


# California Freshwater Blueprint

Phase I Overview

October 2015





















## California Freshwater Blueprint

Phase I Overview

#### October 2015

Jeanette K. Howard, The Nature Conservancy Kirk R. Klausmeyer, The Nature Conservancy Kurt A. Fesenmyer, Trout Unlimited Joseph Furnish, USDA Forest Service Ted Grantham, UC Davis Sarah Kupferberg, UC Berkeley Peter B. Moyle, UC Davis Peter R. Ode, CA Department of Fish & Wildlife Ryan Peek, UC Davis Rebecca M. Quiñones, UC Davis Andrew C. Rehn, CA Department of Fish & Wildlife Nick Santos, UC Davis) Larry Serpa, The Nature Conservancy Jackson D. Shedd, The Nature Conservancy Joe Slusark, CA Department of Fish & Wildlife Joshua H. Viers, UC Merced Amber Wright, University of Hawaii

Contact: Jeanette Howard, Jeanette howard@tnc.org

The Nature Conservancy of California 201 Mission Street, 4<sup>th</sup> Floor San Francisco, CA 94105

Recommended citation: Howard, J.K. et al. 2015. California Freshwater Blueprint: Phase I Overview. The Nature Conservancy, San Francisco, CA. 43 pages.

Cover photo credits (left to right): Larry Serpa, Larry Serpa, Bridget Besaw, Larry Serpa

## Contents

| Purpose                                                                                                                     | 4  |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| Project Phases                                                                                                              | 4  |
| Phase I Methods and Results                                                                                                 | 5  |
| Methods                                                                                                                     | 12 |
| Results                                                                                                                     | 13 |
| Summary and Next Step                                                                                                       | 25 |
| References                                                                                                                  | 26 |
| Figures                                                                                                                     |    |
| Figure 1: Project phases                                                                                                    | 5  |
| Figure 2: Taxonomic grouping and conservation status of freshwater taxa native to California                                | 6  |
| Figure 3: Taxonomic grouping and conservation rank of freshwater taxa                                                       | 7  |
| endemic to California                                                                                                       |    |
| Figure 4A: Patterns of richness of key fish species used in Zonation runs                                                   | 9  |
| Figure 4B: Patterns of richness amphibian and reptile species used in Zonation runs                                         | 10 |
| Figure 4C: Patterns of richness of sensitive invertebrate families used in Zonation runs                                    | 11 |
| Figure 5: Planning regions                                                                                                  | 12 |
| Figure 6: High conservation value areas for Central Coast planning region                                                   | 15 |
| Figure 7: High conservation value areas for Central Valley planning region                                                  | 16 |
| Figure 8: High conservation value areas for Colorado planning region                                                        | 17 |
| Figure 9: High conservation value areas for Great Basin planning region                                                     | 18 |
| Figure 10: High conservation value areas for Lahonton planning region                                                       | 19 |
| Figure 11: High conservation value areas for Modoc planning region                                                          | 20 |
| Figure 12: High conservation value areas for North Coast planning region                                                    | 21 |
| Figure 13: High conservation value areas for Sierra Nevada planning region                                                  | 22 |
| Figure 14: High conservation value areas for South Coast planning region                                                    | 23 |
| Figure 15: The 100 HUC12 subwatersheds were high conservation value areas overlap for fish, herpetofauna, and invertebrates | 24 |
| Tables                                                                                                                      |    |
| Table 1: List of fish, amphibian and reptile taxa and sensitive invertebrate                                                | 26 |
| families considered key conservation targets                                                                                | 20 |
| Table 2: Summary of high conservation value areas by planning region                                                        | 33 |
|                                                                                                                             |    |
| Appendices                                                                                                                  |    |
| Appendix A: California's Freshwater Conservation Blueprint                                                                  | 40 |
| Appendix B: Criteria used to define freshwater taxa by taxonomic group                                                      | 41 |

## **Purpose**

California is renowned as one of the world's most hydrologically altered landscapes. A growing population and transformation of California into one of the most productive agricultural and urban landscapes in the world have reduced aquatic and wetland habitats to a small fraction of their historic extent. Freshwater-dependent ecosystems have been degraded across the entire state, with associated dramatic population declines of aquatic species and reduced ecological functions. For example, 80% of California's fishes are considered at risk of extinction in the next 100 years (Moyle et al. 2011). Despite our declining freshwater systems, there is currently no statewide conservation plan for preserving California's rich freshwater diversity. This collaborative effort<sup>1</sup> attempts to fill that gap.

The objective of this project is to develop a conservation plan (Freshwater Conservation Blueprint) for California's freshwater systems. Such a statewide conservation blueprint is designed to develop conservation strategies to enhance and protect habitats of freshwater fishes and other aquatic organisms. The purpose of this effort is to provide a clear depiction of the taxa and systems in California and to set priorities concerning what freshwater systems to safeguard, where to protect them, what problems to tackle and where to tackle them. Our hope is that the Freshwater Conservation Blueprint will provide a strong vision of how to best conserve and protect California's rich freshwater diversity.

Specific goals of the project are to:

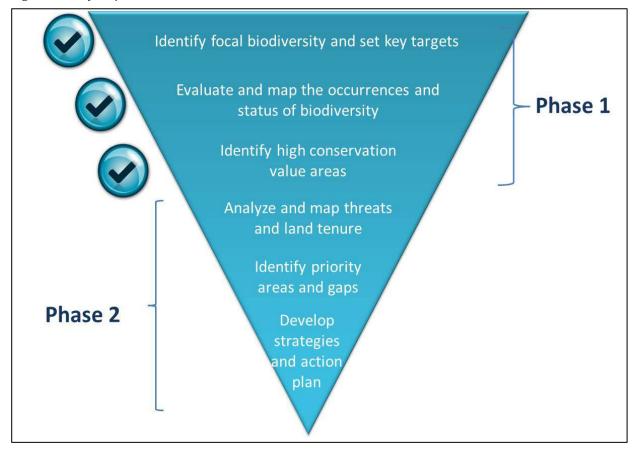
- 1) Identify priority areas for freshwater ecosystem conservation, accounting for spatial patterns of freshwater biodiversity, threats, and opportunities;
- 2) Develop regional- and watershed-specific conservation strategies; and
- 3) Institutionalize the California Freshwater Conservation Blueprint in appropriate management agencies

## **Project Phases**

The project has been developed in two phases (Figure 1). The first phase focused on mapping California's native freshwater taxa (fishes, herpetofauna, invertebrates, plants and birds), and identifying high conservation value areas (CVA). The resulting map (Appendix A), a product of Phase 1 described in this report, identified over 1,000 HUC12 subwatersheds as high conservation value areas based on species groups.

Phase 2 will focus on mapping freshwater systems, and developing an action plan within priority CVAs based on threats, land tenure and opportunity.

This report focuses only on the methods and results of our Phase 1 effort.

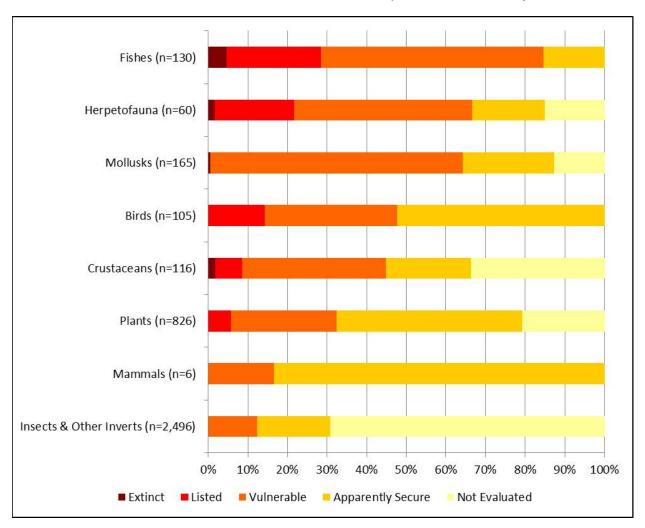

<sup>1</sup> The Nature Conservancy, Trout Unlimited, UC Davis, CA Department of Fish and Wildlife, US Forest Service, Chico State, State Water Resources Control Board, Point Blue Bird Observatory

### Phase I Methods and Results

### 1. Identify focal biodiversity and set key targets

All species rely on water, but not all species are freshwater species. Therefore, to assemble a list of native freshwater taxa in the state, we first needed to define what freshwater taxa are. Criteria for categorizing taxa as freshwater dependent varied by taxonomic group (see Appendix B). For example, fishes were included as freshwater taxa if they regularly occur in freshwater habitats. Herpetofauna were included if: 1) they rely on fresh water or freshwater-dependent vegetation communities to complete one or more life stage (e.g., all anurans and most caudates) or forage within fresh water as obligates (e.g., western pond turtle, *Actinemys marmorata*) or non-obligates (e.g., western terrestrial garter snake, *Thamnophis elegans*) at some stage of development; or, 2) they would not persist without freshwater microhabitats (e.g. Inyo mountain salamander, *Batrachoseps campi*); or, 3) they are found within splash zones of freshwater springs and creeks (e.g., Dunn's salamander, *Plethodon dunni*). See Appendix B for criteria for birds, plants and invertebrates.

Figure 1: Project phases

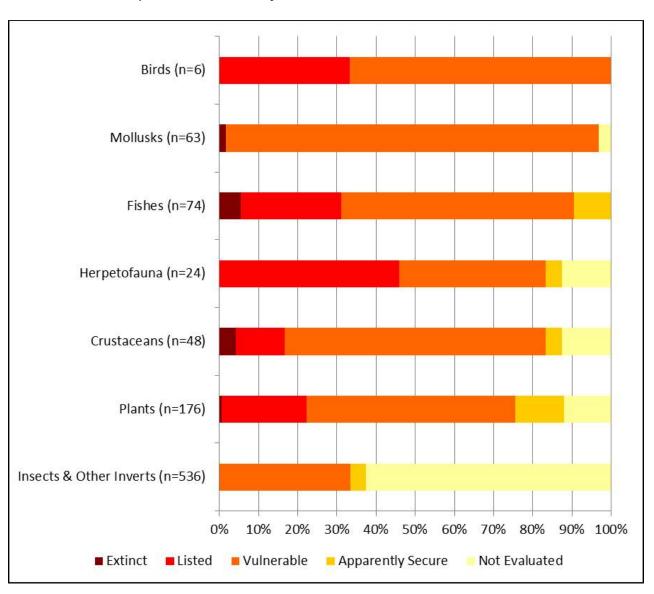



Using a variety of taxonomic review sources and expert guidance, we compiled a list of 3,904 freshwater taxa (species, subspecies, and evolutionary significant units and distinct population segments for salmonids) that occur in California representing plants, mammals, birds, fishes, amphibians, reptiles,

mollusks, crustaceans, and insects, arachnids, branchiopods and polychaetes. Results of this effort can be found in a paper published in PLOSONE in 2015 (See Howard et al. 2015: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130710).

Non-vascular plants such as algae and mosses, planktonic microcrustacea (members of the orders Copepoda and Cladocera), segmented worms (Annelida), and water mites (Acari) were not included in our species compilation.

Figure 2: Taxonomic grouping and conservation status of freshwater taxa (species, subspecies and evolutionary significant units) native to California. Percentage of freshwater species by taxonomic groups that are considered vulnerable (at risk of extinction) in watersheds of California. Insects and other invertebrates" includes the classes Arachnida, Branchiopoda, Insecta and Polychaeta.




Insects, arachnids, branchiopods, and polychaetes comprise over two-thirds (63.9%) of the freshwater taxa in the study area, with 2,496 taxa (Figure 2). The next largest group is plants (n=826, 21.2%), followed by mollusks (n=165, 4.2%), fish (n=130, 3.3%), crustaceans (n=116, 3%) birds (n=105, 2.7%), herpetofauna (n=60, 1.5%), and mammals (n=6, 0.2%). Eleven freshwater taxa that were once found in the study area are now considered extinct, including one plant, two crustaceans, one mollusk, one frog,

and six fishes. An additional 12 taxa are considered possibly extinct including eight insects or other invertebrates, two mollusks, and two plants.

