(k) [F1]

w = f(k)− f ′(k)k [F2]

Market clearing: for the goods market we aggregate over agents considering the size of population of each age
at a given t,

cytNt + cotNt−1 + It = F (Kt,Kt)

ct +
c0t

1 + n
+ it = f(kt)

the law of motion of capital and its per-capita form is:

Kt+1 = It + (1− δ)Kt

kt+1(1 + n) = it + (1− δ)kt ⇒ it = kt+1(1 + n)− (1− δ)kt

substitute in the market clearing condition above,

ct +
c0t

1 + n
+ kt+1(1 + n)− (1− δ)kt︸ ︷︷ ︸

it

= f(kt)

ct +
c0t

1 + n
+ kt+1(1 + n) = f(kt) + (1− δ)kt [MC]

On the other hand the asset market clearing condition is:

Kt+1 = Ntst

in per-capita terms:
(1 + n)kt+1 = st [AM]

finally the no arbitrage condition in assets markets implies that in equilibrium:
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Rt︸︷︷︸
Gross returns in assets

= r(t) + 1− δ︸ ︷︷ ︸
Gross returns in capital

[NA]

Solving the model:

Use the EE, replace the consumption in both periods (ct = wt − st, ct+1 = Rt+1st):

u′(wt − st)

u′(Rt+1st)
= βRt+1

with this we can solve for a savings function: s(R(kt+1), w(kt)) and using [AM] we get:

kt+1 =
st

(1 + n)
=

s(R(kt+1), w(kt))

1 + n

from here we solve for kt+1 = f(kt) (remember factor prices are set in terms of kt) getting a transition equa-
tion.

Example: u(c) = ln c and F (K,N) = AKαN1−α

u′(ct)

u′(ct+1)
= βRt+1

ct+1

ct
= βRt+1

Rt+1st
wt − st

= βRt+1

st =
β

1 + β
wt

using [AM]:

kt+1 =
st

1 + n

=
β

1 + β

wt

1 + n

=
β

(1 + β)(1 + n)
(f(kt)− f ′(kt)kt)

=
β

(1 + β)(1 + n)
(Akαt − αAkαt )

then:

kt+1 =
Aβ(1−α)

(1+β)(1+n)
kα
t

and in SS:
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kss =

[
Aβ(1− α)

(1 + β)(1 + n)

] 1
1−α

in the graph is depicted both the function and the SS
as a fixed point.

finally with kt all other variables are found:

wt = f(kt)− f ′(kt)kt = A(1− α)kαt
rt = f ′(kt) = αAkα−1

t

Rt = rt + 1− δ = αAkα−1
t + 1− δ

st =
β

1−βwt =
β

1−β (f(kt)− f ′(kt)kt) =
Aβ(1−α)
(1+β) kαt

cyt = wt − st = wt − β
1+βwt =

1
1+βA(1− α)kαt

cot+1 = stRt+1 = Aβ(1−α)
(1+β) kαt

(
αAkα−1

t+1 + 1− δ
)
= Aβ(1−α)

(1+β) kαt

(
αA
[

Aβ(1−α)
(1+β)(1+n)k

α
t

]α−1

+ 1− δ

)

Summary

OLG eq. conditions

u′(cyt )

u′(cot+1)
= βRt+1 [EE]

cyt + st = wt [BC]y

cot+1 = stRt+1 [BC]o

rt = f ′(kt) [F1]

wt = f(kt)− ktf
′(kt) [F2]

Rt = rt + 1− δ [NA]

cyt +
cot

1 + n
+ (1 + n)kt+1 = f(kt) + (1− δ)kt [MC]

(1 + n)kt+1 = st [AM ]

Dynamic inefficiency

An economy is dynamically efficient if no agent can be made better off without making someone else worse off.

Proposition: The OLG economy is dynamically inefficient iff

f ′(kss) < n+ δ

Proof:
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’⇐’ (assume f ′(kss) < n+ δ)

take que market clearing condition in the SS:

cyss +
coss

1 + n
+ (1 + n)kss − (1− δ)kss = f(kss) [MC]ss

solve for the aggregate consumption and optimize:

cyss +
coss

1 + n
= f(kss)− (n+ δ)kss

FOC:

[kss] : f ′(kss)−(n+δ) = 0 ⇒ f ′(kss) = n+ δ ( ”efficient” level of capital to optimize consumption)

but our assumption is that f ′(kss) < n + δ and the production function is strictly concave which means that
our assumed capital level is dynamically inefficient, it is greater than the efficient level.

