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INTRODUCTION

Elopiformes, Albuliformes, Notacanthiformes and 
Anguilliformes have been included in Elopomorpha on 
the basis of their leaf–like larval form, termed “lepto-
cephalus” (Greenwood et al., 1966).  Of those orders, 
Anguilliformes is the largest group including about 791 
species in 141 genera, representing 15 families (Nelson, 
2006).  As yet, a great many questions (e.g. natural habi-
tat of leptocephali) to be solved (Smith, 1989), the lifecy-
cle of most species being poorly known as a consequence.  
Although information on leptocephali collected in off-
shore regions is highly important in the elucidation of the 
lifecycles of anguilliform fishes, classification of such lep-
tocephali is often being difficult, many species not yet 
being attributable to specific families (Smith, 1989). 

On the other hand, of the 17 families, 69 genera and 
163 species of adult Anguilliform fishes known from Japan 
(Hatooka, 2013), only 33 species of leptocephali have 
been reported from the Japan region (Mochioka et al., 
2014; Tawa and Mochioka, 2009; Tawa et al., 2012).  To 
clarify the lifecycle of such as anguilliform and other elo-

pomorph fishes, it is necessary to identify leptocephali 
at the species level.

The most abundant leptocephali around Japan were 
Gnathophis spp., including G. heterognathos and G. 
ginanago (Mochioka et al., 2014; Uematsu et al., 1990; 
Uematsu et al., 1992; Miya and Hirosawa, 1994; Mochioka 
et al., 2001; Miller et al., 2002; Takahashi et al., 2008).  
Although G. heterognathos and G. ginanago have been 
separated on the basis of total number of myomeres (TM: 
116–128 vs 123–139, respectively), number of myomeres 
anterior to the last vertical blood vessel (VBV last: 36–45 
vs 41–50), body height, and absence (presence) of melan-
ophores on the lateral surface of the posterior spinal cord 
(Tabeta and Mochioka, 1988), description about melano-
phores for to separate these two species have been 
removed in recent study (Mochioka et al., 2014).  It 
caused by some specimens collected from the Kuroshio–
Oyashio transition region (transition region) that were 
equivocal in their affinities.  But the details of such mor-
phological features have not been mentioned. 

The only consistent morphological characteristics 
that are transferred through metamorphosis of 
Elopomorpha species is the number of myomeres (in lar-
vae), which match the number of vertebrae (in adults) 
(Smith, 1979).  However, many species have overlapping 
myomere/vertebral numbers.  Accordingly, matching of 
larvae and adults is best done by collecting series sam-
ples of each growth stage (Mochioka et al., 2014; Tawa 
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and Mochioka, 2009), although sample collection espe-
cially in offshore waters is sometimes difficult and at best 
offers only fragmentary information, making identifica-
tions difficult.  In the present study, myomere numbers 
and pigmentation pattern were used to classify lepto-
cephali, supported by species–specific DNA sequence.  
Molecular identification has frequently been applied in 
recent years to eggs and leptocephali of a number of 
anguilliform species (e.g. Aoyama et al., 2001; Watanabe 
et al., 2004; Ma et al., 2005, 2007; Kimura et al., 2006; 
Kurogi, 2008), successfully demonstrating the validity of 
using the mitochondrial DNA 16S rRNA gene for such 
species.  This study focused on Gnathophis lepto-
cephali, reexamined the current morphological classifi-
cation of the genus using for comparison mitochondrial 
DNA 16S rRNA gene sequence analysis.

MATERIALS AND METHODS

Specimens
A total of 394 Gnathophis leptocephali were col-

lected at night from the transition region (140° – 160°E, 
35° – 40°N) (Fig. 1) with a mid water trawl net (Model 
JP–1, Nichimo Co., Ltd.) towed in the surface layer (< 
30 m depth) at a speed of ca. 3.5 knots for 30 minutes by 
the T/V Hokuho Maru (664 gross tonnage, 2200 hp), 
chartered by the National Research Institute of Fisheries 
Science during 8–30 May 2002.  The trawl net had a total 
length of 89 m, opening area of about 530 m2, mesh sizes 
of 57–1000 mm, and 8 mm meshed cod end.  Leptocephali 
specimens were initially stored in sea water at – 30ºC, 
and after thawing and measurement, preserved in 99.5% 
ethanol.  Morphometric and meristic characters (total 
length: TL, pre–dorsal length: PDL, pre–anal langth: PAL, 
head length: HL, eye diameter: ED, maximum body 
height: BH, total myomere: TM, pre–dorsal myomere: 
PDM, pre–anal myomere: PAM, number of myomere on 
first vertical blood vessel: VBV 1st, number of myomere 
on last vertical blood vessel: VBV last) were measured or 
counted.  Measurement and myomere counting methods 
followed Mochioka et al. (2014).  PAM/TM ratio was cal-
culated for to estimate their metamorphic stage (e.g. 

