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Abstract

Tracking plays an important role in Augmented Reality (AR) applications. In medical aug-
mented reality, tracking systems must allow to accurately determine the position of med-
ical instruments without influencing or disturbing the surgeons working environment.
Retro-reflective material combined with infrared light presents an interesting and promis-
ing method of optical tracking.
This thesis analyzes the special case of tracking medical scissors using retro-reflective lines.
The particular structure of this instrument permits its identification in an image only through
the position of the two legs. During this project the whole process of image generation, line
detection, camera calibration and 3D reconstruction via line triangulation was examined.
The used methods, problems and undertaken optimizations are presented here. Further-
more some ideas for the part of tracking the instrument over a series of images are briefly
discussed.





Zusammenfassung

Tracking spielt eine wichtige Rolle in Augmented Reality (AR) Anwendungen. In medizini-
scher Augmented Reality müssen Tracking-Systeme die genaue Positionsbestimmung medi-
zinischer Intrumente ermöglichen ohne dabei das Arbeitsumfeld des Arztes zu beeinflussen
oder zu stören. Reflektorfolie in Kombination mit infrarotem Licht stellt eine interessante
und vielverprechende Methode optischen Trackings dar.
In dieser Diplomarbeit wird ein spezieller Fall untersucht: das Tracking von medizinischen
Scheren mit Hilfe von reflektierenden Linien. Die besondere Struktur dieses Instruments er-
laubt seine Erkennung in einem Bild allein über die Lage der zwei Schenkel. In diesem Pro-
jekt wird der gesamte Prozess von Bildergenerierung, Linienfindung, Kamerakalibrierung
und 3D Rekonstruktion über Linientriangulierung behandelt. Die verwendeten Methoden,
Probleme und vorgenommenen Optimierungen werden hier vorgestellt. Weiterhin werden
einige Ideen für das Tracking des Instruments in einer Bildfolge kurz behandelt.
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1 Introduction

Motivation and Introduction to Approach and Utilities

1.1 Motivation

Tracking plays an important role in Augmented Reality (AR) applications. Various kinds of
tracking methods can be used, for example magnetic, mechanic or optical tracking [5]. This
project applies optical tracking. Here a pair of medical scissors shall be tracked using its
legs. Two questions arise:
Firstly, why and where is it useful to track medical instruments? Looking at an operating
room answers can be found very quickly. First it is important to know where the objects
of interest are at any point in time. The knowledge of how medical instruments are used
during an operation can be helpful for visualization. Simulations or even a robot could be
controlled with that information. In general tracking can be used to optimize work proce-
dures and protocols.
And secondly, what are the reasons to choose retro-reflective lines for the optical tracking
process? One possibility to find and track an object is to attach a fixed arrangement of balls
to it and use their constellation to determine the three-dimensional position of the object.
Medical instruments like scissors could also be tracked that way but the ball arrangement
can be disturbing while working with the instrument. Hence another approach to identify
the position and orientation using only the legs of the instrument can be interesting to ana-
lyze.

1.2 Approach

The aim of the diploma thesis is to track medical scissors using retro-reflective lines. The legs
of the instrument are covered by retro-reflective material and the pair of scissors is exposed
to infrared light. Thus images can be generated where the legs are easily recognizable.
Figure 1.1 shows the principal steps in this project. First of all images are created. We used
two different systems to do this, a stereo infrared camera system and the RAMP System
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1 Introduction

which are both described in detail in chapter 2. The resulting infrared images are then
processed to retrieve the lines representing the legs of the pair of scissors. This is done
using Hough Transformation and some additional methods for optimization (see chapter 3).
The extracted information about the 2D lines in left and right images are then put together
in the triangulation step where the 3D position of the medical instrument is determined. The
methods and the approach can be found in chapter 5. But in order to calculate the 3D coordi-
nates more than just the 2D image data is necessary. Information on the camera projections
and the position of the right and left camera with respect to each other need to be known,
too. These so called intrinsic and extrinsic camera parameters are computed in the camera
calibration process which is specified in chapter 4 on stereo camera calibration. To com-
pute the calibration parameters a stereo image series with known point correspondences is
necessary, therefore additional non-infrared images have to be generated during the image
acquisition step for calibration usage. This connection is displayed in figure 1.1 by the cali-
bration branch on the left side. Finally the scissors shall be tracked over a series of images.
Chapter 6 presents some ideas and methods which could be used for this part of work. An
overall conclusion of the project is given in chapter 7.
This thesis presents several established and fully developed algorithms and methods for line
detection, calibration, stereo triangulation and tracking. They are analyzed for their appro-
priateness and their quality in this special case. In addition this paper introduces modifica-
tions and extensions for a more exact and enhanced functioning.

1.3 Programming Language and Utilities

1.3.1 Matlab

The intention of this project is to find and test the main algorithms for the detection and 3D
reconstruction of the pair of scissors. Matlab 6.5 [1] is used for the whole implementation.
This programming language offers a good environment for image processing and numerical
computations. It includes a lot of useful functions and allows an easy handling of matrix-
vector-calculations. This makes Matlab ideal for this project because the focus can lie on the
development of the algorithms while the basic computation possibilities and needed numer-
ical functions are already given and ready for usage.
The disadvantage of Matlab is that it tends to use a significant amount of memory and it is
relatively slow in executing if-statements and for- and while-loops. Hence the Matlab algo-
rithms created in this project show the possibilities and the quality of the selected methods
but they can not be representative concerning memory and time consumption (see section
7.2.3 on time comparison).

1.3.2 Matlab Camera Calibration Toolbox

For the determination of the intrinsic and extrinsic parameters special algorithms are nec-
essary which use point correspondences to estimate these parameters. The ideas behind
estimation are described in section 4.1.6. The Matlab Camera Calibration Toolbox was de-
veloped by Jean-Yves Bouguet (California Institute of Technology) and is a free contribution
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1.3 Programming Language and Utilities

offering Matlab functions for camera calibration [2]. In this project it is used to do the calibra-
tion of the stereo camera system. The usage of the toolbox and its functionality are specified
in section 4.2.1.

Figure 1.1: Graphical presentation of the approach

1.3.3 Hardware

In this project two systems are used for image generation: a stereo camera system and the
RAMP System. Both approaches are described in detail in the next chapter.
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2 Stereo Image Series

Experimental Setup and Generation of Images

For this project we used two different methods for image acquisition.
The first series were taken with a system of two stereo cameras with attachable infrared
filters. Secondly the RAMP System was used to get images of a pre-calibrated camera. Both
systems are described in detail in the following sections.

2.1 Stereo Camera System

To recover the position of the pair of scissors in 3D space from 2D image data stereo infor-
mation is needed. So the first image series were generated with a stereo camera system as
figure 2.1 shows.

Figure 2.1: Stereo Camera System
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2 Stereo Image Series

2.1.1 Experimental Setup

Two SONY cameras of type DFW-VL500 are used for the experimental setup. The technology
integrated in these digital cameras ensures high color accuracy square pixels and sharp,
high resolution images even of fast moving objects. To visualize the retro-reflective lines we
used Heliopan RC 830 filters which can be attached to both cameras. For an optimal setup
infrared flashes should be used, resulting in an equal and adequate illumination of the scene.
Unfortunately such flashes were not available during this project and simple infrared light
heating lamps were taken instead. They produce a rather unequal illumination and therefore
the generated images do not have the best achievable quality (compare figure 3.7 (b)). The
scissors were covered by reflector foil (3M-Scotchlite high reflection film 8850) providing an
optimal reflection of the visible spectrum. For the stereo system the two cameras were used
with a baseline of about 30 cm.

2.1.2 Calibration Data

As this stereo system is uncalibrated the calibration parameters are retrieved by using the
Matlab Camera Calibration Toolbox. This toolbox allows to compute the intrinsic and extrin-
sic parameters of a stereo system which encode the projection parameters for each camera
and the relative position of the right and left camera with respect to each other in the stereo
system. A detailed description of the parameters and their usage is given in chapter 4 on
Stereo Calibration. Section 4.1 gives an overview on the theory behind projection and cal-
ibration and section 4.2 presents the calibration process with the Toolbox. For this process
chessboard images are necessary (see figure 4.4). In contrast to the scissors images they are
non-infrared.
Hence two stereo image series needed to be generated: a non-infrared stereo image series
of a chessboard to gain data for the calibration process and the infrared image series of the
pair of scissors for the further computation steps. Both series must be taken with the same
fixed camera arrangement to have calibration data which fits the infrared images. Here the
great advantage of the used system is the simple way of switching between infrared and
non-infrared just by attaching or detaching the filters.

2.1.3 Image series

With an adequate software the retrieval of the image series is a very easy task. The computer
program gets the data from the left and right camera and stores it as movies or image lists so
that corresponding left and right data are recognizable. Unfortunately these tools for stereo
acquisition were not available at the beginning of this project. Therefore at development time
only single images with the pair of scissors at a fixed place could be generated which led to a
very small number of test pairs (left-right). For the second series we could use a stereo image
acquisition system implemented by Johannes Schäffner as a system development project
(SEP) at the TU Munich. Given this system a large data set for calibration as well as line
detection could be generated for testing and validation.
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2.2 RAMP System

2.1.4 Problems

The first image series of the stereo camera system gave no convincing results. The unequal
illumination and the difficulties of getting good calibration data were most likely the causes.
A second data set of a more stable camera setup and thus more exact calibration parameters
achieved better 3D reconstructions of the scissors. But still the outcome was not optimal as
section 5.4 states.
To find out whether the bad results are a problem of calibration accuracy another approach
was tried with a pre-calibrated system: RAMP.

2.2 RAMP System

The RAMP System (Real Time Augmentation for Medical Procedures) is a project of SCR,
Siemens Corporate Research. It shall support doctors by imaging complex data in an easily
understandable way. The system improves medical procedures in several different ways, for
example 3D-Visualization, Image and Tool registration.
RAMP’s major components are a video see-through Head Mounted Display (HMD) with
two stereo color cameras and an infrared camera for optical tracking. The software consists
of a RAMP server and a RAMP client. A short overview on these parts is given in the
following paragraph. More details on RAMP can be found in [18] and [17].
We do not use the system in the sense which is described above, only the infrared tracking
images and the given calibration data are important in our case.

2.2.1 RAMP’s Components

The video see-through Head Mounted Display provides the visualization. It consists of two
color cameras which copy the original field of view to the HMD. In addition a third infrared
camera is used for optical tracking. It has a wide angle lens to extend the angle of view and is
surrounded by a strong circular infrared flash to give an illumination which does not change
the visible spectrum. Figure 2.2 shows the HMD from the side. For this project only the im-
ages taken by the infrared camera are used. The HMD and its multifarious possibilities are
not of interest.
The RAMP server provides the position of the HMD relative to an absolute coordinate sys-
tem. To determine the position a set of so called fiducials needs to be visible in the infrared
camera images. These circular retro-reflective markers are illuminated by the infrared flash
and allow RAMP to compute the relative position of the HMD to the absolute coordinate
system whose origin is located in the marker set. Figure 2.3 shows the fiducial markers. In
addition the RAMP server also provides the position of tools marked with fiducials, a fea-
ture which is not used in this project.
Finally the RAMP client takes the information from the server and reconstructs the scene
with one view for each eye using the images of the two color cameras.
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2 Stereo Image Series

Figure 2.2: HMD from the side

2.2.2 Experimental Setup and Image Series

As RAMP provides only one infrared camera the stereo images need to be generated by
using two different positions of the HMD with respect to the medical instrument. The scis-
sors are placed at a fixed position, the HMD is moved around them and images are taken at
divers positions resulting in several pairs of left and right images. In every case the major-
ity of the fiducials must be visible in the infrared images to enable the computation of the
extrinsic calibration parameters.

Figure 2.3: Fiducials without flash (left) and with flash (right)
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2.3 Resulting Data

2.2.3 Calibration Data

The introduction to this chapter already presented RAMP as a pre-calibrated system. The
intrinsic calibration parameters for the infrared camera are already given and therefore no
additional chessboard images need to be generated. The extrinsic information, the relative
position of right and left images with respect to each other, can be derived from the single
images. The fiducials allow the RAMP software to compute the position of the HMD in the
absolute coordinate system. It is given as a rotation and a translation in the left upper corner
of the images (see figure 4.6). With this information the position of the HMD for a left and a
right image shot can be calculated as in section 4.3.

2.3 Resulting Data

Both systems store the images as RGB arrays of size 480 × 640. However, in the infrared
spectrum, the color channels don’t have significant meaning anymore. Hence for the further
calculations only one of the three color arrays is used. Its cell values are between 0 and
255. Figure 2.4 shows a gray value image with a magnified part including some of the gray
values.