↪→

This completes one direction of the proof. However we can go further and build a Pareto Improving allocation in such
case: Since, kss = sss

1+n
, we need to decrease the savings as well. To see that denote the improved allocation by kPI

ss and
define it such that:

f ′(kss) < f ′(kPI
ss ) < (n+ δ)

then
f(kPI

ss )− (n+ δ)kPI
ss > f(kss)− (n+ δ)kss

which means that aggregate consumption has increased accordingly, let the new levels of consumption (achieved by
increasing youngsters consumption by ε1) be: c̄

y
ss = cyss + ε1 and c̄oss = coss − (1 + n)ε2

Here ε2 < ε1 which reflects the fact that lowering kss lowers sss proportionally but wss less than proportionally.

Now, its clear that in the new allocation {c̄yss, c̄oss} the olders are worse off, then implement a transfer scheme given

by ε2 < τ < ε1 that improves both consumptions with respect to the initial allocation: cy,PI
ss = cyss + ε1 − τ and

co,PI
ss = coss − (1 + n)ε2 + τ(1 + n)

←↩

’⇒’ (Dyn. Inefficient ⇒ f ′(kss) < (n+ δ) )

This is analog to prove the contrapositive: f ′(kss) > (n+ δ) ⇒ Dynamically efficient

(by contradiction) Suppose not, then there is a way to apply a pareto improvement. To get the efficiency
condition kss should be increased, i.e., we need to increase savings sss. When doing so we need to decrease
consumption of the young people ↓ cyss, to compensate we would require a transfer from the old, but it makes
them worse off, therefore it cannot be Pareto Improving ( We have concluded that if f ′(kss) > n + δ then the
allocation is Dynacmically Efficient ).

Main intuition: In this case to get to the optimun we need to increase the capital, i.e., hurt someone’s consump-
tion.
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Condition for Dynamic Efficiency

in SS:

kss =

[
Aβ(1− α)

(1 + β)(1 + n)

] 1
1−α

f ′(kss) = Aαkα−1
ss

subs. these results in the dynamic inefficiency condition:

f ′(kss) < n+ δ

Aαkα−1
ss < n+ δ

Aα

[
Aβ(1− α)

(1 + β)(1 + n)

]α−1
1−α

< n+ δ

α(1 + β)(1 + n)

β(1− α)
< n+ δ

Example: Data check

Suppose we look at the data and find annual population growth of 1%, rk
y = .3, annual depreciation equal to

15%. Assume the length of the period is 30 years. For which values of β the model is dynamically efficient?

first we can get the relevant parameters:

(1 + n) = 1.0130 = 1.35

δ = 1− (1− .15)30 ≈ 1

α = .3

dynamic inefficiency occurs if:

α(1 + β)(1 + n)

β(1− α)
< n+ δ

.3(1 + β)(1.35)

β(1− .3)
< 1.35

.3(1 + β) < .7β

β > .75

Example: Let A = 1, α = .3, δ = 1, n = .35, β = .9, show that it is possible to construct a welfare improving
scheme.

Solve for the SS:

kss =
[

Aβ(1−α)
(1−β)(1+n)

] 1
1−α

=
[

.9(1−.3)
(1+.9)(1+.35)

] 1
1−.3

= .1346

wss = A(1− α)kαss = (1− .3)(.1346).3 = .38354
sss =

β
1+βwt =

.9
1+.9 (.38354) = 0.18168

cyss =
β

1+βwss =
1

1+.9 (.38354) = 0.20186
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coss = [Akαss − (n+ δ)kss − cyss](1 + n) = [.1346.3 − 1.35(.1346)− .20186]1.35 = 0.22187

Now we solve for the level of capital that maximizes consumption per worker:

f ′(k∗ss) = n+ δ

αAk∗α−1
ss = n+ δ

k∗ss =

(
n+ δ

αA

) 1
α−1

=

(
1.35

.3

) 1
.3−1

= 0.11664

the level of savings to mantain that amount of capital is:

s∗ss = (1 + n)k∗ss = 1.35(0.11664) = 0.15746

As expected that lower of savings is lower than the steady state level:

sss > s∗ss

0.18168 > 0.15746

i.e., the young are oversaving, then by setting any save rate between [s∗ss, sss] we can get a welfare
improving scheme.

