
Collibra Data Intelligence Cloud

Data Lineage

Version 2023.08

i

Collibra Data Intelligence Cloud - Data Lineage

Release date: August 6, 2023

Revision date: August 03, 2023

You can find the most up-to-date technical documentation on our Documentation Center at

https://productresources.collibra.com/docs/collibra/latest/Content/to_data-lineage.htm

https://productresources.collibra.com/docs/collibra/latest/Content/to_data-lineage.htm

Contents

ii

Contents ii

Collibra Data Lineage v

What is Collibra Data Lineage? v

BI tool integration ix

Business value ix

How do I create a technical lineage? xii

Database Owners, BI and ETL Admins, and Collibra Admins xiv

Database Owners xvi

BI and ETL Admins xix

Collibra Admins lxx

Software requirements cxxi

Hardware requirements cxxiii

Network requirements cxxiii

Requirements and permissions cxxiv

Steps cxxvi

What's next? cxxvi

Typical command options and arguments cxxvii

Structure of the JSON file cxxxviii

Examples of commands cxxxviii

On Windows cxxxix

On other operating systems cxl

The lineage harvester configuration file cclxi

Empty configuration file cclxii

Configuration file generator cclxiii

Steps cclxxvi

What's next cclxxix

Prerequisites cclxxix

Steps cclxxix

What's next? cclxxxi

Requirements and restrictions cccliv

Programming considerations ccclx

Example ccclxi

Sample JSON file for a simple custom technical lineage ccclxi

Sample JSON file for an advanced custom technical lineage ccclxiii

Requirements and restrictions ccclxviii

Format ccclxix

Example ccclxxii

Terminology ccclxxxiv

Methodology ccclxxxiv

Steps ccclxxxvii

Naming convention cccxc

Prerequisites cccxci

Steps cccxci

What's next? cccxcii

Prerequisites cccxciii

Steps cccxciv

Business users cdxviii

Technical lineage cdxix

Automatic stitching for technical lineage cdxxi

iii

BI tool business logic cdxxiii

Technical lineage and stitching for BI tool integrations cdxxvi

Business Summary Lineage cdxxxvii

Differences between Technical lineage and diagrams with Business Summary Lineage cdxxxix

BI integration concepts cdxlii

Technical users dxliii

Supported data sources for technical lineage dxliii

Transformation logic dlxxi

Technical lineage export types dlxxii

BI integration concepts dlxxvii

Technical lineage viewer dcxvii

Technical lineage troubleshooting dcxli

Troubleshooting for technical lineage via Edge dcxli

iv

Collibra Data Lineage
In this topic, we addresses the following:

l What is Collibra Data Lineage?
l BI tool integration
l Business value
l How do I create a technical lineage?

What is Collibra Data Lineage?
Collibra Data Lineage is a cloud-only product that allows you to trace data from its source
system, across the various contact points of your data landscape, to its final destination
system.

Ultimately, our objective is to help you establish trust in your reports and use the data to
make sound business decisions.

Collibra Data Lineage consists of two components:

l Technical lineage
l Diagrams with Business Summary Lineage

The value of these components are the same, but they are designed for different
audiences.

Technical lineage
l Designed for Data Engineers, Data Architects, and other technically-focused roles.
l A detailed lineage graph that provides complete end-to-end lineage, to visualize the
journey of the data objects in your external data sources.

l Allows you to explore data objects, including temporary tables and columns, in your
external data sources. You don't need to register data sources in Collibra to include
them in a technical lineage.

v

#Uses
#How

Tip We use the term "data objects" when referring to columns and tables in
your external data sources. We use the term "assets" (specifically Column
assets and Table assets) when referring to the representation of data objects
in Collibra.

l Includes all source code and data transformation details.
l Shows you in which system data objects are used and how they are transformed
from data source to data source.

l Automatically created as part of the technical lineage process.

Diagrams with Business Summary Lineage
l Designed for Analysts, Governance roles, and other business-focused roles.
l Shows the relations between assets in Collibra that represent the data objects in
your external data sources.

l "Business Summary Lineage" refers specifically to the relation type "Data Element
targets / sources Data Element" that is drawn between Column assets.

l Shows how registered data sources relate to each another.

Tip Registering a data source means creating assets (and the relations
between the assets) in Collibra that represent the data objects in your external
data sources.

l Automatically created as part of the technical lineage process.

vi

to_register-data-source.htm

Tip The main difference between a technical lineage and a diagram with Business
Summary Lineage:

l Technical lineage identifies data objects in your external data sources.
l Diagrams with Business Summary Lineage show assets in Collibra that
represent some or all of those data objects.

We illustrate this in the following example.

vii

Example
Let's say that you have created a technical lineage for four different databases:

l The first database, Oracle, is not registered in Collibra, therefore there are no
assets in Data Catalogthat represent the Oracle data objects.

l The second database, Raw, is registered in Collibra.
o The yellow background of the first node indicates that Table and Column
assets that were created in Data Catalog are stitched to their
corresponding data objects in the Raw database.

o The other node, the one with the gray background, is a temporary table.
No assets are created for temporary data objects and so stitching is not
relevant. That is why the node has a gray background.

l The third and fourth databases, Refined and Consumption, are ingested in
Collibra. The assets that were created in Data Catalog are stitched to their
corresponding data objects in the two databases.

What we what to point out here is that Technical lineage shows the data flow of all
data objects across all four databases, regardless of any assets in Collibra.

The corresponding diagram with Business Summary Lineage shows only the
relations between data objects that have corresponding assets in Data Catalog. In
the following image, we see the data flow of assets from the second database, to the
third, to the fourth. The first database, Oracle, which is not registered in Collibra,
and , is not shown on the diagram.

For more information on the differences between these two components, go to Differences
between Technical lineage and diagrams with Business Summary Lineage.

viii

For a complete list of supported data sources, go to Supported data sources for technical
lineage. If you want to create a technical lineage for a data source that is not currently
supported, you can create a Custom technical lineage.

BI tool integration
Business intelligence software helps organizations to collect data from the various data
sources across their data ecosystem and present the data in interactive dashboards and
reports, to facilitate decision-making and strategic planning.

When you integrate your BI tool in Collibra:

l Metadata about the data objects in your external data sources is created as BI
assets in Collibra.

l Relations are created:
o Between data objects in your external data source and assets in Collibra that
represent those data objects.

Tip These assets are created when the data source is registered, which
is automatically carried out during the technical lineage process.

o Between BI assets and the assets in Collibra that represent the data objects in
your external data source.

l A technical lineage is automatically created.

On specific BI asset pages, you can view the technical lineage, critical attributes of your
reports and dashboards, and relations to other assets in Data Catalog.

Business value
Collibra Data Lineage has many important use cases. Here are a few.

Report certification
By providing transparency and traceability to the data used in a report, data lineage plays
a foundational role in the report certification process:

l Review data sources and transformations associated with the data in a report, to
help ensure accuracy and reliability.

ix

l Identify the original sources of data used in the report, and how the data moves from
the source system to intermediate systems.

l View and analyze the calculation rules that are used to extract and transform the
data before it reaches the report.

All critical metadata is ingested during BI integration and shown on the Collibra asset
pages. This includes information like data timestamps, quality metrics, data ownership,
and other valuable attributes that help you to assess the reliability and quality of the data.

Tip If a report is certified in your BI tool, that metadata is ingested and shown in the
Certified attribute on the BI report asset page in Data Catalog.

You can manually synchronize the data in Collibra or set up a synchronization schedule, to
help ensure the accuracy and completeness of the data over time. This can help identify
inconsistencies or gaps in the data flow and transformation processes.

Impact analysis
Collibra Data Lineage can help you with impact analysis when making changes to data
sources, adjusting the calculation rules that drive transformations, migrating data and
more. It can help you assess the potential impact of changes on downstream systems,
data and reports.

Example Let's say you have data in a Snowflake data source, and you need to
move everything to Databricks. After migration, you can create a technical lineage
to trace the movement of data from one data source to the other and ensure data
integrity throughout the migration process.

x

Understanding data dependencies and relationships helps you to:

l Anticipate which downstream systems could be impacted if you've made changes to
a data source or calculation rule.

l Anticipate how changes to a particular data object or system will propagate across
your data landscape.

l Minimize risks and make better informed decisions.

Root cause analysis in data-related issues
Collibra Data Lineage is a valuable tool for helping data analysts and engineers trace the
source of data quality issues and anomalies. When you detect a discrepancy in your data,
you can examine the lineage and source code to:

l Trace the issue back to the source system or process that is causing the problem.
l Analyze any calculations rules that might have affected the consistency or quality of
the data.

l Identify how the issue is affecting downstream systems and reporting.

This can help you identify potential areas where the root cause might exist.

Regulatory Compliance
Compliance with data privacy regulations such as GDPR and CCPA, and various security,
auditing and reporting standards, often requires organizations to show end-to-end
traceability across their data landscape. In the data privacy context, Collibra Data Lineage
can give you a complete view of where sensitive and restricted data is processed, shared,
and stored.

Example Let's say that a individual customer of an organization wants to exercise
their right to be forgotten, as dictated by GDPR. In compliance with the regulation,
the organization has to purge Personally Identifiable Information (PII) about the
individual from its systems. Once the organization has identified the PII, it can use
data lineage to:

l Trace the information across its systems, data source and processes.
l Monitor any migrations and transformations to the data.
l Identify who has access to the systems and data sources that consume the
data.

BI integration: View critical metadata about your reports and dashboards

xi

BI integration in Collibra enables you to view all of the critical metadata about your reports
and dashboards on dedicated asset pages in Data Catalog. The many attributes help you
to identify the most critical reports that have the highest impact. This can help you
effectively allocate your resources and minimize disruptions.

A few of the key attributes include the following:

l Document creation and modification dates: See when the report was created and
updated in your BI tool.

l Visits count: See how many people have viewed the report.

Tip Let's say that you have two reports with the same name, but one has 400
views and the other has almost none. That gives a strong indication as to
which is the more helpful report.

l Owner in Source: Easily identify who owns and who certified a report, to know
where to turn for additional help and information

l Calculation Rule: See DAX calculations for calculated columns and measures on
Power BI Column asset pages.

l URL: Easily access the report in your BI tool.
l Relation types allow you to immediately identify in which other reports a report is
used.

How do I create a technical lineage?
There are two ways to create technical lineages and diagrams with Business Summary
Lineage:

l Via Edge.
l Via the lineage harvester.

xii

The typical workflow for creating a technical lineage is the same whether you use the
lineage harvester or Edge. If you want to use technical lineage via Edge and the lineage
harvester together, you must use lineage harvester version 2023.04 or newer. If you want
to maintain on Edge the technical lineage that you created by using the lineage harvester,
you can add technical lineage capabilities for the data sources with the same source IDs.
For details, go to Migrate the technical lineage of a data source.

Edge
You can create a technical lineage via Edge, for Tableau, Power BI and all supported
JDBC and ETL data sources. Benefits include:

l Seamless integration with Data Catalog.
l The Edge User Interface (UI), instead of Command Line Interface.
l Connections via Edge, instead of lineage harvester drivers.
l Job scheduling via Data Catalog.

The lineage harvester
The lineage harvester is a connectivity tool that allows you to create a technical lineage.

l You can use the lineage harvester to create a technical lineage for any supported
data source.

l You need to download the lineage harvester from the Collibra Community Down-
loads page.

l You need to use the Command Line Interface in conjunction with a lineage harvester
configuration file.

xiii

https://productresources.collibra.com/downloads/
https://productresources.collibra.com/downloads/

Database Owners, BI and ETL
Admins, and Collibra Admins
This section aims to provide information that is most relevant for the following people:

l Database Owners, who work with external data sources, to ensure that Collibra can
connect to them.

l BI Admins, who maintain their organizations' BI and ETL platforms and ensure that
Collibra can connect to, and communicate with, BI and ETL tools.

l Collibra Admins, who work with Collibra Data Lineage, as well as with Database
Owners and BI Admins, to create a technical lineage. Collibra Admins work with
Database Owners and BI Admins

These roles work closely together to achieve their objectives. Collibra Admins also work
with network and server administrators to, for example, configure proxy servers.

Database Owners xvi

BI and ETL Admins xix

Collibra Admins lxx

Software requirements cxxi

Hardware requirements cxxiii

Network requirements cxxiii

Requirements and permissions cxxiv

Steps cxxvi

What's next? cxxvi

Typical command options and arguments cxxvii

Structure of the JSON file cxxxviii

Examples of commands cxxxviii

On Windows cxxxix

On other operating systems cxl

The lineage harvester configuration file cclxi

xiv

Empty configuration file cclxii

Configuration file generator cclxiii

Steps cclxxvi

What's next cclxxix

Prerequisites cclxxix

Steps cclxxix

What's next? cclxxxi

Requirements and restrictions cccliv

Programming considerations ccclx

Example ccclxi

Sample JSON file for a simple custom technical lineage ccclxi

Sample JSON file for an advanced custom technical lineage ccclxiii

Requirements and restrictions ccclxviii

Format ccclxix

Example ccclxxii

Terminology ccclxxxiv

Methodology ccclxxxiv

Steps ccclxxxvii

Naming convention cccxc

Prerequisites cccxci

Steps cccxci

What's next? cccxcii

Prerequisites cccxciii

Steps cccxciv

xv

Database Owners
This section caters primarily to Database Owners, who work with external data sources, to
ensure that Collibra can connect to them. Database Owners create databases and ensure
that all of the required data source-specific permissions are met, so that Collibra can
successfully connect to them and ingest the metadata.

Data source permissions
Before you can start ingesting metadata, ensure that you meet the required permissions
for your specific data source.

Select a data source,
to show the required
permissions.

Currently, information
is shown for:

Choose another data source

Important
l Ensure that you meet the Set up Azure Data Factory.
l You need read access on information_schema. Only views that you own are
processed.

l You need read access on the SYS schema.
l You need read access on information_schema:

o bigquery.datasets.get
o bigquery.tables.get
o bigquery.tables.list
o bigquery.jobs.create
o bigquery.routines.get
o bigquery.routines.list

l SELECT, at table level. Grant this to every table for which you want to create a
technical lineage.

l You need Monitoring role permissions.
l A role with the LOGIN option.
l SELECTWITH GRANT OPTION, at Table level.

xvi

l CONNECT ON DATABASE
l You need read access on the SYS schema and the
View Definition Permission in your SQL Server.

l You need read access on definition_schema.
l GRANT SELECT, at table level. Grant this to every table for which you want to
create a technical lineage.

l The role of the user that you specify in the username property in lineage
harvester configuration file must be the owner of the views in PostgreSQL.

l You need read access on the DBC.
l You need read access to the following dictionary views:

o all_tab_cols
o all_col_comments
o all_objects
o ALL_DB_LINKS
o all_mviews
o all_source
o all_synonyms
o all_views
l Your user role must have privileges to export assets.
l You must have read permission on all assets that you want to export.
l You have added the Matillion certificate to a Java truststore.
l You have at least a Matillion Enterprise license.

The following permissions are the same, regardless of the ingestion mode:
SQL or SQL-API.

You need a role that can access the Snowflake shared read-only database. To
access the shared database, the account administrator must grant the
IMPORTED PRIVILEGES privilege on the shared database to the user that
runs the lineage harvester.

Tip If the default role in Snowflake does not have the IMPORTED
PRIVILEGES privilege, you can use the
customConnectionProperties property in the lineage harvester
configuration file to assign the appropriate role to the user. For
example:
"customConnectionProperties": "role=METADATA"

l The source code files must be in the same directory as the lineage.json file.
Otherwise, an error occurs indicating that the lineage harvester cannot find the
source code files. For complete information, go to Working with custom
technical lineage.

xvii

l Before you start the Power BI integration process, you have to perform a
number of tasks in Power BI and Microsoft Azure. These tasks, which are
performed outside of Collibra, are needed to enable the lineage harvester to
reach your Power BI application and collect its metadata. For complete
information, go to Set up Power BI.

l Before you start the Tableau integration process, you have to perform a
number of tasks in Tableau. For complete information, go to the following
topics:

o Set up Tableau
o Tableau roles and permissions

l You need the following roles, with user access to the server from which you
want to ingest:

o A system-level role that is at least a System user role.
o An item-level role that is at least a Content Manager role.

We recommend that you use SQL Server 2019 Reporting Services or newer.
We can't guarantee that older versions will work.

l Before you start the Looker integration process, you need to set up Looker.
The following permissions apply only to MicroStrategy on-premises
customers.

l You need Admin API permissions.
The first call we make to MicroStrategy is to authenticate. We connect to
<MSTR URL>:<Port>/MicroStrategyLibrary/api-docs/ and use POST
api/auth/login. You have to ensure that this API call can be made
successfully.

l You need permissions to access the library server.
l The lineage harvester uses port 443. If the port is not open, you also
need permissions to access the repository.

l If you have a MicroStrategy on-premises environment, you need the
permissions for all of the database objects that the lineage harvester
accesses.

l You have to configure the MicroStrategy Modeling Service. For
complete information, see the MicroStrategy documentation.

There are no specific permission requirements for this data source type.

There are no specific permissions requirements for downloaded SQL files.

xviii

https://www2.microstrategy.com/producthelp/Current/SystemAdmin/WebHelp/Lang_1033/Content/modeling_service.htm

BI and ETL Admins
This section caters primarily to BI and ETL Admins, who maintain their organizations' BI
and ETL platforms and ensure that Collibra can connect to, and communicate with, BI and
ETL tools. The following are examples of some BI and ETL Admin roles:

l For Tableau:
o Tableau Site Administrator
o Tableau Server Administrator

l For Power BI / Azure Data Factory:
o Power BI Platform Administrator
o Global Administrator or Azure Cloud Application Administrator

l For Looker: Looker Administrator
l For Matillion: Matillion Administrator
l For MicroStrategy: MicroStrategy System Administrator
l For SQL Server Reporting Services (SSRS): Member of the local administrator
group

Set up Azure Data Factory
The lineage harvester uses Azure APIs to get the information necessary to build technical
lineage from Azure Data Factory. This topic guides you through the required tasks for
registering Azure Data Factory in the Azure Portal and assigning the necessary
permissions and access.

Warning Because the tasks covered in this topic are performed outside of Collibra,
it is possible that the content changes without us knowing. We strongly recommend
that you carefully read the source documentation.

Topics in this section

l Required values for your Azure Data Factory configuration file
l Register your Azure Data Factory instance in the Azure Portal
l Assign the API permissions

xix

l Create an authentication secret
l Add your Azure Data Factory instance to a resource group
l Retrieve the subscription ID of the resource group
l Assign read-only permissions to the resource group

Required values for your Azure Data Factory configuration file

The tasks in this topic help you to identify the values you will need when you are preparing
the lineage harvester configuration file for Azure Data Factory. You need the correct
values for the properties shown in the following table.

Important If you want to create a technical lineage for more than one Azure Data
Factory instance, you need this information for each instance.

Properties Description

tenantDomain The directory ID of your Azure Data Factory instance.

applicationId The application ID of your Azure Data Factory instance. Specifically, this is the
associated service principal for Azure Data Factory, not the enterprise
application ID.

resourceGroupName The name of a resource group with the Reader role for the Azure Data
Factory instance.

subscriptionId The subscription ID of the resource group.

password The secret value for the application ID.

Register your Azure Data Factory instance in the Azure Portal

Follow the Microsoft Azure instructions on how to register an application and refer to the
following table for help with the various settings:

Setting Description

Name The name of your Azure Data Factory instance.

xx

https://learn.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app

Setting Description

Supported
account types

The type of tenant. This indicates who can access the Azure Data Factory instance.

Select Single tenant.

Redirect URI The location to which a user's client is redirected and where security tokens are sent
after successful authorization. In this case, the redirect URI must be of the type Web.

Leave this field empty. You don't have to specify a web location.

» The Azure Portal creates:

l The Application ID
l The Directory ID

Note When your Azure Data Factory instance is registered, you can find these two
IDs in the Overview pane on the Azure Portal or in the upper-right menu.

Tip These IDs are the values you will use for the applicationId and
tenantDomain properties, respectively, in your Azure Data Factory configuration
file.

Assign the API permissions

1. In the Azure Portal, click the Authentication pane, and then:
a. Click the Advanced settings section.
b. For the Allow public client flows option, click Yes.

2. Click the API permissions pane, and then:
a. For the permission type, click Delegated permissions.
b. Assign the Azure Data Factory instance in Microsoft Azure the Microsoft Graph

User.Read permission.

» The user now has the following permissions:

l Microsoft Graph
l User.Read

xxi

Create an authentication secret

1. In the sidebar navigation, in the Manage section, click Certificates and secrets.
2. Ciick New client secret. Note that certificates are not supported.

a. Enter a description.
b. Use the date picker to specify an expiration date for the authentication secret.
c. Click Add.

» An authentication secret is shown.

Important Make note of the authentication secret. For security purposes, It
will not be available later. If you lose the authentication secret, you will need to
create a new one.

Tip The authentication secret is the value you will use when prompted for the
password to connect to Azure Data Factory.

Add your Azure Data Factory instance to a resource group

Your Azure Data Factory instance should already be part of a resource group. If it is, you
can skip this step. If it's not, you need to create a resource group and add your Azure Data
Factory instance to it.

Tip The Data factories page shows all of your Azure Data Factory instances,
including their subscriptions and resource groups. Check here to know if your
instance is part of a resource group.

xxii

Create a resource group and add your Azure Data Factory instance

1. Go to the Group Management page for your Azure Data Factory instance.
2. Follow the Microsoft Azure instructions on how to create a resource group, and refer

to the following table for help with the various settings:

Setting Description

Group Name The name of the new resource group that you are creating.

Make a note of this name. You will need it later.

Tip The resource group name is the value you will use for the
resourceGroupName property, in your Azure Data Factory configuration
file.

Group Type The type of resource group.

Select Security.

Service Principal The identity an application uses to access Azure resources and APIs.

Enter the Application ID that was generated when you registered Azure Data Factory in
the Azure Portal.

Retrieve the subscription ID of the resource group

On the Data factories page, click the resource group for the Azure Data Factory instance
for which you want to create a technical lineage, and make note of the subscription ID.

xxiii

https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-groups-create-azure-portal

Tip The subscription ID is the value you will use for the subscriptionId property,
in your Azure Data Factory configuration file.

Assign read-only permissions to the resource group

To gather the information needed for technical lineage, the resource group needs
permission to read the APIs.

1. Check to see which permissions the resource group has.

a. On the Resource groups page, click Access control (IAM).
b. In the Check access search box, type the name of the resource group.

c. In the search results, click on the resource group to see the access assign-
ments.

» If your resource group already has the Reader role, as shown in the previous
image, this task is complete.

2. If your resource group does not have the Reader role, click X in the upper-right
corner, to close the Access assignments page.
» The Access control (IAM) page again appears.

xxiv

3. Click the Role assignments tab.

4. Click Add > Add role assignment and follow the Microsoft Azure instructions on how
to add a role assignment. Refer to the following table for help with the various set-
tings:

Setting Description

Roles The role assignment for the resource group.

Select Reader.

The lineage harvester only needs read access.

Members Ensure that the User, group, or service principa radio button is selected.

Search for and select the resource group.

Conditions No conditions are necessary. Click Next.

Review + assign Click Review +assign, to assign the Reader role to the resource group.

» After a few moments, the read-only permission is assigned to the resource group.

Set up Looker
Before you start the Looker integration, you have to enable Collibra to access your Looker
data. The Looker integration process uses a Looker API. To access the Looker metadata,
the Looker API uses API3 credentials for authorization and access control.

Prerequisite
l You have the necessary permissions in Looker to see the Looker data.

xxv

https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal?tabs=current
https://docs.looker.com/reference/api-and-integration/api-getting-started

Steps

1. Create a user with the Admin role.

Tip Only a user with a role that has the Admin permission set can create API3
credentials. Some Looker API calls also require a role that has the Admin
permission set.

2. Create the API3 credentials.
3. Use the API3 credentials in your lineage harvester configuration file.

Note API3 credentials are always linked to a Looker user account. As a result, calls
to the API only return data that the user is allowed to see.

Tip For more information, see the Looker documentation.

Set up MicroStrategy
The MicroStrategy integration supports both MicroStrategy Cloud and MicroStrategy on-
premises environments. Before you start the integration, you have to enable Collibra to
access your MicroStrategy data.

Requirements and permissions
The following permissions apply only to MicroStrategy on-premises customers.

l You need Admin API permissions.
The first call we make to MicroStrategy is to authenticate. We connect to <MSTR
URL>:<Port>/MicroStrategyLibrary/api-docs/ and use POST api/auth/login. You
have to ensure that this API call can be made successfully.

l You need permissions to access the library server.
l The lineage harvester uses port 443. If the port is not open, you also need
permissions to access the repository.

l If you have a MicroStrategy on-premises environment, you need the permissions for
all of the database objects that the lineage harvester accesses.

xxvi

https://docs.looker.com/admin-options/settings/roles
https://docs.looker.com/admin-options/settings/users#api3_keys
https://docs.looker.com/reference/api-and-integration/api-auth

l You have to configure the MicroStrategy Modeling Service. For complete
information, see the MicroStrategy documentation.

Important To access MicroStrategy data, you have to use the In-memory Dataset
connection method in MicroStrategy, not the Live Connect connection method. If the
data is not stored in memory, the MicroStrategy APIs can't access it.

If you are using a proxy server, confirm with your Collibra Admin that your proxy server is
configured to access the library server.

Set up Power BI
Before you start the Power BI integration process, you have to perform a number of tasks
in Power BI and Microsoft Azure. These tasks, which are performed outside of Collibra, are
needed to enable the lineage harvester to reach your Power BI application and collect its
metadata.

The tasks include the following:

l Attain authentication.
l Register your Power BI application in Microsoft Azure and set permissions.
l Fulfill the Power BI dedicated capacities and roles requirements for Power BI work-
spaces.

l Ensure that the lineage harvester can connect to the following URLs:
o https://login.microsoftonline.com:443
o https://api.powerbi.com:443
o The URL of your Power BI tenant, which you have to specify in the ten-
antDomain property of your lineage harvester configuration file.

The metadata harvesting process explains in detail the prerequisites for enabling the
lineage harvester to collect the Power BI metadata.

xxvii

https://www2.microstrategy.com/producthelp/Current/SystemAdmin/WebHelp/Lang_1033/Content/modeling_service.htm

Note There are some limitations to the metadata harvesting process. Ensure that
you understand these limitations before you start the harvesting process.

Warning Because these tasks are performed outside of Collibra, it is possible that
the content changes without us knowing. We strongly recommend that you carefully
read the source documentation.

Supported Power BI subscriptions
You need one of the following subscriptions to ingest Power BI metadata in Data Catalog.
The metadata collected by the lineage harvester is the same, regardless of your
subscription.

l Power BI Pro.
l Power BI Premium.
l Power BI Premium Per User.

Tip We highly recommend you to have a Power BI Premium subscription.

Power BI ingestion considerations and limitations
There are a few considerations and limitations that you should be aware of when you use
the Power BI metadata connector and lineage feature.

General considerations

l Ensure that the lineage harvester can connect to the following URLs:
o https://login.microsoftonline.com:443
o https://api.powerbi.com:443
o The URL of your Power BI tenant, which you have to specify in the ten-
antDomain property of your lineage harvester configuration file.

l The assets created in Collibra have the same names as their counterparts in Power
BI. Full names and Display names cannot be changed in Data Catalog.

xxviii

l Asset types are only created if you have all specific Power BI and Data Catalog per-
missions.

l The Power BI assets are created in the domain (or domains) that you specify in the
Power BI <source ID> configuration file.

l Relations that were created between Power BI assets and other assets via a relation
type in the Power BI operating model, are deleted upon synchronization. The same
is true of any attribute types in the operating model that you add to Power BI assets.
To ensure that the characteristics you add to Power BI assets are not deleted upon
synchronization, be sure to use characteristics that are not part of the Power BI oper-
ating model.

Supported subscriptions

You need one of the following subscriptions to ingest Power BI metadata in Data Catalog.
The metadata collected by the lineage harvester is the same, regardless of your
subscription.

l Power BI Pro.
l Power BI Premium.
l Power BI Premium Per User.

Other Power BI subscriptions are currently not supported.

Power BI metadata

Certified data sets and reports

If a data set or report in Power BI is certified, the corresponding Power BI Data Model and
Power BI Report assets in Collibra are automatically certified, as identified by the Certified
attribute. If, however, certification of a data set or report in Power BI is rescinded, the
corresponding assets in Collibra still identify as being certified.

Important Collibra Data Lineage can connect only to datasets that are hosted by
Power BI. It cannot connect to externally hosted datasets or models. For complete
information, consult Microsoft's Power BI documentation.

xxix

https://learn.microsoft.com/en-us/power-bi/connect-data/service-datasets-understand

Partial access to metadata of certain Power BI elements

The lineage harvester can only partially access metadata of the following Power BI
elements:

l Classic Power BI workspaces, which include MyWorkspace. Only a full ingestion of
new Power BI workspaces is supported.

l Descriptions of most Power BI elements.
l Power BI apps are not ingested. They can, however, be ingested as Power
BI Reports.

Note The prefix "[App]" in the name of a Power BI Report asset indicates that
the report is distributed as part of an app, in Power BI. Direct links to app
reports are only available if the name of the original report matches the name
of the app report, and if the name is unique. In all other cases, the URL on the
asset page links to the app, not to the app report.

The lineage harvester cannot access metadata of the following Power BI elements:

l Tile subtitles.
l Data from external sources supplying the input for the Power Query expressions in
Power BI.

Power BI datamarts are currently not supported.

The Power BI API doesn't provide information about the dataset ID for Paginated Reports,
therefore lineage for Paginated Reports is not available.

Important The Collibra Data Lineage service can process most, but not all,
complex Power BI metadata. This means that the success rate of a Power BI
ingestion can be very high, but almost never 100%.

Known issues

The following table presents the known issues of the Power BI integration in Collibra Data
Intelligence Cloud.

xxx

https://docs.microsoft.com/en-us/power-bi/collaborate-share/service-new-workspaces
https://docs.microsoft.com/en-us/power-bi/consumer/end-user-apps
https://docs.microsoft.com/en-us/power-bi/consumer/end-user-tiles
https://docs.microsoft.com/en-us/power-query/power-query-what-is-power-query

Known issue Description

The data set Report Usage
Metrics Model cannot be
ingested.

The Report Usage Metrics Model is a data set that is automatically created
by Power BI. This data set does not contain actual data, which means that
they contain nothing to ingest into Data Catalog.

However, the lineage harvester still tries to access the metadata and, since
there is nothing to access, shows an error message. All error messages
about the Report Usage Metrics can be ignored.

Report attributes are not
returned by the API.

When harvesting Power BI, report attributes are not returned by the API.
Therefore, for a given report, Collibra Data Lineage creates a dummy report
attribute. This dummy report attribute is identified in the technical lineage by
an asterisk (*), as shown in the following example image. Links are drawn
from all data attributes in the data set that were used to create the report, to
the dummy report attribute.

Power BI assets that are
moved to a different domain
are deleted after
synchronization.

Warning We highly recommend that you do not move the ingested
assets to other domains. If you do, the assets will be deleted and
recreated in the initial Data Catalog BI domain (or domains) when
you synchronize Power BI. As a result, any manually added
characteristics of those assets are lost.

You have successfully
ingested Power BI metadata,
but calculated tables and
columns are not shown in the
Technical lineage or in the
browse tab pane.

Calculated columns are virtually the same as a non-calculated columns,
with one exception: their values are calculated using DAX formulas and
values from other columns. Collibra Data Lineage currently does not
support internal transformations via DAX language, and any data objects
derived via DAX are not shown in the technical lineage or in the browse tab
pane. Currently, only M Query/Power Query expressions are supported.

You get an error message that
mentions one of the following:

l “… function not
implemented”

l “invalid lexical element”

This means that the specific integration feature is not currently supported.

Tip You can add your ideas for product enhancements and new
features in the Collibra Integrations Ideation Portal.

xxxi

https://docs.microsoft.com/en-us/power-bi/collaborate-share/service-modern-usage-metrics#about-the-improved-usage-metrics-report
https://productresources.collibra.com/ideation-platform/

Power BI authentication
You have to attain authentication to access Power BI metadata. Your authentication
method determines how you retrieve the metadata. The lineage harvester supports two
authentication methods:

l Username and password
l Service principal

The metadata harvesting process is different for each authentication method. Therefore,
different configurations in Microsoft Azure and Power BI are required.

Note We highly recommend that you use the service principal authentication, as
detailed metadata scanning in Power BI is designed for use with service principal
authentication.

Tip
You can use a cURL command to check whether or not you can use username and
password authentication.

Show me how
Run the following command, where the bolded text refers to your information:
curl -v “https://login.microsoftonline.com/<your
environment>.onmicrosoft.com/oauth2/v2.0/token” -F client_
id=<your ID> -F “username=<your username>” -F “password=<your
password>” -F
“scope=https://analysis.windows.net/powerbi/api/.default” -F
grant_type=password

To check on Windows, follow these steps:

1. Download and install the cURL Command-Line Tool.
2. In Windows, click Start > Run, and then enter cmd in the Run dialog box.
3. Run the following command, where the bolded text refers to your information:

“https://login.microsoftonline.com/<your
environment>.onmicrosoft.com/oauth2/v2.0/token” -F client_
id=<your ID> -F “username=<your username>” -F
“password=<your password>” -F
“scope=https://analysis.windows.net/powerbi/api/.default” -
F grant_type=password

xxxii

#harvesting_process
https://www.oracle.com/webfolder/technetwork/tutorials/obe/cloud/objectstorage/restrict_rw_accs_cntainers_REST_API/files/installing_curl_command_line_tool_on_windows.html

Note To ingest Power BI dataflows:

l You need access to the Power BI environment in which the data flow is stored.
l The data set in the data flow must exist in a premium workspace.

Username and password

The username and password authentication method relies on the username, in the form of
an email address, and a password you provide to access the Power BI metadata.

To use the username and password authentication method, you need to be an Azure
Active Directory user with a Power BI admin role in Power BI.

When you become an Azure Active Directory user, a new email address is created. This
email address is the username you use to sign in to Power BI. You can store the username
and password you use to sign in to Power BI in the lineage harvester configuration file.

Note Only Azure Administrators can create users and require them to authenticate
via username and password. The Azure Administrator also assigns the user the
Power BI admin role. This user is only created for the purpose of Power BI
integration in Collibra Data Intelligence Cloud. The user in Azure should have a
Member user type.

Service principal

The service principal authentication method allows an Azure Active Directory application
to automatically access Power BI content and APIs.

Service principal authentication relies on the Power BI Tenant ID and the Azure Active
Directory application ID that you provide in the lineage harvester configuration file. The
password you need to access Power BI is the client secret key of the Azure Active
Directory application.

To use service principal authentication, you need to embed Power BI content with a
Service Principal and an application secret. This entails the following steps:

xxxiii

https://powerbi.microsoft.com/en-us/landing/signin/
https://docs.microsoft.com/en-us/power-bi/developer/embedded/embed-service-principal
https://docs.microsoft.com/en-us/power-bi/developer/embedded/embed-service-principal

l In the Power BI Admin portal:
o Enable the Allow service principals to use read-only Power BI admin APIs
option.

o Enable the Allow service principal to use Power BI APIs option in the
Developer settings.

Note This option is no longer required. You can leave it enabled, but
you can also safely disable it, if you prefer.

o Enable the Enhance admin APIs responses with detailed metadata option.
o Enable the Enhance admin APIs responses with DAX and mashup expres-
sions option.

Note You need Power BI administrator rights to access the Power BI Admin
portal.

Tip Do not confuse the Allow service principals to use read-only Power BI admin
APIs option with the Allow service principal to use Power BI APIs option. You
need to enable both options.

Register Power BI in Microsoft Azure and set permissions
Before you set up the lineage harvester, make sure that the harvester can reach Power
BI by registering Power BI in Azure and setting the necessary permission to harvest the
metadata.

We highly recommend that you read about supported authentication methods before you
register Power BI in Microsoft Azure.

Warning This procedure is performed outside of Collibra. A third-party might
change the software without notification, which can render this documentation out-
of-date. We highly recommend that you carefully read the source documentation.

xxxiv

https://docs.microsoft.com/en-us/power-bi/admin/service-admin-portal
https://docs.microsoft.com/en-us/power-bi/admin/read-only-apis-service-principal-authentication
https://docs.microsoft.com/en-us/power-bi/developer/embedded/embed-service-principal#step-3---enable-the-power-bi-service-admin-settings
https://docs.microsoft.com/en-us/power-bi/admin/service-admin-metadata-scanning-setup
https://docs.microsoft.com/en-us/power-bi/admin/service-admin-metadata-scanning-setup

Steps

Tip The content in this topic is different for the username / password authentication
method or service principal authentication method. We highly recommend that you
read the following instructions carefully before you register Power BI in Microsoft
Azure:

l Service principal instructions
l Username / password instructions

1. Register Power BI in the Azure Portal using the following settings:

Setting Description

Name The name of your Power BI application.

Supported account types The type of tenant. This indicates who can access the Power BI
application.

In this case, the supported account type must be Single tenant.

Redirect URI The location to which a user's client is redirected and where security
tokens are sent after a successful authorization.

In this case, the redirected URI must be Web, but you do not have to
specify any web location.

» When you have registered Power BI, the Azure portal creates two important IDs
that you need in the lineage harvester configuration file:

o The Application (client) ID
o The Directory (tenant) ID

Note We highly recommend that you store these IDs for further use. You can
find the IDs in the Overview pane on the Azure portal or in the top right menu.

2. Create a user with the Power BI Administrator role (only for username / password
authentication).

xxxv

https://docs.microsoft.com/en-us/power-bi/developer/embedded/embed-service-principal
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://docs.microsoft.com/en-us/power-bi/admin/service-admin-role

Note
o The user must have administrator rights (such as Office 365 Global
Administrator or Power BI Service Administrator) in Power BI. (only for
username / password authentication)

o Delegated permissions are supported.

3. In the Azure portal, go to the Authentication pane and do the following:
a. Go to the Advanced settings section.
b. Set the Treat application as a public client to Yes.

Note When Power BI is registered in Microsoft Azure, the Treat
application as a public client setting label changes to Allow public
client flows.

4. Go to the API permissions pane and do the following:
a. Select Delegated permissions as permission type.
b. Grant the Power BI application in Microsoft Azure the Microsoft Graph User-

.Read permission.
c. Grant the Power BI application in Microsoft Azure all Power BI Service per-

missions (only for username / password authentication).
d. Set Admin consent required for Tenant.ReadAll permission to Yes (only for

username / password authentication).

Note Also ensure that the user who runs the lineage harvester has
been granted the Admin consent.

» The user now has the following permissions:
o Microsoft Graph

n User.Read

Important You cannot have any API permissions with Admin consent
set to Yes.

o Power BI Service (only for username / password authentication)
n App.Read.All
n Capacity.Read.All
n Dashboard.Read.All

xxxvi

n Dataflow.Read.All
n Group.Read.All
n Report.Read.All
n Workspace.Read.All
n Tenant.Read.All: You need explicit Admin consent. If you have
explicit Admin consent, "granted for" is shown in the Status column.

5. In the Power BI Admin portal, do the following (only for service principal authen-
tication):
a. Enable the Allow service principals to use read-only admin APIs option.
b. Enable the Allow service principals to use Power BI APIs option in the

Developer settings.

Note This option is no longer required. You can leave it enabled, but
you can also safely disable it, if you prefer.

c. Enable the Enhance admin APIs responses with detailed metadata option.
d. Enable the Enhance admin APIs responses with DAX and mashup expres-

sions option.
e. Apply the option to specific security groups.
f. Enter the name of the security group to which you want to add the service prin-

cipal.

Warning The Power BI APIs do not support mail-enabled security groups.

Note You need Power BI administrator rights to access the Power BI Admin
portal.

6. In the Power BI Admin portal, do the following(Only for username / password authen-
tication):

Note Apply the integration setting to the entire organization (default) or to the
specific security group to which your workspaces belong.

xxxvii

https://docs.microsoft.com/en-us/power-bi/admin/service-admin-portal
https://docs.microsoft.com/en-us/power-bi/admin/read-only-apis-service-principal-authentication
https://docs.microsoft.com/en-us/power-bi/developer/embedded/embed-service-principal#step-3---enable-the-power-bi-service-admin-settings
https://docs.microsoft.com/en-us/power-bi/admin/service-admin-metadata-scanning-setup
https://docs.microsoft.com/en-us/power-bi/admin/service-admin-metadata-scanning-setup
https://docs.microsoft.com/en-us/power-bi/admin/service-admin-portal

a. Enable the Enhance admin APIs responses with detailed metadata option.
b. Enable the Enhance admin APIs responses with DAX and mashup expres-

sions option.

The metadata harvesting process
Collibra uses Power BI REST APIs to harvest Power BI metadata.

To enable the lineage harvester to access metadata in Power BI workspaces, you must
have the correct configurations in Microsoft Azure.

Note There are some limitations to the metadata harvesting process. Ensure that
you understand these limitations before you start the harvesting process.

Overview of the metadata harvesting process with username /
password authentication

xxxviii

https://docs.microsoft.com/en-us/power-bi/admin/service-admin-metadata-scanning-setup
https://docs.microsoft.com/en-us/power-bi/admin/service-admin-metadata-scanning-setup

Step Description

1 The lineage harvester uses the username, password and application ID to access the Power BI
APIs. These APIs retrieve basic Power BI metadata, for example metadata in the Power BI tenant
or server and reports.

2 The lineage harvester uses Power BI API calls to retrieve more specific metadata, for example
Power BI columns and lineage.

Important The Power BI application in Microsoft Azure must be granted
administrator rights, such as Office 365 Global Administrator or Power BI Service
Administrator. Delegated permissions are supported.

Note The lineage harvester accesses the metadata of all Power BI workspaces. If
you don't use filtering, all workspaces are ingested in Collibra. We recommend that
you use filtering and domain mapping to structure your Power BI assets in Collibra.

Overview of the metadata harvesting process with service principal
authentication

xxxix

Step Description

1 The lineage harvester uses the application ID and the client secret key of the Azure Active
Directory application to access the Power BI APIs. These APIs retrieve basic Power BI metadata,
for example metadata in the Power BI tenant or server and reports.

2 The lineage harvester uses Power BI API calls to retrieve more specific metadata, for example
Power BI columns and lineage.

Note The lineage harvester accesses the metadata of all Power BI workspaces. If
you don't use filtering, all workspaces are ingested in Collibra. We recommend that
you use filtering and domain mapping to structure your Power BI assets in Collibra.

Set up SSRS-PBRS
Before you start the SSRS-PBRS integration, you have to enable Collibra to access your
SSRS-PBRS data.

You need the following roles, with user access to the server from which you want to ingest:

l A system-level role that is at least a System user role.
l An item-level role that is at least a Content Manager role.

We recommend that you use SQL Server 2019 Reporting Services or newer. We can't
guarantee that older versions will work.

Limitations
l Transformations are not included in the integration. Therefore, no transformations
details are shown on the Sources tab page.

l Some of the more complex SQL queries might not be supported.

Set up Tableau
Before you start the Tableau integration in Data Catalog, make sure that the lineage
harvester can reach the Tableau metadata. Perform these tasks before you start the actual
Tableau ingestion process.

xl

Warning Because these tasks are performed outside of Collibra, it is possible that
the content changes without us knowing. We strongly recommend that you carefully
read the source documentation.

Tableau ingestion considerations
There are currently three supported methods for integrating Tableau metadata in Data
Catalog:

l Via Edge
l Via the lineage harvester
l Via the Data Catalog user interface

Warning As of October 2022, Tableau is enforcing multi-factor authentication for
Tableau Cloud Admin users. However, the lineage harvester doesn’t support multi-
factor authentication. Therefore, Tableau Cloud users with an Admin role must use
token-based authentication. This does not affect Tableau Server users or Tableau
Cloud users with an Explorer role.

l Data Catalog uses Tableau's REST API to get metadata information and follows
Tableau's requirements regarding authentication methods. As such, you need a
Tableau user with access to the relevant Tableau sites. For more information, see
the Tableau documentation.

l If you use custom SQL that is not supported by the Tableau metadata API, the tech-
nical lineage might not be complete. For complete information, see the Tableau doc-
umentation on Tableau Catalog support for custom SQL and Tableau Lineage and
custom SQL connections.

l If you use stored procedures, lineage is shown between the Tableau Data Source
and the Tableau Worksheet, but the database information is missing, so stitching
cannot be achieved.

l Collibra Data Lineage partially supports Unions and Joins. For example, Unions cre-
ated via the Tableau UI are not represented in Data Catalog. Tableau Data Sources
created via custom SQL are supported.

l Hidden Tableau worksheets are currently ingested in Collibra. You can find them by
filtering on the attribute “Visible on server”, which has the value "false".

xli

to_tableau-integration.htm
https://onlinehelp.tableau.com/v2018.2/api/rest_api/en-us/help.htm#REST/rest_api_concepts_auth.htm
https://help.tableau.com/current/pro/desktop/en-us/customsql.htm#tableau-catalog-support-for-custom-sql
https://help.tableau.com/current/online/en-us/dm_lineage.htm#lineage-and-custom-sql-connections
https://help.tableau.com/current/online/en-us/dm_lineage.htm#lineage-and-custom-sql-connections

l Data fields are ingested with their actual names. Labels and aliases are not returned
by the APIs.

Tableau versions and licenses
Before you ingest Tableau metadata in Data Catalog via the lineage harvester, you must
ensure that the lineage harvester can access and harvest the Tableau metadata.

Important If you want to create a technical lineage and stitch your Tableau assets
to assets in Data Catalog, you must enable the Tableau metadata API in Tableau.

Supported versions

We will continue to update this list of supported versions, but we don't expect any issues
with future versions of Tableau.

l 2023.1
l 2022.x
l 2021.4
l 2021.3
l 2021.2
l 2021.1
l 2020.4
l 2020.3
l 2020.2

License

Tableau ingestion results depend, in part, on whether or not you have the Data
Management Add-on, which requires licensing. For more information about licensing the
Data Management Add-on, see the Tableau documentation.

Tableau roles and permissions
The lineage harvester uses the Tableau Rest APIs and Tableau Metadata API to ingest
the Tableau metadata. You need at least the minimum permissions in Tableau to enable

xlii

https://help.tableau.com/current/server/en-us/cli_maintenance_tsm.htm#cat_enable
https://help.tableau.com/current/online/en-us/dm_perms_assets.htm#access-lineage-information

the lineage harvester to access the Tableau metadata and ingest it in Data Catalog.

Permissions on metadata

Permissions control who is allowed to see and manage external assets and which
metadata (for both Tableau content and external assets) is shown through lineage.

Tip In Tableau, the term "external asset" refers to databases, files and tables that
act as Tableau data sources. You need to be able to access external assets if you
want to ingest lineage information and benefit from stitching. If you only want to
ingest Tableau assets and view the lineage between those assets, it is sufficient to
have access only to data objects in Tableau.

No particular role or permissions are needed to allow the lineage harvester access to data
objects in Tableau and external assets for which you are the owner. The lineage harvester
can automatically access all such data.

Roles in Tableau

The different roles in Tableau allow for different levels of access to data objects in Tableau
and external assets.

Viewer role

With the Viewer role, you cannot access external assets, regardless of any other factors,
for example even if you are the Project Leader for the projects you want to ingest.

Tableau Data Attributes and Tableau Data Models are ingested as assets in Data Catalog
and you can view the lineage for the ingested assets up until the table level only.

Explorer role

With the Explorer role, your access to external assets depends on the following combined
factors:

l Whether or not your Tableau Online or Tableau Server is licensed with the Data Man-
agement add-on.

xliii

l Whether or not you are a Project Leader for the projects you want to ingest.
l Whether or not derived permissions are turned on in Tableau.

Here are a few tested configurations for the Explorer role:

Combination of accessibility factors You can access...

l Data Management add-on: Yes
l Project leader: Yes
l Derived permissions: No

l All Tableau data objects.
l External assets.

l Data Management add-on: No
l Project leader: Yes
l Derived permissions: Yes

l All Tableau data objects.
l External assets for which you have derived per-
missions.

l Data Management add-on: No
l Project leader: Yes
l Derived permissions: No

l All Tableau data objects only.

l Data Management add-on: No
l Project leader: No
l Derived permissions: Yes

If you have manually granted permissions for all projects you
want to ingest, on all levels, including databases and tables, you
can access:

l All Tableau data objects for which you have per-
missions.

l External assets for which you have permissions.

Important If you use the Explorer role, ensure that you configure the mandatory
settings in Tableau, as described further on in this topic.

For complete information, see the Tableau documentation.

Tableau Server Administrator or Tableau Site Administrator

With either or these roles, you can access all Tableau data objects and external assets,
regardless of any other factors. No permissions need to be configured.

xliv

https://help.tableau.com/current/online/en-us/dm_perms_assets.htm#access-lineage-information

Note Tableau users with a Server Administrator role have access to the entire
Tableau Server. Tableau users with a Site Administrator role can only be assigned
to specific Tableau sites. As a result, if you have the Site Administrator role, only
metadata from specific Tableau sites can be ingested in Data Catalog.

Minimum roles and permissions in Tableau

To harvest Tableau metadata, you need the following minimum roles and permissions in
Tableau:

l You have a View permission on the Tableau projects, workbooks and data sources
you want to ingest.

l You have a Viewer role with access to the Tableau REST API.

Important With the minimum roles and permissions, you can harvest Tableau
metadata, ingest the corresponding Tableau assets and view the lineage between
those assets. However, you cannot access external assets, meaning the
databases, files and tables that act as Tableau data sources. Therefore, stitching is
not possible.

Recommended roles and permissions in Tableau

For a full ingestion, you have to be able to access the external assets. We recommend the
following roles and permissions in Tableau:

l You have at least a View permission on the Tableau projects, workbooks and data
sources you want to ingest.

l You have an Administrator role or you have the Explorer role with a sufficient com-
bination of accessibility factors, as previously described in Explorer role.

Mandatory settings in Tableau

If you use the Explorer role, you have to ensure that the lineage harvester can access all of
the lineage information. Specifically, as a Tableau administrator, click Settings > General,
and ensure that the following options are selected:

xlv

l Automatically grant authorized users access to metadata about databases and
tables

l Show complete lineage (default)

Show me an image

If you use the Explorer role and you have access to a subproject, but not the parent
project, the parent project is ingested with the Tableau UUID, to maintain the hierarchy of
assets.

For complete information on ingestion results based on your Tableau permissions, see
Tableau ingestion results.

Tableau ingestion results
The following tables shows the ingestion results based on Tableau permissions.

By default, the lineage harvester uses both the Tableau REST API and the Tableau
Metadata API, but you can limit the ingestion by allowing the lineage harvester to use only
the Tableau REST API.

Note If you ingest a Tableau dataset that doesn't have any attributes, asterisks (*)
are shown as the Tableau Data Attribute asset names in Collibra.

xlvi

Tableau site role Result in Data Catalog

Viewer Tableau reports and data sources are ingested into Data Catalog, but with a limited
scope.

Resulting asset types:

l Tableau Dashboard
l Tableau Data Model
l Tableau Project
l Tableau Server
l Tableau Site
l Tableau Workbook
l Tableau Worksheet
l Tableau Data Attributes

Warning Tableau Data Attributes are only ingested if the Metadata
API is enabled in Tableau.

Important Collibra Data Lineage cannot retrieve lineage information or
perform automatic stitching.

Explorer, without
access to external
assets.

For more
information, see
Tableau roles and
permissions.

Tableau reports and data sources are ingested into Data Catalog, but with a limited
scope.

Resulting asset types:

l Tableau Server
l Tableau Site
l Tableau Project
l Tableau Dashboard
l Tableau Data Model
l Tableau Workbook
l Tableau Worksheet
l Tableau Data Attributes

Warning Tableau Data Attributes are only ingested if the Metadata
API is enabled in Tableau.

Important We cannot retrieve lineage information or perform automatic
stitching. This is the case if you don't have the Data Management add-on or
derived permissions for the external assets.

xlvii

Tableau site role Result in Data Catalog

One of the following:

l Tableau
Server Admin-
istrator

l Tableau Site
Administrator

l Explorer with
access to
external
assets.
For more
information,
see Tableau
roles and per-
missions.

Data Catalog creates new assets according to your content in Tableau using metadata
in Tableau databases and tables.

Resulting asset types:

l Tableau Server
l Tableau Site
l Tableau Project
l Tableau Dashboard
l Tableau Data Model
l Tableau Workbook
l Tableau Worksheet
l Tableau Data Attributes

Warning Tableau Data Attributes are only ingested if the Metadata
API is enabled in Tableau.

Warning The Metadata API must be enabled in Tableau to retrieve
lineage information or perform automatic stitching.

Prepare an external directory folder for the
lineage harvester
If you want to create a technical lineage for Informatica PowerCenter, SQL Server
Integration Services (SSIS) or IBM InfoSphere DataStage data sources, you have to
prepare a folder with the external directory's data source files.

If the external directory files do not have the necessary information, for example a
database and a schema, to stitch the data sources, you have to provide the connection
definitions manually via a JSON configuration file, as addressed in the following
procedure. This is required at each connection, regardless of whether the
useCollibraSystemName property in the lineage harvester configuration file is set to
true or false.

xlviii

Tip Go to the online version of the user guide for more detailed steps and
examples.

Prerequisites
l You have IBM InfoSphere Information Server version 11.5 or newer.
l You have Informatica PowerCenter version 9.6 or newer.
l You have SQL Server Integration Services 2012 or newer with package format ver-
sion 6 or newer.

l You have Microsoft Visual Studio version 2012 or newer.
l You have downloaded the lineage harvester and you have the necessary system
requirements to run it.

l You have prepared the physical data layer in Data Catalog.

Note To stitch the data objects in the source and target data sources in
external directories with Data Catalog assets, you first have to register those
data sources in Data Catalog.

Steps to create a technical lineage for Informatica
PowerCenter

1. Create a local folder.

2. Export the Informatica objects or repository for which you want to create a technical
lineage to the local folder.
If your folder contains previous versions of the parameter files, objects might be
duplicated across different file versions. Collibra Data Lineage ignores any
duplicated objects and issues an error message. For example, if a parameter file is
exported after a column was added to a table, duplicated objects exist if the previous
version of the parameter file remains in the folder. To avoid duplicated objects,
export all objects and parameter files at the same time.

xlix

https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0771
#stitching
to_register-data-source.htm

Note
o All XML and parameter files, for example PAR, TXT or PRM files in this
folder and its subfolders are taken into account when you create a
technical lineage, but Collibra Data Lineage only shows a technical
lineage for workflows that have mappings with sources, transformations
and targets. Collibra supports the most common Informatica
PowerCenter transformations. For more information, see the Informatica
PowerCenter documentation.

o A technical lineage is created when the following tags are present in
your XML file:

n <REPOSITORY>
n <FOLDER>
n <SOURCE> / <TARGET>
n <SESSION>
n <MAPPING>
n <TRANSFORMATION> (within a <MAPPING> tag)

3. In the local folder, create a folder named techlin-param and put the parameter files in
the techlin-param folder.

4. Optionally, create a source ID configuration file with connection definitions and
system names:

Tip If you previously created a technical lineage for Informatica PowerCenter
with connection definitions, the connection_definitions.conf file will still be
taken into account.

a. Create a new JSON file in the lineage harvester config folder.
b. Give the JSON file the same name as the value of the Id property in the

lineage harvester configuration file.

Example The value of the Id property in the lineage harvester
configuration file is informatica-source-1. As a result, the name of
your JSON file should be informatica-source-1.conf.

l

https://docs.informatica.com/data-integration/powercenter/10-5/repository-guide/exporting-and-importing-objects/steps-to-export-objects.html
https://docs.informatica.com/data-integration/powercenter/10-5/repository-guide/exporting-and-importing-objects/steps-to-export-objects.html

c. For each data source, add the following content to the JSON file:

Property Description

connectionDefinitions This section contains the connection properties to a source
in Informatica PowerCenter.

<connectionName> The type of your source or target data source.

This section contains the connection properties to a source
or target in Informatica PowerCenter.

dbname The name of your source or target database.

schema The name of your source or target schema.

li

Property Description

dialect The dialect of the referenced database.

lii

Property Description

Tip
You can enter one of the following values:

n azure, for an Azure SQL Server data
source.

n bigquery, for a Google BigQuery data
source.

n db2, for an IBM DB2 data source.
n hana, for an SAP HANA data source.
n hana-cviews, for getting lineage from

calculated views in an SAP HANA data
source.

Important
n The hana-cviews dialect is

supported for SAP HANA (on-
premises). It is not supported for
SAP HANA Cloud.

n To get technical lineage
including calculated views, you
must harvest SAP HANA by
specifying two data sources in
the lineage harvester
configuration file. In one data
source, specify the hana dialect,
and in the other, specify the
hana-cviews dialect.

n hive, for a HiveQL data source.
n greenplum, for a Greenplum data source.
n mssql, for a Microsoft SQL Server data

source.
n mysql, for a MySQL data source.
n netezza, for a Netezza data source.
n oracle, for an Oracle data source.
n postgres, for a PostgreSQL data source.
n redshift, for an Amazon Redshift data

source.
n snowflake, for a Snowflake data source.
n spark, for a Spark SQL data source.
n sybase, for a Sybase data source.
n teradata, for a Teradata data source.

liii

Property Description

collibraSystemNames This section contains the system or server name that is
specified in your database and referenced in your
connection.

Note This section is only required when the
useCollibraSystemName flag in the lineage
harvester configuration file is set to true.

databases This section contains the database information. This is
required to connect directly to the system or server of the
database.

dbname The name of the database. The database name is the
same as the name you entered in the
<connectionName> section.

collibraSystemName The system or server name of the database.

connections This section contains the connection information. This is
required to reference to the system or server of the
connection.

connectionName The name of the connection.

collibraSystemName The system or server name of the connection.

Important If you are using variables in Informatica PowerCenter, add the
value of the variable instead of the name in the connection definitions
JSON file. For example, if the parameter file contains $DBConnection_
dwh=DWH_EXPORT then you add the following connection definitions to the
JSON file:

{
"DWH_EXPORT":

{ "dbname": "DWH", "schema": "DBO" }
}

liv

5. Add a new section for Informatica PowerCenter to the lineage harvester
configuration file.

Steps to create a technical lineage for SQL Server
Integration Services

1. Create a local folder.

2. Export the SSIS files for which you want to create a technical lineage.

Tip You can export them directly from the SQL Server Integration Services
repository or via Microsoft Visual Studio. For more information, see the
SQL Server Integration Services documentation.

3. Store the SSIS files to your local folder. Typically, the folder contains the following
files:

o SSIS package files (DTSX), containing the SQL Server Integration Services
source code.

o Connection manager files (CONMGR), containing environment and connection
information.

o Parameter files (PARAMS), if applicable.

Note
o All files in this folder and subfolders are taken into account when you
create a technical lineage. The lineage harvester automatically detects
data sources in the SSIS files.

o Not all SSIS files are processed and shown in the technical lineage. The
lineage harvester retrieves all of the SSIS package files from the server,
but only the files that contain lineage information, meaning those that
contain a data flow, or Pipeline, are processed.

4. Optionally, configure the connection definitions:

Tip If the useCollibraSystemName in the lineage harvester configuration
file is set to true, you must provide the connection_definitions.conf file.

lv

https://learn.microsoft.com/en-us/sql/integration-services/service/package-management-ssis-service?view=sql-server-ver16#import-and-export-packages

a. Create a new JSON file in the local folder.
b. Name the JSON file connection_definitions.conf.
c. For each supported data source, specify the relevant translations.

Property Description

ConnStringRegExTranslation The parent element that opens the connection definitions.

lvi

Property Description

<regular expression> A regular expression that must match one or more connection
strings.

Note
Important considerations:

n By default, the regular expression is not case
sensitive. As a consequence, a regular
expression can match with connection
strings containing uppercase characters or
lowercase characters.

n The connection string is part of the SSIS
connection manager.

n SSIS connection managers are included in
an SSIS package files (DTSX) or in
connection manager files (CONMGR).

Example
Regular expression: Server=sb-dhub;User
ID=SYB_USER2;Initial
Catalog=STAGEDB;Port=6306.*
Explanation: The first section, up to .*, is a literal, but
not case-sensitive, match of the characters. The dot
(.) can match any single character. The asterisk (*)
means zero or more of the previous, in this case any
character.
Match: Any connection string that starts with
Server=sb-dhub;User ID=SYB_
USER2;Initial
Catalog=STAGEDB;Port=6306.
Example: Server=sb-dhub;User
ID=SYB_USER2;Initial
Catalog=STAGEDB;Port=6306;Persist
Security Info=True;Auto
Translate=False;.

dbname The name of your database, to which the data source
connection refers.

lvii

https://docs.microsoft.com/en-us/sql/integration-services/connection-manager/integration-services-ssis-connections?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/integration-services/connection-manager/integration-services-ssis-connections?view=sql-server-ver15

Property Description

schema The name of your schema, to which the regular expression
refers.

lviii

Property Description

dialect The dialect of the referenced database.

Tip
You can enter one of the following values:

n azure, for an Azure SQL Server data source.
n bigquery, for a Google BigQuery data

source.
n db2, for an IBM DB2 data source.
n hana, for an SAP HANA data source.
n hana-cviews, for getting lineage from

calculated views in an SAP HANA data
source.

Important
n The hana-cviews dialect is

supported for SAP HANA (on-
premises). It is not supported for
SAP HANA Cloud.

n To get technical lineage including
calculated views, you must
harvest SAP HANA by specifying
two data sources in the lineage
harvester configuration file. In one
data source, specify the hana
dialect, and in the other, specify
the hana-cviews dialect.

n hive, for a HiveQL data source.
n greenplum, for a Greenplum data source.
n mssql, for a Microsoft SQL Server data

source.
n mysql, for a MySQL data source.
n netezza, for a Netezza data source.
n oracle, for an Oracle data source.
n postgres, for a PostgreSQL data source.
n redshift, for an Amazon Redshift data

source.
n snowflake, for a Snowflake data source.
n spark, for a Spark SQL data source.
n sybase, for a Sybase data source.
n teradata, for a Teradata data source.

lix

Property Description

collibraSystemName The name of the referenced data source's system or server.

This property is only required when you set the
useCollibraSystemName property in the lineage harvester

configuration file to true. If this property is set to false,

you can remove the collibraSystemName property or enter an
empty string.

Note Specify this property with the same name
as the name of the System asset that you create
when you prepare the physical data layer in
Data Catalog. If you don't prepare the physical
data layer, Collibra Data Lineage cannot stitch
the data objects in your technical lineage to the
assets in Data Catalog.

If the “useCollibraSystemName" property is:

n false, system or server names in table references

in analyzed SQL code are now ignored. This means
that a table that exists in two different systems or
servers is identified (either correctly or incorrectly)
as a single data object, with a single asset full name.

n true, system or server names in table references

are considered to be represented by different
System assets in Data Catalog. The value of the
"collibraSystemName" field is used as the default
system or server name.

5. Add a section for SQL Server Integration Services to the lineage harvester
configuration file.

Example of the connection_definitions.conf file
{

"ConnStringRegExTranslation": {

"Data Source=dhb-sql-prod;Initial Catalog=SFG_repl_
staging;Provider=SQLNCLI11;Integrated Security=SSPI.*": {

"dbname": "DATAHUB",
"schema": "DBO",

lx

"dialect": "mssql",
"collibraSystemName" : "WAREHOUSE"

},

"Server=sb-dhub;User ID=SYS_USER;Initial
Catalog=STAGEDB;Port=6306.*": {

"dbname": "STAGEDB",
"schema": "STAGE_OWNER",
"dialect": "sybase",
"collibraSystemName" : ""

}

}
}

Steps to create a technical lineage for DataStage

1. Create a local folder.

2. Export the DataStage project files (DSX) for which you want to create a technical
lineage.

Tip You can either export a DataStage project manually or automatically via
command line.

3. Store the DataStage files in your local folder.

4. Optionally, if your DataStage project uses environment variables, manually export
the environment files (ENV).

5. Give the environment files the same name as the DataStage project files. For
example, if your project file is named datastage-project-1.dmx, name your
environment file datastage-project-1.env.

6. Store the environment files in the same local folder.

Important
o Collibra Data Lineage only supports DSX and ENV files.
o You can have one DSX file per DataStage project.
o You can have more than one DSX file in the local folder.

lxi

https://www.ibm.com/support/knowledgecenter/SSZJPZ_11.7.0/com.ibm.swg.im.iis.productization.iisinfsv.migrate.doc/topics/a_exporting_projects.html
https://www.ibm.com/support/knowledgecenter/SSZJPZ_11.7.0/com.ibm.swg.im.iis.ds.design.doc/topics/usingexportfromthecommandline.html
https://www.ibm.com/docs/en/iis/11.7?topic=variables-exporting-environment
https://www.ibm.com/docs/en/iis/11.7?topic=variables-exporting-environment

o You can have one or none ENV file per DSX file.
o The name of the DSX file and the ENV file has to be the same.

7. Optionally, configure the connection definitions:
a. Create a new JSON file in the local folder.
b. Name the JSON file connection_definitions.conf.
c. For each data source, specify the relevant translations:

Property Description

OdbcDataSources Open Database Connectivity data sources in IBM
InfoSphere DataStage for which you want to create a
technical lineage.

<data-source-name> The ODBC data source name that you use in your
DataStage projects.

This section contains the properties to translate the
database, schema and dialect.

dbname The name of your database, to which the ODBC data
source connection refers.

schema The name of your schema, to which the ODBC data source
connection refers.

lxii

Property Description

dialect The dialect of the referenced database.

lxiii

Property Description

Tip
You can enter one of the following values:

n azure, for an Azure SQL Server data
source.

n bigquery, for a Google BigQuery data
source.

n db2, for an IBM DB2 data source.
n hana, for an SAP HANA data source.
n hana-cviews, for getting lineage from

calculated views in an SAP HANA data
source.

Important
n The hana-cviews dialect is

supported for SAP HANA (on-
premises). It is not supported for
SAP HANA Cloud.

n To get technical lineage
including calculated views, you
must harvest SAP HANA by
specifying two data sources in
the lineage harvester
configuration file. In one data
source, specify the hana dialect,
and in the other, specify the
hana-cviews dialect.

n hive, for a HiveQL data source.
n greenplum, for a Greenplum data source.
n mssql, for a Microsoft SQL Server data

source.
n mysql, for a MySQL data source.
n netezza, for a Netezza data source.
n oracle, for an Oracle data source.
n postgres, for a PostgreSQL data source.
n redshift, for an Amazon Redshift data

source.
n snowflake, for a Snowflake data source.
n spark, for a Spark SQL data source.
n sybase, for a Sybase data source.
n teradata, for a Teradata data source.

lxiv

Property Description

collibraSystemName The name of the data source's system or server.

This property is only required when you set the
useCollibraSystemName property in the lineage harvester

configuration file to true. If this property is set to false,

you can remove the collibraSystemName property or enter
an empty string.

Note
Specify this property with the same name as
the full name of the System asset that you
create when you prepare the physical data
layer in Data Catalog. If you don't prepare the
physical data layer, Collibra Data Lineage
cannot stitch the data objects in your technical
lineage to the assets in Data Catalog.

NonOdbcConnectors Other data source connectors in IBM InfoSphere
DataStage for which you want to create a technical lineage.
For example, DB2, Oracle or Netezza.

Note This section is optional.

<data-source-connector-
ID>

The data source username and database of the connector
that you use in your DataStage projects. This usually looks
like for example admin@database-name. The combination
of the username and database name should be unique.

The following section contains the properties to translate
the database, schema and dialect.

dbname The name of your database, to which the data source
connection refers.

schema The name of your schema, to which the data source
connection refers.

dialect The dialect of the referenced database.

lxv

Property Description

collibraSystemName The name of the data source's system or server.

This property is only required when you set the
useCollibraSystemName property in the lineage harvester

configuration file to true. If this property is set to false,

you can remove the collibraSystemName property or enter
an empty string.

Note
Specify this property with the same name as
the full name of the System asset that you
create when you prepare the physical data
layer in Data Catalog. If you don't prepare the
physical data layer, Collibra Data Lineage
cannot stitch the data objects in your technical
lineage to the assets in Data Catalog.

Jobs The jobs that you want the lineage harvester to collect and
process to create the technical lineage.

This section is optional. The following rules apply when you
specify this section:

n Specify jobs that are executed so that the
technical lineage graph does not include any job
parameters with undefined values.

n Specify only the first and parent jobs in a
sequence of executed jobs. The lineage harvester
automatically collects all jobs that are called by the
parent jobs.
For example, if you have the a sequence of jobs
that include job1, job2, job3, job4, and job5, where
job1 calls job2, job2 calls job3, job3 calls job5, and
job4 calls job3. Specify only job1 and job4, and the
lineage harvester collects and processes all five
jobs based on the sequence.

If you do not specify this section, the lineage harvester
collects all jobs, but without proper sequencing. Therefore,
some inherited parameters might not be parsed.

lxvi

Property Description

JobParameters The runtime parameters that are not in the DSX and
ENV files. You can specify multiple job parameters.

name The name of the job parameter.

value The value of the job parameter.

lxvii

Property Description

{
"OdbcDataSources": {

"oracle-data-source": {
"dbname": "my-oracle-database",
"schema": "my-oracle-schema",
"dialect": "oracle",
"collibraSystemName": "my-system"

},
"mssql-data-source": {

"dbname": "my-mssql-database",
"schema": "my-mssql-schema",
"dialect": "mssql",
"collibraSystemName": "my-system"

}
},
"NonOdbcConnectors": {

"admin@database-name": {
"dbname": "my-netezza-database",
"schema": "my-netezza-schema",
"dialect": "netezza",
"collibraSystemName": "my-system"

},
"admin@second-database-name": {

"dbname": "my-second-netezza-database",
"schema": "my-second-netezza-schema",
"dialect": "netezza",
"collibraSystemName": "my-system"

}
},
"jobs": [

"my_job_1",
"my_job_2"

],
"jobParameters": [

{
"name": "job_parameter_name_1",
"value": "job_parameter_value_1"

},
{

"name": "job_parameter_name_2",
"value": "job_parameter_value_2"

}
]

}

lxviii

Property Description

Tip Click to copy the example to your clipboard.Example of the connection_
definitions.conf file

8. Add a section for IBM InfoSphere DataStage to the lineage harvester configuration
file.

Example of the connection_definitions.conf file
{

"OdbcDataSources": {
"oracle-data-source": {

"dbname": "my-oracle-database",
"schema": "my-oracle-schema",
"dialect": "oracle",
"collibraSystemName": "my-system"

},
"mssql-data-source": {

"dbname": "my-mssql-database",
"schema": "my-mssql-schema",
"dialect": "mssql",
"collibraSystemName": "my-system"

}
},
"NonOdbcConnectors": {

"admin@database-name": {
"dbname": "my-netezza-database",
"schema": "my-netezza-schema",
"dialect": "netezza",
"collibraSystemName": "my-system"

},
"admin@second-database-name": {

"dbname": "my-second-netezza-database",
"schema": "my-second-netezza-schema",
"dialect": "netezza",
"collibraSystemName": "my-system"

}
},
"jobs": [

"my_job_1",
"my_job_2"

],
"jobParameters": [

{

lxix

"name": "job_parameter_name_1",
"value": "job_parameter_value_1"

},
{

"name": "job_parameter_name_2",
"value": "job_parameter_value_2"

}
]

}

What's next
You can now prepare the rest lineage harvester configuration file and run it to create a
technical lineage for Informatica PowerCenter, SQL Server Integration Services, IBM
InfoSphere DataStage and, optionally, other data sources.

When you run the lineage harvester, the content in your local folder is sent to the Collibra
Data Lineage service for processing.

Note For more information about the scope, see the overview of supported data
sources.

Collibra Admins
This section caters primarily to Collibra Admins, who work with Collibra Data Lineage, as
well as with Database Owners and BI Admins, to create a technical lineage.

The lineage harvester
You use the lineage harvester to collect source code from your data sources and create
new relations between data elements from your data source and existing assets into Data
Catalog.

The lineage harvester runs close to the data source and can harvest transformation logic
like SQL scripts and ETL scripts from a specific location, for example a database table or a
folder on a file system.

lxx

The lineage harvester connects to different Collibra Data Lineage service instances based
on your geographical location and cloud provider. Ensure you have the correct system
requirements before you run the lineage harvester. If your location or cloud provider
changes, the lineage harvester re-harvests all your data sources.

Note Technical lineage is created by a cloud-based service. You only connect to
the cloud via an API call that is triggered by the lineage harvester.

The lineage harvester configuration file
The lineage harvester uses a configuration file to connect to JDBC data sources, BI tools
and ETL tools. The configuration file contains references to the data sources for which you
want to create a technical lineage. You have to prepare the configuration file if you want to
create a technical lineage and add new relations of the type "Data Element targets /
sources Data Element" between existing assets in Data Catalog, and "Column is target of /
is source of Data Attribute" between assets from ingested BI sources and assets in Data
Catalog.

Warning You can only use UTF-8 or ISO-8859-1 characters in all lineage harvester
files.

The lineage harvester components
The lineage harvester consists of components that harvest the metadata from the data
sources specified in your configuration file and send their metadata to the Collibra Data
Lineage service.

Using the lineage harvester
If you want to separately process data sources on different servers, you can use more than
one lineage harvester connected to a single Collibra Data Intelligence Cloud instance. In
this case, you can create a configuration file for the lineage harvester on each server and
configure different data sources in each configuration file.

lxxi

Note You can use different command options and arguments to perform various
actions with the lineage harvester.

Permissions

You need a global role with the System Administration global permission, for example
Sysadmin. This role must have access to all assets in the data sources in the configuration
file and be able to create new relations between these assets.

Typical workflow
You use the lineage harvester to run the full-sync command. That triggers the following
actions:

1. The lineage harvester:
o Harvests the metadata from the data sources that are specified in the con-
figuration file.

o Uploads metadata collected from all configured data sources to Collibra Data
Lineage’s Metadata Ingest Pipeline.

o Triggers the Sync Pipeline after all metadata has been completely processed.
2. The Metadata Ingest Pipeline:

o Parses the metadata for all lineage assets and relations.
o Stores the assets and relations in the cloud storage.

3. The Sync Pipeline:
o Merges all partial lineages into a single data store.
o Publishes discovered BI assets to Data Catalog.
o Matches asset IDs from Data Catalog to the assets discovered from the
metadata (stitching).

o Stores the complete lineage in the cloud storage.
o Publishes newly discovered relations to Data Catalog.

4. The Lineage Service:
o Upon request, creates HTML diagrams of the lineage.

5. Data Catalog:
o Connects to the lineage service to get the technical lineage to be shown in the
technical lineage viewer.

lxxii

co_global-permissions.htm

Note The lineage harvester can only create Power BI, Tableau, Looker and other
BI tool specific assets, if you included a reference to the specific BI tool in the
configuration file. No other assets are created during the process. Only new
relations between existing and newly created BI assets (for example between two
Tableau Data Attribute assets), and between BI column and Column assets (for
example between Power BI Column and Column assets) are created.

lxxiii

The lineage harvester change log
Collibra Data Lineage is updated and improved on a regular basis. On this page, you can
see the most important changes between different versions of the lineage harvester. For a
complete list, see the release notes.

Note We highly recommend that you download and use the newest lineage
harvester from the Collibra downloads page, even if you are on an older version of
Collibra Data Intelligence Cloud.

The following list contains the most important changes to the lineage harvester and the
lineage harvester configuration file.

lxxiv

https://productresources.collibra.com/downloads/

Changed in ver-
sion

New lineage harvester improvements

2023.08 l The new MicroStrategy integration method, via the lineage harvester, is
now generally available. The new integration method has the following
benefits:
o Supports technical lineage with stitching.
o Supports the latest MicroStrategy APIs.
o Supports project filtering.
o Allows you to view the source code for all tables and transformations.

l When you integrate MicroStrategy via the new integration method, you can
now view the source code for all tables and transformations, in the technical
lineage Sources tab page. The source code shows information about the
processes visible in the technical lineage and shows warnings and errors
where a process has failed. This enhancement does not affect the success
rate of metadata analysis.

l The Power BI and MicroStrategy global assignments are updated to show
more details on respective asset pages.

l The Source Type attribute is now included on MicroStrategy Data Entity and
MicroStrategy Data Attribute asset pages, to identify the MicroStrategy data
object type, for example Attribute, Fact, Table, or Column.

l Collibra Data Lineage now supports the following Power Query M functions:
o AnalysisServices.Databases
o AnalysisServices.Database

Note
n This function is fully supported if no MDX queries are used.
n If MDX queries are used and they resemble SQL, they will be

parsed by the SQL parser.
n We don't currently support this function if used with MDX

queries that resemble DAX, as the Collibra Data Lineage
service instances can't parse such queries.

o GoogleAnalytics.Accounts
l The relation “Data Asset contained in BI Folder” is now available between
all Tableau Data Model and Tableau Project assets.

l When you integrate Tableau:
o Tableau Dashboard, Worksheet and Workbook asset pages now show
the number of views in the Visits count attribute type.

o The Tableau API analysis documentation is updated with the visits
count.

l The Tableau hostname mapping feature is now generally available. When

lxxv

Changed in ver-
sion

New lineage harvester improvements

integrating Tableau, you can use the optional “hostnameMapping” section
in your <source ID> configuration file, to map Tableau technical database,
server and schema names to the respective real names, to preserve stitch-
ing.

l When integrating Power BI, datamart metadata is now ingested in Collibra
as assets of the new asset type Power BI Data Mart.

l When ingesting PostgreSQL data sources, the Collibra Data Lineage ser-
vice instances now support "x::typename" cast constructs, where "type-
name" contains a dot (.), for example "SELECT 'null'::qwerty.qwerty".

l When ingesting Snowflake data sources, the Collibra Data Lineage service
instances now support LEVEL and CONNECT BY keywords.

l Previously, when creating technical lineage for SQL Server Integration Ser-
vices, Collibra Data Lineage filtered out some queries due to legacy lim-
itations. Collibra Data Lineage no longer filters out queries. You may find
increased successful lineage as well as increased parsing or analysis
errors, as Collibra Data Lineage tries to parse more queries. This is a
backend change, and the new behavior will be seen during the next syn-
chronization of the technical lineage for SQL Server Integration Services.

l Collibra Data Lineage now processes and generates technical lineage for
Informatica PowerCenter four times faster with the following changes:
o Data Lineage now pre-processes data into pydantic models instead of
using the slower xpath solution that existed previously.

o Shortcuts are handled faster, by keeping necessary objects in memory
on the Collibra Data Lineage service instances.

o The Analysis Error messages are enhanced by adding information that
is related to rejected files and unresolved parameters.

lxxvi

Changed in ver-
sion

New lineage harvester improvements

2023.07 l Collibra Data Lineage now supports the following Power Query M functions:
o Cube.Transform
o Cube.AddAndExpandDimensionColumn
o Table.FromList
o AnyalysisServices.Databases
These functions enable technical lineage between SAP HANA (using
SapHana.Database) and Analysis Services (using AnalysisServices.Databases),
and improve the success rate of metadata analysis.

l When you create technical lineage for Snowflake with the SQL-API inges-
tion method, you can use the displaySampleQueries property in the new
Snowflake source ID configuration file to control whether a question mark
(?) is displayed in place of certain static values, such as numbers or dates.

l When ingesting Spark SQL data sources, the Collibra Data Lineage service
instances now support PARTITIONED BY parameters in CREATE TABLE
statements.

l Collibra Data Lineage now supports the following Power Query M functions:
l When you create technical lineage for Matillion, the lineage harvester now
supports multiple data sources. Previously, the lineage harvester could only
generate technical lineage from one source.

l When you create technical lineage for Informatica Intelligent Cloud Services
and set the useCollibraSystemName property as true, the Collibra system
name is used as root of the tree in the technical lineage graph. Previously,
IICS was used.
See an example.

lxxvii

Changed in ver-
sion

New lineage harvester improvements

l When you create technical lineage for Azure Data Factory, global para-
meters are now taken into consideration.

l SQL Extension now supports queries that have a WITH clause.
l When ingesting Oracle data sources, the Collibra Data Lineage service
instances now correctly handle database links even when the remote data-
base has a dot (.) in the name.

l When ingesting Snowflake data sources, the Collibra Data Lineage service
instances now benefit from the following parsing enhancements:
o Undocumented usage of UPDATE FROM statement, when the FROM
clause comes before the SET clause.

o IDENTIFIER keyword appears as a column name.
l When integrating MicroStrategy, any facts that don't have expressions are
now skipped. Previously, Collibra Data Lineage attempted to process such
forms, which resulted in errors.

lxxviii

Changed in ver-
sion

New lineage harvester improvements

2023.06 l When integrating SQL Server Reporting Services (SSRS) or Power BI
Report Server (PBRS):
o You no longer get an error if you filter on a folder to which you don’t have
access.

o You no longer get an error if the “rd” namespace is not specified at the
top level of a report (an RDL file). In that case, it is now taken from the
child level.

o The Collibra Data Lineage service instances now support CommandText
with SQL that starts with “=“. CommandText is split by either “+” or “&”
and merged into a single parseable SQL command.

o If you filter on a specific folder, paginated reports at the root level of the
folder are now correctly ingested.

l When integrating Tableau, backticks “`” in a query no longer result in miss-
ing columns when processing a CREATE TECHLIN VIEW.

l When integrating Power BI, you can now use HTTP1 streams if you are
experiencing timeout issues with the default HTTP2 streams. To do so,
include the new optional property “useHttp1” in your lineage harvester con-
figuration file, and set the value to “true”.

l When you integrate MicroStrategy via the new integration method (beta),
you can now view the source code for all tables and transformations, in the
technical lineage Sources tab page. The source code shows information
about the processes visible in the technical lineage and shows warnings
and errors where a process has failed. This enhancement does not affect
the success rate of metadata analysis.

l When ingesting CSV files as part of a Tableau integration, the “database >
schema > table” structure in the technical lineage now matches the struc-
ture of the ingested CSV file in Data Catalog. This ensures that stitching can
be achieved for CSV files.

l Collibra Data Lineage now supports the Power Query M function
Table.CombineColumns.

l When integrating MicroStrategy, any forms that don't have expressions are
now skipped. Previously, Collibra Data Lineage attempted to process such
forms, resulting in errors.

l When integrating Power BI via the Power BI harvester (integration method
v1), which has been deprecated since 2022, the Power BI source code now
includes an end-of-life message. Please migrate to Power BI via the lineage
harvester (integration method v2) by August 1, 2023.

l We have upgraded:

lxxix

Changed in ver-
sion

New lineage harvester improvements

o The Snowflake driver to address the CVE-2023-30535 vulnerability.
o The BigQuery driver to mitigate the CVE-2022-45688 vulnerability.

l When ingesting Redshift data sources, the Collibra Data Lineage service
instances now support the COLLATE function.

l When ingesting HiveQL metadata, the Collibra Data Lineage service
instances now support the TBLPROPERTIES parameter with an empty list,
for Hive CREATE TABLE statements.

l When ingesting Spark SQL data sources, the Collibra Data Lineage service
instances now support identifiers that start with a number.

l When ingesting HiveQL, the Collibra Data Lineage service instances now
support Hive extension for the multiple inserts clause.

l When ingesting Snowflake data sources, the Collibra Data Lineage service
instances now support:
o Aliases in combination with the FLATTEN function.
o The DATA_RETENTION_TIME_IN_DAYS parameter for CREATE
TABLE statements.

lxxx

Changed in ver-
sion

New lineage harvester improvements

2023.05 l When you integrate Power BI, reports and dashboards that are part of an
app in Power BI are ingested as Power BI Dashboard and Power BI Report
assets, respectively. The URLs on these asset pages now correctly link to
the corresponding dashboards and reports in the Power BI app.

l When integrating Power BI, the full names of Power BI capacities now
include their unique identifiers. This helps to distinguish two capacities with
the same name. Upon the first synchronization after this fix, if you use only
one Power BI tenant, the Shared Capacity asset is deleted and recreated
with the new naming format. If you have multiple Power BI tenants, a
Shared Capacity asset with the new naming format is created for each ten-
ant.

l If a data set or report in Power BI is certified, the corresponding Power BI
Data Model and Power BI Report assets in Collibra are now automatically
certified.

l When integrating Power BI, if you use the Databricks.Query query without
specifying the database name, the database name in the technical lineage
is “Default”.

l When you integrate Tableau, the lineage harvester now automatically con-
nects to the REST API version that matches your Tableau Server or
Tableau Online environment.

l When integrating Tableau:
o Filtering on sub-projects no longer results in FOREIGN KEY constraint
errors.

o Custom SQL is now successfully processed when Tableau object names
contain quotes.

l When ingesting Spark SQL data sources, the Collibra Data Lineage service
instances now benefit from the following parsing enhancements:
o CREATE VIEW to support TBLPROPERTIES
o SELECT allowed as column name
o TABLE allowed as column name
o CREATE TABLE to support the USING clause
o CREATE TBALE to support the OPTIONS clause

l When ingesting Oracle data sources, SQL queries to extract views no
longer include views for which the owner has a user name that start with
“APEX”.

l Collibra Data Lineage support for creating technical lineage for Azure Data
Factory by using the lineage harvester is now generally available.

l When you create technical lineage for Azure Data Factory, you can filter the

lxxxi

Changed in ver-
sion

New lineage harvester improvements

factories that the lineage harvester collects and processes by using the new
factories property in the lineage harvester configuration file to filter.

l The new MicroStrategy integration method, via the lineage harvester, is
now in beta. The new integration method allows for technical lineage, sup-
ports the latest MicroStrategy APIs, and is no longer dependent on a direct
connection to the repository.

l When you create technical lineage for Snowflake by using the SQL-API
ingestion method,
o QUERY_TAG values are now shown in the transformation window for lin-
eage queries.

o The lineage harvester optimized the results of the columns_joined
query. Previously, the view definition would be saved for each column of
a view. Now, a view definition is only saved once. This enhancement res-
ults in faster processing of lineage for your Snowflake database that has
views with many columns.

l When you create technical lineage for Informatica PowerCenter, an error
message is logged if any of the following issues occur:
o A parameter file cannot be parsed.
o A workflow XML file cannot be parsed or is invalid.

l The list-sources command is enhanced to:
o Indicate how each data source was ingested, by using the lineage har-
vester or technical lineage via Edge.

o List the useSystemName value to each data source.
o List up to 500 data sources. With this enhancement, you can determine
which page to to be displayed and also the number of data sources to be
listed on certain pages.

2023.04 l Power BI Data Flow asset pages now show the description of the data flow.
l When you integrate Looker, corrupt Looker Dashboards are now skipped.
l You can now include the new Calculation Rule attribute type on Power BI
Column asset pages, to show DAX calculations.

l When ingesting Microsoft SQL Server data sources, the Collibra Data
Lineage service instances can now parse QUALIFY statements.

l A partial technical lineage that is generated from queries that have analyze
errors no longer produces a foreign key error.

l With the lineage harvester, you can now use the new ignore-source com-
mand to ignore the specified data source from the list of data sources to be
used to create the technical lineage.

lxxxii

Changed in ver-
sion

New lineage harvester improvements

2023.03 l When you create technical lineage for IBM DataStage, CollibraData
Lineage now parses the following:
o The inner stage SQL statements, such as the INSERT and UPDATE
statements, which are used to bind DataStage columns and target data-
base objects in some stages.

o Parameters that are passed by when a Job is called or used. The para-
meters are typically passed to the Job activity in a Sequence Job. Pre-
viously, CollibraData Lineage only parsed and created technical lineage
for default parameters.

o DataStage containers, including local and shared containers.
o Runtime column propagation that is enabled on stages.
o The account loop and stage variables of the Transformer stage.

l When you integrate Power BI or Azure Data Factory (ADF integration is cur-
rently in beta), the lineage harvester now connects to the Microsoft cloud
instance, instead of the login.microsoftonline.com host.

l When you integrate Power BI, parameters are now ingested even if the
“Enable load” option is not selected for the relevant parameters.

Note To harvest columns and create a full technical lineage, the
“Enable load” option must be selected. If it is not, the Power BI APIs
will recognise parameterised tables, but not the columns in the
tables. In which case, only table-level lineage is created; columns
cannot be shown.

l When you integrate Tableau,
o And configure site filtering in your <source ID> configuration file,
Tableau sites that are not mentioned in the filter are now correctly
included in the ingestion. They are ingested in the default domain.

o The lineage harvester now ingests parameters.
o With a Google BigQuery data source, all BigQuery data objects now cor-
rectly appear in the technical lineage.

l You can use the new list-sources command to list all data sources that were
ingested to create the technical lineage via the lineage harvester and tech-
nical lineage via Edge.

l When you integrate SQL Server Reporting Services (SSRS) or Power
BI Report Server (PBRS), folder filtering no longer fails when you want to
ingest everything.

l When ingesting Snowflake data sources, the correct source table is now
shown in the technical lineage when the UNION operator is used.

lxxxiii

Changed in ver-
sion

New lineage harvester improvements

l When ingesting MySQL data sources, the Collibra Data Lineage service
instances now support the “as” keyword as optional in “create table” state-
ments. Previously, parsing failed if the “as” keyword was missing.

lxxxiv

Changed in ver-
sion

New lineage harvester improvements

2023.02 l When you integrate Tableau:
o Performance is significantly improved for Tableau users with the
Explorer role.

o The lineage harvester now filters out data objects for which you do not
have permissions.

o You can now view the source code in the technical lineage Sources tab
page. The source code shows information about the processes visible in
the technical lineage and shows warnings and errors where a process
has failed. This enhancement does not affect the success rate of
metadata analysis.

o UUIDs no longer appear in the names of Tableau assets in a technical
lineage, with the following exception: if Tableau data objects in a tech-
nical lineage hierarchy have the same full name, Collibra Data Lineage
adds the UUIDs of the corresponding assets to the names in the tech-
nical lineage, to maintain uniqueness. For complete information, includ-
ing how to resolve UUIDs in the names, see Technical lineage for
Tableau.

l The Power BI integration can now connect to Power BI for US government
customers.

l When you integrate Power BI or Azure Data Factory (currently in public
beta), the lineage harvester now connects to the Microsoft cloud instance,
instead of the login.microsoftonline.com host.

l When you synchronize any supported BI tool, if a corresponding data object
of an asset in Data Catalog can no longer be found in the data source, the
asset is no longer deleted from Data Catalog. Instead, the status of the
asset changes to “Missing from source”.

l The lineage harvester logic is now based on the UUIDs of attribute types in
the BI tool operating models, instead of the attribute type names. This
means that when you integrate any of the supported BI tools, you can now
change the names of the ingested attribute types.

l Collibra Data Lineage now supports Power Query parameters (public beta).
For complete information, including how to ensure that the Power BI APIs
return all parameters that are loaded in a report, see Working
with Power Query parameters.

l When you run a full-sync of a Snowflake data source, the lineage harvester
automatically refreshes the authentication token, to avoid a time-out error.

l Fixed the ordering of columns for Power BI technical lineage custom quer-
ies.

lxxxv

Changed in ver-
sion

New lineage harvester improvements

2023.01 l When you integrate Power BI,
o Collibra Data Lineage now supports the Power Query M function
Table.Combine. If Collibra Data Lineage can’t determine the column
names in multiple sources, a dummy column with the value “*” is now cre-
ated in the sources and Power BI tables, which preserves the technical
lineage at the table level. For complete details, see Supported Power
Query M functions. If you use this function, Table.Combine function is
used. You can now view a technical lineage at the table level, where pre-
viously analyze error “Cannot determine source table for column”.

o The technical lineage now correctly shows a yellow background when
columns and tables are stitched.

o If you use a <source ID> configuration file, you no longer have to include
the filters section.

l When you integrate Tableau:
o If a Tableau worksheet is hidden in Tableau, the “Visible on server” attrib-
ute of the Tableau Worksheet asset in Collibra now has the value false. If
it is not hidden, the attribute has the value true.

o Metadata batches no longer fail if CREATE TECHLIN VIEW statements
fail due to analysis errors.

o Collibra Data Lineage service benefits from improved parsing of
BigQuery quoted identifiers, for example `a.b`.`c`.

o Tableau filtering now works as intended. Previously, filtering didn't work
if, for example, you moved an older Tableau project under a newer pro-
ject.

o Fixed the ordering of columns for Tableau technical lineage custom quer-
ies.

o Tableau Data Attributes are no longer shown twice, once with the UUID
in the name and once without, in the technical lineage Browse tab pane.

o The "Document size" attribute type and value are now shown for
Tableau Workbook assets.

o If you don't have permissions to access a parent project, but the lineage
harvester identifies published data sources that belong to the project, the
lineage harvester creates an ‘Unknown project’ that has the UUID of the
inaccessible parent project. To avoid an error, the lineage harvester can
now correctly link the published data sources to the unknown project.

l Collibra Data Lineage service now supports the Power Query M function
Value.NativeQuery.

lxxxvi

Changed in ver-
sion

New lineage harvester improvements

Note Query parameters are supported, but core parameters are
not.

l When you integrate Power BI or Azure Data Factory (currently in public
beta), the lineage harvester now connects to the Microsoft cloud instance,
instead of the login.microsoftonline.com host.

l When you ingest SQL Server Reporting Services (SSRS) and you set the
“useCollibraSystemName” property to “true”, SSRS now has its own node in
the navigation tree of the Technical lineage Browse tab pane.

l When you ingest Oracle data sources using the DatabaseOracle source
type, passwords are now stored per url, username and db instead of just url
and username. With this enhancement, you can connect to Oracle Plug-
gable Databases, for which a single user can have the same username and
different passwords for each of their pluggable databases.

l For Informatica PowerCenter technical lineage, when a PowerCenter map-
plet had an associated shortcut, technical lineage in Collibra would be
broken up. Now, there is end-to-end lineage within PowerCenter even when
a mapplet has an associated shortcut.

l Fixed a ValidationError related to the unsupported Exasol dialect. The Post-
gres dialect is now used in place of Exasol dialect.

lxxxvii

Changed in ver-
sion

New lineage harvester improvements

2022.11 l When you integrate Power BI:
o Inactive workspaces and personal workspaces are no longer ingested.
o Filtering is improved. You can now use the optional properties
excludeWorkspaceNames and excludeWorkspaceIds to

exclude specified workspaces. Before configuring your filters, ensure
that you read all about the advantages, limitations and configuration con-
siderations in Power BI workspaces.

o The ownership information (admin and creator email addresses only) for
reports is now ingested in Collibra. The "Owner in source" attribute is
included on Power BI Report asset pages.

o The email addresses of all admins and creators of Power BI data models
and workspaces are now ingested. Previously only a single email
address was ingested, even if there were multiple admins or creators of
the data object in Power BI.

l When you ingest Snowflake data sources, the databaseNames property

is now correctly taken into consideration.
l When you integrate Tableau:

o Previously, when you filtered on a site, a Tableau Site asset was created
in Collibra, but no metadata was ingested. Now, when you filter on a site,
all metadata in the site is ingested in the specified domain. If, however, a
site is specified in the lineage harvester configuration file, but not in the
filters and domainMapping properties in the Tableau <source ID>

configuration file, the metadata is ingested in the default domain.
o You can now use wildcards in the filters property in the Tableau

<source ID> configuration file. Also, the filters property is no longer

case-sensitive.
o You can now ingest sites that don't have workbooks.
o Ownership information (email addresses only) for projects, data models,
workbooks and dashboard is now ingested in Collibra. The Owner in
source attribute is included on Tableau Project, Tableau Data Model,
Tableau Workbook and Tableau Dashboard asset pages.

l When you ingest Informatica PowerCenter data sources, the lineage har-
vester now correctly processes session mapplets. Previously, this failed
with error message "'NoneType' object has no attribute 'lower'".

l When you ingest Informatica Intelligent Cloud Services data sources and
the useCollibraSystemNames property is set to true, databases are

now shown in the Technical lineage Browse tab pane with the specified sys-

lxxxviii

Changed in ver-
sion

New lineage harvester improvements

tem name or as "UNDEFINED”, if a database could not be mapped to a sys-
tem name. If set to false, then all databases are now shown directly under

the DATABASE node.
l When you ingest metadata from Oracle data sources, you can now add a
new DatabaseOracle section in your lineage harvester configuration

file, to specify the Oracle database name and ensure stitching without any
workarounds.

l If you integrate SSRS-PBRS and use a <source ID> configuration file, the
CustomDataSource section in the <source ID> configuration file is no

longer mandatory.
l The lineage harvester now uses Looker 4.0 APIs, with paging options.

lxxxix

Changed in ver-
sion

New lineage harvester improvements

2022.10 l The lineage harvester now supports the following IBM DB2 constructs:
PREVVAL FOR <sequence>, PREVIOUS VALUE FRO <sequence>,
NEXTVAL FOR <sequence> and NEXT VALUE FOR <sequence>.

l You can now use the new optional "deleteRawMetadataAfterProcessing"
property in your lineage harvester configuration file. With this property, you
can delete your raw metadata from the Collibra Data Lineage service after
processing. This property is applicable for all supported data sources.

l When you specify a Data Catalog URL in the lineage harvester con-
figuration file, it no longer matters whether you include a trailing slash (/) in
the URL.

l The Collibra Data Lineage service now supports the following trans-
formations: Table.FromRecords and Table.IsEmpty.

l Collibra Data Lineage now supports key-pair authentication when ingesting
Snowflake data sources.

l The PostgreSQL JDBC Driver is upgraded to version 42.4.1.
l The Collibra Data Lineage service can now compute indirect lineage from
set queries, which are queries with the UNION keyword with the ORDER
BY clause.

l When you integrate Power BI, the lineage harvester is now more resilient to
OutOfMemory errors.

l When you integrate Tableau and filter on a sub-project, the metadata of the
parent project is no longer ingested in Collibra. However, the parent
Tableau Project asset is created in the default domain, to preserve the hier-
archy required for stitching.

l Looker integration no longer fails if the "collibraSystemName" property is
not included in the lineage harvester configuration file. If you want to specify
the system name of a database in Looker, use the "collibraSystemName"
property in the Looker source ID configuration file. If you don't specify a sys-
tem name in the source ID configuration file, the system name in the tech-
nical lineage graph will be Default.

l In the case of a lookup procedure when ingesting Informatica Intelligent
Cloud Services data sources, if the CONNECTIONSUBTYPE parameter is
empty, the Collibra Data Lineage service now looks to the
CONNECTIONREFERENCE parameter for the name. If that is also empty,
then the name in the VARIABLE parameter is used. The ensures the correct
detection of the SQL dialect.

l Fixed an issue related to dialect extraction when ingesting Informatica Intel-
ligent Cloud Services data sources.

xc

Changed in ver-
sion

New lineage harvester improvements

2022.09 l Previously, when you created a technical lineage for Power BI, SQL Server
Reporting Services (SSRS) or Power BI Report Server (PBRS), the nodes
in the technical lineage graph had a gray background, even if the data
objects from your data source were stitched to assets in Data Catalog. Data
objects now have the intended yellow background when creating a tech-
nical lineage for Power BI, SSRS or PBRS. We introduced this enhance-
ment for Tableau and Looker in Collibra 2022.07.

l When you integrate Tableau, for every Tableau Workbook that you have
permission to ingest, all Tableau Dashboards in the Workbooks are now cor-
rectly shown in the technical lineage graph. If you do not have permission
on the Workbook or Dashboard level, the metadata of these data objects is
not ingested.

l When integrating Power BI, the ownership information (email address only)
for reports is now ingested in Collibra. The new Owner in source attribute is
included on Power BI Report asset pages.

l The lineage harvester now uses Looker 4.0 APIs, with paging options.
l When you integrate Power BI, the lineage harvester is now more resilient
against OutOfMemory errors.

l When you integrate Tableau and use domain mapping, subprojects are now
ingested in the domains of their parent projects.

l The Collibra Data Lineage service instances now benefit from the following
parsing enhancements when integrating Snowflake data sources:
o Support for the COLLATE keyword.
o Support for EXTERNAL TABLE syntax.

l When integrating Power BI, the descriptions of Data Set Tables and Data
Set Columns in Power BI are now harvested.

l Fixed an issue that was resulting in a processing error when a column ref-
erenced in an ORDER BY clause references a repeated column in the
SELECT column list.

l When integrating Tableau, you can now ingest sub-projects for which you
have permission to ingest, even if you don’t have permission to ingest the
parent projects.

xci

Changed in ver-
sion

New lineage harvester improvements

2022.08 l Previously, when you created a technical lineage for a supported BI tool, the
nodes in the technical lineage graph had a gray background, even if the
data objects from your data source were stitched to assets in Data Catalog.
Data objects now have the intended yellow background when creating a
technical lineage for Power BI. This enhancement was introduced for
Tableau or Looker in Collibra 2022.07. Soon, the enhancement will also
apply to SSRS and PBRS.

l When synchronizing Tableau, the synchronization no longer fails if two data
sources in the same project with the same name are returned from the
Tableau API. The assets of both data sources are now synchronized in Col-
libra.

l You can now filter on the Tableau project level.
l When integrating Power BI, you can now ingest measures and show them
in the technical lineage. Measures are included as the value in the Role in
Report attribute on Power BI Column asset pages.

l When attempting to integrate Power BI with invalid Power BI credentials,
the lineage harvester log file now provides a more helpful error message.

l When you specify the Power BI workspaces for ingestion, the filters are not
case sensitive now.

l When integrating Looker, the ownership information (email address only)
for folders, Looks and dashboards is now ingested in Collibra. The new
Owner in source attribute is included on Looker Folder, Looker Look and
Looker Dashboard asset pages.

l When integrating Power BI, the ownership information (email address only)
for data sets and workspaces is now ingested in Collibra. The new Owner in
source attribute is included on Power BI Data Model and Power BI Work-
space asset pages.

l The lineage harvester log file now identifies whether you are using Tableau
Online or Tableau Server, and the version of your Tableau environment.

xcii

Changed in ver-
sion

New lineage harvester improvements

2022.07 l The lineage harvester now retries to get a batch status again if the first
HTTP call failed due to a network error.

l Fixed an issue that was causing custom SQL queries to be identified as
belonging to two different Tableau data sources. This resulted in a "Unique
constraint failed" error.

l Fixed an issue that was resulting in the No asset matches the specified cri-
teria error.

l When the lineage harvester fetches an access key for a data store, only act-
ive records are now fetched. Inactive records are ignored.

l The lineage harvester is more resilient against authorization expiration
when ingesting Looker metadata.

l The lineage harvester log file now includes the following information:
o Your Tableau environment type: Tableau Online or Tableau Server type
o The version of your Tableau environment

2022.06 l When synchronizing Power BI, the last sync time is now correctly shown in
the Sources tab page.

l Fixed an issue that was causing the processing of harvested metadata
batches to run without coming to completion.

l When ingesting Power BI, if there are Oracle data sources, the Oracle ser-
vice name is now used, instead of the database name.

l When processing Tableau metadata, the Collibra Data Lineage servers no
longer replace ">>" by "<}", which was resulting in parsing errors.

l Fixed an [SQLITE_ERROR] issue that was breaking the technical lineage
when attempting to synchronize a data source.

l When processing Power BI metadata, SQL statements are now in upper
case.

l When creating a technical lineage for Tableau, any unnecessary brackets “]
[“ in the names of schemas are now removed.

l When integrating Power BI, you can now ingest measures without DAX.
They are shown as attribute type Role in Report on Power BI Column asset
pages.

xciii

Changed in ver-
sion

New lineage harvester improvements

2022.05
Warning The lineage harvester 2022.05 includes an internal format change to
the password manager pwd.conf file. This means that if you use Lineage
harvester 2022.05, you can no longer use the pwd.conf file with an older
harvester.

l You can now integrate Power BI in Data Catalog via the lineage harvester,
meaning you no longer need to use the Power BI harvester. Additional bene-
fits include the following:
o Support for Power BI Data Flows.
o Descriptions of Power BI Reports.
o Statuses of Power BI Workspaces.
o Filtering and domain mapping.

Note The new Power BI integration method is specifically for new
integrations. For those who have been ingesting Power BI via the
Power BI harvester, we will soon release a migration script.

l Collibra Data Lineage now also supports the following BI integrations:
o MicroStrategy
o SQL Server Reporting Services and Power BI Report Server.

l You can now use token-based authentication when creating a technical lin-
eage for Matillion.

Warning This enhancement is not backwards compatible. You must
update your configuration file.If you use the lineage harvester
2022.05, you can no longer use the pwd.conf file with an older
harvester.

l The useCollibraSystemName property is now solely used for the con-

figuration of the system name.
l If you set the useCollibraSystemName property to true in your lin-

eage harvester configuration file, but don't define the system name in the
Tableau <source ID> configuration file, the system name in the Tableau
technical lineage shows DEFAULT as the system name.

l If using a Tableau <source ID> configuration file:
o You can now use wildcards throughout the file.
o The hostName and connectorUrl properties are no longer case-sens-
itive.

xciv

Changed in ver-
sion

New lineage harvester improvements

l The PostgreSQL JDBC driver is now upgraded from from 42.3.2 to 42.3.3.
l The Apache Hive JDBC driver is now upgraded from 2.6.17.1020 to
2.6.19.2022.

l The lineage harvester no longer hangs when harvesting metadata from cer-
tain data sources.

l The lineage harvester automatically refreshes Tableau tokens.
l You can now use the optional concurrencyLevel property in the lin-

eage harvester configuration file, to specify the internal sizing, meaning the
amount of tasks that can be executed at the same time.

2022.04 l You can now use the databaseMapping property in your Tableau

<source ID> configuration file, to map a Tableau technical database name
to the real database name.

l When providing connection definitions for Informatica PowerCenter, the
dbname property is no longer case-sensitive.

l When integrating Informatica PowerCenter data sources, Collibra Data
Lineage now correctly creates a technical lineage when useCol-

libraSystemName is set to true.

xcv

Changed in ver-
sion

New lineage harvester improvements

2022.03 l By default, the lineage harvester no longer harvests images. If you want to
include images, include the optional excludeImages property in your

configuration file and set the value to false.
l When ingesting Tableau metadata, you can now leave empty the col-

libraSystemName property in your configuration file, even if the

useCollibraSystemName property is set to true.
l The lineage harvester now correctly shows the help overview when you run
the --help command.

l Hive source now skips harvesting DDL of exclusively locked tables.
l When you change the domain reference ID in the lineage harvester con-
figuration file, Tableau assets are now successfully deleted from the pre-
vious domain and recreated in the new domain.

l You no longer see a Fiber Failed error while running the lineage harvester.
l Protobuf is upgraded to version 3.19.3.
l Fixed an issue that was causing incomplete technical lineage and stitching
issues when using custom SQL in Tableau.

l Fixed an issue that resulted in a TableauHarvesterError when ingesting
Tableau metadata via the linage harvester.

l Fixed a NullPointerException when no column data type is harvested.
l Fixed an issue that was causing the ingestion of Looker metadata to fail.
l Fixed an issue that was causing a JsonParseError when ingesting Tableau
metadata.

2022.02

Collibra Data Lineage service instances
The Collibra Data Lineage service processes and analyzes the harvested metadata from
supported (meta)data sources and uploads it to Data Catalog. The Collibra Data Lineage
service processes or stores only metadata, but not actual data.

When you run the lineage harvester or synchronize the technical lineage on Edge, the
lineage harvester or technical lineage via Edge firstly connects to any available Collibra
Data Lineage service instance to determine your cloud provider and geographic location of
your Collibra Data Intelligence Cloud environment. Then, the lineage harvester or

xcvi

technical lineage via Edge sends the harvested metadata to the Collibra Data Lineage
service instance with the same cloud provider and geographic location.

Currently, your metadata can be processed on one of the following Collibra Data Lineage
service instances:

Server IP address DNS name

techlin-aws-ca 15.222.200.199 techlin-aws-ca.collibra.com

techlin-aws-eu 18.198.89.106 techlin-aws-eu.collibra.com

techlin-aws-sg 13.228.38.245 techlin-aws-sg.collibra.com

techlin-aws-us 54.242.194.190 techlin-aws-us.collibra.com

techlin-azure-eu 51.105.241.132 techlin-azure-eu.collibra.com

techlin-azure-us 20.102.44.39 techlin-azure-us.collibra.com

techlin-gcp-au 35.197.182.41 techlin-gcp-au.collibra.com

techlin-gcp-ca 34.152.20.240 techlin-gcp-ca.collibra.com

techlin-gcp-eu 35.205.146.124 techlin-gcp-eu.collibra.com

techlin-gcp-sg 34.87.122.60 techlin-gcp-sg.collibra.com

techlin-gcp-uk 35.234.130.150 techlin-gcp-uk.collibra.com

techlin-gcp-us 34.73.33.120 techlin-gcp-us.collibra.com

Important You have to allow all Collibra Data Lineage service instances in your
geographic location. For example, if your data is located in Europe, you have to
allow the following Collibra Data Lineage service instances: techlin-aws-eu and
techlin-gcp-eu. In addition, we highly recommend that you always allow the techlin-
aws-us instances as a backup, in case the lineage harvester cannot connect to
other Collibra Data Lineage service instances.

xcvii

Technical lineage via Edge
This section provides information on how to create a technical lineage via Edge.

About Technical lineage via Edge
You can use Edge to collect metadata from your data sources and create new relations
between data elements from your data source and existing assets into Data Catalog. Edge
collects transformation logic like SQL scripts and ETL scripts from a specified location, for
example a database table or a folder on a file system.

Just like the lineage harvester, Edge connects to different Collibra Data Lineage service
instances based on your geographical location and cloud provider.

For a list of the supported data sources and the technical lineage capabilities and
connection types for each data source, go to Supported data sources for technical lineage.
For specific steps to create a technical lineage on Edge, go to Creating technical lineage
via Edge.

You can also use Edge to create a custom technical lineage. For complete information, go
to Create technical lineage via Edge and select Custom technical lineage.

Important If you want to use technical lineage via Edge together with the lineage
harvester, ensure that you use the lineage harvester version 2023.04 or newer. For
more information, go to Migrate the technical lineage of a data source.

Enabling and configuring technical lineage via Edge

To create a technical lineage for different data sources via Edge, you must enable the
features in the Collibra settings or in Collibra Console.

You can define how technical lineage via Edge accesses the data sources by creating
different connections. The following connection types are supported on Edge:

l JDBC connection, for JDBC data sources and ETL tools.
l Shared Storage connection, for JDBC data sources and some ETL tools.

xcviii

#EnableTechnicalLineage
#EnableTechnicalLineage

l APIs, for MicroStrategy, Power BI, Tableau, Informatica Intelligent Cloud Services,
and Matillion.

Configurations for technical lineage via Edge include the following:

l General configuration settings in the Collibra settings or Collibra Console, which
apply to all data sources for which you create the technical lineage. For example,
you can enter your Collibra Data Intelligence Cloud username and user password in
the general configuration settings.

l Specific configuration settings for each data source. You can add a technical lineage
capability for each data source to provide specific configurations.

After you create the connections and configure technical lineage via Edge for different
data sources, you can manually synchronize the capabilities or add a synchronization
schedules.

BI tool ingestion via Edge

Note BI ingestion via Edge is currently available for MicroStrategy, Power BI, and
Tableau. To integrate other supported BI tools, you need to use the lineage
harvester. You can also use the lineage harvester to integrate MicroStrategy, Power
BI, and Tableau.

During the technical lineage process, relations of the type "Data Element targets / sources
Data Element" are automatically created:

l Between data objects in your data source and assets from registered data sources.
l Between ingested assets from BI sources and Data Catalog assets from registered
data sources.

Note
l You can't work with Edge via the REST API.
l You can't migrate from Jobserver to Edge to preserve the metadata that you
manually added to the assets that you ingested via Jobserver.

xcix

to_register-data-source.htm

Permissions

You need a global role with the System Administration global permission, for example
Sysadmin. This role must have access to all assets in the data sources and be able to
create new relations between these assets.

Specific permissions might be required to access different data sources. Select a data
source in the Overview of Collibra-provided JDBC drivers topic to see the required
permissions to create a technical lineage.

Create a technical lineage via Edge
This topic provides an overview of the necessary steps to create a technical lineage via
Edge.

You can also use the Collibra Catalog Cloud Ingestions API to create or update a technical
lineage capability and start or schedule a synchronization to create a technical lineage.
For more information about using APIs, go to Collibra Developer Portal.

To view the steps to create technical lineage for your data source, select the data source
and connection type, if applicable. For a listed of supported data sources and their
corresponding connection types, go to Supported data sources for technical lineage.

Before you begin

l Use Collibra Data Intelligence Cloud 2023.03 or later.
l Create an Edge site in Collibra Data Intelligence Cloud.
l Install an Edge site.
l Create a JDBC connection.
l Register the data source via Edge. Before you register the data source, ensure that
you add the Catalog JDBC ingestion capability, so that Collibra Data Lineage can
stitch the data objects in your technical lineage to the assets in Data Catalog.

c

co_global-permissions.htm
https://developer.collibra.com/rest/cloud-ingest/
https://developer.collibra.com/
ta_create-edge-site.htm
ta_install-edge-site.htm
ta_create-jdbc-connection.htm
co_register-data-source-via-edge.htm
ta_add-ingestion-capability.htm

Requirements and permissions

l Collibra Data Intelligence Cloud 2023.08 or later
l A global role with the following global permissions:

o Data Stewardship Manager
o Manage all resources
o System administration
o Technical lineage

l A resource role with the following resource permission on the community level in
which you created the BI Data Catalog domain:

o Asset: add
o Attribute: add
o Domain: add
o Attachment: add

l Necessary permissions to all database objects that technical lineage via Edge
accesses.

ci

https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0642
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0632

Tip Some data sources require specific permissions. For the data source
selected above:
You need read access on the SYS schema.
You need read access on the SYS schema and the
View Definition Permission in your SQL Server.
You need read access on information_schema:

l bigquery.jobs.create
l bigquery.readsessions.create
l bigquery.tables.getData
l bigquery.readsessions.getData

GRANT SELECT, at table level. Grant this to every table for which you want to
create a technical lineage.
The role of the user must be the owner of the views in PostgreSQL, and the
username of the user must be specified in the JDBC connection that you use
to access PostgreSQL.
You need read access on information_schema. Only views that you own are
processed.
SELECT, at table level. Grant this to every table for which you want to create a
technical lineage.
A role with the LOGIN option.
SELECTWITH GRANT OPTION, at Table level.
CONNECT ON DATABASE
The following permissions are the same, regardless of the ingestion mode:
SQL or SQL-API.
You need a role that can access the Snowflake shared read-only database. To
access the shared database, the account administrator must grant the
IMPORTED PRIVILEGES privilege on the shared database to the user. The
username of the user must be specified in the JDBC connection that you use
to access Snowflake.

cii

ta_create-jdbc-connection.htm
https://docs.snowflake.com/en/sql-reference/account-usage.html#enabling-account-usage-for-other-roles
ta_create-jdbc-connection.htm

Tip If the default role in Snowflake does not have the IMPORTED
PRIVILEGES privilege, you can click the Add property button to add a
custom parameter with the following values specified:

Field Value

Name customConnectionProperties

Type Text

Encryption Select one of the following encryption methods:

l Not encrypted (plain text)
l Encrypted with public key
l To be encrypted by Edge management
server

Value role=METADATA

You need read access on the DBC.
You need read access to the following dictionary views:

l all_tab_cols
l all_col_comments
l all_objects
l ALL_DB_LINKS
l all_mviews
l all_source
l all_synonyms
l all_views

You need read access on definition_schema.
l Your user role must have privileges to export assets.
l You must have read permission on all assets that you want to export.
l You have added the Matillion certificate to a Java truststore.
l You have at least a Matillion Enterprise license.

The following permissions apply only to MicroStrategy on-premises customers.

l You need Admin API permissions.
The first call we make to MicroStrategy is to authenticate. We connect to
<MSTR URL>:<Port>/MicroStrategyLibrary/api-docs/ and use POST
api/auth/login. You have to ensure that this API call can be made successfully.

ciii

l You need permissions to access the library server.
l The lineage harvester uses port 443. If the port is not open, you also need
permissions to access the repository.

l If you have a MicroStrategy on-premises environment, you need the
permissions for all of the database objects that the lineage harvester accesses.

l You have to configure the MicroStrategy Modeling Service. For complete
information, see the MicroStrategy documentation.

Important
Before you start the Power BI integration process, you have to perform a
number of tasks in Power BI and Microsoft Azure. These tasks, which are
performed outside of Collibra, are needed to enable the lineage harvester to
reach your Power BI application and collect its metadata. For complete
information, go to Set up Power BI.

Important
Before you start the Tableau integration process, you have to perform a
number of tasks in Tableau. For complete information, go to the following
topics:

l Set up Tableau
l Tableau roles and permissions

Steps

1. Set up Tableau.
2. Set up Power BI.
3. Set up MicroStrategy.

What's next?

View the technical lineage.

Delete the technical lineage of a data source on Edge
You can delete the technical lineage of a data source by updating the capability for the
data source and synchronizing the technical lineage again.

civ

https://www2.microstrategy.com/producthelp/Current/SystemAdmin/WebHelp/Lang_1033/Content/modeling_service.htm

Note
l If you want to use technical lineage via Edge together with the lineage
harvester, ensure that you use the lineage harvester version 2023.04 or
newer.

l If you want to delete the technical lineage of a data source by using the
lineage harvester, ensure that you use the lineage harvester version 2023.04
or newer. For details, go to Delete the technical lineage of a data source.

Steps

1. Open an Edge site.
a. On the main menu, click , and then click Settings.

» The Collibra settings page opens.
b. In the tab pane, click Edge.

» The Sites tab opens and shows a table with an overview of the Edge sites.
c. In the Edge site overview, click the name of the Edge site where you created

the technical lineage capability for the data source.
» The Edge site page appears.

2. In the Capabilities section, locate and click the technical lineage capability that you
added for the data source when you created the technical lineage.

3. Clear the Active check box.
4. Click Save.

» The capability is updated.
5. Synchronize the technical lineage capability for the data source.

» The data source is marked as ignored internally and will be excluded when the
technical lineage is synchronized again.

6. Synchronize your technical lineage by taking any of the following actions:
o On Edge, synchronize the technical lineage capability for any of your data
sources that are active.

o With the lineage harvester, run any of the following commands:
o The sync command:

n For Windows: .\bin\lineage-harvester.bat sync
n For other operating systems: ./bin/lineage-harvester sync

cv

to_collibra-settings.htm
#synchronize

o The full-sync command:
n For Windows: .\bin\lineage-harvester.bat full-sync
n For other operating systems: ./bin/lineage-harvester full-

sync

For more information, go to Typical command options and arguments.

» When synchronization is complete, the technical lineage of the data source is
deleted.

What's next?

If you want to delete the technical lineage capability for the data source, ensure that the
technical lineage of the data source is removed successfully after synchronization. For
more information, go to Delete an Edge capability from an Edge site.

You can view a summary of the results from the Activities list to see whether the technical
lineage is synchronized successfully.

If the synchronization fails or completes with errors, you can use the technical lineage via
Edge troubleshooting guide or Collibra Support Portal to fix the errors.

Migrate the technical lineage of a data source
You can use the lineage harvester and technical lineage via Edge together. You can
migrate a data source from lineage harvester to technical lineage via Edge, and also from
technical lineage via Edge to the lineage harvester.

Prerequisites and permissions

l A global role that has the following global permission:
o The Catalog, for example Catalog Author
o View Edge connections and capabilities

l A resource role with Configure external system resource permission, for example
Owner.

l The permissions to retrieve the metadata of the following database components
through the JDBC Driver Database Metadata methods:

cvi

../../../../../../../Content/Edge/EdgeCapabilities/ta_delete-capability-from-edge-site.htm
#ViewtheSummaryoftheResults
https://support.collibra.com/hc/en-us
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0642
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0642

o Schemas
o Tables
o Columns

l The lineage harvester version 2023.04 newer.

Migrate to technical lineage via Edge

1. Open the lineage harvester configuration file in the config folder of your lineage
harvester.

2. For the data source that you want to move to Edge, remove the section of the data
source from the lineage harvester configuration file and save the configuration file.

3. If needed, start the lineage harvester in the console and run the following command
to ignore the data source.

o For Windows: .\bin\lineage-harvester.bat ignore-source

<source_ID>, where <source_id> is the ID of the data source that you want
to ignore.

o For other operating systems: ./bin/lineage-harvester ignore-source

<source_ID>, where <source_id> is the ID of the data source that you want
to ignore.

» The data source is excluded from the list of data sources that are used to create
the technical lineage.

Important This step is required only in the following cases:
o If you use a different source ID for the data source on Edge.
o If you are migrating SAP HANA data sources from the lineage harvester
to Edge, regardless of the source IDs you use.
When you created technical lineage for SAP HANA by using the lineage
harvester, different sources IDs were required if you used the hana and
hana-cviews dialects. However, in the Technical Lineage for SAP
HANA capability, you can use one source ID for both SQL based and
calculated views input. Technical lineage via Edge adds suffixes to the
source ID automatically and internally. When you synchronize the
Technical Lineage for SAP HANA capability, an error occurs if the
source IDs from the lineage harvester exist for the same data source.

cvii

4. On Edge, add the technical lineage capability for the data source with the same
configurations, for example, the same source ID.

5. Synchronize the technical lineage.
» When the synchronization completes, the technical lineage is created for the data
source.

Migrate to the lineage harvester

1. Open an Edge site.
a. On the main menu, click , and then click Settings.

» The Collibra settings page opens.
b. In the tab pane, click Edge.

» The Sites tab opens and shows a table with an overview of the Edge sites.
c. In the Edge site overview, click the name of the Edge site where you created

the technical lineage capability for the data source.
» The Edge site page appears.

2. In the Capabilities section, locate and click the technical lineage capability for the
data source.
» The technical lineage capability page opens.

3. Clear the Active check box.
4. Click Save.

» The capability is updated.
5. Synchronize the technical lineage. If you added a synchronization schedule for the

technical lineage capability, ensure that you delete the schedule.
» When the synchronization completes, the technical lineage of the data source is
deleted.

6. Open the lineage harvester configuration file in the config folder of your lineage
harvester.

7. Specify the properties in the lineage harvester configuration file for the data source
with the same configurations of the capability, for example, the same source ID, and
save the configuration file.

cviii

#synchronize
to_collibra-settings.htm
#synchronize

8. Run the lineage harvester.
» When the lineage harvester finishes processing, the technical lineage is created
for the data source.

For the overall steps to create technical lineage, go to Creating a Technical lineage via the
lineage harvester or Create a technical lineage via Edge.

What's next?

View the technical lineage graph.

You can check the progress of the technical lineage creation in Activities in your Collibra
Data Intelligence Cloud environment. The Results field indicates how many relations were
imported into Data Catalog. Go to the status page to see the log files of the SQL analysis.

If the lineage harvester log shows an error message or the harvesting process fails, you
can use the technical lineage troubleshooting guide or Collibra Support Portal to fix the
error.

For technical lineage via Edge, if the synchronization fails or completes with an error
message, you can use the technical lineage via Edge troubleshooting guide or Collibra
Support Portal to fix the error.

Technical lineage via the lineage harvester
The lineage harvester is a connectivity tool that allows you to create a technical lineage.
The lineage harvester collects metadata from your data sources. Collibra then analyzes
and processes the metadata, and creates new Table and Column assets in Data Catalog,
with names that match those of the data objects in your data sources. If you integrate a BI
tool, new BI assets are also created.

You can download the lineage harvester from the Collibra Community downloads page.

Important
l If you want to use technical lineage via Edge together with the lineage
harvester, ensure that you use the lineage harvester version 2023.04 or
newer. For more information, go to Migrate the technical lineage of a data

cix

../../../../../../../Content/CollibraDataLineage/to_technical-lineage-via-lin-harvester.htm
../../../../../../../Content/CollibraDataLineage/to_technical-lineage-via-lin-harvester.htm
co_about-activities.htm
https://support.collibra.com/hc/en-us
https://support.collibra.com/hc/en-us
https://support.collibra.com/hc/en-us
https://productresources.collibra.com/downloads/

source.
l To delete the technical lineage of a data source in the lineage harvester
version 2023.04 or newer, you must remove the section of the data source
from the lineage harvester configuration file and also run the ignore-source
command with the source ID specified.

For complete information on technical lineage, see the Collibra Data Intelligence Cloud
User Guide.

Creating a technical lineage via the lineage harvester
This topic describes the general steps on how to use the lineage harvester to create a
technical lineage.

Select a data source,
to show the relevant
integration steps.

Currently, information
is shown for:

Choose another data source

Important Amazon RedshiftAzure SQL serverAzure Synapse
AnalyticsGreenplumHiveIBM Db2PostgreSQLMicrosoft SQL
ServerMySQLNetezzaSAP HANATeradatarequirements:

l Ensure that you meet the Set up Azure Data Factory.
l You need read access on information_schema. Only views that you own are
processed.

l You need read access on the SYS schema.
l You need read access on information_schema:

o bigquery.datasets.get
o bigquery.tables.get
o bigquery.tables.list
o bigquery.jobs.create
o bigquery.routines.get
o bigquery.routines.list

l SELECT, at table level. Grant this to every table for which you want to create a
technical lineage.

l You need Monitoring role permissions.

cx

l A role with the LOGIN option.
l SELECTWITH GRANT OPTION, at Table level.
l CONNECT ON DATABASE
l You need read access on the SYS schema and the
View Definition Permission in your SQL Server.

l You need read access on definition_schema.
l GRANT SELECT, at table level. Grant this to every table for which you want to
create a technical lineage.

l The role of the user that you specify in the username property in lineage
harvester configuration file must be the owner of the views in PostgreSQL.

l You need read access on the DBC.
l You need read access to the following dictionary views:

o all_tab_cols
o all_col_comments
o all_objects
o ALL_DB_LINKS
o all_mviews
o all_source
o all_synonyms
o all_views
l Your user role must have privileges to export assets.
l You must have read permission on all assets that you want to export.
l You have added the Matillion certificate to a Java truststore.
l You have at least a Matillion Enterprise license.

The following permissions are the same, regardless of the ingestion mode:
SQL or SQL-API.

You need a role that can access the Snowflake shared read-only database. To
access the shared database, the account administrator must grant the
IMPORTED PRIVILEGES privilege on the shared database to the user that
runs the lineage harvester.

Tip If the default role in Snowflake does not have the IMPORTED
PRIVILEGES privilege, you can use the
customConnectionProperties property in the lineage harvester
configuration file to assign the appropriate role to the user. For
example:
"customConnectionProperties": "role=METADATA"

l The source code files must be in the same directory as the lineage.json file.
Otherwise, an error occurs indicating that the lineage harvester cannot find the

cxi

source code files. For complete information, go to Working with custom
technical lineage.

l Before you start the Power BI integration process, you have to perform a
number of tasks in Power BI and Microsoft Azure. These tasks, which are
performed outside of Collibra, are needed to enable the lineage harvester to
reach your Power BI application and collect its metadata. For complete
information, go to Set up Power BI.

l Before you start the Tableau integration process, you have to perform a
number of tasks in Tableau. For complete information, go to the following
topics:

o Set up Tableau
o Tableau roles and permissions

l You need the following roles, with user access to the server from which you
want to ingest:

o A system-level role that is at least a System user role.
o An item-level role that is at least a Content Manager role.

We recommend that you use SQL Server 2019 Reporting Services or newer.
We can't guarantee that older versions will work.

l Before you start the Looker integration process, you need to set up Looker.
The following permissions apply only to MicroStrategy on-premises
customers.

l You need Admin API permissions.
The first call we make to MicroStrategy is to authenticate. We connect to
<MSTR URL>:<Port>/MicroStrategyLibrary/api-docs/ and use POST
api/auth/login. You have to ensure that this API call can be made
successfully.

l You need permissions to access the library server.
l The lineage harvester uses port 443. If the port is not open, you also
need permissions to access the repository.

l If you have a MicroStrategy on-premises environment, you need the
permissions for all of the database objects that the lineage harvester
accesses.

l You have to configure the MicroStrategy Modeling Service. For
complete information, see the MicroStrategy documentation.

Steps

1. Optionally, connect to a proxy server.
2. Ensure that you meet the Azure Data Factory prerequisites.

cxii

https://www2.microstrategy.com/producthelp/Current/SystemAdmin/WebHelp/Lang_1033/Content/modeling_service.htm

3. Ensure that you have the correct Tableau versions and permissions, as described in
the Set up Tableau topics.

4. Complete the tasks in Power BI and Microsoft Azure, as described in the Set up
Power BI topics.

5. If you are a MicroStrategy on-premises customer, ensure that you have enabled
Collibra to access your MicroStrategy data, as described in Set up MicroStrategy.

6. Ensure that you have API3 credentials for authorization and access control. For
complete information, go to Set up Looker.

7. Prepare the Data Catalog physical data layer.
8. Prepare an external directory folder for the lineage harvester.
9. Prepare a domain for BI asset ingestion.
10. Optionally, assign the attribute type State to the global assignment of the Power BI

Workspace asset type. For complete information, go to Power BI workspaces.
11. Download and install the lineage harvester.
12. Create a custom technical lineage JSON file.
13. Prepare the lineage harvester configuration file.

Note The project name in the configuration file must be the same as the full
name of the Database asset.

14. If necessary, prepare a <source ID> configuration file.

Tip Hostname mapping (beta) will replace database mapping and the
collibraSystemName section for databases in a future Collibra version. For
complete information and examples of hostname mapping, go to Tableau
hostname mapping (beta).

