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The genera Lepidothyris, Lygosoma and Mochlus comprise the writhing or supple skinks, a group of semi-fossorial, 
elongate-bodied skinks distributed across the Old World Tropics. Due to their generalized morphology and lack of 
diagnostic characters, species- and clade-level relationships have long been debated. Recent molecular phylogenetic 
studies of the group have provided some clarification of species-level relationships, but a number of issues regarding 
higher level relationships among genera still remain. Here we present a phylogenetic estimate of relationships 
among species in Lygosoma, Mochlus and Lepidothyris generated by concatenated and species tree analyses of 
multilocus data using the most extensive taxonomic sampling of the group to date. We also use multivariate statistics 
to examine species and clade distributions in morpho space. Our results reject the monophyly of Lygosoma s.l., 
Lygosoma s.s. and Mochlus, which highlights the instability of the current taxonomic classification of the group. We, 
therefore, revise the taxonomy of the writhing skinks to better reflect the evolutionary history of Lygosoma s.l. by 
restricting Lygosoma for Southeast Asia, resurrecting the genus Riopa for a clade of Indian and Southeast Asian 
species, expanding the genus Mochlus to include all African species of writhing skinks and describing a new genus 
in Southeast Asia.

ADDITIONAL KEYWORDS: Africa – India – Lamprolepis – Lepidothyris – Lygosoma – Mochlus – Riopa – 
Southeast Asia – taxonomy.

INTRODUCTION

The lizard family Scincidae is the most species-rich 
family of squamate reptiles. Skinks are ecologically 
and morphologically diverse, with more than 1600 taxa 
currently recognized (Uetz et al., 2019) as occurring 
in tropical and temperate zones on all continents 
excluding Antarctica, as well as on many oceanic 
islands (Greer, 1970a; Vitt & Caldwell, 2013). Despite 
this high diversity, inter- and intrageneric phylogenetic 

relationships across many clades in the family remain 
poorly resolved (Pyron et al., 2013; Skinner et al., 2013; 
Barley et al., 2015a; Lambert et al., 2015; Zheng & 
Wiens, 2016), However, with the continued growth 
in available genetic data and increased taxonomic 
sampling in molecular systematic studies of various 
clades, research over the last decade has contributed 
greatly to an improved understanding of the diversity of 
scincid lizards (e.g. Linkem et al., 2011; Siler et al., 2011; 
Brandley et al., 2012; Datta-Roy et al., 2012; Sindaco 
et al., 2012; Skinner et al., 2013; Datta-Roy et al., 
2014; Barley et al., 2015a; Pinto-Sánchez et al., 2015; 
Karin et al., 2016; Klein et al., 2016; Erens et al., 2017). 
Additionally, this nascent body of work has resulted in 
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a dramatic increase in the discovery of morphologically 
cryptic lineages (e.g. Daniels et al., 2009; Linkem et al., 
2010; Chapple et al., 2011; Heideman et al., 2011; Siler 
et al., 2011, 2012, 2014, 2016, 2018; Kay & Keogh, 2012; 
Barley et al., 2013; Davis et al., 2014, 2016; Geheber et al., 
2016; Heitz et al., 2016; Medina et al., 2016; Busschau 
et al, 2017; Conradie et al., 2018; Karin et al., 2018; 
Pietersen et al., 2018). In spite of all these efforts, there 
remain many lingering taxonomic and phylogenetic 
challenges in the family, possibly none more so than in 
the large and diverse subfamily Lygosominae.

One of three subfamilies recognized widely in the 
lizard family Scincidae (Greer, 1970a; Pyron et al., 2013; 
Skinner et al., 2013; Lambert et al., 2015; Karin et al., 
2016; Linkem et al., 2016; Zheng & Wiens, 2016; but see 
an alternative, less widely accepted classification in: 
Hedges & Conn, 2012; Hedges, 2014; Uetz et al., 2018), 
the Lygosominae contains approximately 1354 species 
(estimated from: Uetz et al., 2019) and represents, 
currently, the most species-rich radiation of scincid 
lizards, with a broad, global distribution (Greer, 1970a; 
Honda et al., 2000; Skinner et al., 2011). The radiation 
likely began diversifying 100.6–63.6 Mya, during the Late 
Cretaceous to Early Palaeocene (Skinner et al., 2011). 
Extant lygosomine genera exhibit a rich biogeographical 
history, with evidence for historical transoceanic 
dispersal in some lineages (Carranza & Arnold, 2003; 
Honda et al., 2003; Rocha et al., 2006; Linkem et al., 
2013; Skinner et al., 2013; Karin et al., 2016). Many 
genera have been the subject of recent phylogenetic 
studies, including Afroablepharus and Panaspis (Medina 
et al., 2016), Eutropis (Datta-Roy et al., 2012; Barley 
et al., 2013, 2015a), Lygosoma (Datta-Roy et al., 2014), 
Mabuya (Hedges & Conn, 2012; Pinto-Sánchez et al., 
2015), Sphenomorphus (Linkem et al., 2011), Trachylepis 
(Sindaco et al., 2012) and Tytthoscincus (Grismer 
et al., 2018a). Although these studies have increased 
the understanding of diversity and relationships 
among these focal clades, they also have highlighted 
a number of phylogenetic and taxonomic issues that 
remain unresolved. As taxonomy reflects our knowledge 
of organisms in the tree of life (Vences et al., 2013), 
resolving these conflicts is important for investigating 
a myriad of higher level questions, including studies 
of ecology, diversification, morphological evolution and 
conservation of imperilled species.

One prime example of unresolved taxonomic issues 
among lygosomine skinks is the genus Lygosoma, which 
has a long and controversial history of uncertainty 
regarding species- and generic-level relationships. 
Lygosoma Hardwicke & Gray 1827, the type genus of the 
subfamily Lygosominae, comprises 31 recognized species 
distributed across Africa, India, Southeast Asia, the 
western and southern Philippines and Christmas Island 
(Australia) (Geissler et al., 2011; Cogger, 2014; Datta-Roy 
et al., 2014; Heitz et al., 2016; Grismer et al., 2018b; Siler 

et al., 2018; Uetz et al., 2019). Genera closely allied to 
Lygosoma are Mochlus, consisting of 15 species found in 
semi-arid regions across central and subtropical southern 
Africa, and Lepidothyris, consisting of three species 
found in forested regions of Central Africa (Greer, 1977; 
Wagner et al., 2009; Uetz et al., 2019). Historically, the 
taxonomic status of these three genera has been debated 
extensively, with species in Mochlus and Lepidothyris 
often included in Lygosoma (e.g. Boulenger, 1887; Greer, 
1977; see taxonomic history of the group below), and 
recent phylogenetic analyses suggest that Lygosoma is 
paraphyletic with respect to both genera (Pyron et al., 
2013; Datta-Roy et al., 2014). Therefore, from here on 
out, we refer to the 49 species represented by these three 
genera collectively as Lygosoma s.l., whereas, we refer 
to the 31 species in the genus Lygosoma (as currently 
recognized) as Lygosoma s.s.

Although Greer (1977) found all members of Lygosoma 
s.l. to be united by osteological characteristics of the 
secondary palate, morphology has offered few clues to 
the phylogenetic relationships of species and clades in 
the group, which has resulted in considerable taxonomic 
confusion regarding the status of species and genera 
(e.g. Broadley, 1966; Greer, 1977). Known as supple or 
writhing skinks, species have been allocated to Lygosoma 
s.l. generally on the basis of their semi-fossorial ecology, 
head scale patterns well-developed eyelids, elongate 
bodies and short fore- and hind limbs that do not meet 
when appressed (Smith, 1935; Mittleman, 1952; Greer, 
1977; Geissler et al., 2011; Geissler, Hartmann & Neang, 
2012). All species are pentadactyl with the exception of 
Lygosoma lineatum Gray, 1839, which has tetradactyl 
fore-limbs (Greer, 1977). Colour and pigmentation 
patterns vary within and between species (Wagner 
et al., 2009). However, beyond these generalizations, 
species exhibit diverse body forms that range from 
moderately large (e.g. Lygosoma kinabatanganense 
Grismer, Quah, Duzulkafly & Yambun, 2018: snout–
vent length [SVL] = 141 mm; L. haroldyoungi (Taylor, 
1962): SVL = 148 mm; Mochlus sundevallii (Smith, 
1894): SVL = 140 mm) to small (e.g. L. frontoparietale 
(Taylor, 1962): SVL = 41 mm; L. veunsaiense Geissler, 
Hartmann & Neang, 2012: SVL = 34 mm) and more 
robust with short limbs (e.g. M. brevicaudis Greer, 
Grandison & Barbault, 1985), to elongate and more 
gracile with small, slender limbs and shorter digits 
(e.g. L. quadrupes (Linnaeus, 1766)) (Broadley, 1966; 
Greer, 1977; Geissler et al., 2011). As a result of this 
considerable diversity in body form, researchers have 
struggled to define morphological boundaries between 
groups (Boulenger, 1887; Smith, 1937a; Greer, 1977).

More recently, molecular phylogenetic techniques have 
been employed to examine species-level relationships 
in Lygosoma s.l., resulting in increased taxonomic 
resolution (Ziegler et al., 2007; Wagner et al., 2009; 
Pyron et al., 2013; Datta-Roy et al., 2014). Nevertheless, 
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not only have the results of these studies revealed 
significant genetic lineage diversity, but also they have 
failed to support the monophyly of several taxonomic 
groups, including Lygosoma s.s. with respect to Mochlus 
and Lepidothyris and Lygosoma s.l. with respect to the 
species Lamprolepis smaragdina (Lesson, 1830) (Honda 
et al., 2000, 2003; Pyron et al., 2013; Datta-Roy et al., 
2014). Unfortunately, to date, the paucity of available 
genetic samples for many species has limited the degree 
to which studies have been able to resolve the intra- and 
intergeneric relationships in Lygosoma s.l. Additionally, 
several new species have been described recently 
based on genetic and/or morphological data (Lygosoma 
boehmei Ziegler, Schmitz, Heidrich, Vu & Nguyen, 
2007, L. kinabatanganense, L. peninsulare Grismer, 
Quah, Duzulkafly & Yambun, 2018, L. samajaya 
Karin, Freitas, Shonleben, Grismer, Bauer & Das, 
2018, L. siamense Siler, Heitz, Davis, Freitas, Aowphol, 
Termprayoon & Grismer, L. tabonorum Heitz, Diesmos, 
Freitas, Ellsworth, Grismer, Aowphol, Brown & Siler, 
L. veunsaiense and Lepidothyris hinkeli Wagner, Böhme, 
Pauwels & Schmitz, 2009), but how these species relate 
to others in Lygosoma s.l. remains unresolved. In this 
manuscript, we employ phylogenetic approaches and 
analyses of external morphology to investigate species- 
and generic-level relationships and taxonomic conflicts 
in Lygosoma s.l.

Taxonomic hisTory of Lygosoma s.L.

Early classifications based on morphology
The taxonomy of Lygosoma s.l. has a long and complex 
history. In Lygosoma s.l., the traditional phenotypic 
characters used in skink classifications are non-
diagnostic and have overlapping numerical values, 
making it difficult to classify groups. Historically, 
taxonomic hypotheses for skinks employed a 
variety of morphological characters in genus-level 
classifications, such as the degree of body elongation, 
limb size and digit number, size of the ear opening, 
lower eyelid characteristics (i.e. scaly vs. with a 
transparent disc), head scalation patterns and 
pigmentation patterns (e.g. Duméril & Bibron, 1839; 
Gray, 1839). However, many of these characters 
have been shown to be convergent among skinks, 
calling into question the breadth of their diagnostic 
utility, especially in Lygosoma s.l., in which species 
exhibit varying body sizes and degrees of elongation 
(Smith, 1937a; Greer, 1977). Further complicating 
clear morphological definitions for members of this 
radiation is the anomalous morphology of the type 
species of Lygosoma, L. quadrupes, which has a thin, 
snake-like body, tiny limbs, short digits and an atypical 
head scale pattern (single frontoparietal scale, nasals 
fused with supranasals; Greer, 1977). Whereas other 
species in the radiation also possess some of these 

characters (e.g. L. lineatum and L. vosmaerii (Gray, 
1839) have bodies nearly as elongate as L. quadrupes; 
L. isodactylum (Günther, 1864b) has nasals fused 
anteriorly with supranasals [Greer, 1977; Geissler 
et al., 2011, 2012]), the combination of morphological 
traits in L. quadrupes is different from other species 
in Lygosoma s.l. (although the recently described 
species L. siamense and L. tabonorum, both part of 
the L. quadrupes species complex, also have these 
morphological characters; Heitz et al., 2016; Siler et al., 
2018). Therefore, historically it has been difficult to 
classify L. quadrupes in a broader taxonomic context, 
as evidenced by multiple taxonomists classifying the 
species not with other members of Lygosoma s.l., but 
with superficially similar elongate-bodied species (e.g. 
Boulenger, 1887; Smith, 1935, 1937a; Mittleman, 1952) 
that have been shown subsequently not to be closely 
related. As a result, during the previous 150 years, 
species in Lygosoma s.l. have alternated between 
being placed in the same genus or being separated into 
multiple genera (e.g. Boulenger, 1887; Smith, 1935, 
1937a; Mittleman, 1952; Broadley, 1966; Greer, 1977; 
Wagner et al., 2009), leading to taxonomic instability 
in the group.