To find a SP allocation

1. find k∗ss s.t. f ′(k∗ss) = n+ δ

2. using k∗ss and MC, solve for
co∗ss
1+n ,

coss
1 + n

= f(k∗ss)− (n+ δ)k∗ss − cy∗ss

3. subs.
co∗ss

(1+n) in the EE:
βcy∗

ss

co∗ss
and find cy∗ss :

βcy∗ss =
co∗ss

1 + n
= f(k∗ss)− (n+ δ)k∗ss − cy∗ss

c∗ss =
f(k∗ss)− (n+ δ)k∗ss

1 + β

4. find co∗ss = (f(k∗ss)− (n+ δ)k∗ss − cy∗ss )(1 + n)

To find the optimal τ∗

1. use k∗ss to find w∗
ss and s∗ss:

w∗
ss = f(k∗ss)− f ′(k∗ss)k

∗
ss

s∗ss = k∗ss(1 + n)

2. find: cy∗ss = w∗
ss − s∗ss

3. find: τ∗ = c̄yss − cy∗ss where c̄yss is the consumption at the golden rule, i.e. consistent with
f ′(kss) = n+ δ

The τ equation shows that the optimal transfer amounts to the difference between the optimal consumption
and that obtained as solution in the steady state.
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14.5.1 Social Security

Fully funded (FF)

max
cyt ,c

o
t+1

u(cyt ) + βu(c0t+1)

s.t. cyt + st + bt = wt [BCy]

cot+1 = Rt+1st + btRt+1 [BCo]

Lifetime BC: cyt +
1

Rt+1
cot+1 = wt

with log-utility:

(st + bt)Rt+1

wt − (st + bt)
= βRt+1 [EE]

then:

st + bt =
β

1 + β
wt

Cases:

• bt ≤ β
1+βwt ⇒ total savings: st + bt =

β
1+βwt

then kt+1 = bt+st
(1+n) =

β
(1+β)(1+n)wt =

β
(1+β)(1+n)Akαt (not distorting)

• bt ≤ β
1+βwt ⇒ over acummulation of capital and st = 0 (least possible distorting savings)

then kt+1 = bt
(1+n) >

β
(1+β)(1+n)wt (distorting savings, non efficient outcome)

Pay as you go (PAYGO)

max
cyt ,c

o
t+1

u(cyt ) + βu(c0t+1)

s.t. cyt + st = wt − τττ [BCy]

cot+1 = Rt+1st + (1+ n)τ [BCo]

Lifetime BC: cyt +
1

Rt+1
cot+1 = wt

with log-utility:

cot+1

cyt
= βRt+1 [EE]

then:

stRt+1 + τ(1 + n)

wt − τ − st
= βRt+1

β(wt − τ)

1 + β
− τ

(1 + n)

(1 + β)Rt+1
= st
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subs. wt, Rt+1 = 1 + rt+1 − δ and use kt+1 = st
1+n

kt+1 =
β(A(1− α)kαt − τ)

(1 + β)(1 + n)
− τ

(1 + β)(1 + αAkα−1
t+1 )− δ

let δ = 1,

kt+1 =
β(A(1− α)kαt − τ)

(1 + β)(1 + n)
− τ

(1 + β)(αAkα−1
t+1 )

define Φ(kss, τ) = kt+1 − β(A(1−α)kα
t −τ)

(1+β)(1+n) − τ
(1+β)(αAkα−1

t+1 )
= 0

use implicit function theorem:

dkss
dτ

= − ∂Φ/∂τ

∂Φ/∂kss
= −

1
1+β

(
β

1+β + 1
αAkα−1

ss

)
1− 1

1+β

(
βα(1−α)Akα−1

ss

1+n − (1−α)τ
αkα

ss

)

both numerator and denominator are positive, then ∂kss
∂τ

< 0

Conclusion: FF system is at best ineffective (does nothing or distorts) whereas in the PAYGO welfare is increased
in a+ n > R or decrease welfare otherwise.

However in reality n is relatively low and therefore many countries face problems of sustainability.Hence FF would be better
now but is very costly to implement.

Summary

Assume an endowment of (y,y’) during both periods of life, the wealth in each scheme is:

weNo SS = y +
y′

1 + r
, wePAY GO = y +

y′

1 + r
− b+ b

(1 + n)

(1 + r)
, weFF = y +

y′

1 + r

Notice that whenever n = r the welfare and wealth is the same in each scheme. Then we can state that:
the economy with no SS is dynamically inefficient when n > r , i.e., a PI outcome is reachable by
implementing a PAYGO system.

wePAY GO > weNo SS if b
1 + n

1 + r
> b if n > r

in such case the gov. can intervene an economy w/o SS and improve every agent.