Figure 2.4: Image with partial gray value array
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3 Line Detection

Methods, Problems and Optimizations

The obtained infrared images are now processed to detect the pair of scissors. This prob-
lem is reduced to simple line detection as the position of the instrument is determined by
two intersecting lines.
The line retrieval is done via Hough Transformation which is a nice method with good com-
putational complexity. Section 3.1 presents a theoretical introduction and then a plain re-
alization of the Hough Transformation is described. As the results are not satisfying the
process of detection is extended. The Hough Transformation is split to find each leg of the
pair of scissors separately and for a more exact result a Least Squares Method is applied
afterwards to achieve better line equation accuracy. These improvements are described in
detail in section 3.2.
The chapter continues with a section on the problem of deinterlacing and some marginal
cases which need to be catched (3.3). Finally the data which is passed on to the next process-
ing step is presented in section 3.4.

3.1 Hough Transformation

Hough Transformation is a very efficient method for detecting lines and curves in images. A
straightforward way to find lines could be to test all the lines formed by each pair of figure
points for their likelihood. But this implies a lot of calculation effort. Hough Transforma-
tion chooses a more elegant way by transforming every figure point into a parameter space.
There it votes for all the lines it might lie on. So if all possible lines were represented as
buckets in parameter space each figure point would put a ball in every potentially matching
bucket. Finally the actually present lines in the image should be the ones which gained a lot
of votes, the buckets with a large number of balls.

11



3 Line Detection

3.1.1 Theoretical Basics

Hough Transformation is done in two steps. First the image points are transformed into a
parameter space and then the votes are accumulated to find the maximum.

Transformation
Each line can be represented by a tuple (Θ, ρ) where Θ is the angle between the line and
the x-axis and ρ is the distance of the line to the origin (see Figure 3.1). The transformation
computes for every point (x, y) all possible pairs (Θ, ρ) representing all possible lines going
through that point. The angle Θ is varied and ρ, the distance, is calculated with the following
equation:

ρ = x · cos(θ) + y · sin(θ)

This transformation is continuous. Hence a first discretization is done, as the input figure
points are discrete. Each of these points is transformed into a sinusoidal curve in the para-
meter plane. On the other side each point in parameter space refers to a straight line in the
image plane. Figure 3.1 shows this exemplarily.

Figure 3.1: Hough Transformation

There the points (x, y) and (u, v) in the image plane on the left are transformed into the red
and blue curve on the right side. As these points are colinear their parameter space curves
have a common point of intersection, (Θ, ρ). This intersection point refers to the line through
(x, y) and (u, v) in the original image coordinate system.

Accumulation
Transforming all the figure points into parameter space results in a large number of curves
with multiple intersection points. Exactly colinear image points can be found by finding
coincident intersection points in parameter space. Present lines in the picture correspond to
large numbers of coinciding points (lots of votes) and therefore these intersections need to
be counted. Unfortunately this plain approach of counting requires a lot of computational
effort as n sinusoidal curves normally intersect in

Pn
i=1 i = n∗(n−1)

2 points which means that
the computation grows quadratically with the number of image points [7].

So for the accumulation of votes in parameter space the burden can be reduced by dis-
cretizing the parameter space. This second discretization quantizes the (Θ, ρ)− plane into a
quad ruled grid and the counting can then be done with a so called accumulator array. Each
cell of the array represents a pair (Θ, ρ) and collects the votes for this pair. The cells which
gained a high number of votes in the array can easily be retrieved and the corresponding

12



3.1 Hough Transformation

Figure 3.2: Accumulator Array

pairs (Θ, ρ) are the angle and distance parameters of the lines in the image. If a cell got k
votes then precisely k figure points in the image lie on that line. Figure 3.2 shows an image
representation of such an array. The number of votes for a cell is represented by its intensity.

3.1.2 Practical Problems

Hough Transformation was introduced as a nice and efficient way of detecting lines. Still a
number of problems arise in practical usage, general ones as described in [7],[8] and some
which occur particularly in our case. They shall be described here.

Discretization
In the theoretical introduction of the transformation the problem of discretization is already
explained. In order to reduce the time consumption of the computation the values of Θ and
ρ are quantized to allow the accumulation in an array of fixed size in both dimensions. But
the question of grid size still needs to be answered. A very fine grid results in better resolu-
tion but higher computation times. And if points are not exactly colinear the transformation
might put their votes in different buckets. Then the corresponding line might not be iden-
tified. But too coarse quantizations lead to falsely large votes because quite different lines
refer to the same grid cell.
Figure 3.3 points out the difficulty of grid size. The accumulator array for fine and coarse
quantization is displayed as well as the resulting hough lines in the right upper corners. Fur-
ther explanations for example on the quantization parameters r and t will follow in section
3.1.3.

Difficulties with noise
An advantage of Hough Transformation is that it connects widely separated image points if
they are nearly colinear. But this can also be a weakness. Phantom lines might be detected
in regions with uniformly distributed figure points. Here this problem does not arise as the
number of image points belonging to the legs of the scissors is a lot larger than any possible
additional noise in the images.
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3 Line Detection

(a) Fine grid (t=1200,r=800) (b) Coarse grid (t=50,r=30)

Figure 3.3: Discretization: Accumulator Array and Hough Lines

Different pixel intensities
The infrared images are grey value matrices with values between 0 and 255. Feature points
with values close to zero probably don’t belong to the bright pixel fields representing the
lines. Hence these image points must not influence the accumulation as they would disturb
the calculation.

Different line intensities
First tests with infrared images revealed the problem of different line intensities. When the
number of figure points belonging to the two legs of the instrument differ considerably, the
Hough Transformation can only find the more intensive line. Taking more pairs (Θ, ρ) with
high value will only give more lines through the intensive leg with slightly different angles
and distances. An example is shown in figure 3.4. The upper leg is more intensive than the
lower one and the back transformation of more points in parameter space results in several
lines through the upper leg. Section 3.1.3 resumes this aspect and introduces the parameter
btt, a back transformation threshold.

Figure 3.4: Different line intensities: btt=0.7
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Exact line equation retrieval
When the maximum of the accumulator array is taken to define a line in the original image
this line will very likely be a diagonal through the pixel field representing the line in the
image (see figure 3.12 (a)). The reason for this behavior is that the pixel areas are mostly
rectangular and longish and therefore the diagonal covers a maximum possible number of
feature points. In addition the possible line positions depend on the discretization of ρ and
Θ. Figure 3.5 shows three discretization steps for Θ (a) and ρ (b) which are closest to the
searched line in the image. In both cases the middle line is the one which was detected
by the Hough Transformation. Its parameter space representation is (Θ, ρ). Figure 3.5 (a)
displays the lines (Θ − 1°, ρ), (Θ, ρ) and (Θ + 1°, ρ), figure 3.5 (b) shows the detected line
(Θ, ρ) and the two nearest lines with fixed Θ, (Θ, ρ + 640

130) and (Θ, ρ − 640
130). The spacing for

neighboring lines in Θ and ρ direction depends on the discretization parameters t and r (see
section 3.1.3). In this case they are t = 180 which results in one degree steps and r = 130
resulting in 640

130 steps.
So Hough Transformation allows to detect lines in an image but for an exact equation addi-
tional methods need to be considered.

(a) Θ discretization (b) ρ discretization

Figure 3.5: Discretization: Possible line results

In the following sections the realization of the line detection process will be described
step by step. First a plain realization is presented which only deals with the problems of
discretization and different pixel intensities (section 3.1.3). For the issues of different line
intensities and the detection of two lines several approaches of clustering were examined.
The results are given in section 3.1.4. The two major improvements for a satisfying calcu-
lation of both line equations are the splitting of the Hough Transformation to find each line
separately (section 3.2.1) and the application of a Least Squares Method for an optimal line
equation (section 3.2.2).

3.1.3 Plain Realization

The first approach for line detection implements the Hough Transformation using the equa-
tion of section 3.1.1 and an accumulator array as described. The function has four parame-
ters: hough1(r, t, gvt, btt). Their usage and the results for different settings are shown in this
section.
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Implementation
To face the problem of discretization the function allows variable grid cell sizes. The quan-
tization is controlled with two parameters t and r indicating the number of partitions of
the interval for the angle Θ and the distance ρ. Figure 3.6 shows the position of the
(Θ, ρ)−coordinate system in the image and the quantization depending on t and r.

Figure 3.6: Position and quantization of the (Θ, ρ) coordinate system

The origin is placed in the middle of the image and the ρ−axis is the horizontal line which
is discretized in r partitions. The labels range from −r

2 to r
2 . Θ, the angle, can be found on

the half circle indicated around the coordinate system which is quantized in t parts. For the
transformation Θ ∈ [0; 180] therefore ρ can also be negative, for example in the case of the
green colored parameter pair (Θ, ρ). Figure 3.6 also demonstrates the problem of grid size.
The quantization of Θ is very coarse and therefore both lines have very inexact values for
the angle as the rays meet the half circle in the middle of the Θ−partitions.
The accumulation is slightly modified to consider the different pixel intensities. Instead of
incrementing the array cells by 1 a weighted accumulation is done. For each pixel p its
weight is calculated as weightp = pixelvalue

255 . In the process of accumulation the grid cells
which get a vote from p are incremented by weightp.
Besides the values for discretization two additional parameters need to be set in this first
implementation: a natural grey value threshold gvt ∈ [0; 255] and a real back transformation
threshold btt ∈ [0; 1]. The different pixel intensities are already considered in the accumula-
tion process but in order to decrease the computational effort feature points with very small
values shall be excluded completely from the whole Hough Transformation process. It is
not possible to determine a reasonable fixed value. The threshold for unimportant pixels is
strongly varying because the image brightness and therefore the values are depending on
the illumination and the distance of the pair of scissors to the camera. The parameter gvt
offers a variable setting of this threshold to find an adequate value.
Finally the back transformation threshold btt determines the number of pairs (Θ, ρ) to be
considered for back transformation into the image as lines. If btt = 0.9 then all the cells of
the accumulator array with values greater or equal 90% of the maximum of the whole array
are transformed back into the image (see figure 3.4). At the beginning this was supposed to
allow both lines in the image to be discovered. But as mentioned in 3.1.2 the different line
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intensities thwart this approach.

Results
After an introduction to the different parameters their influence on the resulting line detec-
tion shall now be examined. Additionally several figures are presented to give a better idea
of the effects.
For the case of discretization the best choice for the cell sizes can hardly be determined. Fig-
ure 3.3 in section 3.1.2 reveals the two extremities for a very fine or a very coarse grid. Still
there is a lot of room for variation left in-between these borders. More tests with images
differing in illumination, line slope and quality allowed to determine reasonable values for
r and t. In the further calculations the distance quantization is set to r = 130. This permits
a sufficing exactness for the given images of 480× 640 pixels while the computational com-
plexity is still low. For the angle the discretization is t = 180. In addition to good results in
computation this value is also intuitive as 180° divided by 180 result in a one degree quanti-
zation.
The gray value threshold cannot be set to a fixed value. Different intensities of illumination
while generating the images and the variable distance of the pair of scissors to the camera
result in highly differing pixel values. Therefore gvt has to be determined for each image
separately by a set of tests. Alternatively histogram-based methods could be used to adap-
tively identify an adequate value for gvt.
Figure 3.7 presents resulting lines for different values of gvt. Here the image is disturbed

(a) Chosen Pixels for gvt = 150 (b) Resulting Hough Lines

(c) Chosen Pixels for gvt = 100 (d) Resulting Hough Lines

Figure 3.7: Comparison of different gray value thresholds

by noise originating from bad, non-uniform illumination. In order to extract the legs of the
instrument the gray value threshold has to be very high. The left subfigures show the pixels
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from the original image chosen for transformation. They have values valuep ≥ gvt. In the
right subfigures the resulting hough lines can be seen in the original image.
The effects of different values for the fourth and last parameter, the back transformation
threshold, are demonstrated in figure 3.4. It is not possible to determine the equations of
both lines by taking more grid cells for back transformation than just the maximum one. For
very unequal intensities the additionally computed lines still refer to the same leg.
In any case if the back transformation threshold was dropped to a point where eventually
both legs would be found, still a method would be necessary to determine which pairs (Θ, ρ)
approximate the searched lines best. The next section discusses some efforts to at least iden-
tify the line bundles for each leg by using different parameters for clustering.