15. Manually refresh your Power BI datasets.

Important The first time you integrate Power BI, you need to make sure that
the data in your Power BI datasets is up-to-date. Carry out this step only if this
is the first time you're integrating Power BI in Data Catalog. After that,
Microsoft automatically refreshes the datasets every 90 days. For complete
information, see:

o The Microsoft documentation.
o The Microsoft Power BI Blog.

16. Run the lineage harvester.

cxiii

https://productresources.collibra.com/downloads/#techlineage
https://docs.microsoft.com/en-us/power-bi/connect-data/refresh-data
https://powerbi.microsoft.com/en-us/blog/announcing-scanner-api-admin-rest-apis-enhancements-to-include-dataset-tables-columns-measures-dax-expressions-and-mashup-queries/

What's next?

You can check the progress of the ingestion in Activities. The results field indicates how
many relations were imported into Data Catalog.

After the metadata is ingested in Data Catalog, you can go to the domain that you
specified in your lineage harvester configuration file and view the newly created assets.
These assets are automatically stitched to existing assets in Data Catalog.

You can also view the Tableau technical lineage.

Warning We strongly recommend that you not edit the full names of any BI assets.
Doing so will likely lead to errors during the synchronization process.

Warning We highly recommend that you do not move the ingested assets to a
different domain. If you do, the assets will be deleted and recreated in the initial BI
Catalog domain when you synchronize. As a consequence, any manually added
data of those assets is lost.

Prepare the Data Catalog physical data layer for technical lineage

Important This topic does not apply if you register a data source via Edge because
in that case, Collibra automatically creates the system > database > schema > table
> column hierarchy.

To stitch data objects in your data sources to their corresponding assets in Collibra Data
Intelligence Cloud, the full names of the data objects and assets must match exactly. The
full names are constructed according to the full path of the data objects in your data
source:

(system name) > database name > schema name > table name > column name

However, when you register a data source via Jobserver or via the lineage harvester, only
assets of the following asset types are created in Data Catalog:

l Schema
l Table

cxiv

co_about-activities.htm

l Column

Therefore, you have to create a Database asset and create a relation between it and the
Schema asset, to construct the full path hierarchy required for full name matching. If you
set the useCollibraSystemName property to true in your lineage harvester
configuration file, you also need to create a System asset and create a relation between it
and the Database asset. We refer to this as preparing the Data Catalog physical data
layer.

For more information, see Automatic stitching for technical lineage.

Prerequisites

l You have a global role with the Catalog global permission, for example, Catalog
Author.

l You have a resource role with the following resource permissions on the Schema
community if you use a Jobserver and on the Database community if you use Edge.

o Asset > add
o Attribute > add
o Domain > add
o Attachment > add

Additional prerequisites for JDBC data source
types
If you are working with a JDBC data source type, you also need to meet the following
prerequisites:

l You have the permissions to retrieve the metadata of the following database
components through the JDBC Driver Database Metadata methods:

o Schemas
o Tables
o Columns

l You have set up the JDBC driver of your source data, for example MySQL.

cxv

https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/cloud-admin/2021.04/#cshid=DOC0632
ta_manage-jdbc-driver-collibra-provided-driver.htm

l You have registered a data source.

Tip The full name of your Schema asset must match the exact name of the
schema (including for case-sensitivity) in the data source that you register in
the configuration file.

If you use Jobservers in Collibra Console and there is no available Jobserver, the
Register data source actions will be grayed out in the global create menu in Collibra.

Steps

1. Create a System asset:

Important This is only required if you set the useCollibraSystemName
property to true in your lineage harvester configuration file.

Tip The full name of the System asset must match (including for case-
sensitivity) the exact name of the system of the data source that you register in
the configuration file.

Show me how
a. Open the product for which you want to create an asset, for example Business

Glossary.
b. On the main toolbar, click .

» The Create dialog box appears.
c. On the Assets tab, click Database.

» The Create Asset dialog box appears.
d. Enter the required information.

Field Description

Type The asset type of the asset that you are creating.

Domain The domain to which the asset will belong.

Tip Ensure that the domain type of the selected domain is
assigned to the selected asset type.

cxvi

ta_register-data-source-own-driver.htm
ta_assign-domain-type-to-asset-type.htm

Field Description

Name A name to identify the asset.

Tip
You can simultaneously create multiple assets.
To do so, after typing the name, press Enter, and then type the
next name. Depending on the settings, asset names may need to
be unique in their domain. If you enter a name that already exists, it
appears in the strike-through style.

e. Click Create.
» A message stating that one or more assets are created appears in the
upper-right corner of the page.

2. Create a Database asset:

Tip The full name of your Database asset must match (including for case-
sensitivity) the exact name of the database or project, in case of Google
BigQuery, that you register in the configuration file. The names are case-
sensitive.

Show me how
a. Open the product for which you want to create an asset, for example Business

Glossary.
b. On the main toolbar, click .

» The Create dialog box appears.
c. On the Assets tab, click Database.

» The Create Asset dialog box appears.
d. Enter the required information.

Field Description

Type The asset type of the asset that you are creating.

cxvii

co_non-unique-naming.htm

Field Description

Domain The domain to which the asset will belong.

Tip Ensure that the domain type of the selected domain is
assigned to the selected asset type.

Name A name to identify the asset.

Tip
You can simultaneously create multiple assets.
To do so, after typing the name, press Enter, and then type the
next name. Depending on the settings, asset names may need to
be unique in their domain. If you enter a name that already exists, it
appears in the strike-through style.

e. Click Create.
» A message stating that one or more assets are created appears in the
upper-right corner of the page.

3. Create a relation between the System asset and the Database asset using the "Tech-
nology Asset groups / is grouped by Technology Asset" relation type.

Important This step is only relevant if you created a System asset, in step 1.

Show me how
a. In the tab pane, click Add Characteristic.

» The Add a characteristic dialog box appears.
b. Click Relations.
c. Search for and click has schema.

» The Add has schema dialog box appears.
d. Enter the required information.

Option Description

Assets The name of the schema.

cxviii

ta_assign-domain-type-to-asset-type.htm
co_non-unique-naming.htm

Option Description

Filter suggested
assets by
organization

Option to filter the suggestions based on selected communities and
domains.

If this option is selected, the organization tree appears. You can then filter
and select domains and communities.

Start date Optionally enter the date on which the relation between the assets
becomes applicable. Leave this field empty to create a permanent
relation.

End date Optionally enter the date on which the relation between the assets is
no longer applicable. Leave this field empty to create a permanent
relation.

e. Click Save.

4. Create a relation between the Database asset and the Schema asset using the
"Technology Asset has / belongs to Schema" relation type.
Show me how
a. In the tab pane, click Add Characteristic.

» The Add a characteristic dialog box appears.
b. Click Relations.
c. Search for and click has schema.

» The Add has schema dialog box appears.
d. Enter the required information.

Option Description

Assets The name of the schema.

cxix

Option Description

Filter suggested
assets by
organization

Option to filter the suggestions based on selected communities and
domains.

If this option is selected, the organization tree appears. You can then filter
and select domains and communities.

Start date Optionally enter the date on which the relation between the assets
becomes applicable. Leave this field empty to create a permanent
relation.

End date Optionally enter the date on which the relation between the assets is
no longer applicable. Leave this field empty to create a permanent
relation.

e. Click Save.

What's next?

If you haven't created a configuration file yet, you are now required to create it.

If you created the configuration file and prepared the physical data layer, you can run the
lineage harvester to start the technical lineage process.

When the technical lineage process is finished and you have the required permissions,
you can go to the asset page of a Table or Column asset from the data source that you
added in the configuration file and visualize the technical lineage. At the same time, new
relations of the type "Data Element targets / sources Data Element" between assets in
Data Catalog are created.

The lineage harvester also uses scheduled jobs to automate the technical lineage
process.

cxx

to_asset-pages.htm

Set up the lineage harvester

The lineage harvester is a software application that is needed to create a technical lineage
and import metadata into Data Catalog.

Lineage harvester system requirements

To install and run the lineage harvester, you have to meet the following requirements.

Software requirements
Java Runtime Environment version 11.0.18 or newer, or OpenJDK 11.0.18 or newer.

cxxi

Note To ingest Snowflake data sources, the minimum requirement is Java Runtime
Environment version 16 or newer, or OpenJDK 16 or newer. For the lineage
harvester to function properly, set the JAVA_OPTS environment variable when you
run the lineage harvester. For example, to process data from all data sources
including the Snowflake data sources, take the following steps:
On Windows

1. Enter one of the following commands:
o If you use OpenJDK 16:

set JAVA_OPTS="-Djdk.module.illegalAccess=permit"

o If you use OpenJDK 17 or higher:

set JAVA_OPTS="--add-
opens=java.base/java.nio=ALL-UNNAMED"

2. In the same command line, enter the following command:

.\bin\lineage-harvester.bat full-sync

Note The set command is specific to the Windows Command Shell. The
command is different if you are using PowerShell.

On Linux
Enter the following command:

l If you use OpenJDK 16:

JAVA_OPTS="-Djdk.module.illegalAccess=permit"
./bin/lineage-harvester full-sync

cxxii

l If you use OpenJDK 17 or higher:

JAVA_OPTS="--add-opens=java.base/java.nio=ALL-UNNAMED"
./bin/lineage-harvester full-sync

Hardware requirements
You need to meet the hardware requirements to install and run the lineage harvester.

Minimum hardware requirements
You need the following minimum hardware requirements:

l 2 GB RAM
l 1 GB free disk space

Recommended hardware requirements
The minimum requirements are most likely insufficient for production environments. We
recommend the following hardware requirements:

l 4 GB RAM

Tip 4 GB RAM is sufficient in most cases, but more memory could be needed
for larger harvesting tasks. For instructions on how to increase the maximum
heap size, see Technical lineage general troubleshooting.

l 20 GB free disk space

Network requirements
The lineage harvester uses the HTTPS protocol by default and uses port 443.

You need the following minimum network requirements:

cxxiii

ref_technical-lineage-troubleshooting.htm#java-ram

l Firewall rules so that the lineage harvester can connect to:
o The host names of all data sources in the lineage harvester configuration file.
o All Collibra Data Lineage service instances in your geographic location:

n 15.222.200.199 (techlin-aws-ca.collibra.com)
n 18.198.89.106 (techlin-aws-eu.collibra.com)
n 13.228.38.245 (techlin-aws-sg.collibra.com)
n 54.242.194.190 (techlin-aws-us.collibra.com)
n 51.105.241.132 (techlin-azure-eu.collibra.com)
n 20.102.44.39 (techlin-azure-us.collibra.com)
n 35.197.182.41 (techlin-gcp-au.collibra.com)
n 34.152.20.240 (techlin-gcp-ca.collibra.com)
n 35.205.146.124 (techlin-gcp-eu.collibra.com)
n 34.87.122.60 (techlin-gcp-sg.collibra.com)
n 35.234.130.150 (techlin-gcp-uk.collibra.com)
n 34.73.33.120 (techlin-gcp-us.collibra.com)

Note The lineage harvester connects to different Collibra Data Lineage
service instances based on your geographic location and cloud provider.
If your location or cloud provider changes, the lineage harvester rescans
all your data sources. You have to allow all Collibra Data Lineage
service instances in your geographic location. In addition, we highly
recommend that you always allow the techlin-aws-us instance as a
backup, in case the lineage harvester cannot connect to other Collibra
Data Lineage service instances.

Install the lineage harvester

Before you can use the lineage harvester, you need to download and install it. You can
download the lineage harvester from the Collibra Community downloads page.

Requirements and permissions
l Collibra Data Intelligence Cloud.
l You have purchased Collibra Data Lineage.
l A global role with the following global permissions:

o Catalog, for example Catalog Author
o Data Stewardship Manager

cxxiv

https://productresources.collibra.com/downloads/
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630

o Manage all resources
o System administration
o Technical lineage

l A resource role with the following resource permissions on the community level in
which you created the domain:

o Asset: add
o Attribute: add
o Domain: add
o Attachment: add

l Necessary permissions to all database objects that the lineage harvester accesses.

l You meet the minimum system requirements.
l You have added Firewall rules so that the lineage harvester can connect to:

o The host names of all databases in the lineage harvester configuration file.
o All Collibra Data Lineage service instances within your geographical location:

o 15.222.200.199 (techlin-aws-ca.collibra.com)
o 18.198.89.106 (techlin-aws-eu.collibra.com)
o 13.228.38.245 (techlin-aws-sg.collibra.com)
o 54.242.194.190 (techlin-aws-us.collibra.com)
o 51.105.241.132 (techlin-azure-eu.collibra.com)
o 20.102.44.39 (techlin-azure-us.collibra.com)
o 35.197.182.41 (techlin-gcp-au.collibra.com)
o 34.152.20.240 (techlin-gcp-ca.collibra.com)
o 35.205.146.124 (techlin-gcp-eu.collibra.com)
o 34.87.122.60 (techlin-gcp-sg.collibra.com)
o 35.234.130.150 (techlin-gcp-uk.collibra.com)
o 34.73.33.120 (techlin-gcp-us.collibra.com)

Note The lineage harvester connects to different instances based on
your geographic location and cloud provider. If your location or cloud
provider changes, the lineage harvester rescans all your data sources.
You have to allow all Collibra Data Lineage service instances in your
geographic location. In addition, we highly recommend that you always
allow the techlin-aws-us instance as a backup, in case the lineage
harvester cannot connect to other Collibra Data Lineage service
instances.

cxxv

https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0642
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0632

Steps
1. Download the newest lineage harvester.
2. Unzip the archive.

» You can now access the lineage harvester folder. The lineage harvester folder
name is unique per version.

3. Start the lineage harvester to create an empty lineage harvester configuration file by
entering the following command:

o Windows: .\bin\lineage-harvester.bat

o For other operating systems: chmod +x bin/lineage-harvester and then
bin/lineage-harvester

» An empty configuration file is created in the config folder.

» The lineage harvester is installed automatically. You can check the installation by
running ./bin/lineage-harvester --help.

What's next?
Prepare the lineage harvester configuration file.

cxxvi

https://productresources.collibra.com/downloads/#techlineage

Lineage harvesting app command options and arguments

After creating a configuration file, you can use the lineage harvester to perform specific
actions with the data sources that are defined in your configuration file.

Tip If you run the lineage harvester in command line, you will see an overview of
possible command options and arguments that you can use. If the lineage harvester
process fails, you can use the technical lineage troubleshooting guide to fix your
issue.

Typical command options and arguments
The following table shows the most commonly used command options and arguments.

Command Description

full-sync Uploads all of the metadata from the data sources
mentioned in your configuration file to the Collibra
Data Lineage service, where the metadata is then
processed and uploaded to Data Catalog.

After you enter this command, the lineage
harvester starts synchronization processing and
displays the total number of data sources that are
being ingested.

Synchronization processing ends with an error in
the following situations:

l The lineage harvester does not find any
data sources,

l The useSystemName value is not the

same for all data sources. The value of
useSystemName is based on the fol-

lowing settings:
o The useCollibraSystemName

property in the lineage harvester con-
figuration file for different data sources.

o The Collibra system name setting on
Edge.

cxxvii

#EnableTechnicalLineage

Command Description

-s "<ID of data source>" Uploads only the metadata from a specified data

source. For example, full-sync -s

"myOracleDataSource". The specified

data source must be mentioned in your
configuration file.

This command allows you to process data from a
newly added data source or to refresh a data
source in the configuration file, without refreshing
the other data sources. This reduces the time you
need to upload your data sources, since you only
upload specific ones without affecting the others. If

you want to process multiple data sources, add -s

"ID of another data source" per

data source to the command.

Note You can use this argument multiple
times to include multiple data sources.

--no-matching Uploads a technical lineage without stitching the
data objects in your technical lineage to the
corresponding Column and Table assets in Data
Catalog.

Note As a result, you won't see the
technical lineage of a specific Table or
Column asset, but you can still see and
browse the full technical lineage.

cxxviii

Command Description

sync Whereas full-sync ingests metadata onto the

Collibra Data Lineage service, processes the
metadata and syncs it with assets in Data Catalog,

the sync command only performs this last part: it

syncs the metadata—as it exists on the Collibra
Data Lineage service—and your assets in Data
Catalog.

After you enter this command, the lineage
harvester starts synchronization processing and
displays the total number of data sources that are
being ingested.

Synchronization processing ends with an error in
the following situations:

l The lineage harvester does not find any
data sources,

l The useSystemName value is not the

same for all data sources. The value of
useSystemName is based on the fol-

lowing settings:
o The useCollibraSystemName

property in the lineage harvester con-
figuration file for different data sources.

o The Collibra system name setting on
Edge.

Tip See the following example for advice
on how to use the sync command to add
a new data source without re-harvesting all
data sources.

Example

Let's say you've run bin/lineage-

harvester full-sync, to upload from all

data sources, process the metadata and sync with
Data Catalog. You then decide that you want to
add a new data source, but not harvest all data
sources again.

cxxix

#EnableTechnicalLineage

Command Description

1. Reference the new data source in the lin-
eage harvester configuration file. Let's say
that the new data source has the ID
"MyNewSource".

2. Run bin/lineage-harvester

load-sources -s MyNewSource, to

load the new data source and create the
ZIP file.

3. Run bin/lineage-harvester ana-

lyze ${zip_file_from_step_2},

to analyze the new data source on the Col-
libra Data Lineage service.

4. Run bin/lineage-harvester

sync, to sync all of the data sources ref-

erenced in your configuration file and Data
Catalog.

cxxx

Command Description

-s "<ID of data source>" Syncs only the metadata on the Collibra Data
Lineage service, from a specified data source. For

example, sync -s

"myOracleDataSource". The specified

data source must be mentioned in your
configuration file.

This command allows you to sync data from one
data source without refreshing the other data
sources. You must have previously uploaded the
metadata to the Collibra Data Lineage service.

Warning Only the sources you specify are
synced. This means that any previously
ingested metadata from non-specified
sources, in Data Catalog, is deleted, along
with its existing technical lineage. If this is
not your intention, consider using full-
sync -s. With full-sync -s, all
sources are synced, regardless of which
sources are specified by the -s command.
Therefore, any previously ingested
metadata from non-specified data sources
remains, as do the respective technical
lineages.

Note You can use this argument multiple
times to include multiple data sources.

analyze ${name-of-zip-file} Analyzes a specified batch (ZIP file) of metadata
on the Collibra Data Lineage service instance.

The Sources tab page shows the transformation
details or source code that was analyzed and the
results of the analysis.

load-sources Downloads all your data sources in a separate ZIP
file, per data source, to the lineage harvester
output folder.

cxxxi

Command Description

-s <ID of data source> Downloads only the data source with a specific ID.

For example, load-sources -s

"myOracleDataSource".

Note You can use this argument multiple
times to include multiple data sources.

cxxxii

Command Description

list-sources Lists all of the data sources that will be used to
create a technical lineage. When you enter this
command, up to 500 data sources are listed per
page by default.

The list includes the following details for each data

source: Source ID <ID of data

source> (from edge: false|true)

(useSystemName: false|true).

Source ID <ID of data source>

The source ID of your data source.
from edge: false|true

Indicates whether the data source is
ingested by using technical lineage via
Edge. If the value is true, the data

source is ingested by using technical
lineage via Edge. If the value is false,

the data source is ingested by using the
lineage harvester.

useSystemName: false|true

Indicates whether Collibra Data
Lineage uses the system or server
name of the data source to match the
System asset in Data Catalog. If the
value is true, the system or server

name of the data source is used. If the
value is false, the system or server

name of the data source is not used.
The value of useSystemName is

based on the following settings:

l The useCollibraSystemName

property in the lineage harvester
configuration file for the data
source.

l The Collibra system name setting
for the data source on Edge.

cxxxiii

#EnableTechnicalLineage

Command Description

Example Source ID 1redshift
(from edge: false)
(useSystemName: false)
indicates that the data source with the
1redshift source ID was ingested
by using the lineage harvester, and the
system name of the data source is not
used to match the System asset in
Data Catalog.

-p <page number> Specifies the page to be displayed. The value of

<page number>must be greater than 0. This

option is optional.

For example, if you enter list-sources -p

2, page 2 is displayed with a default page size of

500 data sources listed. If there are less than 500
data sources in total, an error message is issued.

Note To use the -p, -s, and -all
options, you must have the lineage
harvester version 2023.05 or newer.

cxxxiv

Command Description

-s <number of data sources> Specifies the number of data sources to be listed

on one page. The value of <number of data

sources>must be in the range 0 - 500. This

option is optional.

For example, if you enter list-sources -s

40, default page 1 is displayed with 40 data

sources listed. If there are 80 data sources in total,
you see the Displaying page 1 of 2 message and a
list of 40 data sources.

If you enter list-sources -p 3 -s 20,

page 3 is displayed with 20 data sources listed. If
there are 80 data sources, you see the Displaying
page 3 of 4 message and a list of 20 data sources.

Note To use the -p, -s, and -all
options, you must have the lineage
harvester version 2023.05 or newer.

-all Lists all data sources. The data sources are not
formatted in pages. If you enter this option with the

-p and -s options, this option overrides the -p

and -s options.

For example, if you enter list-sources -p

3 -s 20 --all, all data sources are listed.

Note To use the -p, -s, and -all
options, you must have the lineage
harvester version 2023.05 or newer.

cxxxv

Command Description

ignore-source <source_id> Ignores the specified data source from the list of
data sources that will be used to create the

technical lineage, where <source_id> is the

ID of the data source that you want to ignore.
When you create the technical lineage again by

entering the sync command or synchronizing a

technical lineage capability via Edge, the specified
data source is ignored.

You can specify only one source ID at a time. If
your source ID includes spaces, enclose the
source ID in double or single quotation marks, for

example ignore-source "Source A".

You can use this command to delete the technical
lineage of a data source by using the lineage
harvester. For details, go to Delete the technical
lineage of a data source if you use the lineage
harvester and Delete the technical lineage of a
data source on Edge for technical lineage via
Edge.

Note To use the ignore-source
command, you must have the lineage
harvester version 2023.04 or newer.

cat passwords.json |

./bin/lineage-harvester <command-

like-full-sync> --passwords-stdin

Provides passwords of your Collibra Data
Intelligence Cloud instance and the data sources in
your configuration file to the lineage harvester
without storing the passwords in the lineage
harvester folder.

You can replace cat passwords.json by a

string generated by your password manager.

cxxxvi

Command Description

test-connection Checks the connectivity to the Collibra Data
Lineage service instance and to Data Catalog. The
logs will also show the IP addresses of the Collibra
Data Lineage service instances that you have to
allow.

This command is mostly used for troubleshooting
purposes.

--help Shows an overview of all supported command
options and arguments that you can use in the
lineage harvester.

--version Shows the version of the lineage harvester that
you are using.

-Dlineage-har-

vester.log.dir=path/to/log/dir

Determine the path of the log file.

Technical lineage password manager integration design

When you run the lineage harvester, you can either:

l Enter the passwords in the console. The passwords are then encrypted and stored in
/config/pwd.conf.

Note Lineage harvester 2022.05 includes an internal format change to the
password manager pwd.conf file. This means that if you use Lineage
harvester 2022.05, you can no longer use the pwd.conf file with an older
lineage harvester version.

l Provide the passwords via command line, in a prescribed JSON structure via stdin.
This allows you to store the passwords locally in your password manager, instead of
in your lineage harvester folder.

This topic provides guidance on how to structure the JSON file and which commands to
use, to store the passwords locally in your password manager.

cxxxvii

ref_technical-lineage-troubleshooting.htm
https://en.wikipedia.org/wiki/Standard_streams

Structure of the JSON file
If you prepare a JSON file with your passwords, you have to name the file passwords.json.

The JSON file must have two sections:

l The catalogs section defines the connection information and credentials to your
Collibra Data Intelligence Cloud instance.

l The sources section defines the connection information and credentials to your
data sources. You use the same "id" as the id property in the lineage harvester con-
figuration file.

The JSON file must have the following structure:

{
"catalogs": [
{
"url" : "<url-to-collibra-cloud>",
"username":"<username-to-sign-in-to-collibra>",
"password": "<password-to-sign-in-to-collibra>"

}
],
"sources": [
{
"id": "<id-of-your-database>",
"username": "<database-username>",
"password": "<database-password>"

}
]

}

Examples of commands
When you run the lineage harvester, you can use one of the following commands to
provide the passwords:

Passwords location Command

a locally stored JSON file cat passwords.json | ./bin/lineage-harvester

full-sync --passwords-stdin

cxxxviii

Passwords location Command

a custom script, for
example from a password
manager

<prepare-passwords-command> | ./bin/lineage-

harvester full-sync --passwords-stdin

Note Depending on your password manager, you may need
different parameters. For example, see the LastPass
documentation for the parameters needed by LastPass.

Connecting to a proxy server

You can connect to a proxy server when you use the lineage harvester. Collibra Data
Lineage supports proxy server connection and authentication.

Set the environment variable on Windows or set the system properties on other operating
systems with the following parameters specified to connect to a proxy server. See the
following steps for code examples.

l -Dhttps.proxyHost

l -Dhttps.proxyPort

l -Dhttps.proxyUser

l -Dhttps.proxyPassword

l -Dhttp.nonProxyHosts

The -Dhttps.proxyUser and -Dhttps.proxyPassword parameters are optional.

OnWindows
1. Set the -D parameter to the JAVA_OPTS environment variable.

Example
set JAVA_OPTS=-Dhttps.proxyHost="azusquid.imf.org" -
Dhttps.proxyPort="8080" -Dhttps.proxyUser="myusername" -
Dhttps.proxyPassword="mypassword"

2. Run the lineage harvester in the same command line window: .\bin\lineage-har-
vester.bat

cxxxix

https://lastpass.github.io/lastpass-cli/lpass.1.html
https://lastpass.github.io/lastpass-cli/lpass.1.html

On other operating systems
1. To access the hosts via a proxy server, run the following command: bin/lineage-

harvester -Dhttps.proxyHost=<Hostname or IP address of the

proxy> -Dhttps.proxyPort=<port number> -Dht-

tps.proxyUser=<username> -Dhttps.proxyPassword= <password> full-

sync

Example If you want to use a proxy with hostname proxy.example.com and
port number 443, run the following command:

bin/lineage-harvester -Dhttps.proxyHost=proxy.example.com
-Dhttps.proxyPort=443 Dhttps.proxyUser=myusername -
Dhttps.proxyPassword=mypassword

2. To exclude hosts that should be accessed without going through the proxy server,
add the following parameter: -Dhttp.nonProxyHosts=<host to exclude>.
You can exclude multiple hosts by using the pipe character (|) to separate the
hostnames or IP addresses to exclude. You can also use an asterisk (*) as a
wildcard to match multiple hostnames or IP addresses.

Example If you want to exclude hosts with hostname localhost and hosts with
IP address 127.0.0.1 and all IP addresses starting with 192.168*, run the
following command:

bin/lineage-harvester -Dhttps.proxyHost=proxy.example.com
-Dhttps.proxyPort=443 -
Dhttp.nonProxyHosts=localhost|127.0.0.1|192.168*

Important In your configuration file, the value of the source "url" or "hostname"
property (depending on the data source), and the value in your -
Dhttp.nonProxyHosts parameter, as described above, must both be either an IP
address or a host name. You will get an error if, for example, you have a host name
in the "hostname" property and an IP address in the -Dhttp.nonProxyHosts
parameter.

cxl

Prepare the lineage harvester configuration file

Before you can visualize the technical lineage, you have to create a configuration file for
the (meta)data sources that you want to process. This configuration file is used by the
lineage harvester to extract data from (meta)data sources for which you want to create a
technical lineage or you want to ingest.

If you use multiple lineage harvesters on different servers, you can create a separate
configuration file for the lineage harvester on each server and configure different data
sources in each configuration file.

Note
l Technical lineage supports a limited list of (meta)data sources.
l In all lineage harvester files, you must use UTF-8 or ISO-8859-1 characters,
with the exception of SQL files, which can only be UTF-8 encoded.

l Each data source has an ID property. The ID string must be unique and
human readable. The ID can be anything and is only used to identify the batch
of metadata that is processed on the Collibra Data Lineage service.

l The lineage harvester connects to different Collibra Data Lineage service
instances based on your geographical location and cloud provider. Make sure
you have the correct system requirements before you run the lineage
harvester. If your location or cloud provider changes, the lineage harvester
rescans all your data sources.

l Technical lineage supports the following means of authentication:
o For all data sources, except for external directories: username and
password.

o Google BigQuery data sources: username and password or a service
account key file. For more information, see the Google BigQuery
documentation.

o Snowflake: username and password or key pair authentication.
o No other authentication methods are supported.

l Comments in the lineage harvester configuration file are not supported.

Before you begin

l Download and install the lineage harvester.

cxli

https://cloud.google.com/bigquery/docs/authentication/service-account-file
https://cloud.google.com/bigquery/docs/authentication/service-account-file
https://productresources.collibra.com/downloads/#techlineage

Tip You can use the configuration file generator to create an example configuration
file to accommodate the data sources you specify in the generator. You can then
copy the example code to your configuration file and replace the values of the
properties to suit your needs.

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the connection between
Collibra Data Lineage and Data Catalog.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This section applies only to US
government customers.

url The URL of the Collibra Data Lineage service
instance.

Example “url”: “https://techlin-
gov.collibra.com”

Warning This section applies only to US
government customers.

cxlii

Properties Description

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

cxliii

Properties Description

useCollibraSystemName Indicates whether or not you want to use the system
or server name of a JDBC data source to match the
System asset that you created when you prepared
the physical data layer. The names are case-
sensitive.

Specify one of the following values:

false

The lineage harvester ignores all system
or server names that you specify on the
collibraSystemName properties in

the configuration file. This is the default
value.

true

The lineage harvester reads the system
and server names that you specify on the
collibraSystemName properties in

all sections of the configuration file. Only
specify this value when you have multiple
databases with the same name.

Note For SQL data sources, if this
property is:
o false, system or server names in
table references in analyzed SQL
code are ignored. This means that a
table that exists in two different
systems or servers is identified
(either correctly or incorrectly) as a
single data object, with a single asset
name.

o true, system or server names in
table references are considered to be
represented by different System
assets in Data Catalog. The value of
the collibraSystemName
property is used as the default
system or server name.

cxliv

Properties Description

sources This section describes the data sources for which
you want to create the technical lineage. You have to
create a configuration section for each data source.

id The unique ID that identifies the data source on
a Collibra Data Lineage service instance, for
example, my_adf.

type The type of data source. The value must be
AzureDataFactory.

collibraSystemName The system or server name of the data source.

This property is optional. Use this property with the

useCollibraSystemName property to

override the default Collibra System asset name for
this data source.

Specify this property with the same name as the
name of the System asset that you create when you
prepare the physical data layer in Data Catalog. If
you don't prepare the physical data layer, Collibra
Data Lineage cannot stitch the data objects in your
technical lineage to the assets in Data Catalog.

tenantDomain The directory ID of the Azure Data Factory
instance.

loginFlow This section contains the login application
information.

applicationId The application ID of the Azure Data Factory
instance.

type The identity of the application. The value has to
be ServicePrincipal.

resourceGroupName The name of the resource group with the
Reader role for the Azure Data Factory
instance.

cxlv

Properties Description

subscriptionId The subscription ID of the resource group.

factories The Azure Data Factory factories that the lineage
harvester collects and processes. Specify this
property with an array of Azure Data Factory factory
names. This property is optional.

The following rules apply when you specify this
property:

o Enter the factory names in square brackets ([
]), enclose each factory name in double
quotes (" "), and separate them by a comma,
for example, ["MyFirstFactory",
"MySecondFactory"].

o The factory name is not case-sensitive. For
example, the MyFactory and myfactory
factories are considered the same by Azure
Data Factory and the lineage harvester.

o If you do not specify any factory name, the
lineage harvester collects and processes all
factories that have datasets and piplelines in
them.

cxlvi

Properties Description

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

2. Save the configuration file.

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the connection between
Collibra Data Lineage and Data Catalog.

cxlvii

Properties Description

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This section applies only to US
government customers.

url The URL of the Collibra Data Lineage service
instance.

Example “url”: “https://techlin-
gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

cxlviii

Properties Description

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

cxlix

Properties Description

useCollibraSystemName Indicates whether or not you want to use the system
or server name of a JDBC data source to match the
System asset that you created when you prepared
the physical data layer. The names are case-
sensitive.

Specify one of the following values:

false

The lineage harvester ignores all system
or server names that you specify on the
collibraSystemName properties in

the configuration file. This is the default
value.

true

The lineage harvester reads the system
and server names that you specify on the
collibraSystemName properties in

all sections of the configuration file. Only
specify this value when you have multiple
databases with the same name.

Note For SQL data sources, if this
property is:
o false, system or server names in
table references in analyzed SQL
code are ignored. This means that a
table that exists in two different
systems or servers is identified
(either correctly or incorrectly) as a
single data object, with a single asset
name.

o true, system or server names in
table references are considered to be
represented by different System
assets in Data Catalog. The value of
the collibraSystemName
property is used as the default
system or server name.

cl

Properties Description

sources This section describes the data sources for which
you want to create the technical lineage. You have to
create a configuration section for each data source.
This configuration section contains the required
information of one individual SQL directory with
connection type "Folder".

Note You can add multiple data sources to
the same configuration file.

id The unique ID of the data source. For example, my_

first_data_source.

type The kind of data source. In this case, the value has to

be SqlDirectory.

path The full path to the folder where you added SQL files,

for example, C:\path\to\config\dir.

mask The pattern of the file names in the directory. By

default, this is *.

recursive Indication of the files you want to harvest:

o false (default): Only harvest the files in

directly under the folder in the SQL directory
path.

o true: Harvest all files under the folder in the

SQL directory path and subdirectories.

cli

Properties Description

dialect The dialect of the database:
redshift
azure
bigquery
greenplum
hive
db2
oracle
postgres
mssqlmysqlnetezzasnowflakesybasesparkteradata

hana, for an SAP HANA data source.

hana-cviews, for getting lineage from calculated
views in an SAP HANA data source.

Important
o The hana-cviews dialect is
supported for SAP HANA (on-
premises). It is not supported for SAP
HANA Cloud.

o To get technical lineage including
calculated views, you must harvest
SAP HANA by specifying two data
sources in the lineage harvester
configuration file. In one data source,
specify the hana dialect, and in the
other, specify the hana-cviews
dialect.

The value your put for this property has to match the
dialect you provide with in the directory with your
SQL files.

clii

Properties Description

database The name of your database, which is the name of
your Database asset.

Note
o You have to use the same database
name as the name of the Database
asset that you create when you
prepare the physical data layer in
Data Catalog. The names are case-
sensitive.

o The database and schema names in
the SQL statements in your SQL files
take precedence over the values that
you provide for the database and
schema properties in the lineage
harvester configuration file. If your
SQL statements contain database
and schema names, Collibra Data
Lineage uses them for stitching. If
your SQL statements do not contain
database and schema names,
Collibra Data Lineage uses the
values of the database and
schema properties in the
configuration file for stitching.. For
more information, go to Steps and
Automatic stitching for technical
lineage.

Important
HiveQL data sources don't have schemas.
Therefore, HiveQL databases are stored in
Data Catalog and technical lineage as
Schema assets. The technical
lineageBrowse tab pane shows the following
names:

o The database name is the name that
you enter for the
collibraSystemName property.

o The schema name is the name that

cliii

Properties Description

you enter for the database
property.

Important
MySQL data sources don't have schemas.
Therefore, MySQL databases are stored in
Data Catalog and technical lineage as
Schema assets. The technical
lineageBrowse tab pane shows the following
names:

o The database name is the name that
you enter for the database
property.

Important
Teradata data sources don't have schemas.
Therefore, Teradata databases are stored in
Data Catalog and technical lineage as
Schema assets. The technical
lineageBrowse tab pane shows the following
names:

o The database name is the name that
you enter for the
collibraSystemName property.

o The schema name is the name that
you enter for the database
property.

cliv

Properties Description

collibraSystemName The name of the data source's system or server. This
is also the name of your System asset in Data
Catalog.

Specify this property with the same name as the
name of the System asset that you create when you
prepare the physical data layer in Data Catalog. If
you don't prepare the physical data layer, Collibra
Data Lineage cannot stitch the data objects in your
technical lineage to the assets in Data
Catalog.Specify this property with the same name as
the name of the System asset that you created when
you registered the data source.

schema The name of the default schema, if not specified in
the data source itself. This corresponds to name of
your Schema asset.

Note You must use the same schema
name as the name of the Schema asset
that you create when you prepare the
physical data layer in Data Catalog.

verbose Indication whether you want to enable verbose
logging.

By default this is set to True. If you don't want to

use verbose logging, set it to False.

clv

ta_register-a-data-source-via-edge.htm

Properties Description

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

Properties Description

general This section describes the connection between
Collibra Data Lineage and Data Catalog.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This section applies only to US
government customers.

clvi

Properties Description

url The URL of the Collibra Data Lineage service
instance.

Example “url”: “https://techlin-
gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

clvii

Properties Description

useCollibraSystemName Indicates whether or not you want to use the system
or server name of a JDBC data source to match the
System asset that you created when you prepared
the physical data layer. The names are case-
sensitive.

Specify one of the following values:

false

The lineage harvester ignores all system
or server names that you specify on the
collibraSystemName properties in

the configuration file. This is the default
value.

true

The lineage harvester reads the system
and server names that you specify on the
collibraSystemName properties in

all sections of the configuration file. Only
specify this value when you have multiple
databases with the same name.

Note For SQL data sources, if this
property is:
o false, system or server names in
table references in analyzed SQL
code are ignored. This means that a
table that exists in two different
systems or servers is identified
(either correctly or incorrectly) as a
single data object, with a single asset
name.

o true, system or server names in
table references are considered to be
represented by different System
assets in Data Catalog. The value of
the collibraSystemName
property is used as the default
system or server name.

clviii

Properties Description

sources This section describes the data sources for which
you want to create the technical lineage. You have to
create a configuration section for each data source.

This section contains the required information of one
individual data source with connection type "JDBC".

Note You can add multiple data sources to
the same configuration file.

id The unique ID of the data source. For example, my_

first_data_source.

type The kind of data source. In this case, the value has to

be Database.

username The username that you use to sign in to your data
source.

clix

Properties Description

dialect The dialect of the database. For example,
redshift
azure
bigquery
greenplum
hive
db2
oracle
postgres
mssqlmysqlnetezzasnowflakesybasesparkteradata.

hana, for an SAP HANA data source.

hana-cviews, for getting lineage from calculated
views in an SAP HANA data source.

Important
o The hana-cviews dialect is
supported for SAP HANA (on-
premises). It is not supported for SAP
HANA Cloud.

o To get technical lineage including
calculated views, you must harvest
SAP HANA by specifying two data
sources in the lineage harvester
configuration file. In one data source,
specify the hana dialect, and in the
other, specify the hana-cviews
dialect.

The value your put for this property has to match the
dialect you provide with in the directory with your
SQL files.

clx

Properties Description

databaseNames The names or IDs of your databases.

Enter the database names of your data source
between double quotes (") and put everything
between square brackets. If you want to include more
than one database, separate them by a comma. For

example, ["MyFirstDatabase",

"MySecondDatabase"].

Note Ensure that you use the same
database names as the names of the
Database assets. The names are case-
sensitive.

hostname The name of your database host.

clxi

Properties Description

collibraSystemName The name of the data source's system or server. This
is also the name of your System asset in Data
Catalog.

Specify this property with the same name as the
name of the System asset that you create when you
prepare the physical data layer in Data Catalog. If
you don't prepare the physical data layer, Collibra
Data Lineage cannot stitch the data objects in your
technical lineage to the assets in Data
Catalog.Specify this property with the same name as
the name of the System asset that you created when
you registered the data source.

If the useCollibraSystemName property is:
o false (default), system or server names in

table references in analyzed SQL code are
ignored. This means that a table that exists in two
different systems or servers is identified (either
correctly or incorrectly) as a single data object,
with a single asset name.

o true, system or server names in table

references are considered to be represented by
different System assets in Data Catalog. The

value of the collibraSystemName field is

used as the default system or server name.

port The port number.

customConnectionProperties An option to enable the lineage harvester to read
additional connection parameters. This parameter is
only required in very specific situations. If you don't
need it, you can remove it from the configuration file.

clxii

ta_register-a-data-source-via-edge.htm

Properties Description

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

2. Save the configuration file.

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the connection between
Collibra Data Lineage and Data Catalog.

clxiii

Properties Description

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This section applies only to US
government customers.

url The URL of the Collibra Data Lineage service
instance.

Example “url”: “https://techlin-
gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

clxiv

Properties Description

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

clxv

Properties Description

useCollibraSystemName Indicates whether or not you want to use the system
or server name of a JDBC data source to match the
System asset that you created when you prepared
the physical data layer. The names are case-
sensitive.

Specify one of the following values:

false

The lineage harvester ignores all system
or server names that you specify on the
collibraSystemName properties in

the configuration file. This is the default
value.

true

The lineage harvester reads the system
and server names that you specify on the
collibraSystemName properties in

all sections of the configuration file. Only
specify this value when you have multiple
databases with the same name.

Note For SQL data sources, if this
property is:
o false, system or server names in
table references in analyzed SQL
code are ignored. This means that a
table that exists in two different
systems or servers is identified
(either correctly or incorrectly) as a
single data object, with a single asset
name.

o true, system or server names in
table references are considered to be
represented by different System
assets in Data Catalog. The value of
the collibraSystemName
property is used as the default
system or server name.

clxvi

Properties Description

sources This section describes the data sources for which
you want to create the technical lineage. You have to
create a configuration section for each data source.
This configuration section contains the required
information of one individual SQL directory with
connection type "Folder".

Note You can add multiple data sources to
the same configuration file.

id The unique ID of the data source. For example, my_

first_data_source.

type The kind of data source. In this case, the value has to

be SqlDirectory.

path The full path to the folder where you added SQL files,

for example, C:\path\to\config\dir.

mask The pattern of the file names in the directory. By

default, this is *.

recursive Indication of the files you want to harvest:

o false (default): Only harvest the files in

directly under the folder in the SQL directory
path.

o true: Harvest all files under the folder in the

SQL directory path and subdirectories.

dialect The dialect of the database. For example, bigquery.

The value your put for this property has to match the
dialect you provide with in the directory with your
SQL files.

clxvii

Properties Description

database The name of your database, which is the name of
your Database asset.

Note
o You have to use the same database
name as the name of the Database
asset that you create when you
prepare the physical data layer in
Data Catalog. The names are case-
sensitive.

o The database and schema names in
the SQL statements in your SQL files
take precedence over the values that
you provide for the database and
schema properties in the lineage
harvester configuration file. If your
SQL statements contain database
and schema names, Collibra Data
Lineage uses them for stitching. If
your SQL statements do not contain
database and schema names,
Collibra Data Lineage uses the
values of the database and
schema properties in the
configuration file for stitching.. For
more information, go to Steps and
Automatic stitching for technical
lineage.

Important
MySQL data sources don't have schemas.
Therefore, MySQL databases are stored in
Data Catalog and technical lineage as
Schema assets. The technical
lineageBrowse tab pane shows the following
names:

o The database name is the name that
you enter for the database
property.

clxviii

Properties Description

collibraSystemName The name of the data source's system or server. This
is also the name of your System asset in Data
Catalog.

Specify this property with the same name as the
name of the System asset that you create when you
prepare the physical data layer in Data Catalog. If
you don't prepare the physical data layer, Collibra
Data Lineage cannot stitch the data objects in your
technical lineage to the assets in Data
Catalog.Specify this property with the same name as
the name of the System asset that you created when
you registered the data source.

schema The name of the default schema, if not specified in
the data source itself. This corresponds to name of
your Schema asset.

Note You must use the same schema
name as the name of the Schema asset
that you create when you prepare the
physical data layer in Data Catalog.

verbose Indication whether you want to enable verbose
logging.

By default this is set to True. If you don't want to

use verbose logging, set it to False.

clxix

ta_register-a-data-source-via-edge.htm

Properties Description

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

Properties Description

general This section describes the connection between
Collibra Data Lineage and Data Catalog.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This section applies only to US
government customers.

clxx

Properties Description

url The URL of the Collibra Data Lineage service
instance.

Example “url”: “https://techlin-
gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

clxxi

Properties Description

useCollibraSystemName Indicates whether you want to use the system or
server name of a data source to match to the System
asset you created when you prepared the Data
Catalog physical data layer. The names are case-
sensitive. This is useful when you have multiple
databases with the same name.

sources This configuration section contains the required
information for a Google BigQuery database.

id The unique ID of your data source. For example,

my_third_data_source.

type The kind of data source. In this case, the value has to

be DatabaseBigQuery.

projectIDs The IDs of your Google BigQuery project. You can

add multiple projects. For example, ["first-

project", "second-project",

"third-project"].

Note You have to use the same project
ID as the name of the Database asset
that you create when you prepare the
physical data layer in Data Catalog.

region The location of your BigQuery data. This is the region
that you specified when you create a data set.

You can only add one location as value. However,
you can create separate BigQuery entries per
location in the configuration file. As a result, you
create a complete technical lineage with Google
BigQuery data from different locations.

Note This property is optional.

clxxii

https://cloud.google.com/bigquery/docs/locations

Properties Description

auth The path to a JSON file that contains authentication
information.

Tip For more information about setting up
the authentication, see the Google Big Query
user guide.

collibraSystemName The name of the Google BigQuery system. This is
also the name of your System asset in Data Catalog.

Specify this property with the same name as the
name of the System asset that you create when
you prepare the physical data layer in Data
Catalog. If you don't prepare the physical data
layer, Collibra Data Lineage cannot stitch the
data objects in your technical lineage to the
assets in Data Catalog.
Specify this property with the same name as the
name of the System asset that you created
when you registered the data source.

clxxiii

https://cloud.google.com/bigquery/docs/quickstarts/quickstart-client-libraries
https://cloud.google.com/bigquery/docs/quickstarts/quickstart-client-libraries
ta_register-a-data-source-via-edge.htm

Properties Description

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

2. Save the configuration file.

For complete information on creating custom technical lineage by using the lineage
harvester, go to Working with custom technical lineage.

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the connection between
Collibra Data Lineage and Data Catalog.

clxxiv

Properties Description

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This section applies only to US
government customers.

url The URL of the Collibra Data Lineage service
instance.

Example “url”: “https://techlin-
gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

clxxv

Properties Description

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

useCollibraSystemName The lineage harvester ignores this property for
custom technical lineage.
To use the system or server name of your data
source to match the System asset in Data Catalog,

specify the system data object in the tree and

lineage sections in the custom technical lineage

JSON file.

sources Contains the required information to retrieve a
custom lineage. Use this property to locate the JSON
file that defines the custom technical lineage.

If you want to create the technical lineage for multiple

data sources, create a sources section for each

data source.

type The kind of data source. The value must be

ExternalDirectory.

id The unique ID of your custom technical lineage. This
property identifies the metadata that the lineage
harvester processes.

Specify this property with an unique string, for

example, MyCustomLineage.

dirType The type of external directory. The value is

custom-lineage.

clxxvi

Properties Description

collibraSystemName The lineage harvester ignores this property for
custom technical lineage.
To use the system or server name of your data
source to match the System asset in Data Catalog,

specify the system data object in the tree and

lineage sections in the custom technical lineage

JSON file.

path The full path to the folder of the custom technical
lineage JSON file, for example

C:\path\to\custom-lineage\dir.

There must be only one JSON file that defines the
lineage, and the JSON file must be named
lineage.json. You can, however, add other files in the
harvested directory and subdirectories and refer to
those files from within the JSON file.

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

2. Save the configuration file.

clxxvii

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the connection between
Collibra Data Lineage and Data Catalog.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This section applies only to US
government customers.

url The URL of the Collibra Data Lineage service
instance.

Example “url”: “https://techlin-
gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

clxxviii

Properties Description

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

useCollibraSystemName Indicates whether or not you want to use the system
or server name of a JDBC data source to match the
System asset that you created when you prepared
the physical data layer. The names are case-
sensitive. This is useful if you have multiple
databases with the same name.

sources This configuration section contains the required
information to connect to IBM InfoSphere DataStage.

Note Make sure that you have prepared a
local folder with the DataStage files for which
you want to create a technical lineage.

collibraSystemName The name of the data source's system or server. If

the useCollibraSystemName property is set

to true, you must prepare a configuration file to

provide the system information.

id The unique ID of your data source. For example, my_
datastage.

clxxix

Properties Description

type The kind of data source. In this case, the value has to
be ExternalDirectory.

dirType The type of external directory. The value has to be

datastage.

path The full path to the folder where you stored the data
source, for example,

C:\path\to\config\dir.

mask The pattern of the file names in the directory. By

default, this is *.

recursive Indication whether you want to use recursive queries.

By default, this is set to False. If you want to use

recursive query, set it to True.

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

2. Save the configuration file.

clxxx

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the connection between Collibra
Data Lineage and Data Catalog.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service instance.

Warning This section applies only to US
government customers.

url The URL of the Collibra Data Lineage service instance.

Example “url”: “https://techlin-gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data Lineage
service instance.

A unique user key is needed for each Collibra environment.
If you're not sure what your user key is, please contact your
Collibra Customer Success Manager.

Warning This section applies only to US
government customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older than
1.1.2 show collibra instead of catalog.

clxxxi

Properties Description

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

useCollibraSystemName Indicates whether or not you want to use the system or
server name of a JDBC data source to match the System
asset that you created when you prepared the physical
data layer. The names are case-sensitive. This is useful if
you have multiple databases with the same name.

clxxxii

Properties Description

sources This configuration section contains the required information
to enable the lineage harvester to collect and process Data
Integration objects.

You can create different Informatica Intelligent Cloud
Services <source ID> configuration files for a large data
source to avoid errors that might occur when the lineage
harvester ingests metadata from one source with a large
size. You can then decrease the size of the source by
separating the projects to a different source with a different
<source ID> configuration file name.

Show me the example

"sources" : [
{
"type" : "IICS",
"id" : "iics_source-1",
"collibraSystemName" : "iics-

development",
"loginUrl" : "https://dm-

us.informaticaintelligentcloud.co
m",
"username" : "login-iics"
"objects" : [

{
"path" : "Default/Sales",
"type" : "Project"

},
{

"path" : "My
Project/Statistics",

"type" : "Project"
}

]
}
{
"type" : "IICS",
"id" : "iics_source-2",
"collibraSystemName" : "iics-

development",
"loginUrl" : "https://dm-

us.informaticaintelligentcloud.co
m",
"username" : "login-iics"
"objects" : [

{

clxxxiii

Properties Description

"path" : "Finance/Task_Flows",
"type" : "Folder"

},
{

"path" : "Common/Task_Flows/tf_
CalendarDimension",

"type" : "Taskflow"
}

]
}]

Tip Make sure you have READ permission on all
data objects that you want to harvest.

type The kind of data source. In this case, the value has to be

IICS.

id The unique ID that is used to identify the data source on the

Collibra Data Lineage service. For example, my_data_

integration.

collibraSystemName The name of the Informatica server or system.

Important You must prepare a <source ID>
configuration file to provide this system information.
This is true regardless of whether the
useCollibraSystemName property is set to
true or false.

loginURL The URL of the Informatica Intelligent Cloud Services

environment sign-in page. For example: https://dm-

us.informaticaintelligentcloud.com.

username The username you use to sign in to Informatica Intelligent
Cloud Services.

clxxxiv

https://dm-us.informaticacloud.com/identity-service/home

Properties Description

objects The objects that you want to export. Each object requires a
path and a type, for example:

"objects": [
{

"path" : "Sales",
"type" : "Project"

},
{

"path" : "Finance/Task_Flows",
"type" : "Folder"

},
{

"path" : "Common/Task_Flows/tf_
CalendarDimension",

"type" : "Taskflow"
}

]

The following section provides information to identify and
access Data Integration objects.

Tip For more information about the objects that
you can export and the required information, see
the Informatica documentation.

path The full path to the object, for example,

C:\path\to\object-dir.

type The type of the object. For example, Taskflow.

IICS scanner's starting point is a Taskflow. Therefore the
only meaningful types to export are: Taskflow, Project and
Folder.

Note The types are not case sensitive.

clxxxv

https://docs.informatica.com/integration-cloud/cloud-platform/current-version/rest-api-reference/platform-rest-api-version-3-resources/lookup.html

Properties Description

paramFiles The full path to the directory in which your parameter files
are stored.

This is an optional parameter that allows you to harvest
parameter files in Informatica Intelligent Cloud Services
data sources.

Important The hierarchy of the files in the
directory must be an exact match of the
hierarchy of the files in your file system.
Show me how to do this
a. Create a directory for your parameter files.

For this example, let's name the directory
my-parameter-files.

b. In your lineage harvester configuration file,
the value of the paramFiles property
needs to be the full path to your parameter
files directory, for example
/full/path/<my-parameter-
files>/.

c. Copy your parameter files to your
parameter files directory.
Be sure to preserve the full path for each of
your parameter files. For example, for
parameter file
/root/child/child2/paramfile.txt, run the
following commands:
i. cd /full/path/<my-
parameter-files>/

ii. mkdir -p root/child/child2/
iii. cp

/root/child/child2/paramfil
e.txt root/child/child2/

clxxxvi

Properties Description

deleteRawMetadataAfterProces
sing

The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for processing.

You can use this optional property to specify whether or not
the raw metadata should be deleted from Collibra Data
Lineage service instance after the metadata that is targeted
for ingestion in Data Catalog is processed.

The default value is false.

If the property is set to true, the raw source metadata is

deleted after processing. If set to false, it is stored in the

Collibra infrastructure.

Note Setting this property to true can negatively
impact performance.

2. Save the configuration file.

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the connection between
Collibra Data Lineage and Data Catalog.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This section applies only to US
government customers.

clxxxvii

Properties Description

url The URL of the Collibra Data Lineage service
instance.

Example “url”: “https://techlin-
gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

clxxxviii

Properties Description

useCollibraSystemName Indicates whether or not you want to use the system
or server name of a JDBC data source to match the
System asset that you created when you prepared
the physical data layer. The names are case-
sensitive. This is useful if you have multiple
databases with the same name.

sources This configuration section contains the required
information to connect to Informatica PowerCenter.

Note Make sure that you have prepared a
local folder with the Informatica objects for
which you want to create a technical lineage.

collibraSystemName The name of the data source's system or server. If

the useCollibraSystemName property is set

to true, you must prepare a configuration file to

provide the system information.

id The unique ID of your data source. For example, my_
informatica.

type The kind of data source. In this case, the value has to
be ExternalDirectory.

dirType The type of external directory. The value has to be

infa.

path The full path to the folder where you stored the data
source, for example,

C:\path\to\config\dir.

mask The pattern of the file names in the directory. By

default, this is *.

recursive Indication whether you want to use recursive queries.

By default, this is set to False. If you want to use

recursive query, set it to True.

clxxxix

Properties Description

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

2. Save the configuration file.

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the connection information
between the lineage harvester and Data Catalog.

cxc

Properties Description

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This applies only to US
government customers.

url The URL of the Collibra Data Lineage service
instance.“url”: “https://techlin-gov.collibra.com”

Warning This applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This applies only to US
government customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

url The URL of your Collibra Data Intelligence Cloud
environment.

Note You can only enter the public URL of
your Collibra DGC environment. Other URLs
will not be accepted.

username The username that you use to sign in to Collibra.

cxci

Properties Description

useCollibraSystemName Indicates whether or not you want to use the system
or server name of a data source to match to the
System asset in Data Catalog. Collibra Data Lineage
uses the system names to match the structure of
databases in Looker to assets in Data Catalog. This
is useful when you have multiple databases with the
same name.

By default, the useCollibraSystemName

property is set to false. If you want to use it, set it

to true.

Important
o If you set this property to true, the
lineage harvester reads the value of
the collibraSystemName
property in your Looker <source-ID>
configuration file.

o If you set the
useCollibraSystemName
property to false, the lineage
harvester ignores the
collibraSystemName property in
the Looker <source-ID> configuration
file.

sources This section contains the Looker connection
properties.

cxcii

Properties Description

id The unique ID of your Looker metadata. For
example, my_looker.

Tip This value can be anything as long as it
is unique and human readable. The ID
identifies the batch of Looker metadata on
the Collibra Data Lineage service.

Warning In the sources section of your
lineage harvester configuration file, you can
only specify one id property per Looker
instance. If you have multiple id properties
for a single Looker instance, ingestion will
fail. If you have multiple id properties in the
configuration file, it means you intend to
ingest from multiple unique Looker
instances.

type The kind of data source. In this case, the value has to
be Looker.

cxciii

Properties Description

lookerUrl The URL to your Looker API.

Tip There are two ways to find the
Looker API URL:
o In the API Host URL field in the
Looker Admin menu. If this field is
empty, you can use the default
Looker API URL which you can find in
the interactive API documentation.

o In the interactive API documentation
URL. It is the part of the URL before
/api-docs/.

Note Looker 3.1 APIs are deprecated;
however, the API3 credentials for
authorization and access control remain
valid.

clientId The username you use to access the Looker API.

domainId The unique ID of the domain in Collibra Data
Intelligence Cloud in which you want to ingest the
Looker assets.

This is the default domain.

If you want to ingest the contents of specific Looker
Folders into specific domains in Collibra, you specify
the domain reference IDs in the filters section of the
Looker <source ID> configuration file.

pagingLimit Optional property for customizing the Looker API
pagination settings.

The default value of 50 is sufficient in most cases;

however, you can decrease it to help mitigate node
limit errors, or increase it to speed up API calls.

Example "pagingLimit": 10

cxciv

https://docs.looker.com/admin-options/platform/api#api_host_url
https://docs.looker.com/reference/api-and-integration/api-getting-started#interactive_api_documentation_and_explorer

Properties Description

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

2. Save the configuration file.

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the connection between
Collibra Data Lineage and Data Catalog.

cxcv

Properties Description

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This section applies only to US
government customers.

url The URL of the Collibra Data Lineage service
instance.

Example “url”: “https://techlin-
gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

cxcvi

Properties Description

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

useCollibraSystemName Indicates whether or not you intend to use a Matillion
<source ID> configuration file to specify the system
name of a data source. This is useful if you have
multiple databases with the same name, or if you
want to group a number of databases under one
system.

By default, this property is set to false.

If you set this property to true, you must prepare a

Matillion <source ID> configuration file.

sources This section contains the required information for
Matillion.

Tip When you create a new project in
Matillion, you define in which group you want
to create the project, the project name and
the environment name. This information is
needed to enable the lineage harvester to
access Matillion and scan your metadata.

Important Currently, you can only create a
technical lineage for Snowflake and Redshift
projects in Matillion.

id The unique ID that is used to identify the data source
on the Collibra Data Lineage service instance. For

example, my_matillion_data_

integration.

cxcvii

https://documentation.matillion.com/docs/8924318
https://documentation.matillion.com/docs/8924318

Properties Description

type The kind of data source. In this case, the value has to

be Matillion.

url The URL of your Matillion environment. For example,

https://<domain name> or

https://<IP address>.

groupName The name of your group in Matillion.

projectName The name of your project in Matillion.

You can only add the name of one project. If you
want to create a technical lineage for other projects
within the same group, create a new section in the
lineage harvester configuration file.

environmentName The name of your environment in Matillion.

You can only add the name of one environment. If
you want to create a technical lineage for other
environments within the same project, create a new
section in the lineage harvester configuration file.

dialect The dialect of the database.

You can enter one of the following values:

o redshift, for an Amazon Redshift data

source.
o snowflake, for a Snowflake data source.

cxcviii

Properties Description

startTimestamp The timestamp of tasks in Matillion. You can use this
parameter to limit the amount of metadata that the
lineage harvester scans.

Specify this property with a UNIX timestamp in
milliseconds.

If this property remains empty or is deleted from the
configuration file, all accessible tasks are scanned.
Matillion provides seven days of history by default
and automatically removes entries older than seven
days.

collibraSystemName Regardless of the value set for the

useCollibraSystemName property, the

following is true:
o You must include this property in your

configuration file.
o You can leave this property empty.
o Any value that you give is ignored.

If the useCollibraSystemName property is

set to true, you must prepare a Matillion <source-

ID> configuration file. In that case, the

CollibraSystemName property in the <source

ID> configuration file is taken into account.

Note This is a legacy property that will be
deprecated in a future release.

auth The section contains the authentication details for
signing in to Matillion.

cxcix

Properties Description

type The authentication method you want to use to sign in
to Matillion.

The value must be either:
o Basic, for username and password

authentication.
o Token, for token-based authentication.

Important These values are case-sensitive.

username The username that you use to sign in to Matillion.

Important This property is only required if
you are using the username and password
authentication method. If you are using
token-based authentication, do not include
this property.

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

2. Save the configuration file.

cc

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the connection information between
the lineage harvester and Data Catalog.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service instance.

Warning This applies only to US government
customers.

url The URL of the Collibra Data Lineage service
instance.“url”: “https://techlin-gov.collibra.com”

Warning This applies only to US government
customers.

userKey The unique API key to connect to the Collibra Data Lineage
service instance.

A unique user key is needed for each Collibra environment.
If you're not sure what your user key is, please contact your
Collibra Customer Success Manager.

Warning This applies only to US government
customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

cci

Properties Description

url The URL of your Collibra Data Intelligence Cloud
environment.

Note You can only enter the public URL of your
Collibra DGC environment. Other URLs will not be
accepted.

username The username that you use to sign in to Collibra.

useCollibraSystemName Indicates whether or not you want to use the system or
server name of a data source to match to the System asset
in Data Catalog during automatic stitching. This is useful
when you have multiple databases with the same name.

By default, the useCollibraSystemName property

is set to false. If you want to use it, set it to true.

Important
o If you set this property to true, the lineage
harvester reads the value of the
collibraSystemName property in your
MicroStrategy <source ID> configuration
file.

o If you set the
useCollibraSystemName property to
false, the lineage harvester ignores the
collibraSystemName property in the
Power BI <source-ID> configuration file.

sources This section contains the MicroStrategy connection
properties.

ccii

Properties Description

id The unique ID of your MicroStrategy metadata. For

example, my_microstrategy.

Warning In the sources section of your lineage
harvester configuration file, you can only specify
one id property per MicroStrategy Intelligence
Server. If you have multiple id properties for a
single MicroStrategy Intelligence Server, ingestion
will fail. If you have multiple id properties in the
configuration file, it means you intend to ingest from
multiple unique MicroStrategy Intelligence Servers.

Tip This value can be anything as long as it is
unique and human readable. The ID identifies the
batch of MicroStrategy metadata on the Collibra
Data Lineage service.

type The kind of data source. In this case, the value has to be

MSTR_V2.

url The URL of your MicroStrategy account.

username The username that you use to sign in to MicroStrategy.

microStrategyLibraryUrl This optional property allows you to specify a custom URL
for your MicroStrategy Library.

Example If the URL to your MicroStrategy Library
is
https://collibra.microstrategy.com/MicroStrategyLib
rary/api, you don't need to use this property, as that
is the default, hardcoded URL. However, if the URL
is something like
https://collibra.microstrategy.com/
MicroStrategyLibraryProd/api, then include this
property and configure it as follows:
"microStrategyLibraryUrl":
"MicroStrategyLibraryProd"

cciii

Properties Description

maxParallelRequests This optional property allows you to specify the internal
sizing, meaning the amount of tasks that can be executed
at the same time.

The default value is "1", which means that HTTP requests
are run in a synchronous manner, instead of in parallel. As
value of "5", for example, means that as many as 5
HTTP requests can take place in parallel.

A lower value reduces the chances of experiencing HTTP
401 Unauthorized errors.

deleteRawMetadataAfterProces
sing

The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for processing.

You can use this optional property to specify whether or not
the raw metadata should be deleted from Collibra Data
Lineage service instance after the metadata that is targeted
for ingestion in Data Catalog is processed.

The default value is false.

If the property is set to true, the raw source metadata is

deleted after processing. If set to false, it is stored in the

Collibra infrastructure.

Note Setting this property to true can negatively
impact performance.

appUrlSuffix This optional property ensures that the correct URL to data
objects in MicroStrategy is included on the asset pages of
corresponding MicroStrategy assets. The required value
depends on which platform you run MicroStrategy:
o For J2EE, use: "appUrlSuffix":

"MicroStrategy/servlet/mstrWeb"
o For .NET, use: "appUrlSuffix":

"MicroStrategy/asp/Main.aspx"

2. Save the configuration file.

cciv

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the connection between
Collibra Data Lineage and Data Catalog.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This section applies only to US
government customers.

url The URL of the Collibra Data Lineage service
instance.

Example “url”: “https://techlin-
gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

ccv

Properties Description

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

ccvi

Properties Description

useCollibraSystemName Indicates whether or not you want to use the system
or server name of a JDBC data source to match the
System asset that you created when you prepared
the physical data layer. The names are case-
sensitive.

Specify one of the following values:

false

The lineage harvester ignores all system
or server names that you specify on the
collibraSystemName properties in

the configuration file. This is the default
value.

true

The lineage harvester reads the system
and server names that you specify on the
collibraSystemName properties in

all sections of the configuration file. Only
specify this value when you have multiple
databases with the same name.

Note For SQL data sources, if this
property is:
o false, system or server names in
table references in analyzed SQL
code are ignored. This means that a
table that exists in two different
systems or servers is identified
(either correctly or incorrectly) as a
single data object, with a single asset
name.

o true, system or server names in
table references are considered to be
represented by different System
assets in Data Catalog. The value of
the collibraSystemName
property is used as the default
system or server name.

ccvii

Properties Description

sources This section describes the data sources for which
you want to create the technical lineage. You have to
create a configuration section for each data source.
This configuration section contains the required
information of one individual SQL directory with
connection type "Folder".

Note You can add multiple data sources to
the same configuration file.

id The unique ID of the data source. For example, my_

first_data_source.

type The kind of data source. In this case, the value has to

be SqlDirectory.

path The full path to the folder where you added SQL files,

for example, C:\path\to\config\dir.

mask The pattern of the file names in the directory. By

default, this is *.

recursive Indication of the files you want to harvest:

o false (default): Only harvest the files in

directly under the folder in the SQL directory
path.

o true: Harvest all files under the folder in the

SQL directory path and subdirectories.

dialect The dialect of the database. For example, oracle.

The value your put for this property has to match the
dialect you provide with in the directory with your
SQL files.

ccviii

Properties Description

database The name of your database, which is the name of
your Database asset.

Note
o You have to use the same database
name as the name of the Database
asset that you create when you
prepare the physical data layer in
Data Catalog. The names are case-
sensitive.

o The database and schema names in
the SQL statements in your SQL files
take precedence over the values that
you provide for the database and
schema properties in the lineage
harvester configuration file. If your
SQL statements contain database
and schema names, Collibra Data
Lineage uses them for stitching. If
your SQL statements do not contain
database and schema names,
Collibra Data Lineage uses the
values of the database and
schema properties in the
configuration file for stitching.. For
more information, go to Steps and
Automatic stitching for technical
lineage.

ccix

Properties Description

collibraSystemName The name of the data source's system or server. This
is also the name of your System asset in Data
Catalog.

Specify this property with the same name as the
name of the System asset that you create when you
prepare the physical data layer in Data Catalog. If
you don't prepare the physical data layer, Collibra
Data Lineage cannot stitch the data objects in your
technical lineage to the assets in Data
Catalog.Specify this property with the same name as
the name of the System asset that you created when
you registered the data source.

schema The name of the default schema, if not specified in
the data source itself. This corresponds to name of
your Schema asset.

Note You must use the same schema
name as the name of the Schema asset
that you create when you prepare the
physical data layer in Data Catalog.

verbose Indication whether you want to enable verbose
logging.

By default this is set to True. If you don't want to

use verbose logging, set it to False.

ccx

ta_register-a-data-source-via-edge.htm

Properties Description

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

Properties Description

general This section describes the connection between
Collibra Data Lineage and Data Catalog.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This section applies only to US
government customers.

ccxi

Properties Description

url The URL of the Collibra Data Lineage service
instance.

Example “url”: “https://techlin-
gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

ccxii

Properties Description

useCollibraSystemName Indicates whether or not you want to use the system
or server name of a JDBC data source to match the
System asset that you created when you prepared
the physical data layer. The names are case-
sensitive. This is useful if you have multiple
databases with the same name.

sources This configuration section contains the required
information for an Oracle database.

Tip We recommend the "type":
"DatabaseOracle" configuration
described in this section, because it allows
you to specify the Oracle database name and
preserve stitching in cases where the
database name is not the same as the SID or
service name. You can, however, still use the
legacy "type": "Database"
configuration to ingest Oracle databases.

id The unique ID of your Oracle database. For example,

my_oracle_db.

type The kind of data source. In this case, the value has to

be DatabaseOracle.

hostname The name of your database host.

username The username that you use to sign in to your
Oracle database.

port The port number.

ccxiii

Properties Description

sids One or more system identifiers (SID). An SID is a
unique name for an Oracle database instance on a
specific host. You can use this property in

conjunction with the databaseNames property,

to preserve stitching.

Important You must specify either one
or more SIDs via this property, or one or
more service names via the
serviceNames property. You cannot
include both properties in the
configuration file.

Show me examples of how to configure the
sids property, with and without the
databaseNames property
Example 1: You include the sids property, but not

the databaseNames property:

{
"id": "oracle1",
"type": "DatabaseOracle",
"hostname": "host_url",
"username": "user1",
"collibraSystemName":

"automation_csn",
"port": 1521,
"sids": ["sid1", "sid2"]

}

Result: The database names in the technical lineage
will be "sid1" and "sid2". If these don't match with
your Database assets in Collibra, then stitching won't
work.

Example 2: You include the sids property and the

databaseNames property:

ccxiv

Properties Description

{
"id": "oracle2",
"type": "DatabaseOracle",
"hostname": "host_url",
"username": "user1",
"collibraSystemName":

"automation_csn",
"port": 1521,
"sids": ["sid1", "sid2"],
"databaseNames": ["db1",

"db2"]
}

Result: The SID "sid1" corresponds to the Database
asset name "db1" in Collibra, therefore stitching is
preserved. The same is true for SID "sid2" and
Database asset name "db2".

ccxv

Properties Description

serviceNames One or more service names. A service name is the
TNS alias that you give when you remotely connect
to your database. You can use this property in

conjunction with the databaseNames property,

to preserve stitching.

Important You must specify either one
or more service names via this property,
or one or more SIDs via the sids
property. You cannot include both
properties in the configuration file.

Show me examples of how to configure the
serviceNames property, with and without the
databaseNames property
Example 1: You include the serviceNames

property, but not the databaseNames property:

{
"id": "oracle3",
"type": "DatabaseOracle",
"hostname": "host_url",
"username": "user1",
"collibraSystemName":

"automation_csn",
"port": 1521,
"serviceNames": ["sn1",

"sn2"]
}

Result: The database names in the technical lineage
will be "sn1" and "sn2". If these don't match with your
Database assets in Collibra, then stitching won't
work.

Example 2: You include the serviceNames

property and the databaseNames property:

ccxvi

Properties Description

{
"id": "oracle4",
"type": "DatabaseOracle",
"hostname": "host_url",
"username": "user1",
"collibraSystemName":

"automation_csn",
"port": 1521,
"serviceNames": ["sn1",

"sn2"],
"databaseNames": ["db1",

"db2"]
}

Result: The service name "sn1" corresponds to the
Database asset name "db1" in Collibra, therefore
stitching is preserved. The same is true for service
name "sn2" and Database asset name "db2".

ccxvii

Properties Description

databaseNames The names of one or more Oracle databases. You
can use this optional property in conjunction with the

sids or serviceNames property, to preserve

stitching. The value you specify has to match your
Database asset (or assets) in Collibra.

Enter the Oracle database names between double
quotes ("") and put everything between square
brackets. If you want to include more than one
database, separate them by a comma. For example,

["MyFirstDatabase",

"MySecondDatabase"].

o If you use this property, the database names
that you specify have to correlate with the
databases that you specify in the sids or

serviceNames property.
o If you don't use this property, the database
name in the technical lineage will be the
value that you put for the sids or

serviceNames property.

Tip For examples of how to configure this
property, see the sids or
serviceNames property descriptions
and examples.

ccxviii

Properties Description

collibraSystemName The name of the data source's system or server. This
is also the name of your System asset in Data
Catalog.

Specify this property with the same name as the
name of the System asset that you create when
you prepare the physical data layer in Data
Catalog. If you don't prepare the physical data
layer, Collibra Data Lineage cannot stitch the
data objects in your technical lineage to the
assets in Data Catalog.
Specify this property with the same name as the
name of the System asset that you created
when you registered the data source.
If the useCollibraSystemName property is:
o false (default), system or server names in

table references in analyzed SQL code are
ignored. This means that a table that exists in two
different systems or servers is identified (either
correctly or incorrectly) as a single data object,
with a single asset name.

o true, system or server names in table

references are considered to be represented by
different System assets in Data Catalog. The

value of the collibraSystemName field is

used as the default system or server name.

ccxix

ta_register-a-data-source-via-edge.htm

Properties Description

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

2. Save the configuration file.

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the necessary connection
information.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service instance.

Warning This applies only to US government
customers.

ccxx

Properties Description

url The URL of the Collibra Data Lineage service
instance.“url”: “https://techlin-gov.collibra.com”

Warning This applies only to US government
customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success Manager.

Warning This applies only to US government
customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

url The URL of your Collibra environment.

Note You can only enter the public URL of your
Collibra DGC environment. Other URLs are not
accepted.

username The username that you use to sign in to Collibra.

ccxxi

Properties Description

useCollibraSystemName Indicates whether or not you want to use the system or
server name of a data source to match to the System
asset in Data Catalog during automatic stitching. This is
useful when you have multiple databases with the same
name.

By default, the useCollibraSystemName property

is set to false. If you want to use it, set it to true.

Important
o If you set this property to true, the
lineage harvester reads the value of the
collibraSystemName property in
your Power BI <source ID> configuration
file.

o If you set the
useCollibraSystemName property
to false, the lineage harvester ignores
the collibraSystemName property in
the Power BI <source-ID> configuration
file.

sources This section describes the data sources for which you
want to create the technical lineage. You have to create a
configuration section for each data source.

Note You can add multiple data sources to the
same configuration file.

ccxxii

Properties Description

scope Optional property that is intended only for customers with
a different scope, such as Chinese tenants.

Example “scope” :
“https://analysis.chinacloudapi.cn/powerbi/api/.d
efault”

Important If you are a US government or national
cloud Power BI customer, you must include and
specify values for both this property and the
apiUrl property. For complete information,
consult Microsoft's documentation on Power BI
for US government customers.

apiUrl The API URL of your Power BI service.

The default value is

https://api.powerbi.com.

Important This property is only relevant for US
government or national cloud Power BI
customers, in which case you must include and
specify values for both this property and the
scope property. For complete information,
consult Microsoft's documentation on Power BI
for US government customers.

type The kind of data source. In this case, the value has
to be PowerBI.

ccxxiii

https://learn.microsoft.com/en-us/power-bi/enterprise/service-govus-overview
https://learn.microsoft.com/en-us/power-bi/enterprise/service-govus-overview
https://learn.microsoft.com/en-us/power-bi/enterprise/service-govus-overview
https://learn.microsoft.com/en-us/power-bi/enterprise/service-govus-overview

Properties Description

id The unique ID to identify the Power BI service metadata
that was uploaded to the Collibra Data Lineage service.

Warning In the sources section of your
lineage harvester configuration file, you can only
specify one id property per Power BI service. If
you have multiple id properties for a single
Power BI service, ingestion will fail. If you have
multiple id properties in the configuration file, it
means you intend to ingest from multiple unique
Power BI services.

tenantDomain The Power BI tenant domain is the domain associated
with the Microsoft Azure tenant.

This domain is either a default domain or a custom
domain. You can specify this property with the URL, such
as collibrapowerbi.onmicrosoft.com or tenant ID, such as
e**b****-****-****-****-1b**d****4663.

Note Usually, you can find a list of Power BI
tenant or server domains in your Azure Active
Directory or in the top right menu.

loginFlow This section describes the authentication information for
accessing your Power BI metadata.

The lineage harvester supports two authentication
methods: service principal, and username and password.
For complete information on your authentication options,
see Authentication.

type This depends on the authentication method you use.

o Service principle: The value should be
ServicePrincipal.

o Username and password: The value should be
ResourceOwnerPasswordCredentials.

ccxxiv

Properties Description

applicationId The unique ID of the Microsoft Azure Application
(client) ID.

username The email address of your Azure Active Directory user.

Tip This property only applies if you are using the
username and password authentication method.

domainId The reference ID of the domain in Collibra in which
you want to ingest Power BI metadata.

useHttp1 Optional property to use HTTP/1.1 streams, in case
file-size limitations are resulting in timeout errors
when using the default HTTP/2 streams.

deleteRawMetadataAfterProcessi
ng

The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for processing.

You can use this optional property to specify whether or
not the raw metadata should be deleted from Collibra
Data Lineage service instance after the metadata that is
targeted for ingestion in Data Catalog is processed.

The default value is false.

If the property is set to true, the raw source metadata is

deleted after processing. If set to false, it is stored in

the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

2. Save the configuration file.

ccxxv

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the connection between
Collibra Data Lineage and Data Catalog.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This section applies only to US
government customers.

url The URL of the Collibra Data Lineage service
instance.

Example “url”: “https://techlin-
gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

ccxxvi

Properties Description

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

useCollibraSystemName Indicates whether or not you want to use the system
or server name of a JDBC data source to match the
System asset that you created when you prepared
the physical data layer. The names are case-
sensitive. This is useful if you have multiple
databases with the same name.

sources This configuration section contains the required
information to connect to SQL Server Integration
Services (SSIS).

Note Make sure that you have prepared a
local folder with the SSIS files for which you
want to create a technical lineage.

collibraSystemName The name of the data source's system or server. If

the useCollibraSystemName property is set

to true, you must prepare a configuration file to

provide the system information.

id The unique ID of your data source. For example, my_
ssis.

ccxxvii

Properties Description

type The kind of data source. In this case, the value has to
be ExternalDirectory.

dirType The type of external directory. The value has to be

ssis.

path The full path to the folder where you stored the data
source, for example,

C:\path\to\config\dir.

mask The pattern of the file names in the directory. By

default, this is *.

recursive Indication whether you want to use recursive queries.

By default, this is set to False. If you want to use

recursive query, set it to True.

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

2. Save the configuration file.

ccxxviii

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the connection between
Collibra Data Lineage and Data Catalog.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This section applies only to US
government customers.

url The URL of the Collibra Data Lineage service
instance.

Example “url”: “https://techlin-
gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

ccxxix

Properties Description

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

ccxxx

Properties Description

useCollibraSystemName Indicates whether or not you want to use the system
or server name of a JDBC data source to match the
System asset that you created when you prepared
the physical data layer. The names are case-
sensitive.

Specify one of the following values:

false

The lineage harvester ignores all system
or server names that you specify on the
collibraSystemName properties in

the configuration file. This is the default
value.

true

The lineage harvester reads the system
and server names that you specify on the
collibraSystemName properties in

all sections of the configuration file. Only
specify this value when you have multiple
databases with the same name.

Note For SQL data sources, if this
property is:
o false, system or server names in
table references in analyzed SQL
code are ignored. This means that a
table that exists in two different
systems or servers is identified
(either correctly or incorrectly) as a
single data object, with a single asset
name.

o true, system or server names in
table references are considered to be
represented by different System
assets in Data Catalog. The value of
the collibraSystemName
property is used as the default
system or server name.

ccxxxi

Properties Description

sources This section describes the data sources for which
you want to create the technical lineage. You have to
create a configuration section for each data source.
This configuration section contains the required
information of one individual SQL directory with
connection type "Folder".

Note You can add multiple data sources to
the same configuration file.

id The unique ID of the data source. For example, my_

first_data_source.

type The kind of data source. In this case, the value has to

be SqlDirectory.

path The full path to the folder where you added SQL files,

for example, C:\path\to\config\dir.

mask The pattern of the file names in the directory. By

default, this is *.

recursive Indication of the files you want to harvest:

o false (default): Only harvest the files in

directly under the folder in the SQL directory
path.

o true: Harvest all files under the folder in the

SQL directory path and subdirectories.

dialect The dialect of the database. For example, snowflake.

The value your put for this property has to match the
dialect you provide with in the directory with your
SQL files.

ccxxxii

Properties Description

database The name of your database, which is the name of
your Database asset.

Note
o You have to use the same database
name as the name of the Database
asset that you create when you
prepare the physical data layer in
Data Catalog. The names are case-
sensitive.

o The database and schema names in
the SQL statements in your SQL files
take precedence over the values that
you provide for the database and
schema properties in the lineage
harvester configuration file. If your
SQL statements contain database
and schema names, Collibra Data
Lineage uses them for stitching. If
your SQL statements do not contain
database and schema names,
Collibra Data Lineage uses the
values of the database and
schema properties in the
configuration file for stitching.. For
more information, go to Steps and
Automatic stitching for technical
lineage.

ccxxxiii

Properties Description

collibraSystemName The name of the data source's system or server. This
is also the name of your System asset in Data
Catalog.

Specify this property with the same name as the
name of the System asset that you create when you
prepare the physical data layer in Data Catalog. If
you don't prepare the physical data layer, Collibra
Data Lineage cannot stitch the data objects in your
technical lineage to the assets in Data
Catalog.Specify this property with the same name as
the name of the System asset that you created when
you registered the data source.

schema The name of the default schema, if not specified in
the data source itself. This corresponds to name of
your Schema asset.

Note You must use the same schema
name as the name of the Schema asset
that you create when you prepare the
physical data layer in Data Catalog.

verbose Indication whether you want to enable verbose
logging.

By default this is set to True. If you don't want to

use verbose logging, set it to False.

ccxxxiv

ta_register-a-data-source-via-edge.htm

Properties Description

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

Properties Description

general This section describes the connection between Collibra
Data Lineage and Data Catalog.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service instance.

Warning This section applies only to US
government customers.

ccxxxv

Properties Description

url The URL of the Collibra Data Lineage service instance.

Example “url”: “https://techlin-gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

ccxxxvi

Properties Description

useCollibraSystemName Indicates whether or not you want to use the system or
server name of a JDBC data source to match the
System asset that you created when you prepared the
physical data layer. The names are case-sensitive. This
is useful if you have multiple databases with the same
name.

sources This section contains the Snowflake connection
properties. If you want to create the technical lineage for

multiple data sources, create a sources section for

each data source.

id The unique ID that identifies the data source on a
Collibra Data Lineage service instance, for example,

my_snowflake_2.

type The type of data source. The value must be

DatabaseSnowflake.

mode The Snowflake ingestion methods that Collibra Data
Lineage uses to ingest metadata from Snowflake data
sources.

Specify one of the following values:

SQL

The SQL Snowflake ingestion mode.
Collibra Data Lineage creates a column-
level technical lineage based on SQL
statements.
This is the default value.

SQL-API

The SQL-API Snowflake ingestion mode.
Collibra Data Lineage creates a column-
level technical lineage based on Snowflake
schemas and the access history.

For more information, go to Technical lineage for
Snowflake ingestion methods.

ccxxxvii

Properties Description

collibraSystemName The system or server name of the data source.

This property is optional. Use this property with the

useCollibraSystemName property to override

the default Collibra System asset name for this data
source.

Specify this property with the same name as the name of
the System asset that you create when you prepare the
physical data layer in Data Catalog. If you don't prepare
the physical data layer, Collibra Data Lineage cannot
stitch the data objects in your technical lineage to the
assets in Data Catalog.

auth This section indicates the authentication details to
connect to the Snowflake database.

Note The username and auth properties
are mutually exclusive.

type The authentication method.

Specify one of the following values. The values are
case-sensitive.

Basic

The username and password authentication
method. Specify the auth.username

property if you use this authentication
method.

KeyPair

The key pair authentication method. Specify
the auth.username,

auth.pathToPrivateKey, and

auth.usePassword properties if you use

this authentication method.

ccxxxviii

Properties Description

username The user name that you use to connect to the
Snowflake database. This property is required for
both the username and password authentication
method and the key pair authentication method.

pathToPrivateKey The path to your private key file. This property is
required if you use the key pair authentication method.

Ensure that the private key matches the public key;
otherwise, an error occurs indicating that the JWT token
is invalid. For more information about the error, go to
Snowflake JDBC driver error at login:
net.snowflake.client.jdbc.SnowflakeSQLException: JWT
token is invalid in Collibra Support Portal.

usePassword The private key file password.

This property is required if you use the key pair
authentication method. Specify one of the following
values:

true

The password is required.
false

The password is not required. This is the
default value.

username The username that you use to sign in to your Snowflake
data source.

Note This property is deprecated. Use the auth
property instead. The property and the auth
property are mutually exclusive.

ccxxxix

https://support.collibra.com/hc/en-us/articles/8985388657047
https://support.collibra.com/hc/en-us/articles/8985388657047
https://support.collibra.com/hc/en-us/articles/8985388657047

Properties Description

hostname The URL that you use to access Snowflake web
console. When you enter the URL, do not include

https:// or the trailing slash (/). For example,

specify

<accountName>.snowflakecomputing.c

om.

databaseNames An array of database names. Ensure that the database
names you specify match the Database asset names
that you created when you prepared the physical data
layer in Data Catalog.

Enter the database names of your data source between
double quotes ("") and put everything between square
brackets ([]). If you want to include more than one
database, separate them by a comma, for example,

["MyFirstSnowflakeDatabase",

"MySecondSnowflakeDatabase"].

extraDatabaseDefinitions An array of database names. Collibra Data Lineage
collects metadata from the specified databases, but
excludes these databases from the technical lineage
that is created. This property is useful for stitching
across databases. You can specify cross-referenced
databases to ensure correct lineage across all
databases that Collibra Data Lineage processes to
create the technical lineage.

This property is optional. To specify this property, enter
the database names between double quotes ("") and put
everything between square brackets ([]). If you want to
include more than one database, separate them by a
comma, for example,

["MyFirstSnowflakeExternalDatabase",

"MySecondSnowflakeExternalDatabase"].

ccxl

Properties Description

schemaNames An array of schema names of your data sources. This
property takes effect only when you use the SQL-API
Snowflake ingestion mode. You can use this property as
a filter to include lineage for objects only in the specified
schemas.

Ensure that the schema names you specify match the
Schema asset names that you created when you
registered the data source in Data Catalog

Enter the schema names between double quotes ("")
and put everything between square brackets ([]). If you
want to include more than one schema, separate them
by a comma, for example,

["MyFirstSnowflakeSchema",

"MySecondSnowflakeSchema"].

warehouse The name of your virtual warehouse. This property is
optional.

days The number of days of the user access history that
Collibra Data Lineage collects and processes. For
example, if you set the value to 20, Collibra Data
Lineage collects the last 20 days of user access history.

You can use this property to limit reading from the
ACCESS_HISTORY table. This property is optional and
takes effect only when you use the SQL-API Snowflake
ingestion mode.

Specify a value in the range of 1 - 366. If you do not
enter a value, all user access history is collected by
default.

ccxli

to_register-data-source.htm

Properties Description

customConnectionProperties An option to enable the lineage harvester to read
additional connection parameters. This parameter is
only required in very specific situations. If you don't need
it, you can remove it from the configuration file.

Example If you get an OSCP scan error, you
can turn OSCP checking off by using the
following value: insecureMode=true.

deleteRawMetadataAfterProcessin
g

The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for processing.

You can use this optional property to specify whether or
not the raw metadata should be deleted from Collibra
Data Lineage service instance after the metadata that is
targeted for ingestion in Data Catalog is processed.

The default value is false.

If the property is set to true, the raw source metadata

is deleted after processing. If set to false, it is stored

in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

2. Save the configuration file.

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

ccxlii

Properties Description

general This section describes the connection information between
the lineage harvester and Data Catalog.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service instance.

Warning This applies only to US government
customers.

url The URL of the Collibra Data Lineage service instance.“url”:
“https://techlin-gov.collibra.com”

Warning This applies only to US government
customers.

userKey The unique API key to connect to the Collibra Data Lineage
service instance.

A unique user key is needed for each Collibra environment.
If you're not sure what your user key is, please contact your
Collibra Customer Success Manager.

Warning This applies only to US government
customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

url The URL of your Collibra Data Intelligence Cloud
environment.

Note You can only enter the public URL of your
Collibra Data Intelligence Cloud environment. Other
URLs will not be accepted.

username The username that you use to sign in to Collibra.

ccxliii

Properties Description

useCollibraSystemName Indication whether you want to use the system or server
name of a data source to match to the System asset you
created when you prepared the physical data layer. This is
useful when you have multiple databases with the same
name.

By default, the useCollibraSystemName property

is set to false. If you want to use it, set it to true.

Important
o If you set this property to true, the lineage
harvester reads the value of the
collibraSystemName property in your
SSRS-PBRS <source-ID> configuration
file.

o If you set the
useCollibraSystemName property to
false, the lineage harvester ignores the
collibraSystemName property in the
<source-ID> configuration file.

sources This section contains the SSRS connection
properties.

ccxliv

Properties Description

id The unique ID to identify the SSRSmetadata that was
uploaded to the Collibra Data Lineage service.

Tip This value can be anything as long as it is a
unique. The lineage harvester uses the ID to
identify a batch of data on the Collibra Data Lineage
service.

Warning In the sources section of your lineage
harvester configuration file, you can only specify
one id property per SQL Server Reporting Service
(SSRS) or Power BI Report Server (PBRS). If you
have multiple id properties for a single SSRS or
PBRS, ingestion will fail. If you have multiple id
properties in the configuration file, it means you
intend to ingest from multiple unique SSRS or
PBRS.

type The kind of data source. In this case, the value has to
be SSRS or PBIRS.

Note There is no difference between type SSRS or
PBIRS.

url The URL to the server's web portal. By default, the URL is
http://<computer-name>/reports. For example,
"http://1.23.45.678/PowerBIReports".

username The username you use to sign in to the web portal.

Tip If you use NTLM authentication, your
username also contains the NTLM domain name.
For example MyDomain\\username.

ccxlv

https://docs.microsoft.com/en-us/sql/reporting-services/web-portal-ssrs-native-mode?view=sql-server-ver15

Properties Description

domainId The unique ID of the domain in Collibra Data Intelligence
Cloud in which you want to ingest the assets.

Finding the domain ID
a. Open the domain.
b. Copy the domain ID.

Tip If you go to your domain, you can find
the domain ID in the URL. The URL looks
like:
https://<yourcollibrainstance>/domain/
22258f64-40b6-4b16-9c08-
c95f8ec0da26?view=00000000-0000-
0000-0000-000000040001. In this
example, the domain ID is in bold.

ccxlvi

Properties Description

folderFilter An option to include only specific folders that contain
reports or KPIs in the ingestion process.

You can filter on multiple folders by:

o Specifying folder names.
o Specifying the full path to folders.
o Using a wildcard.
o Using a combination of these approaches. For
example: ["folder1",

"/database/folder2", /folder3/*"]

Show me some examples

Scenario Configuration

Filter on
all folders
with the
name
Folder3,
anywhere
in the
folder
hierarchy.

["Folder3"]

Note Reports in child folders of
Folder3 are not included in the
ingestion. As such:
o Reports in
/Folder1/Folder2/Fold
er3 are included in the ingestion.

o Reports in
/Folder3/ChildFolder
are not included in the ingestion.

Ingest two
folders for
which the
folder
names are
unique.

["Folder1", "Folder2"]

Filter on a
specific
folder or
folders,
when the
folder
names are
not
unique.

In this case, specify the full paths to the folders, for
example:

["/Database1/Folder1",

"/Database2/Database3/Folder

2"]

ccxlvii

Properties Description

Scenario Configuration

Use a
wildcard
to ingest
all child
folders of
a
Folder1.

["/Folder1/*"]

Note The reports in all child folders
of Folder1 are ingested, but the
reports in Folder1 itself are not
ingested.

Important This property must be included in your
configuration file and it cannot be empty. If you want
to ingest all folders, use *, for example:
"folderFilter":["*"].

Tip For more information about connecting to a
SSRS or PBRS folder, see the Microsoft
documentation.

deleteRawMetadataAfterProces
sing

The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for processing.

You can use this optional property to specify whether or not
the raw metadata should be deleted from Collibra Data
Lineage service instance after the metadata that is targeted
for ingestion in Data Catalog is processed.

The default value is false.

If the property is set to true, the raw source metadata is

deleted after processing. If set to false, it is stored in the

Collibra infrastructure.

Note Setting this property to true can negatively
impact performance.

ccxlviii

https://docs.microsoft.com/en-us/sql/reporting-services/report-server/report-server-content-management-ssrs-native-mode?view=sql-server-ver15#bkmk_Folders
https://docs.microsoft.com/en-us/sql/reporting-services/report-server/report-server-content-management-ssrs-native-mode?view=sql-server-ver15#bkmk_Folders

2. Save the configuration file.

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

Properties Description

general This section describes the connection information between the
lineage harvester and Data Catalog.

techlin This section contains information that is necessary to connect to
the Collibra Data Lineage service instance.

Warning This applies only to US government
customers.

url The URL of the Collibra Data Lineage service instance.“url”:
“https://techlin-gov.collibra.com”

Warning This applies only to US government
customers.

userKey The unique API key to connect to the Collibra Data Lineage
service instance.

A unique user key is needed for each Collibra environment. If
you're not sure what your user key is, please contact your
Collibra Customer Success Manager.

Warning This applies only to US government
customers.

catalog This section contains information that is necessary to connect to
Data Catalog.

ccxlix

Properties Description

url The URL of your Collibra Data Intelligence Cloud environment.

Note You can only enter the public URL of your Collibra
DGC environment. Other URLs will not be accepted.

username The username that you use to sign in to Collibra.

useCollibraSystemName Indication whether you want to use the system or server name of
a data source to match to the System asset you created when
you prepared the physical data layer. This is useful when you
have multiple databases with the same name.

By default, the useCollibraSystemName property is set

to false. If you want to use it, set it to true.

Important
o If you set this property to true, the lineage
harvester reads the value of the
collibraSystemName property in your
Tableau <source-ID> configuration file.

o If you set the useCollibraSystemName
property to false, the lineage harvester
ignores the collibraSystemName property
in the <source-ID> configuration file.

Note If you set the useCollibraSystemName
property to true, but you don't define the system
name in the Tableau <source ID> configuration file,
the system name in the technical lineage is
DEFAULT.

type The kind of data source. In this case, the value has to be
Tableau.

sources This section contains the Tableau connection properties.

ccl

Properties Description

id The unique ID to identify the Tableau metadata that was
uploaded to the Collibra Data Lineage.

Warning In the sources section of your lineage
harvester configuration file, you can only specify one id
property per Tableau server or Tableau online account. If
you have multiple id properties for a single Tableau
server or Tableau online account, ingestion will fail. If you
have multiple id properties in the configuration file, it
means you intend to ingest from multiple unique Tableau
servers or Tableau online accounts.

Warning If you are switching between the lineage
harvester and Edge, the value of this property must
exactly match the value of the Source ID field in your
Edge capacity.

Tip This value can be anything as long as it is a unique.
The lineage harvester uses the ID to identify a batch of
data on the Collibra Data Lineage service.

url The link to the data in Tableau.

ccli

Properties Description

username The username you use to sign in to the Tableau server.

Warning As of October 2022, Tableau is enforcing
multi-factor authentication for Tableau Cloud Admin
users. However, the lineage harvester doesn’t support
multi-factor authentication. Therefore, Tableau Cloud
users with an Admin role must use token-based
authentication. This does not affect Tableau Server
users or Tableau Cloud users with an Explorer role.

Important If you want to use token-based
authentication, you need to replace username with
tokenName. You must specify either username or
tokenName; if both exist, then tokenName is used.

tokenName The lineage harvester authentication token.

Note For token-based authentication, use this property
in your lineage harvester configuration file, instead of the
username property. If both properties are present,
tokenName is used.

cclii

Properties Description

siteIds The site IDs of the Tableau sites that you want to include in the
ingestion process.

If you want to ingest the metadata in a Tableau site in a specific
domain, specify the following properties:

o This property.
o The site_name: domain_id property in the

filters section in the Tableau <source ID>

configuration file.

Important The site ID is the URL of the site to which you
want to sign in. When you manually sign in to Tableau
Server or Tableau Online, the site ID is the value that
appears after /site/ in the browser address bar. In the
following example URLs, the site ID
is MarketingTeam:
o Tableau

Server: http://MyServer/#/site/MarketingTeam/projec
ts

o Tableau
Online: https://10ay.online.tableau.com/#/site/Market
ingTeam/workbooks

On Tableau Server, however, the URL of the Default site
does not specify the site. For example, the URL for a
view named Profits, on a site named Sales, is
http://localhost/#/site/sales/views/profits. The URL for
this same view on the Default site is
http://localhost/#/views/profits. The site name Sales does
not figure in the URL. If you can't see the site ID, leave
this property empty: "siteIds": [""]

Example If you want to ingest two Tableau sites
"Site 1" and "Site 2", you can enter the following
information in the siteIds property: ["site ID of Site
1", "site ID of Site 2"].

ccliii

Properties Description

siteNames The site names of the corresponding site IDs.

Important This property is:
o Optional for Tableau Server
o Mandatory for Tableau Online.

Warning If you have Tableau Server and you don't
use this property, you must delete it from your
configuration file. Don't leave the property in the
configuration file without a value.

restOnly Indication whether or not you would like to use both the Tableau
REST API and Tableau Metadata API to harvest Tableau
metadata.

o false (default): The lineage harvester will use the

REST API and Metadata API to harvest Tableau
metadata.

o true: The lineage harvester will only use the

REST API to harvest Tableau metadata.

Note This property must be set to false, to:
o Enable technical lineage and the automatic
stitching of Column assets to Tableau Data
Attribute assets.

o Harvest owner information for Tableau projects,
workbooks and data models.

domainId The unique reference ID of the domain in Collibra Data
Intelligence Cloud in which you want to ingest the Tableau
assets. This property represents the default domain.

How do I find a domain reference ID?
Open the relevant domain in Collibra. The URL looks like:
https://<yourcollibrainstance>/domain/22258f64-40b6-4b16-9c08-
c95f8ec0da26?view=00000000-0000-0000-0000-000000040001. In
this example, the reference ID is in bold.

ccliv

ta_prepare-domain-for-tableau-ingestion.htm

Properties Description

excludeImages Optional property for excluding the downloading of images.

To exclude the downloading of images, set this property to

true.

To indicate the projects that you want to ingest in different

domains, specify the filters section in your Tableau <source

ID> configuration file.

Note The maximum number of images that can be
uploaded to Collibra per day is determined by the
configuration of the file upload service, in Collibra
Console. For complete details, see the Upload
configuration settings in DGC service configuration:
options.

concurrencyLevel This optional property is intended to help if you are experiencing
HTTP 401 Unauthorized errors due to too many concurrent
HTTP calls, using the same token. It allows you to specify the
internal sizing, meaning the amount of tasks that can be
executed at the same time.

The default value is "10", meaning as many as 10 HTTP requests
can take place in parallel. Consider reducing the value if you are
experiencing HTTP 401 Unauthorized errors. Setting the value to
"1" effectively disables the concurrency level, so that HTTP
requests will be run in a synchronous manner, instead of in
parallel.

cclv

ta_prepare-source-id-configuration-file-for-tableau.htm#domainMapping
ref_environment-settings.htm
ref_environment-settings.htm

Properties Description

deleteRawMetadataAfterPr
ocessing

The lineage harvester harvests raw metadata from specified data
sources and uploads it in a ZIP file to a Collibra Data Lineage
service instance, for processing.

You can use this optional property to specify whether or not the
raw metadata should be deleted from Collibra Data Lineage
service instance after the metadata that is targeted for ingestion
in Data Catalog is processed.

The default value is false.

If the property is set to true, the raw source metadata is

deleted after processing. If set to false, it is stored in the

Collibra infrastructure.

Note Setting this property to true can negatively
impact performance.

cclvi

Properties Description

paging Optional property for customizing the Tableau API pagination
settings.
The default values are sufficient in most cases; however, you can
decrease them to help mitigate node limit errors, or increase
them to speed up API calls.

Show me the complete list of pagination settings, descriptions
and default values

"paging": {
"databasesPageSize": 100,
"tablesPageSize": 100,
"tablesColumnsPageSize": 100,
"tableColumnsPageSize": 1000,
"datasourcesPageSize": 50,
"datasourcesFieldsPageSize": 50,
"datasourceFieldsPageSize": 100,
"worksheetsPageSize": 100,
"worksheetsFieldsPageSize": 100,
"worksheetFieldsPageSize": 1000,
"parametersPageSize": 1000,
"usersPageSize": 100,
"dashboardsPageSize": 100,
"columnsLimit": 20,
"fieldsLimit": 20
}

Settings per metadata type and descriptions

Metadata type Setting and description

Dashboard o dashboardsPageSize: The number of
dashboards per page.

Worksheet o worksheetsPageSize: The number of
worksheets per page.

o worksheetsFieldsPageSize: The
number of worksheet fields per page.

Database o databasesPageSize: The number of
databases per page.

cclvii

Properties Description

Metadata type Setting and description

Table o tablesPageSize: The number of tables
per page.

o tablesColumnsPageSize: The
number of table columns per page.

Table columns o tableColumnsPageSize: The number
of table columns per page.

Parameter o parametersPageSize : The number of

parameters per page.

Users o usersPageSize: The number of users per
page.

Data source o datasourcesPageSize: The number of
data sources per page.

o datasourcesFieldsPageSize:
The number of data source fields per page.

o columnsLimit: The number of data source
field columns per page.

o fieldsLimit : The number of referenced

data source fields per page.

Data source field o datasourceFieldsPageSize: The
number of data source fields per page.

o columnsLimit: The number of data source
field columns per page.

o fieldsLimit : The number of referenced

data source fields per page.

2. Save the configuration file.

Steps

1. Open the lineage-harvester.conf file that was created when you installed the lineage
harvester, and enter the values for each property.

cclviii

Properties Description

general This section describes the connection between
Collibra Data Lineage and Data Catalog.

techlin This section contains information that is necessary to
connect to the Collibra Data Lineage service
instance.

Warning This section applies only to US
government customers.

url The URL of the Collibra Data Lineage service
instance.

Example “url”: “https://techlin-
gov.collibra.com”

Warning This section applies only to US
government customers.

userKey The unique API key to connect to the Collibra Data
Lineage service instance.

A unique user key is needed for each Collibra
environment. If you're not sure what your user key is,
please contact your Collibra Customer Success
Manager.

Warning This section applies only to US
government customers.

catalog This section contains information that is necessary to
connect to Data Catalog.

Note Versions of the lineage harvester older
than 1.1.2 show collibra instead of
catalog.

cclix

Properties Description

url The URL of your Collibra environment.

Note Enter the public URL of your Collibra
environment. Other URLs are not accepted.

username The username that you use to sign in to Collibra.

useCollibraSystemName Indicates whether you want to use the system or
server name of a data source to match to the System
asset you created when you prepared the physical
data layer. The names are case-sensitive. This is
useful when you have multiple databases with the
same name.

sources This configuration section contains the required
information for SQL files of a data source that were
previously downloaded by the lineage harvester and
is stored in the lineage harvester output folder.

type The kind of data source. In this case, the value has to

be LoadedSource.

id The unique ID of the data source that you uploaded

to the lineage harvester folder. For example, my_

loaded_snowflake_source.

zipFile The full path to the ZIP file that was created in the
lineage harvester folder.

cclx

Properties Description

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from
specified data sources and uploads it in a ZIP file to a
Collibra Data Lineage service instance, for
processing.

You can use this optional property to specify whether
or not the raw metadata should be deleted from
Collibra Data Lineage service instance after the
metadata that is targeted for ingestion in Data
Catalog is processed.

The default value is false.

If the property is set to true, the raw source

metadata is deleted after processing. If set to

false, it is stored in the Collibra infrastructure.

Note Setting this property to true can
negatively impact performance.

2. Save the configuration file.

What's next

Run the lineage harvester. When you run the lineage harvester and encounter errors that
are related to the lineage harvester configuration file, you can use the technical lineage
troubleshooting guide or Collibra Support Portal to fix the errors.

The configuration file generator

The configuration file generator helps you create your lineage harvester configuration file
by providing the structure of the file with the correct properties per data source.

The lineage harvester configuration file
The lineage harvester uses a configuration file to connect to JDBC data sources, BI tools
and ETL tools. The configuration file contains references to the data sources for which you

cclxi

https://support.collibra.com/hc/en-us

want to create a technical lineage. You have to prepare the configuration file if you want to
create a technical lineage and add new relations of the type "Data Element targets /
sources Data Element" between existing assets in Data Catalog, and "Column is target of /
is source of Data Attribute" between assets from ingested BI sources and assets in Data
Catalog.

Tip You have to save the configuration file in the config directory in the lineage
harvester folder.

Empty configuration file
When you run the lineage harvester for the first time, it creates an empty configuration file.
To create a technical lineage, you have to manually add properties and values, per data
source, to this configuration file.

The following image shows an example of the empty configuration file created by the
lineage harvester.

{
"general" : {

"catalog" : {
"url" : "",
"username" : "",

},
"useCollibraSystemName" : false

},
"sources" : [{

"type" : "Database",
"id" : "MyDB",
"hostname" : "",
"username" : "",
"dialect" : "",
"collibraSystemName" : "",
"databaseNames" : [],
"port" : 1521

}]
}

cclxii

Configuration file generator

Note The configuration file generator is only available in the online version of this
guide.

The configuration file generator creates an example configuration file with the data source
properties of your choosing:

1. Scroll down to the configuration file example.
2. Paste the example in your empty configuration file in the lineage harvesterconfig

folder.
3. Replace the values in the example to match your actual data source information.

Tip Make sure you understand each property and know which values you
must use to access your data source information.

4. Run the lineage harvester.

Warning Some browser plug-ins may slow the configuration file generator down.

{
"general": {

"catalog" : {
"url" : "https://companydomain.collibra.com",
"username" : "my-Collibra-username"
},
"useCollibraSystemName" : false

},
"sources" : [

{
"collibraSystemName" : "adf-system-name",
"id" : "adf_source",
"type" : "AzureDataFactory",
"tenantDomain": "tenant-domain",
"loginFlow": {

"type": "ServicePrincipal",
"applicationId": "application-id"
},

"subscriptionId" : "subscription-id",
"resourceGroupName" : "resource-group-name",

cclxiii

https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0612

"factories" : ["factoryname1","factoryname2"],
"deleteRawMetadataAfterProcessing": false

}
{

"collibraSystemName" : "datastage-system-name",
"id" : "datastage_source",
"type" : "ExternalDirectory",
"dirType" : "DATASTAGE",
"path" : "/path/to/the/datastage/folder/",
"mask" : "*",
"recursive" : false,
"deleteRawMetadataAfterProcessing": false

}
{

"collibraSystemName" : "infa-system-name",
"id" : "informatica_source",
"type" : "ExternalDirectory",
"dirType" : "INFA",
"path" : "/path/to/the/informatica/folder/",
"mask" : "*",
"recursive" : false,
"deleteRawMetadataAfterProcessing": false

}
{

"collibraSystemName" : "ssis-system-name",
"id" : "datastage_source",
"type" : "ExternalDirectory",
"dirType" : "SSIS",
"path" : "/path/to/the/ssis/folder/",
"mask" : "*",
"recursive" : false,
"deleteRawMetadataAfterProcessing": false

}
{

"type" : "IICS",
"id" : "iics_source",
"collibraSystemName" : "iics-development",
"loginUrl" : "https://dm-us.informaticaintelligentcloud.com",
"username" : "login-iics",
"deleteRawMetadataAfterProcessing": false,
"objects" : [

{
"path" : "Default/Sales",
"type" : "Project"

},
{

"path" : "My Project/Statistics",
"type" : "Project"

}
]

cclxiv

}
{

"id" : "my-matillion-project",
"type" : "Matillion",
"url" : "https://my-domain",
"groupName" : "my-matillion-group",
"projectName" : "redshift-project",
"environmentName" : "redshift-environment",
"dialect" : "redshift",
"startTimestamp" : 1594080796911,
"collibraSystemName": "Matillion-system",
"deleteRawMetadataAfterProcessing": false,
"auth": {

"type": "Basic",
"username": "ec2-user"

}
}
{

"type": "Tableau",
"id": "unique-ID",
"url": "URL to Tableau server?",
"username": "Admin",
"siteIds": ["site ID of Tableau Site 1", "site ID of Tableau Site

2"],
"siteNames": ["site name of Tableau Site 1", "site name of Tableau

Site 2"],
"restOnly": false,
"domainId": "Domain-resource-ID",
"excludeImages": true,
"deleteRawMetadataAfterProcessing": false,
"paging": {

"pagination-setting": 100,
"pagination-setting-2": 100

}
}
{

"id" : "looker-source",
"type" : "Looker",
"lookerUrl" : "https://<instance-name.api.looker.com",
"clientId" : "my-looker-api-user-name",
"clientSecret": "looker-api-userkey",
"domainId" : "22258f64-40b6-4b16-9c08-c95f8ec0da26",
"deleteRawMetadataAfterProcessing": false }

{
"id": "<unique-id>",
"type": "SSRS",

cclxv

"url": "http://<IP address or computer name>/Reports",
"username": "<server-api-user-name>",
"domainId": "<domain-resource-id>",
"folderFilter": ["/Folder1/*", "Folder2"],
"deleteRawMetadataAfterProcessing": false

}
{

"collibraSystemName" : "custom-system-name",
"id" : "MyCustomLineage",
"type" : "ExternalDirectory",
"dirType" : "custom-lineage",
"path" : "/path/to/custom-lineage/dir",
"deleteRawMetadataAfterProcessing": false

}
{

"type" : "LoadedSource",
"id" : "MySource",
"zipFile" : "/path/to/source-MySource.zip",
"deleteRawMetadataAfterProcessing": false

}
{

"id" : "database_source",
"type" : "Database",
"username" : "MyUsername",
"dialect" : "hive",
"databaseNames" : ["MyDefaultDbName"],
"hostname" : "localhost",
"collibraSystemName" : "apache-hive-system",
"port" : 1521,
"deleteRawMetadataAfterProcessing": false,
"customConnectionProperties" : ""

}
{

"id": "oracle-id",
"type": "DatabaseOracle",
"hostname": "host_url",
"username": "user1",
"collibraSystemName": "automation_csn",
"port": 1521,
"serviceNames": ["sn1", "sn2"],
"databaseNames": ["db1", "db2"],
"deleteRawMetadataAfterProcessing": false

}
{

"id" : "bigquery_source",
"type" : "DatabaseBigQuery",
"projectIDs" : ["bigquery_project1", "bigquery_project2"],
"region": "europe-west1"
"auth" : "/path/to/the/authentication/file.json",
"collibraSystemName" : "bigquery-system-name",

cclxvi

"deleteRawMetadataAfterProcessing": false
}
{

"id" : "snowflake_source",
"type" : "DatabaseSnowflake",
"mode" : "SQL|SQL-API",
"collibraSystemName" : "snowflake-system-name",
"auth": {

"type": "KeyPair|Basic",
"username": "some_username",
"pathToPrivateKey": "path_to_your_private_key_file",
"usePassword": "true|false"

},
"hostname" : "MyAccountName.snowflakecomputing.com",
"databaseNames" : ["MyFirstDbName","MySecondDbName"],
"extraDatabaseDefinitions:" :

["MyFirstExternalDbName","MySecondExternalDbName"],
"schemaNames" : ["MyFirstSchemaName","MySecondSchemaName"],
"warehouse" : "MySnowflakeWarehouseName",
"days" : "1",
"deleteRawMetadataAfterProcessing": false,
"customConnectionProperties" : "role=MYROLE"

}
{

"type": "Microstrategy",
"id": "microstrategy-batch",
"domainId": "<domain-resource-id>",
"username": "mstr",
"hostname": "remote.postgres.com",
"port": 5432,
"databaseName": "poc_metadata",
"deleteRawMetadataAfterProcessing": false

}
{

"type" : "PowerBI",
"id" : "power-bi-1",
"tenantDomain": "collibra3.onmicrosoft.com",
"loginFlow": {

"type": "ServicePrincipal",
"applicationId": "be560fac-7545-4ce2-ad9f-cbce14c59af6"

},
"domainId": "domain-reference-ID",
"deleteRawMetadataAfterProcessing": false

}
{

"id" : "sqldirectory_source",
"type" : "SqlDirectory",
"path" : "/path/to/the/sql/folder/",
"mask" : "*",
"recursive" : false,

cclxvii

"dialect" : "db2",
"database" : "MyDefaultDbName",
"collibraSystemName" : "data-source-system",
"schema" : "MyDefaultDbSchema",
"verbose" : true,
"deleteRawMetadataAfterProcessing": false

}]
}

Informatica PowerCenter
The following example shows an Informatica PowerCenter <source ID> configuration file.

{
"connectionDefinitions": {

"oracle_source": {
"dbname": "oracle-source-database-name1",
"schema": "my Oracle source schema",
"dialect": "oracle"

},
"oracle_target": {

"dbname": "oracle-target-database-name2",
"schema": "my other oracle target schema",
"dialect": "oracle"

}
},
"collibraSystemNames": {

"databases": [
{

"dbname": "oracle-source-database-name1",
"collibraSystemName": "oracle-system-name1"

},
{

"dbname": "oracle-target-database-name2",
"collibraSystemName": "oracle-system-name2"

}
],
"connections": [

{
"connectionName": "oracle-connection-name1",
"collibraSystemName": "oracle-system-name1"

},
{

"connectionName": "oracle-connection-name2",
"collibraSystemName": "oracle-system-name2"

}
]

}
}

cclxviii

SQL Server Integration Services
The following example shows an SQL Server Integration Services connection definitions
configuration file.

{
"ConnStringRegExTranslation": {

"Data Source=dhb-sql-prod;Initial Catalog=SFG_repl_
staging;Provider=SQLNCLI11;Integrated Security=SSPI.*": {

"dbname": "DATAHUB",
"schema": "DBO",
"dialect": "mssql",
"collibraSystemName" : "WAREHOUSE"

},

"Server=sb-dhub;User ID=SYS_USER;Initial
Catalog=STAGEDB;Port=6306.*": {

"dbname": "STAGEDB",
"schema": "STAGE_OWNER",
"dialect": "sybase",
"collibraSystemName" : ""

}

}
}

IBM InfoSphere DataStage
The following example shows a DataStage connection definitions configuration file.

{
"OdbcDataSources": {

"oracle-data-source": {
"dbname": "my-oracle-database",
"schema": "my-oracle-schema",
"dialect": "oracle",
"collibraSystemName": "my-system"

},
"mssql-data-source": {

"dbname": "my-mssql-database",
"schema": "my-mssql-schema",
"dialect": "mssql",
"collibraSystemName": "my-system"

}
},

cclxix

"NonOdbcConnectors": {

"admin@database-name": {
"dbname": "my-netezza-database",
"schema": "my-netezza-schema",
"dialect": "netezza",
"collibraSystemName": "my-system"

},
"admin@second-database-name": {

"dbname": "my-second-netezza-database",
"schema": "my-second-netezza-schema",
"dialect": "netezza",
"collibraSystemName": "my-system"

}
},
"jobs": [

"my_job_1",
"my_job_2"

],
"jobParameters": [

{
"name": "job_parameter_name_1",
"value": "job_parameter_value_1"

},
{

"name": "job_parameter_name_2",
"value": "job_parameter_value_2"

}
]

}

Informatica Intelligent Cloud Services
The following example shows an Informatica Intelligent Cloud Services <source ID>
configuration file.

{
"collibraSystemNames": {

"connections": [
{

"connectionName": "DG_con_standby_cmdm_clientors",
"collibraSystemName": "PUBLIC"

},
{

"connectionName": "DG_con_dev_dg_dgiauser_su",
"collibraSystemName": "PUBLIC"

}

cclxx

]
},
"connectionDefinitions": [

{
"connectionName": "DG_con_standby_cmdm_clientors",
"databaseName": "main",
"schemaName": "dbo",
"dialect": "oracle"

},
{

"connectionName": "DG_con_dev_dg_dgiauser_su",
"databaseName": "main",
"schemaName": "dbo",
"dialect": "oracle"

}
]

}

Tableau
The following example shows a Tableau <source ID> configuration file.

{
"collibraSystemNames": {

"databases": [
{

"hostName": "database-hostname",
"collibraSystemName": "public"

}
],
"files": [

{"filePath": "C:\\ProgramData\\Tableau\\Tableau
Server\\data\\files\\sample.xls",

"collibraSystemName": "sample-files"
}

],
"connectors": [

{
"connectorUrl": "tableau-server-connector-url.com",
"collibraSystemName": "Oracle-connector"

}
],
"cloudFiles": [

{
"name": "file-name",
"collibraSystemName": "FILE"

}
]

cclxxi

},
"databaseMapping": {

"<hostname:port>":"<actual database name>"
},
"filters": {

"sites":{
"site_name":"domain_id"

},
"projects":{

"site_name2 > project_name2": "domain-reference-id2",
"site_name3 > project_name3 > subproject_name": "domain-

reference-id2"
}

}
}

Looker
The following example shows a Looker <source ID> configuration file.

{
"Connections": {

"connection-object1": {
"dialect": "mssql",
"schema": "mssql-schema-name",
"dbname": "mssql-database-name",
"collibraSystemName": "mssql-system-name"

},
"connection-object2": {

"dialect": "oracle",
"schema": "oracle-schema-name",
"dbname": "oracle-database-name",
"collibraSystemName": "oracle-system-name"

}
}
"filters":[

{
"domainId":"<reference ID>",

"description":"any-description",
"folderNames":["Folder1", "Folder2"]

},
{
"domainId":"<reference ID>",

"description":"any-description",
"folderNames":["Folder3", "Folder4"]

},
{
"domainId":"<reference ID>",

cclxxii

"description":"any-description",
"folderIds":["123xxxx", "456xxxx"]

}
]

}
}

SQL Server Reporting Services and Power BI
Report Server
The following example shows a SQL Server Reporting Services and Power BI Report
Server <source ID> configuration file.

{
"DataSources": {

"Redshift": {
"dbname": "redshift-database-name",
"schema": "redshift-schema-name",
"dialect": "redshift",
"collibraSystemName": "redshift-system-name"

},
"Oracle": {

"dbname": "oracle-database-name",
"schema": "oracle-schema-name",
"dialect": "oracle",
"collibraSystemName": "oracle-system-name"

}
},
"CustomDataSources": {

"/path to report/custom data souce name": {
"dbname": "mssql-database-name",
"dialect": "mssql"

}
}

}

Power BI
The following example shows a Power BI <source ID> configuration file.

{
"found_dbname=databasename1;found_hostname=*;found_schema=schema1":

{

cclxxiii

"dbname": "mssql-database-name",
"schema": "mssql-schema-name",
"dialect": "mssql",
"collibraSystemName": "mssql-system-name"

},
"found_dbname=databasename2;found_hostname=server-

name.onmicrosoft.com;found_schema=schema2": {
"dbname": "oracle-database-name",
"schema": "oracle-schema-name",
"dialect": "oracle",
"collibraSystemName": "oracle-system-name"

},
"filters":[

{
"domainId": "<domain-ref-id>",
"description": "FirstFilter",
"workspaceNames": "*",
"excludeWorkspaceIds": ["workspaceC", "workspaceD"]
},
{
"domainId": "<domain-ref-id>",
"description": "SecondFilter",
"workspaceNames": ["workspace3", "workspace4"],
"capacityIds": ["id1","id2"]
}

]
}

Matillion
The following example shows a Matillion <source ID> configuration file.

{
"found_dbname=dbtest;found_hostname=test": {

"dialect": "mssql",
"collibraSystemName": "mssql-system-name"

},
"found_dbname=testsid;found_hostname=*": {

"dbname": "oracle-database-name",
"schema": "oracle-schema-name",
"dialect": "oracle",
"collibraSystemName": "oracle-system-name"

}
}

cclxxiv

MicroStrategy
The following example shows a MicroStrategy <source ID> configuration file.

{
"default_domain_id": "1a0a942e-e3a7-45a1-83e8-ade30b1cab1a",
"filters": [

{
"projectIds": [],
"projectNames": ["Customers","Research","Marketing"]

}
],
"datasourceMapping": [
{

"found_datasource": "REDSHIFT",
"found_project": "*",
"mapping": {
"dbname": "RD_pearl",
"schema": "Default_North",
"dialect": "spark",
"collibraSystemName": "TV_dev"

}
}
]

}

The following is an example of a lineage harvester configuration file for US government
customers using Power BI. The techlin section contains the information required to
connect to the Collibra Data Lineage service instance.

{
"general": {
"techlin": {

"url": "https://techlin-gov.collibra.com",
"userKey": "<your-unique-api-key>"
},

"catalog": {
"url": "https://catalog-instance.collibra.com",
"username": "Admin"
},

"useCollibraSystemName": false
},
"sources": [{

"type": "PowerBI",
"id": "power-bi-id",
"tenantDomain": "collibrapowerbi.onmicrosoft.com",
"loginFlow": {

"type": "ServicePrincipal",

cclxxv

"applicationId": "ab123cde-1234-1234-1234-abcd12e34fg5"
},
"domainId": "domain-reference-ID",
"deleteRawMetadataAfterProcessing": true

}]
}

Prepare an SQL directory

To create technical lineage for JDBC data sources by using the folder connection type,
you must provide SQL files that include your SQL queries. Collibra Data Lineage
processes the metadata based on your queries to create the technical lineage.

For more information about the connection types for different data sources, go to
Supported data sources for technical lineage.

Note For best technical lineage results, use the JDBC connection to ingest JDBC
sources when possible, rather than using the folder connection type with the SQL
files.

Steps
1. Create a local folder.
2. Create your SQL files. Ensure that the following requirements are met for the SQL

files:

o The SQL files must be UTF-8 encoded.
o For better ingestion, include one SQL statement in one SQL file.
o Collibra Data Lineage processes the SQL files in alphabetical order. The SQL
files that include the Data Definition Language (DDL) statements must be pro-
cessed before the SQL files that include the Data Manipulation Language
(DML) statements. To ensure this order, name the SQL files such that those
containing DDL statements come before those containing DML statements
alphabetically.

o The database and schema names in the SQL statements in your SQL files take
precedence over the values that you provide for the database and schema
properties in the lineage harvester configuration file. If your SQL statements
contain database and schema names, Collibra Data Lineage uses them for

cclxxvi

stitching. If your SQL statements do not contain database and schema names,
Collibra Data Lineage uses the values of the database and schema properties
in the configuration file for stitching. For more information, go to lineage har-
vester configuration file and Automatic stitching for technical lineage.

For more information, go to Supported SQL syntax.

3. Store the SQL files in the local folder.

Example 1 SQL statements do not include
schema and database names
This example shows the SQL files that include the queries on the Persons and
JobInformation tables and the JobTitleView view. The SQL statements don't contain
the database and schema values, so the lineage harvester uses the values of the
database and schema properties that you specify in the lineage harvester configuration
file for stitching. The SQL files are named in a way that ensures the DDL statements are
processed before the DML statement.

l The ddl-persons.sql file

CREATE TABLE Persons (
PersonID int,
LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)

);

l The ddl-jobinformation.sql file

CREATE TABLE JobInformation (
PersonID int,
Department varchar(255),
Title varchar(255)

);

l The view-jobtitle.sql file

CREATE VIEW JobTitleView AS
SELECT

Persons.PersonID,
Persons.FirstName,
Persons.LastName,
JobInformation.Title

cclxxvii

from
Persons
INNER JOIN JobInformation ON Persons.PersonID = JobIn-

formation.PersonId

Example 2 SQL statements include schema and
database names
This example shows SQL files that include the queries on the Persons and
JobInformation tables and the JobTitleView view. The SQL statements contain the
database and schema names for each table and view, and Collibra Data Lineage uses
them for stitching. The SQL files are named in a way that ensures the DDL statements are
processed before the DML statement.

l The ddl-db1-schemaA-persons.sql file

CREATE TABLE DB1.SchemaA.Persons (
PersonID int,
LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)

);

l The ddl-db2-schemaB-jobinformation.sql file

CREATE TABLE DB2.SchemaB.JobInformation (
PersonID int,
Department varchar(255),
Title varchar(255)

);

l The view-db2-schemaC-jobtitleview.sql file

CREATE VIEW DB2.SchemaC.JobTitleView AS
SELECT

Persons.PersonID,
Persons.FirstName,
Persons.LastName,
JobInformation.Title

from
DB1.SchemaA.Persons
INNER JOIN DB2.SchemaB.JobInformation ON Persons.PersonID =

JobInformation.PersonId

cclxxviii

What's next
Add your data source information in the lineage harvester configuration file.

Download SQL files to the lineage harvester folder

You can download the SQL files of a data source that is stored locally and cannot be
accessed via the network. The lineage harvester then stores the data source information in
a ZIP file.

To create a technical lineage for these data sources, you only have to include the ID of the
data source and the path to the ZIP file in the configuration file.

Note Click here to see a list of all supported data sources.

Prerequisites
l You have downloaded the lineage harvester and you have the necessary system
requirements to run it.

l You have the necessary permissions to all database objects that the lineage har-
vester accesses.

l You have the necessary data source-specific permissions to access the data objects
of your data sources

Note For a detailed overview of the permissions that you need to access the
data objects of your data sources, see the online user guide.

Steps
1. Start the lineage harvester to create an empty lineage harvester configuration file by

entering the following command:
o Windows: .\bin\lineage-harvester.bat

cclxxix

o For other operating systems: chmod +x bin/lineage-harvester and then
bin/lineage-harvester

» An empty configuration file is created in the config folder.

2. Save the configuration file in the config directory in the lineage harvester folder.
3. Prepare the configuration file.

Tip Use the configuration file generator to easily create a configuration file.

4. When prompted, enter the passwords to connect to Collibra and your data sources.
Do one of the following:

o Enter the passwords in the console.
» The passwords are encrypted and stored in /config/pwd.conf.

o Provide the passwords via command line.
» The passwords are stored locally and not in your lineage harvester folder.

5. Start the lineage harvester again and do one of the following:
o To download the SQL files of all data sources in the configuration file, run the
following command:

./bin/lineage-harvester load-sources

o To download the SQL files of specific data sources in the configuration file, run
the following command:

./bin/lineage-harvester load-sources -s "ID of the data
source"

cclxxx

Tip This command allows you to download specific SQL files in the
configuration file, without refreshing other SQL files. This reduces the
time you need to download your SQL files, since you only download
specific ones without affecting the others. If you want to download
SQL files of multiple data sources, add -s "ID of another data
source" per data source to the command.

» The lineage harvester downloads the SQL files of the data sources and
stores them in a ZIP file per data source in the lineage harvester output folder.

What's next?
You can now prepare a configuration file for theSQL files of data sources that you want to
include in your technical lineage.

Prepare a <source ID> configuration file

Depending on your data source, you might have to, or want to, prepare a <source ID>
configuration file. Select your data source below for data source-specific information.

The lineage harvester uses a lineage harvester configuration file to collect the Azure Data
Factory data objects. It then sends the metadata to the Collibra Data Lineage service
instance.

Example of the <source ID> configuration file

{
"found_dbname=databasename1;found_hostname=server-

name.onmicrosoft.com;found_schema=schema1": {
"dbname": "mssql-database-name",
"schema": "mssql-schema-name",
"dialect": "mssql",
"collibraSystemName": "mssql-system-name"

},
"found_dbname=datafactory_linkedservice;found_hostname=*": {

"dbname": "linkedservice-dbname",
"schema": "linkedservice-schema",
"collibraSystemName": "linkedservice-system-name"

}
}

cclxxxi

Steps

1. Create a new JSON file in the lineage harvesterconfig folder.
2. Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value

of the sourceId property in the lineage harvester configuration file and the file
extension must be .conf.

Example If the value of the sourceId property in the lineage harvester
configuration file is my-adf, the name of your JSON file must be my-adf.conf.

cclxxxii

3. For each database in Azure Data Factory, add the following content to the JSON file:

Property Description Mandatory?

found_dbname=<database
name>;found_
hostname=<server
name>;found_
schema=<schema name> |
found_
dbname=<datafactory_
name>_<linkedservice_
name>;found_hostname=*

The information of the supported data sources in
Azure Data Factory to be collected by Collibra Data
Lineage. You can specify any of the following values

for the found_dbname property:

o A database name. And then you can specify
the following properties:
n found_hostname=<server name>,

where <server name> is the name of

the server that the database is running on.
n found_schema=<schema name>,

where <schema name> is the name of

the schema. This property is optional.
o The combination of <datafactory_

name>_<linkedservice_name>,

where <datafactory_name> is a data

factory name and <linkedservice_

name> is a linked service name. If you use

this combination, specify * for the found_

hostname property.

Tip
You can use wildcards to capture multiple
connection string combinations:

Show me the supported wildcards

Patter
n

Description

* Matches everything.

? Matches any single character.

[seq] Matches any character in "seq".

[!seq] Matches any character not in "seq
".

Yes

cclxxxiii

Property Description Mandatory?

dbname The name of the database asset in Data Catalog.
Specify this property with the database name that you
created when you prepared the Data Catalog physical
data layer. Specify this property with the database
name that you created when you registered the data
source.

No

schema The name of the schema asset in Data Catalog.
Specify this property with the schema name that you
created when you registered the data source.

If the Collibra Data Lineage fails to find the schema
that you specify, it uses the default schema.