Social security reform (example)

- to simplify assume there is no production.
- endownments: wealth = (y, y′) = (50,0)
- Initial state: PAYGO system with transfer b also:

1 + n = 1

R = 1.05

b = 20

β = 1
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Under PAYGO:

max
c,c′

lnc+ βlnc′

s.t.
c+ s = y − b

c′ = y′ + sR+ (1 + n)b

Eq. conds.:
c′

c
= βR ⇒ c′

c
= 1.05

c+
c′

R
= y +

y′

R
− b+

(1 + n)

R
b ⇒ c+

c′

1.05
= 50− 20 + 20/1.05 = 49.04

then c∗ = 24.52, c′∗ = 25.75 and u(c∗, c′∗)PAY GO = 6.44

Under FF:

max
c,c′

lnc+ βlnc′

s.t.
c+ s = y − b

c′ = y′ + (s+ b)R

Eq. conds.:
c′

c
= βR ⇒ c′

c
= 1.05

c+
c′

R
= y +

y′

R

then c∗ = 25, c′∗ = 26.25 and u(c∗, c′∗)FF = 6.5

also solution is interior: b <total savings w/o SS: s + b = y − c = 50 − 25 = 25 then the agent pays 20 to the
government and saves 5 when SS is imposed.

in this case the economy is better off under a FF system given that n < r, if possible one would like to change
from PAYGO to FF.

The problem is that, to implement such change the government would have to run a defficit (issue bonds) to pay
for the benefits of the agents who are old at the time of the switch and pay that off by taxing future generations
that benefit from the change. The problem is that it would take infinitely many generations to pay for the
reform, i.e., the reform cannot pay for itself.

Reform:

-Suppose the switch ocurrs at period T̄

- there are N̄ old people, hence the government should pay then Nb(1 + n)

- the gov. levies a tax t to all future generations to pay for the change

The present value of the tax revenues to pay for the reform is given by the RHS of the following expression (the
LHS just states what it should be equal to, i.e., the total cost of the reform):
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N̄b(1 + n) =

# of young at T̄︷ ︸︸ ︷
tN̄(1 + n) +tN̄

(1 + n)2

(1 + r)
+ tN̄

(1 + n)3

(1 + r)2
+ · · ·+ tN̄

(1 + n)x

(1 + r)x−1

here x denotes the last generation to be taxed.

Now find the tax that extracts all the benefit associated with the reform, that is, t such that WeathFF =
WealthPAY GO

y +
y′

1 + r
− t = y − b+

y′

1 + r
+

b(1 + n)

1 + r

−t = −b+ b(1 + n)

1 + r

t =
b(1 + n)

1 + r
=

20(0.05)

1.05
= 0.95

Now, use t the government BC above to see how many generations should be taxed (removed the benefit from
the change) to pay for the reform. Notice that the government won’t provide more transfers after the reform,
it only will tax what’s required to implement the change:

N̄b(1 + n) = N̄

[
t(1 + n) +

t(1 + n)2

(1 + r)
+

t(1 + n)2

(1 + r)
+

t(1 + n)3

(1 + r)2
+ · · ·+ t(1 + n)x

(1 + r)x−1

]

20 ≈ .95 +

(
1

1.05

)
+

(
1

1.05

)2

+

(
1

1.05

)3

+ · · ·+
(

1

1.05

)∞

More generally we can show that the present value of the tax revenues amounts exactly to the cost of the reform.

To do that find the present value and replace for the tax found above: t = b(r−n)
1+r :

N̄t(1 + n) +
N̄t(1 + n)2

1 + r
+

N̄t(1 + n)3

(1 + r)2
+ · · · = N̄t(1 + n)

[
1 +

(1 + n)

(1 + r)
+

(1 + n)2

(1 + r)2
+ · · ·

]
= N̄t(1 + n)

1

1− (1+n)
(1+r)

= N̄
b(r − n)

1 + r
(1 + n)

1
r−n
1+r

= N̄b(1 + n)

14.5.2 OLG with exogenous growth

In general is needed to incorporate exogenous growth (labor augmenting tech progress) in the production
function:

F (Kt, Nt) = AKα
t ((1 + g)tNt)

1−α

then
f(kt) = A(1 + g)(1−α)tkαt

the eq. conditions were:
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u′(cyt )

u′(cot+1)
= βRt+1 [EE]

cyt + st = wt [BC]y

cot+1 = stRt+1 [BC]o

rt = f ′(kt) [F1]

wt = f(kt)− ktf
′(kt) [F2]

Rt = rt + 1− δ [NA]

cyt +
cot

1 + n
+ (1 + n)kt+1 = f(kt) + (1− δ)kt [MC]