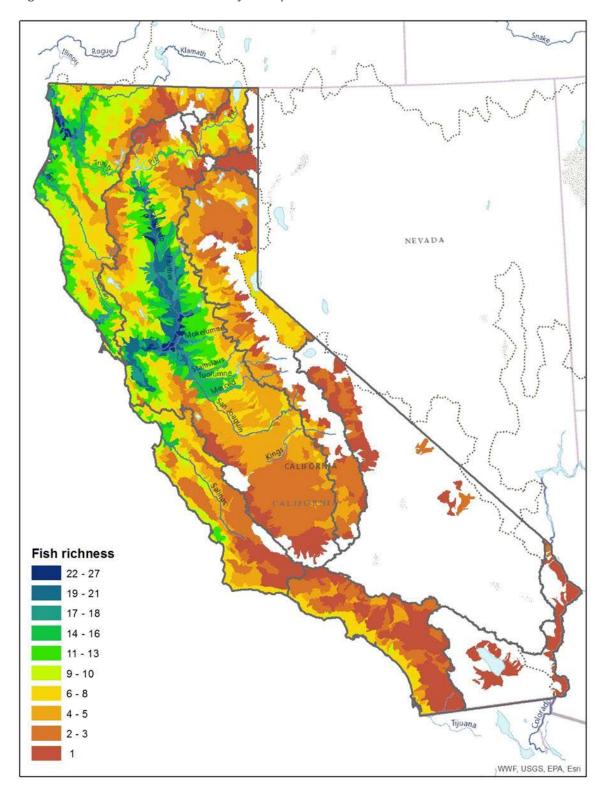
Nearly a quarter of the 3,904 native freshwater taxa found in California are endemic (n=927), including 536 Insects, arachnids, branchiopods, and polychaetes, 176 plants, 74 fishes, 63 mollusks, 48 crustaceans, 24 herpetofauna, and six birds (Figure 3). Taxa were classified as endemic to California if they are known to be restricted to our study area based on available data from NatureServe and other sources.

Figure 3: Taxonomic grouping and conservation rank of freshwater taxa endemic to California. Percentage of freshwater endemic species by taxonomic groups that are considered vulnerable (at risk of extinction) in watersheds of California. ""Insects and other invertebrates" includes the classes Arachnida, Branchiopoda, Insecta and Polychaeta.



From the freshwater species database compilation efforts, we identified key freshwater conservation targets on which to base conservation planning. Our key focal conservation targets are a limited suite of taxa chosen to represent and encompass the freshwater biodiversity found in the state. The targets provide the basis for setting conservation goals, carrying out conservation actions, and measuring conservation effectiveness. In theory, conservation of these focal targets will ensure the conservation of additional native, sensitive and rare biodiversity. Key conservation targets for our efforts included native freshwater fish, sensitive reptile and amphibian taxa and sensitive insect, mollusk and crustacean families (Table 1). Invertebrate families were included if they are considered sensitive to disturbance (U.S. EPA 2006, Ode 2003). We selected this suite of targets as they represent a full suite of freshwater habitats including seeps and springs, headwater streams, mainstem rivers and wetlands. Bird and plant taxa were not considered key conservation targets for this initial set of analyses.

### 2. Evaluate and map the occurrences of key freshwater targets


The basic mapping unit for this assessment is the subwatershed or 12-digit hydrologic unit code (HUC12), which averages ~20,000 acres or ~ 30 square miles within California. A total of 4,464 HUC12s are located within California (the study area). We used observations or current range information for freshwater target taxa within HUC12s to represent distribution within the assessment.

We relied on the PISCES database for fish taxa. PISCES is the most comprehensive, quality-controlled dataset of extant ranges of California's freshwater fish taxa (Santos et al. 2014). For herpetofauna we relied on observations at the taxon level compiled for UC-Davis' Amphibian and Reptile Species of Special Concern (ARSSC) effort (http://arssc.ucdavis.edu/index.html). We used the ARSSC data because it had been inspected for quality to remove spurious observations. For target invertebrate families, we relied primarily on benthic macroinvertebrate and bioassessment sampling datasets (e.g. SWAMP and Utah State Buglab) supplemented with CDFW and museum records and range information gathered for the California Freshwater Species database (Howard et al. 2015). While this represents the most comprehensive compilation of invertebrate data in the state, we acknowledge that there are limitations to the data quality. For example, most invertebrate data come from bioassessment monitoring efforts which under samples certain habitats such as non-perennial streams, large rivers, springs, high altitude streams and wet meadows.

Patterns of key freshwater targets chosen for this analysis are shown in Figures 4A, 4B, 4C.

#### 3. Identify high conservation value areas (CVAs)

Figure 4A: Pattern of richness of key fish species used in Zonation runs





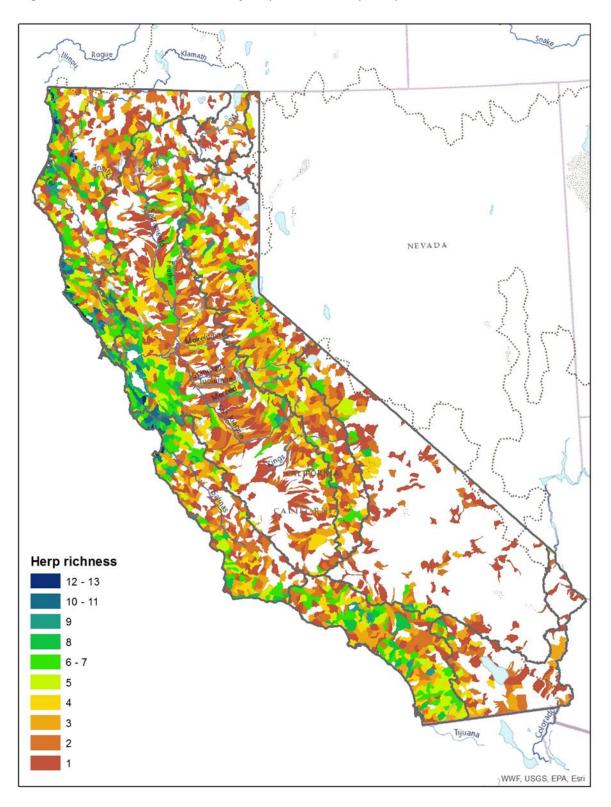
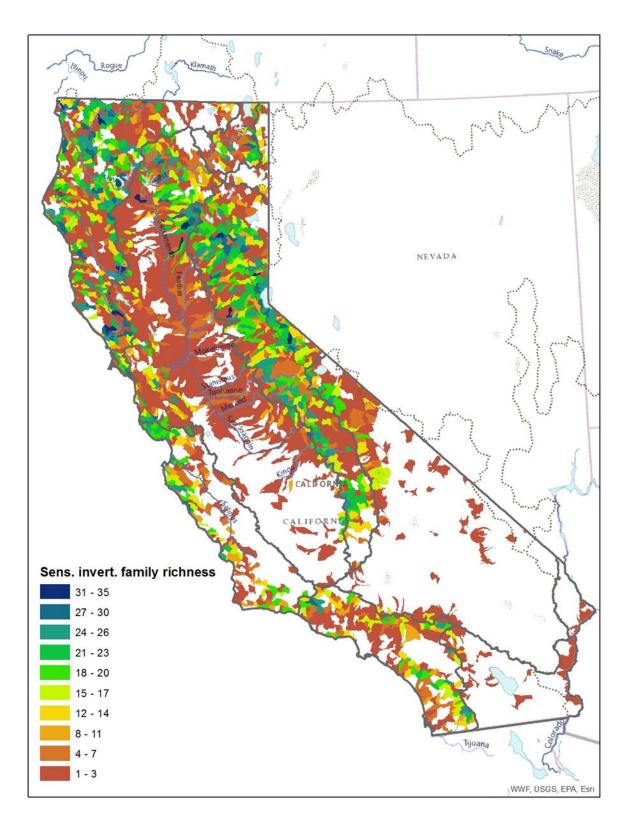
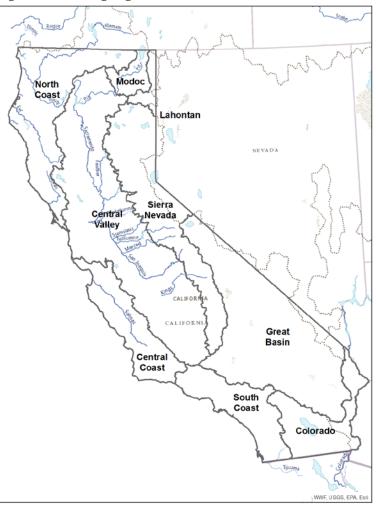




Figure 4C: Pattern of richness of sensitive invertebrate families used in Zonation runs




### Methods

We identified high conservation value areas using Zonation conservation planning software and expert opinion. Zonation is a publically available decision-support system designed for use in systematic conservation planning that applies a complementarity-based algorithm to species occurrence data to produce a ranking of conservation priority areas across the landscape. The Zonation software ranks the importance of each planning unit (HUC12s in our case) according to a reserve design algorithm. We used Zonation to rank HUC12 watersheds within nine freshwater conservation planning regions in California, which were defined according to DWR hydrologic region boundaries and Moyle's (2002) zoogeographic regions for freshwater fish (Figure 5). Each region represents relatively homogenous biogeographic conditions and generally corresponds to existing state water management/planning units.

Freshwater fish, reptile and amphibian taxa were included in Zonation optimization runs as were sensitive invertebrate families (Table 1). For fishes, three subgroups were considered for optimization runs: anadromous, range restricted taxa (occurring in <25 HUC12 watersheds), and wide-</p> ranging taxa (occurring >25 HUC12s). For herpetofauna three subgroups were run: lotic, lentic and generalists. We used familylevel observations for invertebrates because of the unequal spatial distribution of observations and the challenges of identifying many invertebrates at the species and genus level. Mollusk, crustacean and insect invertebrate families defined as sensitive were included in the zonation runs.

The Zonation-based ranking of HUC12 watersheds within each region was used to identify CVAs. First, we used the Added Benefit Function algorithm within Zonation to identify the top 10% of ranked

Figure 5: Planning regions



subwatersheds for each group of fish and herpetofauna taxa and sensitive invertebrate families for each region. Within the Added Benefit Function, subwatershed rank is determined by how much of the proportional distribution of all taxa/families is present in a subwatershed: it can be thought of as prioritizing for richness while considering rarity. When the top 10% of locations did not capture all taxa or families present in a region, we selected the top-ranked watersheds identified using the Core Area

Zonation algorithm which contained the missing taxa. In this way we were able to ensure that all taxa found within a planning region were represented in the high value conservation areas.

For fishes, potential CVAs represented in the top 10% HUC12s were examined by Peter Moyle and Rebecca Quinones and modified based on the following criteria:

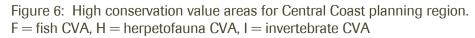
- Watersheds were added that are known to provide habitat essential to persistence of fish populations (e.g., Lassen foothill streams)
- Watersheds were added to include key tributary or headwater streams flowing into a contiguous CVA (e.g., Smith River, Navarro River, Eel River, Clear Lake, etc.)
- Watersheds were removed that were known to be of extremely poor habitat quality for the native taxa potentially present (e.g., Tule Lake, Rubicon River)
- Watersheds were removed if the species assemblage was well-represented in other CVAs within the region (e.g., Mad River, South Fork Pit River, headwaters of Santa Clara River)
- CVAs were removed or modified if target taxa were widely distributed in adjacent regions (e.g., South Fork American River in Sierra Nevada Region)

For herpetofauna and invertebrates, we added HUCs to the CVA network that included taxa or family occurrences that were not included in the top 10% of Zonation-ranked HUCs in the region. This occurred infrequently and only when rare taxa occurred in HUCs with low species/family richness, due to the Zonation algorithm prioritization of richness. For herpetofauna, potential CVAs were also supplemented by HUC12s that expert reviewers identified as important for herpetofauna conservation, but missing from the top 10% Zonation results. These additions were included to capture the core of a species' range vs. the periphery (e.g. highest elevation zones of the Sierra Nevada for Yosemite toad). For insects, potential CVAs represented in the top 10% HUCs were supplemented by watersheds that occurred in the top 20% of Zonation ranked HUCs and occurred in the top 40% of family richness for the region. These HUCs were only added if they fell outside of an existing CVA.