No

cclxxxiv

to_register-data-source.htm
to_register-data-source.htm
to_register-data-source.htm

Property Description Mandatory?

dialect If you specify a database name for the found_

dbname property, select one of the following

dialects. If you specify a linked service name for the

found_dbname property, ignore this property.

Tip
You can enter one of the following values:

o azure, for an Azure SQL Server data
source.

o bigquery, for a Google BigQuery data
source.

o db2, for a IBM Db2 data source.
o generic, for any data source.
o greenplum, for a Greenplum data
source.

o hana, for a SAP HANA data source.
o hive, for a Hive data source.
o impala, for a Impala data source.
o mssql, for a Microsoft SQL Server
data source.

o mysql, for a MySQL data source.
o netezza, for a Netezza data source.
o oracle, for an Oracle data source.
o postgres, for an PostgreSQL data
source.

o redshift, for an Amazon Redshift data
source.

o snowflake, for a Snowflake data
source.

o spark, for a Spark SQL data source.
o sybase, for a Sybase data source.
o teradata, for a Teradata data source.
o vertica, for a Vertica data source.

No

cclxxxv

Property Description Mandatory?

collibraSystemName The system or server name of a database.

If you don't specify a value for this property,
"DEFAULT" is shown in the technical lineage.

How do I configure this property if I have two
databases with the same name?
Let's assume you have two databases named
Customers. When you prepare the physical data layer
in Data Catalog, you create a System asset for each
of these databases. Let's say you named them
Customers-Europe and Customers-USA. You can
then configure this property as follows.If you have two
databases named Customers, and you created a
System asset for each of these databases in Data
Catalog, Customers-Europe and Customers-USA,
you can configure this property as follows.

"found_
dbname=databasename1;found_
hostname=*;found_
schema=schema1": {

"dbname": "Customers",
"schema": "mssql-schema-

name",
"dialect": "mssql",
"collibraSystemName":

"Customers-Europe"
},
"found_
dbname=databasename2;found_
hostname=server-
name.onmicrosoft.com;found_
schema=schema2": {

"dbname": "Customers",
"schema": "oracle-schema-

name",
"dialect": "oracle",
"collibraSystemName":

"Customers-USA"
},

Yes

cclxxxvi

Property Description Mandatory?

Warning The value of this property must
exactly match (including for case-sensitivity)
the name of your System asset in Collibra.

Important If you are using a <source ID>
configuration file for the purpose of
providing the true system name of an
ODBC database in Azure Data Factory,
you are not required to:
o Set the
useCollibraSystemName
property in the lineage harvester
configuration file to true.

o Specify a Collibra system name in the
<source ID> configuration file.

However, if the
useCollibraSystemName property
is set to true in the lineage harvester
configuration file, you must specify a
Collibra system name in the <source ID>
configuration file.

Important If you use the Source
Configuration field for the purpose of
providing the true system name of an
ODBC database in Azure Data Factory,
you are not required to:
o Set the value of the Collibra system
name setting to True.

o Specify a Collibra system name in the
Source Configuration field.

However, if the value of the Collibra
system name setting is set to true, you
must specify a Collibra system name in
the Source Configuration field.

4. Save the <source ID> configuration file.

cclxxxvii

#EnableTechnicalLineage
#EnableTechnicalLineage
#EnableTechnicalLineage
#EnableTechnicalLineage

The lineage harvester uses a lineage harvester configuration file to collect the
DataStage data objects. It then sends the metadata to the Collibra Data Lineage service
instance.

Example of the <source ID> configuration file

{
"OdbcDataSources": {

"oracle-data-source": {
"dbname": "my-oracle-database",
"schema": "my-oracle-schema",
"dialect": "oracle",
"collibraSystemName": "my-system"

},
"mssql-data-source": {

"dbname": "my-mssql-database",
"schema": "my-mssql-schema",
"dialect": "mssql",
"collibraSystemName": "my-system"

}
},
"NonOdbcConnectors": {

"admin@database-name": {
"dbname": "my-netezza-database",
"schema": "my-netezza-schema",
"dialect": "netezza",
"collibraSystemName": "my-system"

},
"admin@second-database-name": {

"dbname": "my-second-netezza-database",
"schema": "my-second-netezza-schema",
"dialect": "netezza",
"collibraSystemName": "my-system"

}
},
"jobs": [

"my_job_1",
"my_job_2"

],
"jobParameters": [

{
"name": "job_parameter_name_1",
"value": "job_parameter_value_1"

},
{

"name": "job_parameter_name_2",
"value": "job_parameter_value_2"

}

cclxxxviii

]
}

Steps

1. Create a new JSON file in the lineage harvesterconfig folder.
2. Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value

of the sourceId property in the lineage harvester configuration file and the file
extension must be .conf.

Example If the value of the sourceId property in the lineage harvester
configuration file is my-adf, the name of your JSON file must be my-adf.conf.

3. For each database in DataStage, add the required content to the JSON file.
4. Save the <source ID> configuration file.

The lineage harvester uses a lineage harvester configuration file to collect the Informatica
PowerCenter data objects. It then sends the metadata to the Collibra Data Lineage service
instance.

Example of the <source ID> configuration file

{
"connectionDefinitions": {

"oracle_source": {
"dbname": "oracle-source-database-name1",
"schema": "my Oracle source schema",
"dialect": "oracle"

},
"oracle_target": {

"dbname": "oracle-target-database-name2",
"schema": "my other oracle target schema",
"dialect": "oracle"

}
},
"collibraSystemNames": {

"databases": [
{

"dbname": "oracle-source-database-name1",
"collibraSystemName": "oracle-system-name1"

},
{

"dbname": "oracle-target-database-name2",
"collibraSystemName": "oracle-system-name2"

cclxxxix

}
],
"connections": [

{
"connectionName": "oracle-connection-name1",
"collibraSystemName": "oracle-system-name1"

},
{

"connectionName": "oracle-connection-name2",
"collibraSystemName": "oracle-system-name2"

}
]

}
}

Steps

1. Create a new JSON file in the lineage harvesterconfig folder.
2. Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value

of the sourceId property in the lineage harvester configuration file and the file
extension must be .conf.

Example If the value of the sourceId property in the lineage harvester
configuration file is my-adf, the name of your JSON file must be my-adf.conf.

3. For each database, add the required content to the JSON file.
4. Save the <source ID> configuration file.

You use the lineage harvester configuration file to access Informatica Intelligent Cloud
Services Data Integration data objects. The lineage harvester processes the data objects
to create a technical lineage. You also have to prepare a specific <source ID>
configuration file that defines the Intelligent Cloud Services system name.

Important You must prepare a <source ID> configuration file regardless of whether
the useCollibraSystemName property in your lineage harvester configuration files
is set to true or false.

Prerequisites

You have Admin permission on all objects that you want to harvest.

ccxc

Steps

1. Create a new JSON configuration file in the lineage harvesterconfig folder.
If you have a data source with a large size for an Informatica Intelligent Cloud
Services connection, consider creating more than one JSON file for the data source.
Each JSON file must have a unique name. The contents in the JSON files are the
same. In this way, you can avoid errors that might occur when the lineage harvester
ingests metadata from one source with a large size.

2. Give the JSON file the same name as the value of the Id property in the lineage
harvester configuration file.

Example If the value of the Id property in your lineage harvester
configuration file is iics-source-1, then the name of your JSON file should
be iics-source-1.conf.

Important Your JSON file must have the file extension .conf.

3. For each Informatica Intelligent Cloud Services connection, you can add the
following content to the JSON file:

Property Description Required?

collibraSystemNames This section contains the system information for Informatica
Intelligent Cloud Services.

connections This section contains the system connection information. This is
required to reference to the system or server of the connection.

connectionName The name of the connection. Yes

collibraSystemName The system or server name of the connection. Yes

ccxci

Property Description Required?

connectionDefinitions This section contains the database, schema and dialect
information for each connection in Informatica Intelligent Cloud
Services.

Note You can add connection information for each
connection in the connections section.

connectionName The name of the connection. The name must
match with the name in a connection name in

the connections section. This property is

required.

Yes

databaseName The name of your database. Yes

schemaName The name of your schema. Yes

dialect The dialect of the connection. Specify this
property to properly extract and parse queries
that are related to this connection.

You can enter one of the following values:

o bigquery
o db2
o hana
o hive
o greenplum
o mssql
o mysql
o netezza
o oracle
o postgres
o redshift
o snowflake
o spark
o teradata

No

4. Save the configuration file.

ccxcii

Example of the <source-ID>.conf file

{
"collibraSystemNames": {

"connections": [
{

"connectionName": "DG_con_standby_cmdm_clientors",
"collibraSystemName": "PUBLIC"

},
{

"connectionName": "DG_con_dev_dg_dgiauser_su",
"collibraSystemName": "PUBLIC"

}
]

},
"connectionDefinitions": [

{
"connectionName": "DG_con_standby_cmdm_clientors",
"databaseName": "main",
"schemaName": "dbo",
"dialect": "oracle"

},
{

"connectionName": "DG_con_dev_dg_dgiauser_su",
"databaseName": "main",
"schemaName": "dbo",
"dialect": "oracle"

}
]

}

The lineage harvester uses the lineage harvester configuration file to collect the Looker
data objects and send them to the Collibra Data Lineage service instance.

The <source ID> configuration file allows you to:

l Filter on the Looker folders from which you want to ingest metadata.
l If useCollibraSystemName in the lineage harvester configuration file is set to
true, use the collibraSystemName property to specify the system name of
databases in Looker.
Collibra Data Lineage uses the system names to match the structure of databases in
Looker to assets in Data Catalog.

ccxciii

Example of <source ID> configuration file

{
"general": {
"catalog": {
"url": "https://<organization>.collibra.com",
"userName": "<your-collibra-username>"

},
"useCollibraSystemName": false

},
"sources": [{
"id": "looker-id",
"type": "Looker",
"lookerUrl": "https://<instance-name>.api.looker.com",
"clientId": "looker-api-user-name",
"clientSecret": "looker-api-userkey",
"domainId": "domain-resource-id",
"deleteRawMetadataAfterProcessing": true

}]
}

Steps

1. Create a new JSON file in the lineage harvesterconfig folder.
2. Give the JSON file the same name as the value of the Id property in the lineage

harvester configuration file.

Example The value of the Id property in the lineage harvester configuration
file is looker-source-1. As a result, the name of your JSON file should be
looker-source-1.conf.

Important Your JSON file must have the file extension .conf.

3. For each database in Looker, add the following content to the JSON file:

Property Description Mandatory?

Connections This section contains all Looker connections for
which you want to create a technical lineage.

Yes

<connection name> The name of a connection object in Looker. Yes

ccxciv

Property Description Mandatory?

dialect The dialect of the supported data source in Looker. No

schema The name of the default schema of a supported data
source in Looker.

If the lineage harvester fails to find a specific
schema, it uses the default schema.

No

dbname The name of the database of a supported data
source in Looker.

No

ccxcv

Property Description Mandatory?

collibraSystemName The system or server name of a database.

If you set the useCollibraSystemName

property to true in your lineage harvester

configuration file, but you either don't create a
<source ID> configuration file, or don't specify a

value for the collibraSystemName property

in your <source ID> configuration file, the system
name in the technical lineage is "DEFAULT".

How do I configure this property if I have two
databases with the same name?
Let's assume you have two databases named
Customers. When you prepare the physical data
layer in Data Catalog, you create a System asset for
each of these databases. Let's say you named them
Customers-Europe and Customers-USA. You can
then configure this property as follows.

"connection-object1": {
"dialect": "mssql",
"schema": "mssql-schema-

name",
"dbname": "Customers",
"collibraSystemName":

"Customers-Europe"
},
"connection-object2": {

"dialect": "oracle",
"schema": "oracle-schema-

name",
"dbname": "Customers",
"collibraSystemName":

"Customers-USA"
}

Yes

ccxcvi

Property Description Mandatory?

filters Optionally, use this section to specify the Looker
folders from which you want to ingest metadata.

Note You can filter on Looker folders, but
not on Looker data sets. That's because
Looker data sets are linked directly to the
server, instead of a folder, as shown in the
Looker metadata overview. Looker data sets
are ingested in the default domain,
regardless of any filtering.

Let’s say, for example, you filter on folder B. A
Looker Folder asset is created in the specified
domain in Collibra, and all of the metadata in folder B
is ingested. If folder B has a parent folder A, then a
Looker Folder asset is created (in the domain
specified for folder B) to preserve the hierarchy, but
no metadata from folder A is ingested.

You can specify more than one Looker folder for
ingestion into a single domain in Collibra.

Warning If you don't want to filter on Looker
Folders, you must completely remove this
filters section.

No

ccxcvii

Property Description Mandatory?

Tip
You can use wildcards to capture multiple
connection string combinations:

Show me the supported wildcards

Pattern Description

* Matches everything.

? Matches any single character.

[seq] Matches any character in
"seq".

[!seq] Matches any character not in
"seq".

domainId The unique resource ID of the domain (or domains),
in Collibra, in which you want to ingest data objects
from one or more Looker Folders.

Tip You can find the domain ID by clicking
the domain type. Then look in the URL of
your browser to find the ID. The URL looks
like
https://<yourcollibrainstance>/domain/<dom
ain ID>?<view>.

description Any description, as you see fit.

folderNames The name (or names) of the Looker Folders from
which you want to ingest.

Note You must specify either a folder name,
a folder ID, or both.

ccxcviii

Property Description Mandatory?

folderIds The ID (or IDs) of the Looker Folder you want to
ingest.

Note You must specify either a folder ID, a
folder name, or both.

4. Save the <source ID> configuration file.

The lineage harvester uses a lineage harvester configuration file to collect the
Matillion data objects. It then sends the metadata to the Collibra Data Lineage service
instance.

Example of the <source ID> configuration file

{
"found_dbname=dbtest;found_hostname=test": {

"dialect": "mssql",
"collibraSystemName": "mssql-system-name"

},
"found_dbname=testsid;found_hostname=*": {

"dbname": "oracle-database-name",
"schema": "oracle-schema-name",
"dialect": "oracle",
"collibraSystemName": "oracle-system-name"

}
}

Steps

1. Create a new JSON file in the lineage harvesterconfig folder.
2. Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value

of the sourceId property in the lineage harvester configuration file and the file
extension must be .conf.

Example If the value of the sourceId property in the lineage harvester
configuration file is my-adf, the name of your JSON file must be my-adf.conf.

3. Add the required content to the JSON file.
4. Save the <source ID> configuration file.

ccxcix

The lineage harvester uses the configuration file to connect to MicroStrategy. You must
also prepare a MicroStrategy <source ID> configuration file to:

l Specify the default domain, meaning the domain in Collibra in which the
corresponding assets of MicroStrategy metadata will be ingested.

l Optionally, sSpecify from which MicroStrategy projects you want to ingest metadata.
l Optionally, cConfigure data source mapping, to map the name of a data source
returned by the lineage harvester to the true name of the data source.

Tip "<source ID>" refers to the value of the Id property in the lineage harvester
configuration file.

Example
.

{
"default_domain_id": "1a0a942e-e3a7-45a1-83e8-

ade30b1cab1a",
"filters": [

{
"projectIds": [],
"projectNames":

["Customers","Research","Marketing"]
}

],
"datasourceMapping": [
{

"found_datasource": "REDSHIFT",
"found_project": "*",
"mapping": {
"dbname": "RD_pearl",
"schema": "Default_North",
"dialect": "spark",
"collibraSystemName": "TV_dev"

}
}
]

}

ccc

Steps

1. Create a new JSON file in the lineage harvesterconfig folder.
2. Give the JSON file the same name as the value of the Id property in the lineage

harvesterconfiguration file.

Example If the value of the Id property in the lineage harvester configuration
file is mstr-source-1, then the name of your JSON file should be mstr-
source-1.conf.

Important Your JSON file must have the file extension .conf.

3. For each database in MicroStrategy, add the following content to the JSON file:

Tip You can use wildcards to capture multiple string combinations for any of
these properties.
Show me the supported wildcards

Pattern Description

* Matches everything.

? Matches any single character.

[seq] Matches any character in "seq".

[!seq] Matches any character not in "seq".

Property Description Mandatory

default_domain_id The domain in which you want the corresponding
assets of MicroStrategy metadata to be ingested.

Yes

ccci

Property Description Mandatory

filters This section allows you to specify from which
MicroStrategy projects you want to harvest
metadata.

All metadata is ingested into the default domain, as

specified via the default_domain_id

property.

If you don't want to filter on projects, don't include
this section in your <source ID> configuration file.

No

projectIds The IDs of the MicroStrategy projects from
which you want to ingest metadata.

No

projectNames The project names of the MicroStrategy
projects from which you want to ingest
metadata.

No

datasourceMapping This optional section allows you to configure data
source mapping. Include this section only if you
need to differentiate between multiple data sources
that have the same name.

No

found_datasource The name of the data source that was returned by
the lineage harvester, as shown in the technical
lineage.

Note The data source name is case-
sensitive.

Yes

found_project The name of the project in which the data source
information resides. You can specify an asterisk (*)
to search for data source information across all
projects.

Yes

cccii

Property Description Mandatory

mapping Use this section to map the data source name that
was returned by the lineage harvester to the true
name of the data source.

Example You have a Redshift data
source named "RD_pearl", but the
lineage harvester has returned the
name "Redshift_connection". You can
configure the datasourceMapping
section as follows:

{

"datasourceMapping":
[

{
"found_

datasource":
"REDSHIFT",

"found_
project": "*",

"mapping": {
"dbname": "RD_

pearl",

"collibraSystemName":
"TV_dev"

}
}
]

}

Yes

dbname The name of the database to which you want to
map the found data source.

Yes

schema The name of the schema in MicroStrategy. No

dialect The dialect of the data source in MicroStrategy. No

ccciii

Property Description Mandatory

collibraSystemName The system or server name of a database.

If you set the useCollibraSystemName

property to true in your lineage harvester

configuration file, but you either don't create a
<source ID> configuration file, or don't specify a

value for the collibraSystemName property

in your <source ID> configuration file, the system
name in the technical lineage is "DEFAULT".

If you set the useCollibraSystemName

property to false in your lineage harvester

configuration file, leave this property empty as

follows: "collibraSystemName": "".

How do I configure this property if I have
two databases with the same name?
Let's assume that you have a data source named
Customers. You use this data source connection in
two different projects, Project_A and Project_B, but
they are actually two different databases. When
you prepare the physical data layer in Data
Catalog, you create a System asset for each of
these databases. Let's say you named them
Customers-North and Customers-South. You can
then configure this property as follows.

"datasourceMapping": [
{

"found_
datasource": "Customers",

"found_
project": "Project_A",

"mapping": {
"dbname":

"Customers",

"collibraSystemName":
"Customers_North"

}

Yes

ccciv

Property Description Mandatory

},
{

"found_
datasource": "Customers",

"found_
project": "Project_B",

"mapping": {
"dbname":

"Customers",

"collibraSystemName":
"Customers_South"

}
}

]

Warning The values of this property must
exactly match the name of your System
asset in Collibra.

4. Save the <source ID> configuration file.

The lineage harvester uses a lineage harvester configuration file to collect the Power
BI data objects. It then sends the metadata to the Collibra Data Lineage service instances.

The <source ID> configuration file allows you to:

l Specify the name of a database, on which server the database is running, and
optionally, the name of the schema.

l Configure workspace filtering.

Tip We highly recommend that you read through Filtering Power BI
workspaces for important information and guidance before configuring your
filters.

l If useCollibraSystemName in the lineage harvester configuration file is set to
true, use the collibraSystemName property to specify the system name of
databases in Power BI. Collibra Data Lineage uses the system names to match the
structure of databases in Power BI to assets in Data Catalog.

cccv

Example of the <source ID> configuration file

{
"found_dbname=databasename1;found_hostname=*;found_schema=schema1":

{
"dbname": "mssql-database-name",
"schema": "mssql-schema-name",
"dialect": "mssql",
"collibraSystemName": "mssql-system-name"

},
"found_dbname=databasename2;found_hostname=server-

name.onmicrosoft.com;found_schema=schema2": {
"dbname": "oracle-database-name",
"schema": "oracle-schema-name",
"dialect": "oracle",
"collibraSystemName": "oracle-system-name"

},
"filters":[

{
"domainId": "<domain-ref-id>",
"description": "FirstFilter",
"workspaceNames": "*",
"excludeWorkspaceIds": ["workspaceC", "workspaceD"]
},
{
"domainId": "<domain-ref-id>",
"description": "SecondFilter",
"workspaceNames": ["workspace3", "workspace4"],
"capacityIds": ["id1","id2"]
}

]
}

Steps

1. Create a new JSON file in the lineage harvesterconfig folder.
2. Give the JSON file the same name as the value of the sourceId property in the

lineage harvester configuration file.

Example The value of the sourceId property in the lineage harvester
configuration file is power-bi-source-1. Therefore, the name of your JSON
file should be power-bi-source-1.conf.

Important Your JSON file must have the file extension .conf.

cccvi

3. For each database in Power BI, add the following content to the JSON file:

Property Description Mandatory?

found_dbname=<database
name>;found_
hostname=<server
name>;found_
schema=<schema name>

The database information of supported data
sources in Power BI that is typically collected by the
lineage harvester. It allows you to specify the name

of the database (found_dbname), on which

server a database is running (found_

hostname), and optionally, the name of the

schema (found_schema).

Tip
You can use wildcards to capture multiple
connection string combinations:

Show me the supported wildcards

Patter
n

Description

* Matches everything.

? Matches any single character.

[seq] Matches any character in "seq".

[!seq] Matches any character not in "se
q".

Yes

dbname The name of the database of a supported data
source in Power BI.

No

schema The name of the default schema of a supported
data source in Power BI.

If the lineage harvester fails to find a specific
schema, it uses the default schema.

No

cccvii

Property Description Mandatory?

dialect The dialect of the supported data source in Power
BI.

Tip
You can enter one of the following values:

o azure, for an Azure SQL Server
data source.

o bigquery, for a Google BigQuery
data source.

o mssql, for a Microsoft SQL Server
data source.

o oracle, for an Oracle data source.
o redshift, for an Amazon Redshift
data source.

o snowflake, for a Snowflake data
source.

o sybase, for a Sybase data source.

No

cccviii

Property Description Mandatory?

collibraSystemName The system or server name of a database.

If you set the useCollibraSystemName

property to true in your lineage harvester

configuration file, but you either don't create a
<source ID> configuration file, or don't specify a

value for the collibraSystemName property

in your <source ID> configuration file, the system
name in the technical lineage is "DEFAULT".

How do I configure this property if I have two
databases with the same name?
Let's assume you have two databases named
Customers. When you prepare the physical data
layer in Data Catalog, you create a System asset for
each of these databases. Let's say you named them
Customers-Europe and Customers-USA. You can
then configure this property as follows.

"found_
dbname=databasename1;foun
d_hostname=*;found_
schema=schema1": {

"dbname": "Customers",
"schema": "mssql-schema-

name",
"dialect": "mssql",
"collibraSystemName":

"Customers-Europe"
},
"found_
dbname=databasename2;foun
d_hostname=server-
name.onmicrosoft.com;foun
d_schema=schema2": {

"dbname": "Customers",
"schema": "oracle-schema-

name",
"dialect": "oracle",
"collibraSystemName":

"Customers-USA"
},

Yes (unless
you are
using a
<source ID>
file to
provide the
true system
names of
ODBC
databases in
Power BI.)

cccix

Property Description Mandatory?

Warning The value of this property must
exactly match (including for case-
sensitivity) the name of your System asset
in Collibra.

Important If you are using a <source
ID> configuration file for the purpose of
providing the true system name of an
ODBC database in Power BI, you are
not required to:
o Set the
useCollibraSystemName
property in the lineage harvester
configuration file to true.

o Specify a Collibra system name in
the <source ID> configuration file.

However, if the
useCollibraSystemName
property is set to true in the lineage
harvester configuration file, then you
must specify a Collibra system name in
the <source ID> configuration file.

cccx

Property Description Mandatory?

filters This section allows you to specify the Power BI
workspaces from which you want to ingest
metadata.

The filters work as "workspace AND workspace
AND capacity AND capacity", meaning that if you
specify a capacity, all of the workspaces in that
capacity are also ingested.

Warning If you don't want to specify the
Power BI workspaces from which to ingest,
you must completely remove this filters
section.

Tip
You can use wildcards to capture multiple
connection string combinations:

Show me the supported wildcards

Pattern Description

* Matches everything.

? Matches any single character.

[seq] Matches any character in
"seq".

[!seq] Matches any character not in
"seq".

No

cccxi

Property Description Mandatory?

domainId The unique resource ID of the domain (or domains),
in Collibra Data Intelligence Cloud, in which you
want to ingest the Power BI assets.

Tip You can find the domain ID by clicking
the domain type. Then look in the URL of
your browser to find the ID. The URL looks
like
https://<yourcollibrainstance>/domain/<do
main ID>?<view>.

Yes

description Any description, as you see fit. Yes

workspaceNames The names of Power BI workspaces from which you
want to ingest metadata.

Important Any meta-characters in the
name of a workspace must be enclosed in
square brackets "[]". For example, a
workspace with the name "Sale and
Marketing [automobiles]" should be
formatted as follows:
Sale and Marketing
[[]automobiles[]]

No

workspaceIds The IDs of Power BI workspaces from which you
want to ingest metadata.

Tip We highly recommend that you read
through Filtering Power BI workspaces for
important information and guidance before
configuring your filters.

No

capacityNames The names of capacities on which you want to filter. No

cccxii

Property Description Mandatory?

capacityIds The IDs of capacities on which you want to filter.

Warning Any letters in a capacity ID must
be in upper case.

No

excludeWorkspaceName
s

The names of Power BI workspaces that you want
to exclude from the ingestion job.

This is useful if you want to exclude, for example,
dedicated development and testing workspaces.

Note The metadata of inactive and
personal workspaces is not harvested or
uploaded to the Collibra Data Lineage
service instance. An inactive workspace is
one for which no reports or dashboards
have been viewed in the past 60 days. My
workspace is the personal workspace for
any Power BI customer to work with their
own, personal content.

For complete details on the advantages, limitations
and configuration considerations of this property,
see Filtering Power BI workspaces.

No

excludeWorkspaceIds The IDs of Power BI workspaces that you want to
exclude from the ingestion job.

This is useful if you want to exclude, for example,
dedicated development and testing workspaces.

For complete details on the advantages, limitations
and configuration considerations of this property,
see Filtering Power BI workspaces.

No

4. Save the <source ID> configuration file.

The lineage harvester uses the lineage harvester configuration file to collect the
SQL Server Reporting Services (SSRS) and Power BI Report Server (PBRS) data objects
and send them to the Collibra Data Lineage service.

cccxiii

The <source ID> configuration file allows you to:

l If useCollibraSystemName in the lineage harvester configuration file is set to
true, use the collibraSystemName property to specify the system name of
databases in SSRS and PBRS.

l Provide additional information about databases in SSRS and PBRS, which is
necessary if the databases do not contain all information to process the SQL source
code correctly.

Example <source ID> configuration file

{
"DataSources": {

"Redshift": {
"dbname": "redshift-database-name",
"schema": "redshift-schema-name",
"dialect": "redshift",
"collibraSystemName": "redshift-system-name"

},
"Oracle": {

"dbname": "oracle-database-name",
"schema": "oracle-schema-name",
"dialect": "oracle",
"collibraSystemName": "oracle-system-name"

}
},
"CustomDataSources": {

"/path to report/custom data souce name": {
"dbname": "mssql-database-name",
"dialect": "mssql"

}
}

}

Steps

1. Create a new JSON file in the lineage harvesterconfig folder.
2. Give the JSON file the same name as the value of the Id property in the lineage

harvester configuration file.

Example The value of the Id property in the lineage harvester configuration
file is ssrs-source-1. As a result, the name of your JSON file should be
ssrs-source-1.conf.

cccxiv

Important Your JSON file must have the file extension .conf.

3. For each database in SSRS and PBRS, add the following content to the JSON file:

Property Description Required?

DataSources This section contains all connections for which you
want to create a technical lineage.

The DataSources section refers to shared

data sources in SSRS and PBRS. For more
information about shared data sources, see the
Microsoft documentation.

Yes

<data source type> The path of a connection object in SSRS and
PBRS.

Yes

dbname The name of the database of a supported data
source in SSRS and PBRS.

No

schema The name of the default schema of a supported
data source in SSRS and PBRS.

No

dialect The dialect of the supported data source in SSRS
and PBRS.

No

cccxv

https://docs.microsoft.com/en-us/sql/reporting-services/report-data/compare-shared-embedded-data-sources-report-builder-ssrs?view=sql-server-ver15

Property Description Required?

collibraSystemName The system or server name of the database.

If you set the useCollibraSystemName

property to true in your lineage harvester

configuration file, but you either don't create a
<source ID> configuration file, or don't specify a

value for the collibraSystemName property

in your <source ID> configuration file, the system
name in the technical lineage is "DEFAULT".

How do I configure this property if I have
two databases with the same name?
Let's assume you have two databases named
Customers. When you prepare the physical data
layer in Data Catalog, you create a System asset
for each of these databases. Let's say you named
them Customers-Europe and Customers-USA.
You can then configure this property as follows.

"Redshift": {
"dbname": "Customer",
"schema": "redshift-

schema-name",
"dialect": "redshift",
"collibraSystemName":

"Customers-Europe"
},
"Oracle": {

"dbname": "Customer",
"schema": "oracle-schema-

name",
"dialect": "oracle",
"collibraSystemName":

"Customers-USA"
}

Yes

cccxvi

Property Description Required?

CustomDataSources You can use custom data processing extensions
that are used to support embedded data sources of
which the data source definition is specified locally
in a report or embedded data set.

The CustomDataSources section refers to

embedded data sources in SSRS and PBRS. For
more information about embedded data sources,
see the Microsoft documentation.

No

<path to report>/<custom
data source name>

The full path to the report and the custom data
source name.

You can use wildcards to match multiple folders,
reports or data sets. The connection information is
this section is used to add missing information or to
overwrite parsed information.

No

dbname The name of the database of a custom data
source in SSRS and PBRS..

No

schema The name of the schema of a custom data source
in power. If you don't provide the schema name,
the default schema is used.

No

cccxvii

https://docs.microsoft.com/en-us/sql/reporting-services/report-data/compare-shared-embedded-data-sources-report-builder-ssrs?view=sql-server-ver15

Property Description Required?

dialect The dialect of the custom data source in SSRS and
PBRS..

Tip
You can enter one of the following values:

o azure, for an Azure SQL Server
data source.

o bigquery, for a Google BigQuery
data source.

o db2, for an IBM DB2 data source.
o hana, for a SAP Hana data source.
o hive, for a HiveQL data source.
o greenplum, for a Greenplum data
source.

o mssql, for a Microsoft SQL Server
data source.

o mysql, for a MySQL data source.
o netezza, for a Netezza data source.
o oracle, for an Oracle data source.
o postgres, for a PostgreSQL data
source.

o redshift, for an Amazon Redshift
data source.

o snowflake, for a Snowflake data
source.

o spark, for a Spark SQL data
source.

o sybase, for a Sybase data source.
o teradata, for a Teradata data
source.

No

4. Save the <source ID> configuration file.

The lineage harvester uses a lineage harvester configuration file to collect the SQL Server
Integration Services data objects. It then sends the metadata to the Collibra Data Lineage
service instance.

Example of the <source ID> configuration file

{
"ConnStringRegExTranslation": {

cccxviii

"Data Source=dhb-sql-prod;Initial Catalog=SFG_repl_
staging;Provider=SQLNCLI11;Integrated Security=SSPI.*": {

"dbname": "DATAHUB",
"schema": "DBO",
"dialect": "mssql",
"collibraSystemName" : "WAREHOUSE"

},

"Server=sb-dhub;User ID=SYS_USER;Initial
Catalog=STAGEDB;Port=6306.*": {

"dbname": "STAGEDB",
"schema": "STAGE_OWNER",
"dialect": "sybase",
"collibraSystemName" : ""

}

}
}

Steps

1. Create a new JSON file in the lineage harvesterconfig folder.
2. Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value

of the sourceId property in the lineage harvester configuration file and the file
extension must be .conf.

Example If the value of the sourceId property in the lineage harvester
configuration file is my-adf, the name of your JSON file must be my-adf.conf.

3. For each database, add the required content to the JSON file.
4. Save the <source ID> configuration file.

The lineage harvester uses the configuration file to connect to Tableau. You are not
required to create a <source ID> configuration file, but you need one if you want to:

l Define your Tableau operating model.
l Provide additional information about databases and files in Tableau. For example,
you can define the system name of databases in Tableau.

l Map a Tableau technical database name to the real database name, to preserve
stitching. See the databaseMapping property.

cccxix

Tip Try out the new hostnameMapping feature (beta), to map database,
schema, or system names that were returned by the Tableau APIs to the
actual names of the assets in Data Catalog. When the beta period ends and
the hostnameMapping is generally available, the databaseMapping section
and the databases sub-section of the collibraSystemNames section will
be deprecated.

l Define in which domains in Collibra you want to ingest assets from your Tableau
sites and projects. See the domainMapping and filters properties.

Tip "<source ID>" refers to the value of the Id property in the lineage harvester
configuration file.

cccxx

#databases

Example
.

{
"collibraSystemNames": {

"databases": [
{

"hostName": "database-hostname",
"collibraSystemName": "public"

}
],
"files": [

{"filePath": "C:\\ProgramData\\Tableau\\Tableau
Server\\data\\files\\sample.xls",

"collibraSystemName": "sample-files"
}

],
"connectors": [

{
"connectorUrl": "tableau-server-connector-url.com",
"collibraSystemName": "Oracle-connector"

}
],
"cloudFiles": [

{
"name": "file-name",
"collibraSystemName": "FILE"

}
]

},
"databaseMapping": {

"<hostname:port>":"<actual database name>"
},
"filters": {

"sites":{
"site_name":"domain_id"

},
"projects":{

"site_name2 > project_name2": "domain-reference-
id2",

"site_name3 > project_name3 > subproject_name":
"domain-reference-id2"

}
}

}

.

{
"collibraSystemNames": {

"databases": [

cccxxi

{
"hostName": "database-hostname",
"collibraSystemName": "public"

}
],
"files": [

{"filePath": "C:\\ProgramData\\Tableau\\Tableau
Server\\data\\files\\sample.xls",

"collibraSystemName": "sample-files"
}

],
"connectors": [

{
"connectorUrl": "tableau-server-connector-url.com",
"collibraSystemName": "Oracle-connector"

}
],
"cloudFiles": [

{
"name": "file-name",
"collibraSystemName": "FILE"

}
]

},
"databaseMapping": {

"<hostname:port>":"<actual database name>"
},
"domainMapping": {

"<Site-1>": "reference-id-of-Domain-1",
"<Site-1> > <Project-Default>": "reference-id-of-Domain-2"

}
}

Example <source ID> configuration file

{
"collibraSystemNames": {

"databases": [
{

"hostName": "database-hostname",
"collibraSystemName": "public"

}
],
"files": [

{"filePath": "C:\\ProgramData\\Tableau\\Tableau
Server\\data\\files\\sample.xls",

"collibraSystemName": "sample-files"
}

],

cccxxii

"connectors": [
{

"connectorUrl": "tableau-server-connector-url.com",
"collibraSystemName": "Oracle-connector"

}
],
"cloudFiles": [

{
"name": "file-name",
"collibraSystemName": "FILE"

}
]

},
"databaseMapping": {

"<hostname:port>":"<actual database name>"
},
"filters": {

"sites":{
"site_name":"domain_id"

},
"projects":{

"site_name2 > project_name2": "domain-reference-id2",
"site_name3 > project_name3 > subproject_name": "domain-

reference-id2"
}

}
}

Steps

1. Create a new JSON file in the lineage harvesterconfig folder.
2. Give the JSON file the same name as the value of the Id property in the lineage

harvesterconfiguration file.

Example If the value of the Id property in the lineage harvester configuration
file is tableau-source-1, then the name of your JSON file should be
tableau-source-1.conf.

Important Your JSON file must have the file extension .conf.

cccxxiii

3. For each database in Tableau, add the following content to the JSON file:

Tip You can use wildcards to capture multiple string combinations for any of
these properties.
Show me the supported wildcards

Pattern Description

* Matches everything.

? Matches any single character.

[seq] Matches any character in "seq".

[!seq] Matches any character not in "seq".

Property Description

collibraSystemNames This section contains the system information for
different Tableau data sources. Depending on the kind
of data source or connection, you have to specify how
to connect to this data source.

Tip For more information, see the Tableau
documentation. We also recommend to check
the list of supported connectors in Tableau.

cccxxiv

https://help.tableau.com/current/pro/desktop/en-us/basicconnectoverview.htm
https://help.tableau.com/current/pro/desktop/en-us/basicconnectoverview.htm
https://help.tableau.com/current/pro/desktop/en-us/exampleconnections_overview.htm

Property Description

hostnameMapping This section allows you to map Tableau technical
database, server and schema names to the respective
real names, to preserve stitching.

Important
o This section replaces the following
deprecated properties, and should not
be used in combination with either of
them:
n The databaseMapping property.
n The databases sub-section of the
collibraSystemNames section.

o If you use the hostnameMapping
section, you can still use the
collibraSystemName property in
conjunction with the files,
connectors or cloudfiles sub-
sections.

No

found_
dbname=<database
name>;found_
hostname=<server
name>;found_
schema=<schema name>

The database information of supported data sources in
Tableau that is typically collected by the lineage
harvester. It allows you to specify the name of the
database (found_dbname), on which server a database
is running (found_hostname), and optionally, the name
of the schema (found_schema).

No

dbname The name of the database of a supported data source
in Tableau.

No

schema The name of the default schema of a supported data
source in Tableau.

If the lineage harvester fails to find a specific schema, it
uses the default schema.

No

cccxxv

Property Description

dialect The dialect of the supported data source in Tableau.

You don't have to specify a dialect; it will automatically
be detected. If, however, you are using a dialect that is
not supported, you can use this property to specify a
supported dialect that is a close comparison. That way,
most of your queries will be detected and processed.

Tip
You can enter one of the following values:

o redshift, for an Amazon Redshift data
source.

o azure, for an Azure SQL Server data
source.

o bigquery, for a Google BigQuery data
source.

o greenplum, for a Greenplum data
source.

o hive, for a HiveQL data source.
o oracle, for an Oracle data source.
o postgres, for a PostgreSQL data
source.

o mssql, for a Microsoft SQL Server data
source.

o mysql, for a MySQL data source.
o netezza, for a Netezza data source.
o hana, for a SAP HANA data source.
o spark, for a Spark SQL data source.
o sybase, for a Sybase data source.
o teradata, for a Teradata data source.

No

collibraSystemName The system or server name of the database.

Warning The value of this property must
exactly match the name of your System asset in
Collibra.

No

cccxxvi

Property Description

databases
Important This property is deprecated. We
recommend that you use the
hostnameMapping section, instead. You
cannot use this property in conjunction with the
hostnameMapping section.

This section contains connection information to one or
more databases in Tableau.

Tip
o If you do not have databases in
Tableau, you can remove this section.

o The values that you specify for this
property are not case-sensitive.

hostName The host name of the database.

cccxxvii

Property Description

collibraSystemName The system name of the database.

If you set the useCollibraSystemName

property to true in your lineage harvester

configuration file, but you either don't create a <source
ID> configuration file, or don't specify a value for the

collibraSystemName property in your <source

ID> configuration file, the system name in the technical
lineage is "DEFAULT".

How do I configure this property if I have two
databases with the same name?
Let's assume you have two databases named
Customers. When you prepare the physical data layer
in Data Catalog, you create a System asset for each of
these databases. Let's say you named them
Customers-Europe and Customers-USA. You can then
configure this property as follows.

"collibraSystemNames": {
"databases": [
{

"hostName": "database-
hostname-1",

"collibraSystemName":
"Customers-Europe"

},
{
"hostName": "database-

hostname-2",
"collibraSystemName":

"Customers-USA"
}

],

Warning The value of this property must
exactly match (including for case-sensitivity)
the name of your System asset in Collibra.

cccxxviii

Property Description

files This section contains connection information to one or
more files in Tableau.

Tip If you do not have files in Tableau, you can
remove this section.

filePath The full path to the file. For example, the path to a
JSON file.

collibraSystemName The system name of the file.

connectors This section contains connection information to one or
more connectors in Tableau.

Tip
o If you do not have connectors in
Tableau, you can remove this section.

o The values that you specify for this
property are not case-sensitive.

connectorUrl The URL of the connector. For example, the URL
to Google Analytics.

collibraSystemName The system name of the connector.

cloudFiles This section contains connection information to one or
more cloud files in Tableau's input data.

Tip If you do not have cloud files in Tableau,
you can remove this section.

name The name of the file. For example, the name of a
Zendesk file.

collibraSystemName The system name of the cloud file.

cccxxix

Property Description

databaseMapping
Important This property is deprecated. We
recommend that you use the
hostnameMapping section, instead. You
cannot use this property in conjunction with the
hostnameMapping section.

The Tableau API returns a technical database name
based on the hostname, instead of the actual database
name, which breaks stitching. The values that you
specify for this property are not case-sensitive.

This property allows you to map a Tableau technical
database name to the real database name, for
example:

"databaseMapping": {
"<hostname:port>":"<actual

database name>"
}

Including the port, as shown in the example, is optional.

cccxxx

Property Description

filters This section defines:

o From which Tableau sites and projects you
want to harvest metadata.

o Into which domains in Collibra you want to
ingest the corresponding assets.

Filtering is transitive, which means that all resources in
a specified project, such as Tableau workbooks and all
sub-projects, are ingested.

Tableau assets that are not mapped to the specified
domains, for example the Tableau Server assets and
the parent projects (if you specify their sub-projects),
are ingested in the default domain.

Important
o Filtering does not affect the amount of
raw metadata that is harvested from
Tableau and sent to the Collibra Data
Lineage service instance. Rather, it
determines which metadata is ingested
as assets in Data Catalog.

o The domainMapping and filters
sections are mutually exclusive. Do not
include both domainMapping and
filters sections in your JSON file.

cccxxxi

Property Description

Tip
o If you want to ingest all of the projects in
a Tableau site into multiple domains in
Collibra, use the domainMapping
section.

o If you want to ingest all of the projects in
a Tableau site into the default domain,
use only the domainID property in the
lineage harvester configuration file. The
domainID property represents the
default domain.

o If you want to ingest all of the projects in
a Tableau site into a single domain in
Collibra, use site filtering.

o If you want to ingest metadata from
only some of the projects in a Tableau
site, use project filtering.

o You can use site filtering and project
filtering together:
o If filtering on the same site, this
"filtering" is actually domain
mapping, because nothing is filtered
out. The contents of the projects are
ingested in the specified domains,
and the rest of the contents of the
site are ingested in a different,
specified domain.

o If you are site filtering on a specific
site and project filtering a different
site, then site filtering is again a form
of domain mapping, and the filtered
projects are ingested in their
specified domains.

o If your lineage harvester
configuration file includes sites that
are not mentioned in the filters
section of your <source ID>
configuration file, those sites are
ingested in the default domain.

cccxxxii

Property Description

sites The Tableau sites to be ingested and the domain in
which you want to ingest metadata from the Tableau
sites.

Tip If you have only one Tableau site, do
not include a sites section in your
<source ID> file. Instead, use a
projects section, to filter on Tableau
projects. Include a sites section only if
all of the following are true:
o You have more than one Tableau site.
o You want to ingest all of the metadata
from only one Tableau site into a single
domain in Collibra.

o The domain into which you want to
ingest is not the default domain,
meaning the domain specified in the
domainId property in your lineage
harvester configuration file.

cccxxxiii

Property Description

site_name: domain_id site_name

The name of the site to be ingested. The
site name is case-sensitive.

domain_id

The unique reference ID of the domain in
Collibra in which you want to ingest
metadata. The domain ID is case-sensitive.

To ingest all metadata from a Tableau site in the
specified domain, specify the site name and a
separate domain ID for each site that you list on
the siteIds property in the lineage harvester

configuration file for Tableau. If the site_name

or domain_id property is not specified for a site,

the metadata from the site is ingested in the
default domain.
How do I find a domain reference ID?
Open the relevant domain in Collibra. The URL looks
like: https://<yourcollibrainstance>/domain/22258f64-
40b6-4b16-9c08-c95f8ec0da26?view=00000000-
0000-0000-0000-000000040001. In this example, the
reference ID is in bold.

Show me the example

{
"filters":{
"sites":{

"Training":"ca60b822-781b-
4b3a-b44d-f65bd107ff92"

},
"projects":{

"Testing >
Databricks":"e8f4e4a8-4062-4a33-
9b44-3ce3e18e4e22",

"Product Demo > Customer
Insights":"a305e6f7-7a49-49aa-
aa85-41b1e689121b"

}
}

}

cccxxxiv

Property Description

projects The Tableau projects to be ingested and the domain in
which you want to ingest metadata from the Tableau
projects or sub-projects.

Tip Project filtering is not relevant for those
who have an Explorer role in Tableau, because
Explorers need to configure permissions for
each data object in Tableau that they want to
ingest. As the Administrator role has access to
all data objects, project filtering allows
Administrators to specify which projects to
ingest.

site_name > project_
name : domain_id

The site_name should be the Tableau site name.

The project_name should be the Tableau project

name.

The domain_id should be the unique reference ID

of the domain in Collibra in which you want to ingest
metadata.

When you specify the site and project names, the
following rules apply:

o Add spaces before and after >. The spaces are
separators between the site and project.

o Specify the full exact site and project names.
o The values are case-sensitive.

When you specify a Tableau project, all assets in the
project are ingested in the specified domain. If you want
to ingest assets from different Tableau projects in one

domain, you can specify the same value for domain

id for different projects.

Example

"Collibra_tab_partner_site > JB_

Test_2812": "d224a1a5-43b4-43b2-

8df0-ddf8f2726b82"

cccxxxv

Property Description

site_name > project_
name > sub-project_
name : domain_id

The site_name should be the Tableau site name.

The project_name should be the Tableau project

name. Optionally, use sub-project_name to

specify the Tableau sub-project name.

The domain_id property should be the unique

reference ID of the domain in Collibra in which you want
to ingest metadata.

When you specify the site, project and sub-project
names, the following rules apply:

o Add spaces before and after >. The spaces are
separators between the site and project.

o Specify the full exact site and project names.
o The values are case-sensitive.
Example

"Collibra_tab_partner_site > JB_

Test_2812 > ProjectJJ2":

"d224a1a5-43b4-43b2-8df0-

ddf8f2726b82"

cccxxxvi

Property Description

domainMapping This section defines in which domains in Collibra you
want to ingest assets from your Tableau sites and
Tableau projects.

Domain mapping is transitive, meaning that all
resources, such as Tableau workbooks and data
attributes in a parent Tableau site, project or sub-
project, are ingested in the same domain as the parent.

Important The domainMapping and
filters sections are mutually exclusive. Do
not include both domainMapping and
filters sections in your JSON file.

Tip
o If you want to ingest all of the projects in
a Tableau site into multiple domains in
Collibra, use this domainMapping
section.

o If you want to ingest all of the projects in
a Tableau site into the default domain,
use only the domainID property in the
lineage harvester configuration file. The
domainID property represents the
default domain.

Note Tableau assets that are
not mapped to specific domains
via this domainMapping
section, for example Tableau
Server assets, are ingested in
that default domain.

o If you want to ingest all of the projects in
a Tableau site into a single domain in
Collibra, use site filtering.

o If you want to ingest metadata from
only some of the projects in a Tableau
site, use project filtering.

cccxxxvii

Property Description

Show me an example
Let's say that you have a Tableau site named "Site-1".
You want to ingest all Tableau projects in "Site-1" in a
domain named "Domain-1" in Collibra, with the
exception of one Tableau project named "Project-
Default", which you want to ingest in "Domain-2". You

should configure the domainMapping section as

follows.

"domainMapping": {
"<Site-1>": "reference-id-of-

Domain-1",
"<Site-1> > <Project-Default>":

"reference-id-of-Domain-2"
}

If you want to specify a domain for a sub-project of

"Project-Default", use the <site name> >

<project name> > <sub-project

name> property, as described below.

Tip For the properties in this
domainMapping section, ensure that
you maintain the spaces before and after
">", for example "Site-1 > Project-
Default". The spaces serve as a
separator between the site and the
projects.

site name The Tableau site name, followed by the unique
reference ID of the domain in Collibra in which you want
to ingest resources from the Tableau site.

Important In the configuration file, use the
actual site name, along with the domain
reference ID, for example: "Collibra_
tab_partner_site": "afc8cfb0-
91f1-4075-a3e5-7ce6d1f9bcc9"

cccxxxviii

Property Description

site name > project name The Tableau project name, preceded by the name of
the Tableau site to which it belongs, and followed by the
unique reference ID of the domain in Collibra in which
you want to ingest resources from the Tableau project.

Important In the configuration file, use the
actual site and project names, along with
the domain reference ID, for example:
"Collibra_tab_partner_site >
JB_Test_2812": "d224a1a5-
43b4-43b2-8df0-ddf8f2726b82"

site name > project name >
sub-project name

The Tableau sub-project name, preceded by the name
of the Tableau site and project to which it belongs, and
followed by the unique reference ID of the domain in
Collibra in which you want to ingest resources from the
Tableau sub-project.

Important In the configuration file, use the
actual site, project and sub-project names,
along with the domain reference ID, for
example: "Collibra_tab_partner_
site > JB_Test_2812 >
ProjectJJ2": "d224a1a5-43b4-
43b2-8df0-ddf8f2726b82"

4. Save the <source ID> configuration file.

Harvesting materialized views that were generated via an external
script

The lineage harvester can harvest materialized views that are native to a data source—
meaning the data flow is performed by SQL code stored in the data source. If, however, an
external script is used to materialize views into tables, so to speak, they cannot be
harvested by the lineage harvester. In this case, you could create a custom technical
lineage, which requires a user-defined JSON file.

cccxxxix

Tip We recommend creating a script to generate a list of SQL queries to be
harvested by the lineage harvester.

For each pair of source (view) and target (materialized view table), create a script as
follows:

INSERT INTO 'dhw.sales.mv_customers'
SELECT * FROM 'dhw.sales.v_customers';

The generated SQL queries then need to be harvested by the lineage harvester. There are
two options for this, depending on where you choose to store the generated SQL code:

l If you store the SQL code in text files, it is harvested using an additional SqlDirectory
type source.

l If you store the SQL code in a table in the data source, you need to modify the har-
vesting query, to harvest the table.
In this case, actually, the generated SQL queries don't have to be stored anywhere;
rather, they are generated on the fly by a harvesting query. Modify the harvesting
query as follows:

SELECT
t.table_name,
t.ddl as sourceCode,
CONCAT(t.table_schema, '.', t.table_name) as groupName,
t.table_schema as schemaName

FROM `##PROJECT_ID##`.`##DSNAME##`.`INFORMATION_
SCHEMA.TABLES` t
WHERE t.table_type IN ('MATERIALIZED VIEW','VIEW')

UNION ALL

SELECT
CONCAT('m', t.table_name),
CONCAT('INSERT INTO `m', t.table_name, '` SELECT * FROM

`', t.table_name, '`') as sourceCode,
CONCAT('Generated m', t.table_schema, '.', t.table_name)

as groupName,
t.table_schema as schemaName

FROM `##PROJECT_ID##`.`##DSNAME##`.`INFORMATION_
SCHEMA.TABLES` t
WHERE

cccxl

t.table_type IN ('VIEW')
AND STARTS_WITH(t.table_name, 'v_')

The second SELECT generates the necessary INSERT INTOs for all views in your
data source that have a name starting with v_.

Manage technical lineage ingestion

You can create a customized SQL file to manage which data objects, for example columns
and tables, are ingested in the technical lineage. In the SQL file, you can exclude data
objects or change queries that are used to extract data from the database. You specify:

l Which data objects you want to visualize in the technical lineage.
l Between which columns you want to create new relations of the type "Data Element
targets / sources Data Element" in Data Catalog.

Note
l If you change queries, you can only use supported SQL syntax.
l Collibra Support does not provide support for customized SQL files.

Steps

1. Open the lineage harvester folder.
2. Go to the sql folder and open the folder of the data source type of which you want to

exclude tables or schemas or change queries.
3. Create a copy of the file you want to edit.
4. Rename the copy to [original name]-custom.sql.

Example You want to change the file columns.sql, so you name the copy of
this file and rename it to columns-custom.sql.

5. Delete or edit the content of the new SQL file to include or exclude specific tables or
schemas or change specific queries in the file.

6. Save the new SQL file.
» The lineage harvester uses the new file and ignores the old one.

cccxli

Run the lineage harvester

After you have prepared the lineage harvester configuration file, run the lineage harvester
to create the technical lineage.

Before you begin

If you use a proxy server, connect to the proxy server. For more information, go to
Connecting to a proxy server.

Requirements and permissions

l Collibra Data Intelligence Cloud.
l You have purchased Collibra Data Lineage.
l A global role with the following global permissions:

o Catalog, for example Catalog Author
o Data Stewardship Manager
o Manage all resources
o System administration
o Technical lineage

l A resource role with the following resource permissions on the community level in
which you created the domain:

o Asset: add
o Attribute: add
o Domain: add
o Attachment: add

l Necessary permissions to all database objects that the lineage harvester accesses.

Steps

1. Start the lineage harvester by entering the full-sync command.
o To process data from all data sources in the configuration file:
For windows:

.\bin\lineage-harvester.bat full-sync

cccxlii

https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0642
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0632

For other operating systems:

./bin/lineage-harvester full-sync

o To process data from specific data sources in the configuration file:
For windows:

.\bin\lineage-harvester.bat full-sync -s "ID of the data
source"

For other operating systems:

./bin/lineage-harvester full-sync -s "ID of the data
source"

cccxliii

Note
If you have Snowflake data sources in your lineage harvester configuration
file, set the JAVA_OPTS environment variable first. For example, to process
data from all data sources including the Snowflake data sources, take the
following steps:

On Windows
a. Enter one of the following commands:

n If you use OpenJDK 16:

set JAVA_OPTS="-
Djdk.module.illegalAccess=permit"

n If you use OpenJDK 17 or higher:

set JAVA_OPTS="--add-
opens=java.base/java.nio=ALL-UNNAMED"

b. In the same command line, enter the following command:

.\bin\lineage-harvester.bat full-sync

Note The set command is specific to the Windows Command Shell.
The command is different if you are using PowerShell.

On Linux
Enter the following command:

o If you use OpenJDK 16:

JAVA_OPTS="-Djdk.module.illegalAccess=permit"
./bin/lineage-harvester full-sync

cccxliv

o If you use OpenJDK 17 or higher:

JAVA_OPTS="--add-opens=java.base/java.nio=ALL-
UNNAMED" ./bin/lineage-harvester full-sync

For more information, see Lineage harvesting app command options and
arguments.

2. When prompted, enter the passwords to connect to Collibra and your data sources.
Do one of the following:

o Enter the passwords in the console.
» The passwords are encrypted and stored in /config/pwd.conf.

o Provide the passwords via command line.
» The passwords are stored locally and not in your lineage harvester folder.

What's next

The lineage harvester sends the data source information to the Collibra Data Lineage
service by using Collibra REST API, where it is parsed and analyzed. As a result, the
technical lineage is created and shown in Data Catalog. You can view the technical
lineage. For more information, go to Technical lineage viewer.

You can check the progress of the technical lineage creation in Activities in your Collibra
Data Intelligence Cloud environment. The Results field indicates how many relations were
imported into Data Catalog. Go to the status page to see the log files of the SQL analysis.

If the lineage harvester log shows an error message or the harvesting process fails, you
can use the technical lineage troubleshooting guide or Collibra Support Portal to fix the
error.

If you want to synchronize the data sources on fixed times, you can use scheduled jobs.

Schedule jobs

You can use Task Scheduler on Windows or Crontab on Mac and Linux to make the
lineage harvester run scheduled jobs at specific times, dates or intervals. In a scheduled

cccxlv

co_about-activities.htm
https://support.collibra.com/hc/en-us
https://docs.microsoft.com/en-us/windows/win32/taskschd/using-the-task-scheduler
https://crontab.guru/

job, the lineage harvester uploads data source information to the Collibra Data Intelligence
Cloud and Data Catalog automatically creates new relations of the type "Data Element
sources / targets Data Element"

l Between data objects in your data source and assets from registered data sources.
l Between ingested assets from BI sources and Data Catalog assets from registered
data sources.

You can run one scheduled job for each data source that is listed in the same configuration
file.

Note If you provide the passwords to your Collibra environment and/or to your
individual data sources via stdin, you have to use the correct command.

Example You created a configuration file with two data sources. Data source A can
run a scheduled job each day at 11 pm, while data source B can run a scheduled job
every two days at 6 am.

Upgrade the lineage harvester

Each new lineage harvester adds features and enhancements to the previous version. We
highly recommend that you always use the newest lineage harvester available.

If you have created a technical lineage using an older lineage harvester, you can easily
upgrade to the newest lineage harvester and reuse your configuration file.

Tip For a list of differences between lineage harvester versions, see the lineage
harvester change log.

Steps

1. Download the newest lineage harvester from the Collibra Downloads page. To log in
to the Collibra Downloads page, use your Collibra.com username and password.

2. Install the lineage harvester and a new lineage harvester folder is created.
3. Copy all files from your config folder in the old lineage harvester folder to the config

folder in the new lineage harvester folder.

cccxlvi

to_register-data-source.htm
https://productresources.collibra.com/downloads/

» All files, including the pwd.conf and lineage-harvester.conf files, are in the config
folder in the new lineage harvester folder.

4. In the config folder, open the lineage-harvester.conf file to check if there are other
auxiliary files to be moved to the new lineage harvester folder. If needed, copy those
files from the old lineage harvester folder to the new lineage harvester folder.
Those files can be the custom technical lineage JSON file, the Informatica Intelligent
Cloud Services <source ID> configuration file, the Matillion <source ID>
configuration file, and so on.

5. If you have customized SQL files that end with -custom.sql in the sql folder in the old
lineage harvester folder, complete the following steps:
a. Compare the original SQL files before customization with the SQL files in the

new lineage harvester folder. For example, if you have a customized SQL file
named access_history-custom.sql, compare the access_history.sql file in the
old lineage harvester folder with the access_history.sql file in the new lineage
harvester folder.

b. Take any of the following actions:
n If the SQL files are identical, copy the customized SQL files from the old
lineage harvester folder to the new lineage harvester folder.

n If the SQL files are not the same, complete the following steps:
i. Create new SQL files that end with -custom.sql in the new lineage
harvester folder based on the SQL files in the new lineage har-
vester folder.

ii. Review the customizations in the customized SQL files in the old lin-
eage harvester folder, and make the same customizations to the
newly created customized SQL files in the new lineage harvester
folder.

cccxlvii

Example Take the access_history-custom.sql file as an example, and
the customization in the access_history-custom.sql file was to change
the database.schema from SNOWFLAKE.ACCOUNT_USAGE to
MYDB.ACCOUNT_USAGE.
a. Compare the following files:

n lineage-harvester-OLD/sql/snowflake/access_history.sql
n lineage-harvester-NEW/sql/snowflake/access_history.sql

b. Take any of the following steps:
n If the access_history.sql files are identical, copy the
access_history-custom.sql file from lineage-harvester-
OLD/sql/snowflake to the lineage-harvester-
NEW/sql/snowflake directory.

n If the access_history.sql files are not the same, complete
the following steps:

i. Create an access_history-custom.sql file in the
lineage-harvester-NEW/sql/snowflake directory by
copying the content of the lineage-harvester-
NEW/sql/snowflake/access_history.sql file to the new
access_history-custom.sql file.

ii. Customize the new access_history-custom.sql file by
changing the database.schema from
SNOWFLAKE.ACCOUNT_USAGE to MYDB.ACCOUNT_
USAGE.

Note Beginning with the lineage harvester version 2023.02, the
SQL file that was named access_history_lineage_query_text.sql
has been renamed to access_history.sql.

6. Use the full-sync command to synchronize all data sources in your configuration
file.
» The lineage harvester synchronizes your data sources on the Collibra Data
Lineage service and refreshes your technical lineage.

What's next

You can check the progress of the technical lineage creation in Activities in your Collibra
Data Intelligence Cloud environment. The Results field indicates how many relations were
imported into Data Catalog. Go to the status page to see the log files of the SQL analysis.

cccxlviii

co_about-activities.htm

If the lineage harvester log shows an error message or the harvesting process fails, you
can use the technical lineage troubleshooting guide or Collibra Support Portal to fix the
error.

Delete the technical lineage of a data source
You can delete the technical lineage of a data source if you no longer want to see it in the
technical lineage graph. To delete the technical lineage of the data source, you must
remove the configuration of the data source from the lineage harvester configuration file
and use the ignore-source command to exclude the data source when you synchronize
the technical lineage again.

Note You always need at least one source in your lineage harvester configuration
file.

Before you begin

Install the lineage harvester 2023.04 or newer.

Steps

1. Optional: To determine the data source that you want to exclude from the Technical
lineage, enter the list-sources command:

o For Windows: .\bin\lineage-harvester.bat list-sources
o For other operating systems: ./bin/lineage-harvester list-sources

» All data sources that were used to create the technical lineage are listed. The list
also includes the source ID of each data source. You can use the list to identify the
data source to be excluded.

2. In the lineage harvester folder, open your lineage harvester configuration file.
3. Delete the section with connection properties of the data source.
4. Save the configuration file.
5. Start the lineage harvester in the console and run the following command to ignore

the data source:
o For Windows: .\bin\lineage-harvester.bat ignore-source

<source_ID>, where <source_id> is the ID of the data source that you want

cccxlix

https://support.collibra.com/hc/en-us

to ignore.
o For other operating systems: ./bin/lineage-harvester ignore-source

<source_ID>, where <source_id> is the ID of the data source that you want
to ignore.

» The data source is excluded from the list of data sources that are used to create
the technical lineage.

6. Synchronize the technical lineage by running any of the following commands:
o The sync command:

n For Windows: .\bin\lineage-harvester.bat sync
n For other operating systems: ./bin/lineage-harvester sync

o The full-sync command:
n For Windows: .\bin\lineage-harvester.bat full-sync
n For other operating systems: ./bin/lineage-harvester full-sync

For more information, go to Typical command options and arguments.

7. When prompted, enter the password to connect to your Collibra Data Intelligence
Cloud and data sources in the configuration file.
» The lineage harvester uploads the metadata of the remaining data sources in the
configuration file to the Collibra Data Lineage service.
» The Collibra Data Lineage service synchronizes the technical lineage and
removes the deleted data source from the technical lineage graph.

What's next

You can view the technical lineage. For more information, go to Technical lineage viewer.

You can check the progress of the technical lineage creation in Activities in your Collibra
Data Intelligence Cloud environment. The Results field indicates how many relations were
imported into Data Catalog. Go to the status page to see the log files of the SQL analysis.

If the lineage harvester log shows an error message or the harvesting process fails, you
can use the technical lineage troubleshooting guide or Collibra Support Portal to fix the
error.

cccl

co_about-activities.htm
https://support.collibra.com/hc/en-us

Custom technical lineage via the lineage
harvester
You can create a custom technical lineage to include metadata of data sources that the
lineage harvester does not support or add functionality that is not supported.

To create a custom technical lineage, define the custom technical lineage in a JSON file
and refer to the JSON file in the lineage harvester configuration file. The lineage harvester
generates a technical lineage based on your definition in the JSON file. You can create the
following custom technical lineages:

l A simple custom technical lineage, which defines a basic object hierarchy and cre-
ates a lineage between two or more data objects.

l An advanced custom technical lineage, which contains a simple custom technical lin-
eage and uses separate source code files that define lineage transformations to cre-
ate the lineage.

You can use the custom technical lineage as your only lineage source. You can also
combine custom technical lineage with other lineage sources. For example, you can
configure the lineage harvester to collect data objects from Oracle, Tableau and the
custom technical lineage definition in the JSON file.

For steps to create a custom technical lineage by using the lineage harvester, go to Create
custom technical lineage.

For steps to create a custom technical lineage on Edge, go to Create a technical lineage
via Edge.

Example
You want to create a technical lineage that shows relations between tables and columns
from system A and system B, to system C, to system D (A and B -> C -> D). System A, B
and D are supported data sources, but system C is a custom application. You can create a
JSON file that contains the metadata of system C and generate the following technical
lineage graph.

cccli

Creating custom technical lineage via lineage harvester
This topic is an overview of steps to create a custom technical lineage.

Before you begin

l Set up the latest lineage harvester.
l To stitch the data objects of your data sources with Data Catalog assets, prepare the
Data Catalog physical data layer for technical lineage. When you prepare the Data
Catalog physical data layer, you must register your data sources in Data Catalog and
use a structure that matches the structure of ingested assets in Data Catalog.

l Determine whether you want to create a simple or advanced custom technical lin-
eage.

Requirements and permissions

l A global role with the following global permissions:
o Manage all resources
o System administration

l A resource role with the following resource permission on the community level in
which you created the BI Data Catalog domain:

o Asset: add
o Attribute: add
o Domain: add
o Attachment: add

ccclii

https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0642
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0632

Steps

1. Create a custom technical lineage JSON file.
2. Configure the lineage harvester for the custom technical lineage.
3. Run the lineage harvester.

Create a custom technical lineage JSON file

To create a custom technical lineage, create a JSON file that defines the custom technical
lineage, refer to the JSON file in the lineage harvester configuration file, and run the
lineage harvester.

Steps

1. Create a local folder.
2. Create a JSON file in the local folder and name the JSON file lineage.json.

The JSON file must be named as lineage.json; otherwise, the process fails. You can
have other types of files in this folder.

3. If you want to create an advanced custom technical lineage, store all of the source
code files that you want to reference in the JSON file in the same local folder. For
more information about the simple and advanced custom technical lineage, go to
Custom technical lineage via the lineage harvester.

4. Specify the JSON file to define a simple or an advanced custom technical lineage.
For details about the JSON file, go to Custom technical lineage JSON file and Cus-
tom technical lineage JSON file examples.

What's next

Configure the lineage harvester and refer to this JSON file in the lineage harvester
configuration file.

cccliii

Custom technical lineage JSON file

In the lineage.json file, you can define a basic data object hierarchy, a lineage between
two or more data objects and transformations that create the custom technical lineage.

The following sections in the JSON file define different parts in the resulting Collibra
technical lineage graph:

l tree, which defines the data object hierarchy. The data objects are shown as nodes
in the technical lineage graph.

l lineages, which defines the lineage relation. The lineage relations are shown as
edges in the technical lineage graph. The edges represent the data flow from a
source to a target.

l codebase_files, which points to transformation definitions in a source code file.

If you want to create a simple custom technical lineage, specify the tree and lineages
sections. You can add the transformation code in the lineages section.

If you want to create an advanced custom technical lineage, specify the tree, lineages
and codebase_files sections. Add references to transformation code in source code
files in the codebase_files section.

Transformation code in both simple and advanced custom technical lineages is displayed
at the bottom part of the Collibra technical lineage graph.

Requirements and restrictions
The source code files must be in the same directory as the lineage.json file. Otherwise, an
error occurs indicating that the lineage harvester cannot find the source code files.

Sections Description

version The version of the JSON architecture. Specify the value of 1.0, which is the only

supported version.

Sections

cccliv

Sections Description

tree This section contains tree definitions of data objects between which lineages can
be defined. The data objects are systems, databases, schemas, tables, views,
columns, dashboards and reports.

Each node of a tree contains the name, type and optionally children or leaves
properties which form a hierarchy of data objects. You must define a node only
once in this section. With the nested tree format, you can reuse the properties of
one node for multiple children. For example, you can define a database once and

use the children array to define multiple tables in the database.

Tip Usually, the structure you map is the following: system > database >
schema > table > column. The system is optional, unless the
useCollibraSystemName property is set to true in the lineage
harvester configuration file. Collibra Data Lineage can stitch these data
objects to assets in Data Catalog. However, you can also map custom
objects, for example dashboards and reports. Custom objects cannot be
stitched to assets in Data Catalog.

lineages This section contains the path from a source to a target and defines the
transformation code or transformation references to be processed by the Collibra
Data Lineage service.

codebase_files This optional section defines the reference to source code files. Store the source
code files that contain the transformation code in the same directory as the
lineage.json file.

Include this section only when you create an advanced custom technical lineage.

Properties Description

name The name of your data object. Specify this property with the system name,
database name, schema name, table name, view name or column name.

The following rules apply when you specify this property:

l The names are case sensitive.
l The names of children and leaves can be identical if the children and
leaves with the same names are in different parent nodes.

tree section properties

ccclv

Properties Description

type The type of your data object. You can specify one of the following options:

system, database, schema, table, view, column, dashboard or

report.

Note If the useCollibraSystemName property in the lineage
harvester configuration file for custom technical lineage is set to
true, the system data object is used to stitch to the System asset
in Data Catalog. If the useCollibraSystemName property is
set to false, the system data object is not used for stitching.

children The sub-objects that have a hierarchical relation to the defined data object.

Each child can contain children properties, except for the penultimate child.

The penultimate children property must contain the leaves property. The

leaves property cannot contain a children property.

For example, you can use the children property to define a table and use the

leaves properties to define columns that have a relation to the table node.

Each child and leave have the name and type properties and the optional

catalog_fullname, catalog_domain_id, catalog_asset_

type_name and catalog_asset_type_uuid properties.

leaves The sub-objects of an object that is defined in a children property, but cannot

have sub-objects of their own.

A technical lineage is defined as relations between leaf nodes of the tree.

The value of the type property of the leaves property must be column or

report. Indirect and table-level technical lineages are not supported. For the

workarounds to create a table level or indirect technical lineage, see
Programming considerations.

ccclvi

Properties Required Description

src_path Yes The hierarchical path to the source data object. This data

object is defined as a leaf in the tree section.

This property represents where the data comes from for a
transformation.

trg_path Yes The hierarchical path to the target data object. This data

object is defined as a leaf in the tree section.

This property represents where the data flows to.

<data objects> Yes An ordered array of data object names. This array is required

to define the sub-objects of the src_path and trg_

path properties.

Specify the array with the data object names that start from

the top of the tree section and finish at a leaf node.

This example shows data objects that can be stitched: system
> database > schema > table > column.

This example shows data objects that cannot be stitched:
dashboard > report > column.

Note If the useCollibraSystemName
property in the lineage harvester configuration
file for custom technical lineage is set to true,
the system data object is used to stitch to the
System asset in Data Catalog. If the
useCollibraSystemName property is set to
false, the system data object is not used for
stitching.

mapping Yes

Simple custom
technical lineage
only

The mapping name. This property specifies a name for the
transformation code.

lineage section properties

ccclvii

Properties Required Description

source_code Yes

Simple custom
technical lineage
only

The transformation code, which determines how the technical
lineage is constructed.

The transformation code can be a descriptive string or a
SQL statement that manipulates data.

mapping_ref No

Advanced
custom technical
lineage only

This property contains the name of the mapping reference to
the transformation code in source code files. This property
also contains the position and length of the transformation
code to be highlighted in the technical lineage graph.

source_code No

Advanced
custom technical
lineage only

The name of the source code file that contains the
transformation code. The transformation code can be a
SQL statement, code that manipulates data or a descriptive
string.

The source code file must be in the same directory as the
lineage.json file.

mapping No

Advanced
custom technical
lineage only

The unique descriptor of a part of transformation code in a
source code file that is in the same directory as the
lineage.json file.

A source code file can contain different parts of
transformation code that represent different data flows. This
property indicates the referenced data flow.

The value of this property is the same as the value of the

mapping_refs property in the codebase_files

section.

codebase_pos No

Advanced
custom technical
lineage only

The positions indicate a string of the transformation code in a
source code file to be highlighted in the bottom part of the
Collibra technical lineage graph. The whole lines that include
the transformation code are highlighted.

The string must be a subset of the string of the transformation

code that is defined by the pos_start and pos_len

properties of the mapping_refs property in the

codebase_files section.

ccclviii

Properties Required Description

pos_start No

Advanced
custom technical
lineage only

The start position of the string of the transformation code to be
highlighted. The start position is in characters, not bytes.

The value must be equal to or greater than the value of the

pos_start property of the mapping_refs property in

the codebase_files section.

pos_len No

Advanced
custom technical
lineage only

The length of the string of the transformation code to be
highlighted. The length is in characters, not bytes.

Specify a value in the following range:

l Equal to or greater than 1.
l Less than or equal to the length of the string that is
defined by the pos_len property of the mapping_

refs property in the the codebase_files sec-

tion.

For example, if you specify "pos_start": 10 and

"pos_len": 160 in the codebase_files section,

specify a value for this property in the range of 0 - 149.

Properties Description

<source code path> The file path to source code files that contain the transformation code. The
transformation code can be a SQL statement or code that manipulates
data.

The source code file must be in the same directory as the lineage.json
file.

mapping_refs The mapping of the transformation code and the position of the
transformation code that is shown in the bottom part of the technical
lineage graph.

This property defines a string of the transformation code in the source
code file to be shown in the technical lineage graph. The string must

include the string that is defined by the pos_start and pos_len

properties of the mapping property in the lineage section.

codebase_files section properties

ccclix

#the2

Properties Description

<mapping> The unique descriptor of a part of transformation code in a source code file that is
in the same directory as the lineage.json file.

A source code file can contain different parts of transformation code that represent
different data flows. This property indicates the referenced data flow.

The value must match the value of themapping property in thelineage
section.

pos_start The start position of the string of the transformation code. The start
position is in characters, not bytes.

Specify a value in the following range:

l Equal to or greater than 0.
l Less than or equal to the value of the pos_start property in

the mapping property in the lineage section.

pos_len The length of the string of the transformation code. The length is in
characters, not bytes.

Specify a value in the following range:

l Greater than or equal to 1.
l Less than or equal to the length of the source code file minus
the start position.

For example, if you specify "pos_start": 10 and the file length is

160 characters, specify a value for this property in the range of 1 - 150.

Programming considerations
Currently, there is no native support for indirect and table-level lineages. As a workaround,
you can specify "type": "column" and "name": "*" for the leaves property to create
a table level or indirect technical lineage. With this specification, the indirect technical
lineage is shown as a solid line instead of a dashed line in the Collibra technical lineage
graph, and is always shown, regardless of whether or not the Show indirect dependencies
option is enable or disabled.

ccclx

#the2
#the2

Example
For sample JSON files that define a simple custom technical lineage and an advanced
custom technical lineage, see Custom technical lineage JSON file example.

Custom technical lineage JSON file examples

This topic shows example lineage.json files that create a simple custom technical lineage
and an advanced custom technical lineage.

Each example can be used to generate technical lineage graphs in Collibra to represent
the IOT_JSON and IOT_DEVICES_PER_COUNTRY tables with the following columns:

IOT_JSON IOT_DEVICES_PER_COUNTRY

CCA3 COUNTRY

DEVICE_ID NUMBER_DEVICES

Sample JSON file for a simple custom
technical lineage
In the following example, the tree section defines the IOT_JSON and IOT_DEVICES_
PER_COUNTRY tables and columns. The tables are in a schema named COLLIBRA. The
COLLIBRA schema is in a database named COLLIBRA and a system named Databricks.

Important If you define the System asset in your lineage.json file, the
useCollibraSystemName property in your lineage harvester configuration file
must be set to true; otherwise, relations will not be created between the relevant
assets in Collibra.

To show the transformation code at the bottom of the Collibratechnical lineage graph that
uses a simple custom technical lineage, specify the mapping and source_code
properties in the lineages section.

{
"version": "1.0",

ccclxi

"tree": [
{

"name": "Databricks",
"type": "system",

"children": [
{
"name": "COLLIBRA",
"type": "database",
"children": [

{
"name": "COLLIBRA",
"type": "schema",
"children": [

{
"name": "IOT_JSON",
"type": "table",
"leaves": [

{
"name": "CCA3",
"type": "column"

},
{

"name": "DEVICE_ID",
"type": "column"

}
]
},
{

"name": "IOT_DEVICES_PER_COUNTRY",
"type": "table",
"leaves": [

{
"name": "COUNTRY",
"type": "column"

},
{

"name": "NUMBER_DEVICES",
"type": "column"

}
]

}
]

}
]

}
]

}
],
"lineages": [

{
"src_path": [

{
"system": "Databricks"

ccclxii

},
{

"database": "COLLIBRA"
},

{
"schema": "COLLIBRA"

},
{

"table": "IOT_JSON"
},
{

"column": "CCA3"
}

],
"trg_path": [

{
"system": "Databricks"

},
{

"database": "COLLIBRA"
},
{

"schema": "COLLIBRA"
},
{

"table": "IOT_DEVICES_PER_COUNTRY"
},
{

"column": "COUNTRY"
}

],
"mapping": "dev_no_bat_per_country_view",
"source_code": "INSERT INTO ... SELECT CCA3 AS COUNTRY...FROM

IOT_JSON"
}

]
}

Sample JSON file for an advanced custom
technical lineage
In the following example, the tree section defines the IOT_JSON and IOT_DEVICES_
PER_COUNTRY tables and columns. The tables are in a schema named COLLIBRA. The
COLLIBRA schema is in a database named COLLIBRA and a system named Databricks.If
you define the System asset in your lineage.json file, the useCollibraSystemName
property in your lineage harvester configuration file must be set to true; otherwise,
relations will not be created between the relevant assets in Collibra.

ccclxiii

{
"version": "1.0",
"tree": [

{
"name": "Databricks",

"type": "system",
"children": [

{
"name": "COLLIBRA",
"type": "database",
"children": [

{
"name": "COLLIBRA",
"type": "schema",
"children": [

{
"name": "IOT_JSON",
"type": "table",
"leaves": [

{
"name": "CCA3",

"type": "column"
},
{

"name": "DEVICE_ID",
"type": "column"

}
]

},
{

"name": "IOT_DEVICES_PER_COUNTRY",
"type": "table",
"leaves": [

{
"name": "COUNTRY",
"type": "column"

},
{

"name": "NUMBER_DEVICES",
"type": "column"

}
]

}
]

}
]

}
]

}
],
"lineages": [

{
"src_path": [

ccclxiv

{
"system": "Databricks"

},
{

"database": "COLLIBRA"
},
{

"schema": "COLLIBRA"
},
{

"table": "IOT_JSON"
},
{

"column": "CCA3"
}

],
"trg_path": [

{
"system": "Databricks"

},
{

"database": "COLLIBRA"
},
{

"schema": "COLLIBRA"
},
{

"table": "IOT_DEVICES_PER_COUNTRY"
},
{

"column": "COUNTRY"
}

],
"mapping_ref":

{
"source_code": "transforms.sql",
"mapping": "dev_no_bat_per_country_view",
"codebase_pos": [

{
"pos_start": 71, "pos_len": 69

}
]

}
}

],
"codebase_files":

{
"transforms.sql":

{
"mapping_refs":

{
"dev_no_bat_per_country_view":

{

ccclxv

"pos_start": 0,
"pos_len": 246

}
}

}
}

}

Sample technical lineage graphs
Both example lineage.json files generate the following technical lineage graph, which
contains 2 nodes and 1 edge.

The following technical lineage graph is generated by using the example lineage.json file
for an advanced custom technical lineage. The bottom part shows the transformation code
that generated the data flow.

In the lineages section, the pos_start property is specified with 71 and the pos_len
property is specified with 69. The specifications indicate that the transformation code that
starts at position 71 and the following 69 characters are highlighted in blue. Line 2 in the
technical lineage graph contains the highlighted transformation code.

ccclxvi

Configure the lineage harvester for a custom technical lineage

To create a custom technical lineage, create a JSON file that defines the custom technical
lineage, refer to the JSON file in the lineage harvester configuration file, and run the
lineage harvester.

Steps

1. Start the lineage harvester to create an empty lineage harvester configuration file by
entering the following command:

o Windows: .\bin\lineage-harvester.bat

o For other operating systems: chmod +x bin/lineage-harvester and then
bin/lineage-harvester

ccclxvii

» An empty configuration file is created in the config folder.

2. Specify the lineage harvester configuration file and save the configuration file. For
details about the configuration file, see Lineage harvester configuration file for the
custom technical lineage.

What's next

Run the lineage harvester.

Lineage harvester configuration file for the custom technical lineage

The lineage harvester uses this lineage harvester configuration file to extract data from the
metadata of the data sources that you want to process.

When you run the lineage harvester for the first time, it creates an empty lineage harvester
configuration file. You can manually add properties and values to the configuration file.

If you want to create the technical lineage for multiple data sources, use the configuration
file generator to create an example configuration file with different data sources, and
update the example to match your data source information.

Requirements and restrictions
l In the configuration file, you must use UTF-8 or ISO-8859-1 characters, with the
exception of SQL files, which can only be UTF-8 encoded.

l Comments in the lineage harvester configuration file are not supported.
l Technical lineage supports the username and password authentication method for
the custom technical lineage.

ccclxviii

ta_run_lineage_harvester_custom_lineage.htm

Format
{

"general" : {
"catalog" : {

"url" : "",
"username" : "",

},
"useCollibraSystemName" : false|ture

},
"sources" : [{

"type" : "ExternalDirectory",
"id" : "",
"dirType" : "custom-lineage",
"collibraSystemName" : "",
"path" : "",
"deleteRawMetadataAfterProcessing": false|true

}]
}

Properties Description

general Describes the connection between Collibra Data Lineage
and Data Catalog.

catalog Contains information that is necessary to connect to Data
Catalog.

Note Versions of the lineage harvester older than
1.1.2 show collibra instead of catalog.

url The URL of your Collibra environment.

Specify the public URL of your Collibra environment. Other
URLs are not accepted.

username The username that you use to sign in Collibra.

ccclxix

Properties Description

useCollibraSystemName Indicates whether you want to use the system or server
name of a data source to match to the System asset you
created when you prepared the physical data layer. The
names are case-sensitive. This is useful when you have
multiple databases with the same name.

Specify one of the following values:

false

The lineage harvester does not stitch the sys-
tem or server name of your data source to the
System asset in Data Catalog.
This is the default value.

true

The lineage harvester reads the system or
server names that you specify for the system
data object in the tree and lineage sections

in the custom technical lineage JSON file and
stitches the names to the System assets in Data
Catalog.
Only specify this value when you have multiple
databases with the same name.

sources Contains the required information to retrieve a custom
lineage. Use this property to locate the JSON file that
defines the custom technical lineage.

If you want to create the technical lineage for multiple data

sources, create a sources section for each data source.

type The kind of data source. The value must be

ExternalDirectory.

id The unique ID of your custom technical lineage. This
property identifies the metadata that the lineage harvester
processes.

Specify this property with an unique string, for example,

MyCustomLineage.

ccclxx

Properties Description

dirType The type of external directory. The value is custom-

lineage.

collibraSystemName The lineage harvester ignores this property for custom
technical lineage.
To use the system or server name of your data source to
match the System asset in Data Catalog, specify the system

data object in the tree and lineage sections in the

custom technical lineage JSON file.

path The full path to the folder of the custom technical lineage

JSON file, for example C:\path\to\custom-

lineage\dir.

There must be only one JSON file that defines the lineage,
and the JSON file must be named lineage.json. You can,
however, add other files in the harvested directory and
subdirectories and refer to those files from within the JSON
file.

deleteRawMetadataAfterProcessing The lineage harvester harvests raw metadata from specified
data sources and uploads it in a ZIP file to a Collibra Data
Lineage service instance, for processing.

You can use this optional property to specify whether or not
the raw metadata should be deleted from Collibra Data
Lineage service instance after the metadata that is targeted
for ingestion in Data Catalog is processed.

The default value is false.

If the property is set to true, the raw source metadata is

deleted after processing. If set to false, it is stored in the

Collibra infrastructure.

Note Setting this property to true can negatively
impact performance.

ccclxxi

Example
{

"general" : {
"catalog" : {

"url" : "https://companydomain.collibra.com",
"username" : "my-Collibra-username",

},
"useCollibraSystemName" : false

},
"sources" : [{

"id": "MyCustomLineage",
"type": "ExternalDirectory",
"dirType": "custom-lineage",
"path”: “/path/to/custom-lineage/dir/",
"collibraSystemName": "MySystemName"
}
]

}

Working with BI tools
This section addresses BI tool-speicifc integration concepts and tasks for Collibra Admins.

BI tool ingestion workflow
You run the lineage harvester to start the BI tool ingestion workflow. When you initiate the
integration, each workflow component performs the following actions:

ccclxxii

ccclxxiii

ccclxxiv

Prepare a domain for BI asset ingestion
Before you can ingest BI metadata, you have to designate a domain for storing the new BI
assets. You can choose an existing domain or create one or more new domains. You then
have to include the domain reference ID (or IDs) in the appropriate configuration file.

Important The amount of domains into which you ingest assets differs according to
your BI tool:

l Looker: You can designate one domain in the lineage harvester configuration
file. However, you can also set up a filter in the <source ID> configuration file,
to ingest into different domains.

l MicroStrategy: You can ingest into one domain.
l Power BI: You can ingest into one or more domains.
l SSRS-PBRS: You can ingest into one domain.
l Tableau: You can ingest into one or more domains.

Prerequisites

l You have a resource role with the Domain > Add resource permission.

Steps

1. On the main toolbar, click .

» The Create dialog box appears.
2. Click the Organization tab.
3. Click a domain type from the list.

If you clicked the wrong domain type here, you can change it in the Type field in the
next screen.
» The Create Domain dialog box appears.

4. Enter the required information.

Field Description

Type The domain type of the domain you are creating. In this case, you need to select
BI Catalog.

ccclxxv

to_domain-types.htm

Field Description

Community The community under which the domain will be located.

Name The name of the new domain or domains.

Tip
You can create multiple domains in one go.
To do this, press Enter after typing a value and then type the next.
Domain names have to be unique in their parent community. If you type a
name that already exists, it will appear in strike-through style.

5. Click Create.
6. Open your domain. If you created multiple domains, open each of them in turn.
7. Copy the reference ID of each domain you created.

Tip If you go to your domain, you can find the domain ID in the URL. The URL
looks like: https://<yourcollibrainstance>/domain/22258f64-40b6-4b16-9c08-
c95f8ec0da26?view=00000000-0000-0000-0000-000000040001. In this
example, the domain ID is in bold.

8. Paste the domain reference ID (or IDs) in the appropriate configuration file, depend-
ing on whether you want to ingest Tableau assets in a single domain or multiple
domains.
For complete information on which properties and which configuration files to use,
see the domainId property description in the Prepare the lineage harvester con-
figuration file topic for the relevant BI tool.

What's next?

Prepare the Data Catalog physical data layer.

Working with Tableau
This section addresses tasks and concepts that can be of interest to Collibra Admins who
are working with Tableau.

ccclxxvi

co_communities.htm

Tableau supported data sources

Tableau is business intelligence software that can integrate with various data sources.
When you ingest Tableau metadata, Collibra Data Lineage tries to automatically stitch the
metadata to data sources registered in Data Catalog. It also creates a technical lineage
that shows where metadata is used and how it transforms.

The following table shows the supported data sources in Tableau that have been tested,
and whether or not technical lineage and stitching is supported for the data source. We
cannot guarantee that stitching works as expected for other data sources or versions.

Note
l If you use custom SQL that is not supported by the Tableau metadata API, the
technical lineage might not be complete. For complete information, see the
Tableau documentation on Tableau Catalog support for custom SQL and
Tableau Lineage and custom SQL connections.

l If you use stored procedures, lineage is shown between the Tableau Data
Source and the Tableau Worksheet, but the database information is missing,
so stitching cannot be achieved.

Tip For stitching, you must correctly prepare the Data Catalog physical data layer.

Data source Version Support for technical
lineage

Support for stitching

Amazon Redshift 1.2.34.1058 and newer Yes Yes

Azure SQL server Newest version Yes Yes

Azure SQL Data
Warehouse

Newest version Yes Yes

Azure Synapse Analytics Newest version Yes Yes

Dremio 20.0.0 Yes Yes

Google BigQuery Newest version Yes Yes

ccclxxvii

https://help.tableau.com/current/pro/desktop/en-us/customsql.htm#tableau-catalog-support-for-custom-sql
https://help.tableau.com/current/online/en-us/dm_lineage.htm#lineage-and-custom-sql-connections

Data source Version Support for technical
lineage

Support for stitching

Greenplum 6.10 and newer Yes Yes

HiveQL (SQL-like
statements)

2.3.5 and newer Yes Yes

IBM DB2 11.5 and newer Yes Yes

Oracle 11g, 12c and newer Yes Yes

PostgreSQL 9.4, 9.5 and newer Yes Yes

Microsoft SQL Server 2014, 2016 and newer Yes Yes

MySQL 5.7, 8 and newer Yes Yes

Netezza 7.2.1.0 and newer Yes Yes

SAP HANA 2.00.40 and newer Yes Yes

Snowflake Newest version Yes Yes

Spark SQL 2.4.3 and newer Yes Yes

Sybase Adaptive Server
Enterprise

16.0 SP02 and newer Yes Yes

Teradata 15.0, 16.20.07.01 and
newer

Yes Yes

Test your connectivity with the Tableau server

Before you run the lineage harvester, you need to test your connectivity with the Tableau
server.

Connectivity requires authentication. The user/token that you intend to use to ingest
Tableau assets must be able to authenticate to your Tableau APIs via the command line,
from the server on which you intend to install and run the lineage harvester.

ccclxxviii

Warning As of October 2022, Tableau is enforcing multi-factor authentication for
Tableau Cloud Admin users. However, the lineage harvester doesn’t support multi-
factor authentication. Therefore, Tableau Cloud users with an Admin role must use
token-based authentication. This does not affect Tableau Server users or Tableau
Cloud users with an Explorer role.

To ensure that you can authenticate and connect to the Tableau server, try the following
procedures.

Make the signin API call using a cURL command

1. Create a JSON file called "signin.json".
The file should contain the following:

o For username/password authentication:

{
"credentials": {

"name": "YOUR_USER",
"password": "YOUR_PASSWORD",
"site": {

"contentUrl": "YOUR_SITE_ID"
}

}
}

o For personal token-based authentication:

{
"credentials": {

"personalAccessTokenName": "YOUR_TOKEN_NAME",
"personalAccessTokenSecret": "YOUR_TOKEN_SECRET",
"site": {

"contentUrl": "YOUR_SITE_ID"
}

}
}

2. Test this on your machine by running the following command:
curl "https://YOUR_TABLEAU_URL/api/3.7/auth/signin" -H "Content-Type: applic-
ation/json" -X POST -d@signin.json

ccclxxix

Tip To test on a Windows machine, you need to:
a. Download and install the cURL Command-Line Tool.
b. In Windows, click Start > Run, and then enter cmd in the Run dialog

box.
c. Run the following command:

curl "https://YOUR_TABLEAU_URL/api/3.7/auth/signin" -H "Content-
Type: application/json" -X POST -d@signin.json

Check the login request that the lineage harvester sends to the Tableau
server

1. Run the lineage harvester with the following parameters:

bin/lineage-harvester load-sources -Dakka.http.client.log-

unencrypted-network-bytes=1024 -Dakka.loglevel=DEBUG

This generates many logs. In the log file, search for “signin”. The entry for “signin” will
resemble the following log snippet, in which the login request is shown between curly
brackets "{}":

[DEBUG] [11/08/2021 14:03:18.411] [default-akka.act-
or.default-dispatcher-4] [akka.stream.Log(akka://de-
fault/system/StreamSupervisor-1)] [client-plain-text ToNet
] Element: SendBytes ByteString(375 bytes)
50 4F 53 54 20 2F 61 70 69 2F 33 2E 37 2F 61 75 | POST /ap-
i/3.7/au
74 68 2F 73 69 67 6E 69 6E 20 48 54 54 50 2F 31 |
th/signin HTTP/1

2. Verify that the request is the same as the one you used in the signin.json file.

Tableau hostname, schema, and system name mapping

To achieve end-to-end lineage and stitching, Collibra Data Lineage must match the full
names of data objects in a technical lineage and the full names of their corresponding
assets in Data Catalog. However, there are several situations that can impede full-name
matching. In such cases, you can include a hostnameMapping section in your Tableau

ccclxxx

https://www.oracle.com/webfolder/technetwork/tutorials/obe/cloud/objectstorage/restrict_rw_accs_cntainers_REST_API/files/installing_curl_command_line_tool_on_windows.html

<source ID> configuration file, to map the database, schema or system names that were
returned by the Tableau APIs to the actual names of the assets in Data Catalog.

Note This feature has been validated by several customers. It is in beta, however,
because it represents a significant change in your Tableau <source ID>
configuration file. The beta period gives you time to adopt the new feature, while we
gather more feedback about its functionality.

Tip "Mapping" means changing the full name of data objects as they appear in a
technical lineage, so that they match the full names of their corresponding assets in
Data Catalog.

The following example scenarios can impede full-name matching:

l Tableau can't derive the schema name. In this case, the schema name in the tech-
nical lineage is DEFAULT.

l You have schema-less external data sources, such as HiveQL, MySQL or Teradata.
In this case, the database name in the technical lineage is also the schema name.

l You have a data access layer between Tableau and your external data source. In
this case, Tableau might incorrectly interpret the data access layer as the database
name, and the data source as the schema.

l You have data sources that are created based on tables from other data sources in
Tableau. These data sources do not have schemas.

l The Tableau APIs returned a technical database or server name that is different than
the real name of the database or server.

Important
l This section replaces the following deprecated properties, and should not be
used in combination with either of them:

o The databaseMapping property.
o The databases sub-section of the collibraSystemNames section.

l If you use the hostnameMapping section, you can still use the
collibraSystemName property in conjunction with the files, connectors
or cloudfiles sub-sections.

For descriptions of these properties, go to the Tableau section in the Prepare a
<source ID> configuration file topic.

ccclxxxi

Example configurations

l The following configuration:
o Changes the found database name "Test" to "CData".
o Changes the found schema name “DEFAULT” to “Jan_1_2022”.
o Adds the Collibra system name "TV_testing".

Important The system name must match the name you specified for the
id property in the lineage harvester configuration file, including for case-
sensitivity.

"hostnameMapping": {
"found_dbname=Test;found_hostname=*;found_schem-

a=DEFAULT": {
"dbname": "CData",
"schema": "Jan_1_2022",
"dialect": "spark",
"collibraSystemName": "TV_testing"
}

}

l The following configuration:
o For all found databases on the host "abc.net", changes their names to "CData".
o Changes the found schema name “DEFAULT” to “Jan_1_2022”.

"hostnameMapping": {
"found_dbname=*;found_hostname=abc.net;found_schem-

a=DEFAULT": {
"dbname": "CData",
"schema": "Jan_1_2022",
"dialect": "spark",
}

}

l The following configuration:
o Changes the found database name "Test" to "CData" .
o Changes the found schema name “DEFAULT” to “Jan_1_2022”.

ccclxxxii

"hostnameMapping": {
"found_dbname=Test;found_hostname=*;found_schem-

a=DEFAULT": {
"dbname": "CData",
"schema": "Jan_1_2022",
"dialect": "spark",
}

}

l The following configuration:
o Changes the found database name "Test" to "CData".

"hostnameMapping": {
"found_dbname=Test;found_hostname=*;found_schem-

a=DEFAULT": {
"dbname": "CData",
}

}

Migrating Tableau assets to the new Tableau operating model

A key feature of the Collibra Data Intelligence Cloud 2022.02 release was the ability to
ingest Tableau metadata in Collibra Data Catalog and synchronize the metadata using the
lineage harvester. However, this new integration method was only available to customers
who did not need to migrate existing Tableau assets to the new operating model. A
migration script now eliminates that limitation.

In this section, we provide an overview of:

l How to integrate Tableau metadata via the lineage harvester.
l How to use the lineage harvester to migrate your existing Tableau assets to the new
operating model.

About the Tableau migration

This section describes the terminology and methodology for migrating your existing
Tableau assets to the new Tableau operating model.

ccclxxxiii

Terminology
Term Description

Tableau integration v1 The process of integrating and synchronizing Tableau metadata via the Data
Catalog UI, including:

l The Tableau assets that were created in the process.
l Any custom asset types, attribute types and relation types.
l Any customizations to the Tableau asset types.
l Any customizations to your Tableau assets, for example added attrib-
utes and relations.

l Any tags that you added to your Tableau assets.
l The specific Tableau ingestion results, which differ from the v2 inges-
tion results.

Tableau integration v2 The process of integrating and synchronizing Tableau metadata via the lineage
harvester, including:

l The Tableau assets that were created in the process.
l The specific Tableau ingestion results, which differ from the v1 inges-
tion results.

Migration script A specific set of lineage harvester commands used to migrate your custom asset
types, attribute types and relation types that were created as part of Tableau
integration v1.

Note You need lineage harvester version 2022.03.0-5 or newer. We
recommend that you use the newest lineage harvester.

Methodology
The following is our methodology for migrating Tableau integration v1 metadata to the new
operating model. For greater detail see Overview: Tableau integration v2 and migration.

ccclxxxiv

Note The purpose of this document is to guide you through the migration of assets
that were created via step 1 in the table below. That step is included here merely to
present the complete context, from ingesting assets via Tableau integration v1,
through migration.

No. Step Details

1 Integrate and
synchronize Tableau
metadata via Tableau
integration v1.

Over time, you have likely customized the Tableau asset types, created
custom attribute types and relation types, and added attributes and
relations to your Tableau v1 assets.

When you switch to the harvester integration, you want to ensure that you
won't lose any of those customizations. All manually created asset types,
attribute types and relation types will be migrated.

2 Integrate the same
Tableau metadata, but
this time via Tableau
integration v2.

After successful integration, you will have:

l A single BI Catalog domain in Collibra with custom Tableau
integration v1 assets and their custom attributes and relations.

l A single BI Catalog domain in Collibra with Tableau integration
v2 assets.

Important The new Tableau operating model is only
available in Collibra versions 2021.10 and newer.

ccclxxxv

No. Step Details

3 Run the migration
script.

The full name of each Tableau integration v1 asset is compared to the full
name of the same assets from the Tableau integration v2. When the names
match, all of the custom characteristics of the v1 assets are saved to the
respective v2 assets.

Assets of custom v1 asset types are recreated in the specified domain.

Specifically:

l The following elements are migrated:
o Your custom v1 asset types, attribute types and relation types.
o All assets of your custom v1 asset types.
o The custom attributes and relations of your custom v1 assets.
o Any tags that you added to your v1 assets.

l The following elements are ignored during the migration:
o All assets of out-of-the-box v1 asset types:

n Their custom attributes and relations, however, are migrated and
saved to their respective v2 assets.

n With the exception of Tableau Data Entity, Tableau Report
Attribute and Tableau View assets, which are also ignored, but
so too are the attributes and relations of such assets.

o Any attribute types and relation types that are included in the
operating model.

4 Verify the migration
results.

Compare your Tableau integration v2 assets to the respective Tableau
integration v1 assets. Look to see that the metadata that you manually
added to your integration v1 assets has been added to your integration v2
assets.

5 Delete your Tableau
integration v1 assets
and custom assets.

If you've reviewed the migration results and everything looks fine, you can
delete your Tableau integration v1 assets and any assets of custom asset
types.

Overview: Tableau integration v2 and migration

The Tableau integration v2 enables you to harvest Tableau metadata and create new
Tableau assets in Data Catalog. Collibra Data Intelligence Cloud analyzes and processes
the metadata and presents it as specific asset types, retaining their original names.

ccclxxxvi

Steps
The following table shows the steps and prerequisites required to ingest metadata in
Collibra via lineage harvester (Tableau integration v2) and run the migration script.

Note
l This overview assumes that you have already ingested Tableau assets via
Tableau integration v1.

l In the commands that you enter to run the migration, you need to specify
which custom asset types, attribute types and relation types you want to
migrate.

Step What? Description Prerequisites

1 Set up
Tableau.

Before you start the Tableau integration in Data
Catalog, make sure that the lineage harvester can
reach the Tableau metadata. Perform these tasks
before you start the actual Tableau ingestion
process.

Warning Because these tasks are
performed outside of Collibra, it is
possible that the content changes without
us knowing. We strongly recommend that
you carefully read the source
documentation.

l You have a Tableau
subscription.

2 Create a new
domain.

Before you can ingest Tableau metadata, you
have to create a new domain or choose an
existing domain to store the new Tableau assets.

Warning If you are using Collibra Data
Intelligence Cloud 2021.11 or older, you
have to add all Tableau attributes in the
operating model to a scope and create a
scoped assignment before you ingest
Tableau via the lineage harvester. For
complete information and step-by-step
instruction, see Tableau general
troubleshooting.

You have a resource role with
the following resource
permissions:

l Domain: Add

ccclxxxvii

Step What? Description Prerequisites

3 Prepare the
physical data
layer.

You prepare Data Catalog's physical data layer to
enable Data Catalog to automatically stitch the
Tableau assets to existing assets in Data Catalog.

l You have a global role
with the Catalog global
permission, for
example, Catalog
Author.

l You have set up the
JDBC driver of your
source data, for
example Snowflake.

l You have a resource
role with the following
resource permissions
on the Schema com-
munity:
o Asset > add
o Attribute > add
o Domain > add
o Attachment > add

l You have the per-
missions to retrieve the
metadata of the fol-
lowing database com-
ponents through the
JDBC Driver Database
Metadata methods:
o Schemas
o Tables
o Columns

4 Download and
install the
lineage
harvester

You use the lineage harvester to trigger the
creation of Tableau assets, their relations and a
technical lineage in Data Catalog.

You can download the lineage harvester from the
Collibra Product Resource Downloads page.

l Your environment
meets the system
requirements to install
and use the lineage har-
vester.

ccclxxxviii

ta_prepare-physical-data-layer.htm
ta_prepare-physical-data-layer.htm
ta_prepare-physical-data-layer.htm
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/downloads/#techlineage
https://productresources.collibra.com/downloads/#techlineage

Step What? Description Prerequisites

5 Prepare the
lineage
harvester
configuration
file and run the
lineage
harvester.

You create a lineage harvester configuration file
with Tableau connection information and run the
lineage harvester to import the results of the
Tableau integration and the technical lineage for
Tableau into Data Catalog.

As a result, you now have a duplicate of your
Tableau metadata in Collibra.

l You have downloaded
the lineage harvester
version 2022.03 or
newer.

l Your environment
meets the system
requirements to install
and run the lineage har-
vester.

l You have a global role
with the Catalog global
permission, for
example, Catalog
Author.

l You have a global role
with the Technical lin-
eage global
permission.

l You have a global role
with the Data Ste-
wardship Manager
global permission.

l A resource role with
the following resource
permission on the
community level in
which you created the
BI Data Catalog
domain:
o Asset: add
o Attribute: add
o Domain: add
o Attachment: add

ccclxxxix

https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0642
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0632
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0632

Step What? Description Prerequisites

6 Run the
migration
script

The migration script is triggered by a lineage
harvester command. You then use arguments to
migrate your customized asset types and custom
attribute types and relation types.

Note You need lineage harvester version
2022.03.0-5 or newer. We recommend
that you use the newest lineage harvester.

Same prerequisites as for
the previous step.

7 Verify the
migration
results

Compare your Tableau integration v2 assets to
the respective Tableau integration v1 assets. Look
to see that the metadata that you manually added
to your integration v1 assets has been added to
your integration v2 assets.

None

8 Delete your
Tableau
integration v1
metadata.

If you've reviewed the migration results and
everything looks fine, you can delete your Tableau
integration v1 assets and any assets of custom
asset types.

l You have a global role
with the Catalog global
permission, for example,
Catalog Author.

l You have a resource role
with the following
resource permission on
the community level in
which you created the
BI Data Catalog domain:
o Asset: Remove
o Domain: Remove

Naming convention
When you synchronize Tableau, Collibra follows a strict naming convention for the names
of the new assets. Each asset has a display name and full name. The full name represents
the asset path from asset to the database it belongs to. You can freely edit the display
name. However, you should never edit the full name, because Data Catalog needs it for a
successful migration. Changing the full name may also break the synchronization process.

cccxc

https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0642
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0632

Warning We highly recommend that you not edit the full names of any Tableau
assets. Doing so will likely lead to errors during the migration and synchronization
process.

Run the migration script

The migration script is triggered by a lineage harvester command. You then use
arguments to migrate your customized asset types and custom attribute types and relation
types.

Prerequisites
l You have Collibra Data Intelligence Cloud 2022.01 or newer.
l You have downloaded lineage harvester version 2022.03 or newer and you have the
necessary system requirements to run it.

l You have a global role that has the Manage all resources global permission.
l You have a global role with the Catalog global permission, for example, Catalog
Author.

l You have a global role with the Technical lineage global permission.
l You have a global role with the Data Stewardship Manager global permission.
l You have a resource role with the following resource permission on the community
level in which you created the BI Data Catalog domain:

o Asset: Add
o Attribute: Add
o Domain: Add
o Attachment: Add

l You have tested your connectivity with the Tableau server.

Steps
1. Run the following command to start the lineage harvester and trigger the migration:

o Windows: .\bin\lineage-harvester migrate-tableau <v1_tableau_

server_asset_id> <v2_source_id>

cccxci

https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0642
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0632

o for other operating systems: ./bin/lineage-harvester migrate-

tableau <v1_tableau_server_asset_id> <v2_source_id>

2. Use the following arguments to migrate:
o Customized asset types: -a <customAssetTypeId>
o Custom attribute types: -t <customAttributeTypeId>
o Custom relation types: -r <customRelationTypeId>

Tip You can migrate multiple asset types, attribute types and relation types
by repeating the relevant command. In the following example, two asset types
are migrated, one after the other, by repeating the -a command, followed by
the relevant ID of each asset type.

Example

./bin/lineage-harvester migrate-tableau 7cc9f692-bbe4-
467f-8ffb-f43545465fcf testtableau22 \

-a asd13io2-sda2-sdi2-jsd9-asdoi124io12 \
-a ard86co4-sea5-sc4r-hk39-kjsv9she3hs9 \
-t 3ffafa8e-029c-4d01-a3c9-1c36e43c2655 \
-r d0086c90-98e6-4782-b07a-40fcb43845a3

What's next?
l The following elements are migrated:

o Your custom v1 asset types, attribute types and relation types.
o All assets of your custom v1 asset types.
o The custom attributes and relations of your custom v1 assets.
o Any tags that you added to your v1 assets.

l The following elements are ignored during the migration:
o All assets of out-of-the-box v1 asset types:

n Their custom attributes and relations, however, are migrated and saved
to their respective v2 assets.

n With the exception of Tableau Data Entity, Tableau Report Attribute and
Tableau View assets, which are also ignored, but so too are the attributes
and relations of such assets.

cccxcii

o Any attribute types and relation types that are included in the operating model.

Tip You can check the progress of the migration in Activities.

To refresh the Tableau integration v2 metadata, you can run the lineage harvester again
using the full-sync command, or schedule jobs to run them automatically.

Soft delete of your Tableau integration v1 assets

If you've reviewed the migration results and everything looks fine, you can delete your
Tableau integration v1 assets and any assets of custom asset types. You can either
manually delete the assets or use a lineage harvester argument to perform a soft delete of
the assets. Technically speaking, the soft delete does not delete the assets from your
Collibra environment; rather, it changes the status of the assets to Obsolete. You can then
create an asset filter to view all assets with the status Obsolete, and then manually delete
them.

Prerequisites
l You have Collibra Data Intelligence Cloud 2022.01 or newer.
l You have downloaded lineage harvester version 2022.03 or newer and you have the
necessary system requirements to run it.

l You have a global role that has the Manage all resources global permission.
l You have a global role with the Catalog global permission, for example, Catalog
Author.

l You have a global role with the Technical lineage global permission.
l You have a global role with the Data Stewardship Manager global permission.
l You have a resource role with the following resource permission on the community
level in which you created the BI Data Catalog domain:

o Asset: Update Status

cccxciii

co_about-activities.htm
to_asset-filters.htm
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0642
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0632

Steps
1. Run the following command to start the lineage harvester and trigger the migration:

o Windows: .\bin\lineage-harvester migrate-tableau --delete

<v1_tableau_server_asset_id> <v2_source_id>
o for other operating systems: ./bin/lineage-harvester migrate-

tableau --delete <v1_tableau_server_asset_id> <v2_source_id>

Example

./bin/lineage-harvester migrate-tableau --delete 7cc9f692-
bbe4-467f-8ffb-f43545465fcf testtableau22

Tip You can check the progress of the migration in Activities.

Working with Power BI
This section addresses tasks and concepts that can be of interest to Collibra Admins who
are working with Power BI.

Supported data sources in Power BI

Power BI is business intelligence software that can integrate with various data sources.
When you ingest Power BI metadata, Collibra Data Lineage tries to automatically stitch
this metadata to data sources registered in Data Catalog. It also creates a technical
lineage that shows where metadata is used and how it transforms.

The following table shows the supported data source types in Power BI that have been
tested. If a data source is identified as certified, it means that the data source:

l Is ingested in Data Catalog as a Power BI Data Model asset.
l Is shown in the technical lineage and stitching is possible.

cccxciv

co_about-activities.htm

Tip When selecting your data sources in Power BI, the data source types under the
following tabs require the specified connection types:

l The Files tab refers to Parquet files. Connect via the URL to the files.
l All data source types under Database require a JDBC connection.
l For Power Platform, you need a live connection.
l The three data source types under the Azure tab require either a JDBC or
ODBC connection.

l All data source types under Other require an ODBC connection.

The connections types are mentioned in the following table, for each supported data
source type.

Important
l Although the following data sources have been tested extensively, there still
may be some issues caused by unsupported elements within the data source
or limitations in the Power BI integration process.

l Collibra Data Lineage can connect only to datasets that are hosted by Power
BI. It cannot connect to externally hosted datasets or models. For complete
information, consult Microsoft's Power BI documentation.

Power BI data source Connection type Certified ?

Amazon Redshift JDBC Yes

Apache Hive ODBC Yes

cccxcv

https://learn.microsoft.com/en-us/power-bi/connect-data/service-datasets-understand

Power BI data source Connection type Certified ?

Azure Analysis Services ODBC Yes

JDBC No

l Via import, technical lineage
is possible only from the data
set to the report. Stitching is
not supported.

l Via direct connection,
technical lineage and
stitching are not supported.

Azure Databricks JDBC, ODBC Yes

Collibra Data Lineage supports
the following functions:

l Databricks.Catalogs
l Databricks.Contents
l Databricks.Query

Note For
Databricks.Query,
the ingestion
success rate is
high, but it's not
100%.

Azure Synapse Analytics JDBC Yes

Dremio JDBC No

Dremio data sources are
ingested as Power BI Data
Model assets and shown in the
technical lineage, but stitching is
not possible.

Google BigQuery JDBC Yes

Impala ODBC Yes

cccxcvi

Power BI data source Connection type Certified ?

MySQL JDBC No

MySQL data sources are
ingested as Power BI Data
Model assets, but not shown in
the technical lineage and
stitching is not possible.

Netezza ODBC Yes

ODBC ODBC Yes

Important You need to
use a Power BI <source
ID> configuration file to
provide the true system
names of the ODBC
databases in Power BI.
For more information,
see Providing ODBC
database names in
Power BI.

Oracle JDBC, ODBC Yes

Note If you connect
via ODBC:

l Oracle Views are
supported.

l In most cases, you
need to use a
Power BI <source
ID> configuration
file for database
mapping, as the
database name
returned by the API
differs from the
true database
name.

cccxcvii

Power BI data source Connection type Certified ?

Parquet file URL to the files No

SAP HANA ODBC Yes

Snowflake JDBC Yes

SQL Server JDBC Yes

Sybase JDBC Yes

Power BI with measures only, no columns JDBC Yes

Power Platform > Power BI data set Live connection Yes

Important Supported
only if the data set is
from one of these
supported data sources.

Note We cannot guarantee that other data sources in Power BI can be stitched
successfully.

Power BI workspaces

Power BI workspaces represent the most used metadata in Power BI. It contains for
example reports and data sets. If you want a full ingestion, you have to make sure that the
lineage harvester can access all metadata in your Power BI workspaces. Consider the
following:

l Depending on the authentication type, you must have specific roles and permissions
to access the metadata in the Power BI workspaces.

l You can only fully ingest new Power BI workspaces. This means that classic work-
spaces and MyWorkspace in Power BI are not supported.

cccxcviii

https://docs.microsoft.com/en-us/power-bi/collaborate-share/service-new-workspaces

Tip Use the Power BI <source ID>_filter configuration file to filter on Power BI
workspaces.

Note To ingest Power BI dataflows:

l You need access to the Power BI environment in which the data flow is stored.
l The data set in the data flow must exist in a premium workspace.

Filtering Power BI workspaces

By default, the lineage harvester accesses the metadata of all Power BI workspaces. If you
don't use filtering, the metadata of all workspaces is uploaded to the Collibra Data Lineage
service instance and ingested in Data Catalog. Filtering allows you to process and ingest
only the metadata that matters most to you.

Inclusion and exclusion filters
You can use the following inclusion filters to ingest only the Power BI capacities and
workspaces you specify:

l capacityNames
l capacityIds

l workspaceNames

l workspaceIds

You can use the following exclusion filters to ingest all workspaces except for those you
specify:

l excludeWorkspaceNames
l excludeWorkspaceIds

cccxcix

Tip
l Wildcards are supported for the capacityNames, workspaceNames and
excludeWorkspaceNames properties.

l You can combine inclusion and exclusion filters in the same <source ID>
configuration file.
Show me an example
In this example, the metadata from all workspaces is uploaded to the Collibra
Data Lineage service instance. Then, the metadata in all of the workspaces in
CapacityABC, except for Workspace1, is ingested in Data Catalog.

{
"filters":[

{
"domainId":"07d5d441-b9f8-4add-982f-d7a5d6ba06cc",
"description":"Domain for BICatalogJBTest1",
"capacityNames":["CapacityABC"],
"excludeWorkspaceNames":["Workspace1"]

}
]

}

l In the Power BI <source ID> configuration file, you can also specify the
domain (or domains) in which you want to ingest, to help structure your Power
BI assets in Collibra.

Two filtering methods
The filter properties that you use in your Power BI <source ID> configuration file determine
whether filtering is done by the lineage harvester or done on the Collibra Data Lineage
service instance. The following table highlights the advantages, limitations and
configuration considerations of the two methods.

cd

Filtering method Description

By the lineage
harvester

The lineage harvester accesses only the workspaces specified in your <source ID>
configuration file, and sends metadata from only those workspaces to the Collibra Data
Lineage service instance for processing and ingestion in Data Catalog.

Advantages

l Faster integration testing, as you can filter on a single workspace.
l Enhanced data security and privacy by excluding workspaces that contain
sensitive information. Metadata from workspaces that are filtered out by
the lineage harvester is not sent to the Collibra Data Lineage service
instance for processing.

l Improve processing times by excluding workspaces dedicated to, for
example, development and testing. This is especially beneficial for organ-
izations with more than 50,000 workspaces.

Limitations

l For this to work as described, you can only use the workspaceIds prop-

erty. None of the following properties can be included anywhere in your
<source ID> configuration file:
o capacityNames
o capacityIds
o workspaceNames
o excludeWorkspaceNames
o excludeWorkspaceIds

l You cannot use wildcards with the workspaceIds property.

Show me an example setup for the <source ID> configuration file

{
"filters":[

{
"domainId":"b5d02896-8a79-49a3-bab0-

12a7b37f45c6",
"description":"Any description, for your

internal use",
"workspaceIds":["ee23f25b-0ed9-490a-9cca-

8a0e8886173e", "8e86429d-f985-4a81-818d-
8e05ac256a74"]

}
]

}

cdi

Filtering method Description

On the Collibra
Data Lineage ser-
vice instance

The lineage harvester accesses all workspaces and filtering is carried only after
knowing the names and IDs of all workspaces and capacties. As a result, the raw
metadata is accessed by the lineage harvester, but only the filtered metadata is
processed on the Collibra Data Lineage service instance and ingested in Data Catalog.

Advantages

l Greater choice of filtering options. You can use any of the following prop-
erties:
o capacityNames
o capacityIds
o workspaceNames
o excludeWorkspaceNames
o excludeWorkspaceIds

l You can use wildcards with the following properties:
o capacityNames
o workspaceNames
o excludeWorkspaceNames

Limitations

l Longer processing times, especially if you have tens of thousands of work-
spaces.

l Although you can limit which workspaces are processed and ingested, you
can't limit which workspaces are uploaded to the Collibra Data Lineage ser-
vice instance. The raw metadata from all workspaces is uploaded.

Tip You can use the
deleteRawMetadataAfterProcessing property in your
lineage harvester configuration file, to automatically delete the
uploaded raw metadata that you don't want to ingest in Data
Catalog.

Show me an example setup for the <source ID> configuration file

{
"filters":[

{
"domainId":"07d5d441-b9f8-4add-982f-

d7a5d6ba06cc",

cdii

Filtering method Description

"decription":"Domain for BICatalogJBTest1",
"capacityNames":["CapacityABC"],
"excludeWorkspaceNames":["Workspace1"]

}
]

}

Note The metadata of inactive and personal workspaces is not harvested or
uploaded to the Collibra Data Lineage service instance. An inactive workspace is
one for which no reports or dashboards have been viewed in the past 60 days. My
workspace is the personal workspace for any Power BI customer to work with their
own, personal content.

Best practice: Filter on a capacity
You can filter on a capacity to ingest the metadata from all workspaces in that capacity.
Let's say, for example, that you have 50,000 workspaces but you only want to ingest
metadata from the workspaces related to a specific department in your organization. You
could specify each of the relevant workspaces in the configuration file, but that could be
tedious if there are lots of workspaces. Furthermore, if someone in your organization
creates a new workspace, it will have to be added to your configuration file. Instead, you
can filter on a capacity. Then, when a new workspace is created, ensure that it is added to
the department' s capacity and metadata from that workspace will be automatically
ingested, without having to update the configuration file.

Workspace states

On Power BI Workspace asset pages, you can include the attribute type State, to show the
state of ingested Power BI workspaces, for example Active, Orphaned or Deleted. To do
so, you have to edit the global assignment of the Power BI Workspace asset type and
assign the attribute type State.

For complete information on Power BI workspaces and possible states, see the Microsoft
Power BI documentation.

cdiii

ta_edit-assignment.htm
https://docs.microsoft.com/en-us/power-bi/admin/service-admin-portal#workspaces
https://docs.microsoft.com/en-us/power-bi/admin/service-admin-portal#workspaces

Tip If you only want to see Power BI workspaces that have the state Active:

1. Ensure that the attribute type State is assigned to the Power BI Workspace
asset type via the global assignment.

2. Go to the Global view, and then create an advance filter and filter by the
following clauses:
a. Asset type equals Power BI Workspace
b. Characteristic State equals Active.

Deleted workspaces
If you delete a Power BI workspace, the workspace is maintained for a 90-day grace
period, during which a Power BI administrator can restore the workspace. During the grace
period, the workspace has the state Deleted. When you ingest Power BI metadata in Data
Catalog, this deleted workspace is ingested.

When the grace period elapses, the state of the workspace becomes Removing, for a
short time, while it is being permanently removed. The state then becomes Not found. At
this point, as the workspace no longer exists in Power BI, the Power BI Workspace asset
in Collibra will also be deleted upon the next synchronization.

If a workspace becomes inactive, meaning no reports or dashboards have been viewed in
the past 60 days, it is excluded from the ingestion.

Why are deleted workspaces ingested?
Let's image that you ingest a Power BI workspace with the Active state and that over time,
you add comments, tags and characteristics to the asset in Collibra. Now let's imagine that
the workspace is deleted in Power BI and we do not ingest the deleted workspace. In this
case, the Power BI Workspace asset in Collibra is deleted upon the next synchronization.
But what if the Power BI administrator decides, during the 90-day grace period, to restore
the workspace in Power BI? Upon the next synchronization, a new Power BI Workspace
asset is created in Collibra, but all of the comments, tags and characteristics that were part
of the deleted asset are lost.

cdiv

co_global-view.htm
ta_create-advanced-filter.htm

By ingesting deleted Power BI workspaces, we safeguard against losing any of the
additional information on the Power BI Workspace asset, in case a Power BI administrator
decides to restore a workspace during the grace period.

Show DAX calculations on Power BI Column asset pages

Data Analysis Expressions (DAX) is a programming language that is used in Power BI for
creating calculated columns, measures and custom tables.

Power BI columns and tables that are derived from DAX are shown in the technical
lineage. However, the Collibra Data Lineage service instances are unable to parse DAX.
Therefore, stitching between calculated columns in the technical lineage and the
corresponding Power BI Column assets in Data Catalog is not possible.

You can, however, show DAX calculations for calculated columns and measures on Power
BI Column asset pages. To do so, you only have to ensure that the Calculation Rule
attribute type is part of the global assignment of the Power BI Column asset type.

Note All elements in the DAX, even comments for example, are included and
shown in the Calculation Rule attribute.

The following additional information on Power BI Column asset pages can also help you
interpret the lineage:

l If a calculated column is a measure, the Role in Report attribute has the value "Meas-
ure".

l The Technical Data Type attribute indicates the type of column, for example "String"
or "Number".

Add the Calculation Rule attribute type to the global assignment

To show DAX calculations, the Calculation Rule attribute type must be part of the global
assignment of the Power BI Column asset type. By default, it is not included.

Prerequisites
l You have a global role that has the System administration global permission.

cdv

ref_global-roles.htm
co_global-permissions.htm

Steps
1. Open the Power BI Column asset type.

a. On the main menu, click , and then click Settings.

» The Collibra settings page opens.
b. Click Operating Model.

» The operating model settings appear on the Asset types tab page.
c. In the overview of asset types, click Power BI Column.

» The Asset type editor opens.

2. In the tab pane, click Global assignment.

Tip If the Calculation Rule attribute type already exists in the table, you don't
have to do anything more. However, as described in step 6, you might want to
ensure that the Min. option is set to 1, to make the attribute type automatically
appear on the asset page.

3. Above the table, to the right, click Edit.
4. Above the table, to the right, click Add characteristic.

» The Add a Characteristic dialog box appears.
5. Search for and click Calculation Rule.

» The Calculation Rule attribute type appears at the bottom of the table.
6. If required, edit the minimum or maximum number of occurrences of the char-

acteristic.

Option Description

Min. The minimum number of occurrences of the characteristic.

Tip Set this option to 1, to make the attribute type automatically appear
on the asset page.

Max. The maximum number of occurrences that you can assign to an asset type.

Leave this option empty if you don't want a limit to the maximum number of
occurrences.

7. Above the table, to the right, click Save.

cdvi

to_collibra-settings.htm
to_operating-model-settings.htm

Soft delete of "Missing from source" assets
When you integrate Tableau, data objects in the data source are ingested as assets in
Data Catalog. But what if, during synchronization, some of the data objects can no longer
be found in the data source because they were moved or deleted? In that case, the status
of the corresponding assets of the missing data objects becomes "Missing from source".
We refer to this asset status evolution as a "soft delete". If you want, you can then run the
Delete Missing Assets workflow to permanently delete the assets, or manually delete
them.

Note If, for example, you remove the permissions to access a certain data object
and then run the lineage harvester, the status of the corresponding asset in Data
Catalog changes to “Missing from source”. If you then add back the permissions to
the data object and run the lineage harvester, the status of the asset will revert to
the status it had before "Missing from source".

Delete the "Missing from source" assets

The Delete Missing Assets workflow enables you to delete all assets with the status
"Missing from source". You can download the workflow file from the Collibra Developer
Portal and deploy it in your Collibra environment.

Important Be sure to review assets before you delete them, as they might contain
important information that will also be deleted.

Tip If you manually delete assets that are represented in a technical lineage, they
are still shown in the technical lineage. To delete the corresponding assets of
missing data objects and also delete the assets from the technical lineage, you have
to:

1. Run the lineage harvester, or wait for your scheduled synchronization job to
run.
» The technical lineage is refreshed and the status of the assets in Data
Catalog becomes “Missing from source”.

2. Run a workflow to delete all assets with the status “Missing from source”, or
manually delete them.

cdvii

https://developer.collibra.com/tutorials/delete-missing-assets
https://developer.collibra.com/tutorials/delete-missing-assets
https://developer.collibra.com/
https://developer.collibra.com/

Broken stitching and possible solutions
This topic provides some examples where stitching is broken, and some advice on how to
achieve stitching.

For a more in-depth examination of stitching, how it works, and what causes stitching to
break, go to Stitching for BI tool integrations.

Note This is relevant for MicroStrategy, Power BI, SSRS-PBRS and Tableau.
Collibra Data Lineage currently does not offer stitching for Looker assets.

The technical lineage graph without stitching

Go to the relevant asset page and click the Technical Lineage tab. There will most likely
be three nodes in the technical lineage graph.

Note If you have integrated MicroStrategy, there will be four nodes. Instead of the
BI data model node, there will be two nodes, one representing MicroStrategy
Attributes, the other representing MicroStrategy Facts. There could also be four
groups if you are integrating SQL Server Reporting Services (SSRS) or Power BI
Report Server (PBRS) and have a shared data set.

cdviii

No. Node Description

External database This node represents the table from the database you used to create the report
in your BI tool. This node is a prerequisite for stitching. If it is not shown in the
technical lineage, stitching is not possible.

BI data model This node represents the data set that you used to create the report in your BI
tool. This node is always stitched because Collibra Data Lineage knows the full
name of the data set in your BI tool, and it creates the corresponding BI Data
Set asset with the exact same name. This is referred to as BI stitching.

BI report This node represents the report you created in your BI tool. It is always part of
the technical lineage. Like the BI data model node, this node is always stitched
because Collibra Data Lineage knows the full name of the report in your BI tool,
and it creates the corresponding BI Report asset with the exact same name.

Example reasons for broken stitching and possible solutions

Here are a few common examples of broken stitching and possible solutions for achieving
stitching.

Power BI: database names don't match

First, let's look at the name of an unstitched database table in the technical lineage graph:

MODEL.PRODUCT CATEGORY [ADVENTUREWORKS::database]

We can identify the following:

cdix

l The database name: ADVENTUREWORKS
l The schema name: MODEL
l The table name: PRODUCT CATEGORY

Now let's find the table in the Stitching tab:

1. Click the Settings tab.
2. Click Show status.
3. Click the Stitching tab.

» The Stitching tab shows a list of all tables that exist in Data Catalog and on the Col-
libra Data Lineage service instance.

Use the Search field to find the unstitched database table PRODUCT CATEGORY.

In the Found in column, the value "Technical Lineage" confirms what we already know: the
table was found only in the technical lineage. An exactly matching asset was not identified
in Collibra.

Now try to find a likely match. Look for a table that has the same name and the value
"Catalog" in the Found in column.

The table shown in the following image looks like a match. The schema and table names
match exactly; only the database names differ.

cdx

To achieve stitching:

1. Prepare the database mapping section of your Power BI <source ID> configuration
file as follows:

{
"found_dbname=adventrueworks;found_hostname=*": {

"dbname": "aas-model",
}

}

2. Run the lineage harvester again.
» Stitching is achieved

Tableau: database names don't match

cdxi

First, let's look at the name of name of the unstitched database table in the technical
lineage graph:

DBADMIN.TESTING1 [111.93.0.181::database]

We can identify the following:

l The database name: 111.93.0.181
l The schema name: DBADMIN
l The table name: TESTING1

Now let's find the table in the Stitching tab:

1. Click the Settings tab.
2. Click Show status.
3. Click the Stitching tab.

» The Stitching tab shows a list of all tables that exist in Data Catalog and on the Col-
libra Data Lineage service instance.

Use the Search field to find the unstitched database table TESTING1.

cdxii

In the Found in column, the value "Technical Lineage" confirms what we already know: the
table was found only in the technical lineage. An exactly matching asset was not identified
in Collibra.

Now try to find a likely match. Because DBADMIN.TESTING1
[111.93.0.181::database] was found only in the technical lineage, we know the
match we're looking for must have the value "Catalog" in the Found in column.

The table shown in the following image looks like a match. The schema and table names
match exactly; only the database names differ.

To achieve stitching:

1. Configure the databaseMapping property in your Tableau <source ID> con-
figuration file as follows:

{
"databaseMapping": {

"111.93.0.181": "oracle-db",
}

}

2. Run the lineage harvester again.
» Stitching is achieved

cdxiii

Power BI: Unsupported Power Query M function or calculated columns
Collibra Data Lineage does not support DAX. Therefore, calculated columns result in
missing lineage, as do unsupported Power Query M function.

In this example, notice that the database node, which should be situated to the left of the
BI data model node, is missing from the technical lineage graph:

We can identify that these nodes represent, respectively:

l A Power BI data set table named al_test NewTable_jdbc

l A Power BI report named al_jdbc_mysql_powerbi_27Mar

cdxiv

Note The same scenario can surface for Tableau if, for example, you do not have
sufficient permission, or if you have stored procedures or custom SQL that is not
supported by Tableau Catalog.

Examine the BI data set table, to see if you can identify a
problem

1. Click the Settings tab.
2. Click Show status.

» The Sources tab shows a list of all data sources on the Collibra Data Lineage ser-
vice instance.

3. Click one or more checkboxes, to show the transformations and source code frag-
ments for specific data sources, or clear all checkboxes, to show for all data sources.

Transformations and source code fragments are shown in the transformations table below.
We can quickly identify that there was an analyze error, because the MySQL.Database
function is not supported.

To achieve stitching, ensure that your queries only include supported Power Query M
functions. We also encourage you to create an Ideation ticket via the Collibra Integrations
Ideation Portal, if you'd like to request support for a particular function.