3.1.4 Clustering efforts

When several accumulator cells are used for back transformation the resulting lines mostly
gather around an average line which identifies the searched line quite nicely (compare figure
3.4). Therefore this good approximation for the line could be retrieved by taking the whole
line bundle of the leg and averaging it. The intention here is to identify the pairs (Θ, ρ)
representing the same leg of the scissors in the image by examining similar values of Θ and
ρ.
In both cases a certain number of accumulator cells is used for back transformation according
to the threshold btt. The chosen parameter pairs are grouped either by values of Θ or ρ.
For a ρ clustering all the pairs (Θ1, ρ), ..., (Θn, ρ) are used to calculate an average value for
the angle Θ̄ = 1

n

Pn
i=1 Θi. Analogously an average ρ̄ is determined for similar values of

Θ which are retrieved by rounding. But the resulting line parameters (Θ̄, ρk) and (Θj , ρ̄)
are not useful in determining the best approximation. It is very sensitive to different line
intensities and a cluster for Θ can be broken in two parts around the change 0° to 180°. In 3.8
the accumulator arrays of two images are displayed. The clusters for each line are marked.
Here the sensitivity to line intensity is visible. The lines in figure 3.8 (a) have very different
intensities, hence if both line cluster shall be found the cluster for the more intense line grows
too big. A line equation retrieval is not possible. For case 3.8 (b) the lines are equally intense
and the clustering is successful. The resulting lines are shown in 3.9.
For a general application this approach is not satisfying, hence other methods are necessary
to improve the results.

(a) Different line intensities (b) Equal line intensities

Figure 3.8: Accumulator array and detected clusters
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(a) Image with ρ clustering lines (b) Image with Θ clustering lines

Figure 3.9: Successful clustering efforts

One more idea could be to find clusters in the accumulator array which was not examined
for this project. A quite different approach is implemented instead. The grey value thresh-
old, if chosen conveniently, already allows to identify the two line clusters in the image as
can be seen in figure 3.7 (a) and the final distinction of the two legs is done via splitting.

3.2 Improvements

In order to identify the pair of scissors in the infrared images both legs need to be detected
and good approximations for the line equations must be calculated. The parameters which
were introduced with the plain realization of the Hough Transformation are not able to
achieve this goal. To get satisfying results further steps need to be undertaken. They will
now be described in detail.

3.2.1 Split Hough Transformation

Section 3.1.3 states that Hough Transformation can easily detect the most intensive line in
the regarded images if the parameters are chosen conveniently. Hence the first line is found
by simply applying the transformation as described in the plain realization. To retrieve
the second leg a modified image is needed in which the missing leg is more intensive than
the one already determined. This image can be created by eliminating the bright pixels
along the Hough line for the known leg. So the approach to detect both legs is realized by a
split Hough Transformation, a separate transformation for each leg. The resulting improved
function is hough2(r, t, gvt, et).

Steps of hough2(r, t, gvt, et)

1. Apply hough1(r, t, gvt, 1.0) to the given image I .
Only the maximum in the accumulator array is taken to get the pair (Θ, ρ) for the most
intensive line in the image, therefore btt = 1.0.

2. Calculate the equation for the line l represented by (Θ, ρ).

19
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3. Eliminate bright pixels along the line l to create a new image Inew.
Starting from each pixel on the line, p ∈ l, the pixels above and below p are examined
for brightness. As long as their gray values are greater than the elimination threshold
et the pixels are colored black, their values are set to 0 and the adjacent pixels are
examined next. If darker pixels q, q′ with gray value ≤ et are reached the elimination
is stopped (compare figure 3.10). This proceeding results in an image Inew where the
bright pixels of the more intensive scissors leg are blackened (see figure 3.11 (a)).

4. Apply hough1(r, t, gvt, 1.0) to the new image Inew.
The new accumulation maximum (Θ′, ρ′) represents the second leg which is now the
brighter one.

5. Calculate the equation of the second line l′ with the new parameters.

(a) Image before elimination (b) Image after elimination of
first column

Figure 3.10: Elimination process

Results
The success of the split Hough Transformation is displayed in figure 3.11. The left image
presents the image Inew created through the elimination process and the Hough line along
which the elimination was done. The intensive leg is nearly completely blackened. On the
right side both computed Hough lines are shown in the original image.
Without separate line detection only one line is found (see figure 3.4). Now both legs are
determined but the calculated equations are not optimal. The lines pass the pixel areas rep-
resenting the legs rather diagonal than straight. This problem of exact line retrieval was
already mentioned earlier (see 3.1.2) and the solution to it is described in the next section.

3.2.2 Least Squares Method

Least Squares is a fitting procedure that takes a number of points (xi, yi) and chooses the line
that minimizes the distance between this line and each point. Here the Total Least Squares
method is implemented which uses the perpendicular distance instead of vertical distance.
This paragraph presents the algorithm for the procedure and describes its application in
combination with the Hough Transformation to give a better approximation of the line equa-
tions for the scissors.

Algorithm
A line l is represented by the equation ax + by + c = 0. The perpendicular distance for an
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(a) Image after Elimination along yel-
low Hough line

(b) Image with both Hough lines

Figure 3.11: Results of split Hough Transformation

arbitrary point (u, v) to l is given by |(au + bv + c)| if a2 + b2 = 1. This can be proved by
looking at the vectorial formular for the distance between a point p and a line given by a
normal vector n with length one and an arbitrary point on the line a as n ◦ (p− a). For l and
(u, v) this equation is

distance =
�

a
b

�
◦
�

u− 0
v − c

b

�
= au + bv + c

and a2 + b2 = 1 because n has length one.
In order to minimize the sum of all perpendicular distances between l and k points (xi, yi)
the following sum has to be minimized:

E =
kX

i=1

(axi + byi + c)2

Differentiating E with respect to c gives

∂E

∂c
= 2

kX
i=1

(axi + byi + c)

which must be zero for the minimum. Hence c = −(ax + by) where z =
P

zi

k . Substituting
this result back into the sum results in the homogeneous equation system

E =
kX

i=1

(a(xi − x) + b(yi − y))2 =

�������������������x1 − x y1 − y
x2 − x y2 − y

... ...
xn − x yn − y

��
a
b

�������������������2 = ||Ah||2 = 0

For the solution of this equation system some thoughts are helpful:
E = ||Ah||2 shall be minimized, but the solution h = 0 is not wanted. A non-zero solution is
sought and hence a constraint is set: ||h|| = 1. Using this constraint the original minimization
equation is enlarged to

Eλ = hT AT Ah + λ(hT h− 1)
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where λ is called the Lagrange multiplier [8].
Looking at the derivative which shall be zero

∂Eλ

∂h
= 2AT Ah + 2λh = 0

the relationship AT Ah = −λh is retrieved. Substituting this back into Eλ gives

Eλ = −hT λh + λhT h− λ = −λ

So for a minimal λ the whole equation is minimized. As the relationship AT Ah = −λh is
an eigenvector problem the searched λ is the smallest eigenvalue of the equation and its
corresponding eigenvector h is the solution for the minimization problem E.
The matrix AT A can be calculated as

AT A =
�

x1 − x ... xn − x
y1 − y ... yn − y

��x1 − x y1 − y
... ...

xn − x yn − y

�
=

=
� Pn

i=1(xi − x)2
Pn

i=1(xi − x)(yi − y)Pn
i=1(xi − x)(yi − y)

Pn
i=1(yi − y)2

�
=

= n ·
�

x2 − x2 xy − xy

xy − xy y2 − y2

�
So the eigenvalue problem is�

x2 − xx xy − xy

xy − xy y2 − yy

��
a
b

�
= µ

�
a
b

�
The eigenvector corresponding to the smallest eigenvalue is (a, b)T and c can be calculated
using the equation c = ax+by. With a, b, c the line is determined for which the perpendicular
distances of all given points (xi, yi) are minimal.

Application in the line detection process
Least Squares finds the line that best fits a set of pixels in the sense of perpendicular dis-
tances. With split Hough Transformation only diagonal approximations for the scissors legs
could be computed (compare section 3.2.1). Now a combination of these two methods is the
final improvement for the line detection process. hough3(r, t, gvt, et) proceeds as follows.
The first five steps are similar to hough2 except a small modification in step three:

1. Apply hough1(r, t, gvt, 1.0) to the given image I .

2. Calculate the equation for the line l represented by the accumulator maximum (Θ, ρ).

3. Eliminate bright pixels along the line l to create a new image Inew.
The proceeding is the same as for hough2 but in addition to the simple elimination of
the image pixels with values greater than et, these values are stored in a new image
array Ielim1. This array has the size of I and if (x, y) ∈ I is blackened then its old value
valxy is stored at position (x, y) ∈ Ielim1.

4. Apply hough1(r, t, gvt, 1.0) to the modified image after elimination Inew.
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5. Calculate the equation of the second line l′ with the new parameter maxima (Θ′, ρ′).

6. Eliminate the bright pixels along l′ analogous to step three. Again the erased values
are stored in an array Ielim2.

7. Apply Least Squares to Ielim1 and Ielim2.
Both image arrays contain only the pixels around the previously calculated Hough
lines representing the scissors legs. Ielim1 describes the first (more intensive) leg, Ielim2

the second one. All other cells in the image arrays are 0. Obviously the number of
pixels and the accuracy of the leg representation are strongly depending on the exact-
ness of the calculated Hough lines and the value of et. If they are appropriate the Least
Squares procedure computes a very good approximation for the two line equations.

For a better understanding of the proceeding some images of the intermediate arrays and
the results are shown in the next paragraph.

Results
The previous sections presented the first results of plain Hough transformation (compare
figure 3.4) and the improvements with a split approach (see figure 3.11). Now the ameliora-
tion through a final Least Squares smoothing are depicted. The calculated Hough lines are

(a) Image with both Hough lines (b) Eliminated pixels along yellow
line

(c) Eliminated pixels along red line (d) Image with Least Squares lines

Figure 3.12: Least Squares Procedure

shown in figure 3.12 (a). During the process of elimination (steps three and six of hough3)
the image arrays Ielim1 and Ielim2 are created (compare figure 3.12 (b) and (c)). These pixel
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areas are now used to calculate Least Squares Lines as described in step seven of hough3.
The resulting lines are shown in subimage 3.12 (d). The improvement achieved with the ad-
ditional method is clearly visible although its performance depends on the initial data given
by the Hough Transformation.

Problems
Least Squares offer a great amelioration potential for the computation of the line equations.
Still it has a disadvantage which can cause severe problems in the case of line detection: it is
very sensitive to noise. Figure 3.13 (a) shows Least Squares lines calculated with algorithm
hough2. Although the Hough lines fit the pixel areas perfectly one Least Squares line is
computed completely wrong. The reason for this can be found by looking at the elimination
array for the line (see 3.13). A single bright pixel line in the top row of the image array
causes this problem. The additional noisy pixels are also considered for the minimization of
the perpendicular distances and hence the best fit is the resulting line equation. In our case
this line resulted from a badly cut screen shot of the infrared image.

(a) Least Squares Lines (b) Eliminated pixels

Figure 3.13: Least Squares Sensitivity to Noise

3.3 Interlaced Images and Marginal Cases

In the process of line detection some special cases may appear. The initial data for the algo-
rithm can be corrupted in case of interlaced images. Furthermore some marginal cases are
possible during the line retrieval which interfere a correct computation.

3.3.1 Deinterlacing

Interlacing
Interlacing is a video display technique in which all odd-numbered scan lines are updated
in one sweep of the screen and all even-numbered scan lines in the next. The idea of refresh-
ing alternate lines halves the number of lines to update in one sweep. Additionally it takes
advantage of the human eye’s tendency to average subtle differences in light intensity and
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reduces flickering because for a given update rate the top and bottom of the screen are re-
drawn twice as often as if the scan simply proceeded from top to bottom in a single vertical
sweep.

Interlaced Images
When the scene taken by an interlacing camera moves very fast, the alternate update can
lead to images where the interlacing technique becomes visible for the human eye. The
difference between the generated even and odd lines is too large to be averaged. Figure 3.14
(a) shows a movie frame where the motion of the pair of scissors led to interlaced images.

Deinterlacing Approaches
The easiest way of avoiding interlaced images is to prevent their origin. This can be done by
either using a non-interlacing camera or by allowing only slow motion of the object so that
alternate lines do not differ decidedly.
Images which are corrupted can be deinterlaced by trying one of the following approaches
to achieve smoother line changes.

1. Line Doubling
As all odd and all even image rows fit together two new images can be created by
either doubling every odd line or every even line. So for the odd case lines one and
two of the new image correspond to the first line in the original image. Line three and
four to the third line, line five and six to the fifth one and so on.

2. Interpolation
For this method only the odd rows are taken and the missing rows in the new image
are filled by interpolating all the pixels around the actual one. The value of pixel (x, y)
is calculated as valx,y = 1

6(valx−1,y−1 + valx−1,y + valx−1,y+1 + valx+1,y−1 + valx+1,y +
valx+1,y+1), taking the adjacent values of the row above and below.