Currently, three genera are recognized in Lygosoma 
s.l.: Lygosoma s.s., Lepidothyris and Mochlus (Datta-
Roy et al., 2014). However, a decade ago, a fourth 
genus, Riopa, also was considered valid (Wagner et al., 
2009). Of these four genera, the genus Lygosoma has 
undergone the most revisionary changes through the 
years, with species and species-group compositions 
(i.e. sections and subgenera) a subject of continued 
confusion and debate (e.g. Smith, 1935, 1937a; 
Mittleman, 1952; Glauert, 1960; Laurent & Gans, 
1965). The genus Lygosoma Hardwicke & Gray was 
first described in 1827 for the species Lacerta serpens 
Bloch, 1776. In their description, the authors noted 
that Lacerta serpens is a distinct species from Anguis 
quadrupes Linnaeus, 1766, failing to realize that Bloch’s 
description of Lacerta serpens was a redescription of 
Linnaeus’ Anguis quadrupes. Bloch (1776) redescribed 
Anguis quadrupes because Linnaeus’ original 
description of the species had classified it as a four-
legged snake (reviewed in Bauer & Günther, 2006). 
Hardwicke & Gray’s (1827) oversight, which may have 
resulted from the assignment of additional specimens 
to Lacerta serpens that were not truly quadrupes 
specimens (G. Shea, pers. comm.), was not resolved 
until Smith (1935) synonymized Lacerta serpens with 
Anguis quadrupes, thus making Lygosoma quadrupes 
the type species of Lygosoma. Over the next two 
centuries, in addition to Lygosoma, species currently 
in Lygosoma s.l. have been described as members of 12 
disparate genera: Campsodactylus Duméril & Bibron, 
1839; Chiamela Gray, 1839; Eumeces Wiegmann, 
1834; Hagria Gray, 1839; Lepidothyris Cope, 1892 
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(nomen nudum until Cope, 1900); Mochlus Günther, 
1864a; Podophis Wiegmann, 1834; Riopa Gray, 1839; 
Sphenosoma Fitzinger, 1843; Sepacontias Günther, 
1880; Squamicilia Mittleman, 1952; and Tiliqua Gray, 
1825. These genera were revised and reorganized in 
major works throughout the 19th century (Schneider, 
1801; Daudin, 1802; Fitzinger, 1826, 1843; Wiegmann, 
1834; Cocteau, 1836; Duméril & Bibron, 1839; 
Gray, 1839, 1845; Günther, 1864b; Theobald, 1876), 
culminating in Boulenger’s (1887) monograph 
cataloguing the lizards in the British Museum. Faced 
with the difficulty of classifying 2340 specimens of 
scincid lizards representing 369 recognized species, 
and having remarked on the difficulty of classifying 
skink genera, Boulenger (1887) synonymized most of 
these genera with Lygosoma, which resulted in the 
genus comprising 159 species (43% of all skink species 
recognized at the time). Additionally, Boulenger (1887) 
subdivided Lygosoma into 11 sections (Emoa [sic] Gray, 
1845, Hemiergis Wagler, 1830, Hinulia Gray, 1845, 
Homolepida [sic] Gray, 1845, Keneuxia Gray, 1845, 
Liolepisma [sic] Duméril & Bibron, 1839, Lygosoma, 
Otosaurus Gray, 1845, Rhodona Gray, 1839, Riopa and 
Siaphos [sic] Gray, 1831) based on limb proportions 
and head scalation characters. For half a century his 
revision was the only large-scale treatment of skink 
taxonomy.

By the early 1900s, there was growing concern 
about taxonomic confusion resulting from piecemeal 
adoption of a subset of Boulenger’s (1887) Lygosoma 
sections as genera. For example, his section Emoa [sic] 
was recognized as the genus Emoia by Barbour (1912), 
his section Otosaurus as the genus Otosaurus by Taylor 
(1923), his section Rhodona as the genus Rhodona by 
Loveridge (1933) and his section Liolepisma [sic] as 
the genus Leiolopisma by Smith (1935). Consequently, 
in 1937 Smith undertook a large-scale revision of 
Lygosoma, re-evaluating and reclassifying Boulenger’s 
(1887) 11 sections. In doing so, Smith (1937a) elevated 
five sections to genera, believing each to be distinct 
enough morphologically from the rest of Lygosoma to 
warrant generic status: Emoia, Keneuxia (elevated as 
the genus Dasia Gray, 1839), Otosaurus, Rhodona 
and Riopa. Four subgenera were recognized in Riopa: 
Eugongylus Fitzinger, 1843, Eumecia Barboza du 
Bocage, 1870, Panaspis Cope, 1868 and Riopa (Smith 
1937a). Additionally, Smith (1937a) synonymized 
the section Homolepida [sic] with the genus Tiliqua 
and considered the sections Hemiergis and Siaphos 
[sic] invalid due to a lack of diagnostic characters, 
placing their species into the section Leiolopisma. 
Despite these many changes, the genus Lygosoma, 
as defined by Smith (1937a), remained species-rich, 
comprising more than 166 taxa separated into three 
sections: Leiolopisma, Lygosoma and Sphenomorphus 

Fitzinger, 1843; and the subgenus Ictiscincus Smith, 
1937a. In his revision, Smith (1937a: 219) lamented 
on the lack of diagnostic characters separating species 
and sections in this large genus, writing, ‘I am unable 
to find any character by which to separate the well-
developed forms of Lygosoma…from the degenerate 
ones. Between the extremes in each section, the 
difference is enormous, but the gap can be bridged by 
connecting forms showing every stage of development.’

The next major revision of Lygosoma was conducted 
by Mittleman (1952), who felt that a taxonomic 
system in which genera are defined narrowly was 
preferable to the approach of Boulenger (1887) and 
Smith (1937a), both of whom, in struggling to find 
diagnostic characters, treated Lygosoma as a catch-
all genus. Therefore, in his revision, Mittleman (1952) 
avoided using subgenera and sections and instead 
defined multiple genera for species formerly included 
in Boulenger’s (1887) and Smith’s (1937a) definitions 
of Lygosoma. Although he worked primarily from the 
literature instead of examining specimens (G. Shea, 
pers. comm.), Mittleman described three new genera 
and resurrected and redefined 30 genera based on 
body proportions, limb size, size of the ear opening 
and head scalation patterns (Mittleman, 1952). 
Consequently, the number of species in Lygosoma 
was reduced considerably to eight elongate, small-
limbed species from Southeast Asia and Australia. 
Of the new genera described, the genus Squamicilia 
Mittleman, 1952 contained a species of Lygosoma s.l. 
(isodactylum) included previously in Riopa subgenus 
Riopa by Smith (1937a) and was defined on the basis 
of a scaly lower eyelid and absence of contact between 
supranasals (Mittleman, 1952). Additionally, the 
genera Mochlus and Riopa were redefined to comprise 
14 and nine species, respectively (Mittleman, 1952). 
Prior to this work, Mochlus had long been treated as 
a synonym of Riopa, regardless of whether Riopa was 
considered a genus or a section at the time (Boulenger, 
1887; Schmidt, 1919; Barbour & Loveridge, 1928; 
Loveridge, 1933; Smith, 1937a; FitzSimons, 1943). 
Mittleman (1952), in an effort to define genera that 
more accurately reflected perceived evolutionary 
relationships, considered Mochlus as a genus distinct 
from Riopa based on its scaly (vs. transparent) lower 
eyelid and more robust (vs. small) limbs. However, 
many authors have questioned the diagnostic 
value of the lower eyelid state and relative limb 
proportions for genera, noting considerable variation 
in states for both characters among many genera 
of skinks (Smith, 1937a; Broadley, 1966; Greer, 
1974, 1977; Datta-Roy et al., 2015). As a result of 
this uncertainty, and concerns with over-splitting 
of genera by Mittleman (1952), many subsequent 
studies rejected Mittleman’s (1952) separation of 
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Mochlus and Riopa and continued to treat Mochlus, 
along with Squamicilia, as synonyms of Riopa 
(Loveridge, 1957; Broadley, 1962, 1966; Taylor, 1963; 
Greer, 1977).

Despite disagreements regarding the taxonomic 
rank and species composition of Riopa, Mochlus and 
Squamicilia,  species included in these genera have 
been recognized as being closely allied, (Boulenger, 
1887; Smith, 1937a). The genus Lepidothyris, 
mentioned by Cope (1892) (as a nomen nudum) 
and attributed formally to the species Lepidothyris 
fernandi (Burton, 1836) by Cope (1900), also has been 
historically allied with Riopa + Mochlus (the genus 
was synonymized with Riopa subgenus Riopa by Smith 
[1937a] and Mochlus by Mittleman [1952]). In contrast, 
since Boulenger (1887), the species composition of 
Lygosoma has changed considerably, with Smith 
(1937a) and Mittleman (1952) both offering different 
morphological definitions and species compositions for 
the genus – Smith treating the genus as a catch-all 
group comprising otherwise unclassifiable species and 
Mittleman treating it as a narrowly defined unit. After 
Mittleman (1952), authors continued to reclassify 
species in Lygosoma, placing them in different genera 
(e.g. Storr, 1964, 1967; Greer, 1970a; Cogger, 1975), 
so that by 1977, the only species that remained in 
the genus Lygosoma was the type species, Lygosoma 
quadrupes.

The taxonomy of the genus Lygosoma was not 
revisited until Greer (1977) re-examined the 
morphology of Lygosoma quadrupes, looking at 
internal osteological characters of the skull in 
addition to traditional external morphological 
characters. In a paper that laid the foundations 
of our current understanding of Lygosoma s.l. 
phylogenetic relationships, Greer (1977) proposed 
that L. quadrupes was closely related to species in 
the genus Riopa [which included Mittleman’s (1952) 
Mochlus and Squamicilia] based on the morphology 
of the secondary palate. He further suggested that 
the characteristic elongate body plan of L. quadrupes 
was part of a gradient in body form morphology that 
encompassed the less elongate body morphologies of 
species of Riopa, and he concluded that the amount 
of overlap in characters between Riopa and Lygosoma 
quadrupes was insufficient to warrant the recognition 
of two separate genera (Greer, 1977). The genus Riopa 
was, therefore, synonymized with Lygosoma, resulting 
in a genus of 32 recognized species (Greer, 1977). Since 
Greer’s (1977) work, more recent phylogenetic studies 
of the genus have corroborated the close relationship 
between Lygosoma quadrupes + Riopa (Ziegler et al., 
2007; Wagner et al., 2009; Pyron et al., 2013; Datta-
Roy et al., 2014; see below), and this work remains 

a major influence on our current understanding of 
evolutionary patterns in Lygosoma s.l.

Recent classifications based on molecular 
sequence data
Over the last two decades, molecular phylogenetic 
studies focusing on lygosomine skinks have helped to 
resolve some of the long-standing taxonomic issues 
regarding genera in Lygosominae (Honda et al., 2000, 
2003; Skinner et al., 2011). Although molecular studies 
have increased our understanding of relationships 
among certain taxa in Lygosoma s.l., these studies 
exposed additional taxonomic challenges regarding 
the taxonomic rank and allocation to clusters of 
species variably ascribed to the genera Lepidothyris, 
Lygosoma, Mochlus and Riopa. Ziegler et al. (2007) 
conducted the first molecular phylogenetic study of 
Lygosoma s.l., collecting 16S mitochondrial sequence 
data for six Southeast Asian and Indian species. Not 
only did this study confirm Greer’s (1977) hypothesis of 
a close relationship between Lygosoma quadrupes and 
Riopa, but it also recovered L. quadrupes as nested in 
a clade of species recognized previously by Mittleman 
(1952) as part of the genus Mochlus (Ziegler et al., 
2007).