## Results

A total of 1,082 HUC12 subwatersheds (20% of the HUC12s within the state) were identified as high conservation value areas (Table 2). These subwatersheds total 26 million acres or 40,000 square miles which is approximately 25% of California. The selection of CVAs was intentionally generous, and will be likely be winnowed in Phase 2 when threats and opportunities are considered.

By taxonomic group, 584 subwatersheds (18,353,768 acres) were identified as high value areas for fish, 377 subwatersheds (19,117,283 acres) for herpetofauna, and 401 subwatersheds for invertebrates (20,360,113 acres).


High conservation value areas by planning region are shown in Figures 6-14 and listed in Table 2. Area within a planning region identified as high conservation value areas ranged from a low of 8.6% in the Great Basin planning region to a high of 49.2% in the North Coast planning region (Figures 6-14). Planning regions with the greatest number of high conservation value areas are the Central Valley and North coast both with 279 HUC12s identified as CVAs totally 6.8 million and 6.2 million acres respectively. A statewide map of high conservation value areas can be found in Appendix 1 and can be downloaded here:

http://scienceforconservation.org/map gallery/CA freshwater conservation blueprint.

The greatest number of fish CVAs was identified in the North Coast region with 218 HUC12s, followed by the Central Valley with 127. The Central Valley planning region had the greatest number of CVAs for herpetofauna with 122 high CVA HUC12s, followed by the Sierra Nevada with 73 high CVA HUC12s. The greatest number of invertebrate CVAs were identified in the Sierra Nevada and Central Valley regions with 114 and 113 high CVA HUC12s, respectively.

High CVAs for fish, herpetofauna and invertebrate overlap in 100 HUC12 subwatersheds totaling 11,815,290 acres (Figure 15). These 100 high CVA subwatersheds where fish, herpetofauna and invertebrates overlap are located within the following basins:

- Antelope/Mill/Deer/Butte Creek
- Battle Creek
- Clear Lake
- Eagle Lake
- East Walker River
- Garcia River
- Goose Lake
- Santa Ana River headwaters
- Kings River
- Lagunitas Creek
- Lake Tahoe/Truckee R.
- Lower and Middle Klamath River
- Monterey Bay
- Napa/Sonoma/Petaluma
- Pit and Fall Rivers
- Redwood Creek and Mad River
- Russian River
- Salmon River
- Santa Clara River
- Santa Maria River
- Scott River
- Smith River
- South San Francisco Bay
- Upper Kings River
- Upper Owens River



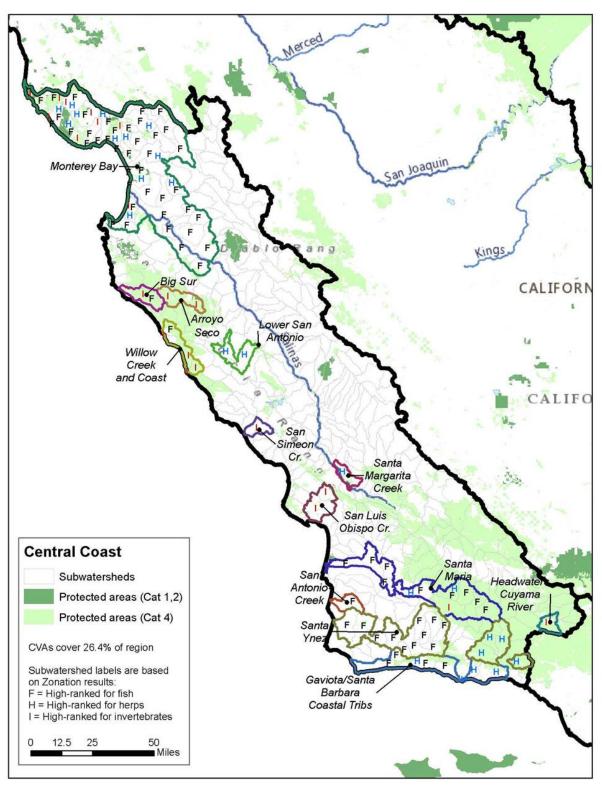



Figure 7: High conservation value areas for Central Valley planning region.  $F = fish\ CVA,\ H = herpetofauna\ CVA,\ I = invertebrate\ CVA.$ 

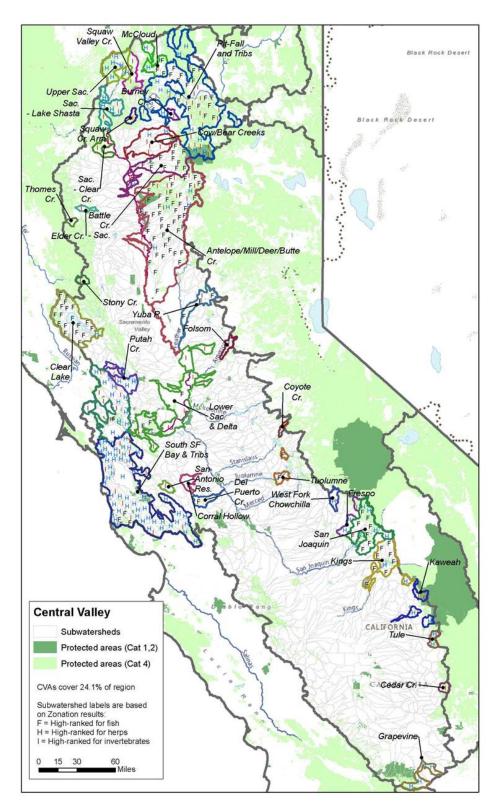



Figure 8: High conservation value areas for Colorado planning region. F= fish CVA, H= herpetofauna CVA, I= invertebrate CVA.

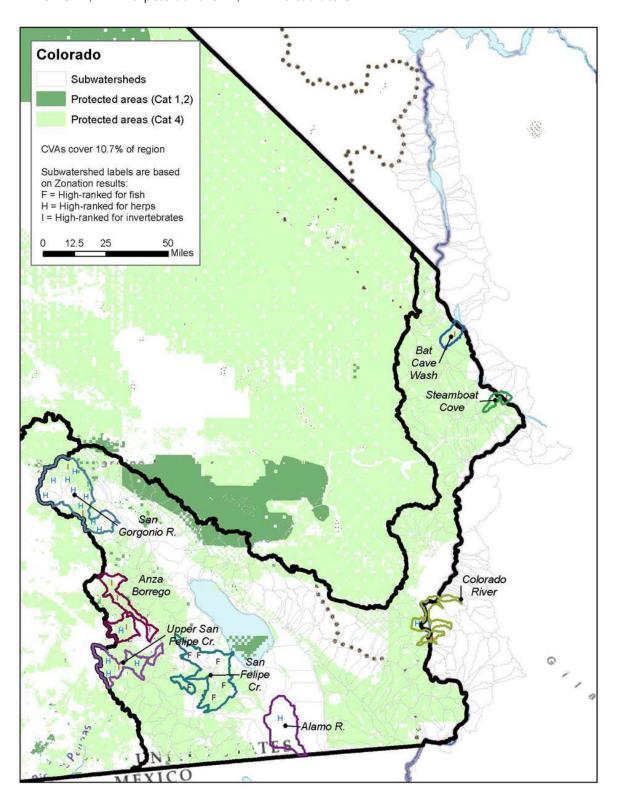



Figure 9: High conservation value areas for Great Basin planning region. F = fish CVA, H = herpetofauna CVA, I = invertebrate CVA.

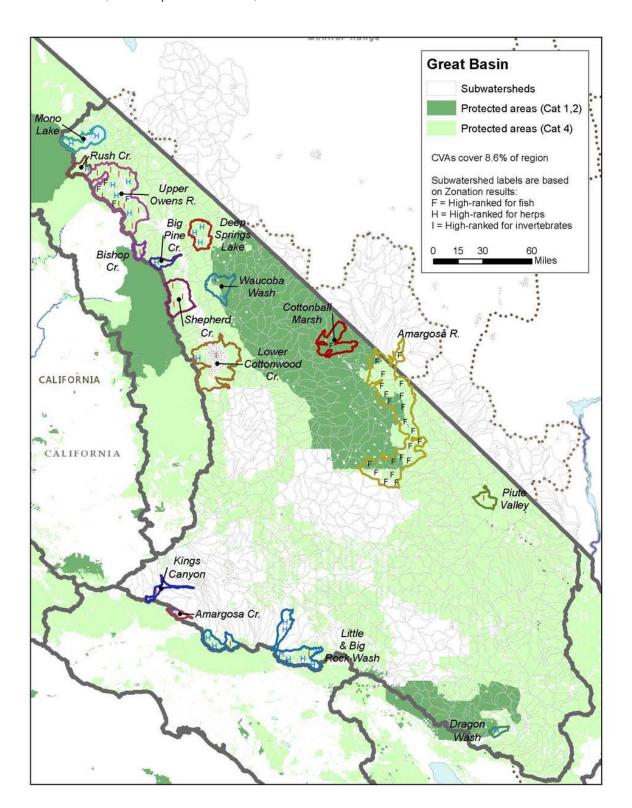



Figure 10: High conservation value areas for Lahonton planning region. F= fish CVA, H= herpetofauna CVA, I= invertebrate CVA

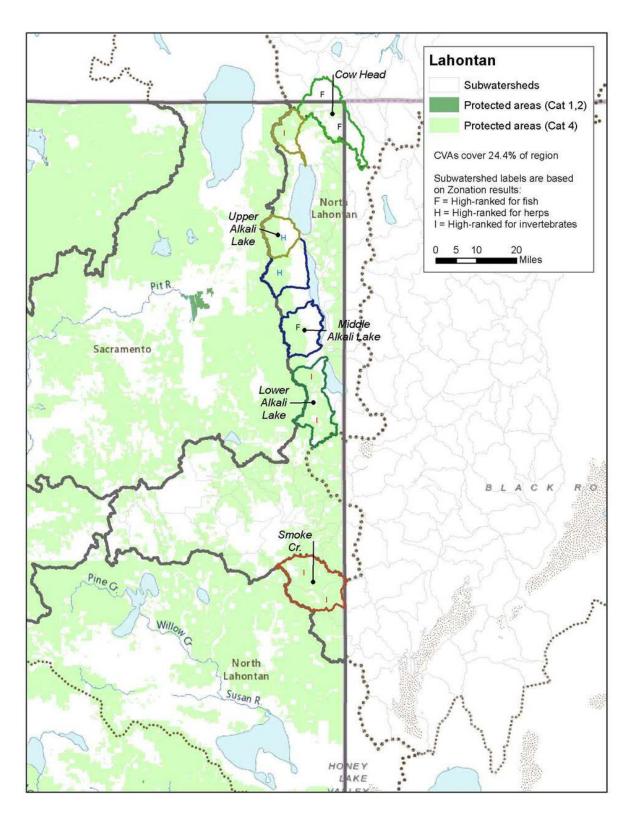



Figure 11: High conservation value areas for Modoc planning region. F = fish CVA, H = herpetofauna CVA, I = invertebrate CVA.

