

HYDRAULIC LUBE FILTRATION

Products Catalog

High Pressure Filters

Element Technology

Medium Pressure Filters

> Low Pressure Filters

Suction Filters

Manifold Cartridge Kits & Filters

Custom Solutions

Vision Mission Value Quality Statement:

Vision:

We design solutions for industry and for the success of our customers by:

- Optimizing the use of technology with applications
- Using an efficient, timely customized process to fill specific customer needs
- Increasing capacity and streamlining operations
 Breconing our reputation for reliability
- Preserving our reputation for reliability
 Expanding globally to support our customers and stay current with new technologies
- Leveraging and sharing our knowledge to meet challenges openly
- Nurturing a creative, cooperative culture committed to the individual and to providing the best solutions for the customers

Mission Statement:

Partnerships

Innovating products, processes and services to improve performance and efficiency in our industry.

Schroeder Industries Core | Shared Values: Honesty

Day-to-Day Behaviors:

- Tell the truth at all times, in all matters
- Have open lines of communication and share timely, accurate and thorough information with internal and external customers
- Do not steal and respect each other's and the Company's property

Teamwork

Day-to-Day Behaviors:

- Work as a team
- Cooperate within and between departments
- Coach and mentor; listen and share knowledge, experience and ideas
- Treat others with respect and consideration in all circumstances
- Invest in the development and growth of all team members
- Keep our work areas safe and clean

Leadership

Day-to-Day Behaviors:

- Recognize that we are empowered to act as leaders and participate in the decision making process
- Take responsibility for and have pride in our work
- Set goals and celebrate the efforts and accomplishments of our teammates
- Value our greater community and take leadership roles in our neighborhoods and for the environment

Ingenuity | Innovation

Day-to-Day Behaviors:

- Value innovative thinking and the generation and implementation of new ideas to solve customer (internal & external) problems
- Be flexible and adapt to new ideas and different ways of doing things
- Utilize available resources for new designs and innovations

Quality Policy:

Continuous improvement in our business to ensure a quality product, shipped on time, without compromise.

Limitations of Liability

The information contained in the catalog (including, but not limited to, specifications, configurations, drawings, photographs, dimensions and packaging) is for descriptive purposes only. Any description of the products contained in this catalog is for the sole purpose of identifying the products and shall not be deemed a warranty that the products shall conform to such description. No representation or warranty is made concerning the information contained in this catalog as to the accuracy or completeness of such information. Schroeder Industries LLC reserves the right to make changes to the products included in this catalog without notice. A copy of our warranty terms and other conditions of sale are available upon request. A placed order constitutes acceptance of Schroeder's terms and conditions.

Failure, improper selection or improper use of the products and/or systems described herein or related items can cause death, personal injury and property damage.

This catalog and other documentation from Schroeder Industries provides product information for consideration by users possessing technical expertise.

It is important that the user analyze all aspects of the specific application and review the current product information in the current catalog. Due to the variety of operating conditions and applications for these products, the user is solely responsible for making the final product selection and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, design, availability and pricing are subject to change at any time without notice.

Contents at a Glance

Detailed Contents: Hydraulic & Lube Filters	4
Filter Housing: Flow vs. Operating Pressure	6
	/
	0
Capabilities	10
	10
Section 1: Principles of Filtration	11
Contamination Control Fundamentals	12
Element Media Selection Considerations	20
7 Stops to Selection 2 Eilter	20
Filter Selection Considerations	23
	24
Costion 3: Element Technology	20
Section 2: Element Technology	29
Excellement Case Weight	30
GeoSeale Selection Guide	3/
Private Labeled Elements	35
Anti-Stat Pleat Flements (Synthetic)	36
DirtCatcher® Elements.	36
BestFit [®] High Performance Replacement Elements.	37
CoreCentric [®] Coreless Element	38
Melt-Blown and Spun Bonded Filter Elements	38
E Media Elements (Cellulose)	39
M Media Elements (Reusable Metal)	40
F-Pack Media Elements	40
W Media Elements (Water Removal)	41
Aqua-Excellement™ High Efficiency Media (Water Removal)	41
Section 3: High Pressure Filters (1500 - 6500 psi)	43
Selection Guide	44
Top-Ported High Pressure Filters	45
Base-Ported High Pressure Filters	97
Hydrostatic (Bidirectional) Flow Filters	117
In-Line Filters	125
Servo Protection (Sandwich) Filters	131
Manifold Mount Filter Kit	143
Cartridge Elements for use in Manifold Applications	147
Section 4: Medium Pressure Filters (up to 1500 psi)	149
Selection Guide	150
Iop-Ported Medium Pressure Filters	151
Base-Ported Medium Pressure Filters	169
Section 5: Low Pressure Filters (up to 500 psi)	209
Selection Guide	210
Top-Ported Low Pressure Filters	211
Iank-Mounted Low Pressure Filters	239
	297
Severe Duty Jank-Mounted Filters	302
Spin-On Low Pressure Filters	311
Section 6: Suction Filters	323
Selection Guide	324
Tank-Mounted Suction Filter	325
In-Line Magnetic Suction Seperators	329
Tank-Mounted Magnetic Sution Seperator	331
Magnetic Inserts for Filters	332
Appendices	333
Appendix A: Filter Dirt Alarm [®] Selection	333
Appendix B: Viscosity Charts	340
Glosson	2/11
Silvəəai y	541

Detailed Contents: Hydraulic & Lube Filters

		Pressure psi (bar)	Flow gpm (L/min)	Page
	Top-Ported High Pressure Filters			
	NF30	3000 (210)	20 (75)	45
	NFS30	3000 (210)	20 (75)	49
	YF30	3000 (210)	25 (100)	53
	CFX30	3000 (210)	30 (115)	57
	PLD	3000 (210)	100 (380)	61
	DF40	4000 (275)	30 (115)	65
	CF40	4000 (275)	45 (170)	65
	PF40	4000 (275)	50 (190)	69
	RFS50	5000 (345)	30 (115)	73
	RF60	6000 (415)	30 (115)	77
	CF60	6000 (415)	50 (190)	81
~	CTF60	6000 (415)	75 (284)	85
psi	VF60	6000 (415)	70 (265)	89
8	LW60	6000 (415)	300 (1135)	93
65	Base-Ported High Pressure Filters	2000 (240)	400/450 (200/570)	07
-	KF30	3000 (210)	100/150 (380/570)	97
20	KF50	5000 (345)	100/150 (380/570)	9/
s (1	IF50	5000 (345)	40 (150)	101
ter	KC5U NAKEEO	5000 (345)	100/150 (380/570)	105
Ξ	MKF50	5000 (345)	200 (760)	109
ure	IVINCSU	5000 (545)	200 (760)	109
ess	KC65	6500 (450)	100 (380)	113
P	MKC65	6000 (413)	300 (1136)	117
igh	Hydrostatic (Bidirectional) Flow High Pressu	re Filters		
	HS60	6000 (415)	100 (380)	121
ŝ	MHS60	6000 (415)	100 (380)	121
ō	KFH50 (Base-Ported)	5000 (345)	70 (265)	125
ECI	In-Line Filters			
S	LC60	6000 (415)	8 (30)	129
	1035	3500 (241)	15 (57)	131
	1050	5000 (345)	9 (35)	133
	Servo Protection (Sandwich) Filters DO7, DO	3. Moog. Parker & Vic	kers	155
	NOE30-05	3000 (210)	12 (45)	135
	NOF50-760	5000 (345)	15 (57)	139
	FOF60-03	6000 (415)	12 (45)	143
	Manifold Mount Filter Kits (Bowls & Installa	tion Drawings)	· = \ · = /	
	NMF30	3000 (210)	20 (75)	147
	RMF60	6000 (415)	30 (115)	149
	Cartridge Elements for use in Manifold App	lications		
	14-CRZX10	3000 (210)	6 (23)	151
	20-CRZX10	3000 (210)	12 (45)	152

(isi	Top-Ported Medium Pressure Return Line	Filters		
ğ	GH	725 (50)	35 (130)	155
15(RLT	1000 (69)	70 (265)	161
5	KF5	500 (35)	100 (380)	165
dn)	SRLT	1400 (100)	25 (100)	169
ers	Base-Ported Medium Pressure Filters			
- E	К9	900 (60)	100 (380)	173
2	2K9	900 (60)	100 (380)	177
nss	3K9	900 (60)	100 (380)	177
Pre	QF5	500 (35)	300 (1135)	181
Ε	3QF5	500 (35)	300 (1135)	197
diu	QF5i	500 (35)	120 (454)	185
Ĕ	3QF5	500 (35)	300 (1135)	189
4	QFD5	500 (35)	350 (1325)	193
NO	QF15	1500 (100)	450 (1700)	197
E	QLF15	1500 (100)	500 (1900)	201
SE	SSQLF15	1500 (100)	500 (1900)	205

Detailed Contents (cont.)

			Pressure psi (bar)	Flow gpm (L/min)	Page
	Top-Ported Low Pressure Filt	ters			
		IRF	100 (7)	100 (380)	211
		TF1	300 (20)	30 (120)	215
		KF3	300 (20)	100 (380)	219
		KL3	300 (20)	120 (455)	223
		LF1-2"	300 (20)	120 (455)	227
		MLF1	300 (20)	200 (760)	231
		RLD	350 (24)	100 (380)	235
(isq	Tank-Mounted (In-Tank/Tan	k Top) Low Pressure Filt	ers		
8		GRTB	100 (7)	100 (380)	239
0 5		MTA	100 (7)	15 (55)	243
þ		MTB	100 (7)	35 (135)	247
2		ZT	100 (7)	40 (150)	251
Pressure Filters		KFT	100 (7)	100 (380)	255
		RT	100 (7)	100 (380)	259
		RTI	100 (7)	120 (455)	263
		LRT	100 (7)	150 (570)	267
		ART	145 (10)	225 (850)	271
No -		BRT	145 (10)	160 (600)	275
- 		TRT	145 (10)	634 (2400)	281
Z		BFT	100 (7)	300 (1135)	289
Ĕ		QT	100 (7)	450 (1700)	293
SEC	Special Feature Tank-Mount	ed Low Pressure Filters			
	Internal	KTK	100 (7)	100 (380)	297
	Internal	LTK	100 (7)	150 (570)	301
	Severe Duty Tank-Mounted	Filters			
		MRT	900 (62)	150 (570)	305
	Spin-On Low Pressure Filters				
		PAF1	100 (7)	20 (75)	311
		MAF1	100 (7)	50 (190)	315
		MF2	150 (10)	60 (230)	319

	Tank-Mounted Suction Filter			
SECTION 6: Iction Filters	ST	Suction	20 (75)	325
	In-Line Magnetic Suction Separators			
	TF-SKB	Suction	12.5 (47)	329
	KF3-SKB	Suction	35 (130)	330
S S	Tank-Mounted Magnetic Suction Separator			
	BFT-SKB	Suction	75 (285)	331

Filter Housings: Flow vs. Operating Pressure

Note to the Reader

The aim of our catalog is to provide the information and guidance you'll need to make informed and appropriate choices for your filtration needs.

Illustrated and easy to understand, Section 1 is now widely used as a training tool by many companies, including original equipment manufacturers for whom Schroeder provides value-added products. The revised Section 1 continues to serve as an effective "primer" on contamination control fundamentals. In this section, we also provide filtration information and guidance for selecting the optimal filter and element media for your application.

Section 1 also explains recent changes in industry standards regarding how fluid cleanliness is defined and measured. Recent technological advancements in the measurement of microscopic particles, coupled with the establishment of a new standard test dust for calibration purposes, necessitated these changes. Although the new standards may seem confusing at first, they enable more accurate sizing

of dirt particles and reduce variability in output among different automatic particle counters. The end result is more reliable data for the user.

In Section 2, you'll find extensive technical data on Schroeder's Excellement® Z-Media®, which combines high efficiency, low pressure drop and exceptional dirt holding capacity. Schroeder's design engineers have also given special attention to developing more environmentally friendly products, such as Corecentric®

elements, which contain no metal and can be crushed, shredded or burned.

Sections 3 through 6 describe the types of contamination control products and accessories we offer. Whether your hydraulic system requires pressure filters, tank-mounted filters, return-line filters, or some combination of these, this updated catalog will help you find the right Schroeder filter to do the job. Of course, every filter comes with a Schroeder original element, available in a wide variety of media and micron ratings.

Dirt Alarm[®], BestFit[®], Excellement[®], DirtCatcher[®] and CoreCentric[®] are registered trademarks of Schroeder Industries.

Schroeder's web site, www.schroederindustries.com, is filled with helpful resources.

Replacing filter elements is simpler than ever before with our Online Cross-Reference Guide to BestFit[®] replacement elements. With this user-friendly guide you can match 41,000 filter elements from 150 other manufacturers with appropriate BestFit[®] replacements. Click the BestFit[®] link on our home page or got to the direct link at www.schroederindustries.info.

Visit Us Online...

Corporate Overview

Schroeder Industries, an ISO 9001:2015 certified company, focuses on developing filtration and fluid service products for our customers in the fluid power industry and is proud of our proven track record of providing quality products over the last 75 years. The designs you see in this catalog are the result of thousands of hours of field testing and laboratory research...and decades of experience.

Schroeder was one of the first companies to demonstrate the need for, and benefits of, hydraulic filtration. We pioneered the development of micronic filtration, helping to set performance standards in industrial fluid power systems. As a result, Schroeder is now a leader in filtration and fluid conditioning—and the proof of our expertise lies in our broad mix of unsurpassed products. Our mission statement reflects our continuing commitment to excellence:

Partnerships

Innovating products, solutions, processes and services to improve performance and efficiency in industry.

We design solutions for industry and for the success of our customers by:

- Optimizing the use of technology with applications
- Using an efficient, timely customization process to fill specific customer needs
- Increasing manufacturing capacity and streamlining operations
- Preserving our reputation for reliability
- Expanding globally to support our customers and stay current with new technologies
- Leveraging and sharing our knowledge to meet challenges openly
- Nurturing a creative, cooperative culture committed to the individual and to providing the best solutions for our customers

Our goal is to be your filtration partner. Our expertise in filtration technology, our superior filter and element manufacturing capabilities, and our dedication to customer service and product support are the reasons we're considered experts in Advanced Fluid Conditioning Solutions[®].

We are committed to providing the best available filter products to meet necessary cleanliness levels at a competitive price. As a cost-effective quality producer, we can work with your purchasing department to supply contamination control technology or develop long-range pricing programs that can improve your company's bottom line.

Capabilities

Schroeder Industries has in place a strategically located international distribution network, supported by our professional and experienced sales and marketing team. Distributor personnel are trained in the important aspects of filter application by Schroeder in training sessions held at our factory and around the globe. The effectiveness of our product and service support is multiplied by utilizing Schroeder's extensive distributor network. All Schroeder Industries distributors meet very strict criteria to enhance our ability to serve the needs of our valued customers.

Schroeder's distributor network includes over 100 distributor locations throughout Europe, the United Kingdom, South Africa, Australia, Asia, North America and South America, so that customers worldwide can rely on Schroeder's exceptional support.

Schroeder Industries' corporate headquarters are located in Leetsdale, PA (USA) with an additional manufacturing facility in Cumberland, MD (USA). Filter housings and diagnostic and specialty products are manufactured at our Pittsburgh plant, while filter elements are manufactured in our Cumberland plant. Both facilities have the skilled workforce and the capacity to meet our customers' needs. Schroeder's research and development center as well as our contamination control laboratory are located at our corporate headquarters.

Schroeder's products, technical expertise, commitment to research and development, and ongoing improvements in manufacturing enable us to provide products and services that improve performance and efficiency in many major industries, including:

AGRICULTURE

CONSTRUCTION

MINING TECHNOLOGY

PULP & PAPER

AUTOMOTIVE MANUFACTURING

INDUSTRIAL

MOBILE

VEHICLES

RAILROAD

MACHINE TOOL

BULK FUEL

FILTRATION

OFFSHORE

STEEL MAKING

CHEMICAL PROCESSING

POWER GENERATION

WASTE WATER TREATMENT

Product Distribution

Manufacturing and Testing

Markets Served

SCHROEDER INDUSTRIES 9

Products

Engineering Laboratory

Schroeder Industries' products are continually tested using the latest ISO and NFPA test procedures in our engineering lab. Our dynamic test stands are in constant operation, subjecting our filter housings to cyclic pressure to verify their rated fatigue and burst pressures per NFPA Standard T2.6.1. Statistically sampled elements are tested to ensure fabrication integrity in the manufacturing process. They are also tested for efficiency and dirt-holding capacity in a multi-pass test stand, equipped with in-line particle counting capabilities, which are calibrated to ISO standards.

Extensive testing is conducted to ensure compatibility with various hydraulic fluids, including the newest fire-resistant fluids, per ISO 2943 Standard. Flow fatigue tests are run to evaluate the structural strength of elements, per ISO 3724 Standard.

Design and Testing Standards Filter Housings	s of Schroeder	Design and Testing Standar High Efficiency Elements	ds of Schroeder
Description Standard		Description	Standard
Burst Pressure Test	NFPA/T-2.6.1	Element Collapse (Burst)	ISO 2941
Fatigue Testing	NFPA/T-2.6.1	Fabrication Integrity	ISO 2942
Pressure/Life Rating	NEPA/T-3 10 17	Material Compatibility	ISO 2943
of a Spin-On Filter	1117 01 5.10.17	End Load	ISO 3723
Pressure Drop vs. Flow	ISO 3968	Element Flow Fatigue	ISO 3724
		Pressure Drop vs. Flow	ISO 3968
		Multi-Pass	ISO 16889

An Open Invitation

We invite you to present us with any specific filtration challenge you may experience. Schroeder will design and make filters to meet your specific requirements. To find out more, and/or obtain a quote, call us to speak with a sales representative or technical specialist. They can help determine the optimal filtration strategy for a given system. While the quantity of any product manufactured to fit a customer's needs will determine the economic feasibility of a particular project, in many cases, we can offer modified products in relatively small quantities at competitive prices and short lead times.

Over the years, Schroeder design engineers have encountered virtually every type of hydraulic system. We are proud of our continuing success in providing "value-added products" for our customers, that is, making or modifying our products to meet their specific needs. When customers order products from Schroeder, they are assured of a reliable source of supply,

consistent and prompt service, and direct support. Pre and posttechnical service is provided to ensure customer satisfaction.

So if you're faced with a filtration dilemma, call us. Schroeder Industries: Advanced Fluid Conditioning Solutions[®].

Advanced Fluid Conditioning Solutions®

Contamination Control Fundamentals

Why Filter?

Over 70% of all hydraulic system failures are caused by contaminants in the fluid. Even when no immediate failures occur, high contamination levels can sharply decrease operating efficiency.

Contamination is defined as any substance which is foreign to a fluid system and damaging to its performance. Contamination can exist as a gas, liquid or solid. Solid contamination, generally referred to as particulate contamination, comes in all sizes and shapes and is normally abrasive.

High contaminant levels accelerate component wear and decrease service life. Worn components, in turn, contribute to inefficient system operation, seizure of parts, higher fluid temperatures, leakage, and loss of control. All of these phenomena are the result of direct mechanical action between the contaminants and the system components. Contamination can also act as a catalyst to accelerate oxidation of the fluid and spur the chemical breakdown of its constituents.

Filtering a system's fluid can remove many of these contaminants and extend the life of system components.

How a System Gets Contaminated

Contaminants come from two basic sources: they either enter the system from outside (ingestion) or are generated from within (ingression). New systems often have contaminants left behind from manufacturing and assembly operations. Unless they are filtered as they enter the circuit, both the original fluid and make-up fluid are likely to contain more contaminants than the system can tolerate. Most systems ingest contaminants through such components as inefficient air breathers and worn cylinder rod seals during normal operation. Airborne contaminants are likely to gain admittance during routine servicing or maintenance. Also, friction and heat can produce internally generated contamination.

Figure 1. Typical Examples of Wear Due to Contamination

Vanes for Vane Pump

Relief Valve Piston

Vane Pump Cam Ring

Size of Solid Contaminants

The size of solid particle contaminants is commonly measured in micrometers, μ m, (usually referred to as microns, μ). A micron is a unit of length equal to one millionth of a meter or about .00004 inch. Particles that are less than 40 μ cannot be detected by the human eye.

Substance	Microns	Inches
Grain of table salt	100 µ	.0039"
Human hair	70 µ	.0027 "
Talcum powder	10 µ	.00039"
Bacteria (average)	2μ	.000078"

Figure 2 shows the sizes of some common substances. To gain some perspective, consider the diameters of the following substances:

A *micron rating* identifies the size of particles that a particular filtration media will remove. For instance, Schroeder Z10 filter media is rated at β 10 \geq 1000, meaning that it can remove particles of 10 μ and greater at 99.9% efficiency.

12 SCHROEDER INDUSTRIES

Figure 2. Sizes of Known Particles in Inches and Microns

In hydraulic fluid power systems, power is transmitted and contained through a liquid under pressure within an enclosed circuit. These fluids all contain a certain amount of solid particle contaminants. The amount of particulate contaminants present in a hydraulic or lubrication system's fluid is commonly referred to as its cleanliness level.

ISO 4406:1999 provides guidelines for defining the level of contamination present in a fluid sample in terms of an ISO rating. It uses three scale numbers, representing the number of particles greater than or equal to 4 μ (c), 6 μ (c), and 14 μ (c) in size per 1 mL of sample fluid.

Figure 3 shows the graph used to plot particle counts per ISO 4406:1999.

2 Kim bin 28 000.000.1 20 \$49,000 26 305,000 25 160,000 24 10,000 20 46,000 30 10,000 10,000 100 1,000 15 1,500 11 1,000 640 16 120 18 1400 14 180 13 혲 20. 10 10 10 Example 8 25 larger than 4 project 4 13 0.64 larger than 6 µm(c) = ŝ. 0.30 \$ larger than 14 junicity = 616 4 0.08 3 0.04 150 Code = 22/11/1 2 0.00 0.01 谜. 8.60 reliantes) (reliantes) Con 14 genetices

- Reproducibility below scale number 8 is affected by the actual number of particles counted in the fluid sample. Raw counts should be more than 20 particles. If this is not possible, then refer to bullet below.
- When the raw data in one of the size ranges results in a particle count of fewer than 20 particles, the scale number for that size range shall be labeled with the symbol ≥.

EXAMPLE: A code of $14/12/\ge7$ signifies that there are more than 80 and up to and including 160 particles equal to or larger than 4 μ (c) per mL and more than 20 and up to and including 40 particles equal to or larger than 6 μ (c) per mL. The third part of the code, ≥7 indicates that there are more than 0.64 and up to and including 1.3 particles equal to or larger than 14 μ (c) per mL. The \ge symbol indicates that less than 20 particles were counted, which lowers statistical confidence. Because of this lower confidence, the 14 μ (c) part of the code could actually be higher than 7, thus the presence of the \ge symbol.

How Contaminants are Measured and Reported

ISO Scale Numbers– ISO 4406:1999

Cleanliness Levels– ISO 4406:1999

The following example shown in Figure 4 illustrates the cleanliness level, or ISO rating, of a typical petroleum-based fluid sample using the ISO Code 4406:1999 rating system.

The fluid sample contains a certain amount of solid particle contaminants, in various shapes and sizes.

Since the number of 4 μ (c) particles falls between 2500 and 5000, the first ISO range number is 19 using Table 1. The number of 6 μ (c) particles falls between 160 and 320 particles, so the second ISO range number is 15. The number of 14 μ (c) particles falls between 10 and 20, making the third range number 11. Therefore, the cleanliness level for the fluid sample shown in Figure 4 per ISO 4406:1999 is 19/15/≥11.

Figure 4. Determining the ISO Rating of a Fluid Using ISO 4406:1999

Sample	Fluid (1 mL)	If Particle Count Falls Between	Scale Number is*
Particle Number		2500-5000	19
Size	of Particles	160 220	15
≥ 4 µ(c)	3,000	100-320	15
\geq 5 μ (c)	700	10-20	11
≥ 6 µ(c)	200		
≥10 µ(c)			*Source: ISO 4406:19
≥14 µ(c)	15	The Sample Fluid is ISO T	9/15/≥11.
≥15 µ(c)		^Note: when the raw da	ita in one of the size
$>20 \mu(c)$	10	ranges results in a parti	cle count of rewer than
$>30 \mu(c)$	3	20 particles the range of	

Required Cleanliness Levels

The pressure of a hydraulic system provides the starting point for determining the cleanliness level required for efficient operation. Table 2 provides guidelines for recommended cleanliness levels based on pressure. In general, Schroeder defines pressure as follows:

_ow pressure:	0-500 psi (0-35 bar)
Medium pressure:	500-2999 psi (35-206 bar)
High pressure:	3000 psi (206 bar) and above

A second consideration is the type of components present in the hydraulic system. The amount of contamination that any given component can tolerate is a function of many factors, such as clearance between moving parts, frequency and speed of operation, operating pressure, and materials of construction. Tolerances for contamination range from that of low pressure gear pumps, which normally will give satisfactory performance with cleanliness levels typically found in new fluid (ISO 19/17/14), to the more stringent requirements for servo-control valves, which need oil that is eight times cleaner (ISO 16/14/11).

Today, many fluid power component manufacturers are providing cleanliness level (ISO code) recommendations for their components. They are often listed in the manufacturer's component product catalog or can be obtained by contacting the manufacturer directly. Their recommendations may be expressed in desired filter element ratings or in system cleanliness levels (ISO codes or other codes). Some typically recommended cleanliness levels for components are provided in Table 3.

Table 2. Cleanliness Level Guidelines Based on Pressure

System Type	Recommended Cleanliness Levels (ISO Code)
Low pressure – manual control (0 - 500 psi)	20/18/15 or better
Low to medium pressure – electrohydraulic controls	19/17/14 or better
High pressure – servo controlled	16/14/11 or better

Table 3. Recommended Cleanliness Levels (ISO Codes) for Fluid Power Components

Components	Cleanliness Levels (ISO Code) 4 μ(c)/6 μ(c)/14 μ(c)
Hydraulic Servo Valves	15/13/11
Hydraulic Proportional Valves	16/14/12
Hydraulic Variable Piston Pump	16/14/12
Hydraulic Fixed Piston Pump	17/15/12
Hydraulic Variable Vane Pump	17/15/12
Hydraulic Fixed Vane Pump	18/16/13
Hydraulic Fixed Gear Pump	18/16/13
Ball Bearings	15/13/11
Roller Bearings	16/14/12
Journal Bearings (>400 rpm)	17/15/13
Journal Bearings (<400 rpm)	18/16/14
Gearboxes	18/16/13
Hydrostatic Transmissions	16/14/11
Pumps	16/14/12

This table is based on data shown in various hydraulic component manufacturer's catalogs. Contact Schroeder for recommendations for your specific system needs.

Table 4. Cleanliness Class Comparisons					Required
ISO 4409:1999	SAE AS 4059:E	NAS 1638-01/196	MIL-STD 1246A 1967	ACFTD Gravimetric Level-mg/L	Cleanliness Levels
24					(continued)
23/20/18		12			
22/19/17	12	11			
21/18/16	11	10			
20/17/15	10	9	300		
19/16/14	9	8			
18/15/13	8	7	200	1	
17/14/12	7	6			
16/13/11	6	5			
15/12/10	5	4		0.1	For your convenience, Table
14/11/9	4	3	100		4 provides a cross reference
13/10/8	3	2			showing the approximate
12/9/7	2	1		0.01	different scales or levels used
11/8/6	1	0			in the marketplace to quantify
10/7/5	0	00			contamination.
8/7/4	00		50		the code levels used for
5/3/01			25		military standards 1638 and
2/0/0			5		AS4059 standard.

Element Technical Data Fundamentals

Performance Specifications/ Filtration Ratings

Schroeder filter elements meet a wide variety of requirements in today's workplace, from the simplest to the most sophisticated fluid power systems. Established industry standards enable users to select the optimal filter element for any application.

When evaluating the performance of hydraulic filter elements, the most important parameters to consider are:

(a) efficiency

(b) beta stability

(c) dirt holding capacity

(d) pressure drop vs. flow

(a) *Efficiency*, or filtration ratio, expressed by "Beta" (ß) relates to how well an element removes contamination from fluid. Higher efficiency translates to cleaner oil, better protection of system components, less down time for repair, and lower maintenance costs.

(b) *Beta stability* is defined as an element's ability to maintain its expected efficiency as differential pressure across the element increases. Differential pressure will increase as contamination is trapped, or with an increase in fluid viscosity (cold start). Beta stability is important because it relates to how well an element will perform in service over time. When the element is loaded with contamination, or when it is subjected to cold starts, will it perform as well as it did when new?

(c) *Dirt holding capacity (DHC)* is the amount of contamination that an element can trap before it reaches a predetermined "terminal" differential pressure. Dirt holding capacity is related to element life. Since elements with higher DHC need changed less frequently, DHC has a direct impact on the overall cost of operation. When selecting filter elements, it is beneficial to compare DHC of elements with similar particle removal efficiency.

(d) *Pressure Drop vs. Flow* is simply a measure of resistance to fluid flow in a system. It is important to consider the initial pressure drop (Δ p) across the filter element (and housing). Ideally, a filter element should be sized so that the initial pressure drop across the clean element (plus the filter housing drop) is less than half the bypass valve setting in the filter housing.

When selecting a filter element for your system, be sure to consider all four of these performance criteria. If an element is strong in three areas, but weak in another, it may not be the right choice. At every level of filtration, Schroeder's Excellement[®] Z-Media[®] elements offer the best combination of high efficiency, high beta stability, high dirt holding capacity, and low pressure drop.

The Multi-pass Test

Filter element efficiency ratings, beta stability, and capacities are determined by conducting a multi-pass test under controlled laboratory conditions. This is a standard industry test with procedure published by the International Standards Organization (ISO 16889). The multi-pass test yields reproducible test data for appraising the filtration performance of a filter element including its particle removal efficiency. These test results enable the user to: (1) compare the quality and specifications offered by various filter element suppliers and (2) select the proper filter element to obtain the optimal contamination control level for any particular system.

Hydraulic fluid (Mil-H-5606) is circulated through a system containing the filter element to be tested. Additional fluid contaminated with ISO MTD Test Dust is introduced upstream of the element being tested. Fluid samples are then extracted upstream and downstream of the test element.

Dirt holding capacity is defined as the total grams of ISO MTD Test Dust added to the system to bring the test filter element to terminal pressure drop.

Figure 5. Multi-Pass Test Schematic

The filtration ratio (more commonly referred to as the Beta ratio) is, in fact, a measure of the particle capture efficiency of a filter element.

Per ISO 16889
$$\beta_{X(c)} = \frac{\text{number of particles upstream } @ x(c) \text{ microns}}{\text{number of particles downstream } @ x(c) \text{ microns}}$$

where x(c) is a specified particle size.

Example:
$$^{\beta}10 = \frac{400}{100} = 4$$

This particle capture efficiency can also be expressed as a percent by subtracting the number 1 from the Beta (in this case 4) and multiplying it by 100:

Efficiency_{10} =
$$\frac{(4-1)}{4}$$
 x 100 = 75%

The example is read as "Beta ten is equal to four, where 400 particles, 10 microns and larger, were counted upstream of the test filter (before) and 100 particles, 10 microns and larger, were counted downstream of the test filter (after)."

The filter element tested was 75% efficient in removing particles 10 microns and larger.

To calculate a filter element's percent efficiency, subtract 1 from the Beta, divide that answer by the Beta, then multiply by 100.

	Example
Step 1:	$^{\beta}$ 10(c) > +1000
Step 2:	1000 -1 = 999
Step 3:	999 ÷ 1000 = .999%
Step 4:	.999 x 100 = 99.9%

According to ISO 16889, each filter manufacturer can test a given filter element at a variety of flow rates and terminal pressure drop ratings that fit the application, system configuration and filter element size. Results may vary depending on the configuration of the filter element tested and the test conditions.

Currently, there is no accepted ISO, ANSI, or NFPA standard regarding absolute ratings. Some filter manufacturers use $\beta_X(c) \ge 75$ (98.7% efficiency) for their absolute rating. Others use $\beta_X(c) \ge 100$ (99.0% efficiency), $\beta_X(c) \ge 200$ (99.5% efficiency), or $\beta_X(c) \ge 1000$ (99.9% efficiency). Performance of Schroeder elements is shown in the Element Performance Chart for each filter housing in Sections 3 through 8 at a number of filtration ratios to allow the user to evaluate our performance against that of our competitors.

Efficiency

Efficiency /

(Beta)

Filtration Ratio

Filtration Ratio

Beta Stability

Beta stability is defined as an element's ability to maintain its expected efficiency as differential pressure across the element increases. Differential pressure will increase as contamination is trapped, or with an increase in fluid viscosity. An element's beta stability is displayed in the Filtration Ratio (Beta) vs. Differential Pressure curve from a typical multi-pass test report per ISO 16889. Good beta stability is demonstrated by consistent or improving efficiency as differential pressure builds across the element. Conversely, decreasing efficiency as pressure builds is a sign of poor stability. Poor beta stability is an indication of a filter element's structural deficiency. It is a sign of potential problems in a "real world" situation. Contamination, "cold starts", and flow surges can all create high differential pressure across an element that may cause efficiency to decrease if it is not structurally sound. In cases of "cold starts" and flow surges, the media structure in elements with poor stability can become permanently damaged in milliseconds. The result is lower efficiency and decreased system protection without warning to the operator. High beta stability results when an element is well-built with quality, durable materials. Strength of filter media and reinforcement layers, impervious seaming, proper end cap adhesion, and a rigidly supported structure all play a part in an element's beta stability. Excellement® media structure typically maintains beta stability over 100 psi.

Example of poor beta stability – efficiency declines as differential pressure increases.

Example of Excellement[®] beta stability – efficiency does not decline as differential pressure increases.

Microscopic Photo - 50x magnification

Top: competitor's media Bottom: Schroeder Excellement® Z-Media® Thin, weak media cannot withstand differential pressure as well as Z-Media®.

This photo shows a comparison of our competitors filtering layer media versus our Schroeder Excellement® Z-Media®. Schroeder Z-Media® offers better depth filtration to withstand a higher differential pressure and entrap more contaminant / particles.

Dirt holding capacity (DHC) is the amount of contaminant (expressed in grams) the element will retain before it goes into bypass. All other factors being equal, an element's DHC generally indicates how long the element will operate until it needs to be replaced. The element's life span is directly related to the cost of operating the filter.	Dirt Holding Capacity
Dirt holding capacity, sometimes referred to as "retained capacity," is a very important and often overlooked factor in selecting the right element for the application. The dirt holding capacity of an element is measured in grams of ISO medium test dust contaminant as determined from the multi-pass test (ISO 16889). When selecting filter elements, it is beneficial to compare the dirt holding capacities of elements with similar particle removal efficiencies.	
When sizing a filter, it is important to consider the initial differential pressure (ΔP) across the element and the housing. Elements offering a lower pressure drop at a high Beta efficiency are better than elements with a high ΔP at the same efficiency. At every level of filtration, Schroeder's Excellement [®] Z-Media [®] elements offer the best combination of high efficiency, high stability, high dirt holding capacity, and low pressure drop. The pressure drop of an element is determined by testing according to ISO 3968.	Pressure Drop
The collapse (crush) rating of a filter (determined by ISO 2941/ANSI B93.25) represents the differential pressure across the element that causes it to collapse. The collapse rating of a filter element installed in a filter housing, with a bypass valve, should be at least two times greater than the full flow bypass valve pressure drop. The collapse rating for filter elements used in filter housings with no bypass valve should be at least the same as the setting of the system relief valve upstream of the high-crush element. When a high collapse element becomes clogged with contamination all functions downstream of the filter will become inoperative.	Collapse Rating

Element Media Selection Considerations The Right Media for the Right Application = Job Matched Filtration

Filtration Application Guidelines

Selecting the proper Schroeder media for your application is easy if you follow these simple guidelines.

Step 1. Remember that the key to cost effective contamination control is to maintain the system's cleanliness at the tolerance level of the system's most sensitive component. So, the first step is to identify the most sensitive component.

Step 2. Determine the desired cleanliness level (ISO Code) for that component by referring to Figure 3 on page 13 or by contacting the component manufacturer directly.

Step 3. Identify the Schroeder filter medium referencing Table 6 that will meet or exceed the desired cleanliness level.

Step 4. Remember to regularly check the effectiveness of the selected media through the use of contamination monitoring equipment.

Table 6. Schroeder Element Media Recommendations

Desired Cleanliness Levels	Schroeder
(ISO Code)	Media
20/18/15-19/17/14	Z25
19/17/14-18/16/13	Z10
18/16/13-15/13/10	Z5
15/13/10-14/12/9	Z3
14/12/9-13/11/8	Z1

Effect of Ingression

Filter element life varies with the dirt holding capacity of the element and the amount of dirt introduced into the circuit. The rate of this ingression in combination with the desired cleanliness level should be considered when selecting the media to be used for a particular application. Table 7 provides recommendations accordingly.

The amount of dirt introduced can vary from day to day and hour to hour, generally making it difficult to predict when an element will become fully loaded. This is why we recommend specifying a Dirt Alarm[®].

Schroeder-designed Dirt Alarms[®] provide a vital measure of protection for your system by indicating when the filter element needs to be changed or cleaned. Schroeder filters are available with visual, electrical and electrical-visual combination Dirt Alarms[®]. These indicators may also be purchased as separate items. For more information on Dirt Alarms[®], see Appendix A.

Table 7. Recommended Schroeder Media to Achieve Desired Cleanliness Levels Based on Ingression Level

Desired Cleanliness Levels (ISO Code)	Ingression Rate	Schroeder Element Medium
20/18/15	High	Z25
19/17/14	Low	Z25
19/17/14	High	Z10
18/16/13	Low	Z10
18/16/13	High	Z5
15/13/10	Low	Z5
15/13/10	High	Z3
14/12/9	Low	Z3
14/12/9	High	Z1
13/12/9	Low	Z1

To obtain the desired cleanliness level (ISO Code) using the suggested Schroeder filter medium, it is recommended that a minimum of one-third of the total fluid volume in the system pass through the filter per minute. If fluid is filtered at a higher flow rate, better results may be achieved. If only a lesser flow rate can be filtered, a more efficient media will be required.

Systems operating in a clean environment, with efficient air-breather filters and effective cylinder rod wiper seals, may achieve the desired results at a lower turnover rate. Systems operating in a severe environment or under minimal maintenance conditions should have a higher turnover. Turnover must be considered when selecting the location of the system's filter(s).

Since the pressure drop versus flow data contained in our filter catalog is for fluids with a viscosity of 150 SUS (32.0 cSt), and a specific gravity of .86, we are often asked how to size a filter with a viscosity other than 150 SUS (32.0 cSt) or a specific gravity other than .86. In those instances where the viscosity or specific gravity is significantly higher, it may be necessary to use a larger element. To make this determination, we need to calculate the life of the element, using the following equation:

$$EL = RC - (H + E)$$

EL = Element Life (expressed in psi)	H = Housing pressure drop
RC = Relief valve cracking pressure	E = Element pressure drop

1. The housing pressure drop can be read directly from the graph. This value is not affected by viscosity or the number of elements in the housing, since housing flow is turbulent.

2. The element pressure drop is directly proportional to viscosity, since element flow is laminar.

Schroeder's "rule of thumb" for element life, as calculated from the above equation, is to work towards a differential pressure drop that is no more than half (50%) of the bypass setting.

The interval between element change outs can be extended by increasing the total filter element area. Many Schroeder filters can be furnished with one, two, or three elements or with larger elements. By selecting a filter with additional element area, the time between servicing can be extended for little additional cost.

Schroeder filters have been used successfully to filter a variety of fire resistant fluids for over five decades. Filtering these fluids requires careful attention to filter selection and application. Your fluid supplier should be the final source of information when using these fluids. The supplier should be consulted for recommendations regarding limits of operating conditions, material and seal compatibility, and other requirements peculiar to the fluid being used within the conditions specified by the fluid supplier.

High Water Content Fluids

Where:

High water content fluids consist primarily of two types: water and soluble mineral base oil, and water with soluble synthetic oil. The oil proportion is usually 5%, but may vary from as low as 2% to as high as 10%.

Standard Schroeder Z1, Z3, Z5, Z10, and Z25 elements are compatible with both types of high water content fluids. Filter sizing should be the same as with 150 SUS (32 cSt) mineral based hydraulic oil. Z1 and Z3 elements may be used; however, element change outs will be more frequent. Some special factors that need to be considered in the selection process include the following:

- All aluminum in the filter housing should be anodized. This can be accomplished by using the "W" adder as shown in the filter model number selection chart.
- When using 95/5 fluids, check with fluid supplier for compatibility with aluminum.
- Buna N or Viton[®] seals are recommended.
- The high specific gravity and low vapor pressure of these fluids create a potential for severe cavitation problems. Suction filters or strainers should not be used. The Schroeder Magnetic Separator (SKB), page 327, with its low pressure drop, is recommended for pump protection from ferrous or large particles.

Invert Emulsions

Invert emulsions consist of a mixture of petroleum based oil and water. Typical proportions are 60% oil to 40% water. Standard Schroeder filters with Z10 and Z25 media elements are satisfactory for use with these fluids. Filters should be sized conservatively for invert emulsions. These fluids are non-Newtonian—their viscosity is a function of shear. We recommend up to twice the normal element area be used as space and other conditions permit.

Amount of Fluid Filtered

Sizing a Filter Element

Fluid Compatibility: Fire Resistant Fluids Fluid Compatibility: Fire Resistant Fluids (cont.) Some special factors that need to be considered in the selection process include the following:

- Potential exists for cavitation problems with invert emulsions similar to high water based fluids.
 SKB suction separators are recommended for pump protection from ferrous or large particles.
- Buna N or Viton[®] seals are recommended.

Water Glycols

Water glycols consist of a mixture of water, glycol, and various additives. Schroeder Z3, Z5, Z10 and Z25 elements are satisfactory for use with these fluids. Some special factors that need to be considered in the selection process include the following:

- All aluminum in the filter should be anodized. This can be accomplished by using the "W" option as shown in the filter model number selection chart.
- Potential exists for cavitation problems with water glycols similar to high water based fluids. SKB suction separators are recommended for pump protection from ferrous or large particles.
- Buna N or Viton[®] seals are recommended.

Phosphate Esters

Phosphate esters are classified as synthetic fluids. All Schroeder filters and elements can be used with most of these fluids. Sizing should be the same as with mineral based oils of similar viscosity. Some special factors that need to be considered in the selection process include the following:

- For phosphate esters, specify EPR seals (designated by "H" seal option) for all elements. As a general rule, all Z-Media[®] (synthetic) is compatible and 10 and 25 µ only E media (cellulose) with phosphate esters.
- For Skydrol[®], only 3, 5, 10, and 25 μ Z-Media[®] (synthetic) should be used, and "H.5" should be designated as the seal option. The "H.5" seal designation calls for EPR seals and stainless steel wire mesh in element construction.

Pressure Drop Correction for Specific Gravity

Pressure drop curves shown in this catalog are predicated on the use of petroleum based fluid with a specific gravity of 0.86. The various fire resistant fluids discussed in this section have a specific gravity higher than 0.86, which affects pressure drop. Use the following formula to compute the correct pressure drop for the higher specific gravity:

Corrected pressure drop $= \frac{\text{Fluid specific gravity}}{0.86} \times \text{Catalog pressure drop}$

Viton[®] is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.

7 Steps to Selecting a Filter

In the new era, systems are getting smaller and more compact, causing flow rates in hydraulic reservoirs to decrease, as well as a tighter space for overall reservoir components.

Without a properly sized filter and element in your machine's reservoir, operators can experience occurrences such as: foaming, cavitation, shortened fluid lifespan, poor response time from hydraulic valves, increase in replacement filter elements, and more valve and pump repairs.

In this section, we will walk you through our 7 Steps for Choosing the Correct Filtration.

Example Parameters: A piston pump and servo system with 20 gpm (76 L/min) pump flow, 30 gpm (144 L/min) return flow, 4000 psi (275 bar) system pressure, and a total system volume of 60 gallons (227 liters), with a non-pressurized reservoir. The fluid is 150 SUS.

Step 1: "Operating Pressures"

Determine the operating pressure of the system you are looking to apply filtration to.

Step 2: "Flow Rate"

Look at all of the characteristics of the fluid that is needing the filtration, including the flow rate.

Step 3: "MVP Components"

Determine what component is the most critical to your operation.

Step 4: "ISO Level"

Reference our chart on page 13 to determine the recommended ISO level of your MVP component (determined in Step 3). This will help you select what media type will help you achieve your cleanliness goal.

Step 5: "Fluid Type"

Ask yourself "what type of fluid is being filtered?" and "what is my main contamination type?" (Reference contamination types on page 16).

Step 6: "Temperature"

Determine the highest and lowest temperatures of your operating fluid.

Step 7: "Piecing It All Together"

Based on the previous steps, you can now take the information learned, calculate overall system differential pressure, and determine the right choice for filtration.

By following these simple steps, we can guarantee you will see cleaner fluid. In addition, all major hydraulic components should be working to expectation, last longer, and ultimately save you and your company money.

Seven Steps to Selecting a Filter

Filter Selection Considerations

Filter Location

Pressure filtration: Pressure filters usually produce the lowest system contamination levels to assure clean fluid for sensitive high-pressure components and provide protection of downstream components in the event of catastrophic failures. Systems with high intermittent return line flows may need only be sized to match the output of the pump, where the return line may require a much larger filter for the higher intermittent flows. See Figure 6(a).

Return line filtration: Return line filters are often considered when initial cost is a major concern. A special concern in applying return line filters is sizing for flow. Large rod cylinders and other components can cause return line flows to be much greater than pump output. Return lines can have substantial pressure surges, which need to be taken into consideration when selecting filters and their locations. See Figure 6(b).

Re-circulating filtration: While usually not recommended as a system's primary filtration (due to the high cost of obtaining adequate flow rates) re-circulating, or off-line, filtration is often used to supplement on-line filters when adequate turnover cannot be obtained with the latter. It is also often an ideal location in which to use a water removal filter. Off-line re-circulating filters normally do not provide adequate turnover flow rates to handle the high contamination loading occasioned by component failures and/or inefficient maintenance practices. See Figure 6(c).

Suction filtration: Micronic suction filters are not recommended for open-loop circuits. The cavitation these filters can cause significantly outweighs any advantage obtained by attempting to clean the fluid in this part of the system. SKB magnetic suction separators are recommended, as they will protect the pump from large and ferrous particles, without the risks of cavitation.

Breather filtration: Efficient filter breathers are required for effective contamination control on non-pressurized reservoirs and should complement the liquid filtration component.

Multiple filtration: For systems incorporating large total fluid volumes, it may be necessary to employ filters in more than one location. Multiple pressure filters, pressure and return line filters, and recirculating filters are examples of multiple filtration applications.

24 SCHROEDER INDUSTRIES

Parameters: A piston pump and servo system with 20 gpm (76 L/min) pump flow, 30 gpm (114 L/min) return flow, 4000 psi (275 bar) system pressure, and total system volume of 60 gallons (227 liters), with a non-pressurized reservoir.

Filtration Selection Exercise

Step 1 example. The servo valve is the system's most sensitive component. Referring to Figures 2 and 3 (page 13), you can see that a cleanliness level (ISO Code) of 16/14/11 or better is recommended for a high pressure system containing a servo valve.

Step 2 example. Table 8 recommends the Schroeder Z5 element media or finer to achieve a cleanliness level of 16/14/11.

Step 3 example. A combination of a pressure filter upstream of the servo valve and a return line filter would provide cost effective contamination control for servo systems.

Step 4 example. Filter model DF40, shown on page 65, is selected as the appropriate pressure filter because of its 30 gpm and 4000 psi capacities. A look at the Element Selection Chart for the DF40 located on page 67 verifies that the CZ5 element will handle 20 gpm, and the appropriate model number is DF40-1CZ5.

The ZT in-tank return line filter is selected for the 30 gpm return flow and the Z5 media. As shown in the model selection chart for the ZT on page 266, the proper model number to meet the specifications is ZT-8ZZ5.

Step 5 example. Using our Accessories Catalog; L-4329, select the ABF-3/10-S breather/strainer.

Step 6 example. Implement the appropriate manufacturing, assembly and maintenance contamination control procedures.

Step 7 example. Check start-up and ongoing system cleanliness (ISO Codes). Schroeder offers oil sampling kits that can be forwarded to a lab for particle counting and determination of cleanliness levels.

Table 8. Schroeder Element Media Recommendations

Recommendations	
Desired Cleanliness Levels (ISO Code)	Schroeder Media
20/18/15-19/17/14	Z25
19/17/14-18/16/13	Z10
18/16/13-15/13/10	Z5
15/13/10-14/12/9	Z3
14/12/9-13/11/8	Z1

Rated Fatigue Pressure

The application of individual filters should take fatigue ratings into consideration when there are flow or pressure variations creating pressure peaks and shock loads.

Typical hydraulic systems that use highly repetitive operations include plastic injection molding machines, die-cast machines, and forging and stamping press systems. In these and other similar applications, rated fatigue pressure should be considered when selecting a filter.

It has been common practice in the fluid power industry to establish component ratings for maximum operating pressure based on the minimum yield pressure, which is usually one third of the minimum yield pressure for higher-pressure components and one fourth of the minimum yield pressure for lower-pressure components. This rating method has proved satisfactory for many years, but it does not directly address the subject of fatigue.

The National Fluid Power Association has introduced a method (NFPA T2.6.1) for verifying the fatigue pressure rating of the pressure-containing envelope of a metal fluid power component. In this method, components are cycled from 0 to test pressure for 1 million cycles (10 million cycles is optional). The rated fatigue pressure (RFP) is verified by testing. We establish the desired RFP from design, then we calculate the cycle testing pressure (CTP), and then conduct tests at CTP per 1,000,000 cycles.

The T2.6.1 Pressure Rating document is available from the National Fluid Power Association, 3333 N. Mayfair Road, Milwaukee, WI 53222-3219.

Model	Rated Fatigue Pressure psi (bar)	Model	Rated Fatigue Pressure psi (bar)
NF30/NFS30	2400 (165)	LW60	5800 (400)
YF30	1800 (125)	ZT	90 (6)
DF40/CF40	1800 (125)	RT/LRT	90 (6)
PF40	2500 (173)	QT/IRF	100 (7)
LC50	5000 (350)	KF3	290 (20)
CFX30	1800 (125)	KL3	300 (20)
RF60	3500 (240)	TF1	270 (19)
CF60	4000 (276)	LF1/MLF1	250 (17)
VF60	3300 (230)	RLD	350 (24)
KF30	2500 (170)	RLT	750 (52)
TF50	3500 (240)	GH	725 (50)
KF50/KC50	3500 (240)	GHHF	725 (50)
KFH50	3500 (240)	SRLT	750 (52)
MKF50	3500 (240)	KF8/QF5/3QF5	500 (35)
KC65	5500 (380)	K9/2K9/3K9	750 (52)
NOF50-760	4000 (275)	QF15/QLF15/SSQLF15	800 (55)
FOF60/PF40	4000 (275)	HS60	6000 (415)
CTF60	6000 (415)		

Table 9. Fatigue Pressure Ratings

Contact Factory For: RFS50, FOF30, NOF30-05, MTA, MTB, KT, BFT, PAF1, MAF1, MF2, RTI, KTK, LTK, QF5 and QFD5 Fatigue Ratings. All water service and GeoSeal[®] models match their standard model for Rated Fatigue Pressure.

Manifold Mounting In some filtration applications, it is advantageous to have the inlet and outlet ports mount directly onto a block without any hydraulic hose in between. Schroeder offers several such manifold-mounted filter models, including NFS30, YF30, PF40, LC50 DF40, RFS50, KF30, TF50, KF50, KC50, and KFH50. Drawings for these porting options are labelled "Optional Subplate Porting" and are included on respective catalog pages.

No-Element Indicator

The No-Element Indicator is a unique, patented signaling device designed to alert the user if no filter element is present in the housing. This virtually eliminates any possible confusion on the part of the user that the filter contains an element and is functioning in a normal manner.

The tamper proof system utilizes a patented internal valve design. If the element is not installed in the housing, the valve restricts flow, causing a high pressure drop. The high pressure drop, in turn, causes the Schroeder Dirt Alarm[®] to indicate that the element is not installed in the housing.

The only way to deactivate the indicator is to install the element in the housing.

This feature is available in the following filter models: RT, TF1, KF3, CF40, DF40, CF60, TF50, KF30, KF50, KC50, KC65, and MKF50 that are equipped with a Schroeder Dirt Alarm[®]. No-element indicator is not available when the indicator is placed in the cap in base-ported filters.

26 SCHROEDER INDUSTRIES

Ordering Information

For each filter that is shown in Sections 3, 4, 5, and 6 there is a Model Number Selection Chart. This chart lists all the configurations and accessories available for that specific filter.

Model numbers for all Schroeder filters are formulated by listing the appropriate codes, from left to right, according to the designated boxes shown in the chart. The letter or letter/number combination identifies the basic filter series. For instance, as shown in Figure 7, KF30-3KZ3-P-D5 designates a KF30 high-pressure, base-ported filter with three synthetic 3 μ elements, Buna N seals, 1¹/₂" NPTF porting, and a visual cartridge Dirt Alarm[®]. Figure 7. Model Number Selection

How to Build a Valid Model Number for a Schroeder KF30:

Thermal

Lockout

MS14DCLCT = Low current MS14DCT

Model Number Selection

NOTES:

Box 2. Number of elements must equal 1 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length.

- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[®] is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 7. For options F & F32, bolt depth .75" (19 mm).

For option O, O-rings included; hardware not included.

- Box 8. X and 50 options are not available with KFN30.
- Box 9. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.
- Box 10. Options N, G509 and G588 are not available with KFN30. N option should be used in conjunction with dirt alarm.

Element Selection Chart for Flow Requirements

For each filter shown in the catalog, there is an element selection chart to determine the correct element to be used for a particular flow requirement (see Figure 8 for an example). The chart uses a petroleum-based hydraulic fluid with 150 SUS viscosity.

The process involves the following: Determine the working pressure of the system (3000 psi in this example) and the maximum flow (75 gpm). Then select the media (Z-Media®), and the micron filtration (3 μ). For example, the filter selected, following the above steps, is a KF30-2KZ3-P-D5. If the system pressure is 5000 psi and all other parameters are the same, then the model number would be KF50-2KZ3-P-D5.

Figure 8. KF30 Housing and Element Selection Chart for Flow Requirement

	Elerr	nent	Element selections are predicated on the use of				e of 150 SUS (32 cSt)					
Pressure	Series	Part No.	petroleum based fluid and a 40 psi (2.8 bar) bypass valve.									
		К3	1K3	1K3 2K3 3K3			See MFK50					
	E Media	К10	1K10		2K10 3k		3K10	3K	10	See MFK50		0
То		K25	1K25				2K25					
	Z Media	KZ1	1KZ1 2KZ			2KZ1			31	<z1< td=""><td></td></z1<>		
3000 psi (210 bar)		KZ3	1KZ3			2KZ3		3	3KZ3			
(KZ5	1KZ5				2KZ5			3KZ5		
		KZ10	1KZ10				2KZ	10	3K10			
		KZ25			2KZ	25					2KZ25	
	gpm) 25	50		1 75	100)	125	5	150	
	FIOW	(L/min)	0 100	20	D	300		400		500	600	

Shown above are the elements most commonly used in this housing. requires 2" porting (P32)

Element pressure drop information in this publication is based on the viscosity (150 SUS or 32 cSt) and specific gravity (0.86) of the most commonly used hydraulic oils.

If the viscosity or specific gravity of the fluid you are designing for is different from these, use the following formulas to obtain the correct ΔP values.

Corrected element $\Delta P =$	ΔP from curve	x —	SUS viscosity 150	— x —	specific gravity 0.86
		OR			
Corrected element $\Delta P =$	ΔP from curve	x —	cST viscosity 32	— x —	specific gravity 0.86

Correcting for Viscosity and Specific Gravity

Schroeder Element Media

Z-Media[®] Elements (Synthetic)

Schroeder

Synthetic Microglass Filtration Media

The special class of micro-glass and other fibers used in Z-Media[®] are manufactured with utmost precision, to specific thicknesses and densities, and bonded with select resins to create material with extra fine passages. No other filter media can provide the benefits of Schroeder's Excellement[®] Z-Media[®]: maximum dirt-holding capacity, superior particle capture, excellent beta stability, minimum pressure drop, high flow rate and low operating cost.

The typical multiple layer construction (shown in Figure 9) has evolved from comprehensive laboratory testing to provide extended element life and system protection. Each successive layer performs a distinct and necessary function. The outermost layer is designed to maintain element integrity. Beyond this layer is a spun bonded scrim, offering coarse filtration and protection for the filtering layers within. Multiple sheets of fine filtering media follow, providing intricate passageways for the entrapment of dirt particles. Together, the various layers of filter media provide the ideal combination for peak filtration performance.

Figure 9. Cutaway of Excellement® Z-Media®

Schroeder's complete line of quality filtration elements—including Schroeder's original element designs, BestFit[®] replacement elements, CoreCentric[®] coreless elements and DirtCatcher[®] —are manufactured with Excellement[®] Z-Media[®].

The better efficiencies, excellent stability, lower pressure drops, and higher dirt holding capacities provided by Excellement[®] Z-Media[®] mean cleaner oil, longer element life, and less downtime. They outlast, outperform, and excel in every measurable benchmark.

The Excellement[®] Z-Media[®] series of filter elements have been designed, tested, and proven to be the best performing elements available on the market today.

30 SCHROEDER INDUSTRIES

Better flow characteristics: Lower pressure drop and improved flow stability

- Improved efficiency: Cleans oil in less time and improved reliability
- Higher dirt holding capacity: Longer element life, lower maintenance costs (labor)and decreased inventory costs (parts)
- Multi-layer construction: Each layer performs a distinct function

Table 10. Typical Field Application Results

Application

Railroad Maintenance-of-Way

Timber Harvesting Equipment

Hydraulic Production Test Stand

*Higher or lower levels can be obtained by selecting

coarser or finer Schroeder Z-Media[®], respectively.

Equipment

Turbine Skid

Plastic Injection

Molding Machine

Aircraft Test Stand

Paper Mill Lube System

Power Generation

 Beta stability: Excellement[®] Z-Media[®] maintains efficiency as differential pressure increases

Cleanliness*

Level

ISO 19/17/14

ISO 17/15/13

ISO 17/15/12

ISO 17/15/12

ISO 16/14/11

ISO 15/13/10

ISO 13/11/8

Schroeder Z-Media[®] elements are tested under cyclic flow conditions to verify flow fatigue characteristics. Extra strength and rigidity are engineered into every one of these filter elements through the use of epoxy-coated steel wire mesh and additional support layers. (ZX Series high crush strength capabilities are available for 3000 psi applications.)

A wide range of Schroeder Z-Media[®] elements enable you to achieve the desired cleanliness level for your system. Developed through comprehensive laboratory testing and field performance studies, these elements have been proven effective. Shown in Table 10 are cleanliness levels that can be achieved using Z-Media[®] filter elements in various applications.

Table 11 shows the ISO 16889 filtration ratios (Betas) for Schroeder Z-Media[®] elements Z1, Z3, Z5, Z10 and Z25. Figure 10 depicts the information in Table 11 graphically and provides corresponding % efficiencies. The numbers contained in the tables are simply specific data points from the plots for the respective media shown. The filtration ratio (Beta) is shown on the left side and the equivalent particle capture efficiency (%) is shown on the right for particle sizes shown across the bottom. The filtration ratio (in Table 13) indicates the particle size at which the filtration ratio for the element is greater than a given number.

Table 11. Z-Media[®] Filtration Ratios

Floment	Filtration Ratio Per ISO 16889							
Media	βx(c) ≥ 75 (98.7%)	βx(c) ≥ 100 (99%)	βx(c) ≥ 200 (99.5%)	βx(c) ≥ 1000 (99.9%)				
Z1	<4.0	<4.0	<4.0	4.2				
Z3	<4.0	<4.0	<4.0	4.8				
Z5	<4.0	4.2	4.8	6.3				
Z10	6.8	7.1	8.0	10.0				
Z25	16.3	17.1	19.0	24.0				

Schroeder offers a line of high crush media elements with a collapse rating of 3000 psid for use in its non-bypass version of filter housings, which include the: NFN30, DFN40, CFN40, RFN60, CFN60, TFN50, KFN30, KFN50, KCN50, MKFN50, KCN65, FOF30, FOF60 and NOF30.

Features and Benefits

Excellement[®] Elements Have Improved Filtration Ratios

Series ZX High Collapse Elements (Synthetic)

Excellement Elements Have High Dirt Holding Capacities

Dirt holding capacity (DHC), simply stated, is the amount of solid contamination that an element can hold before the filter housing reaches its terminal bypass setting. The higher the dirt holding capacity, the longer the element will last. This translates to fewer element purchases, less frequent equipment shutdowns, decreased maintenance time, and reduced inventory. In short, it means money saved.

Table 12. Typical Dirt-Holding Capacities for Z-Media[®] Element (in grams)

Tuno	Element Size (Diameter x Length)								
Medium	2" x 6" 6R	3" x 8" 4" x 9 8T K		5" x 18" BB	6" x 39" Q				
Z1	15	51	112	268	1485				
Z3	15	52	115	275	1525				
Z5	16	59	119	301	1536				
Z10	14	55	108	272	1432				
Z25	15	56	93	246	1299				

The data shown represents the cumulative results of multi-pass tests in accordance with ISO 16889. Tests are conducted on a regular basis at Schroeder's own laboratory and at approved independent facilities.

A monetary value can be calculated for a filter element by considering its dirt holding capacity and efficiency in combination with its cost. To make this determination, first find out how much you're spending to clean your fluid to a desirable cleanliness level. Then figure out how much contamination (in grams) that the element is actually retaining. These two numbers will make it possible to calculate the grams of dirt per dollar spent. It's one thing to clean the oil, but it's another to clean the oil and simultaneously provide maximum element life. With Excellement[®] Z-Media[®], you don't need to sacrifice element life to achieve high efficiency.

We are confident that the high efficiencies, exceptional dirt holding capacities, and low pressure drops combined with Schroeder's competitive prices— make elements made with Excellement[®] Z-Media[®] the best value in the market today.

Figure 10. Z-Media® Excellement® Efficiency

Element Case Weights

In proportion to the high volume of filter elements we make and ship, one of the most frequently asked questions our order desk receives involves the weights of various cases of elements. In an effort to include this information in this edition of the catalog, we made the assumption that the various micron ratings within a media type weigh the same; i.e., a KZ1 weighs approximately the same as a KZ25.

The following table represents our findings given the above assumption.

		Case Lot	Weight (lb.)			Case Lot	Weight (lb.)			Case Lot	Weight (lb.)
А	paper	12	7	к	paper	12	17	8Z	paper	12	12
AZ	synthetic (Z)	12	8	ΚZ	synthetic (Z)	12	22	8ZZ	synthetic (Z)	12	13
BB	paper	6	29	KW	Water Removal	12	18	9V	synthetic (Z)	12	14
BBZ	synthetic (Z)	6	29	КК	paper	6	18	14V	synthetic (Z)	6	10
С	paper	12	7	KKZ	synthetic (Z)	6	20	14C	synthetic (Z)	6	11
CZ	synthetic (Z)	12	8	27K	paper	6	20	18L	synthetic (Z)	6	20
CC	paper	12	11	М	paper	12	33	39Q	paper	1	17
CCZ	synthetic (Z)	12	15	N	paper	12	4	39QPML	synthetic (Z)	1	18
FZX3	synthetic (Z)	12	3	NZ	synthetic (Z)	12	7	39QCL	synthetic (Z)	1	11
FZX10	synthetic (Z)	12	3	NN	paper	12	6	16Q	paper	1	8
6G	synthetic (Z)	12	8	NNZ	synthetic (Z)	12	9	16QPML	synthetic (Z)	1	15
9G	synthetic (Z)	12	13	6R	synthetic (Z)	12	10	16QCL	synthetic (Z)	1	3

Cost Per Gram Analysis/ Excellement® *Efficiency*

Far too often, customers make purchasing decisions based solely on price, only to be extremely disappointed with the poor quality delivered by low cost imitations. To make the matter worse, the customer often points an accusing finger at the filter housing manufacturer for poor performance, rather than the inadequate element they used as a replacement for the original Schroeder element.

GeoSeal[®] is a patented offering from Schroeder that provides a unique way for OEM's to retain replacement element business and to keep a filter's performance at the level that it was supplied. The idea is brilliantly simple: the critical sealing arrangement between a filter housing and its replacement element takes on a shape other than the standard circular arrangement. Specifically, the element grommet & mating bushing are given a new geometric shape. Figures 1 & 2 show the initial configuration being used.

Figure 2. Filter housing (cut-away) with GeoSeal bushing.

Availability

Currently, the GeoSeal[®] design is available on the K-size element and in the following Schroeder filter series: KF30, KF50, KC50, KC65, MKF50, K9, 2K9, 3K9, KF3, KL3, MLF1, KF5, RT, ZT, and LRT.

How To Order

To order the filter housing and element incorporated with the GeoSeal® design:

- "G" is added to the front of the housing model code (KF30, KF50, KC50, KC65, MKF50, KF3, KL3, MLF1, KF5, K9, 2K9, 3K9, RT, ZT, and LRT).
- "BG" is added to the element model code for RT (one end of the element has the GeoSeal[®]; the other end has an integrated bypass valve)

GeoSeal[®] Filters Selection Guide

		Pressure psi (bar)	Flow gpm (L/min)	Element Length/Size	Page
GeoSeal [®] Filters	High Pressure GeoSeal® Filters				
	GKF30 GeoSeal®	3000 (210)	100/150 (380/570)	KG, KKG, 27KG	97
	GKF50 GeoSeal®	5000 (345)	100/150 (380/570)	KG, KKG, 27KG	97
	GKC50 GeoSeal®	5000 (345)	100/150 (380/570)	KG, KKG, 27KG	105
	GMKF50 GeoSeal®	5000 (345)	200 (760)	KG, KKG, 27KG	109
	GKC65 GeoSeal®	6500 (450)	100 (380)	KG, KKG, 27KG	113
	Medium Pressure GeoSeal [®] Filters				
	GKF5 GeoSeal®	500 (35)	100 (380)	KG	161
	GK9 GeoSeal®	900 (60)	100 (380)	KG, KKG, 27KG	169
	G2K9 GeoSeal®	900 (60)	100 (380)	KG, KKG, 27KG	173
	G3K9 GeoSeal®	900 (60)	100 (380)	KG, KKG, 27KG	173
	Low Pressure GeoSeal® Filters				
	GKF3 GeoSeal®	300 (20)	100 (380)	KG, KKG, 27KG	219
	GKL3 GeoSeal®	300 (20)	120 (455)	KG, KKG, 27KG, 18LG	223
	GMLF1 GeoSeal®	300 (20)	200 (760)	KG	231
	GZT GeoSeal®	100 (7)	40 (150)	8GTZ	251
	GRT GeoSeal®	100 (7)	100 (380)	KBG, KKBG, 27KBG	259
	GLRT GeoSeal®	100 (7)	150 (570)	18LG	267

Private Labeled Elements

Schroeder offers a full line of branding solutions for air breathers, spin-ons, and replacement elements. Using the Element Private Label Form (L-2993), OEMs can obtain Schroeder elements with their very own custom logo (for Spin-on elements and air breathers, reference L-2994 on our website). Furnishing elements with custom branding enables OEMs to capture their aftermarket element business. Custom labeled products also protect against the use of unauthorized elements, thus reducing the potential of field warranty issues. Additionally, private branded products are proprietary and will not be shared with others without written consent from the OEM.

Steps for Establishing an Outer Wrap/End Cap Markings

- 1. Elements can be private labeled by marking the end caps, adding a private labeled plastic outerwrap, or both.
- 2. Customer name and part number will be etched on to one of the end caps with Schroeder date codes unless otherwise specified.

a. Logos can be laser etched onto the end cap if space allows on the desired element (a .DXF file of the logo is required).

 When requesting a plastic outer wrap, the customer must supply all artwork in a vector file format (.Al or .EPS).

- 4. Once the artwork is received, a RIP file (used to print the wrap) will be created and a sample swatch will be provided for customer approval (average lead time is approximately 2 weeks).
- 5. The sample printed polyester swatch will be sent to the customer for approval. The sample swatch can be temporarily wrapped around a SBF-9600-8 element, but this must be requested.
- 6. Once the customer has approved the sample, element part numbers (specific to element size) can be established and structured. Cost, delivery and required minimum quantity may depend on element size and private labeling style.

Packaging Capabilities

Schroeder has the ability to brand both individual and master cartons as requested. We can apply the customer name, part number, logo (black and white - .jpg file), and other customer texts. Bar coding and customer pre-printed boxes can also be requested (set up fees and minimum order quantities are required for customer pre-printed boxes).

Extra Aftermarket Retention Advantages:

Incorporating a private labeling program has shown that upwards of 60% of aftermarket element business is retained. Instituting of a private branding program also protects against the use of inferior and/or unqualified replacement element substitutions.

Anti-Static Pleat Elements

During the production of hydraulic oils, "additive packages" are introduced into the base oils to give the fluids certain characteristics they need for the demanding conditions of today's systems. The additives improve viscosity, reduce friction, prevent wear, and allow the fluid to tolerate high temperatures without oxidation. Some oils are produced with toxic aromatics and heavy metals, with a high electrical conductivity, but because of their toxicity and potential threat to the environment, they no longer comply with current, international environmental standards. Other groups of oils are produced with the appropriate, approved additive packages, often labeled as highly refined or synthetic. They contain no toxins or carcinogens, and are free of heavy metals, but due to their metal-free nature, they have a lower electrical conductivity rating. Low electrical conductivity means that any charges that are generated through the oil flow may not be dissipated quick enough, thus causing sparking. Ultimately, this can cause explosions in the reservoir or damages in vital hydraulic components, such as valves and filters.

The sparks can also interfere with or damage expensive electronic components, and form oil-ageing deposits, such as varnish. Varnish then settles on the oily surfaces of the vital components and has a detrimental effect on how well your machine functions. Potential consequences of varnish also includes seized valve spools, overheated solenoids, and extremely short filter element service life.

The Anti-Static Pleat Media (ASP[®]) element was developed to greatly reduce or eliminate electrostatic discharging problems that can occur during filtration of hydraulic and lube fluids. By combining proven Excellement[®] media and ASP[®] technology, it is now possible to offer both high filtration efficiency and electrical conductivity.

Other key areas that can contribute to Electrostatic Discharge:

- Filter Media media layer construction can influence high voltage charge
- Hydraulic Fluids group II and III have low conductivity
- Temperature higher voltage charge will generally exist with lower temperature

DirtCatcher® Elements

Patent # 7384547

DirtCatcher[®] elements from Schroeder offer a superior alternative to inside-out filtration. The patented outer shell prevents contaminants from falling back into the system during element changes while still providing the excellent dirt retention of Excellement[®] media. DirtCatcher[®] elements are currently available in single and double length K, BB, and 18L size elements, and feature Excellement[®] media within.

Currently, DirtCatcher[®] elements can be purchased separately or as part of our RT, KF3, KF8, BFT, and LRT filter assemblies.

The DirtCatcher[®] solution provides peace of mind to those concerned with dirt escaping from elements during the removal process while delivering all the advantages of Schroeder original (outside-in flow) elements:

- Better Pressure Drop
- Greater Surface Area
- Better Pleat Stability

This design is only available from Schroeder. It goes without saying that DirtCatcher's unique design also allows OEM's to retain 100% of after-market business.

Schroeder Industries manufactures over 2000 BestFit[®] performance replacement elements. In addition, Schroeder Industries produces all of the technical data to support the sale of these products. The BestFit[®] family consists of standard cartridge and spin-on replacements, CoreCentric[®] coreless elements, high collapse elements, and the melt-blown and spun-bonded process filtration elements. Most importantly, we offer the easiest way to determine the Schroeder equivalent of more than 42,000 competitive elements using the Schroeder online element search, accessible through our web site at www.schroederindustries.info.

Simply clicking on "BestFit[®] Element Cross Reference" on the Schroeder Industries home page (www.schroederindustries.com) allows you to match filter elements by entering either the manufacturer's name or part number.

There are two ways to search on the Schroeder BestFit[®] cross reference page. The first way is to type a competitor element part number in the search bar. When searching by competitor part number, the search will activate as soon as three characters are entered (no spaces or symbols). The second way is to use the two drop down menus to find the competitor and part number you are trying to cross. When a cross has been located, the results table includes the corresponding BestFit[®] replacement element, dimensions (inside diameter, outside diameter and length), element style (e.g., cartridge or spin-on), media type (metal mesh, water removal, synthetic glass, or paper) and performance specifications, including beta ratios and dirt holding capacity. Also, a link to the left of the results table links to a generalized element drawing with all of the desired information on it. If there is an element that cannot be crossed, Schroeder Industries can work with you in finding a replacement solution to your element problem!

Schroeder BestFit® Elements include the following series:

QCLZ (8314 replacement)	SBF-0160R	SBF-0660R	SBF-170B	SBF-7500	SBF-9021	SBF-MF-100
QPML (8310 replacement)	SBF-0161D	SBF-0661D	SBF-2000	SBF-7507	SBF-9100	SBF-PXX
SBF-0030D	SBF-0240D	SBF-0850R	SBF-2544	SBF-8200	SBF-9400	SBF-PXW
SBF-0030R	SBF-0240R	SBF-0950R	SBF-2600R	SBF-8300	SBF-9600	SBF-RP83
SBF-0031D	SBF-0241D	SBF-1000	SBF-270	SBF-8400	SBF-9601	SBF-TXX
SBF-0060D	SBF-0280D	SBF-1001	SBF-270B	SBF-8500	SBF-9604	SBF-TXW
SBF-0060R	SBF-0281D	SBF-1002	SBF-370	SBF-8700	SBF-9650	SBF-UE210
SBF-0661D	SBF-0330D	SBF-1010	SBF-370B	SBF-8800	SBF-9651	SBF-UE219
SBF-0110D	SBF-0330R	SBF-1050	SBF-6000	SBF-8900	SBF-9800	SBF-UE310
SBF-0110R	SBF-0331D	SBF-1051	SBF-6400	SBF-8914	SBF-9801	SBF-UE319
SBF-0111D	SBF-0500R	SBF-1300R	SBF-6500	SBF-937	SBF-9901	SBF-UE610
SBF-0160D	SBF-0660D	SBF-170	SBF-7400	SBF-9020	SBF-BPE-7509	SBF-UE619

Schroeder BestFit[®] element model codes are determined by replicating the element model code it is replacing. An example of a breakdown of the model code is shown below:

Schroeder BestFit® Model Code: SBF-9600-13Z10V

BestFit[®] High Performance Replacement Elements

CoreCentric[®] Coreless Element

Melt-Blown and Spun-Bonded Filter Elements For Process and Cutting Fluid

Applications

CORELESS ELEMENT WITH BACKBONE

The CoreCentric[®] Coreless element is an environmentally friendly, all plastic element (no metal parts) that can be crushed, shredded or burned. These alternative methods of disposal will not only greatly reduce solid waste volumes, but also reduce disposal costs simultaneously.

CoreCentric[®] Coreless elements are designed to ensure optimum performance and ease of service. Built with Excellement[®] Z-Media[®], CoreCentric[®] Coreless elements (QCL) fit in all Pall 8304 and 8314 housings and are available in the 8[°], 13[°], 16[°], and 39[°] lengths. Note: To ensure fast delivery, CoreCentric[®] elements are available with Viton[®] seals only.

CoreCentric[®] elements are designed with an integral patent design, cylindrical center core that provides column strength, added structural stability, and easy element removal. This core eliminates both the sticking and vertical sagging problems that can occur when using other manufacturer's coreless designs.

Schroeder's CoreCentric[®] elements are the only coreless element designed with backbone. We call it the "CORE ON CORE" element design.

Used in process and cutting fluid applications, melt-blown and spun-bonded elements are manufactured with either polypropylene or nylon filter media. Element fibers are blown onto and thermally bonded to a central support core with increasing fiber density towards the core, creating depth filtration. All layers are interlinked to offer maximum support while ensuring high void volume. The thermal bonding process minimizes media migration, providing consistent and reliable performance. They excel in dirt holding capacity and have low pressure drops. They also offer wide chemical compatibility, as well as being structurally sound and able to withstand high flow rates.

Melt-blown and spun-bonded elements fit most industrial housings incorporating the double open ended sealing arrangement, as well as standard polypropylene, PVC, and polycarbonate housings. In addition, these elements are available with end caps for most plug-in style O-ring fittings, making them ideally suited to more critical applications requiring the assurance of these double seals.

They have a wide range of applications including:

- Machine tool coolants
- Roll mill coolants
- EDM fluids
- Quench oils
- Electrophoretic paintsEtching solutions

Parts washing solvents

- Plating solutions
- Light oils
- Fuels
- High water containing fluids

For technical information on process filtration solutions, request catalog #L-2728.

Energy-Saving Filtration

The use of Schroeder's GREEN, Electric Drive (E-Drive) Media filtration technology guarantees safe and reliable equipment operation, all-while conserving the use of energy.

Part of Schroeder's Energy Saver initiative, filter elements made using the all-new E-Drive Media are characterized by an unusually low pressure drop, making them suitable for low energy requirements compared to conventional hydraulic elements under the same ambient conditions.

E-Drive Media is the clear choice for use in electric hydraulic drive motor-pump units. Use it for conserving energy bills and wherever high viscosity fluids are employed – especially at low temperatures that produce a cold start behavior.

Schroeder's E-Drive Energy Saving Features:

- Low resistance of flow to reduce the ΔP across the element.
- Constructed of multi-layered, synthetic fiber material with support.
- Great for cold start conditions where a low pressure drop is required.

Technical Specs:

- Element Collapse Rating: 145 psid (10 bar).
- Temperature Range: -22°F to 212°F (-30°C to 100°C).
- Flow Direction: Outside to Inside.

E-Drive Media is currently rated for 8, 10, & 15 µm filtration..

Electric Drive Elements

E Media Elements (Cellulose)

Recognized as one of the industry's most cost effective media available in the marketplace, Schroeder E media is an excellent choice for a wide variety of hydraulic system applications.

The E3 media is a specially designed mixture of cellulose and micro-glass, which provides both high dirt holding capacity and high particle capture efficiency, resulting in one of the industry's most cost effective cellulose media. Schroeder E10 media, used in the popular K10 element, is a standard for numerous industries, enabling continuous, trouble-free system operation.

Please note: The "E" identification for the media is not shown in the element model number. For example, our standard K3 and K10 elements are constructed with E media.

Table 14 shows the filtration ratios for Schroeder E media elements, while Figure 18 depicts this information graphically and provides corresponding % efficiencies for both the E3 and E10 media.

Table 14. E Media Efficiency Ratings per ISO 4572 without Antistatic Additive

	Filtration Ratios (Beta)						
Element Media	β _x ≥ 75 (98.7%)	β _X ≥ 100 (99%)	β _X ≥ 200 (99.5%)	ß ₃	⁶ 5	^ß 10	^β 20
E3	6.8	7.5	10.0	28	48	200	>1000
E10	15.5	16.2	18.0	—	1.3	10	400

The cost effectiveness of E media becomes even more apparent when dirt holding capacity is considered (see Table 15). The dollars spent per gram of dirt retained with an E media element makes it an excellent choice for many contamination control programs.

Table 15. Typical Dirt Holding Capacities for E Media Elements (ACFTD capacity in grams)					
Element	Me	dia			
Size	E3	E10			
Ν	8	7			
NN	12	10			
С	14	12			
CC	30	25			
А	16	13			
К	54	44			
9C	30	25			
BB	162	132			
18L	108	88			
М	50	37			
8Z	39	32			
8T	39	32			
Р	—	37			
9V	32	26			
14V	51	41			
6R	9	8			

Figure 16. E Media Element Efficiencies Per ISO 4572

The data shown represents the cumulative results of E media multi-pass tests. Tests are conducted on a regular basis at Schroeder's own laboratory and at approved independent facilities. Tests are conducted without antistatic additive.

The data shown represents the cumulative results of E media multi-pass tests. Tests are conducted on a regular basis at Schroeder's own laboratory and at approved independent facilities. Tests are conducted without antistatic additive. Schroeder offers a line of metal reusable elements to meet specific application needs. These rugged elements are constructed of high-strength woven stainless steel wire mesh. The wire mesh and center tube are epoxy-bonded to the end caps.

The element design incorporates shallow pleats which provide an efficient flow pattern with optimum pressure drop. In addition, the shallow pleat construction simplifies the cleaning process. These elements may be cleaned using a liquid solution (either Kleenite or Oakite) or by ultrasonics. Request Schroeder's #L-2094 Data Sheet for details regarding recommended cleaning procedures.

Schroeder metal elements are available in a variety of sizes for 10, 25, 60, 150, and 260 μ filtration and are shown in Table 16. The size and type of wire mesh used for each micron rating are shown in Table 17.

Table 17. N	licron Ratings and Wire Mesh
10 µ	200 x 1400 twilled Dutch weave
25 µ	165 x 1400 twilled Dutch weave
60 µ	50 x 250 plain Dutch weave
150 µ	100 x 100 square Dutch weave
260 µ	60 x 60 square Dutch weave

Today's demand for the use of fire-resistant fluids that assure safe and dependable operation in an electrohydraulic control system (EHC) demand peak performing media. The change-over to Schroeder "F" Pack media from a traditional, high performance, synthetic media results in lower, clean pressure drop and higher efficiency. Most importantly, the change eliminates cast-off, or shedding of synthetic fibers, which can result in servo valve failure.

Construction

- Total stainless steel, sintered depth style media
- Pleated media
- Sintered construction prevents shedding of media
- Outside/in flow

Performance

- Extremely efficient: B3=1000 and B10=1000
- Excellent choice for use with phosphate esters and Fyrquel[®] fluids
- Operating temperature -20°F to 350°F with use of Viton[®] seals
- Element collapse rating 3000 psid for use at high differential pressures

M Media Elements (Reusable Metal)

F-Pack Media

W Media Elements (Water Removal)

Water can cause a host of contamination problems in hydraulic and lubrication systems. It can exist in a system in a dissolved state or in a free state. In a dissolved state, the fluid is holding the water. In a free state, the water is above the specific saturation point of the fluid, and thus cannot dissolve or hold more water. A mild discoloration of the fluid generally indicates that a free water condition exists in the system.

Schroeder's uniquely designed water removal elements employ a quick-acting water-absorbent polymer, capable of holding over 400 times its own weight in water. These elements are ideal for in-line use, re-circulating filter systems, or in portable filtration carts.

Water retention is positive, even under high pressure, so there is no downstream unloading. However, water retention capacity is dependent on the type of fluid and additives present in a system, its viscosity and its flow rate. As a result, retention capacity may be diminished by some additives present in the system, by a high viscosity, or a high flow rate.

Table 18 shows water holding capacity and Table 19 shows the pressure drops for select W media elements. (On net page)

For best results, flow rates through a single KW element should be 10 gpm (38 L/min) or less.

Aqua-Excellement™ High Efficiency Particulate Water Removal Media

Schroeder offers Aqua-Excellement[™] filter elements, which excel at removing both water and solid particulates from petroleum-based fluids. The filtering media incorporated into Aqua-Excellement[™] elements is referred to as ZW and includes layers of Schroeder's high efficiency Excellement[®] Z-Media[®] for capturing particulate contaminations in combination with water removal capabilities. The high efficiencies, outstanding beta stabilities, and excellent dirt holding capacities that Excellement[®] customers have become accustomed to are present in the new ZW media. Paired together, these two types of media make a winning combination and are highly effective at filtering out water and solids simultaneously.

Aqua-Excellement[™] elements are currently available in multiple sizes for both cartridge and spin on style. Equipped, with ZW media, Schroeder MFS/AMS series carts can be effectively utilized for on-site flushing applications for cleaning stagnant large volume reservoirs. When used on a kidney loop system installed on power units, the ZW media allows for smaller kidney loop system and lower dimensional clearance and weight. Other applications include mobile filtration systems and bulk transfer systems.

Schroeder Kidney Loop Systems and Mobile Filtration Carts can utilize the KZW cartridge elements

ZW Spin-On Elements

NOTE: When using any K-size housing do not exceed 14 gpm

Shown below is a breakdown of the layers of the new K-size ZW cartridge element.

- Epoxy-coated steel wire fabric providesmaximum support and rigidity.
- Two layers of Z-Media provide maximum efficiency and dirt-holding capacity with minimal pressure drop
- Water removal media
- Spun-bonded scrim provides downstream media support and increased stability
- Epoxy-coated steel wire fabric providesmaximum support and rigidity.

Total water injection flow rate: 2.0 ml/min.

42 SCHROEDER INDUSTRIES

Table 18. Water Holding Capacity

Element	Flow	Capa	acity
Model No.	gpm (L/min)	mL	ounces
KW	20 (75)	150	5
KW	16 (60)	200	7
KW	10 (38)	320	11
KW	2 (7.5)	500	17
6RW	20 (75)	31	1
6RW	2 (7.5)	104	4
8TW	20 (75)	93	3
8TW	2 (7.5)	311	11
9VW	20 (75)	81	3
9VW	2 (7.5)	270	9
14VW	20 (75)	130	4.4
14VW	2 (7.5)	435	14.7
16QW	60 (225)	480	16
16QW	10 (38)	1350	45
39QW	140 (530)	1100	37
39QW	22 (83)	3100	105
MW	14 (53)	100	3.5
MW	1.5 (6)	350	12

Table 19. Pressure Drop

Element Model No.	Flow gpm (L/min)	∆P psi (bar)			
KW	20 (75)	2.5 (0.17)			
14VW	20 (75)	2.5 (0.17)			
16QW	65 (246)	2.5 (0.17)			
39QW	150 (570)	2.5 (0.17)			

Table 20. Maximum Recommended Flow Rate

Element	Maximum Recom	mended Flow Rate
Model No.	gpm	L/min
KW	20	75.7
6RW	4	16
8TW	12	47
9VW	11	41
14VW	20	75
16QW	60	225
39QW	140	530
MW	16	6

Table 21. KZW Cartridge Element Dirt and Water Holding Capacities

Element	DHC	Water Removal Capacity		Filtration Ratios (Beta)		
Part Number	(g)	2.5 gpm	10 gpm	$\beta x \ge 200$	ßx ≥ 1000	ΔP Factor
KZW1	61	197 mL/ 6.66 oz	nL/ 134 mL/	<4.0	<4.0	0.43
KZW3/KKZW3	64/128			4.0	4.8	0.32
KZW5/KKZW5	63/126			5.1	6.4	0.28
KZW10/KKZW10	57/114		4.55 02	6.9	8.6	0.23
KZW25/KKZW25	79/158			15.4	18.5	0.14

Table 22. ZW Spin-On Element Dirt and Water Holding Capacities

Element	DHC	Water Removal Capacity		Filtration Ratios (Beta)	
Part Number	(g)	2.5 gpm	10 gpm	$\beta x \ge 200$	βx ≥ 1000
10MZW10	53	185 mL/ 6.3 oz	126 mL/ 4.3 oz	6.9	8.6

Aqua-Excellement™ High Efficiency Particulate Water Removal Media

Notes Section:				

Section 3 High Pressure Filters Selection Guide

		Pressure psi (bar)	Flow gpm (L/min)	Element Length/Size	Page
	Top-Ported High Pressure Filters				
	NF30	3000 (210)	20 (75)	N, NN	45
	NFS30	3000 (210)	20 (75)	N, NN	49
	YF30	3000 (210)	25 (100)	4Y, 8Y	53
	CFX30	3000 (210)	30 (115)	CC, DD	57
	PLD	3000 (210)	100 (380)	DV	61
	CF40	4000 (275)	45 (170)	C, CC	65
	DF40	4000 (275)	30 (113)	C, CC	65
	PF40	4000 (275)	50 (190)	5H, 9H	69
	RFS50	5000 (345)	30 (115)	8R	73
	RF60	6000 (415)	30 (115)	8R	77
	CF60	6000 (415)	50 (190)	СС	81
	CTF60	6000 (415)	75 (284)	5СТ, 8СТ, 14СТ	85
	VF60	6000 (415)	70 (265)	9V	89
	LW60	6000 (415)	300 (1135)	39ZP	93
	Base-Ported High Pressure Filters				
psl)	KF30	3000 (210)	100/150 (380/570)	К, КК, 27К	97
	KF50	5000 (345)	100/150 (380/570)	K, KK, 27K	97
9	TF50	5000 (345)	40 (150)	A, CC	101
	КС50	5000 (345)	100/150 (380/570)	K, KK, 27K	105
2	MKF50	5000 (345)	200 (760)	K, KK, 27K	109
ILTE	MKC50	5000 (345)	200 (760)	K, KK, 27K	109
ге Г	KC65	6500 (450)	100 (380)	K, KK, 27K	113
ssu	MKC65	6000 (413)	300 (1136)	K, KK, 27K	117
ъ Б	Hydrostatic (Bidirectional) Flow High	Pressure Filters			
ıgn	HS60	6000 (415)	100 (380)	13HZ	121
	MHS60	6000 (415)	100 (380)	13HZ	121
	KFH50 (Base-Ported)	5000 (345)	70 (265)	K, KK, 27K	125
	In-Line Filters				
	LC60	6000 (415)	8 (30)	SSD	129
	LC35	3500 (241)	15 (57)	BS	131
	LC50	5000 (345)	9 (35)	5H	133
	Servo Protection (Sandwich) Filters DC	07, DO3, Moog, Par	ker & Vickers		
	NOF30-05	3000 (210)	12 (45)	NN	135
	NOF50-760	5000 (345)	15 (57)	SV	139
	FOF60-03	6000 (415)	12 (45)	F	143
	Manifold Mount Filter Kits (Bowls & Ir	stallation Drawing	s)		
	NMF30	3000 (210)	20 (75)	NN	147
	RMF60	6000 (415)	30 (115)	8R	149
	Cartridge Elements for use in Manifol	d Applications			
	14-CRZX10	3000 (210)	6 (23)		151
	20-CRZX10	3000 (210)	12 (45)	_	152

Top-Ported Pressure Filter NF30

	Footures and Repofits	20 gpm 75 L/min	NF30 NFS30
-	Top-ported pressure filter	3000 psi	YF30
	 All aluminum assembly 	210 har	CFX30
	Available with non-bypass option with high collapse element		ם ופ
	 Offered in pipe. SAE straight thread 		
A CORPORATION OF	and ISO 228 porting		CF40
100	Same day shipment model available		DF40
10 Mar.			PF40
			RFS50
			DECO
			KFOU
			CF60
			CTF60
			VF60
			1.W60
Model No. of filter in photograph	is NF301NZ10SD5.	•	KF30
			KF50
			TF50
Flow Rating:	Up to 20 gpm (75 L/min) for 150 SUS (32 cSt) fluids	Filter	KC50
Max. Operating Pressure:	3000 psi (210 bar)	Housing	
Min. Yield Pressure:	10,000 psi (690 bar), per NFPA 12.6.1	specifications	IVIKF3U
Temp, Range:	-20°F to 225°F (-29°C to 107°C)		MKC50
Bypass Setting:	Cracking: 40 psi (2.8 bar)		KC65
	Full Flow: 85 psi (5.9 bar) Non-bypassing model has a blocked bypass.		MKC65
Porting Head: Element Case:	Aluminum Aluminum		HS60
Weight of NF30-1N:	3.4 lbs. (1.5 kg)		MHS60
Weight of NF30-1NN:	4.4 lbs. (2.0 kg)		VEU50
Liement Change Clearance.	4.50 (115 mm)		KIIIJU
			LC60
			LC35
			LC50
Type Fluid Approp	riate Schroeder Media	Fluid	NOF30-05
Petroleum Based Fluids All E Me	dia (cellulose), Z-Media [®] and ASP [®] Media (synthetic)	Compatibility	
High Water Content All Z-Me	dia® and ASP® media (synthetic)		JF-50-760
Invert Emulsions 10 and 2	25 μ Z-Media® and 10 μ ASP® media (synthetic)		FOF60-03
Water Glycols 3, 5, 10	and 25 μ Z-Media [®] and 3, 5 and 10 μ ASP [®] Media (synthetic)		NMF30
			RMF60
			A CD7V40
		1	4-CKZX10
	SCHROEDER INDUSTRIES	5 47 2	0-CRZX10

NF30

Top-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	β _X ≥ 75	β _X ≥ 100	$\beta_X \ge 200$	β _X (c) ≥ 200	β _X (c) ≥ 1000
NZ1/NNZ1	<1.0	<1.0	<1.0	<4.0	4.2
NZ3/NNZ3	<1.0	<1.0	<2.0	<4.0	4.8
NZ5/NNZ5	2.5	3.0	4.0	4.8	6.3
NZ10/NNZ10	7.4	8.2	10.0	8.0	10.0
NZ25/NNZ25	18.0	20.0	22.5	19.0	24.0
NNZX3	<1.0	<1.0	<2.0	4.7	5.8
NNZX10	7.4	8.2	10.0	8.0	9.8

Dirt Holding Capacity

Element	DHC (gm)	Element	DHC (gm)
NZ1	12	NNZ3	16
NZ3	12	NNZ5	18
NZ5	12	NNZ10	15
NZ10	11	NNZ25	15
NZ25	11	NNZX3	11*
NNZ1	15	NNZX10	13*

* Based on 100 psi terminal pressure

Element Collapse Rating: 150 psid (10 bar) for standard elements 3000 psid (210 bar) for high collapse (ZX) versions

Flow Direction: Outside In

Element Nominal Dimensions: N: 1.75" (45 mm) O.D. x 5.25" (135 mm) long NN: 1.75" (45 mm) O.D. x 8.0" (200 mm) long

Element Performance Information & Dirt Holding Capacity

Top-Ported Pressure Filter NF3

$\Delta \mathbf{P}_{\mathsf{housing}}$

NF30 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for NF301NZ10SD5 using 160 SUS (34 cSt) fluid.

5

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 7 psi (.48 bar) according to the graph for an NF30 housing.

10

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathsf{V}_f)$

15

Flow Rate [GPM]

20

25

Use the element pressure curve to determine $\Delta P_{element}$ at 15 gpm. In this, case, $\Delta P_{element}$ is 8 psi (.55 bar) according to the graph for an NZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta P_{element} * V_f)$. The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution: $\Delta \mathbf{P}_{\text{housing}} = 7 \text{ psi } [0.48 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 8 \text{ psi } [0.55 \text{ bar}]$

0

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1

$$\Delta \mathbf{P}_{filter} = 7 \text{ psi} + (8 \text{ psi} * 1.1) = 15.8 \text{ psi}$$

OR

 $\Delta P_{\text{filter}} = .48 \text{ bar} + (.55 \text{ bar} * 1.1) = 1.1 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_{f}$ Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$
N3	1.10
N10	0.17
N25	0.10
NAS3	0.92
NAS5	0.71
NAS10	0.57

NF30 Top-Ported Pressure Filter

Filter Model Number Selection	BOX 1 BC NF30- NF30- 1	DX 2 BOX 3 BOX 4 BOX 5 	BOX 6 BOX 7 BOX 8 BOX 6 BOX 7 BOX 8 BOX 6 BOX 7 BOX 8 S - D5 -	BOX 9 BOX 9 BOX 9 BOX 9	IZ10SD5
	BOX 1	BOX 2		BOX 3	
	Filter Series	Number & Size of	м	edia Type	
	Series	N = Single Length	Omit = E Media (Cellul	ose)	
	NF30	1 NN = Double Length	Z = Excellement [®] Z	-Media [®] (synthetic)	
	NFN30		AS = Anti-Stat Media	a (synthetic)	
	(Non-bypassing: requires ZX		ZX = Excellement [®] Z-M	Media [®] (high collapse ce	enter tube)
	high collapse elements)		M = Media (reusable	e metal mesh) N size c	only
		BOX 4	BOX 5	BOX 6	BOX 7
		Micron Rating	Seal Material	Porting	Options
	1 = 1 Micr	on (Z. ZX media)	Omit = Buna N	$B = ISO228 G^{-3/4}$ "	Omit = None
	3 = 3 Micr	on (AS,E, Z, ZX media)	V = Viton®	$P = \frac{3}{4}$ " NPTF	X = Blocked
	5 = 5 Micr	on (AS, Z, ZX media)	W = Buna N,	S = SAE-12	bypass (N/A
	10 = 10 Mic	cron (AS,E,M, Z, ZX media)	Anodized		with
	25 = 25 Mic	cron (E, Z, ZX media)	Aluminum parts		NFN30)
	60 = 60 Mic	ron (M media)			
		BOX	8		BOX 9
		Dirt Alarm [®]	Options		Additional Options
		Dirt Alarm [®] Omit = None	Options		Additional Options Omit = None
	Visual	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up	Options		Additional Options Omit = None $G792 = \frac{7}{6}$ -20
	Visual Visual with	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up	Options		Additional Options Omit = None $G792 = \frac{7}{16}$ "-20 UNF drain on housing
	Visual Visual with Thermal Lockout	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma	Options al lockout		Additional Options Omit = None G792 = ½6"-20 UNF drain on housing
	Visual Visual with Thermal Lockout	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12	Options al lockout n. 18 gauge 4-conductor	cable	Additional Options Omit = None G792 = 7/6"-20 UNF drain on housing
	Visual Visual with Thermal Lockout	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ DIN	Options al lockout in. 18 gauge 4-conductor 5 connector (male end onl	cable	Additional Options Omit = None G792 = ½6"-20 UNF drain on housing
	Visual Visual with Thermal Lockout	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ DIN MS10LC = Low current MS	Options al lockout in. 18 gauge 4-conductor connector (male end onl 10	cable y)	Additional Options Omit = None G792 = ½6"-20 UNF drain on housing
	Visual Visual with Thermal Lockout Electrical	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ DIN MS10LC = Low current MS MS11 = Electrical w/ 12 MS12 = Electrical w/ 5 ni	Options al lockout n. 18 gauge 4-conductor 5 connector (male end onl 10 ft. 4-conductor wire n. Brad Harrison connector)	c (male end only)	Additional Options Omit = None G792 = 7/6"-20 UNF drain on housing
	Visual Visual with Thermal Lockout Electrical	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ DIN MS10LC = Low current MS MS11 = Electrical w/ 12 MS12 = Electrical w/ 5 pi MS12LC = Low current MS	Options al lockout n. 18 gauge 4-conductor 5 connector (male end onl 10 ft. 4-conductor wire n Brad Harrison connector 12	cable y) r (male end only)	Additional Options Omit = None G792 = ½6"-20 UNF drain on housing
	Visual Visual with Thermal Lockout	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ DIN MS10LC = Low current MS MS11 = Electrical w/ 12 MS12 = Electrical w/ 5 pi MS12LC = Low current MS MS16 = Electrical w/ wei	Options al lockout n. 18 gauge 4-conductor 5 connector (male end onl 10 ft. 4-conductor wire n Brad Harrison connector 12 ather-packed sealed conn	r (male end only) ector	Additional Options Omit = None G792 = 7/6"-20 UNF drain on housing
	Visual Visual with Thermal Lockout	Dirt Alarm® Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10LC = Low current MS MS10LC = Low current MS MS12LC = Low current MS MS16LC = Low current MS MS16LC = Low current MS MS17LC = Electrical w/ 4 p	Options al lockout in. 18 gauge 4-conductor 5 connector (male end onl 10 ft. 4-conductor wire n Brad Harrison connector 12 ather-packed sealed connector 16 n Brad Harrison male con	r (male end only) ector	Additional Options Omit = None G792 = 7/6"-20 UNF drain on housing
	Visual Visual with Thermal Lockout	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ DIN MS10LC = Low current MS MS11 = Electrical w/ 12 MS12 = Electrical w/ 5 pi MS12LC = Low current MS MS16 = Electrical w/ wea MS16 = Electrical w/ wea MS16LC = Low current MS MS16LC = Low current MS MS16LC = Low current MS MS16LC = Low current MS MS17LC = Electrical w/ 4 pi	Options al lockout n. 18 gauge 4-conductor 5 connector (male end onl 10 ft. 4-conductor wire n Brad Harrison connector 12 ather-packed sealed conne 16 in Brad Harrison male con o w/ thermal lockout	r (male end only) ector	Additional Options Omit = None G792 = ½6"-20 UNF drain on housing
	Visual Visual with Thermal Lockout	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ 12 MS10LC = Low current MS MS11 = Electrical w/ 12 MS12 = Electrical w/ 5 pi MS12LC = Low current MS MS16 = Electrical w/ wea MS16LC = Low current MS MS16LC = Low current MS MS17LC = Electrical w/ 4 p MS5T = MS5 (see above MS5LCT = Low current MS	Options al lockout n. 18 gauge 4-conductor 5 connector (male end onl 10 ft. 4-conductor wire n Brad Harrison connector 12 ather-packed sealed connector 16 n Brad Harrison male con 9 w/ thermal lockout 5T	r (male end only) ector inector	Additional Options Omit = None G792 = 7/6"-20 UNF drain on housing
	Visual Visual with Thermal Lockout Electrical	Dirt Alarm® Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ DIN MS10LC = Low current MS MS11 = Electrical w/ 12 MS12 = Electrical w/ 5 pi MS12LC = Low current MS MS16 = Electrical w/ wea MS16LC = Low current MS MS16LC = Low current MS MS16LC = Electrical w/ 4 p MS5T = MS5 (see above) MS5LCT = Low current MS MS10T = MS10 (see above) MS10T = MS10 (see above)	Options al lockout n. 18 gauge 4-conductor 5 connector (male end onl 10 ft. 4-conductor wire n Brad Harrison connector 12 ather-packed sealed connector 12 ather-packed sealed connector 16 in Brad Harrison male con 10 w/ thermal lockout 5T e) w/ thermal lockout	r cable y) r (male end only) ector inector	Additional Options Omit = None G792 = 7/6"-20 UNF drain on housing
	Visual Visual with Thermal Lockout Electrical	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ DIN MS10LC = Low current MS MS11 = Electrical w/ 12 MS12 = Electrical w/ 5 pi MS12LC = Low current MS MS16 = Electrical w/ 4 pi MS16LC = Low current MS MS17LC = Electrical w/ 4 pi MS5LCT = Low current MS MS10T = MS10 (see above MS10LCT = Low current MS MS10LCT = Low current MS	Options al lockout n. 18 gauge 4-conductor 5 connector (male end onl 10 ft. 4-conductor wire n Brad Harrison connector 12 ather-packed sealed conne 16 in Brad Harrison male con 0 w/ thermal lockout 5T e) w/ thermal lockout 10 e) w/ thermal lockout	r cable y) r (male end only) ector inector	Additional Options Omit = None G792 = ½6"-20 UNF drain on housing
ent element pers are	Visual Visual with Thermal Lockout Electrical Electrical with Thermal	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ 12 MS10LC = Low current MS MS11 = Electrical w/ 12 MS12 = Electrical w/ 12 MS12 = Electrical w/ 5 pi MS12LC = Low current MS MS16 = Electrical w/ 4 p MS16LC = Low current MS MS17LC = Electrical w/ 4 p MS5T = MS5 (see above MS5LCT = Low current MS MS10T = MS10 (see above MS10LCT = Low current MS MS12LCT = Low current MS MS12LCT = Low current MS	Options al lockout n. 18 gauge 4-conductor 5 connector (male end onl 10 ft. 4-conductor wire n Brad Harrison connector 12 ather-packed sealed connector 12 in Brad Harrison male con 0 w/ thermal lockout 5 5 e) w/ thermal lockout 10 c) w/ thermal lockout 10 e) w/ thermal lockout 10 c) w/ thermal lockout 10 c) w/ thermal lockout 10 c) w/ thermal lockout	r (male end only) ector inector	Additional Options Omit = None G792 = 7/6"-20 UNF drain on housing
ent element bers are to contents	Visual Visual with Thermal Lockout Electrical Electrical with Thermal Lockout	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ DIN MS10LC = Low current MS MS11 = Electrical w/ 22 MS12 = Electrical w/ 5 pi MS12LC = Low current MS MS16 = Electrical w/ 4 p MS16LC = Low current MS MS16LC = Low current MS MS16LC = Low current MS MS16LC = Low current MS MS16LC = Low current MS MS10T = MS5 (see above MS5LCT = Low current MS MS10LCT = Low current MS MS10LCT = Low current MS MS12LCT = Low current MS MS12LCT = Low current MS MS12LCT = Low current MS MS16LCT = Low current MS MS12LCT = Low current MS MS16LCT = Low current MS	Options al lockout n. 18 gauge 4-conductor 5 connector (male end only 10 ft. 4-conductor wire n Brad Harrison connector 12 ather-packed sealed connector 12 ather-packed sealed connector 13 b w/ thermal lockout 14 b w/ thermal lockout 15 c) w/ thermal lockout 12 e) w/ thermal lockout 12 c	r cable y) r (male end only) ector inector	Additional Options Omit = None G792 = 7/6"-20 UNF drain on housing
ent element pers are so contents 2, 3, 4 and 5.	Visual Visual with Thermal Lockout Electrical Electrical with Thermal Lockout	Dirt Alarm® Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ DIN MS10LC = Low current MS MS11 = Electrical w/ 12 MS12 = Electrical w/ 5 pi MS12LC = Low current MS MS16LC = Low current MS MS16LC = Low current MS MS17LC = Electrical w/ 4 p MS5T = MS5 (see above MS5LCT = Low current MS MS10LCT = Low current MS MS10LCT = Low current MS MS12LCT = Low current MS MS12LCT = Low current MS MS16LCT = Low current MS	Options al lockout in. 18 gauge 4-conductor 5 connector (male end onl 10 ft. 4-conductor wire n Brad Harrison connector 12 ather-packed sealed connector 12 ather-packed sealed connector 16 in Brad Harrison male con 10 w/ thermal lockout 5 T e) w/ thermal lockout 10 T e) w/ thermal lockout 12 in 12 w/ thermal lockout 12 in 13 in 14 in 15 in 10 i 10 i	r cable y) r (male end only) ector inector	Additional Options Omit = None G792 = 7/6"-20 UNF drain on housing
ent element bers are to contents 2, 3, 4 and 5. reellulose) are only	Visual Visual with Thermal Lockout Electrical Electrical with Thermal Lockout	Dirt Alarm [®] Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ 12 MS10LC = Low current MS MS10LC = Low current MS MS11 = Electrical w/ 12 MS12 = Electrical w/ 5 pi MS12LC = Low current MS MS16 = Electrical w/ 4 p MS16LC = Low current MS MS16LC = Low current MS MS16LC = Low current MS MS17LC = Electrical w/ 4 p MS5T = MS5 (see above MS5LCT = Low current MS MS10LCT = Low current MS MS10LCT = Low current MS MS12LCT = Low current MS MS12LCT = Low current MS MS12LCT = Low current MS MS16LCT = Low current MS MS16LCT = Low current MS MS16LCT = Low current MS MS16LCT = Low current MS MS13DC = Supplied w/ three	Options al lockout n. 18 gauge 4-conductor 5 connector (male end onl 10 ft. 4-conductor wire n Brad Harrison connector 12 ather-packed sealed conne 16 in Brad Harrison male con 0 w/ thermal lockout 5T e) w/ thermal lockout 10T e) w/ thermal lockout 12T e) w/ thermal lockout 12T e) w/ thermal lockout 12T e) w/ thermal lockout 13T e) w/ thermal lockout 14T 17T eaded connector & light	r (male end only) ector inector	Additional Options Omit = None G792 = %6"-20 UNF drain on housing
ent element bers are to contents 2, 3, 4 and 5. cellulose) are only with Buna to antions (/	Visual Visual with Thermal Lockout Electrical Electrical with Thermal Lockout Electrical Visual	Dirt Alarm® Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ DIN MS10LC = Low current MS MS11 = Electrical w/ 12 MS12 = Electrical w/ 29 MS12LC = Low current MS MS16 = Electrical w/ 4 p MS16LC = Low current MS MS16LC = Low current MS MS16LC = Low current MS MS17LC = Electrical w/ 4 p MS5T = MS5 (see above MS5LCT = Low current MS MS10LCT = Low current MS MS10LCT = Low current MS MS10LCT = Low current MS MS12LCT = Low current MS MS12LCT = Low current MS MS16LCT = Low current MS MS13DC = Supplied w/ thre MS14DC = Supplied w/ 5 pin	Options al lockout n. 18 gauge 4-conductor 5 connector (male end only 10 ft. 4-conductor wire n Brad Harrison connector 12 ather-packed sealed conne 13 ather-packed sealed conne 14 in Brad Harrison male con 15 w/ thermal lockout 10 e) w/ thermal lockout 10 e) w/ thermal lockout 12 e) w/ thermal lockout 12 e) w/ thermal lockout 12 me) w/ thermal lockout 12 aded connector & light Brad Harrison connector &	cable y) r (male end only) ector inector	Additional Options Omit = None G792 = 7/6"-20 UNF drain on housing
ent element bers are to contents 2, 3, 4 and 5. cellulose) are only with Buna or options V aluminum	Visual Visual with Thermal Lockout Electrical Electrical with Thermal Lockout Electrical Visual Electrical Visual	Dirt Alarm® Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ DIN MS10LC = Low current MS MS11 = Electrical w/ 5 pi MS12C = Low current MS MS16LC = Low current MS MS16LC = Low current MS MS16LC = Low current MS MS17LC = Electrical w/ 4 p MS51CT = Low current MS MS10LCT = Low current MS MS10LCT = Low current MS MS10LCT = Low current MS MS12LCT = Low current MS MS16T = MS16 (see above MS16LCT = Low current MS MS17LCT = Low current MS MS17LCT = Low current MS MS13DC = Supplied w/ thre MS13DCT = MS13 (see above MS13DCT = Low current MS	Options al lockout n. 18 gauge 4-conductor 5 connector (male end onl 10 ft. 4-conductor wire n Brad Harrison connector 12 ather-packed sealed conne 13 ather-packed sealed conne 16 in Brad Harrison male con 9 w/ thermal lockout 10T e) w/ thermal lockout 12T e) w/ thermal lockout 12T e) w/ thermal lockout 12T e) w/ thermal lockout 13T e) w/ thermal lockout 14T 17T saded connector & light Brad Harrison connector & e), direct current, w/ thermal 13DCT	r cable y) r (male end only) ector inector	Additional Options Omit = None G792 = 7/6"-20 UNF drain on housing
ent element bers are so contents 2, 3, 4 and 5. cellulose) are only with Buna or options V I aluminum anodized.	Visual Visual with Thermal Lockout Electrical Electrical with Thermal Lockout Electrical Visual Electrical Visual with	Dirt Alarm® Omit = None D = Pointer D5 = Visual pop-up D8 = Visual w/ therma MS5 = Electrical w/ 12 MS5LC = Low current MS MS10 = Electrical w/ DIN MS10LC = Low current MS MS11 = Electrical w/ 12 MS12 = Electrical w/ 12 MS12 = Electrical w/ 12 MS12 = Low current MS MS16 = Electrical w/ 4p MS16LC = Low current MS MS16LC = Low current MS MS16LC = Low current MS MS16LC = Low current MS MS17LC = Electrical w/ 4p MS5T = MS5 (see above MS5LCT = Low current MS MS10LCT = Low current MS MS10LCT = Low current MS MS16LCT = Low current MS MS13DCC = Supplied w/ three MS13DCT = MS13 (see above MS13DCT = Low current MS MS13DCT = Low current MS MS13DCT = MS13 (see above MS13DCT = Low current MS MS13DCT = Low current MS MS13DCT = MS13 (see above MS13DCT = Low current MS MS13DCT = Low current MS MS13DCT = MS14 (see above MS14DCT = MS14 (see above MS14DCT = MS14 (see above	Options al lockout n. 18 gauge 4-conductor 5 connector (male end onl 10 ft. 4-conductor wire n Brad Harrison connector 12 ather-packed sealed conne 16 in Brad Harrison male con 0 w/ thermal lockout 17 e) w/ thermal lockout 10T e) w/ thermal lockout 10T e) w/ thermal lockout 12T e) w/ thermal lockout 12T e) w/ thermal lockout 13T e) w/ thermal lockout 14T 17T e) w/ thermal lockout 15T e) w/ thermal lockout 16T 17T e) w/ thermal lockout 16T 17T e) w/ thermal lockout 16T 17T e) w/ thermal lockout 16T 17T e) direct current, w/ thern 13DCT e), direct current, w/ thern	r cable y) r (male end only) ector inector inector <u>k light (male end)</u> mal lockout mal lockout	Additional Options Omit = None G792 = 7/6"-20 UNF drain on housing

NOTES:

- Box 2. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5.
- Box 5. E media (cellulose) elements are only available with Buna N seals. For options V and W, all aluminum parts are anodized. Viton[®] is a registered trademark of DuPont Dow Elastomers.

Manifold Mounted Pressure Filter NFS30

	Features and Benefits	20 gpm 75 L/min	NF30 NFS30
•	Manifold mounted pressure filter	3000 psi	YF30
- 00	 Offered in square head conventional subplate porting 	210 bar	CFX30
	 Direct mounting to inlet port 		PLD
	on customer's manifold		CF40
and the second second			DF40
Concession in which the			PF40
			REC50
1055			KFOU
			CF60
10000			CTF60
1000			VF60
and the second s			LW60
Madal No. of filter in photogra			KF30
Model No. of filter in photogra		-	KF50
			TF50
Flow Rating:	Lin to 20 apm (75 L/min) for 150 SLIS (32 cSt) fluids	Filter	KCE0
Max. Operating Pressure:	3000 psi (210 bar)	Housing	KC50
Min. Yield Pressure:	10,000 psi (690 bar), per NFPA T2.6.1	Specifications	MKF50
Rated Fatigue Pressure:	2400 psi (165 bar), per NFPA T2.6.1	_	МКС50
Bypass Setting:	-20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar)		KC65
Sypus setting.	Full Flow: 85 psi (5.9 bar)		МКС65
Porting Head: Element Case:	Aluminum Aluminum		HS60
Weight of NFS30-1N:	3.6 lbs. (1.6 kg)		мнсео
Element Change Clearance:	4.5 ibs. (2.0 kg) 4.50" (115 mm)		KELLEO
J. J		-	KFH5U
			LC60
			LC35
			LC50
Type Fluid App	ropriate Schroeder Media	Fluid	NOF30-05
Petroleum Based Fluids All E	Media (cellulose), Z-Media [®] and ASP [®] Media (synthetic)	Compatibility)F-50-760
Hign water Content All 2- Invert Emulsions 10 ar	-ινιεαιa° and ASP° media (synthetic) nd 25 μ Z-Media® and 10 μ ASP® media (synthetic)		FOF60-03
Water Glycols 3, 5,	10 and 25 μ Z-Media [®] and 3, 5 and 10 μ ASP [®] Media (synthetic)		
			KMF60
		14	4-CRZX10
	SCHROEDER INDUST	RIES 51 20	O-CRZX10

NFS30 Manifold Mounted Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtratio per ISC Using APC calibra	on Ratio) 16889 _{Ited per} ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_{x}(\textbf{c}) \geq 1000$
NZ1/NNZ1	<1.0	<1.0	<1.0	<4.0	4.2
NZ3/NNZ3	<1.0	<1.0	<2.0	<4.0	4.8
NZ5/NNZ5	2.5	3.0	4.0	4.8	6.3
NZ10/NNZ10	7.4	8.2	10.0	8.0	10.0
NZ25/NNZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)
NZ1	12	NNZ1	15
NZ3	12	NNZ3	16
NZ5	12	NNZ5	18
NZ10	11	NNZ10	15
NZ25	11	NNZ25	15

Element Collapse Rating: 150 psid (10 bar) for standard elements 3000 psid (210 bar) for high collapse (ZX) versions

Flow Direction: Outside In

Element Nominal Dimensions: N: 1.75" (45 mm) O.D. x 5.25" (135 mm) long NN: 1.75" (45 mm) O.D. x 8.0" (200 mm) long

Element Performance Information & Dirt Holding Capacity

Manifold Mounted Pressure Filter NFS30

$\Delta \mathbf{P}_{\text{housing}}$

NFS30 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathsf{V}_f)$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 15 gpm (57 L/min) for NFS301NZ10SO using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 10 psi (.69 bar) on the graph for the NFS30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the NZ10 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

OR

 $\Delta \mathbf{P}_{\text{housing}} = 10 \text{ psi } [.69 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 8 \text{ psi } [.55 \text{ bar}]$

 V_f = 175 SUS (37.2 cSt) / 150 SUS (32 cSt) = 1.2 $\Delta \mathbf{P}_{filter}$ = 10 psi + (8 psi * 1.2) = 19.6 psi

 $\Delta \mathbf{P}_{\text{filter}} = .69 \text{ bar} + (.55 \text{ bar} * 1.2) = 1.35 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_{f}$. Plug this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
N3	1.10	NN3	0.77
N10	0.17	NN10	0.13
N25	0.10	NN25	0.07
NAS3	0.92	NNAS3	0.56
NAS5	0.71	NNAS5	0.46
NAS10	0.57	NNAS10	0.35

NFS30 Mani

Manifold Mounted Pressure Filter

Filter Model Number Selection

NFS30-		
^{BOX 1} B	0X 2 BOX 3 BOX 4 BOX 5 1N - Z - 10 -	-SO - D = NFS301NZ10SOD
BOX 1	BOX 2	BOX 3
Filter Series	Number & Size of Elements	Media Type
NFS30	N = Single Length 1 NN = Double Length	Omit = E Media (Cellulose) Z = Excellement [®] Z-Media [®] (synthetic)
NFSN30		AS = Anti-Stat Media (synthetic)
(Non-bypassing: requires ZX		$ZX = Excellement^{\textcircled{B}} Z-Media^{\textcircled{B}}$ (high collapse center tube)
high collapse		M – Media (reusable metal mesh) Nisize only

BOX 4	BOX 5	BOX 6	BOX 7
Micron Rating	Seal Material	Porting	Options
1 = 1 Micron (Z, ZX media)	Omit = Buna N	SO = SAE-12	Omit = None
3 = 3 Micron (AS,E, Z, ZX media)	V = Viton®	PO = ³ /4" NPTF	X = Blocked
5 = 5 Micron (AS, Z, ZX media)	W = Buna N,	FO = 1" SAE 4-bolt	bypass
10 = 10 Micron (AS,E,M, Z, ZX media)	Anodized	flange Code 61	with
25 = 25 Micron(E, Z, ZX media)	Aluminum	0 = Manifold	NFSN30)
60 = 60 Micron (M media)	parts		

BOX 8

	Dirt Alarm [®] Options
	Omit = None
Vicual	D = Pointer
visual	D5 = Visual pop-up
Visual with	
Thermal	D8 = Visual w/ thermal lockout
Lockout	
	MS5 = Electrical W/ 12 in. 18 gauge 4-conductor cable
	MS5LC = Low current MS5
	MS10 = Electrical W/ DIN connector (male end only)
	MS10LC = Low current MS10
Electrical	MSTT = Electrical W/T2 ft. 4-conductor wire
	MS12 = Electrical W/ 5 pin Brad Harrison connector (male end only)
	MISTZLC = LOW CURRENT MISTZ
	MS16 = Electrical W/ Weather-packed sealed connector
	MS16LC = Low current MS16
	MST/LC = Electrical W/ 4 pin Brad Harrison male connector
	MSST = MSS (see above) w/ thermai lockout
	MS10T MS10 (see shows) w/ thermal lackout
Electrical	MS10LCT - Low sweet MS10T
with	MSTULCT = LOW CURRENT MSTUT
Thermal	MS121 = MS12 (see above) w/ thermal lockout
Lockout	NISTZECT = LOW CUITERIL NISTZT
	MS16LCT Low surrent MS16T
Floetrical	MS17LCT = LOW CUITEILL MS17T
Liectrical	MS15 = Supplied w/ tilleaded connector & light (male and)
Floctrical	MS12DCT - MS12 (see above) direct current w/ thermal lockout
Vieual with	MS12DCLCT = INISTS (see above), direct current, w/ thermal lockout
Thormal	MS14DCT = MS14 (see above) direct current w/ thermal lockout
Lockout	MS14DCI = 100514 (see above), unect current, we thermal lockout
LOCKOUL	

NOTES:

- Box 2. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5.
- Box 5. E media (cellulose) elements are only available with Buna N seals. For options V and W, all aluminum parts are anodized. Viton[®] is a registered trademark of DuPont Dow Elastomers.
- Box 6. For option O, O-rings included; fastening hardware not included.
- Box 8. For options SO, PO and FO, available dirt alarm is D only.

54 SCHROEDER INDUSTRIES

Top-Ported Pressure Filter YF30

Model No. of filter in photograph is N	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	25 gpm <u>100 L/min</u> 3000 psi 210 bar	NF30 NF530 YF30 CFX30 PLD CF40 DF40 PF40 RF550 RF60 CF60 CF60 CTF60 VF60 LW60 KF30 KF50
			TF50
Flow Rating:	Up to 25 gpm (100 L/min) for 150 SUS (32 cSt) fluids	Filter	KC50
Max. Operating Pressure:	3000 psi (210 bar)	Housing	MKF50
Min. Yield Pressure:	10,000 psi (690 bar), per NFPA T2.6.1	Specifications	МКС50
Rated Fatigue Pressure:	1800 psi (124 bar), per NFPA T2.6.1-2005		КС65
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		MVCCE
Bypass Setting:	Non-bypassing model has a blocked bypass.		IVIKCOS
Porting Head:	Aluminum		HS60
Weight of YE30-4Y:	3 75 lbs (1 70 kg)		MHS60
Weight of YF30-8Y:	4.25 lbs. (1.93 kg)		KFH50
Element Change Clearance:	4.50" (115 mm)		1 C 6 0
			LC55
			LC50
Type Fluid Appropria	te Schroeder Media	Fluid	NOF30-05
Petroleum Based Fluids All E Media	(cullulose) and Z-Media [®] (synthetic)	Compatibility	OF-50-760
Invert Emulsions 10 and 25	μ Z-Media [®] (synthetic)		FOF60-03
Water Glycols 3, 5, 10 and	d 25 µ Z-Media® (synthetic)		NIWESO
			KIVIF60
		1	4-CRZX10
	SCHROEDER INDUSTRIES	5 2	0-CRZX10

Top-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio	o per ISO 16889 Ited per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	β_x (c) ≥ 200	$\beta_{x}(c) \geq 1000$
4YZ1/8YZ1	<1.0	<1.0	<1.0	<4.0	4.2
4YZ3/8YZ3	<1.0	<1.0	<2.0	<4.0	4.8
4YZ5/8YZ5	2.5	3.0	4.0	4.8	6.3
4YZ10/8YZ10	7.4	8.2	10.0	8.0	10.0
4YZ25/8YZ25	18.0	20.0	22.5	19.0	24.0
4YZX5/8YZX5	2.5	3.0	4.0	5.6	7.2
4YZX10/8YZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)	Element	DHC (gm)
4YZ1	6.3	8YZ1	12.1
4YZ3	5.1	8YZ3	9.9
4YZ5	6.4	8YZ5	12.4
4YZ10	5.4	8YZ10	10.5
4YZ25	4.9	8YZ25	9.4
4YZX5	4.3	8YZX5	8.9
4YZX10	4.3	8YZX10	8.9

Flow Direction: Outside In

Element Collapse Rating: 150 psid (10 bar) for standard elements 3000 psid (210 bar) for high collapse (ZX) versions

 Element Nominal Dimensions:
 4Y:
 1.77" (45 mm) O.D. x 4.50" (114 mm) long

 8Y:
 1.77" (45 mm) O.D. x 8.21" (209 mm) long

Top-Ported Pressure Filter

$\Delta \mathbf{P}_{\text{housing}}$

YF30 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 10 gpm (37.9 L/min) for YF304YZ10WSDRD5 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 10 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the YF30 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 10 gpm. In this case, $\Delta P_{element}$ is 8 psi (.55 bar) according to the graph for the 4YZ10 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 8 \text{ psi } [.55 \text{ bar}]$

 $V_f = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$ $\Delta \mathbf{P}_{\text{filter}} = 3 \text{ psi} + (8 \text{ psi} * 1.3) = 13.4 \text{ psi}$

△P_{filter} = .21 bar + (.55 bar * 1.3) = .93 bar

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_{f}$ Plug this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
4YZX5	1.65	8YZX5	0.92
4YZX10	0.09	8YZX10	0.63

YF30 Top-ported Pressure Filter

Filter Model Number Selection	How to Build BOX 1 BOX 2 YF30 -	a Valid Mode BOX 3 BOX 4	BOX 5 BO	for a Schroeder YF30: K 6 BOX 7 BOX 8 K 6 BOX 7 BOX 8 K 6 BOX 7 BOX 8 K 6 BOX 7 BOX 8		
	YF30 – 4	-YZ10 - W	- S -	-DR - D5 = YF304	YZ10WSDRD5	
	BOX 1 B	OX 2		BOX 3	BOX 4	BOX 5
	Filter Ele Series Le	ement ength	Elemen	t Size and Media	Seal Material	Inlet Port
	YF30 YFN30	4 YZ1 8 YZ3 YZ5 YZ10	= Y size 1 μ Ε: = Y size 3 μ Ε: = Y size 5 μ Ε: = Y size 10 μ Ι	ccellement [®] Z-Media [®] (synthetic) ccellement [®] Z-Media [®] (synthetic) ccellement [®] Z-Media [®] (synthetic) cccellement [®] Z-Media [®] (synthetic)	Omit = Buna N V = Viton® W = Buna N, Anodized	S = SAE-12 O = Subplate (contact factory)
	bypassing: requires ZX high collapse elements)	YZ25 YZX5 YZX10	= Y size 25 μ I = Y size 5 μ E (high collap = Y size 10 μ	Excellement [®] Z-Media [®] (synthetic) «cellement [®] Z-Media [®] se center tube) Excellement [®] Z-Media [®]	Aluminum parts	
	BOX 6	BOX 7	(nign collap	BOX 8		
	Dirt Alarm [®]	Optional Bowl Drain		Dirt Alarm [®] Op	tions	
	Omit = Side of	Omit = No		Omit = None		
	filter	drain	Visual	D5 = Visual pop-up		
	nead T = Top of filter head	DR = Drain	Visual with Thermal Lockout	D8 = Visual w/ therma	lockout	
			Electrical	MS5 = Electrical w/ 12 ir MS5LC = Low current MS5 MS10 = Electrical w/ DIN (male end only) MS10LC = Low current MS1 MS11 = Electrical w/ 12 fr MS12 = Electrical w/ 5 pir (male end only) MS12LC = Low current MS1 MS16 = Electrical w/ wea	 18 gauge 4-conducto connector 4-conductor wire Brad Harrison connect 2 ther-packed sealed conr 	r cable or nector
				MS16LC = Low current MS1 MS17LC = Electrical w/ 4 pir MS5T = MS5 (see above)	6 n Brad Harrison male co w/ thermal lockout	nnector
NOTES:			Electrical with	MS5LCT = Low current MS5 MS10T = MS10 (see above MS10LCT = Low current MS1 MS12T = MS12 (see above	T) w/ thermal lockout 0T) w/ thermal lockout	
Box 2. Replacement element part numbers are combination of Boxes 2,3, and 4. Example 4YZ10V			Thermal Lockout	MS12LCT = Low current MS1 MS16T = MS16 (see above MS16LCT = Low current MS1 MS17LCT = Low current MS1	2T) w/ thermal lockout 6T 7T	
Box 4. For options V and W, all aluminum parts are anodized. Viton® is a registered trademark of			Electrical Visual	MS13DC = Supplied w/ threa MS14DC = Supplied w/ 5 pin (male end) MS13 (see above	aded connector & light Brad Harrison connecto	r & light
DuPont Dow Elastomers.			Electrical	MS13DCT = w/ thermal locko	ut	
Box 8. Standard indicator setting for non- bypassing model is 50 psi unless otherwise specified.			visual with Thermal Lockout	MS13DCLCT = Low current MS1 MS14DCT = MS14 (see above w/ thermal locko MS14DCLCT = Low current MS1	3DCT), direct current, ut 4DCT	

Non-Bypassing Pressure Filter CFX30

Model No. of filter in photograph is CFX3	 Features and Benefits 1 Top-ported non-bypassing pressure filter 1 Unique valve eliminates need for high collapse elements, valve begins to close off flow at 50 psi: Differential Pressure and fully closes off flow by 80 psi: DP. This ensures that no un-filtered flow is allowed down stream to critical components. 2 Offered in pipe, SAE straight thread and ISO 228 porting 2 Integral inlet and outlet female test points option available 	30 gpm <u>115 L/min</u> 3000 psi 210 bar	NF30 NFS30 YF30 CFX30 PLD CF40 DF40 PF40 RF550 RF60 CF60 CF60 VF60
		Filtor	LW60
Max. Operating Pressure:	3000 psi (210 bar)	Housing	KF30
Min. Yield Pressure:	12,000 psi (828 bar), per NFPA T2.6.1	Specifications	KEEO
Rated Fatigue Pressure:	1800 psi (125 bar), per NFPA T2.6.1-2005		KF50
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		TF50
Bypass Setting:	Non-Bypassing		КС50
Porting Head: Element Case:	Aluminum Steel		MKEEO
Weight of CFX30-1CC:	19.5 lbs. (8.9 kg)		IVIKFOU
Element Change Clearance:	4.00" (100 mm)		MKC50
Type Eluid Appropriate S	chroeder Media	Fluid	KC65
Petroleum Based Fluids All E Media (ce	lulose), Z-Media [®] and ASP [®] Media (synthetic)	Compatibility	MKC65
High Water Content All Z-Media® ar	d ASP [®] media (synthetic)		116.60
Invert Emulsions 10 and 25 µ Z-	Media® and 10 μ ASP® media (synthetic)		H200
Water Glycols 3, 5, 10 and 25	μ Z-Media [®] and 3, 5 and 10 μ ASP [®] Media (synthetic)		MHS60
Phosphate Esters All Z-Media® ar	d ASP [®] media (synthetic) with H (EPR) seal designation		KFH50
stainless steel v	ine mesh in element, and light oil coating on housing exterior)		LC60
Schroeder's CFX30 series is a non-bypassing	filter that incorporates the use of a unique pressure drop limiting	Unique	1.025
valve that maintains the differential pressure As the element accumulates dirt, the pressure	e across the element below the element's collapse pressure rating. re drop increases across the element and, therefore, across the spool	Non-	
of the valve. At 50 psi, the spool begins		Bypassing	LC50
to prevent the pressure drop from	Filtered outlet flow	A Better Way	NOF30-05
increasing further and compromising element integrity. This design allows		That NO	DF-50-760
the CFX30 filters to safely use the lower cost standard elements, eliminating		Does Not Bequire	FOF60-03
the need for expensive high-crush		High Crush	
replacement elements.	Bias spring (prox. 50 psi)	Elements	11111750
			RMF60
	Element	1	4-CRZX10

20-CRZX10

Non-Bypassing Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

	Fi 2 Using automated p	Itration Ratio Per I 1572/NFPA T3.10.8 Particle counter (APC) cal	Filtratio per ISC Using APC calibra	on Ratio) 16889 ated per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_{x}(\textbf{c}) \geq 1000$
CCZ1	<1.0	<1.0	<1.0	<4.0	4.2
CCZ3	<1.0	<1.0	<2.0	<4.0	4.8
CCZ5	2.5	3.0	4.0	4.8	6.3
CCZ10	7.4	8.2	10.0	8.0	10.0
CCZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	
CCZ1	57	
CCZ3	58	
CCZ5	63	
CCZ10	62	
CCZ25	63	

Element Collapse Rating: 150 psid (10 bar) for standard elements Flow Direction: Outside In Element Nominal CC: 3.0" (75 mm) O.D. x 9.5" (240 mm) long Dimensions:

60 SCHROEDER INDUSTRIES

Non-Bypassing Pressure Filter **CFX3**

0.80 0.70

0.60 BAR

0.50

0.40

0.20

0.10

0.00

35

Z10

Z25

30

Drop

SSUPP 0.30

CFX30 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

2.00

0.00

0

15

20

Flow Rate [GPM]

25

10

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathsf{V}_f)$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 15 gpm (57 L/min) for CFX301CZ5SD5 using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the CFX30 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 15 gpm. In this case, $\Delta P_{element}$ is 3 psi (.21 bar) according to the graph for the CZ5 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{element} * V_f)$. The $\Delta \mathbf{P}_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 5 \text{ psi } [.34 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

V_f = 100 SUS (21.3 cSt) / 150 SUS (32 cSt) = .67 △P_{filter} = .34 psi + (.21 psi * .67) = .48 psi OR

△P_{filter} = .34 bar + (.21 bar * .67) = .48 bar

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_{f}$ Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$
CC3	0.22
CC10	0.13
CC25	0.03
CAS3/CCAS3	0.20
CAS5/CCAS5	0.19
CAS10/CCAS10	0.35

CFX30 Non-Bypassing Pressure Filter

Filter Model Number Selection	How to Build a Valid Model Number for a Schroeder CFX30:					
	BOX 1 BOX 2 BOX 3 CFX30 - CC - Z -	BOX 4 BOX	$\frac{5}{100} = \frac{1000}{1000} = \frac{10000}{1000} = \frac{10000}{1$	30CCZ5SD5		
	BOX 1	OX 2 Size of	BOX 3	_		
	Series Eleme	ents	места туре			
	CFX30 1 C = Sin	gle Length	Omit = E Media (cellulose)			
		uble Length	$\Delta = $ Excellent entry 2-ivieula (sy $\Delta S = $ Anti-Stat Media (synthetic	·)		
			M = Media (reusable metal me	r/ ish)		
	BOX 4		BOX 5	BOX 6		
	Micron Ratir	ng	Seal	Porting		
	1 = 1 Micron (7-Media®)	2	Omit = Buna N	$S = S\Delta F_{-}20$		
	3 = 3 Micron (E, Z, AS M	edia)	$V = Viton^{\circ}$	$P = 1\frac{1}{4}$ " NPTF		
	5 = 5 Micron (Z, AS Med	ia)	W = Buna N,	B = ISO 228 G-1¼"		
	10 = 10 Micron (E, M, Z, AS	5 Media)	Anodized			
	25 = 25 Micron (E & Z-Med	ia®)	H = FPR			
			H.5 = Skydrol®			
			compatibility			
	BOX 7		BOX 8			
	Options		Dirt Alarm [®] Op	tions		
	Omit = None		Omit = None			
	L = Two ¼" NPTF	Visual Visual with	D5 = Visual pop-up			
	inlet and outlet female test ports	Thermal Lockout	D8 = Visual w/ thermal lockout			
	7/16"-20 UNF Test		MS5 = Electrical w/ 12 in. 7	18 gauge 4-conductor cable		
	Point installation		MS10 = Electrical w/ DIN con	nnector (male end only)		
			MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft /	I-conductor wire		
NOTES:		Electrical	$MS12 = \frac{\text{Electrical W} + 2 \text{ In Bi}}{\text{Electrical W} + 5 \text{ pin Bi}}$	rad Harrison connector		
Box 2. Replacement element			(male end only) MS12LC = Low current MS12			
part numbers are identical to contents			MS16 = Electrical w/ weather	er-packed sealed connector		
of Boxes 2, 3, 4 and 5. E media (cellulose)			MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin B	rad Harrison male connector		
elements are only available with			MS5T = MS5 (see above) w/	' thermal lockout		
Buna N seals.			MS5LCT = Low current MS5T MS10T = MS10 (see above) w	v/ thermal lockout		
Box 5. For options H, V, W, and		Electrical	MS10LCT = Low current MS10T			
are anodized. H.5 seal		Thermal	MS12T = MS12 (see above) v	v/ thermal lockout		
the following: EPR seals,		Lockout	MS16T = MS16 (see above) v	v/ thermal lockout		
on elements, and light			MS16LCT = Low current MS16T			
exterior. Viton [®] is a		Electrical	MS13DC = Supplied w/ threade	ed connector & light		
registered trademark of DuPont Dow Elastomers.		Visual	MS14DC = Supplied w/ 5 pin Bra	ad Harrison connector & light (male end)		
Skydrol [®] is a registered		Electrical Visual with	MS13DCLT = MS13 (see above), (MS13DCLCT = Low current MS13D	airect current, w/ thermal lockout DCT		
Poy 6 P porting optics		Thermal	MS14DCT = MS14 (see above), o	direct current, w/ thermal lockout		
supplied with metric mounting holes.		LOCKOUT	MS14DCLCT = Low current MS14E			

62 SCHROEDER INDUSTRIES

High Pressure Filter PLD

Model No. of filter in photograph	 barbar barbar barbar	100 gpm <u>380 L/min</u> 3000 psi 210 bar	NFS30 YF30 CFX30 PLD CF40 DF40 PF40 RF550 RF60 CF60 CF60 CF60 VF60 LW60 KF30 KF50 TF50
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	KC50
Max. Operating Pressure:	3000 psi (207 bar)	Housing	MKF50
Min. Yield Pressure:	10,600 psi (730 bar)	Specifications	MKC50
Rated Fatigue Pressure:	3000 psi (207 bar)		KC65
Temp. Range:	-22°F to 250°F (-30°C to 121°C)		RC05
Bypass Setting:	102 psi (7 bar) Ductile Iron		MKC65
Element Case:	Steel		HS60
Weight of PLD-10DV: Weight of PLD-16DV	97 lbs. (43.9 kg) 100 lbs. (45.3 kg)		MHS60
Element Change Clearance:	10DV: 3.5" (89 mm)		KFH50
	16DV: 3.5" (89 mm)		LC60
			LCSS
			LC50
Type Fluid Approp	riate Schroeder Media	Fluid	NOF30-05
Invert Emulsions 10 and	25 µ Z-Media [®] (synthetic)	NC)F-50-760
Water Glycols 3, 5, 10	and 25 µ Z-Media® (synthetic)		FOF60-03
			NMF30
			DIALCO
			KIVIF0U
		14	4-CRZX10
	SCHROEDER INDUSTRIES	63 20	0-CRZX10

High Pressure Filter

Metric dimensions in ().

T

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt **Holding Capacity**

	Filtration Rat Using automated pa	io Per ISO 4572/NF rticle counter (APC) calib	Filtration Ratio	o per ISO 16889 ted per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
10/16DVZ1	<1.0	<1.0	<1.0	<4.0	4.2
10/16DVZ3	<1.0	<1.0	<2.0	<4.0	4.8
10/16DVZ5	2.5	3.0	4.0	4.8	6.3
10/16DVZ10	7.4	8.2	10.0	8.0	10.0
10/16DVZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	
10DVZ1	57	16DVZ1	110	
10DVZ3	59	16DVZ3	114	
10DVZ5	64	16DVZ5	124	
10DVZ10	62	16DVZ10	112	
10DVZ25	63	16DVZ25	102	
	Element Collapse Rating:	290 psid (20 bar)		
	Flow Direction:	Outside In		
	Element Nominal Dimensions:	: 3.0" (75 mm) O.D. x 14.5" (370 mm) long		

Pl D

High Pressure Filter

8

و م

$\Delta \mathbf{P}_{\mathsf{housing}}$

PLD $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathsf{V}_f)$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 50 gpm (189 L/min) for PLD10DVZ1VF24VM using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 8 psi (.55 bar) on the graph for the PLD housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 50 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 17.5 psi (1.2 bar) according to the graph for the 10DVZ1 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 8 \text{ psi} [.55 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 17.5 \text{ psi} [1.2 \text{ bar}]$

 $V_f = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$ $\Delta \mathbf{P}_{\text{filter}} = 8 \text{ psi} + (17.5 \text{ psi} * 1.3) = 30.8 \text{ psi}$

<u>OR</u> △P_{filter} = .55 bar + (1.2 bar * 1.3) = 2.1 bar Pressure Drop Information Based on Flow Rate and Viscosity

PL

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate \ x \ \Delta P_f. Plug this variable into the overall pressure drop equation.$

Ele.	$\Delta \mathbf{P}$	Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	$\Delta \mathbf{P}$
К3	0.25	KZW25	0.14	2KZW10	0.12
K10	0.09	2K3	0.12	2KZW25	0.07
K25	0.02	2K10	0.05	3K3	0.08
KAS3	0.10	2K25	0.01	3K10	0.03
KAS5	0.08	2KAS3	0.05	3K25	0.01
KAS10	0.05	2KAS5	0.04	3KAS3	0.03
KZX10	0.22	2KAS10	0.03	3KAS5	0.02
KZW1	0.43	2KZX10	0.11	3KAS10	0.02
KZW3	0.32	2KZW1	-	3KZX10	0.07
KZW5	0.28	2KZW3	0.16		
KZW10	0.23	2KZW5	0.14		

PLD High Pressure Filter

How to Build a Valid Model Number for a Schroeder PLD:

Model
Number
Selection

Filter

PLD – – – – –	BOX 1	В	OX 2		BOX 3		BOX 4		BOX 5		BOX 6
	PLD	H		_		-		_		_	

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 PLD - 10 - DVZ1 - V - F24 - VM = PLD10DVZ1VF24VM

BOX 1 BOX 2		BOX 3	BOX 4		
Filter Series	Length of Elements (in)	Element Size and Media	Seal Material		
	10	DVZ1 = DV size 1 μ synthetic media	Omit = Buna N		
PLD	16	DVZ3 = DV size 3 μ synthetic media	V = Viton®		
		DVZ5 = DV size 5 μ synthetic media			
		DVZ10 = DV size 10 μ synthetic media			
		DVZ25 = DV size 25 μ synthetic media			

BOX 5		BOX 6			
Porting	Dirt Alarm [®] Options				
F24 = $1\frac{1}{2}$ " SAE 4-bolt flange Code 61		Omit = None			
S24 = SAE-24 (1½")	Visual	VM = Visual pop-up w/manual rest			
	Electrical	DW = AC/DC 3-wire (NO or NC)			

VM = Manual Reset

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Example: 16DVZ10
- Box 4. Filter housings are supplied with standard Viton seals. Seal designation in Box 4 applies to element only. Viton is a registered trademark of DuPont Dow Elastomers.

Top-Ported Pressure Filter CF40/DF40

Model No. of filters in photograph and set	<image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Up to 45 gpm <u>170 L/min</u> 4000 psi 275 bar	NF30 NF530 YF30 CFX30 PLD CF40 DF40 PF40 RF550 RF60 CF60 CF60 CF60 VF60 LW60 KF30 KF50
Flow Rating:	CF40 - 45 gpm (170 L/min) for 150 SUS (32 cSt) fluids	Filter	КС50
Max. Operating Pressure:	4000 psi (275 bar)	Rousing	MKF50
Min. Yield Pressure:	12,000 psi (828 bar), per NFPA T2.6.1	specifications	MKC50
Rated Fatigue Pressure:	1800 psi (125 bar), per NFPA T2.6.1-2005		WIKCOU
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		KC65
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 72 psi (5.0 bar) Non-bypassing model has a blocked bypass.		MKC65
Porting Head:	Aluminum		H560
Element Case:	Steel		MHS60
Weight of CF40/DF40-1C: Weight of CF40/DF40-1CC:	14.0 lbs. (6.4 kg) 19.5 lbs. (8.9 kg)		KFH50
Element Change Clearance:	4.00" (100 mm) for C elements 8.75" (219 mm) for CC elements		LC60
			LC35
			LC50
Type Fluid Appropria	te Schroeder Media	Fluid	IOE20-05
Petroleum Based Fluids All E Media	a (cellulose), Z-Media [®] and ASP [®] Media (synthetic)	Compatibility	
High Water Content All Z-Media	[®] and ASP [®] Media (synthetic)	NO	F-50-760
Invert Emulsions 10 and 25	μ Z-Media® (synthetic), 10 μ ASP® Media (synthetic)	F	-OF60-03
Water Glycols 3, 5, 10 ar	d 25 μ Z-Media [®] (synthetic), and all ASP [®] Media (synthetic)		NMF30
Phosphate Esters All Z-Media	¹⁰ and ASP [®] Media (synthetic) with H (EPR) seal designation		DISECO
Skydrol [®] 3, 5, 10 an	a 25 μ 2-iviedia (synthetic) and all ASP Media (synthetic) with H.5 seal		KIVIF60

designation (EPR seals and stainless steel wire mesh in element, and light oil coating

on housing exterior)

14-CRZX10 20-CRZX10

CF40/DF40 Top-Ported Pressure Filter

Element Performance Information & Dirt Holding Capacity Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Rat	tio Per ISO 4572/N article counter (APC) cali	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_{x}(\textbf{c}) \geq 1000$
CZ1/CCZ1	<1.0	<1.0	<1.0	<4.0	4.2
CZ3/CCZ3	<1.0	<1.0	<2.0	<4.0	4.8
CZ5/CCZ5	2.5	3.0	4.0	4.8	6.3
CZ10/CCZ10	7.4	8.2	10.0	8.0	10.0
CZ25/CCZ25	18.0	20.0	22.5	19.0	24.0
CCZX3	<1.0	<1.0	<2.0	4.7	5.8
CCZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)	Element	DHC (gm)		
CZ1	25	CCZ1	57		
CZ3	26	CCZ3	58		
CZ5	30	CCZ5	63		
CZ10	28	CCZ10	62		
CZ25	28	CCZ25	63		
		CCZX3	26*		
		CCZX10	28*		
	Element Collapse Rating:	150 psid (10 bar) for standard elements 3000 psid (210 bar) for high collapse (ZX) versions			
	Flow Direction:	Outside In			
	Element Nominal Dimensions:	C: 3.0" (75 mm) O.D. x 4.75" (120 mm) long CC: 3.0" (75 mm) O.D. x 9.5" (240 mm) long			
			* Based on 100 psi	terminal pressure	

Top-Ported Pressure Filter CF40/DF40

Pressure

Information

and Viscosity

Drop

Based on Flow Rate

Exercise:

Determine ΔP_{filter} at 25 gpm (94.6 L/min) for CF401CZ10SD5 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 25 gpm. In this case, $\Delta P_{\text{housing}}$ is 4.5 psi (.31 bar) on the graph for the CF40 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 25 gpm. In this case, $\Delta P_{\text{element}}$ is 6 psi (.42 bar) according to the graph for the CZ10 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 4.5 \text{ psi} [.31 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 6 \text{ psi} [.42 \text{ bar}]$

 $V_f = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$

$$\Delta \mathbf{P}_{\text{filter}} = 4.5 \text{ psi} + (6 \text{ psi} * 1.3) = 12.3 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{filter} = .31 \text{ bar} + (.42 \text{ bar} * 1.3) = .86 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_{f}$. Plug this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
C3	0.50	CC3	0.22
C10	0.19	CC10	0.13
C25	0.09	CC25	0.03
CAS3	0.50	CCAS3	0.20
CAS5	0.32	CCAS5	0.19
CAS10	0.25	CCAS10	0.10
		CCZX3	0.29
		CCZX10	0.26

0/DF40 Top-Ported Pressure Filter

NOTES:

Box 2. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5.

Box 5. For options H, V, W, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[®] is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.

- Box 6. B porting option supplied with metric mounting holes.
- Box 7. Options X and 50 are not available with CFN40 or DFN40.

Box 8. Standard indicator setting for nonbypassing model is 50 psi unless otherwise noted.

Box 9. N option is not available with CFN40 or DFN40. N option should be used in conjunction with dirt alarm.

> SCHROEDER INDUSTRIES 70

Top-Ported Pressure Filter **PF40**

50 gpm <u>190 L/min</u>

4000 psi 275 bar

Filter Housing Specifications

Fluid

Compatibility

NF30

PF40

KF30

KF50

KC50

MKC50

MHS60

KFH50

KC65

	and the second	
		Features and Repetits
		 Top-ported pressure filter
		 All steel housing offers unparalleled
		fatigue rating
1000		 Available with non-bypass option with high collapse element
		 Two bowl lengths provide optimal sizing for the application
		 Offered in conventional sub-plate, SAE straight thread, and ISO 228 porting
Model No. of filter in photo	graph is PF409HZ	Z10S.
Model No. of filter in photo	graph is PF409HZ	z10S.
Model No. of filter in photo	graph is PF409H2	z10S.
Model No. of filter in photo	graph is PF409HZ	z10S.
Model No. of filter in photo	graph is PF409H2	2105.
Model No. of filter in photo	graph is PF409H2	Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids
Model No. of filter in photo Max. Opera Min 2	graph is PF409H2 Flow Rating: ating Pressure: Yield Pressure:	2105. Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12 000 psi (828 bar), per NEPA T2 6 1
Model No. of filter in photo Max. Opera Min. 7 Rated Fat	Flow Rating: The Pressure: Tigue Pressure:	Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar) per NFPA T2 6 1-B1-2005
Model No. of filter in photo Max. Opera Min. ⁷ Rated Fat	Flow Rating: ating Pressure: Yield Pressure: tigue Pressure: Temp. Range:	Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C)
Model No. of filter in photo Max. Opera Min. ¹ Rated Fat	Flow Rating: ating Pressure: Yield Pressure: tigue Pressure: Temp. Range: Bypass Setting:	Z10S. Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Eull Elow: 75 psi (5.2 bar)
Model No. of filter in photo Max. Opera Min. [•] Rated Fat E	Flow Rating: ating Pressure: Yield Pressure: tigue Pressure: Temp. Range: Bypass Setting:	Z10S. Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel Steel
Model No. of filter in photo Max. Opera Min. ¹ Rated Fat E Weig	Flow Rating: ating Pressure: Yield Pressure: tigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: ht of PF40-5H:	Z10S. Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (9.9 kg)
Model No. of filter in photo Max. Opera Min. ⁷ Rated Fat E Weig Weig	Flow Rating: ating Pressure: Yield Pressure: tigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: ht of PF40-5H: ht of PF40-9H:	2105. Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg)
Model No. of filter in photo Max. Opera Min. ¹ Rated Fat E Weig Weig Element Char	Flow Rating: ating Pressure: Yield Pressure: tigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: ht of PF40-5H: ht of PF40-9H: nge Clearance:	2105. Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg) 3.25" (83 mm)
Model No. of filter in photo Max. Opera Min. ⁷ Rated Fat E Weig Weig Element Char	Flow Rating: ating Pressure: Yield Pressure: tigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: ht of PF40-5H: ht of PF40-9H: nge Clearance:	2105. Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg) 3.25" (83 mm)
Model No. of filter in photo Max. Opera Min. ¹ Rated Fat E Weig Weig Element Char	Flow Rating: ating Pressure: Yield Pressure: tigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: wht of PF40-5H: ht of PF40-9H: nge Clearance:	2105. Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg) 3.25" (83 mm)
Model No. of filter in photo Max. Opera Min. Rated Fat E Weig Weig Element Char	Flow Rating: ating Pressure: Yield Pressure: Yield Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: ht of PF40-5H: ht of PF40-9H: nge Clearance:	Z10S. Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg) 3.25" (83 mm)
Model No. of filter in photo Max. Opera Min. ⁷ Rated Fat E Weig Element Char	Flow Rating: ating Pressure: Yield Pressure: tigue Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: ht of PF40-5H: ht of PF40-9H: nge Clearance:	2105. Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg) 3.25" (83 mm)
Model No. of filter in photo Max. Opera Min. ¹ Rated Fat E Weig Weig Element Char	Flow Rating: ating Pressure: Yield Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: th of PF40-5H: ht of PF40-9H: nge Clearance:	2105. Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg) 3.25" (83 mm)
Model No. of filter in photo Max. Opera Min. T Rated Fat E Weig Weig Element Char Type Fluid Petroleum Based Fluids	Flow Rating: ating Pressure: Yield Pressure: Yield Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: ht of PF40-5H: ht of PF40-9H: nge Clearance:	2105. Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg) 3.25" (83 mm)
Model No. of filter in photo Max. Opera Min. Rated Fat Weig Weig Element Char Type Fluid High Water Content	Flow Rating: ating Pressure: Yield Pressure: Yield Pressure: Temp. Range: Bypass Setting: Porting Head: Element Case: ht of PF40-5H: ht of PF40-9H: nge Clearance:	2105. Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids 4000 psi (275 bar) 12,000 psi (828 bar), per NFPA T2.6.1 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 -20°F to 225°F (-29°C to 107°C) Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Steel 21.8 lbs. (9.9 kg) 25.5 lbs. (11.6 kg) 3.25" (83 mm)

Water Glycols 3, 5, 10 and 25 µ Z-Media® (synthetic)

Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation

NMF3(

20-CRZX10

Top-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ra Using automated pa	tio Per ISO 4572/N article counter (APC) cal	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	β_x (c) ≥ 200	$\beta_x(c) \ge 1000$	
5HZ1/9HZ1	<1.0	<1.0	<1.0	<4.0	4.2
5HZ3/9HZ3	<1.0	<1.0	<2.0	<1.0	4.8
5HZ5/9HZ5	2.5	3.0	4.0	4.8	6.3
5HZ10/9HZ10	7.4	8.2	10.0	8.0	10.0
5HZ25/9HZ25	18.0	20.0	22.5	19.0	24.0
5HZX1/9HZX1	<1.0	<1.0	<1.0	<4.0	4.2
5HZX3/9HZX3	<1.0	<1.0	<2.0	<1.0	4.8
5HZX5/9HZX5	2.5	3.0	4.0	4.8	6.3
5HZX10/9HZX10	7.4	8.2	10.0	8.0	10.0
5HZX25/9HZX25	18.0	20.0	22.5	19.0	24.0

Flement	DHC (am)	Flement	DHC (gm)	Flement	DHC (am)	Flement	DHC (am)
Element	(giii)	Element	(giii)	Liement	(giii)	Liement	(giii)
5HZ1	26	9HZ1	51	5HZX1	14	9HZX1	29
5HZ3	28	9HZ3	42	5HZX3	14	9HZX3	29
5HZ5	39	9HZ5	59	5HZX5	15	9HZX5	31
5HZ10	31	9HZ10	47	5HZX10	15	9HZX10	31
5HZ25	32	9HZ25	48	5HZX25	16	9HZX25	33

Flow Direction: Outside In Element Nominal Dimensions: 5H: 2.5" (100 mm) O.D. x 5.36" (136 mm) long

```
3000 psid (210 bar) for high collapse elements
```

Element Collapse Rating: 150 psid (10 bar) for standard elements

9H: 2.5" (100 mm) O.D. x 9.63" (244 mm) long

Element Performance **Information & Dirt Holding Capacity**
Top-Ported Pressure Filter

$\Delta \mathbf{P}_{\mathsf{housing}}$

PF40 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathsf{V}_f)$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 20 gpm (75.7 L/min) for PF405HZ3SD5S using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 20 gpm. In this case, $\Delta P_{\text{housing}}$ is 2.5 psi (.17 bar) on the graph for the PF40 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 20 gpm. In this case, $\Delta P_{element}$ is 15 psi (1 bar) according to the graph for the 5HZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

OR

 $\Delta \mathbf{P}_{\text{housing}} = 2.5 \text{ psi} [.17 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 15 \text{ psi} [1 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 △ P_{filter} = 2.5 psi + (15 psi * 1.1) = 19 psi

 $\Delta \mathbf{P}_{filter} = .17 \text{ bar} + (1 \text{ bar} * 1.1) = 1.3 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_{f}$. Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$
5HZX3	1.17
5HZX10	0.50
5HZX25	0.27
9HZX3	0.62
9HZX10	0.26
9HZX25	0.14

PF40 Top-Ported Pressure Filter

Filter	How to B	uild a Valid M	od	el Number for a S	chroeder PF40:
Model Number	вох 1 в РF40 –	OX 2 BOX 3 B	OX 4	4 BOX 5 BOX 6 BOX	7 BOX 8 BOX 9
Selection	BOX 1 B PF40 -	ох 2 вох 3 в 5 – HZ3 –	OX 4	⁴ BOX 5 BOX 6 BOX - S - D5	⁷ BOX 8 BOX 9 S - S - S - S - S - S - S - S - S - S -
	BOX 1	BOX 2			BOX 3
	Filter Series	Element Length (in)			Element Part Number
	PF40	5		HZ1 = H size 1 µ Excelle	ement® Z-Media® (synthetic)
	PFN40 (Non- bypassing: requires ZX high collapse elements)	9	H	HZ3 = H size 3 μ Excelle HZ5 = H size 5 μ Excelle HZ10 = H size 10 μ Exce HZ25 = H size 25 μ Exce HZX3 = H size 3 μ Excelle HZX10 = H size 10 μ Exce HZX25 = H size 25 μ Exce	ement® Z-Media® (synthetic) ement® Z-Media® (synthetic) lement® Z-Media® (synthetic) lement® Z-Media® (synthetic) ement® Z-Media® (high collapse center tube) lement® Z-Media® (high collapse center tube) lement® Z-Media® (high collapse center tube)
		BOX 4		BOX 5	BOX 6
	Sea	al Material		Porting	Options
	Omit = Bu	na N		O = Manifold	Omit = None
	H = EPF	R		S = SAE-16	L = Two ¼" NPTF inlet & outlet female
	V = Vit	on®		B = ISO 228 G-1"	U = Schreder Check $\frac{7}{16}$ "-20 UNF test point
	H.5 = Sky	ydrol [®] compatibility			installation in head (upstream)

		BOX 7	BOX 8
		Dirt Alarm [®] Options	Dirt Alarm [®] Location
		Omit = None	Omit = Top mounted
	Visual	D5 = Visual pop-up	S = Side mounted
	Visual with Thermal	D8 = Visual w/ thermal lockout	
	Lockout		BOX 9
		MS5 = Electrical W/12 In. 18 gauge 4-conductor cable MS5LC = Low current MS5	Bowl Drain Options
		MS10 = Electrical w/ DIN connector (male end only)	Omit = None
		MSTOLC = LOW CURRENT MSTO MS11 = Electrical w/ 12 ft 4-conductor wire	DR = Drain 7/16"-20
	Electrical	MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)	
		MS12LC = Low current MS12	
		MS16 = Electrical w/ weather-packed sealed connector	
		MS16LC = Low current MS16	
		MS1/LC = Electrical w/4 pin Brad Harrison male connector	
i, n		MSS1 = MSS (see above) W/ thermal lockout	
		MS10T = MS10 (see above) w/ thermal lockout	
	Electrical	MS10I CT = 10W current MS10T	
,	with	MS10LCT = MS12 (see above) w/ thermal lockout	
ſ	Thermal	MS12LCT = Low current MS12T	
·	Lockout	MS16T = MS16 (see above) w/ thermal lockout	
		MS16LCT = Low current MS16T	
		MS17LCT = Low current MS17T	
	Electrical	MS13DC = Supplied w/ threaded connector & light	
	Visual	MS14DC = Supplied w/ 5 pin Brad Harrison connector & light (male end)	
	Electrical	MS13DCT = MS13 (see above), direct current, w/ thermal lockout	
	Visual with	MS13DCLCT = Low current MS13DCT	
	Thermal	MS14DCT = MS14 (see above), direct current, w/ thermal lockout	
	Lockout	MS14DCLCT = Low current MS14DCT	

NOTES:

Replacement element
part numbers are a
combination of Boxes
2, 3 and 4.
Example: 5HZ10V

Box 4. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[®] is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.

- Box 5. B porting option supplied with metric mounting holes.
- Box 7. Standard indicator setting for nonbypassing model is 50 psi unless otherwise noted.

74 SCHROEDER INDUSTRIES

Manifold Mounted Pressure Filter RFS50

			30 apm	NF30
· · · ·	0		115 I /min	NFS30
	10-1-1	Features and Benefits Manifold mounted high pressure filter	5000 pci	- YF30
	3	 Offered in square head conventional 	245 hor	CEX30
	100	subplate porting	345 Dar	
and the second second		 Direct mounting to customer's manifold Standard drain plug in bourd for 		PLD
		 standard drain plug in bowl for easy servicing 		CF40
		 Various dirt alarm options available 		DF40
				PF40
				DECEO
				RF55 0
				RF60
				CF60
				CTF60
				VF60
				LVVOU
Model No. of filter in pho	tograph is RFS5	08R10O.		KF30
				KF50
				TF50
				KC50
	Flow Rating:	Up to 30 apm (115 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Oper	ating Pressure:	5000 psi (345 bar)	Housing	WIKFOU
Min.	Yield Pressure:	15,500 psi (1070 bar), per NFPA T2.6.1	Specifications	MKC50
Rated Fa	tigue Pressure:	Contact Factory		KC65
	Temp. Range:	-20°F to 225°F (-29°C to 107°C)		MKC65
	bypass setting.	Full Flow: 56 psi (3.9 bar)		нсео
	Porting Head:	Steel Steel		11500
Weigh	nt of RFS50-8R:	16.50 lbs. (7.5 kg)		MHS60
Element Cha	nge Clearance:	3.0" (75 mm)		KFH50
				LC60
				LC35
				1050
Type Fluid	Appropriato S	through Madia	Eluid .	
Petroleum Based Fluids	All E Media (cell	ulose) and Z-Media [®] (synthetic)	Compatibility	NOF30-05
High Water Content	All Z-Media [®] (sy	nthetic)	NC)F-50-760
Invert Emulsions	10 and 25 µ Z-N	Aedia® (synthetic)		FOF60-03
Water Glycols	3, 5, 10 and 25	μ Z-Media [®] (synthetic)		NMF30
Phosphate Esters Skydrol®	All Z-IVIECIA® (Sy 3 5 10 and 25	ntneuc) with H (EPR) seal designation u 7-Media® (synthetic) with H 5 seal designation (EPR seals and		DMEGO
Skyaron	stainless steel w	ire mesh in element, and light oil coating on housing exterior)		κινιγου
			14	4-CRZX10

20-CRZX10

Manifold Mounted Pressure Filter

Element Performance Information & Dirt Holding Capacity

	Filtration Rat	tio Per ISO 4572/N article counter (APC) cal	Filtration Ratio	o per ISO 16889 ited per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
8RZ1	<1.0	<1.0	<1.0	<4.0	4.2
8RZ3	<1.0	<1.0	<2.0	<4.0	4.8
8RZ5	2.5	3.0	4.0	4.8	6.3
8RZ10	7.4	8.2	10.0	8.0	10.0
8RZ25	18.0	20.0	22.5	19.0	24.0

Eleme	nt DHC (gm)	
8RZ1	33	
8RZ3	26	
8RZ5	51	
8RZ10	29	
8RZ25	30	
	Element Collapse Rating:	150 psid (10 bar) for standard elements
	Flow Direction:	Outside In
Elem	ent Nominal Dimensions:	2.18" (55 mm) O.D. x 8.15" (206 mm) long

Manifold Mounted Pressure Filter RES50

$\Delta \mathbf{P}_{\text{housing}}$

RFS50 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta \mathbf{P}_{element}$

Pressure Drop Information Based on Flow Rate and Viscosity

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathsf{V}_f)$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 15 gpm (57 L/min) for RFS508RZ10VOD5 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the RFS50 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 15 gpm. In this case, $\Delta P_{element}$ is 5 psi (.34 bar) according to the graph for the 8RZ10 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 5 \text{ psi } [.34 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 5 \text{ psi } [.34 \text{ bar}]$

 V_f = 200 SUS (42.6 cSt) / 150 SUS (32 cSt) = 1.3 ΔP_{filter} = 5 psi + (5 psi * 1.3) = 11.5 psi

<u>OR</u> ∆**P**_{filter} = .34 bar + (.34 bar * 1.3) = .78 bar Note:

If your element is	s not graphed, use				
the following equation:					
$\Delta \mathbf{P}_{element} = Flow$	Rate x $\Delta \mathbf{P}_{f}$ Plug				
this variable into	the overall				
pressure drop equation.					
Ele.	$\triangle \mathbf{P}$				
8R3	0.35				
8R10	0.30				

RFS50 Manifold Mounted Pressure Filter

78 SCHROEDER INDUSTRIES

Top-Ported Pressure FilterRF60

	<section-header></section-header>	30 gpm <u>115 L/min</u> 6000 psi 415 bar	NF30 NFS30 YF30 CFX30 PLD CF40 DF40 PF40 RF550 RF60 CF60 CF60 CF60 VF60 LW60
Model No. of filter in pho	tograph is RF608R10P.		KF30
			KF50
			TF50
			КС50
Flow R	ating: Up to 30 gpm (115 L/min) for 150 SUS (32 cSt) fluids	Filter	MKF50
Max. Operating Pre	ssure: 6000 psi (415 bar)	Housing	
Min. Yield Pre	ssure: 18,000 psi (1241 bar), per NFPA T2.6.1	specifications	MKC50
Rated Fatigue Pre	ssure: 2300 psi (159 bar), per NFPA 12.6.1-2005		KC65
Iemp. R	ange: -20°F to 225°F (-29°C to 107°C)		MKC65
bypass Je	Full Flow: 56 psi (3.9 bar) Non-bypassing model has a blocked bypass.		HS60
Porting	Head: Steel Case: Steel		MHS60
Weight of RF6	i0-8R: 15.75 lbs. (7.2 kg)		KELLEN
Element Change Clear	ance: 3.0" (75 mm)		кгпри
			LC60
			LC35
			LC50
T	Appropriate Schroeder Media	Fluid N	IUE50-0E
Petroleum Based Fluids	All E-Media (cellulose) and Z-Media [®] (synthetic)	Compatibility	010000
High Water Content	All Z-Media® (synthetic)	NO	F-50-760
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic)		OF60-03
Water Glycols	3, 5, 10 and 25 μ Z-Media [®] (synthetic)		NMF30
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation		DMEGO
Skydrol®	3, 5, 10 and 25 μ Z-Media [®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)	17	
		14	

20-CRZX10

RF60

Top-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Filtration Ratio per ISO 16889

Using APC calibrated per ISO 11171

Filtration Ratio Per ISO 4572/NFPA T3.10.8.8

Using automated particle counter (APC) calibrated per ISO 4402

Element Performance Information & Dirt Holding Capacity

Element	β _x ≥ 75	β _x ≥ 100	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
8RZ1	<1.0	<1.0	<1.0	<4.0	4.2
8RZ3	<1.0	<1.0	<2.0	<4.0	4.8
8RZ5	2.5	3.0	4.0	4.8	6.3
8RZ10	7.4	8.2	10.0	8.0	10.0
8RZ25	18.0	20.0	22.5	19.0	24.0
8RZX3	<1.0	<1.0	<2.0	4.7	5.8
8RZX10	7.4	8.2	10.0	8.0	9.8
	·			·	
Element	DHC (gm)				
8RZ1	33				
8RZ3	26				
8RZ5	51				
8RZ10	29				
8RZ25	30				
8RZX3	C/F				
8RZX10	C/F				
Element Collapse Rating:		150 psid (10 bar) 3000 psid (210 ba	for standard elemer ar) for high collapse	nts (ZX) versions	
	Flow Direction:	Outside In			
Element N	ominal Dimensions:	2.18" (55 mm) O.	D. x 8.15" (206 mn	n) long	
•					

Top-Ported Pressure Filter **RF6**

$\triangle \mathbf{P}_{\mathsf{housing}}$

RF60 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \mathbf{P}_{element}$

Pressure Drop Information Based on Flow Rate and Viscosity

→ filter — → housing T \→ element V / /	∆ P _{filter}	$= \Delta \mathbf{P}_{housing}$	+	$(\triangle \mathbf{P}_{element})$	*V _f)
---	------------------------------	---------------------------------	---	------------------------------------	-------------------

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 15 gpm (57 L/min) for RF608RZ10VPD5 using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the RF60 housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 15 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 5 psi (.34 bar) according to the graph for the 8RZ10 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 5 \text{ psi} [.34 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 5 \text{ psi} [.34 \text{ bar}]$

V_f = 100 SUS (21.3 cSt) / 150 SUS (32 cSt) = .67 △ P_{filter} = 5 psi + (5 psi * .67) = 8.3 psi OR

 $\Delta \mathbf{P}_{filter} = .34 \text{ bar} + (.34 \text{ bar} * .67) = .57 \text{ bar}$

If your element is not graphed, use the following equation: $\Delta P_{element} =$ Flow Rate x ΔP_{f} Plug this variable into the overall

pressure drop equation.

Note:

Ele.	$\triangle \mathbf{P}$
8R3	0.35
8R10	0.30
8RZX3	C/F
8RZX10	C/F

RF60 Top-Ported Pressure Filter

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Example: 8RZ1V synthetic media elements are only available with Viton seals.
- Box 4. Viton[®] is a registered trademark of DuPont Dow Elastomers.
- Box 5. B porting option supplied with metric mounting holes.
- Box 6. Options X and 50 are not available with RFN60.
- Box 7. Standard indicator setting for nonbypassing model is 50 psi unless otherwise noted.

Top-Ported Pressure FilterCF60

Image: Note of the second se	<section-header><section-header><section-header><section-header><list-item><list-item><list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header>	50 gpm <u>190 L/min</u> 6000 psi 415 bar	NF30 NF530 YF30 CFX30 PLD CF40 DF40 PF40 RF550 RF60 CF60 CTF60 VF60 LW60 KF30 KF50 TF50 KC50
Flow Rating:	Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids	Filter	MKF50
Max. Operating Pressure:	6000 psi (415 bar)	Housing	MKCEO
Min. Yield Pressure: Rated Eatique Pressure:	4000 psi (276 bar), per NFPA 12.6.1	Specifications	IVIKC50
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		KC65
Bypass Setting:	Cracking: 40 psi (2.8 bar)		MKC65
Dentional User d	Full Flow: 75 psi (5.2 bar) Non-bypassing model has a blocked bypass.		HS60
Element Case:	Steel		MHS60
Weight of CF60-9C:	24.0 lbs. (10.9 kg)		KFH50
Element Change Clearance:	4.0" (103 mm)		LC60
			1.025
			LC50
Type Fluid Appropriate		Fluid Compatibility	NOF30-05
High Water Content All Z-Media	and ASP® Media (synthetic)	NC)F-50-760
Invert Emulsions 10 and 25 µ	Z-Media® (synthetic) and 10 µ ASP® Media (synthetic)		FOF60-03
Water Glycols 3, 5, 10 and	25 μ Z-Media [®] and all ASP [®] Media (synthetic)		NMF30
Phosphate Esters All Z-Media® Skydrol® 3, 5, 10 and	and ASP [®] Media (synthetic) with H (EPR) seal designation		ВИЕСО
designation coating on h	(EPR seals and stainless steel wire mesh in element, and light oil lousing exterior)	14	4-CR7X10
		-	CD7V40
	SCHROEDER INDUSTRIES	83 20	

CF60 Top-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance **Information & Dirt Holding Capacity**

	Filtration Ra Using automated p	tio Per ISO 4572/N Particle counter (APC) cal	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
CCZ1	<1.0	<1.0	<1.0	<4.0	4.2
CCZ3	<1.0	<1.0	<2.0	<4.0	4.8
CCZ5	2.5	3.0	4.0	4.8	6.3
CCZ10	7.4	8.2	10.0	8.0	10.0
CCZ25	18.0	20.0	22.5	19.0	24.0
CCZX3	<1.0	<1.0	<2.0	4.7	5.8

Element	DHC (gm)	
CCZ1	57	
CCZ3	58	
CCZ5	63	
CCZ10	62	
CCZ25	63	
CCZX3	26*	
	Element Collapse Rating:	150 psid (10 bar) for standard elements 3000 psid (210 bar) for high collapse (ZX) versions
	Flow Direction:	Outside In
	Element Nominal Dimensions:	CC: 3.0" (75 mm) O.D. x 9.5" (240 mm) long

Top-Ported Pressure Filter

$\Delta \mathbf{P}_{\mathsf{housing}}$

CF60 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 ${\boldsymbol{\bigtriangleup}} {\boldsymbol{\mathsf{P}}}_{\mathsf{element}}$

Pressure Drop Information Based on Flow Rate and Viscosity

CF6

Λ	Pfilter	=	$\Delta \mathbf{P}_{\mathbf{h}}$	ousina	+	(∆P	element	*V _f)	
	- inter			DUSIIIU	-	·	element	- / /	

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 30 gpm (113.6 L/min) for CF601CCZ10SD5 using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 30 gpm. In this case, $\Delta P_{\text{housing}}$ is 4 psi (.28 bar) on the graph for the CF60 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 30 gpm. In this case, $\Delta P_{element}$ is 3 psi (.21 bar) according to the graph for the CCZ10 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 4 \text{ psi } [.28 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

V_f = 175 SUS (37.2 cSt) / 150 SUS (32 cSt) = 1.2 △ $P_{\text{filter}} = 4 \text{ psi} + (3 \text{ psi} * 1.2) = 7.6 \text{ psi}$ OR

△P_{filter} = .28 bar + (.21 bar * 1.2) = .53 bar

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_f$ Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$
CC3	0.22
CC10	0.13
CC25	0.03
CCAS3	0.20
CCAS5	0.19
CCAS10	0.10
CCZX3	0.29
CC7X10	0.26

CF60 Top-Ported Pressure Filter

Filter How to Build a Valid Model Number for a Schroeder CF60: BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 1 BOX 2 Model CF60 Number Selection BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 = CF601CCZ10SD5 1CC Ζ S CF60 10 D5 BOX 1 BOX 2 BOX 3 Number nd Size of Filter Media Type and Size Elements Series 1CC Omit E Media (cellulose) CF60 Z = Excellement[®] Z-Media[®] (synthetic) CFN60 ZX = Excellement[®] Z- Media[®] (high collapse center tube) (Non-bypassing: requires ZX AS = Anti-Stat Media (synthetic) high collapse elements) BOX 5 BOX 6 BOX 4 Seal Porting Micron Rating Material Omit = Buna N S = SAE-20= 1 Micron (Z media) 1 V = Viton® $P = 1\frac{1}{4}$ " NPTF (AS, E, Z and ZX media) 3 = 3 Micron H = EPR $F = 1\frac{1}{4}$ " SAE 4-bolt 5 = 5 Micron (AS, Z, and ZX media) H.5 = Skydrol[®] compatibility flange code 62 10 = 10 Micron (AS,E, Z, and ZX media) B = ISO 228 G-1¹/₄" 25 = 25 Micron (E, Z and ZX media) BOX 7 BOX 8 **Dirt Alarm® Options** Options Omit = None Omit = None Visual D5 = Visual pop-up 25 = 25 psi bypass setting Visual 30 = 30 psi bypass setting with D8 = Visual w/ thermal lockout 50 = 50 psi bypass setting Thermal Lockout 60 = 60 psi bypass setting MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable 75 = 75 psi bypass setting MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire Electrical MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout MS5I CT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout Electrical MS10LCT = Low current MS10T with MS12T = MS12 (see above) w/ thermal lockout Thermal MS12LCT = Low current MS12T Lockout MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T

MS17LCT = Low current MS17T

MS13DCLCT = Low current MS13DCT

MS14DCLCT = Low current MS14DCT

MS13 = Supplied w/ threaded connector & light

MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)

MS13DCT = MS13 (see above), direct current, w/ thermal lockout

MS14DCT = MS14 (see above), direct current, w/ thermal lockout

Electrical

Electrical

Thermal

Lockout

Visual

Visual

with

NOTES:

- Box 2. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. E media (cellulose) elements are only available with Buna N seals.
- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[®] is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 6. B porting option supplied with metric mounting holes.
- Box 8. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.

Top-Ported Pressure FilterCTF60

	<section-header><section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header></section-header>	75 gpm <u>284 L/min</u> 6000 psi 415 bar	NF30 NFS30 YF30 CFX30 PLD CF40 DF40 PF40 RF550 RF60 CF60 CF60 VF60 LW60
Madel No. of filter in photograph is CT			KF30
Model No. of filter in photograph is Ci		-	KF50
			TEEO
Flass Dations		Filtor	1150
Flow Rating: Max. Operating Pressure:	6000 psi (415 bar)	Housing	KC50
Min. Yield Pressure:	18,000 psi (1241 bar), per NFPA T2.6.1	Specifications	MKF50
Rated Fatigue Pressure:	6000 psi (415 bar), per NFPA T2.6.1-R1-2005		МКС50
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		KC65
Bypass Setting:	Cracking: 50 psi (3.4 bar)		MKC65
	Non-bypassing model has a blocked bypass.		HSEO
Porting Head: Element Case:	Ductile Iron Steel		MUSCO
Weight of CTF60-5CT:	25 lbs. (11.4 kg)		MH560
CTF60-8CT: CTF60-14CT:	29 lbs. (13.2 kg) 38 lbs. (17.3 kg)		KFH50
Element Change Clearance:	4.0" (103 mm)		LC60
			LC35
			LC50
Type Fluid Appropriate	Schroeder Media	Fluid	JOF30-05
High Water Content All Z-Media®	(synthetic)	Compatibility	DE-50-760
Invert Emulsions 10 and 25 µ	Z-Media® (synthetic)	NC	7-50-700
Water Glycols 3, 5, 10 and Phosphate Esters All 7-Media®	25 μ 2-Media [®] (synthetic) (synthetic) with H (EPR) seal designation		-OF60-03
	(, , , , , , , , , , , , , , , , , , ,		NMF30
			RMF60
		14	I-CRZX10
	SCHROEDER INDUSTRIE	s 87 20)-CRZX10

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio	e per ISO 16889 ted per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
CTZ1/CTZX1	<1.0	<1.0	<1.0	<4.0	4.2
CTZ3/CTZX3	<1.0	<1.0	<2.0	<4.0	4.8
CTZ5/CTZX5	2.5	3.0	4.0	4.8	6.3
CTZ10/CTZX10	7.4	8.2	10.0	8.0	10.0
CTZ25/CTZX25	18.0	20.0	22.5	19.0	24.0

Element Performance Information & Dirt Holding Capacity

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
5CTZ1	19	8CTZ1	31	14CTZ1	66
5CTZ3	16	8CTZ3	27	14CTZ3	57
5CTZ5	18	8CTZ5	30	14CTZ5	64
5CTZ10	21	8CTZ10	34	14CTZ10	72
5CTZ25	17	8CTZ25	28	14CTZ25	60
5CTZX1	14	8CTZX1	24	14CTZX1	53
5CTZX3	11	8CTZX3	18	14CTZX3	41
5CTZX5	10	8CTZX5	17	14CTZX5	38
5CTZX10	12	8CTZX10	20	14CTZX10	44
5CTZX25	11	8CTZX25	18	14CTZX25	39

Element Collapse Rating:	150 psid (10 bar) for standard elements
Flow Direction:	3000 psid (210 bar) for high collapse (2X) versions
	Outside In
Element Nominal Dimensions:	5CT: 2.64" (67 mm) O.D. x 4.88" (124 mm) long
	8CT: 2.64" (67 mm) O.D. x 7.25" (184 mm) long
	14CT : 2.64" (67 mm) O.D. x 14.38" (365 mm) long

Top-Ported Pressure Filter CTF60

CTF60 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta \mathbf{P}_{element}$

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathsf{V}_f)$

Exercise:

Determine ΔP_{filter} at 50 gpm (189 L/min) for CTF608CTZ5S20D9 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta \mathbf{P}_{\text{housing}}$ at 50 gpm. In this case, $\Delta \mathbf{P}_{\text{housing}}$ is 7 psi (.48 bar) on the graph for the CTF60 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 50 gpm. In this case, $\Delta P_{\text{element}}$ is 22 psi (1.5 bar) according to the graph for the 8CTZ5 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 7 \text{ psi} [.48 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 22 \text{ psi} [1.5 \text{ bar}]$

 $V_f = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$

$$\Delta \mathbf{P}_{filter} = 7 \text{ psi} + (22 \text{ psi} * 1.3) = 35.6 \text{ psi}$$

OR

 $\Delta P_{\text{filter}} = .48 \text{ bar} + (1.5 \text{ bar} * 1.3) = 2.4 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_{f}$. Plug this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
5CTZ1	1.87	5CTZX1	1.64	8CTZX1	1.00
5CTZ3	0.77	5CTZX3	0.96	8CTZX3	0.59
5CTZ5	0.72	5CTZX5	0.68	8CTZX5	0.41
5CTZ10	10 0.46 5стzx1	5CTZX10	0.46	8CTZX10	0.28
5CTZ25	0.19	5CTZX25	0.25	8CTZX25	0.15
14CTZX1	0.46	14CTZX3	0.27	14CTZX5	0.19
14CTZX10	0.13	14CTZX25	0.07		

CTF60 Top-Ported Pressure Filter

Model Number Selection

BOX 1 E	BOX 2 BOX 3	BOX 4 BOX	5 BOX 6 BOX 7	
вох 1 е СТF60 –	^{30X 2} BOX 3 8 – CTZ5	вох 4 вох S2 0	5 BOX 6 BOX 7 D9 = CTF608CTZ5S20D9	
BOX 1	BOX 2		BOX 3	BOX 4
Filter	Element		Element Part Number	Seal Mate
CTE60	Length (in.)	CT71 = 1	u Excellement [®] 7-Media [®] (synthetic)	Omit – Bur
chioo	8	$CTZ3 = 3 \mu$	u Excellement® Z-Media® (synthetic)	V = Vit
CTFN60	14	CTZ5 = 5 µ	u Excellement [®] Z-Media [®] (synthetic)	H = EP
(Non- bypassing:		CTZ10 = 10	μ Excellement [®] Z-Media [®] (synthetic)	
requires ZX high collapse		CTZ25 = 25	μ Excellement [®] Z-Media [®] (synthetic)	
elements)		CIZXI = 1	I Excellement [®] Z-Media [®] (high collapse center tube)	
		CTZX5 = 5	I Excellement [®] 7-Media [®] (high collapse center tube)	
		CTZX10 = 10	μ Excellement [®] Z-Media [®] (high collapse center tube)	2)
		CTZX25 = 25	μ Excellement [®] Z-Media [®] (high collapse center tube	2)
P20 = 11/2	4" NPTF	\ /!=1	Omit = None	
S20 = SA	E-20	Visual	D9 = Visual pop-up	
$F20 = 1\frac{1}{2}$	4" SAE		MS5SS = Electrical w/ 12 in. 18 gauge 4-con	ductor cable
4-k	oolt flange		MS5SSLC = Low current MS5	
B20 = ISC) 228		MS10SS = Electrical w/ DIN connector (male e	nd only)
G-	11⁄4"		MS10SSLC = Low current MS10	
		Electrical	MS11SS = Electrical w/ 12 ft. 4-conductor wire	9 9
			MS12SSI C = Low current MS12	nnector (male end
			MS16SS - Electrical w/ weather-packed sealer	connector
			MS16SSIC = Low current MS16	Connector
BO	X 6		MS17SSLC = Electrical w/ 4 pin Brad Harrison ma	ale connector
Ont	ions		MS5SST = MS5 (see above) w/ thermal lockou	ıt
ope	ions		MS5SSLCT = Low current MS5T	
Omit = N	one		MS10SST = MS10 (see above) w/ thermal locko	out
$\begin{array}{rcl} UU &= Se \\ 7_{/1} \end{array}$	eries 1215 5″ LINE	Electrical	MS10SSLCT = Low current MS10T	
Sch	roeder	With Thermal	MS12SST = MS12 (see above) w/ thermal lockc	but
Che	eck Test	Lockout	MS12SSLCT = Low current MS12T	
in th	he filter		MS16SST = MS16 (see above) w/ thermal locko	out
hea	d (upstream		MS16SSLCT = Low current MS16T	
& d	ownstream)		MS17SSLCT = Low current MS17T	
DR = Dr	ain on bowl	Electrical	MS13DC = Supplied w/ threaded connector &	light
30 = 30 se	tting	Visual	MS14DC = Supplied w/ 5 pin Brad Harrison conr	nector & light (male
40 = 40) psi bypass	Electrical	MS13SSDC1 = MS13 (see above), direct current, w	// thermal lockout
se	tting	Visual with	WS13SSUCLCI = LOW current MS13DCI	(the error of the street of
		Lockout	IVIS 1455D/CL = IVIS 14 (See above), direct current, W	w unermai lockout
			IVIS 1455DULU = LOW CURRENT IVIS 14DUL	

NOTES:

- Box 2. Replacement element part numbers are identical to contents of Boxes 2, 3 and 4.
- Box 4. Viton[®] is a registered trademark of DuPont Dow Elastomers.
- Box 5. B porting option supplied with metric mounting holes.
- Box 7. All Dirt Alarm® Indicators must be Stainless Steel. Standard indicator setting is 50 psi. For replacement indicators, contact the factory factory.

Top-Ported Pressure FilterVF60

		70 gpm 265 L/min	NF30 NFS30
	Features and Benefits Top-ported high pressure filter	6000 psi	- YF30
	 Threaded bowl for easy element 	415 bar	CFX30
 	servicing	415 Dal	
	and ISO 228 porting		PLD
	 Various dirt alarm options available 		CF40
			DF40
			PF40
			RFS50
l = 101			RF60
1 - MILT			CF60
			CTEGO
1 14.0			CIFOU
			VF60
Concerned of the second			LW60
Model No. of filter in photogram	h is VF609VZ10SD5.		KF30
			KF50
			TF50
			КС50
Flow Rat	ing: Up to 70 apm (265 L/min) for 150 SUS (32 cSt) fluids	Filter	MKF50
Max. Operating Press	ure: 6000 psi (415 bar)	Housing	
Min. Yield Press	ure: 15,500 psi (1070 bar), per NFPA T2.6.1	Specifications	WKC50
Rated Fatigue Press	ure: 3300 psi (230 bar), per NFPA T2.6.1-R1-2005		KC65
Bypass Set	ing: Cracking: 50 psi (3.5 bar)		MKC65
De estis e U	Full Flow: 65 psi (4.5 bar)		HS60
Element C	ase: Steel		MHS60
Weight of VF60	-9V: 24.0 lbs. (10.9 kg)		KFH50
Element Change Cleara	nce: 4.0° (103 mm)	-	
			LC35
			LC50
Type Fluid App	opriate Schroeder Media	Fluid	NOF30-05
Petroleum Based Fluids All E-	Media (cellulose) and Z-Media® (synthetic)	Compatibility	DF-50-760
Invert Emulsions 10 ar	d 25 µ Z-Media [®] (synthetic)		FOF60-03
Water Glycols 3, 5,	10 and 25 μ Z-Media® (synthetic)		NMF30
Phosphate Esters All Z-	Media® (synthetic) with H (EPR) seal designation		
экуаго г 3, 5, stain	$10 \text{ and } 25 \mu$ 2-Media" (synthetic) with H.5 seal designation (EPR seals and ess steel wire mesh in element, and light oil coating on housing exterior)		KIVIF6U
		1	4-CRZX10
	SCHROEDER INDUSTRIES	91 20	0-CRZX10

VF60 Top-Ported Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration R Using automated	atio Per ISO 4572/N particle counter (APC) cali	FPA T3.10.8.8 brated per ISO 4402	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$	
9VZ1	<1.0	<1.0	<1.0	<4.0	4.2	
9VZ3	<1.0	<1.0	<2.0	<4.0	4.8	
9VZ5	2.5	3.0	4.0	4.8	6.3	
9VZ10	7.4	8.2	10.0	8.0	10.0	
9VZ25	18.0	20.0	22.5	19.0	24.0	
Element	DHC (gm)					
9VZ1	55					
9VZ3	57					
9VZ5	62					
9VZ10	60					
9VZ25	61					
Element Collapse Rating:		150 psid (10 bar) for standard elements				
Flow Direction:		Outside In				
Element Nominal Dimensions:		9V: 2.9" (75 mm) O.D. x 9.5" (240 mm) long				

Element Performance **Information & Dirt Holding Capacity**

Top-Ported Pressure Filter VF6

$\Delta \mathbf{P}_{\mathsf{housing}}$

VF60 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta \mathbf{P}_{element}$

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 40 gpm (151 L/min) for VF609VZ1S using 120 SUS (25.5 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 40 gpm. In this case, $\Delta P_{\text{housing}}$ is 6 psi (.42 bar) on the graph for the VF60 housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{element}$ at 40 gpm. In this case, $\Delta \mathbf{P}_{element}$ is 13 psi (.90 bar) according to the graph for the 9VZ1 element.

Because the viscosity in this sample is 120 SUS (25.5 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 6 \text{ psi } [.42 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 13 \text{ psi } [.90 \text{ bar}]$

V_f = 120 SUS (25.5 cSt) / 150 SUS (32 cSt) = .80 △ P_{filter} = 6 psi + (13 psi * .80) = 16.4 psi OR

 $\Delta \mathbf{P}_{filter} = .42 \text{ bar} + (..90 \text{ bar} * .80) = 1.14 \text{ bar}$

Note:

if your element is not graphed, use					
the following equation:					
$\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_f Plug$					
this variable into the overall					
pressure drop equation.					
Ele.	$\triangle \mathbf{P}$				
9V3 0.32					
9V10	0.24				

VF60 Top-Ported Pressure Filter

Filter	How to Build a Valid	d Model N	umber for a Schroeder VF60:				
Model	BOX 1 BOX 2 BOX 3	BOX 4	BOX 5 BOX 6				
Number	VF60 – –						
Selection							
Delection	BOX 1 BOX 2 BOX 3	BOX 4	BOX 5 BOX 6				
	VF60 – 9 – VZ1		S – = VF609VZ1S				
	BOX 1 BOX 2		BOX 3	BOX 4			
	Filter Element Series Length (in)		Element Size and Media	Seal Material			
		V3	= V size 3 μ E media (cellulose)	Omit = Buna N			
	VF60 9	V10	= V size 10 μ E media (cellulose)	V = Viton®			
		VZ1	= V size 1 µ Excellement® Z-Media® (synthetic)	H = FPR			
		VZ3	= V size 3 µ Excellement® Z-Media® (synthetic)				
		VZ5	= V size 5 μ Excellement [®] Z-Media [®] (synthetic)				
		VZ10	= V size 10 μ Excellement [®] Z-Media [®] (synthetic)				
		VZ25	= V size 25 μ Excellement [®] Z-Media [®] (synthetic)				
		VM150	= V size 150 μ M media (reusable metal)				
	BOX 5		BOX 6				
	Inlet Port		Dirt Alarm [®] Options				
	P = 11/4" NPTF						
	S = SAE-20	Visual	D5 = Visual pop-up				
	B = ISO 228 G-1¼"	Visual with Thermal	D8 = Visual w/ thermal lockout				
		Lockout					
			MS5 = Electrical w/ 12 in. 18 gauge 4-cc	onductor cable			
			MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male	and only)			
			MS10L = Low current MS10	end only)			
		Flectrical	MS11 = Electrical w/ 12 ft. 4-conductor w	vire			
		Liccultur	MS12 = Electrical w/ 5 pin Brad Harrison co	nnector (male end only)			
			MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed seal	ed connector			
			MS16LC = Low current MS16				
			MS17LC = Electrical w/ 4 pin Brad Harrison r	male connector			
			MS51 = MS5 (see above) w/ thermal lock MS51 CT = Low current MS5T	Dut			
			MS10T = MS10 (see above) w/ thermal loci	kout			
		Electrical	MS10LCT = Low current MS10T				
		Thermal	MS12T = MS12 (see above) w/ thermal loc	kout			
		Lockout	MS12LCT = Low current MS12T	(out			
			MS16LCT = Low current MS16T	KOUL			
			MS17LCT = I ow current MS17T				
NOTES		EL 11	MS13DC = Supplied w/ threaded connector	& light			
Box 2 Replacement element		Electrical Visual	MS14DC = Supplied w/ 5 pin Brad Harrison of (male end)	connector & light			
part numbers are a		Electrical	MS13DCT = MS13 (see above), direct current	w/ thermal lockout			
combination of Boxes 2. 3. and 4.		Visual	MS13DCLCT = Low current MS13DCT				
		with	MS14DCT = MS14 (see above), direct current	w/ thermal lockout			
Box 2. Example: 9VZ1V synthetic media		i hermal	MS14DCLCT = Low current MS14DCT	,			
elements are only available with Viton seals.		Lockout					

- NOTES:
- S e а S
- Box 4. Viton[®] is a registered trademark of DuPont Dow Elastomers.
- Box 5. B porting option supplied with metric mounting holes.

High-Flow, High Pressure Filter LW60

300 gpm

6000 psi 415 bar

1135 L/min

LW60

KF50

KC50

Features and Benefits

- Horizontal alignment allows straight-through flow, maximizing efficiency and minimizing pressure drop
- Propriety synthetic media designed specifically for the mining industry. Excellement-MD[™] provides level of filtration not achievable using alternative wire mesh elements because of their lack of absolute ratings
- Two-inch BSPP ports are easily adaptable to Super Stecko fittings commonly used underground
- Stainless steel bypass valve that ensures smooth integration with 95/5 fluid
- Non-bypassing version available with high crush (4500 psid) cleanable metal mesh (25 micron) element

Model No. of filter in photograph is LW6039ZPZ5VB32DPG.

SCHROEDER

Flow Rating:	Up to 300 gpm (1135 L/min) for use with 95/5 fluids	Filter	MKF50
Max. Operating Pressure:	6000 psi (414 bar)	Housing	MVCEO
Min. Yield Pressure:	18,000 psi (1240 bar), per NFPA T2.6.1	Specifications	IVINCOU
Rated Fatigue Pressure:	4500 psi (310 bar), per NFPA T2.6.1		KC65
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		MKC65
Bypass Setting:	Cracking: 50 psi (3.4 bar) LWN60 non-bypassing model available with high crush element		HS60
Porting Cap: Housing:	Steel Steel		MHS60
Weight:	550 lb. (250 kg)		KELLEO
Element Change Clearance:	34.0" (864 mm)		KFH5U
			LC60
			LC35
			LC50
Type Fluid Appropriat	e Schroeder Media	Fluid N	IOF30-05
95/5 fluids Specifically	designed for use with 95/5 fluids applications	Compatibility	F-50-760
		F	OF60-03
			NMF30
			RMF60
		14	-CRZX10
	SCHROEDER INDUSTRIES	95 20	-CRZX10

SCHROEDER INDUSTRIES 95

High-Flow, High Pressure Filter

Dimensions:

High-Flow, High Pressure Filter LW60

$\Delta \mathbf{P}_{\mathsf{housing}}$

LW60 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathsf{V}_f)$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 200 gpm (757 L/min) for LW6039ZPZ3VB32DPG using 75 SUS (16 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is .25 psi (.02 bar) on the graph for the LW60 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 200 gpm. In this case, $\Delta P_{element}$ is 12 psi (.83 bar) according to the graph for the 39ZPZ3 element.

Because the viscosity in this sample is 75 SUS (16 cSt), we determine the Viscosity Factor (V₄) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{element} * V_f)$. The $\Delta \mathbf{P}_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = .25 \text{ psi} [.02 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 12 \text{ psi} [.83 \text{ bar}]$

V_f = 75 SUS (16 cSt) / 150 SUS (32 cSt) = .50 △P_{filter} = .25 psi + (12 psi * .50) = 6.25 psi OR

 $\Delta \mathbf{P}_{filter} = .02 \text{ bar} + (.83 \text{ bar} * .50) = .44 \text{ bar}$

LW60 High-Flow, High Pressure Filter

Base-Ported Pressure Filter KF30/KF50

	Features and Benefits	100/150 gpm NF30
	 Base-ported pressure filter 	380/570 I /minNFS30
	Can be installed in vertical or horizontal position	
1 million 1	Meets HF4 automotive standard	KF30- 3000 psi ^{4F30}
1.1.2	 Element changeout from top minimizes oil spillage 	210 bar CFX30
	 Offered in pipe, SAE straight thread, flanged and ISO 228 porting 	KF50- 5000 psi PLD
	No-Element indicator option available	345 Dar CF40
	 Available with non-bypass option with high collapse element 	DF40
	 Integral inlet and outlet female test points option available 	PF40
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 Offered in conventional subplate porting 	KF350
	Same day shipment model available	RF60
	 Double and triple stacking of K-size elements can be replaced by single KK or 27K-size elements 	CF60
	G Available with quality-protected GeoSeal [®] Elements (GKF30/GKF50)	CTF60

Model No. of filter in photograph is KF30/KF501K10SD.

		KF30
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids With 2" porting only, up to 150 gpm (570 L/min) for 150 SUS (32 cSt) fluids	Filter Housing KF50 Specifications
Max. Operating Pressure:	KF30- 3000 psi (210 bar) KF50- 5000 psi (345 bar)	TF50
Min. Yield Pressure:	KF30- 12,000 psi (830 bar), per NFPA T2.6.1 KF50- 15,000 psi (1025 bar), per NFPA T2.6.1	KC50
Rated Fatigue Pressure:	KF30- 2500 psi (170 bar), per NFPA T2.6.1-2005 KF50- 3500 psi (240 bar), per NFPA T2.6.1-2005	MKF50
Temp. Range:	-20°F to 225°F (-29°C to 107°C)	NIRCE JU
Bypass Setting:	Cracking: 40 psi (2.8 bar)	КС65
	Full Flow: 61 psi (4.2 bar) Non-bypassing model has a blocked bypass.	МКС65
Porting Base & Cap: Element Case:	Ductile Iron Steel	HS60
Weight of KF30-1K:	48 lbs. (22 kg)	MHS60
Weight of KF30-2K: Weight of KF30-3K: Weight of KF50-1K:	65 lbs. (30 kg) 81 lbs. (37 kg) 59 7 lbs. (27 1 kg)	KFH50
Weight of KF50-2K: Weight of KF50-3K:	80.7 lbs. (36.6 kg) 102.0 lbs. (46.3 kg)	LC60
Element Change Clearance:	8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K	LC35
Type Flu	uid Appropriate Schroeder Media	Fluid NOF30-05
Petroleum Based Flui	ids All E media (cellulose), Z-Media [®] and ASP [®] Media (synthetic)	Compatibility
High Water Conta	All 7 Madia® and ASP® Madia (contractio)	иос-20-760

Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] Media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] Media (synthetic)	NOF-50-760
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic), 10 μ ASP [®] Media	FOF60-03
Water Glycols	3, 5, 10 and 25 μ Z-Media® (synthetic) and all ASP® Media	NIMEDO
Phosphate Esters	All Z-Media [®] and ASP [®] Media (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation	NIVIF30 RME60
Skydrol®	3, 5, 10 and 25 μ Z-Media [®] (synthetic) and all ASP [®] Media (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)	14-CRZX10
	SCHROEDER INDUSTRIES 9	9 20-CRZX10

Base-Ported Pressure Filter 0/KF50

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	F ISO Using au	iltration Rat 4572/NFPA Itomated particle calibrated per ISC	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	β _x ≥ 75	β _x ≥ 100	β _χ ≥ 200	β _χ (c) ≥ 200	β _χ (c) ≥ 1000
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5
KZX3/KKZX3/27KZX3	<1.0	<1.0	<2.0	4.7	5.8
KZX10/KKZX10/27KZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158
KZX3	81*	KKZX3	163*	27KZX3	249*				
KZX10	90*	KKZX10	182*	27KZX10	279*	* Based on 100 psi terminal pre		ıl pressui	

3000 psid (210 bar) for high collapse (ZX) versions Flow Direction: Outside In

Element Nominal Dimensions: K:

Element Collapse Rating: 150 psid (10 bar) for standard elements

3.9" (99 mm) O.D. x 9.0" (230 mm) long

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Element Performance **Information & Dirt Holding Capacity**

Base-Ported Pressure Filter KF30/KF50

$\Delta \mathbf{P}_{\mathsf{housing}}$

KF30/KF50 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta \mathbf{P}_{element}$

KZ/KGZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

KKZ/KKGZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathsf{V}_f)$

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 50 gpm (189.5 L/min) for KF301KZ10SD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the KF30 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 50 gpm. In this case, $\Delta P_{element}$ is 2.5 psi (.17 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi} [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 2.5 \text{ psi} [.17 \text{ bar}]$

 $V_f = 160 \text{ SUS} (34 \text{ cSt}) / 150 \text{ SUS} (32 \text{ cSt}) = 1.1$

$$\Delta \mathbf{P}_{\text{filter}} = 3 \text{ psi} + (2.5 \text{ psi}^{1} \text{ i.i}) = 5.8 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{filter} = .21 \text{ bar} + (.17 \text{ bar} * 1.1) = .40 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow \text{ Rate } x \Delta \mathbf{P}_{f}. \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	${\boldsymbol \Delta} {\boldsymbol P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/	0.07	3KAS25/	0.07

F30/KF50 Base-Ported Pressure Filter

Base-Ported Pressure Filter TF50

	 Features and Benefits Base-ported pressure filter Can be installed in vertical or horizontal position Element changeout from top minimizes 	40 gpm <u>150 L/min</u> 5000 psi 345 bar	NF30 NFS30 YF30 CFX30 PLD
	 oil spillage Offered in pipe, SAE straight thread, flanged and ISO 228 porting Available with non-bypass option with high collapse element 		CF40 DF40 PF40
Model No. of filter in photograph	 Integral inlet and outlet female test points option available Offered in conventional subplate porting n is TF502A10P. 		RFS50 RF60 CF60 CTF60 VF60 LW60 KF30 KF50
Elow Pating:	Up to 40 gpm (150 L/min) for 150 SUS (22 cSt) fluids	Filter	KC50
Max. Operating Pressure:	5000 psi (345 bar)	Housing	MKF50
Min. Yield Pressure:	15,000 psi (1035 bar), per NFPA T2.6.1	Specifications	MKC50
Rated Fatigue Pressure:	3500 psi (240 bar), per NFPA T2.6.1-2005		weet
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		KC65

Min. Yield Pressure:	15,000 psi (1035 bar), per NFPA T2.6.1	specifications	
Rated Fatigue Pressure:	3500 psi (240 bar), per NFPA T2.6.1-2005		IVINCS
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		KC6
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 69 psi (4.8 bar) Non-bypassing model bas a blocked bypass		MKC6
			HS6
Element Case & Cap:	Steel		MHS6
Weight of TF50-1A: Weight of TF50-2A:	24.4 lbs. (11.1 kg) 29.8 lbs. (13.5 kg)		KFH5
Element Change Clearance:	8.50" (215 mm)		1.06
			LCU

Fluid Type Fluid Appropriate Schroeder Media Compatibility All E media (cellulose) and Z-Media[®] (synthetic) **Petroleum Based** Fluids **High Water Content** All Z-Media® (synthetic) Invert Emulsions 10 and 25 μ Z-Media® (synthetic) Water Glycols 3, 5, 10 and 25 µ Z-Media® (synthetic) **Phosphate Esters** All Z-Media® (synthetic) with H (EPR) seal designation Skydrol® 3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) 20-CRZX10

Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

	Filtration Rat	tio Per ISO 4572/NI article counter (APC) cali	FPA T3.10.8.8 brated per ISO 4402	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	β_x (c) ≥ 200	$\beta_x(c) \ge 1000$	
AZ1	<1.0	<1.0	<1.0	<4.0	4.2	
AZ3	<1.0	<1.0	<2.0	<4.0	4.8	
AZ5	2.5	3.0	4.0	4.8	6.3	
AZ10	7.4	8.2	10.0	8.0	10.0	
AZ25	18.0	20.0	22.5	19.0	24.0	
CCZX3	<1.0	<1.0	<2.0	4.7	5.8	
CCZX10	7.4	8.2	10.0	8.0	10.0	
Element	DHC (gm)					
AZ1	25					
AZ3	26					
AZ5	30					
AZ10	28					
AZ25	28					
CCZX3	26*					
CCZX10	28*					
Element Collapse Rating:		150 psid (10 bar) for standard elements 3000 psid (210 bar) for high collapse (ZX) versions				
	Flow Direction:	Outside In		* Based on 100 p	osi terminal pressure	
Element Nor	ninal Dimensions:	A: 3.0" (75 mm) O.D. x 4.5" (115 mm) long CC: 3.0" (75 mm) O.D. x 9.5" (240 mm) long				

104 SCHROEDER INDUSTRIES

$\bigtriangleup \bm{P}_{\bm{housing}}$

TF50 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 15 gpm (57 L/min) for TF501AZ10SD5 using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.8 psi (.12 bar) on the graph for the TF50 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 15 gpm. In this case, $\Delta P_{element}$ is 3.8 psi (.26 bar) according to the graph for the AZ10 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * V_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 1.8 \text{ psi} [.12 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3.8 \text{ psi} [.26 \text{ bar}]$

 $V_f = 175 \text{ SUS } (37.2 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.2$ $\langle \mathbf{P}_{\text{subsc}} = 1.8 \text{ psi} + (3.8 \text{ psi} * 1.2) = 6.4 \text{ psi}$

 $\Delta \mathbf{P}_{filter} = .12 \text{ bar} + (.26 \text{ bar} * 1.2) = .43 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_f$ Plug this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
A3	0.53	AA3	0.16
A10	0.36	AA10	0.18
A25	0.05	AA25	0.03
CCZX3	0.29		
CCZX10	0.26		

TF50 Base-Ported Pressure Filter

Base-Ported Pressure Filter KC50

100/150 gpm ^{NF30} 380/570 L/min^{NFS30}

KF30

KF50

5000 psi 345 bar

Features and Benefits

- Base-ported pressure filter
- Patented dirt-tolerant cap design
- Can be installed in vertical or horizontal position
- Meets HF4 automotive standard
- Element changeout from top minimizes oil spillage
- Ofered in pipe, SAE straight thread, flanged and ISO 228 porting
- No-Element indicator option available
- Available with non-bypass option with high collapse element
- Integral inlet and outlet female test points option available
- Offered in conventional subplate porting
- Double and triple stacking of K-size elements can be replaced by single KK or 27K-size elements
- **G** Available with quality-protected GeoSeal[®] Elements (GKC50)

Model No. of filter in photograph is KC501KZ10PD.

			1150
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids With 2" porting only, up to 150 gpm (570 L/min) for 150 SUS (32 cSt) fluids	Filter Housing Specifications	KC50
Max. Operating Pressure:	5000 psi (345 bar)	Specifications	MKF50
Min. Yield Pressure:	15,000 psi (1035 bar), per NFPA T2.6.1		МКС50
Rated Fatigue Pressure:	3500 psi (240 bar), per NFPA T2.6.1-2005		Vee
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		KC65
Bypass Setting:	Cracking: 40 psi (2.8 bar) Optional Cracking: 50 psi (3.5 bar) Full Flow: 61 psi (4.2 bar) Non-bypassing model has a blocked bypass.		MKC65 HS60
Porting Base & Cap:	Ductile Iron		
Element Case:	Steel		MHS60
Weight of KF30-1K: Weight of KF30-2K:	66.8 lbs. (30.3 kg) 87.8 lbs. (39.8 kg)		KFH50
Weight of KF30-3K:	109.6 lbs. (49.7 kg)		LC60
Element Change Clearance:	8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		1.625

Type Fluid	Appropriate Schroeder Media	Fluid NOF30-05
Petroleum Based Fluids	All E-Media (cellulose) and Z-Media® and ASP® Media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] Media (synthetic)	NOF-50-760
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic), 10 μ ASP [®] Media (synthetic)	FOF60-03
Water Glycols	3, 5, 10 and 25 μ Z-Media® (synthetic), and all ASP® Media	
Phosphate Esters	All Z-Media [®] and ASP [®] Media (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation	RMF60
Skydrol®	3, 5, 10 and 25 μ Z-Media [®] (synthetic), and all ASP [®] Media (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)	14-CRZX10
	SCHROEDER INDUSTRIES 10	7 20-CRZX10

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

				Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element				β _x ≥ 75	Յ _X ≥ 100	β,	_c ≥ 200	β _X (c) ≥ 20	00 B <mark>_x(c)</mark> ≥	≥ 1000
KZ1/KKZ1/27KZ1				<1.0	<1.0		<1.0	<4.0	4.	2
KZ3/KKZ3/27KZ3				<1.0	<1.0		<2.0	<4.0	4.	8
KZ5/KKZ5/27KZ5				2.5	3.0		4.0	4.8	6.	3
KZ10/KKZ10/27K	Z10			7.4	8.2		10.0	8.0	10	.0
KZ25/KKZ25/27K	Z25			18.0	20.0		22.5	19.0	24	.0
KZW1				N/A	N/A		N/A	<4.0	<4	.0
KZW3/KKZW3				N/A	N/A		N/A	4.0	4.	.8
KZW5/KKZW5				N/A	N/A		N/A	5.1	6.	.4
KZW10/KKZW10				N/A	N/A		N/A	6.9	8.	6
KZW25/KKZW25			N/A	N/A		N/A	15.4	18	.5	
KZX3/KKZX3/27KZX3			<1.0	<1.0	<	:2.0	4.7	5.	8	
KZX10/KKZX10/27KZX10			7.4	8.2	10.0		8.0	9.8		
Element	DHC (gm)	Element	DHC (gm)) Eleme	ent	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KKZ1	224	27KZ1		336	KZW1	61		
KZ3	115	ККZЗ	230	27KZ3	:	345	KZW3	64	KKZW3	128

	Dric		Dric		Dric		DITC		Dric
Element	(gm)	Element	(gm)	Element	(gm)	Element	(gm)	Element	(gm)
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158
KZX3	81*	KKZX3	163*	27KZX3	249*				
KZX10	90*	KKZX10	182*	27KZX10	279*	* Based o	on 100 p	si terminal	pressure

Element Collapse Rating: 150 psid (10 bar) for standard elements

3000 psid (210 bar) for high collapse (ZX) versions Flow Direction: Outside In

Element Nominal Dimensions: K:

3.9" (99 mm) O.D. x 9.0" (230 mm) long 3.9" (99 mm) O.D. x 18.0" (460 mm) long KK:

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Element Performance **Information & Dirt Holding Capacity**
$\Delta \mathbf{P}_{\mathsf{housing}}$

KC50 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta \mathbf{P}_{element}$

KZ/KGZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2KZ/KKGZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathsf{V}_f)$

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 50 gpm (189.5 L/min) for KC501KZ10SD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the KC50 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 50 gpm. In this case, $\Delta P_{element}$ is 2.5 psi (.17 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 2.5 \text{ psi } [.17 \text{ bar}]$

 $V_f = 160 \text{ SUS} (34 \text{ cSt}) / 150 \text{ SUS} (32 \text{ cSt}) = 1.1$ $A_f = -2 \text{ sci} + (2.5 \text{ sci} + 1.1) = 5.8 \text{ sci}$

$$\Delta \mathbf{P}_{\text{filter}} = 3 \text{ psi} + (2.5 \text{ psi} * 1.1) = 5.8 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{filter} = .21 \text{ bar} + (.17 \text{ bar} * 1.1) = .40 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate } x \Delta \mathbf{P}_{f} \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	$\Delta \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/	0.07	3KAS25/	0.07

Filter How to Build a Valid Model Number for a Schroeder KC50: BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10 Model KC50 Number Selection BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10 = KC501KZ10SD5 KC50 S 1K Ζ 10 D5 BOX 1 BOX 2 BOX 3 Number & Size of Filter Media Type Series Elements Omit = E Media (Cellulose) (KC50 only) **KC50** 1 K, KK, 27K 2 Κ AS = Anti-Stat Media (synthetic) KCN50 3 Κ Z = Excellement® Z-Media® (synthetic) (Non-GeoSeal® Options ZX = Excellement[®] Z-Media[®] (High Collapse centertube) (KCN50 Only) bypassing: requires ZW = Aqua-Excellement ZW Media (KC50 Only) 1 KG, KKG, 27KG ZX high 2 KG W = W Media (water removal) collapse 3 KG M = Media (reusable metal mesh) (KC50 & KCN50 Only) elements) GKC50 (GeoSeal[®]) BOX 7 WINCED

(Water)	BOX 4	BOX 5	BOX 6	Porting
	Micron Rating	Seal Material	Magnet Option	P = 1 ½" NPTF P32 = 2" NPTF
$\begin{array}{rrrrr} 1 & = 1 \ M \\ 3 & = 3 \ M \\ 5 & = 5 \ M \\ 10 & = 10 \\ 25 & = 25 \\ 60 & = 60 \\ 150 & = 150 \\ 260 & = 0 \end{array}$	licron (Z, ZW, ZX media) licron (AS, E, Z, ZW, ZX media) licron (AS, Z, ZW, ZX media) Micron (AS, E, M, Z, ZW, ZX media) Vicron (M media) Micron (M media)	Omit = Buna N V = Viton [®] H = EPR H.5 = Skydrol [®] compatibility	Omit = None M = Magnet inserts (not available w/ indicator in cap)	S = SAE-24 F = 1 ½" SAE 4-bolt flange Code 62 O = Subplate B24 = ISO 228 G-1 ½"

BOX 8			BOX 9	BOX 10
Options		Dir	t Alarm [®] Options	Additional
Omit = None	None	Omit =	None	Options
X = Blocked bypass		D =	Pointer	Omit = None
50 – 50 psi bypass	10 1	D5 =	Visual pop-up	N = No-Element
setting	visuai	D5C =	D5 in cap	Indicator
Two 1/" NDTE inlat		D9 =	All stainless D5	(not available
L = IWO /4 INPTFINIEL & outlet female	Visual with	D8 =	Visual w/ thermal lockout	or GKC50
test ports	Thermal Lockout	D8C =	D8 in cap	housings w/
U = Series 1215 7/16		MS5 =	Electrical w/ 12 in. 18 gauge 4-conductor cable	cap)
UNF Schroeder		MS5LC =	Low current MS5	CEOO Dist Alarm and
Check lest Point		MS10 =	Electrical w/ DIN connector (male end only)	drain opposite
(unstream)		MS10LC =	Low current MS10	standard
(upsicality	Electrical	MS11 =	Electrical w/ 12 ft. 4-conductor wire	
UU = Series 1215 7/6		MS12 =	Electrical w/ 5 pin Brad Harrison connector (male end only)	G588 = Electric Switch
UNF SChroeder Chack Tact Point		MS12LC =	Low current MS12	opposite
installed in block		MS16 =	Electrical w/ weather-packed sealed connector	standard
(upstream and		MS16LC =	Low current IVIS 16	
downstream)		IVIST/LC =	Electrical W/ 4 pin Brad Harrison male connector	
		MS5LCT =	Low current MS5T	
		MS10T =	MS10 (see above) w/ thermal lockout	
	Electrical	MS10LCT =	Low current MS10T	
	with	MS12T =	MS12 (see above) w/ thermal lockout	
	Thermal	MS12LCT =	Low current MS12T	
	LOCKOUL	MS16T =	MS16 (see above) w/ thermal lockout	
		MS16LCT =	Low current MS16T	
		MS17LCT =	Low current MS17T	
		MS =	Cam operated switch w/ $\frac{1}{2}$ " conduit female	
	Electrical	1115	connection	
	Visual	MS13DC=	Supplied w/ threaded connector & light	
		MS14DC =	Supplied w/ 5 pin Brad Harrison connector & light (male end)	
	Electrical	MS13DCT =	MS13 (see above), direct current, w/ thermal lockout	
	Visual with	MS13DCLCT =	Low current MS13DCT	
	Thermal	MS14DCT =	MS14 (see above), direct current, w/ thermal lockout	
	Lockout	MS14DCLCT =	Low current MS14DCT	

NOTES:

Box 2. Number of elements must equal 1 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length. For standard elements, a plastic connector SAP P/N: 7630900 (LF-1997) is used to connect two or three K elements. For high collapse, a steel connector is required SAP P/N: 7608360 (LF-3255C).

Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[®] is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.

- Box 7. For option F, bolt depth .75" (19 mm). For option O, O-rings included; hardware not included.
- Box 8. X and 50 options are not available with KCN50.
- Box 9. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.
- Box 10. Option N, are not available with KCN50/ GKC50. N option should be used in conjunction with dirt alarm.

Features and Benefits

 Base-ported high pressure dual filter manifold mounted 200 gpm <mark>760 L/min</mark>

5000 psi 345 bar

KF30

KF50

20-CRZX10

- Meets HF4 automotive standard
- Element changeout from top minimizes oil spillage
- Offered in pipe porting (contact factory for other porting options)
- No-Element indicator option available
- Available with non-bypass option with high collapse element
- Integral inlet and outlet female test points option available
- Double and triple stacking of K-size elements can be replaced by single KK or 27K-size elements
- G Available with quality-protected GeoSeal[®] Elements (GMKF50)

Model No. of filter in photograph are MKF504K10PD5 and MKC504K10PD5.

			TEEO
Flow Rating	: Up to 200 gpm (760 L/min) for 150 SUS (32 cSt) fluids	Filter	IFOU
Max. Operating Pressure	:: 5000 psi (345 bar)	Housing	KC50
Min. Yield Pressure	:: 15,000 psi (1035 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure	2500 psi (240 bar), per NFPA T2.6.1-2005		IVINFSU
Temp. Range	e: -20°F to 225°F (-29°C to 107°C)		MKC50
Bypass Setting	 Cracking: 40 psi (2.8 bar) Optional Cracking: 50 psi (3.5 bar) Full Flow: 61 psi (4.2 bar) Non-bypassing model has a blocked bypass. 		KC65
Porting Base & Cap Element Case	: Ductile Iron : Steel		MKC65
Weight of MKF50-2K Weight of MKF50-4K Weight of MKF50-6K	 214.0 lbs. (97.3 kg) 243.0 lbs. (110.2 kg) 284.4 lbs. (129.0 kg) 		MHS60
Weight of MKC50-2K Weight of MKC50-4K Weight of MKC50-6K	:: 216.0 lbs. (98.0 kg) :: 245.0 lbs. (111.1 kg) :: 286.4 lbs. (129.9 kg)		KFH50
Element Change Clearance	e 8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K ::		LC35
			LC50
Type Fluid	Appropriate Schroeder Media	Fluid N	OF30-05
Petroleum Based Fluids	All E-Media (cellulose) and Z-Media [®] and ASP [®] Media (synthetic)	Compatibility	E EO 760
High Water Content	All Z-Media [®] and ASP [®] Media (synthetic)	NO	F-30-700
Invert Emulsions	10 and 25 μ Z-Media® (synthetic), 10 μ ASP® Media (synthetic)	F	OF60-03
Water Glycols	3, 5, 10 and 25 μ Z-Media® (synthetic), and all ASP® Media		NME30
Phosphate Esters	All Z-Media [®] and ASP [®] Media (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation		DMEGO

 E media (cellulose) with H (EPR) seal designation

 Skydrol[®]
 3, 5, 10 and 25 μ Z-Media[®] (synthetic), and all ASP[®] Media (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

				Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			, 8.8 er (APC)	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 1117		
Element				Յ ჯ ≥ 75	Յ x ≥ 100	β,	<u>,</u> ≥ 200	β _X (c) ≥ 20	00 B _x (c) <u>2</u>	≥ 1000
KZ1/KKZ1/27KZ	:1			<1.0	<1.0		<1.0	<4.0	4	.2
KZ3/KKZ3/27KZ	3			<1.0	<1.0		<2.0	<4.0	4	.8
KZ5/KKZ5/27KZ	:5			2.5	3.0		4.0	4.8	6	.3
KZ10/KKZ10/27	KZ10			7.4	8.2		10.0	8.0	10).0
KZ25/KKZ25/27	KZ25			18.0	20.0		22.5	19.0	24	1.0
KZW1				N/A	N/A		N/A	<4.0	<4	1.0
KZW3/KKZW3				N/A	N/A		N/A	4.0	4	.8
KZW5/KKZW5				N/A	N/A		N/A	5.1	6	.4
KZW10/KKZW1	0			N/A	N/A		N/A	6.9	8	.6
KZW25/KKZW2	5			N/A	N/A		N/A	15.4	18	8.5
KZX3/KKZX3/27	/KZX3			<1.0	<1.0	<	:2.0	4.7	5	.8
KZX10/KKZX10	/27KZX10			7.4	8.2	1	0.0	8.0	9.	8
Element	DHC (gm)	Element	DHC (gm)	Eleme	ent	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KKZ1	224	27KZ	1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ	3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ	5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ1	0	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ2	25	279	KZW25	79	KKZW25	158
KZX3	81*	KKZX3	163*	27KZ	X3	249*				
KZX10	90*	KKZX10	182*	27KZ	X10	279*	* Basec	l on 100 p	si terminal	pressure

27KZX10 279* * Based on 100 psi terminal pressure 182* Element Collapse Rating: 150 psid (10 bar) for standard elements

3000 psid (210 bar) for high collapse (ZX) versions

Flow Direction: Outside In

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Pressure Drop Information Based on Flow Rate and Viscosity

4KZ/2KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

6KZ/2-27KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathsf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 100 gpm (379 L/min) for MKF504KZ10PD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 100 gpm. In this case, $\Delta P_{\text{housing}}$ is 8 psi (.55 bar) on the graph for the MKF50 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 100 gpm. In this case, $\Delta P_{element}$ is 8 psi (.14 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V₄) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta P_{element} * V_f$). The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 8 \text{ psi } [.55 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 2 \text{ psi } [.14 \text{ bar}]$

Vf = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 △P_{filter} = 8 psi + (2 psi * 1.1) = 10.2 psi

OR

 $\Delta P_{\text{filter}} = .55 \text{ bar} + (.14 \text{ bar} * 1.1) = .70 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_{f}$ Plug this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
2KZ1	0.10	2K3	0.12	4K3/ KK3	0.06
2KZ3	0.05	2K10	0.05	4K10/ KK10	0.02
2KZ5	0.04	2K25	0.01	4K25/ KK25	0.01
2KZ10	0.03	2KAS3	0.05	4KAS3/ KKAS3	0.03
2KZ25	0.02	2KAS5	0.04	4KAS5/ KKAS5	0.02
KZW1	0.43	2KAS10	0.03	4KAS10/ KKAS10	0.02
KZW3	0.32	2KZX10	0.11	4KZX10	0.06
KZX5	0.28	2KZW3	0.16	6KAS3/ 27KAS3	0.02
KZW10	0.23	2KZW5	0.14	6KAS5/ 27KAS5	0.01
KZW25	0.14	2KZW10	0.12	6KAS10/ 27KAS10	0.01
		2KZW25	0.07	6KZX10	0.04

How to Build a Valid Model Number for a Schroeder MFK50: Filter BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 Model MKF50 Number Selection BOX 6 BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 7 BOX 8 BOX 9 Ρ 2K Ζ 10 D5 = MKF502KZ10PD5 MKF50-BOX 1 BOX 3 BOX 2 Number & Size of Media Type **Filter Series** Elements Omit = E Media (Cellulose) (MKF50 only) 2 K, KK, 27K MKF50 4 Κ AS = Anti-Stat Media (synthetic) 6 Κ MKFN50 Z = Excellement[®] Z-Media[®] (synthetic) (Non-bypassing: GeoSeal[®] Options ZX = Excellement[®] Z-Media[®] (High Collapse centertube) (MKFN50 Only) requires ZX high 2 KG, KKG, 27KG ZW = Aqua-Excellement ZW Media (MKF50 Only) collapse elements) 4 KG W = W Media (water removal) GMKF50 6 (GeoSeal[®]) KG M = Media (reusable metal mesh) (MKF50 & MKFN50 Only) **MKC50** MKCN50 (Non-bypassing: requires ZX high collapse elements) WKC50 (Water) BOX 5 BOX 6 BOX 4 BOX 7 Porting **Seal Material Micron Rating** Porting Option = 1 Micron (DZ, Z, ZW, ZX media) Omit = Buna N 1 Omit = None $P = 2\frac{1}{2}$ Box 2. Number of elements 3 = 3 Micron (AS,DZ, E, Z, ZW, ZX media) V = Viton[®] X = Blocked bypass NPTF 5 = 5 Micron (AS, DZ, Z, ZW, ZX media) H = EPR50 = EPR(AS, DZ, E, M, Z, ZW, ZX media) 10 = 10 Micron = Two 1/4" NPTF inlet H.5 = Skydrol® L and outlet female 25 = 25 Micron (E, DZ, M, Z, ZW, ZX media) compatibility test ports 60 = 60 Micron (M media) U = Series 1215 7/16 150 = 150 Micron (M media) **UNF** Schroeder = 260 Micron (M media) 260 Check Test Point installed in cap BOX 8 (upstream) **Dirt Alarm® Options** BOX 9 None Omit = None D = Pointer **Additional Options** D5 = Visual pop-up Visual D5C = D5 in cap Omit = None D9 = All stainless D5 N = No-Element Indicator (not Visual with D8 = Visual w/ thermal lockout available w/ MKFN30/ Thermal D8C = D8 in cap MKCN50 or housings w/ Lockout indicator in cap) MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10IC = Iow current MS10MS11 = Electrical w/ 12 ft. 4-conductor wire Electrical MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout Electrical MS10LCT = Low current MS10T with MS12T = MS12 (see above) w/ thermal lockout Thermal MS12LCT = Low current MS12T Lockout MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T MS = Cam operated switch w/ $\frac{1}{2}$ " conduit female connection Electrical MS13 = Supplied w/ threaded connector & light Visual MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end) MS13DCT = MS13 (see above), direct current, w/ thermal lockout Electrica Visual with MS13DCLCT = Low current MS13DCT Thermal MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT Lockout

NOTES

- must equal 2 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length. For standard elements, a plastic connector SAP P/N: 7630900 (LF-1997) is used to connect two or three K elements. For high collapse, a steel connector is required SAP P/N: 7608360 (LF-3255C).
- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[®] is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 7. 50 option is not available with MKFN50.
- Box 8. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.
- Box 9. N option should be used in conjunction with dirt alarm.

Features and Benefits	100 apm	NF30
Base-ported high pressure filter	280 I /min	NFS30
Patented dirt-tolerant cap design		
 Can be installed in vertical or horizontal position 	6500 psi	YF30
Meets HF4 automotive standard	450 bar	CFX30
 Element changeout from top minimizes oil spillage 		PLD
 Offered in flanged porting 		CF40
No-Element indicator option available		DF40
 Available with non-bypass option with high collapse element 		PF40
Integral inlet and outlet female test points option available		RFS50
Double and triple stacking of K-size element can be replaced by single KK		RF60
or 27K-size element		CF60
G Available with quality-protected GeoSeal [®] Elements (GKC65)		CTF60
		VF60
		LW60

KF30

KF50

Model No. of filter in photograph is KC651K10FD9.

		Ciltor	KC50
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	RCJU
Max. Operating Pressure:	6500 psi (450 bar)	Housing	MKF50
Min. Yield Pressure:	19,500 psi (1345 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure:	5000 psi (345 bar), per NFPA T2.6.1-2005		MKC50
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		KC65
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Non-bypassing model has a blocked bypass.		MKC65
Porting Base & Cap: Element Case:	Ductile Iron Steel		HS60
Weight of KC65-1K:	80 lbs. (36.3 kg)		IVIH560
Weight of KC65-2K: Weight of KC65-3K:	102 lbs. (46.3 kg) 124 lbs. (56.3 kg)		KFH50
Element Change Clearance:	8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		LC60

Type Fluid	Appropriate Schroeder Media	Fluid NOF30-05
Petroleum Based Fluids	All E media (cellulose) and Z-Media [®] (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] Media (synthetic)	NOF-50-760
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic), 10 μ ASP [®] Media (synthetic)	FOF60-03
Water Glycols	3, 5, 10 and 25 μ Z-Media® (synthetic) and all ASP® Media (synthetic)	NIMEDO
Phosphate Esters	All Z-Media [®] and ASP [®] Media (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation	RMF60
Skydrol®	3, 5, 10 and 25 µ Z-Media [®] (synthetic) and ASP [®] Media (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)	14-CRZX10
	SCHROEDER INDUSTRIES 11	5 20-CRZX10

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtrat Using automated	ion Ratio Per IS NFPA T3.10.8.8 particle counter (APC) ca	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	Յ _X ≥ 75	Յ _X ≥ 100	β _x ≥ 200	β _x (c) ≥ 200	β _χ (c) ≥ 1000
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5
KZX3/KKZX3/27KZX3	<1.0	<1.0	<2.0	4.7	5.8
KZX10/KKZX10/27KZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158
KZX3	81*	KKZX3	163*	27KZX3	249*				
KZX10	90*	KKZX10	182*	27KZX10	279*	* Based o	n 100 p:	si terminal p	oressure

Element Collapse Rating: 150 psid (10 bar) for standard elements

3000 psid (210 bar) for high collapse (ZX) versions Flow Direction: Outside In

Element Nominal Dimensions: K:

K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

$\Delta \mathbf{P}_{\mathsf{housing}}$

KC65 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta \mathbf{P}_{element}$

KZ/KGZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2KZ/KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathsf{V}_f)$

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 50 gpm (189.5 L/min) for KC651KZ10FD9 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 4 psi (.27 bar) on the graph for the KC65 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 50 gpm. In this case, $\Delta P_{element}$ is 2.5 psi (.17 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 4 \text{ psi} [.27 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 2.5 \text{ psi} [.17 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta \mathbf{P}_{\text{filter}} = 4 \text{ psi} + (2.5 \text{ psi} * 1.1) = 6.8 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .27 \text{ bar} + (.17 \text{ bar} * 1.1) = .46 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = \text{Flow Rate } x \, \Delta \mathbf{P}_f. \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	$\Delta \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZX3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZX5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZX10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/ KKZX25	0.07	3KZX10/ 27KZX10	0.07

Filter How to Build a Valid Model Number for a Schroeder KC65: BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10 Model KC65 Number Selection BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10 F = KC651KZ10FED5 KC65 1K Ζ 10 D5 BOX 1 BOX 2 BOX 3 Number & Size of Filter Media Type Series Elements K, KK, 27K 1 Omit = E Media (Cellulose) KC65 2 Κ AS = Anti-Stat Media (synthetic) KCN65 GeoSeal[®] Options Z = Excellement[®] Z-Media[®] (synthetic) (Non-ZX = Excellement® Z-Media® (High Collapse centertube) (KCN65 Only) 1 KG, KKG, 27KG bypassing: ZW = Aqua-Excellement ZW Media (KC65 Only) KG 2 requires ZX high 3 KG W = W Media (water removal) collapse M = Media (reusable metal mesh) (KC65 & KCN65 Only) elements) GKC65 (GeoSeal[®])

NOTES:

Box 2. Number of elements must equal 1 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length. For standard elements, a plastic connector SAP P/N: 7630900 (LF-1997) is used to connect two or three K elements. For high collapse, a steel connector is required SAP P/N: 7608360 (LF-3255C).

- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[®] is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 7. For option F, bolt depth 1.12" (30 mm).
- Box 8. X and 50 options are not available with KCN65.
- Box 9. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.
- Box 10. Option N is not available with KCN65. N option should be used in conjunction with dirt alarm.

BOX 4	BOX 5	BOX 6	BOX 7
Micron Rating	Seal Material	Magnet Option	Porting
1 = 1 Micron (Z, ZW, ZX media) 3 = 3 Micron (AS, E, Z, ZW, ZX media) 5 = 5 Micron (AS, Z, ZW, ZX media) 10 = 10 Micron (AS, E, M, Z, ZW, ZX media) 25 = 25 Micron (E, M, Z, ZW, ZX media) 60 = 60 Micron (M media) 150 = 150 Micron (M media) 260 = 260 Micron (M media)	$\begin{array}{l} {\rm Omit}\ =\ {\rm Buna}\ {\rm N} \\ {\rm V}\ =\ {\rm Viton}^{\oplus} \\ {\rm H}\ =\ {\rm EPR} \\ {\rm H.5}\ =\ {\rm Skydrol^{\oplus}} \\ {\rm compatibility} \end{array}$	Omit = None M = Magnet inserts (not available w/ indicator in cap)	F = 1 ½" SAE 4-bolt flange Code 62

BOX 8		BOX 9	BOX 10
Options		Dirt Alarm [®] Options	Additional Options
Omit = None	None	Omit = None	Omit - None
X = Blocked bypass	Visual	D9 = All stainless D5	Offic = None
50 = 50 psi bypass setting		MS5SS = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5SSLC = Low current MS5	N = No-Element Indicator (not available w/
L = Two ¼" NPTF inlet & outlet female test ports	Electrical	MS10SS = Electrical w/ DIN connector (male end only) MS10SSLC = Low current MS10 MS11SS = Electrical w/ 12 ft. 4-conductor wire Electrical w/ 5 pin Brad Harrison connector (male end	KFN65 or housings w/ indicator in
U = Series 1215 UNF Schroeder Check Test Point installed in cap (upstream)		MS12SSE only) MS12SSLC = Low current MS12 MS16SSE = Electrical w/ weather-packed sealed connector MS16SSLC = Low current MS16 MS17SSLC = Electrical w/ 4 pin Brad Harrison male connector	G509 = Dirt Alarm and drain opposite standard
UU = Series 1215 % UNF Schroeder Check Test Point installed in block (upstream and downstream)	Electrical with Thermal Lockout	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T MS12ET = Low current MS12T	
		MS161 = MS16 (see above) w therman occout MS16LCT = Low current MS16T MS17LCT = Low current MS17T	
	Electrical Visual	MS = Cam operated switch w/ ½" conduit female connection MS13DC = Supplied w/ threaded connector & light MS14DC = Supplied w/ 5 pin Brad Harrison connector & light (male end)	
	Electrical Visual with	MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/ thermal lockout	
	Thermal Lockout	MS14DCLCT = Low current MS14DCT	

Model No. of filter in photograph is MKC654K10BD5.

Clearance	x:	
True Florid	Annualista Caluza das Madia	FI
Type Fluid	Appropriate Schröeder Media	
Petroleum Based Fluids	All E-Media (cellulose) and Z-Media [®] and ASP [®] Media (synthetic)	C
High Water Content	All Z-Media [®] and ASP [®] Media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic), 10 μ ASP [®] Media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media® (synthetic), and all ASP® Media	
Phosphate Esters	All Z-Media® and ASP® Media (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation	

3, 5, 10 and 25 µ Z-Media[®] (synthetic), and all ASP[®] Media (synthetic) with H.5 seal Skydrol® designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

*Rated for Water/Oil Emulsions

SCHROEDER INDUSTRIES 119

20-CRZX10

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

				Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171				
Element				ß _x	<u>,</u> ≥ 75	β _x ≥ 100	ß	x ≥ 200	β _X (c) ≥ 2	00 В <mark>_X(с)</mark>	≥ 1000	
KZ1/KKZ1/27KZ	1			<	<1.0	<1.0		<1.0	<4.0	4	l.2	
KZ3/KKZ3/27KZ	3			<	<1.0	<1.0		<2.0	<4.0	4	.8	
KZ5/KKZ5/27KZ	5				2.5	3.0		4.0	4.8	6	5.3	
KZ10/KKZ10/27	<z10< th=""><th></th><th></th><th></th><th>7.4</th><th>8.2</th><th></th><th>10.0</th><th>8.0</th><th>1(</th><th>0.0</th></z10<>				7.4	8.2		10.0	8.0	1(0.0	
KZ25/KKZ25/27	<z25< td=""><td></td><td></td><td>1</td><td>18.0</td><td>20.0</td><td></td><td>22.5</td><td>19.0</td><td>24</td><td>4.0</td></z25<>			1	18.0	20.0		22.5	19.0	24	4.0	
KZW1				I	N/A	N/A		N/A	<4.0	<	<4.0	
KZW3/KKZW3				I	N/A	N/A		N/A	4.0	4	4.8	
KZW5/KKZW5				I	N/A	N/A		N/A	5.1	6	5.4	
KZW10/KKZW10)			I	N/A	N/A		N/A	6.9	8	8.6	
KZW25/KKZW25	5			N/A		N/A	N/A		15.4	18	8.5	
KZX3/KKZX3/27	KZX3			<	<1.0	<1.0		<2.0	4.7	5	.8	
KZX10/KKZX10/	27KZX10			-	7.4 8.2 10.0		8.0 9.8		.8			
Element	DHC (gm)	Element	DH((gm	C 1)	Eleme	nt	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	
KZ1	112	KKZ1	224		27KZ1		336	KZW1	61			
KZ3	115	ККZЗ	230		27KZ3		345	KZW3	64	KKZW3	128	
KZ5	119	KKZ5	238		27KZ5		357	KZW5	63	KKZW5	126	
KZ10	108	KKZ10	216		27KZ10)	324	KZW10	57	KKZW10	114	
KZ25	93	KKZ25	186		27KZ2	5	279	KZW25	79	KKZW25	158	
KZX3	81*	ККZХЗ	163*		27KZX	3	249*					
KZX10	90*	KKZX10	182*		27KZX	10	279*	* Based	d on 100 p	osi termianl	pressure	

Element Collapse Rating: 150 psid (10 bar) for standard elements

3000 psid (210 bar) for high collapse (ZX) versions

Flow Direction: Outside In

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_{f}$ Plug this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
2KZ1	0.10	2K3	0.12	4K3/ KK3	0.06
2KZ3	0.05	2K10	0.05	4K10/ KK10	0.02
2KZ5	0.04	2K25	0.01	4K25/ KK25	0.01
2KZ10	0.03	2KAS3	0.05	4KAS3/ KKAS3	0.03
2KZ25	0.02	2KAS5	0.04	4KAS5/ KKAS5	0.02
KZW1	0.43	2KAS10	0.03	4KAS10/ KKAS10	0.02
KZW3	0.32	2KZX10	0.11	4KZX10	0.06
KZX5	0.28	2KZW3	0.16	6KAS3/ 27KAS3	0.02
KZW10	0.23	2KZW5	0.14	6KAS5/ 27KAS5	0.01
KZW25	0.14	2KZW10	0.12	6KAS10/ 27KAS10	0.01
		2KZW25	0.07	6KZX10	0.04

Exercise:

Determine ΔP_{filter} at 100 gpm (379 L/min) for MKC654KZ10PD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 100 gpm. In this case, $\Delta P_{\text{housing}}$ is 8 psi (.55 bar) on the graph for the MKC65 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 100 gpm. In this case, $\Delta P_{element}$ is 8 psi (.14 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V₄) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{element} * V_f$). The $\Delta \mathbf{P}_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 8 \text{ psi } [.55 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 2 \text{ psi } [.14 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta \mathbf{P}_{filter} = 8 \text{ psi} + (2 \text{ psi} * 1.1) = 10.2 \text{ psi}$ <u>OR</u>

 $\Delta P_{\text{filter}} = .55 \text{ bar} + (.14 \text{ bar} * 1.1) = .70 \text{ bar}$

MKC65 Base-Ported Pressure Filter

NOTES:

Box 2. Number of elements must equal 2 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4 and 5. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length. For standard elements, a plastic connector SAP P/N: 7630900 (LF-1997) is used to connect two or three K elements. For high collapse, a steel connector is required SAP P/N: 7608360 (LF-3255C).

- Box 5. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[®] is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 8. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.
- Box 9. N option should be used in conjunction with dirt alarm.

		120 gpm	NF30
	Features and Benefits	450 L/min	NFS30
E S	Full flow reverse flow check valve diverts flow next the always tip hydrotetic applications.	6000 psi	YF30
	past the element in hydrostatic applications Top-ported design capable of handling 100	415 bar	CFX30
	gpm flow		PLD
	 Offered in SAE straight thread and flange porting 		CF40
	 Thread on bowl with drain plug for easy 		DF40
	element service 6000 psi cyclic		DE 10
	Certified for Offshore Standard DNVGL-		F140
	OS-D101 "Marine and Machinery Systems and Equipment"		RFS50
	Contact factory for higher flow applications		RF60
			CF60
			CTF60
			VF60
			LW60
			KE30
Model No. of filters in photog	graph are HS6013HZ3F24 and MHS6013HZ3F24.	•	KEEO
			KF30
			TF50
Elow Pating:	Lin to 100 gpm (280 L/min)	Filter	KC50
Max. Operating Pressure:	6000 psi (415 bar) only for flange ported models	Housing	MKF50
Min. Yield Pressure:	Contact factory	Specifications	МКС50
Rated Fatigue Pressure:	6000 psi (415 bar) (oply with 4-bolt flange porting)		KC65
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		МКС65
Bypass Setting:	Cracking: 87 psi (5.9 bar)		
Porting Head: Element Case:	Ductile Iron Steel		H300
Weight of HS60-13H:	75 lbs. (34.2 kg)		MHS60
Element Change Clearance:	4.0" (103 mm)		KFH50
		-	LC60
			LC35
			LC50
Type Flui	d Appropriate Schroeder Media	Fluid	NOF30-05
High Water Conter	t All Z-Media [®] (synthetic)	Compatibility	DE_E0 760
Invert Emulsion	I0 and 25 μ Z-Media® (synthetic)	NC	vr-30-700
Water Glyco Phosphate Este	s 3, 5, τυ and 25 μ 2-Media [®] (synthetic) s All Z-Media [®] (synthetic) with H (EPR) seal designation		FOF60-03
· · · · · · · · · · · · · · · · · · ·			NMF30
			RMF60

14-CRZX10

20-CRZX10

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ratio	Per ISO 457	Filtration Ratio	o per ISO 16889 ted per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
13HZ3/13HZX3	<1.0	<1.0	<2.0	<4.0	4.8
13HZ5/13HZX5	2.5	3.0	4.0	4.8	6.3
13HZ10/13HZX10	7.4	8.2	10.0	8.0	10.0
13HZ25/13HZX25	18.0	20.0	22.5	19.0	24.0
Element	DHC (gm))	Element	DHC (g	jm)
13HZ3	100.7		13HZX3	75.7	1
13HZ5	113.2		13HZX5	74.1	
13HZ10	119.7		13HZX10	81.4	
13HZ25	123.5		13HZX25	92.9)

Element Collapse Rating: 290 psi (20 bar) for standard elements 3045 psi (210 bar) for high collapse (ZX) versions

Flow Direction: Outside In

Element Nominal Dimensions: 13HZ : 3.5" (90 mm) O.D. x 13" (325 mm) long

$\Delta \mathbf{P}_{\mathsf{housing}}$

HS60/MHS60 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

$$\Delta \mathbf{P}_{\text{filter}} = \Delta \mathbf{P}_{\text{housing}} + (\Delta \mathbf{P}_{\text{element}} * \mathsf{V}_f)$$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 30 gpm (113.7 L/min) for HS6013HZ10S24D13 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 30 gpm. In this case, $\Delta P_{\text{housing}}$ is 7 psi (.48 bar) on the graph for the HS60 housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 30 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 2 psi (.14 bar) according to the graph for the 13HZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 7 \text{ psi} [.48 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 2 \text{ psi} [.14 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 △ $P_{\text{filter}} = 7 \text{ psi} + (2 \text{ psi} * 1.1) = 9.2 \text{ psi}$ OR

 $\Delta \mathbf{P}_{filter} = .48 \text{ bar} + (.14 \text{ bar} * 1.1) = .63 \text{ bar}$

Note: If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate } x \Delta \mathbf{P}_{f}$ Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$
13HZX3	0.176
13HZX5	0.104
13HZX10	0.054
13HZX25	0.048

Filter	How to Build a	a Valid	Model Nun	nber for a Schroeder HS60:				
Model	BOX 1 BOX	2 B	OX 3 BOX 4	BOX 5				
Number								
Selection	Example: NOTE: One option per box							
	HS60 - 13H	Z3 –	– F24	- D13 = HS6013HZ3F24D13				
	BOX 1			BOX 2	BOX 3			
	Filter Series		l	Element Part Number	Seal Material			
	H\$60	13H	IZ3 = 3 μ Exce	llement® Z-Media® (synthetic)	Omit 🛛 = Buna N			
	11500	13H	IZ5 = 5 μ Exce	llement [®] Z-Media [®] (synthetic)	V = Viton®			
	HSN60	13H2	210 = 10 µ Exc	ellement [®] Z-Media [®] (synthetic)	H = EPR			
	requires ZX high	13Hz	$225 = 25 \mu \text{Exc}$	ellement [®] Z-Media [®] (synthetic)				
		13H2	$X_5 = 5 \mu \text{ Exce}$	llemente Z-Mediae (high collapse center tube)				
	MHS60	13H7	(10 - 10 + Exc)	ellemente 7-Mediae (high collapse center tube)				
	MHSN60	10112/		allemente 7 Media® (high collapse center tub)	-)			
	(Non-bypassing: requires 7X high	13HZ/	$z_5 = z_5 \mu exc$	ellement [®] Z-Media [®] (nigh collapse center tube	2)			
	collapse elements)							
	BOX 4			BOX 5				
	Porting Opt	ions	Dirt Alarm [®] Options					
	S24 = SAE-24	1	None	Omit = None				
	F24 = 1½" SA	ΑE	Visual	D13 = Visual pop-up				
	4-bolt flange Code 62		2	MS5SS = Electrical w/ 12 in. 18 gauge 4-conductor cable				
				MS5SSLC = Low current MS5				
	F32 = 2"SAE	4-bolt Code	Electrical	MS10SS = Electrical w/ DIN connector (m	nale end only)			
	62	couc		MS10SSLC = Low current MS10				
				MS11SS = Electrical w/ 12 ft. 4-conductor wire				
				MS12SS= Electrical w/ 5 pin Brad Harriso only)	ad Harrison connector (male end			
				MS12SSLC = Low current MS12				
				MS16SS = Electrical w/ weather-packed	sealed connector			
				MS16SSLC = Low current MS16	16			
				MS17SSLC = Electrical w/ 4 pin Brad Harrison male connector				
				MS5SST = MS5 (see above) w/ thermal le	ockout			
				MS5SSLCT = Low current MS5T				
				MS10SST = MS10 (see above) w/ thermal	lockout			
			Electrical	MS10SSLCT = Low current MS10T				
			With Thermal	MS12SST = MS12 (see above) w/ thermal	lockout			
			Lockout	MS12SSLCT = Low current MS12T				
NOTES:				MS16SST = MS16 (see above) w/ thermal	lockout			
Box 2. Replacement element				MS16SSLCT = Low current MS16T				
part numbers are identical to contents of				MS17SSLCT = Low current MS17T				
Boxes 2 and 3.			Flootning	MS13SS = Supplied w/ threaded connect	tor & light			
Box 3. Viton [®] is a registered trademark of DuPont			Visual	$MS14SS = \begin{array}{c} Supplied w/ 5 \text{ pin Brad Harrisor} \\ end \end{array}$	n connector & light (male			
Dow Elastomers.			Flectrical	MS13SSDCT = MS13 (see above), direct curre	ent, w/ thermal lockout			
Box 5. All Dirt Alarm [®] Indicators must be			Visual with	MS13SSDCLCT = Low current MS13DCT				
Stainless Steel. Standard indicator setting is 75			Thermal Lockout	MS14SSDCT = MS14 (see above), direct curre	ent, w/ thermal lockout			

MS14SSDCLCT = Low current MS14DCT

Box 5. All Dirt Alarm® Indicators must Stainless Steel. Standar indicator setting is 75 psi. For replacement indicators, contact the factory factory.

Hydrostatic Base-Ported Filter KFH50

	Features and Benefits Base-ported Hydrostatic high pressure filter	70 gpm 265 L/min	NF30 NFS30
	 Hydrostatic transmission filter for reversing 	5000 pci	YF30
	loop systems		CEV20
	 Filters in the "in to out" direction, bypasses in reverse direction 	345 Dar	
	 Element changeout from top minimizes oil spillage 		CF40
	 Offered in pipe, SAE straight thread, flanged and ISO 228 porting 		DF40
	Integral inlet and outlet female test points option available		PF40
	 Offered in conventional subplate porting 		RFS50
	 Completion of application questionnaire a requirement L-2549 (contact factory) 		RF60
	 Double and triple stacking of K-size elements can be replaced by single KK 		CF60
	or 27K-size elements		CTF60
6			VF60
			LW60
Madal Na of filter in photograph			KF30
model no. of filter in photograph	ו ארחסטוא וטנסס.	-	KF50
			TEEO
			IFSU
Flow Rating:	Up to 70 apm (265 L/min) for 150 SUS (32 cSt) fluids	Filter	KC50
Max. Operating Pressure:	5000 psi (345 bar)	Housing	MKF50
Min. Yield Pressure:	15,000 psi (1035 bar), per NFPA T2.6.1	Specifications	MKC50
Rated Fatigue Pressure:	3500 psi (240 bar), per NFPA T2.6.1-2005		MIRCJU
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		KC65
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 61 psi (4.2 bar)		MKC65
Porting Base & Cap: Element Case:	Ductile Iron Steel		HS60
Weight of KFH50-1K: Weight of KFH50-2K: Weight of KFH50-3K:	60.0 lbs. (27.2 kg) 80.3 lbs. (36.4 kg) 100.5 lbs. (45.6 kg)		MHS60 KFH50
Element Change Clearance:	8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		1 C 6 0
			LC35
			LC50
Type Fluid	Appropriate Schroeder Media	Fluid N	IOF30-05
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] Media (synthetic)	Compatibility	E E0 760
High Water Content	All Z-Media [®] (synthetic)	NO	L-20-100

F60-03

Skydrol®

Invert Emulsions Water Glycols

Phosphate Esters

10 and 25 µ Z-Media[®] (synthetic)

3, 5, 10 and 25 µ Z-Media[®] (synthetic)

(cellulose) with H (EPR) seal designation

stainless steel wire mesh in element, and light oil coating on housing exterior)

All Z-Media[®] (synthetic) with H (EPR) seal designation and 3 and 10 μ E media

3, 5, 10 and 25 μ Z-Media[®] (synthetic) with H.5 seal designation (EPR seals and

SCHROEDER INDUSTRIES 127

20-CRZX10

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Rati	io Per ISO 4572/N article counter (APC) cal	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	β _X ≥ 75	β _X ≥ 100	β _X ≥ 200	β χ(c) ≥ 200	B _X (c) ≥ 1000
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5
KZX3/KKZX3/27KZX3	<1.0	<1.0	<2.0	4.7	5.8
KZX10/KKZX10/27KZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158
KZX3	81*	KKZX3	163*	27KZX3	249*				
KZX10	90*	KKZX10	182*	27KZX10	279*	* Based on 100 psi terminal press			

ire

150 psid (10 bar) for standard elements

3000 psid (210 bar) for high collapse (ZX) versions Outside In

Element Nominal Dimensions:

Element Collapse Rating:

Flow Direction:

3.9" (99 mm) O.D. x 9.0" (230 mm) long K: KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Hydrostatic Base-Ported Filter KFH50

$\Delta \mathbf{P}_{\mathsf{housing}}$

KFH50 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

KZ

2KZ/KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM]

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathsf{V}_f)$

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 30 gpm (113.7 L/min) for KFH501KZ10SD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 30 gpm. In this case, $\Delta P_{\text{housing}}$ is 9 psi (.62 bar) on the graph for the KFH50 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 30 gpm. In this case, $\Delta P_{element}$ is 1.5 psi (.10 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * V_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

OR

 $\Delta \mathbf{P}_{\text{housing}} = 9 \text{ psi } [.62 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 1.5 \text{ psi } [.10 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 △ P_{filter} = 9 psi + (1.5 psi * 1.1) = 10.7 psi

 $\Delta \mathbf{P}_{filter} = .62 \text{ bar} + (.10 \text{ bar} * 1.1) = .73 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow \text{ Rate } x \Delta \mathbf{P}_f. \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/	0.07	3KAS25/	0.07

KFH50 Hydrostatic Base-Ported Filter

Filter	How to B	uild a Valid	Model	Numbe	r for a \mathfrak{s}	Schroeder KFH50:	
Model Number	вох 1 КFH50 –	BOX 2 BOX	3 BO>	(4 BOX	5 BOX	6 BOX 7 BOX 8	
Selection	Example: NOTE: Only box 6 may contain more than one option						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						KZ5SD5G509
	BOX 1	BOX 2				BOX 3	BOX 4
	Filter Series	Number of Elements			Elemen	t Part Number	Seal Material
	KFH50	1 2	K Length	KK Length	27K Length		Omit = Buna N
		3	К3	KK3	27K3	= 3 µ E media (cellulose)	
			K10	KK10	27K10	= 10 µ E media (cellulose)	H = EPR
			K25			= 25 μ E media (cellulose)	H.5 = Skydrol [®]
			KZ1	KKZ1	27KZ1	= 1 μ Excellement [®] Z-Media [®] (synthetic)	compatibility
			KZ3	KKZ3	27KZ3	= 3 µ Excellement [®] Z-Media [®] (synthetic)	DOX F
			KZ5	KKZ5	27KZ5	= 5 µ Excellement [®] Z-Media [®] (synthetic)	BUX 5
			KZ1U KZ2E	KKZ1U KKZ2E	27KZ10	= 10 µ Excellement° Z-IViedia° (synthetic)	Porting
			KZZO KZW/1	NNZZ D	2/11/22	= 25 μ excellement 2-ivieula (synthetic) = 1 μ Aqua-Excellement TM 7\M/ media	P = 1½" NPTF
			KZW3	KKZW3		= 3 µ Aqua-Excellement™ ZW media	S = SAF-24
			KZW5	KKZW5		= 5 µ Aqua-Excellement [™] ZW media	E _ 114" SAE
			KZW10	KKZW10		= 10 µ Aqua-Excellement [™] ZW media	4-bolt flange
			KZW25	KKZW25		= 25 µ Aqua-Excellement [™] ZW media	Code 62
			KW	KKW	27KW	= W media (water removal)	O = Subplate
			KM10			= K size 10 μ M media (reusable metal)	B = ISO 228 G-1½"
			KM25			= K size 25 μ M media (reusable metal)	L
			KM60			= K size 60 μ M media (reusable metal)	
			KM150			= K size 150 µ M media (reusable metal)	

KM260

BOX 6		BOX 7
Options		Dirt Alarm [®] Options
Omit = None	None	Omit = None
L = Two ¼" NPTF inlet and outlet female test ports U = Series 1215 7/6 UNF	Visual	D = Pointer D5 = Visual pop-up D5C = D5 in cap D9 = All stainless D5
Schroeder Check Test Point installation in cap (upstream)	Visual with Thermal Lockout	D8 = Visual w/ thermal lockout D8C = D8 in cap
UU = Series 1215 % UNF Schroeder Check Test Point installation in block (upstream and downstream)	Electrical	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 2 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Low current MS16
	Electrical with Thermal Lockout	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T
BOX 8	Electrical	MS = Cam operated switch $w/\frac{1}{2}$ " conduit female connection
Additional Options	Visual	MS13DC = Supplied w/ threaded connector & light MS14DC = Supplied w/ 5 pin Brad Harrison connector & light (male end)
Omit = None G509 = Dirt alarm and drain opposite standard	Electrical Visual with Thermal Lockout	MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT

= K size 260 µ M media (reusable metal)

NOTES:

- Box 2. Number of elements must equal 1 when using KK or 27K elements.
- Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4. Double and triple stacking of K-size elements can be replaced by single KK and 27K elements, respectively. ZW media not available in 27K length.
- Box 4. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol® is a registered trademark of Solutia Inc.
- Box 5. For option F, bolt depth .75" (19 mm). For option O, O-rings included; hardware not included.

In-Line Filter LC60

	Features and Benefits (LC60)	8 gpm <i>30 L/min</i>	NF30 NFS30
1	 Compact design allows for in-line installation. 	6000 psi	YF30
1.11	Small profile allows filter to be mounted in tight areas.	415 bar	CFX30
VI C	 Quick and easy cartridge element change outs. 		PLD
	Durable, compact design.		CF40
	 Uses 10 micron stainless steel wire mesh filtration. Perfect for pilot pressure circuits and pressure 		DF40
	compensated pump protection.		PF40
			RFS50
			RF60
Model No. of filter in photograp	oh is LC6015SD105.		CF60
Flow Rating:	Up to 8 gpm (30 L/min) for 150 SUS (32 cSt) fluids	Filter	CTE60
Max. Operating Pressure:	6000 psi (414 bar)	Housing	VEGO
Min. Yield Pressure:	18000 psi (1241 bar), per NFPA T2.6.1	specifications	VFOU
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		LW60
Porting Head:	Steel		KF30
Weight:	0.93 lbs. (0.42 kg)		KF50
Element Change Clearance:	2.50" (63.5 mm)		TF50
Type Fluid	Appropriate Schroeder Media	Fluid	KC50
Petroleum Based Fluids	All Stainless Steel Wire Mesh	Compatibility	MKF50
Water Glycols	i 10 μ Stainless Steel Wire Mesh		МКС50
			KC65
			MKC65
			HS60
			MHS60
[38]			KFH50
\land			1 C 6 0
			1035
		P	NOF30-05
	9/16-18UNF-2B(SAE-06) -O-RING PORT	NC)F-50-760
	(BOTH SIDES)		FOF60-03
			NMF30
Matric dimensions in ()			RMF60
Dimensions shown are inches (n	nillimeters) for general information and overall envelope size only.	14	4-CRZX10
	SCHROEDER INDUSTRIES 13	- 1 2()-CRZX10

C60 In-Line Filter

In-Line Filter LC35

15 gpm <u>57 L/min</u>

3500 psi 241 bar

Features and Benefits (LC35)

- Compact design allows for in-line installation.
- Small profile allows filter to be mounted in tight areas.
- Quick and easy cartridge element change outs.
- Durable, compact design.
- Uses 10 or 40 micron Sintered Bronze filtration.
- Perfect for pilot pressure circuits and pressure compensated pump protection.

Model No. of filter in photograph is LC351BS10S.

Metric dimensions in ().

Flow Rating:	Up to 15 gpm (57 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	3500 psi (241 bar)	Housing	VF60
Min. Yield Pressure:	10500 psi (724 bar), per NFPA T2.6.1	Specifications	LW60
Rated Fatigue Pressure:	2200 psi (152 bar), per NFPA T2.6.1		1/520
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		KF30
Porting Head: Element Case:	Steel Steel		KF50
Weight:	1.32 lbs. (0.60 kg)		TF50
Element Change Clearance:	3.25" (82.6 mm)		KC50
Type Flui	d Appropriate Schroeder Media	Fluid	MKF50
Petroleum Based Fluid	s All Sintered Bronze	Compatibility	MKC50
Invert Emulsion	s 10 and 40 μ Sintered Bronze		MICCO
Water Glycol	s 10 and 40 μ Sintered Bronze		KC65
	2.00		MKC65
-	3.41		HS60
			MHS60
			KFH50
8 ($\rightarrow + _{z} \rightarrow +$		LC60

LC35

20-CRZX10

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

562-18UNF-28

0-RING PORT

(S6) SAE STRAIGHT THREAD

(TYPICAL IN AND OUT PORTS)

In-Line Filter LC50

575		9 gpm 35 <i>I /min</i>	NF30 NFS30
	 Compact design allows for in-line installation 	5000 nsi	- YF30
1000	on hose reels	345 har	CFX30
	 High quality synthetic ZX-Media high collapse elements ensure all fluid is filtered 	545 bai	PI D
	 Available with SAE or NPT threading 		CE 40
	Convenient 2 ¼" Hex for easy service		CF40
			DF40
			PF40
			RFS50
			RF60
Model No. of filter in photograph is LC501LZ	ZX105.		CE60
Flow Rating: Up to 9 gpm (35 L/m	in) for 150 SUS (32 cSt) fluids	Filter	CIOU
Max. Operating Pressure: 5000 psi (350 bar)		Housing	CTF60
Min. Yield Pressure: 15,000 psi (1050 bar Bated Eatique Pressure: 5000 psi (350 bar) p) Ner NEPA T2 6 1-R1-2005	specifications	VF60
Temp. Range: -20°F to 225°F (-29°C	C to 107°C)		LW60
Body and Cap: Steel			KF30
Element Case: Steel			VEEO
Weight of LC50: 3.63 lbs. (1.65 kg)			КГЭО
			TF50
Type Fluid Appropriate Schroeder	r Media	Fluid	KC50
Petroleum Based Fluids All Z-Media® (synthetic)		Compatibility	MKF50
High Water Content All 2-Media® (synthetic)	vnthetic)		МКС50
Water Glycols 10 and 25 µ Z-Media [®] (s	ynthetic)		KCGE
4.53			KCOD
[115]			MKC65
[100]			HS60
ചെ ച	[15] <u>2.25</u> [57]		MHS60
\$500			KEH50
OUT			LC60
─	┼╌┼────┼┼╢─┼┤		LC35
			LC50
			NOF30-05
		NC)F-50-760
1/16-12UNC-2B AE STRAIGHT THREAD	1 1/16-12UNC-2B SAE STRAIGHT THREAD		
112)	(512)		FOF60-03
			NMF30
tric dimensions in ().	al information and overall envelope size only		RMF60
complete dimensions please contact Schroeder In	idustries to request a certified print.	1	4-CRZX10
		- 2	0-CR7X10
	SCHKUEDEK INDUSTRIES 13	J 🕹	

C50 In-Line Filter

High-Pressure Sandwich Filter NOF30-05

·	 Features and Benefits Sandwich filter configured for D05 subplate Withstands high pressure surges, high static pressure loads 3000 psi collapse elements 	12 gpm <u>45 L/min</u> 3000 psi 210 bar	NF30 NFS30 YF30 CFX30 PLD CF40 DF40 PF40
W			RFS50 RF60 CF60
			CTF60
			VF60
			1.W60
			LVVOU
Model No. of filter in photog	raph is NOF301NNZX305D5.		KF30
			KF50
			TF50
			КС50
Flow Rating:	Up to 12 gpm (45 L/min) for 150 SUS (32 cSt) fluids	Housing	IVIKF50
Min. Yield Pressure:	10 000 psi (210 bar) per NEPA T2 6 1	Specifications	МКС50
Rated Fatigue Pressure:	Contact Factory		KC65
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		NAVCCE
Bypass Setting:	High collapse elements are standard		IVIKC05
Porting Base & Cap:	Aluminum		HS60
Element Case:	Aluminum		MHS60
Weight of NOF30-1NN:	6.6 lbs. (3.0 kg)		KELLEO
Element Change Clearance:	4.50" (115 mm)		KFH5U
			LC60
			LC35
			1050

Type Fluid	Appropriate Schroeder Media		Fluid NOF30-05
Petroleum Based Fluids	All Z-Media [®] (synthetic)		Compatibility
High Water Content	3, 10 and 25 μ Z-Media® (synthetic)		NOF-50-760
Invert Emulsions	10 and 25 μ Z-Media® (synthetic)		FOF60-03
Water Glycols	3, 10 and 25 μ Z-Media® (synthetic)		NMF30
			RMF60
			14-CRZX10
		SCHROEDER INDUSTRIES 137	20-CRZX10

NOF30-05 High-Pressure Sandwich Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ra Using automated p	tio Per ISO 4572/NI article counter (APC) cali	Filtration Ratio	o per ISO 16889 Ited per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
NNZX3	<1.0	<1.0	<2.0	4.7	5.8
NNZX10	7.4	8.2	10.0	8.0	9.8

Elemen	t DHC (gm)		
NNZX3	11*		
NNZX1	0 13*		*Rased on 100 psi
Ele	ement Collapse Rating:	3000 psid (210 bar) for high collapse (ZX) versions	terminal pressure
	Flow Direction:	Outside In	
Element Nominal Dimensions:		1.75" (45 mm) O.D. x 8.00" (200 mm) long	

High-Pressure Sandwich Filter NOF30-05

$\Delta \mathbf{P}_{\mathsf{housing}}$

NOF30-05 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta \mathbf{P}_{element}$

1NNZX Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 5 gpm (19 L/min) for NOF301NNZX1005D5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 5 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the NOF30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 5 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the NNZX10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * V_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 5 \text{ psi} [.34 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3 \text{ psi} [.21 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 △ P_{filter} = 5 psi + (3 psi * 1.1) = 8.3 psi

OR

 $\Delta \mathbf{P}_{\mathsf{filter}}$ = .34 bar + (.21 bar * 1.1) = .57 bar

NOF30-05 High-Pressure Sandwich Filter

NOF30 - 1 - N	NNZX3 -	-0505 = NOF30	1NNZX305D5	
BOX 1 BOX	K 2	BOX 3	BOX 4	BOX 5
Filter Num Series & Siz	iber ie of	Element Part Number	Seal Material	Porting
Elem	ents N	NZX3 = NN size 3 μ high collapse media	Omit = Buna N	05 = D05
NOF30 1	NN	ZX10 = NN size 10 μ high collapse media	V = Viton®	subpl
	NN	ZX25 = NN size 25 μ high collapse media	W = Buna N	patte
			·	
BOX 6		BOX 7		
Options		Dirt Alarm [®] Options		
Omit = None	None	Omit = None		
	Visual	D5 = Visual pop-up		
	Visual with	D8 = Visual w/ thermal lockout		
	Thermal			
	LOCKOUL	MS5 = Electrical w/ 12 in 18 gau	ne 4-conductor cable	
		MS5LC = Low current MS5	<u> </u>	
		MS10 = Electrical w/ DIN connecto	r (male end only)	
		MS10LC = LOW CURRENT MS10 MS11 - Electrical w/ 12 ft /1-condu	ictor wire	
	Electrical	MS12 = Electrical W/ 5 pin Brad Har	rison connector (male e	end only)
		MS12LC = Low current MS12		
		MS16 = Electrical w/ weather-pack	ed sealed connector	
		MS17LC = Electrical w/4 pin Brad Ha	rrison male connector	
		MS5T = MS5 (see above) w/ therm	al lockout	
		MS5LCT = Low current MS5T		
	Electrical	MS10I = MS10 (see above) w/ then MS10I CT = Low current MS10T	mai lockout	
	with	MS12T = MS12 (see above) w/ then	mal lockout	
	Lockout	MS12LCT = Low current MS12T		
		MS16T = MS16 (see above) w/ then	mal lockout	
		MS17LCT = Low current MS17T		
		MS13DC = Supplied w/ threaded con	nector & light	
		MS14DC = Supplied w/ 5 pin Brad Harr	ison connector & light (r	nale end)
	Electrical Visual	MS13DCI = MS13 (see above), direct of MS13DCI CT = Low current MS13DCT	current, w/ thermal lock	out
	with	MS14DCT = MS14 (see above), direct of	urrent, w/ thermal lock	out
	inermai	MC14DCLCT I and a month MC14DCT	····	

NOTES:

- Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4.
- Box 4. For options V and W, all aluminum parts are anodized. Viton[®] is a registered trademark of DuPont Dow Elastomers.

High-Pressure Servo Sandwich Filter NOF50

		15 apm	NF30
		57 L/min	NFS30
	Features and Benefits	5000 pci	YF30
2. 42	to eliminate downtime and protect critical applications from contamination-related servo valve failures	345 bar	CFX30
e -c,	 Sandwich style 4-bolt design – no additional lines to connect 		PLD CF40
	 Designed to protect these commonly installed servo valves: Moog 761 & 62, Vickers SM4-20 and Parker BD15 		DF40
	 High collapse elements, rated to 3000 psi (210 bar) 		PF40
	Easily applied to new and existing systems		RFS50
	 All steel construction 		RF60
			CF60
			CTF60
10.0			VF60
			LW60
Model No. of filter in photograph i			KF30
model no. of filler in photograph i			KF50
			TE50
			KGEO
			KC50
Flow Rating:	Up to 15 gpm (57 L/min) for 150 SUS (32 cSt) fluids	Filter	MKF50
Max. Operating Pressure:	5000 psi (345 bar)	Housing	MKC50
Min. Yield Pressure:	15,000 psi (1034 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure:	4000 psi (276 bar) per NFPA T2-6.1 R2-2005		KC65
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		MKC65
Non-Bypass Model:	Standard with high collapse elements		
Porting Head: Element Case:	Steel Steel		H260
Weight of NOF50-1SV:	17 lb. (7.7 kg)		IVITIOU
Element Change Clearance:	4.50" (115 mm)		KFH50

Type Fluid	Appropriate Schroeder Media		Fluid NOF30-05
Petroleum Based Fluids	All Z-Media [®] (synthetic)		Compatibility
High Water Content	3, 10 and 25 μ Z-Media® (synthetic)		NOF-30-760
Invert Emulsions	10 and 25 μ Z-Media® (synthetic)		FOF60-03
Water Glycols	3, 10 and 25 μ Z-Media® (synthetic)		NMF30
			RMF60
			14-CRZX10
		SCHROEDER INDUSTRIES 141	20-CRZX10

NOF50

High-Pressure Servo Sandwich Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
SVZX3	<1.0	<1.0	<2.0	4.7	5.8
SVZX10	7.4	8.2	10.0	8.0	9.7

Element	DHC (gm)		
SVZX3	11*		
SVZX10	13*		*Deced on 100 mai
Element Collapse Rating:		3000 psid (210 bar) for high collapse (ZX) versions	terminal pressure
	Flow Direction:	Outside In	
Element Nominal Dimensions:		1.75" (45 mm) O.D. x 8.0" (200 mm) long	

High-Pressure Servo Sandwich Filter

NOF50

$\Delta \mathbf{P}_{\mathsf{housing}}$

NOF50 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

60 psi indicator should not be used beyond 7gpm 90 psi Indicator should not be used beyond 10 gpm

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 5 gpm (19 L/min) for NOF501SVZX10760D5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 5 gpm. In this case, $\Delta P_{\text{housing}}$ is 15 psi (1 bar) on the graph for the NOF30 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 5 gpm. In this case, $\Delta P_{element}$ is 3 psi (.21 bar) according to the graph for the SVZX10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * V_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 15 \text{ psi} [1 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3 \text{ psi} [.21 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 △**P**_{filter} = 15 psi + (3 psi * 1.1) = 18.3 psi <u>OR</u> △**P**_{filter} = 1 bar + (.21 bar * 1.1) = 1.2 bar

NOF50 High-Pressure Servo Sandwich Filter

Filter Model Number	How to Bui BOX 1 BO NOF50-	ild a Valid	Model Number for a Schroe	der NOF50: x 7 BOX 8	
Selection	Example: NOTE	E: One option	per box		
	NOF50-	I - 3VZ		- D5 = NOF:	5015728376005
	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
	Filter Series	Number of	Element Part Number	Seal Material	Porting
		1	SVZX3 = S size 3 µ high collapse med	lia Omit = Buna N	760 = Moog servo
	NOF50		$SVZX10 = S size 10 \mu high collapse me$	edia V = Viton®	configuration
			SVZX25 = S size 25 μ high collapse me	edia	761 = Moog servo
	BOX 6		BOX 7		configuration
	Option	IS	Optional Test Point		
	Omit = 60	0 psid	Omit = None		
	90 = 90	0 psid	U = Series 1215 % "-20 UNF Schroeder Check Test Point installation		
			BOX 8		
			Dirt Alarm [®] Options		
	None	Or	nit = None		
	Visual		D5 = Visual pop-up		
	Visual with Thermal Lockout	l	D8 = Visual w/ thermal lockout		
NOTES: Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4. Box 4. Viton® is a registered trademark of DuPont Dow Elastomers.	Electrical Electrical with Thermal Lockout	M MS5 MS10 MS12 MS12 MS16 MS17 MS5L MS10L MS10L MS10L MS10L MS12L MS16L	S5 = Electrical w/ 12 in. 18 gauge 4-con LC = Low current MS 10 = Electrical w/ DIN connector (male e LC = Low current MS10 11 = Electrical w/ 12 ft. 4-conductor win 12 = Electrical w/ 12 ft. 4-conductor win 12 = Electrical w/ 5 pin Brad Harrison co LC = Low current MS12 16 = Electrical w/ weather-packed sealed LC = Low current MS16 LC = Electrical w/ 4 pin Brad Harrison mail ST = MS5 (see above) w/ thermal lockod CT = Low current MS5T OT = MS10 (see above) w/ thermal lockod CT = Low current MS10T 2T = MS12 (see above) w/ thermal lockod CT = Low current MS10T 2T = MS12 (see above) w/ thermal lockod CT = Low current MS12T 6T = MS16 (see above) w/ thermal lockod CT = Low current MS12T 6T = MS16 (see above) w/ thermal lockod CT = Low current MS12T 6T = MS16 (see above) w/ thermal lockod CT = Low current MS16T CT = Low current MS16T CT = Low current MS16T	ductor cable ind only) e nnector (male end only) d connector ale connector ut but but	
Bow Elastomers. Box 6. Please note indicator flow limitations on pressure drop graph, previous page.	Electrical Visual Electrical Visual with Thermal Lockout	MS MS MS13D MS13DCL MS14D MS14DCL	 13 = Supplied w/ threaded connector & 14 = Supplied w/ 5 pin Brad Harrison col CT = MS13 (see above), direct current, v CT = Low current MS13DCT CT = MS14 (see above), direct current, v CT = Low current MS14DCT 	light nnector & light (male end) v/ thermal lockout v/ thermal lockout	

144 SCHROEDER INDUSTRIES
High-Pressure Sandwich Filter FOF60-30

	<section-header><section-header><section-header><list-item><list-item></list-item></list-item></section-header></section-header></section-header>	12 gpm <u>45 L/min</u> 6000 psi 415 bar	NF30 NFS30 YF30 CFX30 PLD CF40 DF40 PF40 RF550 RF60 CF60 CF60 VF60 LW60
Madal Na of filter is shot much is FO			KF30
Model No. of filter in photograph is FC		•	KF50
			тгго
			150
			KC50
Flow Rating:	Up to 12 gpm (45 L/min) for 150 SUS (32 cSt) fluids	Filter	MKF50
Max. Operating Pressure:	6000 psi (415 bar)	Housing	МКС50
Min. Yield Pressure:	26,000 psi (1790 bar), per NFPA T2.6.1	specifications	КС65
Rated Fatigue Pressure:	4000 psi (275 bar), per NFPA 12.6.1		NCOJ
Non-Bypass Model:	Available with high collapse elements		MKC65
Porting Head:	Steel		HS60
Element Case:	Steel		MHS60
Element Change Clearance:	4.50" (115 mm)		KFH50
		•	1 (60
			LCOU
			LC35
			LC50
Type Fluid Ap	propriate Schroeder Media	Fluid	NOF30-05
Petroleum Based Fluids All	Z-Media® (synthetic)	Compatibility	OF-50-760
High Water Content 3 a	nd TO µ z-media" (synthetic)		FOF60-03
			RMF60
	•	1	4-CRZX10
	SCHROEDER INDUSTRIES 14	5 2	20-CRZX10

FOF60-30 High-Pressure Sandwich Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

	Filtration Ra Using automated p	tio Per ISO 4572/NF article counter (APC) calib	Filtration Ratio	o per ISO 16889 Ited per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
FZX3	<1.0	<1.0	<2.0	4.7	5.8
FZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)		
FZX3	3*		
FZX10	5.1		
	Element Collapse Rating:	3000 psid (210 bar) for high collapse (ZX) versions	
	Flow Direction:	Outside In	
Elem	ent Nominal Dimensions:	1.25" (30 mm) O.D. x 3.25" (85 mm) long	*Based on 100 psi terminal pressure

High-Pressure Sandwich Filter FOF60-30

5.00

3.00

$\Delta \mathbf{P}_{\mathsf{housing}}$

FOF60-03 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \mathbf{P}_{element}$

Pressure Drop [PSID]

FXZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM] 0 10 20 30 40 50 70.00 60.00 50.00

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 5 gpm (19 L/min) for FOF601FZX1003BD5 using 160 SUS (34 cSt) fluid.

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathsf{V}_f)$

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 5 gpm. In this case, $\Delta P_{\text{housing}}$ is 60 psi (4.1 bar) on the graph for the FOF60 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 5 gpm. In this case, $\Delta P_{element}$ is 22 psi (1.5 bar) according to the graph for the FZX10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * V_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

Exercise:

 $\Delta \mathbf{P}_{\text{housing}} = 60 \text{ psi} [4.1 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 22 \text{ psi} [1.5 \text{ bar}]$

 $V_f = 160 \text{ SUS} (34 \text{ cSt}) / 150 \text{ SUS} (32 \text{ cSt}) = 1.1$

△**P**_{filter} = 60 psi + (22 psi * 1.1) = 64.2 psi OR

 $\Delta \mathbf{P}_{filter} = 4.1 \text{ bar} + (1.5 \text{ bar} * 1.1) = 5.8 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

FOF60-30 **High-Pressure Sandwich Filter**

	Filter Model Number Selection	How to Build a Valie BOX 1 BOX 2 BO FOF60	mber for a Schroeder F BOX 5 BOX 6 BOX 7 BOX 5 BOX 6 BOX 7 03 A D5 =	OF60-03: FOF601FZX303	AD5	
		Filter Of	Elei	ment Part Number	Seal Material	Porting
		FOF60	FZX3 = F FZX10 = F	size 3 μ high collapse media size 10 μ high collapse media	Omit = Buna N V = Viton®	03 = D03 subplate pattern
		BOX 6 Filter Bowl Location		BOX : Dirt Alarm [®]	7 Options	
		A = Bowl adjacent	None	Omit = None		
		to Port "A"	Visual	D5 = Visual pop-up		
		B = Bowl adjacent to Port "B" (Refer to drawing on	Visual with Thermal Lockout	D8 = Visual w/ therm	al lockout	
		page 140.)	Electrical	MS5 = Electrical w/ 12 i MS5LC = Low current MS MS10 = Electrical w/ DIN MS10LC = Low current MS MS11 = Electrical w/ 12 · MS12 = Electrical w/ 5 pi MS12LC = Low current MS MS16 = Electrical w/ wei MS16LC = Low current MS MS16LC = Low current MS MS17LC = Electrical w/ 4 pi MS5T = MS5 (see above MS5LCT = Low current MS	in. 18 gauge 4-conduction connector (male end 10 ft. 4-conductor wire in Brad Harrison conne 12 ather-packed sealed co 16 in Brad Harrison male) w/ thermal lockout 5T	ctor cable only) ector (male end only) onnector connector
NOTES Box 3.	: Replacement element		Electrical with Thermal Lockout	MS10T = MS10 (see abov MS10LCT = Low current MS MS12T = MS12 (see abov MS12LCT = Low current MS MS16T = MS16 (see abov MS16LCT = Low current MS	e) w/ thermal lockout 10T e) w/ thermal lockout 12T e) w/ thermal lockout 16T 17T	
	part numbers are identical to contents of Boxes 3 and 4.		Electrical Visual	MS13 = Supplied w/ three	eaded connector & light	ht tor & light (male end)
Box 4. Box 7.	Viton [®] is a registered trademark of DuPont Dow Elastomers. Dirt Alarm [®] cannot be used beyond 4 anm		Electrical Visual with Thermal Lockout	MS13DCT = MS13 (see abov MS13DCLCT = Low current MS MS14DCT = MS14 (see abov MS14DCI CT = Low current MS	e), direct current, w/ t 13DCT e), direct current, w/ t 14DCT	hermal lockout
	Filters ordered without a Dirt Alarm do not include a machined indicator port. Therefore, one cannot be added at a later date.		L			

Manifold Filter Kit NMF30

	Footures and Popofits	20 gpm 75 <i>L/min</i>	NF30 NFS30
	 Allows for effective filtration 	3000 psi	YF30
	in customer's manifold	210 bar	CFX30
			PLD
			CF40
			DF40
			PF40
			RFS50
			RF60
Model No. of filter in photograph is NMI	F301NNZX10.		CEGO
Flow Rating:	Up to 20 gpm (75 L/min) for 150 SUS (32 cSt) fluids	Filter	CFOU
Max. Operating Pressure:	3000 psi (210 bar)*	Housing	CIF60
Min. Yield Pressure:	10,000 psi (690 bar)*, per NFPA T2.6.1	Specifications	VF60
Temp, Range:	-20°F to 225°F (-29°C to 107°C)		LW60
Element Case:	Aluminum		KF30
Element Change Clearance:	4.50" (115 mm)		KF50
*Only with manifold material propertie	equivalent to aluminum 6061-T651.		TF50
Type Fluid		Fluid	VCE0
Petroleum Based Fluids		Compatibility	KC50
nigh water content			MKF50
	UUTLET		MKC50
			KC65
BUSHING	MANIFOLD		MKC65
\sum			HS60
			MHS60
V			KFH50
			1 C 60
BACKUP RING -	1 (208)		
			LC35
			LC50
BOWL			NOF30-05
		NC)F-50-760
			FOF60-03
			NMF30
			RMF60
Metric dimensions in (). Dimensions shown are inches (millime	ters) for general information and overall envelope size only.	14	4-CRZX10
For complete dimensions please conta		20	0 CP7V10

Element Performance		Filtration Rat Using automated p	io Per ISO	4572/NFPA T3.10.8.8 r (APC) calibrated per ISO 4402	Filtration Ratio	Dirt Holding Capacity	
Information & Dirt	Element	$\beta_x \ge 75$	$\beta_x \ge 1$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$	gm
Holding Capacity	NNZX3	<1.0	<1.0	<2.0	4.7	5.8	11*
	NNZX10	7.4	8.2	10.0	8.0	9.8	13*
	Element	D	HC (gm)				
	NNZX10		13*				
	Elemen	ement Collapse Flow Dir t Nominal Dime	Rating: rection: ensions:	3000 psid (210 bar) Outside In 1.75" (45 mm) O.D. x 8.	00" (200 mm) lon	g	

Manifold Filter Kit RMF60

Model No. of filter in photograph is RM	F608RZX10.	30 gpm <u>115 L/min</u> 6000 psi 415 bar	NF30 NF530 YF30 CFX30 PLD CF40 DF40 PF40 RF550 RF60 CF60
Flow Rating:	Up to 30 apm (115 L/min) for 150 SUS (32 cSt) fluids	Filter	CTF60
Max. Operating Pressure:	6000 psi (415 bar)*	Housing	VE60
Min. Yield Pressure:	18,000 psi (1240 bar)*	Specifications	
Rated Fatigue Pressure:	2300 psi (159 bar)* -20°E to 225°E (-29°C to 107°C)		LVV60
Element Case:	Steel		KF30
Element Change Clearance:	3.0" (75 mm)		KF50
*Only with manifold material propertie	es equivalent to AISI 1018 C.R.S.		TF50
Type Fluid		Fluid	КС50
Petroleum Based Fluids		Compatibility	MKF50
High Water Content			
	NOUTLET		WIKC50
			KC65
			MKC65
			HS60
			MHS60
			KFH50
			1.060
			LCOU
			LC35
			LC50
		N	OF30-05
BOW	α ^{2.88} / ₍₇₃₎ α ^{2.88} / ₍₇₃₎	NO	F-50-760
		F	OF60-03
	DRAIN		NMF30
			DMECO
Metric dimensions in ().			RIVIF60
Dimensions shown are inches (milli For complete dimensions please co	meters) for general information and overall envelope size only. ntact Schroeder Industries to request a certified print.	14	-CRZX10
· · ·	SCHROEDER INDUSTRIES 15	1 20	-CRZX10

Manifold Filter Kit

Element Performance		Filtration Rat Using automated pa	io Per ISO 457 article counter (APC	2/NFPA T3.10.8.8) calibrated per ISO 4402	Filtration F Using APC ca	Ratio per ISO 16889 alibrated per ISO 11171
Information & Dirt	Element	β _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
Holding Capacity	NNZX3	<1.0	<1.0	<2.0	4.7	5.8
	NNZX10	7.4	8.2	10.0	8.0	9.8
	Element	Dł	IC (gm)			
	Elemen	ement Collapse Flow Dir It Nominal Dime	Rating: 300 ection: Out nsions: 2.18	0 psid (210 bar) side In 3" (55mm) O.D. x 8.1	5" (206 mm) long	

Cartridge Element 14-CRZX10

	Fea •	atures and Benefits (14-CRZ Cartridge filters are designed to b	2X10) e mounted directly		6 gpm 23 <i>L/min</i>	NF30 NFS30
	i •	In the manifold Withstands high pressure surges	3000 psi (210 har)		3000 psi	YF30
	_	collapse rating			210 bar	CFX30
						PLD
	Max. Operating Pressure	: 3000 psi (210 bar)			Filter	CF40
-	Temp. Range	-20°F to 225°F (-29°C to 107°C	·)		Housing Specifications	DF40
El	ement Change Clearance	: 14-CRZX10: 4.50° (115 mm)			specifications	PF40
D	Type Fluid	Appropriate Schroeder Media			Fluid	RFS50
Pe	High Water Content	3 and 10 µ Z-Media [®] (synthetic)			compatibility	RF60
		2 43 [61 7]			Element	CF60
	O-RING BOSS PLUG (OPTIONAL) P/N A-601-14		A CCHROEDER	、	Performance Information &	CTF60
				DATE CODE	Dirt Holding	VF60
					capacity	LW60
		282 [716]	74-CRZX10			KF30
		2.76 [70.1] 3.20 [81.3]	A a 1.081 [27.46	1		KF50
			▲ 1.079 27.41	¹ ►		TF50
Metric dime	nsions in (). shown are inches (millimet	ers) for general information and o	verall envelope size only			КС50
For complete	e dimensions please contac	t Schroeder Industries to request a	certified print.			MKF50
	Filtration Ratio Pe Using automated particle o	r ISO 4572/NFPA T3.10.8.8 :ounter (APC) calibrated per ISO 4402	Filtration Ratio per Using APC calibrated pe	ISO 16889 er ISO 11171		МКС50
Element	$\beta_x \ge 75$	$\beta_x \ge 100$ $\beta_x \ge 200$	$\beta_x(c) \ge 200$ f	$3_x(c) \ge 1000$		KC65
Contact facto	pry for other media options	5.2 10.0 5.	0.0	5.0		MKC65
Element	DHC (gm)					HS60
						MHS60
Eler	ment Collapse Rating:	3000 psid (210 bar) for high collaps	e (ZX) versions			KFH50
	Flow Direction:	Outside In				
Element	Nominal Dimensions:					1.025
How to Bu	ild a Valid Model Nu	mber for a Schroeder 14-C	RZX10:		Filter	
14-CRZX1	10 -				Number	
Example: NO7 BOX 1	E: One option per box BOX 2				Selection	NOF30-05
14-CRZX1	10 – P = 14-CRZ>	(10P	NOTES:		N	UF-50-760
BOX 1	BOX 2		Box 2: Replace part nui combini	ment element mbers are a		FOF60-03
Filter Series	Number of Element	s	2, 3, and 8RZX3V	d 4. Example:		NMF30
14-CRZX10	Omit = No Plug P = Plug	J	Box 4. Viton [®] tradem	is a registered ark of DuPont	4	RMF60 4-CRZX10
					2	20-CRZX10

20-CRZX10 Cartridge Element

Section 4 Medium Pressure Filters Selection Guide

		Pressure psi (bar)	Flow gpm (L/min)	Element Length/Size	Page
	Top-Ported Medium Pre	ssure Return Li	ne Filters		
	GH	725 (50)	35 (130)	6G, 9G	155
	RLT	1000 (69)	70 (265)	9V, 14V	161
psi	KF5	500 (35)	100 (380)	К	165
1500	SRLT	1400 (100)	25 (100)	6R	169
to 1	Base-Ported Medium Pre	essure Filters			
dn)	К9	900 (60)	100 (380)	К, КК, 27К	173
ters	2K9	900 (60)	100 (380)	К, КК, 27К	177
e Fil	3K9	900 (60)	100 (380)	К, КК, 27К	177
ssur	QF5	500 (35)	300 (1135)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	181
Pre	QF5i	500 (35)	120 (454)	16QCLQF, 39QCLQF	185
ium	3QF5	500 (35)	300 (1135)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	189
Med	QFD5	500 (35)	350 (1325)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	193
	QF15	1500 (100)	450 (1700)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	197
	QLF15	1500 (100)	500 (1900)	16Q, 16QCLQF, 16QPML, 39Q, 39QCLQF, 39QPML	201
	SSQLF15	1500 (100)	500 (1900)	16Q, 16QPML, 39Q, 39QPML	205

F

Features and Benefits

- Variety of differential indicator port options (visual and electrical indicators)
- Leak proof bar indicator, rugged visual indicator with protective aluminum shield is standard
- Proprietary bowl to element seal minimizes potential leakage point by use of one seal on element
- Cartridge style element (non spin-on) that is proprietary and patented with integrated bypass valve features
- Wide variety of media grades that can be application specific
- Light weight bowl design with replaceable element minimizes landfill waste
- Mounting interchangeability with competitor's filter head
- The inherent capability to pre-print the perforated outer element wrap provides a branding solution that helps to capture after-market replacement element sales
- Same day shipment model available (GH6 & GH9)

Initiative Part of Schroeder Industries Energy Savings Initiative

Model No. of filters in photograph are GH6, GH9, GH11, and GH14.

						Q. 95
	GH6	GH9	GH11	GH14	Filter	
Flow Rating: (150 SUS (32 cSt) fluids)	Up to 35 gpm (130 L/min)	Up to 35 gpm (130 L/min)	Up to 87 gpm (325 L/min)	Up to 112 gpm (425 L/min)	Housing Specifications	QF15
Max. Operating Pressure:	725 psi (50 bar)	725 psi (50 bar)	500 psi (35 bar)	500 psi (35 bar)		QLF15
Min. Yield Pressure:	2600 psi (179 bar)	2600 psi (179 bar)	2700 psi (186 bar)	2700 psi (186 bar)		
Rated Fatigue Pressure:	725 psi (50 bar)	725 psi (50 bar)	500 psi (35 bar)	500 psi (35 bar)		SSOLF15
Temp. Range:	-20°F to 225°F (-29°C to 107°C)	-20°F to 225°F (-29°C to 107°C)	-22°F to 212°F (-30°C to 100°C)	-22°F to 212°F (-30°C to 100°C)		
Bypass Setting:	25 psi (1.7 bar) standard 50 psi (3.5 bar) optional Non-Bypassing	25 psi (1.7 bar) standard 50 psi (3.5 bar) optional Non-Bypassing	43 psi (3 bar) standard 87 psi (6 bar) optional Non-Bypassing	43 psi (3 bar) standard 87 psi (6 bar) optional Non-Bypassing		
Porting Head:	Cast Aluminum	Cast Aluminum	Cast Aluminum	Cast Aluminum		
Element Case:	Aluminum	Aluminum	Aluminum	Aluminum		
Weight:	3.2 lbs (1.4 kg)	3.8 lbs (1.7 kg)	8.0 lbs (3.6 kg)	10.0 lbs (4.5 kg)		
Element Change Clearance:	2" (50 mm)	2" (50 mm)	7.4" (187 mm)	7.4" (187 mm)		

Type Fluid	Appropriate Schroeder Media
etroleum Based Fluids	All media (synthetic) and H media (Hydraspin)

Fluid Compatibility

G

35-112 gpm <u>130-425 L/min</u>_{RLT}

500-725 psi 35-50 bar

GH

KF5

К9

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

GH

		Filtration Ra	atio Per ISO 4572/ particle counter (APC) ca	NFPA T3.10.8.8 alibrated per ISO 4402	Filtration Ratio Using APC calibrate	per ISO 16889 ed per ISO 11171
Media Type	Element	β _x ≥ 75	$\beta_X \ge 100$	$\beta_X \ge 200$	β _χ (c) ≥ 200	β _χ (c) ≥ 1000
Resin Impregnated Cellulose Media	6G3/9G3 6G10/9G10	6.8 15.5	7.5 16.2	10.0 18.0	N/A N/A	N/A N/A
Traditional Excellement® Z-Media®	6GZ3 / 9GZ3 6GZ5 / 9GZ5 6GZ10 / 9GZ10 6GZ25 / 9GZ25	<1.0 2.5 7.4 18.0	<1.0 3.0 8.2 20.0	<2.0 4.0 10.0 22.5	<4.0 4.8 8.0 19.0	4.8 6.3 10.0 24.0
Hydraspin H Media, designed to specifically reduce filter pressure drop	6GH10/ 9GH10	N/A	N/A	N/A	10.6	13.0
Media Type	Element	DH	IC (gm)			
Resin Impregnated Cellulose Media	6G3/9G3 6G10/9G10		18/30 15/25			
Traditional Excellement® Z-Media®	6GZ3 / 9GZ3 6GZ5 / 9GZ5 6GZ10 / 9GZ10 6GZ25 / 9GZ25	2	30/51 4.5/42 31/49 34/58			
Hydraspin H Media, designed to specifically reduce filter pressure drop	6GH10/9GH10		12/20			
Element Collapse Rating:250 psid (17.2 bar) for standard and non-bypassing elementsFlow Direction:Outside InElement Nominal6G: 3.25" (82 mm) O.D. x 5.7" (144 mm) longDimensions:9G: 3.25" (82 mm) O.D. x 9.0" (229 mm) long						

Filtration Ratio per ISO 16889 Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402 Using APC calibrated per ISO 11171 $\beta_x(c) \ge$ Media Type $\beta_x \ge 100$ $\beta_x(c) \ge 200$ 1000 Element $\beta_x \ge 75$ $\beta_x \ge 200$ 11GZ3/14GZ3 Traditional 11GZ5/14GZ5 Excellement[®] **Consult Factory Consult Factory** 11GZ10/14GZ10 Z-Media® 11GZ25 /14GZ25 Media Type Element DHC (gm) 11GZ3/14GZ3 Traditional 11GZ5/14GZ5 Excellement[®] **Contact Factory** 11GZ10/14GZ10 Z-Media® 11GZ25/14GZ25

Element Collapse Rating: 290 psid (17.2 bar) for standard and non-bypassing elements

Flow Direction: Outside In

Element Nominal 11G: 3.25" (82 mm) O.D. x 5.7" (144 mm) long

Dimensions: 14G: 3.25" (82 mm) O.D. x 9.0" (229 mm) long

Element Performance **Information & Dirt Holding Capacity**

Pressure Drop Information (GH6 & GH9) Based on Flow Rate and Viscosity

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 15 gpm (57 L/min) for GH6GZ10S12L using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.5 psi (0.10 bar) on the graph for the GH housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 15 gpm. In this case, $\Delta P_{element}$ is 4 psi (0.27 bar) according to the graph for the 6GZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta \dot{\mathbf{P}}_{element} * \boldsymbol{v}_{f}$). The $\Delta \dot{\mathbf{P}}_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 1.5 \text{ psi} [0.10 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 4 \text{ psi} [0.27 \text{ bar}]$

 \mathbf{V}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta \mathbf{P}_{filter} = 1.5 \text{ psi} + (4 \text{ psi} * 1.1) = 5.9 \text{ psi}$ <u>OR</u>

 $\Delta \mathbf{P}_{\text{filter}} = 0.10 \text{ bar} + (0.27 \text{ bar} * 1.1) = 0.40 \text{ bar}$

Note:

If your element is not graphed, you can obtain your $\Delta \mathbf{\tilde{P}}_{element}$ by multiplying the flow rate by the following: $\Delta \mathbf{P}_{element}$ Factors x **VP** (Visc. Factor) ΔP_{element} Factors @ 150 SUS (32 cSt)

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
6G3	0.60	9G3	0.35
6G10	0.40	9G10	0.24
6G25	0.08	9G25	0.05
6GH10	C/F	9GH10	C/F
6GZ3	0.60	9GZ3	0.35
6GZ25	C/F	9GZ25	C/F

GH

Pressure

$\Delta \mathbf{P}_{\mathsf{housing}}$

GH $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Drop Information (GH11 & GH14) Based on Flow Rate and Viscosity

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 60 gpm (227.4 L/min) for GH11GZ10S24VA using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 60 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (0.21 bar) on the graph for the GH housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 60 gpm. In this case, $\Delta P_{element}$ is 5 psi (0.34 bar) according to the graph for the 11GZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \mathbf{V}_{f}$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi } [0.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 5 \text{ psi } [0.34 \text{ bar}]$

V $_{f}$ = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 △**P** $_{filter}$ = 3 psi + (5 psi * 1.1) = 8.5 psi OR

 $\Delta \mathbf{P}_{\text{filter}} = 0.21 \text{ bar} + (0.34 \text{ bar} * 1.1) = 0.58 \text{ bar}$

Note:

If your element is not graphed, you can obtain your ΔP_{element} by multiplying the flow rate by the following: ΔP_{element} Factors x VP (Visc Factor) ΔP_{element} Factors @ 150 SUS (32 cSt)

Ele.	$\triangle \mathbf{P}$
11GZ3	0.21
11GZ25	0.06
14GZ3	0.14
14GZ25	0.04

0

Features and Benefits	70 gpm <u>265 L/min</u>	GH RLT
 Durable, compact design 	1000 psi	
Quick and easy cartridge element changeouts	69 bar	KF5
Available in 9" and 14" element lengths		
Lightweight at 8 pounds		CDIT
 Offered in pipe, SAE straight thread, flange and ISO 228 porting 		SKLI
 Available with NPTF inlet and outlet female test ports 		К9
 Various Dirt Alarm[®] options 		
Same day shipment model available		2K9
		3K9
		QF5
		QF5i
5.		3QF5
		QFD5
L/min) for 150 SUS (32 cSt) fluids for P20, S20, & B20 portin	g 📕 Filter	

Model No. of filter in photograph is RLT9VZ10P2

Flow Rating:	Up to 70 gpm (265 L/min) for 150 SUS (32 cSt) fluids for P20, S20, & B20 porting Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids for P16, S16, F16, F20 & B16 porting	Filter Housing Specifications	QF15
Max. Operating Pressure:	1000 psi (69 bar)	specifications	
Min. Yield Pressure:	4200 psi (290 bar) , per NFPA T2.6.1		QLF15
Rated Fatigue Pressure:	415 psi (29 bar), per NFPA T2.6.1-R1-2005		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		SSOLF15
Bypass Setting:	Cracking: 40 psi (2.8 bar) for all porting Full Flow: 57 psi (3.9 bar) for P20 & S20 porting Full Flow: 75 psi (5.2 bar) for P16, S16, F16 & F20 porting		55 42. 15
Porting Head:	Aluminum		
Element Case:	Aluminum		
Weight of RLT-9V:	6.7 lbs. (3.0 kg)		
Weight of RLT-14V:	8.0 lbs. (3.6 kg)		
Element Change Clearance:	9V & 14V: 2.75" (70 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose) and Z-Media® (synthetic)	Compatibility
High Water Content	All Z-Media® (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media [®] (synthetic)	
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation	
Skydrol®	3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)	

RLT

Medium Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio Using APC calibrat	per ISO 16889 red per ISO 11171
Element	β _X ≥ 75	β _χ ≥ 100	β _X ≥ 200	β _χ (c) ≥ 200	β _χ (c) ≥ 1000
9VZ1/14VZ1	<1.0	<1.0	<1.0	<4.0	4.2
9VZ3/14VZ3	<1.0	<1.0	<2.0	<4.0	4.8
9VZ5/14VZ5	2.5	3.0	4.0	4.8	6.3
9VZ10/14VZ10	7.4	8.2	10.0	8.0	10.0
9VZ25/14VZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	
9VZ1	55	14VZ1	102	
9VZ3	57	14VZ3	105	
9VZ5	62	14VZ5	115	
9VZ10	52	14VZ10	104	
9VZ25	48	14VZ25	94	

Element Collapse Rating: 1

150 psid (10 bar) 500 psid (34.5 bar) for hydrostatic high collapse (9V5Z and 14V5Z) version Outside In

Flow Direction: Element Nominal Dimensions:

9V: 3.0" (75 mm) O.D. x 9.5" (240 mm) long 14V: 3.0" (75 mm) O.D. x 14.5" (370 mm) long

$\Delta \mathbf{P}_{\text{housing}}$

RLT $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

R

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 40 gpm (151.6 L/min) for RLT9VZ10S20D5 using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 40 gpm. In this case, $\Delta P_{\text{housing}}$ is 4.5 psi (.31 bar) on the graph for the RLT housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 40 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 6 psi (.415 bar) according to the graph for the 9VZ10 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{v}_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 4.5 \text{ psi} [.31 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 4 \text{ psi} [.27 \text{ bar}]$

 $𝒱_f = 175 \text{ SUS } (37.2 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.2$ △ $𝑌_{\text{filter}} = 4.5 \text{ psi} + (4 \text{ psi} * 1.2) = 9.3 \text{ psi}$ OR

△P_{filter} = .31 bar + (.27 bar * 1.2) = .63 bar

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate } \mathbf{x} \ \Delta \mathbf{P}_{f} \ \text{Plug}$ this variable into the overall pressure drop equation. $\mathbf{Ele.} \ \Delta \mathbf{P} \ \mathbf{Ele.} \ \Delta \mathbf{P}$

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
9V3	0.32	14V3	0.19
9V10	0.24	14V10	0.15

Features and Benefits	100 gpm	GH
Meets HF4 automotive standard	<u>380 L/min</u>	RIT
 Offered in pipe, SAE straight thread, flange and ISO 228 porting 	500 psi	
 Available with NPTF inlet and outlet female test ports 	35 bar	KF5
 KFN5 non-bypass version with high collapse elements also available 		SRLT
 Various Dirt Alarm[®] options 		
 Allows consolidation of inventoried replacement elements by using K-size elements 		К9
 Also available with DirtCatcher[®] elements (KD & KKD) 		2K9
G Available with quality-protected GeoSeal [®] Elements (GKF5)		3K9
		QF5
		QF5i
		3QF5
		OED5

Model No. of filter in photograph is KF51KZ10SD5.

			()615
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	CLID
Max. Operating Pressure:	500 psi (35 bar)	Housing	
Min. Yield Pressure:	1500 psi (100 bar) , per NFPA T2.6.1	Specifications	QLF15
Rated Fatigue Pressure:	300 psi (35 bar), per NFPA T2.6.1-2005		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		SSOLF15
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 61 psi (4.2 bar)		
Porting Head:	Grey Cast Iron		
Element Case:	Steel		
Weight of KF5-1K:	23.2 lbs. (10.5 kg)		
Element Change Clearance:	2.0" (51 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] (synthetic), 3, 5 and 10 μ ASP [®] media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media® (synthetic), 10 μ ASP® media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media® (synthetic), 3, 5 and 10 μ ASP® media (synthetic)	
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation, 3, 5 and 10 μ ASP [®] media (synthetic)	
Skydrol®	3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals & stainless steel wire mesh in element, and light oil coating on housing exterior), 3, 5 and 10 μ ASP® media (synthetic)	

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Filtration Ratio per ISO 16889 Using automated particle counter (APC) calibrated per ISO 4402 Using APC calibrated per ISO 11171 Element $\beta_X \ge 100$ $\beta_X \ge 75$ $\beta_X \ge 200$ $\beta_{\chi}(c) \ge 200$ $\beta_{\chi}(c) \ge 1000$ <1.0 KZ1 <1.0 <1.0 <4.0 4.2 KZ3 <1.0 <1.0 <2.0 <4.0 4.8 KZ5 2.5 3.0 4.0 4.8 6.3 KZ10 7.4 8.2 10.0 8.0 10.0 18.0 20.0 22.5 24.0 KZ25 19.0 KZW1 N/A N/A N/A <4.0 <4.0 KZW3 N/A N/A 4.8 N/A 4.0 KZW5 N/A N/A N/A 5.1 6.4 **KZW10** N/A N/A N/A 6.9 8.6 KZW25 N/A N/A N/A 15.4 18.5

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KZW1	61	KDZ1	89
KZ3/KAS3	115	KZW3	64	KDZ3	71
KZ5/KAS5	119	KZW5	63	KDZ5	100
KZ10/KAS10	108	KZW10	67	KDZ10	80
KZ25	93	KZW25	79	KDZ25	81

Element Collapse Rating: Flow Direction: Element Nominal Dimensions:

150 psid (10 bar) for standard elements Outside In

3.9" (99 mm) O.D. x 9.0" (230 mm) long

Element Performance

Information & Dirt Holding Capacity

$\Delta \mathbf{P}_{\mathsf{housing}}$

KF5 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

KF

$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 50 gpm (189.5 L/min) for KF51KZ10S24D5 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the KF5 housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 50 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 2 psi (.14 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the **Viscosity Factor** (**V**_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \mathbf{v}_{f}$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 2 \text{ psi } [.14 \text{ bar}]$

 $𝒱_f = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$ △ $𝒫_{filter} = 3 \text{ psi} + (2 \text{ psi} * 1.3) = 5.6 \text{ psi}$ OR

 $\Delta P_{\text{filter}} = .21 \text{ bar} + (.14 \text{ bar} * 1.3) = .40 \text{ bar}$

Note: If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_{f}$. Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$
К3	0.25
K10	0.09
K25	0.02
KAS3	0.10
KAS5	0.08
KAS10	0.05
KDZ1	0.24
KDZ3	0.12
KDZ5	0.10
KDZ10	0.06
KDZ25	0.04
KZW1	0.43
KZW3	0.32
KZW5	0.28
KZW10	0.23
KZW25	0.14

Medium Pressure Filter SRLT

	 Features and Benefits Smaller, compact version of the RLT Quick and easy cartridge element changeouts Lightweight at 3 pounds Offered in pipe, SAE straight thread and ISO 228 porting Available with NPTF inlet and outlet female test ports Various Dirt Alarm[®] options Same day shipment model available 	25 gpm <u>100 L/min</u> 1400 psi 100 bar
Model No. of filter in photograph is SRLT6RZ1	0S12D5.	

OFD5

RLT

KF5

SRLT

K9

3K9

Flow Rating:	Up to 25 gpm (100 L/min) for 150 SUS (32 cSt) fluids	Filter	QF15
Max. Operating Pressure:	1400 psi (100 bar)	Housing	
Min. Yield Pressure:	4000 psi (276 bar), per NFPA T2.6.1	Specifications	OLF15
Rated Fatigue Pressure:	750 psi (52 bar) per NFPA T2.6.1-R1-2005		X
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		6601545
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 55 psi (3.8 bar)		SSQLF15
Porting Head:	Aluminum		
Element Case:	Aluminum		
Weight of SRLT-6R: Weight of SRLT-12R:	3.0 lbs. (1.4 kg) 4.5 lbs. (2 kg)		
Element Change Clearance:	2.75" (70 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose) and Z-Media® (synthetic)	Compatibility
High Water Content	All Z-Media® (synthetic)	
Invert Emulsions	10 and 25 µ Z-Media [®] (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media [®] (synthetic)	
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation	
Skydrol®	3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)	

SRLT Medium Pressure Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio Using APC calibrat	per ISO 16889 ted per ISO 11171
Element	β _X ≥ 75	β _X ≥ 100	β _X ≥ 200	β _X (c) ≥ 200	β _X (c) ≥ 1000
6RZ1	<1.0	<1.0	<1.0	<4.0	4.2
6RZ3	<1.0	<1.0	<2.0	<4.0	4.8
6RZ5	2.5	3.0	4.0	4.8	6.3
6RZ10	7.4	8.2	10.0	8.0	10.0
6RZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)
6RZ1	15	12RZ1	30
6RZ3	15	12RZ3	30
6RZ5	17	12RZ5	34
6RZ10	14	12RZ10	28
6RZ25	25	12RZ25	50

Element Collapse Rating:150 psid (10 bar)Flow Direction:Outside InElement Nominal Dimensions:2.0" (50 mm) O.D. x 6.0" (150 mm) long

Element Performance Information & Dirt Holding Capacity

$\Delta \mathbf{P}_{\mathsf{housing}}$

SRLT $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

SRI

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 15 gpm (57 L/min) for SRLT6RZ10S12D5 using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the SRLT housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 15 gpm. In this case, $\Delta P_{element}$ is 7 psi (.48 bar) according to the graph for the 6RZ10 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f}$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 5 \text{ psi} [.34 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7 \text{ psi} [.48 \text{ bar}]$

 $v_f = 100 \text{ SUS } (21.3 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .67$ $\Delta P_{\text{filter}} = 5 \text{ psi} + (7 \text{ psi} * .67) = 9.7 \text{ psi}$ <u>OR</u>

 $\Delta \mathbf{P}_{filter}$ = .34 bar + (.48 bar * .67) = .66 bar

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} =$ Flow Rate x ΔP_f Plug this variable into the overall pressure drop equation.			
Ele. ΔP			
6R3	0.45		

6R10	0.38

SRLT Medium Pressure Filter

Filter Model	How to Build a Valid BOX 1 BOX 2	d Model Number fo	or a Schroed	der SRLT: BOX 6 BOX 7	
Number	SRLT –		_	_	
Selection	Example: NOTE: One optior	per box			
Beleetion	BOX 1 BOX 2	BOX 3 BOX 4	BOX 5	BOX 6 BOX 7	
	SRLT – 6	– RZ10 – –	S12 -	– D5	= SRLT6RZ10S12D5
Highlighted product eligible for	BOX 1 BOX 2		BO	X 3	
QuickDelivery	Filter Length Series Element	of (in)	Element Size	e and Media	
	SRLT (requires RZ elements only) 6 12 SRLTN (Non-bypassing requires R5Z elements only)	RZ1 = R size 1 µ RZ3 = R size 3 µ RZ5 = R size 5 µ RZ10 = R size 1 RZ25 = R size 2 RW = R size W R5Z1 = R size 1 R5Z3 = R size 3 R5Z5 = R size 5 R5Z10 = R size R5Z25 = R size	J Excellement [®] J Excellement [®] J Excellement [®] 5 μ Excellement [®] 5 μ Excellement [®] μ Excellement [®] μ Excellement [®] μ Excellement [®] 10 μ Excellement [®] 25 μ Excellement [®]	Z-Media [®] (synthetic) Z-Media [®] (synthetic) Z-Media [®] (synthetic) t [®] Z-Media [®] (synthet t [®] Z-Media [®] (synthet tmoval) Z-Media [®] 500 psid Z-Media [®] 500 psid t [®] Z-Media [®] 500 psid t [®] Z-Media [®] 500 psid	ic) ic) collapse collapse collapse id collapse id collapse
				BOX	7
	BOX 4	BOX 5		Dirt Alarm [®]	Options
	Seal Material	Porting		Omit = None	
	Omit = Buna N	P12 = ³ / ₄ " NPTF	Visual	D5 = Visual	pop-up
	H = EPR V = Viton®	S12 = SAE-12 B12 = ISO 228 G-3/4 "	Visual with Thermal	D8 = Visual	w/ thermal lockout
	H.5 = Skydrol® Compatibility		Lockout	MS5 = Electri gauge 4 MS5LC = Low c = Electri	cal w/ 12 in. 18 -conductor cable urrent MS5 cal.w/ DIN connector
	BOX 6 Additional Options Omit = 40 psi bypass		Floctrical	MS10 = Electri (male en MS10LC = Low c MS11 = Electri 4-condu	d only) urrent MS10 cal w/ 12 ft. ictor wire
	L = Two ½" NPTF inlet and outlet female test		Electrical	MS12 = Electri Harrisor MS12LC = Low c MS16 = Electri packed	cal w/ 5 pin Brad connector (male end only) urrent MS12 cal w/ weather sealed connector
	ports 30 = 30 psi bypass			MS16LC = Low c $MS17LC = Electric$	urrent MS16 cal w/ 4 pin Brad
NOTES:	50 = 50 psi bypass			Harrisor MS5T = MS5 (:	see above) w/ thermal lockout
Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. <i>Example</i> : 6R3V	60 = 60 psi bypass setting		Electrical with	MS5LCT = Low c MS10T = MS10 MS10LCT = Low c	urrent MS5T (see above) w/ thermal lockout urrent MS10T
Box 3. E media elements are only available with Buna N seals.			Thermal Lockout	MS12T = MS12 MS12LCT = Low c	(see above) w/ thermal lockout urrent MS12T
Box 4. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton [®] is a registered trademark of DuPont Dow Elastomers. Skydrol [®] is a registered trademark of Solutia Inc.			Electrical Visual Electrical Visual with Thermal	MS16T = MS16 $MS16LCT = Low cc$ $MS17LCT = Low cc$ $MS13 = Supplic$ $MS14 = Supplic$ $MS13DCT = MS13$ $MS13DCLCT = Low cc$ $MS14DCT = MS14$	(see above) w/ thermal lockout urrent MS16T urrent MS17T ed w/ threaded connector & light ied w/ 5 pin Brad Harrison or & light (male end) (see above), direct current, w/ lockout urrent MS13DCT (see above), direct current,w/
Box 5. B porting option supplied with metric mounting holes.			Lockout	thermal MS14DCLCT = Low c	юской urrent MS14DCT

	Features and Benefits (K9)	100 gpm <u>380 L/min</u>	GH RLT
	 Extremely versatile multiple inlet and outlet ports; can be used alone or in series with another K9 	900 psi 60 bar	KF5
	 Top loading for easy access for element change-out Allows consolidation of inventoried replacement elements by using K-size elements 		SRLT
1	 Multiple inlet and outlet porting options reduce the need for additional adaptors on installation 		К9
	 Can be fitted with test ports for oil sampling 		
	 Small profile allows filter to be mounted in tight areas 		2K9
	 Various Dirt Alarm[®] options 		
	 Meets HF4 automotive standard 		3K9
100	<u>4</u> Part of Schroeder Industries Energy Savings Initiative		QF5
			QF5i
Model No. of filter in photograph is K91K2	25BP20NP20ND5C.		3QF5
			QFD5

Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	0515
Max. Operating Pressure:	900 psi (60 bar)	Housing	CLID
Min. Yield Pressure:	3200 psi (220 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure:	750 psi (52 bar) per NFPA T2.6.1-R1-2005		QLF15
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 80 psi (5.5 bar)	S	SQLF15
Porting Head & Cap:	Cast Aluminum		
Element Case:	Steel		
Weight of K9-1K:	19 lbs. (8.6 kg)		
Weight of K9-2K:	30 lbs. (13.6 kg)		
Weight of K9-3K:	41 lbs. (18.6 kg)		
Element Change Clearance:	8.50" (215 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] (synthetic), 3, 5 and 10 μ ASP [®] media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media® (synthetic), 10 μ ASP® media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media® (synthetic), 3, 5 and 10 μ ASP® media (synthetic)	
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation, 3, 5 and 10 μ ASP [®] media (synthetic)	
Skydrol®	3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior), 3, 5 and 10 μ ASP® Media (synthetic)	

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print. ÷.

	Filtration Ration States Filtration Ration	o Per ISO 4572/NI rticle counter (APC) cali	FPA T3.10.8.8 brated per ISO 4402	Filtration Ratio	o per ISO 16889 ated per ISO 11171
Element	β _X ≥ 75	β _X ≥ 100	$\beta_X \ge 200$	β _χ (c) ≥ 200	β _χ (c) ≥ 1000
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KAS3/KKZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KAS5/KKZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KAS10/KKZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5

Dirt Holding Capacity

Element	DHC (gm)								
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158

Element Collapse Rating: Flow Direction:

150 psid (10 bar) for standard elements

Element Nominal Dimensions:

Outside In 3.9" (99 mm) O.D. x 9.0" (230 mm) long K:

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Element Performance **Information & Dirt Holding Capacity**

K9 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle \mathbf{P}_{\mathsf{filter}} = \triangle \mathbf{P}_{\mathsf{housing}} + (\triangle \mathbf{P}_{\mathsf{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 50 gpm (189.5 L/min) for K91KZ10BP16NP16ND5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 8 psi (.55 bar) on the graph for the K9 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 50 gpm. In this case, $\Delta P_{element}$ is 2 psi (.14 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \mathbf{V}_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 8 \text{ psi} [.55 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 2 \text{ psi} [.14 \text{ bar}]$

 \mathbf{v}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta \mathbf{P}_{\text{filter}}$ = 8 psi + (2 psi * 1.1) = 10.2 psi

OR

 $\Delta P_{\text{filter}} = .55 \text{ bar} + (.14 \text{ bar} * 1.1) = .70 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate } x \Delta \mathbf{P}_{f} \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	$\Delta \mathbf{P}$
K3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/ KKZW25	0.07	3KZX10/ 27KZX10	0.07

Filter	How to Build a Valid Model Number for a Schroeder K9:						
Model Number	вох 1 во	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8					
Selection	Example: BOX 1 B K9 –	NOTE: One optic ox 2 BOX 3 B 1K – Z –	on per box ox 4 Box 5 Box 6 Box 7 10 - B - P16 N P16 N -	- D5 = K91KZ10BP16N	P16ND5		
	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5		
	Filter Series	Number & Size of Elements	Media Type	Micron Rating	Seal Material		
	К9	1 К,КК,27К 2 К	Omit = E-media (cellulose) Z = Excellement® Z-Media®	1 = 1 μ Z, ZW, ZX media 3 = 3 μ AS, E, Z, ZW, ZX media	B = Buna N V = Viton®		
	Porting	3 K Options	AS = Anti-Stat Pleat media (synthetic) ZW = Aqua-Excellement® ZW media ZX = Excellement® Z-Media® (high collapse centertube) W = W media (water removal) M = media (reusable metal mesh)	$5 = 5 \mu AS, Z, ZW, ZX media$ $10 = 10 \mu AS, E, M, Z, ZW, ZX media$ $25 = 25 \mu E, M, Z, ZW, ZX media$ $60 = 60 \mu M media$ $150 = 150 \mu M media$ $260 = 260 \mu M media$	H = EPR H.5 = Skydrol [®] Compatibilit		

BOX 7 BOX 6 Specification of all 4 ports is required Porting Options Omit=None Port 1 (standard) Port 2 Port 3 Port 4 X=Blocked bypass N = NoneN = None N = None N = None P16 = 1 " NPTF P20 = 1¼ " NPTF P24 = 1½ " NPTF P16 = 1 " NPTF P20 = 1¼" NPTF P24 = 1½" NPTF U = Test point in cap (upstream) P16 = 1" NPTF P20 = 1¼" NPTF P24 = 1½" NPTF P16 = 1" NPTF P20 = 1¼" NPTF P24 = 1½" NPTF UU=Test points in block (upstream F16 = 1" SAE 4-bolt flange Code 61 F20 = 1¼" SAE 4-bolt flange Code 61 F24 = 1½" SAE 4-bolt flange Code 61 F16 = 1" SAE 4-bolt flange Code 61 F20 = $1\frac{1}{4}$ " SAE 4-bolt flange Code 61 F24 = $1\frac{1}{4}$ " SAE 4-bolt flange Code 61 S16 = SAE-16 S20 = SAE-20 S24 = SAE-24 S16 = SAE-16 S20 = SAE-20 S24 = SAE-24 and downstream) 10=10 psi bypass B16 = ISO 228G-1" B20 = ISO 228G-1¼" B24 = ISO 228G-1½" B16 = ISO 228 G-1" B20 = ISO 228 G-1¼" B24 = ISO 228 G-1½" S16 = SAE-16 S16 = SAE-16 setting S20 = SAE-20 S24 = SAE-24 S20 = SAF-2020=20 psi bypass \$24 = \$AE-24 setting B16 = ISO 228 G-1" B20 = ISO 228 G-1¼" B24 = ISO 228 G-1½" B16 = ISO 228 G-1" B20 = ISO 228 G-1¹/4" B24 = ISO 228 G-1¹/2" 25=25 psi bypass setting

-	30=30 psi bypass
	setting
	40=40 psi bypass
	setting
	60 = 60 psi bypass
	setting
	75 = 75 psi bypass
	setting

- NOTES:
- Box 2. Double and triple stacking of K-size elements can be replaced by KK and 27K elements, respectively. Number of elements must equal 1 when using KK or 27K elements. Replacement element part numbers are identical to contents of Boxes 2, 3, 4, and 5. ZW media not available in 27K length.

- Box 5. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[®] is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 8. If location 1 is used as inlet port, dirt alarm will occupy location 2. If location 2 is used as inlet port, dirt alarm will occupy location 1. If dual inlet ports are specified, the only dirt alarm option is pop-up indicator in cap (D5C).

	·
	Omit = ^{None}
Visual	D5 = Visual pop-up D5C = D5 in cap
Visual with Thermal Lockout	D8 = Visual w/ thermal lockout D8C = D8 in cap
Electrical	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector
Electrical with Thermal Lockout	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T
Electrical Visual	MS13 = Supplied w/ threaded connector & light MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)
Electrical Visual with Thermal Lockout	MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT

BOX 8

Dirt Alarm[®] Options

Single Pass Filter Kit 2K9/3K9

	 Features and Benefits Two or three patented-pending K9 filters supplied in series as a single filter assembly providing in-line single pass particulate and water filtration Meets HF4 automotive standard 900 psi rating covers almost all transfer line pressure specs including air driven transfer systems Top loading for easy access for element change out Allows consolidation of inventoried elements by using K-size elements Can be fitted with test points for oil sampling 	100 gpm <u>380 L/min</u> 900 psi 60 bar	GH RLT KF5 SRLT K9 2K9 3K9 QF5 QF5i
Model No. of filters in photograph are 3K9127EDBBP20P20U	IUD5C and Custom 2K9.		3QF5

Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	900 psi (60 bar)	Housing	QLF15
Min. Yield Pressure:	3200 psi (220 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure:	750 psi (52 bar) per NFPA T2.6.1-R1-2005		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		SSQLFIS
Bypass Setting:	Cracking: 40 psi (2.8 bar) each filter housing		
Porting Base & Cap:	Cast Aluminum		
Element Case:	Steel		
Element Change Clearance:	8.50" (215 mm) for 1K; 17.5" (445 mm) for KK; 26.5" (673 mm) for 27K		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media®, 3, 5 and 10 μ ASP® media (synthetic)	
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation	
Skydrol®	3, 5, 10 and 25 μ Z-Media [®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior), 3, 5 and 10 μ ASP [®] Media (synthetic)	

2K9/3K9 **Single Pass Filter Kit**

(114) MAX

159)

3K=33.76 (85 K=14.95 (K=24.36 (

3.13

(80) 6.25

١N

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

	Filtration Rat	tio Per ISO 4572/N article counter (APC) ca	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	β _X ≥ 75	$\beta_X \ge 100$	$\beta_X \ge 200$	$\beta_X(c) \ge 200$	β _X (c) ≥ 1000
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61			
KZ3	115	KKZ3/	230	27KZ3	345	KZW3	64	KKZW3	128	
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126	
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114	
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158	
Element Collapse Rating: 150 psid (10 bar) for standard elements										

150 psid (10 bar) for standard elements

Outside In

Flow Direction:

Element Nominal Dimensions:

K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long 3.9" (99 mm) O.D. x 18.0" (460 mm) long

- KK: 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Element Performance **Information & Dirt Holding Capacity**
Single Pass Filter Kit 2K9/3K9

$\Delta \mathbf{P}_{\mathsf{housing}}$ 2K9/3K9 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86: 'S Flow gpm $\Delta \mathbf{P}_{\mathsf{element}}$ ΚZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM] 50 100 150 200 250 350 400 450 25.00 1 60 20.00 1.40 Pressure Drop [PSID] 1.20 [BAR] 15.00 1.00 Drop | 0.80 Z3 10.00 an 0.60 Z5 0.40 Z10 5.00 Z25 0.20 0.00 0.00 0 20 60 80 100 120 $\Delta \mathbf{P}_{element}$ Flow Rate [GPM] 2KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM] 100 150 250 300 350 400 450 12.00 0.80 10.00 0.70 Pressure Drop [PSID] 0.60 BAR 8.00 0.50 Drop 6.00 0.40 Z3 ar 0.30 4.00 Z10 0.20 2.00 0.10 0.00 0.00 20 100 120 0 40 60 80 Flow Rate [GPM] $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine ΔP_{filter} at 50 gpm (189.5 L/min) for 2K9109DBBP16P16D5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 16 psi (1.1 bar) on the graph for the 2K9 housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{element}$ at 50 gpm for the first element. In this case, $\Delta \mathbf{P}_{element}$ is 2 psi (.14 bar) according to the graph for the KZ10 element.

Use the element pressure curve to determine $\Delta \mathbf{P}_{element^2}$ at 50 gpm for the first element. In this case, $\Delta \mathbf{P}_{element}$ is 5 psi (.34 bar) according to the graph for the KZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 16 \text{ psi} [1.1 \text{ bar}] | \Delta \mathbf{P}_{\text{element}} = 2 \text{ psi} [.14 \text{ bar}] | \Delta \mathbf{P}_{\text{element}} = 5 \text{ psi} [.34 \text{ bar}]$

V_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1

△P_{filter} = 16 psi + (2 psi * 1.1) + (5 psi * 1.1) = 23.7 psi OR

 $\Delta \mathbf{P}_{\text{filter}} = 1.1 \text{ bar} + (.14 \text{ bar} * 1.1) + (.34 * 1.1) = 1.6 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow \text{ Rate } x \Delta \mathbf{P}_{f}. \text{ Plug}$ this variable into the overall pressure drop equation.

Ele. 🛆 P Ele		Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	$\Delta \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZX10	0.22	2KZX10/ KKZX10	0.11	3K10	0.03
KZW1	0.43	2KZW1	-	3K25	0.01
KZW3	0.32	2KZW3/ KKZW3	0.16	3KAS3/ 27KAS3	0.03
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS5/ 27KAS5	0.02
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS10/ 27KAS10	0.02
KZW25	0.14	2KZW25/ KKZW25	0.07	3KZX10/ 27KZX10	0.07

2K9/3K9 Single Pass Filter Kit

Filter How to Build a Valid Model Number for a Schroeder 2K9: BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10 Model 2K9-Number Example: NOTE: One option per box Selection BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 7 BOX 8 BOX 9 BOX 6 BOX 10 В P16 – P16 2K9-09 – В D5 -= 2K9109DBBP16P16D5 1 D BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 Second Housing Element Micron Rating Number First Housing **Third Housing** Length of Elements Element Micron Rating Filter 01 Elements A = 1 µ Z-Media® A = 1 µ Z-Media A = 1 µ Z-Media® 1 09 = K-Size Element 2K9 B = 3 µ Z-Media® B = 3 µ Z-Media[®] B = 3 μ Z-Media[®] 2 18 = KK Size Element C = 5 µ Z-Media® C = 5 µ Z-Media® C = 5 µ Z-Media[®] 3 27 = 27K Size Element 3K9 D = 10 µ Z-Media® E = 25 µ Z-Media® D = 10 µ Z-Media® D = 10 µ Z-Media® F = W media (water removal) E = 25 µ Z-Media[®] E = 25 µ Z-Media® $G = 1 \mu ZW$ -media F = W Water Removal F = W Water Removal H = 3 µ ZW-media G = 1 µ ZW-media G = 1 µ ZW-media $J = 5 \mu ZW$ -media H = 3 µ ZW-media H = 3 µ ZW-media K = 10 µ ZW-media J = 5 µ ZW-media J = 5 μ ZW-media L = 25 µ ZW-media K = 10 µ ZW-media K = 10 µ ZW-media $M = 3 \mu AS$ -media L = 25 µ ZW-media L = 25 µ ZW-media $N = 5 \mu AS$ -media $O = 10 \mu \text{ AS-media}$ $M = 3 \mu AS$ -media M = 3 µ AS-media $N = 5 \mu AS$ -media N = 5 µ AS-media O = 10 µ AS-media O = 10 µ AS-media BOX 7 BOX 8 BOX 9 "In" Porting "Out" Porting Seal Material P16 = 1" NPTF P16 = 1" NPTF B = Buna N P20 = 1¹/4" NPTF $P20 = 1^{1}_{4}$ " NPTF $P24 = 1^{1}_{2}$ " NPTF V = Viton® $P24 = 1^{1}/_{2}$ " NPTF B16 = ISO 228 G-1 B16 = ISO 228 G-1 H = EPRB20 = ISO 228 G-1¹/4" B20 = ISO 228 G-1¹/4" H.5 = Skydrol[®] Compatible B24 = ISO 228 G-1¹/2" B24 = ISO 228 G-1¹/2" F16 = 1" SAE 4-bolt flange Code 61 F16 = 1" SAE 4-bolt flange Code 61 $F20 = 1^{1}$ /₄" SAE 4-bolt flange Code 61 F24 = 1^{1} /₂" SAE 4-bolt flange Code 61 $F20 = 1^{1}_{4}$ " SAE 4-bolt flange Code 61 $F24 = 1^{1}_{2}$ " SAE 4-bolt flange Code 61 S16 = SAE-16 S16 = SAE-16S20 = SAE-20 S20 = SAE-20 S24 = SAE-24 S24 = SAE-24 BOX 11 **BOX 10 Dirt Alarm® Options** Options Omit = None Omit = None D5 = Visual pop-up U = Test point in cap Visual D5C = D5 in cap (upstream) Visual with Thermal D8 = Visual w/ thermal lockout UU = Test points in block D8C = D8 in cap Lockout (upstream and MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable downstream) MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire Electrical MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout Electrical MS10LCT = Low current MS10T with MS12T = MS12 (see above) w/ thermal lockout Thermal MS12LCT = Low current MS12T Lockout MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T Electrical MS13 = Supplied w/ threaded connector & light MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end) Visua MS13DCT = MS13 (see above), direct current, w/ thermal lockout Electrical Visual MS13DCLCT = Low current MS13DCT with Thermal MS14DCT = MS14 (see above), direct current, w/ thermal lockout Lockout MS14DCLCT = Low current MS14DCT

NOTES:

- Box 2. Double and triple stacking of K-size elements can be replaced by KK and 27K elements, respectively. Number of elements must equal 1 when using KK or 27K elements. ZW media not available in 27K length.
- Box 4 Replacement element part & 5. numbers are identical to K9 replacement parts. Please reference page 184.
- Box 6. For options H, V, and H.5, all aluminum parts are anodized.
 H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[®] is a registered trademark of DuPont Dow Elastomers.Skydrol[®] is a registered trademark of Solutia Inc.
- Box 10. Option UU not available in combination with indicator in block.

In-Line Filter QF5

 Features and Benefits Element changeout from the top minimizes oil spillage Available with optional core assembly to compare the product of the	300 gpm <u>1135 L/min</u> 500 psi <u>35 bar</u>	GH RLT KF5
 Offered with standard Q, QPML deep-pleated and QCLQF coreless elements in 16" and 39" lengths with standard Viton[®] seals 		SRLT
 Offered in pipe, SAE straight thread, and flange porting 		K9
Optional inlet and outlet test pointsWQF5 model for water service also available		2K9
Various Dirt Alarm [®] options		3K9
		QF5
		QF5i
oh is QF539QZ10P32.		3QF5
		QFD5
Up to 300 gpm (1135 L/min) for 150 SUS (32 cSt) fluids 500 psi (35 bar)	Filter Housing Specifications	QF15
Contact Factory	Specifications	QLF15

Model No	of filter in	nhotograph	is OF5390710P32
would wo.	or mer n	DITOLOUIADI	15 UF337UZ IVF3Z.

Flow Rating:	Up to 300 gpm (1135 L/min) for 150 SUS (32 cSt) fluids	Filter	0545
Max. Operating Pressure:	500 psi (35 bar)	Housing	QF15
Min. Yield Pressure:	2500 psi (172 bar), per NFPA T2.6.1-R1-2005	Specifications	
Rated Fatigue Pressure:	Contact Factory		QLF15
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 30 psi (2.1 bar) Full Flow: 55 psi (3.8 bar)		SSQLF15
Porting Base:	Cast Aluminum		
Element Case:	Steel		
Cap:	Ductile Iron		
Weight of QF516: Weight of QF539:	85 lbs. (39 kg) 120 lbs. (55 kg)		
Element Change Clearance:	16Q 12.0" (205 mm) 39Q 33.8" (859 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All Z-Media [®] and ASP [®] media (synthetic)	Compatibilit
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media® and all ASP® Media (synthetic)	
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and all ASP [®] media (synthetic)	
Skydrol®	3, 5, 10 and 25 μ Z-Media [®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP [®] media (synthetic)	

In-Line Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

		Filtration Ration Using automat	o Per ISO 4572/I ed particle counter (per ISO 4402	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element		β _x ≥ 75	β _X ≥ 100	$\beta_X \ge 200$	β _X (c) ≥ 200	β _X (c) ≥ 1000
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
200	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0

Ele	ement	DHC (gm)	Elem	ent	DHC (gm)	Element	DHC (gm)
	Z1	276		CLQF	Z1	307	PMLZ1	307
	Z3	283	:	CLQF	Z3	315	PMLZ3	315
16Q	Z5	351		CLQF	Z5	364	PMLZ5	364
	Z10	280)	CLQF	Z10	306	PMLZ10	330
	Z25	254		CLQF	Z25	278	PMLZ25	299
	Z1	974		CLQF	Z1	1259	PMLZ1	1485
	Z3	1001		CLQF	Z3	1293	PMLZ3	1525
39Q	Z5	954		CLQF	Z5	1302	PMLZ5	1235
	Z10	940		CLQF	Z10	1214	PMLZ10	1432
	Z25	853	:	CLQF	Z25	1102	PMLZ25	1299
	Element Collapse Rating: Flow Direction:			d QPML:	150 ps	sid (10 bar), QCI	LQF: 100 psid (7 bar)	
				de In				
Element Nominal Dimensions:			16Q:		6.0"	(150 mm) O.D. x 16.85" (430 mm) long		
			16QCLQF: 6.0" (150 mm) O.D. x 18.21" (463 mm) long					
			16QP	ML:	6.0" (150 mm) O.D. x 16.00" (405 mm) long			

6.0" (150 mm) O.D. x 40.01" (1016 mm) long

6.0" (150 mm) O.D. x 37.80" (960 mm) long

39QCLQF:

39QPML:

In-Line Filter **QF**

$\triangle \mathbf{P}_{\mathsf{housing}}$

QF5 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \mathbf{P}_{element}$

16QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 100 gpm (379 L/min) for QF539QZ3P32UDPG using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 100 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the QF5 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 100 gpm. In this case, $\Delta P_{element}$ is 1 psi (.07 bar) according to the graph for the 39QZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta P_{element} * V_f)$. The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 1 \text{ psi } [.07 \text{ bar}]$

 \mathbf{V}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta \mathbf{P}_{filter} = 2 \text{ psi} + (1 \text{ psi} * 1.1) = 3.1 \text{ psi}$ OR

 $\Delta \mathbf{P}_{filter} = .14 \text{ bar} + (.07 \text{ bar} * 1.1) = .22 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_f$ Plug this variable into the overall pressure drop equation.

	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
	16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
	16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
	16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
	16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
	16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
	16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
	16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
	16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
	16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
	16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
	16QZ25	0.01	39QPMLAS- 10V	0.01		

In-Line Filter

NOTES:

- numbers are a combination letter V.
- Box 3. QCLQF are CoreCentric® coreless elements - housing includes rigid metal core. QPML are deep-pleated elements with more media and higher dirt holding capacity.
- Box 4. For option W, Box 3 must equal Q.
- are supplied with Viton[®] seals. Seal designation in Box 6 applies to housing only. Viton[®] is a registered trademark of DuPont Dow Elastomers.

Cold Start Protection Inside-Out Flow Filter **QF5i**

Features and Benefits (QF5i)	120 apm	GH
 Magnetic filtration protection while filter is in cold start bypass 	454 L/min	DIT
 Coreless QCL element with inside-out flow for eco-friendly easy disposal 	500 psi	KLI
 Efficient means to remove both ferromagnetic and non-ferromagnetic parts from the fluid 	35 Dar	KF5
 Designed for inside-out flow 		SRLT
 Depending on the filter length, a magnetic rod can be threaded into the element top cap sealing plug 		VO
 Element changeout from the top minimizes oil spillage 		K9
 Offered in pipe, SAE straight thread, and flange porting 		21/0
 Optional inlet and outlet test points 		2K9
 Various Dirt Alarm[®] options 		3K9
		QF5
		QF5i
с10F3260М.		3QF5

			(
Flow Rating:	Up to 120 gpm (454 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	500 psi (35 bar)	Housing	
Min. Yield Pressure:	2500 psi (172 bar), per NFPA T2.6.1-R1-2005	Specifications	
Rated Fatigue Pressure:	Contact Factory		6
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		C
Bypass Setting:	Cracking: 60 psi (4.1 bar) Full Flow: 95 psi (6.6 bar)	S	SC
Porting Base:	Cast Aluminum		
Element Case:	Steel		
Cap:	Ductile Iron		
Weight of QF5i16: Weight of QF5i39:	85 lbs. (39 kg) 120 lbs. (55 kg)		
Element Change Clearance:	16QCLI 16.0" (407 mm) 39QCLI 39.0" (991 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media [®] and all ASP [®] Media (synthetic)	

Metric dimensions in ().

Element Performance **Information & Dirt Holding Capacity**

		Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Filtration Ratio per ISO 16889 Using automated particle counter (APC) calibrated per ISO 4402 Using APC calibrated per ISO 11171			Dirt Holding Capacity			
Element		β _X ≥ 75	β _X ≥ 100	$\beta_X \ge 200$	β _X (c) ≥ 200	β _χ (c) ≥ 1000	Element	DHC (gm)
	CLIZ1	<1.0	<1.0	<1.0	<4.0	4.2	CLIZ1	307
	CLIZ3	<1.0	<1.0	<2.0	<4.0	4.8	CLIZ3	315
16Q	CLIZ5	2.5	3.0	4.0	4.8	6.3	CLIZ5	364
	CLIZ10	7.4	8.2	10.0	8.0	10.0	CLIZ10	306
	CLIZ25	18.0	20.0	22.5	19.0	24.0	CLIZ25	278
	CLIZ1	<1.0	<1.0	<1.0	<4.0	4.2	CLIZ1	1259
200	CLIZ3	<1.0	<1.0	<2.0	<4.0	4.8	CLIZ3	1293
39Q	CLIZ5	2.5	3.0	4.0	4.8	6.3	CLIZ5	1302
	CLIZ10	7.4	8.2	10.0	8.0	10.0	CLIZ10	1214
	CLIZ25	18.0	20.0	22.5	19.0	24.0	CLIZ25	1102

Flow Direction: Inside-Out Element Nominal Dimensions: 16QCLI: 39QCLI:

6.0" (150 mm) O.D. x 17.81" (452 mm) long 6.0" (150 mm) O.D. x 39.63" (1007 mm) long

Cold Start Protection Inside-Out Flow Filter

$\triangle \mathbf{P}_{\text{housing}}$

QF5i $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 120 gpm (455 L/min) for QF5i16QCLIZ3P32 using 200 SUS (44 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 120 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the QF5i housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 120 gpm. In this case, $\Delta P_{element}$ is 6 psi (.415 bar) according to the graph for the 16QCLIZ3 element.

Because the viscosity in this sample is 200 SUS (44 cSt), we determine the **Viscosity Factor** (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{element} * \mathbf{V}_{f})$. The $\Delta \mathbf{P}_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi} [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 6 \text{ psi} [.415 \text{ bar}]$

 \mathbf{v}_{f} = 200 SUS (42.4 cSt) / 150 SUS (32 cSt) = 1.333

△P_{filter} = 3 psi + (6 psi * 1.333) = 11 psi OR

△P_{filter} = .21 bar + (.415 bar * 1.333) = .76 bar

QF5i Cold Start Protection Inside-Out Flow Filter

Filter	How to Build a Va	lid Model Numbe	er for a Schroe	der QF5i:			
Model	BOX 1 BOX 2 BOX	3 BOX 4 BOX 5 BO	X 6 BOX 7 BOX 8	8 BOX 9 BOX 10			
Number							
Selection		3 BOX 4 BOX 5 BO					
					=QF5	i39QCLIZ3-	
			- P32 - 60		P3260	MUDPG	
	BOX 1 BOX	2 BOX 3	BOX	4		BOX 5	
	Filter Eleme Series Length	ent Element	Media T	Гуре		Micron Rating	
			Z = Excellement®	Z-Media®	1 = 1 (um Z-Media®	
	QF5i	QCLI	(synthetic)		3 = 3	um Z-Media®	
	39				5 = 5 10 = 10	µm Z-Media®	
					25 = 25	µm Z-Media®	
	BOX 6	BOX 7	,	BOX 8		BOX 9	
	Housing Seal Material	Portin	g	Bypass Set	ting	Options	
	Omit = Buna N	P32 = 2"NPTF F32 =	2" SAE 4-bolt	60 = 60 psi cra	cking	Omit = No Magnet	
	V = Viton®		flange Code 61			M = Magnetic	
		P40 = 2 ¹ / ₂ "NPTF F40 =	2 ¹ / ₂ "SAE 4-bolt flange Code 61			Filter Rod Omit = No Test point	
		P48 = 3 "NPTF	hange coue of			U = Test point in	
		S32 = SAE-32 F48 =	3" SAE 4-bolt flange Code 61			cap (upstream)	
		BOX	10			in block (upstream and	
		Dirt Alarm [®]	Options			downstream)	
		Omit = None					
	Visual	DPG = Standard differ D5 = Visual pop-up	ential pressure gaug	е			
	Visual with						
	Lockout	D8 = Visual W them					
	Ν	MS5 = Electrical w/ 12	in. 18 gauge 4-con	ductor cable			
	M	S10LC = Low current MS11 = Electrical w/ 12	510 ft. 4-conductor wire	9			
	Electrical MS12 = Electrical W/12 ft. 4-conductor Wire MS12 = Electrical W/5 pin Brad Harrison connector (male end only)						
	M	S12LC = Low current MS	512 https://www.sealer.	connector			
	M	S16LC = Low current MS	516	connector			
	M	$S17LC = Electrical w/4 \mu$	oin Brad Harrison ma	ale connector			
	М	S5LCT = Low current M	55T	IL			
	Electrical	MS10T = MS10 (see abo	ve) w/ thermal locko	out			
	with MS	10LCI = Low current MS MS12T = MS12 (see above)	s101 ve) w/ thermal locko	but			
	Thermal MS	12LCT = Low current M	512T				
	MC	MS16T = MS16 (see abo 16LCT = Low current M	ve) w/ thermal locko 516T	but			
lement part	MS	17LCT = Low current MS	517T				
combination and 5 plus the	Electrical Visual	MS13 = Supplied w/ thr MS14 = Supplied w/ 5 m	eaded connector & oin Brad Harrison coi	light nnector & light (ma	le end)		
LIZ10V	Electrical MS1	13DCT = MS13 (see abo	ve), direct current, w	// thermal lockout			
or this filter	Visual with MS13	DCLCT = Low current MS14 (see above)	513DCT ve) direct current w	// thermal lockout			
h Viton [®] seals.	Lockout MS14D	PCLCT = Low current MS	514DCT				
s to	·						

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5 plus the letter V. *Example*: 16QCLIZ10V

Box 6. All elements for this filter are supplied with Viton[®] seals. Seal designation in Box 6 applies to housing only. Viton[®] is a registered trademark of DuPont Dow Elastomers.

In-Line Filter 3QF5

	 Features and Benefits Element changeout from the top minimizes oil spillage Available with optional core assembly to accommodate coreless elements. 	300 gpm GP <u>1135 L/min</u> 500 psi <u>35 bar</u> KF	н Г 5
	 Offered with standard Q, QPML deep-pleated and QCLQF coreless elements in 16" and 39" lengths with standard Viton[®] seals 	SRL	Г
	 Offered in pipe, SAE straight thread, and flange porting 	K	9
	 Optional inlet and outlet test points Various Dirt Alarm[®] options 	2K	9
		ЗК	9
		QF	5
		QF5	ii
Model No. of filter in photograph is 3QF539QEDB	Р40Р40.	3QF	5
		QFD	5

Flow Rating:	Up to 300 gpm (1135 L/min) for 150 SUS (32 cSt) fluids	Filter	QF15
Max. Operating Pressure:	500 psi (35 bar)	Housing	
Min. Yield Pressure:	2500 psi (172 bar), per NFPA T2.6.1-R1-2005	Specifications	OI F15
Rated Fatigue Pressure:	Contact Factory		QLI IS
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 30 psi (2.1 bar) Full Flow: 55 psi (3.8 bar)		SSQLF15
Porting Base:	Cast Aluminum		
Element Case:	Steel		
Cap:	Ductile Iron		
Weight of 3QF539:	655 lbs. (298 kg)		
Element Change Clearance:	33.8" (859 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media® and all ASP® Media (synthetic)	
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation and all ASP® media (synthetic)	
Skydrol®	3, 5, 10 and 25 μ Z-Media [®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP [®] media (synthetic)	

In-Line Filter

F5

3

Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

			Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Ele	ment			β _X ≥75	β _X ≥ 100	$\beta_X \ge 200$	β _X (c) ≥ 200	β _X (c) ≥ 1000
	Z1/CLQFZ1/PMLZ1			<1.0	<1.0	<1.0	<4.0	4.2
200	Z3/CLQFZ3/PMLZ3			<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5			2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10			7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25			18.0	20.0	22.5	19.0	24.0
						1	•	
Ele	ement	DHC (gı	n)	Element	DHC (gm)	Element		DHC (gm)
	Z1	974		CLQFZ1	1259	PMLZ1		1485
	Z3	1001		CLQFZ3	1293	PMLZ3		1525
39Q	Z5	954		CLQFZ5	1302	PMLZ5		1235
	Z10	940		CLQFZ10	1214	PMLZ10		1432
	Z25	853		CLQFZ25	1102	PMLZ25		1299
Element Collapse Rating: Q and			d QPML: 150 p	sid (10 bar), QC	LQF: 100 psid (7	7 bar)		
	Flow Direction: Outsid			de In				
Element Nominal Dimensions: 39Q: 39QC 39QF			6.0" CLQF: 6.0" PML: 6.0"	(150 mm) O.D (150 mm) O.D (150 mm) O.D	. x 38.70" (985 . x 40.01" (101 . x 37.80" (960	6 mm) long 6 mm) long mm) long		

Element Performance Information & Dirt Holding Capacity

In-Line Filter 3Q

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 100 gpm (379 L/min) for 3QF539QEDBVP32P3250DPG using 160 SUS (34 cSt) fluid.

100

50

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 100 gpm. In this case, $\Delta P_{\text{housing}}$ is 5.5 psi (.39 bar) on the graph for the 3QF5 housing.

150

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

200

Flow Rate [GPM]

250

300

Use the element pressure curve to determine $\Delta \mathbf{P}_{element}$ at 100 gpm for the first element. In this case, $\Delta \mathbf{P}_{element}$ is 1 psi (.07 bar) according to the graph for the 39QZ25 element.

Use the element pressure curve to determine $\Delta P_{element^2}$ at 100 gpm for the first element. In this case, $\Delta P_{element}$ is 1 psi (.07 bar) according to the graph for the 39QZ10 element.

Use the element pressure curve to determine $\Delta P_{element^3}$ at 100 gpm for the first element. In this case, $\Delta P_{element}$ is 1 psi (.07 bar) according to the graph for the 39QZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \mathbf{V}_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

OR

 $\Delta \mathbf{P}_{\mathsf{housing}} = 5.5 \text{ psi} \left[.39 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{element}^3} = 1 \text{ psi} \left[.07 \text{ bar}\right] \mid \Delta \mathbf{P}_{\mathsf{elemen$

 \mathbf{V}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1

1.00 0.00

0

 $\Delta \mathbf{P}_{filter} = 5.5 \text{ psi} + (1 \text{ psi} * 1.1) + (1 \text{ psi} * 1.1) + (1 \text{ psi} * 1.1) = 8.8 \text{ psi}$

 $\Delta \mathbf{P}_{filter}$ = .39 bar + (.07 bar * 1.1) + (.07 * 1.1) + (.07 * 1.1) = .62 bar

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = \text{Flow Rate } x \, \Delta \mathbf{P}_{f}. \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	${\boldsymbol \Delta} {\boldsymbol P}$
16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
16QZ25	0.01	39QPMLAS-	0.01		

0.10

0.00

350

Filter 📕 How to Build a Valid Model Number for a Schroeder 3QF5:					
Model	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5	BOX 6 BOX 7 BOX 8 BOX 9 BOX 10	BOX 11		
Selection	Example: NOTE: One option per box				
Selection	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 1 3QF5-39-Q-E-D-B	6 BOX 7 BOX 8 BOX 9 BOX 10 BOX 11 - V - P32 - P32 - 50 - DPG	= 3QF539QEDBVP32P3250DPG		
	BOX 1 BOX 2 BOX 3 Filter Element Element Series Length (in) Style E	BOX 4 BOX 5 First Housing Iement Media	BOX 6 Third Housing Element Media		
	3QF5 16 Q 39 QCLQF		A = Z1 B = Z3 C = Z5 D = Z10		
	Housing Seal Material Omit = Buna N	E = Z25 $E = Z25$ $F = W$ $F = W$ $G = AS3$ $G = AS3$ $H = AS5$ $H = AS5$ $J = AS10$ $J = AS10$	E = Z25 F = W G = AS3 H = AS5 J = AS10		
	H = EPR V = Viton® BOX 8	BOX 9	BOX 10		
	"IN" Porting	"OUT" Porting	Bypass Setting		
	P32 = 2 " NPTF	P32 = 2 " NPTF	Omit = 30 psi cracking		
	$P40 = 2\frac{1}{2}$ "NPTF	$P40 = 2\frac{1}{2}$ "NPTF	50 = 50 psi cracking		
	P48 = 3"NPTF	P48 = 3"NPTF	X = Blocked bypass		
	S32 = SAE-32	S32 = SAE-32			
	$F3Z = Z^{*}SAE$ 4-bolt flange Code 61	$F3Z = Z^{\circ}SAE$ 4-bolt flange Code 61			
	F40 = 272 SAE 4-bolt flange Code 61	F40 = 272 SAE 4-bolt flange Code 61			
	140 – 5 SAL 4-bolt hange code of	BOX 11]		
		Dirt Alarm [®] Options			
	None Omit = None				
	DPG = Stanc D5 = Visua D5C = D5 in D5R = D5 m	lard differential pressure gauge l pop-up cap ounted opposite standard location			
	Visual with D8 = Visual Thermal D8C = D8 in Lockout D8R = D8 m	l w/ thermal lockout cap ounted opposite standard location			

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4, plus the letter V. *Example*: 39QZ10V
- Box 3. QCLQF are CoreCentric[®] coreless elements – housing includes rigid metal core. QPML are deep-pleated elements with more media and higher dirt holding capacity.
- Box 4. For option F, Box 3 must equal Q.
- Box 7. All elements for this filter are supplied with Viton[®] seals. Seal designation in Box 5 applies to housing only. Viton[®] is a registered trademark of DuPont Dow Elastomers.

D8R = D8 mounted opposite standard location LOCKOUT MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10MS11 = Electrical w/ 12 ft. 4-conductor wire Electrical MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout Electrical MS10LCT = Low current MS10T with MS12T = MS12 (see above) w/ thermal lockout Thermal MS12LCT = Low current MS12T Lockout MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T Electrical MS13 = Supplied w/ threaded connector & light Visual MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end) MS13DCT = MS13 (see above), direct current, w/ thermal lockout Electrical Visual MS13DCLCT = Low current MS13DCT with Thermal MS14DCT = MS14 (see above), direct current, w/ thermal lockout Lockout MS14DCLCT = Low current MS14DCT

In-Line Filter QFD5

Features and Benefits

2.	Features and Benefits	350 apm	GH
1	Duplex filter design	1225 1/10/10	
	Approved for API 5L use	<u>1325 L/MIN</u>	RLT
	 Element changeout from the top minimizes oil spillage 	500 psi	
	 Available with optional core assembly to accommodate coreless elements 	35 bar	KF5
	 Offered with standard Q, QPML deep-pleated and QCLQF coreless elements in 16" and 39" lengths with Viton[®] seals as the standard 		SRLT
	 Offered in 2" and 3" SAE J518 4-bolt flange Code 61 and ANSI 300# flange porting 		K9
	Integral inlet and outlet test points are standard on all models		2K9
THE REAL PROPERTY OF	Various Dirt Alarm [®] options		
	 Also available in 4, 6 or 8 housing modular designs (contact factory) 		3K9
			QF5
			QF5i
Model No. of filter in photograph is QFD516QZ10F48DPG.			3QF5

QFD5

Flow Rating:	Up to 175 gpm (675 L/min) for 2"; 350 gpm (1325 L/min) for 3" for 150 SUS (32 cSt) fluids	Filter Housing	QF15
Max. Operating Pressure:	500 psi (35 bar)	Specifications	
Min. Yield Pressure:	Contact Factory		OI F15
Rated Fatigue Pressure:	Contact Factory		QLIID
Temp. Range:	-15°F to 200°F (-26°C to 93°C)		
Bypass Setting:	Cracking: 30 psi (2.1 bar) Full Flow: 33 psi (2.3 bar) for 2"; 38 psi (2.6 bar) for 3"		SSQLF15
Porting Base & Cap:	Ductile Iron		
Element Case & Transfer Valve:	Steel		
Weight of QFD5-16Q:	410.0 lbs. (186.0 kg) for 2"; 455.0 (206.0 kg) for 3"		
Weight of QFD5-39Q:	562.0 lbs. (255.0 kg) for 2"; 607.0 (275.0 kg) for 3"		
Element Change Clearance:	16Q 12.00" (305 mm) 39Q 33.80" (859 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media® and all ASP® media (synthetic)	
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation and all ASP® media (synthetic)	

5 In-Line Filter

39Q

58.31

(1481)

61.19

(1559)

Element Performance **Information & Dirt Holding Capacity**

HD)

Metric dimensions in ().

		Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element		β _X ≥ 75	β _X ≥ 100	$\beta_X \ge 200$	β _χ (c) ≥ 200	β _X (c) ≥ 1000
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0

Element		DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
	Z1	276	CLQFZ1	307	PMLZ1	307
	Z3	283	CLQFZ3	315	PMLZ3	315
16Q	Z5	351	CLQFZ5	364	PMLZ5	364
	Z10	280	CLQFZ10	306	PMLZ10	330
	Z25	254	CLQFZ25	278	PMLZ25	299
	Z1	974	CLQFZ1	1259	PMLZ1	1485
	Z3	1001	CLQFZ3	1293	PMLZ3	1525
39Q	Z5	954	CLQFZ5	1302	PMLZ5	1235
	Z10	940	CLQFZ10	1214	PMLZ10	1432
	Z25	853	CLQFZ25	1102	PMLZ25	1299

Element Collapse Rating: Q and QPML: 150 psid (10 bar), QCLQF: 100 psid (7 bar)

Flow Direction: Outside In

Element Nominal Dimensions:

39Q: 6.0" (150 mm) O.D. x 38.70" (985 mm) long 39QCLQF: 6.0" (150 mm) O.D. x 40.01" (1016 mm) long 39QPML: 6.0" (150 mm) O.D. x 37.80" (960 mm) long

In-Line Filter **QFD**

$\Delta \mathbf{P}_{\mathsf{housing}}$

QFD5 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta \mathbf{P}_{element}$

16QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 200 gpm (758 L/min) for QFD516QZ3F48D5C using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the QFD5 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 200 gpm. In this case, $\Delta P_{element}$ is 7 psi (.48 bar) according to the graph for the 16QCZ3 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the Viscosity Factor (V) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{element} * \mathbf{V}_{f})$. The $\Delta \mathbf{P}_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 5 \text{ psi } [.34 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

 \mathbf{v}_{f} = 100 SUS (21.3 cSt) / 150 SUS (32 cSt) = .67 △P_{filter} = 5 psi + (7 psi * .67) = 9.7 psi OR

△P_{filter} = .34 bar + (.48 bar * .67) = .66 bar

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_{f}$ Plug this variable into the overall pressure drop equation.

	Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	${\boldsymbol \Delta} {\boldsymbol P}$
	16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
	16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
	16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
	16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
	16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
	16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
	16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
	16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
	16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
	16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
	16QZ25	0.01	39QPMLAS- 10V	0.01		

Filter	How to B	uild a Valid	Model Num	ber for a Schroeder Q	F5:		
Model	BOX 1 BO	OX 2 BOX 3	BOX 4 BOX 5	BOX 6 BOX 7 BOX 8 BOX	9 BOX 10		
Number	QFD5-				_		
Selection							
	QFD5 –	<u>зох 2 вох 3</u> 16 – Q -	BOX 4 BOX 5	BOX 6 BOX 7 BOX 8 BOX F48 D5	وں C_– =Q ا	FD516QZ3F48[)5C
	BOX 1	BOX 2	BOX 3	BOX 4		BOX 5	i
	Filter Series	Element Length (in)	Element Style	Media Type		Micron Ra	ating
		16	Q	Z = Excellement [®] Z-Media	a®	1 = 1 µm Z-Med	ia®
	QFD5	20		AS = Anti-Stat Pleat media		$3 = 3 \ \mu m \ Z-Med$ $5 = 5 \ \mu m \ Z-Med$	ia®
		39	QULQF	(synthetic)		$10 = 10 \mu m Z Me$	dia® dia®
			QPML	W = W media (water remo	oval)	$25 = 25 \mu m 2-100$	JId
	BC)X 6		BOX 7		BOX 8	
	Housing Se	eal Material		Porting	Ву	bass Setting	
	Omit = B	una N	F32 = 2" SA	AE 4-bolt flange Code 61	Omit =	30 psi cracking	
	V = V	iton®	F32M = 2" SA	AE 4-bolt flange Code 61	50 =	50 psi cracking	
			FA32 = 2" A	NSI 300# flange	X =	Blocked bypass	
			F48 = 3" SA	AE 4-bolt flange Code 61			
			F48M = 3" SA	AE 4-bolt flange Code 61			
			FA48 = 3" A	NSI 300# flange			
				BOX 9			
			Dirt	Alarm [®] Options			
			Omit = None]
	Vie	sual	DPG = Standar D5 = Visual n	d differential pressure gauge			
	VIS	Sudi	D5C = D5 in ca	ab ab			
	Visual	with	D8 = Visual v	v/ thermal lockout			
		KOUL	MS5 = Electrica	al w/ 12 in 18 gauge 4-condu	ictor cabl	<u>م</u>	-
		N	IS5LC = Low cur	rrent MS5		L	
		M	MS10 = Electrica 101 C = Low cui	al w/ DIN connector (male end rrent MS10	d only)		
	Flectr	rical	VIS11 = Electrica	al w/ 12 ft. 4-conductor wire	,		
	Liceti	M	MS12 = Electrica 1210 = Low cui	al w/ 5 pin Brad Harrison conr rrent MS12	nector (ma	ale end only)	
			VS16 = Electrica	al w/ weather-packed sealed o	onnector		
ment nart		MS MS	16LC = Low cu 17LC = Electrica	rrent MS16 al w/ 4 pin Brad Harrison male	connecto	or	
mbination			MS5T = MS5 (se	e above) w/ thermal lockout		-	-
iu 5 pius trie		MS	5LCT = Low cur	rrent MS5T			
	Electi	rical MS1	0LCT = Low cut	rrent MS10T	L		
– housing	Ther	mal N	IS12T = MS12 (s	see above) w/ thermal lockout	t		
etal core. pleated	Lock	kout N	1S16T = MS16 (s	see above) w/ thermal lockout	t		
ore media olding		MS1	6LCT = Low cu	rrent MS16T			
	Flectr	rical	VLCI = LOW CUI VIS13 = Supplier	d w/ threaded connector & lic	iht		-
ox 3 must	Vis	sual	MS14 = Supplier	d w/ 5 pin Brad Harrison conr	nector & li	ght (male end)	
this filter	Electrical Vie	MS1	3DCT = MS13 (see above), direct current, w/	thermal lo	ockout	1
Viton [®] seals.	with Ther	mal MS13D	CLCT = Low cut 4DCT = MS14 (4)	rent MS13DCT	thermal l	ockout	
to	Lock	out MS14D	CLCT = Low cur	rrent MS14DCT	alernar R		

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5 plus the letter V. *Example*: 39QZ10V
- Box 3. QCLQF are CoreCentric[®] coreless elements – housing includes rigid metal core. QPML are deep-pleated elements with more media and higher dirt holding capacity.
- Box 4. For option W, Box 3 must equal Q.

Box 6. All elements for this filter are supplied with Viton® seals. Seal designation in Box 6 applies to housing only. Viton® is a registered trademark of DuPont Dow Elastomers.

In-Line Filter QF15

Features and Benefits ■ Also available in L-ported version	450 gpm	GH
 Element changeout from the top minimizes oil spillage 	<u>1700 L/min</u> 1500 psi	RLT
 Available with optional core assembly to accommodate coreless elements 	100 bar	KF5
 Offered with standard Q, QPML deep-pleated and QCLQF coreless elements in 16" and 39" lengths with Viton[®] seals as the standard 		SRLT
 Offered in pipe, SAE straight thread, and flange porting 		
Integral inlet and outlet test points are standard on all models		K9
 Various Dirt Alarm[®] options 		2K9
		3K9
		QF5
		QF5i
224MS10AC.		3QF5

Model No. of filter in photograph is QF1516QZ10P24MS10AC

QFD5

Flow Rating:	Up to 450 apm (1700 L/min) for 150 SUS (32 cSt) fluids	Filter	OFAE
Max. Operating Pressure:	1500 psi (100 bar)	Housing	QF15
Min. Yield Pressure:	4900 psi (340 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure:	800 psi (55 bar), per NFPA T2.6.1-R1-2005		QLF15
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 30 psi (2.1 bar) Full Flow: 55 psi (3.8 bar)		SSQLF15
Porting Base & Cap:	Ductile Iron		
Element Case:	Steel		
Weight of QF15-16Q:	139.0 lbs. (63.0 kg)		
Weight of QF15-39Q:	198.0 lbs. (90.0 kg)		
Element Change Clearance:	16Q 12.0" (305 mm) 39Q 33.8" (859 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] Media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media® and all ASP® media (synthetic)	
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation and all ASP® media (synthetic)	

QF15 In-Line Filter

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

			Filtration Rat Using automated pa	io Per ISO 4572/N nticle counter (APC) cal	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Elen	ient		β _X ≥ 75	β _X ≥ 100	β _X ≥ 200	β _X (c) ≥ 200	β _X (c) ≥ 1000
	Z1/CLQFZ1/PMLZ1		<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3		<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CLQFZ5/PMLZ5		2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10		7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25		18.0	20.0	22.5	19.0	24.0
	Z1/CLQFZ1/PMLZ1		<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3		<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5		2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10		7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25		18.0	20.0	22.5	19.0	24.0
Eler	nent	DHC (gm)	Element	DHC (gm)	Element		DHC (gm)
	Z1	276	CLQFZ1	307	PMLZ1		307
	Z3/AS3V	283	CLQFZ3	315	PMLZ3/PMLA	VS3V	315
16Q	Z5/AS5V	351	CLQFZ5	364	PMLZ5/PMLA	AS5V	364

Z10/AS10V	280		CLQFZ	10	306	PMLZ10/PMLAS10V	330
Z25	254		CLQFZ	25	278	PMLZ25	299
Z1	974		CLQFZ	<u>7</u> 1	1259	PMLZ1	1485
Z3/AS3V	1001		CLQFZ	<u>z</u> 3	1293	PMLZ3/PMLAS3V	1525
Z5/AS5V	954		CLQFZ	25	1302	PMLZ5/PMLAS5V	1235
Z10/AS10V	940		CLQFZ	10	1214	PMLZ10/PMLAS10V	1432
Z25	853		CLQFZ	25	1102	PMLZ25	1299
Element Co	llapse Rating:	Q a	Q and QPML: 150 psid (10 bar), QCLQF: 100 psid (7 bar)				
F	low Direction:	Ou	Outside In				
Element Nomina	al Dimensions:	160	6Q: 6.0" (150 mm) O.D. x			< 16.85" (430 mm) long	
		160	QCLQF:	QCLQF: 6.0" (150 mm) O.D. x 18.21" (463 mm) long			
		160	(PML: 6.0" (150 mm) O.D. x 16.00" (405 mm) long				
		390		6.0" (150 mm) O.D. x 38.70" (985 mm) long			

39QCLQF:

39QPML:

6.0" (150 mm) O.D. x 40.01" (1016 mm) long

6.0" (150 mm) O.D. x 37.80" (960 mm) long

39Q

In-Line Filter **QF1**5

$\Delta \mathbf{P}_{\mathsf{housing}}$

QF15 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta \mathbf{P}_{element}$

16QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 200 gpm (758 L/min) for QF1516QZ3D5C using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the QF15 housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{element}$ at 200 gpm. In this case, $\Delta \mathbf{P}_{element}$ is 7 psi (.48 bar) according to the graph for the 16QZ3 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the **Viscosity Factor** (**V**_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi} [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7 \text{ psi} [.48 \text{ bar}]$

V $_{f} = 100 \text{ SUS } (21.3 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .67$ △**P**_{filter} = 2 psi + (7 psi * .67) = 6.7 psi <u>OR</u>

 $\Delta \mathbf{P}_{filter}$ = .14 bar + (.48 bar * .67) = .46 bar

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = \text{Flow Rate } x \, \Delta \mathbf{P}_{f}. \text{Plug}$ this variable into the overall pressure drop equation.

	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$	Ele.	${\boldsymbol { \Delta P } }$
	16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
	16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
	16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
	16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
	16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
	16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
	16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
	16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
	16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
	16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
	16QZ25	0.01	39QPMLAS- 10V	0.01		

QF15 In-Line Filter

Filter Model Number Selection	How to Build a Va	Ilid Model Num BOX 3 BOX 4 E tion per box BOX 3 BOX 4 E Q Z -	ber for a Schroeder QF15: 30X 5 BOX 6 BOX 7 BOX 8 BOX 30X 5 BOX 6 BOX 7 BOX 8 BOX 30X 5 BOX 6 BOX 7 BOX 8 BOX 30X 5 BOX 6 BOX 7 BOX 8 BOX 30X 5 BOX 6 BOX 7 BOX 8 BOX	9 9 C = QF1516QZ3D5C
	Filter Series Elen	nent Element	Media Type	Micron Rating
	QF15	6 Q 9 QCLQF QPML	Z = Excellement [®] Z-Media [®] (synthetic) AS = Anti-Stat Pleat media (synthetic) W = W media (water removal)	1 = 1 μ Z-Media [®] 3 = 3 μ AS and Z-Media [®] 5 = 5 μ AS and Z-Media [®] 10 = 10 μ AS and Z-Media [®] 25 = 25 μ Z-Media [®]
	BOX 6 Housing Seal		BOX 7	BOX 8
	Material Omit = Buna N V = Viton®	P24 = 1½" NPTF P32 = 2" NPTF P40 = 2½" NPTF P48 = 3" NPTF S32 = SAE-32 B24 = ISO 228 G-1½ B32 = ISO 228 G-2" B40 = ISO 228 G-3"	Porting $F24 = 1\frac{1}{2}$ " SAE 4-bolt flange Code 61 F32 = 2" SAE 4-bolt flange Code 61 F40 = 2\frac{1}{2}" SAE 4-bolt flange Code 61 F48 = 3" SAE 4-bolt flange Code 61 F32M = 2 ¹ / ₂ " SAE 4-bolt flange Code 61 F40M = 2\frac{1}{2}" SAE 4-bolt flange Code 61 F48M = 3" SAE 4-bolt flange Code 61	Bypass Setting Omit = 30 psi cracking 15 = 15 psi cracking 40 = 40 psi cracking 50 = 50 psi cracking X = Blocked bypass
			BOX 9	
			Dirt Alarm [®] Options	
	Visual	Omit = N DPG = S D5 = V D5C = D D5R = D	lone tandard differential pressure gauge ⁄isual pop-up 95 in cap 95 mounted opposite standard location	
Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5, plus the letter V.	Visual with Thermal Lockout	D8 = V D8C = D D8R = D	/isual w/ thermal lockout 98 in cap 98 mounted opposite standard location	
Example: 16QZ1V		MS5 = E	lectrical w/ 12 in. 18 gauge 4-conductor c	able

Box 3. QCLQF are CoreCentric[®] coreless elements – housing includes rigid metal core. QPML are deep-pleated elements with more media and higher dirt holding capacity.

NOTES: Box 2. Repla numb of Box the let

Box 4. For option W, Box 3 must equal Q.

Box 6. All elements for this filter are supplied with Viton[®] seals. Seal designation in Box 6 applies to housing only. Viton[®] is a registered trademark of DuPont Dow Elastomers.

Box 7. F24M, F32M, F40M and F48M are supplied with metric flange mounting holes.

Integral inlet and outlet test points are standard on all models.

MS5LC = Low current MS5MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 Electrical MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout Electrical MS10LCT = Low current MS10T with MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T Thermal Lockout MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T Electrical MS13 = Supplied w/ threaded connector & light MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)Visual MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT Electrical Visual with Thermal Lockout MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT

Base-Ported Filter QLF15

	 Features and Benefits In-line version also available Element changeout from the top minimizes oil spillage Available with optional core assembly 	500 gpm <u>1900 L/min</u> 1500 psi 100 bar	GH RLT KE5
	 to accommodate coreless elements Offered with standard Q, QPML deep-pleated and QCLQF coreless elements in 16" and 39" lengths with Viton[®] seals as the standard 		SRLT
	 Offered in pipe, SAE straight thread, and flange porting Integral inlet and outlet test points 		K9
	are standard on all models Various Dirt Alarm[®] options 		2K9
			3K9 QF5
			QF5i
Model No. of filter in photograph is QLF1539QZ5F	4850D5.		3QF5

Flow Rating:	Up to 500 gpm (1900 L/min) for 150 SUS (32 cSt) fluids	Filter	OF15
Max. Operating Pressure:	1500 psi (100 bar)	Housing	QUIS
Min. Yield Pressure:	4900 psi (340 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure:	800 psi (55 bar), per NFPA T2.6.1-R1-2005		QLF15
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 55 psi (4 bar)		SSQLF15
Porting Base & Cap:	Ductile Iron		
Element Case:	Steel		
Weight of QLF15-16Q:	121.0 lbs. (55.0 kg)		
Weight of QLF15-39Q:	180.0 lbs. (82.0 kg)		
Element Change Clearance:	16Q 12.00" (305 mm) 39Q 33.80" (859 mm)		
	_		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions	10 μ and 25 μ Z-Media® and 10 μ ASP® media (synthetic)	
Water Glycols	3, 5, 10, and 25 μ Z-Media® and all ASP® media (synthetic)	
Phosphate Esters	All Z-Media [®] with H (EPR) seal designation and all ASP [®] media (synthetic)	

QLF15 Base-Ported Filter

DIMENSIONAL DATA				
PORT SIZE	DIM G	DIM H		
11⁄2" (38)	2.00 (51)	4.00 (102)		
2" (51)	2.00 (51)	4.00 (102)		
21⁄2 (64)	2.00 (51)	4.00 (102)		
3" (76)	2.50 (63.5)	4.00 (102)		
2 ¹ / ₂ (64) 3" (76)	2.00 (51) 2.50 (63.5)	4.00 (102) 4.00 (102)		

÷

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

				Filtration Ra Using automated pa	tio Per ISO 4572/NF article counter (APC) cal	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element				β _x ≥ 75	β _χ ≥ 100	$\beta_X \ge 200$	β _X (c) ≥ 200	β _χ (c) ≥ 1000
	Z1/CLQFZ1/PMLZ1			<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3			<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CLQFZ5/PMLZ5			2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10			7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25			18.0	20.0	22.5	19.0	24.0
	Z1/CLQFZ1/PMLZ1 Z3/CLQFZ3/PMLZ3			<1.0	<1.0	<1.0	<4.0	4.2
				<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5			2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10			7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25			18.0	20.0	22.5	19.0	24.0
Elen	nent	DHC (gm)		Element	DHC (gm)	Element		DHC (gm)
	Z1 276			CLQFZ1	307	PMLZ1		307
	Z3	283		CLQFZ3	315	PMLZ3		315
16Q	Z5	351		CLQFZ5	364	PMLZ5		364
	Z10	280		CLQFZ10	306	PMLZ10		330
	Z25	254		CLQFZ25	278	PMLZ25		299
	Z1	974		CLQFZ1	1259	PMLZ1		1485
	Z3	1001		CLQFZ3	1293	PMLZ3		1525
39Q	Z5	954		CLQFZ5	1302	PMLZ5		1235
	Z10	940		CLQFZ10	1214	PMLZ10		1432
	Z25	853		CLQFZ25	1102	PMLZ25		1299
	Element Collapse Rating: C Flow Direction: C Flement Nominal Dimensions: 1			nd QPML: 150 p side In): 6.0"	sid (10 bar), QCL (150 mm) O.D. x	QF: 100 psid (7 16.85" (430 mi	bar) m) long	

 16Q:
 6.0" (150 mm) O.D. x 16.85" (430 mm) long

 16QCLQF:
 6.0" (150 mm) O.D. x 18.21" (463 mm) long

 16QPML:
 6.0" (150 mm) O.D. x 16.00" (405 mm) long

 39Q:
 6.0" (150 mm) O.D. x 38.70" (985 mm) long

 39QCLQF:
 6.0" (150 mm) O.D. x 40.01" (1016 mm) long

 39QPML:
 6.0" (150 mm) O.D. x 37.80" (960 mm) long

Base-Ported Filter **QLF15**

$\Delta \mathbf{P}_{\mathsf{housing}}$

QLF15 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta \mathbf{P}_{\mathsf{element}}$

16QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QCLQFZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM]

 $\triangle \mathbf{P}_{\mathsf{filter}} = \triangle \mathbf{P}_{\mathsf{housing}} + (\triangle \mathbf{P}_{\mathsf{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 200 gpm (758 L/min) for QLF1516QZ3D5C using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the QLF15 housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{element}$ at 200 gpm. In this case, $\Delta \mathbf{P}_{element}$ is 7 psi (.48 bar) according to the graph for the 16QZ3 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the **Viscosity Factor** (**V**_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 2 \text{ psi} [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7 \text{ psi} [.48 \text{ bar}]$

V_f = 100 SUS (21.3 cSt) / 150 SUS (32 cSt) = .67 △**P**_{filter} = 2 psi + (7 psi * .67) = 6.7 psi <u>OR</u> △**P**_{filter} = 14 bar + (.48 bar * .67) = .46 bar Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate \ x \ \Delta P_f. Plug this variable into the overall pressure drop equation.$

Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	${\boldsymbol { \Delta P}}$
16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
16QZ25	0.01	39QPMLAS- 10V	0.01		

QLF15 Base-Ported Filter

Filter Model	How to Build a	Valid Model Nu BOX 3 BOX 4	umber for a Schroeder QF15: BOX 5 BOX 6 BOX 7 BOX 8 BOX 9	
Number				
Selection	BOX 1 BOX 2 BOX 2 BOX 1 BOX 1 BOX 1 BOX 1 BOX 2 BOX 1 BOX 1 BOX 1 BOX 2 BOX 1 BOX 1 BOX 1 BOX 2 BOX 1	Q - Z - 3	5 BOX 6 BOX 7 BOX 8 BOX 9 - D5C = QF1	516QZ3D5C
	BOX 1 BOX	2 BOX 3	BOX 4	BOX 5
	Filter Eleme Series Length	ent Element (in) Style	Media Type	Micron Rating
	QLF15 16	Q OCLOF	Z = Excellement® Z-Media® (synthetic) AS = Anti-Stat Pleat media (synthetic)	1 = 1 μ Z-Media® 3 = 3 μ AS and Z-Media®
	WQLF5 (Water)	QPML	W = W media (water removal)	$5 = 5 \mu AS and Z-Media^{\circ}$
			Water System Element Options QM60 = Q size 60 µ M media (reusable metal)	$10 = 10 \mu AS and Z-Media®$ $25 = 25 \mu Z-Media®$
	POX 6		$QM150 = Q$ size 150 μ M media (reusable meta	
	Housing Seal		Porting	Bypass Setting
	Material Omit = Buna N	P24 = 1½" NPTE	F24 = 11/2" SAE 4-bolt flange	Omit = 30 psi cracking
	V = Viton®	P32 = 2" NPTF P40 = 2½" NPTF P48 = 3" NPTF S32 = SAE-32 B24 = ISO 228 G	Code 61 F32 = 2" SAE 4-bolt flange Code 61 F40 = $2\frac{1}{2}$ " SAE 4-bolt flange Code 61 F48 = 3" SAE 4-bolt flange - $\frac{1}{2}$ " Code 61	15 = 15 psi cracking 40 = 40 psi cracking 50 = 50 psi cracking X = Blocked bypass
		B32 = ISO 228 G B40 = ISO 228 G B48 = ISO 228 G	$\begin{array}{l} -2\\ -21/2"\\ -3"\end{array} \hspace{0.5cm} F24M = 11/2" \hspace{0.5cm} SAE \hspace{0.5cm} 4\text{-bolt flange}\\ Code \hspace{0.5cm} 61\\ F32M = 2" \hspace{0.5cm} SAE \hspace{0.5cm} 4\text{-bolt flange}\\ Code \hspace{0.5cm} 61\\ F40M = 21/2" \hspace{0.5cm} SAE \hspace{0.5cm} 4\text{-bolt flange}\\ Code \hspace{0.5cm} 61\\ F48M = 3" \hspace{0.5cm} SAE \hspace{0.5cm} 4\text{-bolt flange}\\ Code \hspace{0.5cm} 61\\ \end{array}$	
		Г	Dirt Alarm [®] Ontions	
		Omit = Non		
nent element part are a combination 2, 3, 4, and 5 plus	Visual	DPG = Star D5 = Visu D5C = D5 i	ndard differential pressure gauge Ial pop-up n cap	
r V. : 16QZ1V	Visual with Thermal Lockout	D8 = Visu D8C = D8 i	ial w/ thermal lockout n cap	
re CoreCentric® elements – housing rigid metal core. e deep-pleated s with more media ser dirt holding on W, Box 3 must	Electrical	$\begin{array}{rll} MS5 = & Elec\\ MS5LC = & Low\\ MS10 = & Elec\\ MS10LC = & Low\\ MS11 = & Elec\\ MS12 = & Elec\\ MS12LC = & Low\\ MS16 = & Elec\\ MS16LC = & Low\\ MS17LC = & Elec\\ MS17LC = & El$	trical w/ 12 in. 18 gauge 4-conductor cable (current MS5 trical w/ DIN connector (male end only) (current MS10 trical w/ 12 ft. 4-conductor wire trical w/ 5 pin Brad Harrison connector (male en (current MS12 trical w/ weather-packed sealed connector (current MS16 trical w/ 4 pin Brad Harrison male connector	d only)
ents for this filter ied with Viton® seals. gnation applies to only. a registered rk of DuPont Dow ers.	Electrical with Thermal Lockout	MS5T = MS5 MS5LCT = Low MS10T = MS1 MS10LCT = Low MS12T = MS1 MS12LCT = Low MS16T = MS1 MS16LCT = Low MS17LCT = Low	5 (see above) w/ thermal lockout 7 current MS5T 10 (see above) w/ thermal lockout 7 current MS10T 12 (see above) w/ thermal lockout 7 current MS12T 16 (see above) w/ thermal lockout 7 current MS16T 7 current MS17T	
tric mounting holes. 2M, F40M and F48M	Electrical Visual	MS13 = Sup MS14 = Sup	plied w/ threaded connector & light plied w/ 5 pin Brad Harrison connector & light (r	nale end)
lied with metric nounting holes. d outlet test points all models.	Electrical Visual with Thermal Lockout	MS13DCT = MS1 MS13DCLCT = Low MS14DCT = MS1 MS14DCLCT = Low	I 3 (see above), direct current, w/ thermal lockou v current MS13DCT I 4 (see above), direct current, w/ thermal lockou v current MS14DCT	t

NOTES:

- Box 2. Replacen numbers of Boxes 2 the letter
- Box 3. QCLQF a coreless includes QPML ar elements and high capacity.
- Box 4. For optic equal Q.
- Box 6. All eleme are suppl Seal desi in Box 6 housing Viton[®] is tradema Elastome
- Box 7. B24, B32 with met F24M, F32 are supp flange m

Integral inlet and are standard on

Stainless Steel Base-Ported Filter SSQLF15

 Features and Benefits In-line version also available Element changeout from the top minimizes oil spillage Offered with standard Q and QPML deep-pleated coreless elements in 16" and 39" lengths with Viton[®] seals as the standard Offered in pipe, SAE straight thread, and flange porting 	500 gpm GH 1900 L/min RLT 1500 psi KF5 100 bar KF5
 Integral inlet and outlet test points are standard on all models Various Dirt Alarm[®] options 	К9
 All stainless steel provides compatibility with water-based fluids 	2K9
	ЗК9
	QF5
	QF5i
Model No. of filter in photograph is SSQLF1539QZ5F4850D5.	3QF5

Filter Flow Rating: Up to 500 gpm (1900 L/min) for 150 SUS (32 cSt) fluids Housing Max. Operating Pressure: 1500 psi (100 bar) Specifications Min. Yield Pressure: 4500 psi (310 bar), per NFPA T2.6.1 Rated Fatigue Pressure: Contact Factory Temp. Range: -20°F to 225°F (-29°C to 107°C) SSQLF15 Bypass Setting: Cracking: 30 psi (2 bar) Full Flow: 55 psi (4 bar) Porting Base & Cap: Stainless Steel Element Case: Stainless Steel Weight of SSQLF15-16Q: 163.0 lbs. (74.0 kg) Weight of SSQLF15-39Q: 240.0 lbs. (109.0 kg) Element Change Clearance: 16Q 12.00" (305 mm) 39Q 33.80" (859 mm)

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All E media (cellulose), Z-Media® and ASP® media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media® and all ASP® media (synthetic)	
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation and all ASP® media (synthetic)	

DLF15 **Stainless Steel Base-Ported Filter**

Metric dimensions in ().

Element Performance **Information & Dirt Holding Capacity**

		Filtration Rat Using automated pa	tio Per ISO 4572/NF rticle counter (APC) cali	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Elen	nent	β _X ≥ 75	β _X ≥ 100	$\beta_X \ge 200$	β _X (c) ≥ 200	β _X (c) ≥ 1000
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0
Eler	nent DHC (gm)	Element		DHC (gm)		

OR M12 x 1.75 x .75 DEEP MOUNTING HOLES (4) PLACES

16Q 39Q	Z1	276	PMLZ1	307
	Z3	283	PMLZ3	315
	Z5	351	PMLZ5	364
	Z10	280	PMLZ10	330
	Z25	254	PMLZ25	299
	Z1	974	PMLZ1	1485
	Z3	1001	PMLZ3	1525
39Q	Z5	954	PMLZ5	1235
	Z10	940	PMLZ10	1432
	Z25	853	PMLZ25	1299
	Element Collaps	e Rating: Qar	nd QPML: 150 psid (10 bar)	

Flow Direction: Outside In **Element Nominal Dimensions:**

16Q: 6.0" (150 mm) O.D. x 16.85" (430 mm) long

16QPML:	6.0" (150 mm) O.D. x 16.00" (405 mm) long
39Q:	6.0" (150 mm) O.D. x 38.70" (985 mm) long
39QPML:	6.0" (150 mm) O.D. x 37.80" (960 mm) long

Stainless Steel Base-Ported Filter SSQLF15

$\Delta \mathbf{P}_{\mathsf{housing}}$

SSQLF15 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta \mathbf{P}_{\mathsf{element}}$

39QPMLZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle \mathbf{P}_{\mathsf{filter}} = \triangle \mathbf{P}_{\mathsf{housing}} + (\triangle \mathbf{P}_{\mathsf{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 200 gpm (758 L/min) for SSQLF1516QZ3P48D9C using 100 SUS (21.3 cSt) fluid.

Use the housing pressure curve to determine $\Delta \mathbf{P}_{\text{housing}}$ at 200 gpm. In this case, $\Delta \mathbf{P}_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the SSQLF housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 200 gpm. In this case, $\Delta P_{element}$ is 7 psi (.48 bar) according to the graph for the 16QZ3 element.

Because the viscosity in this sample is 100 SUS (21.3 cSt), we determine the **Viscosity Factor** (**V**_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 2 \text{ psi} [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7 \text{ psi} [.48 \text{ bar}]$

V $_{f} = 100 \text{ SUS } (21.3 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = .67$ △**P** $_{\text{filter}} = 2 \text{ psi} + (7 \text{ psi} * .67) = 6.7 \text{ psi}$ <u>OR</u>

 $\Delta \mathbf{P}_{\mathsf{filter}}$ = .14 bar + (.48 bar * .67) = .46 bar

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = \text{Flow Rate } x \, \Delta \mathbf{P}_{f}. \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
16QAS3V	0.04	16QPMLZ1	0.08
16QAS5V	0.04	16QPMLZ3	0.05
16QAS10V	0.03	16QPMLZ5	0.05
16QPMLAS3V	0.05	16QPMLZ10	0.04
16QPMLAS5V	0.05	16QPMLZ25	0.02
16QPMLAS10V	0.04	39QAS3V	0.01
16QZ1	0.09	39QAS5V	0.01
16QZ3	0.04	39QAS10V	0.01
16QZ5	0.04	39QPMLAS3V	0.02
16QZ10	0.03	39QPMLAS5V	0.02
16QZ25	0.01	39QPMLAS10V	0.01

LF15 **Stainless Steel Base-Ported Filter**

Box 6. All elements for this filter are supplied with Viton® seals. Seal designation in Box 6 applies to housing only. Viton[®] is a registered trademark of DuPont Dow Elastomers.

NOTES:

Box 7. B24, B32 and B40 are supplied with metric mounting holes. F24M, F32M, F40M and F48M are supplied with metric flange mounting holes.

Integral inlet and outlet test points are standard on all models.

Section 5 Low Pressure Filters Selection Guide

			Pressure psi (bar)	Flow gpm (L/ min)	Element Length/Size	Page
	Top-Ported Lo	w Pressure Fil	ters			
		IRF	100 (7)	100 (380)	K, KK, KD, KKD	209
		TF1	300 (20)	30 (120)	A	215
		KF3	300 (20)	100 (380)	К, КК, 27К	219
		KL3	300 (20)	120 (455)	K, KK, 27K, 18LC	223
		LF1-2"	300 (20)	120 (455)	18LC	227
		MLF1	300 (20)	200 (760)	К	231
		RLD	350 (24)	100 (380)	25DN, 40D	235
	Tank-Mountee	d (In-Tank/Tan	k Top) Low	Pressure Fil	ters	
		GRTB	100 (7)	100 (380)	KBG	239
(isi		MTA	100 (7)	15 (55)	3TA	243
00		МТВ	100 (7)	35 (135)	3TB, 5TB	247
0 5(ZT	100 (7)	40 (150)	8Z	251
ıp t		KFT	100 (7)	100 (380)	K, KK, KD, KKD, 27K	255
s (L		RT	100 (7)	100 (380)	K, KK, KD, KKD, 27K	259
ter		RTI	100 (7)	120 (455)	KI, KKI, 27KI	263
E.		LRT	100 (7)	150 (570)	18L, 18LD	267
sure		ART	145 (10)	225 (850)	85Z1, 85Z3, 85Z5, 85Z10, 85Z25	271
res		BRT	145 (10)	160 (600)	2RBZ10/25, 3RBZ10/25, 4RBZ10/25, 6RBZ10/25	277
Š		TRT	145 (10)	634 (2400)	2RTZ10/25, 3RTZ10/25, 4RTZ10/25, 6RTZ10/25	281
2		BFT	100 (7)	300 (1135)	BB	289
		QT	100 (7)	450 (1700)	16Q, 16QPML, 39Q, 39QPML	293
	Special Featur	e Tank-Mount	ed Low Pre	essure Filters		
	Internal	КТК	100 (7)	100 (380)	К, КК, 27К	297
	Internal	LTK	100 (7)	150 (570)	18L	301
	Severe Duty Ta	ank-Mounted				
		MRT	900 (62)	150 (570)	18L	305
	Spin-On Low F	Pressure Filters	;			
		PAF1	100 (7)	20 (75)	6P	311
		MAF1	100 (7)	50 (190)	M, 10M	315
		MF2	150 (10)	60 (230)	M, 10M	319

Inline Return Filter IRF

	100 gpm	IRF
Features and Benefits	<u>380 L/min</u>	TF1
Low pressure top servicing in-line filterMeets HF4 automotive standard	100 psi 7 bar	KF3
 Unique side mounting flange provides reliable seal arrangement between head and bowl 		KL3
 The use of K-size elements allows consolidation of inventoried replacement elements 		LF1
 Single and double length options provide optimal size for specific applications 		MLF1
 Also available with new DirtCatcher[®] elements (KDZ and KKDZ) 		RLD
 Various Dirt Alarm[®] options 		GRTB
		ΜΤΑ
		МТВ
		ZT
20072		KFT
:012.	-	RT

Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	LRT
Max. Operating Pressure:	100 psi (7 bar)	Housing	
Min. Yield Pressure:	400 psi (28 bar), per NFPA T2.6.1	Specifications	ART
Rated Fatigue Pressure:	90 psi (6 bar), per NFPA T2.6.1-2005		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		BRT
Bypass Setting:	Cracking: 25 psi (1.7 bar) Full Flow: 48 psi (3.3 bar)		TRT
Porting Head: Element Case:	Sand Cast Aluminum Steel		BFT
Weight of IRF-1K: Weight of IRF-2K:	13.5 lbs. (6.12 kg) 17.0 lbs. (7.71 kg)		от
Element Change Clearance:	8.0" (205 mm) for 1K; 17.50" (445 mm) for KK		~ ·
			КТК

LTK

Type Fluid	Appropriate Schroeder Media	Fluid MRT
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	Accessories
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic), 10 μ ASP [®] media (synthetic)	For Tank-
Water Glycols	3, 5, 10 and 25 μ Z-Media [®] (synthetic), 3, 5, and 10 μ ASP [®] media (synthetic)	Mounted
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation and all ASP [®] Media (synthetic)	Filters
Skydrol®	3, 5, 10 and 25 μ Z-Media [®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP [®] media (synthetic)	PAF1
		MAF1

Inline Return Filter

Metric dimensions in ().

Element Performance **Information & Dirt Holding Capacity**

			Usin	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				12	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171				
Element				β _X ≥ 75	β _x ≥	100	ß	x ≥ 200		β _X (c) ≥ 20	0	β _X (c) ≥ 1	000
KZ1/KKZ	1/27KZ	1		<1.0	<1.0			<1.0		<4.0		4.2	
KZ3/KKZ3			<1.0 <1.0			<2.0		<4.0		4.8			
KZ5/KKZ5			2.5 3.0			4.0		4.8		6.3			
KZ10/KKZ	Z10			7.4	7.4 8.2			10.0		8.0	10.0		
KZ25/KKZ	Z25/27	KZ25		18.0	20	0.0		22.5		19.0 2		24.0	
KZW1				N/A	N/A			N/A		<4.0		<4.0	
KZW3/KK	ZW3			N/A	N/A			N/A		4.0		4.8	
KZW5/KK	ZW5			N/A	N/A			N/A		5.1		6.4	
KZW10/KKZW10			N/A	N/A		N/A			6.9		8.6		
KZW25/KKZW25			N/A	N/A		N/A			15.4		18.5		
	рнс		рнс		рнс		рнс		рнс	1	рнс		рнс
Element	(g)	Element	(g)	Element	(g)	Element	(g)	Element	(g)	Element	(g)	Element	(g)
KZ1	112	KKZ1	224	27KZ1	336	KDZ1	89	KKDZ1	188	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KDZ3	71	KKDZ3	150	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KDZ5	100	KKDZ5	210	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KDZ10	80	KKDZ10	168	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KDZ25	81	KKDZ25	171	KZW25	79	KKZW25	158

Flow Direction: Outside In

Element Collapse Rating: 150 psid (10 bar) for standard elements

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Inline Return Filter

$\Delta \mathbf{P}_{\text{housing}}$

IRF $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

1KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2KZ/KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle \mathbf{P}_{\mathsf{filter}} = \triangle \mathbf{P}_{\mathsf{housing}} + (\triangle \mathbf{P}_{\mathsf{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 70 gpm (265.3 L/min) for IRF2KZ10S20Y2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 3.5 psi (.24 bar) on the graph for the IRF housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 70 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 2 psi (.14 bar) according to the graph for the 2KZ10 element.

Because the viscosity in this sample is 160 SUS (24 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \mathbf{v}_{f}$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3.5 \text{ psi} [.24 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 2 \text{ psi} [.14 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{max}} = 3.5 \text{ psi} + (2 \text{ psi} * 1.1) = 5.7 \text{ psi}$

$$\Delta r_{\text{filter}} = 5.5 \text{ psi} + (2 \text{ psi} = 1.1) = 5.7 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{filter} = .24 \text{ bar} + (.14 \text{ bar} * 1.1) = .39 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_{f}$. Plug this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
К3	0.25	2K3	0.12
K10	0.09	2K10	0.05
K25	0.02	2K25	0.01
KAS3	0.10	2KAS3	0.05
KAS5	0.08	2KAS5	0.04
KAS10	0.05	2KAS10	0.03
KDZ1	0.24	2KDZ1	0.12
KDZ3	0.12	2KDZ3	.0.6
KDZ5	0.10	2KDZ5	0.05
KDZ10	0.06	2KDZ10	0.03
KDZ25	0.04	2KDZ25	0.02
KZW1	0.43	2KZW1	-
KZW3	0.32	2KZW3	0.16
KZW5	0.28	2KZW5	0.14
KZW10	0.23	2KZW10	0.12
KZW25	0.14	2KZW25	0.07

Inline Return Filter

IRF

Filter How to Bu	uild a Valid Model Nu	imber for a Schroeder	IRF:		
			BUX /		
BOX 1	BOX 2 BOX 3	BOX 4 BOX 5 BOX	6 BOX 7		
IRF	– 2K – Z –	10 – S20	0 – Y2 = IRF2	2KZ10S20Y2	
BOX 1	BOX 2	BOX 3			
Filter	Number and Size	Element T	уре		
IRF	1 = K, KK	Omit = E media (cellulose	·)		
	2 = K	AS = Anti-Static Pleat N	Лedia		
		Z = Excellement [®] Z-M	edia [®] (synthetic)		
		ZW = Aqua-Excellement	t [®] ZW media		
		W = Water Removal m	iedia		
		M = M media (reusable	e metal)		
		DZ = DirtCatcher [®] Exce	llement [®] Z-Media [®]		
	BOX 4	BOX 5	BOX	BOX 6	
	Micron Rating	Seal Material	Inlet Po	rting	
1 = 1	μ(Z, ZW and DZ media)	Omit = Buna N	P16 = 1" NPTF		
3 = 3	μ (E, AS, Z, ZW and DZ me	edia) H = EPR	P20 = 1 ¹ / ₄ " NPTF		
5 = 5	μ (AS, Z, ZW and DZ medi	ia) V = Viton®	S16 = SAE-16		
10 = 10	μ (E, AS, Z, ZW and DZ me	edia)	S20 = SAE-20	alt flange Code 61	
60 = 60	μ (L, A3, 2, 2w and D2 m μ (M media)		$F24 = 1\frac{1}{4}$ " SAE 4-b	olt flange Code 61	
00 - 00			B24 = ISO 228 G-11		
	В	30X 7			
	Dirt Alar	m [®] Options			
	Omit = None	2			
Located C	Visual Y2 = Back	-mounted tri-color gauge			
Port D	ES = Elect	rical switch			
(Standard)	Electrical ES1 = Heav	y-duty electrical switch with co ector	onduit		
	Visual Y2R = Back of sta	-mounted gauge mounted on andard location	opposite side		
Located @ Port C	ESR = Elect	site side			
(Optional)	Electrical ES1R = Heav	y-duty electrical switch with c	onduit		
	conn	ector			
	Port Config	juration			
	D	(Standard)			
art , ,	(Inlet) A	B (Outlet)			

C (Optional)

Box 5. Viton[®] is a registered trademark of DuPont Dow Elastomers.

elements.
	 Features and Benefits Offered in pipe, SAE straight thread, flange and ISO 228 porting Various Dirt Alarm® options Available with No-Element indicator Available with NPTF inlet and outlet female test ports Available with magnet inserts Available with housing drain plug 	30 gpm 120 L/min 300 psi 20 bar KF3 LF1 MLF1 RLD GRTB MTA MTB ZT	
Model No. of filter in photograph is TF11AZ10	S.	RT	•

RTI

Flow Rating:	Up to 30 gpm (120 L/min) for 150 SUS (32 cSt) fluids	Filter	LRT
Max. Operating Pressure:	300 psi (20 bar)	Housing	
Min. Yield Pressure:	1200 psi (80 bar), per NFPA T2.6.1	Specifications	ART
Rated Fatigue Pressure:	270 psi (19 bar), per NFPA T2.6.1-2005		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		BRT
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 51 psi (4 bar)		TRT
Porting Head: Element Case:	Cast Aluminum Steel		BFT
Weight of TF1-1A: Weight of TF1-2A:	5.1 lbs. (2.3 kg) 6.3 lbs. (2.9 kg)		от
Element Change Clearance:	3.50" (90 mm)		Ŷ
		—	КТК

- LTK

Type Fluid	Appropriate Schroeder Media	Fluid MRT
Petroleum Based Fluids	All E media (cellulose) and Z-Media [®] (synthetic)	Compatibility
High Water Content	All Z-Media [®] (synthetic)	Accessories
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic)	For lank-
Water Glycols	3, 5, 10 and 25 μ Z-Media [®] (synthetic)	Filters
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation	Inters
Skydrol®	3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)	PAF1
		MAF1

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Ra Using automated p	tio Per ISO 4572/NF article counter (APC) calib	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171			
Element	$\beta_x \ge 75$	$B_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$	
AZ1	<1.0	<1.0	<1.0	<4.0	4.2	
AZ3	<1.0	<1.0	<2.0	<4.0	4.8	
AZ5	2.5	3.0	4.0	4.8	6.3	
AZ10	7.4	8.2	10.0	8.0	10.0	
AZ25	18.0	20.0	22.5	19.0	24.0	

Element	DHC (gm)
A3	16
A10	13
AZ1	25
AZ3	26
AZ5	30
AZ10	28
A725	28

Element Collapse Rating:150 psid (10 bar)Flow Direction:Outside InElement Nominal Dimensions:3.0" (75 mm) O.D. x 4.5" (115 mm) long

216 SCHROEDER INDUSTRIES

TF1

$\Delta \mathbf{P}_{\mathsf{housing}}$

TF1 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 15 gpm (57 L/min) for TF11AZ3PD5 using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the TF1 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 15 gpm. In this case, $\Delta P_{element}$ is 7.5 psi (.52 bar) according to the graph for the AZ3 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the **Viscosity Factor (V_f)** by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \mathbf{v}_{f}$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7.5 \text{ psi } [.52 \text{ bar}]$

 $V_f = 175 \text{ SUS } (37.2 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.2$ △ $P_{\text{filter}} = 3 \text{ psi} + (7.5 \text{ psi} * 1.2) = 12 \text{ psi}$ OR

△P_{filter} = .21 bar + (.52 bar * 1.2) = .83 bar

Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow Rate \times \Delta \mathbf{P}_{f}$. Plug this variable into the overall pressure drop equation.

•		•	
Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
A3	0.53	AA3	0.27
A10	0.36	AA10	0.18
A25	0.05	AA25	0.03

Filter	How to	Build a Vali	d Model Number for a Schroeder TF1:		
Model	BOX 1	BOX 2 BC	X 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8	3	
Number	TF1	┝┥───┝┥──			
Selection	Example:	NOTE: Only box &	8 may contain more than one option		
	BOX 1	BOX 2 BC	X 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8	3	
	TF1	<u> </u>	.3 P - D5 -	= TF11A3PD5	
	L				
	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
	Filter Series	Number of Elements	Element Part Number	Seal Material	Magnet Option
	TF1	1	$A3 = 3 \mu E media (cellulose)$	Omit = Buna N	Omit = None
		2	A10 = 10 μ E media (cellulose)	H = EPR	M = Magnet
		2	$AZS = 2S \mu E \text{ media (cellulose)}$	V = Viton®	Inserts
			$AZI = I \mu Excellement® Z-Media® (synthetic)$	H.5 = SKydrol [®]	
			$AZ3 = 3 \mu$ Excellement [®] Z-Media [®] (synthetic)	compatibility	
			AZ5 = 5 μ Excellement [®] Z-Media [®] (synthetic)		
			AZ10 = 10 μ Excellement [®] Z-Media [®] (synthetic)		
			AZ25 = 25 µ Excellement [®] Z-Media [®] (synthetic)		
			AM10 = 10 μ M media (reusable metal)		
			AM25 = 25 μ M media (reusable metal)		

BOX 6		BOX 8	
Porting Options		Dirt Alarm [®] Options	
P = 1" NPTF		Omit = None	Omit = None
^S = SAE-16 ^B = ISO 228 G-1"	Visual	D = Pointer D5 = Visual pop-up	L = Two ¼" NPTF inlet
10 = 10 psi bypass setting	Visual with Thermal Lockout	D8 = Visual w/ thermal lockout	and outlet female test
15 = 15 psi bypass setting		MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable	ports
20 = 20 psi bypass		MS5LC = Low current MS5	N = No-Element
setting		MS10 = Electrical w/ DIN connector (male end only)	indicator
setting		MS10LC = Low current MS10	G440 = ½" drain
30 = 30 psi bypass		MS11 = Electrical w/ 12 ft. 4-conductor wire	on bottom
40 = 40 psi bypass	Electrical	MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)	of housing
60 = 60 psi bypass		MS12LC = Low current MS12	
setting		MS16 = Electrical w/ weather-packed sealed connector	
75 = 75 psi bypass setting		MS16LC = Low current MS16	
Setting		MS17LC = Electrical w/ 4 pin Brad Harrison male connector	
		MS5T = MS5 (see above) w/ thermal lockout	
		MS5LCT = Low current MS5T	
	Flactrical	MS101 = MS10 (see above) w/ thermal lockout	
	with	MS10LCT = Low current MS10T	
	Thermal	MS121 = MS12 (see above) w/ thermal lockout	
	Lockout	MS12LCT = Low current MS12T	
		MS161 = MS16 (see above) w/ thermal lockout	
		MS16LCT = Low current MS16T	
		MS1/LCT = Low current MS1/T	
		MS = Cam operated switch w/ ½" conduit	
	Electrical	MS13 - Supplied w/ threaded connector & light	
	Visual	MS14 = Supplied W/ 5 pin Brad Harrison connector & light (male end)	
	Electrical	MS13DCT = MS13 (see above), direct current, w/ thermal lockout	
	Visual with	MS13DCLCT = Low current MS13DCT	
	Thermal	MS14DCT = MS14 (see above), direct current, w/ thermal lockout	
	LOCKOUT	MS14DCLCT = Low current MS14DCT	

NOTES:

Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4. E media elements are only available with Buna N seals.

TF1

- Box 4. For option V, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton[®] is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 6. B porting option supplied with metric mounting holes.

(TI

Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	LRT
Max. Operating Pressure:	300 psi (20 bar)	Housing	
Min. Yield Pressure:	1000 psi (70 bar), per NFPA T2.6.1	Specifications	ART
Rated Fatigue Pressure:	290 psi (20 bar), per NFPA T2.6.1-2005		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		BRT
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 51 psi (4 bar)		TRT
Porting Head: Element Case:	Die Cast Aluminum Steel		DET
Weight of KF3-1K: Weight of KF3-2K:	10.5 lbs. (4.8 kg) 14.2 lbs. (6.4 kg)		DFI
Weight of KF3-3K:	18.5 lbs. (8.4 kg)		QT
Element Change Clearance:	1.50" (40 mm) for all lengths		
		—	КТК

LTK

Type Fluid	Appropriate Schroeder Media	Fluid MRT
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] Media (synthetic)	Accessories
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic), 10 μ ASP [®] media (synthetic)	For lank-
Water Glycols	3, 5, 10 and 25 μ Z-Media® (synthetic), 3, 5, and 10 μ ASP® Media (synthetic)	Nounted Filtors
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation and all ASP [®] media (synthetic)	Dara
Skydrol®	3, 5, 10 and 25 μ Z-Media [®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP [®]	PAFI
		MAF1
Water Glycols Phosphate Esters Skydrol®	 3, 5, 10 and 25 μ Z-Media[®] (synthetic), 3, 5, and 10 μ ASP[®] Media (synthetic) All Z-Media[®] (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation and all ASP[®] media (synthetic) 3, 5, 10 and 25 μ Z-Media[®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP[®] media (synthetic) SCHROEDER INDUSTRIES 21 	PAF1 MAF1

Metric dimensions in ().

Element Performance **Information & Dirt Holding Capacity**

	Filtration Ratio Using auton calil	o Per ISO 4572/N nated particle co brated per ISO 4	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	Յ _X ≥ 75	β _χ ≥ 100	$\beta_{\mathbf{X}} \ge 200$	β _χ (c) ≥ 200	β _X (c) ≥ 1000
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5

	DHC												
Element	(g)												
KZ1	112	KKZ1	224	27KZ1	336	KDZ1	89	KKDZ1	188	KZW1	61		
KZ3	115	ККZ3	230	27KZ3	345	KDZ3	71	KKDZ3	150	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KDZ5	100	KKDZ5	210	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KDZ10	80	KKDZ10	168	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KDZ25	81	KKDZ25	171	KZW25	79	KKZW25	158

Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: Outside In

Element Nominal Dimensions: K:

3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

KF3

$\Delta \mathbf{P}_{\mathsf{housing}}$

KF3 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

KZ

2KZ/KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM]

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 70 gpm (265.3 L/min) for KF31KZ10SD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 4 psi (.27 bar) on the graph for the KF3 housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 70 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \mathbf{v}_{f}$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 4 \text{ psi } [.227 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

V $_{f}$ = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 △**P** $_{filter}$ = 4 psi + (3 psi * 1.1) = 7.7 psi OR

 $\Delta \mathbf{P}_{filter} = .27 \text{ bar} + (.21 \text{ bar} * 1.1) = .50 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_{f}$. Plug this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	КЗК	0.08
KDZ1	0.24	2KDZ1	0.12	3K10	0.03
KDZ3	0.12	2KDZ3	0.06	3K25	0.01
KDZ5	0.10	2KDZ5	0.05	3KAS3/ 27KAS3	0.03
KDZ10	0.06	2KDZ10	0.03	3KAS5/ 27KAS5	0.02
KDZ25	0.04	2KDZ25	0.02	3KAS10/ 27KAS10	0.02
KZW1	0.43	2KZW1	-		
KZW3	0.32	2KZW3/ KKZW3	0.16		
KZW5	0.28	2KZW5/ KKZW5	0.14		
KZW10	0.23	2KZW10/ KKZW10	0.12		
KZW25	0.14	2KZW25/ KKZW25	0.07		

- Box 2. Double and triple
- Box 3. Replacement element
- Box 7. For option F, bolt
- Box 10. Option L not available

222 SCHROEDER INDUSTRIES

Return Line Filter with Threaded Bowl

KL3

Model No. of filter in photograp	<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header>	120 gpm <u>455 L/min</u> 300 psi 20 bar	IRF TF1 KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT KFT RT
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids for P24, S24, F24 and B24 porting	Filter Housing	RTI
	Up to 120 gpm (455 L/min) for 150 SUS (32 cSt) fluids for P32, S32 and B32 porting	Specifications	LRT
Max. Operating Pressure:	300 psi (20 bar)		ΔRT
Min. Yield Pressure:	1000 psi (70 bar), per NFPA T2.6.1		
Rated Fatigue Pressure:	300 psi (20 bar), per NFPA T2.6.1-2005		BRT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 68 psi (4.7 bar)		TRT
Porting Head: Element Case:	Cast Aluminum Steel		BFT

LTK

Type Fluid	Appropriate Schroeder Media	Fluid MRT
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	Accessories
Invert Emulsions	10 and 25 μ Z-Media® (synthetic), 10 μ ASP® media (synthetic)	For lank-
Water Glycols	3, 5, 10 and 25 μ Z-Media [®] (synthetic), 3, 5, and 10 μ ASP [®] media (synthetic)	Filters
Phosphate Esters	All Z-Media [®] with H (EPR) seal designation and all ASP [®] media (synthetic)	Titters
		PAF1
		MAF1

KL3

Return Line Filter with Threaded Bowl

Element Performance Information & Dirt Holding Capacity

Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
$\beta_{\mathbf{X}} \ge 75$	$\beta_{\mathbf{X}} \ge 100$	β _χ ≥ 200	β _χ (c) ≥ 200	β _X (c) ≥ 1000
<1.0	<1.0	<1.0	<4.0	4.2
<1.0	<1.0	<2.0	<4.0	4.8
2.5	3.0	4.0	4.8	6.3
7.4	8.2	10.0	8.0	10.0
18.0	20.0	22.5	19.0	24.0
N/A	N/A	N/A	<4.0	<4.0
N/A	N/A	N/A	4.0	4.8
N/A	N/A	N/A	5.1	6.4
N/A	N/A	N/A	6.9	8.6
N/A	N/A	N/A	15.4	18.5
<1.0	<1.0	<1.0	<4.0	4.2
<1.0	<1.0	<2.0	<4.0	4.8
2.5	3.0	4.0	4.8	6.3
7.4	8.2	10.0	8.0	10.0
18.0	20.0	22.5	19.0	24.0
	Filtration Ratio Using automai (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)	Filtration Ratio Per ISO 43572/NII Using automated particle concentrate per ISO 44 $\beta_x \ge 75$ $\beta_x \ge 100$ <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <2.5 3.0 7.4 8.2 18.0 20.0 N/A	Filtration Ratio Per ISO 4572/NIPA T3.10.8.8 Variable of SO 4572/NIPA T3.10.8.8 Big 4502/NIPA T3.10.8.8 Big 4502/NIPA T3.10.8.8 Big 4502/NIPA T3.10.8 Big 4502/NIPA T3.10.8 Big 4502/NIPA T3.10.8 Big 4502/NIPA T3.10.8 Galbaria Big 4502/NIPA T3.10.8 Colspan="2">South colspan="2">All South colspan="2" All South colspas	Filtration Ratio Per ISO 4572/NIPA T3.10.8.8 Filtration Ratio Using APC calibrated per ISO 4402 $\beta_x \ge 75$ $\beta_x \ge 100$ $\beta_x \ge 200$ $\beta_x(\mathbf{O} \ge 200)$ <1.0 <1.0 <1.0 <4.0 <1.0 <1.0 <2.0 <4.0 <1.0 <1.0 <2.0 <4.0 <1.0 <1.0 <2.0 <4.0 <1.0 <1.0 <2.0 <4.0 <1.0 <1.0 <2.0 <4.0 <1.0 <1.0 <2.0 <4.0 <1.0 <1.0 <2.0 <4.0 <1.0 <1.0 <2.0 <4.0 <1.0 <2.0 <1.0 <0.0 <2.5 19.0 <1.0 <1.0 <1.0

	DHC										
Element	(g)										
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61			18LCZ1	224
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128	18LCZ3	230
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126	18LCZ5	238
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114	18LCZ10	216
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158	18LCZ25	186

Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: Outside In

Element Nominal Dimensions: K:

K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

18LC: 4.0" (100 mm) O.D. x 18.5" (470 mm) long

224 SCHROEDER INDUSTRIES

Return Line Filter with Threaded Bowl

KL3

${\boldsymbol{\bigtriangleup}} {\boldsymbol{\mathsf{P}}}_{\text{housing}}$

KL3 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \mathbf{P}_{\mathsf{filter}} = \triangle \mathbf{P}_{\mathsf{housing}} + (\triangle \mathbf{P}_{\mathsf{element}} * \boldsymbol{\mathcal{V}}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 70 gpm (265.3 L/min) for KL31KZ10P24D5L using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 7 psi (.48 bar) on the graph for the KL3 housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 70 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \mathbf{v}_{f}$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 7 \text{ psi } [.48 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

V $_{f}$ = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 △**P** $_{filter}$ = 7 psi + (3 psi * 1.1) = 10.7 psi OR

 $\Delta \mathbf{P}_{\text{filter}} = .48 \text{ bar} + (.21 \text{ bar} * 1.1) = .71 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_{f} \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	18LC3	0.12
K10	0.09	2K10/ KK10	0.05	18L10	0.05
K25	0.02	2K25/ KK25	0.01	18LCZ1	0.10
KAS3	0.10	2KAS3/ KKAS3	0.05	18LCZ3	0.05
KAS5	0.08	2KAS5/ KKAS5	0.04	18LCZ5	0.04
KAS10	0.05	2KAS10/ KKAS10	0.03	18LCZ10	0.03
KZW1	0.43	2KZW1	-	18LCZ25	0.02
KZW3	0.32	2KZW3/ KKZW3	0.16		
KZW5	0.28	2KZW5/ KKZW5	0.14		
KZW10	0.23	2KZW10/ KKZW10	0.12		
KZW25	0.14	2KZW25/	0.07		

Return Line Filter with Threaded Bowl

	Filter	How to Bui	ild a Valid N	Aodel Number for	a Schroeder KL3:		
	Model Number	BOX 1 BO	DX 2 BOX 3	BOX 4 BOX 5 E	BOX 6 BOX 7 BOX 8	BOX 9 BOX	(10
	Selection	Example: Opt	ion 1 NOTE: One	e option per box	Option 2 NOTE: (One option per bo	K
			3 4 5	6 7 8 9		4 5 6	7 8 9 10
		KL3-18LC-	Z-1-H-	-P24 - D5 - L -	- KL3-2K-Z	- <u>1</u> - <u>-</u> P24-	D5L
		BOX 1 B	OX 2	BOX 3 Option 1	BOX 4	1	
		Filter Series	Size	Media Type	Micron R	ating	
		KI 3	18 LC Omit =	E media (cellulose)	1 = 1μ(Z-M	edia®)	
			Z =	Excellement® Z-Media® (syr	thetic) $3 = 3 \mu$ (E an	d Z-Media®)	
		(GeoSeal [®])	VVat KM10 =	er System Element Opti = 10 µ M media (reusable metal)	on 5 = 5 μ (Ζ-Μ	edia®)	
		WKI 3	KM25 =	= 25 µ M media (reusable metal)	10 = 10 μ (E an	d Z-Media [®])	
		(Water)	KM60 =	= 60 μ M media (reusable metal)	25 = 25 μ (E an	d Z-Media [®])	
		,	KM260 =	= 150 μ IVI media (reusable metal = 260 μ Μ media (reusable metal)		
		BOX 2		BOX 3	BOX 4		BOX 5
		Number			Option 2		
		& Size of Elements	M	edia Type	Micron Ra	ting	Seal Material
		1K, KK,27K 2K	Omit = E media (7 = Excellence	(cellulose) ent® 7-Media® (synthetic)	1 = 1 μ (Ζ, ΖW and DZ 3 = 3 μ (Ε AS Ζ ΖW a	media) nd DZ media)	Omit = Buna N H = FPR
		3K	AS = Anti-Stat	ic Pleat Media (synthetic)	$5 = 5 \mu$ (AS, Z, ZW and $5 = 6 \mu$ (AS, Z, ZW and	DZ media)	$V = Viton^{(m)}$
			ZVV = Aqua-Exc W = Water Re	ellement® ZVV media emoval media	$10 = 10 \mu$ (E, AS, Z, ZVV, I 25 = 25 μ (E, Z, ZW, M ar	id DZ media) id DZ media)	H.5 = Skydrol [®] Compatibility
			M = M media DZ = DirtCatch	(reusable metal) per® Excellement® 7-Media®	$60 = 60 \mu$ (M media)		W = Buna N
		BO	X 6	BOX 7			
		Port	ting	Bypass Settin	q		
NOTEC		P24 = 1½" NPTF		Omit = 30 psi cracking			
NOTES:		S24 = SAE-24	-bolt flange	50 = 50 psi cracking (rec	ą. for HF4)		
Box 2. Double a stacking	and triple of K-size	F24 = Code 61 B24 = ISO 228 G	.11/5"				
element replaced	s can be by single	P32 = 2" NPTF	1/2				
KK and a	27K elements,	S32 = SAE-32 B32 = SO 228 G-2	2"				
of eleme	ents must						
KK or 27	7K elements.			BOX 8		BOX 9	BOX 10
Replacei part nur	ment element mbers are		Di	rt Alarm [®] Options		Options	Bowl Drain Option
identica of Boxes	l to contents 5 2, 3, 4, and 5.	Visua	Omit =	None Visual pop-up		Omit = None	Omit = None
ZW med in 27K le	lia not available	Visual with Therma	D8 =	Visual w/ thermal lockout		NPTF	bottom of housing
Example	e: 18LCZ3V	LOCKOU	MS5 =	Electrical w/ 12 in. 18 gauge 4-c	onductor cable	inlet and outlet	
Box 5. For option	ons H, W, V, and		MS5LC = MS10 =	Low current MS5 Electrical w/ DIN connector (male	e end only)	ports	
are anot	dized.H.5 seal		MS10LC =	Low current MS10	Aire .		_
designat the follo	tion includes owing: EPR seals,	Electrica	MS12 =	Electrical w/ 5 pin Brad Harrison	connector (male end only)		
stainless on elem	steel wire mesh ents, and light		MS12LC = MS16 =	Electrical w/ weather-packed sea	aled connector		
oil coati	ng on housing		MS16LC = MS17LC =	Low current MS16 Electrical w/ 4 pin Brad Harrison	male connector		
Viton [®] is	a registered		MS5T = MS5LCT =	MS5 (see above) w/ thermal lock Low current MS5T	kout		
tradema Dow Ela	stomers.		MS10T =	MS10 (see above) w/ thermal lo	ckout		
Skydrol [®] tradema	is a registered	Electrical with Thermal Lockout	MS12T =	MS12 (see above) w/ thermal lo	ckout		
			MS12LCT = MS16T =	MS16 (see above) w/ thermal lo	ckout		
options	supplied with		MS16LCT = MS17LCT =	Low current MS16T Low current MS17T			
metric m 18LC ele	nounting holes. ements require	Electrical Visua	MS13 = MS14 =	Supplied w/ threaded connector Supplied w/ 5 pin Brad Harrison	r & light connector & light (male end)		
2" ports gpm. K	for up to 120 size elements	Electrical Visual with	MS13DCT =	MS13 (see above), direct current Low current MS13DCT	t, w/ thermal lockout		
require to 100 a	1½" ports for up	Thermal Lockout	t MS14DCT = MS14DCLCT =	MS14 (see above), direct current Low current MS14DCT	t, w/ thermal lockout		

KL3

LF1

120 gpm <u>455 L/min</u> TF1 **Features and Benefits** 300 psi 20 bar ■ Offered in pipe, SAE straight thread KF3 and ISO 228 porting ■ Available in 18" element lengths only KL3 Various Dirt Alarm[®] options Available with NPTF inlet and outlet LF1 female test ports ■ Available with 2" porting with "K" MLF1 size element ■ Available with housing drain plug ΜΤΑ **MTB KFT**

Model No. of filter in photograph is LF118LCZ10P32D.

			_	
Flow Ratin	g: Up to 120 gpm (455 L/min) for 150 SUS (32 cSt) fluids	Fi	lter	LRT
Max. Operating Pressur	e: 300 psi (20 bar)	H	ousing	
Min. Yield Pressur	e: 1000 psi (70 bar), per NFPA T2.6.1	S	pecifications	ART
Rated Fatigue Pressur	e: 250 psi (17 bar), per NFPA T2.6.1-2005			
Temp. Rang	e: -20°F to 225°F (-29°C to 107°C)			BRT
Bypass Settin	g: Cracking: 30 psi (2.1 bar) Full Flow: 60 psi (4.1 bar)			TRT
Porting Hea Element Cas	d: Cast Aluminum e: Steel			BFT
Available Portin	g: 2" NPTF, 2½-12 SAE Straight			BIT
Weight of LF1-18L	C: 17.5 lbs. (7.9 kg)			QT
Element Change Clearand	e: 2.0" (55 mm)			
		_		КТК

LTK

Type Fluid	Appropriate Schroeder Media	Fluid MRT
Petroleum Based Fluids	All E media (cellulose) and Z-Media [®] (synthetic)	Compatibility
High Water Content	All Z-Media (synthetic)	Accessories
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic)	For lank-
Water Glycols	3, 5, 10 and 25 μ Z-Media® (synthetic)	Filters
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation	Thers
Skydrol®	3, 5, 10 and 25 μ Z-Media [®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)	PAF1
		MAF1

Metric dimensions in ().

÷.

Element Performance Information & Dirt Holding Capacity

	Filtration Ra Using automated p	tio Per ISO 4572/NFI article counter (APC) calib	Filtration Ratio	o per ISO 16889 ted per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
18LCZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LCZ3	<1.0	<1.0	<2.0	<4.0	4.8
18LCZ5	2.5	3.0	4.0	4.8	6.3
18LCZ10	7.4	8.2	10.0	8.0	10.0
18LCZ25	18.0	20.0	22.5	19.0	24.0
Element	DHC (gm)				
18LCZ1	224				
18LCZ3	230				
18LCZ5	238				
18LCZ10	216				
18LCZ25	186				
		150 mid (10 har)			

Element Collapse Rating:150 psid (10 bar)Flow Direction:Outside InElement Nominal Dimensions:4.0" (100 mm) O.D. x 18.5" (470 mm) long

LF1

$\Delta \mathbf{P}_{\mathsf{housing}}$

LF1-2" $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

$\Delta \mathbf{P}_{element}$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 70 gpm (265.3 L/min) for LF118LCZ3P32D5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the LF1 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 70 gpm. In this case, $\Delta P_{element}$ is 3.5 psi (.24 bar) according to the graph for the 18LCZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f}$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3.5 \text{ psi } [.24 \text{ bar}]$

 \mathbf{v}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta \mathbf{P}_{filter}$ = 2 psi + (3.5 psi * 1.1) = 5.9 psi

OR

 $\Delta \mathbf{P}_{filter}$ = .14 bar + (.24 bar * 1.1) = .40 bar

Filter Model Number Selection	How to Build BOX 1 BOX 2 LF1 - Example: NOTE: C BOX 1 BOX 2 LF1 - 18	a Valid I 2 BOX 3 Inly box 7 m. 2 BOX 3 - LC3	BOX 4 BOX 5 BOX 6 BOX 7 ay contain more than one option BOX 4 BOX 5 BOX 6 BOX 7 BOX 4 BOX 5 BOX 6 BOX 7 Example Example BOX 4 BOX 5 BOX 6 BOX 7 Example Example Example BOX 4 BOX 5 BOX 6 BOX 7 Example Example Example	18LC3I	P32D5
	BOX 1 B	OX 2	BOX 3		BOX 4
	Filter Len Series Ele	gth of ment	Element Size and Media	Sea	al Material
	LF1	(n) 18	LC3 = LC size 3 μ E media (cellulose) LC10 = LC size 10 μ E media (cellulose)	Omit H	= Buna N = EPR
	WLF1		LCZ1 = LC size 1 µ Excellement® Z-Media [™] (synthetic)	V	= Viton®
	(vide)		$\begin{array}{llllllllllllllllllllllllllllllllllll$	H.5	= Skydrol® Compatibility
	BOX 5		BOX 6		BOX 7
	Porting		Dirt Alarm [®] Options		Additional Options
	P32 = 2" NPTF		Omit = None		Omit = None
	S32 = SAE-32	Visual	D = Pointer		L = Two ¼" NPTF inlet and outlet female test ports
	B32 = ISO 228 G-2"		D5 = Visual pop-up		$G426 = \frac{3}{4}$ " drain on bottom of housing
		Visual with Thermal Lockout	D8 = Visual w/ thermal lockout		G440 = ½" drain on bottom of housing
		Electrical	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end onl MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed conn MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male conr	v; y) or ector ector	
nent element hbers are a 4. : 18LCZ3V ons H, V, and aluminum parts dized. H.5 seal tion includes owing: EPR seals, steel wire mesh		Electrical with Thermal Lockout	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T		
ents, and light ng on housing a registered rk of DuPont		Electrical Visual	$MS = \begin{array}{l} \text{Cam operated switch w/ 1/2" conduit} \\ \text{female connection} \\ MS13 = \begin{array}{l} \text{Supplied w/ threaded connector & light} \\ MS14 = \begin{array}{l} \text{Supplied w/ 5 pin Brad Harrison connector} \end{array}$	or	
stomers. is a registered rk of Solutia Inc. g option I with metric us boloc		Electrical Visual With Thermal	MS13DCT = MS13 (see above), direct current, w/ thermal k MS13DCLT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/ thermal k MS14DCT = Low current MS14DCT	ockout ockout	
ig noles. 📃		LUCKOUT			

NOTES:

Box 2. Replacen part num combinat 2, 3, and Example

.F1

- Box 4. For optio H.5, all al are anod designati the follow stainless on eleme oil coatin oil coati exterior. Viton[®] is tradema Dow Elas Skydrol® tradema
- Box 5. B porting supplied mounting holes.

230 SCHROEDER INDUSTRIES

Top-Ported Return Line FilterMLF1

	Features and wRenefits	200 gpm 760 L/min	IRF TF1
0	 Equipped with inlet and outlet manifolds Meets HF4 automotive standard Offered in pipe and flange porting 	300 psi 20 bar	KF3
	 Available in 2, 4 or 6 element configurations Various Dirt Alarm[®] options 		KL3 LF1
	 Available with NPTF inlet and outlet female test ports Available with housing drain plugs 		MLF1
	G Available with quality-protected GeoSeal [®] Elements (GMLF1)		RLD
			GRTB MTA
			МТВ
			ZT
Model No. of filter in photograph is MLF14K10P	D.		KFT

Flow Rating:	Up to 200 gpm (760 L/min) for 150 SUS (32 cSt) fluids	Filter	I RT
Max. Operating Pressure:	300 psi (20 bar)	Housing	LIVI
Min. Yield Pressure:	1000 psi (70 bar), per NFPA T2.6.1	Specifications	ART
Rated Fatigue Pressure:	250 psi (17 bar), per NFPA T2.6.1-2005		7 11 1
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		BRT
Bypass Setting:	Cracking: 25 psi (2 bar) Full Flow: 60 psi (4 bar)		TRT
Porting Head: Element Case:	Anodized Cast Aluminum Steel		DET
Weight of MLF1-2K: Weight of MLF1-4K: Weight of MLF1-6K:	44.0 lbs. (20.0 kg) 50.0 lbs. (23.0 kg) 58.0 lbs. (26.0 kg)		QT
Element Change Clearance:	2.0" (55 mm)		
			KTK

LTK

Type Fluid	Appropriate Schroeder Media	Fluid MRT
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] (synthetic)	Accessories
Invert Emulsions	10 and 25 μ Z-Media [®] (synthetic)	For lank-
Water Glycols	3, 5, 10 and 25 μ Z-Media [®] (synthetic)	Filters
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation and all ASP [®] media (synthetic)	DAE1
Skydrol®	3, 5, 10 and 25 μ Z-Media [®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP [®] media (synthetic).	MAF1
	SCHROEDER INDUSTRIES 23	1 MF2

Top-Ported Return Line Filter

Metric dimensions in ().

Element Performance **Information & Dirt Holding Capacity**

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio	o per ISO 16889 ted per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5	2.5	3.0	4.0	4.8	6.3
KZ10	7.4	8.2	10.0	8.0	10.0
KZ25	18.0	20.0	22.5	19.0	24.0
KZW3	N/A	N/A	N/A	<4.0	4.8
KZW5	N/A	N/A	N/A	5.1	6.4
KZW10	N/A	N/A	N/A	6.9	8.6
KZW25	N/A	N/A	N/A	15.4	18.5

Element	DHC (gm)						
2KZ1	224	4KZ1	448	6KZ1	672		
2KZ3	230	4KZ3	460	6KZ3	690	KZW3	64
2KZ5	238	4KZ5	476	6KZ5	714	KZW5	63
2KZ10	216	4KZ10	432	6KZ1	648	KZW10	67
2KZ25	186	4KZ25	372	6KZ25	558	KZW25	79

Flow Direction: Outside In

Element Collapse Rating: 150 psid (10 bar) for standard elements Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

Top-Ported Return Line Filter MLF

$\Delta \mathbf{P}_{\mathsf{housing}}$

MLF1 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta \mathbf{P}_{\mathsf{element}}$

4KZ/2KKZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

6KZ/2-27KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle \mathbf{P}_{\mathsf{filter}} = \triangle \mathbf{P}_{\mathsf{housing}} + (\triangle \mathbf{P}_{\mathsf{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 150 gpm (568.5 L/min) for MLF14K10PD using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta \mathbf{P}_{\text{housing}}$ at 150 gpm. In this case, $\Delta \mathbf{P}_{\text{housing}}$ is 15 psi (1 bar) on the graph for the MLF1 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 150 gpm. In this case, $\Delta P_{element}$ is 3 psi (.21 bar) according to the graph for the KKZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 15 \text{ psi} [1 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3 \text{ psi} [.21 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ △ $P_{\text{filter}} = 15 \text{ psi} + (3 \text{ psi} * 1.1) = 18.3 \text{ psi}$ <u>OR</u> △ $P_{\text{filter}} = 1 \text{ bar} + (.21 \text{ bar} * 1.1) = 1.2 \text{ bar}$ Pressure Drop Information Based on Flow Rate and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_{f}$. Plug this variable into the overall pressure drop equation.

Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
2KZ1	0.10	2K3	0.12	4K3/ KK3	0.06
2KZ3	0.05	2K10	0.05	4K10/ KK10	0.02
2KZ5	0.04	2K25	0.01	4K25/ KK25	0.01
2KZ10	0.03	2KAS3	0.05	4KAS3/ KKAS3	0.03
2KZ25	0.02	2KAS5	0.04	4KAS5/ KKAS5	0.02
KZW3	0.32	2KAS10	0.03	4KAS10/ KKAS10	0.02
KZW5	0.28	2KZW3/ KKZW3	0.16	6KAS3/ 27KAS3	0.02
KZW10	0.23	2KZW5/ KKZW5	0.14	6KAS5/ 27KAS5	0.01
KZW25	0.14			6KAS10/	0.01

MLF1 Top-Ported Return Line Filter

Filter Model Number Selection	How to Build a Valid M BOX 1 BOX 2 BOX 3 MLF1- Example: NOTE: Only box 9 may BOX 1 BOX 2 BOX 3 MLF1- 2K -	Iodel Number for a Schroeder MLF1 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 v contain more than one option BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 10 - - P D5 - BOX 3 BOX 3 BOX 3 - - -	BOX 9 = MLF12K10PD5 BOX 4
	SeriesSize of ElementsMLF12K, KK, 27K 4 K GMLF1 (GeoSeal®)6 K GeoSeal® 2KG, KKG, 27KG 4 KG 6 KG	Media Type Omit = E media (cellulose) Z = Excellement® Z-Media®(synthetic) AS = Anti-Static Pleat Media (synthetic) ZW = Aqua-Excellement™ ZW media DZ = DirtCatcher® with Excellement® Z-Media® W = W media (water removal) M = M media (reusable metal mesh)	Micron Rating 1 = 1 μ Z, ZW, and DZ media 3 = 3 μ AS, E, Z, ZW, and DZ media 5 = 5 μ AS, Z, ZW, DZ media 10 = 10 μ AS, E, M, Z, ZW, & DZ media 25 = 25 μ E, M, Z, ZW and DZ media 60 = 60 μ M media 150 = 150 μ M media
	BOX 5 Seal Material Omit = Buna N H = EPR V = Viton® H.5 = Skydrol® Compatibility	BOX 6 Magnet Option Omit = None M = Magnet inserts BOX 8	BOX 7 Porting = 2½" NPTF = 2½" SAE 4-bolt flange Code 61 BOX 9
	Dir Omit = N Visual D = P Visual with Thermal Lockout D8 = V MS5 = E MS5LC = L	rt Alarm [®] Options None Pointer /isual pop-up /isual w/ thermal lockout Electrical w/ 12 in. 18 gauge 4-conductor cable .ow current MS5	Additional Options Omit = None L = Two ¼" NPTF inlet and outlet female test ports G426 = ¾" drain on bottom of housing G440 = ½" drain on bottom of housing
and triple of K-size s can be I by KK and 27K s, respectively. of elements ual 2 when using	MS10 = E MS10LC = L Electrical MS11 = E MS12 = E MS12LC = L MS16L = L MS16LC = L MS17LC = L	Electrical w/ DIN connector (male end only) .cw current MS10 Electrical w/ 12 ft. 4-conductor wire Electrical w/ 5 pin Brad Harrison connector (male end only) .cw current MS12 Electrical w/ weather-packed sealed connector .cw current MS16 Electrical w/ 4 pin Brad Harrison male connector .cw current MS16	
YK elements. ment element nbers are 1 to contents of 3, 4, and 5. K25 vailable with EPR ons H, V, and	MS5I = M MS5LT = L MS10T = N Electrical with Thermal Lockout MS12LCT = L MS12LCT = L MS16LCT = L MS16LCT = L MS17LCT = 1	viso (see above) w/ thermal lockout .ow current MS5T MS10 (see above) w/ thermal lockout .ow current MS10T MS12 (see above) w/ thermal lockout .ow current MS12T MS16 (see above) w/ thermal lockout .ow current MS16T .ow current MS17T	
aluminum parts dized. H.5 seal tion includes wing: EPR seals, steel wire mesh ents, and light ng on housing Viton [®] is a	Electrical Visual Electrical Visual MS13 = S MS13DCT = N Electrical Visual with Thermal Lockout MS14DCT = N MS14DCT = N MS14DCT = N	Cam operated switch w/ ½ " conduit female connection Supplied w/ threaded connector & light Supplied w/ 5 pin Brad Harrison connector & light (male end) VIS13 (see above), direct current, w/ thermal lockout .ow current MS13DCT VIS14 (see above), direct current, w/ thermal lockout .ow current MS14DCT	

NOTES:

- Box 2. Double stacking element replaced element Number must equ KK or 27
- Box 3. Replace part nur identical Boxes 2, is not av seals.
- Box 5. For optio H.5, all a are anoc designat the follo stainless on elem oil coati exterior. registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.

RLD

Model No. of filter in photograp	 Factores and Benefits 9. Lightweight duplex filter constructed of aluminum 9. High chromium content aluminum alloy is water tolerant – anodization is not required for high water-based fluids (HWBF) 9. Filter housings are designed to withstand pressure surges as well as high static pressure loads 9. Screw-in bowl allows the filter element to be easily removed for replacement or cleaning 9. Standard model supplied with drain plugs 9. Standard Viton® seal on filter housing 9. Filter contains an integrated equalization value 9. Tressure is equalized between filters by raising the change-over lever prior to switching it to the relevant filter side 	<u>380 L/min</u> 350 psi 24 bar	TF1 KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT KFT RT
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	350 psi (24 bar)	Housing	LRT
Min. Yield Pressure:	Contact factory	Specifications	ΔRT
Rated Fatigue Pressure:	350 psi (24 bar)		
Temp. Range:	-22°F to 250°F (-30°C to 121°C)		BRT
Bypass Setting:	Standard: 102 psi (7 bar) Optional: 43 psi (3.0 bar)		TRT
Porting Head: Element Case:	Aluminum Aluminum		BFT
Weight of RLD-25DN: Weight of RLD-40DN:	26 lbs. (11.8 kg) 29 lbs. (13.0 ka)		
Element Change Clearance:	25DN: 3.5" (89 mm) 40DN: 3.5" (89 mm)		QT
		-	КТК
			ITV
			LIK
Type Fluid	Appropriate Schroeder Media	Fluid	MRT
Petroleum Based Fluids	All Z-Media® (synthetic)	Compatibility	

High Water Content

Invert Emulsions

Water Glycols

All Z-Media[®] (synthetic)

10 and 25 µ Z-Media[®] (synthetic)

3, 6, 10 and 25 µ Z-Media[®] (synthetic)

Accessories For Tank-Mounted Filters PAF1

MAF1

Element Performance Information & Dirt Holding Capacity

RL

D

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio	o per ISO 16889 ted per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
25/40DNZ3	<1.0	<1.0	<2.0	<4.0	4.8
25/40DNZ6	2.5	3.0	4.0	4.8	6.3
25/40DNZ10	7.4	8.2	10.0	8.0	10.0
25/40DNZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	
25DNZ3	57	40DNZ3	105	
25DNZ6	62	40DNZ6	115	
25DNZ10	52	40DNZ10	104	
25DNZ25	48	40DNZ25	94	

Element Collapse Rating:290 psid (20 bar)Flow Direction:Outside InElement Nominal Dimensions:3.0" (75 mm) O.D. x 14.5" (370 mm) long

$\Delta \mathbf{P}_{\mathsf{housing}}$

RLD $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

RI

$\Delta \mathbf{P}_{element}$

25DNZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

40DNZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle \mathbf{P}_{\mathsf{filter}} = \triangle \mathbf{P}_{\mathsf{housing}} + (\triangle \mathbf{P}_{\mathsf{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 70 gpm (265.3 L/min) for RLD25DNZ5VF2440VM using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 14 psi (.96 bar) on the graph for the RLD housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{element}$ at 70 gpm. In this case, $\Delta \mathbf{P}_{element}$ is 8 psi (.55 bar) according to the graph for the 25DNZ5V element.

Because the viscosity in this sample is 160 SUS (44 cSt), we determine the **Viscosity Factor** (**V**_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f}$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 14 \text{ psi} [.96 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 8 \text{ psi} [.55 \text{ bar}]$

 \mathbf{V}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta \mathbf{P}_{filter}$ = 14 psi + (8 psi * 1.1) = 22.8 psi

OR

 $\Delta \mathbf{P}_{filter}$ = .96 bar + (.55 bar * 1.1) = 1.6 bar

Filter	How to Build a Valid	Model Number for a Schroeder RLD:	
Model Number	BOX 1 BOX 2 BOX RLD	3 BOX 4 BOX 5 BOX 6 BOX 7	
Selection	Example: NOTE: One option p BOX 1 BOX 2 BOX RLD - 25 - DNZ	ber box 3 BOX 4 BOX 5 BOX 6 BOX 7 5 - V - F24 - 40 - VM = RLD25DNZ	5VF2440VM
	BOX 1 BOX 2	BOX 3	BOX 4

BOX I	BOX 2	BOX 3	BOX 4
Filter Series	Length of Elements (cm)	Element Size and Media	Element Seal Material
ם ום	25	DNZ5 = DN size 5 μ synthetic media	Omit = Buna N
KLD	40	DNZ10 = DN size 10 μ synthetic media	V = Viton®
		DNZ25 = DN size 25 μ synthetic media	
		DNM25 = DN size 25 μ M media (reuseable metal)	
		DNM50 = DN size 50 μ M media (reuseable metal)	
		DNM100 = DN size 100 μ M media (reuseable metal)	
		DNM200 = DN size 200 μ M media (reuseable metal)	

BOX 5	BOX 6	BOX 7		
Porting	Bypass Setting	Dirt Alarm [®] Options		
F24 = 1½" SAE 4-bolt flange Code 61	Omit = 102 psi cracking	Omit = None		
S24 = SAE-24 (1½")	40 = 43 psi cracking	Visual	VM = Visual pop-up w/manual reset	
		Electrical	DW = AC/DC 3-wire (NO or NC)	

VM = Manual Reset

DW = AC/DC 3-wire (NO or NC)

Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Example: 40DNZ10

RL

D

Box 4. Filter housings are supplied with standard Viton seals. Seal designation in Box 4 applies to element only. Viton[®] is a registered trademark of DuPont Dow Elastomers.

Tank-Mounted Return Line Filter GRTB

Features ar Patented O Various Dir Cost optim Plastic bov UV resistar Same day	nd Benefits GeoSeal [®] Elements rt Alarm [®] options nized for in-tank applications vI and cap lower cost and minimize weight nt cap shipment model available	100 gpm <u>380 L/min</u> 100 psi 7 bar	IRF TF1 KF3 KL3 LF1
Part of Sch	nroeder Industries Energy Savings Initiative		MLF1 RLD
			GRTB MTA MTB
Model No. of filter in photograph is GRTB1KBGZ105.			ZT KFT RT

RT

Flow Rating: Up to	to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	LKI
Max. Operating Pressure: 100	psi (7 bar)	Housing	
Min. Yield Pressure: 400	psi (28 bar)	Specifications	AK I
Rated Fatigue Pressure: 145	psi (10 bar), Per NFPA T2.6.1-2005		RDT
Temp. Range: -20°	°F to 200°F (-29°C to 93°C)		
Bypass Setting: Crac Full F	cking: 25 psi (1.7 bar) Flow: 42 psi (2.9 bar)	-	ΓRT
Cap & Bowl: Nylor Porting Head: Alum	on minum		BFT
Weight of GRTB-1K: 5.2	lbs (2.36 kg)		OT
Element Change Clearance: 9.5"	" (240 mm)		QI
		k	(ТК

LTK

Type Fluid	Appropriate Schroeder Media	Fluid MRT
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
Invert Emulsions	10 and 25 μ Z-Media [®] and 10 μ ASP [®] media (synthetic)	Accessories For Tank- Mounted Filters PAF1
		IVIAF1
	SCHROEDER INDUSTRIES	239

GRTB Tank-Mounted Return Line Filter

Metric dimensions in ().

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Rat Using APC calib	io per ISO 16889 rated per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \geq 1000$
KBGZ1	<1.0	<1.0	<1.0	<4.0	4.2
KBGZ3	<1.0	<1.0	<2.0	<4.0	4.8
KBGZ5	2.5	3.0	4.0	4.8	6.3
KBGZ10	7.4	8.2	10.0	8.0	10.0
KBGZ25	18.0	20.0	22.5	19.0	24.0

Element Performance **Information & Dirt Holding Capacity**

Elem	ent DHC (gm)	
KBG	21 112	
KBG	Z3 115	
KBG	25 119	
KBG	Z10 108	
KBG	225 93	
Elen	Element Collapse Rating: Flow Direction: nent Nominal Dimensions:	150 psid (10 bar) for standard elements Outside In K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

Tank-Mounted Return Line Filter

GRTB

$\Delta \mathbf{P}_{\mathsf{housing}}$

GRTB $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \mathbf{P}_{element}$

Pressure Drop Information Based on Flow Rate and Viscosity

$\Delta \mathbf{P}_{\text{filter}} = \Delta \mathbf{P}_{\text{housing}} + (\Delta \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 80 gpm (303.2 L/min) for GRTB1KBGZ10PY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 8 psi (.55 bar) on the graph for the GRTB housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{element}$ at 80 gpm. In this case, $\Delta \mathbf{P}_{element}$ is 4 psi (.27 bar) according to the graph for the KBGZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{v}_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 8 \text{ psi} [.55 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 4 \text{ psi} [.27 \text{ bar}]$

 \mathbf{v}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta \mathbf{P}_{\text{filter}}$ = 8 psi + (4 psi * 1.1) = 12.4 psi

OR

 $\Delta \mathbf{P}_{\text{filter}}$ = .55 bar + (.27 bar * 1.1) = .85 bar

GRTB Tank-Mounted Return Line Filter

Filter	How to Build a Valid Model Number for a Schroeder GRTB:
Model	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8
Number	
Selection	Example: NOTE: One option per box
	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 GRTB - 1KBG - Z - 10 - P - Y2 = GRTB1KBGZ10PY2

Highlighted product eligible for QuickDelivery

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Element Size	Media Type	Micron Rating
GRTB	1KBG	Omit = E-Media (cellulose)	1 = 1µ Z-Media®
		Z = Excellement [®] Z-Media [®]	3 = 3 µ Z-Media®
			5 = 5 µ Z-Media®
			$10 = 10 \mu$ E, and Z-Media [®]
			$25 = 25 \mu\text{E}$, and Z-Media [®]

BOX 5	BOX 6	BOX 7
Seals	Port	Outlet Porting Options
Omit = Buna N	P = 1.25" NPT	Omit $= 1^{1/2}$ " NPT male
,	S = SAE-20	C = Check valve
	B = ISO 228 G-1.25"	D = Diffuser
	·	CD = Check valve & diffuser T = 13" Tube extension

BOX 8		
Ir	dicator	
Omit =	None	
Y2 =	Back-mounted tricolor gauge	
ES =	Electric switch	
ES1 =	Heavy-duty electric switch with conduit connections	

MiniMiser[™] Tank-Mounted Filter MTA

	 Features and Benefits Low pressure tank-mounted filter Compact size minimizes space requirements Minimizer is cost-effective alternative to spin-on filters Special filter element design provides aftermarket benefits 	15 gpm <u>55 L/min</u> 100 psi 7 bar	IRF TF1 KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT
Model No. of filter in photograph is MTA3TA	Z10P8.		KFT RT
			RTI

Flow Rating:	Up to 15 gpm (55 L/min) for 150 SUS (32 cSt) fluids	Filter	LRT
Max. Operating Pressure:	100 psi (7 bar)	Housing	ADT
Min. Yield Pressure:	269 psi (18 bar), per NFPA T2.6.1	Specifications	AKI
Rated Fatigue Pressure:	Contact factory		PDT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		DRI
Bypass Setting:	Cracking: 25 psi (2 bar) Full Flow: 48 psi (3.3 bar)		TRT
Porting Head & Cap: Element Case:	Die Cast Aluminum Glass Filled Nylon		BFT
Weight of MTA-3:	1.0 lbs. (0.5 kg)		07
Element Change Clearance:	3.0" (76 mm)		QI
			ктк

- LTK

Type Fluid	Appropriate Schroeder Media		Fluid MRT
Petroleum Based Fluids	All E media (cellulose) and Z-Media [®] (synthetic)		Compatibility
			Accessories For Tank- Mounted Filters
			PAF1
			MAF1
	SCF	IROEDER INDUSTRIES 243	MED

MTA MiniMiser[™] Tank-Mounted Filter

Metric dimensions in ().

Element Performance **Information & Dirt Holding Capacity**

	Filtration Ra Using automated p	tio Per ISO 4572/NI article counter (APC) cali	Filtration Rati	io per ISO 16889 rated per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
3TAZ3	<1.0	<1.0	<2.0	<4.0	4.8
3TAZ5	2.5	3.0	4.0	4.8	6.3
3TAZ10	7.4	8.2	10.0	8.0	10.0
3TAZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	
3TAZ3	4	
3TAZ5	6	
3TAZ10	4	
3TAZ25	4	

Element Collapse Rating: 150 psid (10 bar) Flow Direction: Outside In Element Nominal Dimensions: 2.0" (51 mm) O.D. x 3.0" (76 mm) long

MiniMiser[™] Tank-Mounted Filter

$\triangle \mathbf{P}_{\mathsf{housing}}$

3TAZ

MTA $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

ΜΤ

$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 10 gpm (37.9 L/min) for MTA3TAZ25P8Y5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 10 gpm. In this case, $\Delta P_{\text{housing}}$ is 4 psi (.27 bar) on the graph for the MTA housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 10 gpm. In this case, $\Delta P_{element}$ is 7 psi (.48 bar) according to the graph for the 3TAZ25 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{element} * \mathbf{V}_{f})$. The $\Delta \mathbf{P}_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 4 \text{ psi } [.27 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

 \mathbf{V}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 △**P**_{filter} = 4 psi + (7 psi * 1.1) = 11.7 psi

OR $\Delta \mathbf{P}_{filter} = .27 \text{ bar} + (.48 \text{ bar} * 1.1) = .80 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_f Plug$ this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$
3TA10	1.40
3TA25	0.33

MTA MiniMiser[™] Tank-Mounted Filter

Filter	How to	How to Build a Valid Model Number for a Schroeder MTA:			
Model Number	BOX 1 MTA	BOX 2	BOX 3 BOX 4 BOX 5		
Selection	Example: NOTE: One option per box				
	BOX 1	BOX 2	BOX 3 BOX 4 BOX 5		
	MTA	3	TA25 – P8 – Y5 = MTA3TA25P8Y5		
	BOX 1 Filter	BOX 2 Element	BOX 3		
	Series	Length (in)	Element Size and Media		
	МТА	3	TA10 = TA size 10 μ E media (cellulose)		
			TA25 = TA size 25 μ E media (cellulose)		
			TAZ1 = TA size 1 μ Excellement [®] Z-Media [®] (synthetic)		
			TAZ3 = TA size 3 μ Excellement [®] Z-Media [®] (synthetic)		
			TAZ5 = TA size 5 μ Excellement [®] Z-Media [®] (synthetic)		

BOX 4		BOX 5
Porting Options		Dirt Alarm [®] Options
P8 = ½" NPTF	Omit = None	
S8 = SAE-8	Visual	Y2C = Bottom-mounted gauge in cap Y5 = Back-mounted gauge in cap
	Electrical	ESC = Electric pressure switch (2 terminals)

$$\begin{split} \text{TAZ10} &= \text{TA size 10} \ \mu \ \text{Excellement}^{\circledast} \ \text{Z-Media}^{\circledast} \ \text{(synthetic)} \\ \text{TAZ25} &= \text{TA size 25} \ \mu \ \text{Excellement}^{\circledast} \ \text{Z-Media}^{\circledast} \ \text{(synthetic)} \end{split}$$

MiniMiser[™] Tank-Mounted Filter MTB

	<image/> <image/> <section-header><section-header><section-header></section-header></section-header></section-header>	35 gpm <u>135 L/min</u> 100 psi 7 bar	IRF TF1 KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT
Model No. of filter in photogra	bh is MTB5TB75P16		KFT
		-	RT
			RTI
Flow Rating:	Up to 25 gpm (95 L/min) for 150 SUS (32 cSt) fluids–MTB-3 Up to 35 gpm (135 L/min) for 150 SUS (32 cSt) fluids–MTB-5	Filter	LRT
Max. Operating Pressure:	100 psi (7 bar)	Specifications	ADT
Min. Yield Pressure:	229 psi (15 bar), per NFPA T2.6.1		ARI
Rated Fatigue Pressure:	Contact factory		BRT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		DIT
Bypass Setting:	Cracking: 25 psi (2 bar) Full Flow: 51 psi (3.5 bar)		TRT
Porting Head & Cap: Element Case:	Die Cast Aluminum Glass Filled Nylon		BFT
Weight of MTB-3: Weight of MTB-5:	1.8 lbs. (0.8 kg) 2.1 lbs. (1.0 kg)		QT
Element Change Clearance:	3.0" (76 mm) MTB-3 5.0" (127 mm) MTB-5		
			КТК
			LTK
· ·	Annual state Colore day Martin	Eluid	MDT
Iype Fluid	Appropriate Schroeder Media All E media (cellulose) and 7-Media® (synthetic)	Compatibility	IVIIVI
		Acc F N	essories or Tank- lounted Filters

MAF1

PAF1

MiniMiser[™] Tank-Mounted Filter

Metric dimensions in ().

	Filtration Ra Using automated p	tio Per ISO 4572/N article counter (APC) cali	Filtration Ration Using APC calibration	o per ISO 16889 Ited per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
3TBZ3	<1.0	<1.0	<2.0	<4.0	4.8
3TBZ5	2.5	3.0	4.0	4.8	6.3
3TBZ10	7.4	8.2	10.0	8.0	10.0
3TBZ25	18.0	20.0	22.5	19.0	24.0
5TBZ3	<1.0	<1.0	<2.0	4.7	5.8
5TBZ5	2.5	3.0	4.0	5.6	7.2
5TBZ10	7.4	8.2	10.0	8.0	9.8
5TBZ25	18.0	20.0	22.5	19.0	24.0

Elemen	t DHC (gm)			
3TBZ3	11			
3TBZ5	12			
3TBZ10	11			
3TBZ25	11			
5TBZ3	18			
5TBZ5	21			
5TBZ10	17			
5TBZ25	18			
Element Collapse Rating:		150 psid (10 bar)		
Flow Direction:		Outside In		

3TB: 3.0" (76 mm) O.D. x 3.0" (76 mm) long

5TB: 3.0" (76 mm) O.D. x 5.0" (127 mm) long

Element Performance Information & Dirt Holding Capacity

MTB

Element Nominal Dimensions:

MiniMiser[™] Tank-Mounted Filter

$\Delta \mathbf{P}_{\mathsf{housing}}$

MTB $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \mathbf{P}_{\mathsf{filter}} = \triangle \mathbf{P}_{\mathsf{housing}} + (\triangle \mathbf{P}_{\mathsf{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 10 gpm (37.9 L/min) for MTB3TBZ25P12Y5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 10 gpm. In this case, $\Delta P_{\text{housing}}$ is 1 psi (.07 bar) on the graph for the MTB housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 10 gpm. In this case, $\Delta P_{element}$ is 3 psi (.21 bar) according to the graph for the 3TBZ25 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

OR

 $\Delta \mathbf{P}_{\text{housing}} = 1 \text{ psi } [.07 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

 \mathbf{v}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta \mathbf{P}_{\text{filter}}$ = 1 psi + (3 psi * 1.1) = 4.3 psi

 $\Delta P_{\text{filter}} = .07 \text{ bar} + (.21 \text{ bar} * 1.1) = .30 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

ΜΤ

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate } x \Delta \mathbf{P}_{f} \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
3TB10	1.40	5TB10	0.40
3TB25	0.10	5TB25	0.08

MTB MiniMiser[™] Tank-Mounted Filter

Filter	How to	Build a Valid N	Model Number for a Schroeder MTB:	
Model Number	MTB	BOX 2	BOX 3 BOX 4 BOX 5	
Selection	Example: NOTE: One option per box			
	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 MTB - 3 - TB25 - Y5 = MTB3TB25P12Y5			
	BOX 1	BOX 2	BOX 3	
	Filter Series	Element Length (in)	Element Size and Media	
		3	TB10 = T size 10 μ E media (cellulose)	
	IVITB	5	TB25 = T size 25 μ E media (cellulose)	
			TBZ3 = T size 3 µ Excellement® Z-Media® (synthetic)	
			TBZ5 = T size 5 µ Excellement® Z-Media® (synthetic)	
			TBZ10 = T size 10 µ Excellement® Z-Media® (synthetic)	
			TBZ25 = T size 25 μ Excellement [®] Z-Media [®] (synthetic)	

BOX 4	BOX 5		
Porting Options		Dirt Alarm [®] Options	
P12 = ³ / ₄ " NPTF		Omit = None	
P16 = 1" NPTF	Visual	Y2C = Bottom-mounted gauge in cap	
S12 = SAE-12	VISUAI	Y5 = Back-mounted gauge in cap	
S16 = SAE-16	Electrical	ESC = Electric pressure switch (2 terminals)	
B12 = ISO 228 G-3/4"			
B16 = ISO 228 G-1"			

250 SCHROEDER INDUSTRIES

	 Features and Benefits Low pressure tank-mounted filter Available with dual inlet porting Offered in pipe, SAE straight thread and ISO 228 porting Various Dirt Alarm® options Optional PAB1 breather Optional dipstick Available with quality-protected GeoSeal® Elements (GZT) Same day shipment model available Part of the Schroeder Industries 2030 Initiative 	40 gpm <u>150 L/min</u> 100 psi 7 bar	IRF TF1 KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB
Model No. of filter in photograph is ZT8ZZ10PPESAB	ł.		KFT
			Γ I DTI

Flow Rating:	Up to 40 gpm (150 L/min) for 150 SUS (32 cSt) fluids	Filter	LR1
Max. Operating Pressure:	100 psi (7 bar)	Housing	
Min. Yield Pressure:	300 psi (21 bar), per NFPA T2.6.1	Specifications	ARI
Rated Fatigue Pressure:	90 psi (6 bar), per NFPA T2.6.1-R1-2005		007
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		BKI
Bypass Setting:	Cracking: 25 psi (1.7 bar) Full Flow: 39 psi (2.7 bar)		TRI
Cap & Bowl:	Nylon		DET
Porting Head:	Aluminum		BEI
Weight of ZT-8Z:	3.3 lbs. (1.49 kg)		01
Element Change Clearance:	10.0" (254 mm)		QI

- КТК
- LTK

Type Fluid	Appropriate Schroeder Media	Fluid MRT
Petroleum Based Fluids	All E media (cellulose) and Z-Media [®] (synthetic)	Compatibility
High Water Content	All Z-Media (synthetic)	Accessories
Invert Emulsions	10 and 25 µ Z-Media [®] (synthetic)	For lank-
Water Glycols	3, 5, 10 and 25 µ Z-Media [®] (synthetic)	Filters
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation	Titters
		PAF1
		MAF1

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio wrt ISO 16 Using APC calibrated per ISO 111	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
8Z3	6.8	7.5	10.0	N/A	N/A
8Z10	15.5	16.2	18.0	N/A	N/A
8ZZ1	<1.0	<1.0	<1.0	<4.0	4.2
8ZZ3	<1.0	<1.0	<2.0	<4.0	4.8
8ZZ5	2.5	3.0	4.0	4.8	6.3
8ZZ10	7.4	8.2	10.0	8.0	10.0
8ZZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)
8Z3	39
8Z10	32
8ZZ1	51
8ZZ3	52
8ZZ5	59
8ZZ10	55
8ZZ25	77

Element Collapse Rating:150 psid (10 bar)Flow Direction:Outside InElement Nominal Dimensions:3.2" (81 mm) O.D. x 9.25" (235 mm) long

$\Delta \mathbf{P}_{\text{housing}}$

ZT $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta \mathbf{P}_{element}$

Pressure Drop Information Based on Flow Rate and Viscosity

$\Delta \mathbf{P}_{\text{filter}} = \Delta \mathbf{P}_{\text{housing}} + (\Delta \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

Exercise:

Determine ΔP_{filter} at 30 gpm (119.7 L/min) for ZT8ZZ10SY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 30 gpm. In this case, $\Delta P_{\text{housing}}$ is 3.5 psi (.24 bar) on the graph for the ZT housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 30 gpm. In this case, $\Delta P_{element}$ is 3.5 psi (.24 bar) according to the graph for the 8ZZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f}$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3.5 \text{ psi} [.24 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3.5 \text{ psi} [.24 \text{ bar}]$

 \mathbf{v}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta \mathbf{P}_{filter}$ = 3.5 psi + (3.5 psi * 1.1) = 7.4 psi

OR

 $\Delta \mathbf{P}_{filter}$ = .24 bar + (.24 bar * 1.1) = .50 bar

Note: If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_{f}$ Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$
8Z3	0.25
8Z10	0.09
8Z25	0.02

Filter Model Number	How to Build a Valid Model Number for a Schroeder ZT:					
Selection	Example: NOTE BOX 1 BO ZT - 8	Example: NOTE: One option per box BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 ZT - 8 - Z10 - S - Y2 - - = ZT8Z10SY2				
Highlighted product eligible for	BOX 1	BOX 2	BOX 3	BOX 4		
QuickDelivery	Filter Series	Element Length (in)	Element Size and Media	Seal Material		
	ZT	0	Z3 = Z size 3 µ E media (cellulose)	Omit = Buna N		
	GZT	ŏ	Z10 = Z size 10 µ E media (cellulose)	H = EPR		
	(GeoSeal [®])		Z25 = Z size 25 μ E media (cellulose)			
			ZZ1 = Z size 1 μ Excellement [®] Z-Media [®] (synthetic)			
			ZZ3 = Z size 3 μ Excellement [®] Z-Media [®] (synthetic)			
			ZZ5 = Z size 5 μ Excellement [®] Z-Media [®] (synthetic)			
			ZZ10 = Z size 10 μ Excellement [®] Z-Media [®] (synthetic)			
			ZZ25 = Z size 25 μ Excellement [®] Z-Media [®] (synthetic)			
			GeoSeal [®] Element Options			
			GZ3 = Z size 3 μ E media (cellulose)			
			GZ10 = Z size 10 µ E media (cellulose)			
			GZ25 = Z size 25 μ E media (cellulose)			
			GTZZ1 = Z size 1 μ Excellement [®] Z-Media [®] (synthetic)			
			GTZZ3 = Z size 3 μ Excellement [®] Z-Media [®] (synthetic)			
			GTZZ5 = Z size 5 μ Excellement [®] Z-Media [®] (synthetic)			
			GTZZ10 = Z size 10 μ Excellement [®] Z-Media [®] (synthetic)			
			GTZZ25 = Z size 25 μ Excellement [®] Z-Media [®] (synthetic)			

BOX 5	BOX 6		
Inlet Porting	Dirt Alarm [®] Options		
P = 1" NPTF		Omit = None	
PP = Dual 1" NPTF		Y2 = Back-mounted tri-color gauge	
S = SAE-16	Visual	Y2C = Bottom-mounted gauge in cap	
SS = Dual SAE-16		Y5 = Back-mounted gauge in cap	
B = ISO 228 G-1"	_	ES = Electric switch	
BB = Dual ISO 228 G-1"	Electrical	ES1 = Heavy-duty electric switch with conduit connection	

BOX 7	BOX 8	
Outlet Porting Options	Options	
Omit = $1^{\frac{1}{2}}$ " NPT male	Omit = None	
D = Diffuser	G3039 = 1.5" NPT Outlet Removed	
$1 = 13^{\circ}$ Tube extension	A = Dipstick	
	B = Breather	
	AB = Dipstick & Breather	
	D = Diffuser	
	M = Mounting Gasket (Buna N)	

res and Benefits	100 apm	IRF
pressure tank-mounted filter	200 L/min	
ets HF4 automotive standard	500 L/IIIII	TF1
tiple inlet/outlet porting options	100 psi	VED
, side or bottom mounting	7 har	КГЭ
ional check valve prevents reservoir oning	7 Dai	KL3
also be used in return line application itact factory)		LF1
ble stacking of K-size element can be aced by single KK element		MLF1
ws consolidation of inventoried replacement nents by using K-size elements		RLD
available with DirtCatcher [®] elements and KKD)		GRTB
		ΜΤΑ
		МТВ
		ZT
		KFT

Model No. of filter in photograph is KFT1K10P24P24NB

		_	
Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	IRT
Max. Operating Pressure:	100 psi (7 bar)	Housing	LIVI
Min. Yield Pressure:	400 psi (28 bar), per NFPA T2.6.1	Specifications	ART
Rated Fatigue Pressure:	Contact Factory		7
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		BRT
Bypass Setting:	Cracking: 25 psi (1.7 bar) Full Flow: 48 psi (3.3 bar)		TRT
Porting Head: Porting Cap: Element Case:	Steel Die Cast Aluminum (standard); Steel (optional) Steel		BFT
Weight of KFT-1K: Weight of KFT-2K:	10.0 lbs. (4.5 kg) 13.6 lbs. (6.2 kg)		QT
Element Change Clearance:	8.0" (205 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		
		-	КТК

LTK

Type Fluid	Appropriate Schroeder Media	Fluid MRT
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media and ASP [®] media (synthetic)	Accessories
Invert Emulsions	10 and 25 μ Z-Media® (synthetic), 10 μ ASP® media (synthetic)	For lank-
Water Glycols	3, 5, 10 and 25 μ Z-Media® (synthetic), 3, 5 and 10 μ ASP® media (synthetic)	Filters
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation, ASP [®] media (synthetic) and 3 and 10 μ E media (cellulose) with H (EPR) seal designation	DAFA
Skydrol®	3, 5, 10 and 25 μ Z-Media [®] (synthetic) with H.5 seal designation, ASP [®] media (synthetic) (EPR seals and stainless steel wire mesh in element, and light oil coating on bousing exterior)	PAF1
		IVIAL

Metric dimensions in ().

Element Performance **Information & Dirt Holding Capacity**

	Filtration Rati	o Per ISO 4572/N rticle counter (APC) cal	FPA T3.10.8.8 ibrated per ISO 4402	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_{x}(\textbf{c}) \geq 200$	$\beta_x(c) \ge 1000$	
KZ1/KKZ1	<1.0	<1.0	<1.0	<4.0	4.2	
KZ3/KKZ3/KAS3/KKAS3	<1.0	<1.0	<2.0	<4.0	4.8	
KZ5/KKZ5/KAS5/KKAS5	2.5	3.0	4.0	4.8	6.3	
KZ10/KKZ10/KAS10/KKAS10	7.4	8.2	10.0	8.0	10.0	
KZ25/KKZ25	18.0	20.0	22.5	19.0	24.0	

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KKZ1	224	KDZ1	89	KKDZ1	188
KZ3/KAS3	115	KKZ3/KKAS3	230	KDZ3	71	KKDZ3	150
KZ5/KAS5	119	KKZ5/KKAS5	238	KDZ5	100	KKDZ5	210
KZ10/KAS10	108	KKZ10/KKAS10	216	KDZ10	80	KKDZ10	168
KZ25	93	KKZ25	186	KDZ25	81	KKDZ25	171

Element Collapse Rating: 150 psid (10 bar) for standard elements Flow Direction: Outside In

Element Nominal Dimensions:

K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long

$\Delta \mathbf{P}_{\mathsf{housing}}$

KFT $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathbf{v}_{f})$

Exercise:

Determine ΔP_{filter} at 80 gpm (303.2 L/min) for KFT1KZ10S24S24NY2G820 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 3.5 psi (.24 bar) on the graph for the KFT housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 80 gpm. In this case, $\Delta P_{\text{element}}$ is 4 psi (.27 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 200 SUS (24 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \mathbf{v}_{f}$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3.5 \text{ psi} [.24 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 4 \text{ psi} [.27 \text{ bar}]$

 \mathbf{v}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta \mathbf{P}_{filter}$ = 3.5 psi + (4 psi * 1.1) = 7.9 psi

OR

△P_{filter} = .24 bar + (.27 bar * 1.1) = .54 bar

Pressure Drop Information Based on Flow Rate and Viscosity

KF

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow \text{ Rate } x \Delta \mathbf{P}_f. \text{ Plug this variable into the overall pressure drop equation.}$

Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	$\Delta \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KDZ1	0.24	2KDZ1	0.12	3K10	0.03
KDZ3	0.12	2KDZ3	0.06	3K25	0.01
KDZ5	0.10	2KDZ5	0.05	3KAS3/ 27KAS3	0.03
KDZ10	0.06	2KDZ10	0.03	3KAS5/ 27KAS5	0.02
KDZ25	0.04	2KDZ25	0.02	3KAS10/	0.02

	Filter	How to Build a Va	lid Mo	del N	lumber for	a Schroe	der KFT		
	Model	BOX 1 BOX 2 BOX	(3 BC	DX 4	BOX 5 BOX 6	6 BOX 7	BOX 8	BOX 9 BO	<u>2X 10</u>
	Number								
	Selection	BOX 1 BOX 2 BOX 3	BOX 4	OX BOX 5	BOX 6	BOX 7	BOX 8 B	OX 9 BOX	10
		KFT – 1K – Z	- 10	_	- S24 S24 N	1		Y2 – G82	20 = KFT1KZ10S24S
									24NY2G820
		BOX 1 BOX 2	. .		BC	OX 3			BOX 4
		Series and Leng	gth		Medi	а Туре		Elen	nent Part Number
		KFT 1 K, KK		Omit	= E media (cellulo	ise)		1 = 1 µ	Z, ZW, and DZ media
		2 K		Z	= Excellement [®] Z	-Media® (syn	thetic)	3 = 3 µ	AS,E, Z, ZW, and DZ media
				AS	= Anti-Static Pleat	t Media (syntł	netic)	$5 = 5\mu$	AS, Z, ZW, and DZ media
					– DirtCatcher [®] wi	ith Excelleme	lla int® 7-Media®	10 = 10	µ AS, E, M, Z, ZVV, and DZ media
				DL				25 = 25	μ L, W, Z, ZW, and DZ media
		BOX 5		BOX	K 6 Specification of	of all 4 ports	s is required		Inlet Derting
		Seal Material	Davit 1 (Cha	n el e vel)	Inlet	Porting	ienel) De	rt 4 (Ontional)	Location
		Umit = Buna N		ndard)	N - Nono	N = No	ional) Po	– Nono	Port #1
		V = Viton®	14 - 14	JIE	N = None	14 = 140	P2	= 1/6" NPTF	
		H.5 = Skydrol [®]				P8 = ½"	'NPTF P8	= ½" NPTF	#3 View H 4 or Y2/ES/ES1
		Compatibility	P12 = ¾	" NPTF	P12 = ¾" NPTF	P12 = 3/4"	'NPTF P12	= 3/4" NPTF	Port #2
			P16 = 1'	' NPTF	P16 = 1" NPTF	P16 = 1"	NPTF P16	= 1" NPTF	
			P20 = 1	∕₄" NPTF	$P20 = 1\frac{1}{4}$ " NPTF	F P20 = 11/2	"NPTF P20	= 1¼" NPTF	
			P24 = 1%	∕₂″ NPTF	P24 = 1½" NPTF	F P24 = 11/2	2" NPTF P24	= 11⁄2" NPTF	
			P32 = 2'	' NPTF	P32 = 2" NPTF	P32 = 2"	NPTF P32	= 2" NPTF	
			S8 = SA	AE-8	S8 = SAE-8	S8 = SA	E-8 S8	= SAE-8	
			SIZ = S⊬ SI6 - S/	NE-12	S1Z = SAE-1Z S16 = SAE-16	S1Z = SA S16 = SA	E-12 SIZ	= SAE-12	
NOTES	5:		$S_{20} = S_{20}$	AE-20	S10 = SAE-10 S20 = SAE-20	$S_{20} = S_{A}$	E-20 S20	= SAE-10 = SAE-20	
Box 2.	Number of elements		S24 = SA	AE-24	S24 = SAE-24	S24 = SA	E-24 S24	= SAE-24	
	must equal 1 when using KK elements.	BOX 7		В	OX 8			BOX 9]
Box 3	Replacement element	Outlet Porting Optic	ons 🔥	Op Iounti	tional		Dirt	Alarm [®] Op	tions
Box 5.	part numbers are	Omit = 1½" NPT male)mit = N	lone	C	Omit = None		
	of Boxes 2, 3, 4 and 5.	C = Check valve		B = Fl	lange with 4		Y2 = Back-n	nounted tri-colo	r gauge (located in Port 4)
	element; KK specifies			- n _ Fl	oles Jango with no	Viewel			. 99- (,
	one 18" element. Example: KKZ10	D = Diffuser		BW h	oles	VISUAI	Y2C = Bottor	m-mounted tri-	-color gauge in cap
Box 5.	H.5 seal designation	CD = Check valve & diffus	er				Y5 = Back-r	mounted gaug	e in cap
	includes the following: EPR cools	T = 13" Tube extension	ı				ES = Electri	c switch (locat	ed in port 4)
	stainless steel wire mesh	A = Non-threaded outle	et			FIECTLICAL	ES1 = Heavy conne	-duty electric s ctor (located in	witch with conduit n port 4)
	oil coating on housing	L	I		L				
	exterior. Skydrol [™] is a registered trademark	BOX 10							
	of Solutia Inc. Viton [®] is a registered trademark	Additional Option	s .						
	of DuPont Dow Elastomers.								

Box 7. See also "Accessories for Tank-Mounted Filters," page 307.

Box 9. YC2 and Y5 are not available with the G820. G2293 = Cork gasket

G820 = Steel cap

Features and Benefits	100 apm	IRF
 Low pressure tank-mounted filter with up to 3 inlet ports 	380 L/min	TF1
Meets HF4 automotive standard	100 nsi	
Top, side or bottom mounting	7 60 051	KF3
 Optional check valve prevents reservoir siphoning 	7 bar	KL3
 RTW model allows filter to be welded to tank, instead of being bolted 		LF1
 Double and triple stacking of K-size element can be replaced by single KK or 27K-size element 		MLF1
 Also available with new DirtCatcher[®] elements (KDZ and KKDZ) 		RLD
 Various Dirt Alarm[®] options 		
 Allows consolidation of inventoried replacement elements by using K-size elements 		GRTB
G Available with quality-protected GeoSeal [®] Elements (GRT)		ΜΤΑ
Same day shipment model available		MTB
		ZT
		KFT

Model No. of filter in photograph is RT1K10S24NP16Y2.

Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	LRT
Max. Operating Pressure:	100 psi (7 bar)	Housing	
Min. Yield Pressure:	400 psi (28 bar), per NFPA T2.6.1	Specifications	ART
Rated Fatigue Pressure:	90 psi (6 bar), per NFPA T2.6.1-2005		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		BRT
Bypass Setting:	Cracking: 25 psi (1.7 bar) Full Flow: 48 psi (3.3 bar)		TRT
Porting Head & Cap: Element Case:	Die Cast Aluminum Steel		BFT
Weight of RT-1K: Weight of RT-2K:	11.4 lbs. (5.2 kg) 14.5 lbs. (6.6 kg)		ОТ
Element Change Clearance:	8.0" (205 mm) for 1K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		Y I

КТК

RT

LTK

Type Fluid	Appropriate Schroeder Media	Fluid MRT
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and all ASP [®] media (synthetic)	Accessories
Invert Emulsions	10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)	For lank-
Water Glycols	3, 5, 10 and 25 μ Z-Media® and all ASP® media (synthetic)	Filters
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation and all ASP [®] Media (synthetic)	DAFA
Skydrol®	3, 5, 10 and 25 μ Z-Media [®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP [®] media (synthetic)	MAF1
	SCHROEDER INDUSTRIES 25	9 MF2

	1½" Ports 4-Bolt Flange Only	2" Ports	All Other Porting
Port to Port	7.12"	7.56" (P, S, B)	6.38"
		7.38" (F)	
င္ to Casting Base	1.75"	1.81"	1.56"
င္ to Tank Top	2.06"	2.12"	1.88"

Optional mounting rings available for tank welding. See page 307, reference part numbers A-LFT-813 and A-LFT-1448.

Metric dimensions in ().

Element Performance **Information & Dirt Holding Capacity**

	Filtration Ratio	Per ISO 4572/NFF	A T3.10.8.8 ated per ISO 4402	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171			
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$		
KZ1/KKZ1/27KZ1	<1.0	<1.0	<1.0	<4.0	4.2		
KZ3/KKZ3/27KZ3	<1.0	<1.0	<2.0	<4.0	4.8		
KZ5/KKZ5/27KZ5	2.5	3.0	4.0	4.8	6.3		
KZ10/KKZ10/27KZ10	7.4	8.2	10.0	8.0	10.0		
KZ25/KKZ25/27KZ25	18.0	20.0	22.5	19.0	24.0		
KZW1	N/A	N/A	N/A	<4.0	<4.0		
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8		
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4		
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6		
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5		

	DHC												
Element	(gm)												
KZ1	112	KKZ1	224	27KZ1	336	KDZ1	89	KKDZ1	188	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KDZ3	71	KKDZ3	150	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KDZ5	100	KKDZ5	210	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KDZ10	80	KKDZ10	168	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KDZ25	81	KKDZ25	171	KZW25	79	KKZW25	158

Element Collapse Rating: 150 psid (10 bar) for standard elements

Flow Direction: Outside In See RTI, page 275 for inside out flow version.

Element Nominal Dimensions: K: 3.9" (99 mm) O.D. x 9.0" (230 mm) long KK: 3.9" (99 mm) O.D. x 18.0" (460 mm) long 27K: 3.9" (99 mm) O.D. x 27.0" (690 mm) long

RT

$\triangle \mathbf{P}_{\mathsf{housing}}$

RT $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \mathbf{P}_{\mathsf{filter}} = \triangle \mathbf{P}_{\mathsf{housing}} + (\triangle \mathbf{P}_{\mathsf{element}} * \mathbf{V}_{f})$

Exercise:

Determine ΔP_{filter} at 80 gpm (303.2 L/min) for RT1KZ10S24S24NY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the RT housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 80 gpm. In this case, $\Delta P_{element}$ is 4 psi (.27 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \mathbf{v}_{f}$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 4 \text{ psi } [.27 \text{ bar}]$

V $_{f}$ = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 △**P** $_{filter}$ = 3 psi + (4 psi * 1.1) = 7.4 psi OR

 $\Delta \mathbf{P}_{filter} = .21 \text{ bar} + (.27 \text{ bar} * 1.1) = .51 \text{ bar}$

RT

If your element is not graphed, use the following equation: $\Delta P_{element} = Flow Rate x \Delta P_{f}. Plug$ this variable into the overallpressure drop equation. $Ele. <math>\Delta P$ Ele. ΔP Ele. ΔP K3 0.25 $\frac{2K3}{KX3}$ 0.12 $\frac{3K21}{27K21}$ 0.00 0.00 $\frac{2K10}{27K21}$ 0.00

Note:

К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KDZ1	0.24	2KDZ1	0.12	3K10	0.03
KDZ3	0.12	2KDZ3	0.06	3K25	0.01
KDZ5	0.10	2KDZ5	0.05	3KAS3/ 27KAS3	0.03
KDZ10	0.06	2KDZ10	0.03	3KAS5/ 27KAS5	0.02
KDZ25	0.04	2KDZ25	0.02	3KAS10/ 27KAS10	0.02
KZW1	0.43	2KZW1	-		
KZW3	0.32	2KZW3/ KKZW3	0.16		
KZW5	0.28	2KZW5/ KKZW5	0.14		
KZW10	0.23	2KZW10/ KKZW10	0.12		
KZW25	0.14	2KZW25/ KKZW25	0.07		

Filter Model Number	How to BOX 1 RT	BOX 2	a Vali вох з	d Model Number for a S BOX 4 BOX 5 BOX 5	chroeder RT: BOX 6A BOX 6	B BOX 7 BOX	8
Selection	Example	NOTE: Or	nlv box 9	may contain more than one option)		
Sciection	BOX 1	BOX 2	BOX 3	BOX 4 BOX 5 BOX 6	BOX 7A BOX 7	B BOX 8 BOX	9
	RT	- 1K -	- Z	– 10 – – S24 S24 N		Y2 –	= RT1KZ10S24S24Y2
Highlighted	BOX 1	BO	X 2	BOX 3		В	OX 4
QuickDelivery	Filter Series	Elemer & Lei	nt Size ngth	Media Type		Element	Part Number
	RT RTW GRT	1K KK, 2K 3K GeoS 1KBG KKE 2KBG 3KBG	27K Seal[®] BG, 27KBG	Omit = E media (cellulose) Z = Excellement® Z-Media® AS = Anti-Static Pleat Media (s ZW = Aqua-Excellement™ ZW i DZ = Dirtcatcher® with Excelle W = W media (water removal) M = M media (reusable metal)	(<mark>synthetic)</mark> ynthetic) media ment [®] Z-Media [®]) mesh)	$1 = 1 \mu Z, ZW, ar 3 = 3 \mu AS, E, Z, Z 5 = 5 \mu AS, Z, ZV 10 = 10 \mu AS, E, N 25 = 25 \mu E, M, Z, 60 = 60 \mu M med$	nd DZ media W, and DZ media V, and DZ media A, Z, ZW, and DZ media ZW, and DZ media a
		BOX 5			BOX 6		
	6	box s		Specifi	ication of all 3 ports	is required	
	Seal	Inviateria			Inlet Porting		
	Omit	t = Buna N		Port A	Poi	tВ	Port C
	H W	I = EPK / = Anodized	d	P16 = 1" NPTF	N = None		N = None
		Aluminum Parts		P20 = 1 ¹ / ₄ " NPTF	P16 = 1" NPTF		P2 = 1/8" NPTF
	H.5	i = Skydrol®) bility	P24 = 1½" NPTF	P20 = 1 ¹ / ₄ " NPTF		P16 = 1" NPTF
		compati	Dility	P32 = 2" NPTF	P24 = 1½" NPTF		S16 = SAE-16
				S10 = SAE-10 S20 = SAE-20	$P3Z = Z^{\circ} NPTF$		
				520 = 5AE-20 524 = 5AE-24	510 = 5AE-10 520 = 5AE-20		Inlet Porting Location
DTES:				S32 = SAE-32	S24 = SAE-24		
ox 1. RTW allows filter to be				F20 = 1 ¹ / ₄ " SAE 4-bolt flange Code 61	S32 = SAE-32		D 1/8" NPTF Standard
welded to tank instead				F24 = 1½" SAE 4-bolt flange Code 61	F20 = 1¼" SAE 4-	oolt flange Code 61	
				F32 = 2" SAE 4-bolt flange Code 61	F24 = 1½" SAE 4-	oolt flange Code 61	^Q, [™]
must equal 1 when				B24 = ISO 228 G-1½"	F32 = 2" SAE 4-bo	olt flange Code 61	
using KK or 27K elements.				Flange port option only: M = Metric SAE 4 bolt flange	B24 = ISO 228 G-1	/2"	c
ox 3. Replacement element		BOX 7A		BOX 7B			
identical to contents	Вур	ass Optic	on	Outlet Porting			
Double and triple	Omit = 2	5 nsi hynass	settina	Omit – 11/4" NPT male			
stacking of K-size elements can be	RT and RT	W models c	only:	C = Check valve			
replaced by single	40 = 40	0 psi bypass	setting	D = Diffuser			
respectively. ZW media				T = 13" Tube ext.			
length.				A = Non-thread outlet			
ox 5. For options H, W, and				BOX 8			BOX 9
H.5 all aluminum parts are anodized. H.5 seal				Dirt Alarm [®] Options		Ad	d. Options
designation includes the following: EPR seals			Omit –	None		Omit – Non	•
stainless steel wire mesh	Levelard	Visual	Y2 =	Back-mounted tri-color gauge		G2293 = Cor	k gasket
oil coating on housing	LOCATED	Electrical	ES =	Electric switch		G547 = Two	1/8" gauge ports
exterior. Skydrol [®] is a registered trademark	Port D	LIECUIU	ES4 =	Skydrol Compatible Electric Switch		G820 = Star	nped cap
of Solutia Inc.	Located in cap	Visual	Y2C = Y5 =	Bottom-mounted tri-color gauge Back-mounted gauge in cap			
ox 6. If using Port B, Port A	Lesser	Visual	Y2R =	Back-mounted gauge mounted on opposite	side of standard location	-	
& B must always be the same type and size. Example: (A) P20 (B) P20 (C) P16	Port C	Electrical	ESR = ES1R =	Electric switch mounted on opposite side Heavy-duty electric switch mounted on c standard location	of standard location pposite side of		
ox 7B. See also "Accessories for Tank-Mounted Filters, " page 307.							

262 SCHROEDER INDUSTRIES

Tank-Mounted Filter (Inside Out Flow)

RTI

TF1

KF3

KL3

MLF1

MTA

MTB

KFT

DTI

Model No. of filter in photog

Flow Rating:	Up to 120 gpm (455 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	100 psi (7 bar)	Housing	LRT
Min. Yield Pressure:	400 psi (28 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure:	Contact factory		ART
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 25 psi (2 bar) Full Flow: 62 psi (4.3 bar)		BKI
Porting Head & Cap: Element Case:	Die Cast Aluminum Steel		TRT
Weight of RTI-KI: Weight of RTI-KKI:	11.4 lbs. (5.2 kg) 14.5 lbs. (6.6 kg)		BFT
Element Change Clearance:	KI Element = 9.0 (229 mm) KKI Element = 18.0 (457 mm)		QT
	2/KI Element = $2/.0$ (686 mm)		КТК

LTK

Type Fluid	Appropriate Schroeder Media	Fluid MRT
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	Accessories
Invert Emulsions	10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)	For lank-
Water Glycols	3, 5, 10 and 25 μ Z-Media® and all ASP® media (synthetic)	Filters
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and all ASP [®] media (synthetic)	DAF4
Skydrol®	3, 5, 10 and 25 μ Z-Media [®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP [®] media (synthetic)	MAF1

RTI

Tank-Mounted Filter (Inside Out Flow)

	1¼", 1½" Standard Ports	1½" Ports 4-Bolt Flange Only
Port to Port	6.38"	7.12"
द् to Casting Base	1.56"	1.75"
င္ to Tank Top	1.88"	2.06"

Optional mounting rings available for tank welding. See page 307, reference part numbers A-LFT-813 and A-LFT-1448. Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Rati Using APC calibr	o per ISO 16889 ated per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
KIZ1	<1.0	<1.0	<1.0	<4.0	4.2
KIZ3	<1.0	<1.0	<2.0	<4.0	4.8
KIZ10	<7.4	<8.2	<10.0	8.0	10.0

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KIZ1	85	KKIZ1	181	27KIZ1	276
KIZ3	88	KKIZ3	185	27KIZ3	283
KIZ10	<82	KKIZ10	174	27KIZ10	266

Element Collapse Rating:100 psid (7 bar)Flow Direction:Inside OutElement Nominal Dimensions:KI:3.9" (99 mm) O.D. x 9.0" (230 mm) long
KKI:KI:3.9" (99 mm) O.D. x 18.0" (460 mm) long
27KI:3.9" (99 mm) O.D. x 27.0" (690 mm) long

Tank-Mounted Filter (Inside Out Flow)

RT

$\Delta \mathbf{P}_{\mathsf{housing}}$

RTI $\triangle \mathbf{P}_{housing}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 80 gpm (303.2 L/min) for RTIKIZ10S20S20NY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the RTI housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 80 gpm. In this case, $\Delta P_{element}$ is 6.5 psi (.45 bar) according to the graph for the KIZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f}$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 6.5 \text{ psi } [.45 \text{ bar}]$

 \mathbf{v}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta \mathbf{P}_{filter}$ = 3 psi + (6.5 psi * 1.1) = 10.2 psi

<u>OR</u>

 $\Delta \mathbf{P}_{filter}$ = .21 bar + (.45 bar * 1.1) = .71 bar

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_{f}$ Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$
KIAS10	0.08
KKIAS10	0.05
27KIAS10/ 27KIAS10	0.04

Tank-Mounted Filter (Inside Out Flow)

RTI

Filter	How to Build a Valid Model Number for a Schroeder RTI:				
Model	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6				
Number					
Selection	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6				
	RTI – KIZ10 – – S20 S20 N – Y2 – = RTIKIZ10S20S20NY2				
	BOX 1 BOX 2				
	Filter Element Part Number				
	K Length KK Length 27K Length				
	KII KIZ1 KKIZ1 27KIZ1 = 1 μ Excellement® Z-Me	edia® and ASP® media (synthetic)			
	KIZ3 KKIZ3 27KIZ3 = 3 µ Excellement [®] Z-M	ledia [®] and ASP [®] media (synthetic)			
	KIZ10 KKIZ10 27KIZ10 = 10 μ Excellement [®] Z-M	Media [®] and ASP [®] media (synthetic)			
	BOX 3				
	Seal Material Inlet Porting Location				
	Omit = Buna N				
	H = EPR				
	W = Anodized Aluminum Parts				
	H.5 = Skydrol [®] Compatibility				
	BOX 4 Specification of all 3 ports is required				
	Inlet Porting				
	Port A Port B	Port C			
	P16 = 1" NPTF N = None	N = None			
	P20 = 1 ¹ / ₄ " NPTF P16 = 1" NPTF	P2 = 1/8" NPTF			
	P24 = 1½" NPTF P20 = 1¼" NPTF	P16 = 1" NPTF			
	S16 = SAE-16 P24 = 1½" NPTF	S16 = SAE-16			
	S20 = SAE-20 S16 = SAE-16				
	S24 = SAE-24 S20 = SAE-20				
	F20 = 1 ¹ / ₄ " SAE 4-bolt flange Code 61 S24 = SAE-24				
NOTES:	F24 = $1\frac{1}{2}$ " SAE 4-bolt flange Code 61 F20 = $1\frac{1}{4}$ " SAE 4-bolt flange Code	e 61			
Box 2. Replacement element	F24 = 1½" SAE 4-bolt flange Code	e 61			
identical to contents	BOX 5	BOX 6			
Box 3 For options H W and	Dirt Alarm [®] Options	Additional Options			
H.5, all aluminum parts are anodized. H.5 seal	Omit = None	Omit = None			
designation includes the following: EPR seals,	Visual Y2 = Back-mounted tri-color gauge	$G547 = Two \frac{1}{8}$ " gauge ports			
stainless steel wire mesh on elements, and light	ES = Electric switch	4-bolt flange mounting			
oil coating on housing exterior. Skydrol [®] is a	Fort D Electrical ES1 = Heavy-duty electric switch with conduit connector	holes (specify after each port designation)			
registered trademark of Solutia Inc.	Located Y2C = Bottom-mounted tri-color gauge				
Box 4. If using Port B, Port A	in cap Y5 = Back-mounted gauge in cap				
& B must always be the same type and size.	Visual Y2R = Back-mounted gauge mounted on opposite side				
Example: (A) P20 (B) P20 (C) P16	Located ESR = Electric switch mounted on opposite side				
Box 6. See also "Accessories for	Port C Electrical of standard location				
page 307.	ES1R = Heavy-duty electric switch with conduit connector				

		150 gpm
	Features and Benefits	570 L/min TF1
	Low pressure tank-mounted filter	100 mci
	 Multiple inlet/outlet porting options 	IUU PSI KF3
	Top, side or bottom mounting	7 bar
	 Optional check valve prevents reservoir siphoning 	KL3
	 Can also be used in return line application (contact factory) 	LF1
	 Visual gauge or electrical switch dirt alarms 	MLF1
	 Offered in pipe, SAE straight thread, flanged and ISO 228 porting 	RLD
	Same day shipment model available	CDTP
	 Also available with DirtCatcher[®] elements (18LD) 	GRTD
	G Available with quality-protected	IVIIA
	GeoSeal [®] Elements (GLRT)	МТВ
		ZT
Market Market (1996)		KFT
Model No. of filter in photograph is LRI	18LZ10524NP16Y2.	

RT

Flow Rating:	Up to 150 gpm (570 L/min) for 150 SUS (32 cSt) fluids	Fi	ilter	LRT
Max. Operating Pressure:	100 psi (7 bar)	H	lousing	ADT
Min. Yield Pressure:	400 psi (28 bar), per NFPA T2.6.1	S	pecifications	AKI
Rated Fatigue Pressure:	90 psi (6 bar), per NFPA T2.6.1-2005			DDT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)			DRI
Bypass Setting:	Cracking: 25 psi (1.7 bar) Full Flow: 34 psi (2.3 bar)			TRT
Porting Head & Cap: Element Case:	Die Cast Aluminum Steel			BFT
Weight of LRT-18L:	14.6 lbs. (6.6 kg)			07
Element Change Clearance:	17.0" (432 mm)			QI

КТК

LTK

Type Flu	id Appropriate Schroeder Media	Fluid MRT
Petroleum Based Flu	ds All E media (cellulose) and Z-Media [®] (synthetic)	Compatibility
High Water Conte	nt All Z-Media® (synthetic)	Accessories
Invert Emulsio	ns 10 and 25 μ Z-Media [®] (synthetic)	For lank-
Water Glyc	ols 3, 5, 10 and 25 μ Z-Media [®] (synthetic)	Filters
Phosphate Est	rs All Z-Media® (synthetic) with H (EPR) seal designation	Thers
Skydr	I [®] 3, 5, 10 and 25 µ Z-Media [®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)	PAF1
		MAF1

LRT

Tank-Mounted Filter

	4-Bolt Flange Only	2" Ports	All Other Porting
Port to Port	7.12"	7.56" (P, S, B)	6.38"
		7.38" (F)	
င္ to Casting Base	1.75"	1.81"	1.56"
င္ to Tank Top	2.06"	2.12 "	1.88"

Optional mounting ring available to weld to tank.

11/2" Ports

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
18LZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LZ3	<1.0	<1.0	<2.0	<4.0	4.8
18LZ5	2.5	3.0	4.0	4.8	6.3
18LZ10	7.4	8.2	10.0	8.0	10.0
18LZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)
18LZ1	224	18LDZ1	194
18LZ3	230	18LDZ3	199
18LZ5	238	18LDZ5	194
18LZ10	216	18LDZ10	186
18LZ25	186	18LDZ25	169

Element Collapse Rating: Flow Direction: Element Nominal Dimensions: 150 psid (10 bar) Outside In 4.0" (100 mm) O.D. x 18.5" (470 mm) long

$\Delta \mathbf{P}_{\mathsf{housing}}$

LRT $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \mathbf{P}_{element}$

Pressure Drop Information Based on Flow Rate and Viscosity

$\Delta \mathbf{P}_{\text{filter}} = \Delta \mathbf{P}_{\text{housing}} + (\Delta \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 120 gpm (379 L/min) for LRT18LZ10S24S24NY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 120 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the LRT housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{element}$ at 120 gpm. In this case, $\Delta \mathbf{P}_{element}$ is 4 psi (.27 bar) according to the graph for the 18LZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 8 \text{ psi } [.55 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 4 \text{ psi } [.27 \text{ bar}]$

V $_{f}$ = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 △**P** $_{filter}$ = 3 psi + (4 psi * 1.1) = 7.4 psi OR

 $\Delta \mathbf{P}_{filter} = .21 \text{ bar} + (.27 \text{ bar} * 1.1) = .51 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate } x \Delta \mathbf{P}_{f} \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$
18LDZ1	0.12
18LDZ3	0.06
18LDZ5	0.05
18LDZ10	0.03
18LDZ25	0.02

NOTES:

- Box 4. For options H, W, and
- Box 5. If using Port B, Port A
 - page 307.

225 gpm <mark>850 L/min</mark> **Features and Benefits** 145 psi 10 bar ■ Compact, lightweight, low pressure tank mounted filter ideal for mobile applications ■ Lightweight plastic bowl ART aluminum alloy is designed to be water tolerant - anodization is not required for use with water based fluids (HWCF). ■ Special filter element design provides aftermarket benefits. ■ Various Dirt Alarm[®] options

Model No. of filter in photograph is ART85Z10F43.

KFT

TF1

KF3

KL3

MLF1

ΜΤΑ

MTB

Flow Rating:	Up to 225 gpm (850 L/min) for 150 SUS (32 cSt) fluids	Filter	LRT
Max. Operating Pressure:	145 psi (10 bar)	Housing	ADT
Min. Yield Pressure:	535 psi (37 bar), per NFPA T2.6.1	Specifications	ARI
Rated Fatigue Pressure:	145 psi (10 bar), per NFPA T2.6.1		DDT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		DRI
Bypass Setting:	Cracking: 43 psi (3 bar) Full Flow: 69 psi (4.75 bar)		TRT
Porting Head & Cap: Element Case:	Aluminum Plastic		BFT
Weight of ART:	15 lbs. (7 kg)		
Element Change Clearance:	16.39" (340 mm)		QT
			КТК

- **LTK**

Type Fluid	Appropriate Schroeder Media		Fluid MRT
Petroleum Based Fluids	All Z-Media [®] (synthetic)		Compatibility
High Water Content	All Z-Media [®] (synthetic)		Accessories For Tank- Mounted Filters PAF1 MAF1
		SCHROEDER INDUSTRIES 271	MF2

Metric dimensions in ().

	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	β_x (c) ≥ 200	$\beta_x(c) \ge 1000$
85Z1	<4.0	4.2
85Z3	<4.0	4.8
85Z5	4.8	6.3
85Z10	8.0	10.0
85Z25	19.0	24.0

Element Performance Information & Dirt Holding Capacity

Element	DHC (gm)	
85Z1	185	
85Z3	147	
85Z5	206	
85Z10	164	
85Z25	167	
Element	Collapse Rating:	150 psid (10 bar)
	Flow Direction:	Outside In
Element Nominal Dimensions:		4.5" (114.3 mm) O.D. x 13.8" (350.52 mm) long

ART

$\Delta \mathbf{P}_{\mathsf{housing}}$

ART $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 120 gpm (379 L/min) for ART85Z10F43Y2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 120 gpm. In this case, $\Delta P_{\text{housing}}$ is 1 psi (.07 bar) on the graph for the ART housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 120 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 10 psi (.69 bar) according to the graph for the 85Z10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f}$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 1 \text{ psi } [.07 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 10 \text{ psi } [.69 \text{ bar}]$

 $𝒱_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ △ $𝒫_{filter} = 1 \text{ psi} + (10 \text{ psi} * 1.1) = 12 \text{ psi}$

<u>OR</u>

 $\Delta \mathbf{P}_{filter} = .07 \text{ bar} + (.69 \text{ bar} * 1.1) = .83 \text{ bar}$

Filter Model Number Selection

ART

BOX 1	BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7		
Example: No	OTE: One option per box		
BOX 1 ART –	BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 85Z10 - F - 43 - Y2 =	ART85Z10F43Y2	
BOX 1	BOX 2	BOX 3	
Filter Series	Element Size and Media	Seal Material	
ART	85Z1 = 1 μ Excellement [®] Z-Media [®] (synthetic) 85Z3 = 3 μ Excellement [®] Z-Media [®] (synthetic)	Omit = Buna N H = EPR	
	85Z5 = 5 µ Excellement [®] Z-Media [®] (synthetic)		
	85Z10 = 10 µ Excellement® Z-Media® (synthetic)		
	85Z25 = 25 μ Excellement [®] Z-Media [®] (synthetic)		

How to Build a Valid Model Number for a Schroeder ART:

BOX 4	BOX 5	BOX 6
Porting	Bypass Setting	Outlet Options
$F = 2\frac{1}{2}$ " SAE-40 4-bolt flange Code 61	43 = 43 psi Bypass	Omit = 2" ISO 228 G thread
FF = Dual 2 ¹ / ₂ " SAE-40 4-bolt flange Code 61		
S = SAE-32		
SS = Dual SAE-32		

BOX 7				
	Dirt Alarm [®] Options			
	Omit = None			
	Y2 = Back-mounted tri-color gauge			
Visual	Y2R = Back-mounted gauge mounted on opposite side of standard location			
	ES = Electric switch (normally open)			
Electrical	ESR = Electric switch mounted on opposite side of standard location			
	ES1 = Heavy-duty electric switch with conduit connector			
	ES1R = Heavy-duty electric switch with conduit connector mounted on opposite side of standard location			
	ES2 = Super duty electric switch with Thermal Lockout and 2 pin Deutsche connector (DT04-2P, SPST, normally closed)			

NOTES:

- Box 2. Replacement element part numbers are identical to contents of Boxes 2 and 3.
- Box 3. For option H, all aluminum parts are anodized.

Return Line Filter BRT

Kodel No. of filter in photograph is BR	<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header>	to 160 gpm <u>to 600 L/min</u> to 145 psi to 10 bar	IRF TF1 KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT KFT RT
			RTI
Flow Rating:	Lin to 160 anm (600 L/min) for 150 SLIS (32 cSt) fluids	Filter	IRT
Max. Operating Pressure:	145 psi (10 bar)	Housing	LIVI
Temp. Range:	-22°F to 248°F (-30°C to 120°C)	Specifications	ART
Bypass Setting:	Cracking: 36 psi (2.5 bar)		DDT
Filter Head & Cover: Inlet Section:	BRT 2 - 6: Aluminum Nylon (PA66)		BKI
Seals	Buna N		IKI
Instanation.			BFT
			QT
			КТК
			LTK
			MRT
Biodegradable	Type FluidAppropriate Schroeder MediaHydraulic OilsSchroeder Z-Media® (synthetic)Lubrication OilsSchroeder Z-Media® (synthetic)Compressor OilsSchroeder Z-Media® (synthetic)Operating FluidsSchroeder Z-Media® (synthetic)	Fluid Acces Compatibility For Mo	sories Tank- ounted Filters PAF1 MAF1

Return Line Filter

Dimensions

BRT4 - BRT6

Element	DHC (g)	Element	DHC (g)
2RBZ10	70.4	4RBZ10	152.5
2RBZ25	77.8	4RBZ25	173.4
3RBZ10	114.3	6RBZ10	190.4
3RBZ25	128.3	6RBZ25	231.7

Element Burst Rating:87 psi (6 bar) for standard elementsFlow Direction:Inside Out

Element Dirt Holding Capacity & Burst Rating

Return Line Filter

BRT

Total Filter Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM] 100 60 80 120 140 160 180 0 20 40 8.00 Z10 0.50 7.00

Pressure Drop Information Based on Flow Rate and Viscosity

BRT3

Total Filter Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

BRT4

BRT6

BRT Return Line Filter

Filter	How to Bu	ild a Valid M	odel Nun	nber for a	Schroeder BRT	•				
Model	BOX 1	BOX 2 E	BOX 3 E	OX 4 BC	DX 5 BOX 6	BOX 7	1			
Number	BRT -				FF					
Selection	Example: NOT	E: One option per	box							
	BOX 1	BOX 2 E	3OX 3 E	OX 4 BC	DX 5 BOX 6	BOX 7				
	BRI -	- 3RB –	Ζ -	10 –			= BR13RBZ101Y2			
	BOX 1	BOX 2		BC	DX 3		BOX 4			
	Filter Series	Size of Element		Element I	Media Type		Micron Rating			
	BRT	2RB	Z =	Excellement®	c)	10 = 10 µm				
		3RB				25 = 25 µm				
		4RB								
		6KB								
	BOX 5	BC	DX 6			BOX 7				
	Seal Mater	rial Inlet I	Porting		Dirt Ala	ions				
	Omit = Bur	na N 2 = sic	de inlet		Omit = No I	ealed up w/ screw plug				
	V = Vite	on [®] 1 = bo	ottom inlet		VA = visu	al/electrica	l			
				Clogging Indicators	VE = elec	trical				
				mulcutors	VO = visu	al				

Return Line Filter TRT

	 Feature Filter stance The p optio outle close heigh magr guara Pater housi a 360 Quali 	es and Benefits head is mounted on the tank like a fad return-line filter solution ortective tube can be supplied in various nal versions: 1.) as a closed tube with the to pening facing downwards or with a d base and rows of operating holes at the d base and rows of operating holes at the d base and rows of operating holes at the to the tank's oil level 2.) with an optional atteeing effective magnetic pre-filtration the de-aeration windows around the g offer superior air bubble coalescence in d degree discharge ty Protected Element Design of Schroeder Industries' 2030 Initiative	up to 634 gpm IRF up to 2400 L/min TF1 to 145 psi to 10 bar KL3 LF1 MLF1 RLD GRTB MTA MTB	
Model No. of filter in photograph is TI	₹T5RTZ10G.		ZT KFT RT RTI	
Flow Rating:	Up to 634 gpm (2	2400 L/min) for 150 SUS (32 cSt) fluids	Filter LRT	
Max. Operating Pressure:	145 psi (10 bar)		Housing	
Temp. Range:	-22°F to 248°F (-	30°C to 120°C)	Specifications ART	
Bypass Setting:	Cracking: 36 psi	(2.5 bar)	BRT	
Filter Head & Cover:	Steel			
Inlet Section:	Nylon (PA66)		TRT	
Seals:	Can Drop (= Perb	unan Drop)		
Installation:	As in-tank filter		BFI	
			QT	
			КТК	
			LTK	
			MRT	
	Type Fluid	Appropriate Schroeder Media	Fluid Accessories	
	Hydraulic Oils	Schroeder Z-Media® (synthetic)	Compatibility For Tank-	
	Compressor Oils	schroeder Z-Media® (synthetic)	Mounted	
Biodegradable	Operating Fluids	Schroeder Z-Media (synthetic)	Filters	
			PAF1	
			MAF1	
		SCHROEDER INDUSTRI	S 281 MF2	

Return Line Filter

TRT

Element Burst Rating: 87 psi (6 bar) for standard elements Flow Direction: Inside Out

Return Line Filter TRT

Туре	Shroud Version	H1	H2	НЗ	H4	h	h1	h2	h3	h4	ØD1	ØD2	Ød3	а	b	с	d	f	Øk	Øk2	Wt (lbs)
	Without shroud	[0.39]	[8.58] 218	-	[6.1] 155	1] 5	[3.35] 85	[10.24] 260	[0.39] 10	-	-		5.31] [6.89] 135 175	[3.33] 84.5	[3.39] 86.0* [3.33] 84.5*	[3.15] 80* [3.07] 78**	[2.75] 69.9	[1.48] 37.5	[0.39] 10	M12 .	5.7
TDTO	With shroud	10		-	[1.97] 50	[1.97] 50 [1.54] 39 [0.39]					[5.04] 128	[5.31] [6. 135 1									7.1
IRIZ	With diffuser	[0.2]	[9.72] 247	[4.02] 102	[0.39]																7.5
	Diffuser with opening	5		[4.96] 126	10																7.7

* Non-machined port ** Machined port

Return Line Filter

TRT

Return Line Filter TRT

Тур	e Design	H1	H2	НЗ	H4	h	h1	h2	h3	h4	ØD1	ØD2	Ød3	а	b	с	d	Øk	Wt (Ibs)	
Type TRT3 V C TRT4 V V C TRT4 V V C C C C C C C C C C C C C	Without shroud	[0.39] 10	[12.03] 305.5	-	[7.87] 200	7]) 6]	[4.98] 126.5	[16.54] 420	4] 7] [0.43] 11	[1.97] 50	-					[3.58] 91* [3.50] 89**	[3.94] 100	[0.49] 12.5	9.3	
	With shroud			-	[2.36] 60						[5.98] 152	98] 52							10.8	
	With diffuser	[0.2]	[12.83] 2] 326	[4.53] 115	[0.39]														11.0	
	Diffuser with opening	5		[6.22] 158	10	6] [2.09] [53													11.2	
	Without shroud	[0.39]	[15.96] 405.5	-	[10.63] 270			[20.47] 520			-								9.9	
TRT3 -	With shroud	10		-	[2.36] 60							[6.14] [[8.46]	[3.85] 98.0*	[3.85] 98.0*				11.9	
	With diffuser	[0.2]	[16.77] 426	[4.53] 115	[0.39] 10						[5.98] 152	156	6 215 [3 9([3.80] 96.5**] [3.80] * 96.5**				12.1	
	Diffuser with opening	5		[7.68] 195															12.3	
	Without shroud	[0.39]	[19.51] 495.5	-	[12.99] 330			[24.02] 610	1		-								11.0	
TRT	5 With shroud	10		-	[2.36] 60														13.2	
	With diffuser	10.01.5	[20.31] 516	[4.53] 115	[0.39]						[5.98] 152								13.4	
	Diffuser with opening	[0.2] 5	[0.2] 5		[10.63] 270	10														13.7

E2

* Non-machined port ** Machined port

Return Line Filter

Return Line Filter

TRT

 Total Filter Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 Flow Rate [LPM]

 20
 40
 60
 80
 100
 120
 140
 160
 180

Pressure Drop Information Based on Flow Rate and Viscosity

Total Filter Pressure Drop versus Flow Rate at 32 cSt (150 SUS) Flow Rate [LPM]

TRT4

TRT5

TRT Return Line Filter

Filter How to	o Build a	valid iviou	er number for a	Schloeuer	INI.	
Model	1 BOX	2 BOX 3	BOX 4 BOX 5 B	OX 6 BOX 7	BOX 8 BOX 9	
	1 BOX	2 BOX 3	BOX 4 BOX 5 B	OX 6 BOX 7	BOX 8 BOX 9	
TR	T – 2RT	Z – 10 –		G -		= TRT2RTZ10G
BOX	1 B(OX 2	BOX 3		BOX 4	
Filte Serie	r S s of El	ize ement	Micron Rating	В	ypass	
TRT	2	RTZ	10 = 10 µm	Omit = stan	dard 36 psi bypass	
	3	RTZ	25 = 25 µm	X = non	bypass	
	4	RTZ		12 = 12 p	osi bypass	
	5	RT7				
	BOX 5		BOX 6			BOX 7
	BOX 5 Magne	t	BOX 6 Portin	9	Но	BOX 7 using Option
Omit =	BOX 5 Magne [:] = no magnet	t ic core	BOX 6 Portin G = 1 1/2 " G	g	Ho Omit = standard	BOX 7 using Option housing with diffuser
Omit = M =	BOX 5 Magnet = no magnet = Magnet	t ic core	BOX 6 Portin G = 1 1/2 " G S = 1 1/2 " SA	9 \E	Ho Omit = standard X = no housi	BOX 7 using Option housing with diffuser ng tube
Omit = M =	BOX 5 Magnet = no magnet = Magnet	t ic core	BOX 6 Portin G = 1 1/2 " G S = 1 1/2 " SA	g AE	Ho Omit = standard X = no housi	BOX 7 using Option housing with diffuser ng tube
Omit = M = B	BOX 5 Magnet = no magnet = Magnet OX 8	t ic core	BOX 6 Portin G = 1 1/2 " G S = 1 1/2 " SA B	g AE OX 9	Ho Omit = standard X = no housi	BOX 7 using Option housing with diffuser ng tube
Omit = M = Be Seal f	BOX 5 Magner = no magnet = Magnet OX 8 Material	t ic core	BOX 6 Portin G = 1 1/2 " G S = 1 1/2 " SA B Dirt Alar	g AE OX 9 m [®] Options	Ho Omit = standard X = no housi	BOX 7 using Option housing with diffuser ng tube
Omit = M = Seal F	BOX 5 Magner = no magnet = Magnet OX 8 Vaterial = Buna N	t ic core	BOX 6 Portin G = 1 1/2 " G S = 1 1/2 " SA B Dirt Alar Omit = No In	g \E OX 9 m [®] Options	Ho Omit = standard X = no housi	BOX 7 using Option housing with diffuser ng tube
Omit = M = Seal M Omit	BOX 5 Magner = no magnet = Magnet OX 8 Vlaterial = Buna N = Viton®	t ic core	BOX 6 Portin G = 1 1/2 " G S = 1 1/2 " SA B Dirt Alar Omit = No In VA = victor	g NE OX 9 m [®] Options dicator, sealed u	Ho Omit = standard X = no housi up w/ screw plug	BOX 7 using Option housing with diffuser ng tube
Omit = M = Seal f Omit V	BOX 5 Magnet = no magnet = Magnet OX 8 Vlaterial = Buna N = Viton®	t ic core Clogging	BOX 6 Portin G = 1 1/2 " G S = 1 1/2 " SA B Dirt Alar Omit = No In VA = visual VF = clott	9 KE OX 9 m [®] Options dicator, sealed u Velectrical	Ho Omit = standard X = no housi up w/ screw plug	BOX 7 using Option housing with diffuser ng tube
Omit = M = Seal I Omit V	BOX 5 Magner = no magnet = Magnet OX 8 Material = Buna N = Viton®	t ic core Clogging Indicators	BOX 6 Portin G = 1 1/2 " G S = 1 1/2 " SA B Dirt Alar Omit = No In VA = visual VE = electr	g AE OX 9 m [®] Options dicator, sealed u l/electrical ical	Ho Omit = standard X = no housi up w/ screw plug	BOX 7 using Option housing with diffuser ng tube

TF1

KF3

KL3

MLF1

MTA

MTB

KFT

BFT

KTK

LTK

MRT

Kodel No. of filter in photograph is BF	<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header></section-header>	300 gpm <u>1135 L/min</u> 100 psi 7 bar
Flow Rating:	Up to 300 gpm (1135 L/min) for 150 SUS (32 cSt) fluids	Filter
Max. Operating Pressure:	100 psi (7 bar)	Housing
Min. Yield Pressure:	250 psi (17 bar), per NFPA T2.6.1	Specifications
Rated Fatigue Pressure:	Contact factory, per NFPA T2.6.1	
Temp. Range:	-20°F to 225°F (-29°C to 107°C)	
Bypass Setting:	Cracking: 25 psi (1.7 bar) Full Flow: 52 psi (3.6 bar)	
Porting Head & Cap:	Aluminum	
Weight of BET-18B:	36.7 lbs (16.6 kg)	
Flement Change Clearance:	14 75" (375 mm)	
Type Fluid Approp	riate Schroeder Media	Fluid
Petroleum Based Fluids All E me	dia (cellulose) and Z-Media [®] (synthetic)	Compatibility
High Water Content All 7-Me	edia [®] (synthetic)	Acce
Invert Emulsions 10 and 2	25 μ Z-Media [®] (synthetic)	Fo
Water Glycols 3, 5, 10	and 25 µ Z-Media [®] (synthetic)	M

Phosphate Esters All Z-Media[®] (synthetic) with H (EPR) seal designation 3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and Skydrol® stainless steel wire mesh in element, and light oil coating on housing exterior)

Filters

PAF1

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Rat Using automated pa	io Per ISO 4572/N article counter (APC) cal	Filtration Rati Using APC calibr	o per ISO 16889 ated per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	β_x (c) ≥ 200	$\beta_x(c) \ge 1000$
BB/BLZ1	<1.0	<1.0	<1.0	<4.0	4.2
BB/BLZ3	<1.0	<1.0	<2.0	<4.0	4.8
BB/BLZ5	2.5	3.0	4.0	4.8	6.3
BB/BLZ10	7.4	8.2	10.0	8.0	10.0
BB/BLZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	
BBZ1	268	BBDZ1	205	BLZ1	536	
BBZ3	275	BBDZ3	163	BLZ3	550	
BBZ5	301	BBDZ5	229	BLZ5	550	
BBZ10	272	BBDZ10	183	BLZ10	550	
BBZ25	246	BBDZ25	186	BLZ25	550	
Element Collapse Rating:		150 psid (10 bar)				
Flow Direction:		Outside In				
Element Nomina	l Dimensions:	BB: 5.0" (125 mm) O.D. x 18.0" (460 mm) long BL: 5.0" (125 mm) O.D. x 36.0" (920 mm) long				

290 SCHROEDER INDUSTRIES

$\triangle \mathbf{P}_{\mathsf{housing}}$

BFT $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 200 gpm (758 L/min) for BFT1BBZ10PY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.5 psi (.10 bar) on the graph for the BFT housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 200 gpm. In this case, $\Delta P_{element}$ is 6 psi (.41 bar) according to the graph for the BBZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 1.5 \text{ psi} [.10 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 6 \text{ psi} [.41 \text{ bar}]$

 $\mathbf{v}_f = 160 \text{ SUS } (34 \text{ cst}) / 150 \text{ SUS } (32 \text{ cst}) = 1.1$

$$\Delta \mathbf{P}_{\text{filter}} = 1.5 \text{ psi} + (6 \text{ psi} * 1.1) = 8.1 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{filter} = .10 \text{ bar} + (.41 \text{ bar} * 1.1) = .55 \text{ bar}$

Pressure Drop Information Based on Flow Rate and Viscosity

BF

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \mathbf{P}_{f}$ Plug this variable into the overall pressure drop equation.

•	•	•	
Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
BB10	0.03	BL10	0.01
BB25	0.01	BL25	0.01
BBDZ1	0.08	BLDZ1	0.16
BBDZ3	0.06	BLDZ3	0.12
BBDZ5	0.05	BLDZ5	0.10
BBDZ10	0.04	BLDZ10	0.08
BBDZ25	0.02	BLDZ25	0.04

BFT

Filter Model Number Selection	How to Build a Valid Model Number for a Schroeder KF3: BOX1 BOX2 BOX3 BOX4 BOX5 BOX6 BOX7 BOX8 BOX9 BOX10 BFT -						310PY2		
	BOX 1	BOX 2 Number				BOX 3		BOX 4	
	Series	of Elements			Elem	ent Size and Media		Seal Mater	ial
	BFT	1	BB Length	BL Length				Omit = Buna N H = EPR	1
			BB3		= 3 µ	ı E media (cellulose)		= Anodiz W Aluminur	:ed m
			BB10 BB25 BBZ1	BLZ1	= 10 = 25 = 1 µ	μ E media (cellulose) μ E media (cellulose) ι Excellement® Z-Media	a® (synthetic)	Parts H.5 = Skydrol compa	l® tibility
			BBZ3	BLZ3	= 3 µ	I Excellement [®] Z-Media	a® (synthetic)		
			BBZ5	BLZ5	= 5 µ	ı Excellement® Z-Media	a® (synthetic)		
			BBZ10	BLZ10	= 10	µ Excellement® Z-Med	lia® (synthetic)		
			BBZ25	BLZ25	= 25	µ Excellement® Z-Med	lia® (synthetic)		
			BBDZ1		= BB	size DirtCatcher [®] 1 µ Ex	cellement [®] Z-Media [®]		
			BBDZ3		= BB	size DirtCatcher [®] 3 µ Exe	cellement [®] Z-Media [®]		
			BBDZ5		= BB	size DirtCatcher [®] 5 μ Exe	cellement [®] Z-Media [®]		
			BBDZ10		= BB	size DirtCatcher [®] 10 μ Ex	cellement [®] Z-Media [®]		
			BBDZ25		= BB	size DirtCatcher [®] 25 µ Ex	cellement [®] Z-Media [®]		
		BC	DX 5			BOX 6		BOX 7	
	D - 21/		rting			Bypass Setting		t = 2" NPT male	
	PP - Dua					40 - 40 psi crack		I = 3 NFT IIIdle I = 13" Tube exte	nsion
	$S = S\Delta F$	-32				40 – 40 psi clack	ing		1131011
	$S = D_{La}$	52 SAF-32				BOX 8			
	$F = 2\frac{1}{2}$	SAE 4-bolt fl	lange Code	61		Optional Check V	alve		
	FF = Dua	2½"SAE 4-	polt flange	Code 61		Omit = None			
acement element]	C = Check valve			
numbers are tical to contents			B	9 אר				BOX 10	
a elements are available with			Dirt Aları	n [®] Opti	ons		Additi	onal Options	
N seals.		Omit = Nor	ne				Omit = None		
ptions H, W, and Il aluminum parts	Viewal	Y2 = Bac	k-mounted	l tri-color	gauge	2	G547 = Two ½" g G1476 = Three-terr	auge ports minal electric switch	
nodized. H.5 seal ination includes ollowing: EPR seals,	VISUAI	Y2R = Bac of s	k-mounted	l gauge n cation	nounte	ed on opposite side	M = Metric thi flange mo each port	read for SAE 4-bolt punting holes (specific designation)	fy after
less steel wire mesh ements, and light		ES = Electrony	ctric switch	mountor	tono	nnosite side of	40 = 40 psi by	bass setting	
ior. Skydrol [®] is a	Electrical	stai	ndard locat	ion		pposite side of			
tered trademark		ES1 = Heavy-duty electric switch with conduit connector							

ES1R = Heavy-duty electric switch with conduit connector

mounted on opposite side of standard location

NOTES:

- Box 3. Repla part i ident of Bo medi only a Buna
- Box 4. For o H.5 a are a desig the fo stainl on ele oil co exteri registe of Solutia Inc.
- Box 8. See also "Accessories for Tank-Mounted Filters," page 307.

QT	

Model No. of filter in photograph	<section-header><section-header><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>	450 gpm <u>1700 L/min</u> 100 psi 7 bar	IRF TF1 KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT KFT
			RTI
Elow Pating	Lip to 4E0 app (1700 L (min) for 1E0 CLIS (22 cSt) fluids	Filtor	
Max Operating Pressure:	00 to 450 gpm (1700 D/mm) for 150 SUS (32 CSI) huids	Housing	LRT
Min. Yield Pressure:	300 psi (21 bar) per NEPA T2 6 1	Specifications	
Rated Fatigue Pressure:	100 psi (7 bar), per NFPA T2.6.1-R1-2005		ARI
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		BRT
Bypass Setting:	Cracking: 30 psi (2.1 bar) Full Flow: 55 psi (3.8 bar)		TRT
Porting Head:	Steel		
Min. Weight of QT-16Q: Min. Weight of QT-39Q:	100.0 lbs. (46 kg) 158.0 lbs. (72 kg)		BFT
Element Change Clearance:	16Q 12.0" (305 mm)		QT
	39Q 33.8" (859 mm)		кти
			LTK
Type Fluid	Appropriate Schroeder Media	Fluid	MRT
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility	
High Water Content	All Z-Media [®] and ASP [®] media (synthetic)	Acces	Sories
Invert Emulsions	10 and 25 μ Z-Media [®] and 10 μ ASP [®] media (synthetic)	Мо	unted
Water Glycols	3, 5, 10 and 25 μ Z-Media [®] and all ASP [®] media (synthetic)		Filters
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and all ASP [®] media (synthetic)		PAF1

MAF1

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

		Filtration Ratio	o Per ISO 4572/ ticle counter (APC) o	NFPA T3.10.8.8 alibrated per ISO 4402	Filtration Rat Using APC calibi	io per ISO 16889 rated per ISO 11171
Eleme	ent	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
	Z1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/PMLZ25	18.0	20.0	22.5	19.0	24.0
Elomo	nt) Element			
Eleme	71	276	DMI 71		207	
	21	270	FIVILZ I		215	
	23	283	PIVILZ3		315	
16Q	Z5	351	PMLZ5		364	
	Z10	280	PMLZ10		330	
	Z25	254	PMLZ25		299	
	Z1	974	PMLZ1		1485	
	Z3	1001	PMLZ3		1525	
39Q	Z5	954	PMLZ5		1235	
	Z10	940	PMLZ10		1432	
	Z25	853	PMLZ25		1299	
	El	ement Collapse Rati	ing: Q and QPI	ML: 150 psid (10 bai	-)	
		Flow Direct	ion: Outside In		,	
	Elemer	nt Nominal Dimensio	6.0" (150 mm) O. 6.0" (150 mm) O. 6.0" (150 mm) O. 6.0" (150 mm) O.	D. x 16.85" (430 r D. x 16.00" (405 r D. x 38.70" (985 r D. x 37.80" (960 r	nm) long nm) long nm) long nm) long	
94 SCH	ROEDER IND	USTRIES				

QT

$\Delta \mathbf{P}_{\text{housing}}$

QT $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Flow (L/min)

Pressure Drop Information Based on Flow Rate and Viscosity

 $\triangle \mathbf{P}_{\mathsf{filter}} = \triangle \mathbf{P}_{\mathsf{housing}} + (\triangle \mathbf{P}_{\mathsf{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 200 gpm (758 L/min) for QT16QZ3P48D5C using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the QT housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 200 gpm. In this case, $\Delta P_{element}$ is 8 psi (.55 bar) according to the graph for the 16QZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \mathbf{v}_{f}$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 8 \text{ psi } [.55 \text{ bar}]$

 \mathbf{v}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta \mathbf{P}_{\text{filter}}$ = 2 psi + (8 psi * 1.1) = 10.8 psi

OR

△P_{filter} = .14 bar + (.55 bar * 1.1) = .75 bar

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = \text{Flow Rate } x \, \Delta \mathbf{P}_{f}. \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
16QAS3V	0.04	16QPMLZ1	0.08
16QAS5V	0.04	16QPMLZ3	0.05
16QAS10V	0.03	16QPMLZ5	0.05
16QPMLAS3V	0.05	16QPMLZ10	0.04
16QPMLAS5V	0.05	16QPMLZ25	0.02
16QPMLAS10V	0.04	39QAS3V	0.01
16QZ1	0.09	39QAS5V	0.01
16QZ3	0.04	39QAS10V	0.01
16QZ5	0.04	39QPMLAS3V	0.02
16QZ10	0.03	39QPMLAS5V	0.02
160Z25	0.01	39QPMLAS10V	0.01

How to Build a Valid Model Number for a Schroeder QT:

Filter Model Number Selection

BOX 1	BOX 2 E	BOX 3 BOX	4 BOX 5 BOX 6 BOX	7 BOX 8 BOX 9 BOX	10			
QT	┝───┝─							
Example:	NOTE: One opt	ion per box						
BOX 1	BOX 2 BOX	3 BOX 4 BC	DX 5 BOX 6 BOX 7 BOX	8 BOX 9 BOX 10				
QT -	16 – Q	– Z –	3 –	– D5C = QT1	6QZ3P48D5C			
BOX 1	BOX 3		POV 4	POV F	DOX 6			
DUX I	Element	BUX 3	BUX 4	BOX 5	BUX 6			
Series	Length	Style	Media Type	Rating	Material			
	(11)	0	Z = Excellement [®] Z-Media [®]	1 = 1 µ Z-Media®	Omit = Buna N			
ОТ	16	QCLQF	(synthetic)	$3 = 3 \mu AS and Z-Media®$	H = EPR			
	39	QPML	W = W media (water removal)	$5 = 5 \mu AS and Z-Media^{(8)}$	V = Viton®			
			AS = Anti-Static Pleat Media (synthetic)	$10 = 10 \mu \text{AS} \text{ and Z-Media}^{\otimes}$				
		L	(Synthetic)	25 = 25 µ Z-Media®				
					1			
	BOX 7			BOX 10				
Inle	et Porting		Dirt A	larm [®] Options				
P48 = 3"	NPTF		Omit = None					
P64 = 4"	NPTF	Visua	D5C = Visual pop-up	in cap				
		Visual with	1					
	BOX 8	Therma	D8C = Visual w/ ther					
Bypa	ass Settina	LOCKOU	MS5C – Electrical w/ 12 in 18 gauge 4-conductor cable in can					
0 1 20				MS5ICC = Low current MS5 in cap				
Omit = 30	psi cracking		MS10C = Flectrical w/ DIN connector (male end only) in can					
15 = 15	psi cracking		MS10ICC = I ow current MS10 in cap					
40 = 40	psi cracking		MS11C = Electrical w/ 12 ft 4-conductor wire in cap					
50 = 50	psi cracking	Electrica	IVISING = Electrical W/ 12 T. 4-conductor Wire In Cap MS12C = Electrical W/ 5 pin Brad Harrison connector (male and only) in cap					
X = Blo	icked bypass		$ V S _2C = Lieculdar W S$		end only/in cap			
	DOVO		MS12LCC = LOW CUITERLIN	/ISTZ IITCdp				
	BOX 9				Сар			
Outl	et Porting		NS16LCC = LOW current N	vis ro in cap	•••••			
Omit = 3"	NPT Male		IVIST/LCC = Electrical W/ 4	pin Brad Harrison male connector	in cap			
C = Ch	eck valve		IVIS51 = IVIS5 (see abo	ve) w/ thermal lockout in cap				
D = Diff	fuser		MISSECT = Low current N	/ISST IN CAP				
CD = Ch	eck valve and		MS10IC = MS10 (see ab	ove) w/ thermal lockout in cap				
diff	user	Electrica	MS10LCIC = Low current N	/ISTUT in cap				
		Therma	MS12TC = MS12 (see ab	ove) w/ thermal lockout				
		Lockou	MS12LCTC = Low current N	/IS12T in cap				
			MS16TC = MS16 (see ab	ove) w/ thermal lockout in cap				
			MS16LCTC = Low current N	/IS16T in cap				
			MS17LCTC = Low current N	/IS17T in cap				
		Electrica	MS13C = Supplied w/ th	nreaded connector & light in cap				
		Visua	MS14C = Supplied w/ 5 (male end) in	pin Brad Harrison connector & ligh cap	ıt			
		Electrica	MS13DCTC = MS13 (see abo	ove), direct current, w/ thermal lock	out in cap			
		Visua	MS13DCLCTC = Low current N	/IS13DCT in cap				
		with Therma	MS14DCTC = MS14 (see abo	ove), direct current, w/ thermal locko	out in cap			
	Lockout MS14DCLCTC = Low current MS14DCT in cap							

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5, plus the letter V. *Example*: 16QZ1V
- Box 3. QCLQF element are not available in ASP[®] media.
- Box 4. E media elements are also available for the QT filter housing. Contact factory for more information.
- Box 4. For Option W, Box 3 must equal Q.
- Box 6. Viton[®] is a registered trademark of DuPont Dow Elastomers. All elements for this filter are supplied with Viton[®] seals. Seal designation in Box 6 applies to housing only.

Tank-Mounted Filter Kit KTK

 Includes: cap assembly, weld ring assembly, element and bushing Available with standard K, KK or 27K-size elements Bypass valve in cap assembly 	KL3 LF1 MLF1 RLD GRTB MTA MTB ZT
Model No. of filter in photograph is KTKKKZ10.	KFT RT

Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	100 psi (7 bar) exclusive of tank design	Housing	ART
Min. Yield Pressure:	Contact factory	Specifications	
Rated Fatigue Pressure:	Contact factory		BRT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 25 psi (1.7 bar) Full Flow: 40 psi (2.8 bar)		TRT
Porting Cap: Weld Ring:	Die Cast Aluminum Steel		BFT
Element Change Clearance:	8.0" (205 mm) for K; 17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		QT

E media (cellulose) with H (EPR) seal designation and ASP® media (synthetic)

Skydrol[®] 3, 5, 10 and 25 µ Z-Media[®] (synthetic) with H.5 seal designation

(EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP® media (synthetic)

КТК

LTK

Type Fluid	Appropriate Schroeder Media	Fluid MRT
Petroleum Based Fluids	All E media (cellulose), Z-Media [®] and ASP [®] media (synthetic)	Compatibility
High Water Content	All Z-Media [®] and all ASP [®] media (synthetic)	Accessories
Invert Emulsions	10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)	For lank-
Water Glycols	3, 5, 10 and 25 μ Z-Media® and all ASP® media (synthetic)	Filters
Phosphate Esters	All Z-Media [®] (synthetic) with H (EPR) seal designation and 3 and 10 μ	Thers

SCHROEDER INDUSTRIES 297

Element Performance Information & Dirt Holding Capacity

KTK

	Filtration Ra Using automated pa	tio Per ISO 4572/N article counter (APC) cal	FPA T3.10.8.8 ibrated per ISO 4402	Filtration Ration Using APC calibra	o per ISO 16889 ated per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	β_x (c) ≥ 200	$\beta_x(c) \ge 1000$
KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5	2.5	3.0	4.0	4.8	6.3
KZ10	7.4	8.2	10.0	8.0	10.0
KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3/KKZW3	N/A	N/A	N/A	4.0	4.8
KZW5/KKZW5	N/A	N/A	N/A	5.1	6.4
KZW10/KKZW10	N/A	N/A	N/A	6.9	8.6
KZW25/KKZW25	N/A	N/A	N/A	15.4	18.5

Element	DHC (gm)								
KZ1	112	KKZ1	224	27KZ1	336	KZW1	61		
KZ3	115	KKZ3	230	27KZ3	345	KZW3	64	KKZW3	128
KZ5	119	KKZ5	238	27KZ5	357	KZW5	63	KKZW5	126
KZ10	108	KKZ10	216	27KZ10	324	KZW10	57	KKZW10	114
KZ25	93	KKZ25	186	27KZ25	279	KZW25	79	KKZW25	158

Element Collapse Rating:150 psid (10 bar) for standard elementsFlow Direction:Outside InElement Nominal Dimensions:3.9" (99 mm) O.D. x 9.0" (230 mm) long

КТК

*KTK Dirty Box Pressure Drop is Customer Tank Design Dependant. Please account for this when designing system. Pressure Drop Information Based on Flow Rate and Viscosity

 $\triangle \mathbf{P}_{\mathsf{filter}} = \triangle \mathbf{P}_{\mathsf{housing}} + (\triangle \mathbf{P}_{\mathsf{element}} * \mathbf{V}_{f})$

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 80 gpm (303.2 L/min) for KTKKZ3 using 160 SUS (34 cSt) fluid.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 80 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the KZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \mathbf{V}_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\mathsf{element}} = 8 \text{ psi } [.55 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ △ $P_{\text{filter}} = (8 \text{ psi} * 1.1) = 8.8 \text{ psi}$ <u>OR</u> △ $P_{\text{filter}} = (.55 \text{ bar } * 1.1) = .61 \text{ bar}$

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = \text{Flow Rate } x \, \Delta \mathbf{P}_{f}. \text{ Plug this variable into the overall pressure drop equation.}$

Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	${\boldsymbol \Delta} {\boldsymbol P}$	Ele.	$\Delta \mathbf{P}$
К3	0.25	2K3/ KK3	0.12	3KZ1/ 27KZ1	0.05
K10	0.09	2K10/ KK10	0.05	3KZ3/ 27KZ3	0.03
K25	0.02	2K25/ KK25	0.01	3KZ5/ 27KZ5	0.02
KAS3	0.10	2KAS3/ KKAS3	0.05	3KZ10/ 27KZ10	0.02
KAS5	0.08	2KAS5/ KKAS5	0.04	3KZ25/ 27KZ25	0.01
KAS10	0.05	2KAS10/ KKAS10	0.03	3K3	0.08
KZW1	0.43	2KZW1	-	3K10	0.03
KZW3	0.32	2KZW3/ KKZW3	0.16	3K25	0.01
KZW5	0.28	2KZW5/ KKZW5	0.14	3KAS3/ 27KAS3	0.03
KZW10	0.23	2KZW10/ KKZW10	0.12	3KAS5/ 27KAS5	0.02
KZW25	0.14	2KZW25/ KKZW25	0.07	3KAS10/ 27KAS10	0.02

KTK Tank-Mounted Filter Kit

КТК -	вох 2 вох К – Z3	BOX 4 BOX 5 = KTKKZ3
BOX 1	BOX 2	BOX 3
Filter Series	Element Length	Element Part Number
	К	3 = 3 µ E media (cellulose)
КТК	КК	10 = 10 μ E media (cellulose)
	27K	25 = 25 μ E media (cellulose)
		Z1 = 1 µ Excellement [®] Z-Media [®] (synthetic)
		Z3/AS3 = 3 μ Excellement [®] Z-Media [®] (synthetic)
		Z5/AS5 = 5 μ Excellement [®] Z-Media [®] (synthetic)
		Z10/AS10 = 10 µ Excellement® Z-Media® (synthetic)
		Z25 = 25 μ Excellement [®] Z-Media [®] (synthetic)
		ZW1 = 1 µ Aqua-Excellement [™] ZW media
		ZW3 = 3 µ Aqua-Excellement [™] ZW media
		ZW5 = 5 µ Aqua-Excellement [™] ZW media
		ZW10 = 10 µ Aqua-Excellement [™] ZW media
		ZW25 = 25 µ Aqua-Excellement [™] ZW media
		ZW1 = 1 µ Aqua-Excellement [™] ZW media
		ZW3 = 3 µ Aqua-Excellement [™] ZW media
		ZW5 = 5 µ Aqua-Excellement [™] ZW media
		ZW10 = 10 µ Aqua-Excellement [™] ZW media
		ZW25 = 25 µ Agua-Excellement [™] ZW media

567(1		20/0
Seal Material		Dirt Alarm [®] Options
Omit = Buna N		Omit = None
H = EPR	Visual	Y2C = Bottom-mounted gauge in cap
W = Buna N		
H.5 = Skydrol [®] Compatibility		

NOTES:

- Box 3. Replacement element part numbers are identical to contents of Boxes 2, 3, and 4.
- Box 4. For options H and W, cap is anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Skydrol[®] is a registered trademark of Solutia Inc.

Tank-Mounted Filter Kit LTK

	 Features and Benefits Special tank-mounted filter kit Includes: cap assembly, weld ring assembly, element and bushing Available with standard 18L sized element Bypass valve in cap assembly 	150 gpm <u>570 L/min</u> 100 psi 7 bar	IRF TF1 KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB ZT KFT
Model No. of filter in photograph is LTK18LZ3		•	RT

۲۶

Flow Rating:	Up to 150 gpm (570 L/min) for 150 SUS (32 cSt) fluids	Filter	
Max. Operating Pressure:	100 psi (7 bar) exclusive of tank design	Housing	ART
Min. Yield Pressure:	Contact factory	Specifications	
Rated Fatigue Pressure:	Contact factory		BRT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 25 psi (1.7 bar) Full Flow: 47 psi (3.2 bar)		TRT
Porting Cap: Weld Ring:	Die Cast Aluminum Steel		BFT
Element Change Clearance:	17.0" (435 mm)		QT

KTK

LTK

Type Flu	id Appropriate Schroeder Media	Fluid MRT
Petroleum Based Flu	ds All E media (cellulose) and Z-Media [®] (synthetic)	Compatibility
High Water Conte	nt All Z-Media® (synthetic)	Accessories
Invert Emulsio	ns 10 and 25 µ Z-Media [®] (synthetic)	For lank-
Water Glyc	ls 3, 5, 10 and 25 μ Z-Media [®] (synthetic)	Filters
Phosphate Est	rs All Z-Media [®] (synthetic) with H (EPR) seal designation and 3 and 10 μ E media (cellulose) with H (EPR) seal designation	DAFA
Skydr	I^{\circledast} 3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and	PAF1
	stainless steel wire mesh in element, and light oil coating on housing exterior)	MAF1

SCHROEDER INDUSTRIES 301

Element Performance Information & Dirt Holding Capacity

LT

	Filtration Ra Using automated p	tio Per ISO 4572/NI article counter (APC) cali	PA T3.10.8.8 brated per ISO 4402	Filtration Rati Using APC calibr	o per ISO 16889 ated per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
18LZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LZ3	<1.0	<1.0	<2.0	<4.0	4.8
18LZ5	2.5	3.0	4.0	4.8	6.3
18LZ10	7.4	8.2	10.0	8.0	10.0
18LZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)
18LZ1	224
18LZ3	230
18LZ5	238
18LZ10	216
18LZ25	186

Element Collapse Rating:150 psid (10 bar)Flow Direction:Outside InElement Nominal Dimensions:4.0" (100 mm) O.D. x 18.5" (470 mm) long

302 SCHROEDER INDUSTRIES

LTK

*LTK Dirty Box Pressure Drop is Customer Tank Design Dependant. Please account for this when designing system. Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 80 gpm (303.2 L/min) for LTK18LKZ3 using 160 SUS (34 cSt) fluid.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 80 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 4 psi (.27 bar) according to the graph for the 18LZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_{*f*}) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \mathbf{V}_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{element} = 4 \text{ psi } [.27 \text{ bar}]$ $\mathbf{V}_{f} = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta \mathbf{P}_{filter} = (4 \text{ psi } * 1.1) = 4.4 \text{ psi}$ \underline{OR} $\Delta \mathbf{P}_{filter} = (.27 \text{ bar } * 1.1) = .30 \text{ bar}$

TK Tank-Mounted Filter Kit

Filter How to Build a Valid Model Number for a Schroeder LTK: BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 Model LTK Number Selection Example: NOTE: One option per box BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 LZ3 LTK 18 = LTK18LZ3

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Length of Element (in)	Element Size and Media	Seal Material
		L3 = L size 3 µ E media (cellulose)	Omit = Buna N
LTK	18	L10 = L size 10 µ E media (cellulose)	H = EPR
		L25 = L size 25 µ E media (cellulose)	W = Buna N
		LZ1 = L size 1 μ Excellement [®] Z-Media [®] (synthetic)	H.5 = Skydrol [®] Compatibility
		LZ3 = L size 3 μ Excellement [®] Z-Media [®] (synthetic)	
		LZ5 = L size 5 μ Excellement [®] Z-Media [®] (synthetic)	
		LZ10 = L size 10 µ Excellement® Z-Media® (synthetic)	
		LZ25 = L size 25 µ Excellement® Z-Media® (synthetic)	

BOX 5

	Dirt Alarm [®] Options
	Omit = None
Visual	Y2C = Bottom-mounted gauge in cap

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. *Example*: 18LZ3H
- Box 4. For options H and W, cap is anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Skydrol[®] is a registered trademark of Solutia Inc.

Medium Pressure In-Tank Filter MRT

	 Factures and Benefits Medium pressure tank mounted filter ideal for applications with high pressure surge in the return line Two possible inlet porting locations Various Dirt Alarm® options available Also available with DirtCatcher® element Optional sampling fitting available upon request 	150 gpm 570 L/min 900 psi 62 bar K13 LF1 MLF1 RLD GRTB MTA MTB	
filter in photograph is MRT18LZ10S	24S24D5.	KFT RT	

			IKI
Flow Rating:	Up to 150 gpm (570 L/min) for 150 SUS (32 cSt) fluids	Filter	LITT
Max. Operating Pressure:	900 psi (62 bar)	Housing	ART
Min. Yield Pressure:	2700 psi (186 bar), per NFPA T2.6.1	Specifications	
Rated Fatigue Pressure:	750 psi (52 bar), per NFPA T2.6.1-2005		BRT
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 40 psi (2.8 bar)		TRT
Porting Head & Cap: Element Case:	Cast Aluminum (Anodized) Steel		BFT
Weight of MRT:	36.0 lbs. (16.4 kg)		
Element Change Clearance:	17.0" (432 mm)		QT

Model No. of

KTK

LTK

MF2

Type Fluid	Appropriate Schroeder Media	Fluid MRT
Petroleum Based Fluids	All E media (cellulose) and Z-Media [®] (synthetic)	Compatibility
High Water Content	All Z-Media [®] (synthetic)	Accessories
Invert Emulsions	10 and 25 μ Z-Media® (synthetic)	For lank-
Water Glycols	3, 5, 10 and 25 μ Z-Media® (synthetic)	Filters
		PAF1
		MAF1
	SCHROEDER INDUSTRIES 30	5

MRT

Medium Pressure In-Tank Filter

Element Performance **Information & Dirt Holding Capacity**

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Rati Using APC calibr	o per ISO 16889 ated per ISO 11171
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	β_x (c) ≥ 200	$\beta_x(c) \ge 1000$
18LZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LZ3	<1.0	<1.0	<2.0	<4.7	5.8
18LZ5	2.5	3.0	4.0	6.5	7.5
18LZ10	7.4	8.2	10.0	10.0	12.7
18LZ25	18.0	20.0	22.5	19.0	24.0
18LDZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LDZ3	<1.0	<1.0	<2.0	<4.7	5.8
18LDZ5	2.5	3.0	4.0	6.5	7.5
18LDZ10	7.4	8.2	10.0	10.0	12.7
18LDZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	
18LZ1	224	18LDZ1	194	
18LZ3	230	18LDZ3	199	
18LZ5	238	18LDZ5	149	
18LZ10	216	18LDZ10	186	
18LZ25	186	18LDZ25	169	
	Element Collapse Rating:	150 psid (10 bar)		
	Flow Direction:	Outside In		
Element Nominal Dimensions:		4.0" (100 mm) O.	D. x 18.5" (470 r	mm) long

Medium Pressure In-Tank Filter

$\Delta \mathbf{P}_{\mathsf{housing}}$

MRT $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

M

Exercise:

Determine ΔP_{filter} at 80 gpm (303.2 L/min) for MRT18LZ10S24S24 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 80 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.5 psi (.10 bar) on the graph for the MRT housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 80 gpm. In this case, $\Delta P_{element}$ is 2.5 psi (.17 bar) according to the graph for the 18LZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{v}_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 1.5 \text{ psi} [.10 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 6 \text{ psi} [.17 \text{ bar}]$

 $v_f = 160 \text{ SUS } (34 \text{ cst}) / 150 \text{ SUS } (32 \text{ cst}) = 1.1$

△P_{filter} = 1.5 psi + (2.5 psi * 1.1) = 4.3 psi OR

 $\Delta \mathbf{P}_{filter} = .10 \text{ bar} + (.17 \text{ bar} * 1.1) = .29 \text{ bar}$

Medium Pressure In-Tank Filter

NOTES:

part numbers are a combination of Boxes 2, 3, and 4 Example: 18L3

Accessories for Tank-Mounted Filters

The mounting ring is welded directly to the hydraulic reservoir. The filter is then mounted to the mounting ring with bolts converting the filter to a "weld in" design. The mounting ring eliminates the need to drill and tap the hydraulic reservoir.

Model Number	Part Number	A	В	с
ST, RT, RTI, LRT	A-LFT-813	7.00 (178)	5.00 (127)	1.00 (25)
ST, RT, RTI, LRT High Version	A-LFT-1448	7.00 (178)	5.00 (127)	1.50 (38)
ZT	A-LFT-1295	6.25 (159)	3.62 (92)	.88 (22)

The diffuser option (designated as D for outlet porting option in model number) is threaded to the bushing on the filter bowl below the outlet opening to help decrease turbulent flow in the hydraulic reservoir.

No other outlet port options are available if the diffuser is used.

Model Number	Part Number	NPTF
rt, kft	A-LFT-1506	1½"
LRT	A-LFT-1507	2 "

The check valve option (designated as C for outlet porting option in model number) makes it possible to service the filter without draining the oil from the reservoir when the filter is mounted below the oil level. It also prevents reservoir siphoning when system components are serviced.

The check valve can also be used on other reservoir return flow lines, where components upstream of the check valve can be serviced without the loss of reservoir oil. The spring setting is .75-1.00 psi cracking. Order by part number shown in chart.

No other outlet port options are available if the check valve is used.

Model Number	Part Number	NPTF	А
ST, KFT, RT	A-LFT-158Q-1	11/2"	2.34 (59)
LRT	A-LFT-880	2"	2.34 (59)
BFT	A-BFT-103	3"	4.50 (114)

The diffuser/check valve option (designated as CD for outlet porting option in model number) is threaded on to the outlet port and combines the advantages of both separate options in one assembly.

Available as a separate item with $1\frac{1}{2}$ " NPT female threads, order part number A-LFT-1208.

No other outlet port options are available if the check valve/ diffuser is used.

Ring for ST, ZT, RT RTI and	TF1
LRT Models	KF3
	KL3
	LF1
	MLF1
	RLD
Diffuser	GRTB
LRT Models	d MTA
	МТВ
	ZT
	KFT
Check Valve	RT
for ST, KFT,	RTI
BFT Models	LRT
	ART
	BRT
	TRT
	BFT
	QT
	КТК
Check Valve	LTK
Diffuser Combination	MRT
for KFT and RT Models	ccessories For Tank- Mounted Filters

Mounting

3.50 (89) 2.94 <u>3.90 Ø</u>

Accessories for Tank-Mounted Filters

Tube Adapter Outlet Port for KFT, RT, LRT and BFT Models The tube adapter outlet port option (designated as T for outlet porting option in model number) provides the means to direct flow to the bottom of the hydraulic reservoir. Other tube lengths are available for quantity purchases. Contact your Schroeder distributor for details.

Model Number	Dimension A (O.D.) in. (mm)
RT	1.62 (41)
LRT	2.25 (57)
BFT	3.50 (89)

esignated as umber) provides n of the hydraulic ble for quantity tributor for details. Son A (O.D.) (mm) 52 (41) 25 (57) 50 (89) Note: No other outlet port options are available if the tube adapter is used.

The threaded male outlet port is standard on the KFT, RT, LRT and BFT models, and is available as an option on the ZT filter by designating OP for the outlet porting options in the model number.

Threaded Outlet Port for ZT, KFT, RT, LRT and BFT Models

- RT is furnished with 1¹/₂" NPT Male (standard) BFT is furnished with 3" NPT Male (standard)
- LRT is furnished with 2" NPT Male (standard) ZT is furnished with 1½" NPT Male (optional)
- KFT is furnished with 1 1/2" NPT Male (standard)

Spin-On Filter PAF1

	 Fractures and Benefits Spin-On with full ported die cast aluminum head for minimal pressure drop Offered in pipe and SAE straight thread porting Spin-On thread = 1.00-12UNF-2B Visual gauge or electrical switch dirt alarms Small profile for use in limited space Same day shipment model available 	20 gpm <u>75 L/min</u> 100 psi 7 bar	IRF TF1 KF3 KL3 LF1 MLF1 RLD GRTB MTA MTB
Model No. of filter in photograph is F	PAF16PZ10P.		KFT
			RT
			RTI
Flow Rating:	Up to 20 gpm (75 L/min) for 150 SUS (32 cSt) fluids	Filter	LRT
Max. Operating Pressure:	100 psi (7 bar)	Housing	
Min. Yield Pressure:	150 psi (10 bar), per NFPA T2.6.1	Specifications	ART
Rated Fatigue Pressure:	Contact factory		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		BRT
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 36 psi (2 bar)		TRT
Porting Hoad & Can	Dio Cast Aluminum		

Porting Head & Cap: Element Case: Die Cast Aluminum Steel BFT Weight of PAF1-6P: 1.8 lbs. (0.8 kg) Element Change Clearance: 2.50" (65 mm) QT КТК

LTK

Fluid MRT	Appropriate Schroeder Media	Type Fluid
Compatibility	All E media (cellulose) and Z-Media [®] (synthetic)	Petroleum Based Fluids
Accessories	3 and 10 μ Z-Media® (synthetic)	High Water Content
For lank-	10 μ Z-Media [®] (synthetic)	Invert Emulsions
Filters	3 and 10 μ Z-Media® (synthetic)	Water Glycols
PAF1		
MAF1		

PAF1

Spin-On Filter

Installation instructions included on element.

Metric dimensions in ().

	Filtration Ra Using automated p	tio Per ISO 4572/ Particle counter (APC) c	Filtration Rati Using APC calibr	o per ISO 16889 ated per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \geq 1000$
P10	15.5	16.2	18.0	N/A	N/A
PZ10	7.4	8.2	10.0	8.0	10.0
PZ25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)
P10	37		
PZ10	16.8	PZ25	23.0

Element Collapse Rating: 100 psid (7 bar) Flow Direction: Outside In Element Nominal Dimensions: 3.75" (95 mm) O.D. x 5.5" (140 mm) long

Element Performance Information & Dirt Holding Capacity

Spin-On Filter

PAF1

$\Delta \mathbf{P}_{\mathsf{housing}}$

PAF1 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\Delta \mathbf{P}_{element}$

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine ΔP_{filter} at 10 gpm (37.9 L/min) for PAF16PZ25PY2 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 10 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the PAF1 housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 10 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 1.5 psi (.10 bar) according to the graph for the PZ25 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 1.5 \text{ psi } [.10 \text{ bar}]$

 $v_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$ $\Delta P_{\text{filter}} = 2 \text{ psi} + (1.5 \text{ psi} * 1.1) = 3.7 \text{ psi}$ <u>OR</u>

 $\Delta \mathbf{P}_{filter}$ = 14 bar + (.10 bar * 1.1) = .25 bar

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow \text{ Rate } x \Delta \mathbf{P}_f. \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$
P10	0.17

PAF1 Spin-On Filter

Filter Model Number Selection

Highlighted product eligible for QuickDelivery

How to Build a Valid Model Number for a Schroeder PAF1:

	PAF1 -]
E	xample: NOT	E: One option	per box				
	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	
	PAF1 -	- 6 -	- P10		Р	- Y2	= PAF16P10PY2

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Element Length (in)	Element Size and Media	Seal Material
	6	P10 = P size 10 μ E media (cellulose)	Omit = Buna N
PALI		PZ10 = P size 10 µ Excellement® Z-Media® (synthetic)	
		PZ25 = P size 25 μ Excellement [®] Z-Media [®] (synthetic)	

BOX 5		BOX 6
Inlet Porting		Dirt Alarm [®] Options
P = 3/4" NPTF		Omit = None
S = SAE-12	Visual	Y2 = Back-mounted tri-color gauge
	Electrical	ES = Electric switch

NOTE:

Box 2. Replacement element part numbers are a combination of Boxes 3 and 4. *Example*: P10

Spin-On Filter

MAF1

	50 gpm	IRF
tures and Benefits	<u>190 L/min</u>	TF1
pin-On with full ported die cast aluminum lead for minimal pressure drop	100 psi	KF3
Offered in pipe, SAE straight thread and 50 228 porting	7 Dar	KL3
pin-On thread = 1.50-16UN-2B		
/isual gauge or electrical switch dirt alarms		LF1
mall profile for use in limited space		МІ Е1
vailable in 7" and 10" element lengths		
available with NPTF inlet and outlet female est ports		RLD
		GRTB
		MTA
		MTB
		ZT
		KFT
	-	RT

Model No. of filter in photograph is MAF17M10S.

Flow Rating:	Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids	Filter	LRT
Max. Operating Pressure:	100 psi (7 bar)	Housing	
Min. Yield Pressure:	200 psi (10 bar), per NFPA T2.6.1	Specifications	ART
Rated Fatigue Pressure:	Contact factory		
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		BRT
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 48 psi (3 bar)		TRT
Porting Head & Cap: Element Case:	Die Cast Aluminum Steel		BFT
Weight of MAF1-7M: Weight of MAF1-10M:	4.2 lbs. (1.9 kg) 5.0 lbs. (2.3 kg)		ОТ
Element Change Clearance:	2.50" (65 mm)		Q.
		_	ктк

- LTK

Type Fluid	Appropriate Schroeder Media	Fluid MRT
Petroleum Based Fluids	All E media (cellulose) and Z-Media [®] (synthetic)	Compatibility
High Water Content	3 and 10 μ Z-Media® (synthetic)	Accessories
Invert Emulsions	10 μ Z-Media [®] (synthetic)	For lank-
Water Glycols	3 and 10 μ Z-Media® (synthetic)	Filters
		PAF1
		MAF1

MAF1 Spin-On Filter

SPIN-ON THREAD=1.50-16UN-2B

Installation instructions included on element.

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Ra Using automated p	tio Per ISO 4572/ article counter (APC) c	Filtration Rati Using APC calibr	o per ISO 16889 ated per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(\textbf{c}) \geq 1000$
7MZ3/10MZ3	<1.0	<1.0	<2.0	<4.0	4.8
7MZ10/10MZ10	7.4	8.2	10.0	8.0	10.0
10MZW10	N/A	N/A	N/A	6.9	8.6

Element	DHC (gm)	Element	DHC (gm)	
7MZ3	105			
7MZ10	104	10MZW10	53	
	Element Collapse Rating:	100 psid (7 bar)		
Flow Direction:		Outside In		
	Element Nominal Dimensions:	7M: 5.0" (125 mm)	O.D. x 7.0" (180 mm) long	
		10M: 5.0" (125 mm) O.D. x 10.5" (261 mm) long		

Spin-On Filter MAF

$\Delta \mathbf{P}_{\mathsf{housing}}$

MAF1 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

Pressure Drop Information Based on Flow Rate and Viscosity

Exercise:

Determine $\Delta \mathbf{P}_{filter}$ at 40 gpm (151.6 L/min) for MAF17MZ10PY2 using 160 SUS (34 cSt) fluid.

20

30

Flow Rate [GPM]

 $\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

40

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 40 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the MAF1 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 40 gpm. In this case, $\Delta P_{element}$ is 7 psi (.48 bar) according to the graph for the 7MZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta \mathbf{P}_{element} * \mathbf{V}_{f})$. The $\Delta \mathbf{P}_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7 \text{ psi } [.48 \text{ bar}]$

0

10

 \mathbf{V}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 △**P**_{filter} = 3 psi + (7 psi * 1.1) = 10.7 psi

OR

 $\Delta \mathbf{P}_{filter} = .21 \text{ bar} + (.48 \text{ bar} * 1.1) = .74 \text{ bar}$

Note:

f your element is not graphed, use					
the following equation:					
$\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_f Plug$					
this variable into	the overall				
pressure drop equation.					
Ele. △P					
7M3	0.23				

,	0.25
7M10	0.14

60

50

MAF1 Spin-On Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroede	er MAF1:
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7	7
Example: NOTE: One option per box	
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7	
MAF1 - 7 - M3 - P - Y2 -	= MAF17M3PY2

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Element Length (in)	Element Size and Media	Seal Material
	7	M3 = M size 3 µ E media (cellulose)	Omit = Buna N
IVIAF I	10	M10 = M size 10 µ E media (cellulose)	V = Viton®
		MZ3 = M size 3 µ Excellement [®] Z-Media [®] (synthetic)	
		MZ10 = M size 10 μ Excellement [®] Z-Media [®] (synthetic)	
		MZW10 = M size 10 µ Aqua-Excellement [™] ZW media	
		MW = M size W media (water removal)	

BOX 5	BOX 6		BOX 7		
Porting Options	Dirt Alarm [®] Options		rting Options Dirt Alarm [®] Options		Additional Options
P = 11/4" NPTF		Omit = None	Omit = None		
S = SAE-20	Visual	Y2 = Back-mounted tri-color gauge	L = Two ½ " NPTF		
B = ISO 228 G-1¼"	Electrical	ES = Electric switch	female test ports		

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Replacement element part numbers for 7" length begin with M. Replacement element part numbers for 10" length begin with 10M. Examples: M3V; 10MZ3V 10" only available with MZ3 and MZ10.
- Box 3. ZW media only available for 10" element.
- Box 4. For option V, all aluminum parts are anodized. Viton[®] is a registered trademark of DuPont Dow Elastomers.
- Box 5. B porting option supplied with metric mounting holes.

Spin-On Filter MF2

		60 gpm
ALC: NO.		230 <i>L/min</i> TF1
	Features and Benetits ■ Spin-On with full ported cast iron head	150 psi
412	for minimal pressure drop	
A.S.	 Offered in pipe, SAE straight thread and ISO 228 porting 	IU Dar
	 Spin-On thread = 1.50-16UN-2B 	
ALCONOMIC TO A CONTRACT	 Various Dirt Alarm[®] options 	LF1
	Available in 7" and 10" element lengths	MIE1
In succession of succession		
moeder		RLD
ISTRIES		GRTB
		GRID
		MTA
		МТВ
		WITE
		ZT
		KET
Model No. of filter in photograph is MF2	7M10SD5.	
		RT
Flow Rating:	Up to 60 gpm (230 L/min) for 150 SUS (32 cSt) fluids	Filter
Max. Operating Pressure:	150 psi (10 bar)	Housing
Min. Yield Pressure:	250 psi (17 bar), per NFPA T2.6.1	Specifications LRT
Rated Fatigue Pressure:	Contact factory	
Temp. Range:	-20°F to 225°F (-29°C to 107°C)	ART
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 48 psi (3 bar)	BRT
Porting Head:	Cast Iron	DAT
Element Case:	Steel	TRT
Weight of MF2-7M:	8.6 lbs. (3.9 kg)	DET
Element Change Clearance.	1.50 (40 mm)	DFI
		QT
		VTV
		K1K
		LTK
Type Fluid Appropr	iate Schroeder Media	Fiuld MRI Compatibility
High Water Content 3 and 10	iia (cenulose) and 2-iviedia° (synthetic)	Accessories
Invert Emulsions 10 µ Z-M	edia [®] (synthetic)	For Tank-
Water Glycols 3 and 10	μ Z-Media [®] (synthetic)	Mounted
		Titters
		PAF1

MAF1

MF2

Spin-On Filter

Installation instructions included on element.

Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Rati	io Per ISO 4572/NF rticle counter (APC) calib	Filtration Rati Using APC calibra	o per ISO 16889 ated per ISO 11171	
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
7MZ3/10MZ3	<1.0	<1.0	<2.0	<4.0	4.8
7MZ10/10MZ10	7.4	8.2	10.0	8.0	10.0
10MZW10	N/A	N/A	N/A	6.9	8.6

Element	DHC (gm)	Element	DHC (gm)	
7MZ3	105			
7MZ10	104	10MZW10	53	
Element Collapse Rating:		100 psid (7 bar)		
Flow Direction:		Outside In		
Element Nominal Dimensions:		7M: 5.0" (125 mm) O.D. x 7.0" (180 mm) long		
		10M: 5.0" (125 mm) O.D. x 10.5" (261 mm) long		

Spin-On Filter

MF2

$\Delta \mathbf{P}_{\mathsf{housing}}$

MF2 $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

$\triangle \mathbf{P}_{element}$

Pressure Drop Information Based on Flow Rate and Viscosity

$\Delta \mathbf{P}_{\text{filter}} = \Delta \mathbf{P}_{\text{housing}} + (\Delta \mathbf{P}_{\text{element}} * \mathbf{V}_{f})$

Exercise:

Determine ΔP_{filter} at 40 gpm (151.6 L/min) for MF27MZ10PD5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 40 gpm. In this case, $\Delta P_{\text{housing}}$ is 5 psi (.34 bar) on the graph for the MF2 housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{element}$ at 40 gpm. In this case, $\Delta \mathbf{P}_{element}$ is 7 psi (.48 bar) according to the graph for the 7MZ10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (**V**_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f$). The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 5 \text{ psi} [.34 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7 \text{ psi} [.48 \text{ bar}]$

 \mathbf{V}_{f} = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta \mathbf{P}_{filter}$ = 5 psi + (7 psi * 1.1) = 12.7 psi

<u>OR</u> ∆**P**_{filter} = .34 bar + (.48 bar * 1.1) = .87 bar

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate } x \Delta \mathbf{P}_{f} \text{ Plug}$ this variable into the overall pressure drop equation. **Ele.** $\Delta \mathbf{P}$

Ele.	ΔP
7M3	0.23
7M10	0.14

SCHROEDER INDUSTRIES 321

MF2 Spin-On Filter

•

Filter Model Number Selection

How to Bui	ld a Valid	Model N	lumber f	or a Schi	oeder M	F2:
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	
MF2 -		-	-	_	_	
Example: Opti	on 1 NOTE:	One option p	er box			
BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	_
MF2 –	7 -	M3 -		– P	– D5	= MF27M3PD5

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series	Element Length (in)	Element Size and Media	Seal Material	Porting Options
MF2	7	M3 = M size 3 µ E media (cellulose)	Omit = Buna N	P = 1¼" NPTF
	10	M10 = M size 10 μ E media (cellulose)	V = Viton®	S = SAE-20
		MZ3 = M size 3 μ Excellement [®] Z-Media [®] (synthetic)		B = ISO 228 G-1¼"
		MZ10 = M size 10 µ Excellement® Z-Media® (synthetic)		
		MZW10 = M size 10 µ Aqua-Excellement™ ZW media		
		MW = M size W media (water removal)		

BOX 6					
Dirt Alarm [®] Options					
	Omit = None				
Visual	D5 = Visual pop-up				
Visual with Thermal Lockout	Visual with al Lockout D8 = Visual w/ thermal lockout				
	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable				
	MS5LC = Low current MS5				
	MS10 = Electrical w/ DIN connector (male end only)				
	MS10LC = Low current MS10				
Electrical	MS11 = Electrical w/ 12 ft. 4-conductor wire				
Electrical	MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)				
	MS12LC = Low current MS12				
	MS16 = Electrical w/ weather-packed sealed connector				
	MS16LC = Low current MS16				
	MS17LC = Electrical w/ 4 pin Brad Harrison male connector				
	MS5T = MS5 (see above) w/ thermal lockout				
	MS5LCT = Low current MS5T				
	MS10T = MS10 (see above) w/ thermal lockout				
Electrical with	MS10LCT = Low current MS10T				
Thermal	MS12T = MS12 (see above) w/ thermal lockout				
Lockout	MS12LCT = Low current MS12T				
	MS16T = MS16 (see above) w/ thermal lockout				
	MS16LCT = Low current MS16T				
	MS17LCT = Low current MS17T				
Electrical	MS13 = Supplied w/ threaded connector & light				
Visual	MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)				
Electrical	MS13DCT = MS13 (see above), direct current, w/ thermal lockout				
Visual	MS13DCLCT = Low current MS13DCT				
with	MS14DCT = MS14 (see above), direct current, w/ thermal lockout				
i nermai Lockout	MS14DCLCT = Low current MS14DCT				

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Replacement element part numbers for 7" length begin with M. Replacement element part numbers for 10" length begin with 10M. *Example*: M3; 10MZ3 10" only available with MZ3 and MZ10.
- Box 3. ZW media only available for 10" element.
- Box 4. Viton[®] is a registered trademark of DuPont Dow Elastomers.
- Box 5. B porting option supplied with metric mounting holes.

322 SCHROEDER INDUSTRIES

Section 6 Suction Filters Selection Guide

		Pressure psi (bar)	Flow gpm (L/min)	Element Length/Size	Page
	Tank-Mounted Suction Filter				
Ņ	ST	NA	20 (75)	K, KT	323
ilter	In-Line Magnetic Suction Separators				
on F	TF-SKB	NA	12.5 (47)	SKB	329
ucti	KF3-SKB	NA	35 (130)	SKB	330
Š	Tank-Mounted Magnetic Suction Separator				
	BFT-SKB	NA	75 (285)	SKB	331

20 gpm 75 L/min ST

TF-SKB

KF3-SKB

BFT-SKB

Features and Benefits

- Tank-mounted suction filter for hydrostatic suction service
- Optional check valve prevents reservoir siphoning
- Easy Element changeout
- Inlet filter protects pump, reduces start-up failures

Model No. of filter in photograph is ST1K10SY.

Flow Rating:	Up to 20 gpm (75 L/min) for 150 SUS (32 cSt) fluids	Filter
Max. Operating Pressure:	Suction Filter	Housing
Min. Yield Pressure:	Not Applicable	Specifications
Rated Fatigue Pressure:	Not Applicable	
Temp. Range:	-20°F to 225°F (-29°C to 107°C)	
Bypass Setting:	Non-bypassing	
Porting Head:	Die Cast Aluminum	
Cap:	Steel	
Element Case:	Steel	
Weight of ST-1K:	11.1 lbs. (5.0 kg)	
Weight of ST-2K:	14.7 lbs. (6.7 kg)	
Element Change Clearance:	7.25" (185 mm) for 1K; 17.50" (445 mm) for KK	

Type Fluid	Appropriate Schroeder Media
Petroleum Based Fluids	All E media (cellulose) and Z-Media [®] (synthetic)
High Water Content	10 μ Z-Media [®] (synthetic)
Invert Emulsions	10 μ Z-Media® (synthetic)
Water Glycols	10 μ Z-Media [®] (synthetic)
Phosphate Esters	10 μ Z-Media® (synthetic) with H (EPR) seal designation and 10 μ E media (cellulose) with H (EPR) seal designation
Skydrol®	10 μ Z-Media (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

Fluid Compatibility

ST

$\Delta \mathbf{P}_{\mathsf{housing}}$

ST $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \mathbf{P}_{element}$

 $\Delta \mathbf{P}_{\text{filter}} = \Delta \mathbf{P}_{\text{housing}} + (\Delta \mathbf{P}_{\text{element}} * \mathbf{v}_f)$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 15 gpm (57 L/min) for ST1KTZ10PY using 160 SUS (34 cSt) fluid.

Use the element pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.5 psi (.10 bar) according to the graph for the ST element.

Use the element pressure curve to determine $\Delta \mathbf{P}_{element}$ at 15 gpm. In this case, $\Delta \mathbf{P}_{element}$ is .75 psi (.05 bar) according to the graph for the KZT10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (v_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * \boldsymbol{v}_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 1.5 \text{ psi} [.75 \text{ bar}] | \Delta \mathbf{P}_{\text{element}} = .75 \text{ psi} [.05 \text{ bar}]$

 v_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.07 △ P_{filter} = 1.5 psi + (.75 psi * 1.07) = 2.3 psi

<u>OR</u> ∆P_{filter} = .10 bar + (0.05 bar * 1.07) = 0.15 bar

Pressure	
Drop	
Information	
Based on	TE-
Flow Rate	
and Viscosity	

KF3-SKB

ST

BFT-SKB

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate } \mathbf{x} \ \Delta \mathbf{P}_{f} \ \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
K3	0.25	KZW25	0.14	2KZW10	0.12
K10	0.09	2K3	0.12	2KZW25	0.07
K25	0.02	2K10	0.05	3K3	0.08
KAS3	0.10	2K25	0.01	3K10	0.03
KAS5	0.08	2KAS3	0.05	3K25	0.01
KAS10	0.05	2KAS5	0.04	3KAS3	0.03
KZX10	0.22	2KAS10	0.03	3KAS5	0.02
KZW1	0.43	2KZX10	0.11	3KAS10	0.02
KZW3	0.32	2KZW1	-	3KZX10	0.07
KZW5	0.28	2KZW3	0.16		
KZW10	0.23	2KZW5	0.14		

0.80

Filter Model Number Selection	1K25PY			
	BOX 1 BOX 2 Filter Number of Series Elements		BOX 3 Element Part Number	BOX 4 Seal Material
	ST 1 2	K10 = K size 10 μ E media (cellulose)Omit = Buna NK25 = K size 25 μ E media (cellulose)H = EPRKTZ3 = K size 3 μ Excellement® Z-Media® (synthetic) inside-out flowW = Buna NKTZ10 = K size 10 μ Excellement® Z-Media® (synthetic) inside-out flowH.5 = $\frac{Skydrol^{\circ}}{compatibilitient}$		
	BOX 5	BOX 6	BOX 7	BOX 8
	Outlet Port	Optional Check Valve	Dirt Alarm [®] Options	Additional Options
	P = 1½" NPTF PP = Dual 1½" NPTF S = SAE 24 SS = Dual SAE 24 B = ISO 228 G-1½" BB = ISO 228 G-1½"	Omit = None C = Check Valve	Omit = None Visual Y = Vacuum gauge YR = Vacuum gauge mounted on opposite side of standard location Electrical VS = Electrical Vacuum Switch VSR = Electrical Vacuum Switch mounted on opposite side of standard location VSR = Heave-Duty Vacuum Switch	Omit = None G2293 = Cork Gasket G547 = Two ½" gauge ports

NOTES:

Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4.

ST

- Box 4. For options H and W, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 6. See also "Accessories for Tank-Mounted Filters," page 299.

In-Line Magnetic Suction Separators **TF-SKB**

ST

TF-SKB

KF3-SKB

BFT-SKB

Features and Benefits

Protects components downstream by capturing potentially harmful ferrous particles

Specifications

Flow Rating:	12.5 gpm (47 L/min)
Element Replacement Part Number:	SKB-1
Element Change Clearance:	2.5" (65 mm)
Weight of TF-SKB:	5.8 lbs (2.6 kg)

Metric dimensions in ().

How to Build a Valid Model Number for a Schroeder TF-SKB:

BOX 1	BOX 2	BOX 3	BOX 4	
TF-SKB –				
Example: NOTE:	One option p	er box		
BOX 1	BOX 2	BOX 3	BOX 4	
TF-SKB –		P –	Y	= TF-SKBPY

BOX 1	BOX 2	BOX 3	BOX 4		
Filter Series	Seal Material	Porting	Dirt Alarm [®] Options		t Alarm [®] Options
тг сир	Omit = Buna N	P = 1" NPTF		Omit =	None
IL-2VD			Visual	Y =	Vacuum gauge
			Electrical	VS =	Electrical Vacuum Switch
				VS1 =	Heavy-Duty Vacuum Switch

Filter Model Number Selection

NOTE: Box 1. Element replacement part number: SKB-1.

KF3-SKB In-Line Magnetic Suction Separators

NOTE: Box 1. Element replacement part number: A-LF-1789.

Tank-Mounted Magnetic Suction Seperators **BFT-SKB**

For the second product of the second prod	ST TF-SKB KF3-SKB BFT-SKB
Elow Bating: 75 com (2851/min)	Specifications
Element Replacement with check valve: A-SKB-3-76	Specifications
Part Number: without check valve: SKB-3	
Weight of RET-SKR: 32.0 lbs (14.5 kg)	
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BFT-SKB - - - - Example: NOTE: One option per box BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BFT-SKB - - - - - - BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BFT-SKB - - P - Y = BFT-SKBPY	Model Number Selection
BOX 1 BOX 2 BOX 3 Box 4	
Filter Seal MaterialSeal MaterialPortingOther OptionsBFT-SKBOmit = Buna N $P = 2\frac{1}{2}$ " NPTF PP = Dual $2\frac{1}{2}$ " NPTF F = $2\frac{1}{2}$ " SAE 4-bolt flange Code 61 FF = Dual $2\frac{1}{2}$ " SAE 4-bolt flange Code 61C = Check Valve C = Check Valve	3
BOX 5	
Dirt Alarm [®] Options	
Omit = None Visual Y = Vacuum gauge YR = Vacuum gauge mounted on opposite side of standard location Electrical VS = Electrical Vacuum Switch VSR = Electrical Vacuum Switch on opposite side of standard location VS1 = Heavy-Duty Vacuum Switch	NOTE: Box 1. See specifications on previous page for element replacement part numbers.

Magnet Inserts for Filters

Magnet Inserts for Filters

KF30, KF50, KC50, KC65 and TF50 are available with magnet inserts to trap ferrous material that passes through the filter element.

These inserts are removed with the element each time service is performed and cleaned before being reinserted with new elements.

Replacements are available by ordering parts:

	Single Element	Double Element	Triple Element
KF30, KF50, KC50, KC65, KF3, LF1, MLF1	A-LF-1592	A-LF-1593	A-LF-1594
TF50	A-TF-301-1	A-TF-302-1	

Filter Dirt Alarm[®] Selection Appendix A

Visual indicators provide an economical way to know at a glance when a filter element needs to be replaced. A variety of styles are available, ranging from gauges to mechanical pointers and pop-up cartridges.

Schroeder pointers use a tricolor disk to indicate the element condition. The pointer will reach the red section just before bypassing occurs.

In the case of a mechanical magnetic cartridge, a highly visible orange disk springs, or "pops up", at the pre-defined setting. Once activated, the orange signal continues to indicate a bypass or clogged condition, even following equipment shutdown, until it is manually reset. The pop-up indicator is interchangeable with other cartridge style indicators (electrical and electrical visual) available from Schroeder. A high pressure (>6000 psi working pressure) of the pop-up indicator is available and is noted below.

D—Tricolor Pointer Dirt Alarm[®] P/N 7619323 for plastic pointer only. For internal linkage and name plate, contact factory.

- Y—Vacuum Gauge mounted in porting head P/N 7631068
- YR—Same as Y but mounted on opposite side of standard location P/N 7631068

- D5—Red Pop Up Visual Indicator
- D5S*—D5 with Protective Shroud *To order Protective Shroud only, use SAP #7642053
- D5C—Same as D5 but mounted in cap
- D5R—Same as D5 but mounted on opposite side of standard location
- D9—Stainless Steel version of D5
- D9C—Stainless Steel version of D5 mounted in cap

- Y2—Back mounted 1/8" NPT Tricolor Glycerin-filled Gauge (0-60 psi) P/N 7627463 (0-100 psi) P/N 7631048
- Y2R—Same as Y2 but mounted on opposite side of standard location P/N 7627463
- Y2C—Bottom mounted ½" NPT Tricolor Gauge (0-60 psi) located in cap P/N 7626647
- Y5—Same as Y2 but located in cap P/N 7627463

LF-4209 (G2213): 0 - 30 psid; P/N 7626589

DPG—Standard Differential Pressure Gauge P/N 7628635 or 7626554

The thermal lockout feature prevents activation of the indicator below temperatures of 90°F (32°C). This is a welcome feature in mobile applications where fluid temperatures may be well below 90°F at equipment start-up, and will prevent the indicator from showing a premature need to change the element.

D8—Orange Pop Up Visual Indicator with Thermal Lock-out D8C—Same as D8 but mounted in cap

D8R—Same as D8 but mounted on opposite side of standard location

Visual

Visual with Thermal Lockout

Appendix A Filter Dirt Alarm[®] Selection

Electrical Visual

In addition to providing an electrical signal to provide a desired action, Schroeder electrical visual indicators also provide a visual indication of when an element needs to be changed. In the case of the MS and MS2 switches, the visual indicator is a color-coded disk, whereas the MS13 and MS14 dirt alarms provide a light.

MS—Cam operated electrical switch P/N 7627458 for switch only. For cam, color-coded disk, and mounting bracket, order P/N 7604908. For internal linkage, contact factory.

Code	Type of Contact	Electrical Rating	Connection
MS	SPDT	15 Amps @ 125/250 vac, 0.5 Amp @ 125 VDC	1/2" conduit, female

Electrical

The electrical indicators (MS Series) provide an electrical signal for activating various electric alarm systems or complete machine shutdown. These cartridge-style indicators are available on most Schroeder pressure, return line, and medium pressure filters and can be used for working pressures up to 6000 psi (415 bar) and cyclic conditions up to 4000 psi (276 bar).

- The design is modular; all electrical indicators consist of an MS10 indicator with the corresponding mating connector added to convert the MS10 to a MS5, MS11 etc.
- The standard micro switch for high current indicators is good for both AC and DC use. A separate micro switch with "gold" contacts is used for low current applications. This means that specification of AC or DC is no longer required (except for MS13 and MS14) in the indicator code or part number.
- Housings of all electrical indicators are made of aluminum.
- The indicator model tag includes the electrical wiring diagram.
- All of our indicators, with the exception of MS16, have a "ground" terminal.
- We are now able to offer the thermal lockout option to high current indicators.
- All indicators can be installed in a filter cap as the wiring harness can be disconnected at the "DIN" connector in order to remove the filter cap.
- All MS indicators have achieved the NEMA4X and IP65 ratings.
- Information on these indicators, including drawing, circuit diagram, and photograph is provided on the following pages.

A different set of electrical pressure switches is available for Schroeder tank-mounted filters, along with heavy duty versions.

Schroeder suction filters (ST and models that house the SKB magnetic suction strainer) can be equipped with a vacuum switch.

VS—Vacuum Switch (1/8" NPT, normally open) ES1—Heavy duty electrical pressure switch (1/8" NPT) with conduit connection (25psi bypass) P/N 7626636 (cracking over 25 psi) P/N 7626640 P/N 7601947 VSR—Same as VS but mounted on opposite side of (43 psi bypass) P/N 7626640 standard location P/N 7601947 (Black = common; Red = N.O.; Blue = N.C.) ES—Standard electrical pressure switch (1/8" NPT, ES1R—Same as ES1 but mounted on opposite side normally open) for tank-mounted filters of standard location P/N 7626636 P/N 7601943 (40 psi bypass) VS1—Heavy Duty Vacuum Switch (1/8" NPT) ESC—Electrical pressure switch (MTA & MTB only) P/N 7623755, LF Pressure Switch P/N 7601943 ES2— Super duty electric switch (1/8"NPT, normally ESR—Same as ES but mounted on opposite side of closed) with thermal lockout P/N 7626564 standard location P/N 7601943 ES3—Electric pressure switch (1/8"NPT) with DIN connector P/N 7626592 (Black = common; Red = N.O.; Blue = N.C.) Type of Contact Code **Electrical Rating** Connection 8 Amps @ 12 VDC, 1 Amp @ 120 VAC Screw Terminal with ES SPST 4 Amps @ 24 VDC, 0.5 Amp @ 240 VAC Rubber Boot 10 Amps @ 115 VAC ES1 SPDT 1/2" Conduit, Male 50mA-5A @ 24 VDC

334 SCHROEDER INDUSTRIES

 $\sqrt{\mathbf{c}}$ = cap installation only.

Filter Dirt Alarm[®] Selection Appendix A

Electrical and Electrical with Thermal Lockout

Appendix A Filter Dirt Alarm[®] Selection

Electrical and Electrical with Thermal Lockout (cont'd.) MS12 MS16 MS17LC MS16LC MS12LC MS17LCT MS16T MS12T MS16LCT MS12LCT Supplied with 5 pin Supplied with a female Supplied with a 4 pin Brad Harrison connector (3) contact weather-packed Brad Harrison "micro" connector (male end only) sealed connector supplied with (male end only) DIN connector (male end only) (conforming to DIN 43650) N.C. сом N.C.B A<u>COM</u> <u>IN.O.</u>C MS16/MS16LC сом N.O. N.O. MS17LC THERMAL MS12/MS12LC N.C. B 80°F (N.O.) A COM N<u>.O.</u>C THERMAL LOCKOUT 80°F (N.O.) THERMAL LOCKOUT 80°F (N.O.) MS16T/MS16LCT N.C. (PIN 2) СОМ N.C. COM (PIN 1) (PIN 1) COM (PIN 4) N.O. (PIN 2) GROUND (PIN 5) GROUND <u>N.O.</u> (PIN 4) (PIN 3) Ī (PIN 3) MS12T/MS12LCT MS17LCT \otimes \otimes 17.50 (445) 1.62 (41) 1.75 (44) 2.81 (71) 3.94 (100) 4.00 2.81 (102) 2.75 (70) (71) $\frac{4.00}{(102)}$ Model Codes of MSHA Version of MS12 are MS12DCM and MS12DCCM (DC only; second C designates cap). For electrical and dimensional drawings, contact factory.

Filter Dirt Alarm[®] Selection Appendix A

Electrical and Electrical with Thermal Lockout (cont'd.)

SCHROEDER INDUSTRIES 337

Appendix A Filter Dirt Alarm[®] Selection

Filter Dirt Alarm[®] Selection Appendix A

CHART 5 Electrical Ratings: Electrical Cartridge Indicators Without Thermal Lockout																								
Voltage	Voltage Volts@ Amps	Current Range (amps)	MS5	MS5LC	MS10	MS10LC	MS11	MS12	MS12LC	MS13DC	MS13DCLC	MS14DC	MS14DCLC	MS15DC	MS16	MS16LC	MS17	MS17LC	MS14AC	MS14ACLC	MS18	MS18LC	MS19	MS19LC
AC	240 @ 3	0.02 to 3	\checkmark		\checkmark		\checkmark	\checkmark										\checkmark						
AC	220 @ 0.05	0.005 to 0.05		\checkmark		\checkmark			\checkmark													\checkmark		\checkmark
AC	120 @ 5	0.02 to 5	\checkmark		\checkmark		\checkmark	\checkmark																
AC	120 @ 0.05	0.005 to 0.05		\checkmark		\checkmark			\checkmark											\checkmark		\checkmark		\checkmark
AC	24 @ 0.10	0.005 to 0.010		\checkmark		\checkmark			\checkmark											\checkmark				
AC	12 @ 0.25	0.005 to 0.025		\checkmark		\checkmark			\checkmark											\checkmark				
AC	120 @ 4	0.05 to 4																	\checkmark					
AC	115 @ 0.05	0.01 to 0.05															\checkmark				\checkmark		\checkmark	
DC	110 @ 0.3	0.02 to 0.3	\checkmark		\checkmark		\checkmark	\checkmark							\checkmark		\checkmark				\checkmark		\checkmark	
DC	110 @ 0.05	0.005 to 0.05		\checkmark		\checkmark			\checkmark							\checkmark		\checkmark				\checkmark		\checkmark
DC	24 @ 3	0.01 to 3																			\checkmark		\checkmark	
DC	24 @ 2	0.02 to 2	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark		\checkmark			\checkmark									
DC	24 @ 1	0.01 to 1															\checkmark							
DC	24 @ 0.20	0.0 to 0.20												\checkmark										
DC	24 @ 0.10	0.005 to 0.10		\checkmark		\checkmark			\checkmark		\checkmark		\checkmark			\checkmark		\checkmark				\checkmark		\checkmark
DC	12 @ 5	0.01 to 5																			\checkmark		\checkmark	
DC	12 @ 2	0.02 to 2	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark		\checkmark			\checkmark									
DC	12 @ 1	0.01 to 1															\checkmark							
DC	12 @ 0.25	0.005 to 0.25		\checkmark		\checkmark			\checkmark		\checkmark		\checkmark			\checkmark		\checkmark				\checkmark		\checkmark

CHART 6 Electrical Ratings: Electrical Cartridge Indicators With Thermal Lockout*

Voltage	Voltage Volts @ Amps	Current Range (amps)	MS5T	MS5LCT	MS10T	MS10LCT	MS12T	MS12LCT	MS13DCT	MS13DCLCT	MS14DCT	MS14DCLCT	MS16T	MS16LCT	MS17	MS17T	MS17LCT	MS14ACT	MS14ACLCT	MS18	MS18T	MS18LCT	MS19	MS19T	MS19LCT
AC	120 @ 5	0.02 to 5	\checkmark		\checkmark		\checkmark																		
AC	220 @ 0.05	0.005 to 0.05		\checkmark		\checkmark		\checkmark											\checkmark			\checkmark			\checkmark
AC	120 @ 5	0.05 to 4																\checkmark							
AC	115 @ 0.05	0.01 to 0.05													\checkmark						\checkmark			\checkmark	
DC	24 @ 2	0.02 to 2	\checkmark			\checkmark					\checkmark			\checkmark											
DC	24 @ 0.10	0.005 to 0.10		\checkmark			\checkmark					\checkmark			\checkmark										
DC	12 @ 2	0.02 to 2	\checkmark			\checkmark					\checkmark			\checkmark											
DC	12 @ 0.25	0.005 to 0.25		\checkmark			\checkmark					\checkmark			\checkmark										

*Thermal lockout prevents activation below 80°

Note: All indicators in Charts 4 and 5 above, meet NEMA4X and IP65 specifications.

Appendix B Viscosity Charts

Glossary of Standard Terms

ABSOLUTE FILTRATION RATING: The diameter of the largest hard spherical particle that will pass through a filter under specified test condition. This is an indication of the largest opening in the filter element. It does not indicate the largest particle that will pass through the element, since particles of greater length than diameter may pass.

CAVITATION: A localized condition within a liquid stream causing the rapid implosion of a gaseous bubble.

CELSIUS: A temperature scale. 0 Celsius (or 0 Centigrade) is the freezing point of water (32° F).

CENTIPOISE: A unit of absolute (dynamic) viscosity.

CENTISTOKE: A unit of kinematic viscosity.

CLEANLINESS LEVEL: The analog of contamination level.

COLLAPSE PRESSURE: The outside-in differential pressure that causes structural failure.

CONTAMINATION LEVEL: A quantitative term specifying the degree of contamination.

CONTAMINANT: Any material or substance which is unwanted or adversely affects the fluid power system or components, or both.

CONTAMINANT, BUILT-IN: Initial residual contamination in a component, fluid, or system. Typical built-in contaminants are burrs, chips, flash, dirt, dust, fiber, sand, moisture, pipe dope, weld spatter, paints and solvents, flushing solutions, incompatible fluids, and operating fluid impurities.

DEPTH (FILTER): A filter medium which primarily retains contaminant within tortuous passages.

DIRT CAPACITY (DUST CAPACITY)

(CONTAMINANT CAPACITY): The weight of a specified artificial contaminant which must be added to the fluid to produce a given differential pressure across a filter at specified conditions. Used as an indication of relative service life.

EFFICIENCY (FILTER): The ability, expressed as a percent, of a filter to remove specified artificial contaminant at a given contaminant concentration under specified test conditions.

Filter CONFIGURATIONS

Top-Ported Filter: Also known as a T-Ported or In-Line filter. All porting, the bypass valve, and indicators are located in the head. The head is permanently attached to the plumbing and the element is accessed by removing the bowl.

Base-Ported Filter: All porting, the bypass valve, and indicators are located in the base. The base is permanently attached to the plumbing and the element is removed through a cap, instead of removing the entire bowl.

Manifold Mounted Filter: Also known as a Sub-Plate filter. Most Base-Ported filters come with a manifold mount option. In some cases, a Top-Ported filter can also have a manifold mounting option. This allows the filter to be mounted directly onto a manifold, eliminating the need for hoses and fittings.

Cartridge Filter: Can be inserted directly into the manifold, eliminating the need for a separate housing or plumbing. Element is removed through a plug on the manifold.

Sandwich Filter: Is designed to be placed in between and directly interface with a manifold and stacked valves. Eliminates the need for hoses and fittings.

Duplex Filter: Made up of two or more filter assemblies. A valve allows the user to switch from one chamber to another. When one element is fully loaded, fluid is redirected though the second element. The loaded element can be changed without an interruption in flow. In the center position, the valve allows the oil to flow through both filters.

ELEMENT (CARTRIDGE): The porous device which performs the actual process of filtration.

FLOW, LAMINAR (STREAMLINE): A flow situation in which fluid moves in parallel lamina or layers. (See Reynold's number.)

FLOW, TURBULENT: A flow situation in which the fluid particles move in a random manner. (See Reynold's number.)

FLUID: A liquid, gas, or combination thereof.

FLUID POWER SYSTEM: A system that transmits and controls power through use of a pressurized fluid within an enclosed circuit.

INDICATOR: A device which provides external visual evidence of sensed phenomena.

INDICATOR, BY-PASS: An indicator which signals that an alternate flow path is being used.

INDICATOR, DIFFERENTIAL PRESSURE: An indicator which signals the difference in pressure between two points.

MICROMETER (MICRON)*: A unit of measurement one millionth of a meter long, or approximately 0.00003937 inch expressed in English Units. *Deprecated.

MIGRATION: Contaminant released downstream.

PRESSURE, CRACKING: The pressure at which a pressure-operated valve begins to pass fluid.

PRESSURE, DIFFERENTIAL (PRESSURE DROP): The difference in pressure between any two points of a system or a component.

PRESSURE, OPERATING: The pressure at which a system is operated.

PRESSURE, RATED FATIGUE: A pressure that a pressure-containing component is represented to sustain 10 million times without failure.

RATED FLOW: The maximum flow that the power supply system is capable of maintaining at a specific operating pressure.

REYNOLD'S NUMBER: A numerical ratio of the dynamic forces of mass flow to the shear stress due to viscosity. Flow usually changes from laminar to turbulent between Reynold's numbers 2,000 and 4,000.

Filter CLASSIFICATIONS Types

Low Pressure Filter*: Filter pressure range from 0 to 500 psi. Mostly applied in return line filtration where system pressure is at a low point.

Medium Pressure Filter*: Filter pressure range from 500 to 1500 psi. Often used in hydrostatic charge pressure applications.

High Pressure Filter*: Filter pressure range is 1500 psi and above. Mostly applied on the pressure side of the system where pressure is highest.

High Pressure Hydrostatic Filter: Used in high pressure hydrostatic closed loop systems. Allows for reverse flow through the system.

Bypass vs. Non-Bypass: The pressure rises as an element becomes loaded with contaminants. Standard filters are equipped with a bypass valve that redirects hydraulic fluid when the pressure drop reaches a predetermined level, so the element does not lose its structural integrity. The filter element is bypassed and fluid continues on through the system.

In non-bypass filters bypass is not optional. They are used to protect expensive components that are more sensitive to contaminants, and cannot be exposed to unfiltered fluid. The element is exposed to higher pressures, as there is no bypass. For that reason this type of filter requires a high crush element to guarantee its structural integrity.

Air Breather: Filters air that is drawn into a reservoir when the fluid level changes.

Desiccant Air Breather: In addition to filtering out particle contaminants, this breather also removes water vapor.

Schroeder Industries LLC wishes to thank both the National Fluid Power Association and Penton Publishing for the use of certain generic terms shown in this glossary. Excerpts taken from ANSI B93.2-1986/NFPA T3.10.3. 1967(R1980) and Penton Publishing's Fluid Power Handbook & Directory (2006-2007).

*These ranges have been determined to provide a quick reference for the purpose of creating our catalog. This is currently no industry standard terminology. These ranges are subject to change.

SCHROEDER INDUSTRIES 341

Other Product Line Catalogs

Filter Systems

The Filter Systems Catalog is designed to take the reader from the basic foundations of the principles of hydraulics found in the H&L catalog, to the tools required for troubleshooting and addressing the cleanliness or performance demands of any fluid system. We produce portable and permanent-mount pressure, flow and temperature evaluation instruments, oil cleanliness analysis devices, particle monitors and water-in-oil identification tools. We also produce a wide array of fluid conditioning tools — from standard in-line hydraulic filters, to sophisticated microprocessor-based instruments incorporating SMART[®] technology.

The products contained in the Fuels Catalog, address issues relating to mobile and stationary equipment working in some of the toughest conditions all over the world. Schroeder's Fuel Filtration line ensures the smooth running of equipment and protects both the engine and the whole drive system from damage, which addresses both onboard and bulk tank requirements.

Fuel Filtration

The keystone product of Schroeder Process Filtration is the RF3 automatic self-cleaning backflush filter. This filter along with bag filters, cartridge filters and custom designed systems allows Schroeder to offer you complete solutions to your process filtration needs. Our process filters are used to remove solid contamination from fluids and protect the integrity of high grade components that depend on low viscosity water or water-based fluids and emulsions. Schroeder offers high performance filters for all industrial sectors. Improvements in operational efficiency, reduced downtime, lower maintenance costs and reduce environmental impact can all be expected.

Process Filtration

To view the full version of our catalogs visit our website: www.schroederindustries.com

Notes Section:

Notes Section Continued:						

Best Filter Delivery Program

Schroeder Industries is pleased to announce the establishment of the Best Filter Delivery Program. We recognize that emergencies arise despite the best planning and forecasting efforts. To be able to offer support and service in these situations, we performed an analysis to determine our top selling filter model numbers. The result is a list of thirteen specific filter assemblies, comprising high pressure, medium pressure, return line, tank-mounted and spin-on models.

For all the models listed, guaranteed shipment is same day, provided we receive the purchase order by 1:00 pm EST. An option to specify element media other than that called for on the web page is available with a 5-day guaranteed ship date after receipt of order. No other substitutions are permitted.

At the onset of this program, a distributor/customer may be limited to a maximum quantity. This may be necessary to enable Schroeder to fulfill its guarantee of adequate inventory to all distributors alike.

The intent of this program is to provide our customers with access to the products they use most often. Therefore, as we witness shifts in filter usage, we will make changes to this list and update the corresponding web page accordingly.

We hope you and your customers find this new program useful in working through unforeseen crisis situations.

Family	Product	Specifications	Standard Part Number	Alternate Elements
High Pressure, Top-Ported	NF30	20 gpm, 3000 psi, SAE 1-1/16"-12 straight porting, cartridge dirt alarm	NF301NZ10SD5	N/A
High Pressure, Top-Ported	DF40	30 gpm, 4000 psi, SAE 1-5/16"-12 straight porting, cartridge dirt alarm	DF401CCZ3SD5	CC10, CCZ5
High Pressure, Base-Ported	GKF30	100 gpm, 3000 psi, 1 element, SAE 1-7/8"- 12 straight porting, cartridge dirt alarm	GKF301KGZ10SD5	KG3, KG10, KG25, KGZ1, KGZ3, KGZ25
Low Pressure, Tank-Mounted	ZT	40 gpm, 100 psi, SAE 1-5/16"-12 straight inlet port, rear mounted tricolor visible dirt alarm	ZT8Z10SY2	N/A
Low Pressure, Tank-Mounted	GRT	100 gpm, 100 psi, 2 SAE 1.5" inlet ports, tricolor visible dirt alarm	GRT1KBGZ10S24S24NY2 (GRT-6915)	K3, K10, K25, KZ1, KZ3, KZ25
Low Pressure, Tank-Mounted	GRT	100 gpm, 100 psi, 1 SAE 1.25" straight inlet port, tricolor visible dirt alarm	GRT1KBGZ10S20NNY2 (GRT-6916)	KBG3, KBG10, BG25, KBGZ1, BGZ3,KBGZ25
Low Pressure, Tank-Mounted	LRT	150 gpm, 100 psi, 2 SAE 1.5" straight inlet ports, tricolor visible dirt alarm	LRT18LZ10S24S24NY2 (LRT-1820)	N/A
Low Pressure, Spin-On	PAF1	20 gpm, 100 psi, 3/4" NPTF porting, tricolor visible dirt alarm	PAF16PZ10PY2	N/A
Low Pressure, Top-Ported	GKF3	100 gpm, 300 psi, 1 element, SAE 1-7/8"- 12 straight porting, cartridge dirt alarm	GKF31KGZ25SD5	KG3, KG10, KG25, KGZ1, KGZ3, KGZ25
Medium Pressure, Top-Ported	SRLT	25 gpm, 1400 psi, SAE 1-1/16"-12 straight porting, cartridge dirt alarm	SRLT6RZ10S12D5	6RZ3, 6RZ25
Medium Pressure, Top-Ported	RLT	70 gpm, 1000 psi, 9" element, SAE 1-5/8"- 12 straight porting, cartridge dirt alarm	RLT9VZ10S20D5	9V25, 9VZ25

Hydraulic Lube Filtration

Accessories

Filter Systems

Fuel Filtration

Process Filtration

Markets Served

L-2520 | 2019

HYDRALILIC LUBE FILTRATION

Advanced Fluid Conditioning Solutions®

*To access more information about Schroeder, scan the code with your app-enabled smartphone.

© Copyright 2019 Schroeder Industries. All rights reserved

www.schroederindustries.com | 580 West Park Road | Leetsdale, PA 15056-1025 | 1.800.722.4810 p | 724.318.1200 f