Wagner et al. (2009) conducted a molecular study 
focused on African species of Lygosoma to infer the 
phylogenetic position and biogeographic history of the 
Lygosoma fernandi species group from west-central 
Africa. Adding a second mitochondrial gene (12S) 
and additional African, Indian and Southeast Asian 
taxa to the dataset of Ziegler et al. (2007) for a total 
of 11 ingroup species, analyses recovered three well-
supported clades: two African clades [one comprising 
the L. fernandi species group (L. fernandi + L. hinkeli 
+ L. striatus (Hallowell 1854)) and one comprising 
Lygosoma afer (Peters, 1854) + L. sundevallii (L. afer 
subsequently has been synonymized with L. sundevallii 
[Freitas et al., 2018]), and one Southeast Asian clade 
comprising L. koratense Smith 1917 + L. quadrupes. 
However, inter-clade relationships and the placement 
of several Southeast Asian taxa (L. bowringii 
(Günther, 1864b), L. lineolatum (Stoliczka, 1870)) 
and Indian taxa (L. albopunctatum (Gray, 1846)) 
taxa remained poorly supported, and the monophyly 
of the genus Lygosoma was not resolved with strong 
support (Wagner et al., 2009). Despite the lack of 
support at deep nodes in the phylogeny, Wagner et al. 
(2009) recommended a major revision to Greer’s (1977) 
taxonomy by splitting Lygosoma into four genera: 
Lygosoma for Southeast Asian species, Lepidothyris 
for the Lygosoma fernandi species group, Mochlus for 
Lygosoma sundevallii and Riopa for Indian species, 
referencing Mittleman (1952) for the morphological 
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definition of these genera. Yet, this classification 
contradicted Mittleman’s (1952) in several ways that 
were not addressed. First, the species lineolatum 
and bowringii were placed in the genus Lygosoma 
instead of Riopa and Mochlus, respectively, as they 
were in Mittleman (1952) and, second, the species 
albopunctatum was moved to the genus Riopa instead 
of Mochlus as it was in Mittleman (1952) (Wagner 
et al., 2009). In fact, it appears that although Wagner 
et al. (2009) refer to Mittleman (1952) for the definition 
of Lygosoma, Mochlus and Riopa, the authors did not 
follow Mittleman’s (1952) definition of the genera 
and instead implicitly define them geographically 
(Lygosoma for species from Southeast Asia, Mochlus 
for species from Africa, excluding the Lepidothyris 
fernandi species group, and Riopa for species from 
India). This lack of morphological definitions and the 
implicit reliance on geography as a diagnostic feature 
for these genera resulted in an unstable taxonomy 
in which generic boundaries were not well-defined. 
Whereas Mochlus was widely adopted as the genus 
name for African species (e.g. Kennedy et al., 2012; 
Trape et al., 2012; Pyron et al., 2013; Hedges, 2014; 
Masterson, 2014; Uetz et al., 2019), most subsequent 
studies continued to treat Riopa as part of Lygosoma 
(Geissler et al., 2011, 2012; Pyron et al., 2013).

Poor support along the backbone of their tree 
meant that Wagner et al. (2009) could not assess the 
reciprocal monophyly of genera, nor were they able to 
estimate the relationships of the genera to each other. 
Additionally, a lack of tissue samples meant that most 
of the species in Greer’s (1977) Lygosoma could not be 
ascribed to Wagner et al.’s (2009) genera. Pyron et al.’s 
(2013) squamate phylogeny, in which Lygosoma s.l. 
was included as part of a much larger investigation 
into the evolutionary relationships of squamate 
reptiles, had better support at deeper nodes. Although 
Pyron et al.’s (2013) study did not employ additional 
molecular or taxonomic sampling for Lygosoma s.l., 
the authors’ use of a supermatrix in an analysis that 
included thousands of other species resulted in a 
phylogeny that better resolved relationships among 
major clades in the group. Lygosoma s.l. was inferred 
to be monophyletic, but the genus Lygosoma was 
polyphyletic with respect to Lepidothyris and Mochlus 
(Riopa was treated as a synonym of Lygosoma), and 
Mochlus was not supported as monophyletic.

A paraphyletic Lygosoma was corroborated through 
a molecular phylogenetic analysis of Lygosoma s.l. 
by Datta-Roy et al. (2014), which represents the 
most recent study conducted to date on the genera. 
The 17-species dataset included additional Indian 
and Southeast Asian species of Lygosoma s.l. (Datta-
Roy et al., 2014). Like Pyron et al.’s (2013) study, the 
results suggested that Lygosoma was polyphyletic 

with respect to Riopa and to both African genera. 
Based on these results, Datta-Roy et al. (2014) 
synonymized Riopa with Lygosoma, but they retained 
Mochlus and Lepidothyris as separate genera due to 
low support for the placement of these two genera in 
the larger Lygosoma s.l. group. However, unlike Pyron 
et al. (2013), Datta-Roy et al. (2014) did not recover 
Lygosoma s.l. as monophyletic, instead observing the 
morphologically and ecologically distinct arboreal 
species Lamprolepis smaragdina as nested in the 
clade with high support, although the exact position of 
the species was not resolved.

Taken together, these molecular phylogenetic studies 
reflect the long-standing problems in arriving at a 
stable taxonomy for this Old World radiation of skinks. 
Despite considerable efforts to revise the taxonomy 
based on morphological characters and molecular 
data, the current taxonomic status of Lepidothyris, 
Lygosoma s.s., Mochlus and Riopa, remain unresolved, 
with recent phylogenetic studies suggesting that 
relationships in Lygosoma s.l. are more complex than 
previously recognized (Datta-Roy et al., 2014). In this 
study, we employ increased taxonomic and genetic 
sampling of Lygosoma s.l., combining concatenated 
and coalescent-based molecular phylogenetic analyses 
with multivariate statistical analyses of morphological 
data, to address the following issues: (1) the monophyly 
of Lygosoma s.l. with respect to Lamprolepis; (2) the 
status and relationships of Lepidothyris, Lygosoma 
s.s., Mochlus and Riopa; (3) the ability to determine 
diagnostic morphological characters for clades; and (4) 
the taxonomic stability of Lygosoma s.l.

MATERIAL AND METHODS

Taxon sampling

We sampled species from across the geographic 
distribution of Lygosoma s.l., including lineages from 
Africa, India, Southeast Asia and the Philippines, 
using one to two individuals per species (when 
available) for phylogenetic analyses. Our ingroup 
sampling consisted of 34 individuals representing 
22 species of Lygosoma s.l. 17 species of Lygosoma 
s.s., one species of Lepidothyris and four species of 
Mochlus (Supporting Information, Table S1). Tissue 
samples for the remaining 27 species in Lygosoma s.l. 
are not available in museum collections. Outgroup 
sampling was chosen based on Pyron et al. (2013) to 
assess the monophyly of Lygosoma s.l. and comprised 
nine individuals of species from closely and distantly 
related scincid genera, the lygosomine species Eutropis 
multifasciata, Lamprolepis smaragdina, Larutia sp., 
Lipinia pulchella, Otosaurus cumingi, Pinoyscincus 
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jagori and Sphenomorphus fasciatus and the scincine 
species Plestiodon fasciata (Supporting Information, 
Table S1).

geneTic sampling and molecular meThods

Most of the sequences used in our analyses were novel, 
but we were able to obtain data for several ingroup 
and outgroup samples from GenBank (Supporting 
Information, Table S1). To generate our sequence 
data, we extracted genomic DNA from liver or muscle 
tissue using a high salt precipitation method (Aljanabi 
& Martinez, 1997) and amplified seven nuclear loci 
(nuDNA; oocyte maturation factor [CMOS, 374 base 
pairs/bp], follistatin-like protein 5 [FSTL5, 622 bp], 
prolactin receptor [PRLR, 566 bp], prostaglandin 
E receptor 4 [PTGER4, 470 bp], RNA fingerprint 
protein 35 [R35, 665 bp], recombination activating 
gene 1 [RAG1, 828 bp], synuclein alpha interacting 
protein [SNCAIP, 484 bp]) and two mitochondrial 
markers (mtDNA; NADH dehydrogenase subunit 
1 [ND1, 969 bp], 16S ribosomal RNA [16S, 559 bp]) 
using standard PCR protocols (Siler et al., 2011). 
All loci were chosen based on their ability to resolve 
relationships at different tree depths, as shown in 
previous species-level phylogenetic studies of skinks 
(Whiting et al., 2003; Siler et al., 2011; Brandley et al., 
2012). Primers and annealing temperatures are listed 
in Table 1. PCR products were purified by ExoSAP-IT 

(Thermo Fisher Scientific), sequenced with BigDye 
Terminator v.3.1 sequencing kit (Thermo Fisher 
Scientific) and cleaned using ethanol precipitation. 
We sent sequencing products to Eurofins Genomics 
for visualization. All novel sequences are deposited in 
GenBank (Supporting Information, Table S1).

sequence alignmenT and concaTenaTed 
phylogeneTic analyses

Raw sequence data were examined for heterozygous 
sites and erroneous base calls and were trimmed in 
GENEIOUS v.9.0.4 (Biomatters, Ltd.). We aligned 
each locus with MUSCLE (Edgar, 2004) using default 
settings as implemented in GENEIOUS and examined 
the resulting alignments by eye. For protein-coding 
loci (all nuDNA and ND1), we used GENEIOUS to 
translate and place alignments in the correct reading 
frame to check for errors in the location of insertions-
deletions and to detect erroneous internal stop codons. 
We retained ambiguous sites in the 16S alignment 
after running preliminary maximum likelihood 
analyses on an alignment with the ambiguous sites 
included and an alignment with the ambiguous sites 
removed using RAxML v.8.0.0 (Stamatakis, 2014). The 
resulting topologies did not show any highly supported 
incongruencies, and we, therefore, used the longer 
alignment in our subsequent concatenated analyses to 
maximize the size of our dataset.

Table 1. The primers and annealing temperatures for the seven nuclear genes and two mitochondrial genes used in this 
study.

Gene Sequence 
Length (bp)

Primer Primer Sequence (5’–3’) Annealing 
Temp (ºC)

Reference

CMOS 374 cmosG73.1 GGCTRTAAARCARGTGAAGAAA 52.5 Whiting et al., 2003
cmosG74.1 GARCWTCCAAAGTCTCCAATC

FSTL5 622 FSTL5.F1 TTGGRTTTATTCTTCAYAAAGA 55 Townsend et al., 2008
FSTL5.R2 YTCTSAACYTCAGTGATYTCACA

PRLR 566 PRLR.F1 GACARYGARGACCAGCAACTRATGCC 55 Townsend et al., 2008
PRLR.R3 GACYTTGTGRACTTCYACRTAATCCAT

PTGER4 470 PTGER4.F1 GACCATCCCGGCCGTMATGTTCATCTT 55 Townsend et al., 2008
PTGER4.R5 AGGAAGGARCTGAAGCCCGCATACA

R35 665 R35.F GACTGTGGAYGAYCTGATCAGTGTGG 55 Fry et al., 2006
R35.R GCCAAAATGAGSGAGAARCGCTTCTG

RAG1 828 RAG-1.R13 TCTGCTGTTAATGGAAATTCAAG 52.5 Groth & 
Barrowclough, 1999RAG-1.R13. 

rev
AAAGCAAGGATAGCGACAAGAG

SNCAIP 484 SNCAIP.F10 CGCCAGYTGYTGGGRAARGAWAT 55 Townsend et al., 2008
SNCAIP.R13 GGWGAYTTGAGDGCACTCTTRGGRC

ND1 969 16dR CTACGTGATCTGAGTTCAGACCGGAG 53 Leaché & Reeder, 2002
tMet ACCAACATTTTCGGGGTATGGG

16S 559 16Sar-L CGCCTGTTTATCAAAAACAT 46 Palumbi, 1991
16Sbr-H CCGGTCTGAACTCAGATCACGT
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Although many studies have suggested that 
partitioning a concatenated dataset by gene and codon 
position results in improved topologies (Brandley et al., 
2005; Brown & Lemmon, 2007; Linkem et al., 2011, 
2013), empirical and simulated phylogenetic data have 
shown that when partitions have few variable sites, 
over-parameterization leads to estimation of values 
for unidentifiable parameters, and the resulting 
topology can have incorrect long branch lengths due 
to poor estimation of substitution rate parameters 
(Marshall, 2010). Therefore, to determine the best 
partitioning strategy for each protein-coding gene, we 
calculated Bayes’ factors to compare the unpartitioned 
to partitioned-by-codon topologies for each protein-
coding gene. First, we selected the best substitution 
model for each gene and codon position using the 

Akaike Information Criteria (AIC; Akaike, 1974) 
implemented in the program JMODELTEST v.2.1.10 
(Darriba et al., 2012; Table 2). We then generated 
trees for each partitioning strategy using Bayesian 
Inference (BI) with MrBayes v.3.2.6 (Ronquist et al., 
2012). Each BI analysis consisted of two independent 
runs of four chains, run for 5,000,000 generations, 
sampling every 1000 generations. Stationarity and 
convergence were assessed in Tracer v.1.6 (Rambaut 
et al., 2014). Convergence for all runs occurred in the 
first 3,000,000 generations and we conservatively 
discarded the first 10% of each run as burn-in. To 
estimate the marginal likelihoods of each topology, 
we used the stepping-stone analysis (Fan et al., 2011; 
Xie et al., 2011) implemented in MrBayes, run for 50 
steps and 2,958,000 generations with the first 58,000 

Table 2. The results of JMODELTEST v.2.1.10 showing inferred substitution models for the loci partitioned by gene and 
codon position. Partitions used in concatenated and coalescent-based analyses are shown in bold.