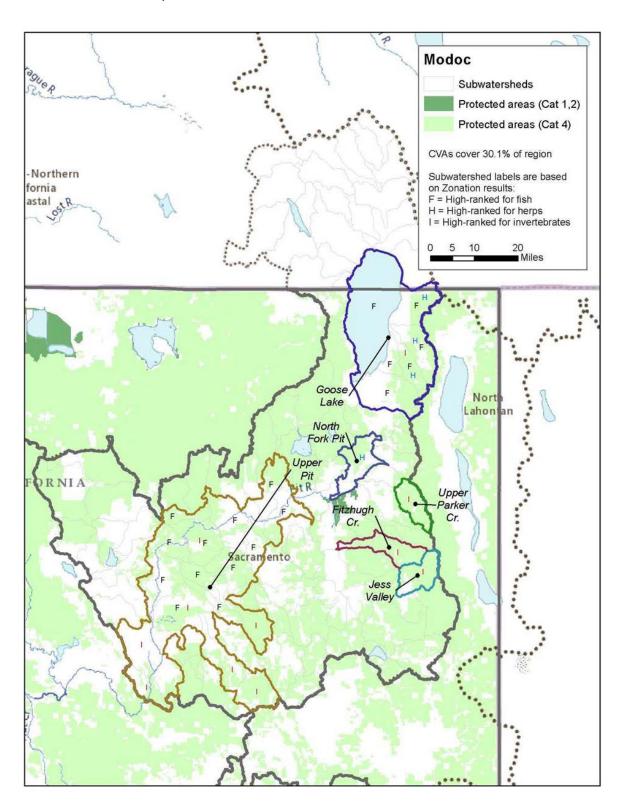



Figure 12: High conservation value areas for North Coast planning region. F= fish CVA, H= herpetofauna CVA, I= invertebrate CVA.

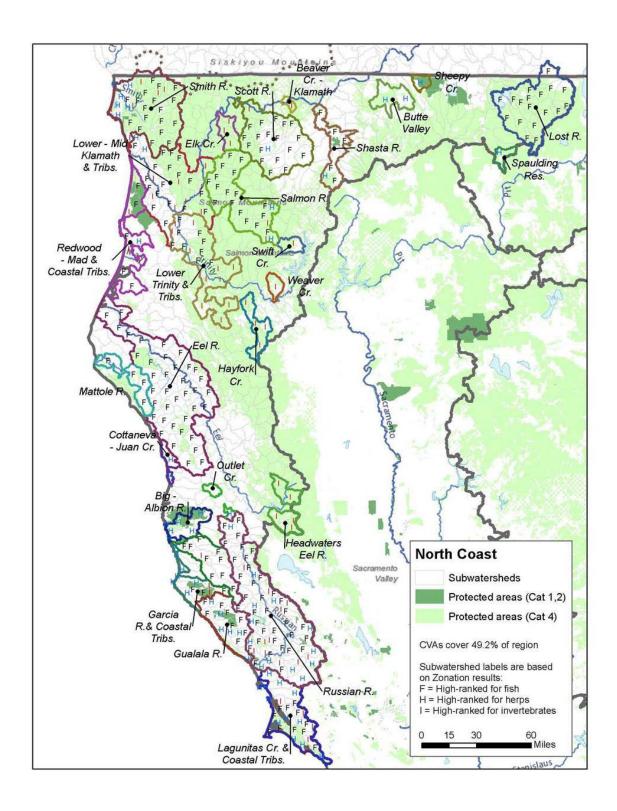



Figure 13: High conservation value areas for Sierra Nevada planning region. F = fish CVA, H = herpetofauna CVA, I = invertebrate CVA.

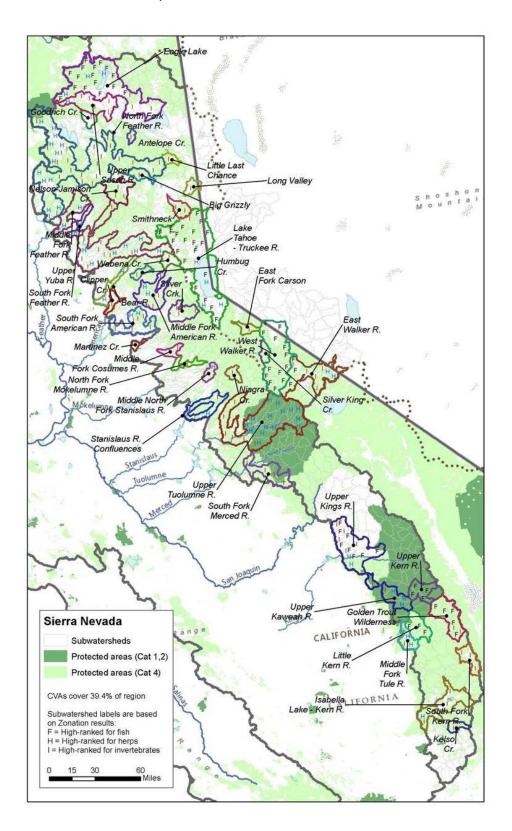



Figure 14: High conservation value areas for South Coast planning region. F = fish CVA, H = herpetofauna CVA, I = invertebrate CVA.

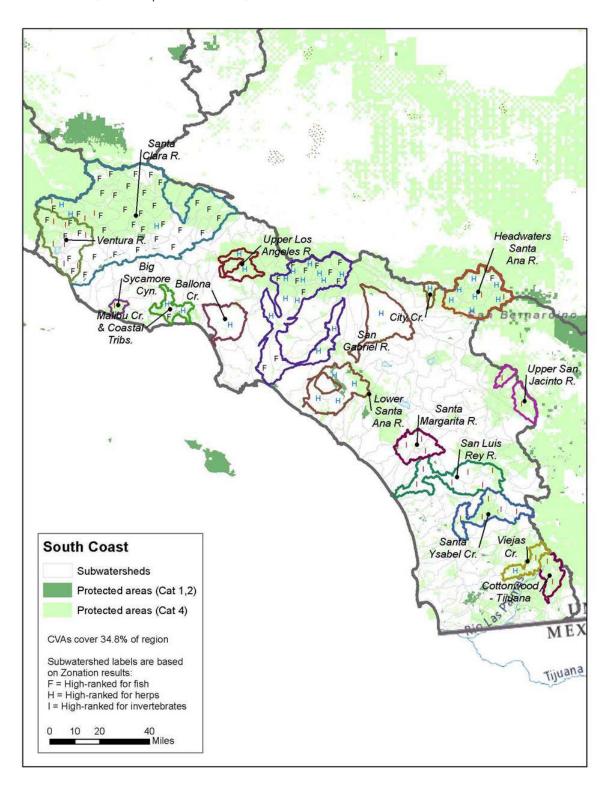
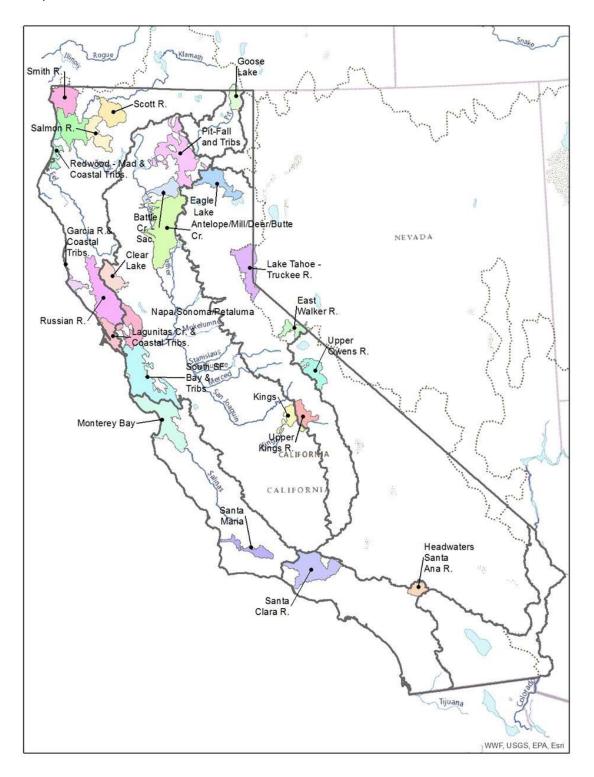




Figure 15: The 100 HUC12 subwatersheds were high conservation value areas overlap for fish, herpetofauna, and invertebrates.



## Summary and Next Step

Phase 1 of the California Freshwater Blueprint project fills a gap in our knowledge of freshwater taxa in California including a better understanding of what are freshwater taxa in the state and where those taxa currently occur, and attempts to identify high conservation value areas based on the occurrence of fishes, amphibians, reptiles and invertebrates. We are optimistic that the high value freshwater conservation areas identified represent the best knowledge currently available regarding the occurrence of freshwater targets. However, there are limitations to our knowledge. Specifically we don't have enough systematically collected information about the distribution of most taxa in California, let alone population status.

In addition, most of the invertebrate data comes from bioassessment monitoring, which undersamples certain habitats (non-perennial streams, large rivers, springs, high altitude streams and wet meadows, etc.), many of which are known to have high levels of endemism and might reasonably be expected to be vulnerable to factors like climate change. With that in mind, we acknowledged that these CVAs are based solely on the estimated ranges of the target taxa, and do not consider a suite of factors that may influence the conservation value of a particular area, including habitat quality, taxa life history requirements, and anthropogenic stressors. To the extent possible, that information will be incorporated in Phase 2, where Conservation Priority Areas and conservation strategies will be identified.

### References

Howard JK, Klausmeyer KR, Fesenmyer KA, Furnish J, Gardali T, Grantham T, et al. 2015. Patterns of Freshwater Species Richness, Endemism, and Vulnerability in California. PLoS ONE 10(7): e0130710. doi:10.1371/journal.pone.0130710

Moyle PB. 2002. Inland Fishes of California. Berkeley, California: University of California Press. 502 p.

Moyle PB, Katz JVE, Quiñones RM.2011. Rapid decline of California's native inland fishes: A status assessment. Biological Conservation 144: 2414-2423.

Ode, P. 2003. CAMLnet: List of Californian Macroinvertebrate Taxa and Standard Taxonomic Effort revision date: 27 January, 2003. Department of Fish and Game 2005 Nimbus Road Rancho Cordova, CA 95670.

Santos, NR, Katz, JVE, Moyle PB, Viers, JH. 2014. A programmable information system for management and analysis of aquatic species range data in California. Environmental Modelling & Software **53**:13-26.