Synchronization: Continue on error
This feature allows for continuous processing of an import or synchronization job, even if
one or more commands fail. Before the release of this feature, calls to the Import and Sync
APIs either fully succeed or fully fail. You might wait for a lengthy import or synchronization
job to complete, only to have it fail completely because of a single error.

cdxv

https://productresources.collibra.com/ideation-platform/
https://productresources.collibra.com/ideation-platform/

Now, commands that have validation errors and those that failed to execute are skipped,
allowing the processing of valid commands to continue until the job is complete or until an
error threshold is met. The error threshold is determined by the "Number of failed
commands before stopping import job" setting in Collibra Console. The default value is
100.

This feature is relevant for the full-sync and sync commands.

For more information, see the Import API Documentation in the Collibra Developer Portal.

Benefits of this feature
l Errors are skipped and valid commands are processed, instead of immediate and
complete failure of the job.

l All errors are identified at once, reducing the chances of running a job multiple times,
only to discover additional errors.

l Complete error information, including the resource identifier, to quickly identify the
source and reason for errors.

Job results
The following table shows the four possible job results for an import or synchronization job:

Job result Description

Success The job was completed without errors.

Completed With
Error

Errors were detected, but the error threshold was not reached and the job was
completed.

Aborted The error threshold was exceeded, at which point, the job was stopped. All
commands that were executed before the stoppage stay committed.

Failure The job was stopped and any executed commands were rolled back.

List of errors
You can view the results of a synchronization job in the Activities list.

cdxvi

ref_environment-settings.htm#error-limit
https://developer.collibra.com/rest/import-api/Content/API/ImportAPIv2/co_continue-on-error.htm
co_about-activities.htm

When you click Results in the relevant row, a dialog box opens, showing a general
summary of the job. For jobs with the job result Completed With Error, Aborted, or Failure,
the dialog box includes a link to a list of errors. The list of errors includes the following
information:

l The resource type.
l The index number.
l The resource identifier.
l An error message.

cdxvii

Business users
This section caters primarily to the following business-focused Collibra Data Lineage
customers:

Types of business-focused roles What you want from Collibra Data Lineage

Governance roles:

l Data Governance Consultant
l Data Governance Manager
l Data Intelligence Director
l Data Quality Officer
l Data Steward
l Enterprise Data Steward

l Easily find and view certified reports.
l View diagrams with Business Summary Lineage.
l Assign business terms to BI assets.
l Tell a story about the data.

Analyst roles:

l Business Analyst
l Data Analyst
l Data Scientist
l Quantitative User Researcher
l Operations Manager
l Program Manager
l Product Manager
l Project Manager

l Use dashboards, for an overall view of the most import-
ant information.

l Certify and view reports.
l Shop for datasets and reports.
l Check technical lineage for data set life cycles.
l Check for missing data and request new integrations, if
necessary.

l Identify data owners.

Technical lineage cdxix

Automatic stitching for technical lineage cdxxi

BI tool business logic cdxxiii

Technical lineage and stitching for BI tool integrations cdxxvi

Business Summary Lineage cdxxxvii

Differences between Technical lineage and diagrams with Business Summary Lineage cdxxxix

BI integration concepts cdxlii

cdxviii

Technical lineage
Technical lineage is a detailed lineage graph that shows how data transforms and flows
from source to destination across its entire lifecycle. It enables you to easily discover
where tables and columns are used and how they relate to each other. You can view a
technical lineage for the following asset types:

l Table
l Column
l Looker Look
l MicroStrategy Report
l MicroStrategy Table
l MicroStrategy Column
l Power BI Report
l Power BI Table
l Power BI Column
l SSRS Report
l SSRS Table
l SSRS Column
l Tableau Worksheet
l Tableau Data Attribute

During the technical lineage process, relations of the type "Data Element targets / sources
Data Element" are automatically created:

l Between data objects in your data source and assets from registered data sources.
l Between ingested assets from BI sources and Data Catalog assets from registered
data sources.

Data objects
You can see two types of data objects in your technical lineage:

l Data objects from your data source that are stitched to assets in Data Catalog and
for which you created the technical lineage. These assets have a yellow background.

cdxix

to_register-data-source.htm

Example

l Other objects, for example temporary tables and columns, that are collected from
your data sources, but are not stitched to assets in Data Catalog. These objects have
a gray background.

Example

Note Collibra Data Lineage:

l Does not support stitching for Looker assets.
l Supports stitching for MicroStrategy assets only if you use the new integration
method, which supports the latest MicroStrategy APIs.

Exporting technical lineage information
You can export technical lineage information and transformation details to formats such as
PDF and PNG. For complete information, go to Export the technical lineage information
and Export technical lineage transformation details.

Naming convention
When you create a technical lineage, Data Catalog follows a strict naming convention for
the full names of assets. Each asset has a display name and full name. You can freely edit
the display name. However, do not edit the full name, because Data Catalog needs it to

cdxx

co_non-unique-naming.htm

refresh data sources for which you created the technical lineage and to refresh the
technical lineage itself.

When you prepare the Data Catalog physical data layer and the configuration file, you
should always use the full name as the name of the corresponding data object in your data
source for the following assets:

l System
l Database
l Schema

Warning Editing the full name of the Schema, Database and System assets may
lead to errors during the technical lineage creation process.

Automatic stitching for technical lineage
Stitching is a process that creates relations between assets and data objects representing
the same data source. More specifically, stitching creates relations between the following
assets:

l The assets that were created when you prepared Data Catalog's physical data layer
for a data source; and

l The data objects in the same data source for which you created a technical lineage
and that represent the assets in Data Catalog.

For Collibra Data Lineage to stitch the assets to the data objects, you must prepare the
Data Catalog physical data layer to create the database > schema > table > column or
system > database > schema > table > column hierarchy. Note that when a table in your
data source has a schema and a file as its parents, Collibra Data Lineage uses the
schema as the parent for stitching.

When the data sources are scanned, Collibra Data Lineage service automatically creates
and pushes new relations of the type "Data Element targets / sources Data Element":

l Between data objects in your data source and assets from registered data sources.
l Between ingested assets from BI sources and Data Catalog assets from registered
data sources.

cdxxi

to_register-data-source.htm

Note If you don't prepare the Data Catalog physical data layer, Data Catalog
creates a technical lineage without stitching. As a result, when you click the
Technical lineage tab on any Column, Table, Tableau Data Attribute, Power
BI Column or SSRS Column asset page, you get the message The current asset
doesn't have a technical lineage yet. However, you can use the Browse tab pane
to view the technical lineage of data objects in data sources for which you created
the technical lineage.

Tip For a more in-depth look at BI tool stitching, specifically the relationship
between technical lineage and stitching, what causes stitching to break, and how to
achieve stitching: go to the following topics:

l Stitching for BI tool integrations
l Broken stitching and possible solutions

Stitching issues
To stitch assets in Data Catalog to data objects collected by the lineage harvester, the
Collibra Data Lineage service looks at the full path of the assets in Data Catalog and the
full path of data objects in your data source. Stitching is based on the full path of objects
with the following structure: (system) > database > schema > table > column. If the full
paths match, the Collibra Data Lineage automatically stitches the data objects to the
existing assets in Data Catalog. To indicate this, the assets have a yellow background in
the technical lineage graph. Note that in Collibra, full paths are case-sensitive.

If the full path of an asset in Data Catalog does not match (including for case-sensitivity)
the full path of a data object in your data source, Collibra Data Lineage cannot stitch them.
To indicate this, the data objects have a gray background in your technical lineage graph.
To fix stitching issues, you must check the full path of the assets in Data Catalog and make
sure they match the full path of the data objects that are shown in the technical lineage
graph. If you change the full path, make sure to run the lineage harvester again. Note that
in Collibra, full paths are case-sensitive.

cdxxii

Note Collibra Data Lineage:

l Does not support stitching for Looker assets.
l Supports stitching for MicroStrategy assets only if you use the new integration
method, which supports the latest MicroStrategy APIs.

You can use the Stitching tab page to easily find the full path of assets in Data Catalog and
data objects that were collected by the lineage harvester. The Stitching tab page also
shows an overview of all assets and data objects that are stitched successfully.

BI tool business logic
BI tool business users usually work with BI reports to make business decisions. Collibra
Data Lineage offers BI tool business users several advantages:

l Easily find certified BI tool content.
l Shop for reports.
l Find where content is stored in your BI tool.
l Trace BI tool data to its sources.
l Get information about a BI report in a single location.

Note Due to limitations of the Looker REST API, Data Catalog cannot stitch Looker
assets and corresponding assets in Data Catalog. The Looker REST API does not
provide transformations in Looker that are needed for stitching.

BI asset pages
Depending on the asset type, the asset page shows different information ingested from
your BI tool. For complete information, go to BI tool operating models.

You can find a specific asset pages by searching in Data Marketplace or by looking in the
Data Catalog BI domain in which you ingested the metadata.

cdxxiii

to_dm.htm

Details
An asset page contains attributes and relations to other assets. This information is
synchronized from your BI tool. You can, however, add additional characteristics, tags or
comments directly via the asset page.

If you want to use a report, you can add it to the Data Basket and check it out.

Example The following Looker Look asset shows in which Looker Folder it is
stored, in which Looker Dashboard it is shown, which Looker Tiles it uses and which
Looker Queries it groups. This asset has a number of attributes that give more
information about the Looker Look.

Business diagrams
Diagrams is a feature that allows you to interact with assets based on their relations in an
easy-to-read diagram. Diagrams help you to quickly understand how assets are related.
As such, the diagram can show a high-level presentation of a data set or report. If the BI

cdxxiv

co_shopping-for-data.htm
to_diagrams.htm

assets are stitched to registered assets in Data Catalog, you can also see the stitching
results in the diagram.

Tip For each supported BI tool, we include the JSON code and instruction on how
to create a diagram view of the BI tool operating model in your Collibra environment.
For complete information, go to BI tool operating models, select your BI tool, and
then scroll down to the section "Create an operating model diagram view".

Example The following diagram shows the Customer Sales Insights Tableau
Workbook, which is stored in the Internet Sales Insights Tableau Project. The
Tableau Workbook contains Tableau Report Attributes that have the
CustomerSalesReporting Tableau Data Source as source. This Tableau Data
Source is stitched to the CustomerSalesReporting Table asset in the SQL Server
Cloud data source.

Report views
Collibra Data Lineage enables you to find all ingested BI asset types in a single location.

In the Reports tab page in Data Catalog you can see an overview of all BI Report assets
and their children. Optionally, you can create a view with a filter to only show, for example,
Tableau assets. This is useful if you quickly want to see all reports or if you want find
specific reports, for example certified reports or the most frequented reports.

cdxxv

ta_view-stitching-result.htm
ta_view-stitching-result.htm
ta_create-view.htm
ta_work-with-filters-in-diagram-view.htm

Technical lineage and stitching for BI tool
integrations
BI tools, such as Power BI and Tableau, allow you to build reports that help you visualize
and understand your data. To trust the data in your report, it's essential to know where the
data came from. Collibra Data Lineage allows you to create a technical lineage, to trace
the data from your data sources to your reports. Stitching then creates relations between
the data objects in your technical lineage and the corresponding assets in Data Catalog, to
give you a complete picture of your data landscape and all critical metadata.

In this topic, we examine the relationship between technical lineage and stitching.

Note This topic applies to MicroStrategy, Power BI, SSRS-PBRS and Tableau.
Collibra Data Lineage currently does not offer stitching for Looker assets.

For a more technical perspective, see Technical overview of BI tool lineage and Broken
stitching and possible solutions.

cdxxvi

Stitching: The bridge between ingestion and
technical lineage
Keep in mind that metadata ingestion (which results in the creation of assets in Collibra)
and technical lineage are separate and independent concepts. The single, seamless
process of integrating a BI tool for the purpose of technical lineage could lead one to think
otherwise.

A technical lineage illustrates the flow of data in your external data sources. It does not
inherently tell you anything about your assets in Collibra. The bridge between the
metadata you ingest as assets in Data Catalog and the technical lineage, is stitching. As it
concerns a technical lineage graph, stitching or the lack of stitching is reflected only in the
color of the nodes in the technical lineage.

l A yellow node indicates stitching. Specifically:
o There is an asset in Collibra with a full name that exactly matches the data
object in the technical lineage.

o A relation of the type "Data Element targets / sources Data Element" is created
between the asset and the data object, and shown on the asset page.

o In the Stitching tab, the Found In column indicates that the database table was
found in both Data Catalog and the technical lineage.

cdxxvii

l A gray node indicates a lack of stitching.
o There is no asset in Data Catalog with a full name that exactly matches the
name of the data object.

o In the Stitching tab, the Found In column indicates that the database table was
found only in the technical lineage.

If the database node is missing from the technical lineage graph, we refer to this as
"missing stitching". This can happen if, for example, your BI tool has limited support for
custom SQL, or if your integration includes a data source that is not yet supported by
Collibra Data Lineage. In these situations, the relations required to recognize the database
are not exposed.

Tip If you can't view a technical lineage because you lack the permissions, you can
still identify stitching by viewing a diagram. A relation of the type "Data Element
targets / sources Data Element" between, for example, a Tableau Data Attribute
asset and Column asset in a diagram, indicates stitching.

Full path, full name matching
When you integrate your BI tool, the full names of the assets that are created in Data
Catalog reflect the full paths (also considered the full names) of the corresponding data
objects in the external data source. The full paths to data objects follow this hierarchy:

(system name) > database name > schema name > table name > column name

The system name is only relevant if you specify one as part of your pre-integration
preparation. For complete information, go to Prepare the Data Catalog physical data layer.

To stitch assets in Data Catalog to data objects in the technical lineage, Collibra Data
Lineage looks at the full names of assets in Data Catalog and the full names of data

cdxxviii

to_diagrams.htm

objects in your data source, which figure in the technical lineage. If there is an exact match
in the full names, stitching is achieved.

Note The full path represents the full name of an asset, not the display name. As
such, you can change the display name of an asset without breaking stitching, but if
you change the full name of an asset, and it no longer exactly matches the full name
of the corresponding data object, stitching will break.

If an ingestion job was successful, and it's true that the full names of the assets in Data
Catalog are taken directly from the full names of the corresponding data objects, then how
is it possible that the full names don't match? The possibilities are addressed in the
following section.

What causes stitching to break?
The following scenarios result in a lack of stitching:

Scenario Why stitching breaks

During integration of your BI
tool, the API returns a
technical name, IP address, or
hostname of the database,
instead of the true name of the
database.

The database name returned by the API doesn't match the name of the
Database asset you created when you prepared the Data Catalog physical
data layer.

cdxxix

Scenario Why stitching breaks

You have registered a
schema-less data source, for
example HiveQL, MySQL or
Teradata.

The full names of assets don't match because the full path hierarchy is
altered because of the lack of a schema name.

See an example
Let’s say you ingest a HiveQL data source via Edge. Note that Edge gives
the name “CDATA” for the database. The full path to a column is something
like:

Hive_123 (system) > CDATA (database) > Hive_ABC (schema) >

Table > Column

Because HiveQL is database-less, the value that you give for the

database property in your configuration file is used as the schema name

in the technical lineage, and the value you give for

collibraSystemName is used as the database name. But if

useCollibraSystemName is set to true, then the value of

collibraSystemName is also used as the system name. In that case,

in the full path to the column, the system name and the database name are
the same:

Hive_123 (system) > Hive_123 (database) > Hive_ABC (schema)

> Table > Column

Notice the mismatch between the database names.

The externalDbName property tells the lineage harvester to use the

value that you specify here for the database name in the technical lineage,
specifically "CDATA”. This ensures that the full paths match and stitching is
preserved.

You haven't prepared the Data
Catalog physical data layer, or
did so incompletely or
erroneously.

l The database name returned by the API doesn't match the name
of the Database asset you created when you prepared the Data
Catalog physical data layer.

l The name of the System asset you created doesn't match the
name of the system of the data source that you register, as spe-
cified in the configuration file.

l You forgot to create the required relation between the Database
asset and the Schema asset that was created when you
registered your data source.

cdxxx

Scenario Why stitching breaks

A database query includes a
function or query that Collibra
Data Lineage does not
support.

The relations required to recognize the database are not exposed, resulting
in "missing stitching".

You experience a rare
exception, for example, SAP
label names v. technical
names

When connecting to an SAP HANA data source, some BI tools use the label
name instead of the technical name. This can result in a mismatch between
the name of the data source in the technical lineage and the Database asset
in Collibra.

Creating the technical lineage
Let's start with a lifehack: create the technical lineage without giving any thought to
stitching. Specifically, prepare your source ID configuration file as you want, for filtering or
to specify a system name, but don't worry about database mapping. Run the lineage
harvester and analyze the technical lineage, to see what the APIs return for the database
names. You can then set up database mapping in your source ID file and run the harvester
again.

What you've done so far

l You've pulled in data from a data source to your BI tool, and with that data set, you've
created a report.

l You've either:
o Prepared a lineage harvester configuration file and run the lineage harvester.
o Added the relevant Edge capability and run the Edge job.

You now have:

l A technical lineage that shows the flow of data from the data source to your BI tool.
l Assets in Data Catalog that represent the data objects in your data source. Among
these assets are:

o Assets that represent the data set you used to create the report in your BI tool.
These are assets of child asset types of the BI Data Model asset type, for

cdxxxi

example Power BI Data Model and Tableau Data Model assets.

o Assets that represent the report in your BI tool. These are assets of child asset
types of the BI Report asset type, for example Power BI Report and Tableau
Report assets.

Analyze the technical lineage
Go to the asset page of your BI Data Model asset and click the Technical Lineage tab. As
shown in the following image, there will most likely be three nodes or groupings of nodes:

l The external database.
l The BI data model.
l The BI report.

cdxxxii

The first thing we notice is that the database node has a gray background and the other
two have a yellow background. The yellow nodes represent BI assets and data objects. As
such, we say that this part of the technical lineage graph depicts BI lineage.

Ultimately, what we want is for all three nodes to have the yellow background. Technically
speaking, that means:

l Lineage is confirmed upstream of the BI lineage.
l The data sources that feed into the database node are shown.

Let's examine more closely these three nodes.

Note If you are integrating MicroStrategy, there will be four groups of nodes. In
reference to the previous image, the BI data model node will consist of two groups
nodes, one representing MicroStrategy Attributes and one representing
MicroStrategy Facts. There could also be four groups if you are integrating SQL
Server Reporting Services (SSRS) or Power BI Report Server (PBRS) and have a
shared data set.

The external database

This node represents the table from the database you used to create the report in your BI
tool. It is returned by the API and is shown in the technical lineage, as long as:

l You have the required roles and permissions in your BI tool, to access the data in
your data sources. For example, in Tableau, you need certain roles and permissions
to access external data objects.

l There are no unsupported custom SQL transformations or functions.
l No errors have caused the integration to fail.

cdxxxiii

By the fact of its presence in the technical lineage, we know that the lineage harvester
collected the source code from the BI tool and identified the flow of data from this data
source to the BI data model. This node is a prerequisite for stitching. If it is not shown in the
technical lineage, stitching is not possible.

Note The node might be yellow if you previously ingested metadata in Data
Catalog that matches the database tables used in your dataset.

The gray background indicates that there might be a Table asset in Collibra that
corresponds with this database table, but their full names do not exactly match.

Tip Look closely at the names of these nodes, to correctly identify if the nodes
represent data objects from the data source or from your BI tool. In this example,
you can tell by the names that the two yellow nodes are the BI data set and BI report
nodes. When you view a technical lineage, it could be that the database and BI data
set are stitched, and the BI report node does not appear in the technical lineage.
This could be the case if you're viewing the lineage at the column level, and the
attribute that the column represents is not used in the report. At first glance, one
might incorrectly think that the database node, which is essential for stitching, is not
shown.

The BI data model

This node represents the data set that you used to create the report in your BI tool. It will
always be shown in the technical lineage, because it is the target of the database table and
the source of the BI report.

The yellow background indicates that the name of the BI Data Model asset in Data Catalog
matches exactly the name of this data set in the technical lineage.

cdxxxiv

Note This node is always stitched because Collibra Data Lineage knows the full
name of the data set in your BI tool, and it creates the corresponding BI Data Model
asset with the exact same name. This is referred to as BI stitching.

The BI report

This node (or grouping of nodes) represents the report you created in your BI tool. It is
always part of the technical lineage.

Like the BI data model node, this node is always stitched because Collibra Data Lineage
knows the full name of the report in your BI tool, and it creates the corresponding BI Report
asset with the exact same name.

Tip While the BI report node is always part of the technical lineage, it might not
initially be visible when you view the technical lineage. If, for example, you're
viewing the lineage at the column level, and the attribute that the column represents
is not used in the report, there will be no arrow leading to the report node in the
technical lineage. In this case, right-click on the data model node and click Table
lineage to pull back and view the table-level lineage. The BI report node will appear
and you will see which columns/data attributes are used in the report.

How to achieve stitching
Let's have a look at a typical database mismatching scenario.

First, let's look at the name of an unstitched database table in the technical lineage graph:

MODEL.PRODUCT CATEGORY [ADVENTUREWORKS::database]

We can identify the following:

cdxxxv

l The database name: ADVENTUREWORKS
l The schema name: MODEL
l The table name: PRODUCT CATEGORY

Now let's find the table in the Stitching tab:

1. Click the Settings tab.
2. Click Show status.
3. Click the Stitching tab.

» The Stitching tab shows a list of all tables that exist in Data Catalog and on the Col-
libra Data Lineage service instance.

Use the Search field to find the unstitched database table PRODUCT CATEGORY.

In the Found in column, the value "Technical Lineage" confirms what we already know: the
table was found only in the technical lineage. An exactly matching asset was not identified
in Collibra.

Now try to find a likely match. Look for a table that has the same name and the value
"Catalog" in the Found in column.

The table shown in the following image looks like a match. The schema and table names
match exactly; only the database names differ.

cdxxxvi

To achieve stitching, you need to create a source ID configuration file and configure
database mapping.

For more broken stitching scenarios and suggestions for resolving the issue, go to Broken
stitching and possible solutions.

Business Summary Lineage
The Business Summary Lineage is a representation of relations of the type "Data Element
sources / targets Data Element" in a business diagram. It is not a separate diagram view,
but refers to any diagram that contains that relation type. It allows you to trace data flows
between registered databases and, as such, provides a summary of a technical lineage.

Note Click here for an overview of the differences between Technical lineage and a
diagram with Business Summary Lineage.

You can create a new diagram view including the Business Summary Lineage or you can
select one of the existing diagram views that shows the relation "Data Element sources /
targets Data Element" between Column assets of registered data sources and between
BI assets and assets of registered data sources.

Before you can view a diagram with Business Summary Lineage, you have to:

l Register the data sources that you want to see in a diagram with Business Summary
Lineage.

l Prepare a configuration file to create a technical lineage.
l Use the lineage harvester or technical lineage via Edge to upload the data sources in
your configuration file to the Collibra Data Lineage service where they are scanned
and processed.

cdxxxvii

to_diagrams.htm
ta_create-diagram-view.htm
to_diagram-views.htm
to_register-data-source.htm

Once the data sources are scanned, the Collibra Data Lineage service automatically
pushes relations of the type "Data Element sources / targets Data Element" to Collibra
Data Intelligence Cloud.

Example of a diagram with Business Summary
Lineage
In this business diagram, you see that the Column assets of the Table asset
CustomerProductSales have a relation of the type "Data Element sources / targets Data
Element" to Column assets of other Table assets.

cdxxxviii

Differences between Technical lineage and
diagrams with Business Summary Lineage
Technical lineage is a detailed lineage graph that shows where data objects are used and
how they are transformed. A diagram with the Business Summary Lineage shows the
relations between Data Assets in Data Catalog after stitching. Both map the flow of data,
but a technical lineage provides a detailed overview of the data flow, while a diagram with
Business Summary Lineage only provides a summary of it.

The Business Summary Lineage and a technical lineage are both visual representations of
nodes. However, there are some key differences between them.

Tip For information on the steps required to create a technical lineage, including
how to prepare the Data Catalog physical data layer, see About technical lineage.

Business Summary Lineage Technical lineage

A diagram with a Business Summary Lineage helps
Business Analysts and other business users to
understand their data by providing a summary of the
technical lineage.

A technical lineage helps Data Engineers, Data
Architects and similar personas to easily navigate to
data objects in the data flows and find relevant
source code fragments by providing a detailed
lineage graph.

A diagram containing Business Summary Lineage is
accessible via the Diagram tab pane of all assets.

A technical lineage is accessible via the tab pane of
all Table assets and Column assets. You can view a
technical lineage via the tab pane of Table assets
and Column assets if you added their database as
data sources in the configuration file.

cdxxxix

Business Summary Lineage Technical lineage

A diagram shows assets and relations as defined in
its diagram view. In the case of a Business Summary
Lineage, the diagram shows, amongst others,
relations of the type "Data Element targets / sources
Data Element" between assets that exist in Data
Catalog. Relations of this type are automatically
created as part of the technical lineage process.

A technical lineage shows relations of the type "Data
Element targets / sources Data Element" between all
data objects in the data source. Relations of this type
are automatically created as part of the technical
lineage process.

Note The data objects that you see in
the technical lineage are:

l Data Element assets for which you
created the technical lineage,

l Other objects, for example temporary
tables and columns, that the lineage
scanner collected from your data
sources, but are not assets in Data
Catalog.

A diagram with a Business Summary Lineage shows
how registered data sources relate to each other.

Technical lineage shows how all data sources for
which you create a technical lineage relate to each
other. If the data source, or a part of the data source,
is not registered in Data Catalog, the dependencies
between the data elements in the data sources are
still shown.

cdxl

to_register-data-source.htm

Example
You have created a technical lineage for four different databases:

l The first database, Oracle, is not ingested in Data Catalog and therefore has
no assets in Data Catalog.

l The second database, Raw, contains tables that are ingested in Data Catalog,
but also tables that are not ingested and therefore are not assets.

l The third and fourth database, Refined and Consumption, only contains data
objects that are also assets in Data Catalog.

Technical lineage shows the data flow from all data objects in the first database, to
the second, the third, and the fourth. Databases or data objects that are not ingested
in Data Catalog and therefore are not assets, have a gray background.

A diagram with Business Summary Lineage only shows the relations between data
objects that are also assets in Data Catalog, which means the data flow from assets
in the second database to assets in the third, to assets in the fourth. The first
database, which wasn't ingested, will not be shown on the diagram.

Dependencies
A dependency is a data object that is targeted by another data object. This is represented
by a relation of the type "Data Element targets / sources Data Element", where the
dependency is the tail.

There are two type of dependencies:

cdxli

l a direct dependency: a data object that is the tail of a relation of the type "Data Ele-
ment targets / sources Data Element".

Example If column A targets column B, then column B is the direct
dependency of column A.

l an indirect dependency: a data object that is the target of a direct or another indirect
dependency.

Example Column A targets column B, which on its turn targets column C.
This means that column A indirectly targets column C, so column C is the
indirect dependency of column A.

BI integration concepts
This section addresses BI tool-specific integration concepts for business-focused
customers.

BI tool terminology
The following tables show the supported BI tool terminology and corresponding asset
types and terminology in Collibra Data Intelligence Cloud.

Note Keep in mind, it is possible that your organization has renamed the out-of-the-
box asset types.

Steps

Tableau
term

Description Collibra equivalent

Site A site is a stand-alone collection of content, such as
projects, workbooks and users. Each site has its own
URL and its own set of users.

Subcommunity and Tableau Site
asset

cdxlii

Tableau
term

Description Collibra equivalent

Project A project organizes related content resources.
Content resources are workbooks, views and data
sources.

Tableau Project asset

Workbook A workbook is a collection of views. Tableau Workbook asset

Dashboard A dashboard is a collection of views from multiple
worksheets.

Tableau Dashboard asset

Worksheet A worksheet contains a single view, along with
shelves, legends, and the Data pane.

Tableau Worksheet asset

Tableau data
source

Tableau Data Sources consist of metadata that
describe the connection information, information
about how to access or refresh the data and
customizations.

Tableau Data Model asset

Dimension Dimensions contain qualitative values (such as
names, dates, or geographical data).

Attribute type Role in Report on a
Tableau Data Attribute asset page

Measure Measures contain numeric, quantitative values that
you can measure.

Attribute type Role in Report on a
Tableau Data Attribute asset page

Tableau data
attribute

Tableau Data Attributes define a property of a
Tableau data entity.

Tableau Data Attribute asset

Tableau data
entity

Tableau Data Entities are an abstraction of the
physical implementation of database tables, used for
Tableau report creation.

Tableau Data Model asset

Tableau data
model

Tableau Data Models are an abstraction for the
physical implementation of databases, schemas,
files, etc., used for Tableau report creation.

Tableau Data Model asset

Tableau
server

A Tableau server is a server on which Tableau users
can publish data sources, as a means to share the
data connections they've defined.

Tableau Server asset

cdxliii

Published versus embedded data sources
You can create data sources in Tableau when you connect to data. After you set up the
data sources in Tableau, you can publish data sources as standalone resources, or you
can publish workbooks with the data sources embedded in.

Unless you take actions to publish the data source separately, the data source is
published as embedded in a workbook by default. For more information, see the Tableau
documentation on Publishing data separately or embedded in workbooks.

Collibra Data Lineage ingests metadata of data sources as assets of the Tableau Data
Model asset type, regardless of the way the data sources are published.

eTDM and pTDM
When you ingest a Tableau data source in Collibra, each asset is identified as eTDM or
pTDM with [eTDM] or [pTDM] added to the asset name.

eTDM stands for embedded Tableau Data Model, which indicates that the asset
represents the data source that is embedded in a workbook in Tableau. pTDM stands for
published Tableau Data Model, which indicates that the asset represents the data source
that is published separately in Tableau.

For a data source that is both published separately and embedded in a workbook, Collibra
Data Lineage ingests the metadata in one of the following ways:

l If the metadata of the embedded data source matches that of the published data
source, Collibra Data Lineage ingests the metadata only from the published data
source to avoid duplication.

l If the metadata of the embedded data source contains more fields than that of the
published data source, Collibra Data Lineage ingests metadata from both the
published and embedded data sources.

As a result, a Tableau workbook can have one of the following relations:

l To the published and embedded data source.

l To the published data source only.

cdxliv

https://help.tableau.com/current/pro/desktop/en-us/publish_datasources_about.htm

Power BI
term

Description Asset type in Collibra

Capacity A resource that hosts Power BI Workspaces. Power BI Capacity

Dashboard A collection of Power BI tiles with metrics from
one or more Reports and Data Models.

Power BI Dashboard

Dataflow A collection of tables that are created and
managed in workspaces in the Power BI
service.

Power BI Data Flow

Datamart A self-service analytics solutions, enabling users to
store and explore data that is loaded in a fully
managed database.

Power BI Data Mart

Data Set A collection of data that is used to create a
Power BI report.

Power BI Data Model

Data Set
Column

A column in a Power BI Data Model. Power BI Column

Data Set
Table

A table in a Power BI Data Model. Power BI Table

Report A detailed view of a Power BI Data Model, with
visualizations of findings and insights.

Power BI Report

Server or
Tenant

A visual analytics platform for creating and
storing Power BI Reports and Data Models.

Power BI Server

Tile An element representing data on the Power BI
Dashboard.

Power BI Tile

Workspace A collection of Power BI Dashboards, Reports and
Data Models.

Power BI Workspace

MicroStrategy
term

Description Asset type in
Collibra

Attribute / Fact A detailed view of a MicroStrategy visualization, with findings
and insights.

MicroStrategy Data
Entity

cdxlv

MicroStrategy
term

Description Asset type in
Collibra

Attribute Form /
Fact expression

Additional descriptive information about an attribute. MicroStrategy Data
Attribute

Column A column in a MicroStrategy data model. MicroStrategy Data
Attribute

Dataset A collection of data that is used to create MicroStrategy reports. MicroStrategy Data
Model

Document A collection of grid and graph reports that can be viewed at the
same time, along with images and text.

MicroStrategy
Document

Dossier A collection of MicroStrategy chapters and pages. MicroStrategy
Dossier

Folder A collection of MicroStrategy reports and data models. MicroStrategy
Folder

Project A collection of MicroStrategy visualizations, report attributes and
tables.

MicroStrategy
Project

Report A detailed view of a MicroStrategy data model, with
visualizations of findings and insights.

MicroStrategy
Report

Server A visual analytics platform for creating and storing
MicroStrategy reports and data models.

MicroStrategy
Server

Visualization A visual representation of the data in a dossier, such as a grid,
line chart, or heat map.

MicroStrategy
Visualisation

Looker term Description Asset type in Collibra

Dashboard A collection of Looker tiles with metrics from one or
more Looker Looks.

Looker Dashboard

Explore A collection of data that is used to define Looker
Dimensions and Measures.

Looker Data Set

cdxlvi

Looker term Description Asset type in Collibra

Dimensions,
Measures

An atomic unit of data that is used in a Looker Look
or Looker Tile. It represents a column in a Looker
Data Set.

Looker Data Set Column

Folder or
Space

A container that stores Looker Looks, Dashboards
and other folders.

Looker Folder

Look A detailed view of a Looker Data Set, with
visualizations of findings and insights.

Looker Look

Dimensions,
Measures

An atomic unit of data that is used in a Looker Look
or Looker Tile. It represents the actual use a Looker
Data Set Column.

Looker Report Attribute

Query A query that creates a simple report in a Looker Tile
or Looker Look.

Looker Query

Looker instance A platform to create Looker Dashboards and
rich visualizations.

Looker Tenant

Tile or
Dashboard
element

An element that represents data on the Looker
Dashboard.

Looker Tile

SSRS-PBRS term Description Asset type in
Collibra

Column A column in an SQL Server
Reporting Services Report
Data Set.

SSRS Column

Data Set A collection of data that is used to
create an SQL Server Reporting
Services Report.

SSRS Data Model

Folder A collection of SQL Server
Reporting Services and Power
BI Report Server Reports and
Data Sets.

SSRS Folder

cdxlvii

SSRS-PBRS term Description Asset type in
Collibra

KPI A key performance indicator of
SQL Server Reporting Services.

SSRS KPI

Mobile report A detailed view of an
SQL Server Reporting
Services Data Set, with
visualizations of findings and
insights.

SSRS Report

Paginated report A detailed view of an
SQL Server Reporting
Services Data Set, with
visualizations of findings and
insights.

SSRS Report

Parameter A column that is part of an SQL
Server Reporting Services Data
Set and that is used in a KPI.

SSRS Parameter

Power BI Report Server report A detailed view of a Power BI
Data Model, with visualizations
of findings and insights.

Power BI Report

SQL Server Reporting Services or Power
BI Report Server server or tenant

A visual analytics platform for
creating and storing
SQL Server Reporting
Services and Power BI Report
Server Reports and Data Sets.

SSRS Server

Table A table in an SQL Server
Reporting Services Report Data
Set.

SSRS Table

BI asset types and domain types
BI tool integration uses a specific subset of out-of-the-box asset types and domain types.

cdxlviii

ref_ootb-asset-types.htm
ref_ootb-domain-types.htm

The following table shows the asset and domain types that are used for the BI tool
integrations. Above each asset type you can see the parent asset types in the
breadcrumbs.

Note Keep in mind, it is possible that your organization has renamed the out-of-the-
box asset types.

Asset type Description Domain type

Business Asset
Business
Dimension
BI Folder
Looker Folder

A container that stores Looker Looks, Dashboards and other
folders.

BI Catalog

Business Asset
Report BI Report
Looker Dashboard

A collection of Looker tiles with metrics from one or more
Looker Looks.

BI Catalog

Business Asset
Report BI Report
Looker Look

A detailed view of a Looker Data Set, with visualizations of
findings and insights.

BI Catalog

Business Asset
Report BI Report
Looker Query

A query that creates a simple report in a Looker Tile or Looker
Look.

BI Catalog

Business Asset
Report BI Report
Looker Tile

An element that represents data on the Looker Dashboard. BI Catalog

cdxlix

Asset type Description Domain type

Data Asset Data
Element Data
Attribute BI Data
Attribute
Looker Data Set Column

An atomic unit of data that is used in a Looker Look or Looker
Tile. It represents a column in a Looker Data Set.

BI Catalog

Data Asset Data
Element Report
Attribute BI Report
Attribute
Looker Report Attribute

An atomic unit of data that is used in a Looker Look or Looker
Tile. It represents the actual use a Looker Data Set Column.

BI Catalog

Data Asset Data
Set BI Data Set
Looker Data Set

A collection of data that is used to define Looker Dimensions
and Measures.

BI Catalog

Technology Asset
Server BI Server
Looker Tenant

A platform to create Looker Dashboards and rich
visualizations.

BI Catalog

Asset type Description Domain type

Business Asset
Business
Dimension
BI Folder
MicroStrategy Folder

A collection of MicroStrategy reports and data models. BI Catalog

Business Asset
Business
Dimension
BI Folder
MicroStrategy Project

A collection of MicroStrategy visualizations, report attributes
and tables.

BI Catalog

cdl

Asset type Description Domain type

Business Asset
Report BI Report
MicroStrategy Dossier

A collection of MicroStrategy chapters and pages. BI Catalog

Business Asset
Report BI Report
MicroStrategy Document

A collection of grid and graph reports that can be
viewed at the same time, along with images and text.

BI Catalog

Business Asset
Report BI Report
MicroStrategy Report

A detailed view of a MicroStrategy data model, with
visualizations of findings and insights.

BI Catalog

Data Asset Data
Element Data
Attribute BI Data
Attribute
MicroStrategy Data
Attribute

A column in a MicroStrategy data model. BI Catalog

Data Asset Data
Element Report
Attribute BI Report
Attribute
MicroStrategy
Visualization

A detailed view of a MicroStrategy visualization, with findings
and insights.

BI Catalog

Data Asset Data
Structure Data
Entity BI Data
Entity
MicroStrategy Data Entity

A detailed view of a MicroStrategy visualization, with
findings and insights.

BI Catalog

cdli

Asset type Description Domain type

Data Asset Data
Structure Data
Model BI Data
Model
MicroStrategy Data Model

A collection of data that is used to create MicroStrategy
reports.

BI Catalog

Technology Asset
Server BI Server
MicroStrategy Server

A visual analytics platform for creating and storing
MicroStrategy reports and data models.

BI Catalog

Asset type Description Domain type

Business Asset
Business
Dimension
BI Folder
Power BI Capacity

A resource that hosts Power BI Workspaces. BI Catalog

Business Asset
Business
Dimension
BI Folder
Power BI Workspace

A collection of Power BI Dashboards, Reports and Data
Models.

BI Catalog

Business Asset
Report BI Report

Power BI Dashboard

A collection of Power BI tiles with metrics from one or more
Reports and Data Models.

BI Catalog

Business Asset
Report BI Report

Power BI Report

A detailed view of a Power BI Data Model, with visualizations
of findings and insights.

BI Catalog

cdlii

Asset type Description Domain type

Business Asset
Report BI Report

Power BI Tile

An element representing data on the Power BI Dashboard. BI Catalog

Data Asset Data
Element Data
Attribute BI Data
Attribute
Power BI Column

A column in a Power BI Data Model. BI Catalog

Data Asset Data
Structure Data
Entity BI Data
Entity
Power BI Table

A table in a Power BI Data Model. BI Catalog

Data Asset Data
Structure Data
Model BI Data
Model
Power BI Data Flow

A collection of tables that are created and managed in
workspaces in the Power BI service.

BI Catalog

Data Asset Data
Structure Data
Model BI Data
Model
Power BI Data Mart

BI Catalog

cdliii

Asset type Description Domain type

Data Asset Data
Structure Data
Model BI Data
Model
Power BI Data Model

A collection of data that is used to create a Power BI report. BI Catalog

Technology Asset
Server BI Server
Power BI Server

A visual analytics platform for creating and storing Power
BI Reports and Data Models.

BI Catalog

Asset type Description Domain type

Business Asset
Business
Dimension
BI Folder
SSRS Folder

A collection of SQL Server Reporting Services and Power
BI Report Server Reports and Data Sets.

BI Catalog

Business Asset
Report BI Report
SSRS KPI

A key performance indicator of SQL Server Reporting
Services.

BI Catalog

Business Asset
Report BI Report
SSRS Report

A detailed view of an SQL Server Reporting Services Data
Set, with visualizations of findings and insights.

BI Catalog

Data Asset Data
Element Data
Attribute BI Data
Attribute
SSRS Column

A column in an SQL Server Reporting Services Report Data
Set.

BI Catalog

cdliv

Asset type Description Domain type

Data Asset Data
Element Report
Attribute BI Report
Attribute
SSRS Parameter

A column that is part of an SQL Server Reporting Services
Data Set and that is used in a KPI.

BI Catalog

Data Asset Data
Set BI Data Set
SSRS Data Model

A collection of data that is used to create an SQL Server
Reporting Services Report.

BI Catalog

Data Asset Data
Element Data
Attribute BI Data
Attribute Power BI
Table
SSRS Table

A table in an SQL Server Reporting Services Report Data
Set.

BI Catalog

Technology Asset
Server BI Server
SSRS Server

A visual analytics platform for creating and storing
SQL Server Reporting Services and Power BI Report Server
Reports and Data Sets.

BI Catalog

Asset type Description Domain type

Business Asset
Business Dimension
BI Folder

Tableau Project

Collection of Tableau workbooks and data sources. BI Catalog

Business Asset
Business Dimension
BI Folder

Tableau Site

Collection of content (workbooks, data sources, users, …)
that's walled off from any other content on that instance of
Tableau Server.

BI Catalog

cdlv

Asset type Description Domain type

Business Asset
Report BI Report
Tableau View
Tableau Dashboard

A collection of several worksheets and supporting
information, shown on a single screen, so that you can
simultaneously compare and monitor a variety of data.

BI Catalog

Business Asset
Report BI Report
Tableau View
Tableau Worksheet

A worksheet is a single sheet on which you can build views of
your data.

BI Catalog

Business Asset
Report BI Report
Tableau Workbook

Collection of sheets. A sheet can be a worksheet, a
dashboard or a story.

BI Catalog

Data Asset Data
Element Data
Attribute BI Data
Attribute
Tableau Data Attribute

A specification that defines a property of a Tableau data
entity.

Examples: CustomerBirthDate, EmployeeFirstName.

BI Catalog

Data Asset Data
Structure Data
Model BI Data
Model
Tableau Data Model

An abstraction from the physical implementation of
database, schema, file, etc., used for Tableau report
creation.

BI Catalog

Technology Asset
Server BI Server
Tableau Server

A visual analytics platform for creating interactive
dashboards and rich visualisations

BI Catalog

BI tool operating models
This section shows the BI tool operating models and related information.

cdlvi

Note Keep in mind, it is possible that your organization has renamed the out-of-the-
box asset types and characteristics.

Steps
l Overview and diagram view
l Harvested metadata per asset type
l Example of ingested Tableau metadata
l Recommended hierarchy within a domain
l Create a Tableau operating model diagram view

Overview and diagram view
Synchronizing means refreshing the assets that are currently in Data Catalog as a result of
a previous ingestion or synchronization job. After synchronizing Tableau, the assets in
Data Catalog accurately reflect the metadata as it exists at the time of synchronization.

Note
l The assets have the same names as their counterparts in Tableau.
l Some asset types are only created if the Tableau user has specific
permissions.

l Relations that were created between Tableau assets and other assets via a
relation type in the Tableau operating model, are deleted upon
synchronization. The same is true of any attribute types in the operating model
that you add to Tableau assets. To ensure that the characteristics you add to
Tableau assets are not deleted upon synchronization, be sure to use
characteristics that are not part of the Tableau operating model.

The following image shows the relations between Tableau asset types.

cdlvii

You can easily recreate this diagram view in your Collibra environment. See Create a
Tableau operating model diagram view.

Harvested metadata per asset type
This table shows the metadata for each Tableau asset type and the resource ID for each
asset type and metadata.

cdlviii

Asset type Synchronized metadata Resource ID

Tableau Server

Resource ID: 00000000-0000-
0000-0000-110000000005

Description 00000000-0000-0000-0000-
000000003114

Server hosts / is hosted in
Business Dimension

00000000-0000-0000-0000-
120000000000

URL: The link to the data in
Tableau

00000000-0000-0000-0000-
000000000258

Tableau Site

Resource ID: 00000000-0000-
0000-0000-110000000000

BI Folder assembles / Is assembled
in BI Folder

00000000-0000-0000-0000-
120000000001

Description 00000000-0000-0000-0000-
000000003114

Server hosts / is hosted in
Business Dimension

00000000-0000-0000-0000-
120000000000

URL: The link to the data in
Tableau

00000000-0000-0000-0000-
000000000258

cdlix

Asset type Synchronized metadata Resource ID

Tableau Project

Resource ID: 00000000-0000-
0000-0000-110000000001

Description 00000000-0000-0000-0000-
000000003114

Owner in source

l The only harvested metadata
are email addresses. To
harvest this metadata, you
need to enable the Metadata
API by setting the restOnly

property in your lineage
harvester configuration file to
false.

00000000-0000-0000-0000-
200000000001

BI Folder assembles / is assembled
in BI Folder

00000000-0000-0000-0000-
120000000001

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

BI Folder contains / contained in
Data Asset

00000000-0000-0000-0000-
120000000014

cdlx

Asset type Synchronized metadata Resource ID

Tableau Workbook

Resource ID: 00000000-0000-
0000-0000-110000000002

Description 00000000-0000-0000-0000-
000000003114

Document creation date 00000000-0000-0000-0000-
000000000260

Document modification date 00000000-0000-0000-0000-
000000000261

Document size 00000000-0000-0000-0000-
000000000259

Owner in source

l The only harvested metadata
are email addresses. To
harvest this metadata, you
need to enable the Metadata
API by setting the restOnly

property in your lineage
harvester configuration file to
false.

00000000-0000-0000-0000-
200000000001

Report Image 00000000-0000-0000-0000-
000000000262

URL: The link to the data in
Tableau

00000000-0000-0000-0000-
000000000258

Visits count

This is the amount of times the
workbook was viewed in Tableau.

00000000-0000-0000-0000-
000000000264

Report groups / is grouped into
Report

00000000-0000-0000-0000-
120000000004

Tableau Workbook contains
/ contained in Tableau Data
Model

00000000-0000-0000-0000-
120000000020

cdlxi

Asset type Synchronized metadata Resource ID

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

cdlxii

Asset type Synchronized metadata Resource ID

Tableau Dashboard

Resource ID: 00000000-0000-
0000-0001-110000000301

Assets of this type are only
created if the Tableau user has
the Download/Save As
permission on the workbook.

cdlxiii

Asset type Synchronized metadata Resource ID

Document creation date 00000000-0000-0000-0000-
000000000260

Document modification date 00000000-0000-0000-0000-
000000000261

Owner in source

l The only harvested metadata
are email addresses. To
harvest this metadata, you
need to enable the Metadata
API by setting the restOnly

property in your lineage
harvester configuration file to
false.

00000000-0000-0000-0000-
200000000001

Report image: The image of the
report.

Images are downloaded and
stored in Data Catalog. You can
configure the maximum file size
and content types of the Tableau
images in the Collibra DGC
service settings.

00000000-0000-0000-0000-
000000000262

URL: The link to the data in
Tableau

00000000-0000-0000-0000-
000000000258

Visible on server 00000000-0000-0000-0000-
000000000265

Visits count

This is the amount of times the
dashboard was viewed in Tableau.

00000000-0000-0000-0000-
000000000264

Report groups / is grouped into
Report

00000000-0000-0000-0000-
120000000004

cdlxiv

Asset type Synchronized metadata Resource ID

Report uses / used in Data
Attribute

00000000-0000-0000-0000-
120000000021

Report uses / used in Report 00000000-0000-0000-0000-
120000000007

Tableau Worksheet

Resource ID: 00000000-0000-
0000-0001-110000000300

Assets of this type are only
created if the Tableau user has
the Download/Save As
permission on the workbook.

Document creation date 00000000-0000-0000-0000-
000000000260

Document modification date 00000000-0000-0000-0000-
000000000261

Report image: The image of the
report.

Images are downloaded and
stored in Data Catalog. You can
configure the maximum file size
and content types of the Tableau
images in the Collibra DGC
service settings.

00000000-0000-0000-0000-
000000000262

URL: The link to the data in
Tableau

00000000-0000-0000-0000-
000000000258

Visible on server 00000000-0000-0000-0000-
000000000265

Visits count

This is the amount of times the
worksheet was viewed in Tableau.

00000000-0000-0000-0000-
000000000264

Report groups / is grouped into
Report

00000000-0000-0000-0000-
120000000004

Report uses / used in Data Attribute 00000000-0000-0000-0000-
120000000021

Report uses / used in Report 00000000-0000-0000-0000-
120000000007

cdlxv

Asset type Synchronized metadata Resource ID

Tableau Data Attribute

Resource ID: 00000000-0000-
0000-0000-110000000010

Assets of this type are only
created if the Tableau user has
the Download/Save As
permission on the data source.

Description 00000000-0000-0000-0000-
000000003114

Calculation Rule 00000000-0000-0000-0000-
000000003117

Data Type: The data type of a
data asset, as it is declared by
the data source.

00000000-0000-0000-0001-
000500000005

Role in Report 00000000-0000-0000-0000-
000000000266

BI Data Model contains / is part
of BI Data Attribute

00000000-0000-0000-0000-
000000007196

Data Element targets / sources
Data Element

00000000-0000-0000-0000-
000000007069

Report uses / used in Data Attribute 00000000-0000-0000-0000-
120000000021

cdlxvi

Asset type Synchronized metadata Resource ID

Tableau Data Model

Resource ID: 00000000-0000-
0000-0000-110000000008

Assets of this type are only
created if the Tableau user has
the Download/Save As
permission on the data source.

Description 00000000-0000-0000-0000-
000000003114

Certified

Note Certification is only
possible for published
Tableau data sources.

00000000-0000-0000-0001-
000500000001

Document creation date 00000000-0000-0000-0000-
000000000260

Document modification date 00000000-0000-0000-0000-
000000000261

Original Name: The name of the
data source in Tableau

00000000-0000-0000-0001-
000500000032

Owner in source

l The only harvested metadata
are email addresses. To
harvest this metadata, you
need to enable the Metadata
API by setting the restOnly

property in your lineage
harvester configuration file to
false.

00000000-0000-0000-0000-
200000000001

BI Data Model contains / is part
of BI Data Attribute

00000000-0000-0000-0000-
000000007196

Business Dimension source / is
source of System

00000000-0000-0000-0000-
120000000003

Tableau Workbook contains /
contained in Tableau Data
Model

00000000-0000-0000-0000-
120000000020

cdlxvii

Asset type Synchronized metadata Resource ID

Data Asset contained in /
contains BI Folder

00000000-0000-0000-0000-
120000000014

Additional information

l For the Owner in source attribute, the following rules apply:

o If the system creates a Tableau data object and the Tableau data object does
not have a user ID, the Owner in source attribute is shown as System on the
asset page.

o If the user who created a Tableau data object no longer exists, the Owner in
source attribute is shown as empty on the asset page.

Example of ingested Tableau metadata
The following image shows an example structure after synchronizing Tableau.

Recommended hierarchy within a domain
You can enable hierarchies for the domain (or domains) in which your Tableau assets
were ingested. Doing so makes it easier to understand the relation between your Tableau

cdlxviii

co_working-with-hierarchies.htm

assets, when viewing the assets on the domain page.

Follow these steps to enable and configure the recommended hierarchy.

Steps

1. Open the domain page of the relevant BI Catalog domain.
2. On the content toolbar, click .

» The Configure Hierarchy dialog box appears.
3. Select Enable Hierarchy.
4. Select Multipath.
5. Start typing and select each of the following relation types:

o Server hosts Business Dimension
o BI Folder assembles BI Folder
o Business Dimension groups Report
o Report groups Report
o Report uses Report
o Report uses Data Attribute
o BI Folder contains Data Asset
o BI Data Model contains BI Data Attribute
o Tableau Workbook contains Tableau Data Model

6. Click Apply.

Note
l In an asset view, if any asset is deleted, for example via synchronization or
manual deletion, the view is recreated and the hierarchy is lost. In this case,
you can again enable and configure the recommended hierarchy.

l When viewing the hierarchy for a community or domain, if the parent of a node
that is in the community or domain belongs to a different community or
domain, that node is not shown in the hierarchy.

Create a Tableau operating model diagram view
You can create a Tableau-specific diagram view, to visualize the operating model. The
following procedure provides instruction on how to quickly create a new diagram view by
copying and pasting the JSON code in the diagram view text editor.

cdlxix

Steps

1. Open an asset page.
2. In the tab pane, click Diagram.

» The diagram appears in the default diagram view.
3. Click to add a new view.

4. Click the Text tab, to switch to the diagram view text editor.
5. Click Show me the JSON code below this procedure, to expand the code.
6. Paste the code in diagram view text editor.
7. Click Save.
8. Edit the name and description of the diagram view, to suit your needs.

Show me the JSON code

{
"nodes":[
{

"id":"Tableau Workbook",
"type":{
"id":"00000000-0000-0000-0000-110000000002"

},
"layoutRegion":"context"

},
{

"id":"Tableau Dashboard",
"type":{
"id":"00000000-0000-0000-0001-110000000301"

},
"layoutRegion":"context"

},
{

"id":"Tableau Worksheet",
"type":{
"id":"00000000-0000-0000-0001-110000000300"

},
"layoutRegion":"context"

},
{

"id":"Tableau Data Model",
"type":{
"id":"00000000-0000-0000-0000-110000000008"

},
"layoutRegion":"context"

},
{

cdlxx

to_diagram-views.htm
ta_edit-diagram-view-name.htm

"id":"Tableau Project",
"type":{
"id":"00000000-0000-0000-0000-110000000001"

},
"layoutRegion":"context"

},
{

"id":"Tableau Site",
"type":{
"id":"00000000-0000-0000-0000-110000000000"

},
"layoutRegion":"context"

},
{

"id":"Tableau Server",
"type":{
"id":"00000000-0000-0000-0000-110000000005"

},
"layoutRegion":"context"

},
{

"id":"Tableau Data Attribute",
"type":{
"id":"00000000-0000-0000-0000-110000000010"

},
"layoutRegion":"context"

},
{

"id":"Column",
"type":{
"id":"00000000-0000-0000-0000-000000031008"

},
"layoutRegion":"context"

},
{

"id":"Table",
"type":{
"id":"00000000-0000-0000-0000-000000031007"

},
"layoutRegion":"context"

},
{

"id":"Schema",
"type":{
"id":"00000000-0000-0000-0001-000400000002"

},
"layoutRegion":"context"

},
{

"id":"Database",

cdlxxi

"type":{
"id":"00000000-0000-0000-0000-000000031006"

},
"layoutRegion":"context"

}
],
"edges":[

{
"from":"Tableau Project",
"to":"Tableau Workbook",
"label":"",
"style":"boxing",
"type":{
"id":"00000000-0000-0000-0000-120000000002"

},
"roleDirection":true

},
{

"from":"Tableau Site",
"to":"Tableau Project",
"label":"",
"style":"boxing",
"type":{
"id":"00000000-0000-0000-0000-120000000001"

},
"roleDirection":true

},
{

"from":"Tableau Server",
"to":"Tableau Site",
"label":"",
"style":"boxing",
"type":{
"id":"00000000-0000-0000-0000-120000000000"

},
"roleDirection":true

},
{

"from":"Tableau Data Model",
"to":"Tableau Data Attribute",
"label":"",
"style":"boxing",
"type":{
"id":"00000000-0000-0000-0000-000000007196"

},
"roleDirection":true

},
{

"from":"Tableau Data Attribute",
"to":"Tableau Data Attribute",

cdlxxii

"label":"",
"style":"arrow",
"type":{
"id":"00000000-0000-0000-0000-000000007069"

},
"roleDirection":false

},
{

"from":"Tableau Workbook",
"to":"Tableau Data Model",
"label":"",
"style":"boxing",
"type":{
"id":"00000000-0000-0000-0000-120000000020"

},
"roleDirection":true

},
{

"from":"Tableau Project",
"to":"Tableau Data Model",
"label":"",
"style":"arrow",
"type":{
"id":"00000000-0000-0000-0000-120000000014"

},
"roleDirection":true

},
{

"from":"Column",
"to":"Column",
"label":"",
"style":"boxing",
"type":{
"id":"00000000-0000-0000-0000-000000007042"

},
"roleDirection":false

},
{

"from":"Column",
"to":"Table",
"label":"",
"style":"boxed",
"type":{
"id":"00000000-0000-0000-0000-000000007042"

},
"roleDirection":true

},
{

"from":"Table",
"to":"Schema",

cdlxxiii

"label":"",
"style":"boxed",
"type":{
"id":"00000000-0000-0000-0000-000000007043"

},
"roleDirection":false

},
{

"from":"Schema",
"to":"Database",
"label":"",
"style":"boxed",
"type":{
"id":"00000000-0000-0000-0000-000000007024"

},
"roleDirection":false

},
{

"from":"Tableau Data Attribute",
"to":"Tableau Worksheet",
"label":"",
"style":"arrow",
"type":{
"id":"00000000-0000-0000-0000-120000000021"

},
"roleDirection":false

},
{

"from":"Tableau Workbook",
"to":"Tableau Worksheet",
"label":"",
"style":"boxing",
"type":{
"id":"00000000-0000-0000-0000-120000000004"

},
"roleDirection":true

},
{

"from":"Tableau Workbook",
"to":"Tableau Dashboard",
"label":"",
"style":"boxing",
"type":{
"id":"00000000-0000-0000-0000-120000000004"

},
"roleDirection":true

},
{

"from":"Tableau Worksheet",
"to":"Tableau Dashboard",

cdlxxiv

"label":"",
"style":"arrow",
"type":{
"id":"00000000-0000-0000-0000-120000000007"

},
"roleDirection":false

},
{

"from":"Tableau Data Attribute",
"to":"Column",
"label":"",
"style":"arrow",
"type":{
"id":"00000000-0000-0000-0000-000000007069"

},
"roleDirection":false

},
{

"from":"Tableau Project",
"to":"Tableau Project",
"label":"",
"style":"boxed",
"type":{
"id":"00000000-0000-0000-0000-120000000001"

},
"roleDirection":true

}
],
"showOverview":false,
"enableFilters":true,
"showLabels":true,
"showFields":true,
"showLegend":true,
"showPreview":true,
"visitStrategy":"directed",
"layout":"HierarchyLeftRight",
"maxNodeLabelLength":50,
"maxEdgeLabelLength":30,
"layoutOptions":{

"compactGroups":false,
"componentArrangementPolicy":"topmost",
"edgeBends":true,
"edgeBundling":true,
"edgeToEdgeDistance":5,
"minimumLayerDistance":"auto",
"nodeToEdgeDistance":5,
"orthogonalRouting":true,
"preciseNodeHeightCalculation":true,
"recursiveGroupLayering":true,
"separateLayers":true,

cdlxxv

"webWorkers":true,
"nodePlacer":{

"barycenterMode":true,
"breakLongSegments":true,
"groupCompactionStrategy":"none",
"nodeCompaction":false,
"straightenEdges":true
}

}
}

l Overview and diagram view
l Harvested metadata per asset type
l Example of ingested Power BI metadata
l Recommended hierarchy within a domain
l Create a Power BI operating model diagram view

Overview and diagram view
The lineage harvester collects Power BI metadata and sends it to the Collibra Data
Lineage service instances. Collibra processes the metadata and creates new Power BI
assets and relations in Data Catalog. You can see them on the asset page overview or
visualize them in a diagram or in a technical lineage.

Note
l The assets have the same names as their counterparts in Power BI. Full
names and Display names cannot be changed in Data Catalog.

l Asset types are only created if you have all specific Power BI and Data
Catalog permissions.

l The Power BI assets are created in the domain (or domains) that you specify
in the lineage harvester configuration file.

l Relations that were created between Power BI assets and other assets via a
relation type in the Power BI operating model, are deleted upon
synchronization. The same is true of any attribute types in the operating model
that you add to Power BI assets. To ensure that the characteristics you add to
Power BI assets are not deleted upon synchronization, be sure to use
characteristics that are not part of the Power BI operating model.

The following image shows the relations between Power BI asset types.

cdlxxvi

to_diagrams.htm

Harvested metadata per asset type
This table shows the harvested Power BI metadata for each Power BI asset type. This
table also shows the resource ID for each asset type, attribute, and relation.

Asset type Synchronized metadata Resource ID

Power BI Capacity

Resource ID: 00000000-0000-
0000-0000-100000000002

Full name

Display name

Server hosts / is hosted in
Business Dimension

00000000-0000-0000-0000-
120000000000

BI Folder assembles / is
assembled in BI Folder

00000000-0000-0000-0000-
120000000001

cdlxxvii

Asset type Synchronized metadata Resource ID

Power BI Column

Resource ID: 00000000-0000-
0000-0000-100000000008

Full name

Display name

Description 00000000-0000-0000-0000-
000000003114

Calculation Rule 00000000-0000-0000-0000-
000000003117

Role in Report 00000000-0000-0000-0000-
000000000266

Technical Data Type 00000000-0000-0000-0000-
000000000219

BI Data Model contains / is part
of BI Data Attribute

00000000-0000-0000-0000-
000000007196

Data Element targets / sources
Data Element

00000000-0000-0000-0000-
000000007069

Data Entity contains / is part of
Data Attribute

00000000-0000-0000-0000-
000000007047

cdlxxviii

Asset type Synchronized metadata Resource ID

Power BI Dashboard

Resource ID: 00000000-0000-
0000-0000-100000000004

Full name

Display name

URL

Note If the dashboard is
part of an app in Power BI,
the URL on the asset page
links to the dashboard in the
Power BI app.

00000000-0000-0000-0000-
000000000258

Data asset is source / Source for
BI Report

00000000-0000-0000-0000-
120000000013

Report uses / used in Report 00000000-0000-0000-0000-
120000000007

Report related to / impacted by
Business Asset

00000000-0000-0000-0000-
120000000006

Power BI Data Flow

Resource ID: 00000000-0000-
0000-0000-100000000010

Full name

Display name

Description 00000000-0000-0000-0000-
000000003114

BI Folder contains / contained in
Data Asset

00000000-0000-0000-0000-
120000000014

Data Entity is part of / contains Data
Model

00000000-0000-0000-0000-
000000007046

BI Data Model is source for / sources
BI Data Model

00000000-0000-0000-0000-
120000000022

cdlxxix

Asset type Synchronized metadata Resource ID

Power BI Data Mart

Resource ID: 00000000-0000-
0000-0000-100000000052

Full name

Display name

Certified 00000000-0000-0000-0001-
000500000001

Description 00000000-0000-0000-0000-
000000003114

Document modification date 00000000-0000-0000-0000-
000000000261

URL 00000000-0000-0000-0000-
000000000258

Owner in source

The only harvested metadata are
email addresses.

00000000-0000-0000-0000-
200000000001

Data Asset is source for / sources
BI Report

00000000-0000-0000-0000-
120000000013

BI Folder contains / contained in
Data Asset

00000000-0000-0000-0000-
120000000014

Data Entity is part of / contains Data
Model

00000000-0000-0000-0000-
000000007046

BI Data Model is source for / sources
BI Data Model

00000000-0000-0000-0000-
120000000022

cdlxxx

Asset type Synchronized metadata Resource ID

Power BI Data Model

Resource ID: 00000000-0000-
0000-0000-100000000007

Full name

Display name

Owner in source

The only harvested metadata are
email addresses.

00000000-0000-0000-0000-
200000000001

Source type 00000000-0000-0000-0000-
000000000230

BI Data Model contains / is part of BI
Data Attribute

00000000-0000-0000-0000-
000000007196

BI Folder contains / contained in
Data Asset

00000000-0000-0000-0000-
120000000014

Data Asset is source for / source
BI report

00000000-0000-0000-0000-
120000000013

Data Entity is part of / contains Data
Model

00000000-0000-0000-0000-
000000007046

BI Data Model is source for / sources
BI Data Model

00000000-0000-0000-0000-
120000000022

cdlxxxi

Asset type Synchronized metadata Resource ID

Power BI Report

Resource ID: 00000000-0000-
0000-0000-100000000006

Full name

Display name

Description 00000000-0000-0000-0000-
000000003114

Owner in source

The only harvested metadata are
email addresses.

00000000-0000-0000-0000-
200000000001

Source type 00000000-0000-0000-0000-
000000000230

URL

Note If the report is part of
an app in Power BI, the URL
on the asset page links to
the report in the Power BI
app.

00000000-0000-0000-0000-
000000000258

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

Data Asset is source for / source
BI Report

00000000-0000-0000-0000-
120000000013

Report related to / impacted by
Business Asset

00000000-0000-0000-0000-
120000000006

Report uses / used in Report 00000000-0000-0000-0000-
120000000007

cdlxxxii

Asset type Synchronized metadata Resource ID

Power BI Server

Resource ID: 00000000-0000-
0000-0000-100000000001

Full name

Display name

Server hosts / is hosted in
Business Dimension

00000000-0000-0000-0000-
120000000000

Power BI Table

Resource ID: 00000000-0000-
0000-0000-100000000009

Full name

Display name

Description 00000000-0000-0000-0000-
000000003114

Calculation Rule 00000000-0000-0000-0000-
000000003117

Data Entity contains / is part of
Data Attribute

00000000-0000-0000-0000-
000000007047

Data Entity is part of / contains
Data Model

00000000-0000-0000-0000-
000000007046

cdlxxxiii

Asset type Synchronized metadata Resource ID

Power BI Tile

Resource ID: 00000000-0000-
0000-0000-100000000005

Full name

Display name

URL 00000000-0000-0000-0000-
000000000258

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

Data Asset is source for / source
BI Report

00000000-0000-0000-0000-
120000000013

Report related to / impacted by
Business Asset

00000000-0000-0000-0000-
120000000006

Report uses / used in Report 00000000-0000-0000-0000-
120000000007

cdlxxxiv

Asset type Synchronized metadata Resource ID

Power BI Workspace

Resource ID: 00000000-0000-
0000-0000-100000000003

Full name

Display name

Description 00000000-0000-0000-0000-
000000003114

State 00000000-0000-0000-0000-
000000000227

Owner in source

The only harvested metadata are
email addresses.

00000000-0000-0000-0000-
200000000001

BI Folder assembles / is
assembled in BI Folder

00000000-0000-0000-0000-
120000000001

BI Folder contains / contained in
Data Asset

00000000-0000-0000-0000-
120000000014

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

Note The metadata that is shown on the assets' pages depends on the asset type's
assignment. As a result, you might not see all harvested metadata on the asset's
page by default.

Additional information

For the Owner in source attribute, the following rules apply:

l If the system creates a Power BI data object and the Power BI data object does not
have a user ID, the Owner in source attribute is shown as System on the asset page.

l If the user who created a Power BI data object no longer exists, the Owner in source
attribute is shown as empty on the asset page.

cdlxxxv

URLs to reports and dashboards that can't be found in Power BI

When you add a report or dashboard to an app in Power BI, what happens is that copies of
the original report or dashboard is created in the app. The URL on the corresponding asset
page in Collibra links directly to the copied report or dashboard in the app. However, if the
name of the original report or dashboard changes, or if it has been deleted in Power BI, the
copies in the app remain unchanged. Therefore, to remedy what would otherwise be links
to outdated copies of reports or dashboards in Power BI, the URLs on the asset pages
instead link to the Power BI app.

Example of ingested Power BI metadata
The following image shows an example structure after Power BI ingestion.

Recommended hierarchy within a domain
You can enable hierarchies for the domain (or domains) in which your Power BI assets
were ingested. Doing so makes it easier to understand the relation between your Power BI
assets, when viewing the assets on the domain page.

Follow these steps to enable and configure the recommended hierarchy.

cdlxxxvi

co_working-with-hierarchies.htm

Steps

1. Open the domain page of the relevant BI Catalog domain.
2. On the content toolbar, click .

» The Configure Hierarchy dialog box appears.
3. Select Enable Hierarchy.
4. Select Single path.
5. Start typing and select each of the following relation types:

o Server hosts Business Dimension
o BI Folder assembles BI Folder
o Business Dimension groups Report
o BI Report source Data Asset
o Data Model contains Data Entity
o Data Entity contains Data Attribute

6. Click Apply.

Note
l In an asset view, if any asset is deleted, for example via synchronization or
manual deletion, the view is recreated and the hierarchy is lost. In this case,
you can again enable and configure the recommended hierarchy.

l When viewing the hierarchy for a community or domain, if the parent of a node
that is in the community or domain belongs to a different community or
domain, that node is not shown in the hierarchy.

Create a Power BI operating model diagram view
You can create a Power BI-specific diagram view, to visualize the operating model. The
following procedure provides instruction on how to quickly create a new diagram view by
copying and pasting the JSON code in the diagram view text editor.

Steps

1. Open an asset page.
2. In the tab pane, click Diagram.

» The diagram appears in the default diagram view.
3. Click to add a new view.

cdlxxxvii

to_diagram-views.htm

4. Click the Text tab, to switch to the diagram view text editor.
5. Click Show me the JSON code below this procedure, to expand the code.
6. Paste the code in diagram view text editor.
7. Click Save.
8. Edit the name and description of the diagram view, to suit your needs.

Show me the JSON code

{
"nodes": [

{
"id": "Power BI Server",
"type": {

"id": "00000000-0000-0000-0000-100000000001"
},
"fields": []

},
{

"id": "Power BI Capacity",
"type": {

"id": "00000000-0000-0000-0000-100000000002"
}

},
{

"id": "Power BI Workspace",
"type": {

"id": "00000000-0000-0000-0000-100000000003"
}

},
{

"id": "Power BI Dashboard",
"type": {

"id": "00000000-0000-0000-0000-100000000004"
}

},
{

"id": "Power BI Report",
"type": {

"id": "00000000-0000-0000-0000-100000000006"
}

},
{

"id": "Power BI Tile",
"type": {

"id": "00000000-0000-0000-0000-100000000005"
}

},
{

"id": "Power BI Data Model",

cdlxxxviii

ta_edit-diagram-view-name.htm

"type": {
"id": "00000000-0000-0000-0000-100000000007"

}
},
{

"id": "Power BI Data Flow",
"type": {

"id": "00000000-0000-0000-0000-100000000010"
}

},
{

"id": "Power BI Table",
"type": {

"id": "00000000-0000-0000-0000-100000000009"
}

},
{

"id": "Power BI Column",
"type": {

"id": "00000000-0000-0000-0000-100000000008"
}

},
{

"id": "Column",
"type": {

"id": "00000000-0000-0000-0000-000000031008"
}

},
{

"id": "Table",
"type": {

"id": "00000000-0000-0000-0000-000000031007"
}

},
{

"id": "Schema",
"type": {

"id": "00000000-0000-0000-0001-000400000002"
}

},
{

"id": "Database",
"type": {

"id": "00000000-0000-0000-0000-000000031006"
}

},
{

"id": "Power BI Data Mart",
"type": {

"id": "00000000-0000-0000-0000-100000000052"

cdlxxxix

}
}

],
"edges": [

{
"from": "Power BI Server",
"to": "Power BI Capacity",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000000"
},
"roleDirection": true

},
{

"from": "Power BI Capacity",
"to": "Power BI Workspace",
"label": "",
"style": "boxing",
"type": {

"id": "00000000-0000-0000-0000-120000000001"
},
"roleDirection": true

},
{

"from": "Power BI Workspace",
"to": "Power BI Dashboard",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000002"
},
"roleDirection": true

},
{

"from": "Power BI Workspace",
"to": "Power BI Report",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000002"
},
"roleDirection": true

},
{

"from": "Power BI Workspace",
"to": "Power BI Tile",
"label": "",
"style": "arrow",
"type": {

cdxc

"id": "00000000-0000-0000-0000-120000000002"
},
"roleDirection": true

},
{

"from": "Power BI Workspace",
"to": "Power BI Data Model",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000014"
},
"roleDirection": true

},
{

"from": "Power BI Workspace",
"to": "Power BI Data Flow",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000014"
},
"roleDirection": true

},
{

"from": "Power BI Dashboard",
"to": "Power BI Tile",
"label": "",
"style": "boxing",
"type": {

"id": "00000000-0000-0000-0000-120000000007"
},
"roleDirection": true

},
{

"from": "Power BI Data Model",
"to": "Power BI Tile",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000013"
},
"roleDirection": true

},
{

"from": "Power BI Data Model",
"to": "Power BI Report",
"label": "",
"style": "arrow",
"type": {

cdxci

"id": "00000000-0000-0000-0000-120000000013"
},
"roleDirection": true

},
{

"from": "Power BI Data Flow",
"to": "Power BI Report",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-000000007196"
},
"roleDirection": true

},
{

"from": "Power BI Data Flow",
"to": "Power BI Table",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000014"
},
"roleDirection": true

},
{

"from": "Power BI Tile",
"to": "Power BI Report",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000007"
},
"roleDirection": true

},
{

"from": "Power BI Data Flow",
"to": "Power BI Data Flow",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000022"
},
"roleDirection": true

},
{

"from": "Power BI Column",
"to": "Column",
"label": "",
"style": "arrow",
"type": {

cdxcii

"id": "00000000-0000-0000-0000-000000007069"
},
"roleDirection": false

},
{

"from": "Column",
"to": "Table",
"label": "",
"style": "boxed",
"type": {

"id": "00000000-0000-0000-0000-000000007042"
},
"roleDirection": true

},
{

"from": "Table",
"to": "Schema",
"label": "",
"style": "boxed",
"type": {

"id": "00000000-0000-0000-0000-000000007043"
},
"roleDirection": false

},
{

"from": "Schema",
"to": "Database",
"label": "",
"style": "boxed",
"type": {

"id": "00000000-0000-0000-0000-000000007024"
},
"roleDirection": false

},
{

"from": "Power BI Data Flow",
"to": "Power BI Data Mart",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000022"
},
"roleDirection": false

},
{

"from": "Power BI Data Mart",
"to": "Power BI Data Mart",
"label": "",
"style": "arrow",
"type": {

cdxciii

"id": "00000000-0000-0000-0000-120000000022"
},
"roleDirection": true

},
{

"from": "Power BI Data Mart",
"to": "Power BI Table",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000014"
},
"roleDirection": true

},
{

"from": "Power BI Data Mart",
"to": "Power BI Data Model",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000022"
},
"roleDirection": true

},
{

"from": "Power BI Data Model",
"to": "Power BI Data Model",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000022"
},
"roleDirection": false

},
{

"from": "Power BI Table",
"to": "Power BI Data Model",
"label": "",
"style": "boxed",
"type": {

"id": "00000000-0000-0000-0000-000000007046"
},
"roleDirection": true

},
{

"from": "Power BI Column",
"to": "Power BI Table",
"label": "",
"style": "boxed",
"type": {

cdxciv

"id": "00000000-0000-0000-0000-000000007047"
},
"roleDirection": false

}
],
"showOverview": false,
"enableFilters": true,
"showLabels": true,
"showFields": true,
"showLegend": true,
"showPreview": true,
"visitStrategy": "directed",
"layout": "HierarchyTopBottom",
"maxNodeLabelLength": 50,
"maxEdgeLabelLength": 30,
"layoutOptions": {

"compactGroups": false,
"componentArrangementPolicy": "topmost",
"edgeBends": true,
"edgeBundling": true,
"edgeToEdgeDistance": 5,
"minimumLayerDistance": "auto",
"nodeToEdgeDistance": 5,
"orthogonalRouting": true,
"preciseNodeHeightCalculation": true,
"recursiveGroupLayering": true,
"separateLayers": true,
"webWorkers": true,
"nodePlacer": {

"barycenterMode": true,
"breakLongSegments": true,
"groupCompactionStrategy": "none",
"nodeCompaction": false,
"straightenEdges": true

}
}

}

l Overview and diagram view
l Harvested metadata per asset type
l Create a MicroStrategy operating model diagram view

Overview and diagram view
When you integrate MicroStrategy, Collibra Data Lineage creates new MicroStrategy
assets and relations in Data Catalog. You can see them on the asset page overview or

cdxcv

visualize them in a diagram.

Note
l The assets have the same names as their corresponding data objects in
MicroStrategy.

l Asset types are only created if you have all specific MicroStrategy and Data
Catalog permissions.

l All MicroStrategy assets are created in the same domain.
l Relations that were manually created between MicroStrategy assets and
other assets via a relation type in the MicroStrategy operating model, are
deleted after synchronizing the MicroStrategy metadata.

The following image shows the relations between MicroStrategy asset types.

Harvested metadata per asset type
This table shows the harvested MicroStrategy metadata for assets of each MicroStrategy
asset type, assuming you have the necessary subscriptions and configurations for a full
ingestion.

Important To access MicroStrategy data, you have to use the In-memory Dataset
connection method in MicroStrategy, not the Live Connect connection method. If the
data is not stored in memory, the MicroStrategy APIs can't access it.

Note The following folders in MicroStrategy are not included in the ingestion:

l Object Templates
l System Objects
l Version Update History

cdxcvi

to_diagrams.htm

Asset type Harvested MicroStrategy
metadata in Data Catalog

Resource ID

MicroStrategy Data Attribute

Resource ID: 00000000-0000-
0000-0000-100000000047

Description 00000000-0000-0000-0000-
000000003114

Technical Data Type 00000000-0000-0000-0000-
000000000219

Data Element targets / sources Data
Element

00000000-0000-0000-0000-
000000007069

Data Entity contains / is part of Data
Attribute

00000000-0000-0000-0000-
000000007047

Data Attribute used in / uses Report 00000000-0000-0000-0000-
120000000021

MicroStrategy Data Entity

Resource ID: 00000000-0000-
0000-0000-100000000048

Description 00000000-0000-0000-0000-
000000003114

Data Entity contains / is part of Data
Attribute

00000000-0000-0000-0000-
000000007047

Data Entity is part of / contains Data
Model

00000000-0000-0000-0000-
000000007046

Data Asset is source for / source BI
Report

00000000-0000-0000-0000-
120000000013

MicroStrategy Data Model

Resource ID: 00000000-0000-
0000-0000-100000000046

Note If the data model
is embedded in the
project, Collibra Data
Lineage automatically
creates a dummy data
model.

Description 00000000-0000-0000-0000-
000000003114

BI Folder contains / contained in
Data Asset

00000000-0000-0000-0000-
120000000014

Data Model contains / is part of Data
Entity

00000000-0000-0000-0000-
000000007046

cdxcvii

Asset type Harvested MicroStrategy
metadata in Data Catalog

Resource ID

MicroStrategy Document

Resource ID: 00000000-0000-
0000-0000-100000000049

Description 00000000-0000-0000-0000-
000000003114

Certified 00000000-0000-0000-0001-
000500000001

Owner in source

The only harvested metadata are
email addresses.

00000000-0000-0000-0000-
200000000001

URL

Note You can specify the
platform on which you run
MicroStrategy, in your
lineage harvester
configuration file, to ensure
the correct URL.

00000000-0000-0000-0000-
000000000258

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

BI Report contains / contained in BI
Data Model

00000000-0000-0000-0000-
120000000015

cdxcviii

Asset type Harvested MicroStrategy
metadata in Data Catalog

Resource ID

MicroStrategy Dossier

Resource ID: 00000000-0000-
0000-0000-100000000043

Description 00000000-0000-0000-0000-
000000003114

Certified 00000000-0000-0000-0001-
000500000001

Owner in source

The only harvested metadata are
email addresses.

00000000-0000-0000-0000-
200000000001

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

Report uses / used in Report 00000000-0000-0000-0000-
120000000007

MicroStrategy Folder

Resource ID: 00000000-0000-
0000-0000-100000000042

Description 00000000-0000-0000-0000-
000000003114

BI Folder assembles / is assembled
in BI Folder

00000000-0000-0000-0000-
120000000001

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

BI Folder contains / contained in
Data Asset

00000000-0000-0000-0000-
120000000014

MicroStrategy Project

Resource ID: 00000000-0000-
0000-0000-100000000041

Description 00000000-0000-0000-0000-
000000003114

BI Folder assembles / is assembled
in BI Folder

00000000-0000-0000-0000-
120000000001

Server hosts / is hosted in Business
Dimension

00000000-0000-0000-0000-
120000000000

cdxcix

Asset type Harvested MicroStrategy
metadata in Data Catalog

Resource ID

MicroStrategy Report

Resource ID: 00000000-0000-
0000-0000-100000000044

Description 00000000-0000-0000-0000-
000000003114

Certified 00000000-0000-0000-0001-
000500000001

URL 00000000-0000-0000-0000-
000000000258

Owner in source

The only harvested metadata are
email addresses.

00000000-0000-0000-0000-
200000000001

Report groups / is grouped into
Report

00000000-0000-0000-0000-
120000000004

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

Data Asset is source for / source BI
Report

00000000-0000-0000-0000-
120000000013

MicroStrategy Server

Resource ID: 00000000-0000-
0000-0000-100000000040

Server hosts / is hosted in Business
Dimension

00000000-0000-0000-0000-
120000000000

Create a MicroStrategy operating model diagram view
You can create a MicroStrategy-specific diagram view, to visualize the operating model.
The following procedure provides instruction on how to quickly create a new diagram view
by copying and pasting the JSON code in the diagram view text editor.

d

Steps

1. Open an asset page.
2. In the tab pane, click Diagram.

» The diagram appears in the default diagram view.
3. Click to add a new view.

4. Click the Text tab, to switch to the diagram view text editor.
5. Click Show me the JSON code below this procedure, to expand the code.
6. Paste the code in diagram view text editor.
7. Click Save.
8. Edit the name and description of the diagram view, to suit your needs.

Show me the JSON code

{
"nodes": [

{
"id": "MicroStrategy Report",
"type": {

"id": "00000000-0000-0000-0000-100000000044"
}

},
{

"id": "MicroStrategy Data Attribute",
"type": {

"id": "00000000-0000-0000-0000-100000000047"
},
"editorSettings": {

"edgePropsExpanded": true
}

},
{

"id": "BI Folder",
"type": {

"id": "00000000-0000-0000-0000-090000000002"
},
"display": "expanded"

},
{

"id": "MicroStrategy Dossier",
"type": {

"id": "00000000-0000-0000-0000-100000000043"
}

},
{

di

to_diagram-views.htm
ta_edit-diagram-view-name.htm

"id": "MicroStrategy Document",
"type": {

"id": "00000000-0000-0000-0000-100000000049"
}

},
{

"id": "BI Report Attribute",
"type": {

"id": "00000000-0000-0000-0000-090000000004"
}

},
{

"id": "BI Data Entity",
"type": {

"id": "00000000-0000-0000-0000-090000000007"
}

},
{

"id": "BI Data Model",
"type": {

"id": "00000000-0000-0000-0000-090000000008"
}

},
{

"id": "Column",
"type": {

"id": "00000000-0000-0000-0000-000000031008"
}

},
{

"id": "Table",
"type": {

"id": "00000000-0000-0000-0000-000000031007"
}

},
{

"id": "Schema",
"type": {

"id": "00000000-0000-0000-0001-000400000002"
}

},
{

"id": "Database",
"type": {

"id": "00000000-0000-0000-0000-000000031006"
}

},
{

"id": "Business Term",
"type": {

dii

"id": "00000000-0000-0000-0000-000000011001"
}

}
],
"edges": [

{
"from": "MicroStrategy Report",
"to": "MicroStrategy Data Attribute",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000021"
},
"roleDirection": true

},
{

"from": "BI Folder",
"to": "MicroStrategy Report",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000002"
},
"roleDirection": true

},
{

"from": "BI Folder",
"to": "BI Folder",
"label": "",
"style": "boxing",
"type": {

"id": "00000000-0000-0000-0000-120000000001"
},
"roleDirection": true

},
{

"from": "BI Folder",
"to": "MicroStrategy Dossier",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000002"
},
"roleDirection": true

},
{

"from": "BI Folder",
"to": "MicroStrategy Document",
"label": "",
"style": "arrow",

diii

"type": {
"id": "00000000-0000-0000-0000-120000000002"

},
"roleDirection": true

},
{

"from": "MicroStrategy Dossier",
"to": "BI Report Attribute",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-000000007058"
},
"roleDirection": false

},
{

"from": "MicroStrategy Document",
"to": "BI Report Attribute",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-000000007058"
},
"roleDirection": false

},
{

"from": "BI Report Attribute",
"to": "MicroStrategy Data Attribute",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000010"
},
"roleDirection": true

},
{

"from": "BI Data Entity",
"to": "MicroStrategy Data Attribute",
"label": "",
"style": "boxing",
"type": {

"id": "00000000-0000-0000-0000-000000007047"
},
"roleDirection": true

},
{

"from": "BI Data Model",
"to": "BI Data Entity",
"label": "",
"style": "boxing",

div

"type": {
"id": "00000000-0000-0000-0000-000000007046"

},
"roleDirection": false

},
{

"from": "MicroStrategy Report",
"to": "MicroStrategy Report",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000013"
},
"roleDirection": false

},
{

"from": "MicroStrategy Report",
"to": "BI Data Model",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000013"
},
"roleDirection": false

},
{

"from": "MicroStrategy Document",
"to": "BI Data Model",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000013"
},
"roleDirection": false

},
{

"from": "MicroStrategy Dossier",
"to": "BI Data Model",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000013"
},
"roleDirection": false

},
{

"from": "MicroStrategy Data Attribute",
"to": "Column",
"label": "",
"style": "arrow",

dv

"type": {
"id": "00000000-0000-0000-0000-000000007069"

},
"roleDirection": false

},
{

"from": "MicroStrategy Dossier",
"to": "BI Data Model",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000015"
},
"roleDirection": true

},
{

"from": "MicroStrategy Document",
"to": "BI Data Model",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000015"
},
"roleDirection": true

},
{

"from": "MicroStrategy Report",
"to": "BI Data Model",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000015"
},
"roleDirection": true

},
{

"from": "MicroStrategy Report",
"to": "BI Data Entity",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-000000007038"
},
"roleDirection": true

},
{

"from": "Column",
"to": "Table",
"label": "",
"style": "boxed",

dvi

"type": {
"id": "00000000-0000-0000-0000-000000007042"

},
"roleDirection": true

},
{

"from": "Table",
"to": "Schema",
"label": "",
"style": "boxed",
"type": {

"id": "00000000-0000-0000-0000-000000007043"
},
"roleDirection": false

},
{

"from": "Schema",
"to": "Database",
"label": "",
"style": "boxed",
"type": {

"id": "00000000-0000-0000-0000-000000007024"
},
"roleDirection": false

},
{

"from": "MicroStrategy Report",
"to": "Business Term",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-000000007021"
},
"roleDirection": false

},
{

"from": "MicroStrategy Report",
"to": "BI Data Entity",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000013"
},
"roleDirection": false

}
],
"showOverview": false,
"enableFilters": true,
"showLabels": false,
"showFields": true,

dvii

"showLegend": true,
"showPreview": true,
"visitStrategy": "directed",
"layout": "HierarchyLeftRight",
"maxNodeLabelLength": 50,
"maxEdgeLabelLength": 30,
"layoutOptions": {

"compactGroups": false,
"componentArrangementPolicy": "topmost",
"edgeBends": true,
"edgeBundling": true,
"edgeToEdgeDistance": 5,
"minimumLayerDistance": "auto",
"nodeToEdgeDistance": 5,
"orthogonalRouting": true,
"preciseNodeHeightCalculation": true,
"recursiveGroupLayering": true,
"separateLayers": true,
"webWorkers": true,
"nodePlacer": {

"barycenterMode": true,
"breakLongSegments": true,
"groupCompactionStrategy": "none",
"nodeCompaction": false,
"straightenEdges": true

}
}

}

l Overview and diagram view
l Harvested metadata per asset type
l Example of ingested Looker metadata
l Recommended hierarchy within a domain
l Create a Looker operating model diagram view

Overview and diagram view
The Looker scanner collects Looker metadata and sends it to the Collibra Data Lineage
service. Collibra processes the metadata and creates new Looker assets and relations in
Data Catalog. You can see them on the asset page overview or visualize them in a
diagram or in a technical lineage.

dviii

to_diagrams.htm

Note
l The assets have the same names as their counterparts in Looker. Full names
and Display names cannot be changed in Data Catalog.

l Asset types are only created if you have all specific Looker and Data Catalog
permissions.

l All Looker asset types are created in the same domain.
l Relations that were manually created between Looker assets and other
assets via a relation type in the Looker operating model are deleted after a
refresh of the Looker metadata.

The following image shows the relations between Looker asset types.

Harvested metadata per asset type
The following table shows the harvested Looker metadata for each Looker asset type. This
table also shows the resource ID for each asset type and metadata.

dix

Asset type Synchronized metadata Resource ID

Looker Dashboard

Resource ID: 00000000-0000-
0000-0000-100000000013

Full name

dx

Asset type Synchronized metadata Resource ID

Display name

Description 00000000-0000-0000-0000-
000000003114

Document creation date 00000000-0000-0000-0000-
000000000260

Document last accessed date 00000000-0000-0000-0000-
000000000268

Favorites count 00000000-0000-0000-0000-
000000000269

Owner in source

The only harvested metadata are
email addresses.

00000000-0000-0000-0000-
200000000001

Technical Data Type 00000000-0000-0000-0000-
000000000219

URL 00000000-0000-0000-0000-
000000000258

Visit count 00000000-0000-0000-0000-
000000000264

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

Report groups / is grouped into
Report

00000000-0000-0000-0000-
120000000004

Report related to / impacted by
Business Asset

00000000-0000-0000-0000-
120000000006

Report uses / used in Report 00000000-0000-0000-0000-
120000000007

dxi

Asset type Synchronized metadata Resource ID

Looker Data Set

Resource ID: 00000000-0000-
0000-0000-100000000017

Full name

Display name

Description 00000000-0000-0000-0000-
000000003114

Data Set contains / is part of
Data Element

00000000-0000-0000-0000-
000000007062

Technology Asset source
system for / source system Data
Asset

00000000-0000-0000-0000-
000000007050

Looker Data Set Column

Resource ID: 00000000-0000-
0000-0000-100000000018

Full name

Display name

Description 00000000-0000-0000-0000-
000000003114

Data Set contains / is part of
Data Element

00000000-0000-0000-0000-
000000007062

Report Attribute sourced from /
is source of Data Attribute

00000000-0000-0000-0000-
120000000010

dxii

Asset type Synchronized metadata Resource ID

Looker Folder

Resource ID: 00000000-0000-
0000-0000-100000000012

Full name

Display name

Document creation date 00000000-0000-0000-0000-
000000000260

Owner in source

The only harvested metadata are
email addresses.

00000000-0000-0000-0000-
200000000001

BI Folder assembles / is
assembled in BI Folder

00000000-0000-0000-0000-
120000000001

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

Server hosts / is hosted in
Business Dimension

00000000-0000-0000-0000-
120000000000

dxiii

Asset type Synchronized metadata Resource ID

Looker Look

Resource ID: 00000000-0000-
0000-0000-100000000014

Full name

dxiv

Asset type Synchronized metadata Resource ID

Display name

Description 00000000-0000-0000-0000-
000000003114

Document creation date 00000000-0000-0000-0000-
000000000260

Document last accessed date 00000000-0000-0000-0000-
000000000268

Document modification date 00000000-0000-0000-0000-
000000000261

Favorites count 00000000-0000-0000-0000-
000000000269

Owner in source

The only harvested metadata are
email addresses.

00000000-0000-0000-0000-
200000000001

Report image 00000000-0000-0000-0000-
000000000262

URL 00000000-0000-0000-0000-
000000000258

Visit count 00000000-0000-0000-0000-
000000000264

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

Report groups / is grouped into
Report

00000000-0000-0000-0000-
120000000004

Report uses / used in Report 00000000-0000-0000-0000-
120000000007

dxv

Asset type Synchronized metadata Resource ID

Looker Report Attribute

Resource ID: 00000000-0000-
0000-0000-100000000019

Full name

Display name

Report Attribute contained in /
contains Report

00000000-0000-0000-0000-
000000007058

Report Attribute sourced from /
is source of Data Attribute

00000000-0000-0000-0000-
120000000010

Looker Query

Resource ID: 00000000-0000-
0000-0000-100000000016

Full name

Display name

URL 00000000-0000-0000-0000-
000000000258

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

Report Attribute contained in /
contains Report

00000000-0000-0000-0000-
000000007058

Report uses / used in Report 00000000-0000-0000-0000-
120000000007

Looker Tenant

Resource ID: 00000000-0000-
0000-0000-100000000011

Full name

Display name

Description 00000000-0000-0000-0000-
000000003114

Server hosts / is hosted in
Business Dimension

00000000-0000-0000-0000-
120000000000

Technology Asset source
system for / source system Data
Asset

00000000-0000-0000-0000-
000000007050

dxvi

Asset type Synchronized metadata Resource ID

Looker Tile

Resource ID: 00000000-0000-
0000-0000-100000000015

Full name

Display name

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

Report uses / used in Report 00000000-0000-0000-0000-
120000000007

Note The metadata that is shown on the assets' pages depends on the asset type's
assignment. As a result, you might not see all harvested metadata on the asset's
page by default.

Additional information

For the Owner in source attribute, the following rules apply:

l If the system creates a Looker data object and the Looker data object does not have
a user ID, the Owner in source attribute is shown as System on the asset page.

l If the user who created a Looker data object no longer exists, the Owner in source
attribute is shown as empty on the asset page.

Example of ingested Looker metadata
The following image shows an example structure after Looker ingestion.

dxvii

Recommended hierarchy within a domain
You can enable hierarchies for the domain in which your Looker assets were ingested.
Doing so makes it easier to understand the relation between your Looker assets, when
viewing the assets on the domain page.

Follow these steps to enable and configure the recommended hierarchy.

dxviii

co_working-with-hierarchies.htm

Steps

1. Open the domain page of the relevant BI Catalog domain.
2. On the content toolbar, click .

» The Configure Hierarchy dialog box appears.
3. Select Enable Hierarchy.
4. Select Multipath.
5. Start typing and select each of the following relation types:

o Server hosts Business Dimension
o Business Dimension groups Report
o Report contains Report Attribute
o Technology Asset source system for Data Asset
o Data Set contains Data Element
o Data Attribute is source of Report Attribute

6. Click Apply.

Note
l In an asset view, if any asset is deleted, for example via synchronization or
manual deletion, the view is recreated and the hierarchy is lost. In this case,
you can again enable and configure the recommended hierarchy.

l When viewing the hierarchy for a community or domain, if the parent of a node
that is in the community or domain belongs to a different community or
domain, that node is not shown in the hierarchy.

Create a Looker operating model diagram view
You can create a Looker-specific diagram view, to visualize the operating model. The
following procedure provides instruction on how to quickly create a new diagram view by
copying and pasting the JSON code in the diagram view text editor.

Steps

1. Open an asset page.
2. In the tab pane, click Diagram.

» The diagram appears in the default diagram view.
3. Click to add a new view.

dxix

to_diagram-views.htm

4. Click the Text tab, to switch to the diagram view text editor.
5. Click Show me the JSON code below this procedure, to expand the code.
6. Paste the code in diagram view text editor.
7. Click Save.
8. Edit the name and description of the diagram view, to suit your needs.

Show me the JSON code

{
"nodes": [

{
"id": "Looker Tenant",
"type": {

"id": "00000000-0000-0000-0000-100000000011"
}

},
{

"id": "Looker Folder",
"type": {

"id": "00000000-0000-0000-0000-100000000012"
}

},
{

"id": "Looker Project",
"type": {

"id": "750ee74c-84dc-494f-84c0-7ab14105432a"
}

},
{

"id": "Looker Board",
"type": {

"id": "1118d30f-846b-4bae-93d2-97488a0d9796"
}

},
{

"id": "Looker Look",
"type": {

"id": "00000000-0000-0000-0000-100000000014"
}

},
{

"id": "Looker Dashboard",
"type": {

"id": "00000000-0000-0000-0000-100000000013"
}

},
{

"id": "Looker Data Model",
"type": {

dxx

ta_edit-diagram-view-name.htm

"id": "3ed176fa-78c8-4116-a771-9dd100ad1129"
}

},
{

"id": "Looker Data Attribute",
"type": {

"id": "232fecbc-7f20-45c2-bbcf-7329cd0b17df"
}

},
{

"id": "Looker Query",
"type": {

"id": "00000000-0000-0000-0000-100000000016"
},
"layoutRegion": "flow"

},
{

"id": "Looker Tile",
"type": {

"id": "00000000-0000-0000-0000-100000000015"
}

}
],
"edges": [

{
"from": "Looker Tenant",
"to": "Looker Folder",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000000"
},
"roleDirection": true

},
{

"from": "Looker Tenant",
"to": "Looker Project",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000000"
},
"roleDirection": true

},
{

"from": "Looker Tenant",
"to": "Looker Board",
"label": "",
"style": "arrow",
"type": {

dxxi

"id": "f953c3da-6923-4301-b467-2f7066232b47"
},
"roleDirection": false

},
{

"from": "Looker Board",
"to": "Looker Look",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000004"
},
"roleDirection": true

},
{

"from": "Looker Board",
"to": "Looker Dashboard",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000004"
},
"roleDirection": true

},
{

"from": "Looker Project",
"to": "Looker Dashboard",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000002"
},
"roleDirection": true

},
{

"from": "Looker Project",
"to": "Looker Data Model",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000014"
},
"roleDirection": true

},
{

"from": "Looker Data Model",
"to": "Looker Data Attribute",
"label": "",
"style": "boxing",
"type": {

dxxii

"id": "00000000-0000-0000-0000-000000007196"
},
"roleDirection": true

},
{

"from": "Looker Dashboard",
"to": "Looker Data Attribute",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000021"
},
"roleDirection": true

},
{

"from": "Looker Look",
"to": "Looker Data Attribute",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000021"
},
"roleDirection": true

},
{

"from": "Looker Query",
"to": "Looker Data Attribute",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000021"
},
"roleDirection": true

},
{

"from": "Looker Folder",
"to": "Looker Query",
"label": "",
"type": {

"id": "00000000-0000-0000-0000-120000000002"
},
"roleDirection": true

},
{

"from": "Looker Folder",
"to": "Looker Look",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000002"

dxxiii

},
"roleDirection": true

},
{

"from": "Looker Folder",
"to": "Looker Dashboard",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000002"
},
"roleDirection": true

},
{

"from": "Looker Folder",
"to": "Looker Tile",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000002"
},
"roleDirection": true

},
{

"from": "Looker Query",
"to": "Looker Look",
"label": "",
"style": "boxing",
"type": {

"id": "00000000-0000-0000-0000-120000000004"
},
"roleDirection": true

},
{

"from": "Looker Dashboard",
"to": "Looker Tile",
"label": "",
"style": "boxing",
"type": {

"id": "00000000-0000-0000-0000-120000000004"
},
"roleDirection": true

},
{

"from": "Looker Dashboard",
"to": "Looker Look",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000007"

dxxiv

},
"roleDirection": true

},
{

"from": "Looker Query",
"to": "Looker Tile",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000007"
},
"roleDirection": true

},
{

"from": "Looker Folder",
"to": "Looker Folder",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000001"
},
"roleDirection": true

}
],
"showOverview": false,
"enableFilters": true,
"showLabels": true,
"showFields": true,
"showLegend": true,
"showPreview": true,
"visitStrategy": "directed",
"layout": "HierarchyLeftRight",
"maxNodeLabelLength": 50,
"maxEdgeLabelLength": 30,
"layoutOptions": {

"compactGroups": false,
"componentArrangementPolicy": "topmost",
"edgeBends": true,
"edgeBundling": true,
"edgeToEdgeDistance": 5,
"minimumLayerDistance": "auto",
"nodeToEdgeDistance": 5,
"orthogonalRouting": true,
"preciseNodeHeightCalculation": true,
"recursiveGroupLayering": true,
"separateLayers": true,
"webWorkers": true,
"nodePlacer": {

"barycenterMode": true,
"breakLongSegments": true,

dxxv

"groupCompactionStrategy": "none",
"nodeCompaction": false,
"straightenEdges": true

}
}

}

l Overview and diagram view
l Harvested metadata per asset type
l Example of ingested SSRS and PBRS metadata
l Recommended hierarchy within a domain
l Create a SSRS and PBRS operating model diagram view

Overview and diagram view
The lineage harvester collects SQL Server Reporting Services (SSRS) metadata and
sends it to the Collibra Data Lineage service. Collibra processes the metadata and creates
new SSRS assets and relations in Data Catalog. You can see them on the asset page
overview or visualize them in a diagram or in a technical lineage.

Note
l The assets have the same names as their counterparts in SSRS and Power
BI Report Server (PBRS). Full names and Names cannot be changed in Data
Catalog.

l Assets ingested from SSRS and PBRS are called SSRS assets in Data
Catalog, except for PBRS reports which are called Power BI Report assets.

l Asset types are only created if you have all specific Data Catalog permissions.
l All SSRS and PBRS assets are created in the same domain.
l Relations that were manually created between SSRS assets or PBRS assets
and other assets via a relation type in the SSRS and PBRS operating model,
are deleted after synchronizing the metadata.

The following image shows the relations between SSRS asset types and the Power
BI Report asset type.

dxxvi

to_diagrams.htm

Harvested metadata per asset type
This table shows the harvested SSRS and PBRS metadata for each SSRS asset type and
Power BI Report asset type, assuming you have the necessary subscriptions and
configurations for a full ingestion. This table also shows the resource ID for each asset
type and metadata.

Asset type Synchronized metadata Resource ID

SSRS Column

Resource ID: 00000000-0000-
0000-0000-100000000029

Full name

Display name

Description 00000000-0000-0000-0000-
000000003114

Technical Data Type 00000000-0000-0000-0000-
000000000219

BI Data Model contains / is part
of BI Data Attribute

00000000-0000-0000-0000-
000000007196

Data Element targets / sources
Data Element

00000000-0000-0000-0000-
000000007069

Data Entity contains / is part of
Data Attribute

00000000-0000-0000-0000-
000000007047

dxxvii

Asset type Synchronized metadata Resource ID

SSRS Data Model

Resource ID: 00000000-0000-
0000-0000-100000000028

Full name

Display name

Certified 00000000-0000-0000-0001-
000500000001

Description 00000000-0000-0000-0000-
000000003114

Document creation date 00000000-0000-0000-0000-
000000000260

Document modification date 00000000-0000-0000-0000-
000000000261

Document size 00000000-0000-0000-0000-
000000000259

Location 00000000-0000-0000-0000-
000000000203

URL 00000000-0000-0000-0000-
000000000258

Visible on server 00000000-0000-0000-0000-
000000000265

BI Data Model contains / is part of BI
Data Attribute

00000000-0000-0000-0000-
000000007196

BI Folder contains / contained in
Data Asset

00000000-0000-0000-0000-
120000000014

Data Asset is source for / source
BI report

00000000-0000-0000-0000-
120000000013

Data Entity is part of / contains
Data Model

00000000-0000-0000-0000-
000000007046

dxxviii

Asset type Synchronized metadata Resource ID

SSRS Folder

Resource ID: 00000000-0000-
0000-0000-100000000024

Full name

Display name

Description 00000000-0000-0000-0000-
000000003114

Document creation date 00000000-0000-0000-0000-
000000000260

Document modification date 00000000-0000-0000-0000-
000000000261

Location 00000000-0000-0000-0000-
000000000203

URL 00000000-0000-0000-0000-
000000000258

Visible on server 00000000-0000-0000-0000-
000000000265

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

BI Folder assembles / is assembled
in BI Folder

00000000-0000-0000-0000-
120000000001

BI Folder contains / contained in
Data Asset

00000000-0000-0000-0000-
120000000014

Server hosts / is hosted in
Business Dimension

00000000-0000-0000-0000-
120000000000

dxxix

Asset type Synchronized metadata Resource ID

SSRS KPI

Resource ID: 00000000-0000-
0000-0000-100000000026

Full name

Display name

Certified 00000000-0000-0000-0001-
000500000001

Description 00000000-0000-0000-0000-
000000003114

Document creation date 00000000-0000-0000-0000-
000000000260

Document modification date 00000000-0000-0000-0000-
000000000261

Document size 00000000-0000-0000-0000-
000000000259

Location 00000000-0000-0000-0000-
000000000203

URL 00000000-0000-0000-0000-
000000000258

Visible on server 00000000-0000-0000-0000-
000000000265

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

Data Asset is source for / source
BI Report

00000000-0000-0000-0000-
120000000013

Report Attribute contained in /
contains Report

00000000-0000-0000-0000-
000000007058

Report related to / impacted by
Business Asset

00000000-0000-0000-0000-
120000000006

dxxx

Asset type Synchronized metadata Resource ID

SSRS Parameter

Resource ID: 00000000-0000-
0000-0000-100000000027

Full name

Display name

Description 00000000-0000-0000-0000-
000000003114

Business Asset represents /
represented by Data Asset

00000000-0000-0000-0000-
000000007038

Report Attribute contained in /
contains Report

00000000-0000-0000-0000-
000000007058

Report Attribute sourced from / is
source of Data Attribute

00000000-0000-0000-0000-
120000000010

dxxxi

Asset type Synchronized metadata Resource ID

SSRS Report

Resource ID: 00000000-0000-
0000-0000-100000000025

Full name

Display name

Certified 00000000-0000-0000-0001-
000500000001

Description 00000000-0000-0000-0000-
000000003114

Document creation date 00000000-0000-0000-0000-
000000000260

Document modification date 00000000-0000-0000-0000-
000000000261

Document size 00000000-0000-0000-0000-
000000000259

Location 00000000-0000-0000-0000-
000000000203

URL 00000000-0000-0000-0000-
000000000258

Visible on server 00000000-0000-0000-0000-
000000000265

Business Dimension groups / is
grouped into Report

00000000-0000-0000-0000-
120000000002

Data Asset is source for / source
BI Report

00000000-0000-0000-0000-
120000000013

Report related to / impacted by
Business Asset

00000000-0000-0000-0000-
120000000006

Report uses / used in Report 00000000-0000-0000-0000-
120000000007

dxxxii

Asset type Synchronized metadata Resource ID

SSRS Server

Resource ID: 00000000-0000-
0000-0000-100000000023

Full name

Display name

Description 00000000-0000-0000-0000-
000000003114

Server hosts / is hosted in
Business Dimension

00000000-0000-0000-0000-
120000000000

SSRS Table

Resource ID: 00000000-0000-
0000-0000-100000000030

Full name

Display name

Description 00000000-0000-0000-0000-
000000003114

Data Entity contains / is part of
Data Attribute

00000000-0000-0000-0000-
000000007047

Data Entity is part of / contains
Data Model

00000000-0000-0000-0000-
000000007046

Example of ingested SSRS and PBRS metadata
The following image shows an example structure after SSRS and PBRS ingestion.

dxxxiii

Recommended hierarchy within a domain
You can enable hierarchies for the domain in which your SSRS assets were ingested.
Doing so makes it easier to understand the relation between your SSRS assets, when
viewing the assets on the domain page.

Follow these steps to enable and configure the recommended hierarchy.

dxxxiv

co_working-with-hierarchies.htm

Steps

1. Open the domain page of the relevant BI Catalog domain.
2. On the content toolbar, click .

» The Configure Hierarchy dialog box appears.
3. Select Enable Hierarchy.
4. Select Multipath.
5. Start typing and select each of the following relation types:

o Server hosts Business Dimension
o Business Dimension groups Report
o BI Folder contains Data Asset
o Data Set is source for BI Report
o Report contains Report Attribute
o BI Folder contains Data Asset
o BI Data Model contains BI Data Attribute
o Data Entity contains Data Attribute

6. Click Apply.

Note
l In an asset view, if any asset is deleted, for example via synchronization or
manual deletion, the view is recreated and the hierarchy is lost. In this case,
you can again enable and configure the recommended hierarchy.

l When viewing the hierarchy for a community or domain, if the parent of a node
that is in the community or domain belongs to a different community or
domain, that node is not shown in the hierarchy.

Create an SSRS and PBRS operating model diagram view
You can create a diagram view for SSRS and PBRS to visualize the operating model.
Complete the following steps to create a new diagram view by copying and pasting the
JSON code in the diagram view text editor.

dxxxv

Steps

1. Open an asset page.
2. In the tab pane, click Diagram.

» The diagram appears in the default diagram view.
3. Click to add a new view.

4. Click the Text tab, to switch to the diagram view text editor.
5. Click Show me the JSON code below this procedure, to expand the code.
6. Paste the code in diagram view text editor.
7. Click Save.
8. Edit the name and description of the diagram view, to suit your needs.

Show me the JSON code

{
"nodes": [
{

"id": "SSRS Column",
"type": {

"id": "00000000-0000-0000-0000-100000000029"
}

},
{

"id": "SSRS Data Model",
"type": {

"id": "00000000-0000-0000-0000-100000000028"
}

},
{

"id": "SSRS Table",
"type": {

"id": "00000000-0000-0000-0000-100000000030"
}

},
{

"id": "SSRS KPI",
"type": {

"id": "00000000-0000-0000-0000-100000000026"
}

},
{

"id": "SSRS Parameter",
"type": {

"id": "00000000-0000-0000-0000-100000000027"
}

dxxxvi

to_diagram-views.htm
ta_edit-diagram-view-name.htm

},
{

"id": "SSRS Folder",
"type": {

"id": "00000000-0000-0000-0000-100000000024"
}

},
{

"id": "Power BI Report",
"type": {

"id": "00000000-0000-0000-0000-100000000006"
}

},
{

"id": "SSRS Report",
"type": {

"id": "00000000-0000-0000-0000-100000000025"
}

},
{

"id": "SSRS Folder 2",
"type": {

"id": "00000000-0000-0000-0000-100000000024"
}

},
{

"id": "SSRS Server",
"type": {

"id": "00000000-0000-0000-0000-100000000023"
}

},
{

"id": "Column",
"type": {

"id": "00000000-0000-0000-0000-000000031008"
}

},
{

"id": "Table",
"type": {

"id": "00000000-0000-0000-0000-000000031007"
}

},
{

"id": "Schema",
"type": {

"id": "00000000-0000-0000-0001-000400000002"
}

},
{

dxxxvii

"id": "Database",
"type": {

"id": "00000000-0000-0000-0000-000000031006"
}

}
],
"edges": [
{

"from": "SSRS Data Model",
"to": "SSRS Column",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-000000007196"
},
"roleDirection": true

},
{

"from": "SSRS Table",
"to": "SSRS Column",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-000000007047"
},
"roleDirection": true

},
{

"from": "SSRS Data Model",
"to": "SSRS Table",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-000000007046"
},
"roleDirection": true

},
{

"from": "SSRS Data Model",
"to": "SSRS KPI",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000013"
},
"roleDirection": true

},
{

"from": "SSRS KPI",
"to": "SSRS Parameter",

dxxxviii

"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000014"
},
"roleDirection": true

},
{

"from": "SSRS Folder",
"to": "SSRS Data Model",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-120000000014"
},
"roleDirection": true

},
{

"from": "SSRS Folder",
"to": "Power BI Report",
"label": "",
"style": "boxing",
"type": {

"id": "00000000-0000-0000-0000-120000000002"
},
"roleDirection": true

},
{

"from": "SSRS Folder",
"to": "SSRS Report",
"label": "",
"style": "boxing",
"type": {

"id": "00000000-0000-0000-0000-120000000002"
},
"roleDirection": true

},
{

"from": "SSRS Folder",
"to": "SSRS KPI",
"label": "",
"style": "boxing",
"type": {

"id": "00000000-0000-0000-0000-120000000004"
},
"roleDirection": true

},
{

"from": "SSRS Server",
"to": "SSRS Folder 2",

dxxxix

"label": "",
"style": "boxing",
"type": {

"id": "00000000-0000-0000-0000-120000000000"
},
"roleDirection": false

},
{

"from": "SSRS Folder 2",
"to": "SSRS Folder",
"label": "",
"style": "boxing",
"type": {

"id": "00000000-0000-0000-0000-120000000001"
},
"roleDirection": true

},
{

"from": "SSRS Folder",
"to": "SSRS Server",
"label": "",
"style": "boxed",
"type": {

"id": "00000000-0000-0000-0000-120000000000"
},
"roleDirection": false

},
{

"from": "SSRS Report",
"to": "SSRS Data Model",
"label": "",
"style": "arrow",
"type": {
"id": "00000000-0000-0000-0000-120000000013"
},
"roleDirection": false

},
{

"from": "SSRS Column",
"to": "Column",
"label": "",
"style": "arrow",
"type": {

"id": "00000000-0000-0000-0000-000000007069"
},
"roleDirection": false

},
{

"from": "Column",
"to": "Table",

dxl

"label": "",
"style": "boxed",
"type": {

"id": "00000000-0000-0000-0000-000000007042"
},
"roleDirection": true

},
{

"from": "Table",
"to": "Schema",
"label": "",
"style": "boxed",
"type": {

"id": "00000000-0000-0000-0000-000000007043"
},
"roleDirection": false

},
{

"from": "Schema",
"to": "Database",
"label": "",
"style": "boxed",
"type": {

"id": "00000000-0000-0000-0000-000000007024"
},
"roleDirection": false

}
],
"showOverview": false,
"enableFilters": true,
"showLabels": false,
"showFields": true,
"showLegend": true,
"showPreview": true,
"visitStrategy": "directed",
"layout": "HierarchyLeftRight",
"maxNodeLabelLength": 50,
"maxEdgeLabelLength": 30,
"layoutOptions": {

"compactGroups": false,
"componentArrangementPolicy": "topmost",
"edgeBends": true,
"edgeBundling": true,
"edgeToEdgeDistance": 5,
"minimumLayerDistance": "auto",
"nodeToEdgeDistance": 5,
"orthogonalRouting": true,
"preciseNodeHeightCalculation": true,
"recursiveGroupLayering": true,
"separateLayers": true,

dxli

"webWorkers": true,
"nodePlacer": {

"barycenterMode": true,
"breakLongSegments": true,
"groupCompactionStrategy": "none",
"nodeCompaction": false,
"straightenEdges": true

}
}

}

dxlii

Technical users
This section caters primarily to the following technically-focused Collibra Data Lineage
customers:

Types of technical roles What you want from Collibra Data Lineage

l Data Engineer
l Enterprise Data Architect
l Integrations Engineer
l Artificial Intelligence / Machine
Learning Engineer

l Systems Engineer
l Data Infrastructure Engineer
l Data Quality Engineer

l Shop for datasets.
l Collect and evaluate data.
l Consult data models in Data Catalog.
l Perform impact analysis.
l Evaluate data security.
l Ensure the success of data migration from one data
source to another.

Supported data sources for technical lineage dxliii

Transformation logic dlxxi

Technical lineage export types dlxxii

BI integration concepts dlxxvii

Technical lineage viewer dcxvii

Supported data sources for technical lineage
Collibra Data Intelligence Cloud supports many data sources and metadata sources,
including JDBC data sources, ETL tools and BI tools, for which you can create a technical
lineage.

For a complete list of required permissions per supported data source type, see the
Requirements and permissions section in Prepare the lineage harvester configuration file.

Note Using an older version of a data source might not work as expected; however,
we don't expect problems if you use a newer version.

dxliii

#permissions

JDBC data sources
The following tables show the supported JDBC data sources.

Lineage harvester
The following table shows the supported JDBC data sources and driver versions that have
been tested. You can connect to them via a JDBC driver or by creating a folder.

JDBC data source type Supported
versions

Connection
type

Scope

Amazon Redshift 1.2.34.1058
and newer

JDBC, Folder SQL based input without stored procedures.

Azure SQL server Newest
version

JDBC, Folder SQL based input and stored procedures.

Azure SQL Data
Warehouse

Newest
version

JDBC, Folder SQL based input and stored procedures.

Azure Synapse Analytics Newest
version

JDBC, Folder SQL based input and stored procedures.

Google BigQuery Newest
version

JDBC, Folder SQL based input without stored procedures.

Greenplum 6.10 and
newer

JDBC, Folder SQL based input.

HiveQL (SQL-like
statements)

2.3.5 and
newer

JDBC, Folder SQL based input and connection via an AWS
host.

IBM Db2 11.5 and
newer

JDBC, Folder SQL based input without stored procedures.

Oracle 11g, 12c and
newer

JDBC, Folder SQL based input and stored procedures.

dxliv

JDBC data source type Supported
versions

Connection
type

Scope

PostgreSQL 9.4, 9.5 and
newer

JDBC, Folder SQL based input without stored procedures.

Microsoft SQL Server 2014, 2016
and newer

JDBC, Folder SQL based input and stored procedures.

MySQL 5.7, 8 and
newer

JDBC, Folder SQL based input without stored procedures.

Netezza 7.2.1.0 and
newer

JDBC, Folder SQL based input without stored procedures.

SAP Hana 2.00.40 and
newer

JDBC, Folder SQL based input and SAP HANA Information
views, which includes attributes, analytic views
and calculation views from database table or
view data sources.

Script-based calculation views and stored
procedures are out of scope.

Important Collibra Data Lineage
supports SQL based input and SAP
HANA Information views are
supported for SAP HANA on-
premises. However, calculated
views are not supported for SAP
HANA Cloud.

Snowflake Newest
version

JDBC, Folder l SQL based input without stored
procedures.

l SQL-API based input with stored
procedures.

For more information, go to Technical lineage
for Snowflake ingestion methods.

dxlv

JDBC data source type Supported
versions

Connection
type

Scope

Spark SQL 2.4.3 and
newer

JDBC, Folder SQL-based input without stored procedures and
connection via an AWS host.

For Spark SQL data source, we recommend
using the folder connection type to connect to
the directory with your SQL queries.

Sybase Adaptive Server
Enterprise

16.0 SP02
and newer

JDBC, Folder SQL based input without stored procedures.

Teradata 15.0,
16.20.07.01
and newer

JDBC, Folder SQL based input, including BTEQ scripts.

Technical lineage via Edge
The following table lists the supported JDBC data sources and connection types you can
use when you add capabilities for different data sources. The Shared Storage connection
is equivalent to the folder connection type when you use the lineage harvester.

JDBC data
source type

Supported
versions

Connection type Scope

Amazon
Redshift

1.2.34.1058 and
newer

JDBC
connection,

Shared Storage
connection

SQL based input without stored procedures.

Azure SQL
server

Newest version JDBC
connection,

Shared Storage
connection

SQL based input and stored procedures.

dxlvi

JDBC data
source type

Supported
versions

Connection type Scope

Azure SQL
Data
Warehouse

Newest version JDBC
connection,

Shared Storage
connection

SQL based input and stored procedures.

Azure
Synapse
Analytics

Newest version JDBC
connection,

Shared Storage
connection

SQL based input and stored procedures.

Google
BigQuery

Newest version JDBC
connection,

Shared Storage
connection

SQL based input without stored procedures.

Greenplum 6.10 and newer JDBC
connection,

Shared Storage
connection

SQL based input.

HiveQL (SQL-
like
statements)

2.3.5 and newer JDBC
connection,

Shared Storage
connection

SQL based input and connection via an AWS host.

IBM Db2 11.5 and newer JDBC
connection,

Shared Storage
connection

SQL based input without stored procedures.

Oracle 11g, 12c and
newer

JDBC
connection,

Shared Storage
connection

SQL based input and stored procedures.

dxlvii

JDBC data
source type

Supported
versions

Connection type Scope

PostgreSQL 9.4, 9.5 and
newer

JDBC
connection,

Shared Storage
connection

SQL based input without stored procedures.

Microsoft SQL
Server

2014, 2016 and
newer

JDBC
connection,

Shared Storage
connection

SQL based input and stored procedures.

MySQL 5.7, 8 and newer JDBC
connection,

Shared Storage
connection

SQL based input without stored procedures.

Netezza 7.2.1.0 and
newer

JDBC
connection,

Shared Storage
connection

SQL based input without stored procedures.

SAP Hana 2.00.40 and
newer

JDBC
connection,

Shared Storage
connection

SQL based input and SAP HANA Information views,
which includes attributes, analytic views and
calculation views from database table or view data
sources.

Script-based calculation views and stored
procedures are out of scope.

Snowflake Newest version JDBC
connection,

Shared Storage
connection

l SQL based input without stored procedures.
l SQL-API based input with stored
procedures.

For more information, go to Technical lineage for
Snowflake ingestion methods.

dxlviii

JDBC data
source type

Supported
versions

Connection type Scope

Spark SQL 2.4.3 and newer JDBC
connection,

Shared Storage
connection

SQL-based input without stored procedures and
connection via an AWS host.

For Spark SQL data source, we recommend using
the folder connection type to connect to the directory
with your SQL queries.

Sybase
Adaptive
Server
Enterprise

16.0 SP02 and
newer

JDBC
connection,

Shared Storage
connection

SQL based input without stored procedures.

Teradata 15.0,
16.20.07.01 and
newer

JDBC
connection,

Shared Storage
connection

SQL based input, including BTEQ scripts.

ETL tools
The following table shows the supported ETL tools.

Lineage harvester
The following table shows the supported ETL tools and driver versions that have been
tested. You can connect to them via an API or by creating a folder.

ETL tool Supported
versions

Connection
type

Scope

Azure Data Factory 2 and newer API Commonly supported transformations and
activities in Azure Data Factory. For
details, go to Supported transformation
details.

dxlix

ETL tool Supported
versions

Connection
type

Scope

IBM InfoSphere
DataStage

11.5 and
newer

Folder Commonly used DataStage ETL components
including SQL overrides and transformation
details.

Collibra Data Lineagesupports IBM InfoSphere
DataStage transformation logic.

You have to prepare a folder with all data
objects that you want to process.

Informatica Intelligent
Cloud Services,
specifically Cloud Data
Integration

Tip Data
Integration is one
of the Informatica
Intelligent Cloud
services.

Cloud,
newest only

API Commonly used transformations in Informatica
Intelligent Cloud Services: Data Integration,
including SQL overrides.

Supported data sources are locally stored flat
files and databases.

Informatica PowerCenter 9.6 and newer Folder Commonly used transformations in Informatica
PowerCenter, including SQL overrides.

You have to prepare a folder with all data
objects that you want to process.

Matillion Newest
version

API SQL based input without stored procedures.

The lineage harvester can only access Redshift
and Snowflake projects.

dl

https://docs.informatica.com/integration-cloud/cloud-data-integration/current-version/introduction/introducing-informatica-cloud--data-integration.html
https://docs.informatica.com/integration-cloud/cloud-data-integration/current-version/introduction/introducing-informatica-cloud--data-integration.html

ETL tool Supported
versions

Connection
type

Scope

SQL Server Integration
Services (SSIS)

2012 and
newer

Package
format
version 6 or
newer.

Folder All commonly used transformations in SSIS,
data flows and mappings, including SQL
overrides.

Important SQL statements from Excel
are not supported.

You have to prepare a folder with all data
objects that you want to process.

Technical lineage via Edge
The following table lists the supported ETL data sources and connection types you can
use when you add capabilities for different data sources. The Shared Storage connection
is equivalent to the folder connection type when you use the lineage harvester. The API
connection type is not supported for Informatica Intelligent Cloud Services (IICS) and
Matillion yet on Edge. You can use Shared Storage connections when you create the
technical lineage for IICS and Matillion on Edge.

ETL tool Supported
versions

Connection type Scope

Azure Data
Factory

2 and newer API Commonly supported transformations
and activities in Azure Data Factory. For
details, go to Supported transformation
details.

dli

ETL tool Supported
versions

Connection type Scope

IBM InfoSphere
DataStage

11.5 and
newer

Shared Storage
connection

Commonly used DataStage ETL components
including SQL overrides and transformation
details.

Collibra Data Lineage supports IBM
InfoSphere DataStage transformation logic.

You have to prepare a folder with all data
objects that you want to process.

Informatica
Intelligent Cloud
Services,
specifically Cloud
Data Integration

Tip Data
Integration
is one of the
Informatica
Intelligent
Cloud
services.

Cloud,
newest only

Informatica
Intelligent Cloud
Services (IICS)
connection

Note
Collibra
Data
Intelligence
Cloud
2023.03 or
newer is
required to
use the
Informatica
Intelligent
Cloud
Services
(IICS)
connection.

Commonly used transformations in
Informatica Intelligent Cloud Services: Data
Integration, including SQL overrides.

Supported data sources are locally stored flat
files and databases.

Informatica
PowerCenter

9.6 and
newer

Shared Storage
connection

Commonly used transformations in
Informatica PowerCenter, including SQL
overrides.

You have to prepare a folder with all data
objects that you want to process.

dlii

https://docs.informatica.com/integration-cloud/cloud-data-integration/current-version/introduction/introducing-informatica-cloud--data-integration.html
https://docs.informatica.com/integration-cloud/cloud-data-integration/current-version/introduction/introducing-informatica-cloud--data-integration.html

ETL tool Supported
versions

Connection type Scope

Matillion Newest
version

Matillion connection

Note
Collibra
Data
Intelligence
Cloud
2023.03 or
newer is
required to
use the
Matillion
connection.

SQL based input without stored procedures.

Technical lineage via Edge can only access
Redshift and Snowflake projects.

SQL Server
Integration Services
(SSIS)

2012 and
newer

Package
format
version 6 or
newer.

Shared Storage
connection

All commonly used transformations in SSIS,
data flows and mappings, including SQL
overrides.

Important SQL statements from Excel
are not supported.

You have to prepare a folder with all data
objects that you want to process.

BI tools
The following table shows the supported BI tools.

Lineage harvester
The following table shows the supported BI tools.

dliii

BI tool Tested versions Connection type

Tableau Newest API.

You have to prepare:

l lineage harvester configuration file for
Tableau ingestion.

l Optionally, a Tableau <source ID>
configuration file.

Power BI Newest API.

The new Power BI integration includes many
enhancements, including consolidated harvesters,
meaning you no longer need the Power BI harvester.
You only need to prepare:

l lineage harvester configuration file for Power
BI ingestion.

l Optionally, a Power BI <source ID>
configuration file.

Looker Newest API.

Collibra Data Lineage automatically creates a technical
lineage, but stitching is not available.

You have to prepare a lineage harvester configuration
file for Looker ingestion.

dliv

BI tool Tested versions Connection type

SQL Server Reporting
Services (SSRS) or
Power BI Report
Server (PBRS)

l SSRS: 2017 and
newer

Note Due to
a bug in
2017 that is
resolved by
the newer
APIs, we
recommend
using SQL
Server 2019
or newer
Reporting
Services.

l PBRS: 2019 and
newer

API.

You have to prepare:

l A lineage harvester configuration file for
SSRS-PBRS ingestion.

l Optionally, an SSRS-PBRS <source ID>
configuration file.

dlv

BI tool Tested versions Connection type

MicroStrategy Newest Direct connection to the repository.

Stitching is not available and there is no true technical
lineage. There is only a diagram view that you can
access via a Column or Table asset, but not via
MicroStrategy assets.

You have to prepare a lineage harvester configuration
file for MicroStrategy ingestion.

You can access:

l Microsoft SQL Server repository.
l Any local or remote PostgreSQL database.
The MicroStrategy Intelligence Server has
an embedded PostgreSQL repository, as
its default repository. For complete
information on the default, embedded
repository, see the MicroStrategy
repository documentation.

For local database access, only PostgreSQL and
Microsoft SQL Server repositories are supported.
The MicroStrategy Intelligence Server has an
embedded PostgreSQL repository, as its default
repository. For complete information, see the
MicroStrategy repository documentation.

You can access:

l Microsoft SQL Server repository.
l Any local or remote PostgreSQL database. The

MicroStrategy Intelligence Server has an embedded
PostgreSQL repository, as its default repository. For
complete information on the default, embedded
repository, see the MicroStrategy repository
documentation.

dlvi

[%=Thirdparty.microstrategy-repository%]
[%=Thirdparty.microstrategy-repository%]
[%=Thirdparty.microstrategy-repository%]
https://www2.microstrategy.com/producthelp/Current/ConfigDeploy/en-us/Content/repository.htm
https://www2.microstrategy.com/producthelp/Current/ConfigDeploy/en-us/Content/repository.htm

BI tool Tested versions Connection type

MicroStrategy
(NEW)

Newest You have to prepare a lineage harvester configuration
file for MicroStrategy ingestion.
Benefits of the new integration method include:

l Support for the latest MicroStrategy APIs
l Support for technical lineage and stitching.
l New operating model.
l No longer dependent on a direct connection to
the repository.

Technical lineage via Edge
The following table lists the supported BI data sources and connection types you can use
when you add capabilities for different data sources.

BI tool Tested versions Connection type Capability

Tableau Newest API Technical Lineage for Tableau

Power BI Newest API Technical Lineage for Power BI

MicroStrategy Newest API Technical Lineage for
MicroStrategy

Custom technical lineage
You can create a custom technical lineage to include data objects from data sources that
are not listed above.

For information on creating a custom technical lineage via Edge, go to Create technical
lineage via Edge and select Custom technical lineage.

For information on creating technical lineage by using the lineage harvester, go Custom
technical lineage via the lineage harvester.

dlvii

Authentication
Technical lineage supports the following means of authentication:

l For all data sources, except for external directories: username and password.
l Google BigQuery data sources: username and password or a service account key
file. For more information, see the Google BigQuery documentation.

l Power BI: username and password or service principal.
l Snowflake: username and password or key pair authentication.
l Tableau: username and password or token-based authentication.
l No other authentication methods are supported.

Supported SQL syntax
The SQL syntax used in your data sources has an impact on the technical lineage.

Technical lineage supports SQL syntax that is relevant to process data for all supported
data sources. This includes:

l DML (Data Manipulation Language) statements that are used to move and transform
data. For example, INSERT, UPDATE and MERGE.