Gene Partition Length (bp) Substitution model

CMOS Gene 374 HKY + Γ
1st Codon Position 125 HKY + Γ
2nd Codon Position 125 GTR + Γ
3rd Codon Position 124 HKY + Γ

FSTL5 Gene 622 GTR + Γ
1st Codon Position 207 GTR + Γ
2nd Codon Position 207 F81 + Γ
3rd Codon Position 208 HKY + Γ

PRLR Gene 566 GTR + Γ
1st Codon Position 188 HKY + Γ
2nd Codon Position 189 GTR + Γ
3rd Codon Position 189 GTR + Γ

PTGER4 Gene 470 HKY + Γ
1st Codon Position 157 GTR + Γ
2nd Codon Position 156 F81 + Γ
3rd Codon Position 157 GTR + Γ

R35 Gene 665 GTR + Γ
1st Codon Position 221 K80 + Γ
2nd Codon Position 222 GTR + Γ
3rd Codon Position 222 GTR + Γ

RAG1 Gene 828 GTR + Γ
1st Codon Position 276 GTR + Γ
2nd Codon Position 276 HKY + Γ
3rd Codon Position 276 HKY + Γ

SNCAIP Gene 484 GTR + Γ
1st Codon Position 161 HKY + Γ
2nd Codon Position 161 HKY + Γ
3rd Codon Position 162 GTR + Γ

ND1 Gene 969 GTR + Γ
1st Codon Position 323 GTR + Γ
2nd Codon Position 323 GTR + Γ
3rd Codon Position 323 GTR + Γ

16S Gene 559 GTR + Γ
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generations discarded as burn-in and an additional 5000 
generations removed from the beginning of each step 
as additional burn-in. We diagnosed the analysis every 
1000 generations, resulting in 58 trees in each step. We 
compared the marginal likelihoods of the topologies for 
each gene generated by the two partitioning strategies 
and calculated the Bayes’ factor using the equation 
2ln(BF) = 2[ln(MarL1)-ln(MarL0)] (Kass & Raftery, 
1995; Brandley et al., 2005; Brown & Lemmon, 2007), 
where MarL1 is the marginal likelihood of the topology 
in which the gene was partitioned by codon position 
and MarL0 is the marginal likelihood of the topology 
in which the gene was not partitioned. Results of the 
stepping-stone analysis supported partitioning by 
codon position for FSTL5, PTGER4, R35, SNCAIP 
and ND1 and partitioning by gene for CMOS, PRLR 
and RAG1 (Table 3). The non-protein-coding gene 
16S was partitioned by gene. We ran three additional 
stepping-stone analyses on the concatenated dataset, 
partitioning all loci by gene, codon position (except 16S) 
and by the partitioning scheme determined for each 
gene above. The results of these additional analyses 
supported the partitioning scheme determined above.

Examining relationships recovered among gene 
trees revealed highly supported discordance for the 
relationship of Lamprolepis smaragdina and Lygosoma 
s.l. and for the relative placement of the major clades, 
with six of the nine genes – CMOS, PTGER4, R35, 
RAG1 and SNCAIP (nuDNA) and ND1 (mtDNA) – 
having discordant nodes along the backbone of their 
respective topologies compared with the other gene 
trees. However, the species composition of major clades 
was congruent across all loci. Therefore, we used both 
concatenated phylogenetic methods and coalescent-
based species tree methods to analyse higher level 
evolutionary relationships in Lygosoma s.l.

We performed concatenated partitioned Bayesian 
phylogenetic analyses with MrBayes, partitioning the 
genes as determined above (Tables 2, 3). We ran two 
independent metropolis-coupled Monte Carlo Markov 

Chain runs each with four chains for 30,000,000 
generations, sampling every 5000 generations. 
Stationarity of parameters was assessed in Tracer 
v.1.6 and convergence of topologies in tree space 
analysed using the commands topological.approx.
ess and analyze.rwty in the package RWTY v.1.0.1 
(Warren et al., 2017) in R v.3.3.2 (R Core Team, 2016). 
The effective sample sizes (ESS) for all parameters 
were above 200 (Drummond et al., 2006). The samples 
exhibited convergence by 2,500,000 generations and 
we conservatively discarded the first 10% of samples 
as burn-in, leaving 10,800 trees in the combined 
MCMC posterior distribution. Nodes with posterior 
probability support of at least 0.95 were considered 
highly supported (Huelsenbeck & Rannala, 2004) and 
nodes with posterior probability support of 0.75–0.94 
were considered moderately supported.

species Tree analysis

In light of our observed gene tree discordance, we 
conducted a coalescent-based species tree analysis 
in addition to concatenated phylogenetic analyses 
using the program *BEAST (Heled & Drummond, 
2010) implemented in BEAST v.2.4.6 (Bouckaert 
et al., 2014). When incomplete lineage sorting occurs, 
concatenated analyses can result in highly supported 
incorrect topologies (Degnan & Rosenberg, 2009; 
Heled & Drummond, 2010), especially if species had 
large ancestral population sizes and speciation was 
rapid (Maddison, 1997). Coalescent-based analyses 
use the multispecies coalescent, originally developed 
for population genetics (Kingman, 1982; Tajima, 1983), 
to assess the probability that a gene tree evolved in 
the framework of a particular species tree (Rosenberg, 
2002; Degnan & Rosenberg, 2009). To run our species 
tree analysis, we pared down our concatenated dataset 
to include only the nuclear genes CMOS, PRLR, R35, 
RAG1 and SNCAIP and the mitochondrial gene ND1. 
We excluded the nuclear genes FSTL5 and PTGER4 

Table 3. The results of the stepping-stone analysis implemented in MrBayes v.3.2.6. Positive values for 2ln(BF) were 
considered support for the partitioned model (partitioned by codon position) and negative values were considered support 
for the non-partitioned model (Brown & Lemmon, 2007).

Gene ln(MarL0) ln(MarL1) 2ln(BF) Supported Model

CMOS -1393.50 -1398.15 -9.30 unpartitioned
FSTL5 -1633.78 -1570.91 125.74 partitioned
PRLR -3081.56 -3090.07 -17.02 unpartitioned
PTGER4 -1577.97 -1481.96 192.02 partitioned
R35 -3369.47 -3291.48 155.98 partitioned
RAG1 -3057.01 -3057.20 -0.38 unpartitioned
SNCAIP -2095.3 -2048.92 92.76 partitioned
ND1 -14400.31 -13853.07 1094.48 partitioned
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from our species tree analyses, because these two loci 
had the most missing data non-randomly distributed 
across ingroup taxa (i.e. these genes did not amplify 
across all clades), and we excluded the non-coding 
mtDNA gene 16S, because while it was successful 
at resolving very shallow nodes, it was uncertain 
regarding relationships at deeper nodes in the 
tree where most of the problems with discordance 
occurred. Additionally, BEAST2 estimates the root of 
the tree during MCMC analyses making the inclusion 
of any outgroup taxa unnecessary, except to give 
additional information on the position of the ingroup 
root (Drummond & Bouckaert, 2015). Therefore, we 
decreased the number of outgroup species used in our 
analysis to the two species with the lowest amount of 
missing data (Eutropis multifasciata and Lamprolepis 
smaragdina) to reduce computation effort and errors in 
prior estimation that can occur during BEAST analyses 
when including less well-sampled taxa with long 
branches (Drummond & Bouckaert, 2015). The data 
were partitioned according to the same partitioning 
scheme in our concatenated analysis (Tables 2, 3) and 
each partition was assigned the same substitution 
model. Analyses were run using an estimated strict 
clock prior, a Yule process species tree prior and a 
piecewise linear and constant population size prior. We 
changed the default Birthrate.t:Species and popMean 
priors from an inverse 1/X distribution to a lognormal 
distribution and the default clockRate prior for all loci 
from a uniform [-∞,∞] distribution to an exponential 
distribution. These default priors are inappropriate, 
because they do not integrate to one (Drummond & 
Bouckaert, 2015). Three initial runs were conducted 
for 20,000,000 generations each to tune the operators 
to values suggested by the BEAST2 operator outputs. 
Following the adjustment of operators, three additional 
runs were conducted for 200,000,000 generations 
each to check the performance of priors; based on the 
results of these runs, several substitution rate priors 
were adjusted from a default gamma distribution to 
an exponential distribution with a mean of 1.0 to place 
higher probability on values closer to 0. We ran four 
final runs for 1,000,000,000 generations each sampling 
every 100,000 generations, using the CIPRES Science 
Gateway portal (Miller et al., 2010). These runs were 
examined separately and together in Tracer and RWTY 
(see above) to assess stationarity and convergence. We 
combined the species tree analyses in LogCombiner 
v.2.4.6 (Bouckaert et al., 2014), discarding the first 
20% of trees in each posterior distribution as burn-in, 
keeping a total of 32,004 trees in the combined 
posterior distribution. We used TreeAnnotator v.2.4.6 
(Bouckaert et al., 2014) to select the maximum clade 
credibility tree and calculate the posterior probability 
of each bifurcation.

morphological daTa and mulTivariaTe analyses

Specimens were examined for 27 quantitative and 
qualitative characters, consisting of mensural body 
measurements, meristic scale counts and head scale 
patterns. Characters were chosen based on their utility 
in previous taxonomic studies of skinks (e.g. Siler et al., 
2010; Linkem et al., 2011; Geissler et al., 2012; Davis 
et al., 2014; Grismer et al., 2014) and include: snout–
vent length (SVL) – distance from the tip of the snout to 
the anterior edge of the vent, measured on the ventral 
surface of the specimen; axilla–groin distance (AGD) 
– distance between the posterior fore-limb insertion 
and the anterior hind limb insertion, measured on the 
ventral surface of the specimen; midbody width (MBW) 
– width of the body approximately midway between 
fore-limbs and hind limbs; tail length (TL) – distance 
from the posterior end of the vent to the tip of the tail, 
measured on the ventral surface of the specimen; tail 
width (TW) – width of the tail at the widest part just 
posterior to the vent, excluding the hemipenile bulge 
in males; head length (HL) – distance from the tip of 
the snout to the widest portion of the head generally at 
the jaw articulation, which is anterior to the auricular 
opening; head width (HW) – width of the head at the 
widest part, generally at the jaw articulation; head 
depth (HD) – depth of the head from the occiput to 
the underside of the jaws at the widest part, generally 
at the jaw articulation; eye–nares distance (END) – 
distance from the anterior edge of the eye opening to 
the posterior edge of the naris along a line parallel to 
the mouth; snout length (SNL) – distance from the 
anterior edge of the eye opening to the tip of the snout 
along a line parallel to the mouth; internarial distance 
(IND) – distance between the nares; midbody scale row 
count (MBSRC) – number of scales around the midbody 
approximately midway between fore-limbs and hind 
limbs; axilla–groin scale row count (AGSRC) – number 
of dorsal scales along a line from the posterior fore-
limb insertion and the anterior hind limb insertion; 
paravertebral scale row count (PVSRC) – number of 
mid-dorsal scales along a line from the parietals to the 
scale opposite the vent, excluding enlarged nuchals; 
Finger-III lamellae count (FinIIILam) – number of 
enlarged scales under Finger-III; Toe-IV lamellae 
count (ToeIVLam) – number of enlarged scales under 
Toe-IV; supralabial scale count (SuprL) – number of 
enlarged scales in a line directly dorsal and parallel 
to the mouth opening; infralabial scale count (InfrL) 
– number of enlarged scales in a line directly ventral 
and parallel to the mouth opening; supraocular scale 
count (SO) – number of enlarged scales above the 
eye, the ventral edges of which are in contact with 
the dorsal edges of the supraciliary scales and dorsal 
edges of which are in contact with the lateral edges 
of the frontal and/or frontoparietal scales; superciliary 
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scale count (SC) – number of small scales directly 
above the eyelid and below the supraoculars, the first 
of which is in contact with the preoculars and the last 
of which begins above the eye and terminates beyond 
the posterior edge of the orbital opening, not including 
superciliary #7 of Taylor (1935: Fig. 4); supranasal 
scale contact (SN) – contact of supranasals along the 
midline; prefrontal scale contact (PF) – contact of 
prefrontals along the midline; frontoparietal contact 
(FP) – contact of frontoparietal scales along the 
midline; parietal contact (P) – contact of parietal scales 
along the midline posterior to the interparietal scale; 
presence of enlarged nuchals (NU); first chin shield 
scale contact (1stChin) – contact of first chin shields 
along the midline; and presence of enlarged third chin 
shields (3rdChin). Specimens were measured by ESF, 
ADR, CDS, B. Karin, E. Ellsworth and S. Pal. Because 
older specimens were often fixed with curved bodies, 
the three major body length measurements, SVL, AGD 
and TL, were measured with a measuring tape and 
rounded to the nearest mm. The remaining mensural 
characters were measured using digital callipers 
accurate to 0.01 mm. When measurements were 
obviously distorted due to specimen preparation (e.g. 
specimens flattened during preparation could lead to 
inaccuracies in midbody depth), the measurement was 
flagged and excluded from statistical analyses. When 
possible, characters were measured or counted on the 
right side of the body.