U.S. EPA. 2006. Wadeable Streams Assessment: A collaborative survey of the nation's streams. EPA/841/B06/002. http://water.epa.gov/type/rsl/monitoring/streamsurvey/upload/2007\_5\_16\_streamsurvey\_WSA\_Assessment\_May2007.pdf (PDF) (113 pp, 14.7MB)

Table 1: List of fish, amphibian and reptile taxa and sensitive invertebrate families considered key conservation targets

| Key Target Group                                     | Scientific name            | Common name                                                         |
|------------------------------------------------------|----------------------------|---------------------------------------------------------------------|
| Fishes - anadromous                                  | Acipenser medirostris      | Northern green sturgeon                                             |
| Fishes - anadromous                                  | Acipenser medirostris      | Southern green sturgeon                                             |
| Fishes - anadromous                                  | Acipenser transmontanus    | White sturgeon                                                      |
| Fishes - anadromous                                  | Entosphenus tridentata     | Pacific lamprey                                                     |
| Fishes - anadromous                                  | Oncorhynchus clarki clarki | Coastal cutthroat trout                                             |
| Fishes - anadromous                                  | Oncorhynchus gorbuscha     | Pink salmon                                                         |
| Fishes - anadromous                                  | Oncorhynchus kisutch       | Central Coast coho salmon                                           |
| Fishes - anadromous                                  | Oncorhynchus kisutch       | Southern Oregon Northern<br>California coast coho salmon            |
| Fishes - anadromous                                  | Oncorhynchus keta          | Chum salmon                                                         |
| Fishes - anadromous                                  | Oncorhynchus mykiss        | Northern California coast winter steelhead                          |
| Fishes - anadromous                                  | Oncorhynchus mykiss        | Northern California coast summer steelhead                          |
| Fishes - anadromous                                  | Oncorhynchus mykiss        | Klamath Mountains Province winter steelhead                         |
| Fishes - anadromous                                  | Oncorhynchus mykiss        | Klamath Mountains Province summer steelhead                         |
| Fishes - anadromous                                  | Oncorhynchus mykiss        | Central California coast winter steelhead                           |
| Fishes - anadromous                                  | Oncorhynchus mykiss        | Central Valley steelhead                                            |
| Fishes - anadromous                                  | Oncorhynchus mykiss        | South Central California coast steelhead                            |
| Fishes - anadromous                                  | Oncorhynchus tshawytscha   | Upper Klamath-Trinity fall<br>Chinook salmon                        |
| Fishes - anadromous                                  | Oncorhynchus tshawytscha   | Upper Klamath-Trinity spring Chinook salmon                         |
| Fishes - anadromous                                  | Oncorhynchus tshawytscha   | Southern Oregon Northern<br>California coast fall Chinook<br>salmon |
| Fishes - anadromous                                  | Oncorhynchus tshawytscha   | California Coast fall Chinook salmon                                |
| Fishes - anadromous                                  | Oncorhynchus tshawytscha   | Central Valley winter Chinook salmon                                |
| Fishes - anadromous                                  | Oncorhynchus tshawytscha   | Central Valley spring Chinook salmon                                |
| Fishes - anadromous                                  | Oncorhynchus tshawytscha   | Central Valley late fall Chinook salmon                             |
| Fishes - anadromous                                  | Oncorhynchus tshawytscha   | Central Valley fall Chinook salmon                                  |
|                                                      | Cottus asperrimus          | Rough sculpin                                                       |
| Fishes - range restricted                            | Cottus usperriirus         | Modeli scalpiii                                                     |
| Fishes - range restricted  Fishes - range restricted | Cottus asper subspecies    | Clear Lake prickly sculpin                                          |
| =                                                    | •                          | - '                                                                 |
| Fishes - range restricted                            | Cottus asper subspecies    | Clear Lake prickly sculpin                                          |

| Fishes - range restricted | Cyprinodon nevadensis nevadensis       | Saratoga Springs pupfish             |
|---------------------------|----------------------------------------|--------------------------------------|
| Fishes - range restricted | Cyprinodon nevadensis amargosae        | Amargosa River pupfish               |
| Fishes - range restricted | Cyprinodon nevadensis shoshone         | Shoshone pupfish                     |
| Fishes - range restricted | Catostomus occidentalis lacusanserinus | Goose Lake sucker                    |
| Fishes - range restricted | Cottus perplexus                       | Reticulate sculpin                   |
| Fishes - range restricted | Cyprinodon radiosus                    | Owens pupfish                        |
| Fishes - range restricted | Cyprinodon salinus salinus             | Salt Creek pupfish                   |
| Fishes - range restricted | Cyprinodon salinus milleri             | Cottonball Marsh pupfish             |
| Fishes - range restricted | Gila coerulea                          | Blue chub                            |
| Fishes - range restricted | Lavinia exilicauda chi                 | Clear Lake hitch                     |
| Fishes - range restricted | Lavinia parvipinnus                    | Gualala roach                        |
| Fishes - range restricted | Lavinia symmetricus subspecies         | Red Hills roach                      |
| Fishes - range restricted | Lavinia symmetricus subspecies         | Clear Lake roach                     |
| Fishes - range restricted | Lavinia symmetricus navarroensis       | Navarro roach                        |
| Fishes - range restricted | Lavinia symmetricus subspecies         | Tomales roach                        |
| Fishes - range restricted | Lavinia mitrulus                       | Northern (Pit) roach                 |
| Fishes - range restricted | Rhinichthys osculus subspecies         | Owens speckled dace                  |
| Fishes - range restricted | Rhinichthys osculus subspecies         | Long Valley speckled dace            |
| Fishes - range restricted | Rhinichthys osculus nevadensis         | Amargosa Canyon speckled dace        |
| Fishes - range restricted | Rhinichthys osculus subspecies         | Santa Ana speckled dace              |
| Fishes - range restricted | Siphatales bicolor bicolor             | Klamath tui chub                     |
| Fishes - range restricted | Siphatales bicolor pectinifer          | Lahontan lake tui chub               |
| Fishes - range restricted | Siphatales bicolor subspecies          | Eagle Lake tui chub                  |
| Fishes - range restricted | Siphatales bicolor snyderi             | Owens tui chub                       |
| Fishes - range restricted | Siphatales mohavensis                  | Mojave tui chub                      |
| Fishes - range restricted | Siphatales thalassinus thalassinus     | Goose Lake tui chub                  |
| Fishes - range restricted | Siphatales thalassinus vaccaceps       | Cow Head tui chub                    |
| Fishes - range restricted | Hysterocarpus traskii pomo             | Russian River tule perch             |
| Fishes - range restricted | Hysterocarpus traskii lagunae          | Clear Lake tule perch                |
| Fishes - range restricted | Gasterosteus aculeatus williamsoni     | Unarmored threespine stickleback     |
| Fishes - range restricted | Gasterosteus aculeatus subspecies      | Shay Creek stickleback               |
| Fishes - range restricted | Spirinchus thaleichthys                | Longfin smelt                        |
| Fishes - range restricted | Thaleichthys pacificus                 | Eulachon                             |
| Fishes - range restricted | Entosphenus folletti                   | Northern California brook<br>lamprey |
| Fishes - range restricted | Entosphenus tridentata                 | Goose Lake lamprey                   |
| Fishes - range restricted | Oncorhynchus clarki seleneris          | Paiute cutthroat trout               |
| Fishes - range restricted | Oncorhynchus mykiss stonei             | McCloud River redband trout          |
| Fishes - range restricted | Oncorhynchus mykiss subspecies         | Goose Lake redband trout             |
| Fishes - range restricted | Oncorhynchus mykiss aquilarum          | Eagle Lake rainbow trout             |
| Fishes - range restricted | Oncorhynchus mykiss gilberti           | Kern River rainbow trout             |

| Fishes - range restricted | Oncorhynchus mykiss aguabonita        | California golden trout       |
|---------------------------|---------------------------------------|-------------------------------|
| Fishes - range restricted | Oncorhynchus mykiss whitei            | Little Kern golden trout      |
| Fishes - wide ranging     | Archoplites interruptus               | Sacramento perch              |
| Fishes - wide ranging     | Cottus asper subspecies               | Prickly sculpin               |
| Fishes - wide ranging     | Cottus aleuticus                      | Coastrange sculpin            |
| Fishes - wide ranging     | Chasmistes brevirostris               | Shortnose sucker              |
| Fishes - wide ranging     | Cottus beldingi                       | Paiute sculpin                |
| Fishes - wide ranging     | Catostomus fumeiventris               | Owens sucker                  |
| Fishes - wide ranging     | Cottus gulosus                        | Riffle sculpin                |
| Fishes - wide ranging     | Cottus klamathensis polyporus         | Lower Klamath marbled sculpin |
| Fishes - wide ranging     | Catostomus luxatus                    | Lost River sucker             |
| Fishes - wide ranging     | Cyprinodon macularius                 | Desert pupfish                |
| Fishes - wide ranging     | Catostomus occidentalis occidentalis  | Sacramento sucker             |
| Fishes - wide ranging     | Catostomus occidentalis mnioltiltus   | Monterey sucker               |
| Fishes - wide ranging     | Catostomus occidentalis humboldtianus | Humboldt sucker               |
| Fishes - wide ranging     | Catostomus platyrhynchus              | Lahontan mountain sucker      |
| Fishes - wide ranging     | Cottus pitensis                       | Pit sculpin                   |
| Fishes - wide ranging     | Catostomus rimiculus                  | Klamath smallscale sucker     |
| Fishes - wide ranging     | Catostomus snyderi                    | Klamath largescale sucker     |
| Fishes - wide ranging     | Catostomus santaanae                  | Santa Ana sucker              |
| Fishes - wide ranging     | Catostomus tahoensis                  | Tahoe sucker                  |
| Fishes - wide ranging     | Fundulus parvipinnis                  | California killifish          |
| Fishes - wide ranging     | Gila orcutti                          | Arroyo chub                   |
| Fishes - wide ranging     | Leptocottus armatus                   | Staghorn sculpin              |
| Fishes - wide ranging     | Lavinia exilicauda exilicauda         | Sacramento hitch              |
| Fishes - wide ranging     | Lavinia exilicauda harengeus          | Monterey hitch                |
| Fishes - wide ranging     | Lavinia symmetricus symmetricus       | Central California roach      |
| Fishes - wide ranging     | Lavinia symmetricus subspecies        | Russian River roach           |
| Fishes - wide ranging     | Lavinia symmetricus subditus          | Monterey roach                |
| Fishes - wide ranging     | Mylopharodon conocephalus             | Hardhead                      |
| Fishes - wide ranging     | Orthodon microlepidotus               | Sacramento blackfish          |
| Fishes - wide ranging     | Ptychocheilus grandis                 | Sacramento pikeminnow         |
| Fishes - wide ranging     | Pogonichthys macrolepidotus           | Sacramento splittail          |
| Fishes - wide ranging     | Richardsonius egregius                | Lahontan redside              |
| Fishes - wide ranging     | Rhinichthys osculus subspecies        | Sacramento speckled dace      |
| Fishes - wide ranging     | Rhinichthys osculus robustus          | Lahontan speckled dace        |
| Fishes - wide ranging     | Rhinichthys osculus klamathensis      | Klamath speckled dace         |
| Fishes - wide ranging     | Siphatales bicolor obesus             | Lahontan stream tui chub      |
| Fishes - wide ranging     | Siphatales thalassinus subspecies     | Pit River tui chub            |
| Fishes - wide ranging     | Xyrauchen texanus                     | Razorback sucker              |
| Fishes - wide ranging     | Hysterocarpus traskii traskii         | Sacramento tule perch         |