Examples of images created with these methods and their effects on the quality of the line
detection are displayed in figure 3.14.

(a) Original Image (b) Line doubling (c) Interpolation

(d) Original Image (e) Line doubling (f) Interpolation

Figure 3.14: Deinterlacing: chosen pixels and resulting lines
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Results
The corruption of interlaced images can be smoothed by the deinterlacing approaches but
the results are not always sufficient to allow a correct line detection. For the further calcula-
tions cameras are taken which do not generate interlacing problems.

3.3.2 Marginal Cases

There are several possible cases in which no (complete) line detection is possible. Hence a
special treatment is needed and some kind of indicating information must be passed on to
avoid further calculations with wrong data.

1. The image contains no feature points or only one feature point.
This can happen when the gray value threshold is set too high so that no points are
taken into account for the calculation. Or the image really contains no or just one point
for example because of occlusion.

2. After the first elimination the resulting image contains no feature points or only one
feature point.
Again this might be a question of threshold or only one line is visible in the original
image.

3. The elimination does not result in adequate data for the Least Squares calculation.
The eliminated pixels are taken to compute the least squares line equations. If no pixels
are eliminated the Least Squares method can not be applied. Reasons for this are a
too high elimination threshold or wrongly calculated Hough lines. And if the image
contains noise which becomes part of the elimination array it can corrupt the resulting
equation (compare Least Squares Problems 3.2.2).

The ideal case for further calculations would be two calculated Least Squares lines giving
an optimum of accuracy. Still the next computations could be executed if at least one line
equation was available for each line. So both Hough equations are needed and additional
Least Squares data would ameliorate the results. In case of less information, one or no lines,
no triangulation is possible and the 3D reconstruction can not be done.
In order to catch all these cases an indicating variable is used to identify the situation and to
decide whether further steps are possible or not.

3.4 Final Data for the next Step

After improving the plain Hough Transformation the two line equations can be calculated
very accurately. Now for the next step, the triangulation, two points for each line are nec-
essary to go on with the proceeding. For unambiguous data a scheme is needed which
identifies line one and respectively line two in both images as the same leg of the scissors.
Otherwise the stereo data would not fit together. Furthermore the marginal cases mentioned
above (3.3.2) need to be treated.

Unambiguous leg identification
The method for leg numbering used in this project has three steps. First the actual position
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of the scissors legs on the detected lines is determined. Which two branches of the line cross
represent the legs of the instrument? After that the upper line on the right side of the point
of intersection is found. Is it the first detected line or the one which was found after the first
elimination? This information suffices to get an idea of the principle structure of the scene
and the legs can then be numbered.

1. Determining the leg positions
For this step buckets are used to accumulate the gray values along each of the four
parts of the line cross starting from the point of intersection. In the example (see figure
3.15 (a)) the buckets for the two right branches contain larger values than the ones for
the left parts.

2. Determining the upper line
Using the line equations the upper line on the right side of the point of intersection can
be found by comparing the slopes of both lines. In figure 3.15 the red Latin numbers
indicate the order in which the lines were detected, hence line II is the upper one on
the right side of the point of intersection.

3. Principal structure of the scene
With the buckets and the upper line number the principal structure of the scene is given
as an arbitrary line cross in which the two branches of the legs and the line detection
order is known. Figure 3.15 (b) displays the information derived above. Using this
knowledge the unambiguous line numbering can now be done.

4. New numbering of the two lines
The new numbering is done clock-wise using the smaller angle between the two scissor
legs. In the example 3.15 (a) the angle is indicated and the new numbering is given
through the blue Arabic numbers. In the example case the new ordering is inverse to
the old one. Of course it could also be possible that this process does not change the
line numbers.

(a) Image with old and new line numbering (b) Derived principal structure of the scene

Figure 3.15: Unambiguous Leg Numbering
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Data which is passed on
Now that the lines are identified the data which shall be handed on to the triangulation com-
putations can be determined. Two points per line are necessary to determine the plane pass-
ing through the camera center and the line. So for both lines l1, l2 the point of intersection
SP and one additional point on each line X1 ∈ l1, X2 ∈ l2 are satisfactory. The unambiguous
line numbering assures that line l1 in one image corresponds to line l1 in another image of
the same scene, hence corresponding plane equations can be calculated. It is important to
notice that the Xi in one image do not correspond to the Xi determined for another image.
The only known point correspondence is given by the point of intersection.
For the point determination the marginal cases must be considered, too. If both Least
Squares lines were successfully calculated the three points are chosen using the Least
Squares equations. In case only the Hough lines could be found, they are used for the
point determination. For any other case the three points cannot be identified and no fur-
ther processing steps are executed.
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Computing extrinsic and intrinsic Parameters for the two Camera Systems

In the process of 3D positioning of the pair of scissors the lines on the images have to be
interpreted to get relationships between pixel data and real data on the one hand and right
and left image data on the other hand. These relationships are expressed through intrinsic
and extrinsic camera calibration data.
First an overview of the theory on projective geometry and calibration is given. Then the
process of retrieving the intrinsic and extrinsic parameters is described both for the stereo
camera system and the RAMP system. Their usage will then follow in the section on trian-
gulation, in the proceeding part (5.3).

4.1 Projection and Calibration Theory

This section shall introduce the reader to projective geometry and the theory behind cam-
era calibration. First the difference between projective and euclidian geometry is discussed.
Then various coordinate systems and transformations between them are presented. The fo-
cus here lies on the camera model used in this project. Hence only the necessary coordinate
systems, transformations and parameters are mentioned. Further information on these sub-
jects can be found in [10].

4.1.1 Euclidian and Projective Geometry

Euclididan vs. Projective Geometry
Euclidian geometry deals with angles and shapes of objects. It is intuitive and familiar but
for projections it is not sufficient. In Euclidian space only rotations and translations are
allowed because a lot of measures must be invariant: length, angles, ratio of length, par-
allelism, incidence and cross ratio. A projection cannot hold all these constraints as length
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4 Projective Geometry and Camera Calibration

and angles are not preserved and parallel lines may intersect. If a larger class of transfor-
mations shall be allowed the invariants must be reduced. Projective geometry is the most
general geometry where only incidence and cross ratio stay invariant. Euclidian geometry
is a subset of it.

2D Homogeneous Coordinates
A point in the Euclidian plane is given by (x, y). For a representation in the projective plane
a third coordinate 1 is added: (X, Y, 1). Scaling is unimportant here, so (kX, kY, kW ) =
(X, Y,W ) for any k 6= 0 which gives equivalence classes of coordinate triples, the so called
homogeneous coordinates. Given an arbitrary triple the original point in the Euclidian plane
can be retrieved by dividing the whole vector by the third coordinate.
Hartley and Zisserman [10] state that the Euclidian space is translated into the projective
space by adding points at infinity. Looking at the homogeneous coordinates the points at
infinity arise through the triples (X,Y, 0) which have no corresponding points in Euclidian
space. Dividing by the last coordinate gives (X/0, Y/0) which is infinite.
Lines can also be written in homogeneous coordinates. A 3D line ax + by + c = 0 is repre-
sented by the vector (a, b, c)T . Again k(a, b, c)T and (a, b, c)T represent the same line for any
k 6= 0. Using this notation a point X lies on a line l if and only if XT l = 0, the intersection
of two lines l, l′ is the point X = l × l′ and the line given through the points X and X’ is
l = X× X’.

Degrees of Freedom
The degrees of freedom specify the number of values which must be provided to specify
a certain object. For a 2D point for example two values are necessary. For a line also two
parameters are needed, the independent ratios a : b and b : c. Hence both objects have two
degrees of freedom.

2D Projective Transformations
Planar projective transformations on homogeneous vectors are represented by a non-
singular 3× 3 matrix H . The transformation�

x′

y′

1

�
= H

�
x
y
1

�
does not change if H is multiplied by an arbitrary non-zero scale factor. In consequence H
is called a homogeneous matrix. For lines the transformation is l′ = H−1T l.
The important specializations of a projective transformation and their properties are listed
in the following:

1. Isometries

H =

�
εcosθ −sinθ tx
εsinθ cosθ ty

0 0 1

�
=
�

R T
0T 1

�
with ε = ±1. Here Euclidian transformations are modeled with three degrees of free-
dom: one for the rotation R and two for the translation T . If ε = −1 then the orientation
of the object is reversed otherwise it is preserved.
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4.1 Projection and Calibration Theory

2. Similarities

H =

�
s cosθ −s sinθ tx
s sinθ s cosθ ty

0 0 1

�
The scalar s represents the isotropic scaling and gives the fourth degree of freedom for
this planar similarity transformation.

3. Affinities

H =

�
a11 a12 tx
a21 a22 ty
0 0 1

�
=
�

A T
0T 1

�
Here objects are no longer shape-preserved but deformed. The resulting affine trans-
formation has six degrees of freedom.

4. Projectivities

H =
�

A tx
vT 1

�
The most general form of a projective transformation has eight degrees of freedom.
Here only the two invariants cross-ratio and incidence are left. With the vector vT in
the third column a point at infinity can now be mapped to a finite point.

4.1.2 Coordinate Systems

In the process of projecting a point in 3D space onto a 2D plane and displaying it as a pixel
image three different coordinate systems are used. Figure 4.1 (a) presents them all together.

Camera Coordinate System
First the point is given in the 3D camera coordinate system (X, Y, Z). Its origin is the camera
center and the three coordinate axes form a right handed system with the Z-axis, also called
the principal axis, pointing to the field of view. The base unit of the coordinate system is
millimeters (mm).

Image Coordinate System
The projection of the 3D point onto the image plane is represented in the 2D image coor-
dinate system (x, y). The directions of the x− and y−axis are the same as in the camera
coordinate system. The origin, the so called principal point C, lies on the intersection of the
principal axis with the image plane. Again the base unit is mm.

Computer Coordinate System
Finally the image plane is represented as a 2D pixel array in the computer coordinate system
(x′, y′). The origin is now the upper left corner of the image and the x′− and y′−axis point
down and right. Therefore a point (r, c) in the computer coordinate system indicates the row
and column of the pixel it describes in the image array. Here the unit is one pixel.

For a complete listing of coordinate systems the so called world coordinate system is miss-
ing. Sometimes the coordinate system of the objects in the world is different from the camera
coordinate system and an extra transformation between them is necessary. Here no addi-
tional world coordinate system is given.
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4 Projective Geometry and Camera Calibration

(a) Three coordinate systems (b) Pinhole projection

Figure 4.1: Pinhole camera geometry

To find the relationships between the lines in the camera images and the scissors in 3D space
several transformations are necessary. They allow to move a point representation through
the different coordinate systems.

4.1.3 Transformation between two Camera Coordinate Systems

To find the pair of scissors in space at least two camera images are needed. In order to use
the stereo data the relative position of the two camera coordinate systems to each other must
be given. Such a transformation is represented by a 3D rotation matrix R and a translation T .
Hence a point X = (X, Y, Z)T in the first camera coordinate system O1 can be transformed
into the second coordinate system O2 by

Xtrans = RX + T

Rotation Matrices and Euler angles
There are different ways of expressing rotations in space. Rotations about the x-, y- and
z-axis in a clockwise direction when looking towards the origin result in three matrices [20].

Rx(α) =

�
1 0 0
0 cosα sinα
0 −sinα cosα

�
Ry(β) =

�
cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

�
Rz(γ) =

�
cosγ sinγ 0
−sinγ cosγ 0

0 0 1

�
According to Euler’s rotation theorem any rotation can be described as a composition of
rotations about three axes. Thus the 3× 3 matrix

R = Rz(γ)Ry(β)Rx(α)
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4.1 Projection and Calibration Theory

with so called Euler angles α, β, γ covers all possible rotations in 3D space.
An efficient method for computing rotation matrices is given by Rodrigues’ rotation formula
[19]. R corresponds to a rotation by an angle θ ∈ R about a fixed axis given by the unit vector
ω = (ωx, ωy, ωz)T ∈ R3.

R = eω̃θ = I + ω̃sinθ + ω̃2(1− cosθ)

with the identity matrix I and the antisymmetric matrix

ω̃ =

�
0 −ωz ωy

ωz 0 ωx

−ωy ωx 0

�
The Matlab Camera Calibration Toolbox uses this formula for the extrinsic rotation parame-
ter (see section 4.2.1).