Our morphological dataset included 254 specimens 
representing 25 species: 20/22 ingroup species from 
our phylogenetic analyses were included in our 
morphological dataset along with five additional 
species (L. kinabatanganense , L. koratense , 
L. pembanum Boettger, 1913, L. siamense and L. tanae 
(Loveridge, 1933)) for which we were unable to obtain 
genetic samples (Supporting Information, Table S2). 
One of these species, L. siamense is a recently describe 
species from the L. quadrupes species complex (Siler 
et al., 2018) and thus we consider that species as 
part of the same clade as L. quadrupes, even though 
we lack DNA sequence data for it. Species in our 
phylogeny that we did not have morphological data 
for are M. guineensis (Peters, 1879) and Lepidothyris 
fernandi. We ran principal components analysis (PCA) 
and discriminant analysis of principal components 
(DAPC) on the mensural and meristic characters, 
excluding the head scale patterns (SN, PF, FP, P, NU, 
1stChin, 3rdChin) because of problems using discrete 
categorical characters in PCA when the characters do 
not exhibit strong taxonomic structure (Hill & Smith, 
1976). We excluded juveniles (juveniles considered 
to be individuals whose SVL fell outside of the lower 
range of previously published adult SVL for the 
species; Broadley, 1966, 1994; Das, 2010; Geissler et al., 
2011, 2012; Heitz et al., 2016) and outliers, which may 

have been individuals that were misidentified. Our 
final dataset comprised 199 individuals representing 
25 species. Additionally, we excluded one mensural 
character (TL) due to missing data, as a number of 
species in our morphological dataset only had TL 
measurements from individuals with autotomized 
or regenerated tails. We also excluded four meristic 
characters (SuprL, InfrL, SO and SC) because these 
counts did not vary meaningfully between species and 
were introducing ‘noise’ into preliminary analyses; 
differences in the variance of these characters in 
the PCA results were artefacts of sampling, not 
statistically significant taxonomic differences. 
These excluded measurements and coded head scale 
patterns are used in our taxonomic descriptions 
below and in Supporting Information, Table S3. 
Therefore, we included the following 14 characters in 
the PCA/DAPC morphological dataset: AGD, MBW, 
TW, HL, HW, HD, END, SNL, IND, MBSRC, AGSRC, 
PVSRC, FinIIILam and ToeIVLam. Three species 
in our morphological dataset (L. albopunctatum, 
L. herberti Smith, 1916 and L. tanae) had a majority 
of individuals that were missing MBSRC data, and 
we filled in these missing values with average values 
from the literature (Tabachnick & Fidell, 2013). For 
the mensural characters, we converted characters 
to ratiometric data by dividing all measurements by 
SVL to lessen the disproportionate effect of body size 
variance on the analysis and then prior to performing 
multivariate analyses, we log-transformed (natural 
log) all mensural and meristic values to normalize 
the data (Tabachnick & Fidell, 2013). 

We ran PCA on the data using the command prcomp 
in the package stats in R v.3.5.0 (R Core Team, 2018), 
setting scale = True so that the analysis was performed 
on the correlation matrix of the data. PCA analyses 
the variance of all measurements for all samples 
and determines which measurements contribute the 
majority of the variance to the entire dataset. Each 
successive principal component describes the majority 
of the variance that was not captured by the preceding 
principal component. We used the resulting principal 
components from the PCA as input variables for DAPC. 
Whereas PCA seeks to maximize the total variance 
captured across the dataset, DAPC compares within-
group variance to between-group variance and seeks to 
minimize the amount of within-group variance while 
maximizing between-group variance (Jombart et al., 
2010). Therefore, PCA illustrates the distribution of the 
entire dataset in morpho space, whereas DAPC shows 
how groups differ in morpho space. We ran DAPC on 
the data grouping by phylogenetic clades, using the 
first four principal components from the PCA as the 
variables, which accounted for 90% of the variance. 
The analysis was run in R using the command dapc in 
the package adegenet v.2.1.1 (Jombart, 2008).
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RESULTS

concaTenaTed Bayesian phylogeneTic analysis

Our concatenated alignment comprised 43 individuals 
(34 ingroup samples, nine outgroup samples) sequenced 
for seven nuclear loci and two mitochondrial markers, 
for up to of 5537 base pairs (bp) per individual (average 
= 4237 bp per individual). Ingroup taxa contained an 
average of 21.1% missing data for each individual 

(standard deviation = 18.6%) resulting from difficulty 
in obtaining complete sequence data for several loci 
for all species and species groups; for example, PRLR 
was not amplified successfully for L. quadrupes and 
L. tabonorum (Table S1).

Bayesian concatenated phylogenetic analyses showed 
strong support for four divergent clades represented by 
the sampled taxa (Fig. 1), with no analysis supporting 
the monophyly of Lygosoma s.l. (clade containing 

Figure 1. The concatenated Bayesian consensus topology. Black circles denote highly supported nodes (PP ≥ 0.95). Clades 
outlined in grayscale boxes refer to those listed in the results and discussion.
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Lygosoma s.s., Mochlus and Lepidothyris, Bayesian 
posterior probability [PP] = 0.51). Instead, we recover 
Lygosoma s.l. as part of a clade also comprising 
Lamprolepis smaragdina (Fig. 1, PP = 1.0). In Lygosoma 
s.l., we find four well-supported clades (Fig. 1, Clades 
A–D, PP = 1.0). The genus Lygosoma s.s. is not recovered 
as monophyletic, with the African genera Mochlus 
and Lepidothyris nested in Lygosoma s.s. (Fig. 1, 
PP = 1.0), breaking up Lygosoma s.s. into three separate 
clades: (1) Clade A contains the Southeast Asian 
species L. corpulentum Smith, 1921, L. isodactylum, 
L. quadrupes and L. tabonorum; (2) Clade B contains the 
Southeast Asian species L. bowringii, L. frontoparietale, 
L. herberti and L. samajaya and the Indian species 
L. pruthi (Sharma, 1977); and (3) Clade D contains the 
Southeast Asian species L. anguinum (Theobald, 1868), 
L. lineolatum and L. popae (Shreve, 1940) and the Indian 
species L. albopunctatum, L. goaense (Sharma, 1976), 
L. guentheri (Peters, 1879), L. lineatum, L. punctatum 
(Linnaeus, 1758) and L. vosmaerii. Additionally, 
analyses did not support the monophyly of the genus 
Mochlus, with results instead showing Lepidothyris as 
nested in Mochlus (Fig. 1, Clade C, PP = 1.0), sister to 

Clade D (PP = 1.0). The type species of Lygosoma s.s., 
L. quadrupes, is recovered as part of Clade A, which 
is supported as sister to the remaining Lygosoma s.l. 
clades (Fig. 1, PP = 1.0).

species Tree analysis

Similar to the results of the concatenated Bayesian 
phylogenetic analysis, species tree analyses recover four 
clades in Lygosoma s.l. (Fig. 2; Clades A–D, PP = 1.0, 0.85, 
0.84 and 1.0, respectively), with Lygosoma s.s. supported 
as paraphyletic. The genera Mochlus and Lepidothyris 
are both nested in Lygosoma s.s., separating the genus 
into three clades (Clades A, B, D; see concatenated 
results above for definition). Once again, Mochlus is 
found to be paraphyletic with respect to Lepidothyris, 
instead forming a Mochlus + Lepidothyris clade with 
moderate support (Fig. 2; Clade C, PP = 0.84). Clades 
B–D together are supported as a monophyletic group of 
taxa (PP = 1.0) to the exclusion of Clade A (Fig. 2).

The inferred species tree topology (Fig. 2) is broadly 
consistent with the Bayesian topology in regard to 
intraclade species-level relationships, with a few notable 

Figure 2. The coalescent-based maximum clade credibility species tree. Black circles denote highly supported nodes 
(PP ≥ 0.95). Clades outlined in grayscale boxes refer to those listed in the results and discussion.

D
ow

nloaded from
 https://academ

ic.oup.com
/zoolinnean/article-abstract/186/4/1067/5428841 by O

klahom
a State U

niversity (G
W

LA) user on 21 April 2020



1080 E. S. FREITAS ET AL.

© 2019 The Linnean Society of London, Zoological Journal of the Linnean Society, 2019, 186, 1067–1096

exceptions. First, the placement of M. sundevallii as 
part of Clade C and L. pruthi as part of Clade B, received 
moderate support (PP = 0.84 and 0.85, respectively). 
Second, although there is high support for a superclade 
comprising Clades B, C and D and excluding Clade A, 
there is no support for interclade sister relationships 
between Clades B, C and D (Fig. 2, PP = 0.55). Finally, 
unlike the Bayesian topology, the species tree topology 
supports Lamprolepis smaragdina as the sister taxon 
to Clade A (Fig. 2, PP = 0.97).

mulTivariaTe analyses

The principal components analysis shows that 
although species in Lygosoma s.l. vary in degree of 
body elongation, there is considerable overlap among 
species in morpho space (Fig. 3). The first two principal 
components (PCs) account for 82.8% of the total variance, 
with PC1 representing body size and accounting for 
76.7% of the total variance, and PC2 representing body 
robustness and accounting for 6.1% of the variance 
(Table 4). For PC1, all characters have roughly equal 
loadings with the exception of MBSRC, which has 
a lower loading than the other characters. Three 
characters (AGD, AGSRC and PVSRC) are negatively 
correlated with the remaining characters, indicating 
that as body elongation increases, body width decreases. 
For PC2, AGD, PVSRC, MBSRC and ToeIVLam have the 
highest loadings, with AGD and ToeIVLam negatively 
correlated with PVSRC and MBSRC, suggesting that at 
a larger body size, relative elongation and digit lengths 

decrease (Table 4). The PCA reveals that clades (see Figs 
1 and 2 for the phylogenetic definition of each clade) 
overlap highly in morpho space (Fig. 4A), with Clades 
B and C and Clades C and D showing the most overlap. 
Four species were not represented in our phylogenetic 
analyses and are, therefore, denoted as incertae sedis 
(L. kinabatanganense, L. koratense, L. pembanum and 
L. tanae; Fig. 4A), as their phylogenetic position remains 
unknown. As a result, we were not able to associate them 
definitively with any of the four Lygosoma s.l. clades.

Discriminant function analyses of principal 
components corroborates the PCA in showing that 
clades overlap highly in morpho space (Fig. 4B). 
Although the clades have, non-overlapping centroids 
(averages) and 95% inertia ellipses, several individual 
species overlap with centroids of different clades. This 
suggests that no clade is morphologically distinct 
from the other clades in Lygosoma s.l. Clades B and C 
exhibit the highest amount of overlap, whereas Clades 
A and B do not overlap at all. Interestingly, Clades 
B and C occupy smaller areas of morpho space than 
Clades A and D.

DISCUSSION

non-monophyly of Lygosoma s.L. and paraphyly 
of Lygosoma s.s. and mochLus

A stable taxonomy reflects evolutionary relationships 
of species and clades and is of paramount importance 
for studies in biological science. Diverse fields, from 

Figure 3. Principal components analysis of 14 characters for 25 species of Lygosoma s.l. Points are given a different colour 
and shape combination for each species. The inset arrows in the gray box shows the relative loadings for each character in 
the PCA.
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ecology to development, rely on accurate species- and 
supra-specific-level identifications for their research 
(Mayr, 1976; Felsenstein, 1985; Winston, 1999; Wheeler 
et al., 2004). Furthermore, taxonomy plays a critical 
role in biodiversity conservation and management, 
with agencies using recognized nomenclature for 
identification and classification of regional fauna, 
including rare and threatened species (e.g. CITES and 
IUCN; Kaiser et al., 2013; Groves et al., 2017; IUCN-
SSC Species Conservation Planning Sub-Committee, 
2017).