Tanaka et al., 1987; Lee and Byun, 1996).  These speci-
mens were classified into four morphotypes, Types A1, 
A2, B1 and B2 based on TM, VBV last, BH/TL ratio and 
absence (presence) of posterior spinal cord melanophores 
(Fig. 2).  When TM or VBV last were overlapped between 
each type, BH/TL ratio was used for determine (details 
were shown in result).  Types A1 (n=5), A2 (n=4), B1 
(n=5), and B2 (n=6) were subjected to molecular analy-
sis.  Adult specimens of G. heterognathos (GH ad: n=6) 
and G. ginanago (GG ad: n=5) were collected by trawler 
from Tosa bay (Kochi Pref.), off Choshi (Chiba Pref.), and 
off Soma (Fukushima Pref.).  These samples were stored 
at –20ºC.  After thawing and measurement, muscle tis-
sue samples were excised and preserved in 99.5% etha-
nol for DNA analysis.  Measurement and counting meth-
ods followed Hatooka (2013).  All specimens used in this 
study were deposited in the collection of the Kyushu 
University Museum (KYUM).

DNA extraction, amplification, and sequencing
Muscle tissue samples were subjected to DNA 

extraction.  Tissues were digested with Proteinase K at 
50ºC and DNA was purified by standard phenol: chloro-
form extraction and ethanol precipitation, or by using 
DNA extraction kits (DNeasy Tissue Kit; QIAGEN 
GmbH, Hilden, Germany).  PCR (polymerase chain reac-
tion) was used to amplify the partial mitochondrial DNA 
16S rRNA gene, in a total of 50 μl volumes containing 
5 μl 10 × PCR buffer, 0.2 mM each deoxynucleosyde tri-

Fig. 1.   Sampling locations of leptocephali in the Kuroshio–Oyashio 
transition region during a cruise of the T/V Hokuho Maru 
(8–30 May 2002).

Fig. 2.   Leptocephalus larvae of Gnathophis spp. (Types A1, A2, 
B1 and B2) collected from the Kuroshio–Oyashio transi-
tion region.  a: Lateral view of Type A1.  b: Tip of caudal 
region of Type A1.  c: tip of caudal region of Type A2.  d: 
Lateral view of Type B1.  e: Tip of caudal region of Type 
B1.  f: Tip of caudal region of Type B2. 
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phosphate (dNTP), 0.2 μM each primer, 2.5 units Taq 
DNA polymerase (TaKaRa Ex Taq; TaKaRa, Shiga 
Japan) and 10 ng template DNA.  Primers RRNA–A 
(5’–GGTCCWRCCTGCCCAGTGA) and RRNA–B 
(5’–CCGGTCTGRACYAGATCACGT) for the mitochon-
drial DNA 16S rRNA gene were used.  The thermal pro-
file was 94ºC/40 s (denaturing), 50ºC/40 s (annealing), 
and 72ºC/40 s (extension), for 30 cycles on a TaKaRa 
PCR Thermal Cycler PERSONAL (TaKaRa, Shiga Japan) 
or PTC–100 Programmable Thermal Controller (MJ 
RESEARCH, Watertown, Massachusetts, USA).  Amplified 
DNA was purified using the QIAquick PCR Purification 
Kit (QIAGEN, GmbH, Hilden, Germany) and sequenced 
directly using the BigDye Terminator Cycle Sequencing 
Ready Reaction Kit Ver. 2 or 3 (Applied Biosystems, 
Foster City, CA, USA).  They were sequenced on an 
automated DNA sequencer (ABI Prism 3100 Genetic 
Analyzer).  The nucleotide sequences were deposited 
with GenBank, the DNA database (accession numbers 
being AB752344–AB752374).