Quaternions
Finally quaternions shall be introduced as another possibility for the description of rotations
[14], [15]. Quaternions are an example of the class of hypercomplex numbers discovered by
William Rowan Hamilton. They are representable as a sum of real and imaginary parts

H = a · 1 + bi + cj + dk

where i, j, k satisfy the fundamental equation of quaternion algebra

i2 = j2 = k2 = ijk = −1

Quaternions can also be interpreted as a scalar plus a vector:

a = a1 + a2i + a3j + a4k = (a1, a)

where a = (a2, a3, a4). This leads to the expression of a rotation about the unit vector ω by
the angle θ as

R = (s, v) = (cos(
1
2
θ), ωsin(

1
2
θ))

Using quaternions to represent rotations has several advantages over the Euler angle repre-
sentation [15]. Euler angles define a rotation as a composition of three independent rotations
about coordinate axes. This causes an ambiguity of representation, different combinations
are possible for the same 3D rotation. In addition the rotations can be carried out in the base
coordinate system or in the already rotated one. Further, the independence characteristic of
Euler angles breaks down when the second Euler angle becomes 90°, resulting in a loss of
one degree of freedom. This phenomenon is called the gimbal lock. The quaternion repre-
sentation involves only the angle and the vector of rotation hence the mentioned problems
do not occur here.

4.1.4 Transformation between Camera and Image Coordinates

Through the pinhole projection a point in 3D space (X, Y, Z)T is projected onto the image
plane as (fX/Z, fY/Z, f)T . So the x and y coordinates of the point in the image coordinate
system are �

x
y

�
=
�

fX/Z
fY/Z

�
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4 Projective Geometry and Camera Calibration

where f , the so called focal length, is the distance of the image plane to the projection center.
Figure 4.1 emphasizes this mapping.
Using homogeneous coordinates the upper projection can be written as�

fX
fY
Z

�
=

�
f 0

f 0
1 0

��
X
Y
Z
1

�
In compact notation this is x = PX where X is the homogeneous 4-vector in the camera
coordinate system, x is its projection in the image plane and P = diag(f, f, 1)[I|0]. To get the
image plane coordinates (x, y)T from above x has to be homogenized to a 3D vector with last
entry 1. This gives the same result x/Z = (fX/Z, fY/Z, 1)T .

Image Distortion
The assumption above has been that a linear model is an accurate one for the imaging
process. For real (non-pinhole) lenses this assumption will not hold. Improper lens and
camera assembly lead to positional errors, so called distortion. Radial distortion is the most
important error in this case which is caused by imperfect lens shape. To face it, the image
measurements have to be corrected. As the distortion takes place during the initial projection
onto the image plane the correction must be done in that phase of the computation. The ac-
tual projected point is related to the ideal point on the image plane by a radial displacement
which can be modelled as �

xd

yd

�
=
�

x
y

�
(̇1 +

3X
i=1

κir
2i)

with distorted coordinates (xd, yd)T and ideal pinhole projection coordinates (x, y)T . The
radial distortion is expressed through the coefficients κi and r2 = (x − xc)2 + (y − yc)2, the
distance of the point from the radial distortion center (xc, yc)T . In case not only the lens
shape is imperfect the positional error consists of a radial and a tangential error (see Figure
4.2).

Figure 4.2: Radial and tangential distortion

34



4.1 Projection and Calibration Theory

The Matlab Camera Calibration toolbox models the additional tangential deformation as�
xd

yd

�
=
�

xd

yd

�
+ ∆tangential with ∆tangential =

�
κ4(2xy) + κ5(r2 + 2x2)
κ5(2xy) + κ4(r2 + 2y2)

�
4.1.5 Transformation between Image and Computer Coordinates

For the final transformation to computer coordinates several parameters need to be taken
into account. The computation for homogenous vectors is given as�

xpixel

ypixel

1

�
= K

�
xd

yd

1

�
=

�
sx/dx alpha cx

1/dy cy

1

� �
xd

yd

1

�
with the calibration matrix K. dx and dy express the distance in millimeters between two
adjacent pixels in x and y direction. sx is the scale factor and C = (cx, cy)T is the principal
point. alpha is called a skew parameter which is zero in most cases. alpha 6= 0 would only
occur if the x− and y−axes in the image were not perpendicular.
So the upper matrix-vector-multiplication can be interpreted as a conversion of millimeter
values to pixel values (using dx and dy), a scaling in x−direction according to the factor sx
and a translation of the resulting point so that the new coordinate system has its origin in the
upper left corner of the image. To achieve this the principal point is added to the negative
values of the converted and scaled distorted point.
For a correct representation in the x′ − y′−coordinate system the two vector entries must be
switched and multiplied by−1 as the axes of the image coordinate system and the computer
coordinate system are vice versa and have opposite directions (see figure 4.1 (a)).�

x′

y′

�
=
� −ypixel

−xpixel

�
4.1.6 Parameter Estimation and Reprojection Error

Parameter Estimation
Throughout this section a number of projective transformations are used. The problem of
parameter estimation refers to the computation of theses transformations, for example the
matrix which maps points in 3D space onto the image plane.
For a general approach a set of point correspondences xi ↔ x’i between two images shall
be considered. The problem is to compute a 3× 3 matrix H , a 2D projective transformation,
which satisfies Hxi = x’i for each i (see also [10]). H has 9 entries but is defined only up to
scale. Thus the total number of degrees of freedom here is 8. In order to fully specify H at
least four point correspondences are necessary as each of them has two degrees of freedom,
corresponding to the x− and y−coordinates. So for four points an exact solution for H is
possible.
In general only approximate solutions can be computed as the points are measured with
noise. Hence the best possible transformation shall be found, a matrix which minimizes
some cost function. These functions either try to minimize an algebraic error or a geometrical
distance.
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4 Projective Geometry and Camera Calibration

Direct Linear Transformation Algorithm (DLT)
The DLT is a very simple algorithm for determining H and is given as a basis for further
improvements.
The equation Hxi = x’i is expressed as the vector cross product x’i × Hxi = 0. Writing
x’i = (x′i, y

′
i, w

′
i)

T and the j-th row of H as hjT , the cross product is given as

x’i ×Hxi =

�
y′ih

3T xi − w′ih
2T xi

w′ih
1T xi − x′ih

3T xi

x′ih
2T xi − y′ih

1T xi

�
With hjT xi = xT

i hj this gives a set of three equations�
0T −w′ix

T
i y′ix

T
i

w′ix
T
i 0T −x′ix

T
i

−y′ix
T
i x′ix

T
i 0T

��
h1

h2

h3

�
= 0

Only two of the three equations are independent, hence the set is reduced to�
0T −w′ix

T
i y′ix

T
i

w′ix
T
i 0T −x′ix

T
i

�� h1

h2

h3

�
= 0

For i point correspondences this are i equations of the form Aih = 0 with Ai 2× 9 matrices.
In general the system is overdetermined and more than four point correspondences are
given. In addition the solution h = 0 is of no interest and must be avoided. So a minimal
solution to ||Ah|| is searched with ||h|| = 1 as a second constraint. As shown in section 3.2.2
the unit eigenvector of AT A corresponding to the smallest eigenvalue gives the solution.

Cost functions
A number of cost functions can be used to be minimized in order to compute H for an
overdetermined system. Some examples are given here. The used notation is x for the mea-
sured coordinates, x̂ the estimated ones and x̄ the true values of the points.

1. Algebraic distance
The DLT algorithm minimizes ||Ah||. ε = Ah is called the residual vector. Each point
correspondence xi ↔ x’i contributes a partial error vector εi to ε. The norm of the
algebraic error vector εi is called the algebraic distance:

dalg(x’i,Hxi)2 = ||εi||2 =

��������������� 0T −w′ix
T
i y′ix

T
i

w′ix
T
i 0T −x′ix

T
i

�� h1

h2

h3

���������������2
The algebraic error for the complete set isX

i

dalg(x’i,Hxi)2 =
X

i

||εi||2 = ||ε||2

2. Geometric distance
The disadvantage of the algebraic distance is that it has no geometrical or statistical
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4.2 Calibration Data of the Stereo System

meaning. The geometric distance minimizes the difference between the measured and
the estimated image coordinates. Now two error considerations are possible. Either
only the measurements of one image are considered to be noisy. Then the transfer
error is X

i

d(x’i,H x̄i)2

Or measurement errors occur in both images. Hence they should also be minimized in
both images. This can be done using a forward (H) and backward (H−1) transforma-
tion and sum the geometric errors:X

i

d(xi,H
−1x’i)2 + d(x’i,Hxi)2

3. Reprojection error
The two previous functions tried to minimize an error function. For the reprojection
error not only Ĥ is estimated but in addition a correction for each point correspondence
is sought to get perfectly matching points x̂i and x̂′i which minimize the total error
function X

i

d(xi, x̂i)2 + d(x′i, x̂′i)
2

subject to x̂′i = Ĥ x̂i for all i.

The difference between symmetric error and reprojection error is displayed in figure 4.3. In
the upper case of symmetric error the points x’ and Hx do not correspond perfectly but for
the reprojection error the newly estimated points x̂ and x̂′ do fit consummately.

Figure 4.3: Comparison of symmetric error (upper) and reprojection error (lower) for esti-
mation

The Matlab Camera Calibration Toolbox minimizes the reprojection error for the compu-
tation of the projection of 3D world points onto the image plane.

4.2 Calibration Data of the Stereo System

For this project two different systems were used for image acquisition. For the calibration
of the stereo camera system separate non-infrared image series are necessary which are
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4 Projective Geometry and Camera Calibration

processed by the Matlab Camera Calibration Toolbox to compute the intrinsic and extrin-
sic parameters of the system.

4.2.1 Matlab Camera Calibration Toolbox

Camera Calibration
The Matlab Camera Calibration Toolbox allows camera calibration using images of a chess-
board (see figure 4.4). The toolbox offers Matlab functions to load the images, to extract the
grid corners from each image and to do the calibration with the collected data.

Figure 4.4: Chessboard for Calibration: + extracted image points, ◦ reprojected grid points

To extract the grid corners the user has to click on the four extreme corners of the chess-
board. The inner corners are then computed automatically. If the computation does not fit
the real corners the image is distorted. This problem can be handled by giving an initial
guess for distortion which will then be used by the system to ameliorate the data.
After the corner detection has been done for all images the calibration can be started. It is
done in two steps: first initialization and then non-linear optimization. The initialization
computes a closed-form solution for the calibration parameters not including any lens dis-
tortion. The non-linear optimization step minimizes the total reprojection error over all the
calibration parameters (see theory on estimation and reprojection error 4.1.6).
This process results in the intrinsic parameters of the camera: focal length fc(1), fc(2), prin-
cipal point cc(1), cc(2), skew coefficient alphac and distortion coefficients kc(1)..kc(5). Hence
all the information is available for the transformation of a 3D point in space to its correspond-
ing pixel in the image. The back transformation can also be computed except for the scaling
factor. The correspondence between these parameters and the calibration theory notation is
shown in table 4.1.
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4.3 Calibration Data of the RAMP System

Toolbox notation Theory notation (4.1.4)
fc(1) fṡx

dx

fc(2) f
dy

cc(1) cx
cc(2) cy

alphac 0
kc(1), kc(2), kc(5) radial distortion: κ1, κ2, κ3

kc(3), kc(4) tangential distortion: κ4, κ5

Table 4.1: Correspondences in notation

Stereo Calibration
The toolbox also offers a function for stereo calibration. It takes the intrinsic data of the
left and right camera and starts by estimating the extrinsic parameters R and T which char-
acterize the relative location of the right camera with respect to the left. Given a point in
space X = (X, Y, Z)T R and T are defined such that the coordinate vectors of X in the left
and right coordinate system XL and XR are related to each other through the transformation
XR = R XL + T .
These initial values are then optimized together with the extrinsic parameters of both cam-
eras as to minimize the reprojection error on both cameras for all calibration grid locations.
The resulting data consists of two 3D vectors T and om. The rotation matrix is R =
rodrigues(om) (compare Rodrigues’ rotation formula 4.1.3).

4.2.2 Calibration Results

The results of this work step are the extrinsic and intrinsic camera parameters. They allow to
completely describe the stereo scene. The relative position of the two cameras , and therefore
of the two given images, is expressed by the transformation (R, T ) consisting of rotation and
translation. Figure 4.5 displays this scene. Using (R, T ) the left camera coordinate frame
can be transformed into the right one. The three colored planes indicate the positions of the
chessboard used for camera calibration. The intrinsic parameters enable the computation of
the 3D metric coordinates of a pixel point on the image. So a pixel point (xpixel, ypixel)T is
transformed to metric coordinates (image coordinate system) as (xd, yd)T and the distortion
is removed to give (x, y)T using the equations in section 4.1.4 and 4.1.5. (x, y)T is on the
image plane in camera coordinates therefore it can be expanded to a 3D-vector with third
coordinate f , the focal length, the distance of the image plane to the camera center.
With this information the next task of triangulation can be faced.