In supra-specific taxonomy, the genus category 
is included in the binomial name of a species, so 
although it is not based inherently on biological 
criteria, it is an important communication tool in 
the name of a species, depicting a close relationship 
between species in the same genus to the exclusion 
of other species (Cain, 1956; Winston, 1999). 
Therefore, the genus reflects information about the 
evolutionary history of the species it composes. Inger 
(1958) proposed a definition of genera that uses 
ecological criteria to determine the species that are 
placed in a genus, with ‘mode of life’ (i.e. adaptive 
zone; Vences et al., 2013) as a major diagnostic 
character of the genus. However, currently this 
approach is problematic, especially for little-known 
clades, because it requires ecological knowledge of 
all species included in a genus and of closely related 
species excluded from that genus. Furthermore, 
congeners that live in sympatry may have undergone 
niche displacement (e.g. genus Brachymeles; Huron 
& Siler, unpubl. data), making the adaptive zone 
difficult to define empirically (Vences et al., 2013). 
Accordingly, the only current defining characteristic 

of a genus is that it represents a clade in a broader 
family-level clade.

Among scincid lizards, studies have shown that 
many taxonomic groupings are not supported as 
monophyletic, e.g. Amphiglossus (Whiting, Sites & 
Bauer, 2004); Sphenomorphus (Linkem et al., 2011); 
Anomalopus and Eulamprus (Skinner et al., 2013); 
Trachylepis (Karin et al., 2016); and Afroablepharus 
(Medina et al., 2016). These inconsistencies between 
historical nomenclature and the evolutionary 
relationships recovered through molecular datasets 
necessitate the revision of genus-level classifications 
for taxonomic stability and for discussions of 
evolutionary patterns and processes within and among 
clades (Kaiser et al., 2013; Vences et al., 2013).

O u r  c o n c a t e n a t e d  B a y e s i a n  I n f e r e n c e 
(BI) phylogenetic and coalescent-based species tree 
analyses reveal that Lygosoma s.l. is not monophyletic. 
Additionally, Lygosoma s.s. is paraphyletic, with respect 
to Mochlus and Lepidothyris, and the genus Mochlus 
is paraphyletic with respect to Lepidothyris (Figs 
1–3). These results are consistent across all analyses 
and are in line with the findings of previous studies: 
Datta-Roy et al. (2014) observed similar relationships 
between Lamprolepis and Lygosoma s.l., and Lygosoma 
s.s. and Mochlus in their study, albeit with low support 
at some of their deeper nodes. In our concatenated 
and coalescent-based analyses, Lygosoma s.s. Clade 
A, containing Lygosoma quadrupes, the type species 
of the genus, is supported as divergent from the other 
two major clades of Lygosoma s.s. (Figs 1–3), again 
corroborating the results of Datta-Roy et al. (2014).

Some differences between our concatenated and 
coalescent-based topologies are seen regarding the 

Table 4. The results of the PCA showing the variance, cumulative variance and character loadings for the first four 
principal components. These components were used as the input variables for the DAPC.

 PC1 PC2 PC3 PC4

% variance 76.7 6.1 3.9 3.1
Cumulative variance 76.7 82.8 86.7 89.8
AGD 0.2205 0.2752 0.7428 -0.4484
MBW -0.2861 -0.4484 0.2181 -0.0299
TW -0.2712 0.0450 0.2999 0.2188
HL -0.2811 0.0715 0.0047 -0.0911
HW -0.2920 0.0026 0.1331 0.0222
HD -0.2865 -0.0056 0.2126 0.0194
END -0.2664 0.0782 -0.1287 -0.1761
SNL -0.2601 0.0145 0.2820 0.3981
IND -0.2829 0.0293 0.0611 0.2398
PVSRC 0.2918 -0.1149 0.1260 -0.0264
MBSRC -0.1440 -0.9264 0.1966 -0.2266
AGSRC 0.2933 -0.0503 0.1537 -0.0144
FinIIILam -0.2586 0.0596 -0.2559 -0.5660
ToeIVLam -0.2686 0.1622 -0.0659 -0.3483
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relationship between Lamprolepis smaragdina and 
Lygosoma s.l. In concatenated analyses, Lamprolepis 
smaragdina is recovered as part of Lygosoma s.l. 
with strong support (Fig. 1), although its position in 
Lygosoma s.l. is unresolved, suggesting that Lygosoma 
s.l. is paraphyletic with respect to Lamprolepis 
smaragdina. In contrast, the relationship between 
Lamprolepis smaragdina and Lygosoma s.l. is resolved 
fully in our coalescent-based species tree analyses, 
which recovered Lamprolepis smaragdina as the sister 
taxon to Clade A with strong support (Fig. 2). Although 
the finding of a paraphyletic Lygosoma s.l. with respect 
to Lamprolepis smaragdina is consistent with previous 
studies (Honda et al., 2000, 2003; Datta-Roy et al., 2014), 
it is surprising nevertheless given the highly divergent 
life histories of the species in question: Lamprolepis 
smaragdina is a larger, more robust, bright-coloured, 
arboreal skink, whereas most of the species in the 
genus Lygosoma are small, inconspicuously coloured 

and semi-fossorial (Greer, 1977; Das, 2010). In fact, 
Greer (1977) cited this ecological difference as evidence 
that the genera Lygosoma and Lamprolepis were not 
each other’s closest relatives. The differences between 
our concatenated and coalescent-based analyses 
may be attributed gene tree discordance (Degnan 
& Rosenberg, 2009; Linkem et al., 2016). Given the 
presence of discordance between loci in our nuDNA 
dataset, concatenation of our sequences may have 
resulted in a misleading BI topology.

The relationships of Clades B, C and D are 
fully resolved in our concatenated analyses, but not 
in our coalescent-based analyses (Figs. 1, 2). In our 
concatenated analyses, Clades C and D are supported 
highly as sister taxa and together are recovered 
as sister to Clade B. However, in coalescent-based 
analyses, the relationships between the three clades 
are not resolved, although they are still recovered as a 
clade distinct from Clade A with high support (Fig. 2). 
We suspect that incomplete taxonomic sampling across 
the radiation and low sample sizes for some rare or 
secretive species contributed to this lack of resolution. 
To estimate the multispecies coalescent process for 
each gene, sequences from at least two individuals 
per lineage need to be included in the dataset (Heled 
& Drummond, 2010), which suggests that increasing 
the taxonomic sampling per lineage will increase 
resolution of the species tree. Additionally, studies 
have shown that increased taxonomic sampling across 
the group being investigated improves species tree 
accuracy (Hovmöller et al., 2013; Lambert et al., 2015). 
Unfortunately, these two issues could not be addressed 
fully at this time given the rarity or absence of tissues 
in collections for some focal taxa. However, as next-
generation sequencing techniques are revolutionizing 
approaches to phylogenetic studies by providing 
datasets of thousands of loci at increasingly lower 
costs (Ekblom & Galindo, 2011), these datasets are 
becoming more common in skink population and 
phylogenetic research (Barley et al., 2015b; Brandley 
et al., 2015; Rittmeyer & Austin, 2015; Linkem et al., 
2016; Bryson et al., 2017). These techniques have 
the power to resolve difficult intra- and interclade 
relationships (e.g. Crawford et al., 2012; McCormack 
et al., 2012; Streicher & Wiens, 2017) and may be a 
promising tool for resolving the relationships among 
Clades B, C and D.

clades are noT differenTiaTed By morphology

Researchers have struggled to find diagnostic 
characters for Lygosoma s.l., which has resulted in 
challenges to understanding the systematics of the 
group (Boulenger, 1887; Smith, 1937a; Mittleman, 
1952). As a result, species relationships have been in 
flux for almost two centuries, with species sometimes 

Figure 4. A, principal components analysis of 14 characters 
for 25 species of Lygosoma s.l. with points coloured by 
phylogenetic clade. Ellipses around clusters are coloured 
by clade and show the 95% boundary for each clade. B, 
discriminant analysis of principal components based on 
the first four principal components obtained in our PCA 
analysis. Points and 95% inertia ellipses are coloured by 
clade.
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placed together in a single genus (Boulenger, 1887) 
or separated into multiple genera (Smith, 1937a; 
Mittleman, 1952). In performing multivariate 
analyses, we investigated whether combinations of 
characters commonly used in delimitating species 
and genera could differentiate Lygosoma s.l. species 
and clades in morpho space. However, our principal 
components analysis (PCA) and discriminant analysis 
of principal components (DAPC) showed that species 
and clades were not separated in morpho space. 
This result underscores the historical difficulties of 
using morphology to classify Lygosoma s.l. skinks 
(Fig. 4), illustrating how traditional morphological 
approaches have largely failed in diagnosing clades 
with Lygosoma s.l., because of the large amount of 
morphological overlap between species. Among the 
species examined, our PCA results show transitions 
in Lygosoma s.l. between robust and elongated body 
forms, with species overlapping along a morphological 
gradient (Fig. 3). As a result, among the major clades, 
we find that none form distinct clusters in morpho 
space (Fig. 4A), although it appears that Clade 
A contains the most elongated species, followed by 
Clade D and then by Clades B and C, with the highest 
amount of morphological overlap between Clades B, C 
and D. Given our phylogenetic results, which indicate 
that Clades B, C and D together form a clade to the 
exclusion of Clade A, our observations of these clades 
having the highest amount of morphological overlap 
makes sense.

Our DAPC, which used the principal components 
from the PCA as descriptor variables, was conducted 
to compare within-clade variance to between-clade 
variance and revealed Clades B and C to have the 
highest amount of overlap and occupy more restricted 
areas of morpho space when compared with Clades 
A and D (Fig. 4B). Interestingly, Clade A appears the 
most morphologically distinct clade with only two 
samples falling in the inertia ellipses of other clades 
and only a single individual from another clade (Clade 
D) recovered in its inertia ellipse (Fig. 4B). However, 
this pattern may be driven by the large number of 
individuals from the Lygosoma quadrupes species 
complex in our morphological dataset, which have 
a highly derived body form in comparison to other 
species in Clade A and in Lygosoma s.l. (Greer, 1977). 
It is likely that the inclusion of additional samples 
of other species in Clade A (e.g. L. corpulentum and 
L. isodactylum) and from other clades would temper 
this pattern.

Four species are labelled incertae sedis in our 
PCA analysis because they were not represented 
in our phylogenetic  analyses. Among these, 
Lygosoma koratense from Southeast Asia appears 
morphologically most similar to species in Clade B, 
and L. pembanum and L. tanae from Africa appear 

morphologically most similar to Clade C (Figs 4, 
5A). The remaining species, L. kinabatanganense, 
a large and robust species from Malaysia (Sabah, 
Borneo), does not fall within the morphological 
boundaries of any of the clades in our PCA. (Figs 4, 
5A). Interestingly, a previous phylogenetic study of 
Lygosoma s.l. suggested a close relationship between 
Lygosoma quadrupes and L. koratense (Honda et al., 
2000), which was corroborated in subsequent studies 
using the same sequence data (Ziegler et al., 2007; 
Wagner et al., 2009; Skinner et al., 2011 Pyron 
et al., 2013; Datta-Roy et al., 2014). Unfortunately, 
vouchered tissue samples of L. koratense were 
not available for this study. If the relationship of 
L. quadrupes and L. koratense holds true in future 
phylogenetic analyses, it would expand the extent of 
the occupied morpho space of Clade A and would have 
interesting implications for the evolution of body 
form in the clade.

The results of our PCA and DAPC analyses show 
that, like traditional morphological approaches, 
multivariate approaches have largely failed to 
differentiate clades in Lygosoma s.l. While there exists 
variation in body form among species in the group, 
this appears to change along a morphological gradient 
that only partially conforms to phylogeny (Fig. 4A). 
However, there are two characters not included in our 
PCA and DAPC analyses that have been employed 
historically in Lygosoma s.l. systematics, which are 
worth discussing further because they may be of use 
to differentiating phylogenetic clades in Lygosoma s.l. 
These characters are the morphology of the secondary 
palate and the character state of the lower eyelid. Of 
these characters, the morphology of the secondary 
palate is the least controversial. Greer (1977) used 
this character to unite L. quadrupes with Riopa, and 
he described all species of Riopa recognized at the 
time (31 species) as having processes that project from 
the posteromedial edge of the palatine bones, which 
separate the two pterygoid bones. Interestingly, Greer 
(1977) noted two character states of the secondary 
palate in Lygosoma: an open state (pterygoids 
emarginated along their posterior edge) and a closed 
state (pterygoids not emarginated along their posterior 
edge), each of which corresponds consistently with 
clades in our phylogenetic analyses (Figs. 1, 2). Greer 
(1977) listed all species found in our Clade B (with 
the exception of the recently described L. samajaya, 
which he did not examine) and our Clade C as having 
a closed palate, and he listed all species found in 
our Clade A (with the exception of L. corpulentum, 
which he did not examine) and our Clade D (with the 
exception of L. vosmaerii, which he did not examine 
and L. punctatum which was variable) as having an 
open palate. The palate of L. koratense was listed as 
closed, again morphologically linking this species more 
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closely with Clade B than Clade A. Furthermore, Greer 
(1977) used the morphology of the secondary palate 
to diagnose the genus Lamprolepis from Lygosoma 
s.l. However, examination of written descriptions 
and drawings of the palate of Lamprolepis indicates 

that Lamprolepis smaragdina has posteromedial 
projecting processes separating the pterygoid bones 
(Greer, 1970b: Fig. 1; 1977: Fig. 5), similar to, but 
not as pronounced as, the processes in Lygosoma s.l. 
Therefore, the morphology of the secondary palate is 
useful in diagnosing the larger Lygosoma s.l. group of 
clades and may also be a useful descriptor variable for 
clades within Lyogosoma s.l.