Sequence analyses
DNA sequences were aligned using the computer 

programs Edit View ver. 1.0.1 (Applied Biosystems), 
Genetic Mac 8.0(Software Development Co.), and 
ClustalX (Thompson et al., 1997).  A neighbor–joining 
(NJ) dendrogram (Saitou and Nei, 1987) based on 
Kimura’s two parameter model (Kimura, 1980) was con-
structed so as to determine the genetic relationships using 
the MEGA 3.1 program package (Kumar et al., 2004).  
Bootstrap probabilities of nodes (P) (Efron, 1979) were 
calculated from 1000 replications using the MEGA 3.1 
program package (Kumar et al., 2004).  The haplotype 
network, estimated with the 95% statistical limits of par-
simony using the algorithm in Statistical Parsimony 
method (Templeton et al., 1992) was constructed by the 
TCS 1.21 program package (Clement et al., 2000). 

Materials examined
GH ad1: KYUM–PI 1837; AB752344, GH ad2: 

KYUM–PI 1818; AB752345, GH ad3: KYUM–PI 1827; 
AB752346, GH ad4: KYUM–PI 1840; AB752347, GH ad5: 
KYUM–PI 1842; AB752348, GH ad6: KYUM–PI 1836; 
AB752349, GG ad1: KYUM–PI 1900; AB752350, GG ad2: 
KYUM–PI 1903; AB752351, GG ad3: KYUM–PI 1906; 
AB752352, GG ad4: KYUM–PI 1913; AB752353, GG ad5: 
KYUM–PI 1908; AB752354, Type A1–1: KYUM–PI 1780–
1; AB752355, Type A1–2: KYUM–PI 1780–6; AB752356, 
Type A1–3: KYUM–PI 1670–16; AB752357, Type A1–4: 
KYUM–PI 1718–18; AB752358, Type A1–5: KYUM–PI 
1799–17; AB752359, Type A2–1: KYUM–PI 1695–4; 
AB752360, Type A2–2: KYUM–PI 1695–5; AB752361, 
Type A2–3: KYUM–PI 1745–8; AB752362, Type A2–4: 
KYUM–PI 1753–6; AB752363, Type B1–1: KYUM–PI 
1696–2; AB752364, Type B1–2: KYUM–PI 1696–8; 
AB752365, Type B1–3: KYUM–PI 1696–10; AB752366, 
Type B1–4: KYUM–PI 1746–1; AB752367, Type B1–5: 
KYUM–PI 1746–11; AB752368, Type B2–1: KYUM–PI 
1773; AB752369, Type B2–2: KYUM–PI 1781; AB752370, 
Type B2–3: KYUM–PI 1713–1; AB752371, Type B2–4: 
KYUM–PI 1713–2; AB752372, Type B2–5: KYUM–PI 
1713–4; AB752373, Type B2–6: KYUM–PI 1746–17; 
AB752374 (Sample ID of this study: Museum reg. no.; 
Accession no.).

RESULTS

Morphotypes of leptocephali
Gnathophis leptocephali collected from the 

Kuroshio–Oyashio transition region were first classified 
into two groups (Groups A and B) on the basis of TM, 
VBV last and BH/TL ratio (Table), with further subdivi-
sion on the basis of absence (Types A1 and B2) or pres-
ence (Types A2 and B1) of posterior spinal cord melano-
phores (Fig. 2, Table).  Types A1 and A2 had similar TM 
(117–128 and 119–126, respectively), VBV last (36–44 
and 40–44, respectively) and BH/TL ratio (0.083–0.123 

Table 1.  Morphometric and meristic characters of each types of Gnathophis leptocephali

Leptocephalus 
type

n TL BH/TL ratio Pigmentation

Type A1 58 69.6–98.9 (88.3±6.1) 0.083–0.123 (0.106±0.007) Absent

Type A2 50 84.0–100.5 (94.1±3.6) 0.082–0.127 (0.109±0.008) Present

Type B1 131 98.5–126.9 (110.7±5.0) 0.093–0.137 (0.120±0.008) Present

Type B2 155 74.0–120.3 (106.2±8.8) 0.080–0.139 (0.118±0.009) Absent

Leptocephalus 
type

n VBV 1st VBV last PAM PDM TM PAM/TM ratio

Type A1 58 9–12 (10.8±0.8) 36–44 (41.5±1.3) 91–106 (98.7±2.9) 70–97 (75.7±4.8) 117–128 (121.8±2.5) 0.74–0.85 (0.81±0.02)