| Fishes - wide ranging | Eucyclogobius newberryi              | Tidewater goby                   |
|-----------------------|--------------------------------------|----------------------------------|
| Fishes - wide ranging | Gasterosteus aculeatus aculeatus     | Coastal threespine stickleback   |
| Fishes - wide ranging | Gasterosteus aculeatus microcephalus | Inland threespine stickleback    |
| Fishes - wide ranging | Mugil cephalus                       | Striped mullet                   |
| Fishes - wide ranging | Hypomesus pacificus                  | Delta smelt                      |
| Fishes - wide ranging | Entosphenus similis                  | Klamath River lamprey            |
| Fishes - wide ranging | Lampetra ayersi                      | River lamprey                    |
| Fishes - wide ranging | Lampetra hubbsi                      | Kern brook lamprey               |
| Fishes - wide ranging | Lampetra lethophaga                  | Pit-Klamath brook lamprey        |
| Fishes - wide ranging | Lampetra richardsoni                 | Western brook lamprey            |
| Fishes - wide ranging | Platichthys stellatus                | Starry flounder                  |
| Fishes - wide ranging | Oncorhynchus clarki henshawi         | Lahontan cutthroat trout         |
| Fishes - wide ranging | Oncorhynchus mykiss                  | Southern California steelhead    |
| Fishes - wide ranging | Oncorhynchus mykiss irideus          | Coastal rainbow trout            |
| Fishes - wide ranging | Prosopium williamsoni                | Mountain whitefish               |
| Herps - generalists   | Thamnophis atratus                   | Aquatic gartersnake              |
| Herps - generalists   | Taricha torosa                       | California newt                  |
| Herps - generalists   | Rana draytonii                       | California red-legged frog       |
| Herps - generalists   | Pseudacris cadaverina                | California tree frog             |
| Herps - generalists   | Rana cascadae                        | Cascades frog                    |
| Herps - generalists   | Thamnophis marcianus                 | Checkered gartersnake            |
| Herps - generalists   | Thamnophis sirtalis                  | Common gartersnake               |
| Herps - generalists   | Scaphiopus couchii                   | Couch's spadefoot toad           |
| Herps - generalists   | Thamnophis gigas                     | Giant gartersnake                |
| Herps - generalists   | Spea intermontana                    | Great Basin spadefoot            |
| Herps - generalists   | Anaxyrus cognatus                    | Great Plains toad                |
| Herps - generalists   | Rana pipiens                         | Northern leopard frog            |
| Herps - generalists   | Rana aurora                          | Northern red-legged frog         |
| Herps - generalists   | Thamnophis ordinoides                | Northwestern gartersnake         |
| Herps - generalists   | Pseudacris regilla                   | Pacific chorus frog              |
| Herps - generalists   | Anaxyrus punctatus                   | Red-spotted toad                 |
| Herps - generalists   | Taricha granulosa                    | Rough-skinned newt               |
| Herps - generalists   | Rana muscosa                         | Sierra Madre yellow-legged frog  |
| Herps - generalists   | Rana sierrae                         | Sierra Nevada yellow-legged frog |
| Herps - generalists   | Taricha sierrae                      | Sierra newt                      |
| Herps - generalists   | Emys marmorata                       | Western pond turtle              |
| Herps - generalists   | Spea hammondii                       | Western spadefoot toad           |
| Herps - generalists   | Thamnophis elegans                   | Western terrestrial gartersnake  |
| Herps - generalists   | Anaxyrus boreas                      | Western toad                     |
| Herps - generalists   | Anaxyrus woodhousii                  | Woodhouse's toad                 |
| Herps - generalists   | Anaxyrus canorus                     | Yosemite Toad                    |

| Herps - lotic                        | Anaxyrus californicus   | Arroyo Toad                 |
|--------------------------------------|-------------------------|-----------------------------|
| Herps - lotic                        | Dicamptodon ensatus     | California giant salamander |
| Herps - lotic                        | Dicamptodon tenebrosus  | Coastal giant salamander    |
| Herps - lotic                        | Ascaphus truei          | Coastal tailed frog         |
| Herps - lotic                        | Rana boylii             | Foothill yellow-legged frog |
| Herps - lotic                        | Taricha rivularis       | Red-bellied newt            |
| Herps - lotic                        | Thamnophis couchii      | Sierra gartersnake          |
| Herps - lotic                        | Rhyacotriton variegatus | Southern torrent salamander |
| Herps - lotic                        | Thamnophis hammondii    | Two-striped gartersnake     |
| Herps - lentic                       | Anaxyrus exsul          | Black toad                  |
| Herps - lentic                       | Ambystoma californiense | California tiger salamander |
| Herps - lentic                       | Plethodon dunni         | Dunn's salamander           |
| Herps - lentic                       | Batrachoseps campi      | Inyo Mountains salamander   |
| Herps - lentic                       | Ambystoma macrodactylum | Long-toed Salamander        |
| Herps - lentic                       | Ambystoma gracile       | Northwestern salamander     |
| Herps - lentic                       | Rana pretiosa           | Oregon spotted frog         |
| Inverts - Sensitive mollusk family   | Unionidae               |                             |
| Inverts - Sensitive mollusk family   | Margaritiferidae        |                             |
| Inverts - Sensitive mollusk family   | Sphaeriidae             |                             |
| Inverts - Sensitive mollusk family   | Pleuroceridae           |                             |
| Inverts - Sensitive mollusk family   | Hydrobiidae             |                             |
| Inverts - Sensitive mollusk family   | Lymnaeidae              |                             |
| Inverts - Sensitive arthropod family | Ameletidae              |                             |
| Inverts - Sensitive arthropod family | Amphizoidae             |                             |
| Inverts - Sensitive arthropod family | Apataniidae             |                             |
| Inverts - Sensitive arthropod family | Athericidae             |                             |
| Inverts - Sensitive arthropod family | Blephariceridae         |                             |
| Inverts - Sensitive arthropod family | Brachycentridae         |                             |
| Inverts - Sensitive arthropod family | Calamoceratidae         |                             |
| Inverts - Sensitive arthropod family | Capniidae               |                             |
| Inverts - Sensitive arthropod family | Chloroperlidae          |                             |
| Inverts - Sensitive arthropod family | Cordulegastridae        |                             |
| Inverts - Sensitive arthropod family | Corduliidae             |                             |
| Inverts - Sensitive arthropod family | Corydalidae             |                             |
| Inverts - Sensitive arthropod family | Deuterophlebiidae       |                             |
| Inverts - Sensitive arthropod family | Dixidae                 |                             |
| Inverts - Sensitive arthropod family | Elmidae                 |                             |
| Inverts - Sensitive arthropod family | Ephemerellidae          |                             |
| Inverts - Sensitive arthropod family | Eulichadidae            |                             |
| Inverts - Sensitive arthropod family | Glossosomatidae         |                             |
| Inverts - Sensitive arthropod family | Goeridae                |                             |

| Inverts - Sensitive arthropod family  | Helicopsychidae  |  |
|---------------------------------------|------------------|--|
| Inverts - Sensitive arthropod family  | Heptageniidae    |  |
| Inverts - Sensitive arthropod family  | Isonychiidae     |  |
| Inverts - Sensitive arthropod family  | Lepidostomatidae |  |
| Inverts - Sensitive arthropod family  | Leuctridae       |  |
| Inverts - Sensitive arthropod family  | Limnephilidae    |  |
| Inverts - Sensitive arthropod family  | Lutrochidae      |  |
| Inverts - Sensitive arthropod family  | Macromiidae      |  |
| Inverts - Sensitive arthropod family  | Nemouridae       |  |
| Inverts - Sensitive arthropod family  | Odontoceridae    |  |
| Inverts - Sensitive arthropod family  | Peltoperlidae    |  |
| Inverts - Sensitive arthropod family  | Perlidae         |  |
| Inverts - Sensitive arthropod family  | Perlodidae       |  |
| Inverts - Sensitive arthropod family  | Petaluridae      |  |
| Inverts - Sensitive arthropod family  | Philopotamidae   |  |
| Inverts - Sensitive arthropod family  | Phryganeidae     |  |
| Inverts - Sensitive arthropod family  | Psychomyiidae    |  |
| Inverts - Sensitive arthropod family  | Pteronarcyidae   |  |
| Inverts - Sensitive arthropod family  | Ptilodactylidae  |  |
| Inverts - Sensitive arthropod family  | Rhyacophilidae   |  |
| Inverts - Sensitive arthropod family  | Scirtidae        |  |
| Inverts - Sensitive arthropod family  | Sericostomatidae |  |
| Inverts - Sensitive arthropod family  | Taeniopterygidae |  |
| Inverts - Sensitive arthropod family  | Tanyderidae      |  |
| Inverts - Sensitive arthropod family  | Uenoidae         |  |
| Inverts - Sensitive crustacean family | Anisogammaridae  |  |
| Inverts - Sensitive crustacean family | Asellidae        |  |
| Inverts - Sensitive crustacean family | Astacidae        |  |
| Inverts - Sensitive crustacean family | Atyidae          |  |
| Inverts - Sensitive crustacean family | Chirocephalidae  |  |
| Inverts - Sensitive crustacean family | Crangonyctidae   |  |

Table 2: Summary of high conservation value areas by planning region

| Central Coast Planning Region |                |                      |                             |                             |              |
|-------------------------------|----------------|----------------------|-----------------------------|-----------------------------|--------------|
| CVA                           | Total # HUC12s | Fish CVAs (# HUC12s) | Herpetofauna CVAs (#HUC12s) | Invertebrate CVAs (#HUC12s) | Square Miles |
| Arroyo Seco                   | 2              | 0                    | 0                           | 2                           | 63           |
| Big Sur                       | 1              | 1                    | 0                           | 1                           | 58           |
| Cuyama River headwaters       | 1              | 0                    | 0                           | 1                           | 33           |
| Gaviota Creek                 | 6              | 4                    | 3                           | 0                           | 228          |
| Lower San Antonio             | 2              | 0                    | 2                           | 0                           | 78           |
| Monterey Bay                  | 33             | 33                   | 16                          | 8                           | 1,347        |
| San Antonio Creek             | 1              | 1                    | 0                           | 0                           | 38           |
| San Luis Obispo Creek         | 2              | 0                    | 0                           | 2                           | 85           |
| San Simeon Creek              | 1              | 0                    | 0                           | 1                           | 32           |
| Santa Margarita Creek         | 1              | 0                    | 1                           | 0                           | 36           |
| Santa Maria                   | 10             | 9                    | 3                           | 1                           | 368          |
| Santa Ynez                    | 15             | 11                   | 4                           | 0                           | 535          |
| Willow Creek                  | 3              | 1                    | 0                           | 2                           | 78           |
| TOTAL                         | 78             | 60                   | 29                          | 18                          | 2,981        |
|                               |                |                      |                             | Percent of Planning Region  | 26.4%        |

| Central Valley Planning Region  |                |                      |                             |                             |              |
|---------------------------------|----------------|----------------------|-----------------------------|-----------------------------|--------------|
| CVA                             | Total # HUC12s | Fish CVAs (# HUC12s) | Herpetofauna CVAs (#HUC12s) | Invertebrate CVAs (#HUC12s) | Square Miles |
| Antelope/Mill/Deer/Butte creeks | 49             | 45                   | 8                           | 19                          | 1,970        |
| Battle Creek                    | 14             | 12                   | 4                           | 1                           | 437          |
| Burney Creek                    | 1              | 0                    | 0                           | 1                           | 29           |
| Cedar Creek                     | 1              | 0                    | 0                           | 1                           | 37           |
| Clear Lake                      | 19             | 18                   | 2                           | 1                           | 524          |
| Corral Hollow                   | 2              | 0                    | 2                           | 0                           | 64           |
| Cow/Bear Creeks                 | 9              | 0                    | 2                           | 8                           | 307          |
| Coyote Creek                    | 1              | 0                    | 1                           | 0                           | 20           |
| Del Puerto Creek                | 2              | 2                    | 0                           | 0                           | 74           |
| Elder Creek                     | 1              | 0                    | 0                           | 1                           | 29           |