4.3 Calibration Data of the RAMP System

4.3.1 Intrinsic Parameters

For the RAMP System we used the existing calibration data. The intrinsic parameters for
the calibration matrix and the distortion coefficients are known (see table 4.1). The notation
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Figure 4.5: Visualization of the extrinsic parameters (plotted by Matlab Camera Calibration
Toolbox)

matches the one used in the section on calibration theory (4.1.4). The only difference to the
right column of the correspondence table is that in contrast to the Calibration Toolbox the
RAMP System does only consider radial distortion κ1, κ2, κ3, the tangential one is not taken
into account.

4.3.2 Extrinsic Parameters

The RAMP System has only one camera whose relative position to a Zero-Coordinate-
System located in the ring of fiducials is computed in real time constantly while using
the system. The transformation from the actual camera coordinate system to the Zero-
Coordinate-System is displayed as rotation and translation in the given images (see 4.6) and
also sent to the RAMP client. To get a stereo system two images at different positions of the
camera are taken, while the position of the scissors is fixed relative to the world coordinate
system. The relative position of the two camera images to each other can be calculated using
the computed transformations with respect to the Zero-Coordinate-System. If R1 and T1 are
the transformation data for the first scene shot and R2 and T2 for the second one then the
transformation of a point X1 from the first camera coordinate system into the second can be
expressed as

X2 = R2(̇R−1
1 (̇X1 − T1)) + T2 = R2(̇RT

1 (̇X1 − T1)) + T2
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Figure 4.6: Image from the RAMP System with transformation data





5 Line Triangulation

Calculation of the 3D Line Position from Image and Calibration Data

This chapters covers the process of determining the actual 3D position of the pair of scis-
sors starting from 3D points on the stereo image planes. The set of points of one coordinate
system will be moved into the second frame according to the transformation encoded in the
extrinsic parameters. Then plane equations are determined for each line on each image. The
corresponding planes are then intersected to give the equation of the 3D lines. Finally the
intersection of the two resulting 3D lines is calculated to serve as a criterion for quality and
accuracy of the calculation.
Again the first section starts with a theoretical introduction, then the implemented approach
is described in detail. The chapter finishes with an overview on the triangulation results.

5.1 Projective Geometry in 3D

Section 4.1.1 already introduced the basics of planar projective geometry. Now these ideas
are expanded to the 3D space.

3D Homogeneous Coordinates
A point in space (X, Y, Z) is represented in homogeneous coordinates - similar to the 2D
case - by the 4-vector (X1, X2, X3, X4)T with X4 6= 0. As in the 2D case the inhomogeneous
coordinates can be retrieved by dividing by the last coordinate:

X =
X1

X4
, Y =

X2

X4
, Z =

X3

X4

Again the points at infinity are given by the 4-vectors with last coordinate zero.
In 2D points and lines are dual, they have analogous representations. In 3D this analogy
is given for points and planes. A plane π : π1X + π2Y + π3Z + π4 = 0 can be written in
homogeneous coordinates as π = (π1, π2, π3, π4)T . Hence πT X = 0 if X lies on the plane.
Both planes and points in 3D have three degrees of freedom.

3D Projective Transformations
Points in space are transformed similar to the 2D case as X′ = HX and for planes it follows
π′ = H−1T π.
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5 Line Triangulation

Line representation
Lines in 3D can be represented by two points defining the line or by one point on the line
and an orientation vector. Another point-independent representation of lines is given by the
Plücker coordinates. It is described in section 5.2.4.

5.2 Triangulation Theory

Stereo triangulation is the process of reconstructing a 3D scene given their left and right im-
age projections. The most common way is to use point correspondences for the calculation.
But in this project the only correspondence known in the stereo images is the point of inter-
section of the two legs. This single pair does not suffice for a point triangulation. Therefore
a different approach for reconstruction is taken: line triangulation.

5.2.1 Line triangulation

If a line is projected to lines in two 2D views l, l′ the original line in 3D-space can be recon-
structed by back-projecting l and l′ to give two planes and intersecting the planes as figure
5.1 shows. Each line in the two images is represented by two points. This is necessary as the

Figure 5.1: Line triangulation

transformation between the pixel computer coordinate system and the camera coordinate
system is given for points. So in order to get the line representations in camera coordinates
these points are transformed according to the equations in section 4.1.4 and 4.1.5.

5.2.2 Plane intersection

After that these points are used to determine the plane equations:

n1x + n2y + n3z = d

nT · x = d

The normal vector to the plane n is given through the cross product of two vectors. With
X1, X2 in the image and C the camera center the normal vector is n =

−−→
CX1 ×−−→CX2. The right
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5.2 Triangulation Theory

side can be determined by inserting a point of the plane X1 in the equation, d = n · X1.
To get the 3D line equation the planes of corresponding lines in the left and right images are
intersected. This leads to the following system of equations:�

nleft

nright

�� x
y
z

�
=
�

dleft

dright

�
The solution to this underdetermined system is the searched line equation.

5.2.3 Line intersection

As a pair of scissors shall be reconstructed in 3D space there are two line equations which
can be calculated in the way described above. To have a criterion for the accuracy of the com-
putation these two lines can be intersected to approximate the original point of intersection
of the scissors legs. Again an equation system needs to be solved.�

z1 z2

�� λ1

−λ2

�
= P2 − P1

with X = Pi + λizi , i = 1, 2 the two line equations.

5.2.4 Plücker line representation

In the paragraph above a line is represented by l = P+λz where P is an arbitrary point on the
line and z is its orientation in space. This kind of representation is very intuitive but has the
disadvantage of being dependant on the choice of P out of an infinite set of possible points
which makes the representation arbitrary. With Plücker matrices a line can be represented
independently without any arbitrary factor.

Plücker Matrices
The Plücker matrix for a 3D line defined by two points with homogeneous coordinates A =
(a1, a2, a3, 1)T , B = (b1, b2, b3, 1)T is the skew-symmetric matrix

L = ABT − BAT =

=

�
a1b1 a1b2 a1b3 a1

a2b1 a2b2 a2b3 a2

a3b1 a3b2 a3b3 a3

b1 b2 b3 1

�
−

�
b1a1 b1a2 b1a3 b1

b2a1 b2a2 b2a3 b2

b3a1 b3a2 b3a3 b3

a1 a2 a3 1

�
=

=

�
0 a1b2 − b1a2 a1b3 − b1a3 a1 − b1

0 a2b3 − b2a3 a2 − b2

0 a3 − b3

. .. 0

�
The diagonal elements of L are zero, the last column (and respectively the last row) contain
the line orientation and the other three elements above and below the diagonal represent
the cross product A×B = (L2,3,−L1,3, L1,2, 1)T . Hence the Plücker matrix has 6 parameters
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which would imply five degrees of freedom. But the determinant det(L) = 0 and therefore
the degrees of freedom are reduced to four which is the required number for a line in 3D
space. Further properties of L are rank(L) = 2, it is independent of the choice of the line
points A and B and a transformation H on L results in L′ = HLHT .
A line can also be defined by the intersection of two planes represented by the homogeneous
4-vectors P and Q which gives the so called dual Plücker matrix

L∗ = PQT −QPT

Its properties are similar to the ones of L and the correspondence between L and its dual L∗
is given through the ratios l12 : l13 : l14 : l23 : l42 : l34 = l∗34 : l∗42 : l∗23 : l∗14 : l∗13 : l∗12.

Plücker Coordinates
The Plücker line coordinates are the six non-zero elements of the Plücker matrix L =
[l12, l13, l14, l23, l42, l34] which hold the equation l12l34 + l13l42 + l14l23 = 0. A 6-vector only
corresponds to a line in space if this equation is valid.

Join and Incidence
With the Plücker representation relations between lines, planes and points can be expressed
very elegantly:
A plane through a point X and a line L is defined by π = L∗X.
A point X lies on a line L if and only if L∗X = 0. The intersection of a plane and a line is the
point X = Lπ. And two lines which are the joints of the points A, B and A’, B’ are coplanar if
and only if det[A, B, A’, B’] = 0. This determinant expands as

det[A, B, A’, B’] = l12l
′
34 + l13l

′
42 + l14l

′
23 + l′12l34 + l′13l42 + l′14l23 = (L|L′)

In case the two lines are the intersections of the planes P, Q and P’, Q’ then the lines intersect
if and only if det[P, Q, P’, Q’] = 0 and det[P, Q, P’, Q’] = (L|L′).

5.2.5 Accuracy criteria

Now that the principal procedure of 3D reconstruction is given, criteria are needed to mea-
sure the accuracy of the calculation.
The four planes which are intersected to find the 3D position of the scissors result in two 3D
line equations. In general these two lines will not have a common point of intersection. The
reason lies in computation and measurement errors throughout the whole process from 2D
line detection to 3D line intersection. Hence only a least squares solution SPlinetria of the 3D
point of intersection can be computed. Regarding the 2D images the point of intersection
gives the only point correspondence in the left and right image of the scene. So these points
sp and sp’ can be used for a point triangulation resulting in another 3D point of intersection
SPpointtria. Again the solution will be a least squares one because of the problem of errors.
In the ideal case a 3D point X and its 2D representations x and x’ form a plane in space go-
ing through the base line of the stereo system C − C’ (compare figure 5.2). For the scissors
stereo system the computations and measurements would therefore be exact if the rays from
the camera centers through the 2D points of intersection

−−→
Csp and

−−→
Csp’ were coplanar and

had a common point of intersection, the ideal SP3D. The closer the least squares solutions
SPpointtria, SPlinetria and the rays

−−→
Csp and

−−→
Csp’ are, the better is the computed approxima-

tion for the real scene.
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Figure 5.2: Epipolar plane

5.3 Practical Approach

For the practical approach of the triangulation the two different systems which were used
for image acquisition must be taken into account. They have influence on the process of
calculating the metric representation of the pixel points. After the metric data is determined
the plane and line calculations can be done as described above.

5.3.1 Computing the camera coordinates of image pixel points

The Matlab Camera Calibration Toolbox offers a function for the transformation of image
coordinates to camera coordinates: normalize(X, fc, cc, kc, alphac).
The pixel point X is transformed into metric camera coordinates by taking the inverse
equations of section 4.1.5. First the distorted metric point Xd is calculated using the focal
length fc and the principal point cc. Then the skew is undone (alphac). Finally the radial
and tangential distortion is removed with the given coefficients kc.
For the RAMP System this transformation process was not yet specified
as a function and therefore needed to be implemented. The procedure
ramp normalize(X, extrinsic Ramp Data) runs through the same steps as its Toolbox
equivalent. It calculates the metric coordinates using the resolution parameters dx, dy and
the scale factor sx. As the RAMP System does not consider skew this step is skipped. And
the final undistortion process does only take into account radial distortion.

5.3.2 Plane Equations and Intersections

To get the plane equations the two lines in each image are represented by three points the
point of intersection SPpixel and an arbitrary point on each line X1pixel, X2pixel. These points
are then transformed into the camera coordinate frame resulting in the 3D-vectors SP, X1,
X2. Now four plane equations can be determined:

p1left : n1left · X = d1left
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p2left : n2left · X = d2left

p1right : n1right · X = d1right

p2right : n2right · X = d2right

with
nileft =

−−−−−−−→
CleftSPleft ×

−−−−−−−−→
SPleftXileft

niright =
−−−−−−−−−→
CrightSPright ×

−−−−−−−−−→
SPrightXiright

and i = 1, 2 for line one and line two in the left and right image plane.
The intersection of the planes from the left and right image of each leg give two 3D line
equations, l1 and l2 which satisfy the following equation systems:

l1 :
�

n1left

n1right

�
·

�
x
y
z

�
=
�

d1left

d1right

�
l2 :

�
n2left

n2right

�
·

�
x
y
z

�
=
�

d2left

d2right

�
The right side of the equation system is dileft = nileft · SPleft and diright = niright ·
SPright , for i = 1, 2.
l1 and l2 are intersected to determine the 3D coordinate vector SP3D, the original point in
space which is projected onto the image planes as SPleft and SPright. The equation system is
given in section 5.2.3.

5.3.3 Verification and Accuracy

For the verification of the calculations the ideas of section 5.2.5 are used. The Matlab Cam-
era Calibration Toolbox offers a function for point triangulation [SP3Dleft, SP3Dright] =
stereo triangulation(SPleft, SPright, intrinsic and extrinsic calibration parameters). The
resulting 3D points represent the point of intersection in space in the left and right camera
frame. A comparison with the point computed by plane and line intersection allows to eval-
uate the quality of the data and the result. For the RAMP System a similar function was
implemented to provide the same possibilities for evaluation.
In addition the resulting points were visualized to give an idea of the complete 3D stereo
scene, the ratios of distances between the cameras and the scissors. Exemplary images are
shown in the following section.