(1 + n)kt+1 = st [AM ]

and in terms of the log-utility and new production function become:

cot+1

cyt
= βRt+1 [EE]

cyt + st = wt [BC]y

cot+1 = stRt+1 [BC]o

rt = Aα(1 + g)(1−α)tkα−1
t [F1]

wt = A(1− α)(1 + g)(1−α)tkαt [F2]

Rt = rt + 1− δ [NA]

cyt +
cot

1 + n
+ (1 + n)kt+1 = A(1 + g)(1−α)tkαt + (1− δ)kt [MC]

(1 + n)kt+1 = st [AM ]

to solve for the equilibrium by using efficiency variables:

ĉyt =
cyt

(1 + g)t

ĉot =
cot

(1 + g)t

k̂t =
kt

(1 + g)t

ŝt =
st

(1 + g)t

ŵt =
wt

(1 + g)t

r̂t = rt

R̂t = Rt

the FOC rewritten in terms of efficiency variables are:



107

(1 + g)cot+1

cyt
= βR̂t+1 [EE]

ĉyt + ŝt = ŵt [BC]y

(1 + g)cot+1 = ŝtR̂t+1 [BC]o

r̂t = Aαk̂α−1
t [F1]

ŵt = A(1− α)k̂αt [F2]

R̂t = rt + 1− δ [NA]

ĉyt +
ĉot

1 + n
+ (1 + n)(1 + g)k̂t+1 = Ak̂αt + (1− δ)k̂t [MC]

(1 + n)(1 + g)k̂t+1 = ŝt [AM ]

we follow the standard procedure: replace the consumptions in the EE and solve for the savings, then pin down
the transition equation (using the AM eq.) and the level of capital in the SS:

ŝtR̂t+1

ŵt − ŝt
= βR̂t+1 ⇒ st =

β

1 + β
wt

k̂t+1 =
st

(1 + n)(1 + g)
=

β

(1 + β)(1 + n)(1 + g)
ŵt ⇒ kt+1 =

(1− α)Aβ

(1 + β)(1 + n)(1 + g)
k̂αt

and therefore

k̂ss =
[

(1−α)Aβ
(1+β)(1+n)(1+g)

] 1
1−α

the economy will be Dynamically inefficient if:

r̂ss = αAk̂α−1
ss < δ + g + n+ ng

αA

[
(1− α)Aβ

(1 + β)(1 + n)(1 + g)

]α−1
1−α

< δ + g + n+ ng

α(1 + β)(1 + n)(1 + g)

(1− α)β
< δ + g + n+ ng

Example: (calibration)Is the postwar U.S. economy dynamically efficient? use the data parameters considered
before: quarterly pop. growth is 0.35%, quarterly growth rate of real output per worker is 0.46%, capital share
in total income is 0.37 and quarterly capital-output ratio is 12.56 (12.56/4 = 3.14 in annual terms) and annual
depreciation rate is 8%

1 + n = 1.0035(4)35 = 1.63

1 + g = 1.0046(4)35 = 1.9

α = .37

1− δ = (1− .08)35 ⇒ δ = 0.946
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then the value of β for which the U.S. economy is dynamically inefficient is:

α(1 + β)(1 + n)(1 + g)

(1− α)β
< δ + g + n+ ng

.37(1 + β)(1.63)(1.9)

(1− .37)β
< .946 + .9 + .63 + .63(.9)

1.1459(1 + β) < β

1.486 < β

then for usual values of β the economy is dynamically efficient.

15 NGM with Uncertainty

Main results:

- The risk will be perfectly shared.
- The distribution of endowments across households is irrelevant.

Setup:

• states: st ∈ S : {η1, · · · , ηN} where S is the space of possible events, here we will use the notation: st = 1
instead of st = η1

• st: event history up to period t, i.e., st = (s0, s1, s2, · · · , st)

• Also πt(s
t) > 0 is the likelihood of observing the history st

• Goods have two indexes: time and state (history), then we have to sum over both time and histories in the BC.

• Suppose two agents, an allocation is given by: (c1, c2) = {c1t (st), c2t (st)}∞t=0,st∈St , and the endowments are:

(e1, e2) = {e1t (st), e2t (st)}∞t=0,st∈St

• Agents max. the expected utility: u(ci) =
∑∞

t=0

∑
st∈St βtπt(s

t)U(cit(s
t))

• We normalize by one commodity: p0(s0 = 1) = 1

Competitive equilibrium - AD

prices {p̂t(st)}∞t=0,st∈St and allocations {ĉit(st)}∞t=0,st∈St such that, for all i:

1. Given prices, ci solves the UMP:

maxu(ci) =

∞∑
t=0

∑
st∈St

βtπt(s
t)U(cit(s

t))

s.t.
∞∑
t=0

∑
st∈St

p̂t(s
t)ĉit(s

t) ≤
∞∑
t=0

∑
st∈St

p̂t(s
t)êit(s

t)

ĉit ≥ 0
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2. MC:
c1t (s

t) + c2t (s
t) = e1t (s

t) + e2t (s
t)

Notice that there are not probabilities in the BC, this happens because they are already included in the prices.

FOC:

[cit(s
t)] : βtπt(s

t)U ′(cit(s
t)) = µpt(s

t) ∀t

for t=0: π0(s
0)U ′(ci0(s

0)) = µp0(s
0)

then:
pt(s

t)

p0(s0)
= βt πt(s

t)

π0(s0)

U ′(cit(s
t))

U ′(ci0(s0))

this holds for every agent which means that the ratio of marginal utilities between the two agents is
constant over time:

U ′(c1t (s
t))

U ′(c10(s0))
=

U ′(c2t (s
t))

U ′(c20(s0))
⇒ U ′(c2t (s

t))

U ′(c11(s
t))

=
U ′(c20(s0))

U ′(c10(s0))
∀st

e.g. with a CRRA:
(

c2t (s
t)

c1t (s
t)

)−σ

=
(

c20(s0)

c10(s0)

)−σ

⇒ c2t (s
t)

c1t (s
t)

=
c20(s0)

c10(s0)
= constant

define the aggregate endowments: et(s
t) =

∑
i e

i
t(s

t) ⇒ cit(s
t) = ϕiet(s

t)

i.e. given that the consumption ratio among agents is constant then the share of aggregate endowments also
is. Then endowment risk is perfectly shared since it only depends on aggregate endowments. Shocks to
individual or relative endowments do not affect consumption.

let p0(s0) = 1, then:

pt(s
t)

����: 1
p0(s0)

= βt πt(s
t)

π0(s0)

(
cit(s

t)

ci0(s0)

)−σ

pt(s
t) = βt πt(st)

π0(s0)

(
et(st)
e0(s0)

)−σ

The prices equation reflect the time discounting (goods are less valuable in the future) and also the likelihood
ratio of a given state: the higher the probabiltity of reaching a given state the higher the correspondent good
is priced. Finally it reflects the relative availability of resources, the higher availability (measured by aggregate
endowments) the lower the price.

Analogously, the prices depend on the stochastic process of aggregate endowment only and not in its distribution.

Pareto Efficiency

Feasibility: (c1, c2) = {c1t (st), c2t (st)}∞t=0,st∈St is feasible if for all i:
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1. cit(s
t) ≥ 0 ∀t, st ∈ St

2. c1t (s
t) + c2t (s

t) = e1t (s
t) + e2t (s

t) ∀t, st ∈ St

Pareto Optimal: (c1, c2) is Pareto efficient if it is feasible and there is no other feasible allocation (c̃1, c̃2) =
{c̃1t (st), c̃2t (st)}∞t=0,st∈St such that:

u(c̃i) ≥ u(ci) ∀i,with at least one strict inequality

First Welfare Theorem: {c2t (st)}∞t=0,st∈St is a CE allocation then it is Pareto Efficient.

Sequential Markets equilibrium - SM

- Before: w/o uncertaintey there was trade each period and it was used 1 period securities.

- Now: With risk, there are 1 period state contingent securities qt(s
t, st+1 = j): price at t of contract that pays

one unit of consumption in t+1, if st+1 = j

- ait+1(s
t, st+1): quantity of securities bought/sold at period t by agent i.

therefore the period t BC with history st is:

cit(s
t) +

∑
st+1∈S

qt(s
t, st+1)a

i
t+1(s

t, st+1) ≤ eit(s
t) + ait(s

t)

SE Equilibrium

Allocations {(ĉit(st), {âit+1(s
t, st+1)}st+1∈S)}∞t=0,st∈St and prices {q̂t(st, st+1)}∞t=0,st∈St such that for all i:

1. given prices the allocation {(ĉit(st), {âit+1(s
t, st+1)}st+1∈S)}∞t=0,st∈St solves the UMP:

maxu(ci) =

∞∑
t=0

∑
st∈St

βtπt(s
t)U(cit(s

t))

s.t. cit(s
t) +

∑
st+1∈S

qt(s
t, st+1)a

i
t+1(s

t, st+1) ≤ eit(s
t) + ait(s

t) ∀t, st ∈ St

ĉit(s
t) ≥ 0 ∀t, st ∈ St

ait+1(s
t, st+1) ≥ −Āi ∀t, st ∈ St, st+1 ∈ S

2. MC: for t ≥ 0
2∑

i=1

ĉit(s
t) ≤

2∑
i=1

eit(s
t)

2∑
i=1

âit+1(s
t, st+1) = 0

Equivalence between AD and SM

ADw/ risk ≡ SMw/ risk
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As before to get equivalency it suffices to map the prices in the AD market with the inverse of the interest
rates of the one period bonds in the SM structures making the relative prices in both frameworks to be
the same.

the mapping between AD prices and securities prices would be:

qt(s
t, st+1) =

pt+1(s
t+1)

pt(st)

where pt(s
t, st+1) = p0(s0)× q0(s0, s1)× · · · × qt−1(s

t−1, st)

15.1 Asset Pricing

• we price with AD prices an asset j

• dj = {dit(st)}: dividends paid by asset j in each node st (claim of units of consumption)

• the time 0 price of asset j (cum dividend) is

P j
0 (d) =

∞∑
t=0

∑
st

pt(s
t)djt (s

t)

this is the value of all consumption goods the asset delivers at all future dates and states.

• Ex-dividend price of such asset at node st expressed in terms of period t consumption (given history at t or
at node (st)) goods is

P j
t (d, s

t) =

∑∞
τ=t+1

∑
sτ |st pτ (s

τ )djτ (s
τ )

pt(st)

this price is just the cum dividend price for the periods that remain after t in terms of the prices already
observed at the current node. Notice the numerator includes an expected value of future nodes sτ conditional
on being in node st, to simplify this will be modelled with a markov chain.

• One period gross real return of asset j between st and st+1,

Rj
t+1(s

t+1) =
P j
t+1(d, s

t) + djt+1(s
t+1)

P j
t (d, s

t)

Examples:

i. Asset bought in st that pays 1 in ŝt+1 and 0 in all other states st+1.

Price at st:

PA
t (d, st) =

pt+1(ŝ
t+1)

pt(st)
= qt(s

t, ŝt+1)

the gross return between st and ŝt+1 = (st, ŝt+1) is:

RA
t (ŝ

t+1) =
0 + 1

pt+1(ŝt+1)/pt(st)
=

pt(s
t)

pt+1(ŝt+1)
=

1

qt(st, ŝt+1)

and RA
t+1(s

t+1) = 0 for all st+1 ̸= ŝt+1
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ii. One period risk free bond:

Price at st:

PB
t (d, st) =

∑
st+1|st pt+1(s

t+1)

pt(st)
=
∑
st+1

qt(s
t, st+1)

Realized return:

RB
t+1(s

t+1) =
1

PB
t (d, st)

=
1∑

st+1
qt(st, st+1)

= RB
t+1(s

t)

iii. Stock that pays as dividend the aggregate andowment per period (lucas tree):

PS
t (d, st) =

∑∞
τ=t+1

∑
sτ |st pτ (s

τ )eτ (s
τ )

pt(st)

iv. Option to buy and sell a share of the Lucas tree at time T:

to buy: Call option P call
t =

∑
sT |st

PT (sT )
Pt(st)

max{PS
T (d, sT )−K, 0}

to sell: Put option P put
t =

∑
sT |st

PT (sT )
Pt(st)

max{K − PS
T (d, sT ), 0}

15.1.1 Markov Processes (methodology)

In this context the analysis is implified by assuming the economy follows a discrete time, discrete state time
homogenous markov chain: i.e. only the last state matters to define the probability of landing into the next
state in the next period.

π(j|i) = Pr(st+1 = j|st = i)

Transition matrix: πt with πij : Probability of landing in state j given the preceding state is i.

Let Pt = (p1t , · · · , pNt )T be the probability distribution over the N states, then the probability of being in
state j tomorrow is,

pjt+1 =
∑
i

πijp
i
t

i.e. the sum of the conditional probabilities of going to state j from state i weighted by the probabilities of
starting out in state i today.

More compactly,
Pt+1 = πTPt

i.e. tomorrow’s distribution is yesterday’s multiplied by the transition matrix

homogenous chain: πt = Π ∀t (the transition matrix doesn’t change in time)

Stationary distribution: Π ∈ RN
+ such that,

Π = π′Π

Proposition: Associated with every markov transition matrix π there is at least one stationary distribution
Π, it will be the eigenvector associated with the eigenvalue λ = 1 of π
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Under these assumptions the probability of an event history given an initioal state at t = 0 is given by the
product of one-step probabilities:

πt+1(s
t+1) = π(st+1|st)× π(st|st−1)× π(st−2|st−3)× · · ·π(s1|s0)×Π(s0)