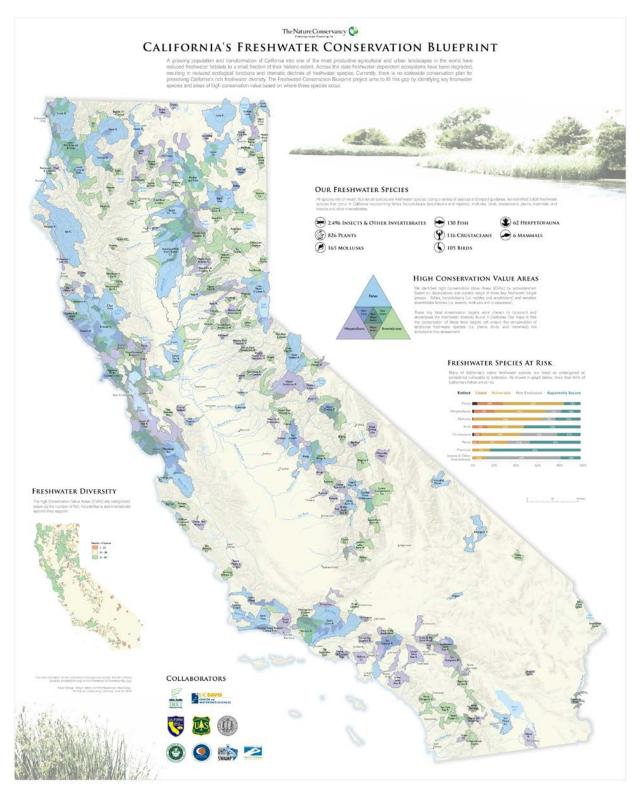
| Folsom               | 1   | 0   | 0   | 1                          | 46     |
|----------------------|-----|-----|-----|----------------------------|--------|
| Fresno               | 3   | 0   | 2   | 1                          | 98     |
| Grapevine            | 4   | 0   | 4   | 0                          | 144    |
| Kaweah               | 4   | 0   | 2   | 2                          | 130    |
| Kings                | 10  | 8   | 3   | 1                          | 316    |
| Lower Sac. & Delta   | 10  | 3   | 0   | 8                          | 806    |
| McCloud              | 5   | 3   | 4   | 0                          | 157    |
| Napa/Sonoma/Petaluma | 15  | 1   | 11  | 9                          | 693    |
| Pit-Fall and Tribs   | 38  | 18  | 13  | 23                         | 1,453  |
| Putah Creek          | 4   | 0   | 3   | 2                          | 141    |
| Sac Clear Creek      | 2   | 0   | 0   | 2                          | 98     |
| Sac Lake Shasta      | 7   | 0   | 4   | 3                          | 174    |
| San Antonio Res.     | 1   | 0   | 0   | 1                          | 40     |
| San Joaquin          | 10  | 8   | 5   | 0                          | 404    |
| South SF Bay & Tribs | 44  | 4   | 42  | 19                         | 1,713  |
| Squaw Creek Arm      | 1   | 0   | 0   | 1                          | 35     |
| Squaw Valley Creek   | 3   | 0   | 0   | 3                          | 131    |
| Stony Creek          | 1   | 0   | 0   | 1                          | 32     |
| Thomes Creek         | 1   | 0   | 0   | 1                          | 21     |
| Tule                 | 2   | 0   | 2   | 0                          | 49     |
| Tuolumne             | 2   | 2   | 0   | 0                          | 66     |
| Upper Sac.           | 7   | 0   | 7   | 2                          | 216    |
| West Fork Chowchilla | 1   | 0   | 1   | 0                          | 56     |
| Yuba R.              | 4   | 3   | 0   | 1                          | 159    |
| TOTAL                | 279 | 127 | 122 | 113                        | 10,668 |
|                      |     |     |     | Percent of Planning Region | 24.1%  |

| Colorado Planning Region |                |                      |                             |                             |              |
|--------------------------|----------------|----------------------|-----------------------------|-----------------------------|--------------|
| CVA                      | Total # HUC12s | Fish CVAs (# HUC12s) | Herpetofauna CVAs (#HUC12s) | Invertebrate CVAs (#HUC12s) | Square Miles |
| Alamo R.                 | 1              | 0                    | 1                           | 0                           | 158          |
| Anza Borrego             | 4              | 0                    | 1                           | 4                           | 142          |
| Bat Cave Wash            | 1              | 0                    | 0                           | 1                           | 35           |
| Colorado River           | 1              | 0                    | 1                           | 1                           | 84           |
| San Felipe Creek         | 6              | 6                    | 0                           | 0                           | 241          |
| San Gorgonio R.          | 9              | 0                    | 9                           | 3                           | 299          |
| Steamboat Cove           | 1              | 0                    | 0                           | 1                           | 25           |
| Upper San Felipe Creek   | 3              | 0                    | 3                           | 1                           | 120          |
| TOTAL                    | 26             | 6                    | 15                          | 11                          | 1,104        |
|                          |                |                      |                             | Percent of Planning Region  | 10.7%        |

| Great Basin Planning Region |                |                      |                             |                             |              |
|-----------------------------|----------------|----------------------|-----------------------------|-----------------------------|--------------|
| CVA                         | Total # HUC12s | Fish CVAs (# HUC12s) | Herpetofauna CVAs (#HUC12s) | Invertebrate CVAs (#HUC12s) | Square Miles |
| Amargosa Creek              | 1              | 0                    | 1                           | 0                           | 30           |
| Amargosa R.                 | 21             | 21                   | 0                           | 0                           | 892          |
| Big Pine Creek              | 1              | 0                    | 1                           | 0                           | 41           |
| Bishop Creek                | 1              | 0                    | 0                           | 1                           | 33           |
| Cottonball Marsh            | 1              | 1                    | 0                           | 0                           | 159          |
| Deep Springs Lake           | 3              | 0                    | 3                           | 0                           | 118          |
| Dragon Wash                 | 1              | 0                    | 1                           | 0                           | 30           |
| Kings Canyon                | 1              | 0                    | 0                           | 1                           | 40           |
| Little & Big Rock Wash      | 10             | 0                    | 9                           | 3                           | 342          |
| Lower Cottonwood Creek      | 2              | 0                    | 1                           | 1                           | 394          |
| Mono Lake                   | 2              | 0                    | 2                           | 0                           | 117          |
| Piute Valley                | 1              | 0                    | 0                           | 1                           | 61           |
| Rush Creek                  | 1              | 0                    | 1                           | 0                           | 58           |
| Shepherd Creek              | 3              | 0                    | 0                           | 3                           | 173          |
| Upper Owens R.              | 11             | 4                    | 6                           | 10                          | 497          |
| Waucoba Wash                | 3              | 0                    | 3                           | 0                           | 118          |
| TOTAL                       | 63             | 26                   | 28                          | 20                          | 3,104        |
|                             |                |                      |                             | Percent of Planning Region  | 8.6%         |

| Lahontan Planning Region |                |                      |                             |                             |              |  |
|--------------------------|----------------|----------------------|-----------------------------|-----------------------------|--------------|--|
| CVA                      | Total # HUC12s | Fish CVAs (# HUC12s) | Herpetofauna CVAs (#HUC12s) | Invertebrate CVAs (#HUC12s) | Square Miles |  |
| Cow Head                 | 2              | 2                    | 0                           | 0                           | 82           |  |
| Lower Alkali Lake        | 2              | 0                    | 0                           | 2                           | 71           |  |
| Middle Alkali Lake       | 2              | 1                    | 1                           | 0                           | 111          |  |
| Smoke Creek              | 2              | 0                    | 0                           | 2                           | 90           |  |
| Upper Alkali Lake        | 2              | 0                    | 1                           | 1                           | 67           |  |
| TOTAL                    | 10             | 3                    | 2                           | 5                           | 422          |  |
|                          |                |                      |                             | Percent of Planning Region  | 24.4%        |  |

| Modoc Planning Region |                |                      |                             |                             |              |  |
|-----------------------|----------------|----------------------|-----------------------------|-----------------------------|--------------|--|
| CVA                   | Total # HUC12s | Fish CVAs (# HUC12s) | Herpetofauna CVAs (#HUC12s) | Invertebrate CVAs (#HUC12s) | Square Miles |  |
| Fitzhugh Creek        | 1              | 0                    | 0                           | 1                           | 38           |  |
| Goose Lake            | 6              | 6                    | 3                           | 1                           | 327          |  |
| Jess Valley           | 1              | 0                    | 0                           | 1                           | 36           |  |
| North Fork Pit        | 1              | 0                    | 1                           | 0                           | 41           |  |
| Upper Parker Creek    | 1              | 0                    | 0                           | 1                           | 30           |  |
| Upper Pit             | 17             | 12                   | 0                           | 7                           | 664          |  |
| TOTAL                 | 27             | 18                   | 4                           | 11                          | 1,135        |  |
|                       |                |                      |                             | Percent of Planning Region  | 30.1%        |  |


| North Coast Planning Region         |                |                      |                             |                                |              |
|-------------------------------------|----------------|----------------------|-----------------------------|--------------------------------|--------------|
| CVA                                 | Total # HUC12s | Fish CVAs (# HUC12s) | Herpetofauna CVAs (#HUC12s) | Invertebrate CVAs<br>(#HUC12s) | Square Miles |
| Beaver Creek - Klamath              | 1              | 0                    | 0                           | 1                              | 19           |
| Big - Albion River                  | 4              | 0                    | 4                           | 1                              | 150          |
| Butte Valley                        | 2              | 0                    | 2                           | 0                              | 137          |
| Cottaneva - Juan Creek              | 2              | 0                    | 2                           | 0                              | 53           |
| Eel River                           | 38             | 38                   | 0                           | 0                              | 1,369        |
| Elk Creek                           | 3              | 0                    | 0                           | 3                              | 95           |
| Garcia River .                      | 6              | 3                    | 4                           | 3                              | 188          |
| Gualala River                       | 9              | 8                    | 6                           | 0                              | 347          |
| Hayfork Creek                       | 4              | 0                    | 0                           | 4                              | 137          |
| Headwaters Eel RIVER                | 5              | 0                    | 0                           | 5                              | 181          |
| Lagunitas Creek & Coastal<br>Tribs. | 19             | 11                   | 14                          | 10                             | 471          |
| Lost RIVER                          | 18             | 18                   | 0                           | 0                              | 630          |
| Lower - Mid Klamath & Tribs.        | 21             | 19                   | 3                           | 10                             | 820          |
| Lower Trinity & Tribs.              | 17             | 9                    | 0                           | 11                             | 595          |
| Mattole River                       | 4              | 4                    | 0                           | 0                              | 177          |
| Navarro River                       | 9              | 9                    | 0                           | 1                              | 315          |
| Outlet Creek                        | 2              | 0                    | 2                           | 0                              | 45           |
| Redwood - Mad & Coastal<br>Tribs.   | 7              | 5                    | 1                           | 2                              | 342          |
| Russian River                       | 40             | 36                   | 17                          | 13                             | 1,380        |
| Salmon River                        | 17             | 17                   | 2                           | 2                              | 550          |
| Scott River                         | 19             | 18                   | 1                           | 1                              | 617          |
| Shasta River                        | 5              | 5                    | 1                           | 0                              | 208          |
| Sheepy Creek                        | 1              | 0                    | 1                           | 0                              | 36           |
| Smith River                         | 23             | 18                   | 5                           | 8                              | 728          |
| Spaulding Res.                      | 1              | 0                    | 1                           | 0                              | 43           |
| Swift Creek                         | 1              | 0                    | 0                           | 1                              | 56           |
| Weaver Creek                        | 1              | 0                    | 0                           | 1                              | 50           |
| TOTAL                               | 279            | 218                  | 66                          | 77                             | 9,741        |
|                                     |                |                      |                             | Percent of Planning Region     | 49.2%        |
|                                     |                |                      |                             |                                |              |