Note Technical lineage supports the extraction of DML statements from
supported procedures, but it does not support all SQL syntax.

l DDL (Data Definition Language) statements:
o that impact the technical lineage. For example, ALTER TABLE, which you use
to add or rename columns.

o that are used to transform data. For example, CREATE A TABLE AS SELECT.
l Relevant syntax constructs. For example, nested subselects, aliases, different join
methods, synonyms and cross-database references.

dlviii

https://cloud.google.com/bigquery/docs/authentication/service-account-file

Example You want to create a technical lineage for a Teradata source that has the
following SQL syntax:

l ALTER TYPE
l ALTER PROCEDURE
l CREATE/REPLACE AUTHORIZATION
l MLOAD (MultiLoad)
l RECORD (FastLoad)
l BEGIN/END QUERY LOGGING
l Functions with schema, for example schema_name.function.name(args...)
l Functions with conversation, for example function_name(args...) RETURNS
VARCHAR(<number>) CHARACTER SET LATIN

l Macro argument attributes

Collibra Data Lineage will successfully parse this SQL syntax.

Not supported SQL syntax
Technical lineage does not support the following SQL syntax:

l DML statements that you use to access data in complex structures such as JSON
objects or structs.

l Triggers, foreign keys and indexes.
l Cursors, functions or dynamic queries.
l Streams queries.

Tip This is not an exhaustive list. If the SQL syntax that you use is not supported,
you can add an idea in the Collibra Integrations Ideation Portal. We will evaluate the
SQL syntax for inclusion.

Tip Dynamic SQL statements yield limited results. For example, SSRS uses the
columns defined by the first SELECT statement in a stored procedure to determine
the columns in the result set. Therefore, if you want a full ingestion, you need a
static SQL statement. Fortunately, you can transform dynamic SQL statements into
static statements. If the dynamic SQL can be logged at the runtime of a table, the
dynamic query is transformed into a static query that can be extracted by Collibra
Data Lineage and processed without limitations.

dlix

https://productresources.collibra.com/ideation-platform/

Supported transformation details
Collibra Data Lineage supports the most commonly used transformations in the following
sources:

l Azure Data Factory
l IBM DataStage
l Informatica PowerCenter
l Informatica Intelligent Cloud Services
l Snowflake
l SQL Server Integration Services

Azure Data Factory
Collibra Data Lineage supports the most commonly used transformations and data
sources in Azure Data Factory (Beta) .

Supported transformations

The following tables shows a non-exhaustive list of supported and unsupported
transformations.

dlx

#SupportedTransformations
co_lineage-harvester-integrations-in-preview.htm

Supported transformations Unsupported transformations

l Aggregate1
l Alter Row
l Assert
l Derived Column1
l Exists
l External Call2
l Filter
l Flatten1
l Join
l Lookup
l Parse1
l Pivot3
l Rank
l Select1
l Sink4
l Sort
l Source
l Split
l Stringify
l Surrogate Key
l Union
l Unpivot
l Window1

l Some reserved variables names, for
example {@context}

l Flowlets

Limitations

1. Transformations that contain column patterns or rule-based mappings can only be partially ana-
lyzed because they generate column names on the fly during the actual data flow run. If tech-
nical lineage is detected from a dynamically generated column, it is given the placeholder
Dynamic Column in the technical lineage viewer.

2. In the Mapping section of the editor, column patterns are not supported and not displayed in the
technical lineage graph. Note that Auto mapping uses column patterns behind the scenes and
is therefore not supported either.

3. Pivoted columns can only be inferred when explicit values are provided in the Pivot Key tab.
When columns cannot be inferred, a placeholder Pivoted Columns is added.

4. The SQL scripts and rule-based mappings in the transformation are not supported.

dlxi

Supported data sources

The following table shows a non-exhaustive list of supported sources with the
corresponding dataset and linked service types.

CollibraData Lineage supports all data format types that are supported in Azure Data
Factory, including binary, Excel file, Delimited text, JSON, Parquet, and so on.

Data sources Dataset type Linked service type

Amazon Redshift AmazonRedshiftTable AmazonRedshift

Azure Blob storage AzureBlob AzureBlobStorage

Azure Data Lake Stor-
age Gen2

AzureBlobFSFile AzureBlobFS

Azure Data Lake
Store

AzureDataLakeStoreFile AzureDataLakeStore

Azure Databricks
Delta Lake

AzureDatabricksDeltaLake AzureDatabricksDeltaLake

Azure SQL Managed
Instance

AzureSqlMITable AzureSqlMI

Azure SQL Server
database

AzureSqlTable AzureSqlDatabase

Azure Synapse Ana-
lytics

AzureSqlDWTable AzureSqlDW

DB2 data source Db2Table Db2

Google Cloud Storage GoogleCloudStorageLocation GoogleCloudStorage

Microsoft Access MicrosoftAccessTable MicrosoftAccess

Microsoft Azure Cos-
mos Database

CosmosDbSqlApiCollection CosmosDb

dlxii

Data sources Dataset type Linked service type

Open Database Con-
nectivity (ODBC)

OdbcTable Odbc

On-premises Oracle
database

OracleTable Oracle

REST RestResource RestService

Salesforce SalesforceObject Salesforce

Salesforce Marketing
Cloud

SalesforceMarketingCloudObject SalesforceMarketingCloud

Salesforce Service
Cloud

SalesforceServiceCloudObject SalesforceServiceCloud

SAP Business Ware-
house (open hub)

SapOpenHubTable SapBW

SFTP server SftpLocation Sftp

Snowflake SnowflakeTable Snowflake

SQL Server SqlServerTable SqlServer

IBM DataStage
IBM DataStage uses jobs with stages instead of transformations. IBM Datastage has three
job types: parallel jobs, sequence jobs and server jobs. For a list of all job stages per job
type in IBM DataStage, read the IBM documentation.

Informatica PowerCenter transformations
The following table shows a non-exhaustive list of supported and unsupported
transformations in Informatica PowerCenter.

dlxiii

https://www.ibm.com/support/knowledgecenter/SSZJPZ_11.7.0/com.ibm.swg.im.iis.ds.stageix.doc/topics/master_stagesbytype.html

Supported transformations Unsupported transformations

l Aggregator
l Expression1
l Filter
l Input
l Joiner
l Lookup
l Mapplet
l Normalizer
l Output
l Rank
l Router
l Sorter
l Source
l SQL in the translate_db_type function
l Target
l Transaction Control
l Union
l Update Strategy

l Data Masking
l Java
l Sequence Generator
l Stored Procedure2
l Web Services
l XML

Note
1. The transformation is shown if the column (expression) is using at least one column from

another connected transformation.
2. The stored procedures are stored and run in the databases that Informatica PowerCenter

connects to. Collibra Data Lineage does not access the Informatica PowerCenter data
sources, so Collibra Data Lineage collects the stored procedure names but does not sup-
port the Stored Procedure transformation.

Informatica Intelligent Cloud Services
The following table shows a non-exhaustive list of supported and unsupported
transformations and constructions in Informatica Intelligent Cloud Services. Specifically,
transformations and constructions in the Cloud Data Integration service.

dlxiv

https://docs.informatica.com/integration-cloud/cloud-data-integration/current-version/introduction/introducing-informatica-cloud--data-integration.html

Supported transformations Unsupported transformations, functions and
constructions

l Data-driven conditions
l Expression, including custom expressions in
the supported transformations

l Filter
l Joiner, including join conditions
l Lookup
l Mapplet
l Router
l Sequence Generator
l Source
l Stored Procedure
l Target
l Union

l Aggregator
l Cleanse
l Data Masking
l Deduplicate
l Hierarchy Builder
l Hierarchy Parser
l Hierarchy Processor
l Input
l Java
l Labeler
l Machine Learning
l Normalizer
l NEXTVAL
l Parse
l Python
l Rank
l Rule Specification
l Structure Parser
l Transaction Control
l Velocity
l Verifier
l Web Services

Snowflake
You can create technical lineage for Snowflake by using SQL Snowflake ingestion mode
or SQL-API Snowflake ingestion mode. Collibra Data Lineage supports different queries
and transformations for each ingestion method. For more information about the ingestion
methods, go to Technical lineage for Snowflake ingestion methods.

SQL Snowflake ingestion mode

With the SQL Snowflake ingestion mode, Collibra Data Lineage does not support the
following non-exhaustive list of transformations:

l Snowflake Scripting
l Snowpark

dlxv

SQL-API Snowflake ingestion mode

With the SQL-API Snowflake ingestion mode, Collibra Data Lineage supports the Data
Manipulation Language (DML) statements from the following sources. The table also
shows a non-exhaustive list of unsupported queries and transformations.

Supported transformations Unsupported queries and transformations

l Using a driver
l Direct login
l Stored procedures
l The COPY INTO DML command
l Streams 2

l Data Definition Language (DDL) queries
l Queries or query paths that are not executed

1
l Sequences, including generating new values
l Snowflake Scripting
l Snowpark
l Snowpipes

Note

1. If you create technical lineage for Snowflake by using the JDBC connection type, only
queries or query paths that are executed are supported. For example, if a SQL query
contains a CASE statement, the technical lineage will only show lineage from the
WHEN path that was executed. However, if you use the folder connection type to ingest
Snowflake, SQL queries that include all paths of a CASE statement will be parsed and
reflected in the technical lineage.

2. Collibra Data Lineage supports lineage that uses streams as a source and lineage on
tables that has streams. Collibra Data Lineage does not support lineage on a CREATE
STREAM statement.

SQL Server Integration Services (SSIS)
Collibra Data Lineage supports the following non-exhaustive list of transformations in SQL
Server Integration Services:

l Aggregate
l Cache Transform
l Conditional Split
l Data Conversion
l Derived Column
l Fuzzy Grouping

dlxvi

l Lookup
l Merge Join
l Multicast
l OLE DB Command
l Row Count
l Script Component
l Slowly Changing Dimension
l Sort
l Union All

Important
l Collibra Data Lineage supports SQL, but cannot parse other languages or
scripts, for example SHELL and BAT scripts.

l SQL statements from Excel are not supported.
l All SQL queries must be preceded by the SELECT or WITH keyword, or else
they will be skipped.If a comment precedes the SELECT or WITH keyword,
the query will be parsed as expected.

Technical lineage for Snowflake ingestion
methods
To create technical lineage for Snowflake, you can use the following connection types:

l The JDBC connection. With this connection type, you can choose to use the SQL or
SQL-API Snowflake ingestion modes.

l The folder connection type if you use the lineage harvester or the Shared Storage
connection if you use technical lineage via Edge.

You can use different ingestion modes and connection types to collect and process the
metadata of your Snowflake data sources with one technical lineage license. For example,
you can use both the SQL-API ingestion mode and the folder or Shared Storage
connection type. In this way, technical lineage is created based on the query execution
and also provides a full coverage of stored procedures.

dlxvii

The JDBC connection type
You can use the JDBC connection type to establish connection to your Snowflake data
sources. Collibra Data Lineage collects and processes the metadata from the data
sources to create technical lineage.

With the JDBC connection type, you can choose to use the SQL or SQL-API Snowflake
ingestion modes. These modes are complementary and are designed to address different
needs and use cases.

SQL Snowflake ingestion modes

With this ingestion mode, Collibra Data Lineage retrieves lineage from the database
schema and views, providing a design lineage. You can understand the data flow at the
schema level from the generated technical lineage.

Note that stored procedures are not supported.

SQL-API Snowflake ingestion modes

Introduced in the 2023.02 release, the SQL-API mode retrieves lineage from views and
executed database queries, providing an operational style of lineage. This mode accesses
much more information and may take longer for lineage processing.

Stored procedures are supported. However, if a stored procedure is defined but not
executed, the generated technical lineage does not include lineage for that stored
procedure.

The technical lineage is based on Snowflake's interpretation of modified objects.
Therefore, Collibra Data Lineage cannot show lineage for queries that Snowflake does not
interpret or interprets differently than expected. For example, technical lineage does not
include indirect lineage, as Snowflake does not interpret indirect lineage. Indirect lineage
is the lineage that includes a column that does not appear in the target table but is used as
a filter for data moving to the target table.

Additionally, if database queries contain conditional statements, the technical lineage
includes lineage only for the conditions that were executed. Only the executed path of a
CASE WHEN/THEN or IF statement is shown in lineage for each executed query instance.

dlxviii

If you use the lineage harvester, set the mode property in the lineage harvester
configuration file to indicate which ingestion mode you want to use.

If you use technical lineage via Edge, use the Ingestion Method field in the technical
lineage for Snowflake capability to select the ingestion mode you want to use.

The folder or Shared Storage connection type
With this connection type, you must prepare the SQL queries. The SQL queries can come
from a log, stored procedure definitions, and so on. Collibra Data Lineage processes each
conditional statement to create the technical lineage for all possible conditions.

If you use the lineage harvester, you must prepare a SQL directory and add your SQL
queries to the folder.

If you use technical lineage via Edge, you must add your SQL queries to the Shared
Storage connection folder and use the Technical Lineage for SqlDirectory capability to
create the technical lineage.

See the following table for a summary of the connection types and ingestion modes.

dlxix

#AddTechlinCapability
#AddTechlinCapability
#PrepareSQLDirectory
#PrepareSQLDirectory

Connection type Ingestion
mode

Details Release
date

JDBC SQL Collibra Data Lineage extracts metadata
and information about the Snowflake
database schemas and views to
calculate lineage.

This is the default mode. You can use
the technical lineage to understand the
flow of data at the schema level.

2020

SQL-API Collibra Data Lineage parses SQL from
views and schemas, and additionally
gets lineage information from the
ACCESS_HISTORY system view,
which is a log of all queries that are run
on the system.

The SQL-API mode supports stored
procedures and other orchestration
methods, for example, application
queries and ad-hoc queries. You can
use the technical lineage to see the
operational lineage from executed
queries.

2023.02

Folder or Shared Storage
connection

Not applic-
able

Collibra Data Lineage retrieves lin-
eage from the SQL queries that you
upload to a SQL directory. The tech-
nical lineage captures all lineage
paths from the SQL queries.

Folder - 2020

Shared
Storage
connection -
2023.05

For more information about the supported queries and transformation, go to Supported
transformation details.

For an overview of the steps to create technical lineage, go to Creating a Technical lineage
via the lineage harvester and Create a technical lineage via Edge.

For more information about Snowflake, go to Snowflake Documentation.

dlxx

../../../../../../../Content/CollibraDataLineage/to_technical-lineage-via-lin-harvester.htm
../../../../../../../Content/CollibraDataLineage/to_technical-lineage-via-lin-harvester.htm
https://docs.snowflake.com/en/index.html

Transformation logic
Transformation logic is used to transform source code in a technical lineage diagram that
can be visualized in Data Catalog. Collibra Data Lineage supports the most commonly
used transformations.

Collibra Data Lineage enables you to trace how your data flows between multiple data
sources and, at the same time, see the source code of each part of your technical lineage.
By following the transformations in your technical lineage, you can easily find a specific
source code fragment.

Tables and columns in a technical lineage can have incoming and outgoing
transformations. When you right-click on a table or column and click either
Transformations (IN) or Transformations (OUT), the source code pane shows the
following:

l The name of the source code fragment. On the Sources tab page, you can see the
analysis log files of this source code fragment.

l If a table or column has more than one transformation, there are tabs for each source
code fragment.

l The source code of the fragment. The source code that is relevant for the selected
column or table is highlighted.

dlxxi

Example You want to see the outgoing transformations of column A to columns B
and C. When you right-click column A and then click Transformations (OUT), you
see that there are two tabs containing source code. The first tab shows the outgoing
source code from column A to column B. The second tab shows the source code
from column A to column C.

Technical lineage export types
If you want to share a technical lineage graph of your technical lineage, you can export the
information to one of the following export types, via the Settings tab pane:

l PDF
l PNG
l Graph CSV
l Full Batch CSV
l JSON Lineage

PDF and PNG
The PDF and PNG exports show only the technical lineage graph of the selected table or
column.

dlxxii

Graph CSV
The CSV export option generates a ZIP file with the following CSV file:

File name File content

current_graph_column_
lineage.csv

The technical lineage graph of the selected column or table.

Full Batch CSV
The Full CSV option generates a ZIP file with the following CSV files:

File name File content

current_graph_column_
lineage.csv

The technical lineage graph of the selected column or table.

full_batch_column_
lineage.csv

The technical lineage graph of the full technical lineage.

Example
The current_graph_column_lineage CSV file and the full_batch_column_lineage CSV files
show the same information, but with a different scope. These files show how data flows
from source to target.

dlxxiii

No Column Description

source_system The name of the source system.

Note This column is only shown
when
useCollibraSystemName is
set to true in the lineage harvester
configuration file.

source_database The name of the source database.

source_schema The name of the source schema.

source_table The name of the source table.

source_column The name of the source column.

target_system The name of the target system.

Note This column is only shown
when
useCollibraSystemName is
set to true in the lineage harvester
configuration file.

target_database The name of the target database.

target_schema The name of the target schema.

dlxxiv

No Column Description

target_table The name of the target table.

target_column The name of the target column.

procedure_name The name of the stored procedure. This
column remains empty when an object in your
technical lineage doesn't have stored
procedure.

Warning This column is deprecated
and will be removed in the future.

query_name The name of the specific source code
fragment or transformation detail.

You can use this name to search for more
information in the Sources tab page.

Tip The names of the source and target objects indicate the full path of the object.
For example, the full name of a column is (system) > database > schema > table >
column. This path is used to stitch your technical lineage objects to assets in Data
Catalog.

JSON Lineage
This export option generates a JSON file that is formatted in the same manner that is
required for creating a custom technical lineage.

Export the technical lineage information
If you want to share a technical lineage graph or the transformation logic of your technical
lineage, for example with colleagues who don't have access to Collibra, you can export the
information. For complete details on the various export options, see Technical lineage
export types.

dlxxv

Steps

1. In the Technical lineage viewer, click the Settings tab.
2. On the Settings tab, click Export.
3. Click the export type.

» The technical lineage information is downloaded.

Export technical lineage transformation details
If you want to download analyzing and parsing errors for a data source, you can export the
transformation details of one or more data sources on the Sources tab page of the
technical lineage viewer.

dlxxvi

In the following example image, we've selected the OracleCloud data source and filtered
on the error details.

Steps

1. In the Technical lineage viewer, click the Settings tab.
2. Click Show lineage.
3. Select the data sources for which you want to download the transformation details. If

you want to download the transformation details for all data sources, do not select
any data source.

4. Click Export Selected Transformations.
» A ZIP file that contains an errors.csv file is downloaded.

BI integration concepts
This section addresses BI tool-specific integration concepts for technically-focused
customers.

dlxxvii

Technical overview of BI tool lineage
This topic provides information about the technical lineage that is created when you ingest
BI tool metadata in Data Catalog.

For a business perspective, see Technical lineage and stitching for BI tool integrations.

Steps
When you ingest Tableau metadata in Data Catalog, a technical lineage for Tableau Data
Attribute assets is automatically created.

Permissions
If you have a Data Catalog global role with the Catalog and Technical lineage global
permissions, you can see the technical lineage of Tableau assets by clicking on the
Technical lineage tab on the asset page of any of the following asset types:

l Table
l Column
l Tableau Data Attribute
l Tableau Worksheet

Technical lineage graph
The technical lineage graph shows relations of the type "Data Element sources / targets
Data Element" between Tableau assets and other data objects in the data flow, for
example between a Column asset and a Tableau Data Attribute asset. These relations are
created during the Tableau ingestion process as a result of automatic stitching.

Note If you use a Tableau <source ID> configuration file and don’t specify a value
for the relevant collibraSystemName property, the designation “UNDEFINED” will
be shown in the technical lineage.

dlxxviii

co_global-permissions.htm
co_global-permissions.htm

Note If you use custom SQL that is not supported by the Tableau metadata API,
the technical lineage might not be complete. For complete information, see the
Tableau documentation on Tableau Catalog support for custom SQL and Tableau
Lineage and custom SQL connections.

Example

The following technical lineage shows how data flows from a PostgreSQL data source to
Tableau. It shows relations of the type "Data Element sources / targets Data Element"
between the Column assets of the database and Tableau Data Attribute assets in Tableau.
For example, Column asset L_RETURNFLAG has a relation of the type "Data Element
sources / targets Data Element" to the Tableau Data Attribute assets Quantity and
Adjusted Quantity.

UUIDs in the Tableau technical lineage
Collibra Data Lineage uses unique full names to create a technical lineage and stitch
objects within the technical lineage. Full names in Collibra are constructed in accordance
with the hierarchy of data objects in Tableau, for example:

l Server > Site > Project > Workbook > Worksheet > Field
l Server > Site > Project > Workbook > Data Model > Column

In Collibra, every node in this hierarchy must have a unique name. However, in Tableau,
the names of data objects do not have to be unique. As such, if Tableau data objects in a
technical lineage hierarchy have the same full name, Collibra Data Lineage adds the

dlxxix

https://help.tableau.com/current/pro/desktop/en-us/customsql.htm#tableau-catalog-support-for-custom-sql
https://help.tableau.com/current/online/en-us/dm_lineage.htm#lineage-and-custom-sql-connections
https://help.tableau.com/current/online/en-us/dm_lineage.htm#lineage-and-custom-sql-connections

UUIDs of the corresponding assets to the names in the technical lineage, to maintain
uniqueness.

In the following example image, the names of the assets Priority, Opened and Active in the
technical lineage have been appended with their UUIDs.

Note
l UUIDs are not added to the names of the assets themselves; they are only
added to the names of the data objects in the technical lineage.

l The UUID is always part of the full name of an asset, regardless of whether or
not it is a duplicate.

How to resolve UUIDs in names in a technical lineage

To keep Collibra Data Lineage from adding UUIDs to the names of the data objects in a
technical lineage, ensure that the names of all fields and columns in Tableau are unique.

Generally, Tableau doesn't allow you to create two fields or columns with the same name.
However, hierarchy fields and non-hierarchy fields can have the same name. Duplication
of names can also happen if:

l A Tableau worksheet is using two different data sources that have columns with the
same name.

l You create a virtual connection that contains multiple data sources that have

dlxxx

columns with the same name.
l There are multiple data sources in Tableau with the same name.

Sources tab page
The Sources tab page shows, for each Tableau data source and Tableau Worksheet, the
transformation and calculation rules that the Collibra Data Lineage service analyzed and
processed, and the results of the analysis. It also shows the TECHLIN VIEW query
definitions, based on custom SQL queries.

If a parameter is used in a Tableau worksheet, it is shown in the worksheet source code,
for example:

PARAMETERS: 'parameter1'.

If a parameter is used in a calculation rule, it is also shown under the Tableau data source
for data sources in the calculation rule, for example:

CALCULATION RULE: '[List price]/[parameter1]'

The success rate of the analysis indicates how complete the technical lineage is. There
are a few limitations that prevent the Collibra Data Lineage service from processing all
Tableau metadata.

Important The Collibra Data Lineage service might not be able to process all
complex Tableau metadata. This means that the success rate of a Tableau
ingestion might not be 100%.

dlxxxi

Error codes

The Errors summary represents a summary of all errors per Tableau site. The continue
on error feature allows for continuous processing of an import or synchronization job, even
if one or more commands fail.

Warning codes

Warning codes indicate:

l Issues that might affect the technical lineage, but do not stop the processing.
l Issues that you can resolve.

Element Description

ID The warning ID number.

dlxxxii

Element Description

Name The name of the warning. Possible values are:

l Empty name
l Field relation not found
l Parent project not found
l Parent workbook not found
l Parent database not found
l Datasource not found
l Worksheet not found
l REST datasource not found
l Not found in remote fields
l Multiple datasources
l Query parsing error
l Invalid Collibra system names
l Invalid hostname mapping

Status code The status label. The value is always WARNING.

Status
description

Identifies a grouping of warnings. Warnings of the same type (meaning they have the
same group name and name) are grouped together in "parts" of up to 100 warnings.

Example
In this example, there are 250 Configuration > Invalid Collibra system names
warnings, grouped into parts 1, 2 and 3:

Group name The type, or category, of warning. Possible values are:

l Configuration
l Mismatched ID
l Missing content

The following table shows the complete set of warning codes, by group and name.

dlxxxiii

Group name Name Description

Missing content Empty name Raised during the processing of databases, tables, columns, worksheets
and dashboards.

Contains the following lines:

l Database with id DATABASE_ID is skipped
l Table with id TABLE_ID is skipped
l Column with id COLUMN_ID is skipped
l Worksheet with id WORKSHEET_ID is skipped
l Dashboard with id DASHBOARD_ID is skipped

Indicates that the name property of a database, table, column, worksheet

or dashboard, which has a specified value for the id property, has a

null value or it is empty:

Example for a database:

{
"data": {

"databasesConnection": {
"nodes": [

{
"id": "DATABASE_ID",
"name": null,
...

Note The name property is considered empty if the value is
null or if it is empty.

dlxxxiv

Group name Name Description

Missing content Parent
database not
found

Raised during the processing of tables.

Contains the line: Table with id TABLE_ID is skipped

Indicates that the parent database for a table with TABLE_ID was not

found in the previously processed databases.

Possible causes:

l The database property is not present in the JSON file.
l The database property is empty: "database": {}.
l The DATABASE_ID is not present for the id property.

{
"data": {

"tablesConnection": {
"nodes": [

{
"id": "TABLE_ID",
"database": {

"id": "DATABASE_ID"
}
...

dlxxxv

Group name Name Description

Missing content Parent project
not found

Raised during the processing of projects, workbooks and published data
sources.

Contains the following lines:

l Workbook with id WORKBOOK_ID is skipped
l Published datasource with id DATASOURCE_ID

is skipped
l Project with id PROJECT_ID has unreachable

parent project

Indicates that the parent project of a project, workbook, or published data
source was not found in the previously processed projects.

Possible causes:

l The project property is not present in the JSON file.
l The project property is empty: "project": {}.
l The PROJECT_ID is not present for the id property.

Example for a workbook:

{
"workbooks": {

"workbook": [
{

"project": {
"id": "PROJECT_ID"

},
"id": "WORKBOOK_ID",
...

Example for a published datasource:

To identify the PROJECT_ID, first find the DATASOURCE_LUID of

the published data source, as returned by the metadata API:

{
"data": {

"datasourcesConnection": {
"nodes": [

{

dlxxxvi

Group name Name Description

"__typename":
"PublishedDatasource",

"id": "DATASOURCE_ID",
"luid": "DATASOURCE_LUID"
...

Then, in the data returned by the REST API, reference the

DATASOURCE_LUID to identify the PROJECT_ID of the data

source.:

{
"datasources": {

"datasource": [
{

"id": "DATASOURCE_LUID",
"project": {

"id": "PROJECT_ID",
...

Example for a project:

PARENT_PROJECT_ID is not found:

{
"projects": {

"project": [
{

"id": "PROJECT_ID",
"parentProjectId": "PARENT_

PROJECT_ID",
...

Project is not skipped in this case. The new parent project is created with

name Unknown project PARENT_PROJECT_ID.

dlxxxvii

Group name Name Description

Missing content

Mismatched ID

Parent
workbook not
found

Raised during processing of worksheets, dashboards, REST-only views
and embedded data sources.

Contains the following lines:

l Worksheet with id WORKSHEET_ID is skipped
l Dashboard with id DASHBOARD_ID is skipped
l View with id VIEW_ID is skipped (rest only)
l Embedded data source with id DATASOURCE_ID

is skipped

Indicates that the parent workbook of a worksheet, dashboard or view with
a specified ID was not found in the previously processed workbooks.

Possible causes:

l The workbook property is not present in the JSON file.
l The workbook property is empty: "workbook": {}.
l WORKBOOK_ID is not present for the luid property.
l mismatched ID issue.

Example for a worksheet:

{
"data": {

"sheetsConnection": {
"nodes": [

{
"id": "WORKSHEET_ID",

"workbook": {
"luid": "WORKBOOK_ID"

...

Example for a dashboard:

{
"data": {

"dashboardsConnection": {
"nodes": [

{
"id": "DASHBOARD_ID",

dlxxxviii

Group name Name Description

"workbook": {
"luid": "WORKBOOK_ID"

...

Example for an embedded data source:

{
"data": {

"dashboardsConnection": {
"nodes": [

{
"id": "DASHBOARD_ID",

"workbook": {
"luid": "WORKBOOK_ID"

...

Note Use the luid property, not the id property, to find a
workbook by ID.

dlxxxix

Group name Name Description

MIssing
content

Worksheet not
found

Raised during the processing of dashboards.

Contains the line: Worksheet with id WORKSHEET_ID is

skipped for dashboard with id DASHBOARD_ID

Indicates that a worksheet with a given ID was not found in the previously
processed worksheets.

{
"data": {

"dashboardsConnection": {
"nodes": [

{
"id": "DASHBOARD_ID",

"sheets": [
{

"id": "WORKSHEET_ID"
},

...

Possible cause: WORKSHEET_ID is not present for the id property.

dxc

Group name Name Description

Mismatched ID REST
datasource
not found

Raised during the processing of published data sources.

Contains the line: Published datasource with id

DATASOURCE_ID is skipped

Indicates that a data source with DATASOURCE_ID could not be

matched with the DATASOURCE_LUID returned by the REST API,

resulting in a mismatched ID.

{
"data": {

"datasourcesConnection": {
"nodes": [

{
"__typename":

"PublishedDatasource",
"id": "DATASOURCE_ID",
"luid": "DATASOURCE_LUID"
...

During processing, information returned by the metadata API and the
REST API is combined. Collibra Data Lineage then looks to the

DATASOURCE_LUID property in the REST metadata to identify the

correct project ID, which is lacking from the information returned by the
metadata API.

This only applies to published data sources, as embedded data sources
are assigned to workbooks, not projects.

dxci

Group name Name Description

Missing content Datasource
not found

Raised during the processing of embedded data sources.

Contains the line: Embedded datasource with id

EMBEDDED_DATASOURCE_ID references non

existing published datasource with id

PUBLISHED_DATASOURCE_ID

Indicates that an embedded data source with EMBEDDED_

DATASOURCE_ID references a published data source with

PUBLISHED_DATASOURCE_ID, which was not found in the

previously processed data sources.

{
"data": {

"datasourcesConnection": {
"nodes": [

{
"__typename":

"EmbeddedDatasource",
"id": "EMBEDDED_DATASOURCE_

ID",
"upstreamDatasources": [

{
"id": "PUBLISHED_

DATASOURCE_ID",
...

Possible cause: PUBLISHED_DATASOURCE_ID is not present for

the id property.

dxcii

Group name Name Description

Missing content Field relation
not found

Raised during the processing of data source fields.

Contains the lines:

l Referenced field with id FIELD_ID is

skipped
l Report field with id FIELD_ID is skipped

Indicates that a field with a given FIELD_ID was not found in remote

fields, which is needed to create relations.

{
"data": {

"datasourcesConnection": {
"nodes": [

{
"id": "DATASOURCE_ID",
"fieldsConnection": {

"nodes": [
{

"__typename":
"DatasourceField",

"remoteField": {
"id": "FIELD_ID"

...

Possible cause: An embedded datasource has a calculated field that is
not mapped to any published data source field.

This can occur:

l During the processing of referenced fields. In this case, the
relation between the two Tableau Data Attributes cannot be
created.

l During the processing of report fields. In this case, the relation
between the Tableau Data Attribute and the Tableau Data
Worksheet cannot be created.

dxciii

Group name Name Description

Missing content Multiple
datasources

Raised during the processing of custom SQL queries.

Contains the line: Custom sql query with id QUERY_ID

contains columns of NUMBER_OF_DATASOURCES

datasources. Found best datasource:

DATASOURCE_ID

Indicates that a query with QUERY_ID has matched multiple data

sources. Only one data source can be used: datasource with

DATASOURCE_ID.

The warning is caused by the fact that there is no direct relation between
the query and the data source. The algorithm tries to find the best data
source, based on a comparison of the list of query columns and the data
source columns.

To verify this, do the following:

1. Find the query with QUERY_ID and the columns (see

COLUMN_ID) in the table JSON data:

{
"data": {

"tablesConnection": {
"nodes": [

{
"__typename":

"CustomSQLTable",
"id": "QUERY_ID",
"columnsConnection": {

"nodes": [
{

"id": "COLUMN_ID",
...

2. Find the data source with DATASOURCE_ID in the data source

JSON data. It should contain all of the columns (see COLUMN_

ID) that are used by the query:

{

dxciv

Group name Name Description

"data": {
"datasourcesConnection": {

"nodes": [
{

"id": "DATASOURCE_ID",
"fieldsConnection": {

"nodes": [
{

"upstreamColumnsConnection": {
"nodes": [

{
"id": "COLUMN_

ID"
...

The data source found for this query (meaning DATASOURCE_ID)

might not be the right one for the TECHLIN VIEW definition. In this

case, the data source DATASOURCE_IDmight have the wrong

relations between the Tableau Data Attribute asset and the Column asset.

dxcv

Group name Name Description

MIssing
content

Datasource
not found

Raised during the processing of custom SQL queries.

Contains the line: Custom sql query with id QUERY_ID

is skipped

Indicates that query with QUERY_ID contains columns that are not

referenced by any data source fields, so the data source can’t be assigned
to the query.

{
"data": {

"tablesConnection": {
"nodes": [

{
"__typename":

"CustomSQLTable",
"id": "QUERY_ID",
"columnsConnection": {

"nodes": [
{

"id": "COLUMN_ID",
...

Missing content Query parsing
error

Raised during the processing of custom SQL queries.

Contains the line: Error parsing query with id QUERY_

ID, error: ERROR

Indicates that there is an issue when deriving column names from a query

for a custom SQL with QUERY_ID.

{
"data": {

"tablesConnection": {
"nodes": [

{
"__typename":

"CustomSQLTable",
"id": "QUERY_ID",
"query": "QUERY"

Custom SQL is still processed as TECHLIN VIEW with no columns.

dxcvi

Group name Name Description

Configuration Invalid
Collibra
system names

Raised during the processing of the collibraSystemNames

section in the <source ID> configuration file.

Contains the lines:

l Collibra system name not found for database

with hostname "DB_HOSTNAME"
l Collibra system name not found for file

with path "FILE_PATH"
l Collibra system name not found for

connector with url "CONNECTION_URL"
l Collibra system name not found for cloud

file with name "CLOUD FILE PATH"

Configuration Invalid
hostname
mapping

Raised during the processing of the hostnameMapping section the

<source ID> configuration file.

Contains the line: Collibra system name not found for

database "DB_NAME" host "HOST_NAME" and

schema "SCHEMA_NAME"

When you ingest Power BI metadata in Data Catalog, Collibra Data Lineage automatically
creates a technical lineage for assets of the following types:

l Power BI Report
l Power BI Table
l Power BI Column

To view the technical lineage, go to the asset page of any asset of these types, and then
click the Technical Lineage tab.

dxcvii

Note If you ingest Power BI for the first time or if you change your geolocation or
cloud provider, you have to restart the DGC service before you can see your
technical lineage.

Technical lineage graph
The technical lineage graph shows relations of the type "Data Element targets / sources
Data Element" between BI assets and other data objects in the data flow, for example
Column assets or Power BI Column assets. These relations are created during the Power
BI ingestion process as a result of automatic stitching.

Example

The following technical lineage shows the relation of the type "Data Element targets /
sources Data Element" between the Column asset LISTPRICE and the Power BI Column
asset ListPrice.

dxcviii

Note When harvesting Power BI, report attributes are not returned by the API.
Therefore, for a given report, Collibra Data Lineage creates a dummy report
attribute. This dummy report attribute is identified in the technical lineage by an
asterisk (*), as shown in the following example image. Links are drawn from all data
attributes in the data set that were used to create the report, to the dummy report
attribute.

Tip Does your database or schema have the name "Default" in the technical
lineage graph? This is the case if you use a Power Query M function that doesn’t
have the schema or database name specified, or if Power BI hasn't returned the
database or schema name. In this case, you can configure database and schema
mapping in your <source ID> configuration file, to provide the name of the database
or schema. This allows you to achieve stitching and view the lineage you need. For
more information, go to Broken stitching and possible solutions.

dxcix

Sources tab page
The Sources tab page shows the transformation details that were analyzed and processed
on the Collibra Data Lineage service instances and the results of this analysis. The
success rate of the analysis indicates how complete the technical lineage is.

Important The Collibra Data Lineage server can process most, but not all, complex
Power BI metadata. This means that the success rate of a Power BI ingestion can
be very high, but almost never 100%.

Example

The following image shows that you have created a technical lineage for four data
sources. Power BI has a success rate of 83%. When you use the transformation logs to
investigate the errors, you see that the Collibra Data Lineage service instance couldn't
process some elements of the Power BI metadata, for example because they are not
supported or there is an issue in the configuration file or the Power BI setup.

dc

When you ingest MicroStrategy metadata in Data Catalog, Collibra Data Lineage
automatically creates a technical lineage.

To view the technical lineage, click the Technical lineage tab on the asset page of any of
the following asset types:

dci

l Table
l Column
l MicroStrategy Data Attribute
l MicroStrategy Report

The Technical lineage tab is only shown if you have the Data Catalog global role with the
Catalog and Technical lineageglobal permissions.

Note If you ingest MicroStrategy for the first time or if you change your geolocation
or cloud provider, you have to restart the DGC service before you can see the
technical lineage.

Technical lineage graph
The technical lineage graph shows relations of the type "Data Element targets / sources
Data Element" between BI assets and other data objects in the data flow, for example
Column assets or MicroStrategy Data Attribute assets. These relations are created during
the MicroStrategy ingestion process as a result of automatic stitching.

Note When harvesting MicroStrategy, report attributes are not returned by the API.
Therefore, for a given report, Collibra Data Lineage creates a dummy report
attribute. This dummy report attribute is identified in the technical lineage by an
asterisk (*), as shown in the following example image. Links are drawn from all data
attributes in the data set that were used to create the report, to the dummy report
attribute.

dcii

co_global-permissions.htm

UUIDs in the MicroStrategy technical lineage
Collibra Data Lineage uses unique full names to create a technical lineage and stitch
objects within the technical lineage. Full names in Collibra are constructed in accordance
with the hierarchy of data objects in MicroStrategy, for example:

l Server > Project > Folder > Report > Data Entity > Data Attribute
l Server > Project > Folder > Dossier > Data Entity > Data Attribute
l Server > Project > Folder > Document > Data Entity > Data Attribute

In Collibra, every node in this hierarchy must have a unique name. However, in
MicroStrategy, the names of data objects do not have to be unique. As such, if
MicroStrategy data objects in a technical lineage hierarchy have the same full name,
Collibra Data Lineage adds the UUIDs of the corresponding assets to the names in the
technical lineage, to maintain uniqueness.

In the following example image, the names of the assets Priority, Opened and Active in the
technical lineage have been appended with their UUIDs.

Note
l UUIDs are not added to the names of the assets themselves; they are only
added to the names of the data objects in the technical lineage.

l The UUID is always part of the full name of an asset, regardless of whether or
not it is a duplicate.

dciii

To keep Collibra Data Lineage from adding UUIDs to the names of the data objects in a
technical lineage, ensure that the names of all data objects in MicroStrategy are unique.

Sources tab page
The Sources tab page shows the expressions that the Collibra Data Lineage service
analyzed and processed, and the results of the analysis. It also shows the TECHLIN VIEW
query definitions, based on custom SQL queries.

Note MicroStrategy uses the term "expressions" instead of "transformations".

Source code is provided for the following MicroStrategy asset types:

l MicroStrategy Document
l MicroStrategy Dossier
l MicroStrategy Report
l MicroStrategy Data Entity

The success rate of the analysis indicates how complete the technical lineage is.

For example, the following image shows that you have created a technical lineage for two
data sources. SAP HANA has a success rate of 83%. When you use the transformation
logs to investigate the errors, you see that the Collibra Data Lineage service instance
couldn't process some elements of the SAP HANA metadata, for example because they
are not supported or because there is an issue in the configuration file.

dciv

When you ingest Looker metadata, you automatically create a technical lineage for Looker
Look assets. If you have the right permissions to view the technical lineage, you can go to
a Looker Look asset page and click the Technical lineage tab, which allows you to access
the technical lineage.

dcv

Note Due to the limitations of the Looker REST API, we cannot stitch Looker assets
and corresponding assets in Data Catalog. The Looker REST API does not provide
transformations in Looker that are needed for stitching. As a result, the technical
lineage only shows Looker metadata as it exists on the Collibra Data Lineage
service and not as assets in Data Catalog.

Example
The following technical lineage graph shows the technical lineage of Looker objects.

When you ingest SQL Server Reporting Services (SSRS) and Power BI Report Server
(PBRS) metadata in Data Catalog, you automatically create a technical lineage for SSRS
Column assets. Each SSRS Column asset page has a Technical lineage tab page that
shows the technical lineage of that asset Column asset.

We cannot access PBRS lineage information. As a result, you can only create a technical
lineage for SSRS Column assets.

Note If you ingest SSRS and PBRS for the first time, or if you change your
geolocation or cloud provider, you might have to restart the DGC service before you
can see your technical lineage.

dcvi

Technical lineage graph
The technical lineage graph shows relations of the type "Column is source for / is target of
Data Attribute" between BI assets and other data objects in the data flow, for example
Column assets or Power BI Column assets. These relations are created during the
ingestion process as a result of automatic stitching.

For more information about the technical lineage, see the Collibra Data Lineage section in
the documentation.

Example

The following technical lineage shows the relation of the type "Data Element sources
/ targets Data Element" between the Column assets FOOD_NAME, FOOD_TYPE and

dcvii

https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0612

FOOD_CODE and the SSRS Column assets food_name, food_type and food_code.

Sources tab page
The Sources tab page shows the transformation details that the Collibra Data Lineage
service analyzed and processed and the results of this analysis. The success rate of the
analysis indicates how complete the technical lineage is.

Important The Collibra Data Lineage service can process most, but not all complex
metadata. This means that the success rate of an ingestion job can be very high, but
might not be 100%.

Providing ODBC database names in Power BI
You can create a technical lineage for ODBC data sources in Power BI. However, ODBC
database names often can't be determined. When a database name can't be determined,
it's given a substitute name, which is the ODBC connection string.

This substitute name can be seen in the technical lineage, but it is merely a placeholder
that doesn't carry any meaning if you're trying to identify the database it represents in the
technical lineage. A bigger problem is that if you want to stitch the ODBC database to
assets in Data Catalog, the substitute name won't match with any ingested databases, so
stitching won't work.

dcviii

To ensure that the true database names appear in the technical lineage, and to ensure
successful stitching, you can use a Power BI <source ID> configuration file to provide the
true system names of the ODBC databases in Power BI.

Tip The name "<source ID>" refers to the value of the sourceId property in the
configuration file. If, for example, the value of the sourceId property in the lineage
harvester configuration file is power-bi-source-1, then the name of your <source
ID> configuration file should be power-bi-source-1.conf.

Example of the <source ID> configuration file
For each ODBC database in Power BI, add the following content to the JSON file:

{
"found_dbname=DSN_MYDATABASE;found_hostname=ODBC": {

"dbname": "DB001",
"schema": "MYSCHEMA",
"dialect": "oracle",
"collibraSystemName": "oracle-system-name"

}
}

Property Description

found_dbname=<substitute
database name>;found_
hostname=<server name>

found_dbname is the substitute database name. You need to convert it to

uppercase and replace every non-alphanumeric character by an underscore
(_). In this example, the substitute name is “dsn=MYDATABASE”, so you
should use "DSN_MYDATABASE".

Note The substitute name is the ODBC connection string, which can
be lengthy when it includes the driver and parameters in full.

found_hostname should be “ODBC”, but you can also use an asterisk

(*).

dbname The true system name of the ODBC database in Power BI.

schema The name of the default schema of the ODBC database in Power BI.

If no schema is specified and the lineage harvester fails to find a specific
schema, it uses the default schema.

dcix

Property Description

dialect The dialect of the ODBC connection.

The dialect must be one of the supported SQL dialects. If no dialect is
specified, “mssql” is used, by default.

Tip
You can enter one of the following values:

l azure, for an Azure SQL Server data source.
l bigquery, for a Google BigQuery data source.
l mssql, for a Microsoft SQL Server data source.
l oracle, for an Oracle data source.
l redshift, for an Amazon Redshift data source.
l snowflake, for a Snowflake data source.
l sybase, for a Sybase data source.

collibraSystemName The system or server name of a database.

Important Because you are using a <source ID> configuration
file only for the purpose of providing the true system name of
an ODBC database in Power BI, you are not required to:

l Set the useCollibraSystemName property in the
lineage harvester configuration file to true.

l Specify a Collibra system name in the <source ID>
configuration file.

However, if the useCollibraSystemName property is set
to true in the lineage harvester configuration file, then you
must specify a Collibra system name in the <source ID>
configuration file.

Supported Power Query M functions
Power Query is a data transformation and preparation engine. It uses a scripting language
called Power Query M formula language—also known as M—for all transformations.

M is considered a "mashup" language. The Power Query engine filters and combines data
from supported data sources. The "mashed up" data is then expressed using M. M is used
by Power BI. It is not relevant to other integrations in Collibra.

dcx

The Collibra Data Lineage service performs lexical and syntax analysis of M. With regard
to syntax analysis, the Collibra Data Lineage service instances currently support the
following functions.

Note Not all functions have an impact on the technical lineage, so even though an
error is raised for any unsupported functions, it might not mean that your lineage is
incomplete. We are working to support the most common Power Query functions. If
you have a Power Query function that is not yet supported and it’s very important to
you, please create an Ideation ticket.

For complete information on these functions, see the Microsoft documentation on
accessing data functions.

l Backend-accessing data functions that impact the lineage diagram
o AmazonRedshift.Database
o AnalysisServices.Database

Note
n This function is fully supported if no MDX queries are used.
n If MDX queries are used and they resemble SQL, they will be
parsed by the SQL parser.

n We don't currently support this function if used with MDX queries
that resemble DAX, as the Collibra Data Lineage service instances
can't parse such queries.

o AnalysisServices.Databases
o Csv.Document
o Databricks.Contents
o Databricks.Catalogs
o Excel.Workbook
o File.Contents
o GoogleAnalytics.Accounts
o GoogleBigQuery.Database
o Odbc.DataSource
o Odbc.Query
o Oracle.Database
o PostgreSQL.Database
o SapHana.Database

dcxi

https://docs.microsoft.com/en-us/powerquery-m/power-query-m-function-reference
https://docs.microsoft.com/en-us/powerquery-m/power-query-m-function-reference

o Snowflake.Database
o Sql.Database
o Sql.Databases
o Sybase.Database
o Web.Contents

l Transformations that impact the lineage diagram
o Cube.AddAndExpandDimensionColumn
o Cube.Transform
o PowerBI.Dataflows

Note We only support dataflows without parameters that contain the
following information:

n workspace ID
n dataflow ID
n entity (Power BI Table) ID

o PowerPlatform.Dataflows

Note We only support dataflows without parameters that contain the
following information:

n workspace ID
n dataflow ID
n entity (Power BI Table) ID

o Replacer.ReplaceText
o Replacer.ReplaceValue
o Table.AddColumn
o Table.AddIndexColumn
o Table.Combine
Additional information
If Collibra Data Lineage can’t determine the column names in a source file or
database, but the PowerBI column names are known and there is only one
source file or database, then corresponding database/file columns are created
and technical lineage is preserved. However, if column names can’t be
determined and there are multiple source files or databases, as is the case
when the Table.Combine function is used, then it’s not possible to know which
source column corresponds to the Power BI column. This results in an error

dcxii

and the technical lineage is broken.

To resolve this issue, a dummy column with the value “*” is created in the
source table and the Power BI table:

This preserves the technical lineage at the table level:

o Table.CombineColumns
o Table.DuplicateColumn
o Table.ExpandTableColumn
o Table.FromList
o Table.FromRecords
o Table.FromRows
o Table.NestedJoin
o Table.PromoteHeaders
o Table.RemoveColumns
o Table.RenameColumns
o Table.ReorderColumns
o Table.ReplaceValue
o Table.SelectColumns
o Table.SplitColumn
o Table.Unpivot
o Table.UnpivotOtherColumns

dcxiii

o Table.TransformColumnNames

Note Only the following parameters are supported: Text.Upper,
Text.Lower, and Text.Proper.

o Value.NativeQuery

Note Query parameters are supported. Core parameters are not
supported.

l Transformations that don't impact the lineage diagram
o Table.AddKey
o Table.AlternateRows
o Table.Buffer
o Table.Distinct
o Table.ExpandListColumn
o Table.FillDown
o Table.FillUp
o Table.FindText
o Table.FirstN
o Table.InsertRows
o Table.IsEmpty
o Table.LastN
o Table.MaxN
o Table.MinN
o Table.Range
o Table.RemoveFirstN
o Table.RemoveLastN
o Table.RemoveMatchingRows
o Table.RemoveRows
o Table.RemoveRowsWithErrors
o Table.Repeat
o Table.ReplaceErrorValues
o Table.ReplaceKeys
o Table.ReplaceMatchingRows
o Table.ReplaceRows
o Table.ReverseRows

dcxiv

o Table.SelectRows
o Table.SelectRowsWithErrors
o Table.Skip
o Table.Sort
o Table.TransformColumns
o TableTransformColumnTypes
o Table.First
o Table.Last
o Table.Max
o Table.Min
o Table.SingleRow

l Unsupported transformations

Note Using unsupported transformations can cause parsing errors.

o Table.FromRecords
o SharePoint.Tables
o Folder.Files
o PowerBIRESTAPI.Navigation
o DB2.Database
o Table.ExpandRecordColumn
o Table.Group

Working with Power Query parameters
Power BI Power Query is a data transformation and data preparation engine. It gets data
from your data sources and the Power Query Editor, and performs the extract, transform,
and load (ETL) processing of data.

You can use Power Query parameters to store and manage values that can be reused.
Parameters give you the flexibility to dynamically change the output of your queries,
depending on their values. For complete information on creating and managing
parameters, see the Microsoft documentation.

dcxv

https://learn.microsoft.com/en-us/power-query/power-query-query-parameters

Power BI parameters in technical lineage
Power BI parameters are configured at the dataset level and can be used in reports. When
you integrate Power BI, the Power BI APIs return all parameters that are loaded in a report.

Important When you select the Enable load option for a parameter, Power BI loads
the columns from the parameterized table into its memory. The lineage harvester
can then harvest these columns and create the full lineage.
If the Enable load option is not selected for a parameter:

l The Power BI APIs can recognize the parameterized table, but not the
columns in the table. In this case, Collibra Data Lineage can only create a
table-level lineage; columns cannot be shown.

l If the parameter is used with, for example, the Table.AddColumn function or a
similar function, a parsing error will be produced, because the Collibra Data
Lineage service instance won’t know which column to add.

Parameters of unsupported Power Query M functions are not supported. For the lists of
supported and unsupported Power Query M functions, see Supported Power Query M
functions. Likewise, global parameters are not supported. Global parameters are
parameters that are not specific to a Power Query M function.

Before Collibra Data Lineage introduced support for parameters, if you had a dataset or a
report that had parameters, the following error message was shown: "Could not process
lineage. Please check if the Power Query expression contains schema, table(s) and
column(s)."

Select the Enable load option for a parameter

In the Home tab of the Power Query Editor, right-click the parameter, and then select
Enable load.

dcxvi

Ensure that the Enable load option is selected for all parameters.

Warning If you change the Enable load setting for a parameter, you must refresh
the relevant data set. If the data set is not refreshed, the metadata processing fails
due to an "Unknown identifier" analyze error.

Technical lineage viewer
The technical lineage viewer shows the technical lineage and allows you to edit the view.
You can access the technical lineage viewer via the Technical lineage tab on Column and
Table asset pages and BI assets of the same level.

Tip For more information about the technical lineage for Looker or Power BI, we
highly advise you to read the dedicated sections in the user guide.

dcxvii

co_catalog-asset-pages.htm
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC1616
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0776

Technical lineage tab
You can only see the Technical lineage tab on a Column or Table asset page when you
have the following prerequisites:

l You have a global role with the Catalog global permission, for example, Catalog
Author.

l You have a global role with the Technical lineage global permission.

Note View permissions are not enforced in Collibra Data Lineage. This means that
anyone with the Technical Lineage global permission can see all of the assets in a
technical lineage graph, regardless of their view permissions as determined at the
community or domain level.

Technical lineage viewer

dcxviii

https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0635
https://productresources.collibra.com/docs/collibra/latest/#cshid=DOC0630
co_global-permissions.htm

No Name Description

Toolbar The toolbar to work with technical lineage. The
toolbar helps you to edit basic settings that apply
to the entire lineage.

Drop-down list to determine which details
(attributes, objects or transformations) you
want to show in the technical lineage graph.

Button to zoom in on the technical lineage.

Button to zoom out on the technical lineage.

Button to refresh the technical lineage. This
discards all the changes that you made to the
technical lineage and restores it to the initial state.

Button to reposition the technical lineage to the
starting position.

Button to show or hide the legend panel.

Button to show or hide the source code pane.

Button to show or hide the Browse and Settings
tab panes.

dcxix

No Name Description

Technical lineage graph The actual visualization of the traceability of the
current data object, according to your selection in
the Browse tab pane.

If you select a specific column in a table with
multiple columns, you can click Collapsed
columns [menu] to show all other columns,
collapse all columns or only show selected
columns in the same table.

Tip Data objects that are stitched to
assets in Data Catalog have a yellow
background. Other data objects that the
Collibra Data Lineage collected from your
data source, but are not stitched and
therefore are not assets in Data Catalog,
have a gray background.

Tab panes Tab panes that contain useful tools to browse
through your technical lineage or determine which
content is visualized in the technical lineage.

Browse tab pane This pane can be used to search for specific data
objects or show statistics on the amount of tables
and views in use. More information.

Settings tab pane This pane can be used to search for
transformation code, edit the visualization of the
technical lineage, see the status of the source
code, check the stitching results or export your
technical lineage to PDF, PNG or CSV. More
information.

dcxx

No Name Description

Source code pane The source code pane shows the source code of
specific data objects. It can be used to easily find
issues in the data flow.

The source code pane is shown when you click

in the toolbar or when you right-click a column

or table and click Transformations (IN) or
Transformations (OUT) which shows the
transformation logic in the source code pane.

The technical lineage graph
The technical lineage graph consists of nodes and edges. Each node represents a
corresponding object in a data source. Each edge shows a relation between nodes.

Nodes and edges in the technical lineage graph show how data flows from source to
destination. Understanding the nodes and edges better, enriches your technical lineage
experience.

Consider the following visual elements in the technical lineage graph:

l Relation types
l Messages
l Colors
l Icons
l Arrows
l Collapsed attributes menu
l Right-click menu

dcxxi

Relation types
The technical lineage graph shows relations between columns in the graph. The Collibra
Data Lineage creates and shows the following relation type between stitched assets and
other data objects:

Head Role Co-role Tail ID

Data Element targets sources Data Element 00000000-0000-0000-0000-
000000007069

Messages
The technical lineage graph might show different messages to alert you. The following
messages are the most common:

Message Description

No object found, try using a wildcard
%

When a data object name was entered in the search field on the
Browse tab pane, this message is shown if the data object does
not exist or a system name was entered.

The following rules apply when you search for a data object:

l Use the percent sign (%) wildcard character if needed.
l Enter a database, schema, table or column name.
l Do not enter a system name.

Nodes count exceeds the limit 350.

Edges count exceeds the limit 1,000.

The technical lineage graph exceeds the limit of 350 nodes or
1,000 edges and is too large to display. This happens, for
example, if you have a table with many columns and you try to
show the technical lineage of all columns in a table in one graph.

Note You cannot manually change this limit.

dcxxii

Message Description

Depth was auto-adjusted to <num-
ber>. Graph was too large to display
at once.

The technical lineage graph exceeds the edge limit, which
results in the automatic adjustment of the flow depth for the
graph. The adjusted depth value is determined by the number of
the edges that exceed the maximum edge limit.

When the flow depth is automatically adjusted to a lower value

than the actual graph size, you can find the icon in the

technical lineage graph. To view the truncated lineage, right click
the innermost node, and select Table lineage from the menu.
The lineage information of the selected table is displayed.

The current asset doesn't have a tech-
nical lineage yet.

This message is shown if you didn't create a technical lineage for
the data source of the asset.

Use the Browse tab pane to navigate through the data object for
which a technical lineage graph is available.

Technical lineage cannot be shown. The technical lineage graph cannot be shown, because there
are too many data objects. This happens, for example, when you
created a technical lineage for multiple data source and you click
All data objects in the Browse tab pane.

Use the Browse tab pane to view specific parts of the technical
lineage graph or click the suggested data objects to see their
graph.

Colors
The technical lineage graph shows different colors to indicate which data objects are
stitched to assets in Data Catalog and which are not.

Background colors

The background color of a node indicates whether or not the data object was stitched to an
asset in Data Catalog, and whether something went wrong.

A node has one of three background colors:

dcxxiii

Color Description

Yellow Data objects from your data source that are stitched to assets in Data Catalog

Gray Data objects, for example temporary tables and columns, that Collibra Data Lineage
collects from your data sources, but are not stitched to assets in Data Catalog.

Note Collibra Data Lineage:

l Does not support stitching for Looker assets.
l Supports stitching for MicroStrategy assets only if you use the new
integration method, which supports the latest MicroStrategy APIs.

Red Attributes that are automatically assigned to a data object, because of missing
DDL statements. If you want to remove objects with a red background, change the
statements and rerun the lineage harvester or synchronize the technical lineage again
if you use technical lineage via Edge.

Since a technical lineage shows how data flows from source to destination, it is possible to
see a lineage graph with both yellow, red and gray nodes.

Example The following technical lineage graph shows two nodes with a gray
background and three nodes with a yellow background. Node 1 and 4 contain data
objects that are not stitched to assets in Data Catalog while nodes 2, 3 and 5
contain existing assets in Data Catalog that were stitched to the corresponding data
objects when you created the technical lineage.

Font colors

The font color of data objects in the technical lineage graph indicates whether or not there
is a relation between this data object and one or more other data objects.

A node has one of two font colors:

dcxxiv

Color Description

Black At least one direct or indirect relation exists between the data object and another.

Tip When a column flows from one table to another, the lineage reflects the
direct dependency between the column in the source table and the column in
the target table. This is considered a direct lineage. An indirect lineage, on the
other hand, shows indirect dependencies. For example, if a JOIN clause is
used in a query, the columns in the resulting view are generated by the JOIN
clause; in other words, by an indirect dependency, not an actual flow of data.

Gray No relation exists between the data object and another.

Example The following technical lineage graph shows three nodes. The node 1
contains data objects that have no incoming or outgoing edges to other data objects
in the technical lineage. Nodes 2 and 3 only contain data objects that have a relation
to other data objects in the technical lineage.

Icons
Collibra uses various icons in the technical lineage graph.

Icon Description

The name of a table was found by the full-text search in the source code on which the
analysis failed. Consequently, the lineage flow of the table is probably incomplete.

If you click Show failed SQLs on the right click menu of the table, the failed SQL
queries appear in the source code pane at the bottom of the page.

The lineage is cyclic, for example A→ B→C→A. It only appears if you
enabled the only ending points option in the Settings tab pane.

A relation for the data objects exists, but it isn't shown, for example because you set
the technical lineage flow depth to a lower value than the actual graph size.

dcxxv

Example The following Technical lineage graph shows two nodes. The first node
has an icon to indicate that the lineage flow you currently see is probably
incomplete. The second node has three data objects that have a relation to other
data objects, but the edges that represent that relation are not shown.

Arrows
Arrows are incoming or outgoing edges that show how the data flows from source to
destination. They represent relations of the type "Data Element sources / targets Data
Element".

There are two ways in which an arrow can be shown:

Arrow type Description

Single Shows the full lineage without skipping certain data objects.

Double Shows that there are hidden data objects in the technical lineage graph. This happens
when only the endpoints of the technical lineage flow are shown.

dcxxvi

Example The following Technical lineage graph shows three nodes. Edges with
double arrows are shown between node 1 and 3. These edges indicate that there
are other nodes between these nodes in the full technical lineage flow. Node 2 has
outgoing edges with single arrows. These edges indicate that there is a direct
relation between node 2 and 3.

Collapsed attributes menu
If you select a specific column in a table with multiple columns, you can click Collapsed
attributes [menu] to show all columns, collapse all columns or only show selected
columns in the same table.

Right-click menu
If you right-click a node, you can perform several specific actions on that node.

Functionality Description

Column/Table lineage Switch to the technical lineage graph of the selected column or
table.

dcxxvii

Functionality Description

Transformation (IN) Show the transformation logic of the incoming source code fragments in the
source code pane.

Transformation (OUT) Show the transformation logic of the outgoing source code fragments in the
source code pane.

Lineage tree Show an alternative way to view the flow of data objects, called the lineage
tree. The lineage tree is particularly useful if there are many nodes in a
lineage. It enables you to see the entire lineage in one pop-up, which
means you no longer have to scroll through the technical lineage graph to
see the full lineage.

The lineage tree uses arrows to visualize the traceability of data objects:

l Green arrows represent outgoing edges.
l Black arrows represent incoming edges.

Custom features When the lineage flow of the table is incomplete or there is an issue in the
source code of a data object, the right-click menu shows the Show failed
SQLs option. If you click this option, the source code pane opens and
shows the SQL queries that failed.

dcxxviii

Technical lineage Browse tab pane
The Browse tab pane allows you to navigate to and search for a specific data object within
the technical lineage tree.

No Name Description

Search A search field that you can use to find a specific data object.

You can enter the name of a database, schema, table or column. Searching
for a system name is not supported.

All data objects A link to the complete technical lineage, showing all data objects in your
data sources.

dcxxix

No Name Description

Navigation tree A navigation tree in which you can search for specific data objects and
visualize them in your technical lineage. The data objects are grouped by
node type and have the following structure: system (if applicable) >
database > schema > table > column.

Note The list of data objects contains all systems, databases,
schemas, tables and columns that were collected from the data
sources by the lineage harvester. If available, it also shows the
technical lineage of BI sources, for example Power BI and Looker.
In that case, the structure follows the existing structure in the BI
source metadata.

Note The UNUSED branch contains data objects that were
detected by Collibra Data Lineage, but are not included in any
Technical lineage.

dcxxx

No Name Description

Stats Statistics that show which information is or is not visualized in the
technical lineage. The statistics contain the following data:

l Tables: the amount of tables that are shown in the technical lin-
eage.

l Views: the amount of views that are shown in the technical lin-
eage.

l Unused tables: the amount of tables in your data source that are
not shown in the technical lineage.

Tip This metric is hidden when there are no unused
tables.

l Unused views: the amount of views in your data source that are
not shown in the technical lineage.

Tip This metric is hidden when there are no unused
views.

l Done: the amount of queries that were processed successfully.
l Parsing errors: the amount of queries with invalid or unidentified
syntax.

l Analyze errors: the amount of columns that are not linked to a
table.

Technical lineage Settings tab pane
The Settings tab pane allows you to edit the technical lineage, search for queries and
export the technical lineage.

dcxxxi

No Name Description

Search field A search field to find specific transformation code in a selected
object or attribute. As you type, corresponding object names from
the technical lineage appear in a drop-down list. If you press Enter,
the technical lineage only shows the parts that contain your search
word(s).

dcxxxii

No Name Description

Visualization
options

Options to define how you will see the data objects in the technical lineage.

Group by
parent object

Option to group tables and columns together by their hierarchical parent
object.

Example A schema is the parent object of a table.

Only ending
points

Option to hide all data objects in the middle of the data flow and only
show the ending points of the technical lineage.

Depth A slider that determines the maximum flow depth. The relation path length
from the first node in the technical lineage graph to any other node is
automatically adjusted to the maximum flow depth.

If you see in the technical lineage graph, the flow depth is set to a lower

value than the actual graph size.

Dependencies Drop-down to select the dependencies that you want to visualize. You can
select one of the following dependencies:

l Inbound dependencies only
l Outbound dependencies only
l 2-way dependencies

Show indirect
dependencies

Option to include indirect dependencies in a technical lineage.

Tip When a column flows from one table to another, the lineage
reflects the direct dependency between the column in the source
table and the column in the target table. This is considered a direct
lineage. By default,Collibra Data Lineage only shows direct lineage.
An indirect lineage, on the other hand, shows indirect
dependencies. For example, if a JOIN clause is used in a query, the
columns in the resulting view are generated by the JOIN clause; in
other words, by an indirect dependency, not an actual flow of data.

dcxxxiii

No Name Description

Export Button to export your technical lineage. You can choose among the
following export types:

l PDF
l PNG
l CSV
l Full CSV
l JSON

Show status Button to switch to the Sources tab page, which shows the analysis log files
of your data sources and the Stitching tab page, which shows an overview
of assets and data objects and shows which are stitched.

Technical lineage Sources tab page
When you create a technical lineage, your data sources are uploaded to the Collibra Data
Lineage service to be analyzed and processed. The Sources tab page shows the
transformation details or source code that was analyzed and the results of this analysis.

You can access the Sources tab page by clicking Show status on the Settings tab pane.

Note If an analyzed data source has the following result, the data source does not
appear in the Sources tab page:
Parsing errors: 0
Analysis errors: 0
Done: 0

dcxxxiv

dcxxxv

No Name Description

Summary per data
source

A summary per data source. You can also select data sources to filter the
results.

Selected Checkboxes to filter on a data source in the transformations table. If you
select none, the transformations table contains all transformations.

Source ID The ID of your data source. You entered this ID in the configuration file.

Scanner type The type of scanner that is used to scan the queries in your data source.

Success rate The success rate of the data source analysis on the Collibra Data Lineage
service. The success rate indicates how complete your technical lineage is.

Important The success rate of a technical lineage gives a good
indication of the processing success. A success rate less than
100%, however, does not mean processing was unsuccessful. A
parsing error, for example, which negatively affects the success
rate, does not always negatively affect the completeness of the
lineage.

Done The amount of queries that were scanned and analyzed.

Parsing Error The amount of parsing errors.

Analyze Error The amount of analysis errors.

Last sync time The last time the data source was uploaded to the Collibra Data
Lineage service, for analysis and processing.

Search tools Tools to help you search for specific source code fragments.

Full-text
search

A search field to find specific queries in the log files. Type what you are
looking for and press Enter.

Filter by A drop-down list to filter the source codes based on their status code.

dcxxxvi

No Name Description

Transformations
table

The table that contains details of the transformations and source code
(fragments).

You can filter the rows in the table by selecting data sources in the data
source table and by using the search tools.

Tip If you click a source code fragment, you can see the log file
attached to it.

ID The ID of the source code fragments or transformation details,
which are assigned in chronological order.

Name The name of the specific source code fragment or transformation detail.

You can also see the source code fragment name in the source code pane
in the technical lineage graph.

Status code The status of the analysis.

A source code fragment or transformation detail can have one of the
following status codes:

l DONE: All queries are processed successfully.
l ERROR: Some queries could not be processed.
l PARSING_ERROR: The syntax of some queries is invalid or

unidentified.
l ANALYZE_ERROR: Some columns are not linked to a table.

Status
description

The description of the status code that provides more information about the
analysis and shows how many queries were processed.

Group name The name of the package or procedure to which the source code fragment
or transformation details belongs.

Export Selected
Transformations

The button to export transformation details for the selected data
sources. When you click this button, you download a ZIP file. The
ZIP file contains an errors.csv file that includes the transformation
details for the selected data sources. If you do not select any data
sources, the transformation details for all listed data sources in the
transformations table are exported.

dcxxxvii

No Name Description

Show lineage The button to go back to the technical lineage graph.

Sort by each
column

The sorting icons that you can use to sort by each column in ascend-
ing or descending order. These columns include Scanner type,
Success rate, Done, Parsing Error, Analyze Error, and Last sync
time.

Analysis results
If you click one of the rows in the Transformations table, a file with the analysis results
attached to the source code or transformation details opens. You can use these files to
easily find errors in the source code or transformation details of your data source.

If the metadata that Collibra Data Lineage collects from your data source includes SQL
queries, the analysis results might display comments from those SQL queries.

Note If a comment ends with a statement separator, for example, /*select 2
from dual*/;, the comment is counted as a statement. Consequently, the
number of queries that are displayed in the Done column under Summary per data
source might be greater than the actual number of queries parsed.

dcxxxviii

Technical lineage Stitching tab page
The Stitching page shows the full path of assets in Data Catalog and data objects of the
data sources for which you created a technical lineage. You can use it to easily check
which assets are stitched and which are not.

You can access the Stitching tab page by clicking Show status on the Settings tab pane.

No Name Description

Search field A search field to find specific assets or data objects. Type what you are
looking for and press Enter.

dcxxxix

No Name Description

Full asset path The full path to all data objects on the Collibra Data Lineage service
and all assets in Data Catalog.

Found in The location where the asset or data object was found. There are three
possible locations:

l Data Catalog: The asset was found in Data Catalog, but it does
not match the full path of a data object on the Collibra Data
Lineage service. As a result, there is no technical lineage created
for this asset.

l Technical lineage: The data object was found in the data source
for which you created a technical lineage, but it does not match
the full path of an asset in Data Catalog. As a result, the data
object is shown in technical lineage with a gray background.

l Data Catalog & Technical lineage: An asset and a data object
with the same full path were found in Data Catalog and on the
Collibra Data Lineage service. As a result, they were stitched
and are shown in technical lineage with a yellow background.

Note In Collibra, full paths are case-sensitive.

Show lineage The button to go back to the technical lineage graph.

dcxl

Technical lineage troubleshooting
For complete troubleshooting information, go to the Collibra Support Portal.

Troubleshooting for technical lineage via Edge dcxli

Troubleshooting for technical lineage via
Edge

In this topic
l Retrieve your Edge Site Id and Job Id
l Message "Source 'source_name' was never processed with the current useSys-
temName flag"

l Message "Failed to load artifacts message"
l Message "A UNIQUE constraint failed"
l Message "Failed to fetch lineage API key because of a client error"
l Message "MountVolume.NewMounter initialization failed" does not exist"

Retrieve your Edge Site Id and Job Id
If you report an error with JDBC Technical lineage running on Edge, the Customer Support
team can ask you for the Edge Site Id and Job Id. The team needs this information to
access details about the error.

To retrieve the Job Id, see View the summary of an technical lineage synchronization.

To retrieve the Site Id:

1. Go to Settings.
2. In the Edge section, click Sites.
3. Click the name of the Edge site.

» The Edge site Id is available in the ID field.

dcxli

https://support.collibra.com/hc/en-us/search#q=technical lineage&t=Zendesk&sort=relevancy
#ViewtheSummaryoftheResults

Message "Source 'source_name' was never
processed with the current useSystemName
flag"

Description Solution

This error occurs when atechnical lineage
capability was synchronized with the
following values set differently on Edge
and for the lineage harvester:

l The value of the Collibra system
name setting on Edge.

l The value of the useCol-
libraSystemName property in the
lineage harvester configuration
file.

Both values must be the same even if you
use technical lineage via Edge and the
lineage harvester for different data
sources.

Complete the following steps:

l Ensure that the value for the Collibra system name
setting is the same with the value of the useCol-

libraSystemName property in the lineage harvester

configuration file.
l Synchronize the technical lineage capability again.

Message "Failed to load artifacts message"

Description Solution

If the Technical Lineage synchronization
activity was not successful and you see
error "failed to load artifacts" in the
Lineage harvester synchronization
dialog, it means the Technical Lineage
capability could not be loaded in Edge.

Report this error and the Job Id to the Customer Support team
for further investigation.

dcxlii

#EnableTechnicalLineage
#EnableTechnicalLineage

Message "A UNIQUE constraint failed"

Message code Description Solution

MSG-LIN-2501 A UNIQUE
constraint failed.

When a technical lineage capability was being synchronized,
synchronization processing failed because two capabilities were
added for one BI tool data source with two different source IDs.

To resolve this issue, complete the following steps:

1. If you do not have a lineage harvester installed, install
one.

2. Enter the list-sources command and review the

listed data sources to identify the data source that was
added twice.

3. Take any of the following actions:
o If the technical lineage capability with the source ID
that you want to remove still exists on Edge:
i. On Edge, edit the technical lineage capability for

the identified data source that you want to
exclude by clearing the Active check box.

ii. Synchronize the technical lineage capability for
your data source again.

o If the technical lineage capability no longer exists
on Edge:
i. Enter the ignore-source command with the

source ID that you want to remove.
ii. Enter the full-sync command to synchronize the

technical lineage again.

dcxliii

ta_edit-capability-of-edge-site.htm

Message "Failed to fetch lineage API key
because of a client error"

Message code Description Solution

MSG-LIN-3001 The DGC user name and DGC user
password are not defined or incorrect.

Complete the following steps:

l Verify the Edge technical lineage
settings.

l Synchronize the technical lineage
again.

Message "MountVolume.NewMounter
initialization failed" does not exist"

Description Solution

You get the following message:

MountVolume.NewMounter

initialization failed for volume

\"pv-shared-folder-2d53d256-fd6b-

4be8-a732-fe0f1c98704e-edge\" :

path

\"\/var\/lib\/edge\/storage\/dir\"

does not exist

When a technical lineage capability that uses a Shared
Storage connection was being synchronized, the Shared

Storage connection folder with the name of dir did not

exist.

Complete the following steps:

l Create a folder on the Edge site server.
The folder path must be relative to
/var/lib/edge/storage/.

l When you create the Shared Storage
connection, specify the folder name.

l Synchronize the technical lineage again.

For more information, go to Create a technical
lineage via Edge.

dcxliv

#EnableTechnicalLineage
#EnableTechnicalLineage
#synchronize
#CreateSharedStorageConnection-JDBC
#CreateSharedStorageConnection-JDBC
#synchronize

	 ContentsContents Collibra Data Lineage What is Collibra Data Lineage? BI tool integration Business value How do I create a technical lineage? Database Owners, BI and ETL Admins, and Collibra Admins Database Owners BI and ETL Admins Collibra Admins Software requirements Hardware requirements Network requirements Requirements and permissions Steps What's next? Typical command options and arguments Structure of the JSON file Examples of commands On Windows On other operating systems The lineage harvester configuration file Empty configuration file Configuration file generator Steps What's next Prerequisites Steps What's next? Requirements and restrictions Programming considerations Example Sample JSON file for a simple custom technical lineage Sample JSON file for an advanced custom technical lineage Requirements and restrictions Format Example Terminology Methodology Steps Naming convention Prerequisites Steps What's next? Prerequisites Steps Business users Technical lineage Automatic stitching for technical lineage BI tool business logic Technical lineage and stitching for BI tool integrations Business Summary Lineage Differences between Technical lineage and diagrams with Business Summary Lineage BI integration concepts Technical users Supported data sources for technical lineage Transformation logic Technical lineage export types BI integration concepts Technical lineage viewer Technical lineage troubleshooting Troubleshooting for technical lineage via Edge Collibra Data LineageIn this topic, we addresses the following:What is Collibra Data Lineage?BI tool integrationBusiness valueHow do I create a technical lineage?What is Collibra Data Lineage?Collibra Data Lineage is a cloud-only product that allows you to trace data from its source system, across the various contact points of your data landscape, to its final destination system. Ultimately, our objective is to help you establish trust in your reports and use the data to make sound business decisions. Collibra Data Lineage consists of two components:Technical lineageDiagrams with Business Summary LineageThe value of these components are the same, but they are designed for different audiences.Technical lineage Designed for Data Engineers, Data Architects, and other technically-focused roles. A detailed lineage graph that provides complete end-to-end lineage, to visualize the journey of the data objects in your external data sources.Allows you to explore data objects, including temporary tables and columns, in your external data sources. You don't need to register data sources in Collibra to include them in a technical lineage.We use the term data objects when referring to columns and tables in your external data sources. We use the term assets (specifically Column assets and Table assets) when referring to the representation of data objects in Collibra. Includes all source code and data transformation details. Shows you in which system data objects are used and how they are transformed from data source to data source.Automatically created as part of the technical lineage process.Diagrams with Business Summary Lineage Designed for Analysts, Governance roles, and other business-focused roles.Shows the relations between assets in Collibra that represent the data objects in your external data sources. Business Summary Lineage refers specifically to the relation type Data Element targets / sources Data Element that is drawn between Column assets. Shows how registered data sources relate to each another.Registering a data source means creating assets (and the relations between the assets) in Collibra that represent the data objects in your external data sources.Automatically created as part of the technical lineage process.The main difference between a technical lineage and a diagram with Business Summary Lineage:Technical lineage identifies data objects in your external data sources.Diagrams with Business Summary Lineage show assets in Collibra that represent some or all of those data objects.We illustrate this in the following example.Let's say that you have created a technical lineage for four different databases:The first database, Oracle, is not registered in Collibra, therefore there are no assets in Data Catalogthat represent the Oracle data objects.The second database, Raw, is registered in Collibra.The yellow background of the first node indicates that Table and Column assets that were created in Data Catalog are stitched to their corresponding data objects in the Raw database.The other node, the one with the gray background, is a temporary table. No assets are created for temporary data objects and so stitching is not relevant. That is why the node has a gray background.The third and fourth databases, Refined and Consumption, are ingested in Collibra. The assets that were created in Data Catalog are stitched to their corresponding data objects in the two databases.What we what to point out here is that Technical lineage shows the data flow of all data objects across all four databases, regardless of any assets in Collibra.The corresponding diagram with Business Summary Lineage shows only the relations between data objects that have corresponding assets in Data Catalog. In the following image, we see the data flow of assets from the second database, to the third, to the fourth. The first database, Oracle, which is not registered in Collibra, and , is not shown on the diagram.For more information on the differences between these two components, go to Differences between Technical lineage and diagrams with Business Summary Lineage.For a complete list of supported data sources, go to Supported data sources for technical lineage. If you want to create a technical lineage for a data source that is not currently supported, you can create a Custom technical lineage.BI tool integrationBusiness intelligence software helps organizations to collect data from the various data sources across their data ecosystem and present the data in interactive dashboards and reports, to facilitate decision-making and strategic planning. When you integrate your BI tool in Collibra: Metadata about the data objects in your external data sources is created as BI assets in Collibra.Relations are created: Between data objects in your external data source and assets in Collibra that represent those data objects.These assets are created when the data source is registered, which is automatically carried out during the technical lineage process.Between BI assets and the assets in Collibra that represent the data objects in your external data source. A technical lineage is automatically created. On specific BI asset pages, you can view the technical lineage, critical attributes of your reports and dashboards, and relations to other assets in Data Catalog.Business valueCollibra Data Lineage has many important use cases. Here are a few.Report certificationBy providing transparency and traceability to the data used in a report, data lineage plays a foundational role in the report certification process: Review data sources and transformations associated with the data in a report, to help ensure accuracy and reliability. Identify the original sources of data used in the report, and how the data moves from the source system to intermediate systems. View and analyze the calculation rules that are used to extract and transform the data before it reaches the report. All critical metadata is ingested during BI integration and shown on the Collibra asset pages. This includes information like data timestamps, quality metrics, data ownership, and other valuable attributes that help you to assess the reliability and quality of the data.If a report is certified in your BI tool, that metadata is ingested and shown in the Certified attribute on the BI report asset page in Data Catalog.You can manually synchronize the data in Collibra or set up a synchronization schedule, to help ensure the accuracy and completeness of the data over time. This can help identify inconsistencies or gaps in the data flow and transformation processes.Impact analysisCollibra Data Lineage can help you with impact analysis when making changes to data sources, adjusting the calculation rules that drive transformations, migrating data and more. It can help you assess the potential impact of changes on downstream systems, data and reports.Let's say you have data in a Snowflake data source, and you need to move everything to Databricks. After migration, you can create a technical lineage to trace the movement of data from one data source to the other and ensure data integrity throughout the migration process. Understanding data dependencies and relationships helps you to: Anticipate which downstream systems could be impacted if you've made changes to a data source or calculation rule. Anticipate how changes to a particular data object or system will propagate across your data landscape.Minimize risks and make better informed decisions. Root cause analysis in data-related issuesCollibra Data Lineage is a valuable tool for helping data analysts and engineers trace the source of data quality issues and anomalies. When you detect a discrepancy in your data, you can examine the lineage and source code to:Trace the issue back to the source system or process that is causing the problem. Analyze any calculations rules that might have affected the consistency or quality of the data. Identify how the issue is affecting downstream systems and reporting. This can help you identify potential areas where the root cause might exist.Regulatory ComplianceCompliance with data privacy regulations such as GDPR and CCPA, and various security, auditing and reporting standards, often requires organizations to show end-to-end traceability across their data landscape. In the data privacy
context, Collibra Data Lineage can give you a complete view of where sensitive and restricted data is processed, shared, and stored. Let's say that a individual customer of an organization wants to exercise their right to be forgotten, as dictated by GDPR. In compliance with the regulation, the organization has to purge Personally Identifiable Information (PII) about the individual from its systems. Once the organization has identified the PII, it can use data lineage to:Trace the information across its systems, data source and processes.Monitor any migrations and transformations to the data.Identify who has access to the systems and data sources that consume the data.BI integration: View critical metadata about your reports and dashboardsBI integration in Collibra enables you to view all of the critical metadata about your reports and dashboards on dedicated asset pages in Data Catalog. The many attributes help you to identify the most critical reports that have the highest impact. This can help you effectively allocate your resources and minimize disruptions.A few of the key attributes include the following:Document creation and modification dates: See when the report was created and updated in your BI tool. Visits count: See how many people have viewed the report.Let's say that you have two reports with the same name, but one has 400 views and the other has almost none. That gives a strong indication as to which is the more helpful report.Owner in Source: Easily identify who owns and who certified a report, to know where to turn for additional help and information Calculation Rule: See DAX calculations for calculated columns and measures on Power BI Column asset pages.URL: Easily access the report in your BI tool.Relation types allow you to immediately identify in which other reports a report is used. How do I create a technical lineage?There are two ways to create technical lineages and diagrams with Business Summary Lineage: Via Edge.Via the lineage harvester. The typical workflow for creating a technical lineage is the same whether you use the lineage harvester or Edge. If you want to use technical lineage via Edge and the lineage harvester together, you must use lineage harvester version 2023.04 or newer. If you want to maintain on Edge the technical lineage that you created by using the lineage harvester, you can add technical lineage capabilities for the data sources with the same source IDs. For details, go to Migrate the technical lineage of a data source.EdgeYou can create a technical lineage via Edge, for Tableau, Power BI and all supported JDBC and ETL data sources. Benefits include: Seamless integration with Data Catalog.The Edge User Interface (UI), instead of Command Line Interface.Connections via Edge, instead of lineage harvester drivers.Job scheduling via Data Catalog. The lineage harvesterThe lineage harvester is a connectivity tool that allows you to create a technical lineage. You can use the lineage harvester to create a technical lineage for any supported data source.You need to download the lineage harvester from the Collibra Community Downloads page.You need to use the Command Line Interface in conjunction with a lineage harvester configuration file.Database Owners, BI and ETL Admins, and Collibra AdminsThis section aims to provide information that is most relevant for the following people:Database Owners, who work with external data sources, to ensure that Collibra can connect to them.BI Admins, who maintain their organizations' BI and ETL platforms and ensure that Collibra can connect to, and communicate with, BI and ETL tools.Collibra Admins, who work with Collibra Data Lineage, as well as with Database Owners and BI Admins, to create a technical lineage. Collibra Admins work with Database Owners and BI AdminsThese roles work closely together to achieve their objectives. Collibra Admins also work with network and server administrators to, for example, configure proxy servers.Database Owners BI and ETL Admins Collibra Admins Software requirements Hardware requirements Network requirements Requirements and permissions Steps What's next? Typical command options and arguments Structure of the JSON file Examples of commands On Windows On other operating systems The lineage harvester configuration file Empty configuration file Configuration file generator Steps What's next Prerequisites Steps What's next? Requirements and restrictions Programming considerations Example Sample JSON file for a simple custom technical lineage Sample JSON file for an advanced custom technical lineage Requirements and restrictions Format Example Terminology Methodology Steps Naming convention Prerequisites Steps What's next? Prerequisites Steps Database OwnersThis section caters primarily to Database Owners, who work with external data sources, to ensure that Collibra can connect to them. Database Owners create databases and ensure that all of the required data source-specific permissions are met, so that Collibra can successfully connect to them and ingest the metadata.Data source permissionsBefore you can start ingesting metadata, ensure that you meet the required permissions for your specific data source.Select a data source, to show the required permissions.Currently, information is shown for:Amazon RedshiftAzure Data FactoryAzure SQL Data WarehouseAzure SQL ServerAzure Synapse AnalyticsDB2Google BigQueryGreenplumHiveQLIBM InfoSphere DataStageInformatica Intelligent Cloud ServicesInformatica PowerCenterLookerMatillionMicroStrategyOraclePostgreSQLPower BIMySQLNetezzaSAP HanaSnowflakeSpark SQLDownloaded SQL filesSQL ServerSQL Server Integration ServicesSSRS-PBRSSybaseTableauTeradataCustom technical lineageChoose another data sourceX My data source is not in this list.Amazon RedshiftAzure Data Factory Azure SQL Data Warehouse Azure SQL Server Azure Synapse Analytics Custom technical lineageDataStage DB2 Google BigQuery Greenplum Hive Informatica Intelligent Cloud Services Informatica PowerCenter LookerMatillion MicroStrategyMySQL Netezza OraclePostgreSQL Power BISAP Hana Snowflake Spark SQL SQL Server SQL Server Integration Services Downloaded SQL files SSRS-PBRSSybase Tableau TeradataEnsure that you meet the Set up Azure Data Factory.You need read access on information_schema. Only views that you own are processed.You need read access on the SYS schema.You need read access on information_schema:bigquery.datasets.getbigquery.tables.getbigquery.tables.listbigquery.jobs.createbigquery.routines.getbigquery.routines.listSELECT, at table level. Grant this to every table for which you want to create a technical lineage.You need Monitoring role permissions.A role with the LOGIN option.SELECT WITH GRANT OPTION, at Table level.CONNECT ON DATABASEYou need read access on the SYS schema and the View Definition Permission in your SQL Server.You need read access on definition_schema.GRANT SELECT, at table level. Grant this to every table for which you want to create a technical lineage.The role of the user that you specify in the username property in lineage harvester configuration file must be the owner of the views in PostgreSQL.You need read access on the DBC.You need read access to the following dictionary views: all_tab_colsall_col_commentsall_objectsALL_DB_LINKSall_mviewsall_sourceall_synonymsall_views Your user role must have privileges to export assets. You must have read permission on all assets that you want to export. You have added the Matillion certificate to a Java truststore.You have at least a Matillion Enterprise license.The following permissions are the same, regardless of the ingestion mode: SQL or SQL-API.You need a role that can access the Snowflake shared read-only database. To access the shared database, the account administrator must grant the IMPORTED PRIVILEGES privilege on the shared database to the user that runs the lineage harvester.If the default role in Snowflake does not have the IMPORTED PRIVILEGES privilege, you can use the customConnectionProperties property in the lineage harvester configuration file to assign the appropriate role to the user. For example:customConnectionProperties: role=METADATAThe source code files must be in the same directory as the lineage.json file. Otherwise, an error occurs indicating that the lineage harvester cannot find the source code files. For complete information, go to Working with custom technical lineage.Before you start the Power BI integration process, you have to perform a number of tasks in Power BI and Microsoft Azure. These tasks, which are performed outside of Collibra, are needed to enable the lineage harvester to reach your Power BI application and collect its metadata. For complete information, go to Set up Power BI.Before you start the Tableau integration process, you have to perform a number of tasks in Tableau. For complete information, go to the following topics:Set up TableauTableau roles and permissionsYou need the following roles, with user access to the server from which you want to ingest:A system-level role that is at least a System user role.An item-level role that is at least a Content Manager role.We recommend that you use SQL Server 2019 Reporting Services or newer. We can't guarantee that older versions will work.Before you start the Looker integration process, you need to set up Looker.The following permissions apply only to MicroStrategy on-premises customers. You need Admin API permissions.The first call we make to MicroStrategy is to authenticate. We connect to <MSTR URL>:<Port>/MicroStrategyLibrary/api-docs/ and use POST api/auth/login. You have to ensure that this API call can be made successfully. You need permissions to access the library server.The lineage harvester uses port 443. If the port is not open, you also need permissions to access the repository.If you have a MicroStrategy on-premises environment, you need the
permissions for all of the database objects that the lineage harvester accesses.You have to configure the MicroStrategy Modeling Service. For complete information, see the MicroStrategy documentation.There are no specific permission requirements for this data source type.There are no specific permissions requirements for downloaded SQL files.BI and ETL AdminsThis section caters primarily to BI and ETL Admins, who maintain their organizations' BI and ETL platforms and ensure that Collibra can connect to, and communicate with, BI and ETL tools. The following are examples of some BI and ETL Admin roles:For Tableau:Tableau Site AdministratorTableau Server AdministratorFor Power BI / Azure Data Factory: Power BI Platform AdministratorGlobal Administrator or Azure Cloud Application AdministratorFor Looker: Looker AdministratorFor Matillion: Matillion AdministratorFor MicroStrategy: MicroStrategy System AdministratorFor SQL Server Reporting Services (SSRS): Member of the local administrator group Set up Azure Data FactoryThe lineage harvester uses Azure APIs to get the information necessary to build technical lineage from Azure Data Factory. This topic guides you through the required tasks for registering Azure Data Factory in the Azure Portal and assigning the necessary permissions and access.Because the tasks covered in this topic are performed outside of Collibra, it is possible that the content changes without us knowing. We strongly recommend that you carefully read the source documentation.Topics in this section Required values for your Azure Data Factory configuration fileRegister your Azure Data Factory instance in the Azure PortalAssign the API permissionsCreate an authentication secretAdd your Azure Data Factory instance to a resource groupRetrieve the subscription ID of the resource groupAssign read-only permissions to the resource group Required values for your Azure Data Factory configuration fileThe tasks in this topic help you to identify the values you will need when you are preparing the lineage harvester configuration file for Azure Data Factory. You need the correct values for the properties shown in the following table. If you want to create a technical lineage for more than one Azure Data Factory instance, you need this information for each instance.PropertiesDescriptiontenantDomainThe directory ID of your Azure Data Factory instance.applicationIdThe application ID of your Azure Data Factory instance. Specifically, this is the associated service principal for Azure Data Factory, not the enterprise application ID.resourceGroupNameThe name of a resource group with the Reader role for the Azure Data Factory instance. subscriptionId The subscription ID of the resource group. passwordThe secret value for the application ID. Register your Azure Data Factory instance in the Azure Portal Follow the Microsoft Azure instructions on how to register an application and refer to the following table for help with the various settings:SettingDescriptionNameThe name of your Azure Data Factory instance.Supported account typesThe type of tenant. This indicates who can access the Azure Data Factory instance. Select Single tenant.Redirect URIThe location to which a user's client is redirected and where security tokens are sent after successful authorization. In this case, the redirect URI must be of the type Web. Leave this field empty. You don't have to specify a web location.The Azure Portal creates: The Application IDThe Directory IDWhen your Azure Data Factory instance is registered, you can find these two IDs in the Overview pane on the Azure Portal or in the upper-right menu.These IDs are the values you will use for the applicationId and tenantDomain properties, respectively, in your Azure Data Factory configuration file.Assign the API permissions In the Azure Portal, click the Authentication pane, and then: Click the Advanced settings section. For the Allow public client flows option, click Yes. Click the API permissions pane, and then: For the permission type, click Delegated permissions. Assign the Azure Data Factory instance in Microsoft Azure the Microsoft Graph User.Read permission.The user now has the following permissions: Microsoft Graph User.Read Create an authentication secret In the sidebar navigation, in the Manage section, click Certificates and secrets. Ciick New client secret. Note that certificates are not supported. Enter a description. Use the date picker to specify an expiration date for the authentication secret. Click Add.An authentication secret is shown.Make note of the authentication secret. For security purposes, It will not be available later. If you lose the authentication secret, you will need to create a new one.The authentication secret is the value you will use when prompted for the password to connect to Azure Data Factory.Add your Azure Data Factory instance to a resource groupYour Azure Data Factory instance should already be part of a resource group. If it is, you can skip this step. If it's not, you need to create a resource group and add your Azure Data Factory instance to it.The Data factories page shows all of your Azure Data Factory instances, including their subscriptions and resource groups. Check here to know if your instance is part of a resource group.Create a resource group and add your Azure Data Factory instance Go to the Group Management page for your Azure Data Factory instance. Follow the Microsoft Azure instructions on how to create a resource group, and refer to the following table for help with the various settings: SettingDescriptionGroup NameThe name of the new resource group that you are creating.Make a note of this name. You will need it later.The resource group name is the value you will use for the resourceGroupName property, in your Azure Data Factory configuration file.Group TypeThe type of resource group.Select Security.Service PrincipalThe identity an application uses to access Azure resources and APIs. Enter the Application ID that was generated when you registered Azure Data Factory in the Azure Portal.Retrieve the subscription ID of the resource groupOn the Data factories page, click the resource group for the Azure Data Factory instance for which you want to create a technical lineage, and make note of the subscription ID.The subscription ID is the value you will use for the subscriptionId property, in your Azure Data Factory configuration file.Assign read-only permissions to the resource groupTo gather the information needed for technical lineage, the resource group needs permission to read the APIs.Check to see which permissions the resource group has. On the Resource groups page, click Access control (IAM). In the Check access search box, type the name of the resource group.In the search results, click on the resource group to see the access assignments. If your resource group already has the Reader role, as shown in the previous image, this task is complete.If your resource group does not have the Reader role, click X in the upper-right corner, to close the Access assignments page.The Access control (IAM) page again appears. Click the Role assignments tab.Click Add > Add role assignment and follow the Microsoft Azure instructions on how to add a role assignment. Refer to the following table for help with the various settings:SettingDescriptionRolesThe role assignment for the resource group.Select Reader.The lineage harvester only needs read access. MembersEnsure that the User, group, or service principa radio button is selected. Search for and select the resource group.ConditionsNo conditions are necessary. Click Next.Review + assignClick Review +assign, to assign the Reader role to the resource group.After a few moments, the read-only permission is assigned to the resource group.Set up LookerBefore you start the Looker integration, you have to enable Collibra to access your Looker data. The Looker integration process uses a Looker API. To access the Looker metadata, the Looker API uses API3 credentials for authorization and access control.PrerequisiteYou have the necessary permissions in Looker to see the Looker data.StepsCreate a user with the Admin role. Only a user with a role that has the Admin permission set can create API3 credentials. Some Looker API calls also require a role that has the Admin permission set.Create the API3 credentials.Use the API3 credentials in your lineage harvester configuration file. API3 credentials are always linked to a Looker user account. As a result, calls to the API only return data that the user is allowed to see.For more information, see the Looker documentation.Set up MicroStrategyThe MicroStrategy integration supports both MicroStrategy Cloud and MicroStrategy on-premises environments. Before you start the integration, you have to enable Collibra to access your MicroStrategy data.Requirements and permissionsThe following permissions apply only to MicroStrategy on-premises customers. You need Admin API permissions.The first call we make to MicroStrategy is to authenticate. We connect to <MSTR URL>:<Port>/MicroStrategyLibrary/api-docs/ and use POST api/auth/login. You have to ensure that this API call can be made successfully. You need permissions to access the library server.The lineage harvester uses port 443. If the port is not open, you also need permissions to access the repository.If you have a MicroStrategy on-premises environment, you need the permissions for all of the database objects that the lineage harvester accesses.You have to configure the MicroStrategy Modeling Service. For complete information, see the MicroStrategy documentation.To access MicroStrategy data, you have to use the In-memory
Dataset connection method in MicroStrategy, not the Live Connect connection method. If the data is not stored in memory, the MicroStrategy APIs can't access it.If you are using a proxy server, confirm with your Collibra Admin that your proxy server is configured to access the library server. Set up Power BIBefore you start the Power BI integration process, you have to perform a number of tasks in Power BI and Microsoft Azure. These tasks, which are performed outside of Collibra, are needed to enable the lineage harvester to reach your Power BI application and collect its metadata.The tasks include the following:Attain authentication.Register your Power BI application in Microsoft Azure and set permissions.Fulfill the Power BI dedicated capacities and roles requirements for Power BI workspaces.Ensure that the lineage harvester can connect to the following URLs:https://login.microsoftonline.com:443https://api.powerbi.com:443The URL of your Power BI tenant, which you have to specify in the tenantDomain property of your lineage harvester configuration file.The metadata harvesting process explains in detail the prerequisites for enabling the lineage harvester to collect the Power BI metadata.There are some limitations to the metadata harvesting process. Ensure that you understand these limitations before you start the harvesting process.Because these tasks are performed outside of Collibra, it is possible that the content changes without us knowing. We strongly recommend that you carefully read the source documentation.Supported Power BI subscriptionsYou need one of the following subscriptions to ingest Power BI metadata in Data Catalog. The metadata collected by the lineage harvester is the same, regardless of your subscription. Power BI Pro. Power BI Premium.Power BI Premium Per User. We highly recommend you to have a Power BI Premium subscription.Power BI ingestion considerations and limitationsThere are a few considerations and limitations that you should be aware of when you use the Power BI metadata connector and lineage feature.General considerationsEnsure that the lineage harvester can connect to the following URLs:https://login.microsoftonline.com:443https://api.powerbi.com:443The URL of your Power BI tenant, which you have to specify in the tenantDomain property of your lineage harvester configuration file.The assets created in Collibra have the same names as their counterparts in Power BI. Full names and Display names cannot be changed in Data Catalog.Asset types are only created if you have all specific Power BI and Data Catalog permissions.The Power BI assets are created in the domain (or domains) that you specify in the Power BI <source ID> configuration file. Relations that were created between Power BI assets and other assets via a relation type in the Power BI operating model, are deleted upon synchronization. The same is true of any attribute types in the operating model that you add to Power BI assets. To ensure that the characteristics you add to Power BI assets are not deleted upon synchronization, be sure to use characteristics that are not part of the Power BI operating model.Supported subscriptionsYou need one of the following subscriptions to ingest Power BI metadata in Data Catalog. The metadata collected by the lineage harvester is the same, regardless of your subscription. Power BI Pro. Power BI Premium.Power BI Premium Per User. Other Power BI subscriptions are currently not supported.Power BI metadataCertified data sets and reportsIf a data set or report in Power BI is certified, the corresponding Power BI Data Model and Power BI Report assets in Collibra are automatically certified, as identified by the Certified attribute. If, however, certification of a data set or report in Power BI is rescinded, the corresponding assets in Collibra still identify as being certified.Collibra Data Lineage can connect only to datasets that are hosted by Power BI. It cannot connect to externally hosted datasets or models. For complete information, consult Microsoft's Power BI documentation.Partial access to metadata of certain Power BI elementsThe lineage harvester can only partially access metadata of the following Power BI elements:Classic Power BI workspaces, which include My Workspace. Only a full ingestion of new Power BI workspaces is supported.Descriptions of most Power BI elements.Power BI apps are not ingested. They can, however, be ingested as Power BI Reports.The prefix [App] in the name of a Power BI Report asset indicates that the report is distributed as part of an app, in Power BI. Direct links to app reports are only available if the name of the original report matches the name of the app report, and if the name is unique. In all other cases, the URL on the asset page links to the app, not to the app report.The lineage harvester cannot access metadata of the following Power BI elements:Tile subtitles.Data from external sources supplying the input for the Power Query expressions in Power BI.Power BI datamarts are currently not supported.The Power BI API doesn't provide information about the dataset ID for Paginated Reports, therefore lineage for Paginated Reports is not available.The Collibra Data Lineage service can process most, but not all, complex Power BI metadata. This means that the success rate of a Power BI ingestion can be very high, but almost never 100%.Known issuesThe following table presents the known issues of the Power BI integration in Collibra Data Intelligence Cloud.Known issueDescriptionThe data set Report Usage Metrics Model cannot be ingested.The Report Usage Metrics Model is a data set that is automatically created by Power BI. This data set does not contain actual data, which means that they contain nothing to ingest into Data Catalog.However, the lineage harvester still tries to access the metadata and, since there is nothing to access, shows an error message. All error messages about the Report Usage Metrics can be ignored.Report attributes are not returned by the API.When harvesting Power BI, report attributes are not returned by the API. Therefore, for a given report, Collibra Data Lineage creates a dummy report attribute. This dummy report attribute is identified in the technical lineage by an asterisk (*), as shown in the following example image. Links are drawn from all data attributes in the data set that were used to create the report, to the dummy report attribute.Power BI assets that are moved to a different domain are deleted after synchronization.We highly recommend that you do not move the ingested assets to other domains. If you do, the assets will be deleted and recreated in the initial Data Catalog BI domain (or domains) when you synchronize Power BI. As a result, any manually added characteristics of those assets are lost.You have successfully ingested Power BI metadata, but calculated tables and columns are not shown in the Technical lineage or in the browse tab pane.Calculated columns are virtually the same as a non-calculated columns, with one exception: their values are calculated using DAX formulas and values from other columns. Collibra Data Lineage currently does not support internal transformations via DAX language, and any data objects derived via DAX are not shown in the technical lineage or in the browse tab pane. Currently, only M Query/Power Query expressions are supported.You get an error message that mentions one of the following: “… function not implemented” “invalid lexical element” This means that the specific integration feature is not currently supported.You can add your ideas for product enhancements and new features in the Collibra Integrations Ideation Portal.Power BI authenticationYou have to attain authentication to access Power BI metadata. Your authentication method determines how you retrieve the metadata. The lineage harvester supports two authentication methods:Username and passwordService principalThe metadata harvesting process is different for each authentication method. Therefore, different configurations in Microsoft Azure and Power BI are required.We highly recommend that you use the service principal authentication, as detailed metadata scanning in Power BI is designed for use with service principal authentication.You can use a cURL command to check whether or not you can use username and password authentication.Show me howRun the following command, where the bolded text refers to your information:curl -v “https://login.microsoftonline.com/<your environment>.onmicrosoft.com/oauth2/v2.0/token” -F client_id=<your ID> -F “username=<your username>” -F “password=<your password>” -F “scope=https://analysis.windows.net/powerbi/api/.default” -F grant_type=passwordTo check on Windows, follow these steps:Download and install the cURL Command-Line Tool. In Windows, click Start > Run, and then enter cmd in the Run dialog box.Run the following command, where the bolded text refers to your information:“https://login.microsoftonline.com/<your environment>.onmicrosoft.com/oauth2/v2.0/token” -F client_id=<your ID> -F “username=<your username>” -F “password=<your password>” -F “scope=https://analysis.windows.net/powerbi/api/.default” -F grant_type=passwordTo ingest Power BI dataflows:You need access to the Power BI environment in which the data flow is stored.The data set in the data flow must exist in a premium workspace.Username and passwordThe username and password authentication method relies on the username, in the form of an email address, and a password you provide to access the Power BI metadata. To use the username and password authentication method, you need to be an Azure Active Directory user with a Power BI admin role in Power BI. When you become an Azure Active Directory user, a new email address is created. This email address is the username you use to sign in to Power BI. You can store the
username and password you use to sign in to Power BI in the lineage harvester configuration file.Only Azure Administrators can create users and require them to authenticate via username and password. The Azure Administrator also assigns the user the Power BI admin role. This user is only created for the purpose of Power BI integration in Collibra Data Intelligence Cloud. The user in Azure should have a Member user type.Service principalThe service principal authentication method allows an Azure Active Directory application to automatically access Power BI content and APIs.Service principal authentication relies on the Power BI Tenant ID and the Azure Active Directory application ID that you provide in the lineage harvester configuration file. The password you need to access Power BI is the client secret key of the Azure Active Directory application. To use service principal authentication, you need to embed Power BI content with a Service Principal and an application secret. This entails the following steps:In the Power BI Admin portal:Enable the Allow service principals to use read-only Power BI admin APIs option.Enable the Allow service principal to use Power BI APIs option in the Developer settings.This option is no longer required. You can leave it enabled, but you can also safely disable it, if you prefer. Enable the Enhance admin APIs responses with detailed metadata option.Enable the Enhance admin APIs responses with DAX and mashup expressions option.You need Power BI administrator rights to access the Power BI Admin portal.Do not confuse the Allow service principals to use read-only Power BI admin APIs option with the Allow service principal to use Power BI APIs option. You need to enable both options.Register Power BI in Microsoft Azure and set permissionsBefore you set up the lineage harvester, make sure that the harvester can reach Power BI by registering Power BI in Azure and setting the necessary permission to harvest the metadata.We highly recommend that you read about supported authentication methods before you register Power BI in Microsoft Azure. This procedure is performed outside of Collibra. A third-party might change the software without notification, which can render this documentation out-of-date. We highly recommend that you carefully read the source documentation.StepsThe content in this topic is different for the username / password authentication method or service principal authentication method. We highly recommend that you read the following instructions carefully before you register Power BI in Microsoft Azure:Service principal instructionsUsername / password instructionsRegister Power BI in the Azure Portal using the following settings: SettingDescriptionNameThe name of your Power BI application.Supported account typesThe type of tenant. This indicates who can access the Power BI application.In this case, the supported account type must be Single tenant.Redirect URIThe location to which a user's client is redirected and where security tokens are sent after a successful authorization.In this case, the redirected URI must be Web, but you do not have to specify any web location.When you have registered Power BI, the Azure portal creates two important IDs that you need in the lineage harvester configuration file: The Application (client) IDThe Directory (tenant) IDWe highly recommend that you store these IDs for further use. You can find the IDs in the Overview pane on the Azure portal or in the top right menu.Create a user with the Power BI Administrator role (only for username / password authentication).The user must have administrator rights (such as Office 365 Global Administrator or Power BI Service Administrator) in Power BI. (only for username / password authentication)Delegated permissions are supported.In the Azure portal, go to the Authentication pane and do the following:Go to the Advanced settings section.Set the Treat application as a public client to Yes.When Power BI is registered in Microsoft Azure, the Treat application as a public client setting label changes to Allow public client flows.Go to the API permissions pane and do the following:Select Delegated permissions as permission type.Grant the Power BI application in Microsoft Azure the Microsoft Graph User.Read permission.Grant the Power BI application in Microsoft Azure all Power BI Service permissions (only for username / password authentication).Set Admin consent required for Tenant.ReadAll permission to Yes (only for username / password authentication).Also ensure that the user who runs the lineage harvester has been granted the Admin consent.The user now has the following permissions:Microsoft GraphUser.ReadYou cannot have any API permissions with Admin consent set to Yes.Power BI Service (only for username / password authentication)App.Read.AllCapacity.Read.AllDashboard.Read.AllDataflow.Read.AllGroup.Read.AllReport.Read.AllWorkspace.Read.AllTenant.Read.All: You need explicit Admin consent. If you have explicit Admin consent, granted for is shown in the Status column.In the Power BI Admin portal, do the following (only for service principal authentication):Enable the Allow service principals to use read-only admin APIs option.Enable the Allow service principals to use Power BI APIs option in the Developer settings.This option is no longer required. You can leave it enabled, but you can also safely disable it, if you prefer. Enable the Enhance admin APIs responses with detailed metadata option.Enable the Enhance admin APIs responses with DAX and mashup expressions option.Apply the option to specific security groups.Enter the name of the security group to which you want to add the service principal.The Power BI APIs do not support mail-enabled security groups.You need Power BI administrator rights to access the Power BI Admin portal.In the Power BI Admin portal, do the following(Only for username / password authentication):Apply the integration setting to the entire organization (default) or to the specific security group to which your workspaces belong.Enable the Enhance admin APIs responses with detailed metadata option.Enable the Enhance admin APIs responses with DAX and mashup expressions option.The metadata harvesting processCollibra uses Power BI REST APIs to harvest Power BI metadata.To enable the lineage harvester to access metadata in Power BI workspaces, you must have the correct configurations in Microsoft Azure.There are some limitations to the metadata harvesting process. Ensure that you understand these limitations before you start the harvesting process.Overview of the metadata harvesting process with username / password authenticationStepDescription1The lineage harvester uses the username, password and application ID to access the Power BI APIs. These APIs retrieve basic Power BI metadata, for example metadata in the Power BI tenant or server and reports.2The lineage harvester uses Power BI API calls to retrieve more specific metadata, for example Power BI columns and lineage.The Power BI application in Microsoft Azure must be granted administrator rights, such as Office 365 Global Administrator or Power BI Service Administrator. Delegated permissions are supported.The lineage harvester accesses the metadata of all Power BI workspaces. If you don't use filtering, all workspaces are ingested in Collibra. We recommend that you use filtering and domain mapping to structure your Power BI assets in Collibra.Overview of the metadata harvesting process with service principal authenticationStepDescription1The lineage harvester uses the application ID and the client secret key of the Azure Active Directory application to access the Power BI APIs. These APIs retrieve basic Power BI metadata, for example metadata in the Power BI tenant or server and reports.2The lineage harvester uses Power BI API calls to retrieve more specific metadata, for example Power BI columns and lineage.The lineage harvester accesses the metadata of all Power BI workspaces. If you don't use filtering, all workspaces are ingested in Collibra. We recommend that you use filtering and domain mapping to structure your Power BI assets in Collibra.Set up SSRS-PBRSBefore you start the SSRS-PBRS integration, you have to enable Collibra to access your SSRS-PBRS data.You need the following roles, with user access to the server from which you want to ingest:A system-level role that is at least a System user role.An item-level role that is at least a Content Manager role.We recommend that you use SQL Server 2019 Reporting Services or newer. We can't guarantee that older versions will work.Limitations Transformations are not included in the integration. Therefore, no transformations details are shown on the Sources tab page.Some of the more complex SQL queries might not be supported.Set up TableauBefore you start the Tableau integration in Data Catalog, make sure that the lineage harvester can reach the Tableau metadata. Perform these tasks before you start the actual Tableau ingestion process.Because these tasks are performed outside of Collibra, it is possible that the content changes without us knowing. We strongly recommend that you carefully read the source documentation.Tableau ingestion considerations There are currently three supported methods for integrating Tableau metadata in Data Catalog: Via EdgeVia the lineage harvesterVia the Data Catalog user interfaceAs of October 2022, Tableau is enforcing multi-factor authentication for Tableau Cloud Admin users. However, the lineage harvester doesn’t support multi-factor authentication. Therefore, Tableau Cloud users with an Admin role must use token-based authentication. This does not affect Tableau Server users or Tableau Cloud users with an Explorer role.Data Catalog uses Tableau's REST API to get metadata information and follows Tableau's requirements regarding authentication methods. As such, you need a Tableau user with access to the relevant Tableau sites.
For more information, see the Tableau documentation.If you use custom SQL that is not supported by the Tableau metadata API, the technical lineage might not be complete. For complete information, see the Tableau documentation on Tableau Catalog support for custom SQL and Tableau Lineage and custom SQL connections.If you use stored procedures, lineage is shown between the Tableau Data Source and the Tableau Worksheet, but the database information is missing, so stitching cannot be achieved.Collibra Data Lineage partially supports Unions and Joins. For example, Unions created via the Tableau UI are not represented in Data Catalog. Tableau Data Sources created via custom SQL are supported. Hidden Tableau worksheets are currently ingested in Collibra. You can find them by filtering on the attribute “Visible on server”, which has the value false.Data fields are ingested with their actual names. Labels and aliases are not returned by the APIs. Tableau versions and licensesBefore you ingest Tableau metadata in Data Catalog via the lineage harvester, you must ensure that the lineage harvester can access and harvest the Tableau metadata.If you want to create a technical lineage and stitch your Tableau assets to assets in Data Catalog, you must enable the Tableau metadata API in Tableau.Supported versionsWe will continue to update this list of supported versions, but we don't expect any issues with future versions of Tableau.2023.12022.x2021.42021.32021.22021.12020.42020.32020.2LicenseTableau ingestion results depend, in part, on whether or not you have the Data Management Add-on, which requires licensing. For more information about licensing the Data Management Add-on, see the Tableau documentation.Tableau roles and permissions The lineage harvester uses the Tableau Rest APIs and Tableau Metadata API to ingest the Tableau metadata. You need at least the minimum permissions in Tableau to enable the lineage harvester to access the Tableau metadata and ingest it in Data Catalog.Permissions on metadataPermissions control who is allowed to see and manage external assets and which metadata (for both Tableau content and external assets) is shown through lineage.In Tableau, the term external asset refers to databases, files and tables that act as Tableau data sources. You need to be able to access external assets if you want to ingest lineage information and benefit from stitching. If you only want to ingest Tableau assets and view the lineage between those assets, it is sufficient to have access only to data objects in Tableau.No particular role or permissions are needed to allow the lineage harvester access to data objects in Tableau and external assets for which you are the owner. The lineage harvester can automatically access all such data.Roles in Tableau The different roles in Tableau allow for different levels of access to data objects in Tableau and external assets.Viewer roleWith the Viewer role, you cannot access external assets, regardless of any other factors, for example even if you are the Project Leader for the projects you want to ingest.Tableau Data Attributes and Tableau Data Models are ingested as assets in Data Catalog and you can view the lineage for the ingested assets up until the table level only.Explorer roleWith the Explorer role, your access to external assets depends on the following combined factors: Whether or not your Tableau Online or Tableau Server is licensed with the Data Management add-on. Whether or not you are a Project Leader for the projects you want to ingest. Whether or not derived permissions are turned on in Tableau.Here are a few tested configurations for the Explorer role:Combination of accessibility factorsYou can access... Data Management add-on: YesProject leader: YesDerived permissions: No All Tableau data objects.External assets. Data Management add-on: NoProject leader: YesDerived permissions: Yes All Tableau data objects.External assets for which you have derived permissions. Data Management add-on: NoProject leader: YesDerived permissions: No All Tableau data objects only. Data Management add-on: NoProject leader: NoDerived permissions: Yes If you have manually granted permissions for all projects you want to ingest, on all levels, including databases and tables, you can access: All Tableau data objects for which you have permissions.External assets for which you have permissions. If you use the Explorer role, ensure that you configure the mandatory settings in Tableau, as described further on in this topic.For complete information, see the Tableau documentation. Tableau Server Administrator or Tableau Site Administrator With either or these roles, you can access all Tableau data objects and external assets, regardless of any other factors. No permissions need to be configured.Tableau users with a Server Administrator role have access to the entire Tableau Server. Tableau users with a Site Administrator role can only be assigned to specific Tableau sites. As a result, if you have the Site Administrator role, only metadata from specific Tableau sites can be ingested in Data Catalog.Minimum roles and permissions in TableauTo harvest Tableau metadata, you need the following minimum roles and permissions in Tableau:You have a View permission on the Tableau projects, workbooks and data sources you want to ingest.You have a Viewer role with access to the Tableau REST API.With the minimum roles and permissions, you can harvest Tableau metadata, ingest the corresponding Tableau assets and view the lineage between those assets. However, you cannot access external assets, meaning the databases, files and tables that act as Tableau data sources. Therefore, stitching is not possible.Recommended roles and permissions in TableauFor a full ingestion, you have to be able to access the external assets. We recommend the following roles and permissions in Tableau:You have at least a View permission on the Tableau projects, workbooks and data sources you want to ingest.You have an Administrator role or you have the Explorer role with a sufficient combination of accessibility factors, as previously described in Explorer role.Mandatory settings in TableauIf you use the Explorer role, you have to ensure that the lineage harvester can access all of the lineage information. Specifically, as a Tableau administrator, click Settings > General, and ensure that the following options are selected:Automatically grant authorized users access to metadata about databases and tablesShow complete lineage (default)Show me an imageIf you use the Explorer role and you have access to a subproject, but not the parent project, the parent project is ingested with the Tableau UUID, to maintain the hierarchy of assets.For complete information on ingestion results based on your Tableau permissions, see Tableau ingestion results.Tableau ingestion results The following tables shows the ingestion results based on Tableau permissions. By default, the lineage harvester uses both the Tableau REST API and the Tableau Metadata API, but you can limit the ingestion by allowing the lineage harvester to use only the Tableau REST API.If you ingest a Tableau dataset that doesn't have any attributes, asterisks (*) are shown as the Tableau Data Attribute asset names in Collibra.Tableau site roleResult in Data CatalogViewerTableau reports and data sources are ingested into Data Catalog, but with a limited scope. Resulting asset types:Tableau DashboardTableau Data ModelTableau ProjectTableau ServerTableau SiteTableau WorkbookTableau WorksheetTableau Data AttributesTableau Data Attributes are only ingested if the Metadata API is enabled in Tableau.Collibra Data Lineage cannot retrieve lineage information or perform automatic stitching.Explorer, without access to external assets.For more information, see Tableau roles and permissions.Tableau reports and data sources are ingested into Data Catalog, but with a limited scope. Resulting asset types:Tableau ServerTableau SiteTableau ProjectTableau DashboardTableau Data ModelTableau WorkbookTableau WorksheetTableau Data AttributesTableau Data Attributes are only ingested if the Metadata API is enabled in Tableau.We cannot retrieve lineage information or perform automatic stitching. This is the case if you don't have the Data Management add-on or derived permissions for the external assets.One of the following: Tableau Server Administrator Tableau Site Administrator Explorer with access to external assets.For more information, see Tableau roles and permissions. Data Catalog creates new assets according to your content in Tableau using metadata in Tableau databases and tables. Resulting asset types:Tableau ServerTableau SiteTableau ProjectTableau DashboardTableau Data ModelTableau WorkbookTableau WorksheetTableau Data AttributesTableau Data Attributes are only ingested if the Metadata API is enabled in Tableau.The Metadata API must be enabled in Tableau to retrieve lineage information or perform automatic stitching.Prepare an external directory folder for the lineage harvesterIf you want to create a technical lineage for Informatica PowerCenter, SQL Server Integration Services (SSIS) or IBM InfoSphere DataStage data sources, you have to prepare a folder with the external directory's data source files.If the external directory files do not have the necessary information, for example a database and a schema, to stitch the data sources, you have to provide the connection definitions manually via a JSON configuration
file, as addressed in the following procedure. This is required at each connection, regardless of whether the useCollibraSystemName property in the lineage harvester configuration file is set to true or false.Go to the online version of the user guide for more detailed steps and examples.PrerequisitesYou have IBM InfoSphere Information Server version 11.5 or newer. You have Informatica PowerCenter version 9.6 or newer.You have SQL Server Integration Services 2012 or newer with package format version 6 or newer.You have Microsoft Visual Studio version 2012 or newer.You have downloaded the lineage harvester and you have the necessary system requirements to run it.You have prepared the physical data layer in Data Catalog. To stitch the data objects in the source and target data sources in external directories with Data Catalog assets, you first have to register those data sources in Data Catalog.Steps to create a technical lineage for Informatica PowerCenter Create a local folder. Export the Informatica objects or repository for which you want to create a technical lineage to the local folder. If your folder contains previous versions of the parameter files, objects might be duplicated across different file versions. Collibra Data Lineage ignores any duplicated objects and issues an error message. For example, if a parameter file is exported after a column was added to a table, duplicated objects exist if the previous version of the parameter file remains in the folder. To avoid duplicated objects, export all objects and parameter files at the same time.All XML and parameter files, for example PAR, TXT or PRM files in this folder and its subfolders are taken into account when you create a technical lineage, but Collibra Data Lineage only shows a technical lineage for workflows that have mappings with sources, transformations and targets. Collibra supports the most common Informatica PowerCenter transformations. For more information, see the Informatica PowerCenter documentation.A technical lineage is created when the following tags are present in your XML file:<REPOSITORY><FOLDER><SOURCE> / <TARGET><SESSION><MAPPING><TRANSFORMATION> (within a <MAPPING> tag)In the local folder, create a folder named techlin-param and put the parameter files in the techlin-param folder.Optionally, create a source ID configuration file with connection definitions and system names: If you previously created a technical lineage for Informatica PowerCenter with connection definitions, the connection_definitions.conf file will still be taken into account.Create a new JSON file in the lineage harvester config folder.Give the JSON file the same name as the value of the Id property in the lineage harvester configuration file. The value of the Id property in the lineage harvester configuration file is informatica-source-1. As a result, the name of your JSON file should be informatica-source-1.conf.For each data source, add the following content to the JSON file: PropertyDescriptionconnectionDefinitionsThis section contains the connection properties to a source in Informatica PowerCenter.<connectionName>The type of your source or target data source.This section contains the connection properties to a source or target in Informatica PowerCenter.dbnameThe name of your source or target database.schemaThe name of your source or target schema.dialectThe dialect of the referenced database.You can enter one of the following values:azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.db2, for an IBM DB2 data source.hana, for an SAP HANA data source.hana-cviews, for getting lineage from calculated views in an SAP HANA data source.The hana-cviews dialect is supported for SAP HANA (on-premises). It is not supported for SAP HANA Cloud.To get technical lineage including calculated views, you must harvest SAP HANA by specifying two data sources in the lineage harvester configuration file. In one data source, specify the hana dialect, and in the other, specify the hana-cviews dialect.hive, for a HiveQL data source.greenplum, for a Greenplum data source.mssql, for a Microsoft SQL Server data source.mysql, for a MySQL data source.netezza, for a Netezza data source.oracle, for an Oracle data source.postgres, for a PostgreSQL data source.redshift, for an Amazon Redshift data source.snowflake, for a Snowflake data source.spark, for a Spark SQL data source.sybase, for a Sybase data source.teradata, for a Teradata data source.collibraSystemNamesThis section contains the system or server name that is specified in your database and referenced in your connection.This section is only required when the useCollibraSystemName flag in the lineage harvester configuration file is set to true.databasesThis section contains the database information. This is required to connect directly to the system or server of the database.dbnameThe name of the database. The database name is the same as the name you entered in the <connectionName> section.collibraSystemNameThe system or server name of the database.connectionsThis section contains the connection information. This is required to reference to the system or server of the connection.connectionNameThe name of the connection.collibraSystemNameThe system or server name of the connection.If you are using variables in Informatica PowerCenter, add the value of the variable instead of the name in the connection definitions JSON file. For example, if the parameter file contains $DBConnection_dwh=DWH_EXPORT then you add the following connection definitions to the JSON file: { DWH_EXPORT: { dbname: DWH, schema: DBO } }Add a new section for Informatica PowerCenter to the lineage harvester configuration file.Steps to create a technical lineage for SQL Server Integration Services Create a local folder. Export the SSIS files for which you want to create a technical lineage. You can export them directly from the SQL Server Integration Services repository or via Microsoft Visual Studio. For more information, see the SQL Server Integration Services documentation.Store the SSIS files to your local folder. Typically, the folder contains the following files:SSIS package files (DTSX), containing the SQL Server Integration Services source code.Connection manager files (CONMGR), containing environment and connection information.Parameter files (PARAMS), if applicable.All files in this folder and subfolders are taken into account when you create a technical lineage. The lineage harvester automatically detects data sources in the SSIS files.Not all SSIS files are processed and shown in the technical lineage. The lineage harvester retrieves all of the SSIS package files from the server, but only the files that contain lineage information, meaning those that contain a data flow, or Pipeline, are processed.Optionally, configure the connection definitions: If the useCollibraSystemName in the lineage harvester configuration file is set to true, you must provide the connection_definitions.conf file.Create a new JSON file in the local folder.Name the JSON file connection_definitions.conf.For each supported data source, specify the relevant translations.PropertyDescriptionConnStringRegExTranslationThe parent element that opens the connection definitions.<regular expression>A regular expression that must match one or more connection strings.Important considerations:By default, the regular expression is not case sensitive. As a consequence, a regular expression can match with connection strings containing uppercase characters or lowercase characters.The connection string is part of the SSIS connection manager.SSIS connection managers are included in an SSIS package files (DTSX) or in connection manager files (CONMGR).Regular expression: Server=sb-dhub;User ID=SYB_USER2;Initial Catalog=STAGEDB;Port=6306.*Explanation: The first section, up to .*, is a literal, but not case-sensitive, match of the characters. The dot (.) can match any single character. The asterisk (*) means zero or more of the previous, in this case any character.Match: Any connection string that starts with Server=sb-dhub;User ID=SYB_USER2;Initial Catalog=STAGEDB;Port=6306. Example: Server=sb-dhub;User ID=SYB_USER2;Initial Catalog=STAGEDB;Port=6306;Persist Security Info=True;Auto Translate=False;.dbnameThe name of your database, to which the data source connection refers.schemaThe name of your schema, to which the regular expression refers.dialectThe dialect of the referenced database.You can enter one of the following values:azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.db2, for an IBM DB2 data source.hana, for an SAP HANA data source.hana-cviews, for getting lineage from calculated views in an SAP HANA data source.The hana-cviews dialect is supported for SAP HANA (on-premises). It is not supported for SAP HANA Cloud.To get technical lineage including calculated views, you must harvest SAP HANA by specifying two data sources in the lineage harvester configuration file. In one data source, specify the hana dialect, and in the other, specify the hana-cviews dialect.hive, for a HiveQL data source.greenplum, for a Greenplum data source.mssql, for a Microsoft SQL Server data source.mysql, for a MySQL data source.netezza, for a Netezza data source.oracle, for an Oracle data source.postgres, for a PostgreSQL data source.redshift, for an Amazon Redshift data source.snowflake, for a Snowflake data source.spark, for a Spark SQL data source.sybase, for a Sybase data source.teradata, for a Teradata data source.collibraSystemNameThe name of the referenced data source's system or server.This property is only required when you set the useCollibraSystemName property in the lineage harvester configuration file to true. If this property is set to false, you can remove the collibraSystemName property or enter an empty string.Specify this property with the same name as the name of
the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.If the “useCollibraSystemName property is:false, system or server names in table references in analyzed SQL code are now ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset full name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName field is used as the default system or server name.Add a section for SQL Server Integration Services to the lineage harvester configuration file.Example of the connection_definitions.conf file { ConnStringRegExTranslation: { Data Source=dhb-sql-prod;Initial Catalog=SFG_repl_staging;Provider=SQLNCLI11;Integrated Security=SSPI.*: { dbname: DATAHUB, schema: DBO, dialect: mssql, collibraSystemName : WAREHOUSE }, Server=sb-dhub;User ID=SYS_USER;Initial Catalog=STAGEDB;Port=6306.*: { dbname: STAGEDB, schema: STAGE_OWNER, dialect: sybase, collibraSystemName : } } } Steps to create a technical lineage for DataStage Create a local folder. Export the DataStage project files (DSX) for which you want to create a technical lineage.You can either export a DataStage project manually or automatically via command line. Store the DataStage files in your local folder.Optionally, if your DataStage project uses environment variables, manually export the environment files (ENV).Give the environment files the same name as the DataStage project files. For example, if your project file is named datastage-project-1.dmx, name your environment file datastage-project-1.env.Store the environment files in the same local folder. Collibra Data Lineage only supports DSX and ENV files.You can have one DSX file per DataStage project.You can have more than one DSX file in the local folder. You can have one or none ENV file per DSX file.The name of the DSX file and the ENV file has to be the same.Optionally, configure the connection definitions: Create a new JSON file in the local folder.Name the JSON file connection_definitions.conf.For each data source, specify the relevant translations: PropertyDescriptionOdbcDataSourcesOpen Database Connectivity data sources in IBM InfoSphere DataStage for which you want to create a technical lineage.<data-source-name>The ODBC data source name that you use in your DataStage projects.This section contains the properties to translate the database, schema and dialect.dbnameThe name of your database, to which the ODBC data source connection refers.schemaThe name of your schema, to which the ODBC data source connection refers.dialectThe dialect of the referenced database.You can enter one of the following values:azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.db2, for an IBM DB2 data source.hana, for an SAP HANA data source.hana-cviews, for getting lineage from calculated views in an SAP HANA data source.The hana-cviews dialect is supported for SAP HANA (on-premises). It is not supported for SAP HANA Cloud.To get technical lineage including calculated views, you must harvest SAP HANA by specifying two data sources in the lineage harvester configuration file. In one data source, specify the hana dialect, and in the other, specify the hana-cviews dialect.hive, for a HiveQL data source.greenplum, for a Greenplum data source.mssql, for a Microsoft SQL Server data source.mysql, for a MySQL data source.netezza, for a Netezza data source.oracle, for an Oracle data source.postgres, for a PostgreSQL data source.redshift, for an Amazon Redshift data source.snowflake, for a Snowflake data source.spark, for a Spark SQL data source.sybase, for a Sybase data source.teradata, for a Teradata data source.collibraSystemNameThe name of the data source's system or server.This property is only required when you set the useCollibraSystemName property in the lineage harvester configuration file to true. If this property is set to false, you can remove the collibraSystemName property or enter an empty string.Specify this property with the same name as the full name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.NonOdbcConnectorsOther data source connectors in IBM InfoSphere DataStage for which you want to create a technical lineage. For example, DB2, Oracle or Netezza.This section is optional.<data-source-connector-ID>The data source username and database of the connector that you use in your DataStage projects. This usually looks like for example admin@database-name. The combination of the username and database name should be unique.The following section contains the properties to translate the database, schema and dialect.dbnameThe name of your database, to which the data source connection refers.schemaThe name of your schema, to which the data source connection refers.dialectThe dialect of the referenced database.collibraSystemNameThe name of the data source's system or server.This property is only required when you set the useCollibraSystemName property in the lineage harvester configuration file to true. If this property is set to false, you can remove the collibraSystemName property or enter an empty string.Specify this property with the same name as the full name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.JobsThe jobs that you want the lineage harvester to collect and process to create the technical lineage. This section is optional. The following rules apply when you specify this section:Specify jobs that are executed so that the technical lineage graph does not include any job parameters with undefined values. Specify only the first and parent jobs in a sequence of executed jobs. The lineage harvester automatically collects all jobs that are called by the parent jobs. For example, if you have the a sequence of jobs that include job1, job2, job3, job4, and job5, where job1 calls job2, job2 calls job3, job3 calls job5, and job4 calls job3. Specify only job1 and job4, and the lineage harvester collects and processes all five jobs based on the sequence.If you do not specify this section, the lineage harvester collects all jobs, but without proper sequencing. Therefore, some inherited parameters might not be parsed. JobParametersThe runtime parameters that are not in the DSX and ENV files. You can specify multiple job parameters. nameThe name of the job parameter. valueThe value of the job parameter. { OdbcDataSources: { oracle-data-source: { dbname: my-oracle-database, schema: my-oracle-schema, dialect: oracle, collibraSystemName: my-system }, mssql-data-source: { dbname: my-mssql-database, schema: my-mssql-schema, dialect: mssql, collibraSystemName: my-system } }, NonOdbcConnectors: { admin@database-name: { dbname: my-netezza-database, schema: my-netezza-schema, dialect: netezza, collibraSystemName: my-system }, admin@second-database-name: { dbname: my-second-netezza-database, schema: my-second-netezza-schema, dialect: netezza, collibraSystemName: my-system } }, jobs: [my_job_1, my_job_2], jobParameters: [{ name: job_parameter_name_1, value: job_parameter_value_1 }, { name: job_parameter_name_2, value: job_parameter_value_2 }] } Click to copy the example to your clipboard.Example of the connection_definitions.conf fileAdd a section for IBM InfoSphere DataStage to the lineage harvester configuration file.Example of the connection_definitions.conf file { OdbcDataSources: { oracle-data-source: { dbname: my-oracle-database, schema: my-oracle-schema, dialect: oracle, collibraSystemName: my-system }, mssql-data-source: { dbname: my-mssql-database, schema: my-mssql-schema, dialect: mssql, collibraSystemName: my-system } }, NonOdbcConnectors: { admin@database-name: { dbname: my-netezza-database, schema: my-netezza-schema, dialect: netezza, collibraSystemName: my-system }, admin@second-database-name: { dbname: my-second-netezza-database, schema: my-second-netezza-schema, dialect: netezza, collibraSystemName: my-system } }, jobs: [my_job_1, my_job_2], jobParameters: [{ name: job_parameter_name_1, value: job_parameter_value_1 }, { name: job_parameter_name_2, value: job_parameter_value_2 }] } What's nextYou can now prepare the rest lineage harvester configuration file and run it to create a technical lineage for Informatica PowerCenter, SQL Server Integration Services, IBM InfoSphere DataStage and, optionally, other data sources.When you run the lineage harvester, the content in your local folder is sent to the Collibra Data Lineage service for processing.For more information about the scope, see the overview of supported data sources.Collibra AdminsThis section caters primarily to Collibra Admins, who work with Collibra Data Lineage, as well as with Database Owners and BI Admins, to create a technical lineage.The lineage harvesterYou use the lineage harvester to collect source code from your data sources and create new relations between data elements from your data source and existing assets into Data Catalog. The lineage harvester runs close to the data source and can harvest transformation logic like SQL scripts and ETL scripts from a specific location, for example a database table or a folder on a file system.The lineage harvester
connects to different Collibra Data Lineage service instances based on your geographical location and cloud provider. Ensure you have the correct system requirements before you run the lineage harvester. If your location or cloud provider changes, the lineage harvester re-harvests all your data sources.Technical lineage is created by a cloud-based service. You only connect to the cloud via an API call that is triggered by the lineage harvester.The lineage harvester configuration fileThe lineage harvester uses a configuration file to connect to JDBC data sources, BI tools and ETL tools. The configuration file contains references to the data sources for which you want to create a technical lineage. You have to prepare the configuration file if you want to create a technical lineage and add new relations of the type Data Element targets / sources Data Element between existing assets in Data Catalog, and Column is target of / is source of Data Attribute between assets from ingested BI sources and assets in Data Catalog.You can only use UTF-8 or ISO-8859-1 characters in all lineage harvester files.The lineage harvester componentsThe lineage harvester consists of components that harvest the metadata from the data sources specified in your configuration file and send their metadata to the Collibra Data Lineage service.Using the lineage harvesterIf you want to separately process data sources on different servers, you can use more than one lineage harvester connected to a single Collibra Data Intelligence Cloud instance. In this case, you can create a configuration file for the lineage harvester on each server and configure different data sources in each configuration file. You can use different command options and arguments to perform various actions with the lineage harvester.PermissionsYou need a global role with the System Administration global permission, for example Sysadmin. This role must have access to all assets in the data sources in the configuration file and be able to create new relations between these assets.Typical workflowYou use the lineage harvester to run the full-sync command. That triggers the following actions: The lineage harvester: Harvests the metadata from the data sources that are specified in the configuration file.Uploads metadata collected from all configured data sources to Collibra Data Lineage’s Metadata Ingest Pipeline.Triggers the Sync Pipeline after all metadata has been completely processed.The Metadata Ingest Pipeline:Parses the metadata for all lineage assets and relations.Stores the assets and relations in the cloud storage. The Sync Pipeline: Merges all partial lineages into a single data store. Publishes discovered BI assets to Data Catalog. Matches asset IDs from Data Catalog to the assets discovered from the metadata (stitching). Stores the complete lineage in the cloud storage. Publishes newly discovered relations to Data Catalog. The Lineage Service: Upon request, creates HTML diagrams of the lineage. Data Catalog: Connects to the lineage service to get the technical lineage to be shown in the technical lineage viewer. The lineage harvester can only create Power BI, Tableau, Looker and other BI tool specific assets, if you included a reference to the specific BI tool in the configuration file. No other assets are created during the process. Only new relations between existing and newly created BI assets (for example between two Tableau Data Attribute assets), and between BI column and Column assets (for example between Power BI Column and Column assets) are created.The lineage harvester change logCollibra Data Lineage is updated and improved on a regular basis. On this page, you can see the most important changes between different versions of the lineage harvester. For a complete list, see the release notes.We highly recommend that you download and use the newest lineage harvester from the Collibra downloads page, even if you are on an older version of Collibra Data Intelligence Cloud.The following list contains the most important changes to the lineage harvester and the lineage harvester configuration file.Changed in versionNew lineage harvester improvements2023.08 The new MicroStrategy integration method, via the lineage harvester, is now generally available. The new integration method has the following benefits:Supports technical lineage with stitching.Supports the latest MicroStrategy APIs.Supports project filtering.Allows you to view the source code for all tables and transformations.When you integrate MicroStrategy via the new integration method, you can now view the source code for all tables and transformations, in the technical lineage Sources tab page. The source code shows information about the processes visible in the technical lineage and shows warnings and errors where a process has failed. This enhancement does not affect the success rate of metadata analysis. The Power BI and MicroStrategy global assignments are updated to show more details on respective asset pages.The Source Type attribute is now included on MicroStrategy Data Entity and MicroStrategy Data Attribute asset pages, to identify the MicroStrategy data object type, for example Attribute, Fact, Table, or Column.Collibra Data Lineage now supports the following Power Query M functions:AnalysisServices.DatabasesAnalysisServices.DatabaseThis function is fully supported if no MDX queries are used.If MDX queries are used and they resemble SQL, they will be parsed by the SQL parser.We don't currently support this function if used with MDX queries that resemble DAX, as the Collibra Data Lineage service instances can't parse such queries.GoogleAnalytics.AccountsThe relation “Data Asset contained in BI Folder” is now available between all Tableau Data Model and Tableau Project assets. When you integrate Tableau:Tableau Dashboard, Worksheet and Workbook asset pages now show the number of views in the Visits count attribute type.The Tableau API analysis documentation is updated with the visits count.The Tableau hostname mapping feature is now generally available. When integrating Tableau, you can use the optional “hostnameMapping” section in your <source ID> configuration file, to map Tableau technical database, server and schema names to the respective real names, to preserve stitching.When integrating Power BI, datamart metadata is now ingested in Collibra as assets of the new asset type Power BI Data Mart.When ingesting PostgreSQL data sources, the Collibra Data Lineage service instances now support x::typename cast constructs, where typename contains a dot (.), for example SELECT 'null'::qwerty.qwerty. When ingesting Snowflake data sources, the Collibra Data Lineage service instances now support LEVEL and CONNECT BY keywords.Previously, when creating technical lineage for SQL Server Integration Services, Collibra Data Lineage filtered out some queries due to legacy limitations. Collibra Data Lineage no longer filters out queries. You may find increased successful lineage as well as increased parsing or analysis errors, as Collibra Data Lineage tries to parse more queries. This is a backend change, and the new behavior will be seen during the next synchronization of the technical lineage for SQL Server Integration Services.Collibra Data Lineage now processes and generates technical lineage for Informatica PowerCenter four times faster with the following changes:Data Lineage now pre-processes data into pydantic models instead of using the slower xpath solution that existed previously.Shortcuts are handled faster, by keeping necessary objects in memory on the Collibra Data Lineage service instances.The Analysis Error messages are enhanced by adding information that is related to rejected files and unresolved parameters. 2023.07Collibra Data Lineage now supports the following Power Query M functions:Cube.TransformCube.AddAndExpandDimensionColumnTable.FromListAnyalysisServices.DatabasesThese functions enable technical lineage between SAP HANA (using SapHana.Database) and Analysis Services (using AnalysisServices.Databases), and improve the success rate of metadata analysis.When you create technical lineage for Snowflake with the SQL-API ingestion method, you can use the displaySampleQueries property in the new Snowflake source ID configuration file to control whether a question mark (?) is displayed in place of certain static values, such as numbers or dates.When ingesting Spark SQL data sources, the Collibra Data Lineage service instances now support PARTITIONED BY parameters in CREATE TABLE statements.Collibra Data Lineage now supports the following Power Query M functions:When you create technical lineage for Matillion, the lineage harvester now supports multiple data sources. Previously, the lineage harvester could only generate technical lineage from one source. When you create technical lineage for Informatica Intelligent Cloud Services and set the useCollibraSystemName property as true, the Collibra system name is used as root of the tree in the technical lineage graph. Previously, IICS was used. See an example. When you create technical lineage for Azure Data Factory, global parameters are now taken into consideration. SQL Extension now supports queries that have a WITH clause.When ingesting Oracle data sources, the Collibra Data Lineage service instances now correctly handle database links even when the remote database has a dot (.) in the name.When ingesting Snowflake data sources, the Collibra Data Lineage service instances now benefit from the following parsing enhancements:Undocumented usage of UPDATE FROM statement, when the FROM clause comes before the SET clause.IDENTIFIER keyword appears as a column name.When integrating MicroStrategy, any facts
that don't have expressions are now skipped. Previously, Collibra Data Lineage attempted to process such forms, which resulted in errors. 2023.06When integrating SQL Server Reporting Services (SSRS) or Power BI Report Server (PBRS):You no longer get an error if you filter on a folder to which you don’t have access.You no longer get an error if the “rd” namespace is not specified at the top level of a report (an RDL file). In that case, it is now taken from the child level.The Collibra Data Lineage service instances now support CommandText with SQL that starts with “=“. CommandText is split by either “+” or “&” and merged into a single parseable SQL command.If you filter on a specific folder, paginated reports at the root level of the folder are now correctly ingested.When integrating Tableau, backticks “`” in a query no longer result in missing columns when processing a CREATE TECHLIN VIEW.When integrating Power BI, you can now use HTTP1 streams if you are experiencing timeout issues with the default HTTP2 streams. To do so, include the new optional property “useHttp1” in your lineage harvester configuration file, and set the value to “true”.When you integrate MicroStrategy via the new integration method (beta), you can now view the source code for all tables and transformations, in the technical lineage Sources tab page. The source code shows information about the processes visible in the technical lineage and shows warnings and errors where a process has failed. This enhancement does not affect the success rate of metadata analysis.When ingesting CSV files as part of a Tableau integration, the “database > schema > table” structure in the technical lineage now matches the structure of the ingested CSV file in Data Catalog. This ensures that stitching can be achieved for CSV files.Collibra Data Lineage now supports the Power Query M function Table.CombineColumns.When integrating MicroStrategy, any forms that don't have expressions are now skipped. Previously, Collibra Data Lineage attempted to process such forms, resulting in errors.When integrating Power BI via the Power BI harvester (integration method v1), which has been deprecated since 2022, the Power BI source code now includes an end-of-life message. Please migrate to Power BI via the lineage harvester (integration method v2) by August 1, 2023.We have upgraded:The Snowflake driver to address the CVE-2023-30535 vulnerability.The BigQuery driver to mitigate the CVE-2022-45688 vulnerability.When ingesting Redshift data sources, the Collibra Data Lineage service instances now support the COLLATE function.When ingesting HiveQL metadata, the Collibra Data Lineage service instances now support the TBLPROPERTIES parameter with an empty list, for Hive CREATE TABLE statements.When ingesting Spark SQL data sources, the Collibra Data Lineage service instances now support identifiers that start with a number.When ingesting HiveQL, the Collibra Data Lineage service instances now support Hive extension for the multiple inserts clause.When ingesting Snowflake data sources, the Collibra Data Lineage service instances now support:Aliases in combination with the FLATTEN function.The DATA_RETENTION_TIME_IN_DAYS parameter for CREATE TABLE statements. 2023.05When you integrate Power BI, reports and dashboards that are part of an app in Power BI are ingested as Power BI Dashboard and Power BI Report assets, respectively. The URLs on these asset pages now correctly link to the corresponding dashboards and reports in the Power BI app.When integrating Power BI, the full names of Power BI capacities now include their unique identifiers. This helps to distinguish two capacities with the same name. Upon the first synchronization after this fix, if you use only one Power BI tenant, the Shared Capacity asset is deleted and recreated with the new naming format. If you have multiple Power BI tenants, a Shared Capacity asset with the new naming format is created for each tenant. If a data set or report in Power BI is certified, the corresponding Power BI Data Model and Power BI Report assets in Collibra are now automatically certified.When integrating Power BI, if you use the Databricks.Query query without specifying the database name, the database name in the technical lineage is “Default”.When you integrate Tableau, the lineage harvester now automatically connects to the REST API version that matches your Tableau Server or Tableau Online environment.When integrating Tableau:Filtering on sub-projects no longer results in FOREIGN KEY constraint errors.Custom SQL is now successfully processed when Tableau object names contain quotes. When ingesting Spark SQL data sources, the Collibra Data Lineage service instances now benefit from the following parsing enhancements: CREATE VIEW to support TBLPROPERTIESSELECT allowed as column nameTABLE allowed as column nameCREATE TABLE to support the USING clauseCREATE TBALE to support the OPTIONS clauseWhen ingesting Oracle data sources, SQL queries to extract views no longer include views for which the owner has a user name that start with “APEX”.Collibra Data Lineage support for creating technical lineage for Azure Data Factory by using the lineage harvester is now generally available.When you create technical lineage for Azure Data Factory, you can filter the factories that the lineage harvester collects and processes by using the new factories property in the lineage harvester configuration file to filter.The new MicroStrategy integration method, via the lineage harvester, is now in beta. The new integration method allows for technical lineage, supports the latest MicroStrategy APIs, and is no longer dependent on a direct connection to the repository.When you create technical lineage for Snowflake by using the SQL-API ingestion method, QUERY_TAG values are now shown in the transformation window for lineage queries.The lineage harvester optimized the results of the columns_joined query. Previously, the view definition would be saved for each column of a view. Now, a view definition is only saved once. This enhancement results in faster processing of lineage for your Snowflake database that has views with many columns.When you create technical lineage for Informatica PowerCenter, an error message is logged if any of the following issues occur:A parameter file cannot be parsed.A workflow XML file cannot be parsed or is invalid.The list-sources command is enhanced to:Indicate how each data source was ingested, by using the lineage harvester or technical lineage via Edge.List the useSystemName value to each data source.List up to 500 data sources. With this enhancement, you can determine which page to to be displayed and also the number of data sources to be listed on certain pages.2023.04 Power BI Data Flow asset pages now show the description of the data flow.When you integrate Looker, corrupt Looker Dashboards are now skipped.You can now include the new Calculation Rule attribute type on Power BI Column asset pages, to show DAX calculations.When ingesting Microsoft SQL Server data sources, the Collibra Data Lineage service instances can now parse QUALIFY statements.A partial technical lineage that is generated from queries that have analyze errors no longer produces a foreign key error.With the lineage harvester, you can now use the new ignore-source command to ignore the specified data source from the list of data sources to be used to create the technical lineage.2023.03When you create technical lineage for IBM DataStage, CollibraData Lineage now parses the following: The inner stage SQL statements, such as the INSERT and UPDATE statements, which are used to bind DataStage columns and target database objects in some stages. Parameters that are passed by when a Job is called or used. The parameters are typically passed to the Job activity in a Sequence Job. Previously, CollibraData Lineage only parsed and created technical lineage for default parameters. DataStage containers, including local and shared containers. Runtime column propagation that is enabled on stages. The account loop and stage variables of the Transformer stage.When you integrate Power BI or Azure Data Factory (ADF integration is currently in beta), the lineage harvester now connects to the Microsoft cloud instance, instead of the login.microsoftonline.com host.When you integrate Power BI, parameters are now ingested even if the “Enable load” option is not selected for the relevant parameters. To harvest columns and create a full technical lineage, the “Enable load” option must be selected. If it is not, the Power BI APIs will recognise parameterised tables, but not the columns in the tables. In which case, only table-level lineage is created; columns cannot be shown.When you integrate Tableau, And configure site filtering in your <source ID> configuration file, Tableau sites that are not mentioned in the filter are now correctly included in the ingestion. They are ingested in the default domain.The lineage harvester now ingests parameters.With a Google BigQuery data source, all BigQuery data objects now correctly appear in the technical lineage.You can use the new list-sources command to list all data sources that were ingested to create the technical lineage via the lineage harvester and technical lineage via Edge.When you integrate SQL Server Reporting Services (SSRS) or Power BI Report Server (PBRS), folder filtering no longer fails when you want to ingest everything.When ingesting Snowflake data sources, the correct source table is now shown in the technical lineage when the UNION operator is used.When ingesting MySQL data sources, the Collibra Data Lineage service instances now support the “as” keyword as optional in “create table” statements. Previously, parsing failed if the “as” keyword was missing.2023.02 When you integrate Tableau: Performance is significantly improved for Tableau users with
the Explorer role. The lineage harvester now filters out data objects for which you do not have permissions. You can now view the source code in the technical lineage Sources tab page. The source code shows information about the processes visible in the technical lineage and shows warnings and errors where a process has failed. This enhancement does not affect the success rate of metadata analysis. UUIDs no longer appear in the names of Tableau assets in a technical lineage, with the following exception: if Tableau data objects in a technical lineage hierarchy have the same full name, Collibra Data Lineage adds the UUIDs of the corresponding assets to the names in the technical lineage, to maintain uniqueness. For complete information, including how to resolve UUIDs in the names, see Technical lineage for Tableau. The Power BI integration can now connect to Power BI for US government customers. When you integrate Power BI or Azure Data Factory (currently in public beta), the lineage harvester now connects to the Microsoft cloud instance, instead of the login.microsoftonline.com host. When you synchronize any supported BI tool, if a corresponding data object of an asset in Data Catalog can no longer be found in the data source, the asset is no longer deleted from Data Catalog. Instead, the status of the asset changes to “Missing from source”. The lineage harvester logic is now based on the UUIDs of attribute types in the BI tool operating models, instead of the attribute type names. This means that when you integrate any of the supported BI tools, you can now change the names of the ingested attribute types. Collibra Data Lineage now supports Power Query parameters (public beta). For complete information, including how to ensure that the Power BI APIs return all parameters that are loaded in a report, see Working with Power Query parameters. When you run a full-sync of a Snowflake data source, the lineage harvester automatically refreshes the authentication token, to avoid a time-out error. Fixed the ordering of columns for Power BI technical lineage custom queries. 2023.01When you integrate Power BI, Collibra Data Lineage now supports the Power Query M function Table.Combine. If Collibra Data Lineage can’t determine the column names in multiple sources, a dummy column with the value “*” is now created in the sources and Power BI tables, which preserves the technical lineage at the table level. For complete details, see Supported Power Query M functions. If you use this function, Table.Combine function is used. You can now view a technical lineage at the table level, where previously analyze error “Cannot determine source table for column”.The technical lineage now correctly shows a yellow background when columns and tables are stitched. If you use a <source ID> configuration file, you no longer have to include the filters section.When you integrate Tableau:If a Tableau worksheet is hidden in Tableau, the “Visible on server” attribute of the Tableau Worksheet asset in Collibra now has the value false. If it is not hidden, the attribute has the value true. Metadata batches no longer fail if CREATE TECHLIN VIEW statements fail due to analysis errors. Collibra Data Lineage service benefits from improved parsing of BigQuery quoted identifiers, for example `a.b`.`c`. Tableau filtering now works as intended. Previously, filtering didn't work if, for example, you moved an older Tableau project under a newer project. Fixed the ordering of columns for Tableau technical lineage custom queries. Tableau Data Attributes are no longer shown twice, once with the UUID in the name and once without, in the technical lineage Browse tab pane. The Document size attribute type and value are now shown for Tableau Workbook assets.If you don't have permissions to access a parent project, but the lineage harvester identifies published data sources that belong to the project, the lineage harvester creates an ‘Unknown project’ that has the UUID of the inaccessible parent project. To avoid an error, the lineage harvester can now correctly link the published data sources to the unknown project. Collibra Data Lineage service now supports the Power Query M function Value.NativeQuery.Query parameters are supported, but core parameters are not.When you integrate Power BI or Azure Data Factory (currently in public beta), the lineage harvester now connects to the Microsoft cloud instance, instead of the login.microsoftonline.com host. When you ingest SQL Server Reporting Services (SSRS) and you set the “useCollibraSystemName” property to “true”, SSRS now has its own node in the navigation tree of the Technical lineage Browse tab pane. When you ingest Oracle data sources using the DatabaseOracle source type, passwords are now stored per url, username and db instead of just url and username. With this enhancement, you can connect to Oracle Pluggable Databases, for which a single user can have the same username and different passwords for each of their pluggable databases.For Informatica PowerCenter technical lineage, when a PowerCenter mapplet had an associated shortcut, technical lineage in Collibra would be broken up. Now, there is end-to-end lineage within PowerCenter even when a mapplet has an associated shortcut.Fixed a ValidationError related to the unsupported Exasol dialect. The Postgres dialect is now used in place of Exasol dialect. 2022.11 When you integrate Power BI:Inactive workspaces and personal workspaces are no longer ingested.Filtering is improved. You can now use the optional properties excludeWorkspaceNames and excludeWorkspaceIds to exclude specified workspaces. Before configuring your filters, ensure that you read all about the advantages, limitations and configuration considerations in Power BI workspaces.The ownership information (admin and creator email addresses only) for reports is now ingested in Collibra. The Owner in source attribute is included on Power BI Report asset pages.The email addresses of all admins and creators of Power BI data models and workspaces are now ingested. Previously only a single email address was ingested, even if there were multiple admins or creators of the data object in Power BI.When you ingest Snowflake data sources, the databaseNames property is now correctly taken into consideration.When you integrate Tableau:Previously, when you filtered on a site, a Tableau Site asset was created in Collibra, but no metadata was ingested. Now, when you filter on a site, all metadata in the site is ingested in the specified domain. If, however, a site is specified in the lineage harvester configuration file, but not in the filters and domainMapping properties in the Tableau <source ID> configuration file, the metadata is ingested in the default domain.You can now use wildcards in the filters property in the Tableau <source ID> configuration file. Also, the filters property is no longer case-sensitive.You can now ingest sites that don't have workbooks.Ownership information (email addresses only) for projects, data models, workbooks and dashboard is now ingested in Collibra. The Owner in source attribute is included on Tableau Project, Tableau Data Model, Tableau Workbook and Tableau Dashboard asset pages.When you ingest Informatica PowerCenter data sources, the lineage harvester now correctly processes session mapplets. Previously, this failed with error message 'NoneType' object has no attribute 'lower'.When you ingest Informatica Intelligent Cloud Services data sources and the useCollibraSystemNames property is set to true, databases are now shown in the Technical lineage Browse tab pane with the specified system name or as UNDEFINED”, if a database could not be mapped to a system name. If set to false, then all databases are now shown directly under the DATABASE node.When you ingest metadata from Oracle data sources, you can now add a new DatabaseOracle section in your lineage harvester configuration file, to specify the Oracle database name and ensure stitching without any workarounds.If you integrate SSRS-PBRS and use a <source ID> configuration file, the CustomDataSource section in the <source ID> configuration file is no longer mandatory.The lineage harvester now uses Looker 4.0 APIs, with paging options. 2022.10 The lineage harvester now supports the following IBM DB2 constructs: PREVVAL FOR <sequence>, PREVIOUS VALUE FRO <sequence>, NEXTVAL FOR <sequence> and NEXT VALUE FOR <sequence>. You can now use the new optional deleteRawMetadataAfterProcessing property in your lineage harvester configuration file. With this property, you can delete your raw metadata from the Collibra Data Lineage service after processing. This property is applicable for all supported data sources.When you specify a Data Catalog URL in the lineage harvester configuration file, it no longer matters whether you include a trailing slash (/) in the URL.The Collibra Data Lineage service now supports the following transformations: Table.FromRecords and Table.IsEmpty.Collibra Data Lineage now supports key-pair authentication when ingesting Snowflake data sources.The PostgreSQL JDBC Driver is upgraded to version 42.4.1.The Collibra Data Lineage service can now compute indirect lineage from set queries, which are queries with the UNION keyword with the ORDER BY clause.When you integrate Power BI, the lineage harvester is now more resilient to OutOfMemory errors.When you integrate Tableau and filter on a sub-project, the metadata of the parent project is no longer ingested in Collibra. However, the parent Tableau Project asset is created in the default domain, to preserve the hierarchy
required for stitching.Looker integration no longer fails if the collibraSystemName property is not included in the lineage harvester configuration file. If you want to specify the system name of a database in Looker, use the collibraSystemName property in the Looker source ID configuration file. If you don't specify a system name in the source ID configuration file, the system name in the technical lineage graph will be Default.In the case of a lookup procedure when ingesting Informatica Intelligent Cloud Services data sources, if the CONNECTIONSUBTYPE parameter is empty, the Collibra Data Lineage service now looks to the CONNECTIONREFERENCE parameter for the name. If that is also empty, then the name in the VARIABLE parameter is used. The ensures the correct detection of the SQL dialect. Fixed an issue related to dialect extraction when ingesting Informatica Intelligent Cloud Services data sources.2022.09 Previously, when you created a technical lineage for Power BI, SQL Server Reporting Services (SSRS) or Power BI Report Server (PBRS), the nodes in the technical lineage graph had a gray background, even if the data objects from your data source were stitched to assets in Data Catalog. Data objects now have the intended yellow background when creating a technical lineage for Power BI, SSRS or PBRS. We introduced this enhancement for Tableau and Looker in Collibra 2022.07. When you integrate Tableau, for every Tableau Workbook that you have permission to ingest, all Tableau Dashboards in the Workbooks are now correctly shown in the technical lineage graph. If you do not have permission on the Workbook or Dashboard level, the metadata of these data objects is not ingested.When integrating Power BI, the ownership information (email address only) for reports is now ingested in Collibra. The new Owner in source attribute is included on Power BI Report asset pages. The lineage harvester now uses Looker 4.0 APIs, with paging options.When you integrate Power BI, the lineage harvester is now more resilient against OutOfMemory errors.When you integrate Tableau and use domain mapping, subprojects are now ingested in the domains of their parent projects. The Collibra Data Lineage service instances now benefit from the following parsing enhancements when integrating Snowflake data sources: Support for the COLLATE keyword. Support for EXTERNAL TABLE syntax. When integrating Power BI, the descriptions of Data Set Tables and Data Set Columns in Power BI are now harvested.Fixed an issue that was resulting in a processing error when a column referenced in an ORDER BY clause references a repeated column in the SELECT column list.When integrating Tableau, you can now ingest sub-projects for which you have permission to ingest, even if you don’t have permission to ingest the parent projects.2022.08Previously, when you created a technical lineage for a supported BI tool, the nodes in the technical lineage graph had a gray background, even if the data objects from your data source were stitched to assets in Data Catalog. Data objects now have the intended yellow background when creating a technical lineage for Power BI. This enhancement was introduced for Tableau or Looker in Collibra 2022.07. Soon, the enhancement will also apply to SSRS and PBRS.When synchronizing Tableau, the synchronization no longer fails if two data sources in the same project with the same name are returned from the Tableau API. The assets of both data sources are now synchronized in Collibra.You can now filter on the Tableau project level. When integrating Power BI, you can now ingest measures and show them in the technical lineage. Measures are included as the value in the Role in Report attribute on Power BI Column asset pages.When attempting to integrate Power BI with invalid Power BI credentials, the lineage harvester log file now provides a more helpful error message. When you specify the Power BI workspaces for ingestion, the filters are not case sensitive now. When integrating Looker, the ownership information (email address only) for folders, Looks and dashboards is now ingested in Collibra. The new Owner in source attribute is included on Looker Folder, Looker Look and Looker Dashboard asset pages.When integrating Power BI, the ownership information (email address only) for data sets and workspaces is now ingested in Collibra. The new Owner in source attribute is included on Power BI Data Model and Power BI Workspace asset pages.The lineage harvester log file now identifies whether you are using Tableau Online or Tableau Server, and the version of your Tableau environment.2022.07The lineage harvester now retries to get a batch status again if the first HTTP call failed due to a network error. Fixed an issue that was causing custom SQL queries to be identified as belonging to two different Tableau data sources. This resulted in a Unique constraint failed error. Fixed an issue that was resulting in the No asset matches the specified criteria error.When the lineage harvester fetches an access key for a data store, only active records are now fetched. Inactive records are ignored. The lineage harvester is more resilient against authorization expiration when ingesting Looker metadata.The lineage harvester log file now includes the following information: Your Tableau environment type: Tableau Online or Tableau Server typeThe version of your Tableau environment2022.06 When synchronizing Power BI, the last sync time is now correctly shown in the Sources tab page. Fixed an issue that was causing the processing of harvested metadata batches to run without coming to completion. When ingesting Power BI, if there are Oracle data sources, the Oracle service name is now used, instead of the database name. When processing Tableau metadata, the Collibra Data Lineage servers no longer replace >> by <}, which was resulting in parsing errors. Fixed an [SQLITE_ERROR] issue that was breaking the technical lineage when attempting to synchronize a data source. When processing Power BI metadata, SQL statements are now in upper case. When creating a technical lineage for Tableau, any unnecessary brackets “][“ in the names of schemas are now removed. When integrating Power BI, you can now ingest measures without DAX. They are shown as attribute type Role in Report on Power BI Column asset pages. 2022.05The lineage harvester 2022.05 includes an internal format change to the password manager pwd.conf file. This means that if you use Lineage harvester 2022.05, you can no longer use the pwd.conf file with an older harvester. You can now integrate Power BI in Data Catalog via the lineage harvester, meaning you no longer need to use the Power BI harvester. Additional benefits include the following: Support for Power BI Data Flows. Descriptions of Power BI Reports. Statuses of Power BI Workspaces. Filtering and domain mapping. The new Power BI integration method is specifically for new integrations. For those who have been ingesting Power BI via the Power BI harvester, we will soon release a migration script. Collibra Data Lineage now also supports the following BI integrations: MicroStrategy SQL Server Reporting Services and Power BI Report Server. You can now use token-based authentication when creating a technical lineage for Matillion.This enhancement is not backwards compatible. You must update your configuration file.If you use the lineage harvester 2022.05, you can no longer use the pwd.conf file with an older harvester. The useCollibraSystemName property is now solely used for the configuration of the system name.If you set the useCollibraSystemName property to true in your lineage harvester configuration file, but don't define the system name in the Tableau <source ID> configuration file, the system name in the Tableau technical lineage shows DEFAULT as the system name. If using a Tableau <source ID> configuration file: You can now use wildcards throughout the file. The hostName and connectorUrl properties are no longer case-sensitive. The PostgreSQL JDBC driver is now upgraded from from 42.3.2 to 42.3.3.The Apache Hive JDBC driver is now upgraded from 2.6.17.1020 to 2.6.19.2022.The lineage harvester no longer hangs when harvesting metadata from certain data sources.The lineage harvester automatically refreshes Tableau tokens.You can now use the optional concurrencyLevel property in the lineage harvester configuration file, to specify the internal sizing, meaning the amount of tasks that can be executed at the same time. 2022.04 You can now use the databaseMapping property in your Tableau <source ID> configuration file, to map a Tableau technical database name to the real database name. When providing connection definitions for Informatica PowerCenter, the dbname property is no longer case-sensitive. When integrating Informatica PowerCenter data sources, Collibra Data Lineage now correctly creates a technical lineage when useCollibraSystemName is set to true.2022.03By default, the lineage harvester no longer harvests images. If you want to include images, include the optional excludeImages property in your configuration file and set the value to false. When ingesting Tableau metadata, you can now leave empty the collibraSystemName property in
your configuration file, even if the useCollibraSystemName property is set to true. The lineage harvester now correctly shows the help overview when you run the --help command. Hive source now skips harvesting DDL of exclusively locked tables. When you change the domain reference ID in the lineage harvester configuration file, Tableau assets are now successfully deleted from the previous domain and recreated in the new domain. You no longer see a Fiber Failed error while running the lineage harvester. Protobuf is upgraded to version 3.19.3. Fixed an issue that was causing incomplete technical lineage and stitching issues when using custom SQL in Tableau. Fixed an issue that resulted in a TableauHarvesterError when ingesting Tableau metadata via the linage harvester. Fixed a NullPointerException when no column data type is harvested.Fixed an issue that was causing the ingestion of Looker metadata to fail. Fixed an issue that was causing a JsonParseError when ingesting Tableau metadata. 2022.02Collibra Data Lineage service instancesThe Collibra Data Lineage service processes and analyzes the harvested metadata from supported (meta)data sources and uploads it to Data Catalog. The Collibra Data Lineage service processes or stores only metadata, but not actual data.When you run the lineage harvester or synchronize the technical lineage on Edge, the lineage harvester or technical lineage via Edge firstly connects to any available Collibra Data Lineage service instance to determine your cloud provider and geographic location of your Collibra Data Intelligence Cloud environment. Then, the lineage harvester or technical lineage via Edge sends the harvested metadata to the Collibra Data Lineage service instance with the same cloud provider and geographic location.Currently, your metadata can be processed on one of the following Collibra Data Lineage service instances:ServerIP addressDNS nametechlin-aws-ca15.222.200.199techlin-aws-ca.collibra.comtechlin-aws-eu18.198.89.106techlin-aws-eu.collibra.comtechlin-aws-sg13.228.38.245techlin-aws-sg.collibra.comtechlin-aws-us54.242.194.190techlin-aws-us.collibra.comtechlin-azure-eu51.105.241.132techlin-azure-eu.collibra.comtechlin-azure-us20.102.44.39techlin-azure-us.collibra.comtechlin-gcp-au35.197.182.41techlin-gcp-au.collibra.comtechlin-gcp-ca34.152.20.240techlin-gcp-ca.collibra.comtechlin-gcp-eu35.205.146.124techlin-gcp-eu.collibra.comtechlin-gcp-sg34.87.122.60techlin-gcp-sg.collibra.comtechlin-gcp-uk35.234.130.150techlin-gcp-uk.collibra.comtechlin-gcp-us34.73.33.120techlin-gcp-us.collibra.comYou have to allow all Collibra Data Lineage service instances in your geographic location. For example, if your data is located in Europe, you have to allow the following Collibra Data Lineage service instances: techlin-aws-eu and techlin-gcp-eu. In addition, we highly recommend that you always allow the techlin-aws-us instances as a backup, in case the lineage harvester cannot connect to other Collibra Data Lineage service instances.Technical lineage via EdgeThis section provides information on how to create a technical lineage via Edge. About Technical lineage via Edge You can use Edge to collect metadata from your data sources and create new relations between data elements from your data source and existing assets into Data Catalog. Edge collects transformation logic like SQL scripts and ETL scripts from a specified location, for example a database table or a folder on a file system.Just like the lineage harvester, Edge connects to different Collibra Data Lineage service instances based on your geographical location and cloud provider.For a list of the supported data sources and the technical lineage capabilities and connection types for each data source, go to Supported data sources for technical lineage. For specific steps to create a technical lineage on Edge, go to Creating technical lineage via Edge.You can also use Edge to create a custom technical lineage. For complete information, go to Create technical lineage via Edge and select Custom technical lineage.If you want to use technical lineage via Edge together with the lineage harvester, ensure that you use the lineage harvester version 2023.04 or newer. For more information, go to Migrate the technical lineage of a data source. Enabling and configuring technical lineage via EdgeTo create a technical lineage for different data sources via Edge, you must enable the features in the Collibra settings or in Collibra Console. You can define how technical lineage via Edge accesses the data sources by creating different connections. The following connection types are supported on Edge: JDBC connection, for JDBC data sources and ETL tools.Shared Storage connection, for JDBC data sources and some ETL tools.APIs, for MicroStrategy, Power BI, Tableau, Informatica Intelligent Cloud Services, and Matillion.Configurations for technical lineage via Edge include the following: General configuration settings in the Collibra settings or Collibra Console, which apply to all data sources for which you create the technical lineage. For example, you can enter your Collibra Data Intelligence Cloud username and user password in the general configuration settings. Specific configuration settings for each data source. You can add a technical lineage capability for each data source to provide specific configurations. After you create the connections and configure technical lineage via Edge for different data sources, you can manually synchronize the capabilities or add a synchronization schedules. BI tool ingestion via EdgeBI ingestion via Edge is currently available for MicroStrategy, Power BI, and Tableau. To integrate other supported BI tools, you need to use the lineage harvester. You can also use the lineage harvester to integrate MicroStrategy, Power BI, and Tableau.During the technical lineage process, relations of the type Data Element targets / sources Data Element are automatically created: Between data objects in your data source and assets from registered data sources. Between ingested assets from BI sources and Data Catalog assets from registered data sources. You can't work with Edge via the REST API.You can't migrate from Jobserver to Edge to preserve the metadata that you manually added to the assets that you ingested via Jobserver.PermissionsYou need a global role with the System Administration global permission, for example Sysadmin. This role must have access to all assets in the data sources and be able to create new relations between these assets.Specific permissions might be required to access different data sources. Select a data source in the Overview of Collibra-provided JDBC drivers topic to see the required permissions to create a technical lineage.Create a technical lineage via EdgeThis topic provides an overview of the necessary steps to create a technical lineage via Edge.You can also use the Collibra Catalog Cloud Ingestions API to create or update a technical lineage capability and start or schedule a synchronization to create a technical lineage. For more information about using APIs, go to Collibra Developer Portal.To view the steps to create technical lineage for your data source, select the data source and connection type, if applicable. For a listed of supported data sources and their corresponding connection types, go to Supported data sources for technical lineage.Before you beginUse Collibra Data Intelligence Cloud 2023.03 or later. Create an Edge site in Collibra Data Intelligence Cloud.Install an Edge site. Create a JDBC connection. Register the data source via Edge. Before you register the data source, ensure that you add the Catalog JDBC ingestion capability, so that Collibra Data Lineage can stitch the data objects in your technical lineage to the assets in Data Catalog. Requirements and permissionsCollibra Data Intelligence Cloud 2023.08 or laterA global role with the following global permissions: Data Stewardship ManagerManage all resourcesSystem administrationTechnical lineageA resource role with the following resource permission on the community level in which you created the BI Data Catalog domain: Asset: addAttribute: addDomain: addAttachment: addNecessary permissions to all database objects that technical lineage via Edge accesses.Some data sources require specific permissions. For the data source selected above: You need read access on the SYS schema.You need read access on the SYS schema and the View Definition Permission in your SQL Server.You need read access on information_schema:bigquery.jobs.createbigquery.readsessions.createbigquery.tables.getDatabigquery.readsessions.getDataGRANT SELECT, at table level. Grant this to every table for which you want to create a technical lineage.The role of the user must be the owner of the views in PostgreSQL, and the username of the user must be specified in the JDBC connection that you use to access PostgreSQL.You need read access on information_schema. Only views that you own are processed.SELECT, at table level. Grant this to every table for which you want to create a technical lineage.A role with the LOGIN option.SELECT WITH GRANT OPTION, at Table level.CONNECT ON DATABASEThe following permissions are the same, regardless of the ingestion mode: SQL or SQL-API.You need a role that can access the Snowflake shared read-only database. To access the shared database, the account administrator must grant the IMPORTED PRIVILEGES privilege on the shared database to the user. The username of the user must be specified in the JDBC connection that you use to access Snowflake. If the default role in Snowflake does not have the IMPORTED PRIVILEGES privilege, you can click the Add property button to add a custom parameter with the following values specified:
FieldValueNamecustomConnectionProperties TypeTextEncryptionSelect one of the following encryption methods: Not encrypted (plain text)Encrypted with public keyTo be encrypted by Edge management serverValuerole=METADATAYou need read access on the DBC.You need read access to the following dictionary views: all_tab_colsall_col_commentsall_objectsALL_DB_LINKSall_mviewsall_sourceall_synonymsall_viewsYou need read access on definition_schema. Your user role must have privileges to export assets. You must have read permission on all assets that you want to export. You have added the Matillion certificate to a Java truststore.You have at least a Matillion Enterprise license.The following permissions apply only to MicroStrategy on-premises customers. You need Admin API permissions.The first call we make to MicroStrategy is to authenticate. We connect to <MSTR URL>:<Port>/MicroStrategyLibrary/api-docs/ and use POST api/auth/login. You have to ensure that this API call can be made successfully. You need permissions to access the library server.The lineage harvester uses port 443. If the port is not open, you also need permissions to access the repository.If you have a MicroStrategy on-premises environment, you need the permissions for all of the database objects that the lineage harvester accesses.You have to configure the MicroStrategy Modeling Service. For complete information, see the MicroStrategy documentation.Before you start the Power BI integration process, you have to perform a number of tasks in Power BI and Microsoft Azure. These tasks, which are performed outside of Collibra, are needed to enable the lineage harvester to reach your Power BI application and collect its metadata. For complete information, go to Set up Power BI.Before you start the Tableau integration process, you have to perform a number of tasks in Tableau. For complete information, go to the following topics:Set up TableauTableau roles and permissionsStepsSet up Tableau.Set up Power BI.Set up MicroStrategy.What's next?View the technical lineage.Delete the technical lineage of a data source on EdgeYou can delete the technical lineage of a data source by updating the capability for the data source and synchronizing the technical lineage again. If you want to use technical lineage via Edge together with the lineage harvester, ensure that you use the lineage harvester version 2023.04 or newer. If you want to delete the technical lineage of a data source by using the lineage harvester, ensure that you use the lineage harvester version 2023.04 or newer. For details, go to Delete the technical lineage of a data source.StepsOpen an Edge site. On the main menu, click , and then click Settings.The Collibra settings page opens. In the tab pane, click Edge.The Sites tab opens and shows a table with an overview of the Edge sites.In the Edge site overview, click the name of the Edge site where you created the technical lineage capability for the data source.The Edge site page appears.In the Capabilities section, locate and click the technical lineage capability that you added for the data source when you created the technical lineage.Clear the Active check box. Click Save. The capability is updated.Synchronize the technical lineage capability for the data source.The data source is marked as ignored internally and will be excluded when the technical lineage is synchronized again.Synchronize your technical lineage by taking any of the following actions:On Edge, synchronize the technical lineage capability for any of your data sources that are active. With the lineage harvester, run any of the following commands: The sync command: For Windows: .\bin\lineage-harvester.bat syncFor other operating systems: ./bin/lineage-harvester syncThe full-sync command: For Windows: .\bin\lineage-harvester.bat full-syncFor other operating systems: ./bin/lineage-harvester full-syncFor more information, go to Typical command options and arguments.When synchronization is complete, the technical lineage of the data source is deleted.What's next?If you want to delete the technical lineage capability for the data source, ensure that the technical lineage of the data source is removed successfully after synchronization. For more information, go to Delete an Edge capability from an Edge site.You can view a summary of the results from the Activities list to see whether the technical lineage is synchronized successfully. If the synchronization fails or completes with errors, you can use the technical lineage via Edge troubleshooting guide or Collibra Support Portal to fix the errors.Migrate the technical lineage of a data sourceYou can use the lineage harvester and technical lineage via Edge together. You can migrate a data source from lineage harvester to technical lineage via Edge, and also from technical lineage via Edge to the lineage harvester.Prerequisites and permissionsA global role that has the following global permission:The Catalog, for example Catalog AuthorView Edge connections and capabilitiesA resource role with Configure external system resource permission, for example Owner.The permissions to retrieve the metadata of the following database components through the JDBC Driver Database Metadata methods:SchemasTablesColumnsThe lineage harvester version 2023.04 newer.Migrate to technical lineage via EdgeMigrate to the lineage harvesterMigrate to technical lineage via EdgeOpen the lineage harvester configuration file in the config folder of your lineage harvester. For the data source that you want to move to Edge, remove the section of the data source from the lineage harvester configuration file and save the configuration file. If needed, start the lineage harvester in the console and run the following command to ignore the data source. For Windows: .\bin\lineage-harvester.bat ignore-source <source_ID>, where <source_id> is the ID of the data source that you want to ignore.For other operating systems: ./bin/lineage-harvester ignore-source <source_ID>, where <source_id> is the ID of the data source that you want to ignore.The data source is excluded from the list of data sources that are used to create the technical lineage.This step is required only in the following cases: If you use a different source ID for the data source on Edge.If you are migrating SAP HANA data sources from the lineage harvester to Edge, regardless of the source IDs you use. When you created technical lineage for SAP HANA by using the lineage harvester, different sources IDs were required if you used the hana and hana-cviews dialects. However, in the Technical Lineage for SAP HANA capability, you can use one source ID for both SQL based and calculated views input. Technical lineage via Edge adds suffixes to the source ID automatically and internally. When you synchronize the Technical Lineage for SAP HANA capability, an error occurs if the source IDs from the lineage harvester exist for the same data source.On Edge, add the technical lineage capability for the data source with the same configurations, for example, the same source ID. Synchronize the technical lineage.When the synchronization completes, the technical lineage is created for the data source.Migrate to the lineage harvesterOpen an Edge site. On the main menu, click , and then click Settings.The Collibra settings page opens. In the tab pane, click Edge.The Sites tab opens and shows a table with an overview of the Edge sites.In the Edge site overview, click the name of the Edge site where you created the technical lineage capability for the data source.The Edge site page appears.In the Capabilities section, locate and click the technical lineage capability for the data source. The technical lineage capability page opens.Clear the Active check box. Click Save. The capability is updated.Synchronize the technical lineage. If you added a synchronization schedule for the technical lineage capability, ensure that you delete the schedule.When the synchronization completes, the technical lineage of the data source is deleted.Open the lineage harvester configuration file in the config folder of your lineage harvester. Specify the properties in the lineage harvester configuration file for the data source with the same configurations of the capability, for example, the same source ID, and save the configuration file. Run the lineage harvester.When the lineage harvester finishes processing, the technical lineage is created for the data source.For the overall steps to create technical lineage, go to Creating a Technical lineage via the lineage harvester or Create a technical lineage via Edge.What's next?View the technical lineage graph.You can check the progress of the technical lineage creation in Activities in your Collibra Data Intelligence Cloud environment. The Results field indicates how many relations were imported into Data Catalog. Go to the status page to see the log files of the SQL analysis.If the lineage harvester log shows an error message or the harvesting process fails, you can use the technical lineage troubleshooting guide or Collibra Support Portal to fix the error.For technical lineage via Edge, if the synchronization fails or completes with an error message, you can use the technical lineage via Edge troubleshooting guide or Collibra Support Portal to fix the error.Technical lineage via the lineage harvesterThe lineage harvester is a connectivity tool that allows you to create a technical lineage. The lineage harvester collects metadata from your data sources. Collibra then analyzes and processes the metadata, and creates new Table and Column assets in Data Catalog, with names that match those of the data objects in your data sources. If you integrate a BI tool, new BI assets are also created.You can download the lineage harvester from the Collibra Community downloads page.If you want to use technical lineage via Edge together with the lineage harvester, ensure that
you use the lineage harvester version 2023.04 or newer. For more information, go to Migrate the technical lineage of a data source. To delete the technical lineage of a data source in the lineage harvester version 2023.04 or newer, you must remove the section of the data source from the lineage harvester configuration file and also run the ignore-source command with the source ID specified. For complete information on technical lineage, see the Collibra Data Intelligence Cloud User Guide.Creating a technical lineage via the lineage harvesterThis topic describes the general steps on how to use the lineage harvester to create a technical lineage.Select a data source, to show the relevant integration steps.Currently, information is shown for:Amazon RedshiftAzure Data FactoryAzure SQL Data WarehouseAzure SQL ServerAzure Synapse AnalyticsDB2Google BigQueryGreenplumHiveQLIBM InfoSphere DataStageInformatica Intelligent Cloud ServicesInformatica PowerCenterLookerMatillionMicroStrategyOraclePostgreSQLPower BIMySQLNetezzaSAP HanaSnowflakeSpark SQLDownloaded SQL filesSQL ServerSQL Server Integration ServicesSSRS-PBRSSybaseTableauTeradataCustom technical lineageChoose another data sourceX My data source is not in this list.Amazon RedshiftAzure Data Factory Azure SQL Data Warehouse Azure SQL Server Azure Synapse Analytics Custom technical lineageDataStage DB2 Google BigQuery Greenplum Hive Informatica Intelligent Cloud Services Informatica PowerCenter LookerMatillion MicroStrategyMySQL Netezza OraclePostgreSQL Power BISAP Hana Snowflake Spark SQL SQL Server SQL Server Integration Services Downloaded SQL files SSRS-PBRSSybase Tableau TeradataAmazon RedshiftAzure SQL serverAzure Synapse AnalyticsGreenplumHiveIBM Db2PostgreSQLMicrosoft SQL ServerMySQLNetezzaSAP HANATeradatarequirements:Ensure that you meet the Set up Azure Data Factory.You need read access on information_schema. Only views that you own are processed.You need read access on the SYS schema.You need read access on information_schema:bigquery.datasets.getbigquery.tables.getbigquery.tables.listbigquery.jobs.createbigquery.routines.getbigquery.routines.listSELECT, at table level. Grant this to every table for which you want to create a technical lineage.You need Monitoring role permissions.A role with the LOGIN option.SELECT WITH GRANT OPTION, at Table level.CONNECT ON DATABASEYou need read access on the SYS schema and the View Definition Permission in your SQL Server.You need read access on definition_schema.GRANT SELECT, at table level. Grant this to every table for which you want to create a technical lineage.The role of the user that you specify in the username property in lineage harvester configuration file must be the owner of the views in PostgreSQL.You need read access on the DBC.You need read access to the following dictionary views: all_tab_colsall_col_commentsall_objectsALL_DB_LINKSall_mviewsall_sourceall_synonymsall_views Your user role must have privileges to export assets. You must have read permission on all assets that you want to export. You have added the Matillion certificate to a Java truststore.You have at least a Matillion Enterprise license.The following permissions are the same, regardless of the ingestion mode: SQL or SQL-API.You need a role that can access the Snowflake shared read-only database. To access the shared database, the account administrator must grant the IMPORTED PRIVILEGES privilege on the shared database to the user that runs the lineage harvester.If the default role in Snowflake does not have the IMPORTED PRIVILEGES privilege, you can use the customConnectionProperties property in the lineage harvester configuration file to assign the appropriate role to the user. For example:customConnectionProperties: role=METADATAThe source code files must be in the same directory as the lineage.json file. Otherwise, an error occurs indicating that the lineage harvester cannot find the source code files. For complete information, go to Working with custom technical lineage.Before you start the Power BI integration process, you have to perform a number of tasks in Power BI and Microsoft Azure. These tasks, which are performed outside of Collibra, are needed to enable the lineage harvester to reach your Power BI application and collect its metadata. For complete information, go to Set up Power BI.Before you start the Tableau integration process, you have to perform a number of tasks in Tableau. For complete information, go to the following topics:Set up TableauTableau roles and permissionsYou need the following roles, with user access to the server from which you want to ingest:A system-level role that is at least a System user role.An item-level role that is at least a Content Manager role.We recommend that you use SQL Server 2019 Reporting Services or newer. We can't guarantee that older versions will work.Before you start the Looker integration process, you need to set up Looker.The following permissions apply only to MicroStrategy on-premises customers. You need Admin API permissions.The first call we make to MicroStrategy is to authenticate. We connect to <MSTR URL>:<Port>/MicroStrategyLibrary/api-docs/ and use POST api/auth/login. You have to ensure that this API call can be made successfully. You need permissions to access the library server.The lineage harvester uses port 443. If the port is not open, you also need permissions to access the repository.If you have a MicroStrategy on-premises environment, you need the permissions for all of the database objects that the lineage harvester accesses.You have to configure the MicroStrategy Modeling Service. For complete information, see the MicroStrategy documentation.StepsOptionally, connect to a proxy server.Ensure that you meet the Azure Data Factory prerequisites.Ensure that you have the correct Tableau versions and permissions, as described in the Set up Tableau topics.Complete the tasks in Power BI and Microsoft Azure, as described in the Set up Power BI topics.If you are a MicroStrategy on-premises customer, ensure that you have enabled Collibra to access your MicroStrategy data, as described in Set up MicroStrategy.Ensure that you have API3 credentials for authorization and access control. For complete information, go to Set up Looker. Prepare the Data Catalog physical data layer. Prepare an external directory folder for the lineage harvester. Prepare a domain for BI asset ingestion.Optionally, assign the attribute type State to the global assignment of the Power BI Workspace asset type. For complete information, go to Power BI workspaces.Download and install the lineage harvester.Create a custom technical lineage JSON file.Prepare the lineage harvester configuration file.The project name in the configuration file must be the same as the full name of the Database asset.If necessary, prepare a <source ID> configuration file.Hostname mapping (beta) will replace database mapping and the collibraSystemName section for databases in a future Collibra version. For complete information and examples of hostname mapping, go to Tableau hostname mapping (beta).Manually refresh your Power BI datasets. The first time you integrate Power BI, you need to make sure that the data in your Power BI datasets is up-to-date. Carry out this step only if this is the first time you're integrating Power BI in Data Catalog. After that, Microsoft automatically refreshes the datasets every 90 days. For complete information, see: The Microsoft documentation. The Microsoft Power BI Blog.Run the lineage harvester. What's next?You can check the progress of the ingestion in Activities. The results field indicates how many relations were imported into Data Catalog.After the metadata is ingested in Data Catalog, you can go to the domain that you specified in your lineage harvester configuration file and view the newly created assets. These assets are automatically stitched to existing assets in Data Catalog.You can also view the Tableau technical lineage.We strongly recommend that you not edit the full names of any BI assets. Doing so will likely lead to errors during the synchronization process.We highly recommend that you do not move the ingested assets to a different domain. If you do, the assets will be deleted and recreated in the initial BI Catalog domain when you synchronize. As a consequence, any manually added data of those assets is lost.Prepare the Data Catalog physical data layer for technical lineageThis topic does not apply if you register a data source via Edge because in that case, Collibra automatically creates the system > database > schema > table > column hierarchy. To stitch data objects in your data sources to their corresponding assets in Collibra Data Intelligence Cloud, the full names of the data objects and assets must match exactly. The full names are constructed according to the full path of the data objects in your data source:(system name) > database name > schema name > table name > column nameHowever, when you register a data source via Jobserver or via the lineage harvester, only assets of the following asset types are created in Data Catalog: SchemaTableColumn Therefore, you have to create a Database asset and create a relation between it and the Schema asset, to construct the full path hierarchy required for full name matching. If you set the useCollibraSystemName property to true in your lineage harvester configuration file, you also need to create a System asset and create a relation between it and the Database asset. We refer to this as preparing the Data Catalog physical data layer.For more information, see Automatic stitching for technical lineage.Prerequisites You have a global role with the Catalog global permission, for example, Catalog Author.You have a resource role with the following resource permissions on the Schema community if you use a Jobserver and on the Database community if you use
Edge.Asset > addAttribute > addDomain > addAttachment > addAdditional prerequisites for JDBC data source typesIf you are working with a JDBC data source type, you also need to meet the following prerequisites: You have the permissions to retrieve the metadata of the following database components through the JDBC Driver Database Metadata methods:SchemasTablesColumnsYou have set up the JDBC driver of your source data, for example MySQL. You have registered a data source.The full name of your Schema asset must match the exact name of the schema (including for case-sensitivity) in the data source that you register in the configuration file.If you use Jobservers in Collibra Console and there is no available Jobserver, the Register data source actions will be grayed out in the global create menu in Collibra.StepsCreate a System asset:This is only required if you set the useCollibraSystemName property to true in your lineage harvester configuration file.The full name of the System asset must match (including for case-sensitivity) the exact name of the system of the data source that you register in the configuration file.Show me howOpen the product for which you want to create an asset, for example Business Glossary.On the main toolbar, click .The Create dialog box appears.On the Assets tab, click Database.The Create Asset dialog box appears.Enter the required information.FieldDescriptionTypeThe asset type of the asset that you are creating.DomainThe domain to which the asset will belong. Ensure that the domain type of the selected domain is assigned to the selected asset type.NameA name to identify the asset.You can simultaneously create multiple assets. To do so, after typing the name, press Enter, and then type the next name. Depending on the settings, asset names may need to be unique in their domain. If you enter a name that already exists, it appears in the strike-through style.Click Create.A message stating that one or more assets are created appears in the upper-right corner of the page.Create a Database asset: The full name of your Database asset must match (including for case-sensitivity) the exact name of the database or project, in case of Google BigQuery, that you register in the configuration file. The names are case-sensitive.Show me howOpen the product for which you want to create an asset, for example Business Glossary.On the main toolbar, click .The Create dialog box appears.On the Assets tab, click Database.The Create Asset dialog box appears.Enter the required information.FieldDescriptionTypeThe asset type of the asset that you are creating.DomainThe domain to which the asset will belong. Ensure that the domain type of the selected domain is assigned to the selected asset type.NameA name to identify the asset.You can simultaneously create multiple assets. To do so, after typing the name, press Enter, and then type the next name. Depending on the settings, asset names may need to be unique in their domain. If you enter a name that already exists, it appears in the strike-through style.Click Create.A message stating that one or more assets are created appears in the upper-right corner of the page.Create a relation between the System asset and the Database asset using the Technology Asset groups / is grouped by Technology Asset relation type.This step is only relevant if you created a System asset, in step 1.Show me how In the tab pane, click Add Characteristic.The Add a characteristic dialog box appears.Click Relations.Search for and click has schema.The Add has schema dialog box appears.Enter the required information.OptionDescriptionAssetsThe name of the schema.Filter suggested assets by organizationOption to filter the suggestions based on selected communities and domains.If this option is selected, the organization tree appears. You can then filter and select domains and communities.Start dateOptionally enter the date on which the relation between the assets becomes applicable. Leave this field empty to create a permanent relation.End dateOptionally enter the date on which the relation between the assets is no longer applicable. Leave this field empty to create a permanent relation.Click Save.Create a relation between the Database asset and the Schema asset using the Technology Asset has / belongs to Schema relation type.Show me how In the tab pane, click Add Characteristic.The Add a characteristic dialog box appears.Click Relations.Search for and click has schema.The Add has schema dialog box appears.Enter the required information.OptionDescriptionAssetsThe name of the schema.Filter suggested assets by organizationOption to filter the suggestions based on selected communities and domains.If this option is selected, the organization tree appears. You can then filter and select domains and communities.Start dateOptionally enter the date on which the relation between the assets becomes applicable. Leave this field empty to create a permanent relation.End dateOptionally enter the date on which the relation between the assets is no longer applicable. Leave this field empty to create a permanent relation.Click Save.What's next?If you haven't created a configuration file yet, you are now required to create it.If you created the configuration file and prepared the physical data layer, you can run the lineage harvester to start the technical lineage process.When the technical lineage process is finished and you have the required permissions, you can go to the asset page of a Table or Column asset from the data source that you added in the configuration file and visualize the technical lineage. At the same time, new relations of the type Data Element targets / sources Data Element between assets in Data Catalog are created.The lineage harvester also uses scheduled jobs to automate the technical lineage process.Set up the lineage harvesterThe lineage harvester is a software application that is needed to create a technical lineage and import metadata into Data Catalog.Lineage harvester system requirementsTo install and run the lineage harvester, you have to meet the following requirements.Software requirementsJava Runtime Environment version 11.0.18 or newer, or OpenJDK 11.0.18 or newer. To ingest Snowflake data sources, the minimum requirement is Java Runtime Environment version 16 or newer, or OpenJDK 16 or newer. For the lineage harvester to function properly, set the JAVA_OPTS environment variable when you run the lineage harvester. For example, to process data from all data sources including the Snowflake data sources, take the following steps: On Windows Enter one of the following commands:If you use OpenJDK 16: set JAVA_OPTS=-Djdk.module.illegalAccess=permitIf you use OpenJDK 17 or higher: set JAVA_OPTS=--add-opens=java.base/java.nio=ALL-UNNAMED In the same command line, enter the following command:.\bin\lineage-harvester.bat full-syncThe set command is specific to the Windows Command Shell. The command is different if you are using PowerShell.On LinuxEnter the following command:If you use OpenJDK 16: JAVA_OPTS=-Djdk.module.illegalAccess=permit ./bin/lineage-harvester full-syncIf you use OpenJDK 17 or higher: JAVA_OPTS=--add-opens=java.base/java.nio=ALL-UNNAMED ./bin/lineage-harvester full-syncHardware requirementsYou need to meet the hardware requirements to install and run the lineage harvester.Minimum hardware requirementsYou need the following minimum hardware requirements:2 GB RAM1 GB free disk spaceRecommended hardware requirementsThe minimum requirements are most likely insufficient for production environments. We recommend the following hardware requirements:4 GB RAM4 GB RAM is sufficient in most cases, but more memory could be needed for larger harvesting tasks. For instructions on how to increase the maximum heap size, see Technical lineage general troubleshooting.20 GB free disk spaceNetwork requirementsThe lineage harvester uses the HTTPS protocol by default and uses port 443. You need the following minimum network requirements:Firewall rules so that the lineage harvester can connect to:The host names of all data sources in the lineage harvester configuration file.All Collibra Data Lineage service instances in your geographic location:15.222.200.199 (techlin-aws-ca.collibra.com)18.198.89.106 (techlin-aws-eu.collibra.com)13.228.38.245 (techlin-aws-sg.collibra.com)54.242.194.190 (techlin-aws-us.collibra.com)51.105.241.132 (techlin-azure-eu.collibra.com)20.102.44.39 (techlin-azure-us.collibra.com)35.197.182.41 (techlin-gcp-au.collibra.com)34.152.20.240 (techlin-gcp-ca.collibra.com)35.205.146.124 (techlin-gcp-eu.collibra.com)34.87.122.60 (techlin-gcp-sg.collibra.com)35.234.130.150 (techlin-gcp-uk.collibra.com)34.73.33.120 (techlin-gcp-us.collibra.com)The lineage harvester connects to different Collibra Data Lineage service instances based on your geographic location and cloud provider. If your location or cloud provider changes, the lineage harvester rescans all your data sources. You have to allow all Collibra Data Lineage service instances in your geographic location. In addition, we highly recommend that you always allow the techlin-aws-us instance as a backup, in case the lineage harvester cannot connect to other Collibra Data Lineage service instances.Install the lineage harvesterBefore you can use the lineage harvester, you need to download and install it. You can download the lineage harvester from the Collibra Community downloads page.Requirements and permissionsCollibra Data Intelligence Cloud.You have purchased Collibra Data Lineage.A global role with the following global permissions:Catalog, for example Catalog AuthorData Stewardship ManagerManage all resourcesSystem administrationTechnical lineageA resource role with the following resource permissions on the community level in which you created the domain: Asset: addAttribute: addDomain: addAttachment: addNecessary permissions to all database objects that the lineage harvester accesses.You meet
the minimum system requirements.You have added Firewall rules so that the lineage harvester can connect to:The host names of all databases in the lineage harvester configuration file.All Collibra Data Lineage service instances within your geographical location: 15.222.200.199 (techlin-aws-ca.collibra.com)18.198.89.106 (techlin-aws-eu.collibra.com)13.228.38.245 (techlin-aws-sg.collibra.com)54.242.194.190 (techlin-aws-us.collibra.com)51.105.241.132 (techlin-azure-eu.collibra.com)20.102.44.39 (techlin-azure-us.collibra.com)35.197.182.41 (techlin-gcp-au.collibra.com)34.152.20.240 (techlin-gcp-ca.collibra.com)35.205.146.124 (techlin-gcp-eu.collibra.com)34.87.122.60 (techlin-gcp-sg.collibra.com)35.234.130.150 (techlin-gcp-uk.collibra.com)34.73.33.120 (techlin-gcp-us.collibra.com)The lineage harvester connects to different instances based on your geographic location and cloud provider. If your location or cloud provider changes, the lineage harvester rescans all your data sources. You have to allow all Collibra Data Lineage service instances in your geographic location. In addition, we highly recommend that you always allow the techlin-aws-us instance as a backup, in case the lineage harvester cannot connect to other Collibra Data Lineage service instances.StepsDownload the newest lineage harvester.Unzip the archive. You can now access the lineage harvester folder. The lineage harvester folder name is unique per version. Start the lineage harvester to create an empty lineage harvester configuration file by entering the following command: Windows: .\bin\lineage-harvester.batFor other operating systems: chmod +x bin/lineage-harvester and then bin/lineage-harvesterAn empty configuration file is created in the config folder.The lineage harvester is installed automatically. You can check the installation by running ./bin/lineage-harvester --help.What's next?Prepare the lineage harvester configuration file.Lineage harvesting app command options and argumentsAfter creating a configuration file, you can use the lineage harvester to perform specific actions with the data sources that are defined in your configuration file.If you run the lineage harvester in command line, you will see an overview of possible command options and arguments that you can use. If the lineage harvester process fails, you can use the technical lineage troubleshooting guide to fix your issue.Typical command options and argumentsThe following table shows the most commonly used command options and arguments.CommandDescriptionfull-syncUploads all of the metadata from the data sources mentioned in your configuration file to the Collibra Data Lineage service, where the metadata is then processed and uploaded to Data Catalog.After you enter this command, the lineage harvester starts synchronization processing and displays the total number of data sources that are being ingested. Synchronization processing ends with an error in the following situations:The lineage harvester does not find any data sources, The useSystemName value is not the same for all data sources. The value of useSystemName is based on the following settings:The useCollibraSystemName property in the lineage harvester configuration file for different data sources.The Collibra system name setting on Edge.-s <ID of data source>Uploads only the metadata from a specified data source. For example, full-sync -s myOracleDataSource. The specified data source must be mentioned in your configuration file.This command allows you to process data from a newly added data source or to refresh a data source in the configuration file, without refreshing the other data sources. This reduces the time you need to upload your data sources, since you only upload specific ones without affecting the others. If you want to process multiple data sources, add -s ID of another data source per data source to the command.You can use this argument multiple times to include multiple data sources.--no-matchingUploads a technical lineage without stitching the data objects in your technical lineage to the corresponding Column and Table assets in Data Catalog. As a result, you won't see the technical lineage of a specific Table or Column asset, but you can still see and browse the full technical lineage.syncWhereas full-sync ingests metadata onto the Collibra Data Lineage service, processes the metadata and syncs it with assets in Data Catalog, the sync command only performs this last part: it syncs the metadata—as it exists on the Collibra Data Lineage service—and your assets in Data Catalog.After you enter this command, the lineage harvester starts synchronization processing and displays the total number of data sources that are being ingested. Synchronization processing ends with an error in the following situations:The lineage harvester does not find any data sources, The useSystemName value is not the same for all data sources. The value of useSystemName is based on the following settings:The useCollibraSystemName property in the lineage harvester configuration file for different data sources.The Collibra system name setting on Edge.See the following example for advice on how to use the sync command to add a new data source without re-harvesting all data sources.ExampleLet's say you've run bin/lineage-harvester full-sync, to upload from all data sources, process the metadata and sync with Data Catalog. You then decide that you want to add a new data source, but not harvest all data sources again.Reference the new data source in the lineage harvester configuration file. Let's say that the new data source has the ID MyNewSource.Run bin/lineage-harvester load-sources -s MyNewSource, to load the new data source and create the ZIP file.Run bin/lineage-harvester analyze ${zip_file_from_step_2}, to analyze the new data source on the Collibra Data Lineage service.Run bin/lineage-harvester sync, to sync all of the data sources referenced in your configuration file and Data Catalog.-s <ID of data source>Syncs only the metadata on the Collibra Data Lineage service, from a specified data source. For example, sync -s myOracleDataSource. The specified data source must be mentioned in your configuration file.This command allows you to sync data from one data source without refreshing the other data sources. You must have previously uploaded the metadata to the Collibra Data Lineage service.Only the sources you specify are synced. This means that any previously ingested metadata from non-specified sources, in Data Catalog, is deleted, along with its existing technical lineage. If this is not your intention, consider using full-sync -s. With full-sync -s, all sources are synced, regardless of which sources are specified by the -s command. Therefore, any previously ingested metadata from non-specified data sources remains, as do the respective technical lineages.You can use this argument multiple times to include multiple data sources.analyze ${name-of-zip-file}Analyzes a specified batch (ZIP file) of metadata on the Collibra Data Lineage service instance. The Sources tab page shows the transformation details or source code that was analyzed and the results of the analysis.load-sourcesDownloads all your data sources in a separate ZIP file, per data source, to the lineage harvester output folder.-s <ID of data source>Downloads only the data source with a specific ID. For example, load-sources -s myOracleDataSource.You can use this argument multiple times to include multiple data sources.list-sourcesLists all of the data sources that will be used to create a technical lineage. When you enter this command, up to 500 data sources are listed per page by default. The list includes the following details for each data source: Source ID <ID of data source> (from edge: false|true) (useSystemName: false|true).Source ID <ID of data source>The source ID of your data source.from edge: false|trueIndicates whether the data source is ingested by using technical lineage via Edge. If the value is true, the data source is ingested by using technical lineage via Edge. If the value is false, the data source is ingested by using the lineage harvester.useSystemName: false|trueIndicates whether Collibra Data Lineage uses the system or server name of the data source to match the System asset in Data Catalog. If the value is true, the system or server name of the data source is used. If the value is false, the system or server name of the data source is not used.The value of useSystemName is based on the following settings: The useCollibraSystemName property in the lineage harvester configuration file for the data source.The Collibra system name setting for the data source on Edge.Source ID 1redshift (from edge: false) (useSystemName: false) indicates that the data source with the 1redshift source ID was ingested by using the lineage harvester, and the system name of the data source is not used to match the System asset in Data Catalog.-p <page number>Specifies the page to be displayed. The value of <page number> must be greater than 0. This option is optional. For example, if you enter list-sources -p 2, page 2 is displayed with a default page size of 500 data sources listed. If there are less than 500 data sources in total, an error message is issued. To use the -p, -s, and -all options, you must have the lineage harvester version 2023.05 or newer.-s <number of data sources>Specifies the number of data sources to be listed on one page. The value of <number of data sources> must be in the range 0 - 500. This option is optional. For example, if you enter list-sources -s 40, default page 1 is displayed with 40 data sources listed. If there are 80 data sources in total, you see the Displaying page 1 of 2 message and a list of 40 data sources. If you enter list-sources -p 3 -s 20, page 3 is displayed with 20 data sources listed. If there are 80 data sources, you see the Displaying page 3 of 4 message and a list of 20 data sources. To use the -p,
-s, and -all options, you must have the lineage harvester version 2023.05 or newer.-allLists all data sources. The data sources are not formatted in pages. If you enter this option with the -p and -s options, this option overrides the -p and -s options. For example, if you enter list-sources -p 3 -s 20 --all, all data sources are listed. To use the -p, -s, and -all options, you must have the lineage harvester version 2023.05 or newer.ignore-source <source_id>Ignores the specified data source from the list of data sources that will be used to create the technical lineage, where <source_id> is the ID of the data source that you want to ignore. When you create the technical lineage again by entering the sync command or synchronizing a technical lineage capability via Edge, the specified data source is ignored. You can specify only one source ID at a time. If your source ID includes spaces, enclose the source ID in double or single quotation marks, for example ignore-source Source A.You can use this command to delete the technical lineage of a data source by using the lineage harvester. For details, go to Delete the technical lineage of a data source if you use the lineage harvester and Delete the technical lineage of a data source on Edge for technical lineage via Edge. To use the ignore-source command, you must have the lineage harvester version 2023.04 or newer. cat passwords.json | ./bin/lineage-harvester <command-like-full-sync> --passwords-stdinProvides passwords of your Collibra Data Intelligence Cloud instance and the data sources in your configuration file to the lineage harvester without storing the passwords in the lineage harvester folder.You can replace cat passwords.json by a string generated by your password manager.test-connectionChecks the connectivity to the Collibra Data Lineage service instance and to Data Catalog. The logs will also show the IP addresses of the Collibra Data Lineage service instances that you have to allow.This command is mostly used for troubleshooting purposes.--helpShows an overview of all supported command options and arguments that you can use in the lineage harvester.--versionShows the version of the lineage harvester that you are using.-Dlineage-harvester.log.dir=path/to/log/dirDetermine the path of the log file.Technical lineage password manager integration designWhen you run the lineage harvester, you can either: Enter the passwords in the console. The passwords are then encrypted and stored in /config/pwd.conf.Lineage harvester 2022.05 includes an internal format change to the password manager pwd.conf file. This means that if you use Lineage harvester 2022.05, you can no longer use the pwd.conf file with an older lineage harvester version. Provide the passwords via command line, in a prescribed JSON structure via stdin. This allows you to store the passwords locally in your password manager, instead of in your lineage harvester folder. This topic provides guidance on how to structure the JSON file and which commands to use, to store the passwords locally in your password manager.Structure of the JSON fileIf you prepare a JSON file with your passwords, you have to name the file passwords.json.The JSON file must have two sections: The catalogs section defines the connection information and credentials to your Collibra Data Intelligence Cloud instance. The sources section defines the connection information and credentials to your data sources. You use the same id as the id property in the lineage harvester configuration file.The JSON file must have the following structure: { catalogs: [{ url : <url-to-collibra-cloud>, username:<username-to-sign-in-to-collibra>, password: <password-to-sign-in-to-collibra> }], sources: [{ id: <id-of-your-database>, username: <database-username>, password: <database-password> }] }Examples of commandsWhen you run the lineage harvester, you can use one of the following commands to provide the passwords:Passwords locationCommanda locally stored JSON filecat passwords.json | ./bin/lineage-harvester full-sync --passwords-stdina custom script, for example from a password manager<prepare-passwords-command> | ./bin/lineage-harvester full-sync --passwords-stdinDepending on your password manager, you may need different parameters. For example, see the LastPass documentation for the parameters needed by LastPass.Connecting to a proxy serverYou can connect to a proxy server when you use the lineage harvester. Collibra Data Lineage supports proxy server connection and authentication.Set the environment variable on Windows or set the system properties on other operating systems with the following parameters specified to connect to a proxy server. See the following steps for code examples. -Dhttps.proxyHost-Dhttps.proxyPort-Dhttps.proxyUser-Dhttps.proxyPassword-Dhttp.nonProxyHostsThe -Dhttps.proxyUser and -Dhttps.proxyPassword parameters are optional. On WindowsSet the -D parameter to the JAVA_OPTS environment variable. set JAVA_OPTS=-Dhttps.proxyHost=azusquid.imf.org -Dhttps.proxyPort=8080 -Dhttps.proxyUser=myusername -Dhttps.proxyPassword=mypasswordRun the lineage harvester in the same command line window: .\bin\lineage-harvester.batOn other operating systemsTo access the hosts via a proxy server, run the following command: bin/lineage-harvester -Dhttps.proxyHost=<Hostname or IP address of the proxy> -Dhttps.proxyPort=<port number> -Dhttps.proxyUser=<username> -Dhttps.proxyPassword= <password> full-sync If you want to use a proxy with hostname proxy.example.com and port number 443, run the following command: bin/lineage-harvester -Dhttps.proxyHost=proxy.example.com -Dhttps.proxyPort=443 Dhttps.proxyUser=myusername -Dhttps.proxyPassword=mypasswordTo exclude hosts that should be accessed without going through the proxy server, add the following parameter: -Dhttp.nonProxyHosts=<host to exclude>.You can exclude multiple hosts by using the pipe character (|) to separate the hostnames or IP addresses to exclude. You can also use an asterisk (*) as a wildcard to match multiple hostnames or IP addresses.If you want to exclude hosts with hostname localhost and hosts with IP address 127.0.0.1 and all IP addresses starting with 192.168*, run the following command: bin/lineage-harvester -Dhttps.proxyHost=proxy.example.com -Dhttps.proxyPort=443 -Dhttp.nonProxyHosts=localhost|127.0.0.1|192.168* In your configuration file, the value of the source url or hostname property (depending on the data source), and the value in your -Dhttp.nonProxyHosts parameter, as described above, must both be either an IP address or a host name. You will get an error if, for example, you have a host name in the hostname property and an IP address in the -Dhttp.nonProxyHosts parameter. Prepare the lineage harvester configuration fileBefore you can visualize the technical lineage, you have to create a configuration file for the (meta)data sources that you want to process. This configuration file is used by the lineage harvester to extract data from (meta)data sources for which you want to create a technical lineage or you want to ingest.If you use multiple lineage harvesters on different servers, you can create a separate configuration file for the lineage harvester on each server and configure different data sources in each configuration file.Technical lineage supports a limited list of (meta)data sources.In all lineage harvester files, you must use UTF-8 or ISO-8859-1 characters, with the exception of SQL files, which can only be UTF-8 encoded.Each data source has an ID property. The ID string must be unique and human readable. The ID can be anything and is only used to identify the batch of metadata that is processed on the Collibra Data Lineage service. The lineage harvester connects to different Collibra Data Lineage service instances based on your geographical location and cloud provider. Make sure you have the correct system requirements before you run the lineage harvester. If your location or cloud provider changes, the lineage harvester rescans all your data sources. Technical lineage supports the following means of authentication: For all data sources, except for external directories: username and password. Google BigQuery data sources: username and password or a service account key file. For more information, see the Google BigQuery documentation. Snowflake: username and password or key pair authentication. No other authentication methods are supported.Comments in the lineage harvester configuration file are not supported.Before you beginDownload and install the lineage harvester.You can use the configuration file generator to create an example configuration file to accommodate the data sources you specify in the generator. You can then copy the example code to your configuration file and replace the values of the properties to suit your needs.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of
catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive.Specify one of the following values: falseThe lineage harvester ignores all system or server names that you specify on the collibraSystemName properties in the configuration file. This is the default value.trueThe lineage harvester reads the system and server names that you specify on the collibraSystemName properties in all sections of the configuration file. Only specify this value when you have multiple databases with the same name. For SQL data sources, if this property is:false, system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName property is used as the default system or server name.sourcesThis section describes the data sources for which you want to create the technical lineage. You have to create a configuration section for each data source. idThe unique ID that identifies the data source on a Collibra Data Lineage service instance, for example, my_adf.type The type of data source. The value must be AzureDataFactory.collibraSystemNameThe system or server name of the data source. This property is optional. Use this property with the useCollibraSystemName property to override the default Collibra System asset name for this data source. Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.tenantDomainThe directory ID of the Azure Data Factory instance. loginFlowThis section contains the login application information.applicationIdThe application ID of the Azure Data Factory instance. typeThe identity of the application. The value has to be ServicePrincipal.resourceGroupNameThe name of the resource group with the Reader role for the Azure Data Factory instance.subscriptionIdThe subscription ID of the resource group.factories The Azure Data Factory factories that the lineage harvester collects and processes. Specify this property with an array of Azure Data Factory factory names. This property is optional. The following rules apply when you specify this property:Enter the factory names in square brackets ([]), enclose each factory name in double quotes (), and separate them by a comma, for example, [MyFirstFactory, MySecondFactory].The factory name is not case-sensitive. For example, the MyFactory and myfactory factories are considered the same by Azure Data Factory and the lineage harvester. If you do not specify any factory name, the lineage harvester collects and processes all factories that have datasets and piplelines in them.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive.Specify one of the following values: falseThe lineage harvester ignores all system or server names that you specify on the collibraSystemName properties in the configuration file. This is the default value.trueThe lineage harvester reads the system and server names that you specify on the collibraSystemName properties in all sections of the configuration file. Only specify this value when you have multiple databases with the same name. For SQL data sources, if this property is:false, system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName property is used as the default system or server name.sourcesThis section describes the data sources for which you want to create the technical lineage. You have to create a configuration section for each data source. This configuration section contains the required information of one individual SQL directory with connection type Folder.You can add multiple data sources to the same configuration file.idThe unique ID of the data source. For example, my_first_data_source.typeThe kind of data source. In this case, the value has to be SqlDirectory.pathThe full path to the folder where you added SQL files, for example, C:\path\to\config\dir.maskThe pattern of the file names in the directory. By default, this is *.recursiveIndication of the files you want to harvest:false (default): Only harvest the files in directly under the folder in the SQL directory path.true: Harvest all files under the folder in the SQL directory path and subdirectories.dialectThe dialect of the database: redshiftazurebigquerygreenplumhivedb2oraclepostgresmssqlmysqlnetezzasnowflakesybasesparkteradatahana, for an SAP HANA data source.hana-cviews, for getting lineage from calculated views in an SAP HANA data source.The hana-cviews dialect is supported for SAP HANA (on-premises). It is not supported for SAP HANA Cloud.To get technical lineage including calculated views, you must harvest SAP HANA by specifying two data sources in the lineage harvester configuration file. In one data source, specify the hana dialect, and in the other, specify the hana-cviews dialect.The value your put for this property has to match the dialect you provide with in the directory with your SQL files.databaseThe name of your database, which is the name of your Database asset.You have to use the same database name as the name of the Database asset that you create when you prepare the physical data layer in Data Catalog. The names are case-sensitive.The database and schema names in the SQL statements in your SQL files take precedence over the values that you provide for the database and schema properties in the lineage harvester configuration file. If your SQL statements contain database and schema names, Collibra Data Lineage uses them for stitching. If your SQL statements do not contain database and schema names, Collibra Data Lineage uses the values of the database and schema properties in the configuration file for stitching.. For more information, go to Steps and Automatic stitching for technical lineage.HiveQL data sources don't have schemas. Therefore, HiveQL databases are stored in Data Catalog and technical lineage as Schema assets. The technical lineageBrowse tab pane shows the following names:The database name is the name that you enter for the collibraSystemName property.The schema name is the name that you enter for the database property.MySQL data sources don't have schemas. Therefore, MySQL databases are stored in Data Catalog and technical lineage as Schema assets. The technical lineageBrowse tab pane shows the following names:The database name is the name that you enter for the database property.Teradata data sources don't have schemas. Therefore, Teradata databases are stored in Data Catalog and technical lineage as Schema assets. The technical lineageBrowse tab pane shows the following names:The database name is the name that you enter for the collibraSystemName property.The schema name is the name that you enter for the database property. collibraSystemNameThe name of the data source's system or server. This is also the name of your System asset in Data
Catalog.Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.Specify this property with the same name as the name of the System asset that you created when you registered the data source.schemaThe name of the default schema, if not specified in the data source itself. This corresponds to name of your Schema asset.You must use the same schema name as the name of the Schema asset that you create when you prepare the physical data layer in Data Catalog.verboseIndication whether you want to enable verbose logging.By default this is set to True. If you don't want to use verbose logging, set it to False.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive.Specify one of the following values: falseThe lineage harvester ignores all system or server names that you specify on the collibraSystemName properties in the configuration file. This is the default value.trueThe lineage harvester reads the system and server names that you specify on the collibraSystemName properties in all sections of the configuration file. Only specify this value when you have multiple databases with the same name. For SQL data sources, if this property is:false, system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName property is used as the default system or server name.sourcesThis section describes the data sources for which you want to create the technical lineage. You have to create a configuration section for each data source. This section contains the required information of one individual data source with connection type JDBC.You can add multiple data sources to the same configuration file.idThe unique ID of the data source. For example, my_first_data_source.typeThe kind of data source. In this case, the value has to be Database.usernameThe username that you use to sign in to your data source.dialectThe dialect of the database. For example, redshiftazurebigquerygreenplumhivedb2oraclepostgresmssqlmysqlnetezzasnowflakesybasesparkteradata.hana, for an SAP HANA data source.hana-cviews, for getting lineage from calculated views in an SAP HANA data source.The hana-cviews dialect is supported for SAP HANA (on-premises). It is not supported for SAP HANA Cloud.To get technical lineage including calculated views, you must harvest SAP HANA by specifying two data sources in the lineage harvester configuration file. In one data source, specify the hana dialect, and in the other, specify the hana-cviews dialect.The value your put for this property has to match the dialect you provide with in the directory with your SQL files.databaseNamesThe names or IDs of your databases.Enter the database names of your data source between double quotes () and put everything between square brackets. If you want to include more than one database, separate them by a comma. For example, [MyFirstDatabase, MySecondDatabase].Ensure that you use the same database names as the names of the Database assets. The names are case-sensitive.hostnameThe name of your database host.collibraSystemNameThe name of the data source's system or server. This is also the name of your System asset in Data Catalog.Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.Specify this property with the same name as the name of the System asset that you created when you registered the data source. If the useCollibraSystemName property is:false (default), system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName field is used as the default system or server name.portThe port number.customConnectionPropertiesAn option to enable the lineage harvester to read additional connection parameters. This parameter is only required in very specific situations. If you don't need it, you can remove it from the configuration file.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive.Specify one of the following values: falseThe lineage harvester ignores all system or server names that you specify on the collibraSystemName properties in the configuration file. This is the default value.trueThe lineage harvester reads the system and server names that you specify on the collibraSystemName properties in all sections of the configuration file. Only specify this value when you have multiple databases with the same name. For SQL data sources, if this property is:false, system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName property is used as the default system or server name.sourcesThis section describes the data sources for which you want to create the technical lineage. You have to create