5.4 Triangulation Results

The results for triangulation express the problem of accuracy already mentioned in section
5.2.5 and 5.3.3. The general error in measurements leads to inexact line equations and cali-
bration parameters. Hence a solution for the 3D reconstruction can only be approximated.
The sensitivity of the result to errors is visible in figure 5.3. Here two example sets are shown.
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(a) Least Squares Lines (b) Least Squares Lines

(c) Triangulation (d) Triangulation

Figure 5.3: Bad Triangulation Results
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Each pair displays the calculated Least Squares Lines (a),(b) for one of the stereo images and
the 3D scene computed via triangulation (c),(d). In the first case (a) the pair of scissors is
hardly visible in the infrared image. Thus the line equations are very imprecise approxima-
tions of the actual legs and the computed 3D reconstruction (c) can represent the real scene
only roughly. In contrast the detected lines in image (b) meet the scissors quite accurately.
Still the scene reconstruction (d) is insufficient. Reasons for this are the unequal illumina-
tion for this image series and an inaccurate camera calibration. Therefore the triangulation
results can vary strongly.

(a) Least Squares Lines (b) Triangulation

Figure 5.4: Good Triangulation Results

To verify the bad light conditions and the calibration exactness as cause for the errors
another image series was generated. Here the focus lay on better calibration data, images
where the chessboard was clearly visible. In addition the scissors were positioned closer to
the camera to get larger views of the instrument. That way more pixels in the infrared images
correspond to the legs and more information is available for an accurate line detection. The
new series resulted in better 3D scene reconstructions for all tested images. An example is
given in figure 5.4.

Altogether the various tests revealed several criteria for a good scene reconstruction. Good
line visibility and accurate calibration data are essential for a satisfying triangulation result.
Hence the scene illumination and the size of the scissors in the infrared images must be
sufficient. Furthermore the position of the stereo cameras with respect to each other can
influence the accuracy of the result. A rectangular viewing angle would be optimal but this
implies a restricted tracking area [5]. For the case of scissors tracking in an operating room
this does not cause any problems as here the desired working volume is rather small.
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Tracking the Lines in a Series of Images

This chapter gives an overview on possible methods for optical tracking. ‘Tracking’ can
express the process of object detection in single images as well as its tracing through a series
of images. In addition a distinction can be drawn whether the object shall be tracked in 2D -
hence on the image planes - or in 3D space.
During our project we did only implement the detection of an object in single images, in 2D.
The following sections give an idea of what can be used for an efficient tracking in single
images as well as in sequences, considering the 2D and the 3D case. First a brief introduc-
tion on 2D visual tracking is given. General questions are presented and the suitability for
the tracking of scissors is discussed. After that the problem of noise is considered and the
Kalman Filter will be introduced as a robust tool which is extensively used for 2D and 3D
tracking in Computer Graphics [4].

6.1 Ideas for 2D Visual Tracking

Visual tracking can be described as the following problem: Use a previously identified target
in an image with an initial configuration to estimate the state of the target in a sequence of
subsequent images [9].
Now given this problem some questions should be considered in advance in order to gather
more information on the situation and thus achieve good tracking results.

6.1.1 General questions

How can the target be identified?
For the tracking process it is helpful to know how many targets shall be tracked and how
they can be distinguished. Possible properties could be the color, appearance or shape of the
object(s). Obviously there is no unique global answer for the choice on these properties but
often good approximations are possible.
In our case of scissors tracking the identification of the target is handled in the process of
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image generation. Through the infrared filters and the retro-reflective foil only the legs of
the scissors are (clearly) visible in the resulting images. Hence the color and the shape of
the object allow its identification. We know that the legs are represented by line segments
and that these areas of interest have decidedly larger gray values than the rest. In addition
the angle between the legs could also hold as a constraint. When the instrument is in usage
only a restricted range of angles is possible. This information is used in section 3.4 to find
an unambiguous numbering of the legs. Finally the coplanarity of the two lines is a useful
property which we use as an accuracy criterion (see section 5.2.5).

What are the viewing conditions?
Secondly details on changes in object pose, lighting or camera position can be useful for
the design of the tracking system. Previously given information can be considered in the
tracking process and allow to reach better state estimation. On the other hand the viewing
conditions can influence the quality of the results. Hence the lighting and the camera posi-
tion could be varied in such a way to optimize the overall tracking conditions.
The influence of lighting and geometrical configuration of the tracking setup can also be
seen in this project. Bad illumination causes problems in the line detection process (see 3.1.3
and 5.4) and for the stereo triangulation the position of the cameras with respect to the scis-
sors is of great importance to the quality of the reconstruction result. When the cameras are
close together compared to the distance to the scissors, the planes which are intersected for
triangulation are nearly parallel. This results in poor positional accuracy which is even ag-
gravated by measurement uncertainty. Therefore for an optimal geometrical configuration
the cameras should be far away from each other and have a nearly perpendicular view to
the medical instrument [5].

6.1.2 Different approaches in Tracking

This section gives a short overview on several methods for 2D object tracking. The principle
ideas are presented and the suitability for the case of scissors tracking is discussed.

Blob Tracking
Blob tracking tries to optimize the pixel selection based on some properties, for example in-
tensity, color, texture or motion. It could also be referred to as segmentation-based tracking.
The basic approach is to identify a segmentation function σ and an initial region of interest
R0 in the first image I0. Then for every subsequent image the new region of interest Ri is
computed by placing Ri−1 in the new image Ii and applying Ri = σ(Ri−1) or by directly
computing the segmentation function for the whole image Ri = σ(Ii).
We use some kind of blob tracking for the initial line detection process in section 3.1.3. The
gray value threshold gvt is the segmentation function σ. The region of interest in every im-
age is given by all the pixels with gray values ≥ gvt. The line equation retrieval is done via
Hough transformation and Least Squares is used for optimization. As this segmentation-
based tracking is too time consuming for application in image series it should only be used
to identify the initial region of interest. For tracking in subsequent images other methods are
more adequate.

Template-Based Region Tracking
When template-based region tracking is used, the direct appearance of the target is matched
from image to image, pixel by pixel. Again an initial region of interest R0 with location c0
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in the first image I0 is used. For the image sequence some variation or correlation is used to
determine ui with the best match for the template Ri−1 in Ii. The new template Ri is sampled
around ci in the actual image Ii.
This kind of tracking assumes a roughly constant appearance of the target from image to
image. For small motions of the pair of scissors and a small range of variation for the angle
between the legs these conditions could be met. The template could then consist of two line
segments or two infinite intersecting lines. In case the leg angle was nearly constant one
could even reduce the template to only the symmetry line of the two legs.

Snake or Spline-based Tracking
Parametrized snakes or spline-curves are the basis of mathematical curve description in most
computer graphic applications. A spline curve in the parameter s consists of two curves,
x(s), y(s), so called splines. Splines are piece-wise polynomial functions built of several
spline segments (spans). Simple curves can be described with very few spans and for more
complex curves the degree of the underlying polynoms can be increased [6].
Snake or spline tracking processes as follows: An initial contour C0 is identified in the first
image I0. For every subsequent image in the series the contour is traversed along a set of
discrete points s1, s2, ...sn. At each sj an edge is searched orthogonal to the contour. The nor-
mal distance to the contour is stored: dj . Using the information (s1, d1), (s2, d2), ..., (sn, dn)
the new contour Ci can be estimated.
Snakes or splines are not necessary for the case of scissors tracking as they are far too com-
plex structures. For the scissors description only two lines are needed. Still the concept of
tracking can be applied in our case. The principal configuration could be as shown in figure
6.1. In order to determine dj at each point sj a template vector of gray values, representing

Figure 6.1: Configuration for line tracking

the profile of the line, can be moved along the line normals until an optimum of confor-
mance with the image data is found. The template vector can be calculated from the first
image in the series. For a template T and an image I the point of maximum conformance can
be determined by minimizing the mathematical correlation (correlation matching):Z δ

x=0
I(x− x′)T (x)dx with 0 ≤ x ≤ δ
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6.2 Stochastic Tracking: Considering Noise

Tracking an object requires the estimation of the object pose using its current position and
measurements. No matter which sensors are used - mechanical, optical, acoustical or mag-
netic - the measurement data will be corrupted with noise which is mostly statistic in nature.
Hence the problem of pose estimation is a stochastic one.
The Kalman Filter is one of the most-used and well-known mathematical tools for stochastic
pose estimation [5]. It shall therefore be presented here in a brief way. For the understanding
of the Kalman concepts some basic knowledge in stochastics is necessary. An introduction
on this subject and some more details on the derivation of the formulas can be found in [4].

6.2.1 Kalman Filter

Essentially the Kalman Filter is a set of mathematical equations implementing prediction
and correction steps. It is optimal in the sense that it minimizes the estimated error covari-
ance when some presumed conditions are met. Because of its simplicity and robustness
the Kalman Filter is subject of extensive research and application, for example in Computer
Graphics. The filter even works well if the conditions necessary for optimal estimation are
not met.

Estimation Process
The state x ∈ Rn of a discrete time-controlled process shall be estimated. The process model
is given by the linear stochastic difference equation

xk = Axk−1 + Buk + wk−1

and the measurement model is
zk = Hxk + vk

Hence the next process state xk is related to the previous state xk−1 by an n × n matrix A.
uk is an optional control input related to xk by the n × l matrix B. The m × n matrix H re-
lates the state xk to the measurement zk. wk and vk represent the process and measurement
noise. They are assumed to be independent and normally distributed: p(w) ∼ N (0, Q) and
p(v) ∼ N (0, R) with process and measurement covariances Q and R.
For the estimation a priori and a posteriori state estimates x̂−k and x̂k are defined. x̂−k is es-
timated with information given prior to step k and x̂k is the estimate at step k given mea-
surements zk. Now a priori and a posteriori estimate errors and covariances can be defined
as

estimate errors: e−k = xk − x̂−k ek = xk − x̂k

estimate covariances: P−
k = E[e−k e−T

k ] Pk = E[eke
T
k ]

with E[e] the expected value of e.

Discrete Kalman Filter Algorithm
The Kalman Filter algorithm estimates a process by using a form of feedback control. The
process state at some time is estimated and then a feedback in form of measurements is
obtained. This results in the ”prediction”and ”correction”cycle shown in figure 6.2. In the
time update step the current state estimate is used to obtain the a priori state estimate for the
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Figure 6.2: Discrete Kalman Filter Cycle

next process step. In addition the a priori estimate error covariance is updated.
Time update equations

x̂−k = Ax̂k−1 + Buk

P−
k = APk−1A

T + Q

The measurement update equations are responsible for the feedback. New measurements
are used to obtain an improved a posteriori estimate.
Measurement update equations

Kk = P−
k HT (HP−

k HT + R)−1

x̂k = x̂−k + Kk(zk −Hx̂−k )
Pk = (1−KkH)P−

k

First the so called Kalman gain Kk is computed. This n×m matrix minimizes the a posteriori
error covariance equation Pk = E[eke

T
k ]. Then an a posteriori state estimate x̂k is computed as

a linear combination of the a priori estimate x̂−k and a weighted difference between the mea-
surement zk and a measurement prediction Hx̂−k . This difference is called the innovation or
the residual. It reflects the discrepancy between the predicted and the actual measurement.
Finally the error covariance is updated using the Kalman gain and the a priori estimate error
covariance P−

k .

Extended Kalman Filter
The discrete Kalman Filter algorithm presented above works on linear stochastic difference
equations for the process state and the measurements. In many situations these relationships
might be non-linear. Here the so called Extended-Kalman-Filter (EKF), a Kalman filter which
linearizes about the current mean and covariance, can be applied.
The process and measurement relations are expressed through non-linear functions: xk =
f(xk−1, uk, wk−1) and zk = h(xk, vk). The estimation is linearized using partial derivatives
of the process and measurement functions f and h.

6.2.2 Possible Application for this Project

In the current implementation Hough Transformation combined with a least squares method
is used to detect the lines in the infrared images. This approach is suitable for the detection
in single images but for the tracking over sequences of images it is too time-consuming (see
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section 7.2.2). Hence the current line detection algorithm could be used for the initial com-
putation of the line equations and for the further tracking of the scissors other approaches
should be sought. For the case of stochastic state estimation the Kalman Filter was presented
as a very robust and often-used tool. The principal ideas and formulas were presented in the
previous section. The basic formulas of the filter are the process model and the measurement
model. These models must be determined: necessary parameters must be included and ad-
equate representations should be chosen which are favorable for the computation.
For the representation of the lines several approaches are described in section 5.2. Plücker
coordinates for example provide an independent line representation without any arbitrary
factors. For rotations in space different representations are presented in this thesis, too (see
4.1.3). Here quaternions are favorable because of their advantages compared to Euler angles
and thus often used, for example in [13].
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Overall Results and Possibilities for Optimization and further Research

The last chapter shall resume the results of the different steps in the project: which meth-
ods were successful, what we could achieve and where there is room for optimization. Ad-
ditionally, we present some statistics on time and parameter choice for the implemented
algorithms.