| Sierra Nevada Planning Region   |                   |                         |                                |                                |                 |  |
|---------------------------------|-------------------|-------------------------|--------------------------------|--------------------------------|-----------------|--|
| CVA                             | Total #<br>HUC12s | Fish CVAs (#<br>HUC12s) | Herpetofauna CVAs<br>(#HUC12s) | Invertebrate CVAs<br>(#HUC12s) | Square<br>Miles |  |
| Antelope Creek                  | 1                 | 0                       | 0                              | 1                              | 20              |  |
| Bear R.                         | 2                 | 0                       | 2                              | 0                              | 81              |  |
| Big Grizzly                     | 1                 | 0                       | 0                              | 1                              | 52              |  |
| Clipper Creek                   | 1                 | 0                       | 0                              | 1                              | 42              |  |
| Eagle Lake                      | 18                | 16                      | 5                              | 3                              | 674             |  |
| East Fork Carson                | 1                 | 0                       | 0                              | 1                              | 43              |  |
| East Walker River               | 9                 | 3                       | 2                              | 6                              | 297             |  |
| Golden Trout Wilderness         | 5                 | 5                       | 0                              | 2                              | 216             |  |
| Goodrich Creek                  | 1                 | 0                       | 0                              | 1                              | 44              |  |
| Humbug Creek                    | 1                 | 0                       | 0                              | 1                              | 36              |  |
| Isabella Lake - Kern River      | 5                 | 0                       | 3                              | 3                              | 250             |  |
| Kelso Creek                     | 1                 | 0                       | 0                              | 1                              | 45              |  |
| Lake Tahoe - Truckee River      | 24                | 21                      | 4                              | 2                              | 882             |  |
| Little Kern River               | 3                 | 3                       | 0                              | 0                              | 133             |  |
| Little Last Chance              | 1                 | 0                       | 0                              | 1                              | 37              |  |
| Long Valley                     | 1                 | 0                       | 0                              | 1                              | 46              |  |
| Martinez Creek                  | 1                 | 0                       | 1                              | 0                              | 20              |  |
| Middle Fork American River      | 5                 | 0                       | 2                              | 3                              | 180             |  |
| Middle Fork Cosumnes River      | 2                 | 0                       | 1                              | 1                              | 45              |  |
| Middle Fork Feather River       | 4                 | 0                       | 3                              | 1                              | 137             |  |
| Middle Fork Tule River          | 2                 | 0                       | 2                              | 1                              | 86              |  |
| Middle North Fork Stanislaus R. | 1                 | 0                       | 1                              | 0                              | 41              |  |
| Nelson-Jamison Creek            | 4                 | 0                       | 0                              | 4                              | 125             |  |
| Niagra Creek                    | 1                 | 0                       | 0                              | 1                              | 43              |  |
| North Fork Feather River        | 32                | 0                       | 13                             | 26                             | 1,123           |  |
| North Fork Mokelumne River      | 1                 | 0                       | 0                              | 1                              | 49              |  |
| Silver Creek                    | 3                 | 0                       | 0                              | 3                              | 108             |  |
| Silver King Creek               | 1                 | 1                       | 0                              | 1                              | 43              |  |
| Smithneck                       | 2                 | 0                       | 0                              | 2                              | 69              |  |
| South Fork American River       | 6                 | 0                       | 2                              | 6                              | 186             |  |
| South Fork Feather River        | 2                 | 0                       | 2                              | 0                              | 48              |  |

| South Fork Kern River     | 3   | 0  | 0  | 3                          | 105   |
|---------------------------|-----|----|----|----------------------------|-------|
| South Fork Merced River   | 4   | 0  | 0  | 4                          | 169   |
| Stanislaus R. Confluences | 4   | 0  | 1  | 3                          | 125   |
| Upper Kaweah River        | 5   | 0  | 3  | 2                          | 157   |
| Upper Kern River          | 4   | 4  | 0  | 0                          | 114   |
| Upper Kings River         | 10  | 8  | 2  | 5                          | 375   |
| Upper Susan River         | 6   | 0  | 1  | 6                          | 198   |
| Upper Tuolumne River      | 20  | 0  | 15 | 6                          | 728   |
| Upper Yuba River          | 13  | 0  | 8  | 9                          | 527   |
| Wabena Creek              | 1   | 0  | 0  | 1                          | 54    |
| West Walker River         | 15  | 15 | 0  | 0                          | 435   |
| TOTAL                     | 227 | 76 | 73 | 114                        | 8,190 |
|                           |     |    |    | Percent of Planning Region | 39.4% |

| South Coast Planning Region |                |                      |                             |                             |              |  |
|-----------------------------|----------------|----------------------|-----------------------------|-----------------------------|--------------|--|
| CVA                         | Total # HUC12s | Fish CVAs (# HUC12s) | Herpetofauna CVAs (#HUC12s) | Invertebrate CVAs (#HUC12s) | Square Miles |  |
| Ballona Creek               | 1              | 0                    | 1                           | 0                           | 128          |  |
| Big Sycamore Creek          | 1              | 0                    | 0                           | 1                           | 21           |  |
| City Creek                  | 1              | 0                    | 1                           | 0                           | 23           |  |
| Cottonwood - Tijuana        | 2              | 0                    | 0                           | 2                           | 83           |  |
| Headwaters Santa Ana River  | 7              | 1                    | 7                           | 2                           | 251          |  |
| Lower Santa Ana River       | 5              | 0                    | 5                           | 0                           | 413          |  |
| Malibu Creek                | 3              | 1                    | 3                           | 0                           | 71           |  |
| San Gabriel River           | 15             | 11                   | 12                          | 0                           | 564          |  |
| San Luis Rey River          | 6              | 0                    | 0                           | 6                           | 244          |  |
| Santa Clara River           | 31             | 31                   | 6                           | 3                           | 1,241        |  |
| Santa Margarita River       | 3              | 0                    | 0                           | 3                           | 112          |  |
| Santa Ysabel Creek          | 5              | 0                    | 0                           | 5                           | 176          |  |
| Upper Los Angeles River     | 2              | 0                    | 2                           | 0                           | 78           |  |
| Upper San Jacinto River     | 2              | 0                    | 0                           | 2                           | 90           |  |
| Ventura River               | 7              | 6                    | 0                           | 7                           | 244          |  |
| Viejas Creek                | 2              | 0                    | 1                           | 1                           | 72           |  |
| TOTAL                       | 93             | 50                   | 38                          | 32                          | 3,812        |  |
|                             |                |                      |                             | Percent of Planning Region  | 34.8%        |  |

Appendix A: California's Freshwater Conservation Blueprint



Download available at

http://scienceforconservation.org/map\_gallery/CA\_freshwater\_conservation\_blueprint

## Appendix B: Criteria used to define freshwater taxa by taxonomic group

#### 1. FISH

Freshwater fishes are defined as those that spawn in freshwater. This also includes several
estuarine taxa commonly found in brackish water such as starry flounder, striped mullet and
staghorn sculpin.

#### 2. PLANTS

- Plant taxa that occur exclusively in freshwater and have special adaptations for living submerged in water, or at the water's surface. Includes free-floating aquatic plans and emergent wetland plants rooted beneath the water surface (e.g. *Nuphar polysepala*).
- Plant taxa that occur primarily in freshwater wetland habitats but are not strictly aquatic (e.g. *Typha angustifolia*).
- Plant taxa requiring freshwater inundation to complete their life-cycle, such as plants occurring in long-inundated portions of vernal pools (e.g. *Orcuttia californica*).
- Plant taxa associated with freshwater and aquatic habitats over much of their range or life-cycle as identified by expert botanists.
- Plant taxa identified in the Jepson Manual of Vascular Plants of California as associated with wetland habitats such as marshes, lakes, vernal pools, fens, springs, and bogs, and dependent on wetland habitat.
- Plant taxa identified as Wetland Obligates in the U.S. Army Corps of Engineers list of wetland plant taxa.
- Plant taxa identified as Facultative Wetland plants in the U.S. Army Corps of Engineers list of wetland plant taxa, and identified by expert botanists as dependent on freshwater wetland or aquatic habitats.

## 3. HERPTEFAUNA

- Taxa that exclusively rely on freshwater or freshwater-dependent vegetation communities in California in order to complete one or more stages of a reproductive cycle.
- Taxa that forage within freshwater, either as obligates (e.g., *Actinemys marmorata* and *Thamnophis gigas*), non-obligates (e.g., *T. elegans* and *T. ordinoides*), or as obligates and non-obligates depending on point of ontogeny (i.e., larval and adult amphibian of a single taxa).
- Relict taxa occurring within mesic microhabitats within xeric landscapes that would not persist in such regions without freshwater springs, such as *Batrachoseps campi* (a plethodontid salamander that does not go through a larval stage).
- Taxa that do not require freshwater for foraging or any part of their reproductive cycle, but are
  typically found in California occurring within the splash zone of freshwater springs and creeks,
  such as *Plethodon dunni* (a plethodontid salamander that does not go through a larval stage).

#### 4. BIRDS

A) Criteria for Inclusion

- Taxa that exclusively rely on freshwater or freshwater-dependent vegetation communities in California, including taxa strongly associated with riparian vegetation.
- Taxa that breed widely across western North America in freshwater habitats and migrate to California where a substantial portion, but not all, of their wintering habitat consists of freshwater habitats
- Taxa that use coastal waters during winter and migration but rely completely on freshwater for breeding in California (e.g, Harlequin Duck, American White Pelican, Western Grebe)
- Taxa that require freshwater inputs in to saline systems where reductions in freshwater inputs could result in complete habitat loss or substantial changes vegetation and habitat suitability (e.g., taxa that are only found at the Salton Sea, Saltmarsh Common Yellowthroat).
- Taxa that winter or breed in both freshwater and saline wetlands, but have large portions of their California population dependent on inland freshwater habitats, including flooded agriculture.

## B) Criteria for Exclusion

- Taxa not dependent on the regular presence of freshwater or freshwater-dependent habitats.
- Taxa that no longer occur in or are not native to the region.
- Taxa were omitted if they are rare and do not contribute in a meaningful way to the avifauna of the region. – i.e., primarily lost "vagrants," even if the occur every year (e.g., Swamp Sparrow, American Redstart).

## 5. INVERTEBRATES

- Benthic macroinvertebrates (BMIs) are those included on the Southwest Association of
  Freshwater Invertebrate Taxonomists (SAFIT) Standard Taxonomic Effort (STE) list collected as
  part of freshwater bioassessment in the southwestern United States. The list contains BMI taxa
  known to occur in streams, lakes, or wetlands, including vernal pools, but special emphasis was
  placed on stream taxa since freshwater bioassessment is most frequently conducted in that
  habitat type. The list was compiled from published literature sources and from records in the
  State Water Board's bioassessment database, the latter being derived from surveys of
  thousands of stream sites throughout California.
- All taxa in the SAFIT list are benthic in one or more life stages and utilize freshwater habitats in one or more of the following critical life functions: feeding, mating, egg deposition/development, and larval development to maturity.
- The taxa list is more comprehensive for some taxonomic groups than others, reflecting the knowledge base and interests of the authors and other taxonomists at California's Aquatic Bioassessment Lab, availability and regional synoptic coverage of primary taxonomic literature, and likelihood of obtaining properly preserved specimens in typical benthic samples. For example, the list is comprehensive for most aquatic insect groups such as mayflies, stoneflies, dragonflies, caddisflies, beetles, the dipteran suborder Nematocera, etc. The dipteran suborder Brachycera is a notable exception, with most taxa being listed at genus level. The taxa lists also include surface-dwelling groups like Gerridae (water striders, order Hemiptera) and Gyrinidae (whirligig beetles, order Coleoptera), but exclude taxa associated with riparian zones, shoredwelling taxa, and plant tissue inhabitants in taxonomic groups such as Collembola, Staphylinidae, Heteroceridae, Chrysomelidae, Curculionidae, Saldidae, Isopoda and Amphipoda.

- The list is comprehensive for benthic crustaceans except Ostracoda. The list does not include planktonic microcrustacea (Copepoda and Cladocera). No attempt has been made to provide comprehensive taxa lists for freshwater Annelida (segmented worms) as preservation is typically poor in benthic samples, but generic lists are provided for leeches and polychaetes. Similarly, generic listings are included for Acari (water mites). An extensive taxonomic literature is available for these groups and could support compilation of taxa lists by appropriate experts in future versions. The list also excludes freshwater parasites such as Branchiura and mermithid Nematoda, the Branchiobdella, which are commensals on crayfish, and the Nematomorpha which are parasitic on terrestrial insects but are found in freshwater for part of their life cycle.
- Phylum Mollusca is variably treated: taxa lists are generally comprehensive for taxa that occur in larger streams and rivers, despite improper preservation that prevents taxa-level identifications in typical benthic samples. Pebblesnails (*Fluminicola sp.*) are a diverse group in springs of the southwestern US, but a taxa list has not been included.