Type A2 50 10–12 (10.7±0.7) 40–44 (41.6±1.0) 62–102 (94.9±6.8) 45–88 (72.7±5.4) 119–126 (122.0±2.2) 0.51–0.85 (0.78±0.06)

Type B1 131 10–13 (11.8±0.6) 41–48 (45.8±1.2) 64–111 (98.3±7.9) 43–90 (77.8±7.7) 126–134 (130.0±1.8) 0.50–0.83 (0.76±0.06)

Type B2 155 10–13 (11.7±0.7) 43–48 (46.0±1.1) 66–118 (103.8±4.4) 39–103 (83.2±5.3) 125–135 (129.9±2.0) 0.51–0.90 (0.80±0.03)

Parentheses show average ± standard deviation. TL: total length (mm), BH: body height (mm), Pigmentation: melanophores on the lateral surface of the posterior 
spinal cord, VBV 1 st: 1st vertical blood vessel myomere, VBV last.: last vertical blood vessel myomere, PAM: preanal myomere, PDM: predorsal myomere, TM: 
total myomere
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and 0.082–0.127, respectively) (Table).  Similarly, Types 
B1 (TM: 126–134, VBV last: 41–48, BH/TL ratio: 0.093–
0.137) and B2 (TM: 125–135, VBV last: 43–48, BH/TL 
ratio: 0.080–0.139) showed close morphological identi-
ties, there being no significant differences in TM 
(p>0.05, t–test), VBV last (p>0.05, t–test) and BH/TL 
ratio (p>0.05, t–test) between Types A1 and A2, or 
Types B1 and B2. 

Some morphometric or meristic characters showed 
significant difference among each groups or types.  TL of 
Type A2 was significantly larger than that of Type A1 
(p<0.01, t–test).  TL of Type B1 was larger than that of 
Type B2 (p<0.01, t–test).  BH/TL ratio of Group B was 
significantly larger than that of Group A (p<0.01, t–test) 
(Table).  Relationship between TL and PAM/TM ratio 
showed significant difference among both Types A1 and 
A2 or B1 and B2 (Fig. 3, Table). 

Molecular genetic identification
A total of 31 specimens, including adult G. heterog-

nathos (n=6) and G. ginanago (n=5), and Type A1 
(n=5), A2 (n=4), B1 (n=5), and B2 (n=6) leptocephali 
were subjected to DNA analysis, a total of 495 base pairs 
of the mitochondrial DNA 16S rRNA gene for each speci-
men being determined.  Among the adult G. heterogna-
thos and G. ginanago specimens, seven instances of 
interspecific variation were detected, at pair of 86, 88, 

Fig. 3.   Relationship between total length and pre–anal myomere 
(PAM) / total myomere (TM) ratio of each type of 
Gnathophis spp. leptocephali.

Fig. 4.   a: Neighbor–Joining dendrogram for adults and leptocephali of Gnathophis spp. derived 
from mitochondrial DNA 16S rRNA gene sequences.  b: Mitochondrial DNA 16S rRNA 
haplotype network estimated with 95% statistical limits of parsimony using the algorithm 
in Templeton et al. (1992). Number of variable sites from the 5’ end indicated.  * shows 
number of nucleotide of interspecific variation.  GH ad: adult of Gnathophis heterogna-
thos, GG ad: adult of Gnathophis ginanago.
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197, 200, 204, 299, and 307.  Single deletions (insertions) 
occurred between G. heterognathos and Group A (Types 
A1 and A2), and between G. ginanago and Group B 
(Types B1 and B2).

The neighbor–joining (NJ) dendrogram (Saitou and 
Nei, 1987) based on Kimura’s two parameter model 
(Kimura, 1980), showed two clades with the 99% boot-
strap probabilities (Fig. 4a).  Moreover, both clades were 
supported by the haplotype network according to the 
Statistical Parsimony method (Templeton et al., 1992) 
(Fig. 4b).  Adult G. heterognathos, and Types A1 and A2 
were included in one clade, while adult G. ginanago, 
and Types B1 and B2 were clustered in the other clade.  
The number of nucleotide replacement (sequence diver-
gence) in the first clade was 0–3 (0–0.61%), in the sec-
ond clade, 0–1 (0–0.20%), and between each clade, 6–9 
(1.21–1.81%), which was higher than that of in each 
clade.  Therefore, the Gnathophis spp. leptocephali could 
be reasonably identified as either G. heterognathos or 
G. ginanago.

DISCUSSION

Gnathophis leptocephali collected from the transi-
tion region were sorted into four types (Types A1, A2, B1, 
and B2) based on the currently accepted morphological 
analysis (Fig. 2, Table).  Type A1 was characterized by 
117–128 TM, 36–44 VBV last, and absent of posterior 
spinal cord melanophores.  These characters matched 
those of G. heterognathos.  Type A2 had almost the same 
range of TM (119–126) and VBV last (40–44) as A1, but 
posterior spinal cord melanophores were present.  The 
characters of Type B1 (TM: 126–134, VBV last: 41–48, 
presence of posterior spinal cord melanophores) matched 
those of G. ginanago, and those of Type B2 having simi-
lar TM (125–135) and VBV last (43–48) values, but lack-
ing posterior spinal cord melanophores. 

Alignment analysis of the mitochondrial DNA 16S 
rRNA gene of adult specimens indicated seven interspe-
cific variations among G. heterognathos and G. ginan-
ago.  Intraspecific variations were not detected in adult 
of G. heterognathos, although one was apparent in G. 
ginanago.  Clearly, adult of G. heterognathos and G. 
ginanago occupied different clades (Fig. 4).  These 
results confirmed the validity of seven interspecific vari-
ations for discriminating between G. heterognathos and 
G. ginanago, the 16S rRNA region therefore being use-
ful for identifying the two species.  Gnathophis lepto-
cephali were also divided into two groups, Groups A 
(including Types A1 and A2) and B (including Types B1 
and B2) (Fig. 4).  These two groups have been charac-
terized by the same interspecific variations seen in adult 
G. heterognathos and G. ginanago.  As shown in Fig. 4, 
Types A1 and A2, and Types B1 and B2 were included in 
the same clades as adult of G. heterognathos and G. 
ginanago, respectively.  These results are indicating 
that the two groups of leptocephali could be identified as 
G. heterognathos and G. ginanago, respectively. 

Pigmentation characteristics of leptocephali, traces 
of which persist for a time in juveniles, can provide a valid 

basis for identifying some species (Smith, 1979), partic-
ularly so when myomere numbers overlap (Mochioka et 
al., 2014; Smith, 1989).  However the present study raised 
questions regarding the validity of pigmentation for iden-
tification of leptocephali in this case.  Furthermore, 
although a single row of lateral pigment has been recog-
nized as a discriminating character of Conger myriaster 
leptocephali (Tabeta and Mochioka, 1988), resent stud-
ies have reported pattern variations in the midlateral 
pigmentations of C. myriaster (Kurogi, 2008). Ma et al. 
(2007) suggested that these varied pigmentation pat-
terns of C. myriaster leptocephali were depend on their 
growth.  Presence of posterior spinal cord melanophores 
was shown in specimens with larger TL or decreasing 
PAM/TM ratio in each species (Fig. 3).  Specimens allo-
cated to the two types in each species in the present 
study with significant difference in TL and PAM/TM ratio 
(p<0.01, t–test) (Table) suggested the morphological 
change with metamorphosis.  Therefore pigment varia-
tions of these types of G. heterognathos and G. ginan-
ago leptocephali were considered to depend on their 
growth and metamorphosis.  As summarized in Table, 50 
of 108 specimens of G. heterognathos leptocephali had 
inconsistent pigmentation patterns.  Furthermore, 155 of 
286 G. ginanago leptocephali also could not be identi-
fied by the described pigmentation pattern.  These results 
indicate that “absence (presence) of posterior spinal 
cord melanophores (Tabeta and Mochioka, 1988)” should 
not be considered a diagnostic character of Gnathophis 
spp. leptochali. 

The present study provides further evidence of the 
usefulness of DNA studies for clarification of larval spe-
cies’ identities, although the importance of morphologi-
cal characters must also receive continuing emphasis. 
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