In contrast to the morphology of the secondary palate, 
the taxonomic utility of the lower eyelid character 
state has been more controversial. Mittleman (1952) 
proposed the state of the lower eyelid, which has been 
defined broadly as either scaly or with a transparent 
window, as a diagnostic character separating groups, 
and he relied on eyelid state to split Mochlus from 
Riopa. Subsequent authors have disagreed with the 
taxonomic value of this character (Broadley, 1966; 
Greer, 1974, 1977), arguing that the character is highly 
variable within clades. Nevertheless, several recent 
skink taxonomic studies have mentioned the state of the 
lower eyelid as part of the combinations of diagnostic 
characters for some skink genera descriptions 
(Euprepis and Eutropis [Mausfeld & Schmitz, 2003]; 
Brachymeles [Siler et al., 2011]; Heremites and 
Toenayar [Karin et al., 2016]), although the presence 
of both states in the genus Scincella was noted by 
Linkem et al. (2011). In our study, the state of the lower 
eyelid does not appear consistent with our clades, with 
the exception of Clade A in which all our sampled 
members have a scaly lower eyelid. Instead, the lower 
eyelid character state appears highly variable between 
species and may also exhibit intraspecific variation. In 
Clade B, four of the five sampled species have a scaly 
lower eyelid; the exception being L. pruthi, which has 
a transparent disc on its lower eyelid (Sharma, 1977). 
In Clade C, all sampled species have a scaly lower 
eyelid, with the possible exception of M. guineensis. In 
its original description, M. guineensis was recorded as 
having a lower eyelid with a transparent disc (Peters, 
1879), but the eyelid state was revised subsequently 
as scaly by Greer (1977). Additionally, four species 
from Africa that we lack genetic data for, but include 
provisionally in Clade C (M. laeviceps (Peters, 1874), 
M. mabuiiformis (Loveridge, 1935), M. simonettai 
(Lanza, 1979) and M. tanae; see justification in our 
taxonomic revision section), also were described 
originally as having a lower eyelid with a transparent 
disc (Peters, 1874; Loveridge, 1935; Lanza 1979). One 
of these lineages, M. laeviceps, later was reclassified as 
having a scaly lower eyelid (Greer, 1977). In Clade D, 
all of our sampled species have a transparent disc on 
their lower eyelid, but there is a record of one specimen 
of L. albopunctatum from Sarbhog, Assam, India in the 
Indian Museum, Kolkata that possesses a lower eyelid 
with a transparent disc on its right side and a scaly 
lower eyelid on its left side (Hora, 1927). Additionally, 

Figure 5. Phylogenetic tree showing the revised taxonomy 
of Lygosoma s.l. The topology is based on the species-tree 
topology (see Fig. 2). Support values are not shown. Species’ 
names shown in bold with asterisks above branches 
represent the type species for that genus.
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L. lineolatum was described originally as having a 
scaly lower eyelid (Stoliczka, 1870), but Smith (1935) 
reclassified the species as having a transparent disc 
in its lower eyelid. Nevertheless, several Lygosoma 
sp. individuals from Myanmar appear to have a scaly 
lower eyelid (ESF, unpubl. data), suggesting that the 
lower eyelid state is variable in Clade D. Therefore, 
unlike the morphology of the secondary palate, the 
lower eyelid character state seems to be inconsistent 
across most clades of Lygosoma s.l. and not useful for 
clade-level diagnosis.

a revised classificaTion of Lygosoma s.L.: 
overview

Currently, Lygosoma s.l. comprises 49 nominal species: 
31 species in the genus Lygosoma s.s., 15 species in 
the genus Mochlus and three species in the genus 
Lepidothyris. Of these 49 species, we were able to 
include 22 in our phylogenetic analyses, representing 
all three genera, for the most complete assessment of 
the radiation to date. The results of our phylogenetic 
analyses suggest that Lygosoma s.s. does not form a 
monophyletic group with respect to the other genera 
in Lygosoma s.l. (Lepidothyris Cope, 1892 and Mochlus 
Günther, 1864a) and the genus Lamprolepis Fitzinger, 
1842. Instead, Lygosoma s.s. is separated into three 
clades: one comprising elongate-bodied species from 
Southeast Asia, Indonesia and the Philippines (Clade 
A), one comprising the widespread species L. bowringii 
and other small, stouter-bodied species from India, 
Southeast Asia and Christmas Island (Clade B) and 
one comprising species from India and Southeast Asia 
(Clade D). Additionally, we do not recover Mochlus 
as monophyletic, with our results suggesting it is 
paraphyletic with respect to Lepidothyris. Given these 
results, we propose several taxonomic changes to this 
group (Fig. 5). First, we redefine the genus Lygosoma 
to include only Clade A, comprising the type species 
Lygosoma quadrupes and other elongate-bodied taxa. 
Second, we resurrect the genus Riopa for Clade D, 
comprising the type species Riopa punctata and other 
species from India and Southeast Asia. Third, we 
synonymize the genus Lepidothyris with Mochlus. 
Last, we describe a new genus, Subdoluseps gen. nov. 
for Clade B, comprising the type species S. bowringii 
and additional species distributed across India, 
Southeast Asia and Christmas Island. We recognize 
that our taxonomic sampling is incomplete considering 
the large diversity of species that are recognized 
currently in Lygosoma s.l. and we, therefore, advocate 
for continued efforts to voucher and include additional 
species in future studies to better understand the 
diversity, distribution and boundaries of this unique 
radiation of Old World scincid lizards.

genus Lygosoma hardwicke & gray, 1827: 228

Type species: Lacerta serpens Bloch, 1776 = Anguis 
quadrupes Linnaeus, 1766 (Smith (1935)) by monotypy.

Podophis Wiegmann, 1834: 11. Type species Anguis 
quadrupes Linnaeus, 1766 by monotypy.
Eumeces Günther, 1864b: 84. Part, not Eumeces 
Wiegmann, 1834.
Riopa Smith, 1935: 312. Part, not Riopa Gray, 1839.
Mochlus Mittleman, 1952: 9. Part, not Mochlus 
Günther, 1864a.
Squamicilia Mittleman, 1952: 9. Type species Eumeces 
isodactylus Günther, 1864b by original designation.

Diagnosis
Lygosoma can be identified by the following combination 
of characters: (1) body size small to large (SVL 
49–168 mm); (2) trunk moderately elongate to elongate 
(AGD 58–93% SVL); (3) digits short (FinIIILam 4–9, 
ToeIVLam 5–13); (4) MBSRC 25–38; (5) PVSRC 
84–123; (6) lower eyelid scaly; (7) supranasal scales 
in contact medially or not in contact medially, usually 
fully or partially fused with nasals; (8) prefrontals 
not in contact medially; (9) frontoparietal single or 
paired; (10) parietals in contact medially posterior to 
interparietal; (11) enlarged nuchal scales present or 
absent; and (12) palatine bones with posteriomedially 
projecting processes, pterygoids emarginated along 
posterior edge.

Phylogenetic definition
This genus comprises species that share a more 
recent common ancestor with L. quadrupes than with 
Subdoluseps bowringii, Lamprolepis smaragdina, 
Mochlus sundevallii or Riopa punctata.

Content
Lygosoma quadrupes, L. corpulentum Smith, 1921, 
L. isodactylum (Günther, 1864b), L. siamense Siler, Heitz, 
Davis, Freitas, Aowphol, Termprrayoon & Grismer 2018 
and L. tabonorum Heitz, Diesmos, Freitas, Ellsworth, 
Grismer, Aowphol, Brown & Siler 2016.

Comments
The suggested common name for this genus is Southeast 
Asian Writhing Skinks. Lygosoma means ‘writhing 
body’ in Greek (lygos = writhe, soma = body). Linnaeus 
(1766) provided the earliest description of the type 
species of the genus, Anguis quadrupes, and, due to its 
extremely elongate body and diminutive legs, mistook 
it for a member of Serpentes (snakes). Ten years later, 
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Bloch (1776) re-described the species as the lizard 
Lacerta serpens from two specimens, one of which 
(ZMB 1276) is a syntype of the species and the oldest 
herpetological specimen in the Zoological Museum of 
Berlin (Bauer & Günther, 2006). Later, Hardwicke & 
Gray (1827) described the genus Lygosoma for Lacerta 
serpens, mistakenly mentioning that the species was 
different from Anguis quadrupes and, consequently, 
the epithet quadrupes was not associated with the 
genus until serpens was synonymized with quadrupes 
by Smith (1935).

Species included in Lygosoma display considerable 
variation in gross body size and shape. The smallest 
species included currently in the genus is L. siamense, 
which has an adult SVL of 49–79 mm, compared to 
the largest species, L. corpulentum, with an adult SVL 
of up to 168 mm (although this measurement is only 
based on a single specimen). Additionally, species differ 
in the degree of trunk elongation, with species in the 
L. quadrupes species complex (L quadrupes, L. siamense 
and L. tabonorum) being more elongate (AGD/
SVL = 62.0–93.3%) when compared with other species 
such as L. corpulentum (AGD/SVL = 57.7%). Additional 
phylogenetic studies of morphological diversity and 
body form evolution are needed for this group.

Due to the lack of tissue samples in museum 
collections, we were not able to sample a large 
number of species from Southeast Asia from the 
genus Lygosoma, including: L. angeli (Smith, 1937b), 
L. bampfyldei Bartlett, 1894, L. boehmei Ziegler, 
Schmitz, Heidrich, Vu & Nguyen, 2007, L. haroldyoungi 
(Taylor, 1962), L. kinabatanganense Grismer, Quah, 
Duzulkafly & Yambun, 2018, L. koratense Smith, 
1917, L. opisthorhodum Werner, 1910, L. peninsulare 
Grismer, Quah, Duzulkafly & Yambun, 2018, 
L. schneideri Werner, 1900, L. singha (Taylor, 1950) 
and L. veunsaiense Geissler, Hartmann & Neang, 
2012. To avoid introducing additional taxonomic 
instability from speculating on their phylogenetic 
affinities, we treat these species as incertae sedis and 
hope that future studies on the phylogenetics of this 
group will include samples of these taxa to elucidate 
their relationships to other species in Lygosoma s.l. 
We also did not include the species L. siamense in 
our phylogeny, because the only available sequence 
was a portion of the 16S gene on GenBank, but this 
species was shown to be the sister taxon to the clade 
comprising L. quadrupes + L. tabonorum (Siler et al., 
2018) and so we consider it a member of Lygosoma.

genus mochLus günTher, 1864a: 308

Type species:  Mochlus punctulatus Günther, 
1864a = Eumeces afer Peters, 1854 (Barboza du Bocage, 

1867) = Eumeces sundevallii (Eumices [sic] sunderallii 
[sic]) Smith, 1849 (Freitas et al., 2018) by monotypy.

Tiliqua Burton, 1836: 62. Not Tiliqua Gray, 1825.
Sepacontias Günther, 1880: 235. Type species 
Sepacontias modestus Günther, 1880 = Mochlus 
sundevallii (Freitas et al., 2018) by monotypy.
Euprepes [sic]: Vaillant, 1884: 169. Part, not Euprepis 
Wagler, 1830.
Lygosoma Boulenger, 1887: 209. Part, not Lygosoma 
Hardwick & Gray, 1827.
Lepidothyris Cope, 1892: 233. Type species Tiliqua 
fernandi Burton, 1836 by subsequent designation 
(Cope, 1900).
Riopa Smith, 1935: 312. Part, not Riopa Gray, 1839.

Diagnosis
Mochlus can be identified by the following combination 
of characters: (1) body size medium to large (SVL 
55–166 mm); (2) trunk moderately elongate to elongate 
(AGD 44–83% SVL); (3) digits short to long (FinIIILam 
6–10, ToeIVLam 9–17); (4) MBSRC 24–38; (5) PVSRC 
60–78; (6) lower eyelid scaly or with a transparent 
disc; (7) supranasal scales in contact medially, 
occasionally fused or partially fused with nasals; 
(8) prefrontals not in contact medially, occasionally 
fused with frontonasal; (9) frontoparietal paired; (10) 
parietals in contact medially posterior to interparietal; 
(11) enlarged nuchal scales present or absent; and 
(12) palatine bones with posteriomedially projecting 
processes, pterygoids rounded along posterior edge.

Phylogenetic definition
This genus comprises species that share a more recent 
common ancestor with M. sundevallii than with Riopa 
punctata, Subdoluseps bowringii, Lygosoma quadrupes 
and Lamprolepis smaragdina.

Content
Mochlus sundevallii, M. brevicaudis (Greer, Grandison 
& Barbault, 1985), M. fernandi (Burton, 1836), 
M. guineensis (Peters, 1879), M. hinkeli (Wagner, 
Böhme, Pauwels & Schmitz, 2009) and M. striatus 
(Hallowell, 1854).

Comments
The suggested common name for this genus is African 
Supple Skinks. Studies of other African–Southeast 
Asian radiations have suggested that African 
species comprise a single radiation on the continent 
(Mausfeld et al., 2000; Fabre et al., 2012; Oliver et al., 
2015; Karin et al., 2016). However, without greater 
taxonomic sampling of African species, we cannot 
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corroborate this hypothesis for African species in 
Lygosoma s.l. The majority of Lygosoma s.l. species 
in Africa lack tissue samples in museum collections 
and have never been included in phylogenetic studies. 
Therefore, we are unable to include them definitively 
in the genus Mochlus at this time. These species are: 
M. grandisonianus Lanza & Carfi, 1966, M. laeviceps 
(Peters, 1874), M. lanceolatus (Broadley, 1994), 
M. mabuiiformis (Loveridge, 1935), M. mafianus 
(Broadley, 1994), M. mocquardi (Chabanaud, 1917), 
M. paedocarinatus Lanza & Carfi, 1968, M. pembanus 
(Boettger, 1913), M. productus (Boulenger, 1909), 
M. simonettai (Lanza, 1979), M. somalicus (Parker, 
1942), M. tanae (Loveridge, 1935) and M. vinciguerrae 
(Parker, 1932). Two of these species, M. pembanus 
and M. tanae, were included in our morphological 
dataset and appeared to occupy a similar area of 
morpho space as other species in Mochlus, but given 
the large amount of overlap of clades in morpho space, 
their morphological affinities are not strong evidence 
alone for their placement in Mochlus. Alternatively, 
Greer (1977: 527) suggested that M. tanae and another 
African species, M. mabuiiformis, were more closely 
related to Southeast Asian species than to other 
African species based on a combination of discrete 
character traits: open secondary palate, lower eyelid 
with a transparent disc, presence of pterygoid teeth, 
paired frontoparietal scales, distinct supranasal scales 
and pentadactly digits. However, combinations of these 
states are shared across all Lygosoma s.l. and are not 
unique to a single clade. Some of these characters 
may represent convergence instead of phylogenetic 
relatedness. Additionally, Perret & Wuest (1983) 
examined the scale microstructure of M. guineensis, 
M. mabuiiformis and M. fernandi and found that 
they were all very similar, which may suggest that 
M. mabuiiformis is more closely related to African 
species than Asian species in Lygosoma s.l. Therefore, 
biogeography and morphology do not help us resolve 
the placement of these 13 African species and so we 
treat them as incertae sedis and hope that future 
studies will elucidate their phylogenetic position. 
Two African species, M. hinkeli and M. striatus, have 
been included in a recent phylogenetic study (Wagner 
et al., 2009) and were shown to form a clade with 
M. fernandi. Therefore, we treat these species as 
members of Mochlus.

genus Riopa gray, 1839: 332

Type species: Riopa punctata = Lacerta punctata 
Linnaeus, 1758 (Gray, 1845) by subsequent designation 
(Smith, 1935).

Chiamela Gray, 1839: 332. Type species Chiamela lineata 
Gray, 1839 by subsequent designation (Gray, 1845).

Hagria Gray, 1839: 333. Type species Hagria vosmaerii 
Gray, 1839 by monotypy.
Campsodactylus Dumeríl & Bibron, 1839: 761.Type 
species Campsodactylus lamarrei Dumeríl & Bibron, 
1839 = Hagria vosmaerii Gray, 1839 by monotypy.
Sphenosoma Fitzinger, 1843: 23. Type species Eumeces 
punctatus Weigmann, 1834 = Lacerta punctata 
Linnaeus, 1758 by original designation.
Eumeces Günther, 1864b: 84. Part, not Eumeces 
Wiegmann, 1834.
Lygosoma Boulenger, 1887: 209. Part, not Lygosoma 
Hardwicke & Gray, 1827.

Diagnosis
Riopa can be identified by the following combination 
of characters: (1) body size small to medium (SVL 
35–96 mm); (2) trunk moderately elongate (AGD 
55–75% SVL); (3) digits short to long (FinIIILam 
5–11, ToeIVLam 6–16); (4) MBSRC 19–30; (5) PVSRC 
70–115; (6) lower eyelid scaly or with a transparent 
disc; (7) supranasal scales in contact medially, 
occasionally barely touching; (8) prefrontals not in 
contact medially; (9) frontoparietal single or paired; 
(10) parietals in contact behind interparietal; (11) 
enlarged nuchal scales usually present, occasionally 
absent; and (12) palatine bones with posteriomedially 
projecting processes, pterygoids emarginated along 
posterior edge or occasionally rounded.

Phylogenetic definition
This genus comprises the species that share a more 
recent common ancestor with Riopa punctata than 
with Mochlus sundevallii, Subdoluseps bowringii, 
Lygosoma quadrupes and Lamprolepis smaragdina.

Content
Riopa punctata , R. albopunctata  Gray, 1846, 
R. anguina Theobald, 1867, R. goaensis Sharma, 1976, 
R. guentheri (Peters, 1879), R. lineata (Gray, 1839), 
R. lineolata Stoliczka, 1870, R. popae Shreve, 1940 and 
R. vosmaerii (Gray, 1839).

Comments
The suggested common name for this clade is Asian 
Gracile Skinks. The species Lacerta punctata, described 
by Linnaeus (1758), referred to an illustration by Seba 
(1735: pl. II, fig. IX) and two specimens housed in the 
Swedish Museum of Natural History (NRM 135). 
However, it was later discovered that the illustration 
and the specimens represented two different species. 
Although the majority of publications used Lacerta 
punctata to refer to the elongate Indian species now 
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recognized as Riopa punctata, several publications 
used it to refer to the species now recognized as 
Trachylepis homalocephala. This led to confusion with 
the identity of Lacerta punctata, as the name was 
applied to the type species of two separate genera – 
Riopa and Euprepis Wagler, 1830 (reviewed in Bauer, 
2003). Bauer (2003) fixed the name Lacerta punctata 
to Seba’s drawings, choosing the illustration of the 
male as the lectotype.

genus SubdoluSepS Freitas, Datta-roy, 
Karanth, Grismer & siler, Gen. nov.

Type species: Eumeces bowringii Günther, 1864b.

Eumeces Günther, 1864b: 84. Part, not Eumeces 
Wiegmann, 1834.
Lygosoma Boulenger, 1887: 209. Part, not Lygosoma 
Hardwicke & Gray, 1827.
Riopa Smith, 1935: 312. Part, not Riopa Gray, 1839.
Mochlus Mittleman, 1952: 9. Part, not Mochlus 
Günther, 1864a.

LSID: urn:lsid:zoobank.org:act:A5D46B92-9213-
4CCA-84A2-BCC025B87865

Diagnosis
Subdoluseps can be identified by the following 
combination of characters: (1) body size small (SVL 
35–70 mm); (2) trunk moderately elongate (AGD 
42–69% SVL); (3) digits medium to long (FinIIILam 
7–12, ToeIVLam 11–16); (4) MBSRC 26–34; (5) PVSRC 
50–69; (6) lower eyelid scaly or with a transparent 
disc; (7) supranasal scales in contact medially or not 
in contact medially; (8) prefrontals not in contact 
medially; (9) frontoparietal single or paired; (10) 
parietals in contact behind interparietal; (11) enlarged 
nuchal scales present or absent; and (12) palatine 
bones with posteriomedially projecting processes, 
pterygoids rounded along posterior edge.

Phylogenetic definition
This genus comprises the species that share a more 
recent common ancestor with S. bowringii than with 
Riopa punctata, Mochlus sundevallii, Lygosoma 
quadrupes and Lamprolepis smaragdina.

Content
Subdoluseps bowringii, comb. nov., S. frontoparietalis 
(Taylor, 1962), comb. nov., S. herberti (Smith, 1916), 
comb. nov., S. pruthi (Sharma, 1977), comb. nov. and 
S. samajaya (Karin, Freitas, Shonleben, Bauer & Das, 
2018), comb. nov.

Etymology
From the Latin word ‘subdolus’, meaning ‘crafty or 
slippery’ and the Greek word ‘seps’, a snake-like animal 
and has been used previously in genus names for 
skinks. This name describes the agility of these skinks 
in the wild. The name is masculine. The suggested 
common name for this genus is Asian Agile Skinks.

CONCLUSIONS

Having a stable taxonomy to communicate about 
biodiversity is crucial for both scientific study and 
conservation management (Mayr, 1976; Felsenstein, 
1985; Winston, 1999; Wheeler et al., 2004; Kaiser 
et al., 2013; Groves et al., 2017; IUCN-SSC Species 
Conservation Planning Sub-Committee, 2017). As 
molecular methods and phylogenetic analyses have 
improved, phylogenetic studies have contributed 
greatly to our growing understanding of global skink 
biodiversity. Over the last decade alone, five new 
scincid genera have been described (Pinoyscincus 
and Tythoscincus [Linkem et al., 2011], Toenayar 
[Karin et al., 2016], Brachyseps and Flexiseps [Erens 
et al., 2017]) to better reflect the evolutionary history 
of the family. Given that species in Lygosoma s.l. are 
distributed across six of the 25 global biodiversity 
hotspots (Myers et al. , 2000), classifying the 
biodiversity in this group is critical to discussions of 
skink diversity in these imperilled regions. Here, using 
the most comprehensive taxonomic sampling available, 
we have employed concatenated and coalescent-
based phylogenetic analyses and multivariate 
morphological analyses to illustrate the need for a 
revised classification of Lygosoma s.l. Therefore, we 
modify the taxonomy of Lygosoma s.l. to reflect our 
phylogenetic results, splitting the group into four 
genera: Lygosoma, Mochlus, Riopa and Subdoluseps 
gen. nov. Our revised classification can be used to more 
accurately investigate lygosomine skink biodiversity 
including diversification rates and biogeographic and 
trait evolution patterns within and between clades in 
Lygosoma s.l.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s website.

Table S1 Table showing the taxonomic and genetic sampling for this study. GenBank numbers for each gene are 
listed in the columns. 
Table S2 Table showing the museum number (or collector number when the museum number was not 
available) and country of origin for each specimen in our morphological dataset. AA=Anchalee Aowphol (at 
ZMKU), ACD=Arvin Diesmos (at PNM), BNHM=Bombay Natural History Museum, CAS=California Academy 
of Sciences, CES= Center for Ecological Sciences at the Indian Institute of Science, FMNH=Field Museum of 
Natural History, KU=University of Kansas Museum of Natural History, MCZ=Museum of Comparative Zoology, 
MVZ=Museum of Vertebrate Zoology, PNM=Philippines National Museum, UNIMAS=Institute of Biodiversity 
and Environmental Conservation, USNM=National Museum of Natural History, ZMKU=Zoological Museum of 
Kasetsart University.
Table S3 Table with values (minimum–maximum) for mensural, meristic and qualitative characters for each 
species in Lygosoma, Mochlus, Riopa, and Subdoluseps gen.nov included in our morphological dataset. Means 
and standard deviations for mensural characters are shown in parentheses when the number of samples included 
is three or higher. Measurements and counts for juveniles and individuals suspected of being misidentified are 
excluded from this table. SVL = snout–vent length, AGD = axilla–groin distance, MBW = midbody width, TL = tail 
length, TW = tail width, HL = head length, HW = head width, HD = head depth, END = eye–nares distance, 
SNL = snout length, IND = internarial distance, MBSRC = midbody scale row count, PVSRC = paravertebral 
scale row count, FinIIILam = finger three lamellae, ToeIVLam = Toe four lamellae, SuprL = supralabials, 
InfrL = infralabials, SO = supraocculars, SC = supercilliaries, lower eyelid state transp. disc = transparent disc. 
Definitions of each character are found in text
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