7.1 Overall Results

For this project the process of tracking scissors was divided in five major steps. Each of
them is presented in a single chapter of this thesis. Here every part shall be summed up
briefly to give an idea of the results, the problems which were met and the possibilities for
optimization and further research.

7.1.1 Image Generation

Two systems were used for image generation, a stereo camera system and the RAMP system.
Both created acceptable images for the further processing steps. The acquisition and storage
of the images of the stereo camera system was optimized by using a stereo image acquisition
software (2.1.3). Thus a larger data set of image pairs was available for testing and validat-
ing the implemented algorithms. Still the setup can be improved as for the illumination of
the scene only conventional heating lamps were given. Infrared flash lights would provide
a more evenly illumination and allow the generation of images with better quality.
The RAMP system uses such infrared flashes. Here the quality of the images is optimal but
the original sense of usage of this system is a different one (2.2). It has only one infrared
camera which is used for optical tracking. Therefore stereo infrared image pairs had to be
created by moving the head-mounted display of the system around the pair of scissors and
taking images at different positions. Because of the cumbersome image acquisition RAMP is
rather unsuitable for our case.
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Overall the part of image generation could be optimized by ameliorating the scene illumina-
tion of the stereo system. In addition the position of the cameras in the setup influences the
quality of the triangulation results (see 5.4 and [5]) and could motivate further tests.

7.1.2 Line Detection

The basis for line detection is provided by the Hough Transformation algorithm (3.1.1). Sev-
eral changes and additions were implemented in order to overcome some practical problems
(3.1.2) and to optimize the results.
A gray value threshold was introduced to choose the pixels which shall be considered for
the Hough Transformation and to reduce the time consumption of the calculation. Further-
more a weighted accumulation of the image pixels is used so that brighter pixels have more
influence on the resulting Hough line than dark ones (3.1.3). Finally a Least Squares method
is applied to optimize the line equation (3.2).
The line detection process gives quite nice and exact line equations for the legs of the scissors.
Still, for good results the parameters for the detection function have to be chosen manually.
The optimal gray value threshold is strongly varying because of unequal scene illumination
(see 3.7). An optimized setup for image acquisition would solve this problem. Alterna-
tively histogram-based methods could be used for the determination of adequate gray value
thresholds. Furthermore the sensitivity to noise of the Least Squares method can cause prob-
lems which are not considered yet (3.13). When only the legs are visible in the infrared im-
ages no problems arise but otherwise additional algorithms are necessary to detect the noisy
areas and discard them in further computations. RANSAC for example is such an algorithm
which is able to cope with a large portion of outliers [10].
Finally the Hough Transformation is very time-consuming for usage in image series (see sec-
tion 7.2.2). It is a suitable method for the first detection of the scissors in the infrared images.
But for tracking the lines over a sequence of images other approaches are more adequate.

7.1.3 Camera Calibration

For camera calibration the Matlab Camera Calibration Toolbox was used [2]. The accuracy
of the resulting intrinsic and extrinsic camera parameters is depending on the quality of the
chessboard images. A good resolution and sharp images lead to exact corner approximation
and therefore to satisfying data for the parameter estimation.
Still there will always be measurement errors and the computed values can only be an ap-
proximation of the real parameters. Hence the input images should be as high quality as
possible and the more calibration data is available the better the estimation can be done.

7.1.4 Line Triangulation

The theory behind line triangulation is very simple but the actual results are strongly de-
pending on the quality of the data. For the 3D reconstruction of the pair of scissors plane
equations are computed whose intersection in space results in the desired 3D lines. In gen-
eral the two lines representing the scissors legs won’t intersect, hence only a least squares
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solution is possible. The reason for that are measurement errors. Even with optimal im-
age data the line detection and the camera calibration results will only approximate the real
scene (5.4).
In addition the triangulation results are sensitive to the camera setup. If the object is far
away from the cameras and the baseline between the two cameras is small the planes which
are intersected for 3D reconstruction are nearly parallel. So the positional accuracy is even
worst (6.1.1). A perpendicular view would be optimal for the camera setup but this results
in a reduced viewing area. For tracking scissors in a medical environment this would not
cause problems. The tracking region is limited and a good accuracy of 3D reconstruction
and positioning of the instrument in the 3D world would only be necessary in a close envi-
ronment around the area of operation. Whenever the surgeon does not use the scissors the
accuracy demand decreases. So the cameras could focus on the surgery itself and allow clear
images with sufficient instrument size.
Overall the previous steps need to be optimized in order to achieve good triangulation re-
sults, especially the image generation part.

7.1.5 Tracking

Tracking includes the detection and the tracing of an object. The part of line detection is
already discussed above. For object tracking over a series of images various approaches are
possible. Chapter 6 presents some ideas and methods which give a lot of material for further
tests. Their time consumption and the accuracy of the results could be analyzed in order to
identify convenient approaches for tracking in this special case.

7.2 Statistics

At the end, the implemented methods shall be analyzed for their time consumption, robust-
ness and quality. With the second image series of the stereo camera system a large number
of left and right images could be acquired. About 150 of them were used for the generation
of the following statistics.

7.2.1 Analysis of the algorithms for a fixed set of parameters

To test the robustness of the algorithms, the line detection process was tried for the fixed
parameters

(r, t, gvt, et) = (130, 180, 130, 130)

During all the line detection tests (r, t) = (130, 180) emerged to be reasonable values for
the Θ and ρ discretization. The gray value threshold and the elimination threshold were
identified through trial detection runs with two images. Further details on these parameters
and their influence on the computation can be found in section 3.1.3.

Results of the line detection
The line detection for a set of 144 infrared images gave the following results:
In two thirds of the cases the lines were detected correctly, giving a recall of 66.7 %. For about
20% of the images the gray value threshold was either too small or too high. When then gvt
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is too low, the number of pixels which are considered for the transformation is too high.
Noises are included in the transformation and the results useless. In the other case the lines
cannot be detected because the amount of pixels is too small. The pixel areas representing
the legs of the scissors cannot be identified. Figure 7.1 presents images for both cases of
inappropriate gray value thresholds.
The precision of the line detection is given by the ratio of images with two correct detected
lines to all images with two detected lines. For the test set it is 71.4 %.
A detailed listing of the test results is given in table 7.1 and table 7.2.

successful line detection gvt too high gvt to small leg angle too small
right cam 47 5 10 10
left cam 49 9 5 9
overall 96 14 15 19
percentage 66.7 % 9.7 % 10.4 % 13.2 %

Table 7.1: Recall of the line detection for fixed parameters

2 of 2 lines correct 1 of 2 lines correct 0 of 2 lines correct
right cam 45 14 7
left cam 50 12 5
overall 95 26 12
percentage 71.4 % 19.6 % 9.0 %

Table 7.2: Precision of the line detection for fixed parameters

Triangulation
To do the 3D reconstruction stereo data is needed. Hence the line detection results must be
satisfying for the left and the right images. For the set of test images only 35 pairs of left and
right images achieved adequate line detection results for the line triangulation. A criterion
for the quality of the triangulation result is the distance between the 3D point of intersection
computed via line triangulation and the point of intersection resulting from point triangula-
tion (compare section 5.2.5). Furthermore the two 3D lines computed via plane intersection
should not be too far apart from each other. For 11 of the 35 image pairs the distances of the
two computed 3D lines and the distance between the two points of intersection (derived via
line triangulation and point triangulation) were less than 1 centimeter. Hence more than 30
percent of the test data resulted in millimeter accuracy for a camera setup of 30 centimeters
baseline and approximately 50 to 100 centimeters distance of the pair of scissors to the cam-
eras. Figure 7.2 shows the best and the worst case of 3D reconstruction for the 35 image pairs.
The two distances are specified: d1, the distance between the two points of intersection com-
puted by line and point triangulation and d2, the distance between the two reconstructed
scissors legs.
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(a) Chosen gray values (b) Chosen gray values

(c) Resulting Lines (d) Resulting Lines

Figure 7.1: Inappropriate gray value thresholds
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(a) Best case: d1 = 0.12 mm, d2 = 0.04 mm (b) Worst case: d1 = 115.90 mm, d2 = 40.58 mm

Figure 7.2: Triangulation Result

7.2.2 Time consumption of the different steps

Many processing steps are necessary in order to reconstruct the 3D position of the pair of
scissors starting from two infrared images. Figure 7.3 shows the ratio of time consumption of
the different steps in the computation process. The whole process takes about two seconds.

Figure 7.3: Time Consumption of the different steps

For the detection of the lines in the two images much more time is necessary than for the
triangulation. Only about one percent of the time is consumed by the 3D reconstruction.
Within the detection process most of the time is spent on the Hough Transformation and
the accumulation of the votes for the Θ-ρ-pairs (red and orange bars). This effort could be
reduced by choosing a coarser grid in parameter space. But then the accuracy of the result
would decrease. The duration of these two steps is also depending on the number of pixels
which are considered for the transformation. This amount can be controlled by the gray
value threshold gvt (see section 3.1.3).
For the generation of the statistics the parameters for line detection were set to fixed values.
The line detection in the right images was more time consuming than in the left ones because
the right images had a brighter illumination. Hence for the same gray value threshold more
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pixels were considered for the further computations than in the left images. Still the ratios
of the different steps within one line detection process are about the same.

7.2.3 Time comparison: Matlab & C++

In the introduction Matlab is presented as an ideal tool for image processing and numerical
computations which has some disadvantages concerning time and memory consumption
(see 1.3). For this project the focus lay on the development of the algorithms, the duration
of the different steps was not so important. Nevertheless we wanted to have an idea of the
time consumption for an implementation in a more time and memory efficient programming
language. Hence the most time consuming steps, Hough Transformation and accumulation
(compare figure 7.3), were additionally implemented in C++. Table 7.3 gives an overview of
the time consumption for the C++ implementation and two Matlab implementations. In the
first one the whole line detection process is implemented within one file, for the second one
four sub steps were put in separate files: hough transformation and accumulation, elimina-
tion, least squares calculation and point calculation. The first Matlab implementation shows

Process step Matlab (all in one) Matlab (several files) C++
1st hough transformation 0.110 s 0.141 s 0.190 s
1st accumulation (4954 pixels) 26.469 s 0.453 s 0.160 s
1st elimination 0.016 s 0.015 s –
2nd hough transformation 0.078 s 0.110 s 0.140 s
2nd accumulation (3400 pixels) 18.547 s 0.312 s 0.110 s
2nd elimination 0.016 s 0.015 s –
1st least squares calculation 0.063 s 0.032 s –
2nd least squares calculation 0.047 s 0.031 s –
point calculation 0.026 s 0.031 s –

Table 7.3: Time comparison: Matlab, C++

the problem of time and memory consumption very clearly. The for-loop in the accumu-
lation process takes between 5.3 and 5.4 seconds per 1000 pixels. This slow execution was
the reason for the additional C++ implementation. Later the sub steps were put in separate
Matlab files and the time consumption decreased significantly for the accumulation part.
Furthermore the memory occupation was ameliorated with this partitioning. Matlab keeps
all variables in working space until the end of a function. Hence when all the statements are
executed within one function the memory consumption is much larger than necessary.
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Université de Paris XI Orsay, U.F.R. d’Informatique, January 1993.

[17] F. SAUER, A. KHAMENE, and S. VOGT, An Augmented Reality Navigation System with a
Single-Camera Tracker: System Design and Needle Biopsy Phantom Trial, in Proceedings of
the Second International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI), 2002.

[18] T. SIELHORST, High Accuray Tracking For Medical Augmented Reality, Master’s thesis,
Technical University Munich, Department of Computer Science, October 2003.

[19] E. W. WEISSTEIN, Rodrigues’ Rotation Formula. From Mathworld – A Wolfram Web
Resource
http://mathworld.wolfram.com/RodriguesRotationFormula.html .

[20] E. W. WEISSTEIN, Rotation Matrix. From Mathworld – A Wolfram Web Resource
http://mathworld.wolfram.com/RotationMatrix.html .

[21] J. WENG, P. COHEN, and M. HERNIOU, Camera Calibration with Distortion Models and
Accuracy Evaluation, in IEEE Transaction on Patterns and Machine Intelligence
(PAMI’92, Vol. 14, No. 10, p. 965-980), 1992.

66

http://mathworld.wolfram.com/RodriguesRotationFormula.html�
http://mathworld.wolfram.com/RotationMatrix.html�

