C. P. Alexander and George W. Byers ${ }^{1}$

Fig. 7.1. Male of Tipula trivittata Say.

[^0]Typically slender-bodied flies (Fig. 1), with V-shaped transverse mesonotal suture. Wing elongate, rather narrow. Legs very long and slender, breaking readily at suture between trochanter and femur. Ocelli absent. Length up to 60 mm ; size varying from tiny species of Tasiocera Skuse with wing length of about 2 mm , to large species of Holorusia Loew with wing often 40 mm long and of Leptotarsus Guérin-Méneville (Longurio Loew) with body length often 60 mm .

Adult. Head: rostrum small and inconspicuous in Limoniinae, commonly more conspicuous and often extended into a small projection called the nasus in Tipulinae (Fig. 2), sometimes greatly elongated in Limonia (Geranomyia Haliday) to about half as long as head and thorax combined and even longer in Elephantomyia Osten Sacken and Toxorhina Loew; mouthparts usually proportional in size to rostrum; palpus normally four-segmented, but sometimes reduced to a single element; lengthened labrum, hypopharynx, and labella comprising rostrum in Limonia (Geranomyia); greatly lengthened frons and clypeus comprising rostrum in Elephantomyia and Toxorhina, with very reduced palpi, labrum, and other mouthparts situated at extreme apex. Antenna varying greatly among groups (Figs. 8-14), usually short or moderate in length, but occasionally extremely long in male of some species, sometimes reaching three or four times body length as in some Megistocera Wiedemann, Leptotarsus, Hexatoma Latreille, and Rhabdomastix Skuse; segments numbering between five (some species of Chionea Dalman) and 39 (some species of exotic Gynoplistia Westwood), but generally numbering 13 in Tipulinae and 14-16 in Limoniinae; flagellomeres usually simple and unmodified, ranging in shape from nearly globular to oval and cylindrical, very elongated in species having long antennae, occasionally branched in male and only rarely branched in both sexes (Ctenophora Meigen); scape and pedicel normally similar throughout Tipulidae; one or more flagellomeres occasionally fused together to reduce the number of antennal segments from the usual 16 to as few as five (Chionea). Compound eyes large, usually widely separated to display a broad posterior vertex but
${ }^{2}$ Dr. Alexander's agreement with Tillyard's interpretation of CuA as being unbranched and the vein preceding it therefore being \mathbf{M}_{4} is not followed here. Instead CuA is interpreted as having two branches, $\mathrm{CuA} \mathrm{A}_{1}$ and CuA_{2}, the former comprising crossvein m-cu and M_{4} of Tillyard (see Chapter 2 for a thorough explanation).
sometimes holoptic to reduce posterior vertex to a capillary strip or to eliminate it completely (Limonia spp.); eyes usually glabrous, but in Pediciini with short erect hairs located between ommatidia; ommatidia numerous; ocelli absent.

Thorax: pronotum usually well-developed, sometimes elongate (Limonia spp., Toxorhina spp.), jutting anteriorly over prescutum; small paired impressions (tuberculate pits) often present on anterior half of prescutum; other impressed areas or prescutal pits sometimes large and conspicuous, present in postpronotal region. Legs with coxae well-developed; trochanters usually short, but longer in Atarba Osten Sacken and Rhabdomastix; tibiae with or without two terminal spurs; tarsal claws simple or variously toothed (some species of Limonia and Tipula Linnaeus).

Halter long to very long in all Nearctic species. Wing normally present, but reduced or lost by atrophy in a few groups, sometimes in both sexes (Chionea) and sometimes only in female; venation correspondingly modified. Wing venation greatly variable within family and extremely important in taxonomy, generally characterized by two complete anal veins, 9-12 veins reaching wing margin, basal cells at least half length of wing, and a distinctive region near apical third of wing, called the cord, where branching of Rs, M, and CuA frequently occurs in an almost linear transverse line; venational nomenclature of Comstock and Needham as modified by Alexander $(1918,1927,1929)$ for the branching of R and Sc used in adult key. ${ }^{2}$

Abdomen: long to very long. Male terminalia (Figs. 3-6) with tergite 9 usually separate but sometimes fused with sternite 9 and gonocoxite to form a continuous ring; gonocoxite variously modified, usually with a ventromedial lobe or extension called the aedeagal guide (adminiculum), and sometimes with a modified structure or interbase also present medially which is especially characteristic of the Pediciini, primitive Hexatomini, and certain other groups; gonostylus partially to completely divided, variously modified, providing important characters for separating genera and species. Ovipositor of female variously modified, but usually including two pairs of elongate sclerotized valves (Fig. 7); paired cerci situated dorsally, usually lengthened, gently upcurved to the tips; hypogynial valves (hypovalvae) situated ventrally, shorter, obtuse; in Cylindrotominae and eriopterine Cryptolabis Osten Sacken, cerci and hypogynial

Figs. 7.2-6. Head, thorax, and male terminalia: (2) head and thorax of Tipula trivittata Say, lateral view; male terminalia of (3) Tipula (Lunatipula) monticola Alexander in lateral view, (4) Tipula (Yamatotipula) eluta Loew in posteroventral view, and (5) Limonia (Rhipidia) lecontei Alexander and (6) Rhabdomastix subfascigera Alexander in dorsal view.

Abbreviations: aed, aedeagus; aed gd, aedeagal guide; anepm, anepimeron; anepst, anepisternum; ant, antenna; bk, beak; cx, coxa; d ct, dorsal crest; goncx, gonocoxite; i gonst, inner gonostylus; interb, interbase; kepst, katepisternum; 1 bk , lower beak; ltg, laterotergite; mr, meron; mtg , mediotergite; nas, nasus; o blb , outer basal lobe; o gonst, outer gonostylus; $p \mathrm{ct}$, posterior crest; pm, paramere; presct, prescutum; prn, pronotum; rst, rostrum; rst spn, rostral spine; sct, scutum; sctl, scutellum; spr, spiracle; st, sternite; tg, tergite; trn sut, transverse suture; vrt, vertex.

valves reduced and highly modified for a specialized type of oviposition. Detailed descriptions of male and female terminalia found in Byers (1961b), Crampton (1941, 1942), Frommer (1963), Rees and Ferris (1939), and Snodgrass (1903, 1904).

Larva. Elongate, usually terete or nearly so, with posterior two-thirds or more of head capsule enclosed within prothoracic segment, usually functionally metapneustic (rarely apneustic), although often with vestigial lateral spiracles. Head capsule distinct, well-sclerotized anteriorly, deeply incised ventrally and often dorsolaterally, retractable within anterior thoracic segments; mandibles opposed or nearly so, moving in horizontal or oblique plane (Figs. 67, 83, 87). Abdominal segments smooth or with transverse rows of fine hairs; transverse creeping welts or, less commonly, fleshy projections sometimes present; terminal segment generally glabrous, often partially sclerotized, bearing posterior spiracles; spiracular disc usually surrounded by lobe-like projections of variable length; anal papillae or membranous anal lobes usually present.

Biology and behavior. The Tipulidae are found from the northernmost lands of the Arctic to lowland equatorial forests, and from the marine intertidal zone to over 5600 m in certain high mountain ranges. Most species are associated with moist, temperate environments; adults are ordinarily found in low, leafy vegetation near streams and lakes in forested areas. However, many species inhabit open meadows, fairly dry rangelands, and even deserts. Because many species of Tipulidae are so abundant, they are extensively preyed upon by birds, mammals, fishes, and other vertebrates, as well as by spiders and predacious insects. The Tipulidae are therefore of tremendous ecological importance. Larvae of a few species that feed on roots of forage crops or on seedling field crops can become economic pests.

As might be expected in a group of insects as large and varied as the Tipulidae, the immature stages occupy a wide variety of habitats. Habitats ranging from strictly aquatic to completely terrestrial are briefly described here, and examples of the genera that are found in each are given:

- fresh water, especially rapidly flowing streamsAntocha Osten Sacken, Hesperoconopa Alexander, Cryptolabis Osten Sacken
- intertidal zones or brackish water-Limonia (Idioglochina Alexander) on the Pacific coast, Limonia (Dicranomyia Stephens) on the Atlantic
- aquatic environment during the larval stage and margins or dryer areas for pupation-Tipula Linnaeus, Limonia Meigen, Thaumastoptera Mik, and many Pediciini, Hexatomini, and Eriopterini
- steep or vertical cliff faces supporting a film or scum of algal growth that is constantly kept wet by slow-flowing or percolating waters or, occasionally,
by more rapidly flowing water-some species of Limonia Meigen, Orimarga Osten Sacken (Vaillant 1950), Elliptera Schiner
- moist to wet cushions of mosses or liverworts growing on rocks or earth-Cylindrotominae, various Limoniinae, Tipulinae including Dolichopeza Curtis (Byers 1961b)
- dry to saturated decaying wood or, occasionally, sodden logs in streams, where larvae commonly feed on fungus mycelia-Ctenophora Meigen, Gnophomyia Osten Sacken, Teucholabis Osten Sacken, Lipsothrix Loew
- rich organic earth or mud, as found along margins of streams or lakes or in swamps and marshes; in masses of leaf drift at stream borders; in wet spots in woods where humus is kept saturated-numerous genera and species
- sandy, gravelly, or loamy soils with moderate humus, as found along stream borders-eriopterine groups such as Gonomyia Meigen, Rhabdomastix Skuse, Arctoconopa Alexander, and Hesperoconopa Alexander
- decaying plant materials such as masses of leaves, stems, or fruits in various stages of putrefactionvarious subgenera and species of Limonia
- fungi, both woody and fleshy-Ula Haliday, Limonia (Metalimnobia Matsumura)
- organic matter accumulated in the nests of birds and mammals-chiefly Tipulinae
- leaves of various terrestrial higher plants and mosses-chiefly Cylindrotoma Macquart
- dry soil as found in lawns, pastures, or on the ranges of the west--Nephrotoma Meigen, Tipula Linnaeus, Dicranoptycha Osten Sacken.
The following papers provide detailed accounts of the immature stages and include bibliographies that may also be consulted for further information: Alexander 1920, 1922, 1931b; Bangerter 1928-1934; Brindle 1957-1967; Brodo 1967; Bryce 1956, 1957; Byers 1958-1961b; Chiswell 1956; Foote 1963; Hennig 1950; Hynes 1958-1969c; Pritchard and Hall 1971; Rogers 1926a-1949; Rogers and Byers 1956; Saunders 1928; Savtshenko 1955; Theowald 1957, 1967; Tokunaga 1930; Vaillant 1950.

The life cycle of a crane fly typically consists of a brief egg stage (6-14 days), four larval stages, and a fairly short pupal stage (5-12 days) before emergence of the short-lived adult. Depending on the species and the environmental conditions, especially temperature and humidity, the entire cycle may be as short as 6 wk or as long as 4 yr. Exceptionally long cycles occur in Arctic species. Most species at temperate latitudes or elevations produce one or two generations a year.

Classification and distribution. The family Tipulidae is the single largest family in the Diptera, with approximately 14000 species; some 1525 of these in 64 genera occur in America north of Mexico. According to

Figs. 7.7-14. Ovipositor and antennae: (7) ovipositor of Tipula (Yamatotipula) noveboracensis Alexander in lateral view; antennae of (8,9) Ctenophora apicata Osten Sacken, (10) Prionocera parrii (Kirby), (11) Tipula (Angarotipula) illustris Doane, (12) Holorusia rubiginosa Loew, (13) Tipula (Lunatipula) triplex Walker, and (14) Leptotarsus testaceus (Loew).

Abbreviations: cerc, cercus; hyp vlv, hypogynial valve; st, sternite; tg, tergite.
the present interpretation, the family Tipulidae is the sole representative of the superfamily Tipuloidea. Other families that had once been considered members of this superfamily are now assigned to other superfamily groups. The position of these flies in specific superfamilies is still held in question by some students of the order.

Our knowledge of North American tipulid larvae is still fragmentary. The immature forms of probably fewer than 10% of our species have been described. In some genera, even in a few with many species, larvae of only one or a few species are known. Therefore, the limitations of the larval key should be recognized. Some portions of the key are necessarily based on these known but possibly atypical representatives. The genera are not keyed in a phylogenetic sequence because larval characters, particularly the superficial ones utilized in the key, often yield groupings that do not coincide with those based upon adult characteristics. External, more or less readily visible characters are mainly used for identification. All structural details used, however, can be seen with an ordinary dissecting microscope. Diagnostic features include the shape and pigmentation of the spiracular disc on the terminal segment and the characteristics of its peripheral lobes, degree of sclerotization of the dorsal and lateral portions of the head, development of the midventral hypostomal bridge, and presence or absence of raised, often setiferous creeping welts on the abdominal segments. Where possible, the larval habitat is described when each genus is identified. Some genera occasionally appear in two or more places so that generic assignment of species whose larvae are at present unknown might be possible. North American genera for which no larval forms are yet known are Cheilotrichia Rossi, Nasiternella Wahlgren, Neocladura Alexander, Neolimnophila Alexander, Ornithodes Coquillett, Phyllolabis Osten Sacken, Prolimnophila Alexander, Shannonomyia Alexander, Tasiocera Skuse, Thaumastoptera Mik, and Toxorhina Loew. Although these genera represent 19% of the total, they contain only about 3% of Nearctic tipulid species. The key includes Cheilotrichia and Thaumastoptera based on characteristics of European species. Probable positions of some other genera are also indicated. The key will undoubtedly need revision as descriptions of newly discovered specimens are published.

The Tipulidae probably evolved from ancestors resembling or perhaps even included in the Architipulidae, a family of primitive Diptera about 140 million years old, known from the Upper Jurassic deposits of Europe. Because fossils of nine families of Nematocera, including one tipulid, have been found in the Cretaceous amber of central Canada (Carpenter 1934), the Tipulidae can be assumed to have become differentiated from related families by middle to late Cretaceous times (about 70 million years ago). Records of Tipulidae from the lower Tertiary period, in contrast, are numerous and are from many parts of the world. Specimens in Baltic amber (Alexander 1931a), judged to have been preserved 40-45 million years ago, include representatives of two genera of Tipulinae, both still extant, and 29 genera of Limoniinae, 25 of which are extant. This amber is apparently of upper Eocene or lower Oligocene age. Fossils of approximately equivalent age from Gurnet Bay on the Isle of Wight add a few more genera, especially in the Tipulinae. In North America, the volcanic shales near Florissant, Colo., probably of upper Oligocene or lower Miocene age (perhaps 30 million years old), have yielded representatives of seven genera of Tipulinae, three of which are still extant; one extant genus of Cylindrotominae; and 17 genera of Limoniinae, 10 of which are extant (Scudder 1894). The recently described Chiapas amber from southern Mexico, of approximately the same age as the Florissant beds, includes a few Tipulidae. The older (Eocene) Green River shales of Colorado and various other early to middle Tertiary deposits in North America contain remains of Tipulidae, but these records are generally fragmentary (Scudder 1890, Handlirsch 1910).

The description, classification, and distribution of Nearctic Tipulidae have been dealt with extensively in the literature. Many relevant papers are listed, together with a catalog of species, in the Diptera catalog edited by Stone et al. (1965). The papers by Alexander (1966, 1967), Brodo (1967), and Byers (1961b) are particularly important because they provide keys to species of major regions of North America. Other useful publications that list species of various political regions and natural areas are those by Alexander, published between 1934 and 1954.

Keys to genera

Adult

1. Fully winged ... 2

Subapterous ... 163
2. Terminal segment of palpus elongate; nasus usually distinct. Flagellum commonly with 11 segments. Sc_{1} usually atrophied or incomplete; CuA slightly constricted at branching of CuA_{1} and CuA_{2} (Figs. 15, 20-25). Size large; wing commonly over 10 mm , usually much larger

TIPULINAE.... 4

Terminal segment of palpus short; nasus absent. Flagellum usually with either 12 or 14 segments, but sometimes with fewer segments. Sc_{1} complete; CuA straight, not constricted at branching of CuA_{1} and CuA_{2} (Figs. 16-19, 26-29). Size small or medium, rarely large; wing commonly under 10 mm , usually much smaller
3. Tip of R_{1+2} usually atrophied, with R_{1} gradually converging toward and fusing with R_{3} well before wing margin; R_{1+2}, if present, arising near this point of fusion; free tip of $S c_{2}$ present (Figs. 26-29)

CYLINDROTOMINAE.... 49
Tip of R_{1+2} present; R_{1} not appearing to converge on collision course with $\mathrm{R}_{3} ; \mathrm{R}_{2}$ commonly present and usually in form of a nearly transverse crossvein between R_{1} and R_{3}; free tip of Sc_{2}, recognizable by its lack of setae and its angular divergence from R_{i}, preserved in many species in tribe Limoniini, lacking in all other Nearctic tribes

LIMONIINAE.... 53
4. Legs unusually long and slender, filiform. Either R_{1+2} and free ending of Sc_{1} atrophied with Sc_{2} entering R close to origin of Rs (Fig. 22), or R_{1+2} present with Sc very long and with Sc_{1} reaching C very close to free tip of Sc_{2} (Figs. 20, 21)
Legs long but stouter. R_{1+2} usually preserved, but when atrophied Sc of moderate length and Sc_{1} atrophied before fork of $R s$ with $S c_{2}$ entering R_{1} at or near mid length of Rs 9

Sc shorter; Sc_{1} atrophied
Dolichopeza Curtis.... 7
6. Crossvein r -m originating in Rs; crossvein m-cu present (Fig. 20)Megistocera Wiedemann 1 sp., longipennis (Macquart); Texas to Florida
Crossvein r-m originating in R_{4+5}; crossvein m-cu absent; CuA, fused with lower border of cell dm for short distance (Fig. 21)

Brachypremna Osten Sacken 1 sp., dispellens (Walker); southern, eastern
7. Cell dm open by atrophy of basal section of \mathbf{M}_{3}; outer medial field thus appearing pectinate (Fig. 22)

Dolichopeza (Dolichopeza Curtis)
2 spp.; temperate, northern
Cell dm closed .. 8
8. Wing with cells beyond cord having abundant macrotrichia

Dolichopeza (Megistomastix Alexander)
tropical (Greater Antilles)
Wing without macrotrichia in cells
Dolichopeza (Oropeza Needham)
13 spp .; temperate, lacking in west
9. Antennal flagellum with flagellomeres branched in male and less produced in female of Nearctic species (Figs. 8, 9)

Ctenophora Meigen.... 10
Antennal flagellum with flagellomeres simple or slightly produced to appear serrate 13
10. Intermediate flagellomeres of male three-branched; flagellomeres 2-10 each with a longer basal pair of branches and a single shorter spur on outer half; each basal branch with a single long seta before mid length; vestiture short; first flagellomere deeply bilobate; terminal flagellomere small, simple. Ovipositor with cerci slender, saber-shaped, much longer than width of head

Ctenophora (Tanyptera Latreille) 1 sp., dorsalis Walker; central, eastern
Intermediate flagellomeres of male four-branched. Ovipositor with cerci no longer than width of head

11
11. First flagellomere of male deeply bilobate and outer lobule weakly emarginate; flagellomeres 2-10 each with four branches arranged in pairs; branches short, subequal in length to flagellomeres; basal pair of branches each with a single strong seta; terminal flagellomere small, simple; flagellar vestiture short

Ctenophora (Phoroctenia Coquillett) 1 sp., vittata angustipennis Loew; western temperate
First flagellomere of male simple; flagellomeres 2-10 each with four longer branches
12. Flagellomeres $2-10$ each with four moderately long branches; basal pair of branches longer than others; each branch with a long seta before mid length (Fig. 8); flagellar vestiture short and inconspicuous; terminal flagellomere small, simple. Ctenophora (Ctenophora Meigen) 2 spp.; temperate

18 Pseudolimnophila inornata σ°

19 Ormosia monticola ${ }^{\circ}$

Figs. 7.15-19. Wings: (15) Tipula (Yamatotipula) tricolor Fabricius; (16) Limonia (Metalimnobia) triocellata (Osten Sacken); (17) Dicranota (Eudicranota) pallida Alexander; (18) Pseudolimnophila inornata (Osten Sacken); (19) Ormosia monticola (Osten Sacken) (continued).

Flagellomeres 2-10 each with four very long branches that exceed length of flagellomeres; vestiture dense, erect; terminal flagellomere elongate, appearing trifid with a pair of subequal basal branches Ctenophora (Pselliophora Osten Sacken)
Neotropical, Mexico

20 Megistocera longipennis or
21 Brachypremna dispellens $\xlongequal[+]{\circ}$

22 Dolichopeza americana 9

24 Nephrotoma ferruginea ơ

25 Tipula (Lunatipula) dorsimacula σ^{*}

26 Cylindrotoma distinctissima americana ơ
27 Phalacrocera tipulina 0°

28 Phalacrocera replicata σ

29 Liogma nodicornis ơ

Figs. 7.20-29. Wings (continued): (20) Megistocera longipennis (Macquart); (21) Brachypremna dispellens (Walker); (22) Dolichopeza americana Needham; (23) Tipula (Yamatotipula) caloptera Loew; (24) Nephrotoma ferruginea (Fabricius); (25) Tipula (Lunatipula) dorsimacula Walker; (26) Cylindrotoma distinctissima americana Osten Sacken; (27) Phalacrocera tipulina Osten Sacken; (28) Phalacrocera replicata (Linnaeus); (29) Liogma nodicornis (Osten Sacken) (continued).
13. Flagellomeres without conspicuous verticils or elongate setae (Figs. 10, 11) 14
Flagellomeres with distinct verticils or elongate setae (Figs. 12-14) 15
14. Antenna with lower face of flagellomeres slightly produced near outer end, giving organ a serrate appearance (Fig. 10) Prionocera Loew16 spp .; northern
Flagellomeres either enlarged on basal half (Fig. 11) or uniformly cylindricalTipula (Angarotipula Savtshenko), in part
2 spp.; widespread
15. Size very large; wing commonly over 25 mm , sometimes 40 mm or more. R_{3} near mid length bent strongly caudally, narrowing the cell. Antenna with lower faces of intermediate flagellomeres protuberant, without strong setae; upper surfaces with short verticils; terminal three flagellomeres smaller than the rest (Fig. 12)Holorusia Loew1 sp., rubiginosa Loew, largest in Nearctic region; western
Size smaller; wing less than 30 mm , commonly less than $20 \mathrm{~mm} . \mathrm{R}_{3}$ straight or virtually so 16Antenna not as above
16. Flagellomeres cylindrical, with short normal setae on proximal ones and long conspicuous setae on outer ones (Fig. 14) Leptotarsus Guérin-Méneville (Longurio Loew)4 spp.; eastern U.S.A.
Flagellomeres with bases enlarged and with stout verticils, outwardly without conspicuous setae(Fig. 13)17
17. Sc ending nearly opposite origin of Rs; basal section of Rs short, oblique; cell m_{1} sessile or veryshort-petiolate; CuA_{1} uniting with M for short distance before fork of M (Fig. 24). Bodycoloration highly polished, often black and yellowNephrotoma Meigen40 spp.; widespread
Sc longer; Sc_{2} meeting R_{1} beyond origin of Rs ; Rs longer, usually exceeding basal section of$\mathrm{Cu} \mathrm{A}_{1}$; cell m_{1} long-petiolate; CuA_{1} or crossvein m -cu meeting M beyond its fork (Figs. 15,25). Body coloration usually opaque, pruinoseTipula Linnaeus, in part.... 18
18. Antennal flagellomeres without verticils (Fig. 11)Tipula (Angarotipula Savtshenko), in part 1 sp ., illustris Doane; widespread
Antennal flagellomeres with verticils 19
19. Distal wing cells with macrotrichia 20
No macrotrichia in wing cells 22
20. Thorax polished orange or yellow, sometimes with dark or blackened stripes
Tipula (Hesperotipula Alexander), in part
18 spp .; western
Thorax opaque yellow, brown, or gray, sometimes with darkened opaque stripes 21
21. Calypter without strong setae Tipula (Trichotipula Alexander), in part
30 spp .; primarily western, 4 spp . eastern
Calypter with setae Tipula (Setitipula Alexander)22. Tarsi creamy whiteTipula (Tipulodinodes Alexander)1 sp., lacteipes Alexander; western
Tarsi darkened 23
23. Calypter without strong setae 24
Calypter with setae 38
24. Wing of female with two veins, M_{1} and M_{3}, emanating from cell dm; basal section of CuA_{1} before fork of M , as in Nephrotoma (insufficiently known, perhaps based on abnormal specimens and perhaps belonging in Yamatotipula Matsumura)

```
    1 sp.,pribilovia Alexander; Alaska
```

Wing of female with at least three veins emanating from cell d or dm 25
25. Body coloration polished yellow and black, much as in Nephrotoma. Wing veins posterior to R_{1} glabrous or virtually so Tipula (Nobilotipula Alexander) 2 spp.; eastern
Body coloration opaque. Wing veins with microtrichia 26
26. Male terminalia with tergite 9 and sternite 9 fused to form a continuous ring 27
Male terminalia with tergite 9 and sternite 9 separated by a suture 28
27. Wing sometimes unpatterned, but commonly with darkened longitudinal stripes along veins and without a strong transverse darkening in cell bm (Fig. 23); basal section of M_{3} short, usuallysubequal to or less than crossvein r-m; crossvein m-cu or basal section of CuA_{1}, meeting cell dor dm some distance before its mid length. Male terminalia commonly with tergite 9produced into a simple or emarginate lobe apically bearing small blackened spines; ventrallobes of aedeagal guide appearing as pale spatulate blades (Fig. 4)
Tipula (Yamatotipula Matsumura)
51 spp.; widespread
Wing variously patterned with white background and darker costal border, or yellow with a brown cloud at end of \mathbf{A}_{2}; basal section of \mathbf{M}_{3} longer, from two to three times length of crossvein r-m. Male terminalia with tergite 9 large, notched medially; broad pale lobes with margins roughened or with spine-like projections; lobes of aedeagal guide greatly reduced, not blade-like
Tipula (Platytipula Matsumura) 11 spp.; widespread
28. Basal section of Rs short; R_{1+2} present or atrophied. Antenna of male commonly long, one-half length of wing or more. Male terminalia with tergite 9 shallowly to deeply emarginate; lobes covered with coarse setae; gonostylus very irregular in conformation; gonocoxite commonly with a blackened corrugated lobe on median faceTipula (Microtipula Alexander) large varied Neotropical group, with some species bordering Nearctic portions of Mexico
Wing, antenna, and terminalia not as above
29. Basal section of Rs long; R_{1+2} present, usually with darkened mottled pattern. Antenna commonly long, or very long; extreme bases of flagellomeres each with a knob-like enlargement to present a bead-like appearance. Male terminalia commonly with a variously modified lobe on posterior border of sternite 8 \qquad Tipula (Eumicrotipula Alexander) widespread in tropics, sparsely represented in southwestern Nearctic
Wing, antenna, and terminalia not as above .. 30
30. Wing variously patterned with darker coloration .. 31
Wing without darker markings other than pterostigma .37
31. Wing with white or grayish background, with sparse brown clouds in distal ends of cells bm, cup, and a_{1}; distal cells having central streaks; cell cua, long and narrow
Tipula (Trichotipula Alexander), in part see couplet 21
Wing with darkened pattern heavier and differently arranged; cell cua, broader32
32. Male terminalia with tergite 9 variously trilobate; posterior margin of sternite 8 variously produced, commonly with a median bispinous plate
Tipula (Lindneria Mannheims) 6 spp.; widespread
Male terminalia with tergite 9 and sternite 8 differently constructed33
33. Male terminalia with outer basal division of inner gonostylus produced backward as a tail-like extension that bears one or more blackened points, and commonly terminating in a pale membranous blade
Tipula (Beringotipula Savtshenko)
22 spp.; widespread
Male terminalia not as above 34
34. Tergite 9 of male terminalia commonly forming a shallowly concave sclerotized saucer. Female ovipositor with cerci strongly constructed; cercus lying transversely, with outer margin serrate
Tipula (Vestiplex Bezzi)
17 spp .; chiefly northern or alpine
Male terminalia and female ovipositor not as above .35
35. Tergite 9 of male terminalia commonly with a narrow median emargination and broad lobes; sternite 8 usually with lateral lobes that bear modified setae

Tipula (Pterelachisus Rondani), in part
39 spp .; widespread
Tergite 9 of male terminalia not as above; sternite 8 simple, without lateral lobes
36. Tergite 9 of male terminalia virtually glabrous, without points or spicules on margin; outer division of gonostylus forming a simple pale fleshy lobe; upper and lower beaks of inner division of gonostylus large, blackened, obtuse; outer basal lobe of inner division of gonostylus large and pale, with abundant strong setae; aedeagus stout

Tipula (Serratipula Alexander), in part
5 spp.; California
Tergite 9 of male terminalia provided with microscopic blackened spinoid setae on margin; outer division of gonostylus with a blackened flange at base of upper margin; lower beak of inner division of gonostylus reduced or obsolete; outer basal lobe of inner division of gonostylus a small sessile cushion with sparse spinoid setae; aedeagus slender

Tipula (Savtshenkia Mannheims)
9 spp.; primarily northeastern with 1 sp . in California
37. Antenna of male longer than thorax. Abdomen of female much longer than that of male. Male with sternite 8 produced caudally into a broad pale fleshy lobe. Female ovipositor with cerci short and strong, modified for deep boring in soil

Tipula (Odonatisca Savtshenko) 5 spp.; northern, western
Antenna of male no longer than thorax. Abdomen of nearly equal length in both sexes. Male sternite 8 without a fleshy lobe. Ovipositor not so modified.

Tipula (Arctotipula Alexander), in part
17 spp.; western, northern
38. Outer gonostylus of male terminalia large and broad; outer basal lobe of inner gonostylus bearing two arms, with a slender curved spine on posterior one. Antenna 14-segmented

Tipula (Tipula Linnaeus)
1 sp., paludosa Meigen; Holarctic, on east and west coasts
Male terminalia not as above. Antenna 13-segmented39

Rs longer than basal section of CuA_{1}
40. Wing with darkened pattern conspicuously mottled, with a marginal whitened spot on outer cells; wing veins unusually glabrous; branches of M without macrotrichia. Size large; wing in Nearctic species about 20 mm . Male with sternite 8 unarmed ..Tipula (Bellardina Edwards) 5 spp .; southwestern
Wing with darkened pattern not mottled, without a white marginal spot on distal cells; wing veins with macrotrichia, including all distal medial veins. Size small or medium; wing less than 15 mm . Male terminalia with sternite 8 variously produced or armed.

Tipula (Schummelia Edwards)
7 spp.; widespread
41. Aedeagal guide (adminiculum) of male terminalia distinctive, T-shaped or Y-shaped with a slender stem and two divergent arms near apex......Tipula (Triplicitipula Alexander), in part 23 spp.; widespread
Aedeagal guide of male terminalia not as above .42
42. Wing patterned and with characteristic venation; crossvein r-m at or close to fork of Rs; R_{4+5} in direct alignment with $\mathrm{Rs} ; \mathrm{M}_{3}$ long; CuA_{1} confluent with \mathbf{M}_{3} for short distance. Size large; wing over 20 mm , commonly 25 mm or moreTipula (Nippotipula Matsumura) 1 sp., abdominalis (Say); eastern
Wing not patterned; venation not as described; crossvein $r-m$ on R_{4+5} some distance beyond base; \mathbf{M}_{3} short; crossvein m-cu usually present, or if absent, $\mathrm{Cu} \mathrm{A}_{1}$ meeting \mathbf{M}_{3} at a point. Size usually smaller
43. Wing with a conspicuous mottled pattern, with alternating dark and pale areas that are more or less zigzag on basal cells; distal veins with a blackish marginal spot.

Tipula (Sinotipula Alexander)
17 spp.; western

Wing pattern, when heavy and conspicuous, not mottled or patterned as described above44
44. Gonocoxite of male terminalia produced into a long strong arm that exceeds gonostylus in length
Gonocoxite of male terminalia not produced, or if so only slightly produced and not exceeding gonostylus 46
45. Arm of gonocoxite stout, widened outwardly; apex obtuse or bispinous. Body generally opaque brownish gray

Tipula (Labiotipula Alexander) 3 spp.; northern
Arm of gonocoxite slender, more or less twisted, narrowed to an acute or subacute tip. Body generally polished orange or yellow

Tipula (Hesperotipula Alexander), in part see couplet 20
46. Male terminalia with tergite 9 small and with a median subtergal process situated slightly more ventral than lateral lobes; outer division of gonostylus narrowed outwardly; outer basal lobe of inner division of gonostylus produced backward

Tipula (Eremotipula Alexander) 25 spp.; western
Male terminalia not as above
47. Body usually polished yellow or orange. Ovipositor with cerci short and obtuse \qquad see couplet 20
Body usually not polished yellow or orange. If so, ovipositor with elongate cerci
48. Wing veins unusually glabrous; M without macrotrichia. Outer gonostylus of male terminalia large, broad; inner gonostylus unusually simple, without lower beak and outer basal lobe

Tipula (Arctotipula Alexander), in part
see couplet 37
Wing with macrotrichia on M. Outer gonostylus of male terminalia fairly small; inner gonostylus more complex, with either a lower beak or an outer basal lobe present, usually with both present (Fig. 3)

Tipula (Lunatipula Edwards) 160 spp.; widespread
49. Head and intervals of mesonotal prescutum with numerous deep punctures; a deep median groove on prescutum

Triogma Schiner
1 sp., exsculpta Osten Sacken; eastern
Head and intervals of mesonotal prescutum smooth; no median prescutal groove
50. Three branches of R reaching margin (Fig. 28); R_{1+2} preserved as a distinct element

Phalacrocera Schiner, in part
4 spp.; 2 spp . eastern, 2 spp . western
Two branches of R reaching margin; R_{1+2} atrophied, giving appearance of a long backward fusion of R, and anterior branch of Rs. 51
51. Three branches of M reaching margin (Fig. 26)Cylindrotoma Macquart 3 spp.; northern
Two branches of M reaching margin; \mathbf{M}_{3} in Phalacrocera occidentalis Alexander usually present as a short spur, not reaching margin
52. Crossvein r-m present; distal end of cell dm commonly closed by a single transverse crossvein; cell m_{1} present, sessile to short-petiolate; M_{3} partially or completely atrophied (Fig. 27). Antennal flagellomeres nearly simple, with lower faces not produced

Phalacrocera Schiner, in part see couplet 50
Crossvein r-m usually shortened or obliterated by approximation or fusion of R_{4+5} and M_{1+2}; cell m_{1} absent; \mathbf{M}_{3} complete to margin (Fig. 29). Antennal flagellomeres strongly nodulose, especially in male, with individual flagellomeres subcordate Liogma Osten Sacken 1 sp., nodicornis (Osten Sacken); eastern to Alberta
53. Eye hairy, with short hairs between ommatidia. Sc_{1} very long, exceeding fork of $\mathrm{Rs} ; \mathrm{Sc}_{2}$ basal to origin of Rs (Figs. 17, 38, 39)

PEDICIINI... 74
Eye glabrous. Sc_{1} short or of moderate length; when Sc_{1} longer (some Eriopterini), Sc_{2} usually situated distal to origin of Rs; when Sc_{2} situated basal to origin of $\mathrm{Rs}, \mathrm{Sc}_{1}$ not exceeding fork of Rs.54
54. Free tip of Sc_{2} often present, nearly transversely oriented; R_{4} and R_{5} fused to margin; only two branches of $\mathrm{Rs}\left(\mathrm{R}_{3}\right.$ and $\left.\mathrm{R}_{4+5}\right)$ present (Figs. 30-37). Antenna with 12 or 14 flagellomeres

LIMONIINI.... 56
Free tip of Sc_{2} lacking; R_{4} and R_{5} separate; R_{4} usually captured by R_{2+3} to form a distinct element R_{2+3+4}; usually three branches of Rs present (exceptions: Atarba, Elephantomyia, Teucholabis, and some Gonomyia spp., where R_{2+3} is captured, as above) (Figs. 40-49). Antenna usually with 14 flagellomeres, but with number reduced in Hexatoma and a few others
55. Tibial spurs present ...HEXATOMINI...... 86

Tibial spurs lacking .ERIOPTERINI.... 118

Figs. 7.30-39. Wings (continued) : (30) Limonia (Alexandriaria) whartoni (Needham); (31) Limonia (Metalimnobia) immatura (Osten Sacken); (32) Helius flavipes (Macquart); (33) Dicranoptycha germana Osten Sacken; (34) Thaumastoptera hynesi Alexander; (35) Orimarga (Diotrepha) mirabilis (Osten Sacken); (36) Elliptera tennessa Alexander; (37) Antocha saxicola Osten Sacken; (38) Pedicia (Tricyphona) protea (Alexander); (39) Dicranota (Rhaphidolabis) tenuipes (Osten Sacken) (continued).
56. Antenna with 12 flagellomeres Limonia Meigen.
Antenna with 14 flagellomeres 67
57. One branch of M reaching margin (Fig. 30) Limonia (Alexandriaria Garrett), in part
3 spp .; 2 spp . western, 1 sp . northeastern

Two branches of M reaching margin (Figs. 31-37) ... 58
58. Wing with supernumerary crossveins in cells a_{1} or r_{3}
Wing without supernumerary crossveins in cells a_{1} or r_{3}, but with a weak vein in cell sc in some species of Geranomyia Haliday.

42 Elephantomyia westwoodi σ^{2}

44 Phyllolabis encausta 우

46 Pseudolimnophila noveboracensis ơ

48 Austrolimnophila toxoneura σ°

43 Atarba picticornis 9

45 Polymera rogersiana 9

47 Prolimnophila areolata σ°

49 Limnophila (Phylidorea) adusta 957 .59

60

Figs. 7.40-49. Wings (continued): (40) Hexatoma megacera (Osten Sacken); (41) Hexatoma (Eriocera) longicornis (Walker); (42) Elephantomyia westwoodi Osten Sacken; (43) Atarba picticornis Osten Sacken; (44) Phyllolabis encausta Osten Sacken; (45) Polymera rogersiana Alexander; (46) Pseudolimnophila noveboracensis (Alexander); (47) Prolimnophila areolata (Osten Sacken); (48) Austrolimnophila toxoneura (Osten Sacken); (49) Limnophila (Phylidorea) adusta Osten Sacken (continued).
59. Supernumerary crossvein in cell a_{t}...Limonia (Discobola Osten Sacken)

3 spp.; widespread
 tropical (Antilles)
60. Mouthparts, especially labella, elongate; rostrum about equal in length to combined head and thorax

Limonia (Geranomyia Haliday)
14 spp.; widespread
Mouthparts shorter than remainder of head
61. Flagellomeres of male antenna more or less produced, bipectinate, unipectinate, or subpectinate; flagellomeres in female less-developed, appearing serrated to nearly simple. Male terminalia often with more than two rostral spines, commonly with three to eight in Nearctic species (Fig. 5)

Limonia (Rhipidia Meigen)
8 spp.; widespread
Flagellomeres of antennae of both sexes ranging from subglobular to oval to elongate, not produced to appear pectinate in male. Male terminalia usually without rostral spines, but sometimes with one or two

62
62. Male terminalia with a simple undivided gonostylus; gonocoxite with simple ventromedial lobe. \mathbf{R}_{1+2} longer than \mathbf{R}_{2} in Nearctic species, shortest in sociabilis Osten Sacken

Limonia (Limonia Meigen)
12 spp.; widespread
Male terminalia with divided gonostylus. Venation not as above63
63. Ventral division of gonostylus without rostral spines in Nearctic species 64

Ventral division of gonostylus commonly with two rostral spines, but sometimes with either one or three .. 65
64. Sc short, ending close to origin of Rs. Proximal flagellomeres oval, with apices abruptly short-pedunculate, and with verticils shorter than flagellomeres

Limonia (Idioglochina Alexander)
1 sp., marmorata (Osten Sacken); marine, Pacific ocean
Sc very long, ending nearly opposite fork of Rs (Fig. 31). Flagellomeres oval, without apical peduncles, and with very long and flexible verticils on proximal flagellomeres. Gonostylus deeply divided, with a third oval lobe at base of ventral division of gonostylus

Limonia (Metalimnobia Matsumura)
9 spp.; widespread
65. Dorsal division of gonostylus of male terminalia in form of a stout club that terminates in several blackened spines; ventral division of gonostylus with two rostral spines placed on a long sinuous prolongation Limonia (Hesperolimonia Alexander) 1 sp., infuscata (Doane); western
Male terminalia not as above .66
66. Male terminalia with a single stout rostral spine. Body commonly polished black. Anterior vertex of head broad and silvery Limonia (Melanolimonia Alexander) 4 spp.; widespread, boreal
Male terminalia with two rostral spines. Coloration not as above
Limonia (Dicranomyia Stephens), in part 70 spp.; widespread
67. R_{2} lacking68
R_{2} present 69
68. Rostrum short and inconspicuous. Sc_{2} removed from tip of $\mathrm{Sc} \mathrm{c}_{1}$, placed basal to origin of Rs ; basal section of Rs long and straight, close to R_{1}, and in direct alignment with R_{2+3}; crossvein r-m distinct (as in Fig.36)

Elliptera Schiner, in part 6 spp.; widespread
Rostrum of moderate length, subequal to or longer than remainder of head. Sc_{2} at tip of Sc_{1}, and about opposite the fork of Rs; basal section of Rs short and curved, not in alignment with R_{2+3}; crossvein $\mathrm{r}-\mathrm{m}$ sometimes shortened or obliterated by approximation of adjoining veins (Fig. 32)

Helius Lepeletier \& Serville 2 spp.; widespread
69. R_{2} situated beyond level of outer end of cell dm; basal section of $\mathrm{Cu} \mathrm{A}_{1}$ joining M_{3} beyond fork of M ; a conspicuous pale fold in outer end of cell cua ${ }_{2}$ (Fig. 33)

Dicranoptycha Osten Sacken
23 spp.; widespread
R_{2} about opposite crossvein r-m or slightly beyond; basal section of $\mathrm{Cu} \mathrm{A}_{1}$ joining M_{3} well basal to fork of M; no fold in cell cua ${ }_{2}$... 70
70. Cell dm absent (Figs. 34, 35) .. 71

Cell dm present (Figs. 36, 37)... 73
71. \mathbf{R}_{1+2} equal to or shorter than $R_{2} ; \mathbf{R}_{3}$ long, decurved, ending at wing tip (Fig. 34)

Thaumastoptera Mik 1 sp., hynesi Alexander; western
\mathbf{R}_{1+2} longer than $\mathbf{R}_{2} ; \mathrm{R}_{3}$ straight, ending before wing tip
Orimarga Osten Sacken.... 72
72. M with two free branches (M_{1} and M_{3}) reaching margin; basal transverse section of $C u A_{1}$ uniting with M about opposite origin of Rs or distal to base of Rs, sometimes at or close to fork of M_{1+2} and distal section of CuA_{1}, but normally near mid length of wing

Orimarga (Orimarga Osten Sacken)
4 spp.; southwest to Florida
M with one free branch (M_{1}) reaching margin; basal transverse section of $\mathrm{Cu} \mathrm{A}_{\text {, }}$, uniting with M far before fork of M_{1} and distal section of CuA_{1}, at or near one-third to one-fourth the wing length (Fig. 35)

Orimarga (Diotrepha Osten Sacken)
I sp., mirabilis (Osten Sacken); southeastern, tropical
73. Anal angle of wing prominent, nearly rectangular; Sc close to R ; Sc_{2} not evident; basal section of Rs diverging from R_{1}, in alignment with lengthened R_{4+5}; cell dm present (Fig. 37)

Antocha Osten Sacken
7 spp.; mainly eastern
Anal angle of wing less prominent; Sc and R more separated; Sc_{2} present; basal section of Rs long and straight, nearly parallel with R_{1}, in alignment with R_{2+3}; cell dm present (Fig. 36) or absent

Elliptera Schiner, in part see couplet 68
74. Wing membrane with abundant macrotrichia Ula Haliday 3 spp.; eastern
Wing membrane without macrotrichia75
75. Rostrum produced into a short beak, one-half length of remainder of head or more

Ornithodes Coquillett
2 spp.; western, northern
Rostrum inconspicuously developed, at most one-fourth length of remainder of head76
76. Supernumerary crossvein present in cell bm. Size large; wing of male approximately 10 mm or more. Female subapterous in Nearctic species. Antenna short, with 11 or 12 flagellomeres

Nasiternella Wahlgren, in part 1 sp. , hyperborea (Osten Sacken); northern
Supernumerary crossvein absent. Other characters not as above77
77. Antenna with either 12 or 14 flagellomeres. Size large; wing 7 mm or more in fully winged species. Wing of some species patterned with darker markingPedicia Latreille.... 78
Antenna with either 11 or 13 flagellomeres. Size small; wing less than 7 mm , usually smaller. Wing commonly unpatterned except for a pterostigmal darkening
78. Size large; wing 20 mm or more. Wing with a darkened pattern that forms a triangle involving broad costal and cubital seams that are interconnected across oblique cord. Palpus with terminal segment elongate. \mathbf{M}_{1} and \mathbf{M}_{2} commonly separate, but fused in bellamyana Alexander

Pedicia (Pedicia Latreille) 11 spp.; widespread
Size smaller; wing less than 18 mm , commonly not exceeding about 15 mm . Wing, if patterned, without a triangular darkened area as described; cord of wing transverse or only slightly oblique. Palpus with terminal segment shorter. M_{1} and M_{2} usually fused
79. Inner division of gonostylus of male terminalia terminating in five unequal finger-like lobes
Pedicia (Pentacyphona Alexander)
10 spp .; mostly western
Inner division of gonostylus of male terminalia simple, rarely bilobate
Pedicia (Tricyphona Zetterstedt), in part 40 spp.; widespread
80. Supernumerary crossveins in one or more of cells r_{1}, r_{3}, r_{4}, and bm .. 81
Supernumerary crossveins lacking .. 84
81. Supernumerary crossveins in cells $\mathrm{r}_{1}, \mathrm{r}_{3}, \mathrm{r}_{4}$, and bmDicranota (Polyangaeus Doane), in part 3 spp.; western
Supernumerary crossvein in cell r_{1} only .. 82
82. Cell dm present (Fig. 17) ...Dicranota (Eudicranota Alexander)
4 spp.; eastern
Cell dm absent83
83. M_{1} and M_{2} fused ...Dicranota (Paradicranota Alexander)
3 spp.; eastern
\mathbf{M}_{1} and \mathbf{M}_{2} separate ..Dicranota (Dicranota Zetterstedt)
11 spp .; widespread
84. Cell dm present ..Dicranota (Rhaphidolabina Alexander)
1 sp., flaveola (Osten Sacken); eastern
Cell dm absent ... 85
85. M_{1} and M_{2} fused...Dicranota (Plectromyia Osten Sacken), in part 9 spp.; widespread
\mathbf{M}_{1} and \mathbf{M}_{2} separate (Fig. 39) Dicranota (Rhaphidolabis Osten Sacken)
28 spp.; widespread
86. Antenna sometimes greatly elongated, with 4-10 flagellomeres Hexatoma Latreille... 87
Antenna with more than 11 flagellomeres .. 88
87. Cell dm present; two or three branches of $M\left(M_{1+2}\right.$ and M_{3}; or M_{1}, M_{2}, and $\left.M_{3}\right)$ reaching margin (Fig. 41)...Hexatoma (Eriocera Macquart) 33 spp .; widespread
Cell dm absent; one branch of $\mathbf{M}\left(\mathbf{M}_{1+2}\right)$ reaching margin (Fig. 40)
Hexatoma (Hexatoma Latreille)
2 spp.; eastern
88. Rostrum elongate, exceeding one-half length of remainder of body, with mouthparts at extreme tip. Two branches of Rs reaching margin (Fig. 42)Elephantomyia Osten Sacken 2 spp .; 1 sp . eastern, 1 sp . western
Rostrum short or only of moderate length, not exceeding length of remainder of head. Three branches of Rs present except in Atarba ... 89
89. Two branches of Rs reaching margin (Fig. 43) ...Atarba Osten Sacken 4 spp.; widespread
Three branches of Rs reaching margin90
90. Macrotrichia present in some wing cells 91
No macrotrichia in wing cells except in pterostigmal region when latter present 93
91. Macrotrichia in all cells except near wing base. Cell r_{3} sessile or very short-petiolate
92. \mathbf{M}_{2} separate or fused with $\mathrm{M}_{1} ; \mathrm{R}_{2}$ usually present but faintly indicated. Antenna short in both sexes. Prescutal tuberculate pits present, removed from anterior border

Paradelphomyia Alexander

11 spp.; widespread

\mathbf{M}_{2} fused with \mathbf{M}_{1} in Nearctic species; \mathbf{R}_{2} present. Antenna of male long, subequal to body. Prescutal tuberculate pits lacking

Shannonomyia Alexander, in part
3 spp.; widespread
93. Cell c with a supernumerary crossvein; wing patterned with brown transverse bands or with ringlike markings
Epiphragma Osten Sacken 4 spp.; widespread
Cell c without a supernumerary crossvein; wing, when patterned, without ring-like markings .. 94
94. R_{2} lacking; CuA_{1} having point contact with M_{3} (Fig. 44) Phyllolabis Osten Sacken 12 spp .; chiefly western
R_{2} present; CuA_{1} fused with M_{3} for nearly half its length 95
95. Cell dm absent (Fig. 45). Antenna of male very long; flagellomeres strongly nodulose, appearing bead-like Polymera Wiedemann 2 spp.; southeastern U.S.A.
Cell dm present. Male antenna short, but if longer, flagellomeres not nodulose 96
96. Wing with MA (anterior branch of medius, arculus) lacking (Figs. 47, 48) 97
Wing with MA present (Figs. 46, 49) 101
97. CuA_{1} joining M at or close to fork of M Dactylolabis Osten Sacken 98
CuA_{1} joining M from one-third to one-half the length of cell dm beyond fork of M 99
98. Apex of gonocoxite produced about one-half length of gonostylus; gonostylus subterminal.Cercus of ovipositor lying transversely, broadly flattened, bearing a strong tooth on lateral orventral margin; hypogynial valve long, fleshy, with abundant setae

Dactylolabis (Eudactylolabis Alexander), in part

2 spp.; western

Gonocoxite not produced; gonostylus terminal. Cercus of ovipositor normally hexatomine, rather slender, without a lateral tooth

Dactylolabis (Dactylolabis Osten Sacken) 17 spp.; widespread
99. Cell dm very large, with its proximal end situated far proximal to other elements of cord (Fig. 47)

Prolimnophila Alexander 1 sp., areolata (Osten Sacken); eastern
Cell dm of normal size, with its proximal end located in approximate alignment with other elements of cord (Fig. 48) ..Austrolimnophila Alexander.... 100
100. R_{2+3+4} slightly arcuate, short, at most one-half length of anterior branch of $\mathrm{Rs}\left(\mathrm{R}_{2+3}+\mathrm{R}_{3}\right)$ (Fig. 48). Male with one pair of small weak parameres

Austrolimnophila (Austrolimnophila Alexander)
3 spp.; widespread
R_{2+3+4} longer, subequal in length to anterior branch of Rs. Male with two pairs of parameres; outer ones in form of heavy black spinesAustrolimnophila (Archilimnophila Alexander) 3 spp ; northern
101. Head strongly narrowed and prolonged posteriorly. Pronotum with sides of anterior margin produced forward. Wing with long and sinuous radial and medial veins beyond cord; \mathbf{R}_{3} and \mathbf{R}_{4} usually parallel to one another; \mathbf{M}_{2} usually separate (Fig. 18), sometimes fused with \mathbf{M}_{1} (Fig. 46)

Pseudolimnophila Alexander 5 spp.; widespread
Head broad, not conspicuously narrowed behind. Distal wing veins beyond cord more nearly straight; cell r_{3} widened at margin; \mathbf{M}_{2} separate or fused with \mathbf{M}_{1}

102
102. Antenna with proximal flagellomeres bearing very long conspicuous verticils that much exceed length of flagellomeres. Wing commonly with pterostigmal macrotrichiaPilaria Sintenis 11 spp.; widespread
Antenna with shorter verticils, not or scarcely exceeding length of flagellomeres. Wing without pterostigmal macrotrichia

103
 see couplet 92
M_{2} usually separate; R_{2} beyond fork of R_{2+3+4} (Fig. 49) Limnophila Macquart.... 104

Supernumerary crossveins absent ... 108
105. Supernumerary crossvein in cell r_{3} Limnophila (Dicranophragma Osten Sacken) 2 spp.; eastern
No supernumerary crossvein in cell r_{3} 106
106. Supernumerary crossvein in cell r_{5}. Size large; wing length over 15 mm
Limnophila (Eutonia Wulp), in part 3 spp.; eastern
Supernumerary crossvein in cell bm. Size smaller; wing length commonly less than 10 mm 107
107. Antenna of male elongate. Rs square and sometimes spurred at origin; wing with a more or less complete crossband Limnophila (Idioptera Macquart)2 spp .; northern
Antenna short in both sexes. Rs not or only slightly spurred at origin; wing spotted, very rarely
unmarked Limnophila (Eloeophila Rondani)
19 spp.; widespread
108. Distal wing cells with macrotrichia. Antenna of male very long, with abundant erect elongatesetae over entire surfaceLimnophila (Lasiomastix Osten Sacken)3 spp.; easternWing without macrotrichia. Antenna of male not as above109
109. Size very large; wing length about 18 mm or more

\qquad
Limnophila (Eutonia Wulp), in par see couplet 106
Size smaller; wing length not exceeding 15 mm , commonly less 110
110. M_{2} fused with M_{1} 111
M_{2} separate (Fig. 49) 113
111. Sc_{1} ending some distance before fork of Rs ; cell r_{3} with a short petiole. Tergite 9 of maleterminalia narrow, and with apex deeply emarginate forming two slender lobes. Size small.Coloration yellow with white tarsiLimnophila (Dendrolimnophila Alexander)1 sp., albomanicata (Alexander); western
Sc longer; Sc_{1} opposite fork of Rs ; cell r_{3} sessile, or virtually so. Tergite 9 of male terminalia not as above. Size larger. Coloration dark with dark tarsi 112
112. Outer division of gonostylus of male terminalia deeply bifid with apices forming two long spines
1 sp., emmelina Alexander; eastern
Outer division of gonostylus of male terminalia compact, trispinous with outer point longest; aedeagus compressed, reniform Limnophila (Prionolabis Osten Sacken), in part 21 spp.; widespread
113. Cell m_{1} small and short, at most one-third as long as its petiole, rarely lacking. Wing unpatterned. Antenna of male with verticils of proximal flagellomeres long; lower faces of flagellomeres glabrous. Outer division of gonostylus of male terminalia in form of a slender rod, with apex unequally bidentate; aedeagus very small, shorter than subtending horn-like apophyses Limnophila (Brachylimnophila Alexander) 2 spp .; 1 sp . eastern, 1 sp . western
Cell m_{1} long, commonly subequal in length to its petiole or longer (Fig. 49). Other combinationof characters not as above114
114. Base of aedeagus flattened, appearing pod-like or reniform
Limnophila (Prionolabis Osten Sacken), in partsee couplet 112
Aedeagus not as above 115
115. Antenna of male elongate, as long as head and thorax; proximal flagellomeres dilated ventrallywith both dorsal and ventral verticils; ventral verticils shorter than dorsal ones. Apex ofouter division of gonostylus of male terminalia bidentate; aedeagus and parameres elongate;parameres with several spines at apexLimnophila (Arctolimnophila Alexander)
$2 \mathrm{spp} . ; 1 \mathrm{sp}$. eastern, 1 sp . western
Antenna and terminalia of male not as above 116
116. Male antenna with normal rather short verticils on both lower and dorsal faces. Aedeagus trifid, sometimes with very long branches Limnophila (Phylidorea Bigot) 40 spp .; widespread
Male antenna without ventral verticils, with proximal flagellomeres more or less dilated beneath. Aedeagus simple or trifid, with branches short 117
117. Paramere of male terminalia bidentate or tridentate, with tip acute; aedeagus straight, sometimes very short, with apex shallowly notched; outer division of gonostylus in form of a simple glabrous rod with obtuse tip Limnophila (Hesperolimnophila Alexander) 3 spp.; western

51 Teucholabis complexa o

53 Gnophomyia tristissima $甲$

55 Lipsothrix nigrilinea 운

57 Cryptolabis paradoxa 9

52 Gonomyia (Lipophleps) sulphurella 오

54 Gonomyia (Gonomyia) subcinerea of

56 Molophilus (Promolophilus) nitidus ó

58 Rhabdomastix (Sacandaga) californiensis σ

Figs. 7.50-58. Wings (continued): (50) Toxorhina magna Osten Sacken; (51) Teucholabis complexa Osten Sacken; (52) Gonomyia (Lipophleps) sulphurella Osten Sacken; (53) Gnophomyia tristissima Osten Sacken; (54) Gonomyia (Gonomyia) subcinerea Osten Sacken; (55) Lipsothrix nigrilinea (Doane); (56) Molophilus (Promolophilus) nitidus Coquillett; (57) Cryptolabis paradoxa Osten Sacken; (58) Rhabdomastix (Sacandaga) californiensis Alexander (continued).

Paramere of male terminalia resembling a simple smooth paddle; aedeagus long and slender, gently curved; outer division of gonostylus in form of a simple spine with a small acute point on lower margin before mid length
 Limnophila (Afrolimnophila Alexander) 2 spp .; 1 sp . eastern, 1 sp . western

118. M_{2} separate 119M_{2} fused with M_{1} (Figs. 50-58)121
119. Cell r_{3} short, shorter than its petiole; R_{2} at or proximal to fork of R_{3} and R_{4}
Neolimnophila Alexander4 spp.; widespread
Cell r_{3} long, about three or four times longer than its petiole; \mathbf{R}_{2} distal to fork of \mathbf{R}_{2+3+4} 120
120. Male terminalia with an undivided gonostylus Cladura Osten Sacken5 spp.; widespread
Male terminalia with a divided gonostylus. Neocladura Alexander
2 spp .; 1 sp . eastern, 1 sp . western
121. Rostrum very long and slender, at least subequal to combined length of head and thorax, with reduced mouthparts situated at apex. Setae of legs deeply bifid Toxorhina Loew 2 spp .; eastern
Rostrum short, not or scarcely exceeding remainder of head. Setae of legs simple 122
122. Coxae of midleg and hindleg only slightly separated by meral region; meron small, not exceeding coxa in diameter 123
Coxae of midleg and hindleg widely separated by a large meron producing a pot-bellied appearance; meron subequal to or larger than coxa 136
123. Two branches of $\operatorname{Rs}\left(\mathrm{R}_{3}\right.$ and $\left.\mathrm{R}_{4+5}\right)$ reaching margin (Fig. 51) 124
Three branches of $\mathrm{Rs}^{(} \mathrm{R}_{3}, \mathrm{R}_{4}$, and R_{5}) reaching margin (Figs. 52, 55, 57) 127
124. Sc_{1} ending beyond origin of Rs ; basal section of CuA_{1} joining cell dm beyond fork of M (Fig.
51)Teucholabis Osten Sacken7 spp.; predominantly southern
Sc_{1} ending before origin of Rs ; basal section of CuA_{1} joining cell dm at or before fork of M (as in
Fig. 52)Gonomyia Meigen, in part.... 125
125. Cell dm absent Gonomyia (Neolipophleps Alexander)
3 spp.; widespread
Cell dm present 126
126. Wing with a conspicuous dark brown pterostigmal spot....Gonomyia (Paralipophleps Alexander) 1 sp., pleuralis (Williston); southern
Wing with pterostigmal spot lacking or virtually so Gonomyia (Lipophleps Bergroth), in part 5 spp.; eastern
127. Cell r_{3} longer than its petiole $\left(R_{2+3+4}\right)$ (Fig. 55) 128
Cell r_{3} shorter than its petiole (Fig. 54) Gonomyia Meigen, in part 132
128. \mathbf{R}_{1+2} and R_{2} short, subequal (Fig. 55) 129
R_{1+2} longer than R_{2} (Fig. 53) 130
129. Sc_{1} ending before fork of Rs ; R_{3} oblique, divergent; distal margin of cell r_{3} longer than distalmargin of cell r_{2}; cell dm absent. Size small; wing less than 6 mm

Gonomyia (Progonomyia Alexander)
4 spp.; southern
Sc_{1} ending opposite or beyond fork of $\mathrm{Rs} ; \mathrm{R}_{3}$ longitudinal, nearly parallel with R_{4}; distal margins of cells r_{2} and r_{3} subequal; cell dm present (Fig. 55). Size large; wing over 8 mm

Lipsothrix Loew
6 spp.; western with 1 sp . in east
130. Sc_{2} situated near origin of $\mathrm{Rs} ; \mathrm{Sc}_{1}$ nearly as long as Rs. Legs with linear scales. Gonostylus of male terminalia terminal; outer division of gonostylus elongate, with a brush of long setae at apex; gonocoxite with a dense brush of setae on median faceIdiognophomyia Alexander 2 spp.; western; Byers 1975
Sc_{2} situated more distally (Fig. 53); Sc_{1} much shorter than Rs. Legs with setae. Male terminalia not as above 131
131. Distal wing cells with macrotrichia; Sc_{1} and Sc_{2} subequal; cord of wing at near two-thirds length of wing; branches of R rather short and straight. Apex of gonocoxite of male terminalia strongly produced; gonostylus subterminal

Eugnophomyia Alexander 2 spp.; southeast to Arizona
Distal wing cells without macrotrichia; Sc_{1} longer than Sc_{2}; cord of wing more basal, shortly beyond mid length; branches of R longer and slightly more curved (Fig. 53). Gonocoxite of male terminalia small, not produced; gonostylus terminal

Gnophomyia Osten Sacken 3 spp.; widespread

Supernumerary crossvein absent in cell r_{4}
133. Sc_{1} ending some distance beyond origin of Rs ; cell dm absent; basal section of CuA_{1} joining M about its own length before fork of \mathbf{M}

Gonomyia (Idiocera Dale) 17 spp.; widespread
Sc, ending opposite or before origin of Rs; cell dm present or absent; basal section of CuA_{1} joining M less than its length before fork of M (Fig. 52) ... 134
 see couplet 126
Cell r_{3} larger; R_{4} longer than R_{2+3+4} (Fig. 54)
135. Antenna with proximal two or three flagellomeres fused. Gonostylus of male terminalia with three simple divisions; gonocoxite not produced at apex; aedeagus very large and complex in structure

Gonomyia (Teuchogonomyia Alexander) 4 spp.; western
Antenna with flagellomeres distinct. Gonostylus of male terminalia with two divisions; gonocoxite at apex produced into a small fleshy lobe; aedeagus not greatly modified

Gonomyia (Gonomyia Meigen)
25 spp.; widespread
136. Cell r_{3} sessile; Rs forking into R_{2+3} and R_{4+5} (Fig. 56) .. 137

Cell r_{3} petiolate; Rs forking into R_{2+3+4} and R_{5} (Figs. 57, 58) ... 139
137. Cell a_{2} short and narrow; CuA_{1} fusing with M basal to fork of M_{3}. Gonostylus of male terminalia undivided. Size very small; wing about 2.5 mm or less

Tasiocera Skuse (Dasymolophilus Goetghebuer)

5 spp.; widespread
Cell a_{2} long and broad; CuA_{1} fused with M_{3} for short distance distal to fork of M (Fig. 56). Gonostylus of male terminalia with two divisions. Size larger \qquad . Molophilus Curtis.... 138
138. Male terminalia with a black tergal plate; parameres fused to form an entire black plate or divided into two blades

Molophilus (Promolophilus Alexander)
5 spp.; western
Male terminalia without a black tergal plate; parameres forming a simple flattened pale plate
40 spp.; widespread
139. Gonostylus of male terminalia undivided. Cell dm absent ... 140

Combination of characters not as above
140. Basal section of Rs short; R_{2+3+4} at a right angle to $R s$; cell r_{1} small and triangular in outline (Fig. 57). Aedeagus of male terminalia stout to massive, darkened, terminating in a single filament. Female with cercus and hypogynial valves of ovipositor short and fleshy

Cryptolabis Osten Sacken
11 spp.; mainly western
Basal section of Rs long, arcuate, in longitudinal alignment with R_{2+3+4}; cell r_{1} elongate. Gonocoxite of male terminalia bearing a needle-like interbase (as in Fig. 6); aedeagus narrow, divided into three long slender branches. Female terminalia not as above

Phantolabis Alexander
1 sp., lacustris (Alexander); eastern
141. Cell r_{3} shorter than its petiole $\left(\mathrm{R}_{2+3+4}\right)$ (Fig. 58) 142
Cell r_{3} at least as long as its petiole (Figs. 59, 60) 149
142. R_{2} lacking. R_{3} short, suberect, close to R_{1} at margin, longer and more oblique in neolurida Alexander; R_{3} commonly about one-third length of R_{4} or less (Fig. 58). Gonostylus of maleterminalia terminal; outer division of gonostylus simple, densely spinose outwardly; interbaselong and slender (Fig. 6)Rhabdomastix Skuse.... 143
\mathbf{R}_{2} present. Other combination of characters not as above 144
143. Antenna of male greatly lengthened, more than three times length of wing
Rhabdomastix (Rhabdomastix Skuse)
1 sp., nuttingi Alexander; southwestern
Antenna short in both sexes, not exceeding one-half length of wing
Rhabdomastix (Sacandaga Alexander), in part24 spp.; widespread
144. Cell r_{3} small; R_{4} short, gently curved; Sc_{2} absent
Rhabdomastix (Sacandaga Alexander), in part
1 sp ., monticola Alexander; western
Cell r_{3} larger; R_{4} long, straight; Sc_{2} present 145
145. Gonostylus of male terminalia with three divisions Gonomyodes Alexander 4 spp.; western
Gonostylus of male terminalia with either one or two divisions 146
146. Gonostylus of male terminalia undivided Gonomyopsis Alexander1 sp., doaneiana Alexander; western
Gonostylus of male terminalia with two divisions 147
147. Gonostylus of male terminalia subterminal; gonocoxite produced beyond its insertion into a longnarrow blade. R_{3} oblique, straightGonempeda Alexander3 spp.; widespread
Gonostylus of male terminalia terminal; outer division bifurcate except in exilisty/a (Alexander)
Cheilotrichia Rossi.... 148where it is simple. R_{3} more longitudinal in position
148. Cell dm present Cheilotrichia (Cheilotrichia Rossi) 1 sp., alicia (Alexander); western
Cell dm absent Cheilotrichia (Empeda Osten Sacken)
$11 \mathrm{spp} . ;$ predominantly western, 1 sp . eastern
149. Wing with abundant macrotrichia in all cells Ormosia Rondani 150
Wing usually without such macrotrichia, but when present, restricted to just a few in distal cells or in region of pterostigma 154
150. Cell dm present 151
Cell dm absent 153
151. A_{1} and A_{2} slightly convergent. Outer division of gonostylus of male terminalia outwardly dilatedor slightly bifid; apex of aedeagus divided into two long filaments

Ormosia (Rhypholophus Kolenati) 10 spp .; western
\mathbf{A}_{1} and \mathbf{A}_{2} divergent. Outer division of gonostylus not dilated outwardly; apex of aedeagus simple152
152. Outer division of gonostylus of male terminalia oval, with strong spinules on surface; aedeagusvery large. Cell dm small; posterior border of cell dm equal to or shorter than followingdistal section of CuA_{1}Ormosia (Scleroprocta Edwards)3 spp .; 2 spp. eastern, 1 sp . western

Outer division of gonostylus of male terminalia bifid, with strong spines; aedeagus small, slender, with narrow subtending basal plates. Venation not as above

Ormosia (Parormosia Alexander)
7 spp.; widespread
153. Medial field comprising M_{1} and $M_{3} ; M_{3}$ branching from a basal fusion with CuA_{1} (as in Fig. 61). Outer division of gonostylus of male terminalia forming a simple curved horn that
narrows to an acute spine; inner division of gonostylus forming a simple yellow blade; paramere simple, rounded, plate-like

Ormosia (Oreophila Lackschewitz) 6 spp.; western
Medial field comprising \mathbf{M}_{1} and $\mathbf{M}_{2} ; \mathbf{M}_{3}$ absent (Fig. 59). Gonostylus of male terminalia variously constructed but not as above; paramere spine-like....... Ormosia (Ormosia Rondani) 75 spp.; widespread
154. Wing with pterostigmal region dilated and with abundant macrotrichia (Fig. 60). Gonostylus of male terminalia terminal; outer division of gonostylus with an acute spine beyond mid length; aedeagus bilobate \qquad Empedomorpha Alexander 1 sp., empedoides (Alexander); western
Wing with pterostigmal region normal, without macrotrichia. Male terminalia not as above .. 155
155. Sc_{2} usually absent but sometimes preserved; apical section of Sc_{1} short, subequal to basal section of CuA_{1}; distal cells sometimes with sparse macrotrichia (Fig. 61). Outer division of gonostylus of male terminalia gently curved, with a finger-like lobe near mid length

5 spp.; western

Sc_{2} always present; apical section of Sc_{1} long, approximately three times length of basal section of CuA_{1}; wing cells without macrotrichia (Fig. 62). Male terminalia not as above 156
156. Inner division of gonostylus of male terminalia angulate near mid length, with apex slender and bearing small spines; aedeagus forming a slender rod \qquad Arctoconopa Alexander 9 spp.; western
Male terminalia not as above
Erioptera Meigen
157
157. Antenna with terminal three flagellomeres smaller than others. Cell dm present. Apical branches of aedeagus of male terminalia short; paramere in form of a simple slender spine; divisions of gonostylus subequal in length, narrow; outer division of gonostylus terminating in a black spine; inner division of gonostylus with tip obtuse

Erioptera (Trimicra Osten Sacken)
1 sp., pilipes (Fabricius); eastern to Texas

60 Empedomorpha empedoides 0^{7}

61 Hesperoconopa melanderi ơ

62 Erioptera (Symplecta) cana 9

64 Erioptera (Hoplolabis) armata 9

Figs. 7.59-64. Wings (concluded): (59) Ormosia (Ormosia) manicata (Doane); (60) Empedomorpha empedoides (Alexander); (61) Hesperoconopa melanderi (Alexander); (62) Erioptera (Symplecta) cana (Walker); (63) Erioptera (Erioptera) septemtrionis Osten Sacken; (64) Erioptera (Hoplolabis) armata Osten Sacken.
Antenna with outer flagellomeres gradually and progressively smaller. Other combination of characters not as above 158
158. Supernumerary crossvein in cell r_{3} usually present (Fig. 62), but lacking in stictica Meigen; A_{1} and A_{2} strongly convergent; A_{2} sinuous distally. Gonostylus of male terminalia terminal to slightly subterminal; outer division of gonostylus expanded outwardly, sometimes variously spined; apex of aedeagus deeply forked Erioptera (Symplecta Meigen) 4 spp.; widespread
Supernumerary crossvein lacking in cell r_{3}. Gonostylus and aedeagus of male terminalia not as above 159
159. Cell dm present (Fig. 64) 160
Cell dm absent (Fig. 63) 162
160. Cell dm divided by a spur running proximally into the cell from basal section of M_{3} to M_{1+2} (Fig. 64) Erioptera (Hoplolabis Osten Sacken) 4 spp.; widespreadCell dm undivided161
161. Cell dm small, much shorter than veins issuing from it. Male terminalia not as belowErioptera (Psiloconopa Zetterstedt)
30 spp.; widespread
Cell dm large, longer than the veins emanating from it. Male terminalia inverted 180°; outer division of gonostylus unusually large Erioptera (Ilisia Osten Sacken) 5 spp.; eastern
162. Cell dm lost by atrophy of basal section of M_{3} (present in melanderiana Alexander); A_{1} and A_{2}divergent; A_{2} nearly straight. Gonostylus of male terminalia terminal; outer division ofgonostylus deeply divided into two spines; inner division of gonostylus forming a long simplespineErioptera (Mesocyphona Osten Sacken)15 spp.; widespread
Cell dm lost by atrophy of crossvein m-m; \mathbf{A}_{1} and A_{2} convergent; A_{2} sinuous distally (Fig. 63) Gonostylus of male terminalia not as above Erioptera (Erioptera Meigen) 29 spp .; widespread
163. Body length commonly more than $8-10 \mathrm{~mm}$. Wing usually reduced in female only to about 10mm , but virtually absent in both sexes of quaylii Doane. Head with distinct tubercle onfrons, commonly with a nasus; terminal palpal segment long.TIPULINAE....Tipula (Pterelachisus Rondani), in partsee couplets 35,36 , and 41Tipula (Serratipula Alexander), in partTipula (Triplicitipula Alexander), in part
Body length commonly less than 5 mm , but sometimes larger. Head without tubercle on frons, and without a nasus; terminal palpal segment short
LIMONIINAE.... 164
164. Eye with hairs between ommatidia
PEDICIINI.... 165
Eye without hairsLIMONIINI, HEXATOMINI, ERIOPTERINI.... 166
165. Body length up to about 10 mm , commonly smaller; wing length up to about 6 mm , but usually smaller
Nasiternella Wahlgren, in part female only, see couplet 76
Pedicia (Tricyphona Zetterstedt), in part 4 spp.; western, northern
Body length up to about 5 mm ...Dicranota (Polyangaeus Doane), in part 1 sp., subapterogyne Alexander, female only; western
Dicranota (Plectromyia Osten Sacken), in part $1 \mathrm{sp} .$, reducta tehamicola Alexander, both sexes; western
166. Antenna with 12 flagellomeres LIMONIINI.... Limonia (Alexandriaria Garrett), in part 1 sp ., phalangioides Alexander, both sexes, wing to about 1 mm ; western

Limonia (Dicranomyia Stephens), in part 2 spp.; northwestern, Asiatic
Antenna with 14 flagellomeres, except in Chionea with 2-9 flagellomeres 167
167. Legs with tibial spurs. Wing present as a short stub to virtually lacking

HEXATOMINI... Dactylolabis (Eudactylolabis Alexander), in part 1 sp., vestigipennis Alexander, both sexes; southwestern

Limnophila (Prionolabis Osten Sacken), in part
1 sp., rudimentis Alexander, female only; eastern
Legs without tibial spurs. Wing present only as a microscopic vestige in both sexes. Small brown hairy insects, superficially resembling spiders, usually found on snow in winter

ERIOPTERINI...Chionea Dalman $8 \mathrm{spp} . ;$ northern

Larva

1. Thoracic and abdominal segments with dorsal and lateral longitudinal rows of conspicuous usually elongate fleshy projections (Fig. 65)

CYLINDROTOMINAE.... 2
Thoracic and abdominal segments without dorsal longitudinal rows of conspicuous projections; lateral projections, if present, occurring on abdomen only, and blunt, shorter than their basal diameter
2. Dorsal projections mostly long, slender, simple on thoracic segments; posterior projections on most abdominal segments either deeply bifurcate or, if simple, approximately 10 times as long as basal diameter. Larva found in aquatic or semiaquatic mosses Phalacrocera
Dorsal projections shorter, with length one to three times basal diameter; those of posterior annulus of most abdominal segments longest on that segment, not deeply divided .. 3
3. Dorsal projections simple, without serrations on anterior surface. Posterior spiracles much farther apart than diameter of a spiracle. Larva feeding on leaves of certain flowering plants

Cylindrotoma
Dorsal projections serrate on anterior convex surface. Posterior spiracles set close together, separated by about width of a spiracle
.4
4. Posterior pair of dorsal projections on abdominal segments $1-7$ with three or four serrations. Body color brownish. Larva found in semiaquatic mosses

Triogma
Posterior pair of dorsal projections on abdominal segments 1-7 with two or only one serration (Fig. 65). Body color greenish with dark brown maculation. Larva found in terrestrial mosses

Liogma
5. Spiracular disc bordered by six (rarely eight) usually subconical lobes usually arranged with two dorsally, two dorsolaterally, and two below spiracles; these lobes sometimes short and b!unt or sclerotized and hook-like (Figs. 66, 68, 70-73) ...TIPULINAE.... 6
Spiracular disc bordered by five (rarely seven) or fewer lobes; lobes variable in shape, often arranged with one dorsomedially, two laterally, and two below spiracles or spiracles absent (Figs. 74, 75, 78-81)

LIMONIINAE.... 15
6. Anal papillae pinnately branched. Dorsal lobes of spiracular disc short, bluntly rounded; lower lobes more than twice as long as their basal diameter. Larva aquatic or semiaquatic

Leptotarsus (Longurio)
Anal papillae not pinnately branched. Lobes of spiracular disc variable . .7
7. Dorsal lobes of spiracular disc closely appressed to one another (subgenus Dolichopeza) or abdominal segment 8 bearing a subconical lobe at each side below and before dorsolateral lobe of spiracular disc (subgenus Oropeza, Fig. 68). Larva found in terrestrial mosses and liverworts

Dolichopeza
Dorsal lobes of spiracular disc not appressed; abdominal segment 8 without lateral subconical lobes
.. 8
8. All lobes of spiracular disc elongate; lateral and ventral lobes three or four times as long as their basal width, with numerous long hairs bordering each lobe; outer hairs two or three times as long as width of lobe at point of attachment (Fig. 66) . 9
Some lobes of spiracular disc not elongate; longest ones rarely more than twice their basal width, except when in form of densely sclerotized hooks; bordering hairs usually sparse, but if numerous not long

Figs. 7.65-73. Larvae: (65) Liogma nodicornis (Osten Sacken), lateral view; (66) Prionocera sp., lateral view; (67) Prionocera dimidiata (Loew), dorsal view of head capsule; (68) Dolichopeza (Oropeza) sp., oblique posterior view of terminal segments; (69) Nephrotoma sp., dorsolateral view of head capsule and thoracic segments; (70) Ctenophora dorsalis Walker, lateral view; (71) Tipula trivittata Say, oblique posterior view of terminal segments; (72) Tipula (Yamatotipula) strepens Loew, oblique posterior view of terminal segments; (73) Ctenophora angustipennis Loew, oblique posterior view of termınal segments (continued).
9. Two pairs of elongate retractile anal papillae present. Lobes of spiracular disc darkened along margins, pale medially. Larva found in open-ended tube of floating vegetation....Megistocera Three pairs of elongate anal papillae (Fig. 66) present. Lobes of spiracular disc darkened along margins but each with a thin submedian dark line. Larva not found in tubes of vegetation [included here are larvae of species of Tipula (Angarotipula), formerly assigned on basis of adult structures to Prionocera]

Prionocera

Figs. 7.74-81. Larvae (continued): (74) Antocha sp., dorsolateral view; (75) Pedicia sp., dorsolateral view; (76) Molophilus sp., ventral view of head capsule; (77) ventral view of head capsule and (78) oblique posterior view of terminal segments of Pseudolimnophila inornata (Osten Sacken); (79) Gnophomyia toschiae Alexander, oblique posterior view of terminal segments; (80) Gonomyia sp., oblique posterior view of terminal segments; (81) Ormosia sp., oblique posterior view of terminal segments (continued).

Abbreviations: ant, antenna; hyps plt, hypostomal plate; md, mandible; mx, maxilla.
10. Pilosity on abdominal segments and posterior ring of metathorax uniformly dense giving larva a woolly appearance; thoracic segments otherwise with only short pubescence (microsetae), nearly bare by contrast. Spiracular disc rather small, only about half as wide as abdominal segment 8; dorsal lobes of disc low, inconspicuous, with their darkened posterior faces continued ventrally as wedge-shaped spots with apices between spiracles; lateral lobes of disc only about as long as diameter of spiracle, with bluntly rounded apices; ventral lobes darkened on discal face, narrowed near mid length, expanded apically. Larva found in dark thin organic mud by small streams, seepage areas, and other similar habitats . Brachypremna
Pilosity not dense on abdomen, contrastingly absent on entire thorax. Spiracular disc of normal size; ventral lobes of disc not constricted near mid length .11
11. Prothoracic dorsum with two transverse somewhat roughened and elevated welts slightly behind line of attachment to head capsule, readily visible only when head extended (Fig. 69). Lobes of spiracular disc elongate-conical. Larva found in soil, usually near surface, in woodlands or less often in grasslands, pastures, and lawns .Nephrotoma
Prothoracic dorsum without transverse welts. Lobes of spiracular disc variable .12
12. Dorsal and lateral lobes of spiracular disc not well-developed, low, bluntly rounded; ventral lobes small (Fig. 70); strong setae (macrosetae), longer than diameter of a spiracle, on each lateral lobe; three or four such setae below and beside each ventral lobe. Larva pale, thin-skinned, feeding in dead but still fairly sound wood

Ctenophora (Tanyptera)
Dorsal and lateral lobes of spiracular disc moderately to strongly developed. Larva usually grayish or brownish, but if pale, not thin-skinned

13
13. Central smooth area of spiracular disc surrounded by fringe of short hairs, with dorsal and dorsolateral lobes outside this fringe. Larva found in decaying hardwood stumps and logs

Ctenophora, in part
Smooth area of disc continued onto posterior faces of lobes; fringing hairs usually confined to
margins of lobes ... 14
14. Posterior spiracles large, separated by less than diameter of a spiracle; lobes of spiracular disc less than twice as long as basal width, fringed with long hairs; a thin black median line present on discal face of each lobe. Body length more than 50 mm in fourth instar. Larva found in moist soil, in Pacific drainage area

Holorusia
Posterior spiracles usually separated by more than diameter of a spiracle; lobes of spiracular disc highly variable, from short and rounded to elongate, subconical to densely sclerotized, hook-like; ventral pair rarely divided. Larva found in various terrestrial and aquatic habitats (Figs. 71, 72)

Tipula
15. Posterior spiracles absent; tracheal system closed; dorsal and lateral lobes of abdominal segment 9 absent or extremely reduced16

Posterior spiracles present, usually conspicuous, but sometimes concealed when lobes of spiracular disc are infolded; dorsal and lateral lobes of abdominal segment 9 usually present, but absent in some species
16. Ventral lobes of abdominal segment 9 elongate, deeply separated, slightly divergent, with a few tufts of hairs (Fig. 74). Anal papillae elongate. Dorsal and ventral creeping welts conspicuous on abdominal segments 2-7. Larva in silken tube found on stones in swift welloxygenated water

Antocha
Abdominal segments 8 and 9 covered with dense long pilosity; segment 9 elongate, tapering, shallowly bifurcate at apex. Anal papillae short, not extending beneath segment 9 . No conspicuous creeping welts. Larva found in sandy bottoms of cold clear rapid streams of Pacific drainage
.Hesperoconopa
17. Dorsal and lateral lobes of spiracular disc absent or extremely reduced; ventral lobes elongate (Fig. 75). Larva aquatic or semiaquatic (larvae of Ornithodes and Nasiternella, at present unknown, may key out here) 18
Dorsomedial lobes of spiracular disc or lateral lobes, or both, well-developed if ventral lobes
elongate; ventral lobes usually short, less often absent ... 20
18. Paired prolegs with sclerotized apical crochets present on venter of abdominal segments 3-7. Creeping welts absent

Dicranota, in part
Prolegs with apical crochets absent. Roughened creeping welts or broad tubercles present on basal rings of abdominal segments 4-7
19. Creeping welts on both dorsum and venter, bearing microscopic spicules

Dicranota (Rhaphidolabina)
Creeping welts or broad tubercles on venter only, without spicules but with microscopically roughened surface (Fig. 75)

Pedicia
20. Spiracular disc surrounded by seven lobes, situated one dorsomedially and one each dorsolaterally, laterally, and ventrally on each side; spiracles small, widely separated, at bases of lateral lobes of spiracular disc. Larva found in organic silt in small streams of Pacific drainage

Gonomyodes
Spiracular disc with five or fewer peripheral lobes, or without distinct lobes............................... 21
21. Spiracular disc with four or five peripheral lobes ... 22

Spiracular disc with only three lobes, or without distinct lobes .. 58
22. Internal portion of head extensively sclerotized dorsally and laterally, with shallow posterior incisions (Figs. 77, 87) (determined by cutting prothoracic skin at one side, or often visible through skin)23

Internal portion of head divided by deep posterior incisions into elongate slender rod-like to spatulate sclerites (Figs. 76, 83, 88), or if sclerites plate-like, darkly sclerotized only along margins giving appearance of separate rods51
23. Hypostomal bridge divided medially by membranous area (hypostomal plates in contact though not fused in Pseudolimnophila, Fig. 77). Abdominal segments without creeping welts 24
Hypostomal bridge undivided (Fig. 87), though sometimes deeply incised posteriorly. Creeping welts present on basal rings of abdominal segments (Fig. 82), or abdominal segments with transverse bands or patches of dense pilosity on both basal and apical rings

39
24. Spiracular disc surrounded by five lobes, each in form of a black spatulate plate with finely toothed margins. Larva found in marshy soil

Ormosia (Scleroprocta)
Spiracular disc surrounded by four or five lobes of rounded or subconical form 25
25. Plane of spiracular disc approximately perpendicular to long axis of body; disc surrounded by five lobes .. 26
Plane of spiracular disc diagonal to long axis of body; disc with four peripheral lobes 37
26. Hypostomal prolongations each expanded into a sclerotized plate with anterior margin toothed (Fig. 76) .. 27
Hypostomal prolongations, if expanded, not sclerotized or not toothed anteriorly 28
27. Hypostomal plates each with four teeth (Fig. 76). Spiracular disc extensively blackened; black spots on dorsolateral and ventral lobes divided medially by pale line; spot on dorsal lobe nearly always undivided. Larva found in wet humous soil (larva of Tasiocera, at present unknown, may key out here)

Molophilus
Hypostomal plates each with five to eight teeth. Spiracular disc small, without extensive blackened areas. Larva found in organic mud

Erioptera, in part
28. Posterior faces of all five lobes of spiracular disc each bearing solidly blackened spot 29

Spots on some or all lobes of spiracular disc divided medially by pale line or wider pale zone .. 30
29. Blackened areas of dorsolateral lobes of spiracular disc continued between spiracles. Larva found in organic mud near water

Ormosia, in part
No blackened areas between spiracles. Larva found in muddy stream banks
Erioptera (Trimicra)
30. Dorsomedial lobe of spiracular disc bearing densely sclerotized horn-like projection with apex bent downward over disc; black wedge-shaped spots present at periphery of disc between ventral lobes, between ventral and lateral lobes, and between lateral and dorsomedial lobes. Larva found in fine sand, silt, and organic debris at margins of clear streams of Pacific and Arctic drainages.

Arctoconopa
Dorsomedial lobe of spiracular disc without sclerotized horn-like projection; no wedges of black pigmentation between lobes of disc.
31. Dorsolateral lobes of spiracular disc with solidly blackened spots; spots on ventral lobes divided (Figs. 79, 80)
Dorsolateral lobes of spiracular disc and ventral lobes with spots divided (Fig. 81), but if spots of dorsolateral lobes more completely darkened, four to six small dark spots present on central disc
32. Blackened areas of dorsolateral lobes of spiracular disc continuous around spiracles and extending to midline or nearly so. Larva found in moist earth or sand, usually near water

Gonomyia, in part
Blackened areas of dorsolateral lobes of spiracular disc not continuous around spiracles (Fig. 79), but if dark area present between spiracles, this joined to pigmented areas of ventral lobes. Larva dark yellowish to amber, living beneath bark of dead somewhat decayed hardwood logs or in decaying inner parts of living hardwoods (larva of one Idiognophomyia species keys out here, found in decaying Yucca in southern California) \qquad Gnophomyia
33. Peripheral lobes of spiracular disc short, blunt; blackened areas of dorsolateral lobes continuous around spiracles, fading toward midline \qquad Gonomyia, in part

82 Limonia sp.

Figs. 7.82-89. Larvae (concluded): (82) Limonia sp., lateral view of larva; (83) Limnophila sp., dorsal view of head capsule; (84) Limnophila sp., oblique posterior view of terminal segment; (85) Limonia sp., oblique posterior view of terminal segment; (86) Epiphragma fascipennis (Say), oblique posterior view of terminal segment; (87) Limonia sp., ventral view of head capsule; (88) ventral view and (89) enlarged view of left mandibular region of head capsule of Pilaria recondita (Osten Sacken).

Abbreviations: ant, antenna; hyps plt, hypostomal plate; md, mandible; mx, maxilla.

Peripheral lobes of spiracular disc nearly as long as their width at base, or longer; blackened areas of dorsolateral lobes not continuous around spiracles
.34
34. Blackened area of dorsomedial lobe of spiracular disc not divided. Larva found in organic mud Ormosia, in part
Blackened area of dorsomedial lobe (and all others) of spiracular disc divided medially by pale line
35. Area between spiracles generally unpigmented, not blackened. Larva found in organic mud Ormosia, in part
Area between spiracles with some darkly pigmented spots .. 36
36. Two round spots between spiracles; spiracular disc small compared with body size. Larva found in organic mud

Erioptera, in part
Four to six small spots (as two or three pairs) between and below spiracles; spiracular disc not small compared with body size. Larva found in moist earthErioptera (Symplecta)
37. Ventral lobes of spiracular disc not darkly pigmented on upper surface, not fringed with long hairs; spiracles pale. Hypostoma reduced to small longitudinal rod below maxilla on each side. Larva found in sandy bottoms of clear cold streams

Cryptolabis
Ventral lobes of spiracular disc darkly pigmented on upper surface (Fig. 78), fringed with long hairs that are longer than lobes; spiracles dark. Hypostoma in form of a toothed plate at each side
38. Hypostomal plates each bearing four anterior teeth. Larva found in organic mud in wet woodlands

Paradelphomyia
Hypostomal plates each bearing seven or eight anterior teeth (Fig. 77). Larva found in thin organic mud in swampy woods, pond margins, and similar habitatsPseudolimnophila
39. Spiracular disc with five peripheral lobes 40
Spiracular disc usually with four peripheral lobes, but if vestigial dorsomedial lobe present, it is unpigmented
40. Posterior faces of all five lobes of spiracular disc bearing a solidly blackened spot; central disc generally unpigmented. Scape about as thick as long. Larva found in fungiUla
Posterior faces of all lobes not solidly blackened, unpigmented to only partially darkened. Scape much longer than its diameter.41
41. Creeping welts on abdominal segments only slightly raised, pale, without microscopic hairs or with hairs indistinct except at high magnifications... 42
Creeping welts on abdominal segments distinct, conspicuous .. 43
42. Hypostomal bridge with seven teeth. Ventral lobes of spiracular disc with single linear dark brown spot. Larva found in pieces of damp to saturated much decayed hardwoodAtarba
Hypostomal bridge with three teeth. Ventral lobes of disc short, broadly rounded, with triangular dark spot enclosing pale setal base. Larva found in damp punky wood

Austrolimnophila, in part
43. Abdominal segments $2-7$ with both dorsal and ventral creeping welts on basal rings (Fig. 82). Lobes of spiracular disc wider than long, broadly rounded, unpigmented or with only limited darkened spots (Fig. 85). Larva found in numerous terrestrial and aquatic habitats

Limonia, in part
Abdominal segments $2-7$ with ventral creeping welts only. Ventral lobes of spiracular disc as long as their width at base, or longer 44
44. Ventral lobes of spiracular disc longer than their width at base, darkened at margins with a broad median pale zone on each. Hypostomal bridge with five teeth. Larva brownish with long appressed pubescence, found in marsh borders in decomposing aquatic vegetation or in marshy areas in woods

Helius
Ventral lobes of spiracular disc only about as long as basal width, almost uniformly brownish posteriorly (Fig. 86). Hypostomal bridge with three teeth. Larva pale, with short appressed pubescence, found in decayed wood of deciduous trees

Epiphragma, in part
45. Abdominal segments $2-7$ without distinct creeping welts; all segments with transverse bands or patches of dense pilosity. Lateral lobes of spiracular disc broadly pigmented from spiracles outward; broadly pigmented faces of ventral lobes narrowly connected across lower disc. Larva found in thin mosses and algal mats on wet rocky cliffs, rarely in soil........Dactylolabis
Abdominal segments $2-7$ with distinct creeping welts, without transverse bands of dense pilosity
46. Abdominal segments $2-7$ with ventral creeping welts only. Hypostomal bridge with three teeth
Abdominal segments $2-7$ with both dorsal and ventral creeping welts on basal rings. Hypostomal bridge with more than three teeth
47. Body smooth-skinned, shiny, nearly transparent, long, slender; length about 18-20 times diameter. Hypostomal bridge with three subequal blunt-tipped teeth, sometimes with a smaller lateral tooth at each side. Larva terrestrial, found in humous forest soil

Dicranoptycha
Body opaque whitish, more robust; length about 12 times diameter. Hypostomal bridge with three unequal teeth; outer ones broader and more narrowly tipped than median one. Larva found in decayed wood of deciduous trees

Epiphragma, in part
48. Ventral lobes of spiracular disc longer than their width at base, tapering to subacute apex, fringed with long hairs
Ventral lobes of disc shorter than width at base, broadly rounded, without long marginal hairs .. 50
49. Body wide, flattened. Ventral creeping welts without minute spines. Spiracles dorsoventrally elongate. Larva semiaquatic, found in indistinct tunnels beneath algal mats on wet cliffs, beside waterfalls, and in other similar locations

Elliptera
Body nearly cylindrical, only slightly flattened. Ventral creeping welts with numerous rows of minute spines. Spiracles transversely elliptical; lobes of spiracular disc narrowly darkened at margins. Larva found in sodden decayed wood, at or just below water levelLipsothrix
50. Nearly entire spiracular disc except spiracles and outer margins of lobes dark reddish brown; spiracles horizontally elongate. Larva found in wet extremely decayed pulpy wood.

Orimarga (Diotrepha)
Spiracular disc with only isolated spots of dark pigmentation, generally pale; spiracles oval, inclined together dorsally. Larva found in various habitats

Limonia, in part
51. Maxilla not prolonged forward, inconspicuous in dorsal aspect... 52

Maxilla prolonged forward as a dorsoventrally flattened tapering (less often subconical) blade; maxillae appearing as divergently curved tusks (Fig. 83) with apices visible even when head is withdrawn into thoracic segments
.53
52. Plane of spiracular disc roughly perpendicular to long axis of body; disc surrounded by five lobes

ERIOPTERINI.... 26
Plane of spiracular disc diagonal to long axis of body; disc concave, with four peripheral lobes; lateral lobes bluntly rounded at apex; ventral lobes longer, without dark pigmentation, each with a single long terminal seta. Larva slender, tapering toward head, yellowish, found in moist to wet decayed logs of deciduous trees.

Elephantomyia
53. Mandible complex, jointed near mid length (Figs. 88, 89); maxilla and labrum-epipharynx densely fringed with long yellowish to golden hairs. Dorsal plates of head fused into spatulate plate widest posteriorly. Spiracular disc small, with its upper lobes often infolded to conceal spiracles; marginal hairs protruding from cavity formed by infolding .54
Mandible not jointed near mid length; maxilla and labrum-epipharynx with mostly short pilosity. Dorsal plates of head not fused, although each may be widest posteriorly................ 55
54. Pigmentation of ventral lobes of spiracular disc discontinuous, either as transverse striations near base of lobe, more continuous coloration toward apex, or reduced to short darkened median line; all four lobes (lateral pair sometimes reduced) fringed with long golden hairs. Basal tooth or teeth of apical portion of mandible much less than half as long as main outer tooth. Larva found in moist to wet humous soil or decomposing vegetation in swampy woodlands

Pilaria

Pigmentation of ventral lobes of disc more evenly distributed, but more intense toward apex of lobe; all four lobes fringed with long hairs. Basal tooth of apical portion of mandible about half as long as main outer tooth. Larva found in organic mud in swampy woodlands

Ulomorpha
55. Spiracular disc surrounded by five short bluntly rounded lobes; ventral lobes not fringed with long hairs; dorsomedial and lateral lobes sometimes with a densely sclerotized horn-like projection near apex. Larva found in sandy bottoms and margins of clear streams

Rhabdomastix, in part
Lobes of spiracular disc (usually four) not all short and bluntly rounded; ventral ones usually elongate; ventral lobes fringed with long hairs; upper lobes without sclerotized horn-like projections
56. Midventral region of head before line of attachment of thorax entirely membranous, without darkened transverse bar just beneath surface. Larva found in sand or gravel near margins of clear cool brooks and streams. Note: in this genus especially, but also in some others in similar habitats, larva sometimes with abdominal segment 7 much swollen (Fig. 84), possibly as an aid in locomotion or anchorage; swelling sometimes persisting in preserved specimens

Hexatoma
Midventral region of head before line of attachment of thorax membranous, with darkened narrow transverse bar (part of hypopharynx) visible just beneath surface. .57
57. Lateral lobes of spiracular disc unpigmented on posterior face. Mandible with long outer tooth and two smaller teeth of similar size and shape near mid length of inner margin; maxillary projections subconical. Larva found in wet organic debris.

Polymera
Lateral lobes of spiracular disc pigmented at least along one margin, usually much more extensively (Fig. 84). Mandible without two small similar teeth near mid length of inner margin (with more or fewer dissimilar teeth); maxillary projections flattened. Larva carnivorous, aquatic, found usually in organic mud in swampy woods and pond margins, less often in mud or sand at bottom of small streams

Limnophila
58. Spiracular disc broadly emarginate dorsally. Larva found in a hardened flattened elliptical case, in marshy soil near small streams or springs of Pacific drainage (description based on a European species)

Thaumastoptera
Spiracular disc not broadly emarginate dorsally. Larva not in a hardened case
59. Internal portion of head divided by deep posterior incisions into elongate slender or spatulate sclerites (determined by cutting prothoracic skin at one side, or often visible through skin)

Internal portion of head extensively sclerotized dorsally and laterally; sclerites plate-like, with shallow posterior incisions (Fig. 87)61
60. Spiracular disc lightly pigmented, vertically subrectangular, with two claw-like projections at ventral margin; posterior spiracles minute, pale, separated by about three times diameter of a spiracle. Larva yellowish, aquatic, found in bottoms and margins of clear streams \qquad Rhabdomastix, in part
A single broadly rounded ventral protuberance below posterior spiracles; spiracular disc without pigmented spots; spiracles darkly pigmented, separated by less than twice diameter of a spiracle. Larva pale yellowish white, found beneath bark of moist to wet decayed hardwood trees.

Teucholabis
61. Hypostomal bridge well-developed, toothed anteriorly (Fig. 87). Ventral creeping welts distinct
Hypostomal bridge not complete; hypostomal plates sometimes present and toothed anteriorly, but clearly separated medially by membranous region. Ventral creeping welts distinct or not
62. Abdominal segments $2-7$ with both dorsal and ventral creeping welts (of differing structure in some species) on basal rings. Posterior spiracular disc roughly circular or broadly oval to transversely subrectangular; spiracles often large, oval, inclined together dorsally (Figs. 82, 85). Larva found in various terrestrial and aquatic habitatsLimonia, in part

Abdominal segments $2-7$ with ventral creeping welts only; welts pale, without microscopic setae. Spiracles subcircular. Larva found in damp punky woodAustrolimnophila, in part
63. A broad thick transverse lobe present beneath posterior spiracular disc; lobe bearing dense short pale hairs. Larva found in humous forest soil (larva of Neocladura, at present unknown, may key out here)

Cladura
No such pilose transverse lobe beneath posterior spiracular disc. Larva found in organic debris, often associated with mouse burrows Chionea

References

Alexander, C. P. 1918. A new interpretation of the wing-venation of the pediciine crane-flies (Tipulidae, Diptera). Ent. News 29: 201-205.
Alexander, C. P. 1920. The crane-flies of New York. Part II. Biology and phylogeny. Mem. Cornell Univ. agric. Exp. Stn 38: 699-1133.
Alexander, C. P. 1922. The biology of the North American crane-flies (Tipulidae, Diptera). VI The genus Cladura Osten Sacken. Pomona J. Ent. Zool. 14: 1-7.
Alexander, C. P. 1927. The interpretation of the radial field of the wing in the nematocerous Diptera, with special reference to the Tipulidae. Proc. Linn. Soc. N.S.W. 52: 42-72.

Alexander, C. P. 1929. A comparison of the systems of nomenclature that have been applied to the radial field of the wing in the Diptera. IV Int. Congr. Ent. (Ithaca, N.Y., 1928) 2: 700-707.
Alexander, C. P. 1931a. Crane-flies of the Baltic amber (Diptera). Bernstein-Forsch. 2: 1-135.
Alexander, C. P. 1931b. Deutsche Limnologische Sun-da-Expedition. The crane-flies (Tipulidae, Diptera). Arch. Hydrobiol. Suppl. 9: 135-191.
Alexander, C. P. 1934. Family Tipulidae-the crane flies. Pages 33-58 in C. H. Curran, ed. The families and genera of North American Diptera. Ballou Press, New York, N.Y. [reprinted with additions and corrections 1965].
Alexander, C. P. 1940. Records and descriptions of North American crane-flies (Diptera). Part I. Tipuloidea of the Great Smoky Mountains National Park, Tennessee. Am. Midl. Nat. 24: 602-644.
Alexander, C. P. 1941. Records and descriptions of North American crane-flies (Diptera). Part II. Tipuloidea of mountainous western North Carolina. Am. Midl. Nat. 26: 281-319.
Alexander, C. P. 1942. Guide to the insects of Connecticut. Part VI. The Diptera or true flies of Connecticut. First Fascicle. Family Tipulidae. Bull. Conn. St. geol. nat. Hist. Surv. 64: 196-486 [reprinted 1966].
Alexander, C. P. 1943a. Records and descriptions of North American crane-flies (Diptera). Part III. Tipuloidea of the Upper Gunnison Valley, Colorado. Am. Midl. Nat. 29: 147-179.
Alexander, C. P. 1943b. Records and descriptions of North American crane-flies (Diptera). Part IV. Tipuloidea of the Yellowstone National Park. Am. Midl. Nat. 30: 718-764.
Alexander, C. P. 1945. Records and descriptions of North American crane-flies (Diptera). Part V.

Tipuloidea of the Grand Teton National Park and Teton National Forest, Wyoming. Am. Midl. Nat. 33: 391-439.
Alexander, C. P. 1946. Records and descriptions of North American crane-flies (Diptera). Part VI. Tipuloidea of Arizona, New Mexico and Trans-Pecos Texas, 1. Am. Midl. Nat. 35: 484-531.
Alexander, C. P. 1948. Records and descriptions of North American crane-flies (Diptera). Part VII. The Tipuloidea of Utah, 1. Am. Midl. Nat. 39: 1-82.
Alexander, C. P. 1949. Records and descriptions of North American crane-flies (Diptera). Part VIII. The Tipuloidea of Washington, 1. Am. Midl. Nat. 42: 257-333.
Alexander, C. P. 1954. Records and descriptions of North American crane-flies (Diptera). Part IX. The Tipuloidea of Oregon, 1. Am. Midl. Nat. 51: 1-86.
Alexander, C. P. 1967. The crane flies of California. Bull. Calif. Insect Surv. 8: 1-269.
Bangerter, H. 1928. Mücken-Metamorphen. I. (Ephelia, Gonomyia). Konowia 7: 156-161.
Bangerter, H. 1929. Mücken-Metamorphen. II. (Geranomyia, Rhamphidia, Orimargula). Konowia 8: 1-6.
Bangerter, H. 1930. Mücken-Metamorphen. III. (Gonomyia, Ormosia, Erioptera). Konowia 9: 97-102.
Bangerter, H. 1931. Mücken-Metamorphen. IV. (Dactylolabis). Konowia 10: 191-196.
Bangerter, H. 1934. Mücken-Metamorphen. VI. (Elephantomyia, Ula, Elliptera). Konowia 13: 264-272.
Brindle, A. 1957. The ecological significance of the anal papillae of Tipula larvae (Dipt., Tipulidae). Entomologist's mon. Mag. 93: 202.
Brindle, A. 1958a. Notes on the larvae of the British Tipulinae. (Dipt., Tipulidae). Part 1. Entomologist's mon. Mag. 94: 230-232.
Brindle, A. 1958b. Notes on the larvae of the British Tipulinae. (Dipt., Tipulidae). Part 2. Entomologist's mon. Mag. 94: 241-244.
Brindle, A. 1958c. Notes on the larvae of the British Tipulinae. (Dipt., Tipulidae). Part 3. Entomologist's mon. Mag. 94: 272-274.
Brindle, A. 1958d. Notes on the identification of Tipula larvae (Diptera-Tipulidae). Part 1. Entomologist's Gaz. 9: 45-52.
Brindle, A. 1958e. A field key for the identification of Tipula larvae (Dipt.: Tipulidae). Entomologist's Gaz. 9: 165-182.

Brindle, A. 1958f. Notes on the identification of Limnophila larvae (Diptera-Tipulidae). Part 1. Trans. Soc. Br. Ent. 13: 57-68.
Brindle, A. 1959a. Notes on the larvae of the British Tipulinae. (Dipt., Tipulidae). Part 4. Entomologist's mon. Mag. 95: 36-37.
Brindle, A. 1959b. Notes on the larvae of the British Tipulinae. (Dipt., Tipulidae). Part 5. Entomologist's mon. Mag. 95: 64-65.
Brindle, A. 1959c. Notes on the larvae of the British Tipulinae. (Dipt., Tipulidae). Part 6. Entomologist's mon. Mag. 95: 176-177.
Brindle, A. 1959d. Notes on the larvae of the British Tipulinae. (Dipt., Tipulidae). Part 7. Entomologist's mon. Mag. 95: 204-205.
Brindle, A. 1960a. The larvae and pupae of the British Tipulinae (Diptera: Tipulidae). Trans. Soc. Br. Ent. 14: 63-114.
Brindle, A. 1960 . The larvae of the British Hexatomini (Dipt., Tipulidae). Entomologist's Gaz. 11: 207-224.
Brindle, A. 1967. The larvae and pupae of the British Cylindrotominae and Limoniinae (Diptera, Tipulidae). Trans. Soc. Br. Ent. 17: 151-216.
Brodo, F. 1967. A review of the subfamily Cylindrotominae in North America (Diptera: Tipulidae). Kans. Univ. Sci. Bull. 47: 71-115.
Bryce, D. 1956. Notes on the life-history of Tipula cheethami Edw. (Dipt., Tipulidae). Entomologist's mon. Mag. 92: 104-106.
Bryce, D. 1957. Notes on the life histories of British Limoniinae (Dipt., Tipulidae). 2. Ula sylvatica (Mg.). Entomologist's mon. Mag. 93: 132-133.
Byers, G. W. 1958. Species recognition in immature craneflies (Diptera: Tipulidae). X Int. Congr. Ent. (Montreal, 1956) 1: 131-136.
Byers, G. W. 1961a. Biology and classification of Chionea (Diptera: Tipulidae). XI Int. Congr. Ent. (Vienna, 1960) 1: 188-191.
Byers, G. W. 1961b. The cranefly genus Dolichopeza in North America. Kans. Univ. Sci. Bull. 42: 665-924.
Byers, G. W. 1975. Larva and pupa of Idiognophomyia enniki Alexander (Diptera: Tipulidae). Pan-Pacif. Ent. 50: 282-287.
Carpenter, F. M., et al. 1934. Insects and arachnids from Canadian amber. Univ. Toronto Stud. Geol. Ser. 40: 7-62.
Chiswell, J. R. 1956. A taxonomic account of the last instar larvae of some British Tipulinae (Diptera: Tipulidae). Trans. R. ent. Soc. Lond. 108: 409-484.
Crampton, G. C. 1941. The terminal abdominal structures of male Diptera. Psyche, Camb. 48: 79-94.
Crampton, G. C. 1942. Guide to the insects of Connecticut. Part VI. The Diptera or true flies of Connecticut. Bull. Conn. St. geol. nat. Hist. Surv. 64: 10-165 [reprinted 1966].

Foote, B. A. 1963. Observations on the biology of Tipula footeana Alexander. Bull. Brooklyn ent. Soc. 68: 145-150.
Frommer, S. I. 1963. Gross morphological studies of the reproductive system in representative North American crane flies (Diptera: Tipulidae). Kans. Univ. Sci. Bull. 44: 535-626.
Handlirsch, A. 1910. Canadian fossil insects. 5. Insects from the Tertiary lake deposits of the southern interior of British Columbia. Mem. geol. Surv. Breh Can. 12-P: 93-1 29.
Hennig, W. 1950. Die Larvenformen der Dipteren. 2. Teil. Akademie-Verlag, Berlin.
Hynes, C. D. 1958. A description of the immature stages of Limnophila (Eutonia) marchandi Alex. Proc. ent. Soc. Wash. 60: 9-14.
Hynes, C. D. 1963. Description of the immature stages of Cryptolabis magnistyla Alexander (Diptera: Tipulidae). Pan-Pacif. Ent. 39: 255-260.
Hynes, C. D. 1965. The immature stages of the genus Lipsothrix in the western United States. Pan-Pacif. Ent. 41: 165-172.
Hynes, C. D. 1968. The immature stages of Hesperoconopa dolichophallus (Alex.) (Diptera: Tipulidae). Pan-Pacif. Ent. 44: 324-327.
Hynes, C. D. 1969a. The immature stages of Arctoconopa carbonipes (Alex.) (Diptera: Tipulidae). Pan-Pacif. Ent. 45: 1-3.
Hynes, C. D. 1969b. The immature stages of Gonomyodes tacoma Alex. Pan-Pacif. Ent. 45: 116-119.
Hynes, C. D. 1969c. The immature stages of the genus Rhabdomastix (Diptera: Tipulidae). Pan-Pacif. Ent. 45: 229-237.
Pritchard, G., and H. A. Hall. 1971. An introduction to the biology of craneflies in a series of abandoned beaver ponds, with an account of the life cycle of Tipula sacra Alexander (Diptera: Tipulidae). Can. J. Zool. 49: 467-482.
Rees, B. E., and G. F. Ferris. 1939. Contribution No. 16. The morphology of Tipula reesi Alexander (Diptera: Tipulidae). Microentomology 4: 143-178.
Rogers, J. S. 1926 . Some notes on the feeding habits of adult crane-flies. Fla Ent. 10: 5-7.
Rogers, J. S. 1926b. Notes on the biology and immature stages of Gonomyia (Leiponeura) pleuralis (Will.)Tipulidae, Diptera. Fla Ent. 10: 33-38.
Rogers, J. S. 1927a. Notes on the biology of Atarba picticornis Osten Sacken-Tipulidae-Diptera. Fla Ent. 10: 49-54.
Rogers, J. S. 1927b. Notes on the life history, distribution and ecology of Diotrepha mirabilis Osten Sacken. Ann. ent. Soc. Am. 20: 23-36.
Rogers, J. S. 1927c. Notes on the biology and immature stages of Geranomyia (Tipulidae, Diptera). I. Geranomyia rostrata (Say). Fla Ent. 11: 17-26.

Rogers, J. S. 1927d. Descriptions of the immature stages of some New Zealand crane-flies: Part I. Trans. N.Z. Inst. 58: 301-309.
Rogers, J. S. 1928. Notes on the biology of Gnophomyia luctuosa Osten Sacken with descriptions of the immature stages. Ann. ent. Soc. Am. 21: 398-406.
Rogers, J. S. 1930. The summer crane-fly fauna of the Cumberland plateau in Tennessee. Occ. Pap. Mus. Zool. Univ. Mich. 215: 1-50.
Rogers, J. S. 1932. On the biology of Limonia (Dicranomyia) floridana (Osten Sacken). Fla Ent. 15: 65-70.
Rogers, J. S. 1933a. The ecological distribution of the crane-flies of northern Florida. Ecol. Monogr. 3 (1): 1-74.
Rogers, J. S. 1933b. Contributions toward a knowledge of the natural history and immature stages of the crane-flies. I. The genus Polymera Wiedemann. Occ. Pap. Mus. Zool. Univ. Mich. 268: 1-13.
Rogers, J. S. 1942. The crane-flies (Tipulidae) of the George Reserve, Michigan. Misc. Publs Mus. Zool. Univ. Mich. 53: 1-128.
Rogers, J. S. 1949. The life history of Megistocera longipennis (Macquart) (Tipulidae, Diptera), a member of the Neuston fauna. Occ. Pap. Mus. Zool. Univ. Mich. 521: 1-17.
Rogers, J. S., and G. W. Byers. 1956. The ecological distribution, life history, and immature stages of Lipsothrix sylvia (Diptera: Tipulidae). Occ. Pap. Mus. Zool. Univ. Mich. 572: 1-14.

Saunders, L. G. 1928. Some marine insects of the Pacific coast of Canada. Ann. ent. Soc. Am. 21: 521-545.
Savtshenko, E. N. 1955. Characters differentiating larvae of the most common species of Diptera Tipulidae. Zool. Zh. 34: 822-836.
Scudder, S. H. 1890. The Tertiary insects of North America. Rep. U.S. geol. Surv. Terr. 13: 1-734.
Scudder, S. H. 1894. Tertiary Tipulidae, with special reference to those of Florissant, Colorado. Proc. Am. phil. Soc. 32 (143): 1-83.
Snodgrass, R. E. 1903. The terminal abdominal segments of female Tipulidae. J1 N.Y. ent. Soc. 11: 177-183.
Snodgrass, R. E. 1904. The hypopygium of the Tipulidae. Trans. Am. ent. Soc. 30: 179-236.
Stone, A., et al., eds. 1965. A catalog of the Diptera of America north of Mexico. U.S. Dep. Agric., Agric. Res. Serv., Agric. Handb. 276.
Theowald, B. 1957. Die Entwicklungsstadien der Tipuliden (Diptera, Nematocera) insbesondere der WestPalaearktischen Arten. Tijdschr. Ent. 100: 195-308.
Theowald, B. 1967. Familie Tipulidae (Diptera, Nematocera) Larven und Puppen. Bestimmungsbücher zur Bodenfaune Europas. Lfg. 7. Akademie-Verlag.
Tokunaga, M. 1930. The morphological and biological studies on a new marine crane fly, Limonia (Dicranomyia) monostromia, from Japan. Mem. Coll. Agric. Kyoto Univ. 10: 1-93.
Vaillant, F. 1950. Sur Orimarga hygropetrica n. sp. (Diptère Limnobiidae Heliini). Trav. Lab. Hydrobiol. Piscic. Univ. Grenoble (1949-1950) 41-42: 43-47.

[^0]: ${ }^{1}$ Material dealing with adult forms was prepared by C. P. Alexander, and that dealing with immature stages by George W. Byers.