Example: Suppose N = 2, let p ∈ (0, 1) and the transition matrix be:

π =

 p 1− p

1− p p


the unique invariant distribution is Π(s) = 0.5:

(
���
1

λI − π

)
v =


1 0

0 1

−
 p 1− p

1− p p



v1

v2


 1− p −1 + p

−1 + p −p


v1

v2


1− p −1 + p

0 −1


v1

v2


in the last line the row1 is added to the row2 in the matrix. Then we get:

(1− p)v1 − (1− p)v2 = 0 ⇒ v1 = v2

Finally use that v1 + v2 = 1 to get v1 = v2 = 1
2 , i.e.,

Π(s) =

1/2
1/2


Example: Let

π =

1 0

0 1


then any distribution over the two states is an invariant distribution:

[Iλ− π]

v1
v2

 =

0 0

0 0


v1
v2


then the only restriction is that v1 + v2 = 1, i.e., any distribution works.
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15.2 Stochastic NGM: The RBC model

• three goods: labor nt, capital kt, output yt

• yt = eztF (kt, nt)

• zt is an stochastic technology shock with mean zero and follows a N state markov chain:

Z = {z1, · · · , zN}

π(z′|z) = Pr(zt+1 = z′|zt = z)

• use N = 2

• capital dynamics: kt+1 = (1− δ)kt + it

• Preferences: E0

∑∞
t=0 β

tu(ct)

• Endowment: initial k0 and time nt = 1

• zt is public info and z0 is drawn from Π

• The state of the economy is given by (k, z) and not only k as before

SPP in recursive formulation

the stated assumptions and the observation that nt = 1 will be optimal (no utility in leisure) leads to use the
following Belman Equation:

v(k, z) = max
0≤k′≤ezF (k,1)+(1−δ)k)

U(ezF (k, 1) + (1− δ)k − k′︸ ︷︷ ︸
c

) + β
∑
z′

π(z′|z)v(k′, z′)


Now to allow for lifecycle behaviour we must include labor input fluctuations, hence agents will now value leisure
so that the utility function becomes:

U(ct, lt) = U(ct, 1− nt)

this is the Real Business Cycle (RBC) model, called it that way because it regards the fluctuations in economic
activity to real shocks, in this case total factor productivity ez. The new BE is therefore,

v(k, z) = max
0≤k′≤ezF (k,n)+(1−δ)k)

0≤nt≤1

{
U(ezF (k, n) + (1− δ)k − k′, 1− n) + β

∑
z′

π(z′|z)v(k′, z′)

}

FOC:

[n]: U1 · ezFn + U2(−1) = 0 ⇒ U2(c,1−n)
U1(c,1−n) = ezFn(k, n) [Intra]

[k′]: U1 = β
∑

z′ π(z′|z)v′(k′, z′)

where v′(·) is the derivative of the value function w.r.t. its first argument.

we use the envelope condition: ∂v
∂k

= ∂U
∂k

and get:

v′(k, z) = (ezFk(k, n) + 1− δ)U1(c, 1− n)

subs. in [k′]:

U1(c, 1− n) = β
∑
z′

π(z′|z) (ezFk(k
′, n′) + 1− δ)U1(c

′, 1− n′) [Inter-EE]
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Intuitions behind the equilibrium conditions:

Intra-temporal trade-off: Optinmal MRS between consumption and leisure is equal to marginal product of labor.

Inter-temporal trade-off: Euler equation, marginal utility of consumption today is equal to discounted marginal
utility of consumption tomorrow adjusted by rate of return of capital.

Recursive Competitive Equilibrium

value function v : R3
+ → R+ and policy functions c, n, g : R3

+ → R+ for the representative HH, a labor demand
function for the representative firm N : R2

+ → R+, pricing functions w, r : R2
+ → R+ and an aggregate law of

motion H : R2
+ → R+ such that:

1. Given the functions w, r and H the value function solves the BE.

max
c,k′,n≥0

{
U(c, n) + β

∑
z′∈Z

π(z′|z)v(k′, z′,K ′)

}

s.t.
c+ k′ = w(z,K)n+ (1 + r(z,K)− δ)k

K ′ = H(z,K)

with c, n, g as the associated policy functions.

2. The labor demand and pricing functions satisfy:

w(z,K) = ezFn(K,N(z,K))

w(z,K) = ezFk(K,N(z,K))

3. Consistency
H(z,K) = g(K, z,K)

4. MC: For all K ∈ R+

c(K, z,K) + g(K, z,K) = ezF (K,N(z,K)) + (1− δ)K

N(z,K) = n(K, z,K)
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