a configuration section for each data source. This configuration section contains the required information of one individual SQL directory with connection type Folder.You can add multiple data sources to the same configuration file.idThe unique ID of the data source. For example, my_first_data_source.typeThe kind of data source. In this case, the value has to be SqlDirectory.pathThe full path to the folder where you added SQL files, for example, C:\path\to\config\dir.maskThe pattern of the file names in the directory. By default, this is *.recursiveIndication of the files you want to harvest:false (default): Only harvest the files in directly under the folder in the SQL directory path.true: Harvest all files under the folder in the SQL directory path and subdirectories.dialectThe dialect of the database. For example, bigquery.The value your put for this property has to match the dialect you provide with in the directory with your SQL files.databaseThe name of your database, which is the name of your Database asset.You have to use the same database name as the name of the Database asset that you create when you prepare the physical data layer in Data Catalog. The names are case-sensitive.The database and schema names in the SQL statements in your SQL files take precedence over the values that you provide for the database and schema properties in the lineage harvester configuration file. If your SQL statements contain database and schema names, Collibra Data Lineage uses them for stitching. If your SQL statements do not contain database and schema names, Collibra Data Lineage uses the values of the database and schema properties in the configuration file for stitching.. For more information, go to Steps and Automatic stitching for technical lineage.MySQL data sources don't have schemas. Therefore, MySQL databases are stored in Data Catalog and technical lineage as Schema assets. The technical lineageBrowse tab pane shows the following names:The database name is the name that you enter for the database property.collibraSystemNameThe name of the data source's system or server. This is also the name of your System asset in Data Catalog.Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.Specify this property with the same name as the name of the System asset that you created when you registered the data source.schemaThe name of the default schema, if not specified in the data source itself. This corresponds to name of your Schema asset.You must use the same schema name as the name of the Schema asset that you create when you prepare the physical data layer in Data Catalog.verboseIndication whether you want to enable verbose logging.By default this is set to True. If you don't want to use verbose logging, set it to False.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether you want to use the system or server name of a data source to match to the System asset you created when you prepared the Data Catalog physical data layer. The names are case-sensitive. This is useful when you have multiple databases with the same name.sources This configuration section contains the required information for a Google BigQuery database.idThe unique ID of your data source. For example, my_third_data_source.typeThe kind of data source. In this case, the value has to be DatabaseBigQuery.projectIDsThe IDs of your Google BigQuery project. You can add multiple projects. For example, [first-project, second-project, third-project].You have to use the same project ID as the name of the Database asset that you create when you prepare the physical data layer in Data Catalog.regionThe location of your BigQuery data. This is the region that you specified when you create a data set.You can only add one location as value. However, you can create separate BigQuery entries per location in the configuration file. As a result, you create a complete technical lineage with Google BigQuery data from different locations.This property is optional.authThe path to a JSON file that contains authentication information.For more information about setting up the authentication, see the Google Big Query user guide.collibraSystemNameThe name of the Google BigQuery system. This is also the name of your System asset in Data Catalog. Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.Specify this property with the same name as the name of the System asset that you created when you registered the data source.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.For complete information on creating custom technical lineage by using the lineage harvester, go to Working with custom technical lineage. Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameThe lineage harvester ignores this property for custom technical lineage.To use the system or server name of your data source to match the System asset in Data Catalog, specify the system data object in the tree and lineage sections in the custom technical lineage JSON file. sourcesContains the required information to retrieve a custom lineage. Use this property to locate the JSON file that defines the custom technical lineage.If you want to create the technical lineage for multiple data sources, create a sources section for each data source. typeThe kind of data source. The value must be ExternalDirectory.idThe unique ID of your custom technical lineage. This property identifies the metadata that the lineage harvester processes. Specify this property with an unique string, for example, MyCustomLineage. dirTypeThe type of external directory. The value is custom-lineage.collibraSystemNameThe lineage harvester ignores this property for custom technical lineage.To use the system or server name of your data source to match the System asset in Data Catalog, specify the system data object in the tree and lineage sections in the custom technical lineage JSON file. pathThe full path to the folder of the custom technical lineage JSON file, for example
C:\path\to\custom-lineage\dir.There must be only one JSON file that defines the lineage, and the JSON file must be named lineage.json. You can, however, add other files in the harvested directory and subdirectories and refer to those files from within the JSON file.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive. This is useful if you have multiple databases with the same name.sourcesThis configuration section contains the required information to connect to IBM InfoSphere DataStage. Make sure that you have prepared a local folder with the DataStage files for which you want to create a technical lineage.collibraSystemNameThe name of the data source's system or server. If the useCollibraSystemName property is set to true, you must prepare a configuration file to provide the system information.idThe unique ID of your data source. For example, my_datastage.typeThe kind of data source. In this case, the value has to be ExternalDirectory.dirTypeThe type of external directory. The value has to be datastage.pathThe full path to the folder where you stored the data source, for example, C:\path\to\config\dir.maskThe pattern of the file names in the directory. By default, this is *.recursiveIndication whether you want to use recursive queries.By default, this is set to False. If you want to use recursive query, set it to True. deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive. This is useful if you have multiple databases with the same name.sourcesThis configuration section contains the required information to enable the lineage harvester to collect and process Data Integration objects.You can create different Informatica Intelligent Cloud Services <source ID> configuration files for a large data source to avoid errors that might occur when the lineage harvester ingests metadata from one source with a large size. You can then decrease the size of the source by separating the projects to a different source with a different <source ID> configuration file name.Show me the examplesources : [{ type : IICS, id : iics_source-1, collibraSystemName : iics-development, loginUrl : https://dm-us.informaticaintelligentcloud.com, username : login-iics objects : [{ path : Default/Sales, type : Project }, { path : My Project/Statistics, type : Project }] } { type : IICS, id : iics_source-2, collibraSystemName : iics-development, loginUrl : https://dm-us.informaticaintelligentcloud.com, username : login-iics objects : [{ path : Finance/Task_Flows, type : Folder }, { path : Common/Task_Flows/tf_CalendarDimension, type : Taskflow }] }]Make sure you have READ permission on all data objects that you want to harvest.typeThe kind of data source. In this case, the value has to be IICS.idThe unique ID that is used to identify the data source on the Collibra Data Lineage service. For example, my_data_integration.collibraSystemNameThe name of the Informatica server or system.You must prepare a <source ID> configuration file to provide this system information. This is true regardless of whether the useCollibraSystemName property is set to true or false.loginURLThe URL of the Informatica Intelligent Cloud Services environment sign-in page. For example: https://dm-us.informaticaintelligentcloud.com.usernameThe username you use to sign in to Informatica Intelligent Cloud Services.objectsThe objects that you want to export. Each object requires a path and a type, for example:objects: [{ path : Sales, type : Project }, { path : Finance/Task_Flows, type : Folder }, { path : Common/Task_Flows/tf_CalendarDimension, type : Taskflow }]The following section provides information to identify and access Data Integration objects.For more information about the objects that you can export and the required information, see the Informatica documentation.pathThe full path to the object, for example, C:\path\to\object-dir.typeThe type of the object. For example, Taskflow.IICS scanner's starting point is a Taskflow. Therefore the only meaningful types to export are: Taskflow, Project and Folder.The types are not case sensitive.paramFilesThe full path to the directory in which your parameter files are stored. This is an optional parameter that allows you to harvest parameter files in Informatica Intelligent Cloud Services data sources.The hierarchy of the files in the directory must be an exact match of the hierarchy of the files in your file system.Show me how to do this Create a directory for your parameter files.For this example, let's name the directory my-parameter-files. In your lineage harvester configuration file, the value of the paramFiles property needs to be the full path to your parameter files directory, for example /full/path/<my-parameter-files>/. Copy your parameter files to your parameter files directory.Be sure to preserve the full path for each of your parameter files. For example, for parameter file /root/child/child2/paramfile.txt, run the following commands:cd /full/path/<my-parameter-files>/mkdir -p root/child/child2/cp /root/child/child2/paramfile.txt root/child/child2/deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the
lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive. This is useful if you have multiple databases with the same name.sourcesThis configuration section contains the required information to connect to Informatica PowerCenter.Make sure that you have prepared a local folder with the Informatica objects for which you want to create a technical lineage.collibraSystemNameThe name of the data source's system or server. If the useCollibraSystemName property is set to true, you must prepare a configuration file to provide the system information.idThe unique ID of your data source. For example, my_informatica.typeThe kind of data source. In this case, the value has to be ExternalDirectory.dirTypeThe type of external directory. The value has to be infa.pathThe full path to the folder where you stored the data source, for example, C:\path\to\config\dir.maskThe pattern of the file names in the directory. By default, this is *.recursiveIndication whether you want to use recursive queries.By default, this is set to False. If you want to use recursive query, set it to True. deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection information between the lineage harvester and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.urlThe URL of your Collibra Data Intelligence Cloud environment.You can only enter the public URL of your Collibra DGC environment. Other URLs will not be accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a data source to match to the System asset in Data Catalog. Collibra Data Lineage uses the system names to match the structure of databases in Looker to assets in Data Catalog. This is useful when you have multiple databases with the same name.By default, the useCollibraSystemName property is set to false. If you want to use it, set it to true.If you set this property to true, the lineage harvester reads the value of the collibraSystemName property in your Looker <source-ID> configuration file.If you set the useCollibraSystemName property to false, the lineage harvester ignores the collibraSystemName property in the Looker <source-ID> configuration file.sourcesThis section contains the Looker connection properties. idThe unique ID of your Looker metadata. For example, my_looker.This value can be anything as long as it is unique and human readable. The ID identifies the batch of Looker metadata on the Collibra Data Lineage service.In the sources section of your lineage harvester configuration file, you can only specify one id property per Looker instance. If you have multiple id properties for a single Looker instance, ingestion will fail. If you have multiple id properties in the configuration file, it means you intend to ingest from multiple unique Looker instances.typeThe kind of data source. In this case, the value has to be Looker.lookerUrlThe URL to your Looker API. There are two ways to find the Looker API URL:In the API Host URL field in the Looker Admin menu. If this field is empty, you can use the default Looker API URL which you can find in the interactive API documentation.In the interactive API documentation URL. It is the part of the URL before /api-docs/.Looker 3.1 APIs are deprecated; however, the API3 credentials for authorization and access control remain valid.clientIdThe username you use to access the Looker API.domainIdThe unique ID of the domain in Collibra Data Intelligence Cloud in which you want to ingest the Looker assets.This is the default domain. If you want to ingest the contents of specific Looker Folders into specific domains in Collibra, you specify the domain reference IDs in the filters section of the Looker <source ID> configuration file. pagingLimitOptional property for customizing the Looker API pagination settings.The default value of 50 is sufficient in most cases; however, you can decrease it to help mitigate node limit errors, or increase it to speed up API calls.pagingLimit: 10deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you intend to use a Matillion <source ID> configuration file to specify the system name of a data source. This is useful if you have multiple databases with the same name, or if you want to group a number of databases under one system.By default, this property is set to false.If you set this property to true, you must prepare a Matillion <source ID> configuration file.sourcesThis section contains the required information for Matillion.When you create a new project in Matillion, you define in which group you want to create the project, the project name and the environment name. This information is needed to enable the lineage harvester to access Matillion and scan your metadata.Currently, you can only create a technical lineage for Snowflake and Redshift projects in Matillion.idThe unique ID that is used to identify the data source on the Collibra Data Lineage service instance. For example, my_matillion_data_integration.typeThe kind of data source. In this case, the value has to be Matillion.urlThe URL of your Matillion environment. For example, https://<domain name> or https://<IP address>.groupNameThe name of your group in Matillion.projectNameThe name of your project in
Matillion.You can only add the name of one project. If you want to create a technical lineage for other projects within the same group, create a new section in the lineage harvester configuration file.environmentNameThe name of your environment in Matillion.You can only add the name of one environment. If you want to create a technical lineage for other environments within the same project, create a new section in the lineage harvester configuration file.dialectThe dialect of the database.You can enter one of the following values:redshift, for an Amazon Redshift data source. snowflake, for a Snowflake data source.startTimestampThe timestamp of tasks in Matillion. You can use this parameter to limit the amount of metadata that the lineage harvester scans.Specify this property with a UNIX timestamp in milliseconds.If this property remains empty or is deleted from the configuration file, all accessible tasks are scanned. Matillion provides seven days of history by default and automatically removes entries older than seven days.collibraSystemNameRegardless of the value set for the useCollibraSystemName property, the following is true:You must include this property in your configuration file.You can leave this property empty.Any value that you give is ignored.If the useCollibraSystemName property is set to true, you must prepare a Matillion <source-ID> configuration file. In that case, the CollibraSystemName property in the <source ID> configuration file is taken into account.This is a legacy property that will be deprecated in a future release.authThe section contains the authentication details for signing in to Matillion.typeThe authentication method you want to use to sign in to Matillion.The value must be either: Basic, for username and password authentication. Token, for token-based authentication. These values are case-sensitive.usernameThe username that you use to sign in to Matillion.This property is only required if you are using the username and password authentication method. If you are using token-based authentication, do not include this property.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance. Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection information between the lineage harvester and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.urlThe URL of your Collibra Data Intelligence Cloud environment.You can only enter the public URL of your Collibra DGC environment. Other URLs will not be accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a data source to match to the System asset in Data Catalog during automatic stitching. This is useful when you have multiple databases with the same name.By default, the useCollibraSystemName property is set to false. If you want to use it, set it to true.If you set this property to true, the lineage harvester reads the value of the collibraSystemName property in your MicroStrategy <source ID> configuration file.If you set the useCollibraSystemName property to false, the lineage harvester ignores the collibraSystemName property in the Power BI <source-ID> configuration file.sourcesThis section contains the MicroStrategy connection properties. idThe unique ID of your MicroStrategy metadata. For example, my_microstrategy.In the sources section of your lineage harvester configuration file, you can only specify one id property per MicroStrategy Intelligence Server. If you have multiple id properties for a single MicroStrategy Intelligence Server, ingestion will fail. If you have multiple id properties in the configuration file, it means you intend to ingest from multiple unique MicroStrategy Intelligence Servers.This value can be anything as long as it is unique and human readable. The ID identifies the batch of MicroStrategy metadata on the Collibra Data Lineage service.typeThe kind of data source. In this case, the value has to be MSTR_V2.urlThe URL of your MicroStrategy account.usernameThe username that you use to sign in to MicroStrategy.microStrategyLibraryUrlThis optional property allows you to specify a custom URL for your MicroStrategy Library.If the URL to your MicroStrategy Library is https://collibra.microstrategy.com/MicroStrategyLibrary/api, you don't need to use this property, as that is the default, hardcoded URL. However, if the URL is something like https://collibra.microstrategy.com/MicroStrategyLibraryProd/api, then include this property and configure it as follows:microStrategyLibraryUrl: MicroStrategyLibraryProdmaxParallelRequestsThis optional property allows you to specify the internal sizing, meaning the amount of tasks that can be executed at the same time. The default value is 1, which means that HTTP requests are run in a synchronous manner, instead of in parallel. As value of 5, for example, means that as many as 5 HTTP requests can take place in parallel. A lower value reduces the chances of experiencing HTTP 401 Unauthorized errors.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.appUrlSuffixThis optional property ensures that the correct URL to data objects in MicroStrategy is included on the asset pages of corresponding MicroStrategy assets. The required value depends on which platform you run MicroStrategy:For J2EE, use: appUrlSuffix: MicroStrategy/servlet/mstrWeb For .NET, use: appUrlSuffix: MicroStrategy/asp/Main.aspxSave the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property.PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive.Specify one of the following values: falseThe lineage harvester ignores all system or server names that you specify on the collibraSystemName properties in the configuration file. This is the default value.trueThe lineage harvester reads the system and server names that you specify on the collibraSystemName properties in all sections of the configuration file. Only specify this value when you have multiple databases with the same name. For SQL data sources, if this property is:false, system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName property is used as the default system or server name.sourcesThis section describes the data sources for which you want to create the technical lineage. You have to
create a configuration section for each data source. This configuration section contains the required information of one individual SQL directory with connection type Folder.You can add multiple data sources to the same configuration file.idThe unique ID of the data source. For example, my_first_data_source.typeThe kind of data source. In this case, the value has to be SqlDirectory.pathThe full path to the folder where you added SQL files, for example, C:\path\to\config\dir.maskThe pattern of the file names in the directory. By default, this is *.recursiveIndication of the files you want to harvest:false (default): Only harvest the files in directly under the folder in the SQL directory path.true: Harvest all files under the folder in the SQL directory path and subdirectories.dialectThe dialect of the database. For example, oracle.The value your put for this property has to match the dialect you provide with in the directory with your SQL files.databaseThe name of your database, which is the name of your Database asset.You have to use the same database name as the name of the Database asset that you create when you prepare the physical data layer in Data Catalog. The names are case-sensitive.The database and schema names in the SQL statements in your SQL files take precedence over the values that you provide for the database and schema properties in the lineage harvester configuration file. If your SQL statements contain database and schema names, Collibra Data Lineage uses them for stitching. If your SQL statements do not contain database and schema names, Collibra Data Lineage uses the values of the database and schema properties in the configuration file for stitching.. For more information, go to Steps and Automatic stitching for technical lineage.collibraSystemNameThe name of the data source's system or server. This is also the name of your System asset in Data Catalog.Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.Specify this property with the same name as the name of the System asset that you created when you registered the data source.schemaThe name of the default schema, if not specified in the data source itself. This corresponds to name of your Schema asset.You must use the same schema name as the name of the Schema asset that you create when you prepare the physical data layer in Data Catalog.verboseIndication whether you want to enable verbose logging.By default this is set to True. If you don't want to use verbose logging, set it to False.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive. This is useful if you have multiple databases with the same name.sourcesThis configuration section contains the required information for an Oracle database.We recommend the type: DatabaseOracle configuration described in this section, because it allows you to specify the Oracle database name and preserve stitching in cases where the database name is not the same as the SID or service name. You can, however, still use the legacy type: Database configuration to ingest Oracle databases.idThe unique ID of your Oracle database. For example, my_oracle_db.typeThe kind of data source. In this case, the value has to be DatabaseOracle.hostnameThe name of your database host.usernameThe username that you use to sign in to your Oracle database.portThe port number.sidsOne or more system identifiers (SID). An SID is a unique name for an Oracle database instance on a specific host. You can use this property in conjunction with the databaseNames property, to preserve stitching.You must specify either one or more SIDs via this property, or one or more service names via the serviceNames property. You cannot include both properties in the configuration file. Show me examples of how to configure the sids property, with and without the databaseNames propertyExample 1: You include the sids property, but not the databaseNames property: { id: oracle1, type: DatabaseOracle, hostname: host_url, username: user1, collibraSystemName: automation_csn, port: 1521, sids: [sid1, sid2] } Result: The database names in the technical lineage will be sid1 and sid2. If these don't match with your Database assets in Collibra, then stitching won't work.Example 2: You include the sids property and the databaseNames property: { id: oracle2, type: DatabaseOracle, hostname: host_url, username: user1, collibraSystemName: automation_csn, port: 1521, sids: [sid1, sid2], databaseNames: [db1, db2] } Result: The SID sid1 corresponds to the Database asset name db1 in Collibra, therefore stitching is preserved. The same is true for SID sid2 and Database asset name db2.serviceNamesOne or more service names. A service name is the TNS alias that you give when you remotely connect to your database. You can use this property in conjunction with the databaseNames property, to preserve stitching.You must specify either one or more service names via this property, or one or more SIDs via the sids property. You cannot include both properties in the configuration file. Show me examples of how to configure the serviceNames property, with and without the databaseNames propertyExample 1: You include the serviceNames property, but not the databaseNames property: { id: oracle3, type: DatabaseOracle, hostname: host_url, username: user1, collibraSystemName: automation_csn, port: 1521, serviceNames: [sn1, sn2] } Result: The database names in the technical lineage will be sn1 and sn2. If these don't match with your Database assets in Collibra, then stitching won't work.Example 2: You include the serviceNames property and the databaseNames property: { id: oracle4, type: DatabaseOracle, hostname: host_url, username: user1, collibraSystemName: automation_csn, port: 1521, serviceNames: [sn1, sn2], databaseNames: [db1, db2] } Result: The service name sn1 corresponds to the Database asset name db1 in Collibra, therefore stitching is preserved. The same is true for service name sn2 and Database asset name db2.databaseNamesThe names of one or more Oracle databases. You can use this optional property in conjunction with the sids or serviceNames property, to preserve stitching. The value you specify has to match your Database asset (or assets) in Collibra.Enter the Oracle database names between double quotes () and put everything between square brackets. If you want to include more than one database, separate them by a comma. For example, [MyFirstDatabase, MySecondDatabase]. If you use this property, the database names that you specify have to correlate with the databases that you specify in the sids or serviceNames property. If you don't use this property, the database name in the technical lineage will be the value that you put for the sids or serviceNames property. For examples of how to configure this property, see the sids or serviceNames property descriptions and examples.collibraSystemNameThe name of the data source's system or server. This is also the name of your System asset in Data Catalog.Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.Specify this property with the same name as the name of the System asset that you created when you registered the data source. If the useCollibraSystemName property is:false (default), system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName
field is used as the default system or server name.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the necessary connection information.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.urlThe URL of your Collibra environment.You can only enter the public URL of your Collibra DGC environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a data source to match to the System asset in Data Catalog during automatic stitching. This is useful when you have multiple databases with the same name.By default, the useCollibraSystemName property is set to false. If you want to use it, set it to true.If you set this property to true, the lineage harvester reads the value of the collibraSystemName property in your Power BI <source ID> configuration file.If you set the useCollibraSystemName property to false, the lineage harvester ignores the collibraSystemName property in the Power BI <source-ID> configuration file.sourcesThis section describes the data sources for which you want to create the technical lineage. You have to create a configuration section for each data source. You can add multiple data sources to the same configuration file.scopeOptional property that is intended only for customers with a different scope, such as Chinese tenants.“scope” : “https://analysis.chinacloudapi.cn/powerbi/api/.default”If you are a US government or national cloud Power BI customer, you must include and specify values for both this property and the apiUrl property. For complete information, consult Microsoft's documentation on Power BI for US government customers.apiUrlThe API URL of your Power BI service.The default value is https://api.powerbi.com.This property is only relevant for US government or national cloud Power BI customers, in which case you must include and specify values for both this property and the scope property. For complete information, consult Microsoft's documentation on Power BI for US government customers.typeThe kind of data source. In this case, the value has to be PowerBI.idThe unique ID to identify the Power BI service metadata that was uploaded to the Collibra Data Lineage service.In the sources section of your lineage harvester configuration file, you can only specify one id property per Power BI service. If you have multiple id properties for a single Power BI service, ingestion will fail. If you have multiple id properties in the configuration file, it means you intend to ingest from multiple unique Power BI services.tenantDomainThe Power BI tenant domain is the domain associated with the Microsoft Azure tenant.This domain is either a default domain or a custom domain. You can specify this property with the URL, such as collibrapowerbi.onmicrosoft.com or tenant ID, such as e**b****-****-****-****-1b**d****4663.Usually, you can find a list of Power BI tenant or server domains in your Azure Active Directory or in the top right menu.loginFlowThis section describes the authentication information for accessing your Power BI metadata.The lineage harvester supports two authentication methods: service principal, and username and password. For complete information on your authentication options, see Authentication.typeThis depends on the authentication method you use.Service principle: The value should be ServicePrincipal.Username and password: The value should be ResourceOwnerPasswordCredentials.applicationIdThe unique ID of the Microsoft Azure Application (client) ID.usernameThe email address of your Azure Active Directory user.This property only applies if you are using the username and password authentication method. domainIdThe reference ID of the domain in Collibra in which you want to ingest Power BI metadata.useHttp1Optional property to use HTTP/1.1 streams, in case file-size limitations are resulting in timeout errors when using the default HTTP/2 streams.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive. This is useful if you have multiple databases with the same name.sourcesThis configuration section contains the required information to connect to SQL Server Integration Services (SSIS).Make sure that you have prepared a local folder with the SSIS files for which you want to create a technical lineage.collibraSystemNameThe name of the data source's system or server. If the useCollibraSystemName property is set to true, you must prepare a configuration file to provide the system information.idThe unique ID of your data source. For example, my_ssis.typeThe kind of data source. In this case, the value has to be ExternalDirectory.dirTypeThe type of external directory. The value has to be ssis.pathThe full path to the folder where you stored the data source, for example, C:\path\to\config\dir.maskThe pattern of the file names in the directory. By default, this is *.recursiveIndication whether you want to use recursive queries.By default, this is set to False. If you want to use recursive query, set it to True. deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what
your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive.Specify one of the following values: falseThe lineage harvester ignores all system or server names that you specify on the collibraSystemName properties in the configuration file. This is the default value.trueThe lineage harvester reads the system and server names that you specify on the collibraSystemName properties in all sections of the configuration file. Only specify this value when you have multiple databases with the same name. For SQL data sources, if this property is:false, system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName property is used as the default system or server name.sourcesThis section describes the data sources for which you want to create the technical lineage. You have to create a configuration section for each data source. This configuration section contains the required information of one individual SQL directory with connection type Folder.You can add multiple data sources to the same configuration file.idThe unique ID of the data source. For example, my_first_data_source.typeThe kind of data source. In this case, the value has to be SqlDirectory.pathThe full path to the folder where you added SQL files, for example, C:\path\to\config\dir.maskThe pattern of the file names in the directory. By default, this is *.recursiveIndication of the files you want to harvest:false (default): Only harvest the files in directly under the folder in the SQL directory path.true: Harvest all files under the folder in the SQL directory path and subdirectories.dialectThe dialect of the database. For example, snowflake.The value your put for this property has to match the dialect you provide with in the directory with your SQL files.databaseThe name of your database, which is the name of your Database asset.You have to use the same database name as the name of the Database asset that you create when you prepare the physical data layer in Data Catalog. The names are case-sensitive.The database and schema names in the SQL statements in your SQL files take precedence over the values that you provide for the database and schema properties in the lineage harvester configuration file. If your SQL statements contain database and schema names, Collibra Data Lineage uses them for stitching. If your SQL statements do not contain database and schema names, Collibra Data Lineage uses the values of the database and schema properties in the configuration file for stitching.. For more information, go to Steps and Automatic stitching for technical lineage.collibraSystemNameThe name of the data source's system or server. This is also the name of your System asset in Data Catalog.Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.Specify this property with the same name as the name of the System asset that you created when you registered the data source.schemaThe name of the default schema, if not specified in the data source itself. This corresponds to name of your Schema asset.You must use the same schema name as the name of the Schema asset that you create when you prepare the physical data layer in Data Catalog.verboseIndication whether you want to enable verbose logging.By default this is set to True. If you don't want to use verbose logging, set it to False.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive. This is useful if you have multiple databases with the same name.sourcesThis section contains the Snowflake connection properties. If you want to create the technical lineage for multiple data sources, create a sources section for each data source. idThe unique ID that identifies the data source on a Collibra Data Lineage service instance, for example, my_snowflake_2.typeThe type of data source. The value must be DatabaseSnowflake.modeThe Snowflake ingestion methods that Collibra Data Lineage uses to ingest metadata from Snowflake data sources. Specify one of the following values: SQLThe SQL Snowflake ingestion mode. Collibra Data Lineage creates a column-level technical lineage based on SQL statements. This is the default value. SQL-APIThe SQL-API Snowflake ingestion mode. Collibra Data Lineage creates a column-level technical lineage based on Snowflake schemas and the access history. For more information, go to Technical lineage for Snowflake ingestion methods.collibraSystemNameThe system or server name of the data source. This property is optional. Use this property with the useCollibraSystemName property to override the default Collibra System asset name for this data source. Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.authThis section indicates the authentication details to connect to the Snowflake database. The username and auth properties are mutually exclusive.typeThe authentication method.Specify one of the following values. The values are case-sensitive.BasicThe username and password authentication method. Specify the auth.username property if you use this authentication method.KeyPairThe key pair authentication method. Specify the auth.username, auth.pathToPrivateKey, and auth.usePassword properties if you use this authentication method. usernameThe user name that you use to connect to the Snowflake database. This property is required for both the username and password authentication method and the key pair authentication method.pathToPrivateKeyThe path to your private key file. This property is required if you use the key pair authentication method. Ensure that the private key matches the public key; otherwise, an error occurs indicating that the JWT token is invalid. For more information about the error, go to Snowflake JDBC driver error at login: net.snowflake.client.jdbc.SnowflakeSQLException: JWT token is invalid in Collibra Support Portal.usePasswordThe private key file password. This property is required if you use the key pair authentication method. Specify one of the following values: trueThe password is required.falseThe password is not required. This is the default value. usernameThe username that you use to sign in to your Snowflake data source. This property is deprecated. Use the auth property instead. The property and the auth property are mutually exclusive. hostnameThe URL that you use to access Snowflake web console. When you enter the URL, do not include https:// or the trailing slash (/). For example, specify <accountName>.snowflakecomputing.com. databaseNamesAn array of database names. Ensure that the database names you specify match the Database asset names that you created when you prepared the physical data layer in Data Catalog.Enter the database names of your data source between
double quotes () and put everything between square brackets ([]). If you want to include more than one database, separate them by a comma, for example, [MyFirstSnowflakeDatabase, MySecondSnowflakeDatabase].extraDatabaseDefinitionsAn array of database names. Collibra Data Lineage collects metadata from the specified databases, but excludes these databases from the technical lineage that is created. This property is useful for stitching across databases. You can specify cross-referenced databases to ensure correct lineage across all databases that Collibra Data Lineage processes to create the technical lineage.This property is optional. To specify this property, enter the database names between double quotes () and put everything between square brackets ([]). If you want to include more than one database, separate them by a comma, for example, [MyFirstSnowflakeExternalDatabase, MySecondSnowflakeExternalDatabase].schemaNames An array of schema names of your data sources. This property takes effect only when you use the SQL-API Snowflake ingestion mode. You can use this property as a filter to include lineage for objects only in the specified schemas. Ensure that the schema names you specify match the Schema asset names that you created when you registered the data source in Data Catalog Enter the schema names between double quotes () and put everything between square brackets ([]). If you want to include more than one schema, separate them by a comma, for example, [MyFirstSnowflakeSchema, MySecondSnowflakeSchema].warehouseThe name of your virtual warehouse. This property is optional.daysThe number of days of the user access history that Collibra Data Lineage collects and processes. For example, if you set the value to 20, Collibra Data Lineage collects the last 20 days of user access history. You can use this property to limit reading from the ACCESS_HISTORY table. This property is optional and takes effect only when you use the SQL-API Snowflake ingestion mode.Specify a value in the range of 1 - 366. If you do not enter a value, all user access history is collected by default. customConnectionPropertiesAn option to enable the lineage harvester to read additional connection parameters. This parameter is only required in very specific situations. If you don't need it, you can remove it from the configuration file.If you get an OSCP scan error, you can turn OSCP checking off by using the following value: insecureMode=true.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection information between the lineage harvester and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.urlThe URL of your Collibra Data Intelligence Cloud environment.You can only enter the public URL of your Collibra Data Intelligence Cloud environment. Other URLs will not be accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndication whether you want to use the system or server name of a data source to match to the System asset you created when you prepared the physical data layer. This is useful when you have multiple databases with the same name.By default, the useCollibraSystemName property is set to false. If you want to use it, set it to true.If you set this property to true, the lineage harvester reads the value of the collibraSystemName property in your SSRS-PBRS <source-ID> configuration file.If you set the useCollibraSystemName property to false, the lineage harvester ignores the collibraSystemName property in the <source-ID> configuration file. sourcesThis section contains the SSRS connection properties.idThe unique ID to identify the SSRSmetadata that was uploaded to the Collibra Data Lineage service.This value can be anything as long as it is a unique. The lineage harvester uses the ID to identify a batch of data on the Collibra Data Lineage service.In the sources section of your lineage harvester configuration file, you can only specify one id property per SQL Server Reporting Service (SSRS) or Power BI Report Server (PBRS). If you have multiple id properties for a single SSRS or PBRS, ingestion will fail. If you have multiple id properties in the configuration file, it means you intend to ingest from multiple unique SSRS or PBRS.typeThe kind of data source. In this case, the value has to be SSRS or PBIRS.There is no difference between type SSRS or PBIRS.urlThe URL to the server's web portal. By default, the URL is http://<computer-name>/reports. For example, http://1.23.45.678/PowerBIReports.usernameThe username you use to sign in to the web portal.If you use NTLM authentication, your username also contains the NTLM domain name. For example MyDomain\\username.domainIdThe unique ID of the domain in Collibra Data Intelligence Cloud in which you want to ingest the assets.Finding the domain IDOpen the domain.Copy the domain ID. If you go to your domain, you can find the domain ID in the URL. The URL looks like: https://<yourcollibrainstance>/domain/22258f64-40b6-4b16-9c08-c95f8ec0da26?view=00000000-0000-0000-0000-000000040001. In this example, the domain ID is in bold.folderFilterAn option to include only specific folders that contain reports or KPIs in the ingestion process.You can filter on multiple folders by: Specifying folder names.Specifying the full path to folders.Using a wildcard.Using a combination of these approaches. For example: [folder1, /database/folder2, /folder3/*] Show me some examplesScenarioConfigurationFilter on all folders with the name Folder3, anywhere in the folder hierarchy.[Folder3]Reports in child folders of Folder3 are not included in the ingestion. As such:Reports in /Folder1/Folder2/Folder3 are included in the ingestion.Reports in /Folder3/ChildFolder are not included in the ingestion.Ingest two folders for which the folder names are unique.[Folder1, Folder2]Filter on a specific folder or folders, when the folder names are not unique.In this case, specify the full paths to the folders, for example:[/Database1/Folder1, /Database2/Database3/Folder2]Use a wildcard to ingest all child folders of a Folder1.[/Folder1/*]The reports in all child folders of Folder1 are ingested, but the reports in Folder1 itself are not ingested.This property must be included in your configuration file and it cannot be empty. If you want to ingest all folders, use *, for example: folderFilter:[*].For more information about connecting to a SSRS or PBRS folder, see the Microsoft documentation.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection information between the lineage harvester and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.urlThe URL of your Collibra Data Intelligence Cloud environment.You can only enter the public URL of your Collibra DGC environment. Other URLs will not be accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndication whether you want to use the system or server name of a data source to match to the System asset you created when you prepared the physical data layer. This is useful when you have multiple databases
with the same name.By default, the useCollibraSystemName property is set to false. If you want to use it, set it to true.If you set this property to true, the lineage harvester reads the value of the collibraSystemName property in your Tableau <source-ID> configuration file.If you set the useCollibraSystemName property to false, the lineage harvester ignores the collibraSystemName property in the <source-ID> configuration file.If you set the useCollibraSystemName property to true, but you don't define the system name in the Tableau <source ID> configuration file, the system name in the technical lineage is DEFAULT. typeThe kind of data source. In this case, the value has to be Tableau.sourcesThis section contains the Tableau connection properties.idThe unique ID to identify the Tableau metadata that was uploaded to the Collibra Data Lineage.In the sources section of your lineage harvester configuration file, you can only specify one id property per Tableau server or Tableau online account. If you have multiple id properties for a single Tableau server or Tableau online account, ingestion will fail. If you have multiple id properties in the configuration file, it means you intend to ingest from multiple unique Tableau servers or Tableau online accounts.If you are switching between the lineage harvester and Edge, the value of this property must exactly match the value of the Source ID field in your Edge capacity.This value can be anything as long as it is a unique. The lineage harvester uses the ID to identify a batch of data on the Collibra Data Lineage service.urlThe link to the data in Tableau.usernameThe username you use to sign in to the Tableau server.As of October 2022, Tableau is enforcing multi-factor authentication for Tableau Cloud Admin users. However, the lineage harvester doesn’t support multi-factor authentication. Therefore, Tableau Cloud users with an Admin role must use token-based authentication. This does not affect Tableau Server users or Tableau Cloud users with an Explorer role.If you want to use token-based authentication, you need to replace username with tokenName. You must specify either username or tokenName; if both exist, then tokenName is used.tokenNameThe lineage harvester authentication token.For token-based authentication, use this property in your lineage harvester configuration file, instead of the username property. If both properties are present, tokenName is used.siteIdsThe site IDs of the Tableau sites that you want to include in the ingestion process.If you want to ingest the metadata in a Tableau site in a specific domain, specify the following properties:This property.The site_name: domain_id property in the filters section in the Tableau <source ID> configuration file.The site ID is the URL of the site to which you want to sign in. When you manually sign in to Tableau Server or Tableau Online, the site ID is the value that appears after /site/ in the browser address bar. In the following example URLs, the site ID is MarketingTeam:Tableau Server: http://MyServer/#/site/MarketingTeam/projectsTableau Online: https://10ay.online.tableau.com/#/site/MarketingTeam/workbooksOn Tableau Server, however, the URL of the Default site does not specify the site. For example, the URL for a view named Profits, on a site named Sales, is http://localhost/#/site/sales/views/profits. The URL for this same view on the Default site is http://localhost/#/views/profits. The site name Sales does not figure in the URL. If you can't see the site ID, leave this property empty: siteIds: []If you want to ingest two Tableau sites Site 1 and Site 2, you can enter the following information in the siteIds property: [site ID of Site 1, site ID of Site 2].siteNamesThe site names of the corresponding site IDs.This property is:Optional for Tableau ServerMandatory for Tableau Online.If you have Tableau Server and you don't use this property, you must delete it from your configuration file. Don't leave the property in the configuration file without a value.restOnlyIndication whether or not you would like to use both the Tableau REST API and Tableau Metadata API to harvest Tableau metadata.false (default): The lineage harvester will use the REST API and Metadata API to harvest Tableau metadata.true: The lineage harvester will only use the REST API to harvest Tableau metadata.This property must be set to false, to:Enable technical lineage and the automatic stitching of Column assets to Tableau Data Attribute assets.Harvest owner information for Tableau projects, workbooks and data models.domainIdThe unique reference ID of the domain in Collibra Data Intelligence Cloud in which you want to ingest the Tableau assets. This property represents the default domain.How do I find a domain reference ID?Open the relevant domain in Collibra. The URL looks like: https://<yourcollibrainstance>/domain/22258f64-40b6-4b16-9c08-c95f8ec0da26?view=00000000-0000-0000-0000-000000040001. In this example, the reference ID is in bold.excludeImagesOptional property for excluding the downloading of images. To exclude the downloading of images, set this property to true.To indicate the projects that you want to ingest in different domains, specify the filters section in your Tableau <source ID> configuration file.The maximum number of images that can be uploaded to Collibra per day is determined by the configuration of the file upload service, in Collibra Console. For complete details, see the Upload configuration settings in DGC service configuration: options.concurrencyLevelThis optional property is intended to help if you are experiencing HTTP 401 Unauthorized errors due to too many concurrent HTTP calls, using the same token. It allows you to specify the internal sizing, meaning the amount of tasks that can be executed at the same time. The default value is 10, meaning as many as 10 HTTP requests can take place in parallel. Consider reducing the value if you are experiencing HTTP 401 Unauthorized errors. Setting the value to 1 effectively disables the concurrency level, so that HTTP requests will be run in a synchronous manner, instead of in parallel.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.pagingOptional property for customizing the Tableau API pagination settings.The default values are sufficient in most cases; however, you can decrease them to help mitigate node limit errors, or increase them to speed up API calls.Show me the complete list of pagination settings, descriptions and default values paging: { databasesPageSize: 100, tablesPageSize: 100, tablesColumnsPageSize: 100, tableColumnsPageSize: 1000, datasourcesPageSize: 50, datasourcesFieldsPageSize: 50, datasourceFieldsPageSize: 100, worksheetsPageSize: 100, worksheetsFieldsPageSize: 100, worksheetFieldsPageSize: 1000, parametersPageSize: 1000, usersPageSize: 100, dashboardsPageSize: 100, columnsLimit: 20, fieldsLimit: 20 } Settings per metadata type and descriptionsMetadata typeSetting and descriptionDashboarddashboardsPageSize: The number of dashboards per page.WorksheetworksheetsPageSize: The number of worksheets per page.worksheetsFieldsPageSize: The number of worksheet fields per page.DatabasedatabasesPageSize: The number of databases per page.TabletablesPageSize: The number of tables per page.tablesColumnsPageSize: The number of table columns per page.Table columnstableColumnsPageSize: The number of table columns per page.ParameterparametersPageSize : The number of parameters per page. UsersusersPageSize: The number of users per page.Data sourcedatasourcesPageSize: The number of data sources per page.datasourcesFieldsPageSize: The number of data source fields per page.columnsLimit: The number of data source field columns per page.fieldsLimit : The number of referenced data source fields per page.Data source fielddatasourceFieldsPageSize: The number of data source fields per page.columnsLimit: The number of data source field columns per page.fieldsLimit : The number of referenced data source fields per page.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether you want to use the system or server name of a data source to match to the System
asset you created when you prepared the physical data layer. The names are case-sensitive. This is useful when you have multiple databases with the same name.sourcesThis configuration section contains the required information for SQL files of a data source that were previously downloaded by the lineage harvester and is stored in the lineage harvester output folder.typeThe kind of data source. In this case, the value has to be LoadedSource.idThe unique ID of the data source that you uploaded to the lineage harvester folder. For example, my_loaded_snowflake_source.zipFileThe full path to the ZIP file that was created in the lineage harvester folder.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance. Save the configuration file.What's nextRun the lineage harvester. When you run the lineage harvester and encounter errors that are related to the lineage harvester configuration file, you can use the technical lineage troubleshooting guide or Collibra Support Portal to fix the errors.The configuration file generatorThe configuration file generator helps you create your lineage harvester configuration file by providing the structure of the file with the correct properties per data source.The lineage harvester configuration fileThe lineage harvester uses a configuration file to connect to JDBC data sources, BI tools and ETL tools. The configuration file contains references to the data sources for which you want to create a technical lineage. You have to prepare the configuration file if you want to create a technical lineage and add new relations of the type Data Element targets / sources Data Element between existing assets in Data Catalog, and Column is target of / is source of Data Attribute between assets from ingested BI sources and assets in Data Catalog. You have to save the configuration file in the config directory in the lineage harvester folder.Empty configuration fileWhen you run the lineage harvester for the first time, it creates an empty configuration file. To create a technical lineage, you have to manually add properties and values, per data source, to this configuration file.The following image shows an example of the empty configuration file created by the lineage harvester. { general : { catalog : { url : , username : , }, useCollibraSystemName : false }, sources : [{ type : Database, id : MyDB, hostname : , username : , dialect : , collibraSystemName : , databaseNames : [], port : 1521 }] }Configuration file generatorThe configuration file generator is only available in the online version of this guide.The configuration file generator creates an example configuration file with the data source properties of your choosing:Scroll down to the configuration file example.Paste the example in your empty configuration file in the lineage harvesterconfig folder.Replace the values in the example to match your actual data source information. Make sure you understand each property and know which values you must use to access your data source information.Run the lineage harvester.Some browser plug-ins may slow the configuration file generator down.Lineage harvester configuration fileSource-specific configuration filesLineage harvester for GovCloud customers{ general: { catalog : { url : https://companydomain.collibra.com, username : my-Collibra-username }, useCollibraSystemName : false }, sources : [{ collibraSystemName : adf-system-name, id : adf_source, type : AzureDataFactory, tenantDomain: tenant-domain, loginFlow: { type: ServicePrincipal, applicationId: application-id }, subscriptionId : subscription-id, resourceGroupName : resource-group-name, factories : [factoryname1,factoryname2], deleteRawMetadataAfterProcessing: false } { collibraSystemName : datastage-system-name, id : datastage_source, type : ExternalDirectory, dirType : DATASTAGE, path : /path/to/the/datastage/folder/, mask : *, recursive : false, deleteRawMetadataAfterProcessing: false } { collibraSystemName : infa-system-name, id : informatica_source, type : ExternalDirectory, dirType : INFA, path : /path/to/the/informatica/folder/, mask : *, recursive : false, deleteRawMetadataAfterProcessing: false } { collibraSystemName : ssis-system-name, id : datastage_source, type : ExternalDirectory, dirType : SSIS, path : /path/to/the/ssis/folder/, mask : *, recursive : false, deleteRawMetadataAfterProcessing: false } { type : IICS, id : iics_source, collibraSystemName : iics-development, loginUrl : https://dm-us.informaticaintelligentcloud.com, username : login-iics, deleteRawMetadataAfterProcessing: false, objects : [{ path : Default/Sales, type : Project }, { path : My Project/Statistics, type : Project }] } { id : my-matillion-project, type : Matillion, url : https://my-domain, groupName : my-matillion-group, projectName : redshift-project, environmentName : redshift-environment, dialect : redshift, startTimestamp : 1594080796911, collibraSystemName: Matillion-system, deleteRawMetadataAfterProcessing: false, auth: { type: Basic, username: ec2-user } } { type: Tableau, id: unique-ID, url: URL to Tableau server?, username: Admin, siteIds: [site ID of Tableau Site 1, site ID of Tableau Site 2], siteNames: [site name of Tableau Site 1, site name of Tableau Site 2], restOnly: false, domainId: Domain-resource-ID, excludeImages: true, deleteRawMetadataAfterProcessing: false, paging: { pagination-setting: 100, pagination-setting-2: 100 } } { id : looker-source, type : Looker, lookerUrl : https://<instance-name.api.looker.com, clientId : my-looker-api-user-name, clientSecret: looker-api-userkey, domainId : 22258f64-40b6-4b16-9c08-c95f8ec0da26, deleteRawMetadataAfterProcessing: false } { id: <unique-id>, type: SSRS, url: http://<IP address or computer name>/Reports, username: <server-api-user-name>, domainId: <domain-resource-id>, folderFilter: [/Folder1/*, Folder2], deleteRawMetadataAfterProcessing: false } { collibraSystemName : custom-system-name, id : MyCustomLineage, type : ExternalDirectory, dirType : custom-lineage, path : /path/to/custom-lineage/dir, deleteRawMetadataAfterProcessing: false } { type : LoadedSource, id : MySource, zipFile : /path/to/source-MySource.zip, deleteRawMetadataAfterProcessing: false } { id : database_source, type : Database, username : MyUsername, dialect : hive, databaseNames : [MyDefaultDbName], hostname : localhost, collibraSystemName : apache-hive-system, port : 1521, deleteRawMetadataAfterProcessing: false, customConnectionProperties : } { id: oracle-id, type: DatabaseOracle, hostname: host_url, username: user1, collibraSystemName: automation_csn, port: 1521, serviceNames: [sn1, sn2], databaseNames: [db1, db2], deleteRawMetadataAfterProcessing: false } { id : bigquery_source, type : DatabaseBigQuery, projectIDs : [bigquery_project1, bigquery_project2], region: europe-west1 auth : /path/to/the/authentication/file.json, collibraSystemName : bigquery-system-name, deleteRawMetadataAfterProcessing: false } { id : snowflake_source, type : DatabaseSnowflake, mode : SQL|SQL-API, collibraSystemName : snowflake-system-name, auth: { type: KeyPair|Basic, username: some_username, pathToPrivateKey: path_to_your_private_key_file, usePassword: true|false }, hostname : MyAccountName.snowflakecomputing.com, databaseNames : [MyFirstDbName,MySecondDbName], extraDatabaseDefinitions: : [MyFirstExternalDbName,MySecondExternalDbName], schemaNames : [MyFirstSchemaName,MySecondSchemaName], warehouse : MySnowflakeWarehouseName, days : 1, deleteRawMetadataAfterProcessing: false, customConnectionProperties : role=MYROLE } { type: Microstrategy, id: microstrategy-batch, domainId: <domain-resource-id>, username: mstr, hostname: remote.postgres.com, port: 5432, databaseName: poc_metadata, deleteRawMetadataAfterProcessing: false } { type : PowerBI, id : power-bi-1, tenantDomain: collibra3.onmicrosoft.com, loginFlow: { type: ServicePrincipal, applicationId: be560fac-7545-4ce2-ad9f-cbce14c59af6 }, domainId: domain-reference-ID, deleteRawMetadataAfterProcessing: false } { id : sqldirectory_source, type : SqlDirectory, path : /path/to/the/sql/folder/, mask : *, recursive : false, dialect : db2, database : MyDefaultDbName, collibraSystemName : data-source-system, schema : MyDefaultDbSchema, verbose : true, deleteRawMetadataAfterProcessing: false }] }Informatica PowerCenterThe following example shows an Informatica PowerCenter <source ID> configuration file. { connectionDefinitions: { oracle_source: { dbname: oracle-source-database-name1, schema: my Oracle source schema, dialect: oracle }, oracle_target: { dbname: oracle-target-database-name2, schema: my other oracle target schema, dialect: oracle } }, collibraSystemNames: { databases: [{ dbname: oracle-source-database-name1, collibraSystemName: oracle-system-name1 }, { dbname: oracle-target-database-name2, collibraSystemName: oracle-system-name2 }], connections: [{ connectionName: oracle-connection-name1, collibraSystemName: oracle-system-name1 }, { connectionName: oracle-connection-name2, collibraSystemName: oracle-system-name2 }] } } SQL Server Integration ServicesThe following example shows an SQL Server Integration Services connection definitions configuration file. { ConnStringRegExTranslation: { Data Source=dhb-sql-prod;Initial Catalog=SFG_repl_staging;Provider=SQLNCLI11;Integrated Security=SSPI.*: { dbname: DATAHUB, schema: DBO, dialect: mssql, collibraSystemName :
WAREHOUSE }, Server=sb-dhub;User ID=SYS_USER;Initial Catalog=STAGEDB;Port=6306.*: { dbname: STAGEDB, schema: STAGE_OWNER, dialect: sybase, collibraSystemName : } } } IBM InfoSphere DataStageThe following example shows a DataStage connection definitions configuration file. { OdbcDataSources: { oracle-data-source: { dbname: my-oracle-database, schema: my-oracle-schema, dialect: oracle, collibraSystemName: my-system }, mssql-data-source: { dbname: my-mssql-database, schema: my-mssql-schema, dialect: mssql, collibraSystemName: my-system } }, NonOdbcConnectors: { admin@database-name: { dbname: my-netezza-database, schema: my-netezza-schema, dialect: netezza, collibraSystemName: my-system }, admin@second-database-name: { dbname: my-second-netezza-database, schema: my-second-netezza-schema, dialect: netezza, collibraSystemName: my-system } }, jobs: [my_job_1, my_job_2], jobParameters: [{ name: job_parameter_name_1, value: job_parameter_value_1 }, { name: job_parameter_name_2, value: job_parameter_value_2 }] } Informatica Intelligent Cloud ServicesThe following example shows an Informatica Intelligent Cloud Services <source ID> configuration file. { collibraSystemNames: { connections: [{ connectionName: DG_con_standby_cmdm_clientors, collibraSystemName: PUBLIC }, { connectionName: DG_con_dev_dg_dgiauser_su, collibraSystemName: PUBLIC }] }, connectionDefinitions: [{ connectionName: DG_con_standby_cmdm_clientors, databaseName: main, schemaName: dbo, dialect: oracle }, { connectionName: DG_con_dev_dg_dgiauser_su, databaseName: main, schemaName: dbo, dialect: oracle }] } TableauThe following example shows a Tableau <source ID> configuration file. { collibraSystemNames: { databases: [{ hostName: database-hostname, collibraSystemName: public }], files: [{filePath: C:\\ProgramData\\Tableau\\Tableau Server\\data\\files\\sample.xls, collibraSystemName: sample-files }], connectors: [{ connectorUrl: tableau-server-connector-url.com, collibraSystemName: Oracle-connector }], cloudFiles: [{ name: file-name, collibraSystemName: FILE }] }, databaseMapping: { <hostname:port>:<actual database name> }, filters: { sites:{ site_name:domain_id }, projects:{ site_name2 > project_name2: domain-reference-id2, site_name3 > project_name3 > subproject_name: domain-reference-id2 } } } LookerThe following example shows a Looker <source ID> configuration file. { Connections: { connection-object1: { dialect: mssql, schema: mssql-schema-name, dbname: mssql-database-name, collibraSystemName: mssql-system-name }, connection-object2: { dialect: oracle, schema: oracle-schema-name, dbname: oracle-database-name, collibraSystemName: oracle-system-name } } filters:[{ domainId:<reference ID>, description:any-description, folderNames:[Folder1, Folder2] }, { domainId:<reference ID>, description:any-description, folderNames:[Folder3, Folder4] }, { domainId:<reference ID>, description:any-description, folderIds:[123xxxx, 456xxxx] }] } } SQL Server Reporting Services and Power BI Report ServerThe following example shows a SQL Server Reporting Services and Power BI Report Server <source ID> configuration file. { DataSources: { Redshift: { dbname: redshift-database-name, schema: redshift-schema-name, dialect: redshift, collibraSystemName: redshift-system-name }, Oracle: { dbname: oracle-database-name, schema: oracle-schema-name, dialect: oracle, collibraSystemName: oracle-system-name } }, CustomDataSources: { /path to report/custom data souce name: { dbname: mssql-database-name, dialect: mssql } } } Power BIThe following example shows a Power BI <source ID> configuration file. { found_dbname=databasename1;found_hostname=*;found_schema=schema1: { dbname: mssql-database-name, schema: mssql-schema-name, dialect: mssql, collibraSystemName: mssql-system-name }, found_dbname=databasename2;found_hostname=server-name.onmicrosoft.com;found_schema=schema2: { dbname: oracle-database-name, schema: oracle-schema-name, dialect: oracle, collibraSystemName: oracle-system-name }, filters:[{ domainId: <domain-ref-id>, description: FirstFilter, workspaceNames: *, excludeWorkspaceIds: [workspaceC, workspaceD] }, { domainId: <domain-ref-id>, description: SecondFilter, workspaceNames: [workspace3, workspace4], capacityIds: [id1,id2] }] } MatillionThe following example shows a Matillion <source ID> configuration file.{ found_dbname=dbtest;found_hostname=test: { dialect: mssql, collibraSystemName: mssql-system-name }, found_dbname=testsid;found_hostname=*: { dbname: oracle-database-name, schema: oracle-schema-name, dialect: oracle, collibraSystemName: oracle-system-name } } MicroStrategyThe following example shows a MicroStrategy <source ID> configuration file. { default_domain_id: 1a0a942e-e3a7-45a1-83e8-ade30b1cab1a, filters: [{ projectIds: [], projectNames: [Customers,Research,Marketing] }], datasourceMapping: [{ found_datasource: REDSHIFT, found_project: *, mapping: { dbname: RD_pearl, schema: Default_North, dialect: spark, collibraSystemName: TV_dev } }] } The following is an example of a lineage harvester configuration file for US government customers using Power BI. The techlin section contains the information required to connect to the Collibra Data Lineage service instance. { general: { techlin: { url: https://techlin-gov.collibra.com, userKey: <your-unique-api-key> }, catalog: { url: https://catalog-instance.collibra.com, username: Admin }, useCollibraSystemName: false }, sources: [{ type: PowerBI, id: power-bi-id, tenantDomain: collibrapowerbi.onmicrosoft.com, loginFlow: { type: ServicePrincipal, applicationId: ab123cde-1234-1234-1234-abcd12e34fg5 }, domainId: domain-reference-ID, deleteRawMetadataAfterProcessing: true }] } Prepare an SQL directoryTo create technical lineage for JDBC data sources by using the folder connection type, you must provide SQL files that include your SQL queries. Collibra Data Lineage processes the metadata based on your queries to create the technical lineage. For more information about the connection types for different data sources, go to Supported data sources for technical lineage.For best technical lineage results, use the JDBC connection to ingest JDBC sources when possible, rather than using the folder connection type with the SQL files. StepsCreate a local folder. Create your SQL files. Ensure that the following requirements are met for the SQL files:The SQL files must be UTF-8 encoded. For better ingestion, include one SQL statement in one SQL file. Collibra Data Lineage processes the SQL files in alphabetical order. The SQL files that include the Data Definition Language (DDL) statements must be processed before the SQL files that include the Data Manipulation Language (DML) statements. To ensure this order, name the SQL files such that those containing DDL statements come before those containing DML statements alphabetically.The database and schema names in the SQL statements in your SQL files take precedence over the values that you provide for the database and schema properties in the lineage harvester configuration file. If your SQL statements contain database and schema names, Collibra Data Lineage uses them for stitching. If your SQL statements do not contain database and schema names, Collibra Data Lineage uses the values of the database and schema properties in the configuration file for stitching. For more information, go to lineage harvester configuration file and Automatic stitching for technical lineage.For more information, go to Supported SQL syntax.Store the SQL files in the local folder. Example 1 SQL statements do not include schema and database namesThis example shows the SQL files that include the queries on the Persons and JobInformation tables and the JobTitleView view. The SQL statements don't contain the database and schema values, so the lineage harvester uses the values of the database and schema properties that you specify in the lineage harvester configuration file for stitching. The SQL files are named in a way that ensures the DDL statements are processed before the DML statement. The ddl-persons.sql file CREATE TABLE Persons (PersonID int, LastName varchar(255), FirstName varchar(255), Address varchar(255), City varchar(255)); The ddl-jobinformation.sql file CREATE TABLE JobInformation (PersonID int, Department varchar(255), Title varchar(255));The view-jobtitle.sql file CREATE VIEW JobTitleView AS SELECT Persons.PersonID, Persons.FirstName, Persons.LastName, JobInformation.Title from Persons INNER JOIN JobInformation ON Persons.PersonID = JobInformation.PersonIdExample 2 SQL statements include schema and database namesThis example shows SQL files that include the queries on the Persons and JobInformation tables and the JobTitleView view. The SQL statements contain the database and schema names for each table and view, and Collibra Data Lineage uses them for stitching. The SQL files are named in a way that ensures the DDL statements are processed before the DML statement. The ddl-db1-schemaA-persons.sql file CREATE TABLE DB1.SchemaA.Persons (PersonID int, LastName varchar(255), FirstName varchar(255), Address varchar(255), City varchar(255));The ddl-db2-schemaB-jobinformation.sql file CREATE TABLE DB2.SchemaB.JobInformation (PersonID int, Department varchar(255), Title varchar(255));The view-db2-schemaC-jobtitleview.sql file CREATE VIEW DB2.SchemaC.JobTitleView AS SELECT Persons.PersonID, Persons.FirstName, Persons.LastName, JobInformation.Title from DB1.SchemaA.Persons INNER JOIN DB2.SchemaB.JobInformation ON Persons.PersonID = JobInformation.PersonIdWhat's nextAdd your data source information in the lineage harvester configuration file. Download SQL files to the lineage harvester folderYou can download the SQL files of a data source that is stored
locally and cannot be accessed via the network. The lineage harvester then stores the data source information in a ZIP file. To create a technical lineage for these data sources, you only have to include the ID of the data source and the path to the ZIP file in the configuration file.Click here to see a list of all supported data sources.PrerequisitesYou have downloaded the lineage harvester and you have the necessary system requirements to run it.You have the necessary permissions to all database objects that the lineage harvester accesses.You have the necessary data source-specific permissions to access the data objects of your data sources For a detailed overview of the permissions that you need to access the data objects of your data sources, see the online user guide.StepsStart the lineage harvester to create an empty lineage harvester configuration file by entering the following command: Windows: .\bin\lineage-harvester.batFor other operating systems: chmod +x bin/lineage-harvester and then bin/lineage-harvesterAn empty configuration file is created in the config folder.Save the configuration file in the config directory in the lineage harvester folder.Prepare the configuration file. Use the configuration file generator to easily create a configuration file.When prompted, enter the passwords to connect to Collibra and your data sources. Do one of the following: Enter the passwords in the console.The passwords are encrypted and stored in /config/pwd.conf.Provide the passwords via command line.The passwords are stored locally and not in your lineage harvester folder.Start the lineage harvester again and do one of the following: To download the SQL files of all data sources in the configuration file, run the following command: ./bin/lineage-harvester load-sourcesTo download the SQL files of specific data sources in the configuration file, run the following command: ./bin/lineage-harvester load-sources -s ID of the data sourceThis command allows you to download specific SQL files in the configuration file, without refreshing other SQL files. This reduces the time you need to download your SQL files, since you only download specific ones without affecting the others. If you want to download SQL files of multiple data sources, add -s ID of another data source per data source to the command.The lineage harvester downloads the SQL files of the data sources and stores them in a ZIP file per data source in the lineage harvester output folder.What's next?You can now prepare a configuration file for theSQL files of data sources that you want to include in your technical lineage.Prepare a <source ID> configuration fileDepending on your data source, you might have to, or want to, prepare a <source ID> configuration file. Select your data source below for data source-specific information.The lineage harvester uses a lineage harvester configuration file to collect the Azure Data Factory data objects. It then sends the metadata to the Collibra Data Lineage service instance. Example of the <source ID> configuration file { found_dbname=databasename1;found_hostname=server-name.onmicrosoft.com;found_schema=schema1: { dbname: mssql-database-name, schema: mssql-schema-name, dialect: mssql, collibraSystemName: mssql-system-name }, found_dbname=datafactory_linkedservice;found_hostname=*: { dbname: linkedservice-dbname, schema: linkedservice-schema, collibraSystemName: linkedservice-system-name } } StepsCreate a new JSON file in the lineage harvesterconfig folder.Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value of the sourceId property in the lineage harvester configuration file and the file extension must be .conf. If the value of the sourceId property in the lineage harvester configuration file is my-adf, the name of your JSON file must be my-adf.conf.For each database in Azure Data Factory, add the following content to the JSON file: PropertyDescriptionMandatory?found_dbname=<database name>;found_hostname=<server name>;found_schema=<schema name> | found_dbname=<datafactory_name>_<linkedservice_name>;found_hostname=*The information of the supported data sources in Azure Data Factory to be collected by Collibra Data Lineage. You can specify any of the following values for the found_dbname property:A database name. And then you can specify the following properties: found_hostname=<server name>, where <server name> is the name of the server that the database is running on. found_schema=<schema name>, where <schema name> is the name of the schema. This property is optional.The combination of <datafactory_name>_<linkedservice_name>, where <datafactory_name> is a data factory name and <linkedservice_name> is a linked service name. If you use this combination, specify * for the found_hostname property.You can use wildcards to capture multiple connection string combinations:Show me the supported wildcardsPatternDescription*Matches everything.?Matches any single character.[seq]Matches any character in seq.[!seq]Matches any character not in seq.YesdbnameThe name of the database asset in Data Catalog. Specify this property with the database name that you created when you prepared the Data Catalog physical data layer. Specify this property with the database name that you created when you registered the data source.NoschemaThe name of the schema asset in Data Catalog. Specify this property with the schema name that you created when you registered the data source. If the Collibra Data Lineage fails to find the schema that you specify, it uses the default schema.NodialectIf you specify a database name for the found_dbname property, select one of the following dialects. If you specify a linked service name for the found_dbname property, ignore this property. You can enter one of the following values:azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.db2, for a IBM Db2 data source.generic, for any data source.greenplum, for a Greenplum data source.hana, for a SAP HANA data source.hive, for a Hive data source.impala, for a Impala data source.mssql, for a Microsoft SQL Server data source.mysql, for a MySQL data source.netezza, for a Netezza data source.oracle, for an Oracle data source.postgres, for an PostgreSQL data source.redshift, for an Amazon Redshift data source.snowflake, for a Snowflake data source.spark, for a Spark SQL data source.sybase, for a Sybase data source.teradata, for a Teradata data source.vertica, for a Vertica data source.NocollibraSystemNameThe system or server name of a database.If you don't specify a value for this property, DEFAULT is shown in the technical lineage.How do I configure this property if I have two databases with the same name?Let's assume you have two databases named Customers. When you prepare the physical data layer in Data Catalog, you create a System asset for each of these databases. Let's say you named them Customers-Europe and Customers-USA. You can then configure this property as follows.If you have two databases named Customers, and you created a System asset for each of these databases in Data Catalog, Customers-Europe and Customers-USA, you can configure this property as follows. found_dbname=databasename1;found_hostname=*;found_schema=schema1: { dbname: Customers, schema: mssql-schema-name, dialect: mssql, collibraSystemName: Customers-Europe }, found_dbname=databasename2;found_hostname=server-name.onmicrosoft.com;found_schema=schema2: { dbname: Customers, schema: oracle-schema-name, dialect: oracle, collibraSystemName: Customers-USA }, The value of this property must exactly match (including for case-sensitivity) the name of your System asset in Collibra.If you are using a <source ID> configuration file for the purpose of providing the true system name of an ODBC database in Azure Data Factory, you are not required to:Set the useCollibraSystemName property in the lineage harvester configuration file to true.Specify a Collibra system name in the <source ID> configuration file.However, if the useCollibraSystemName property is set to true in the lineage harvester configuration file, you must specify a Collibra system name in the <source ID> configuration file.If you use the Source Configuration field for the purpose of providing the true system name of an ODBC database in Azure Data Factory, you are not required to:Set the value of the Collibra system name setting to True.Specify a Collibra system name in the Source Configuration field.However, if the value of the Collibra system name setting is set to true, you must specify a Collibra system name in the Source Configuration field.Yes Save the <source ID> configuration file.The lineage harvester uses a lineage harvester configuration file to collect the DataStage data objects. It then sends the metadata to the Collibra Data Lineage service instance. Example of the <source ID> configuration file { OdbcDataSources: { oracle-data-source: { dbname: my-oracle-database, schema: my-oracle-schema, dialect: oracle, collibraSystemName: my-system }, mssql-data-source: { dbname: my-mssql-database, schema: my-mssql-schema, dialect: mssql, collibraSystemName: my-system } }, NonOdbcConnectors: { admin@database-name: { dbname: my-netezza-database, schema: my-netezza-schema, dialect: netezza, collibraSystemName: my-system }, admin@second-database-name: { dbname: my-second-netezza-database, schema: my-second-netezza-schema, dialect: netezza, collibraSystemName: my-system } }, jobs: [my_job_1, my_job_2], jobParameters: [{ name: job_parameter_name_1, value: job_parameter_value_1 }, { name: job_parameter_name_2, value: job_parameter_value_2 }] } StepsCreate a new JSON file in the lineage harvesterconfig folder.Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value of the sourceId property in the lineage harvester configuration file and the
file extension must be .conf. If the value of the sourceId property in the lineage harvester configuration file is my-adf, the name of your JSON file must be my-adf.conf.For each database in DataStage, add the required content to the JSON file. Save the <source ID> configuration file.The lineage harvester uses a lineage harvester configuration file to collect the Informatica PowerCenter data objects. It then sends the metadata to the Collibra Data Lineage service instance.Example of the <source ID> configuration file { connectionDefinitions: { oracle_source: { dbname: oracle-source-database-name1, schema: my Oracle source schema, dialect: oracle }, oracle_target: { dbname: oracle-target-database-name2, schema: my other oracle target schema, dialect: oracle } }, collibraSystemNames: { databases: [{ dbname: oracle-source-database-name1, collibraSystemName: oracle-system-name1 }, { dbname: oracle-target-database-name2, collibraSystemName: oracle-system-name2 }], connections: [{ connectionName: oracle-connection-name1, collibraSystemName: oracle-system-name1 }, { connectionName: oracle-connection-name2, collibraSystemName: oracle-system-name2 }] } } StepsCreate a new JSON file in the lineage harvesterconfig folder.Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value of the sourceId property in the lineage harvester configuration file and the file extension must be .conf. If the value of the sourceId property in the lineage harvester configuration file is my-adf, the name of your JSON file must be my-adf.conf.For each database, add the required content to the JSON file. Save the <source ID> configuration file.You use the lineage harvester configuration file to access Informatica Intelligent Cloud Services Data Integration data objects. The lineage harvester processes the data objects to create a technical lineage. You also have to prepare a specific <source ID> configuration file that defines the Intelligent Cloud Services system name.You must prepare a <source ID> configuration file regardless of whether the useCollibraSystemName property in your lineage harvester configuration files is set to true or false.PrerequisitesYou have Admin permission on all objects that you want to harvest.StepsCreate a new JSON configuration file in the lineage harvesterconfig folder. If you have a data source with a large size for an Informatica Intelligent Cloud Services connection, consider creating more than one JSON file for the data source. Each JSON file must have a unique name. The contents in the JSON files are the same. In this way, you can avoid errors that might occur when the lineage harvester ingests metadata from one source with a large size.Give the JSON file the same name as the value of the Id property in the lineage harvester configuration file. If the value of the Id property in your lineage harvester configuration file is iics-source-1, then the name of your JSON file should be iics-source-1.conf.Your JSON file must have the file extension .conf.For each Informatica Intelligent Cloud Services connection, you can add the following content to the JSON file: PropertyDescriptionRequired? collibraSystemNamesThis section contains the system information for Informatica Intelligent Cloud Services.connectionsThis section contains the system connection information. This is required to reference to the system or server of the connection.connectionNameThe name of the connection.YescollibraSystemNameThe system or server name of the connection.YesconnectionDefinitionsThis section contains the database, schema and dialect information for each connection in Informatica Intelligent Cloud Services.You can add connection information for each connection in the connections section.connectionNameThe name of the connection. The name must match with the name in a connection name in the connections section. This property is required. YesdatabaseNameThe name of your database.YesschemaNameThe name of your schema. YesdialectThe dialect of the connection. Specify this property to properly extract and parse queries that are related to this connection.You can enter one of the following values:bigquerydb2hanahivegreenplummssqlmysqlnetezzaoraclepostgresredshiftsnowflakesparkteradataNoSave the configuration file.Example of the <source-ID>.conf file { collibraSystemNames: { connections: [{ connectionName: DG_con_standby_cmdm_clientors, collibraSystemName: PUBLIC }, { connectionName: DG_con_dev_dg_dgiauser_su, collibraSystemName: PUBLIC }] }, connectionDefinitions: [{ connectionName: DG_con_standby_cmdm_clientors, databaseName: main, schemaName: dbo, dialect: oracle }, { connectionName: DG_con_dev_dg_dgiauser_su, databaseName: main, schemaName: dbo, dialect: oracle }] } The lineage harvester uses the lineage harvester configuration file to collect the Looker data objects and send them to the Collibra Data Lineage service instance.The <source ID> configuration file allows you to: Filter on the Looker folders from which you want to ingest metadata. If useCollibraSystemName in the lineage harvester configuration file is set to true, use the collibraSystemName property to specify the system name of databases in Looker.Collibra Data Lineage uses the system names to match the structure of databases in Looker to assets in Data Catalog. Example of <source ID> configuration file{ general: { catalog: { url: https://<organization>.collibra.com, userName: <your-collibra-username> }, useCollibraSystemName: false }, sources: [{ id: looker-id, type: Looker, lookerUrl: https://<instance-name>.api.looker.com, clientId: looker-api-user-name, clientSecret: looker-api-userkey, domainId: domain-resource-id, deleteRawMetadataAfterProcessing: true }] } StepsCreate a new JSON file in the lineage harvesterconfig folder.Give the JSON file the same name as the value of the Id property in the lineage harvester configuration file. The value of the Id property in the lineage harvester configuration file is looker-source-1. As a result, the name of your JSON file should be looker-source-1.conf.Your JSON file must have the file extension .conf.For each database in Looker, add the following content to the JSON file: PropertyDescriptionMandatory?ConnectionsThis section contains all Looker connections for which you want to create a technical lineage.Yes<connection name>The name of a connection object in Looker.YesdialectThe dialect of the supported data source in Looker.NoschemaThe name of the default schema of a supported data source in Looker.If the lineage harvester fails to find a specific schema, it uses the default schema.NodbnameThe name of the database of a supported data source in Looker.NocollibraSystemNameThe system or server name of a database.If you set the useCollibraSystemName property to true in your lineage harvester configuration file, but you either don't create a <source ID> configuration file, or don't specify a value for the collibraSystemName property in your <source ID> configuration file, the system name in the technical lineage is DEFAULT.How do I configure this property if I have two databases with the same name?Let's assume you have two databases named Customers. When you prepare the physical data layer in Data Catalog, you create a System asset for each of these databases. Let's say you named them Customers-Europe and Customers-USA. You can then configure this property as follows.connection-object1: { dialect: mssql, schema: mssql-schema-name, dbname: Customers, collibraSystemName: Customers-Europe }, connection-object2: { dialect: oracle, schema: oracle-schema-name, dbname: Customers, collibraSystemName: Customers-USA } YesfiltersOptionally, use this section to specify the Looker folders from which you want to ingest metadata.You can filter on Looker folders, but not on Looker data sets. That's because Looker data sets are linked directly to the server, instead of a folder, as shown in the Looker metadata overview. Looker data sets are ingested in the default domain, regardless of any filtering.Let’s say, for example, you filter on folder B. A Looker Folder asset is created in the specified domain in Collibra, and all of the metadata in folder B is ingested. If folder B has a parent folder A, then a Looker Folder asset is created (in the domain specified for folder B) to preserve the hierarchy, but no metadata from folder A is ingested.You can specify more than one Looker folder for ingestion into a single domain in Collibra.If you don't want to filter on Looker Folders, you must completely remove this filters section.You can use wildcards to capture multiple connection string combinations:Show me the supported wildcardsPatternDescription*Matches everything.?Matches any single character.[seq]Matches any character in seq.[!seq]Matches any character not in seq.NodomainIdThe unique resource ID of the domain (or domains), in Collibra, in which you want to ingest data objects from one or more Looker Folders.You can find the domain ID by clicking the domain type. Then look in the URL of your browser to find the ID. The URL looks like https://<yourcollibrainstance>/domain/<domain ID>?<view>. descriptionAny description, as you see fit. folderNamesThe name (or names) of the Looker Folders from which you want to ingest.You must specify either a folder name, a folder ID, or both. folderIdsThe ID (or IDs) of the Looker Folder you want to ingest.You must specify either a folder ID, a folder name, or both. Save the <source ID> configuration file.The lineage harvester uses a lineage harvester configuration file to collect the Matillion data objects. It then sends the metadata to the Collibra Data Lineage service instance. Example of the <source ID> configuration file{ found_dbname=dbtest;found_hostname=test: { dialect: mssql, collibraSystemName: mssql-system-name }, found_dbname=testsid;found_hostname=*: { dbname: oracle-database-name, schema: oracle-schema-name,
 dialect: oracle, collibraSystemName: oracle-system-name } } StepsCreate a new JSON file in the lineage harvesterconfig folder.Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value of the sourceId property in the lineage harvester configuration file and the file extension must be .conf. If the value of the sourceId property in the lineage harvester configuration file is my-adf, the name of your JSON file must be my-adf.conf.Add the required content to the JSON file. Save the <source ID> configuration file.The lineage harvester uses the configuration file to connect to MicroStrategy. You must also prepare a MicroStrategy <source ID> configuration file to:Specify the default domain, meaning the domain in Collibra in which the corresponding assets of MicroStrategy metadata will be ingested.Optionally, sSpecify from which MicroStrategy projects you want to ingest metadata.Optionally, cConfigure data source mapping, to map the name of a data source returned by the lineage harvester to the true name of the data source.<source ID> refers to the value of the Id property in the lineage harvester configuration file.. { default_domain_id: 1a0a942e-e3a7-45a1-83e8-ade30b1cab1a, filters: [{ projectIds: [], projectNames: [Customers,Research,Marketing] }], datasourceMapping: [{ found_datasource: REDSHIFT, found_project: *, mapping: { dbname: RD_pearl, schema: Default_North, dialect: spark, collibraSystemName: TV_dev } }] } StepsCreate a new JSON file in the lineage harvesterconfig folder.Give the JSON file the same name as the value of the Id property in the lineage harvesterconfiguration file. If the value of the Id property in the lineage harvester configuration file is mstr-source-1, then the name of your JSON file should be mstr-source-1.conf.Your JSON file must have the file extension .conf.For each database in MicroStrategy, add the following content to the JSON file:You can use wildcards to capture multiple string combinations for any of these properties.Show me the supported wildcardsPatternDescription*Matches everything.?Matches any single character.[seq]Matches any character in seq.[!seq]Matches any character not in seq.PropertyDescriptionMandatorydefault_domain_idThe domain in which you want the corresponding assets of MicroStrategy metadata to be ingested.YesfiltersThis section allows you to specify from which MicroStrategy projects you want to harvest metadata.All metadata is ingested into the default domain, as specified via the default_domain_id property.If you don't want to filter on projects, don't include this section in your <source ID> configuration file.NoprojectIdsThe IDs of the MicroStrategy projects from which you want to ingest metadata.NoprojectNamesThe project names of the MicroStrategy projects from which you want to ingest metadata.NodatasourceMappingThis optional section allows you to configure data source mapping. Include this section only if you need to differentiate between multiple data sources that have the same name.Nofound_datasourceThe name of the data source that was returned by the lineage harvester, as shown in the technical lineage. The data source name is case-sensitive.Yesfound_projectThe name of the project in which the data source information resides. You can specify an asterisk (*) to search for data source information across all projects. YesmappingUse this section to map the data source name that was returned by the lineage harvester to the true name of the data source.You have a Redshift data source named RD_pearl, but the lineage harvester has returned the name Redshift_connection. You can configure the datasourceMapping section as follows: { datasourceMapping: [{ found_datasource: REDSHIFT, found_project: *, mapping: { dbname: RD_pearl, collibraSystemName: TV_dev } }] }YesdbnameThe name of the database to which you want to map the found data source.YesschemaThe name of the schema in MicroStrategy.NodialectThe dialect of the data source in MicroStrategy.NocollibraSystemNameThe system or server name of a database.If you set the useCollibraSystemName property to true in your lineage harvester configuration file, but you either don't create a <source ID> configuration file, or don't specify a value for the collibraSystemName property in your <source ID> configuration file, the system name in the technical lineage is DEFAULT.If you set the useCollibraSystemName property to false in your lineage harvester configuration file, leave this property empty as follows: collibraSystemName: .How do I configure this property if I have two databases with the same name?Let's assume that you have a data source named Customers. You use this data source connection in two different projects, Project_A and Project_B, but they are actually two different databases. When you prepare the physical data layer in Data Catalog, you create a System asset for each of these databases. Let's say you named them Customers-North and Customers-South. You can then configure this property as follows. datasourceMapping: [{ found_datasource: Customers, found_project: Project_A, mapping: { dbname: Customers, collibraSystemName: Customers_North } }, { found_datasource: Customers, found_project: Project_B, mapping: { dbname: Customers, collibraSystemName: Customers_South } }] The values of this property must exactly match the name of your System asset in Collibra.YesSave the <source ID> configuration file.The lineage harvester uses a lineage harvester configuration file to collect the Power BI data objects. It then sends the metadata to the Collibra Data Lineage service instances.The <source ID> configuration file allows you to: Specify the name of a database, on which server the database is running, and optionally, the name of the schema. Configure workspace filtering.We highly recommend that you read through Filtering Power BI workspaces for important information and guidance before configuring your filters. If useCollibraSystemName in the lineage harvester configuration file is set to true, use the collibraSystemName property to specify the system name of databases in Power BI. Collibra Data Lineage uses the system names to match the structure of databases in Power BI to assets in Data Catalog. Example of the <source ID> configuration file { found_dbname=databasename1;found_hostname=*;found_schema=schema1: { dbname: mssql-database-name, schema: mssql-schema-name, dialect: mssql, collibraSystemName: mssql-system-name }, found_dbname=databasename2;found_hostname=server-name.onmicrosoft.com;found_schema=schema2: { dbname: oracle-database-name, schema: oracle-schema-name, dialect: oracle, collibraSystemName: oracle-system-name }, filters:[{ domainId: <domain-ref-id>, description: FirstFilter, workspaceNames: *, excludeWorkspaceIds: [workspaceC, workspaceD] }, { domainId: <domain-ref-id>, description: SecondFilter, workspaceNames: [workspace3, workspace4], capacityIds: [id1,id2] }] } StepsCreate a new JSON file in the lineage harvesterconfig folder.Give the JSON file the same name as the value of the sourceId property in the lineage harvester configuration file. The value of the sourceId property in the lineage harvester configuration file is power-bi-source-1. Therefore, the name of your JSON file should be power-bi-source-1.conf.Your JSON file must have the file extension .conf.For each database in Power BI, add the following content to the JSON file: PropertyDescriptionMandatory?found_dbname=<database name>;found_hostname=<server name>;found_schema=<schema name>The database information of supported data sources in Power BI that is typically collected by the lineage harvester. It allows you to specify the name of the database (found_dbname), on which server a database is running (found_hostname), and optionally, the name of the schema (found_schema).You can use wildcards to capture multiple connection string combinations:Show me the supported wildcardsPatternDescription*Matches everything.?Matches any single character.[seq]Matches any character in seq.[!seq]Matches any character not in seq.YesdbnameThe name of the database of a supported data source in Power BI.NoschemaThe name of the default schema of a supported data source in Power BI.If the lineage harvester fails to find a specific schema, it uses the default schema.NodialectThe dialect of the supported data source in Power BI.You can enter one of the following values:azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.mssql, for a Microsoft SQL Server data source.oracle, for an Oracle data source.redshift, for an Amazon Redshift data source.snowflake, for a Snowflake data source.sybase, for a Sybase data source.NocollibraSystemNameThe system or server name of a database.If you set the useCollibraSystemName property to true in your lineage harvester configuration file, but you either don't create a <source ID> configuration file, or don't specify a value for the collibraSystemName property in your <source ID> configuration file, the system name in the technical lineage is DEFAULT.How do I configure this property if I have two databases with the same name?Let's assume you have two databases named Customers. When you prepare the physical data layer in Data Catalog, you create a System asset for each of these databases. Let's say you named them Customers-Europe and Customers-USA. You can then configure this property as follows. found_dbname=databasename1;found_hostname=*;found_schema=schema1: { dbname: Customers, schema: mssql-schema-name, dialect: mssql, collibraSystemName: Customers-Europe }, found_dbname=databasename2;found_hostname=server-name.onmicrosoft.com;found_schema=schema2: { dbname: Customers, schema: oracle-schema-name, dialect: oracle, collibraSystemName: Customers-USA }, The value of this property must
exactly match (including for case-sensitivity) the name of your System asset in Collibra.If you are using a <source ID> configuration file for the purpose of providing the true system name of an ODBC database in Power BI, you are not required to:Set the useCollibraSystemName property in the lineage harvester configuration file to true.Specify a Collibra system name in the <source ID> configuration file. However, if the useCollibraSystemName property is set to true in the lineage harvester configuration file, then you must specify a Collibra system name in the <source ID> configuration file.Yes (unless you are using a <source ID> file to provide the true system names of ODBC databases in Power BI.)filtersThis section allows you to specify the Power BI workspaces from which you want to ingest metadata.The filters work as workspace AND workspace AND capacity AND capacity, meaning that if you specify a capacity, all of the workspaces in that capacity are also ingested.If you don't want to specify the Power BI workspaces from which to ingest, you must completely remove this filters section.You can use wildcards to capture multiple connection string combinations:Show me the supported wildcardsPatternDescription*Matches everything.?Matches any single character.[seq]Matches any character in seq.[!seq]Matches any character not in seq.NodomainIdThe unique resource ID of the domain (or domains), in Collibra Data Intelligence Cloud, in which you want to ingest the Power BI assets.You can find the domain ID by clicking the domain type. Then look in the URL of your browser to find the ID. The URL looks like https://<yourcollibrainstance>/domain/<domain ID>?<view>.YesdescriptionAny description, as you see fit.YesworkspaceNamesThe names of Power BI workspaces from which you want to ingest metadata.Any meta-characters in the name of a workspace must be enclosed in square brackets []. For example, a workspace with the name Sale and Marketing [automobiles] should be formatted as follows:Sale and Marketing [[]automobiles[]]NoworkspaceIdsThe IDs of Power BI workspaces from which you want to ingest metadata.We highly recommend that you read through Filtering Power BI workspaces for important information and guidance before configuring your filters.NocapacityNamesThe names of capacities on which you want to filter.NocapacityIdsThe IDs of capacities on which you want to filter.Any letters in a capacity ID must be in upper case.NoexcludeWorkspaceNamesThe names of Power BI workspaces that you want to exclude from the ingestion job.This is useful if you want to exclude, for example, dedicated development and testing workspaces.The metadata of inactive and personal workspaces is not harvested or uploaded to the Collibra Data Lineage service instance. An inactive workspace is one for which no reports or dashboards have been viewed in the past 60 days. My workspace is the personal workspace for any Power BI customer to work with their own, personal content.For complete details on the advantages, limitations and configuration considerations of this property, see Filtering Power BI workspaces.NoexcludeWorkspaceIdsThe IDs of Power BI workspaces that you want to exclude from the ingestion job.This is useful if you want to exclude, for example, dedicated development and testing workspaces.For complete details on the advantages, limitations and configuration considerations of this property, see Filtering Power BI workspaces.NoSave the <source ID> configuration file.The lineage harvester uses the lineage harvester configuration file to collect the SQL Server Reporting Services (SSRS) and Power BI Report Server (PBRS) data objects and send them to the Collibra Data Lineage service.The <source ID> configuration file allows you to: If useCollibraSystemName in the lineage harvester configuration file is set to true, use the collibraSystemName property to specify the system name of databases in SSRS and PBRS.Provide additional information about databases in SSRS and PBRS, which is necessary if the databases do not contain all information to process the SQL source code correctly. Example <source ID> configuration file { DataSources: { Redshift: { dbname: redshift-database-name, schema: redshift-schema-name, dialect: redshift, collibraSystemName: redshift-system-name }, Oracle: { dbname: oracle-database-name, schema: oracle-schema-name, dialect: oracle, collibraSystemName: oracle-system-name } }, CustomDataSources: { /path to report/custom data souce name: { dbname: mssql-database-name, dialect: mssql } } } StepsCreate a new JSON file in the lineage harvesterconfig folder.Give the JSON file the same name as the value of the Id property in the lineage harvester configuration file. The value of the Id property in the lineage harvester configuration file is ssrs-source-1. As a result, the name of your JSON file should be ssrs-source-1.conf.Your JSON file must have the file extension .conf.For each database in SSRS and PBRS, add the following content to the JSON file: PropertyDescriptionRequired?DataSourcesThis section contains all connections for which you want to create a technical lineage.The DataSources section refers to shared data sources in SSRS and PBRS. For more information about shared data sources, see the Microsoft documentation.Yes<data source type>The path of a connection object in SSRS and PBRS.YesdbnameThe name of the database of a supported data source in SSRS and PBRS.NoschemaThe name of the default schema of a supported data source in SSRS and PBRS.NodialectThe dialect of the supported data source in SSRS and PBRS.NocollibraSystemNameThe system or server name of the database.If you set the useCollibraSystemName property to true in your lineage harvester configuration file, but you either don't create a <source ID> configuration file, or don't specify a value for the collibraSystemName property in your <source ID> configuration file, the system name in the technical lineage is DEFAULT.How do I configure this property if I have two databases with the same name?Let's assume you have two databases named Customers. When you prepare the physical data layer in Data Catalog, you create a System asset for each of these databases. Let's say you named them Customers-Europe and Customers-USA. You can then configure this property as follows.Redshift: { dbname: Customer, schema: redshift-schema-name, dialect: redshift, collibraSystemName: Customers-Europe }, Oracle: { dbname: Customer, schema: oracle-schema-name, dialect: oracle, collibraSystemName: Customers-USA } YesCustomDataSourcesYou can use custom data processing extensions that are used to support embedded data sources of which the data source definition is specified locally in a report or embedded data set.The CustomDataSources section refers to embedded data sources in SSRS and PBRS. For more information about embedded data sources, see the Microsoft documentation.No<path to report>/<custom data source name>The full path to the report and the custom data source name.You can use wildcards to match multiple folders, reports or data sets. The connection information is this section is used to add missing information or to overwrite parsed information.NodbnameThe name of the database of a custom data source in SSRS and PBRS..NoschemaThe name of the schema of a custom data source in power. If you don't provide the schema name, the default schema is used.NodialectThe dialect of the custom data source in SSRS and PBRS..You can enter one of the following values:azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.db2, for an IBM DB2 data source.hana, for a SAP Hana data source.hive, for a HiveQL data source.greenplum, for a Greenplum data source.mssql, for a Microsoft SQL Server data source.mysql, for a MySQL data source.netezza, for a Netezza data source.oracle, for an Oracle data source.postgres, for a PostgreSQL data source.redshift, for an Amazon Redshift data source.snowflake, for a Snowflake data source.spark, for a Spark SQL data source.sybase, for a Sybase data source.teradata, for a Teradata data source.NoSave the <source ID> configuration file.The lineage harvester uses a lineage harvester configuration file to collect the SQL Server Integration Services data objects. It then sends the metadata to the Collibra Data Lineage service instance. Example of the <source ID> configuration file { ConnStringRegExTranslation: { Data Source=dhb-sql-prod;Initial Catalog=SFG_repl_staging;Provider=SQLNCLI11;Integrated Security=SSPI.*: { dbname: DATAHUB, schema: DBO, dialect: mssql, collibraSystemName : WAREHOUSE }, Server=sb-dhub;User ID=SYS_USER;Initial Catalog=STAGEDB;Port=6306.*: { dbname: STAGEDB, schema: STAGE_OWNER, dialect: sybase, collibraSystemName : } } } StepsCreate a new JSON file in the lineage harvesterconfig folder.Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value of the sourceId property in the lineage harvester configuration file and the file extension must be .conf. If the value of the sourceId property in the lineage harvester configuration file is my-adf, the name of your JSON file must be my-adf.conf.For each database, add the required content to the JSON file. Save the <source ID> configuration file.The lineage harvester uses the configuration file to connect to Tableau. You are not required to create a <source ID> configuration file, but you need one if you want to:Define your Tableau operating model.Provide additional information about databases and files in Tableau. For example, you can define the system name of databases in Tableau.Map a Tableau technical database name to the real database name, to preserve stitching. See the databaseMapping property.Try out the new hostnameMapping feature (beta), to map database, schema, or system names that were returned by the Tableau APIs to the actual names of the assets in Data Catalog. When the beta period ends and the
hostnameMapping is generally available, the databaseMapping section and the databases sub-section of the collibraSystemNames section will be deprecated.Define in which domains in Collibra you want to ingest assets from your Tableau sites and projects. See the domainMapping and filters properties.<source ID> refers to the value of the Id property in the lineage harvester configuration file. . { collibraSystemNames: { databases: [{ hostName: database-hostname, collibraSystemName: public }], files: [{filePath: C:\\ProgramData\\Tableau\\Tableau Server\\data\\files\\sample.xls, collibraSystemName: sample-files }], connectors: [{ connectorUrl: tableau-server-connector-url.com, collibraSystemName: Oracle-connector }], cloudFiles: [{ name: file-name, collibraSystemName: FILE }] }, databaseMapping: { <hostname:port>:<actual database name> }, filters: { sites:{ site_name:domain_id }, projects:{ site_name2 > project_name2: domain-reference-id2, site_name3 > project_name3 > subproject_name: domain-reference-id2 } } } . { collibraSystemNames: { databases: [{ hostName: database-hostname, collibraSystemName: public }], files: [{filePath: C:\\ProgramData\\Tableau\\Tableau Server\\data\\files\\sample.xls, collibraSystemName: sample-files }], connectors: [{ connectorUrl: tableau-server-connector-url.com, collibraSystemName: Oracle-connector }], cloudFiles: [{ name: file-name, collibraSystemName: FILE }] }, databaseMapping: { <hostname:port>:<actual database name> }, domainMapping: { <Site-1>: reference-id-of-Domain-1, <Site-1> > <Project-Default>: reference-id-of-Domain-2 } } Example <source ID> configuration file { collibraSystemNames: { databases: [{ hostName: database-hostname, collibraSystemName: public }], files: [{filePath: C:\\ProgramData\\Tableau\\Tableau Server\\data\\files\\sample.xls, collibraSystemName: sample-files }], connectors: [{ connectorUrl: tableau-server-connector-url.com, collibraSystemName: Oracle-connector }], cloudFiles: [{ name: file-name, collibraSystemName: FILE }] }, databaseMapping: { <hostname:port>:<actual database name> }, filters: { sites:{ site_name:domain_id }, projects:{ site_name2 > project_name2: domain-reference-id2, site_name3 > project_name3 > subproject_name: domain-reference-id2 } } } StepsCreate a new JSON file in the lineage harvesterconfig folder.Give the JSON file the same name as the value of the Id property in the lineage harvesterconfiguration file. If the value of the Id property in the lineage harvester configuration file is tableau-source-1, then the name of your JSON file should be tableau-source-1.conf.Your JSON file must have the file extension .conf.For each database in Tableau, add the following content to the JSON file:You can use wildcards to capture multiple string combinations for any of these properties.Show me the supported wildcardsPatternDescription*Matches everything.?Matches any single character.[seq]Matches any character in seq.[!seq]Matches any character not in seq.PropertyDescriptioncollibraSystemNamesThis section contains the system information for different Tableau data sources. Depending on the kind of data source or connection, you have to specify how to connect to this data source.For more information, see the Tableau documentation. We also recommend to check the list of supported connectors in Tableau.hostnameMappingThis section allows you to map Tableau technical database, server and schema names to the respective real names, to preserve stitching.This section replaces the following deprecated properties, and should not be used in combination with either of them:The databaseMapping property.The databases sub-section of the collibraSystemNames section.If you use the hostnameMapping section, you can still use the collibraSystemName property in conjunction with the files, connectors or cloudfiles sub-sections.Nofound_dbname=<database name>;found_hostname=<server name>;found_schema=<schema name>The database information of supported data sources in Tableau that is typically collected by the lineage harvester. It allows you to specify the name of the database (found_dbname), on which server a database is running (found_hostname), and optionally, the name of the schema (found_schema).NodbnameThe name of the database of a supported data source in Tableau.NoschemaThe name of the default schema of a supported data source in Tableau. If the lineage harvester fails to find a specific schema, it uses the default schema.NodialectThe dialect of the supported data source in Tableau.You don't have to specify a dialect; it will automatically be detected. If, however, you are using a dialect that is not supported, you can use this property to specify a supported dialect that is a close comparison. That way, most of your queries will be detected and processed.You can enter one of the following values:redshift, for an Amazon Redshift data source.azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.greenplum, for a Greenplum data source.hive, for a HiveQL data source.oracle, for an Oracle data source.postgres, for a PostgreSQL data source.mssql, for a Microsoft SQL Server data source.mysql, for a MySQL data source.netezza, for a Netezza data source.hana, for a SAP HANA data source.spark, for a Spark SQL data source.sybase, for a Sybase data source.teradata, for a Teradata data source.NocollibraSystemNameThe system or server name of the database.The value of this property must exactly match the name of your System asset in Collibra.NodatabasesThis property is deprecated. We recommend that you use the hostnameMapping section, instead. You cannot use this property in conjunction with the hostnameMapping section.This section contains connection information to one or more databases in Tableau.If you do not have databases in Tableau, you can remove this section.The values that you specify for this property are not case-sensitive.hostNameThe host name of the database.collibraSystemNameThe system name of the database.If you set the useCollibraSystemName property to true in your lineage harvester configuration file, but you either don't create a <source ID> configuration file, or don't specify a value for the collibraSystemName property in your <source ID> configuration file, the system name in the technical lineage is DEFAULT.How do I configure this property if I have two databases with the same name?Let's assume you have two databases named Customers. When you prepare the physical data layer in Data Catalog, you create a System asset for each of these databases. Let's say you named them Customers-Europe and Customers-USA. You can then configure this property as follows. collibraSystemNames: { databases: [{ hostName: database-hostname-1, collibraSystemName: Customers-Europe }, { hostName: database-hostname-2, collibraSystemName: Customers-USA }], The value of this property must exactly match (including for case-sensitivity) the name of your System asset in Collibra.filesThis section contains connection information to one or more files in Tableau.If you do not have files in Tableau, you can remove this section.filePathThe full path to the file. For example, the path to a JSON file.collibraSystemNameThe system name of the file.connectorsThis section contains connection information to one or more connectors in Tableau.If you do not have connectors in Tableau, you can remove this section.The values that you specify for this property are not case-sensitive.connectorUrlThe URL of the connector. For example, the URL to Google Analytics.collibraSystemNameThe system name of the connector.cloudFilesThis section contains connection information to one or more cloud files in Tableau's input data.If you do not have cloud files in Tableau, you can remove this section.nameThe name of the file. For example, the name of a Zendesk file.collibraSystemNameThe system name of the cloud file.databaseMappingThis property is deprecated. We recommend that you use the hostnameMapping section, instead. You cannot use this property in conjunction with the hostnameMapping section.The Tableau API returns a technical database name based on the hostname, instead of the actual database name, which breaks stitching. The values that you specify for this property are not case-sensitive.This property allows you to map a Tableau technical database name to the real database name, for example: databaseMapping: { <hostname:port>:<actual database name> }Including the port, as shown in the example, is optional.filtersThis section defines:From which Tableau sites and projects you want to harvest metadata.Into which domains in Collibra you want to ingest the corresponding assets.Filtering is transitive, which means that all resources in a specified project, such as Tableau workbooks and all sub-projects, are ingested. Tableau assets that are not mapped to the specified domains, for example the Tableau Server assets and the parent projects (if you specify their sub-projects), are ingested in the default domain.Filtering does not affect the amount of raw metadata that is harvested from Tableau and sent to the Collibra Data Lineage service instance. Rather, it determines which metadata is ingested as assets in Data Catalog.The domainMapping and filters sections are mutually exclusive. Do not include both domainMapping and filters sections in your JSON file. If you want to ingest all of the projects in a Tableau site into multiple domains in Collibra, use the domainMapping section.If you want to ingest all of the projects in a Tableau site into the default domain, use only the domainID property in the lineage harvester configuration file. The domainID property represents the default domain.If you want to ingest all of the projects in a Tableau site into a single domain in Collibra, use site
filtering.If you want to ingest metadata from only some of the projects in a Tableau site, use project filtering.You can use site filtering and project filtering together:If filtering on the same site, this filtering is actually domain mapping, because nothing is filtered out. The contents of the projects are ingested in the specified domains, and the rest of the contents of the site are ingested in a different, specified domain.If you are site filtering on a specific site and project filtering a different site, then site filtering is again a form of domain mapping, and the filtered projects are ingested in their specified domains.If your lineage harvester configuration file includes sites that are not mentioned in the filters section of your <source ID> configuration file, those sites are ingested in the default domain.sitesThe Tableau sites to be ingested and the domain in which you want to ingest metadata from the Tableau sites.If you have only one Tableau site, do not include a sites section in your <source ID> file. Instead, use a projects section, to filter on Tableau projects. Include a sites section only if all of the following are true:You have more than one Tableau site.You want to ingest all of the metadata from only one Tableau site into a single domain in Collibra.The domain into which you want to ingest is not the default domain, meaning the domain specified in the domainId property in your lineage harvester configuration file.site_name: domain_idsite_nameThe name of the site to be ingested. The site name is case-sensitive. domain_id The unique reference ID of the domain in Collibra in which you want to ingest metadata. The domain ID is case-sensitive. To ingest all metadata from a Tableau site in the specified domain, specify the site name and a separate domain ID for each site that you list on the siteIds property in the lineage harvester configuration file for Tableau. If the site_name or domain_id property is not specified for a site, the metadata from the site is ingested in the default domain. How do I find a domain reference ID?Open the relevant domain in Collibra. The URL looks like: https://<yourcollibrainstance>/domain/22258f64-40b6-4b16-9c08-c95f8ec0da26?view=00000000-0000-0000-0000-000000040001. In this example, the reference ID is in bold.Show me the example { filters:{ sites:{ Training:ca60b822-781b-4b3a-b44d-f65bd107ff92 }, projects:{ Testing > Databricks:e8f4e4a8-4062-4a33-9b44-3ce3e18e4e22, Product Demo > Customer Insights:a305e6f7-7a49-49aa-aa85-41b1e689121b } } }projectsThe Tableau projects to be ingested and the domain in which you want to ingest metadata from the Tableau projects or sub-projects.Project filtering is not relevant for those who have an Explorer role in Tableau, because Explorers need to configure permissions for each data object in Tableau that they want to ingest. As the Administrator role has access to all data objects, project filtering allows Administrators to specify which projects to ingest.site_name > project_name : domain_idThe site_name should be the Tableau site name. The project_name should be the Tableau project name. The domain_id should be the unique reference ID of the domain in Collibra in which you want to ingest metadata.When you specify the site and project names, the following rules apply:Add spaces before and after >. The spaces are separators between the site and project.Specify the full exact site and project names. The values are case-sensitive. When you specify a Tableau project, all assets in the project are ingested in the specified domain. If you want to ingest assets from different Tableau projects in one domain, you can specify the same value for domain id for different projects. ExampleCollibra_tab_partner_site > JB_Test_2812: d224a1a5-43b4-43b2-8df0-ddf8f2726b82site_name > project_name > sub-project_name : domain_idThe site_name should be the Tableau site name. The project_name should be the Tableau project name. Optionally, use sub-project_name to specify the Tableau sub-project name. The domain_id property should be the unique reference ID of the domain in Collibra in which you want to ingest metadata.When you specify the site, project and sub-project names, the following rules apply:Add spaces before and after >. The spaces are separators between the site and project.Specify the full exact site and project names. The values are case-sensitive. ExampleCollibra_tab_partner_site > JB_Test_2812 > ProjectJJ2: d224a1a5-43b4-43b2-8df0-ddf8f2726b82domainMappingThis section defines in which domains in Collibra you want to ingest assets from your Tableau sites and Tableau projects.Domain mapping is transitive, meaning that all resources, such as Tableau workbooks and data attributes in a parent Tableau site, project or sub-project, are ingested in the same domain as the parent.The domainMapping and filters sections are mutually exclusive. Do not include both domainMapping and filters sections in your JSON file. If you want to ingest all of the projects in a Tableau site into multiple domains in Collibra, use this domainMapping section.If you want to ingest all of the projects in a Tableau site into the default domain, use only the domainID property in the lineage harvester configuration file. The domainID property represents the default domain.Tableau assets that are not mapped to specific domains via this domainMapping section, for example Tableau Server assets, are ingested in that default domain.If you want to ingest all of the projects in a Tableau site into a single domain in Collibra, use site filtering.If you want to ingest metadata from only some of the projects in a Tableau site, use project filtering.Show me an exampleLet's say that you have a Tableau site named Site-1. You want to ingest all Tableau projects in Site-1 in a domain named Domain-1 in Collibra, with the exception of one Tableau project named Project-Default, which you want to ingest in Domain-2. You should configure the domainMapping section as follows. domainMapping: { <Site-1>: reference-id-of-Domain-1, <Site-1> > <Project-Default>: reference-id-of-Domain-2 }If you want to specify a domain for a sub-project of Project-Default, use the <site name> > <project name> > <sub-project name> property, as described below.For the properties in this domainMapping section, ensure that you maintain the spaces before and after >, for example Site-1 > Project-Default. The spaces serve as a separator between the site and the projects.site nameThe Tableau site name, followed by the unique reference ID of the domain in Collibra in which you want to ingest resources from the Tableau site.In the configuration file, use the actual site name, along with the domain reference ID, for example: Collibra_tab_partner_site: afc8cfb0-91f1-4075-a3e5-7ce6d1f9bcc9site name > project nameThe Tableau project name, preceded by the name of the Tableau site to which it belongs, and followed by the unique reference ID of the domain in Collibra in which you want to ingest resources from the Tableau project.In the configuration file, use the actual site and project names, along with the domain reference ID, for example: Collibra_tab_partner_site > JB_Test_2812: d224a1a5-43b4-43b2-8df0-ddf8f2726b82site name > project name > sub-project nameThe Tableau sub-project name, preceded by the name of the Tableau site and project to which it belongs, and followed by the unique reference ID of the domain in Collibra in which you want to ingest resources from the Tableau sub-project.In the configuration file, use the actual site, project and sub-project names, along with the domain reference ID, for example: Collibra_tab_partner_site > JB_Test_2812 > ProjectJJ2: d224a1a5-43b4-43b2-8df0-ddf8f2726b82Save the <source ID> configuration file.Harvesting materialized views that were generated via an external scriptThe lineage harvester can harvest materialized views that are native to a data source—meaning the data flow is performed by SQL code stored in the data source. If, however, an external script is used to materialize views into tables, so to speak, they cannot be harvested by the lineage harvester. In this case, you could create a custom technical lineage, which requires a user-defined JSON file.We recommend creating a script to generate a list of SQL queries to be harvested by the lineage harvester.For each pair of source (view) and target (materialized view table), create a script as follows: INSERT INTO 'dhw.sales.mv_customers' SELECT * FROM 'dhw.sales.v_customers';The generated SQL queries then need to be harvested by the lineage harvester. There are two options for this, depending on where you choose to store the generated SQL code: If you store the SQL code in text files, it is harvested using an additional SqlDirectory type source. If you store the SQL code in a table in the data source, you need to modify the harvesting query, to harvest the table. In this case, actually, the generated SQL queries don't have to be stored anywhere; rather, they are generated on the fly by a harvesting query. Modify the harvesting query as follows: SELECT t.table_name, t.ddl as sourceCode, CONCAT(t.table_schema, '.', t.table_name) as groupName, t.table_schema as schemaName FROM `##PROJECT_ID##`.`##DSNAME##`.`INFORMATION_SCHEMA.TABLES` t WHERE t.table_type IN ('MATERIALIZED VIEW','VIEW') UNION ALL SELECT CONCAT('m', t.table_name), CONCAT('INSERT INTO `m', t.table_name, '` SELECT * FROM `', t.table_name, '`') as sourceCode, CONCAT('Generated m', t.table_schema, '.', t.table_name) as groupName, t.table_schema as schemaName FROM `##PROJECT_ID##`.`##DSNAME##`.`INFORMATION_SCHEMA.TABLES` t WHERE t.table_type IN ('VIEW') AND STARTS_WITH(t.table_name, 'v_') The second SELECT generates the necessary INSERT INTOs for all views in your data source that have a name starting with v_.Manage technical lineage ingestionYou can create a customized SQL file to manage which data objects, for example columns
and tables, are ingested in the technical lineage. In the SQL file, you can exclude data objects or change queries that are used to extract data from the database. You specify:Which data objects you want to visualize in the technical lineage.Between which columns you want to create new relations of the type Data Element targets / sources Data Element in Data Catalog.If you change queries, you can only use supported SQL syntax.Collibra Support does not provide support for customized SQL files. StepsOpen the lineage harvester folder.Go to the sql folder and open the folder of the data source type of which you want to exclude tables or schemas or change queries.Create a copy of the file you want to edit.Rename the copy to [original name]-custom.sql. You want to change the file columns.sql, so you name the copy of this file and rename it to columns-custom.sql.Delete or edit the content of the new SQL file to include or exclude specific tables or schemas or change specific queries in the file.Save the new SQL file. The lineage harvester uses the new file and ignores the old one.Run the lineage harvesterAfter you have prepared the lineage harvester configuration file, run the lineage harvester to create the technical lineage. Before you beginIf you use a proxy server, connect to the proxy server. For more information, go to Connecting to a proxy server.Requirements and permissionsCollibra Data Intelligence Cloud.You have purchased Collibra Data Lineage.A global role with the following global permissions:Catalog, for example Catalog AuthorData Stewardship ManagerManage all resourcesSystem administrationTechnical lineageA resource role with the following resource permissions on the community level in which you created the domain: Asset: addAttribute: addDomain: addAttachment: addNecessary permissions to all database objects that the lineage harvester accesses.StepsStart the lineage harvester by entering the full-sync command. To process data from all data sources in the configuration file: For windows:.\bin\lineage-harvester.bat full-syncFor other operating systems:./bin/lineage-harvester full-sync To process data from specific data sources in the configuration file: For windows:.\bin\lineage-harvester.bat full-sync -s ID of the data sourceFor other operating systems:./bin/lineage-harvester full-sync -s ID of the data sourceIf you have Snowflake data sources in your lineage harvester configuration file, set the JAVA_OPTS environment variable first. For example, to process data from all data sources including the Snowflake data sources, take the following steps: On Windows Enter one of the following commands:If you use OpenJDK 16: set JAVA_OPTS=-Djdk.module.illegalAccess=permitIf you use OpenJDK 17 or higher: set JAVA_OPTS=--add-opens=java.base/java.nio=ALL-UNNAMED In the same command line, enter the following command:.\bin\lineage-harvester.bat full-syncThe set command is specific to the Windows Command Shell. The command is different if you are using PowerShell.On LinuxEnter the following command:If you use OpenJDK 16: JAVA_OPTS=-Djdk.module.illegalAccess=permit ./bin/lineage-harvester full-syncIf you use OpenJDK 17 or higher: JAVA_OPTS=--add-opens=java.base/java.nio=ALL-UNNAMED ./bin/lineage-harvester full-syncFor more information, see Lineage harvesting app command options and arguments. When prompted, enter the passwords to connect to Collibra and your data sources. Do one of the following: Enter the passwords in the console.The passwords are encrypted and stored in /config/pwd.conf.Provide the passwords via command line.The passwords are stored locally and not in your lineage harvester folder.What's nextThe lineage harvester sends the data source information to the Collibra Data Lineage service by using Collibra REST API, where it is parsed and analyzed. As a result, the technical lineage is created and shown in Data Catalog. You can view the technical lineage. For more information, go to Technical lineage viewer.You can check the progress of the technical lineage creation in Activities in your Collibra Data Intelligence Cloud environment. The Results field indicates how many relations were imported into Data Catalog. Go to the status page to see the log files of the SQL analysis.If the lineage harvester log shows an error message or the harvesting process fails, you can use the technical lineage troubleshooting guide or Collibra Support Portal to fix the error.If you want to synchronize the data sources on fixed times, you can use scheduled jobs.Schedule jobsYou can use Task Scheduler on Windows or Crontab on Mac and Linux to make the lineage harvester run scheduled jobs at specific times, dates or intervals. In a scheduled job, the lineage harvester uploads data source information to the Collibra Data Intelligence Cloud and Data Catalog automatically creates new relations of the type Data Element sources / targets Data Element Between data objects in your data source and assets from registered data sources. Between ingested assets from BI sources and Data Catalog assets from registered data sources. You can run one scheduled job for each data source that is listed in the same configuration file. If you provide the passwords to your Collibra environment and/or to your individual data sources via stdin, you have to use the correct command.You created a configuration file with two data sources. Data source A can run a scheduled job each day at 11 pm, while data source B can run a scheduled job every two days at 6 am.Upgrade the lineage harvesterEach new lineage harvester adds features and enhancements to the previous version. We highly recommend that you always use the newest lineage harvester available.If you have created a technical lineage using an older lineage harvester, you can easily upgrade to the newest lineage harvester and reuse your configuration file.For a list of differences between lineage harvester versions, see the lineage harvester change log.StepsDownload the newest lineage harvester from the Collibra Downloads page. To log in to the Collibra Downloads page, use your Collibra.com username and password. Install the lineage harvester and a new lineage harvester folder is created. Copy all files from your config folder in the old lineage harvester folder to the config folder in the new lineage harvester folder.All files, including the pwd.conf and lineage-harvester.conf files, are in the config folder in the new lineage harvester folder.In the config folder, open the lineage-harvester.conf file to check if there are other auxiliary files to be moved to the new lineage harvester folder. If needed, copy those files from the old lineage harvester folder to the new lineage harvester folder. Those files can be the custom technical lineage JSON file, the Informatica Intelligent Cloud Services <source ID> configuration file, the Matillion <source ID> configuration file, and so on.If you have customized SQL files that end with -custom.sql in the sql folder in the old lineage harvester folder, complete the following steps: Compare the original SQL files before customization with the SQL files in the new lineage harvester folder. For example, if you have a customized SQL file named access_history-custom.sql, compare the access_history.sql file in the old lineage harvester folder with the access_history.sql file in the new lineage harvester folder.Take any of the following actions: If the SQL files are identical, copy the customized SQL files from the old lineage harvester folder to the new lineage harvester folder. If the SQL files are not the same, complete the following steps:Create new SQL files that end with -custom.sql in the new lineage harvester folder based on the SQL files in the new lineage harvester folder. Review the customizations in the customized SQL files in the old lineage harvester folder, and make the same customizations to the newly created customized SQL files in the new lineage harvester folder. Take the access_history-custom.sql file as an example, and the customization in the access_history-custom.sql file was to change the database.schema from SNOWFLAKE.ACCOUNT_USAGE to MYDB.ACCOUNT_USAGE. Compare the following files: lineage-harvester-OLD/sql/snowflake/access_history.sqllineage-harvester-NEW/sql/snowflake/access_history.sql Take any of the following steps: If the access_history.sql files are identical, copy the access_history-custom.sql file from lineage-harvester-OLD/sql/snowflake to the lineage-harvester-NEW/sql/snowflake directory.If the access_history.sql files are not the same, complete the following steps: Create an access_history-custom.sql file in the lineage-harvester-NEW/sql/snowflake directory by copying the content of the lineage-harvester-NEW/sql/snowflake/access_history.sql file to the new access_history-custom.sql file. Customize the new access_history-custom.sql file by changing the database.schema from SNOWFLAKE.ACCOUNT_USAGE to MYDB.ACCOUNT_USAGE.Beginning with the lineage harvester version 2023.02, the SQL file that was named access_history_lineage_query_text.sql has been renamed to access_history.sql.Use the full-sync command to synchronize all data sources in your configuration file. The lineage harvester synchronizes your data sources on the Collibra Data Lineage service and refreshes your technical lineage.What's nextYou can check the progress of the technical lineage creation in Activities in your Collibra Data Intelligence Cloud environment. The Results field indicates how many relations were imported into Data Catalog. Go to the status page to see the log files of the SQL analysis.If the lineage harvester log shows an error message or the harvesting process fails, you can use the technical lineage troubleshooting guide or Collibra Support Portal to fix the error.Delete the technical lineage of a data sourceYou can delete the technical lineage of a data source if you no longer want to see it in the
technical lineage graph. To delete the technical lineage of the data source, you must remove the configuration of the data source from the lineage harvester configuration file and use the ignore-source command to exclude the data source when you synchronize the technical lineage again. You always need at least one source in your lineage harvester configuration file. Before you beginInstall the lineage harvester 2023.04 or newer. StepsOptional: To determine the data source that you want to exclude from the Technical lineage, enter the list-sources command: For Windows: .\bin\lineage-harvester.bat list-sourcesFor other operating systems: ./bin/lineage-harvester list-sourcesAll data sources that were used to create the technical lineage are listed. The list also includes the source ID of each data source. You can use the list to identify the data source to be excluded. In the lineage harvester folder, open your lineage harvester configuration file.Delete the section with connection properties of the data source.Save the configuration file.Start the lineage harvester in the console and run the following command to ignore the data source: For Windows: .\bin\lineage-harvester.bat ignore-source <source_ID>, where <source_id> is the ID of the data source that you want to ignore.For other operating systems: ./bin/lineage-harvester ignore-source <source_ID>, where <source_id> is the ID of the data source that you want to ignore.The data source is excluded from the list of data sources that are used to create the technical lineage.Synchronize the technical lineage by running any of the following commands: The sync command: For Windows: .\bin\lineage-harvester.bat syncFor other operating systems: ./bin/lineage-harvester syncThe full-sync command: For Windows: .\bin\lineage-harvester.bat full-syncFor other operating systems: ./bin/lineage-harvester full-syncFor more information, go to Typical command options and arguments.When prompted, enter the password to connect to your Collibra Data Intelligence Cloud and data sources in the configuration file.The lineage harvester uploads the metadata of the remaining data sources in the configuration file to the Collibra Data Lineage service.The Collibra Data Lineage service synchronizes the technical lineage and removes the deleted data source from the technical lineage graph.What's nextYou can view the technical lineage. For more information, go to Technical lineage viewer.You can check the progress of the technical lineage creation in Activities in your Collibra Data Intelligence Cloud environment. The Results field indicates how many relations were imported into Data Catalog. Go to the status page to see the log files of the SQL analysis.If the lineage harvester log shows an error message or the harvesting process fails, you can use the technical lineage troubleshooting guide or Collibra Support Portal to fix the error.Custom technical lineage via the lineage harvesterYou can create a custom technical lineage to include metadata of data sources that the lineage harvester does not support or add functionality that is not supported.To create a custom technical lineage, define the custom technical lineage in a JSON file and refer to the JSON file in the lineage harvester configuration file. The lineage harvester generates a technical lineage based on your definition in the JSON file. You can create the following custom technical lineages: A simple custom technical lineage, which defines a basic object hierarchy and creates a lineage between two or more data objects.An advanced custom technical lineage, which contains a simple custom technical lineage and uses separate source code files that define lineage transformations to create the lineage.You can use the custom technical lineage as your only lineage source. You can also combine custom technical lineage with other lineage sources. For example, you can configure the lineage harvester to collect data objects from Oracle, Tableau and the custom technical lineage definition in the JSON file. For steps to create a custom technical lineage by using the lineage harvester, go to Create custom technical lineage. For steps to create a custom technical lineage on Edge, go to Create a technical lineage via Edge.ExampleYou want to create a technical lineage that shows relations between tables and columns from system A and system B, to system C, to system D (A and B -> C -> D). System A, B and D are supported data sources, but system C is a custom application. You can create a JSON file that contains the metadata of system C and generate the following technical lineage graph.Creating custom technical lineage via lineage harvesterThis topic is an overview of steps to create a custom technical lineage. Before you beginSet up the latest lineage harvester. To stitch the data objects of your data sources with Data Catalog assets, prepare the Data Catalog physical data layer for technical lineage. When you prepare the Data Catalog physical data layer, you must register your data sources in Data Catalog and use a structure that matches the structure of ingested assets in Data Catalog. Determine whether you want to create a simple or advanced custom technical lineage.Requirements and permissionsA global role with the following global permissions:Manage all resourcesSystem administrationA resource role with the following resource permission on the community level in which you created the BI Data Catalog domain: Asset: addAttribute: addDomain: addAttachment: addStepsCreate a custom technical lineage JSON file.Configure the lineage harvester for the custom technical lineage.Run the lineage harvester. Create a custom technical lineage JSON fileTo create a custom technical lineage, create a JSON file that defines the custom technical lineage, refer to the JSON file in the lineage harvester configuration file, and run the lineage harvester. StepsCreate a local folder.Create a JSON file in the local folder and name the JSON file lineage.json. The JSON file must be named as lineage.json; otherwise, the process fails. You can have other types of files in this folder. If you want to create an advanced custom technical lineage, store all of the source code files that you want to reference in the JSON file in the same local folder. For more information about the simple and advanced custom technical lineage, go to Custom technical lineage via the lineage harvester. Specify the JSON file to define a simple or an advanced custom technical lineage. For details about the JSON file, go to Custom technical lineage JSON file and Custom technical lineage JSON file examples. What's nextConfigure the lineage harvester and refer to this JSON file in the lineage harvester configuration file. Custom technical lineage JSON fileIn the lineage.json file, you can define a basic data object hierarchy, a lineage between two or more data objects and transformations that create the custom technical lineage. The following sections in the JSON file define different parts in the resulting Collibra technical lineage graph:tree, which defines the data object hierarchy. The data objects are shown as nodes in the technical lineage graph.lineages, which defines the lineage relation. The lineage relations are shown as edges in the technical lineage graph. The edges represent the data flow from a source to a target.codebase_files, which points to transformation definitions in a source code file.If you want to create a simple custom technical lineage, specify the tree and lineages sections. You can add the transformation code in the lineages section. If you want to create an advanced custom technical lineage, specify the tree, lineages and codebase_files sections. Add references to transformation code in source code files in the codebase_files section. Transformation code in both simple and advanced custom technical lineages is displayed at the bottom part of the Collibra technical lineage graph. Requirements and restrictionsThe source code files must be in the same directory as the lineage.json file. Otherwise, an error occurs indicating that the lineage harvester cannot find the source code files. SectionsSectionsDescriptionversionThe version of the JSON architecture. Specify the value of 1.0, which is the only supported version. treeThis section contains tree definitions of data objects between which lineages can be defined. The data objects are systems, databases, schemas, tables, views, columns, dashboards and reports. Each node of a tree contains the name, type and optionally children or leaves properties which form a hierarchy of data objects. You must define a node only once in this section. With the nested tree format, you can reuse the properties of one node for multiple children. For example, you can define a database once and use the children array to define multiple tables in the database.Usually, the structure you map is the following: system > database > schema > table > column. The system is optional, unless the useCollibraSystemName property is set to true in the lineage harvester configuration file. Collibra Data Lineage can stitch these data objects to assets in Data Catalog. However, you can also map custom objects, for example dashboards and reports. Custom objects cannot be stitched to assets in Data Catalog.lineagesThis section contains the path from a source to a target and defines the transformation code or transformation references to be processed by the Collibra Data Lineage service.codebase_filesThis optional section defines the reference to source code files. Store the source code files that contain the transformation code in the same directory as the lineage.json file.Include this section only when you create an advanced custom technical lineage.tree section propertiesPropertiesDescriptionnameThe name of your data object. Specify this property with the system name, database name, schema name, table name, view name or column name. The following rules
apply when you specify this property: The names are case sensitive.The names of children and leaves can be identical if the children and leaves with the same names are in different parent nodes.typeThe type of your data object. You can specify one of the following options: system, database, schema, table, view, column, dashboard or report. If the useCollibraSystemName property in the lineage harvester configuration file for custom technical lineage is set to true, the system data object is used to stitch to the System asset in Data Catalog. If the useCollibraSystemName property is set to false, the system data object is not used for stitching.childrenThe sub-objects that have a hierarchical relation to the defined data object. Each child can contain children properties, except for the penultimate child. The penultimate children property must contain the leaves property. The leaves property cannot contain a children property. For example, you can use the children property to define a table and use the leaves properties to define columns that have a relation to the table node. Each child and leave have the name and type properties and the optional catalog_fullname, catalog_domain_id, catalog_asset_type_name and catalog_asset_type_uuid properties.leavesThe sub-objects of an object that is defined in a children property, but cannot have sub-objects of their own. A technical lineage is defined as relations between leaf nodes of the tree. The value of the type property of the leaves property must be column or report. Indirect and table-level technical lineages are not supported. For the workarounds to create a table level or indirect technical lineage, see Programming considerations.lineage section propertiesPropertiesRequiredDescriptionsrc_pathYesThe hierarchical path to the source data object. This data object is defined as a leaf in the tree section.This property represents where the data comes from for a transformation. trg_pathYesThe hierarchical path to the target data object. This data object is defined as a leaf in the tree section.This property represents where the data flows to. <data objects>YesAn ordered array of data object names. This array is required to define the sub-objects of the src_path and trg_path properties.Specify the array with the data object names that start from the top of the tree section and finish at a leaf node. This example shows data objects that can be stitched: system > database > schema > table > column.This example shows data objects that cannot be stitched: dashboard > report > column. If the useCollibraSystemName property in the lineage harvester configuration file for custom technical lineage is set to true, the system data object is used to stitch to the System asset in Data Catalog. If the useCollibraSystemName property is set to false, the system data object is not used for stitching.mappingYesSimple custom technical lineage onlyThe mapping name. This property specifies a name for the transformation code.source_codeYesSimple custom technical lineage onlyThe transformation code, which determines how the technical lineage is constructed. The transformation code can be a descriptive string or a SQL statement that manipulates data.mapping_refNoAdvanced custom technical lineage onlyThis property contains the name of the mapping reference to the transformation code in source code files. This property also contains the position and length of the transformation code to be highlighted in the technical lineage graph. source_codeNoAdvanced custom technical lineage onlyThe name of the source code file that contains the transformation code. The transformation code can be a SQL statement, code that manipulates data or a descriptive string. The source code file must be in the same directory as the lineage.json file.mappingNoAdvanced custom technical lineage onlyThe unique descriptor of a part of transformation code in a source code file that is in the same directory as the lineage.json file.A source code file can contain different parts of transformation code that represent different data flows. This property indicates the referenced data flow. The value of this property is the same as the value of the mapping_refs property in the codebase_files section.codebase_posNo Advanced custom technical lineage onlyThe positions indicate a string of the transformation code in a source code file to be highlighted in the bottom part of the Collibra technical lineage graph. The whole lines that include the transformation code are highlighted. The string must be a subset of the string of the transformation code that is defined by the pos_start and pos_len properties of the mapping_refs property in the codebase_files section. pos_startNo Advanced custom technical lineage onlyThe start position of the string of the transformation code to be highlighted. The start position is in characters, not bytes. The value must be equal to or greater than the value of the pos_start property of the mapping_refs property in the codebase_files section. pos_lenNo Advanced custom technical lineage onlyThe length of the string of the transformation code to be highlighted. The length is in characters, not bytes. Specify a value in the following range:Equal to or greater than 1.Less than or equal to the length of the string that is defined by the pos_len property of the mapping_refs property in the the codebase_files section. For example, if you specify pos_start: 10 and pos_len: 160 in the codebase_files section, specify a value for this property in the range of 0 - 149. codebase_files section propertiesPropertiesDescription<source code path>The file path to source code files that contain the transformation code. The transformation code can be a SQL statement or code that manipulates data. The source code file must be in the same directory as the lineage.json file.mapping_refsThe mapping of the transformation code and the position of the transformation code that is shown in the bottom part of the technical lineage graph. This property defines a string of the transformation code in the source code file to be shown in the technical lineage graph. The string must include the string that is defined by the pos_start and pos_len properties of the mapping property in the lineage section.<mapping>The unique descriptor of a part of transformation code in a source code file that is in the same directory as the lineage.json file.A source code file can contain different parts of transformation code that represent different data flows. This property indicates the referenced data flow. The value must match the value of the mapping property in the lineage section.pos_startThe start position of the string of the transformation code. The start position is in characters, not bytes.Specify a value in the following range: Equal to or greater than 0.Less than or equal to the value of the pos_start property in the mapping property in the lineage section.pos_lenThe length of the string of the transformation code. The length is in characters, not bytes. Specify a value in the following range: Greater than or equal to 1. Less than or equal to the length of the source code file minus the start position. For example, if you specify pos_start: 10 and the file length is 160 characters, specify a value for this property in the range of 1 - 150. Programming considerationsCurrently, there is no native support for indirect and table-level lineages. As a workaround, you can specify type: column and name: * for the leaves property to create a table level or indirect technical lineage. With this specification, the indirect technical lineage is shown as a solid line instead of a dashed line in the Collibra technical lineage graph, and is always shown, regardless of whether or not the Show indirect dependencies option is enable or disabled.ExampleFor sample JSON files that define a simple custom technical lineage and an advanced custom technical lineage, see Custom technical lineage JSON file example.Custom technical lineage JSON file examplesThis topic shows example lineage.json files that create a simple custom technical lineage and an advanced custom technical lineage.Each example can be used to generate technical lineage graphs in Collibra to represent the IOT_JSON and IOT_DEVICES_PER_COUNTRY tables with the following columns:IOT_JSONIOT_DEVICES_PER_COUNTRYCCA3COUNTRYDEVICE_IDNUMBER_DEVICESSample JSON file for a simple custom technical lineage In the following example, the tree section defines the IOT_JSON and IOT_DEVICES_PER_COUNTRY tables and columns. The tables are in a schema named COLLIBRA. The COLLIBRA schema is in a database named COLLIBRA and a system named Databricks.If you define the System asset in your lineage.json file, the useCollibraSystemName property in your lineage harvester configuration file must be set to true; otherwise, relations will not be created between the relevant assets in Collibra.To show the transformation code at the bottom of the Collibratechnical lineage graph that uses a simple custom technical lineage, specify the mapping and source_code properties in the lineages section. { version: 1.0, tree: [{ name: Databricks, type: system, children: [{ name: COLLIBRA, type: database, children: [{ name: COLLIBRA, type: schema, children: [{ name: IOT_JSON, type: table, leaves: [{ name: CCA3, type: column }, { name: DEVICE_ID, type: column }] }, { name: IOT_DEVICES_PER_COUNTRY, type: table, leaves: [{ name: COUNTRY, type: column }, { name: NUMBER_DEVICES, type: column }] }] }] }] }], lineages: [{ src_path: [{ system: Databricks }, { database: COLLIBRA }, { schema: COLLIBRA }, { table: IOT_JSON }, { column: CCA3
 }], trg_path: [{ system: Databricks }, { database: COLLIBRA }, { schema: COLLIBRA }, { table: IOT_DEVICES_PER_COUNTRY }, { column: COUNTRY }], mapping: dev_no_bat_per_country_view, source_code: INSERT INTO ... SELECT CCA3 AS COUNTRY...FROM IOT_JSON }] }Sample JSON file for an advanced custom technical lineageIn the following example, the tree section defines the IOT_JSON and IOT_DEVICES_PER_COUNTRY tables and columns. The tables are in a schema named COLLIBRA. The COLLIBRA schema is in a database named COLLIBRA and a system named Databricks.If you define the System asset in your lineage.json file, the useCollibraSystemName property in your lineage harvester configuration file must be set to true; otherwise, relations will not be created between the relevant assets in Collibra. { version: 1.0, tree: [{ name: Databricks, type: system, children: [{ name: COLLIBRA, type: database, children: [{ name: COLLIBRA, type: schema, children: [{ name: IOT_JSON, type: table, leaves: [{ name: CCA3, type: column }, { name: DEVICE_ID, type: column }] }, { name: IOT_DEVICES_PER_COUNTRY, type: table, leaves: [{ name: COUNTRY, type: column }, { name: NUMBER_DEVICES, type: column }] }] }] }] }], lineages: [{ src_path: [{ system: Databricks }, { database: COLLIBRA }, { schema: COLLIBRA }, { table: IOT_JSON }, { column: CCA3 }], trg_path: [{ system: Databricks }, { database: COLLIBRA }, { schema: COLLIBRA }, { table: IOT_DEVICES_PER_COUNTRY }, { column: COUNTRY }], mapping_ref: { source_code: transforms.sql, mapping: dev_no_bat_per_country_view, codebase_pos: [{ pos_start: 71, pos_len: 69 }] } }], codebase_files: { transforms.sql: { mapping_refs: { dev_no_bat_per_country_view: { pos_start: 0, pos_len: 246 } } } } }Sample technical lineage graphsBoth example lineage.json files generate the following technical lineage graph, which contains 2 nodes and 1 edge.The following technical lineage graph is generated by using the example lineage.json file for an advanced custom technical lineage. The bottom part shows the transformation code that generated the data flow. In the lineages section, the pos_start property is specified with 71 and the pos_len property is specified with 69. The specifications indicate that the transformation code that starts at position 71 and the following 69 characters are highlighted in blue. Line 2 in the technical lineage graph contains the highlighted transformation code. Configure the lineage harvester for a custom technical lineageTo create a custom technical lineage, create a JSON file that defines the custom technical lineage, refer to the JSON file in the lineage harvester configuration file, and run the lineage harvester. StepsStart the lineage harvester to create an empty lineage harvester configuration file by entering the following command: Windows: .\bin\lineage-harvester.batFor other operating systems: chmod +x bin/lineage-harvester and then bin/lineage-harvesterAn empty configuration file is created in the config folder.Specify the lineage harvester configuration file and save the configuration file. For details about the configuration file, see Lineage harvester configuration file for the custom technical lineage.What's nextRun the lineage harvester. Lineage harvester configuration file for the custom technical lineageThe lineage harvester uses this lineage harvester configuration file to extract data from the metadata of the data sources that you want to process. When you run the lineage harvester for the first time, it creates an empty lineage harvester configuration file. You can manually add properties and values to the configuration file.If you want to create the technical lineage for multiple data sources, use the configuration file generator to create an example configuration file with different data sources, and update the example to match your data source information. Requirements and restrictionsIn the configuration file, you must use UTF-8 or ISO-8859-1 characters, with the exception of SQL files, which can only be UTF-8 encoded. Comments in the lineage harvester configuration file are not supported. Technical lineage supports the username and password authentication method for the custom technical lineage. Format{ general : { catalog : { url : , username : , }, useCollibraSystemName : false|ture }, sources : [{ type : ExternalDirectory, id : , dirType : custom-lineage, collibraSystemName : , path : , deleteRawMetadataAfterProcessing: false|true }] }PropertiesDescriptiongeneralDescribes the connection between Collibra Data Lineage and Data Catalog.catalogContains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Specify the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in Collibra.useCollibraSystemNameIndicates whether you want to use the system or server name of a data source to match to the System asset you created when you prepared the physical data layer. The names are case-sensitive. This is useful when you have multiple databases with the same name.Specify one of the following values: falseThe lineage harvester does not stitch the system or server name of your data source to the System asset in Data Catalog. This is the default value.trueThe lineage harvester reads the system or server names that you specify for the system data object in the tree and lineage sections in the custom technical lineage JSON file and stitches the names to the System assets in Data Catalog.Only specify this value when you have multiple databases with the same name. sourcesContains the required information to retrieve a custom lineage. Use this property to locate the JSON file that defines the custom technical lineage.If you want to create the technical lineage for multiple data sources, create a sources section for each data source. typeThe kind of data source. The value must be ExternalDirectory.idThe unique ID of your custom technical lineage. This property identifies the metadata that the lineage harvester processes. Specify this property with an unique string, for example, MyCustomLineage. dirTypeThe type of external directory. The value is custom-lineage.collibraSystemNameThe lineage harvester ignores this property for custom technical lineage.To use the system or server name of your data source to match the System asset in Data Catalog, specify the system data object in the tree and lineage sections in the custom technical lineage JSON file. pathThe full path to the folder of the custom technical lineage JSON file, for example C:\path\to\custom-lineage\dir.There must be only one JSON file that defines the lineage, and the JSON file must be named lineage.json. You can, however, add other files in the harvested directory and subdirectories and refer to those files from within the JSON file.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance. Example{ general : { catalog : { url : https://companydomain.collibra.com, username : my-Collibra-username, }, useCollibraSystemName : false }, sources : [{ id: MyCustomLineage, type: ExternalDirectory, dirType: custom-lineage, path”: “/path/to/custom-lineage/dir/, collibraSystemName: MySystemName }] }Working with BI toolsThis section addresses BI tool-speicifc integration concepts and tasks for Collibra Admins.BI tool ingestion workflowYou run the lineage harvester to start the BI tool ingestion workflow. When you initiate the integration, each workflow component performs the following actions: The lineage harvester: Communicates with your BI tool.Harvests the BI tool metadata that will be ingested into Data Catalog.Sends the metadata to the Collibra Data Lineage service instance.Collibra: Analyzes the metadata.Creates new assets and relations.Stitches existing assets in Data Catalog to BI assets.This does not apply to Looker, as stitching is currently not available for Looker integration.Imports new BI assets and their relations in Data Catalog.Data Catalog:Includes the new BI assets.Includes a technical lineage tab on the relevant BI asset pages.Shows stitching results between BI Column assets and Column assets.This does not apply to Looker, as stitching is currently not available for Looker integration.Prepare a domain for BI asset ingestionBefore you can ingest BI metadata, you have to designate a domain for storing the new BI assets. You can choose an existing domain or create one or more new domains. You then have to include the domain reference ID (or IDs) in the appropriate configuration file.The amount of domains into which you ingest assets differs according to your BI tool: Looker: You can designate one domain in the lineage harvester configuration file. However, you can also set up a filter in the <source ID> configuration file,
to ingest into different domains. MicroStrategy: You can ingest into one domain. Power BI: You can ingest into one or more domains. SSRS-PBRS: You can ingest into one domain. Tableau: You can ingest into one or more domains. PrerequisitesYou have a resource role with the Domain > Add resource permission.StepsOn the main toolbar, click .The Create dialog box appears.Click the Organization tab.Click a domain type from the list.If you clicked the wrong domain type here, you can change it in the Type field in the next screen.The Create Domain dialog box appears.Enter the required information.FieldDescriptionTypeThe domain type of the domain you are creating. In this case, you need to select BI Catalog.CommunityThe community under which the domain will be located.NameThe name of the new domain or domains.You can create multiple domains in one go. To do this, press Enter after typing a value and then type the next. Domain names have to be unique in their parent community. If you type a name that already exists, it will appear in strike-through style.Click Create.Open your domain. If you created multiple domains, open each of them in turn.Copy the reference ID of each domain you created. If you go to your domain, you can find the domain ID in the URL. The URL looks like: https://<yourcollibrainstance>/domain/22258f64-40b6-4b16-9c08-c95f8ec0da26?view=00000000-0000-0000-0000-000000040001. In this example, the domain ID is in bold. Paste the domain reference ID (or IDs) in the appropriate configuration file, depending on whether you want to ingest Tableau assets in a single domain or multiple domains. For complete information on which properties and which configuration files to use, see the domainId property description in the Prepare the lineage harvester configuration file topic for the relevant BI tool.What's next?Prepare the Data Catalog physical data layer.Working with TableauThis section addresses tasks and concepts that can be of interest to Collibra Admins who are working with Tableau.Tableau supported data sourcesTableau is business intelligence software that can integrate with various data sources. When you ingest Tableau metadata, Collibra Data Lineage tries to automatically stitch the metadata to data sources registered in Data Catalog. It also creates a technical lineage that shows where metadata is used and how it transforms.The following table shows the supported data sources in Tableau that have been tested, and whether or not technical lineage and stitching is supported for the data source. We cannot guarantee that stitching works as expected for other data sources or versions.If you use custom SQL that is not supported by the Tableau metadata API, the technical lineage might not be complete. For complete information, see the Tableau documentation on Tableau Catalog support for custom SQL and Tableau Lineage and custom SQL connections.If you use stored procedures, lineage is shown between the Tableau Data Source and the Tableau Worksheet, but the database information is missing, so stitching cannot be achieved.For stitching, you must correctly prepare the Data Catalog physical data layer.Data sourceVersionSupport for technical lineageSupport for stitchingAmazon Redshift1.2.34.1058 and newerYesYesAzure SQL serverNewest versionYesYesAzure SQL Data WarehouseNewest versionYesYesAzure Synapse AnalyticsNewest versionYesYesDremio20.0.0YesYesGoogle BigQueryNewest versionYesYesGreenplum6.10 and newerYesYesHiveQL (SQL-like statements)2.3.5 and newerYesYesIBM DB211.5 and newerYesYesOracle11g, 12c and newerYesYesPostgreSQL9.4, 9.5 and newerYesYesMicrosoft SQL Server2014, 2016 and newerYesYesMySQL5.7, 8 and newerYesYesNetezza7.2.1.0 and newerYesYesSAP HANA2.00.40 and newerYesYesSnowflakeNewest versionYesYesSpark SQL2.4.3 and newerYesYesSybase Adaptive Server Enterprise16.0 SP02 and newerYesYesTeradata15.0, 16.20.07.01 and newerYesYesTest your connectivity with the Tableau serverBefore you run the lineage harvester, you need to test your connectivity with the Tableau server.Connectivity requires authentication. The user/token that you intend to use to ingest Tableau assets must be able to authenticate to your Tableau APIs via the command line, from the server on which you intend to install and run the lineage harvester.As of October 2022, Tableau is enforcing multi-factor authentication for Tableau Cloud Admin users. However, the lineage harvester doesn’t support multi-factor authentication. Therefore, Tableau Cloud users with an Admin role must use token-based authentication. This does not affect Tableau Server users or Tableau Cloud users with an Explorer role.To ensure that you can authenticate and connect to the Tableau server, try the following procedures.Make the signin API call using a cURL command Create a JSON file called signin.json.The file should contain the following: For username/password authentication: { credentials: { name: YOUR_USER, password: YOUR_PASSWORD, site: { contentUrl: YOUR_SITE_ID } } } For personal token-based authentication: { credentials: { personalAccessTokenName: YOUR_TOKEN_NAME, personalAccessTokenSecret: YOUR_TOKEN_SECRET, site: { contentUrl: YOUR_SITE_ID } } } Test this on your machine by running the following command:curl https://YOUR_TABLEAU_URL/api/3.7/auth/signin -H Content-Type: application/json -X POST -d @signin.jsonTo test on a Windows machine, you need to:Download and install the cURL Command-Line Tool. In Windows, click Start > Run, and then enter cmd in the Run dialog box.Run the following command:curl https://YOUR_TABLEAU_URL/api/3.7/auth/signin -H Content-Type: application/json -X POST -d @signin.jsonCheck the login request that the lineage harvester sends to the Tableau serverRun the lineage harvester with the following parameters:bin/lineage-harvester load-sources -Dakka.http.client.log-unencrypted-network-bytes=1024 -Dakka.loglevel=DEBUGThis generates many logs. In the log file, search for “signin”. The entry for “signin” will resemble the following log snippet, in which the login request is shown between curly brackets {}: [DEBUG] [11/08/2021 14:03:18.411] [default-akka.actor.default-dispatcher-4] [akka.stream.Log(akka://default/system/StreamSupervisor-1)] [client-plain-text ToNet] Element: SendBytes ByteString(375 bytes) 50 4F 53 54 20 2F 61 70 69 2F 33 2E 37 2F 61 75 | POST /api/3.7/au 74 68 2F 73 69 67 6E 69 6E 20 48 54 54 50 2F 31 | th/signin HTTP/1 Verify that the request is the same as the one you used in the signin.json file.Tableau hostname, schema, and system name mappingTo achieve end-to-end lineage and stitching, Collibra Data Lineage must match the full names of data objects in a technical lineage and the full names of their corresponding assets in Data Catalog. However, there are several situations that can impede full-name matching. In such cases, you can include a hostnameMapping section in your Tableau <source ID> configuration file, to map the database, schema or system names that were returned by the Tableau APIs to the actual names of the assets in Data Catalog.This feature has been validated by several customers. It is in beta, however, because it represents a significant change in your Tableau <source ID> configuration file. The beta period gives you time to adopt the new feature, while we gather more feedback about its functionality.Mapping means changing the full name of data objects as they appear in a technical lineage, so that they match the full names of their corresponding assets in Data Catalog.The following example scenarios can impede full-name matching:Tableau can't derive the schema name. In this case, the schema name in the technical lineage is DEFAULT.You have schema-less external data sources, such as HiveQL, MySQL or Teradata. In this case, the database name in the technical lineage is also the schema name.You have a data access layer between Tableau and your external data source. In this case, Tableau might incorrectly interpret the data access layer as the database name, and the data source as the schema. You have data sources that are created based on tables from other data sources in Tableau. These data sources do not have schemas. The Tableau APIs returned a technical database or server name that is different than the real name of the database or server.This section replaces the following deprecated properties, and should not be used in combination with either of them:The databaseMapping property.The databases sub-section of the collibraSystemNames section.If you use the hostnameMapping section, you can still use the collibraSystemName property in conjunction with the files, connectors or cloudfiles sub-sections.For descriptions of these properties, go to the Tableau section in the Prepare a <source ID> configuration file topic.Example configurationsThe following configuration:Changes the found database name Test to CData.Changes the found schema name “DEFAULT” to “Jan_1_2022”.Adds the Collibra system name TV_testing.The system name must match the name you specified for the id property in the lineage harvester configuration file, including for case-sensitivity. hostnameMapping: { found_dbname=Test;found_hostname=*;found_schema=DEFAULT: { dbname: CData, schema: Jan_1_2022, dialect: spark, collibraSystemName: TV_testing } }The following configuration: For all found databases on the host abc.net, changes their names to CData.Changes the found schema name “DEFAULT” to “Jan_1_2022”. hostnameMapping: { found_dbname=*;found_hostname=abc.net;found_schema=DEFAULT: { dbname: CData, schema: Jan_1_2022, dialect: spark, } }The following configuration:Changes the found database name Test to CData .Changes the found schema name “DEFAULT” to “Jan_1_2022”. hostnameMapping: { found_dbname=Test;found_hostname=*;found_schema=DEFAULT: { dbname: CData, schema: Jan_1_2022, dialect: spark, } }The
following configuration:Changes the found database name Test to CData. hostnameMapping: { found_dbname=Test;found_hostname=*;found_schema=DEFAULT: { dbname: CData, } }Migrating Tableau assets to the new Tableau operating modelA key feature of the Collibra Data Intelligence Cloud 2022.02 release was the ability to ingest Tableau metadata in Collibra Data Catalog and synchronize the metadata using the lineage harvester. However, this new integration method was only available to customers who did not need to migrate existing Tableau assets to the new operating model. A migration script now eliminates that limitation.In this section, we provide an overview of: How to integrate Tableau metadata via the lineage harvester. How to use the lineage harvester to migrate your existing Tableau assets to the new operating model. About the Tableau migrationThis section describes the terminology and methodology for migrating your existing Tableau assets to the new Tableau operating model.TerminologyTermDescriptionTableau integration v1The process of integrating and synchronizing Tableau metadata via the Data Catalog UI, including: The Tableau assets that were created in the process.Any custom asset types, attribute types and relation types. Any customizations to the Tableau asset types. Any customizations to your Tableau assets, for example added attributes and relations.Any tags that you added to your Tableau assets. The specific Tableau ingestion results, which differ from the v2 ingestion results. Tableau integration v2The process of integrating and synchronizing Tableau metadata via the lineage harvester, including: The Tableau assets that were created in the process. The specific Tableau ingestion results, which differ from the v1 ingestion results. Migration scriptA specific set of lineage harvester commands used to migrate your custom asset types, attribute types and relation types that were created as part of Tableau integration v1.You need lineage harvester version 2022.03.0-5 or newer. We recommend that you use the newest lineage harvester.MethodologyThe following is our methodology for migrating Tableau integration v1 metadata to the new operating model. For greater detail see Overview: Tableau integration v2 and migration. The purpose of this document is to guide you through the migration of assets that were created via step 1 in the table below. That step is included here merely to present the complete context, from ingesting assets via Tableau integration v1, through migration.No.StepDetails1Integrate and synchronize Tableau metadata via Tableau integration v1.Over time, you have likely customized the Tableau asset types, created custom attribute types and relation types, and added attributes and relations to your Tableau v1 assets. When you switch to the harvester integration, you want to ensure that you won't lose any of those customizations. All manually created asset types, attribute types and relation types will be migrated.2 Integrate the same Tableau metadata, but this time via Tableau integration v2. After successful integration, you will have: A single BI Catalog domain in Collibra with custom Tableau integration v1 assets and their custom attributes and relations. A single BI Catalog domain in Collibra with Tableau integration v2 assets.The new Tableau operating model is only available in Collibra versions 2021.10 and newer.3Run the migration script.The full name of each Tableau integration v1 asset is compared to the full name of the same assets from the Tableau integration v2. When the names match, all of the custom characteristics of the v1 assets are saved to the respective v2 assets.Assets of custom v1 asset types are recreated in the specified domain.Specifically: The following elements are migrated: Your custom v1 asset types, attribute types and relation types.All assets of your custom v1 asset types. The custom attributes and relations of your custom v1 assets.Any tags that you added to your v1 assets. The following elements are ignored during the migration:All assets of out-of-the-box v1 asset types:Their custom attributes and relations, however, are migrated and saved to their respective v2 assets.With the exception of Tableau Data Entity, Tableau Report Attribute and Tableau View assets, which are also ignored, but so too are the attributes and relations of such assets.Any attribute types and relation types that are included in the operating model.4Verify the migration results.Compare your Tableau integration v2 assets to the respective Tableau integration v1 assets. Look to see that the metadata that you manually added to your integration v1 assets has been added to your integration v2 assets.5Delete your Tableau integration v1 assets and custom assets.If you've reviewed the migration results and everything looks fine, you can delete your Tableau integration v1 assets and any assets of custom asset types.Overview: Tableau integration v2 and migrationThe Tableau integration v2 enables you to harvest Tableau metadata and create new Tableau assets in Data Catalog. Collibra Data Intelligence Cloud analyzes and processes the metadata and presents it as specific asset types, retaining their original names.StepsThe following table shows the steps and prerequisites required to ingest metadata in Collibra via lineage harvester (Tableau integration v2) and run the migration script.This overview assumes that you have already ingested Tableau assets via Tableau integration v1.In the commands that you enter to run the migration, you need to specify which custom asset types, attribute types and relation types you want to migrate.StepWhat?DescriptionPrerequisites1Set up Tableau.Before you start the Tableau integration in Data Catalog, make sure that the lineage harvester can reach the Tableau metadata. Perform these tasks before you start the actual Tableau ingestion process.Because these tasks are performed outside of Collibra, it is possible that the content changes without us knowing. We strongly recommend that you carefully read the source documentation.You have a Tableau subscription.2Create a new domain.Before you can ingest Tableau metadata, you have to create a new domain or choose an existing domain to store the new Tableau assets.If you are using Collibra Data Intelligence Cloud 2021.11 or older, you have to add all Tableau attributes in the operating model to a scope and create a scoped assignment before you ingest Tableau via the lineage harvester. For complete information and step-by-step instruction, see Tableau general troubleshooting.You have a resource role with the following resource permissions:Domain: Add3Prepare the physical data layer.You prepare Data Catalog's physical data layer to enable Data Catalog to automatically stitch the Tableau assets to existing assets in Data Catalog. You have a global role with the Catalog global permission, for example, Catalog Author.You have set up the JDBC driver of your source data, for example Snowflake. You have a resource role with the following resource permissions on the Schema community:Asset > addAttribute > addDomain > addAttachment > addYou have the permissions to retrieve the metadata of the following database components through the JDBC Driver Database Metadata methods:SchemasTablesColumns4Download and install the lineage harvesterYou use the lineage harvester to trigger the creation of Tableau assets, their relations and a technical lineage in Data Catalog.You can download the lineage harvester from the Collibra Product Resource Downloads page.Your environment meets the system requirements to install and use the lineage harvester.5Prepare the lineage harvester configuration file and run the lineage harvester.You create a lineage harvester configuration file with Tableau connection information and run the lineage harvester to import the results of the Tableau integration and the technical lineage for Tableau into Data Catalog.As a result, you now have a duplicate of your Tableau metadata in Collibra.You have downloaded the lineage harvester version 2022.03 or newer.Your environment meets the system requirements to install and run the lineage harvester. You have a global role with the Catalog global permission, for example, Catalog Author.You have a global role with the Technical lineage global permission.You have a global role with the Data Stewardship Manager global permission.A resource role with the following resource permission on the community level in which you created the BI Data Catalog domain: Asset: addAttribute: addDomain: addAttachment: add6Run the migration scriptThe migration script is triggered by a lineage harvester command. You then use arguments to migrate your customized asset types and custom attribute types and relation types.You need lineage harvester version 2022.03.0-5 or newer. We recommend that you use the newest lineage harvester.Same prerequisites as for the previous step.7Verify the migration resultsCompare your Tableau integration v2 assets to the respective Tableau integration v1 assets. Look to see that the metadata that you manually added to your integration v1 assets has been added to your integration v2 assets.None8Delete your Tableau integration v1 metadata.If you've reviewed the migration results and everything looks fine, you can delete your Tableau integration v1 assets and any assets of custom asset types. You have a global role with the Catalog global permission, for example, Catalog Author.You have a resource role with the following resource permission on the community level in which you created the BI Data Catalog domain: Asset:
RemoveDomain: RemoveNaming conventionWhen you synchronize Tableau, Collibra follows a strict naming convention for the names of the new assets. Each asset has a display name and full name. The full name represents the asset path from asset to the database it belongs to. You can freely edit the display name. However, you should never edit the full name, because Data Catalog needs it for a successful migration. Changing the full name may also break the synchronization process.We highly recommend that you not edit the full names of any Tableau assets. Doing so will likely lead to errors during the migration and synchronization process.Run the migration scriptThe migration script is triggered by a lineage harvester command. You then use arguments to migrate your customized asset types and custom attribute types and relation types.PrerequisitesYou have Collibra Data Intelligence Cloud 2022.01 or newer.You have downloaded lineage harvester version 2022.03 or newer and you have the necessary system requirements to run it.You have a global role that has the Manage all resources global permission. You have a global role with the Catalog global permission, for example, Catalog Author.You have a global role with the Technical lineage global permission.You have a global role with the Data Stewardship Manager global permission.You have a resource role with the following resource permission on the community level in which you created the BI Data Catalog domain: Asset: AddAttribute: AddDomain: AddAttachment: AddYou have tested your connectivity with the Tableau server.StepsRun the following command to start the lineage harvester and trigger the migration: Windows: .\bin\lineage-harvester migrate-tableau <v1_tableau_server_asset_id> <v2_source_id>for other operating systems: ./bin/lineage-harvester migrate-tableau <v1_tableau_server_asset_id> <v2_source_id> Use the following arguments to migrate:Customized asset types: -a <customAssetTypeId>Custom attribute types: -t <customAttributeTypeId>Custom relation types: -r <customRelationTypeId>You can migrate multiple asset types, attribute types and relation types by repeating the relevant command. In the following example, two asset types are migrated, one after the other, by repeating the -a command, followed by the relevant ID of each asset type../bin/lineage-harvester migrate-tableau 7cc9f692-bbe4-467f-8ffb-f43545465fcf testtableau22 \ -a asd13io2-sda2-sdi2-jsd9-asdoi124io12 \ -a ard86co4-sea5-sc4r-hk39-kjsv9she3hs9 \ -t 3ffafa8e-029c-4d01-a3c9-1c36e43c2655 \ -r d0086c90-98e6-4782-b07a-40fcb43845a3What's next? The following elements are migrated: Your custom v1 asset types, attribute types and relation types.All assets of your custom v1 asset types. The custom attributes and relations of your custom v1 assets.Any tags that you added to your v1 assets. The following elements are ignored during the migration:All assets of out-of-the-box v1 asset types:Their custom attributes and relations, however, are migrated and saved to their respective v2 assets.With the exception of Tableau Data Entity, Tableau Report Attribute and Tableau View assets, which are also ignored, but so too are the attributes and relations of such assets.Any attribute types and relation types that are included in the operating model.You can check the progress of the migration in Activities.To refresh the Tableau integration v2 metadata, you can run the lineage harvester again using the full-sync command, or schedule jobs to run them automatically.Soft delete of your Tableau integration v1 assetsIf you've reviewed the migration results and everything looks fine, you can delete your Tableau integration v1 assets and any assets of custom asset types. You can either manually delete the assets or use a lineage harvester argument to perform a soft delete of the assets. Technically speaking, the soft delete does not delete the assets from your Collibra environment; rather, it changes the status of the assets to Obsolete. You can then create an asset filter to view all assets with the status Obsolete, and then manually delete them.PrerequisitesYou have Collibra Data Intelligence Cloud 2022.01 or newer.You have downloaded lineage harvester version 2022.03 or newer and you have the necessary system requirements to run it.You have a global role that has the Manage all resources global permission. You have a global role with the Catalog global permission, for example, Catalog Author.You have a global role with the Technical lineage global permission.You have a global role with the Data Stewardship Manager global permission.You have a resource role with the following resource permission on the community level in which you created the BI Data Catalog domain: Asset: Update StatusStepsRun the following command to start the lineage harvester and trigger the migration: Windows: .\bin\lineage-harvester migrate-tableau --delete <v1_tableau_server_asset_id> <v2_source_id>for other operating systems: ./bin/lineage-harvester migrate-tableau --delete <v1_tableau_server_asset_id> <v2_source_id>./bin/lineage-harvester migrate-tableau --delete 7cc9f692-bbe4-467f-8ffb-f43545465fcf testtableau22You can check the progress of the migration in Activities.Working with Power BIThis section addresses tasks and concepts that can be of interest to Collibra Admins who are working with Power BI.Supported data sources in Power BIPower BI is business intelligence software that can integrate with various data sources. When you ingest Power BI metadata, Collibra Data Lineage tries to automatically stitch this metadata to data sources registered in Data Catalog. It also creates a technical lineage that shows where metadata is used and how it transforms.The following table shows the supported data source types in Power BI that have been tested. If a data source is identified as certified, it means that the data source: Is ingested in Data Catalog as a Power BI Data Model asset. Is shown in the technical lineage and stitching is possible. When selecting your data sources in Power BI, the data source types under the following tabs require the specified connection types:The Files tab refers to Parquet files. Connect via the URL to the files.All data source types under Database require a JDBC connection.For Power Platform, you need a live connection.The three data source types under the Azure tab require either a JDBC or ODBC connection.All data source types under Other require an ODBC connection.The connections types are mentioned in the following table, for each supported data source type.Although the following data sources have been tested extensively, there still may be some issues caused by unsupported elements within the data source or limitations in the Power BI integration process.Collibra Data Lineage can connect only to datasets that are hosted by Power BI. It cannot connect to externally hosted datasets or models. For complete information, consult Microsoft's Power BI documentation.Power BI data sourceConnection typeCertified ?Amazon RedshiftJDBCYesApache HiveODBCYesAzure Analysis ServicesODBCYes JDBCNo Via import, technical lineage is possible only from the data set to the report. Stitching is not supported. Via direct connection, technical lineage and stitching are not supported. Azure DatabricksJDBC, ODBCYesCollibra Data Lineage supports the following functions: Databricks.CatalogsDatabricks.ContentsDatabricks.QueryFor Databricks.Query, the ingestion success rate is high, but it's not 100%. Azure Synapse AnalyticsJDBCYesDremioJDBCNoDremio data sources are ingested as Power BI Data Model assets and shown in the technical lineage, but stitching is not possible.Google BigQueryJDBCYesImpalaODBCYesMySQLJDBCNoMySQL data sources are ingested as Power BI Data Model assets, but not shown in the technical lineage and stitching is not possible.NetezzaODBCYesODBCODBCYesYou need to use a Power BI <source ID> configuration file to provide the true system names of the ODBC databases in Power BI. For more information, see Providing ODBC database names in Power BI.OracleJDBC, ODBCYesIf you connect via ODBC: Oracle Views are supported.In most cases, you need to use a Power BI <source ID> configuration file for database mapping, as the database name returned by the API differs from the true database name.Parquet fileURL to the filesNoSAP HANAODBCYesSnowflakeJDBCYesSQL ServerJDBCYesSybaseJDBCYesPower BI with measures only, no columnsJDBCYesPower Platform > Power BI data setLive connectionYesSupported only if the data set is from one of these supported data sources.We cannot guarantee that other data sources in Power BI can be stitched successfully.Power BI workspacesPower BI workspaces represent the most used metadata in Power BI. It contains for example reports and data sets. If you want a full ingestion, you have to make sure that the lineage harvester can access all metadata in your Power BI workspaces. Consider the following:Depending on the authentication type, you must have specific roles and permissions to access the metadata in the Power BI workspaces. You can only fully ingest new Power BI workspaces. This means that classic workspaces and My Workspace in Power BI are not supported.Use the Power BI <source ID>_filter configuration file to filter on Power BI workspaces.To ingest Power BI dataflows:You need access to the Power BI environment in which the data flow is stored.The data set in the data flow must exist in a premium workspace.Filtering Power BI workspacesBy default, the lineage harvester accesses the metadata of all Power BI workspaces. If you don't use filtering, the metadata of all workspaces is uploaded to the Collibra Data Lineage service instance and ingested in Data Catalog. Filtering allows you to
process and ingest only the metadata that matters most to you. Inclusion and exclusion filtersYou can use the following inclusion filters to ingest only the Power BI capacities and workspaces you specify: capacityNamescapacityIdsworkspaceNamesworkspaceIds You can use the following exclusion filters to ingest all workspaces except for those you specify: excludeWorkspaceNamesexcludeWorkspaceIdsWildcards are supported for the capacityNames, workspaceNames and excludeWorkspaceNames properties.You can combine inclusion and exclusion filters in the same <source ID> configuration file.Show me an exampleIn this example, the metadata from all workspaces is uploaded to the Collibra Data Lineage service instance. Then, the metadata in all of the workspaces in CapacityABC, except for Workspace1, is ingested in Data Catalog. { filters:[{ domainId:07d5d441-b9f8-4add-982f-d7a5d6ba06cc, description:Domain for BICatalogJBTest1, capacityNames:[CapacityABC], excludeWorkspaceNames:[Workspace1] }] } In the Power BI <source ID> configuration file, you can also specify the domain (or domains) in which you want to ingest, to help structure your Power BI assets in Collibra.Two filtering methodsThe filter properties that you use in your Power BI <source ID> configuration file determine whether filtering is done by the lineage harvester or done on the Collibra Data Lineage service instance. The following table highlights the advantages, limitations and configuration considerations of the two methods.Filtering methodDescriptionBy the lineage harvesterThe lineage harvester accesses only the workspaces specified in your <source ID> configuration file, and sends metadata from only those workspaces to the Collibra Data Lineage service instance for processing and ingestion in Data Catalog.AdvantagesFaster integration testing, as you can filter on a single workspace. Enhanced data security and privacy by excluding workspaces that contain sensitive information. Metadata from workspaces that are filtered out by the lineage harvester is not sent to the Collibra Data Lineage service instance for processing.Improve processing times by excluding workspaces dedicated to, for example, development and testing. This is especially beneficial for organizations with more than 50,000 workspaces. Limitations For this to work as described, you can only use the workspaceIds property. None of the following properties can be included anywhere in your <source ID> configuration file: capacityNamescapacityIdsworkspaceNamesexcludeWorkspaceNamesexcludeWorkspaceIdsYou cannot use wildcards with the workspaceIds property.Show me an example setup for the <source ID> configuration file { filters:[{ domainId:b5d02896-8a79-49a3-bab0-12a7b37f45c6, description:Any description, for your internal use, workspaceIds:[ee23f25b-0ed9-490a-9cca-8a0e8886173e, 8e86429d-f985-4a81-818d-8e05ac256a74] }] } On the Collibra Data Lineage service instanceThe lineage harvester accesses all workspaces and filtering is carried only after knowing the names and IDs of all workspaces and capacties. As a result, the raw metadata is accessed by the lineage harvester, but only the filtered metadata is processed on the Collibra Data Lineage service instance and ingested in Data Catalog.Advantages Greater choice of filtering options. You can use any of the following properties:capacityNamescapacityIdsworkspaceNamesexcludeWorkspaceNamesexcludeWorkspaceIdsYou can use wildcards with the following properties:capacityNamesworkspaceNamesexcludeWorkspaceNames Limitations Longer processing times, especially if you have tens of thousands of workspaces.Although you can limit which workspaces are processed and ingested, you can't limit which workspaces are uploaded to the Collibra Data Lineage service instance. The raw metadata from all workspaces is uploaded.You can use the deleteRawMetadataAfterProcessing property in your lineage harvester configuration file, to automatically delete the uploaded raw metadata that you don't want to ingest in Data Catalog.Show me an example setup for the <source ID> configuration file { filters:[{ domainId:07d5d441-b9f8-4add-982f-d7a5d6ba06cc, decription:Domain for BICatalogJBTest1, capacityNames:[CapacityABC], excludeWorkspaceNames:[Workspace1] }] } The metadata of inactive and personal workspaces is not harvested or uploaded to the Collibra Data Lineage service instance. An inactive workspace is one for which no reports or dashboards have been viewed in the past 60 days. My workspace is the personal workspace for any Power BI customer to work with their own, personal content.Best practice: Filter on a capacityYou can filter on a capacity to ingest the metadata from all workspaces in that capacity. Let's say, for example, that you have 50,000 workspaces but you only want to ingest metadata from the workspaces related to a specific department in your organization. You could specify each of the relevant workspaces in the configuration file, but that could be tedious if there are lots of workspaces. Furthermore, if someone in your organization creates a new workspace, it will have to be added to your configuration file. Instead, you can filter on a capacity. Then, when a new workspace is created, ensure that it is added to the department' s capacity and metadata from that workspace will be automatically ingested, without having to update the configuration file.Workspace statesOn Power BI Workspace asset pages, you can include the attribute type State, to show the state of ingested Power BI workspaces, for example Active, Orphaned or Deleted. To do so, you have to edit the global assignment of the Power BI Workspace asset type and assign the attribute type State.For complete information on Power BI workspaces and possible states, see the Microsoft Power BI documentation.If you only want to see Power BI workspaces that have the state Active:Ensure that the attribute type State is assigned to the Power BI Workspace asset type via the global assignment.Go to the Global view, and then create an advance filter and filter by the following clauses:Asset type equals Power BI WorkspaceCharacteristic State equals Active.Deleted workspacesIf you delete a Power BI workspace, the workspace is maintained for a 90-day grace period, during which a Power BI administrator can restore the workspace. During the grace period, the workspace has the state Deleted. When you ingest Power BI metadata in Data Catalog, this deleted workspace is ingested. When the grace period elapses, the state of the workspace becomes Removing, for a short time, while it is being permanently removed. The state then becomes Not found. At this point, as the workspace no longer exists in Power BI, the Power BI Workspace asset in Collibra will also be deleted upon the next synchronization.If a workspace becomes inactive, meaning no reports or dashboards have been viewed in the past 60 days, it is excluded from the ingestion.Why are deleted workspaces ingested?Let's image that you ingest a Power BI workspace with the Active state and that over time, you add comments, tags and characteristics to the asset in Collibra. Now let's imagine that the workspace is deleted in Power BI and we do not ingest the deleted workspace. In this case, the Power BI Workspace asset in Collibra is deleted upon the next synchronization. But what if the Power BI administrator decides, during the 90-day grace period, to restore the workspace in Power BI? Upon the next synchronization, a new Power BI Workspace asset is created in Collibra, but all of the comments, tags and characteristics that were part of the deleted asset are lost.By ingesting deleted Power BI workspaces, we safeguard against losing any of the additional information on the Power BI Workspace asset, in case a Power BI administrator decides to restore a workspace during the grace period.Show DAX calculations on Power BI Column asset pagesData Analysis Expressions (DAX) is a programming language that is used in Power BI for creating calculated columns, measures and custom tables.Power BI columns and tables that are derived from DAX are shown in the technical lineage. However, the Collibra Data Lineage service instances are unable to parse DAX. Therefore, stitching between calculated columns in the technical lineage and the corresponding Power BI Column assets in Data Catalog is not possible.You can, however, show DAX calculations for calculated columns and measures on Power BI Column asset pages. To do so, you only have to ensure that the Calculation Rule attribute type is part of the global assignment of the Power BI Column asset type.All elements in the DAX, even comments for example, are included and shown in the Calculation Rule attribute.The following additional information on Power BI Column asset pages can also help you interpret the lineage: If a calculated column is a measure, the Role in Report attribute has the value Measure.The Technical Data Type attribute indicates the type of column, for example String or Number.Add the Calculation Rule attribute type to the global assignmentTo show DAX calculations, the Calculation Rule attribute type must be part of the global assignment of the Power BI Column asset type. By default, it is not included.PrerequisitesYou have a global role that has the System administration global permission.Steps Open the Power BI Column asset type. On the main menu, click , and then click Settings.The Collibra settings page opens.Click Operating Model.The operating model settings appear on the Asset types tab page.In the overview of asset types, click Power BI Column.The Asset type editor opens. In the tab pane, click Global assignment.If the Calculation Rule attribute type already exists in the table, you don't have to do anything more. However, as described in step 6, you might want to ensure that the Min. option is set to 1, to make the
attribute type automatically appear on the asset page.Above the table, to the right, click Edit.Above the table, to the right, click Add characteristic.The Add a Characteristic dialog box appears.Search for and click Calculation Rule.The Calculation Rule attribute type appears at the bottom of the table.If required, edit the minimum or maximum number of occurrences of the characteristic. OptionDescriptionMin.The minimum number of occurrences of the characteristic. Set this option to 1, to make the attribute type automatically appear on the asset page.Max.The maximum number of occurrences that you can assign to an asset type.Leave this option empty if you don't want a limit to the maximum number of occurrences.Above the table, to the right, click Save.Soft delete of Missing from source assetsWhen you integrate Tableau, data objects in the data source are ingested as assets in Data Catalog. But what if, during synchronization, some of the data objects can no longer be found in the data source because they were moved or deleted? In that case, the status of the corresponding assets of the missing data objects becomes Missing from source. We refer to this asset status evolution as a soft delete. If you want, you can then run the Delete Missing Assets workflow to permanently delete the assets, or manually delete them.If, for example, you remove the permissions to access a certain data object and then run the lineage harvester, the status of the corresponding asset in Data Catalog changes to “Missing from source”. If you then add back the permissions to the data object and run the lineage harvester, the status of the asset will revert to the status it had before Missing from source.Delete the Missing from source assetsThe Delete Missing Assets workflow enables you to delete all assets with the status Missing from source. You can download the workflow file from the Collibra Developer Portal and deploy it in your Collibra environment.Be sure to review assets before you delete them, as they might contain important information that will also be deleted.If you manually delete assets that are represented in a technical lineage, they are still shown in the technical lineage. To delete the corresponding assets of missing data objects and also delete the assets from the technical lineage, you have to:Run the lineage harvester, or wait for your scheduled synchronization job to run.The technical lineage is refreshed and the status of the assets in Data Catalog becomes “Missing from source”.Run a workflow to delete all assets with the status “Missing from source”, or manually delete them.Broken stitching and possible solutionsThis topic provides some examples where stitching is broken, and some advice on how to achieve stitching.For a more in-depth examination of stitching, how it works, and what causes stitching to break, go to Stitching for BI tool integrations.This is relevant for MicroStrategy, Power BI, SSRS-PBRS and Tableau. Collibra Data Lineage currently does not offer stitching for Looker assets.The technical lineage graph without stitchingGo to the relevant asset page and click the Technical Lineage tab. There will most likely be three nodes in the technical lineage graph. If you have integrated MicroStrategy, there will be four nodes. Instead of the BI data model node, there will be two nodes, one representing MicroStrategy Attributes, the other representing MicroStrategy Facts. There could also be four groups if you are integrating SQL Server Reporting Services (SSRS) or Power BI Report Server (PBRS) and have a shared data set.No.NodeDescriptionExternal databaseThis node represents the table from the database you used to create the report in your BI tool. This node is a prerequisite for stitching. If it is not shown in the technical lineage, stitching is not possible.BI data modelThis node represents the data set that you used to create the report in your BI tool. This node is always stitched because Collibra Data Lineage knows the full name of the data set in your BI tool, and it creates the corresponding BI Data Set asset with the exact same name. This is referred to as BI stitching.BI reportThis node represents the report you created in your BI tool. It is always part of the technical lineage. Like the BI data model node, this node is always stitched because Collibra Data Lineage knows the full name of the report in your BI tool, and it creates the corresponding BI Report asset with the exact same name.Example reasons for broken stitching and possible solutionsHere are a few common examples of broken stitching and possible solutions for achieving stitching.Power BI: database names don't matchFirst, let's look at the name of an unstitched database table in the technical lineage graph:MODEL.PRODUCT CATEGORY [ADVENTUREWORKS::database]We can identify the following:The database name: ADVENTUREWORKSThe schema name: MODELThe table name: PRODUCT CATEGORYNow let's find the table in the Stitching tab:Click the Settings tab.Click Show status.Click the Stitching tab.The Stitching tab shows a list of all tables that exist in Data Catalog and on the Collibra Data Lineage service instance.Use the Search field to find the unstitched database table PRODUCT CATEGORY.In the Found in column, the value Technical Lineage confirms what we already know: the table was found only in the technical lineage. An exactly matching asset was not identified in Collibra. Now try to find a likely match. Look for a table that has the same name and the value Catalog in the Found in column.The table shown in the following image looks like a match. The schema and table names match exactly; only the database names differ. To achieve stitching:Prepare the database mapping section of your Power BI <source ID> configuration file as follows: { found_dbname=adventrueworks;found_hostname=*: { dbname: aas-model, } } Run the lineage harvester again.Stitching is achievedTableau: database names don't matchFirst, let's look at the name of name of the unstitched database table in the technical lineage graph:DBADMIN.TESTING1 [111.93.0.181::database]We can identify the following:The database name: 111.93.0.181The schema name: DBADMINThe table name: TESTING1Now let's find the table in the Stitching tab:Click the Settings tab.Click Show status.Click the Stitching tab.The Stitching tab shows a list of all tables that exist in Data Catalog and on the Collibra Data Lineage service instance.Use the Search field to find the unstitched database table TESTING1.In the Found in column, the value Technical Lineage confirms what we already know: the table was found only in the technical lineage. An exactly matching asset was not identified in Collibra. Now try to find a likely match. Because DBADMIN.TESTING1 [111.93.0.181::database] was found only in the technical lineage, we know the match we're looking for must have the value Catalog in the Found in column.The table shown in the following image looks like a match. The schema and table names match exactly; only the database names differ. To achieve stitching:Configure the databaseMapping property in your Tableau <source ID> configuration file as follows: { databaseMapping: { 111.93.0.181: oracle-db, } } Run the lineage harvester again.Stitching is achieved Power BI: Unsupported Power Query M function or calculated columnsCollibra Data Lineage does not support DAX. Therefore, calculated columns result in missing lineage, as do unsupported Power Query M function.In this example, notice that the database node, which should be situated to the left of the BI data model node, is missing from the technical lineage graph:We can identify that these nodes represent, respectively: A Power BI data set table named al_test NewTable_jdbcA Power BI report named al_jdbc_mysql_powerbi_27MarThe same scenario can surface for Tableau if, for example, you do not have sufficient permission, or if you have stored procedures or custom SQL that is not supported by Tableau Catalog.Examine the BI data set table, to see if you can identify a problemClick the Settings tab.Click Show status.The Sources tab shows a list of all data sources on the Collibra Data Lineage service instance.Click one or more checkboxes, to show the transformations and source code fragments for specific data sources, or clear all checkboxes, to show for all data sources.Transformations and source code fragments are shown in the transformations table below. We can quickly identify that there was an analyze error, because the MySQL.Database function is not supported.To achieve stitching, ensure that your queries only include supported Power Query M functions. We also encourage you to create an Ideation ticket via the Collibra Integrations Ideation Portal, if you'd like to request support for a particular function.Synchronization: Continue on errorThis feature allows for continuous processing of an import or synchronization job, even if one or more commands fail. Before the release of this feature, calls to the Import and Sync APIs either fully succeed or fully fail. You might wait for a lengthy import or synchronization job to complete, only to have it fail completely because of a single error.Now, commands that have validation errors and those that failed to execute are skipped, allowing the processing of valid commands to continue until the job is complete or until an error threshold is met. The error threshold is determined by the Number of failed commands before stopping import job setting in Collibra Console. The default value is 100.This feature is relevant for the full-sync and sync commands.For more information, see the Import API Documentation in the Collibra Developer Portal.Benefits of this feature Errors are skipped and valid commands are processed, instead of immediate and complete failure of the job. All errors are identified at once, reducing the chances of running a job multiple times, only to discover
additional errors. Complete error information, including the resource identifier, to quickly identify the source and reason for errors. Job resultsThe following table shows the four possible job results for an import or synchronization job:Job resultDescriptionSuccessThe job was completed without errors.Completed With ErrorErrors were detected, but the error threshold was not reached and the job was completed.AbortedThe error threshold was exceeded, at which point, the job was stopped. All commands that were executed before the stoppage stay committed.FailureThe job was stopped and any executed commands were rolled back.List of errorsYou can view the results of a synchronization job in the Activities list.When you click Results in the relevant row, a dialog box opens, showing a general summary of the job. For jobs with the job result Completed With Error, Aborted, or Failure, the dialog box includes a link to a list of errors. The list of errors includes the following information: The resource type. The index number. The resource identifier. An error message. Business usersThis section caters primarily to the following business-focused Collibra Data Lineage customers:Types of business-focused rolesWhat you want from Collibra Data LineageGovernance roles: Data Governance ConsultantData Governance ManagerData Intelligence DirectorData Quality OfficerData StewardEnterprise Data Steward Easily find and view certified reports.View diagrams with Business Summary Lineage.Assign business terms to BI assets.Tell a story about the data. Analyst roles: Business AnalystData AnalystData ScientistQuantitative User ResearcherOperations ManagerProgram ManagerProduct ManagerProject Manager Use dashboards, for an overall view of the most important information.Certify and view reports.Shop for datasets and reports.Check technical lineage for data set life cycles.Check for missing data and request new integrations, if necessary.Identify data owners. Technical lineage Automatic stitching for technical lineage BI tool business logic Technical lineage and stitching for BI tool integrations Business Summary Lineage Differences between Technical lineage and diagrams with Business Summary Lineage BI integration concepts Technical lineageTechnical lineage is a detailed lineage graph that shows how data transforms and flows from source to destination across its entire lifecycle. It enables you to easily discover where tables and columns are used and how they relate to each other. You can view a technical lineage for the following asset types:TableColumnLooker LookMicroStrategy ReportMicroStrategy TableMicroStrategy ColumnPower BI ReportPower BI TablePower BI ColumnSSRS ReportSSRS TableSSRS ColumnTableau WorksheetTableau Data AttributeDuring the technical lineage process, relations of the type Data Element targets / sources Data Element are automatically created: Between data objects in your data source and assets from registered data sources. Between ingested assets from BI sources and Data Catalog assets from registered data sources. Data objectsYou can see two types of data objects in your technical lineage:Data objects from your data source that are stitched to assets in Data Catalog and for which you created the technical lineage. These assets have a yellow background. Other objects, for example temporary tables and columns, that are collected from your data sources, but are not stitched to assets in Data Catalog. These objects have a gray background. Collibra Data Lineage:Does not support stitching for Looker assets.Supports stitching for MicroStrategy assets only if you use the new integration method, which supports the latest MicroStrategy APIs.Exporting technical lineage informationYou can export technical lineage information and transformation details to formats such as PDF and PNG. For complete information, go to Export the technical lineage information and Export technical lineage transformation details.Naming conventionWhen you create a technical lineage, Data Catalog follows a strict naming convention for the full names of assets. Each asset has a display name and full name. You can freely edit the display name. However, do not edit the full name, because Data Catalog needs it to refresh data sources for which you created the technical lineage and to refresh the technical lineage itself.When you prepare the Data Catalog physical data layer and the configuration file, you should always use the full name as the name of the corresponding data object in your data source for the following assets:SystemDatabaseSchemaEditing the full name of the Schema, Database and System assets may lead to errors during the technical lineage creation process.Automatic stitching for technical lineageStitching is a process that creates relations between assets and data objects representing the same data source. More specifically, stitching creates relations between the following assets:The assets that were created when you prepared Data Catalog's physical data layer for a data source; andThe data objects in the same data source for which you created a technical lineage and that represent the assets in Data Catalog.For Collibra Data Lineage to stitch the assets to the data objects, you must prepare the Data Catalog physical data layer to create the database > schema > table > column or system > database > schema > table > column hierarchy. Note that when a table in your data source has a schema and a file as its parents, Collibra Data Lineage uses the schema as the parent for stitching. When the data sources are scanned, Collibra Data Lineage service automatically creates and pushes new relations of the type Data Element targets / sources Data Element: Between data objects in your data source and assets from registered data sources. Between ingested assets from BI sources and Data Catalog assets from registered data sources. If you don't prepare the Data Catalog physical data layer, Data Catalog creates a technical lineage without stitching. As a result, when you click the Technical lineage tab on any Column, Table, Tableau Data Attribute, Power BI Column or SSRS Column asset page, you get the message The current asset doesn't have a technical lineage yet. However, you can use the Browse tab pane to view the technical lineage of data objects in data sources for which you created the technical lineage.For a more in-depth look at BI tool stitching, specifically the relationship between technical lineage and stitching, what causes stitching to break, and how to achieve stitching: go to the following topics:Stitching for BI tool integrationsBroken stitching and possible solutionsStitching issuesTo stitch assets in Data Catalog to data objects collected by the lineage harvester, the Collibra Data Lineage service looks at the full path of the assets in Data Catalog and the full path of data objects in your data source. Stitching is based on the full path of objects with the following structure: (system) > database > schema > table > column. If the full paths match, the Collibra Data Lineage automatically stitches the data objects to the existing assets in Data Catalog. To indicate this, the assets have a yellow background in the technical lineage graph. Note that in Collibra, full paths are case-sensitive. If the full path of an asset in Data Catalog does not match (including for case-sensitivity) the full path of a data object in your data source, Collibra Data Lineage cannot stitch them. To indicate this, the data objects have a gray background in your technical lineage graph. To fix stitching issues, you must check the full path of the assets in Data Catalog and make sure they match the full path of the data objects that are shown in the technical lineage graph. If you change the full path, make sure to run the lineage harvester again. Note that in Collibra, full paths are case-sensitive. Collibra Data Lineage:Does not support stitching for Looker assets.Supports stitching for MicroStrategy assets only if you use the new integration method, which supports the latest MicroStrategy APIs.You can use the Stitching tab page to easily find the full path of assets in Data Catalog and data objects that were collected by the lineage harvester. The Stitching tab page also shows an overview of all assets and data objects that are stitched successfully. BI tool business logicBI tool business users usually work with BI reports to make business decisions. Collibra Data Lineage offers BI tool business users several advantages:Easily find certified BI tool content.Shop for reports.Find where content is stored in your BI tool.Trace BI tool data to its sources.Get information about a BI report in a single location.Due to limitations of the Looker REST API, Data Catalog cannot stitch Looker assets and corresponding assets in Data Catalog. The Looker REST API does not provide transformations in Looker that are needed for stitching.BI asset pagesDepending on the asset type, the asset page shows different information ingested from your BI tool. For complete information, go to BI tool operating models.You can find a specific asset pages by searching in Data Marketplace or by looking in the Data Catalog BI domain in which you ingested the metadata.DetailsAn asset page contains attributes and relations to other assets. This information is synchronized from your BI tool. You can, however, add additional characteristics, tags or comments directly via the asset page.If you want to use a report, you can add it to the Data Basket and check it out.The following Looker Look asset shows in which Looker Folder it is stored, in which Looker Dashboard it is shown, which Looker Tiles it uses and which Looker Queries it groups. This asset has a number of attributes that
give more information about the Looker Look.Business diagramsDiagrams is a feature that allows you to interact with assets based on their relations in an easy-to-read diagram. Diagrams help you to quickly understand how assets are related. As such, the diagram can show a high-level presentation of a data set or report. If the BI assets are stitched to registered assets in Data Catalog, you can also see the stitching results in the diagram.For each supported BI tool, we include the JSON code and instruction on how to create a diagram view of the BI tool operating model in your Collibra environment. For complete information, go to BI tool operating models, select your BI tool, and then scroll down to the section Create an operating model diagram view. The following diagram shows the Customer Sales Insights Tableau Workbook, which is stored in the Internet Sales Insights Tableau Project. The Tableau Workbook contains Tableau Report Attributes that have the CustomerSalesReporting Tableau Data Source as source. This Tableau Data Source is stitched to the CustomerSalesReporting Table asset in the SQL Server Cloud data source.Report viewsCollibra Data Lineage enables you to find all ingested BI asset types in a single location.In the Reports tab page in Data Catalog you can see an overview of all BI Report assets and their children. Optionally, you can create a view with a filter to only show, for example, Tableau assets. This is useful if you quickly want to see all reports or if you want find specific reports, for example certified reports or the most frequented reports.Technical lineage and stitching for BI tool integrationsBI tools, such as Power BI and Tableau, allow you to build reports that help you visualize and understand your data. To trust the data in your report, it's essential to know where the data came from. Collibra Data Lineage allows you to create a technical lineage, to trace the data from your data sources to your reports. Stitching then creates relations between the data objects in your technical lineage and the corresponding assets in Data Catalog, to give you a complete picture of your data landscape and all critical metadata.In this topic, we examine the relationship between technical lineage and stitching.This topic applies to MicroStrategy, Power BI, SSRS-PBRS and Tableau. Collibra Data Lineage currently does not offer stitching for Looker assets.For a more technical perspective, see Technical overview of BI tool lineage and Broken stitching and possible solutions.Stitching: The bridge between ingestion and technical lineageKeep in mind that metadata ingestion (which results in the creation of assets in Collibra) and technical lineage are separate and independent concepts. The single, seamless process of integrating a BI tool for the purpose of technical lineage could lead one to think otherwise.A technical lineage illustrates the flow of data in your external data sources. It does not inherently tell you anything about your assets in Collibra. The bridge between the metadata you ingest as assets in Data Catalog and the technical lineage, is stitching. As it concerns a technical lineage graph, stitching or the lack of stitching is reflected only in the color of the nodes in the technical lineage. A yellow node indicates stitching. Specifically:There is an asset in Collibra with a full name that exactly matches the data object in the technical lineage.A relation of the type Data Element targets / sources Data Element is created between the asset and the data object, and shown on the asset page.In the Stitching tab, the Found In column indicates that the database table was found in both Data Catalog and the technical lineage.A gray node indicates a lack of stitching. There is no asset in Data Catalog with a full name that exactly matches the name of the data object.In the Stitching tab, the Found In column indicates that the database table was found only in the technical lineage.If the database node is missing from the technical lineage graph, we refer to this as missing stitching. This can happen if, for example, your BI tool has limited support for custom SQL, or if your integration includes a data source that is not yet supported by Collibra Data Lineage. In these situations, the relations required to recognize the database are not exposed.If you can't view a technical lineage because you lack the permissions, you can still identify stitching by viewing a diagram. A relation of the type Data Element targets / sources Data Element between, for example, a Tableau Data Attribute asset and Column asset in a diagram, indicates stitching.Full path, full name matchingWhen you integrate your BI tool, the full names of the assets that are created in Data Catalog reflect the full paths (also considered the full names) of the corresponding data objects in the external data source. The full paths to data objects follow this hierarchy: (system name) > database name > schema name > table name > column nameThe system name is only relevant if you specify one as part of your pre-integration preparation. For complete information, go to Prepare the Data Catalog physical data layer.To stitch assets in Data Catalog to data objects in the technical lineage, Collibra Data Lineage looks at the full names of assets in Data Catalog and the full names of data objects in your data source, which figure in the technical lineage. If there is an exact match in the full names, stitching is achieved.The full path represents the full name of an asset, not the display name. As such, you can change the display name of an asset without breaking stitching, but if you change the full name of an asset, and it no longer exactly matches the full name of the corresponding data object, stitching will break.If an ingestion job was successful, and it's true that the full names of the assets in Data Catalog are taken directly from the full names of the corresponding data objects, then how is it possible that the full names don't match? The possibilities are addressed in the following section.What causes stitching to break?The following scenarios result in a lack of stitching:ScenarioWhy stitching breaksDuring integration of your BI tool, the API returns a technical name, IP address, or hostname of the database, instead of the true name of the database.The database name returned by the API doesn't match the name of the Database asset you created when you prepared the Data Catalog physical data layer.You have registered a schema-less data source, for example HiveQL, MySQL or Teradata.The full names of assets don't match because the full path hierarchy is altered because of the lack of a schema name.See an exampleLet’s say you ingest a HiveQL data source via Edge. Note that Edge gives the name “CDATA” for the database. The full path to a column is something like:Hive_123 (system) > CDATA (database) > Hive_ABC (schema) > Table > ColumnBecause HiveQL is database-less, the value that you give for the database property in your configuration file is used as the schema name in the technical lineage, and the value you give for collibraSystemName is used as the database name. But if useCollibraSystemName is set to true, then the value of collibraSystemName is also used as the system name. In that case, in the full path to the column, the system name and the database name are the same:Hive_123 (system) > Hive_123 (database) > Hive_ABC (schema) > Table > Column Notice the mismatch between the database names.The externalDbName property tells the lineage harvester to use the value that you specify here for the database name in the technical lineage, specifically CDATA”. This ensures that the full paths match and stitching is preserved.You haven't prepared the Data Catalog physical data layer, or did so incompletely or erroneously. The database name returned by the API doesn't match the name of the Database asset you created when you prepared the Data Catalog physical data layer.The name of the System asset you created doesn't match the name of the system of the data source that you register, as specified in the configuration file.You forgot to create the required relation between the Database asset and the Schema asset that was created when you registered your data source.A database query includes a function or query that Collibra Data Lineage does not support.The relations required to recognize the database are not exposed, resulting in missing stitching.You experience a rare exception, for example, SAP label names v. technical names When connecting to an SAP HANA data source, some BI tools use the label name instead of the technical name. This can result in a mismatch between the name of the data source in the technical lineage and the Database asset in Collibra. Creating the technical lineageLet's start with a lifehack: create the technical lineage without giving any thought to stitching. Specifically, prepare your source ID configuration file as you want, for filtering or to specify a system name, but don't worry about database mapping. Run the lineage harvester and analyze the technical lineage, to see what the APIs return for the database names. You can then set up database mapping in your source ID file and run the harvester again.What you've done so far You've pulled in data from a data source to your BI tool, and with that data set, you've created a report.You've either:Prepared a lineage harvester configuration file and run the lineage harvester.Added the relevant Edge capability and run the Edge job.You now have: A technical lineage that shows the flow of data from the data source to your BI tool. Assets in Data Catalog that represent the data objects in your data source. Among these assets are: Assets that represent the data set you used to create the report in your BI tool. These are assets of child asset types of the BI Data Model asset type, for example Power BI Data Model and
Tableau Data Model assets. Assets that represent the report in your BI tool. These are assets of child asset types of the BI Report asset type, for example Power BI Report and Tableau Report assets. Analyze the technical lineageGo to the asset page of your BI Data Model asset and click the Technical Lineage tab. As shown in the following image, there will most likely be three nodes or groupings of nodes: The external database.The BI data model.The BI report. The first thing we notice is that the database node has a gray background and the other two have a yellow background. The yellow nodes represent BI assets and data objects. As such, we say that this part of the technical lineage graph depicts BI lineage.Ultimately, what we want is for all three nodes to have the yellow background. Technically speaking, that means:Lineage is confirmed upstream of the BI lineage.The data sources that feed into the database node are shown. Let's examine more closely these three nodes.If you are integrating MicroStrategy, there will be four groups of nodes. In reference to the previous image, the BI data model node will consist of two groups nodes, one representing MicroStrategy Attributes and one representing MicroStrategy Facts. There could also be four groups if you are integrating SQL Server Reporting Services (SSRS) or Power BI Report Server (PBRS) and have a shared data set.The external database This node represents the table from the database you used to create the report in your BI tool. It is returned by the API and is shown in the technical lineage, as long as: You have the required roles and permissions in your BI tool, to access the data in your data sources. For example, in Tableau, you need certain roles and permissions to access external data objects.There are no unsupported custom SQL transformations or functions.No errors have caused the integration to fail. By the fact of its presence in the technical lineage, we know that the lineage harvester collected the source code from the BI tool and identified the flow of data from this data source to the BI data model. This node is a prerequisite for stitching. If it is not shown in the technical lineage, stitching is not possible.The node might be yellow if you previously ingested metadata in Data Catalog that matches the database tables used in your dataset.The gray background indicates that there might be a Table asset in Collibra that corresponds with this database table, but their full names do not exactly match. Look closely at the names of these nodes, to correctly identify if the nodes represent data objects from the data source or from your BI tool. In this example, you can tell by the names that the two yellow nodes are the BI data set and BI report nodes. When you view a technical lineage, it could be that the database and BI data set are stitched, and the BI report node does not appear in the technical lineage. This could be the case if you're viewing the lineage at the column level, and the attribute that the column represents is not used in the report. At first glance, one might incorrectly think that the database node, which is essential for stitching, is not shown.The BI data model This node represents the data set that you used to create the report in your BI tool. It will always be shown in the technical lineage, because it is the target of the database table and the source of the BI report.The yellow background indicates that the name of the BI Data Model asset in Data Catalog matches exactly the name of this data set in the technical lineage.This node is always stitched because Collibra Data Lineage knows the full name of the data set in your BI tool, and it creates the corresponding BI Data Model asset with the exact same name. This is referred to as BI stitching.The BI report This node (or grouping of nodes) represents the report you created in your BI tool. It is always part of the technical lineage.Like the BI data model node, this node is always stitched because Collibra Data Lineage knows the full name of the report in your BI tool, and it creates the corresponding BI Report asset with the exact same name.While the BI report node is always part of the technical lineage, it might not initially be visible when you view the technical lineage. If, for example, you're viewing the lineage at the column level, and the attribute that the column represents is not used in the report, there will be no arrow leading to the report node in the technical lineage. In this case, right-click on the data model node and click Table lineage to pull back and view the table-level lineage. The BI report node will appear and you will see which columns/data attributes are used in the report.How to achieve stitchingLet's have a look at a typical database mismatching scenario. First, let's look at the name of an unstitched database table in the technical lineage graph:MODEL.PRODUCT CATEGORY [ADVENTUREWORKS::database]We can identify the following:The database name: ADVENTUREWORKSThe schema name: MODELThe table name: PRODUCT CATEGORYNow let's find the table in the Stitching tab:Click the Settings tab.Click Show status.Click the Stitching tab.The Stitching tab shows a list of all tables that exist in Data Catalog and on the Collibra Data Lineage service instance.Use the Search field to find the unstitched database table PRODUCT CATEGORY.In the Found in column, the value Technical Lineage confirms what we already know: the table was found only in the technical lineage. An exactly matching asset was not identified in Collibra. Now try to find a likely match. Look for a table that has the same name and the value Catalog in the Found in column.The table shown in the following image looks like a match. The schema and table names match exactly; only the database names differ. To achieve stitching, you need to create a source ID configuration file and configure database mapping.For more broken stitching scenarios and suggestions for resolving the issue, go to Broken stitching and possible solutions.Business Summary LineageThe Business Summary Lineage is a representation of relations of the type Data Element sources / targets Data Element in a business diagram. It is not a separate diagram view, but refers to any diagram that contains that relation type. It allows you to trace data flows between registered databases and, as such, provides a summary of a technical lineage.Click here for an overview of the differences between Technical lineage and a diagram with Business Summary Lineage.You can create a new diagram view including the Business Summary Lineage or you can select one of the existing diagram views that shows the relation Data Element sources / targets Data Element between Column assets of registered data sources and between BI assets and assets of registered data sources.Before you can view a diagram with Business Summary Lineage, you have to:Register the data sources that you want to see in a diagram with Business Summary Lineage.Prepare a configuration file to create a technical lineage.Use the lineage harvester or technical lineage via Edge to upload the data sources in your configuration file to the Collibra Data Lineage service where they are scanned and processed.Once the data sources are scanned, the Collibra Data Lineage service automatically pushes relations of the type Data Element sources / targets Data Element to Collibra Data Intelligence Cloud.Example of a diagram with Business Summary LineageIn this business diagram, you see that the Column assets of the Table asset CustomerProductSales have a relation of the type Data Element sources / targets Data Element to Column assets of other Table assets.Differences between Technical lineage and diagrams with Business Summary LineageTechnical lineage is a detailed lineage graph that shows where data objects are used and how they are transformed. A diagram with the Business Summary Lineage shows the relations between Data Assets in Data Catalog after stitching. Both map the flow of data, but a technical lineage provides a detailed overview of the data flow, while a diagram with Business Summary Lineage only provides a summary of it.The Business Summary Lineage and a technical lineage are both visual representations of nodes. However, there are some key differences between them.For information on the steps required to create a technical lineage, including how to prepare the Data Catalog physical data layer, see About technical lineage.Business Summary LineageTechnical lineageA diagram with a Business Summary Lineage helps Business Analysts and other business users to understand their data by providing a summary of the technical lineage.A technical lineage helps Data Engineers, Data Architects and similar personas to easily navigate to data objects in the data flows and find relevant source code fragments by providing a detailed lineage graph.A diagram containing Business Summary Lineage is accessible via the Diagram tab pane of all assets.A technical lineage is accessible via the tab pane of all Table assets and Column assets. You can view a technical lineage via the tab pane of Table assets and Column assets if you added their database as data sources in the configuration file.A diagram shows assets and relations as defined in its diagram view. In the case of a Business Summary Lineage, the diagram shows, amongst others, relations of the type Data Element targets / sources Data Element between assets that exist in Data Catalog. Relations of this type are automatically created as part of the technical lineage process.A technical lineage shows relations of the type Data Element targets / sources Data Element between all data objects in the data source. Relations of this type are automatically created as part of the technical lineage process.The data objects that you see in the technical lineage are: Data Element assets for
which you created the technical lineage,Other objects, for example temporary tables and columns, that the lineage scanner collected from your data sources, but are not assets in Data Catalog. A diagram with a Business Summary Lineage shows how registered data sources relate to each other.Technical lineage shows how all data sources for which you create a technical lineage relate to each other. If the data source, or a part of the data source, is not registered in Data Catalog, the dependencies between the data elements in the data sources are still shown.You have created a technical lineage for four different databases:The first database, Oracle, is not ingested in Data Catalog and therefore has no assets in Data Catalog.The second database, Raw, contains tables that are ingested in Data Catalog, but also tables that are not ingested and therefore are not assets.The third and fourth database, Refined and Consumption, only contains data objects that are also assets in Data Catalog.Technical lineage shows the data flow from all data objects in the first database, to the second, the third, and the fourth. Databases or data objects that are not ingested in Data Catalog and therefore are not assets, have a gray background.A diagram with Business Summary Lineage only shows the relations between data objects that are also assets in Data Catalog, which means the data flow from assets in the second database to assets in the third, to assets in the fourth. The first database, which wasn't ingested, will not be shown on the diagram.DependenciesA dependency is a data object that is targeted by another data object. This is represented by a relation of the type Data Element targets / sources Data Element, where the dependency is the tail.There are two type of dependencies:a direct dependency: a data object that is the tail of a relation of the type Data Element targets / sources Data Element. If column A targets column B, then column B is the direct dependency of column A. an indirect dependency: a data object that is the target of a direct or another indirect dependency. Column A targets column B, which on its turn targets column C. This means that column A indirectly targets column C, so column C is the indirect dependency of column A.BI integration conceptsThis section addresses BI tool-specific integration concepts for business-focused customers.BI tool terminologyThe following tables show the supported BI tool terminology and corresponding asset types and terminology in Collibra Data Intelligence Cloud.Keep in mind, it is possible that your organization has renamed the out-of-the-box asset types.StepsTableau termDescriptionCollibra equivalentSiteA site is a stand-alone collection of content, such as projects, workbooks and users. Each site has its own URL and its own set of users.Subcommunity and Tableau Site assetProjectA project organizes related content resources. Content resources are workbooks, views and data sources.Tableau Project assetWorkbookA workbook is a collection of views.Tableau Workbook assetDashboardA dashboard is a collection of views from multiple worksheets.Tableau Dashboard assetWorksheetA worksheet contains a single view, along with shelves, legends, and the Data pane.Tableau Worksheet assetTableau data sourceTableau Data Sources consist of metadata that describe the connection information, information about how to access or refresh the data and customizations.Tableau Data Model assetDimensionDimensions contain qualitative values (such as names, dates, or geographical data).Attribute type Role in Report on a Tableau Data Attribute asset pageMeasureMeasures contain numeric, quantitative values that you can measure.Attribute type Role in Report on a Tableau Data Attribute asset pageTableau data attributeTableau Data Attributes define a property of a Tableau data entity.Tableau Data Attribute assetTableau data entityTableau Data Entities are an abstraction of the physical implementation of database tables, used for Tableau report creation.Tableau Data Model assetTableau data modelTableau Data Models are an abstraction for the physical implementation of databases, schemas, files, etc., used for Tableau report creation.Tableau Data Model assetTableau serverA Tableau server is a server on which Tableau users can publish data sources, as a means to share the data connections they've defined.Tableau Server assetPublished versus embedded data sourcesYou can create data sources in Tableau when you connect to data. After you set up the data sources in Tableau, you can publish data sources as standalone resources, or you can publish workbooks with the data sources embedded in. Unless you take actions to publish the data source separately, the data source is published as embedded in a workbook by default. For more information, see the Tableau documentation on Publishing data separately or embedded in workbooks.Collibra Data Lineage ingests metadata of data sources as assets of the Tableau Data Model asset type, regardless of the way the data sources are published.eTDM and pTDMWhen you ingest a Tableau data source in Collibra, each asset is identified as eTDM or pTDM with [eTDM] or [pTDM] added to the asset name.eTDM stands for embedded Tableau Data Model, which indicates that the asset represents the data source that is embedded in a workbook in Tableau. pTDM stands for published Tableau Data Model, which indicates that the asset represents the data source that is published separately in Tableau. For a data source that is both published separately and embedded in a workbook, Collibra Data Lineage ingests the metadata in one of the following ways:If the metadata of the embedded data source matches that of the published data source, Collibra Data Lineage ingests the metadata only from the published data source to avoid duplication. If the metadata of the embedded data source contains more fields than that of the published data source, Collibra Data Lineage ingests metadata from both the published and embedded data sources. As a result, a Tableau workbook can have one of the following relations:To the published and embedded data source.To the published data source only. Power BI termDescriptionAsset type in CollibraCapacityA resource that hosts Power BI Workspaces.Power BI CapacityDashboardA collection of Power BI tiles with metrics from one or more Reports and Data Models.Power BI DashboardDataflowA collection of tables that are created and managed in workspaces in the Power BI service.Power BI Data FlowDatamartA self-service analytics solutions, enabling users to store and explore data that is loaded in a fully managed database.Power BI Data MartData SetA collection of data that is used to create a Power BI report.Power BI Data ModelData Set ColumnA column in a Power BI Data Model.Power BI ColumnData Set TableA table in a Power BI Data Model.Power BI TableReportA detailed view of a Power BI Data Model, with visualizations of findings and insights.Power BI ReportServer or TenantA visual analytics platform for creating and storing Power BI Reports and Data Models.Power BI ServerTileAn element representing data on the Power BI Dashboard.Power BI TileWorkspaceA collection of Power BI Dashboards, Reports and Data Models.Power BI WorkspaceMicroStrategy termDescriptionAsset type in CollibraAttribute / FactA detailed view of a MicroStrategy visualization, with findings and insights.MicroStrategy Data EntityAttribute Form / Fact expression Additional descriptive information about an attribute.MicroStrategy Data AttributeColumnA column in a MicroStrategy data model.MicroStrategy Data AttributeDatasetA collection of data that is used to create MicroStrategy reports.MicroStrategy Data ModelDocumentA collection of grid and graph reports that can be viewed at the same time, along with images and text.MicroStrategy DocumentDossierA collection of MicroStrategy chapters and pages.MicroStrategy DossierFolderA collection of MicroStrategy reports and data models.MicroStrategy FolderProjectA collection of MicroStrategy visualizations, report attributes and tables.MicroStrategy ProjectReportA detailed view of a MicroStrategy data model, with visualizations of findings and insights.MicroStrategy ReportServerA visual analytics platform for creating and storing MicroStrategy reports and data models.MicroStrategy ServerVisualizationA visual representation of the data in a dossier, such as a grid, line chart, or heat map.MicroStrategy VisualisationLooker termDescriptionAsset type in CollibraDashboardA collection of Looker tiles with metrics from one or more Looker Looks.Looker DashboardExploreA collection of data that is used to define Looker Dimensions and Measures.Looker Data SetDimensions, MeasuresAn atomic unit of data that is used in a Looker Look or Looker Tile. It represents a column in a Looker Data Set.Looker Data Set ColumnFolder or SpaceA container that stores Looker Looks, Dashboards and other folders.Looker FolderLookA detailed view of a Looker Data Set, with visualizations of findings and insights.Looker LookDimensions, MeasuresAn atomic unit of data that is used in a Looker Look or Looker Tile. It represents the actual use a Looker Data Set Column.Looker Report AttributeQueryA query that creates a simple report in a Looker Tile or Looker Look.Looker QueryLooker instanceA platform to create Looker Dashboards and rich visualizations.Looker TenantTile or Dashboard elementAn element that represents data on the Looker Dashboard.Looker TileSSRS-PBRS termDescriptionAsset type in CollibraColumnA column in an SQL Server Reporting Services Report Data Set.SSRS ColumnData SetA collection of data that is used to create an SQL Server Reporting Services Report.SSRS Data ModelFolder A collection of SQL Server Reporting Services and Power BI Report Server Reports and Data Sets. SSRS FolderKPIA key performance indicator of SQL Server Reporting Services.SSRS KPIMobile reportA detailed view of an SQL Server Reporting
Services Data Set, with visualizations of findings and insights.SSRS ReportPaginated reportA detailed view of an SQL Server Reporting Services Data Set, with visualizations of findings and insights.SSRS ReportParameterA column that is part of an SQL Server Reporting Services Data Set and that is used in a KPI.SSRS ParameterPower BI Report Server reportA detailed view of a Power BI Data Model, with visualizations of findings and insights.Power BI ReportSQL Server Reporting Services or Power BI Report Server server or tenant A visual analytics platform for creating and storing SQL Server Reporting Services and Power BI Report Server Reports and Data Sets. SSRS ServerTableA table in an SQL Server Reporting Services Report Data Set.SSRS TableBI asset types and domain typesBI tool integration uses a specific subset of out-of-the-box asset types and domain types.The following table shows the asset and domain types that are used for the BI tool integrations. Above each asset type you can see the parent asset types in the breadcrumbs.Keep in mind, it is possible that your organization has renamed the out-of-the-box asset types.Asset typeDescriptionDomain typeBusiness Asset Business Dimension BI Folder Looker FolderA container that stores Looker Looks, Dashboards and other folders.BI CatalogBusiness Asset Report BI Report Looker DashboardA collection of Looker tiles with metrics from one or more Looker Looks.BI CatalogBusiness Asset Report BI Report Looker LookA detailed view of a Looker Data Set, with visualizations of findings and insights.BI CatalogBusiness Asset Report BI Report Looker QueryA query that creates a simple report in a Looker Tile or Looker Look.BI CatalogBusiness Asset Report BI Report Looker TileAn element that represents data on the Looker Dashboard.BI CatalogData Asset Data Element Data Attribute BI Data Attribute Looker Data Set ColumnAn atomic unit of data that is used in a Looker Look or Looker Tile. It represents a column in a Looker Data Set.BI CatalogData Asset Data Element Report Attribute BI Report Attribute Looker Report AttributeAn atomic unit of data that is used in a Looker Look or Looker Tile. It represents the actual use a Looker Data Set Column.BI Catalog Data Asset Data Set BI Data Set Looker Data SetA collection of data that is used to define Looker Dimensions and Measures.BI CatalogTechnology Asset Server BI Server Looker TenantA platform to create Looker Dashboards and rich visualizations.BI CatalogAsset typeDescriptionDomain typeBusiness Asset Business Dimension BI Folder MicroStrategy FolderA collection of MicroStrategy reports and data models.BI CatalogBusiness Asset Business Dimension BI Folder MicroStrategy ProjectA collection of MicroStrategy visualizations, report attributes and tables.BI CatalogBusiness Asset Report BI Report MicroStrategy DossierA collection of MicroStrategy chapters and pages.BI CatalogBusiness Asset Report BI Report MicroStrategy DocumentA collection of grid and graph reports that can be viewed at the same time, along with images and text.BI CatalogBusiness Asset Report BI Report MicroStrategy ReportA detailed view of a MicroStrategy data model, with visualizations of findings and insights.BI CatalogData Asset Data Element Data Attribute BI Data Attribute MicroStrategy Data AttributeA column in a MicroStrategy data model.BI CatalogData Asset Data Element Report Attribute BI Report Attribute MicroStrategy VisualizationA detailed view of a MicroStrategy visualization, with findings and insights.BI CatalogData Asset Data Structure Data Entity BI Data Entity MicroStrategy Data EntityA detailed view of a MicroStrategy visualization, with findings and insights.BI CatalogData Asset Data Structure Data Model BI Data Model MicroStrategy Data ModelA collection of data that is used to create MicroStrategy reports.BI CatalogTechnology Asset Server BI Server MicroStrategy ServerA visual analytics platform for creating and storing MicroStrategy reports and data models.BI CatalogAsset typeDescriptionDomain typeBusiness Asset Business Dimension BI Folder Power BI CapacityA resource that hosts Power BI Workspaces.BI CatalogBusiness Asset Business Dimension BI Folder Power BI WorkspaceA collection of Power BI Dashboards, Reports and Data Models.BI CatalogBusiness Asset Report BI Report Power BI DashboardA collection of Power BI tiles with metrics from one or more Reports and Data Models.BI CatalogBusiness Asset Report BI Report Power BI ReportA detailed view of a Power BI Data Model, with visualizations of findings and insights.BI CatalogBusiness Asset Report BI Report Power BI TileAn element representing data on the Power BI Dashboard.BI CatalogData Asset Data Element Data Attribute BI Data Attribute Power BI ColumnA column in a Power BI Data Model.BI CatalogData Asset Data Structure Data Entity BI Data Entity Power BI TableA table in a Power BI Data Model.BI CatalogData Asset Data Structure Data Model BI Data Model Power BI Data FlowA collection of tables that are created and managed in workspaces in the Power BI service.BI CatalogData Asset Data Structure Data Model BI Data Model Power BI Data Mart BI CatalogData Asset Data Structure Data Model BI Data Model Power BI Data ModelA collection of data that is used to create a Power BI report.BI CatalogTechnology Asset Server BI Server Power BI ServerA visual analytics platform for creating and storing Power BI Reports and Data Models.BI CatalogAsset typeDescriptionDomain typeBusiness Asset Business Dimension BI Folder SSRS Folder A collection of SQL Server Reporting Services and Power BI Report Server Reports and Data Sets. BI CatalogBusiness Asset Report BI Report SSRS KPIA key performance indicator of SQL Server Reporting Services.BI CatalogBusiness Asset Report BI Report SSRS ReportA detailed view of an SQL Server Reporting Services Data Set, with visualizations of findings and insights.BI CatalogData Asset Data Element Data Attribute BI Data Attribute SSRS ColumnA column in an SQL Server Reporting Services Report Data Set.BI CatalogData Asset Data Element Report Attribute BI Report Attribute SSRS ParameterA column that is part of an SQL Server Reporting Services Data Set and that is used in a KPI.BI Catalog Data Asset Data Set BI Data Set SSRS Data ModelA collection of data that is used to create an SQL Server Reporting Services Report.BI CatalogData Asset Data Element Data Attribute BI Data Attribute Power BI TableSSRS Table A table in an SQL Server Reporting Services Report Data Set.BI CatalogTechnology Asset Server BI Server SSRS Server A visual analytics platform for creating and storing SQL Server Reporting Services and Power BI Report Server Reports and Data Sets. BI CatalogAsset typeDescriptionDomain typeBusiness Asset Business Dimension BI Folder Tableau ProjectCollection of Tableau workbooks and data sources.BI CatalogBusiness Asset Business Dimension BI Folder Tableau SiteCollection of content (workbooks, data sources, users, …) that's walled off from any other content on that instance of Tableau Server.BI CatalogBusiness Asset Report BI Report Tableau View Tableau DashboardA collection of several worksheets and supporting information, shown on a single screen, so that you can simultaneously compare and monitor a variety of data.BI CatalogBusiness Asset Report BI Report Tableau View Tableau WorksheetA worksheet is a single sheet on which you can build views of your data.BI CatalogBusiness Asset Report BI Report Tableau WorkbookCollection of sheets. A sheet can be a worksheet, a dashboard or a story.BI CatalogData Asset Data Element Data Attribute BI Data Attribute Tableau Data AttributeA specification that defines a property of a Tableau data entity.Examples: CustomerBirthDate, EmployeeFirstName.BI CatalogData Asset Data Structure Data Model BI Data Model Tableau Data ModelAn abstraction from the physical implementation of database, schema, file, etc., used for Tableau report creation.BI CatalogTechnology Asset Server BI Server Tableau ServerA visual analytics platform for creating interactive dashboards and rich visualisationsBI CatalogBI tool operating modelsThis section shows the BI tool operating models and related information. Keep in mind, it is possible that your organization has renamed the out-of-the-box asset types and characteristics.StepsOverview and diagram viewHarvested metadata per asset typeExample of ingested Tableau metadataRecommended hierarchy within a domainCreate a Tableau operating model diagram viewOverview and diagram viewSynchronizing means refreshing the assets that are currently in Data Catalog as a result of a previous ingestion or synchronization job. After synchronizing Tableau, the assets in Data Catalog accurately reflect the metadata as it exists at the time of synchronization.The assets have the same names as their counterparts in Tableau.Some asset types are only created if the Tableau user has specific permissions.Relations that were created between Tableau assets and other assets via a relation type in the Tableau operating model, are deleted upon synchronization. The same is true of any attribute types in the operating model that you add to Tableau assets. To ensure that the characteristics you add to Tableau assets are not deleted upon synchronization, be sure to use characteristics that are not part of the Tableau operating model.The following image shows the relations between Tableau asset types.You can easily recreate this diagram view in your Collibra environment. See Create a Tableau operating model diagram view.Harvested metadata per asset typeThis table shows the metadata for each Tableau asset type and the resource ID for each asset type and metadata.Asset typeSynchronized metadataResource IDTableau ServerResource ID: 00000000-0000-0000-0000-110000000005 Description00000000-0000-0000-0000-000000003114Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000URL: The link to the data in
Tableau00000000-0000-0000-0000-000000000258Tableau SiteResource ID: 00000000-0000-0000-0000-110000000000BI Folder assembles / Is assembled in BI Folder00000000-0000-0000-0000-120000000001Description00000000-0000-0000-0000-000000003114Server hosts / is hosted in Business Dimension 00000000-0000-0000-0000-120000000000URL: The link to the data in Tableau00000000-0000-0000-0000-000000000258Tableau ProjectResource ID: 00000000-0000-0000-0000-110000000001Description00000000-0000-0000-0000-000000003114 Owner in sourceThe only harvested metadata are email addresses. To harvest this metadata, you need to enable the Metadata API by setting the restOnly property in your lineage harvester configuration file to false.00000000-0000-0000-0000-200000000001BI Folder assembles / is assembled in BI Folder00000000-0000-0000-0000-120000000001Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Tableau WorkbookResource ID: 00000000-0000-0000-0000-110000000002Description00000000-0000-0000-0000-000000003114Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261Document size00000000-0000-0000-0000-000000000259 Owner in sourceThe only harvested metadata are email addresses. To harvest this metadata, you need to enable the Metadata API by setting the restOnly property in your lineage harvester configuration file to false.00000000-0000-0000-0000-200000000001Report Image00000000-0000-0000-0000-000000000262URL: The link to the data in Tableau00000000-0000-0000-0000-000000000258Visits countThis is the amount of times the workbook was viewed in Tableau.00000000-0000-0000-0000-000000000264Report groups / is grouped into Report00000000-0000-0000-0000-120000000004 Tableau Workbook contains / contained in Tableau Data Model00000000-0000-0000-0000-120000000020 Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Tableau DashboardResource ID: 00000000-0000-0000-0001-110000000301Assets of this type are only created if the Tableau user has the Download/Save As permission on the workbook.Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261 Owner in sourceThe only harvested metadata are email addresses. To harvest this metadata, you need to enable the Metadata API by setting the restOnly property in your lineage harvester configuration file to false.00000000-0000-0000-0000-200000000001Report image: The image of the report. Images are downloaded and stored in Data Catalog. You can configure the maximum file size and content types of the Tableau images in the Collibra DGC service settings. 00000000-0000-0000-0000-000000000262URL: The link to the data in Tableau00000000-0000-0000-0000-000000000258Visible on server00000000-0000-0000-0000-000000000265Visits countThis is the amount of times the dashboard was viewed in Tableau.00000000-0000-0000-0000-000000000264Report groups / is grouped into Report00000000-0000-0000-0000-120000000004 Report uses / used in Data Attribute 00000000-0000-0000-0000-120000000021 Report uses / used in Report00000000-0000-0000-0000-120000000007 Tableau WorksheetResource ID: 00000000-0000-0000-0001-110000000300Assets of this type are only created if the Tableau user has the Download/Save As permission on the workbook.Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261Report image: The image of the report. Images are downloaded and stored in Data Catalog. You can configure the maximum file size and content types of the Tableau images in the Collibra DGC service settings. 00000000-0000-0000-0000-000000000262URL: The link to the data in Tableau00000000-0000-0000-0000-000000000258Visible on server00000000-0000-0000-0000-000000000265Visits countThis is the amount of times the worksheet was viewed in Tableau.00000000-0000-0000-0000-000000000264Report groups / is grouped into Report00000000-0000-0000-0000-120000000004 Report uses / used in Data Attribute 00000000-0000-0000-0000-120000000021 Report uses / used in Report00000000-0000-0000-0000-120000000007 Tableau Data AttributeResource ID: 00000000-0000-0000-0000-110000000010Assets of this type are only created if the Tableau user has the Download/Save As permission on the data source.Description00000000-0000-0000-0000-000000003114Calculation Rule00000000-0000-0000-0000-000000003117Data Type: The data type of a data asset, as it is declared by the data source.00000000-0000-0000-0001-000500000005Role in Report00000000-0000-0000-0000-000000000266BI Data Model contains / is part of BI Data Attribute00000000-0000-0000-0000-000000007196Data Element targets / sources Data Element00000000-0000-0000-0000-000000007069Report uses / used in Data Attribute 00000000-0000-0000-0000-120000000021 Tableau Data ModelResource ID: 00000000-0000-0000-0000-110000000008Assets of this type are only created if the Tableau user has the Download/Save As permission on the data source.Description00000000-0000-0000-0000-000000003114CertifiedCertification is only possible for published Tableau data sources.00000000-0000-0000-0001-000500000001Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261Original Name: The name of the data source in Tableau00000000-0000-0000-0001-000500000032 Owner in sourceThe only harvested metadata are email addresses. To harvest this metadata, you need to enable the Metadata API by setting the restOnly property in your lineage harvester configuration file to false.00000000-0000-0000-0000-200000000001BI Data Model contains / is part of BI Data Attribute00000000-0000-0000-0000-000000007196Business Dimension source / is source of System00000000-0000-0000-0000-120000000003Tableau Workbook contains / contained in Tableau Data Model00000000-0000-0000-0000-120000000020 Data Asset contained in / contains BI Folder00000000-0000-0000-0000-120000000014Additional informationFor the Owner in source attribute, the following rules apply: If the system creates a Tableau data object and the Tableau data object does not have a user ID, the Owner in source attribute is shown as System on the asset page. If the user who created a Tableau data object no longer exists, the Owner in source attribute is shown as empty on the asset page.Example of ingested Tableau metadataThe following image shows an example structure after synchronizing Tableau.Recommended hierarchy within a domainYou can enable hierarchies for the domain (or domains) in which your Tableau assets were ingested. Doing so makes it easier to understand the relation between your Tableau assets, when viewing the assets on the domain page.Follow these steps to enable and configure the recommended hierarchy.Steps Open the domain page of the relevant BI Catalog domain. On the content toolbar, click .The Configure Hierarchy dialog box appears.Select Enable Hierarchy.Select Multipath.Start typing and select each of the following relation types:Server hosts Business DimensionBI Folder assembles BI FolderBusiness Dimension groups ReportReport groups ReportReport uses ReportReport uses Data AttributeBI Folder contains Data AssetBI Data Model contains BI Data AttributeTableau Workbook contains Tableau Data ModelClick Apply.In an asset view, if any asset is deleted, for example via synchronization or manual deletion, the view is recreated and the hierarchy is lost. In this case, you can again enable and configure the recommended hierarchy.When viewing the hierarchy for a community or domain, if the parent of a node that is in the community or domain belongs to a different community or domain, that node is not shown in the hierarchy.Create a Tableau operating model diagram viewYou can create a Tableau-specific diagram view, to visualize the operating model. The following procedure provides instruction on how to quickly create a new diagram view by copying and pasting the JSON code in the diagram view text editor.StepsOpen an asset page. In the tab pane, click Diagram.The diagram appears in the default diagram view.Click to add a new view.Click the Text tab, to switch to the diagram view text editor.Click Show me the JSON code below this procedure, to expand the code.Paste the code in diagram view text editor.Click Save.Edit the name and description of the diagram view, to suit your needs.Show me the JSON code { nodes:[{ id:Tableau Workbook, type:{ id:00000000-0000-0000-0000-110000000002 }, layoutRegion:context }, { id:Tableau Dashboard, type:{ id:00000000-0000-0000-0001-110000000301 }, layoutRegion:context }, { id:Tableau Worksheet, type:{ id:00000000-0000-0000-0001-110000000300 }, layoutRegion:context }, { id:Tableau Data Model, type:{ id:00000000-0000-0000-0000-110000000008 }, layoutRegion:context }, { id:Tableau Project, type:{ id:00000000-0000-0000-0000-110000000001 }, layoutRegion:context }, { id:Tableau Site, type:{ id:00000000-0000-0000-0000-110000000000 }, layoutRegion:context }, { id:Tableau Server, type:{ id:00000000-0000-0000-0000-110000000005 }, layoutRegion:context }, { id:Tableau Data Attribute, type:{ id:00000000-0000-0000-0000-110000000010 }, layoutRegion:context }, { id:Column, type:{ id:00000000-0000-0000-0000-000000031008 }, layoutRegion:context }, { id:Table, type:{ id:00000000-0000-0000-0000-000000031007 }, layoutRegion:context }, { id:Schema, type:{ id:00000000-0000-0000-0001-000400000002 }, layoutRegion:context }, { id:Database, type:{ id:00000000-0000-0000-0000-000000031006 }, layoutRegion:context }], edges:[{ from:Tableau Project, to:Tableau Workbook, label:, style:boxing, type:{ id:00000000-0000-0000-0000-120000000002 }, roleDirection:true }, { from:Tableau Site, to:Tableau Project, label:, style:boxing, type:{ id:00000000-0000-0000-0000-120000000001 }, roleDirection:true
}, { from:Tableau Server, to:Tableau Site, label:, style:boxing, type:{ id:00000000-0000-0000-0000-120000000000 }, roleDirection:true }, { from:Tableau Data Model, to:Tableau Data Attribute, label:, style:boxing, type:{ id:00000000-0000-0000-0000-000000007196 }, roleDirection:true }, { from:Tableau Data Attribute, to:Tableau Data Attribute, label:, style:arrow, type:{ id:00000000-0000-0000-0000-000000007069 }, roleDirection:false }, { from:Tableau Workbook, to:Tableau Data Model, label:, style:boxing, type:{ id:00000000-0000-0000-0000-120000000020 }, roleDirection:true }, { from:Tableau Project, to:Tableau Data Model, label:, style:arrow, type:{ id:00000000-0000-0000-0000-120000000014 }, roleDirection:true }, { from:Column, to:Column, label:, style:boxing, type:{ id:00000000-0000-0000-0000-000000007042 }, roleDirection:false }, { from:Column, to:Table, label:, style:boxed, type:{ id:00000000-0000-0000-0000-000000007042 }, roleDirection:true }, { from:Table, to:Schema, label:, style:boxed, type:{ id:00000000-0000-0000-0000-000000007043 }, roleDirection:false }, { from:Schema, to:Database, label:, style:boxed, type:{ id:00000000-0000-0000-0000-000000007024 }, roleDirection:false }, { from:Tableau Data Attribute, to:Tableau Worksheet, label:, style:arrow, type:{ id:00000000-0000-0000-0000-120000000021 }, roleDirection:false }, { from:Tableau Workbook, to:Tableau Worksheet, label:, style:boxing, type:{ id:00000000-0000-0000-0000-120000000004 }, roleDirection:true }, { from:Tableau Workbook, to:Tableau Dashboard, label:, style:boxing, type:{ id:00000000-0000-0000-0000-120000000004 }, roleDirection:true }, { from:Tableau Worksheet, to:Tableau Dashboard, label:, style:arrow, type:{ id:00000000-0000-0000-0000-120000000007 }, roleDirection:false }, { from:Tableau Data Attribute, to:Column, label:, style:arrow, type:{ id:00000000-0000-0000-0000-000000007069 }, roleDirection:false }, { from:Tableau Project, to:Tableau Project, label:, style:boxed, type:{ id:00000000-0000-0000-0000-120000000001 }, roleDirection:true }], showOverview:false, enableFilters:true, showLabels:true, showFields:true, showLegend:true, showPreview:true, visitStrategy:directed, layout:HierarchyLeftRight, maxNodeLabelLength:50, maxEdgeLabelLength:30, layoutOptions:{ compactGroups:false, componentArrangementPolicy:topmost, edgeBends:true, edgeBundling:true, edgeToEdgeDistance:5, minimumLayerDistance:auto, nodeToEdgeDistance:5, orthogonalRouting:true, preciseNodeHeightCalculation:true, recursiveGroupLayering:true, separateLayers:true, webWorkers:true, nodePlacer:{ barycenterMode:true, breakLongSegments:true, groupCompactionStrategy:none, nodeCompaction:false, straightenEdges:true } } } Overview and diagram viewHarvested metadata per asset typeExample of ingested Power BI metadataRecommended hierarchy within a domainCreate a Power BI operating model diagram viewOverview and diagram viewThe lineage harvester collects Power BI metadata and sends it to the Collibra Data Lineage service instances. Collibra processes the metadata and creates new Power BI assets and relations in Data Catalog. You can see them on the asset page overview or visualize them in a diagram or in a technical lineage.The assets have the same names as their counterparts in Power BI. Full names and Display names cannot be changed in Data Catalog.Asset types are only created if you have all specific Power BI and Data Catalog permissions.The Power BI assets are created in the domain (or domains) that you specify in the lineage harvester configuration file. Relations that were created between Power BI assets and other assets via a relation type in the Power BI operating model, are deleted upon synchronization. The same is true of any attribute types in the operating model that you add to Power BI assets. To ensure that the characteristics you add to Power BI assets are not deleted upon synchronization, be sure to use characteristics that are not part of the Power BI operating model. The following image shows the relations between Power BI asset types.Harvested metadata per asset typeThis table shows the harvested Power BI metadata for each Power BI asset type. This table also shows the resource ID for each asset type, attribute, and relation. Asset typeSynchronized metadataResource IDPower BI Capacity Resource ID: 00000000-0000-0000-0000-100000000002Full name Display name Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000BI Folder assembles / is assembled in BI Folder 00000000-0000-0000-0000-120000000001Power BI ColumnResource ID: 00000000-0000-0000-0000-100000000008Full name Display name Description 00000000-0000-0000-0000-000000003114Calculation Rule00000000-0000-0000-0000-000000003117Role in Report00000000-0000-0000-0000-000000000266Technical Data Type00000000-0000-0000-0000-000000000219BI Data Model contains / is part of BI Data Attribute00000000-0000-0000-0000-000000007196Data Element targets / sources Data Element 00000000-0000-0000-0000-000000007069Data Entity contains / is part of Data Attribute 00000000-0000-0000-0000-000000007047Power BI DashboardResource ID: 00000000-0000-0000-0000-100000000004Full name Display name URL If the dashboard is part of an app in Power BI, the URL on the asset page links to the dashboard in the Power BI app.00000000-0000-0000-0000-000000000258Data asset is source / Source for BI Report00000000-0000-0000-0000-120000000013Report uses / used in Report00000000-0000-0000-0000-120000000007 Report related to / impacted by Business Asset00000000-0000-0000-0000-120000000006 Power BI Data FlowResource ID: 00000000-0000-0000-0000-100000000010Full name Display name Description00000000-0000-0000-0000-000000003114BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Data Entity is part of / contains Data Model00000000-0000-0000-0000-000000007046BI Data Model is source for / sources BI Data Model00000000-0000-0000-0000-120000000022Power BI Data MartResource ID: 00000000-0000-0000-0000-100000000052Full name Display name Certified00000000-0000-0000-0001-000500000001Description00000000-0000-0000-0000-000000003114Document modification date00000000-0000-0000-0000-000000000261URL00000000-0000-0000-0000-000000000258Owner in source The only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001Data Asset is source for / sources BI Report00000000-0000-0000-0000-120000000013BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Data Entity is part of / contains Data Model00000000-0000-0000-0000-000000007046BI Data Model is source for / sources BI Data Model00000000-0000-0000-0000-120000000022Power BI Data ModelResource ID: 00000000-0000-0000-0000-100000000007Full name Display name Owner in source The only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001Source type00000000-0000-0000-0000-000000000230BI Data Model contains / is part of BI Data Attribute00000000-0000-0000-0000-000000007196BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Data Asset is source for / source BI report00000000-0000-0000-0000-120000000013Data Entity is part of / contains Data Model00000000-0000-0000-0000-000000007046BI Data Model is source for / sources BI Data Model00000000-0000-0000-0000-120000000022Power BI ReportResource ID: 00000000-0000-0000-0000-100000000006Full name Display name Description 00000000-0000-0000-0000-000000003114Owner in source The only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001Source type00000000-0000-0000-0000-000000000230URLIf the report is part of an app in Power BI, the URL on the asset page links to the report in the Power BI app.00000000-0000-0000-0000-000000000258Business Dimension groups / is grouped into Report 00000000-0000-0000-0000-120000000002 Data Asset is source for / source BI Report 00000000-0000-0000-0000-120000000013Report related to / impacted by Business Asset 00000000-0000-0000-0000-120000000006 Report uses / used in Report00000000-0000-0000-0000-120000000007 Power BI ServerResource ID: 00000000-0000-0000-0000-100000000001Full name Display name Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000Power BI TableResource ID: 00000000-0000-0000-0000-100000000009 Full name Display name Description 00000000-0000-0000-0000-000000003114Calculation Rule00000000-0000-0000-0000-000000003117Data Entity contains / is part of Data Attribute00000000-0000-0000-0000-000000007047Data Entity is part of / contains Data Model00000000-0000-0000-0000-000000007046Power BI TileResource ID: 00000000-0000-0000-0000-100000000005 Full name Display name URL 00000000-0000-0000-0000-000000000258Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Data Asset is source for / source BI Report00000000-0000-0000-0000-120000000013Report related to / impacted by Business Asset00000000-0000-0000-0000-120000000006 Report uses / used in Report00000000-0000-0000-0000-120000000007 Power BI WorkspaceResource ID: 00000000-0000-0000-0000-100000000003 Full name Display name Description 00000000-0000-0000-0000-000000003114State 00000000-0000-0000-0000-000000000227 Owner in source The only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001BI Folder assembles / is assembled in BI Folder00000000-0000-0000-0000-120000000001BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 The metadata that is shown on the assets' pages depends on the asset type's assignment. As a result, you might not see all harvested metadata on the asset's page by default.Additional informationFor the Owner in source attribute, the
following rules apply: If the system creates a Power BI data object and the Power BI data object does not have a user ID, the Owner in source attribute is shown as System on the asset page. If the user who created a Power BI data object no longer exists, the Owner in source attribute is shown as empty on the asset page.URLs to reports and dashboards that can't be found in Power BIWhen you add a report or dashboard to an app in Power BI, what happens is that copies of the original report or dashboard is created in the app. The URL on the corresponding asset page in Collibra links directly to the copied report or dashboard in the app. However, if the name of the original report or dashboard changes, or if it has been deleted in Power BI, the copies in the app remain unchanged. Therefore, to remedy what would otherwise be links to outdated copies of reports or dashboards in Power BI, the URLs on the asset pages instead link to the Power BI app.Example of ingested Power BI metadataThe following image shows an example structure after Power BI ingestion.Recommended hierarchy within a domainYou can enable hierarchies for the domain (or domains) in which your Power BI assets were ingested. Doing so makes it easier to understand the relation between your Power BI assets, when viewing the assets on the domain page.Follow these steps to enable and configure the recommended hierarchy.Steps Open the domain page of the relevant BI Catalog domain. On the content toolbar, click .The Configure Hierarchy dialog box appears.Select Enable Hierarchy.Select Single path.Start typing and select each of the following relation types:Server hosts Business DimensionBI Folder assembles BI FolderBusiness Dimension groups ReportBI Report source Data AssetData Model contains Data EntityData Entity contains Data AttributeClick Apply.In an asset view, if any asset is deleted, for example via synchronization or manual deletion, the view is recreated and the hierarchy is lost. In this case, you can again enable and configure the recommended hierarchy.When viewing the hierarchy for a community or domain, if the parent of a node that is in the community or domain belongs to a different community or domain, that node is not shown in the hierarchy.Create a Power BI operating model diagram viewYou can create a Power BI-specific diagram view, to visualize the operating model. The following procedure provides instruction on how to quickly create a new diagram view by copying and pasting the JSON code in the diagram view text editor.StepsOpen an asset page. In the tab pane, click Diagram.The diagram appears in the default diagram view.Click to add a new view.Click the Text tab, to switch to the diagram view text editor.Click Show me the JSON code below this procedure, to expand the code.Paste the code in diagram view text editor.Click Save.Edit the name and description of the diagram view, to suit your needs.Show me the JSON code{ nodes: [{ id: Power BI Server, type: { id: 00000000-0000-0000-0000-100000000001 }, fields: [] }, { id: Power BI Capacity, type: { id: 00000000-0000-0000-0000-100000000002 } }, { id: Power BI Workspace, type: { id: 00000000-0000-0000-0000-100000000003 } }, { id: Power BI Dashboard, type: { id: 00000000-0000-0000-0000-100000000004 } }, { id: Power BI Report, type: { id: 00000000-0000-0000-0000-100000000006 } }, { id: Power BI Tile, type: { id: 00000000-0000-0000-0000-100000000005 } }, { id: Power BI Data Model, type: { id: 00000000-0000-0000-0000-100000000007 } }, { id: Power BI Data Flow, type: { id: 00000000-0000-0000-0000-100000000010 } }, { id: Power BI Table, type: { id: 00000000-0000-0000-0000-100000000009 } }, { id: Power BI Column, type: { id: 00000000-0000-0000-0000-100000000008 } }, { id: Column, type: { id: 00000000-0000-0000-0000-000000031008 } }, { id: Table, type: { id: 00000000-0000-0000-0000-000000031007 } }, { id: Schema, type: { id: 00000000-0000-0000-0001-000400000002 } }, { id: Database, type: { id: 00000000-0000-0000-0000-000000031006 } }, { id: Power BI Data Mart, type: { id: 00000000-0000-0000-0000-100000000052 } }], edges: [{ from: Power BI Server, to: Power BI Capacity, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000000 }, roleDirection: true }, { from: Power BI Capacity, to: Power BI Workspace, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000001 }, roleDirection: true }, { from: Power BI Workspace, to: Power BI Dashboard, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Power BI Workspace, to: Power BI Report, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Power BI Workspace, to: Power BI Tile, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Power BI Workspace, to: Power BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000014 }, roleDirection: true }, { from: Power BI Workspace, to: Power BI Data Flow, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000014 }, roleDirection: true }, { from: Power BI Dashboard, to: Power BI Tile, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000007 }, roleDirection: true }, { from: Power BI Data Model, to: Power BI Tile, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: true }, { from: Power BI Data Model, to: Power BI Report, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: true }, { from: Power BI Data Flow, to: Power BI Report, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007196 }, roleDirection: true }, { from: Power BI Data Flow, to: Power BI Table, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000014 }, roleDirection: true }, { from: Power BI Tile, to: Power BI Report, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000007 }, roleDirection: true }, { from: Power BI Data Flow, to: Power BI Data Flow, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000022 }, roleDirection: true }, { from: Power BI Column, to: Column, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007069 }, roleDirection: false }, { from: Column, to: Table, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007042 }, roleDirection: true }, { from: Table, to: Schema, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007043 }, roleDirection: false }, { from: Schema, to: Database, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007024 }, roleDirection: false }, { from: Power BI Data Flow, to: Power BI Data Mart, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000022 }, roleDirection: false }, { from: Power BI Data Mart, to: Power BI Data Mart, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000022 }, roleDirection: true }, { from: Power BI Data Mart, to: Power BI Table, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000014 }, roleDirection: true }, { from: Power BI Data Mart, to: Power BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000022 }, roleDirection: true }, { from: Power BI Data Model, to: Power BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000022 }, roleDirection: false }, { from: Power BI Table, to: Power BI Data Model, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007046 }, roleDirection: true }, { from: Power BI Column, to: Power BI Table, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007047 }, roleDirection: false }], showOverview: false, enableFilters: true, showLabels: true, showFields: true, showLegend: true, showPreview: true, visitStrategy: directed, layout: HierarchyTopBottom, maxNodeLabelLength: 50, maxEdgeLabelLength: 30, layoutOptions: { compactGroups: false, componentArrangementPolicy: topmost, edgeBends: true, edgeBundling: true, edgeToEdgeDistance: 5, minimumLayerDistance: auto, nodeToEdgeDistance: 5, orthogonalRouting: true, preciseNodeHeightCalculation: true, recursiveGroupLayering: true, separateLayers: true, webWorkers: true, nodePlacer: {
barycenterMode: true, breakLongSegments: true, groupCompactionStrategy: none, nodeCompaction: false, straightenEdges: true } } }Overview and diagram viewHarvested metadata per asset typeCreate a MicroStrategy operating model diagram viewOverview and diagram viewWhen you integrate MicroStrategy, Collibra Data Lineage creates new MicroStrategy assets and relations in Data Catalog. You can see them on the asset page overview or visualize them in a diagram.The assets have the same names as their corresponding data objects in MicroStrategy.Asset types are only created if you have all specific MicroStrategy and Data Catalog permissions.All MicroStrategy assets are created in the same domain.Relations that were manually created between MicroStrategy assets and other assets via a relation type in the MicroStrategy operating model, are deleted after synchronizing the MicroStrategy metadata.The following image shows the relations between MicroStrategy asset types.Harvested metadata per asset typeThis table shows the harvested MicroStrategy metadata for assets of each MicroStrategy asset type, assuming you have the necessary subscriptions and configurations for a full ingestion.To access MicroStrategy data, you have to use the In-memory Dataset connection method in MicroStrategy, not the Live Connect connection method. If the data is not stored in memory, the MicroStrategy APIs can't access it.The following folders in MicroStrategy are not included in the ingestion:Object TemplatesSystem ObjectsVersion Update HistoryAsset typeHarvested MicroStrategy metadata in Data CatalogResource ID MicroStrategy Data AttributeResource ID: 00000000-0000-0000-0000-100000000047Description 00000000-0000-0000-0000-000000003114 Technical Data Type00000000-0000-0000-0000-000000000219Data Element targets / sources Data Element00000000-0000-0000-0000-000000007069Data Entity contains / is part of Data Attribute 00000000-0000-0000-0000-000000007047Data Attribute used in / uses Report00000000-0000-0000-0000-120000000021MicroStrategy Data EntityResource ID: 00000000-0000-0000-0000-100000000048Description00000000-0000-0000-0000-000000003114Data Entity contains / is part of Data Attribute00000000-0000-0000-0000-000000007047Data Entity is part of / contains Data Model00000000-0000-0000-0000-000000007046Data Asset is source for / source BI Report00000000-0000-0000-0000-120000000013MicroStrategy Data ModelResource ID: 00000000-0000-0000-0000-100000000046If the data model is embedded in the project, Collibra Data Lineage automatically creates a dummy data model.Description00000000-0000-0000-0000-000000003114 BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Data Model contains / is part of Data Entity 00000000-0000-0000-0000-000000007046MicroStrategy DocumentResource ID: 00000000-0000-0000-0000-100000000049Description00000000-0000-0000-0000-000000003114Certified00000000-0000-0000-0001-000500000001Owner in source The only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001URLYou can specify the platform on which you run MicroStrategy, in your lineage harvester configuration file, to ensure the correct URL.00000000-0000-0000-0000-000000000258Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 BI Report contains / contained in BI Data Model00000000-0000-0000-0000-120000000015MicroStrategy DossierResource ID: 00000000-0000-0000-0000-100000000043Description00000000-0000-0000-0000-000000003114Certified00000000-0000-0000-0001-000500000001Owner in source The only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Report uses / used in Report00000000-0000-0000-0000-120000000007MicroStrategy FolderResource ID: 00000000-0000-0000-0000-100000000042Description00000000-0000-0000-0000-000000003114BI Folder assembles / is assembled in BI Folder00000000-0000-0000-0000-120000000001Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014MicroStrategy ProjectResource ID: 00000000-0000-0000-0000-100000000041Description00000000-0000-0000-0000-000000003114BI Folder assembles / is assembled in BI Folder00000000-0000-0000-0000-120000000001Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000MicroStrategy ReportResource ID: 00000000-0000-0000-0000-100000000044Description00000000-0000-0000-0000-000000003114Certified00000000-0000-0000-0001-000500000001URL00000000-0000-0000-0000-000000000258Owner in source The only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001Report groups / is grouped into Report00000000-0000-0000-0000-120000000004 Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Data Asset is source for / source BI Report00000000-0000-0000-0000-120000000013MicroStrategy ServerResource ID: 00000000-0000-0000-0000-100000000040Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000Create a MicroStrategy operating model diagram viewYou can create a MicroStrategy-specific diagram view, to visualize the operating model. The following procedure provides instruction on how to quickly create a new diagram view by copying and pasting the JSON code in the diagram view text editor.StepsOpen an asset page. In the tab pane, click Diagram.The diagram appears in the default diagram view.Click to add a new view.Click the Text tab, to switch to the diagram view text editor.Click Show me the JSON code below this procedure, to expand the code.Paste the code in diagram view text editor.Click Save.Edit the name and description of the diagram view, to suit your needs.Show me the JSON code{ nodes: [{ id: MicroStrategy Report, type: { id: 00000000-0000-0000-0000-100000000044 } }, { id: MicroStrategy Data Attribute, type: { id: 00000000-0000-0000-0000-100000000047 }, editorSettings: { edgePropsExpanded: true } }, { id: BI Folder, type: { id: 00000000-0000-0000-0000-090000000002 }, display: expanded }, { id: MicroStrategy Dossier, type: { id: 00000000-0000-0000-0000-100000000043 } }, { id: MicroStrategy Document, type: { id: 00000000-0000-0000-0000-100000000049 } }, { id: BI Report Attribute, type: { id: 00000000-0000-0000-0000-090000000004 } }, { id: BI Data Entity, type: { id: 00000000-0000-0000-0000-090000000007 } }, { id: BI Data Model, type: { id: 00000000-0000-0000-0000-090000000008 } }, { id: Column, type: { id: 00000000-0000-0000-0000-000000031008 } }, { id: Table, type: { id: 00000000-0000-0000-0000-000000031007 } }, { id: Schema, type: { id: 00000000-0000-0000-0001-000400000002 } }, { id: Database, type: { id: 00000000-0000-0000-0000-000000031006 } }, { id: Business Term, type: { id: 00000000-0000-0000-0000-000000011001 } }], edges: [{ from: MicroStrategy Report, to: MicroStrategy Data Attribute, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000021 }, roleDirection: true }, { from: BI Folder, to: MicroStrategy Report, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: BI Folder, to: BI Folder, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000001 }, roleDirection: true }, { from: BI Folder, to: MicroStrategy Dossier, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: BI Folder, to: MicroStrategy Document, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: MicroStrategy Dossier, to: BI Report Attribute, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007058 }, roleDirection: false }, { from: MicroStrategy Document, to: BI Report Attribute, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007058 }, roleDirection: false }, { from: BI Report Attribute, to: MicroStrategy Data Attribute, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000010 }, roleDirection: true }, { from: BI Data Entity, to: MicroStrategy Data Attribute, label: , style: boxing, type: { id: 00000000-0000-0000-0000-000000007047 }, roleDirection: true }, { from: BI Data Model, to: BI Data Entity, label: , style: boxing, type: { id: 00000000-0000-0000-0000-000000007046 }, roleDirection: false }, { from: MicroStrategy Report, to: MicroStrategy Report, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: false }, { from: MicroStrategy Report, to: BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: false }, { from: MicroStrategy Document, to: BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: false }, { from: MicroStrategy Dossier, to: BI Data Model, label: , style:
arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: false }, { from: MicroStrategy Data Attribute, to: Column, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007069 }, roleDirection: false }, { from: MicroStrategy Dossier, to: BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000015 }, roleDirection: true }, { from: MicroStrategy Document, to: BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000015 }, roleDirection: true }, { from: MicroStrategy Report, to: BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000015 }, roleDirection: true }, { from: MicroStrategy Report, to: BI Data Entity, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007038 }, roleDirection: true }, { from: Column, to: Table, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007042 }, roleDirection: true }, { from: Table, to: Schema, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007043 }, roleDirection: false }, { from: Schema, to: Database, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007024 }, roleDirection: false }, { from: MicroStrategy Report, to: Business Term, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007021 }, roleDirection: false }, { from: MicroStrategy Report, to: BI Data Entity, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: false }], showOverview: false, enableFilters: true, showLabels: false, showFields: true, showLegend: true, showPreview: true, visitStrategy: directed, layout: HierarchyLeftRight, maxNodeLabelLength: 50, maxEdgeLabelLength: 30, layoutOptions: { compactGroups: false, componentArrangementPolicy: topmost, edgeBends: true, edgeBundling: true, edgeToEdgeDistance: 5, minimumLayerDistance: auto, nodeToEdgeDistance: 5, orthogonalRouting: true, preciseNodeHeightCalculation: true, recursiveGroupLayering: true, separateLayers: true, webWorkers: true, nodePlacer: { barycenterMode: true, breakLongSegments: true, groupCompactionStrategy: none, nodeCompaction: false, straightenEdges: true } } } Overview and diagram viewHarvested metadata per asset typeExample of ingested Looker metadataRecommended hierarchy within a domainCreate a Looker operating model diagram viewOverview and diagram viewThe Looker scanner collects Looker metadata and sends it to the Collibra Data Lineage service. Collibra processes the metadata and creates new Looker assets and relations in Data Catalog. You can see them on the asset page overview or visualize them in a diagram or in a technical lineage.The assets have the same names as their counterparts in Looker. Full names and Display names cannot be changed in Data Catalog.Asset types are only created if you have all specific Looker and Data Catalog permissions.All Looker asset types are created in the same domain.Relations that were manually created between Looker assets and other assets via a relation type in the Looker operating model are deleted after a refresh of the Looker metadata.The following image shows the relations between Looker asset types.Harvested metadata per asset typeThe following table shows the harvested Looker metadata for each Looker asset type. This table also shows the resource ID for each asset type and metadata. Asset typeSynchronized metadataResource IDLooker DashboardResource ID: 00000000-0000-0000-0000-100000000013Full name Display name Description 00000000-0000-0000-0000-000000003114Document creation date00000000-0000-0000-0000-000000000260Document last accessed date 00000000-0000-0000-0000-000000000268Favorites count00000000-0000-0000-0000-000000000269 Owner in sourceThe only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001Technical Data Type00000000-0000-0000-0000-000000000219URL00000000-0000-0000-0000-000000000258Visit count 00000000-0000-0000-0000-000000000264Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Report groups / is grouped into Report00000000-0000-0000-0000-120000000004 Report related to / impacted by Business Asset00000000-0000-0000-0000-120000000006 Report uses / used in Report00000000-0000-0000-0000-120000000007 Looker Data SetResource ID: 00000000-0000-0000-0000-100000000017Full name Display name Description 00000000-0000-0000-0000-000000003114Data Set contains / is part of Data Element00000000-0000-0000-0000-000000007062Technology Asset source system for / source system Data Asset00000000-0000-0000-0000-000000007050Looker Data Set ColumnResource ID: 00000000-0000-0000-0000-100000000018Full name Display name Description 00000000-0000-0000-0000-000000003114Data Set contains / is part of Data Element00000000-0000-0000-0000-000000007062Report Attribute sourced from / is source of Data Attribute00000000-0000-0000-0000-120000000010Looker FolderResource ID: 00000000-0000-0000-0000-100000000012Full name Display name Document creation date00000000-0000-0000-0000-000000000260Owner in sourceThe only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001BI Folder assembles / is assembled in BI Folder00000000-0000-0000-0000-120000000001Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000Looker LookResource ID: 00000000-0000-0000-0000-100000000014Full name Display name Description 00000000-0000-0000-0000-000000003114Document creation date00000000-0000-0000-0000-000000000260Document last accessed date 00000000-0000-0000-0000-000000000268Document modification date00000000-0000-0000-0000-000000000261Favorites count00000000-0000-0000-0000-000000000269 Owner in sourceThe only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001Report image00000000-0000-0000-0000-000000000262URL00000000-0000-0000-0000-000000000258Visit count 00000000-0000-0000-0000-000000000264Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Report groups / is grouped into Report00000000-0000-0000-0000-120000000004 Report uses / used in Report00000000-0000-0000-0000-120000000007 Looker Report AttributeResource ID: 00000000-0000-0000-0000-100000000019Full name Display name Report Attribute contained in / contains Report00000000-0000-0000-0000-000000007058 Report Attribute sourced from / is source of Data Attribute00000000-0000-0000-0000-120000000010Looker QueryResource ID: 00000000-0000-0000-0000-100000000016Full name Display name URL00000000-0000-0000-0000-000000000258Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Report Attribute contained in / contains Report00000000-0000-0000-0000-000000007058 Report uses / used in Report00000000-0000-0000-0000-120000000007 Looker TenantResource ID: 00000000-0000-0000-0000-100000000011Full name Display name Description00000000-0000-0000-0000-000000003114Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000Technology Asset source system for / source system Data Asset00000000-0000-0000-0000-000000007050Looker TileResource ID: 00000000-0000-0000-0000-100000000015 Full name Display name Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Report uses / used in Report00000000-0000-0000-0000-120000000007 The metadata that is shown on the assets' pages depends on the asset type's assignment. As a result, you might not see all harvested metadata on the asset's page by default.Additional informationFor the Owner in source attribute, the following rules apply: If the system creates a Looker data object and the Looker data object does not have a user ID, the Owner in source attribute is shown as System on the asset page. If the user who created a Looker data object no longer exists, the Owner in source attribute is shown as empty on the asset page.Example of ingested Looker metadataThe following image shows an example structure after Looker ingestion.Recommended hierarchy within a domainYou can enable hierarchies for the domain in which your Looker assets were ingested. Doing so makes it easier to understand the relation between your Looker assets, when viewing the assets on the domain page.Follow these steps to enable and configure the recommended hierarchy.Steps Open the domain page of the relevant BI Catalog domain. On the content toolbar, click .The Configure Hierarchy dialog box appears.Select Enable Hierarchy.Select Multipath.Start typing and select each of the following relation types:Server hosts Business DimensionBusiness Dimension groups ReportReport contains Report AttributeTechnology Asset source system for Data AssetData Set contains Data ElementData Attribute is source of Report AttributeClick Apply.In an asset view, if any asset is deleted, for example via synchronization or manual deletion, the view is recreated and the hierarchy is lost. In this case, you can again enable and configure the recommended hierarchy.When viewing the hierarchy for a community or domain, if the parent of a node that is in the community or domain belongs to a different community or domain, that node is not shown in the hierarchy.Create a Looker operating model diagram viewYou
can create a Looker-specific diagram view, to visualize the operating model. The following procedure provides instruction on how to quickly create a new diagram view by copying and pasting the JSON code in the diagram view text editor.StepsOpen an asset page. In the tab pane, click Diagram.The diagram appears in the default diagram view.Click to add a new view.Click the Text tab, to switch to the diagram view text editor.Click Show me the JSON code below this procedure, to expand the code.Paste the code in diagram view text editor.Click Save.Edit the name and description of the diagram view, to suit your needs.Show me the JSON code{ nodes: [{ id: Looker Tenant, type: { id: 00000000-0000-0000-0000-100000000011 } }, { id: Looker Folder, type: { id: 00000000-0000-0000-0000-100000000012 } }, { id: Looker Project, type: { id: 750ee74c-84dc-494f-84c0-7ab14105432a } }, { id: Looker Board, type: { id: 1118d30f-846b-4bae-93d2-97488a0d9796 } }, { id: Looker Look, type: { id: 00000000-0000-0000-0000-100000000014 } }, { id: Looker Dashboard, type: { id: 00000000-0000-0000-0000-100000000013 } }, { id: Looker Data Model, type: { id: 3ed176fa-78c8-4116-a771-9dd100ad1129 } }, { id: Looker Data Attribute, type: { id: 232fecbc-7f20-45c2-bbcf-7329cd0b17df } }, { id: Looker Query, type: { id: 00000000-0000-0000-0000-100000000016 }, layoutRegion: flow }, { id: Looker Tile, type: { id: 00000000-0000-0000-0000-100000000015 } }], edges: [{ from: Looker Tenant, to: Looker Folder, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000000 }, roleDirection: true }, { from: Looker Tenant, to: Looker Project, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000000 }, roleDirection: true }, { from: Looker Tenant, to: Looker Board, label: , style: arrow, type: { id: f953c3da-6923-4301-b467-2f7066232b47 }, roleDirection: false }, { from: Looker Board, to: Looker Look, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000004 }, roleDirection: true }, { from: Looker Board, to: Looker Dashboard, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000004 }, roleDirection: true }, { from: Looker Project, to: Looker Dashboard, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Looker Project, to: Looker Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000014 }, roleDirection: true }, { from: Looker Data Model, to: Looker Data Attribute, label: , style: boxing, type: { id: 00000000-0000-0000-0000-000000007196 }, roleDirection: true }, { from: Looker Dashboard, to: Looker Data Attribute, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000021 }, roleDirection: true }, { from: Looker Look, to: Looker Data Attribute, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000021 }, roleDirection: true }, { from: Looker Query, to: Looker Data Attribute, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000021 }, roleDirection: true }, { from: Looker Folder, to: Looker Query, label: , type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Looker Folder, to: Looker Look, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Looker Folder, to: Looker Dashboard, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Looker Folder, to: Looker Tile, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Looker Query, to: Looker Look, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000004 }, roleDirection: true }, { from: Looker Dashboard, to: Looker Tile, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000004 }, roleDirection: true }, { from: Looker Dashboard, to: Looker Look, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000007 }, roleDirection: true }, { from: Looker Query, to: Looker Tile, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000007 }, roleDirection: true }, { from: Looker Folder, to: Looker Folder, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000001 }, roleDirection: true }], showOverview: false, enableFilters: true, showLabels: true, showFields: true, showLegend: true, showPreview: true, visitStrategy: directed, layout: HierarchyLeftRight, maxNodeLabelLength: 50, maxEdgeLabelLength: 30, layoutOptions: { compactGroups: false, componentArrangementPolicy: topmost, edgeBends: true, edgeBundling: true, edgeToEdgeDistance: 5, minimumLayerDistance: auto, nodeToEdgeDistance: 5, orthogonalRouting: true, preciseNodeHeightCalculation: true, recursiveGroupLayering: true, separateLayers: true, webWorkers: true, nodePlacer: { barycenterMode: true, breakLongSegments: true, groupCompactionStrategy: none, nodeCompaction: false, straightenEdges: true } } } Overview and diagram viewHarvested metadata per asset typeExample of ingested SSRS and PBRS metadataRecommended hierarchy within a domainCreate a SSRS and PBRS operating model diagram viewOverview and diagram viewThe lineage harvester collects SQL Server Reporting Services (SSRS) metadata and sends it to the Collibra Data Lineage service. Collibra processes the metadata and creates new SSRS assets and relations in Data Catalog. You can see them on the asset page overview or visualize them in a diagram or in a technical lineage.The assets have the same names as their counterparts in SSRS and Power BI Report Server (PBRS). Full names and Names cannot be changed in Data Catalog.Assets ingested from SSRS and PBRS are called SSRS assets in Data Catalog, except for PBRS reports which are called Power BI Report assets.Asset types are only created if you have all specific Data Catalog permissions.All SSRS and PBRS assets are created in the same domain.Relations that were manually created between SSRS assets or PBRS assets and other assets via a relation type in the SSRS and PBRS operating model, are deleted after synchronizing the metadata.The following image shows the relations between SSRS asset types and the Power BI Report asset type.Harvested metadata per asset typeThis table shows the harvested SSRS and PBRS metadata for each SSRS asset type and Power BI Report asset type, assuming you have the necessary subscriptions and configurations for a full ingestion. This table also shows the resource ID for each asset type and metadata. Asset typeSynchronized metadataResource IDSSRS ColumnResource ID: 00000000-0000-0000-0000-100000000029Full name Display name Description 00000000-0000-0000-0000-000000003114Technical Data Type00000000-0000-0000-0000-000000000219BI Data Model contains / is part of BI Data Attribute00000000-0000-0000-0000-000000007196Data Element targets / sources Data Element 00000000-0000-0000-0000-000000007069Data Entity contains / is part of Data Attribute 00000000-0000-0000-0000-000000007047SSRS Data ModelResource ID: 00000000-0000-0000-0000-100000000028Full name Display name Certified00000000-0000-0000-0001-000500000001Description 00000000-0000-0000-0000-000000003114Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261Document size00000000-0000-0000-0000-000000000259Location00000000-0000-0000-0000-000000000203URL00000000-0000-0000-0000-000000000258Visible on server00000000-0000-0000-0000-000000000265BI Data Model contains / is part of BI Data Attribute00000000-0000-0000-0000-000000007196BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Data Asset is source for / source BI report00000000-0000-0000-0000-120000000013Data Entity is part of / contains Data Model 00000000-0000-0000-0000-000000007046SSRS FolderResource ID: 00000000-0000-0000-0000-100000000024Full name Display name Description 00000000-0000-0000-0000-000000003114Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261Location00000000-0000-0000-0000-000000000203URL00000000-0000-0000-0000-000000000258Visible on server00000000-0000-0000-0000-000000000265Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 BI Folder assembles / is assembled in BI Folder00000000-0000-0000-0000-120000000001BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000SSRS KPIResource ID: 00000000-0000-0000-0000-100000000026Full name Display name Certified 00000000-0000-0000-0001-000500000001Description
00000000-0000-0000-0000-000000003114Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261Document size00000000-0000-0000-0000-000000000259Location00000000-0000-0000-0000-000000000203URL00000000-0000-0000-0000-000000000258Visible on server00000000-0000-0000-0000-000000000265Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Data Asset is source for / source BI Report00000000-0000-0000-0000-120000000013Report Attribute contained in / contains Report00000000-0000-0000-0000-000000007058 Report related to / impacted by Business Asset00000000-0000-0000-0000-120000000006 SSRS ParameterResource ID: 00000000-0000-0000-0000-100000000027Full name Display name Description00000000-0000-0000-0000-000000003114Business Asset represents / represented by Data Asset00000000-0000-0000-0000-000000007038Report Attribute contained in / contains Report00000000-0000-0000-0000-000000007058 Report Attribute sourced from / is source of Data Attribute00000000-0000-0000-0000-120000000010SSRS ReportResource ID: 00000000-0000-0000-0000-100000000025Full name Display name Certified 00000000-0000-0000-0001-000500000001Description 00000000-0000-0000-0000-000000003114Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261Document size00000000-0000-0000-0000-000000000259Location00000000-0000-0000-0000-000000000203URL00000000-0000-0000-0000-000000000258Visible on server00000000-0000-0000-0000-000000000265Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Data Asset is source for / source BI Report00000000-0000-0000-0000-120000000013Report related to / impacted by Business Asset00000000-0000-0000-0000-120000000006 Report uses / used in Report00000000-0000-0000-0000-120000000007 SSRS ServerResource ID: 00000000-0000-0000-0000-100000000023Full name Display name Description00000000-0000-0000-0000-000000003114Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000SSRS TableResource ID: 00000000-0000-0000-0000-100000000030 Full name Display name Description 00000000-0000-0000-0000-000000003114Data Entity contains / is part of Data Attribute00000000-0000-0000-0000-000000007047Data Entity is part of / contains Data Model00000000-0000-0000-0000-000000007046Example of ingested SSRS and PBRS metadataThe following image shows an example structure after SSRS and PBRS ingestion.Recommended hierarchy within a domainYou can enable hierarchies for the domain in which your SSRS assets were ingested. Doing so makes it easier to understand the relation between your SSRS assets, when viewing the assets on the domain page.Follow these steps to enable and configure the recommended hierarchy.Steps Open the domain page of the relevant BI Catalog domain. On the content toolbar, click .The Configure Hierarchy dialog box appears.Select Enable Hierarchy.Select Multipath.Start typing and select each of the following relation types:Server hosts Business DimensionBusiness Dimension groups ReportBI Folder contains Data AssetData Set is source for BI ReportReport contains Report AttributeBI Folder contains Data AssetBI Data Model contains BI Data AttributeData Entity contains Data AttributeClick Apply.In an asset view, if any asset is deleted, for example via synchronization or manual deletion, the view is recreated and the hierarchy is lost. In this case, you can again enable and configure the recommended hierarchy.When viewing the hierarchy for a community or domain, if the parent of a node that is in the community or domain belongs to a different community or domain, that node is not shown in the hierarchy.Create an SSRS and PBRS operating model diagram viewYou can create a diagram view for SSRS and PBRS to visualize the operating model. Complete the following steps to create a new diagram view by copying and pasting the JSON code in the diagram view text editor.StepsOpen an asset page. In the tab pane, click Diagram.The diagram appears in the default diagram view.Click to add a new view.Click the Text tab, to switch to the diagram view text editor.Click Show me the JSON code below this procedure, to expand the code.Paste the code in diagram view text editor.Click Save.Edit the name and description of the diagram view, to suit your needs.Show me the JSON code { nodes: [{ id: SSRS Column, type: { id: 00000000-0000-0000-0000-100000000029 } }, { id: SSRS Data Model, type: { id: 00000000-0000-0000-0000-100000000028 } }, { id: SSRS Table, type: { id: 00000000-0000-0000-0000-100000000030 } }, { id: SSRS KPI, type: { id: 00000000-0000-0000-0000-100000000026 } }, { id: SSRS Parameter, type: { id: 00000000-0000-0000-0000-100000000027 } }, { id: SSRS Folder, type: { id: 00000000-0000-0000-0000-100000000024 } }, { id: Power BI Report, type: { id: 00000000-0000-0000-0000-100000000006 } }, { id: SSRS Report, type: { id: 00000000-0000-0000-0000-100000000025 } }, { id: SSRS Folder 2, type: { id: 00000000-0000-0000-0000-100000000024 } }, { id: SSRS Server, type: { id: 00000000-0000-0000-0000-100000000023 } }, { id: Column, type: { id: 00000000-0000-0000-0000-000000031008 } }, { id: Table, type: { id: 00000000-0000-0000-0000-000000031007 } }, { id: Schema, type: { id: 00000000-0000-0000-0001-000400000002 } }, { id: Database, type: { id: 00000000-0000-0000-0000-000000031006 } }], edges: [{ from: SSRS Data Model, to: SSRS Column, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007196 }, roleDirection: true }, { from: SSRS Table, to: SSRS Column, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007047 }, roleDirection: true }, { from: SSRS Data Model, to: SSRS Table, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007046 }, roleDirection: true }, { from: SSRS Data Model, to: SSRS KPI, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: true }, { from: SSRS KPI, to: SSRS Parameter, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000014 }, roleDirection: true }, { from: SSRS Folder, to: SSRS Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000014 }, roleDirection: true }, { from: SSRS Folder, to: Power BI Report, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: SSRS Folder, to: SSRS Report, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: SSRS Folder, to: SSRS KPI, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000004 }, roleDirection: true }, { from: SSRS Server, to: SSRS Folder 2, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000000 }, roleDirection: false }, { from: SSRS Folder 2, to: SSRS Folder, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000001 }, roleDirection: true }, { from: SSRS Folder, to: SSRS Server, label: , style: boxed, type: { id: 00000000-0000-0000-0000-120000000000 }, roleDirection: false }, { from: SSRS Report, to: SSRS Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: false }, { from: SSRS Column, to: Column, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007069 }, roleDirection: false }, { from: Column, to: Table, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007042 }, roleDirection: true }, { from: Table, to: Schema, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007043 }, roleDirection: false }, { from: Schema, to: Database, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007024 }, roleDirection: false }], showOverview: false, enableFilters: true, showLabels: false, showFields: true, showLegend: true, showPreview: true, visitStrategy: directed, layout: HierarchyLeftRight, maxNodeLabelLength: 50, maxEdgeLabelLength: 30, layoutOptions: { compactGroups: false, componentArrangementPolicy: topmost, edgeBends: true, edgeBundling: true, edgeToEdgeDistance: 5, minimumLayerDistance: auto, nodeToEdgeDistance: 5, orthogonalRouting: true, preciseNodeHeightCalculation: true, recursiveGroupLayering: true, separateLayers: true, webWorkers: true, nodePlacer: { barycenterMode: true, breakLongSegments: true, groupCompactionStrategy: none, nodeCompaction: false, straightenEdges: true } } }Technical usersThis section caters primarily to the following technically-focused Collibra Data Lineage customers:Types of technical rolesWhat you want from Collibra Data Lineage Data EngineerEnterprise Data ArchitectIntegrations EngineerArtificial Intelligence / Machine Learning EngineerSystems EngineerData Infrastructure EngineerData Quality Engineer Shop for datasets.Collect and evaluate data.Consult data models in Data Catalog.Perform impact analysis.Evaluate data security.Ensure the success of data migration from one data source to another. Supported data sources for technical lineage Transformation logic Technical lineage export types BI integration concepts Technical lineage viewer Supported data sources for technical lineageCollibra Data Intelligence Cloud supports many data sources and metadata sources, including JDBC data sources, ETL tools and BI tools, for which you can create a technical lineage.For a complete list of required permissions per supported data source type, see the Requirements and permissions section in Prepare the lineage harvester configuration file.Using an older version of a data source might not work as expected; however, we don't expect problems if
you use a newer version.JDBC data sourcesThe following tables show the supported JDBC data sources.Lineage harvesterTechnical lineage via EdgeLineage harvesterThe following table shows the supported JDBC data sources and driver versions that have been tested. You can connect to them via a JDBC driver or by creating a folder. JDBC data source typeSupported versionsConnection typeScopeAmazon Redshift1.2.34.1058 and newerJDBC, FolderSQL based input without stored procedures.Azure SQL serverNewest versionJDBC, FolderSQL based input and stored procedures.Azure SQL Data WarehouseNewest versionJDBC, FolderSQL based input and stored procedures.Azure Synapse AnalyticsNewest versionJDBC, FolderSQL based input and stored procedures.Google BigQueryNewest versionJDBC, FolderSQL based input without stored procedures.Greenplum6.10 and newerJDBC, FolderSQL based input.HiveQL (SQL-like statements)2.3.5 and newerJDBC, FolderSQL based input and connection via an AWS host.IBM Db211.5 and newerJDBC, FolderSQL based input without stored procedures.Oracle11g, 12c and newerJDBC, FolderSQL based input and stored procedures.PostgreSQL9.4, 9.5 and newerJDBC, FolderSQL based input without stored procedures.Microsoft SQL Server2014, 2016 and newerJDBC, FolderSQL based input and stored procedures.MySQL5.7, 8 and newerJDBC, FolderSQL based input without stored procedures.Netezza7.2.1.0 and newerJDBC, FolderSQL based input without stored procedures.SAP Hana2.00.40 and newerJDBC, FolderSQL based input and SAP HANA Information views, which includes attributes, analytic views and calculation views from database table or view data sources.Script-based calculation views and stored procedures are out of scope.Collibra Data Lineage supports SQL based input and SAP HANA Information views are supported for SAP HANA on-premises. However, calculated views are not supported for SAP HANA Cloud.SnowflakeNewest versionJDBC, FolderSQL based input without stored procedures.SQL-API based input with stored procedures. For more information, go to Technical lineage for Snowflake ingestion methods.Spark SQL2.4.3 and newerJDBC, FolderSQL-based input without stored procedures and connection via an AWS host. For Spark SQL data source, we recommend using the folder connection type to connect to the directory with your SQL queries.Sybase Adaptive Server Enterprise16.0 SP02 and newerJDBC, FolderSQL based input without stored procedures.Teradata15.0, 16.20.07.01 and newerJDBC, FolderSQL based input, including BTEQ scripts.Technical lineage via EdgeThe following table lists the supported JDBC data sources and connection types you can use when you add capabilities for different data sources. The Shared Storage connection is equivalent to the folder connection type when you use the lineage harvester. JDBC data source typeSupported versionsConnection type ScopeAmazon Redshift1.2.34.1058 and newerJDBC connection, Shared Storage connectionSQL based input without stored procedures.Azure SQL serverNewest versionJDBC connection, Shared Storage connectionSQL based input and stored procedures.Azure SQL Data WarehouseNewest versionJDBC connection, Shared Storage connectionSQL based input and stored procedures.Azure Synapse AnalyticsNewest versionJDBC connection, Shared Storage connectionSQL based input and stored procedures.Google BigQueryNewest versionJDBC connection, Shared Storage connectionSQL based input without stored procedures.Greenplum6.10 and newerJDBC connection, Shared Storage connectionSQL based input.HiveQL (SQL-like statements)2.3.5 and newerJDBC connection, Shared Storage connectionSQL based input and connection via an AWS host.IBM Db211.5 and newerJDBC connection, Shared Storage connectionSQL based input without stored procedures.Oracle11g, 12c and newerJDBC connection, Shared Storage connectionSQL based input and stored procedures.PostgreSQL9.4, 9.5 and newerJDBC connection, Shared Storage connectionSQL based input without stored procedures.Microsoft SQL Server2014, 2016 and newerJDBC connection, Shared Storage connectionSQL based input and stored procedures.MySQL5.7, 8 and newerJDBC connection, Shared Storage connectionSQL based input without stored procedures.Netezza7.2.1.0 and newerJDBC connection, Shared Storage connectionSQL based input without stored procedures.SAP Hana2.00.40 and newerJDBC connection, Shared Storage connectionSQL based input and SAP HANA Information views, which includes attributes, analytic views and calculation views from database table or view data sources.Script-based calculation views and stored procedures are out of scope.SnowflakeNewest versionJDBC connection, Shared Storage connectionSQL based input without stored procedures.SQL-API based input with stored procedures. For more information, go to Technical lineage for Snowflake ingestion methods.Spark SQL2.4.3 and newerJDBC connection, Shared Storage connectionSQL-based input without stored procedures and connection via an AWS host.For Spark SQL data source, we recommend using the folder connection type to connect to the directory with your SQL queries.Sybase Adaptive Server Enterprise16.0 SP02 and newerJDBC connection, Shared Storage connectionSQL based input without stored procedures.Teradata15.0, 16.20.07.01 and newerJDBC connection, Shared Storage connectionSQL based input, including BTEQ scripts.ETL toolsThe following table shows the supported ETL tools.Lineage harvesterTechnical lineage via EdgeLineage harvesterThe following table shows the supported ETL tools and driver versions that have been tested. You can connect to them via an API or by creating a folder.ETL toolSupported versionsConnection typeScopeAzure Data Factory2 and newerAPICommonly supported transformations and activities in Azure Data Factory. For details, go to Supported transformation details.IBM InfoSphere DataStage11.5 and newerFolderCommonly used DataStage ETL components including SQL overrides and transformation details.Collibra Data Lineagesupports IBM InfoSphere DataStage transformation logic.You have to prepare a folder with all data objects that you want to process.Informatica Intelligent Cloud Services, specifically Cloud Data IntegrationData Integration is one of the Informatica Intelligent Cloud services. Cloud, newest onlyAPICommonly used transformations in Informatica Intelligent Cloud Services: Data Integration, including SQL overrides.Supported data sources are locally stored flat files and databases.Informatica PowerCenter9.6 and newerFolderCommonly used transformations in Informatica PowerCenter, including SQL overrides.You have to prepare a folder with all data objects that you want to process.MatillionNewest versionAPISQL based input without stored procedures.The lineage harvester can only access Redshift and Snowflake projects.SQL Server Integration Services (SSIS)2012 and newerPackage format version 6 or newer.FolderAll commonly used transformations in SSIS, data flows and mappings, including SQL overrides.SQL statements from Excel are not supported.You have to prepare a folder with all data objects that you want to process.Technical lineage via EdgeThe following table lists the supported ETL data sources and connection types you can use when you add capabilities for different data sources. The Shared Storage connection is equivalent to the folder connection type when you use the lineage harvester. The API connection type is not supported for Informatica Intelligent Cloud Services (IICS) and Matillion yet on Edge. You can use Shared Storage connections when you create the technical lineage for IICS and Matillion on Edge.ETL toolSupported versionsConnection typeScopeAzure Data Factory2 and newerAPICommonly supported transformations and activities in Azure Data Factory. For details, go to Supported transformation details.IBM InfoSphere DataStage11.5 and newerShared Storage connectionCommonly used DataStage ETL components including SQL overrides and transformation details.Collibra Data Lineage supports IBM InfoSphere DataStage transformation logic.You have to prepare a folder with all data objects that you want to process.Informatica Intelligent Cloud Services, specifically Cloud Data IntegrationData Integration is one of the Informatica Intelligent Cloud services. Cloud, newest onlyInformatica Intelligent Cloud Services (IICS) connectionCollibra Data Intelligence Cloud 2023.03 or newer is required to use the Informatica Intelligent Cloud Services (IICS) connection. Commonly used transformations in Informatica Intelligent Cloud Services: Data Integration, including SQL overrides.Supported data sources are locally stored flat files and databases.Informatica PowerCenter9.6 and newerShared Storage connectionCommonly used transformations in Informatica PowerCenter, including SQL overrides.You have to prepare a folder with all data objects that you want to process.MatillionNewest versionMatillion connectionCollibra Data Intelligence Cloud 2023.03 or newer is required to use the Matillion connection. SQL based input without stored procedures.Technical lineage via Edge can only access Redshift and Snowflake projects.SQL Server Integration Services (SSIS)2012 and newerPackage format version 6 or newer.Shared Storage connectionAll commonly used transformations in SSIS, data flows and mappings, including SQL overrides.SQL statements from Excel are not supported.You have to prepare a folder with all data objects that you want to process.BI toolsThe following table shows the supported BI tools.Lineage harvesterTechnical lineage via EdgeLineage harvesterThe following table shows the supported BI tools.BI toolTested versionsConnection typeTableauNewestAPI.You have to prepare:lineage harvester configuration file for Tableau ingestion. Optionally, a Tableau <source ID> configuration file. Power BINewestAPI.The new Power BI integration includes many enhancements, including consolidated harvesters, meaning you no longer need the Power BI harvester. You only need to
prepare:lineage harvester configuration file for Power BI ingestion. Optionally, a Power BI <source ID> configuration file. LookerNewestAPI.Collibra Data Lineage automatically creates a technical lineage, but stitching is not available.You have to prepare a lineage harvester configuration file for Looker ingestion.SQL Server Reporting Services (SSRS) or Power BI Report Server (PBRS) SSRS: 2017 and newerDue to a bug in 2017 that is resolved by the newer APIs, we recommend using SQL Server 2019 or newer Reporting Services. PBRS: 2019 and newer API.You have to prepare: A lineage harvester configuration file for SSRS-PBRS ingestion. Optionally, an SSRS-PBRS <source ID> configuration file. MicroStrategyNewestDirect connection to the repository.Stitching is not available and there is no true technical lineage. There is only a diagram view that you can access via a Column or Table asset, but not via MicroStrategy assets.You have to prepare a lineage harvester configuration file for MicroStrategy ingestion. You can access: Microsoft SQL Server repository. Any local or remote PostgreSQL database. The MicroStrategy Intelligence Server has an embedded PostgreSQL repository, as its default repository. For complete information on the default, embedded repository, see the MicroStrategy repository documentation. MicroStrategy (NEW)NewestYou have to prepare a lineage harvester configuration file for MicroStrategy ingestion.Benefits of the new integration method include:Support for the latest MicroStrategy APIsSupport for technical lineage and stitching.New operating model.No longer dependent on a direct connection to the repository.Technical lineage via EdgeThe following table lists the supported BI data sources and connection types you can use when you add capabilities for different data sources. BI toolTested versionsConnection typeCapabilityTableauNewestAPITechnical Lineage for TableauPower BINewestAPITechnical Lineage for Power BIMicroStrategyNewestAPITechnical Lineage for MicroStrategyCustom technical lineageYou can create a custom technical lineage to include data objects from data sources that are not listed above.For information on creating a custom technical lineage via Edge, go to Create technical lineage via Edge and select Custom technical lineage.For information on creating technical lineage by using the lineage harvester, go Custom technical lineage via the lineage harvester.AuthenticationTechnical lineage supports the following means of authentication: For all data sources, except for external directories: username and password. Google BigQuery data sources: username and password or a service account key file. For more information, see the Google BigQuery documentation. Power BI: username and password or service principal.Snowflake: username and password or key pair authentication. Tableau: username and password or token-based authentication.No other authentication methods are supported.Supported SQL syntaxThe SQL syntax used in your data sources has an impact on the technical lineage.Technical lineage supports SQL syntax that is relevant to process data for all supported data sources. This includes: DML (Data Manipulation Language) statements that are used to move and transform data. For example, INSERT, UPDATE and MERGE. Technical lineage supports the extraction of DML statements from supported procedures, but it does not support all SQL syntax.DDL (Data Definition Language) statements:that impact the technical lineage. For example, ALTER TABLE, which you use to add or rename columns.that are used to transform data. For example, CREATE A TABLE AS SELECT.Relevant syntax constructs. For example, nested subselects, aliases, different join methods, synonyms and cross-database references.You want to create a technical lineage for a Teradata source that has the following SQL syntax: ALTER TYPEALTER PROCEDURECREATE/REPLACE AUTHORIZATIONMLOAD (MultiLoad)RECORD (FastLoad)BEGIN/END QUERY LOGGINGFunctions with schema, for example schema_name.function.name(args...)Functions with conversation, for example function_name(args...) RETURNS VARCHAR(<number>) CHARACTER SET LATINMacro argument attributesCollibra Data Lineage will successfully parse this SQL syntax.Not supported SQL syntaxTechnical lineage does not support the following SQL syntax:DML statements that you use to access data in complex structures such as JSON objects or structs.Triggers, foreign keys and indexes.Cursors, functions or dynamic queries.Streams queries.This is not an exhaustive list. If the SQL syntax that you use is not supported, you can add an idea in the Collibra Integrations Ideation Portal. We will evaluate the SQL syntax for inclusion.Dynamic SQL statements yield limited results. For example, SSRS uses the columns defined by the first SELECT statement in a stored procedure to determine the columns in the result set. Therefore, if you want a full ingestion, you need a static SQL statement. Fortunately, you can transform dynamic SQL statements into static statements. If the dynamic SQL can be logged at the runtime of a table, the dynamic query is transformed into a static query that can be extracted by Collibra Data Lineage and processed without limitations.Supported transformation detailsCollibra Data Lineage supports the most commonly used transformations in the following sources:Azure Data FactoryIBM DataStageInformatica PowerCenterInformatica Intelligent Cloud ServicesSnowflakeSQL Server Integration ServicesAzure Data FactoryCollibra Data Lineage supports the most commonly used transformations and data sources in Azure Data Factory (Beta) . Supported transformations The following tables shows a non-exhaustive list of supported and unsupported transformations.Supported transformationsUnsupported transformationsAggregate1Alter RowAssertDerived Column1ExistsExternal Call2FilterFlatten1JoinLookupParse1Pivot3RankSelect1Sink4SortSource SplitStringifySurrogate KeyUnionUnpivotWindow1 Some reserved variables names, for example {@context}FlowletsLimitationsTransformations that contain column patterns or rule-based mappings can only be partially analyzed because they generate column names on the fly during the actual data flow run. If technical lineage is detected from a dynamically generated column, it is given the placeholder Dynamic Column in the technical lineage viewer.In the Mapping section of the editor, column patterns are not supported and not displayed in the technical lineage graph. Note that Auto mapping uses column patterns behind the scenes and is therefore not supported either.Pivoted columns can only be inferred when explicit values are provided in the Pivot Key tab. When columns cannot be inferred, a placeholder Pivoted Columns is added.The SQL scripts and rule-based mappings in the transformation are not supported.Supported data sourcesThe following table shows a non-exhaustive list of supported sources with the corresponding dataset and linked service types. CollibraData Lineage supports all data format types that are supported in Azure Data Factory, including binary, Excel file, Delimited text, JSON, Parquet, and so on. Data sourcesDataset typeLinked service typeAmazon RedshiftAmazonRedshiftTableAmazonRedshiftAzure Blob storageAzureBlobAzureBlobStorageAzure Data Lake Storage Gen2AzureBlobFSFileAzureBlobFSAzure Data Lake StoreAzureDataLakeStoreFile AzureDataLakeStoreAzure Databricks Delta LakeAzureDatabricksDeltaLakeAzureDatabricksDeltaLakeAzure SQL Managed InstanceAzureSqlMITableAzureSqlMIAzure SQL Server databaseAzureSqlTableAzureSqlDatabaseAzure Synapse AnalyticsAzureSqlDWTableAzureSqlDWDB2 data sourceDb2TableDb2Google Cloud StorageGoogleCloudStorageLocationGoogleCloudStorageMicrosoft Access MicrosoftAccessTableMicrosoftAccessMicrosoft Azure Cosmos DatabaseCosmosDbSqlApiCollectionCosmosDbOpen Database Connectivity (ODBC)OdbcTableOdbcOn-premises Oracle databaseOracleTableOracleRESTRestResourceRestServiceSalesforce SalesforceObjectSalesforceSalesforce Marketing Cloud SalesforceMarketingCloudObjectSalesforceMarketingCloudSalesforce Service CloudSalesforceServiceCloudObjectSalesforceServiceCloudSAP Business Warehouse (open hub)SapOpenHubTableSapBWSFTP serverSftpLocationSftpSnowflake SnowflakeTableSnowflakeSQL ServerSqlServerTableSqlServerIBM DataStage IBM DataStage uses jobs with stages instead of transformations. IBM Datastage has three job types: parallel jobs, sequence jobs and server jobs. For a list of all job stages per job type in IBM DataStage, read the IBM documentation.Informatica PowerCenter transformationsThe following table shows a non-exhaustive list of supported and unsupported transformations in Informatica PowerCenter.Supported transformationsUnsupported transformationsAggregatorExpression1FilterInputJoinerLookupMappletNormalizerOutputRankRouterSorterSourceSQL in the translate_db_type functionTargetTransaction ControlUnionUpdate StrategyData MaskingJavaSequence GeneratorStored Procedure2Web ServicesXMLThe transformation is shown if the column (expression) is using at least one column from another connected transformation.The stored procedures are stored and run in the databases that Informatica PowerCenter connects to. Collibra Data Lineage does not access the Informatica PowerCenter data sources, so Collibra Data Lineage collects the stored procedure names but does not support the Stored Procedure transformation.Informatica Intelligent Cloud ServicesThe following table shows a non-exhaustive list of supported and unsupported transformations and constructions in Informatica Intelligent Cloud Services. Specifically, transformations and constructions in the Cloud Data Integration service.Supported transformationsUnsupported transformations, functions and constructionsData-driven
conditionsExpression, including custom expressions in the supported transformationsFilterJoiner, including join conditionsLookupMappletRouterSequence GeneratorSourceStored ProcedureTargetUnionAggregatorCleanseData MaskingDeduplicateHierarchy BuilderHierarchy ParserHierarchy ProcessorInputJavaLabelerMachine LearningNormalizerNEXTVALParsePythonRankRule SpecificationStructure ParserTransaction ControlVelocityVerifierWeb ServicesSnowflakeYou can create technical lineage for Snowflake by using SQL Snowflake ingestion mode or SQL-API Snowflake ingestion mode. Collibra Data Lineage supports different queries and transformations for each ingestion method. For more information about the ingestion methods, go to Technical lineage for Snowflake ingestion methods.SQL Snowflake ingestion modeWith the SQL Snowflake ingestion mode, Collibra Data Lineage does not support the following non-exhaustive list of transformations: Snowflake Scripting SnowparkSQL-API Snowflake ingestion modeWith the SQL-API Snowflake ingestion mode, Collibra Data Lineage supports the Data Manipulation Language (DML) statements from the following sources. The table also shows a non-exhaustive list of unsupported queries and transformations.Supported transformationsUnsupported queries and transformationsUsing a driverDirect loginStored proceduresThe COPY INTO DML commandStreams 2Data Definition Language (DDL) queriesQueries or query paths that are not executed 1 Sequences, including generating new valuesSnowflake ScriptingSnowpark Snowpipes If you create technical lineage for Snowflake by using the JDBC connection type, only queries or query paths that are executed are supported. For example, if a SQL query contains a CASE statement, the technical lineage will only show lineage from the WHEN path that was executed. However, if you use the folder connection type to ingest Snowflake, SQL queries that include all paths of a CASE statement will be parsed and reflected in the technical lineage.Collibra Data Lineage supports lineage that uses streams as a source and lineage on tables that has streams. Collibra Data Lineage does not support lineage on a CREATE STREAM statement.SQL Server Integration Services (SSIS)Collibra Data Lineage supports the following non-exhaustive list of transformations in SQL Server Integration Services:AggregateCache TransformConditional SplitData Conversion Derived Column Fuzzy Grouping LookupMerge JoinMulticastOLE DB CommandRow CountScript ComponentSlowly Changing DimensionSortUnion AllCollibra Data Lineage supports SQL, but cannot parse other languages or scripts, for example SHELL and BAT scripts.SQL statements from Excel are not supported.All SQL queries must be preceded by the SELECT or WITH keyword, or else they will be skipped.If a comment precedes the SELECT or WITH keyword, the query will be parsed as expected.Technical lineage for Snowflake ingestion methodsTo create technical lineage for Snowflake, you can use the following connection types:The JDBC connection. With this connection type, you can choose to use the SQL or SQL-API Snowflake ingestion modes.The folder connection type if you use the lineage harvester or the Shared Storage connection if you use technical lineage via Edge.You can use different ingestion modes and connection types to collect and process the metadata of your Snowflake data sources with one technical lineage license. For example, you can use both the SQL-API ingestion mode and the folder or Shared Storage connection type. In this way, technical lineage is created based on the query execution and also provides a full coverage of stored procedures. The JDBC connection typeYou can use the JDBC connection type to establish connection to your Snowflake data sources. Collibra Data Lineage collects and processes the metadata from the data sources to create technical lineage.With the JDBC connection type, you can choose to use the SQL or SQL-API Snowflake ingestion modes. These modes are complementary and are designed to address different needs and use cases.SQL Snowflake ingestion modes With this ingestion mode, Collibra Data Lineage retrieves lineage from the database schema and views, providing a design lineage. You can understand the data flow at the schema level from the generated technical lineage. Note that stored procedures are not supported.SQL-API Snowflake ingestion modes Introduced in the 2023.02 release, the SQL-API mode retrieves lineage from views and executed database queries, providing an operational style of lineage. This mode accesses much more information and may take longer for lineage processing.Stored procedures are supported. However, if a stored procedure is defined but not executed, the generated technical lineage does not include lineage for that stored procedure. The technical lineage is based on Snowflake's interpretation of modified objects. Therefore, Collibra Data Lineage cannot show lineage for queries that Snowflake does not interpret or interprets differently than expected. For example, technical lineage does not include indirect lineage, as Snowflake does not interpret indirect lineage. Indirect lineage is the lineage that includes a column that does not appear in the target table but is used as a filter for data moving to the target table. Additionally, if database queries contain conditional statements, the technical lineage includes lineage only for the conditions that were executed. Only the executed path of a CASE WHEN/THEN or IF statement is shown in lineage for each executed query instance.If you use the lineage harvester, set the mode property in the lineage harvester configuration file to indicate which ingestion mode you want to use. If you use technical lineage via Edge, use the Ingestion Method field in the technical lineage for Snowflake capability to select the ingestion mode you want to use. The folder or Shared Storage connection type With this connection type, you must prepare the SQL queries. The SQL queries can come from a log, stored procedure definitions, and so on. Collibra Data Lineage processes each conditional statement to create the technical lineage for all possible conditions. If you use the lineage harvester, you must prepare a SQL directory and add your SQL queries to the folder. If you use technical lineage via Edge, you must add your SQL queries to the Shared Storage connection folder and use the Technical Lineage for SqlDirectory capability to create the technical lineage. See the following table for a summary of the connection types and ingestion modes. Connection typeIngestion modeDetailsRelease dateJDBCSQLCollibra Data Lineage extracts metadata and information about the Snowflake database schemas and views to calculate lineage. This is the default mode. You can use the technical lineage to understand the flow of data at the schema level. 2020SQL-APICollibra Data Lineage parses SQL from views and schemas, and additionally gets lineage information from the ACCESS_HISTORY system view, which is a log of all queries that are run on the system. The SQL-API mode supports stored procedures and other orchestration methods, for example, application queries and ad-hoc queries. You can use the technical lineage to see the operational lineage from executed queries. 2023.02Folder or Shared Storage connectionNot applicableCollibra Data Lineage retrieves lineage from the SQL queries that you upload to a SQL directory. The technical lineage captures all lineage paths from the SQL queries. Folder - 2020Shared Storage connection - 2023.05For more information about the supported queries and transformation, go to Supported transformation details.For an overview of the steps to create technical lineage, go to Creating a Technical lineage via the lineage harvester and Create a technical lineage via Edge.For more information about Snowflake, go to Snowflake Documentation.Transformation logicTransformation logic is used to transform source code in a technical lineage diagram that can be visualized in Data Catalog. Collibra Data Lineage supports the most commonly used transformations.Collibra Data Lineage enables you to trace how your data flows between multiple data sources and, at the same time, see the source code of each part of your technical lineage. By following the transformations in your technical lineage, you can easily find a specific source code fragment.Tables and columns in a technical lineage can have incoming and outgoing transformations. When you right-click on a table or column and click either Transformations (IN) or Transformations (OUT), the source code pane shows the following: The name of the source code fragment. On the Sources tab page, you can see the analysis log files of this source code fragment.If a table or column has more than one transformation, there are tabs for each source code fragment.The source code of the fragment. The source code that is relevant for the selected column or table is highlighted.You want to see the outgoing transformations of column A to columns B and C. When you right-click column A and then click Transformations (OUT), you see that there are two tabs containing source code. The first tab shows the outgoing source code from column A to column B. The second tab shows the source code from column A to column C.Technical lineage export typesIf you want to share a technical lineage graph of your technical lineage, you can export the information to one of the following export types, via the Settings tab pane: PDF PNG Graph CSV Full Batch CSV JSON Lineage PDF and PNGThe PDF and PNG exports show only the technical lineage graph of the selected table or column.Graph CSVThe CSV export option generates a ZIP file with the following CSV file:File nameFile contentcurrent_graph_column_lineage.csvThe technical lineage graph of the selected column or table.Full Batch CSVThe Full CSV option generates a ZIP file with the following CSV files:File
nameFile contentcurrent_graph_column_lineage.csvThe technical lineage graph of the selected column or table.full_batch_column_lineage.csvThe technical lineage graph of the full technical lineage.ExampleThe current_graph_column_lineage CSV file and the full_batch_column_lineage CSV files show the same information, but with a different scope. These files show how data flows from source to target.NoColumnDescriptionsource_systemThe name of the source system.This column is only shown when useCollibraSystemName is set to true in the lineage harvester configuration file.source_databaseThe name of the source database.source_schemaThe name of the source schema.source_tableThe name of the source table.source_columnThe name of the source column.target_systemThe name of the target system.This column is only shown when useCollibraSystemName is set to true in the lineage harvester configuration file.target_databaseThe name of the target database.target_schemaThe name of the target schema.target_tableThe name of the target table.target_columnThe name of the target column.procedure_nameThe name of the stored procedure. This column remains empty when an object in your technical lineage doesn't have stored procedure.This column is deprecated and will be removed in the future.query_nameThe name of the specific source code fragment or transformation detail.You can use this name to search for more information in the Sources tab page.The names of the source and target objects indicate the full path of the object. For example, the full name of a column is (system) > database > schema > table > column. This path is used to stitch your technical lineage objects to assets in Data Catalog.JSON LineageThis export option generates a JSON file that is formatted in the same manner that is required for creating a custom technical lineage.Export the technical lineage informationIf you want to share a technical lineage graph or the transformation logic of your technical lineage, for example with colleagues who don't have access to Collibra, you can export the information. For complete details on the various export options, see Technical lineage export types.StepsIn the Technical lineage viewer, click the Settings tab.On the Settings tab, click Export.Click the export type.The technical lineage information is downloaded.Export technical lineage transformation detailsIf you want to download analyzing and parsing errors for a data source, you can export the transformation details of one or more data sources on the Sources tab page of the technical lineage viewer.In the following example image, we've selected the OracleCloud data source and filtered on the error details.StepsIn the Technical lineage viewer, click the Settings tab.Click Show lineage.Select the data sources for which you want to download the transformation details. If you want to download the transformation details for all data sources, do not select any data source. Click Export Selected Transformations. A ZIP file that contains an errors.csv file is downloaded. BI integration conceptsThis section addresses BI tool-specific integration concepts for technically-focused customers.Technical overview of BI tool lineageThis topic provides information about the technical lineage that is created when you ingest BI tool metadata in Data Catalog.For a business perspective, see Technical lineage and stitching for BI tool integrations.StepsWhen you ingest Tableau metadata in Data Catalog, a technical lineage for Tableau Data Attribute assets is automatically created. PermissionsIf you have a Data Catalog global role with the Catalog and Technical lineage global permissions, you can see the technical lineage of Tableau assets by clicking on the Technical lineage tab on the asset page of any of the following asset types: TableColumnTableau Data AttributeTableau WorksheetTechnical lineage graphThe technical lineage graph shows relations of the type Data Element sources / targets Data Element between Tableau assets and other data objects in the data flow, for example between a Column asset and a Tableau Data Attribute asset. These relations are created during the Tableau ingestion process as a result of automatic stitching.If you use a Tableau <source ID> configuration file and don’t specify a value for the relevant collibraSystemName property, the designation “UNDEFINED” will be shown in the technical lineage.If you use custom SQL that is not supported by the Tableau metadata API, the technical lineage might not be complete. For complete information, see the Tableau documentation on Tableau Catalog support for custom SQL and Tableau Lineage and custom SQL connections.ExampleThe following technical lineage shows how data flows from a PostgreSQL data source to Tableau. It shows relations of the type Data Element sources / targets Data Element between the Column assets of the database and Tableau Data Attribute assets in Tableau. For example, Column asset L_RETURNFLAG has a relation of the type Data Element sources / targets Data Element to the Tableau Data Attribute assets Quantity and Adjusted Quantity.UUIDs in the Tableau technical lineageCollibra Data Lineage uses unique full names to create a technical lineage and stitch objects within the technical lineage. Full names in Collibra are constructed in accordance with the hierarchy of data objects in Tableau, for example: Server > Site > Project > Workbook > Worksheet > FieldServer > Site > Project > Workbook > Data Model > Column In Collibra, every node in this hierarchy must have a unique name. However, in Tableau, the names of data objects do not have to be unique. As such, if Tableau data objects in a technical lineage hierarchy have the same full name, Collibra Data Lineage adds the UUIDs of the corresponding assets to the names in the technical lineage, to maintain uniqueness.In the following example image, the names of the assets Priority, Opened and Active in the technical lineage have been appended with their UUIDs.UUIDs are not added to the names of the assets themselves; they are only added to the names of the data objects in the technical lineage.The UUID is always part of the full name of an asset, regardless of whether or not it is a duplicate.How to resolve UUIDs in names in a technical lineageTo keep Collibra Data Lineage from adding UUIDs to the names of the data objects in a technical lineage, ensure that the names of all fields and columns in Tableau are unique.Generally, Tableau doesn't allow you to create two fields or columns with the same name. However, hierarchy fields and non-hierarchy fields can have the same name. Duplication of names can also happen if:A Tableau worksheet is using two different data sources that have columns with the same name.You create a virtual connection that contains multiple data sources that have columns with the same name.There are multiple data sources in Tableau with the same name.Sources tab pageThe Sources tab page shows, for each Tableau data source and Tableau Worksheet, the transformation and calculation rules that the Collibra Data Lineage service analyzed and processed, and the results of the analysis. It also shows the TECHLIN VIEW query definitions, based on custom SQL queries.If a parameter is used in a Tableau worksheet, it is shown in the worksheet source code, for example:PARAMETERS: 'parameter1'.If a parameter is used in a calculation rule, it is also shown under the Tableau data source for data sources in the calculation rule, for example:CALCULATION RULE: '[List price]/[parameter1]'The success rate of the analysis indicates how complete the technical lineage is. There are a few limitations that prevent the Collibra Data Lineage service from processing all Tableau metadata.The Collibra Data Lineage service might not be able to process all complex Tableau metadata. This means that the success rate of a Tableau ingestion might not be 100%.Error codesThe Errors summary represents a summary of all errors per Tableau site. The continue on error feature allows for continuous processing of an import or synchronization job, even if one or more commands fail.Warning codesWarning codes indicate: Issues that might affect the technical lineage, but do not stop the processing.Issues that you can resolve. ElementDescriptionIDThe warning ID number.NameThe name of the warning. Possible values are: Empty nameField relation not foundParent project not foundParent workbook not foundParent database not foundDatasource not foundWorksheet not foundREST datasource not foundNot found in remote fieldsMultiple datasourcesQuery parsing errorInvalid Collibra system namesInvalid hostname mapping Status codeThe status label. The value is always WARNING.Status descriptionIdentifies a grouping of warnings. Warnings of the same type (meaning they have the same group name and name) are grouped together in parts of up to 100 warnings.In this example, there are 250 Configuration > Invalid Collibra system names warnings, grouped into parts 1, 2 and 3:Group nameThe type, or category, of warning. Possible values are: ConfigurationMismatched IDMissing content The following table shows the complete set of warning codes, by group and name.Group nameNameDescriptionMissing contentEmpty nameRaised during the processing of databases, tables, columns, worksheets and dashboards. Contains the following lines: Database with id DATABASE_ID is skipped Table with id TABLE_ID is skipped Column with id COLUMN_ID is skipped Worksheet with id WORKSHEET_ID is skipped Dashboard with id DASHBOARD_ID is skipped Indicates that the name property of a database, table, column, worksheet or dashboard, which has a specified value for the id property, has a null value or it is empty:Example for a
database: { data: { databasesConnection: { nodes: [{ id: DATABASE_ID, name: null, ...The name property is considered empty if the value is null or if it is empty.Missing contentParent database not foundRaised during the processing of tables. Contains the line: Table with id TABLE_ID is skipped Indicates that the parent database for a table with TABLE_ID was not found in the previously processed databases. Possible causes:The database property is not present in the JSON file.The database property is empty: database: {}.The DATABASE_ID is not present for the id property. { data: { tablesConnection: { nodes: [{ id: TABLE_ID, database: { id: DATABASE_ID } ... Missing contentParent project not foundRaised during the processing of projects, workbooks and published data sources. Contains the following lines: Workbook with id WORKBOOK_ID is skipped Published datasource with id DATASOURCE_ID is skippedProject with id PROJECT_ID has unreachable parent project Indicates that the parent project of a project, workbook, or published data source was not found in the previously processed projects.Possible causes: The project property is not present in the JSON file.The project property is empty: project: {}.The PROJECT_ID is not present for the id property.Example for a workbook: { workbooks: { workbook: [{ project: { id: PROJECT_ID }, id: WORKBOOK_ID, ...Example for a published datasource:To identify the PROJECT_ID, first find the DATASOURCE_LUID of the published data source, as returned by the metadata API: { data: { datasourcesConnection: { nodes: [{ __typename: PublishedDatasource, id: DATASOURCE_ID, luid: DATASOURCE_LUID ...Then, in the data returned by the REST API, reference the DATASOURCE_LUID to identify the PROJECT_ID of the data source.: { datasources: { datasource: [{ id: DATASOURCE_LUID, project: { id: PROJECT_ID, ...Example for a project:PARENT_PROJECT_ID is not found: { projects: { project: [{ id: PROJECT_ID, parentProjectId: PARENT_PROJECT_ID, ...Project is not skipped in this case. The new parent project is created with name Unknown project PARENT_PROJECT_ID.Missing contentMismatched IDParent workbook not foundRaised during processing of worksheets, dashboards, REST-only views and embedded data sources. Contains the following lines: Worksheet with id WORKSHEET_ID is skipped Dashboard with id DASHBOARD_ID is skipped View with id VIEW_ID is skipped (rest only)Embedded data source with id DATASOURCE_ID is skipped Indicates that the parent workbook of a worksheet, dashboard or view with a specified ID was not found in the previously processed workbooks. Possible causes:The workbook property is not present in the JSON file.The workbook property is empty: workbook: {}.WORKBOOK_ID is not present for the luid property.mismatched ID issue.Example for a worksheet: { data: { sheetsConnection: { nodes: [{ id: WORKSHEET_ID, workbook: { luid: WORKBOOK_ID ...Example for a dashboard: { data: { dashboardsConnection: { nodes: [{ id: DASHBOARD_ID, workbook: { luid: WORKBOOK_ID ...Example for an embedded data source: { data: { dashboardsConnection: { nodes: [{ id: DASHBOARD_ID, workbook: { luid: WORKBOOK_ID ...Use the luid property, not the id property, to find a workbook by ID.MIssing contentWorksheet not foundRaised during the processing of dashboards.Contains the line: Worksheet with id WORKSHEET_ID is skipped for dashboard with id DASHBOARD_ID Indicates that a worksheet with a given ID was not found in the previously processed worksheets. { data: { dashboardsConnection: { nodes: [{ id: DASHBOARD_ID, sheets: [{ id: WORKSHEET_ID }, ...Possible cause: WORKSHEET_ID is not present for the id property.Mismatched IDREST datasource not foundRaised during the processing of published data sources. Contains the line: Published datasource with id DATASOURCE_ID is skipped Indicates that a data source with DATASOURCE_ID could not be matched with the DATASOURCE_LUID returned by the REST API, resulting in a mismatched ID. { data: { datasourcesConnection: { nodes: [{ __typename: PublishedDatasource, id: DATASOURCE_ID, luid: DATASOURCE_LUID ...During processing, information returned by the metadata API and the REST API is combined. Collibra Data Lineage then looks to the DATASOURCE_LUID property in the REST metadata to identify the correct project ID, which is lacking from the information returned by the metadata API.This only applies to published data sources, as embedded data sources are assigned to workbooks, not projects.Missing contentDatasource not foundRaised during the processing of embedded data sources. Contains the line: Embedded datasource with id EMBEDDED_DATASOURCE_ID references non existing published datasource with id PUBLISHED_DATASOURCE_ID Indicates that an embedded data source with EMBEDDED_DATASOURCE_ID references a published data source with PUBLISHED_DATASOURCE_ID, which was not found in the previously processed data sources. { data: { datasourcesConnection: { nodes: [{ __typename: EmbeddedDatasource, id: EMBEDDED_DATASOURCE_ID, upstreamDatasources: [{ id: PUBLISHED_DATASOURCE_ID, ...Possible cause: PUBLISHED_DATASOURCE_ID is not present for the id property.Missing contentField relation not foundRaised during the processing of data source fields. Contains the lines:Referenced field with id FIELD_ID is skippedReport field with id FIELD_ID is skipped Indicates that a field with a given FIELD_ID was not found in remote fields, which is needed to create relations. { data: { datasourcesConnection: { nodes: [{ id: DATASOURCE_ID, fieldsConnection: { nodes: [{ __typename: DatasourceField, remoteField: { id: FIELD_ID ...Possible cause: An embedded datasource has a calculated field that is not mapped to any published data source field.This can occur:During the processing of referenced fields. In this case, the relation between the two Tableau Data Attributes cannot be created.During the processing of report fields. In this case, the relation between the Tableau Data Attribute and the Tableau Data Worksheet cannot be created.Missing contentMultiple datasourcesRaised during the processing of custom SQL queries. Contains the line: Custom sql query with id QUERY_ID contains columns of NUMBER_OF_DATASOURCES datasources. Found best datasource: DATASOURCE_ID Indicates that a query with QUERY_ID has matched multiple data sources. Only one data source can be used: datasource with DATASOURCE_ID. The warning is caused by the fact that there is no direct relation between the query and the data source. The algorithm tries to find the best data source, based on a comparison of the list of query columns and the data source columns. To verify this, do the following:Find the query with QUERY_ID and the columns (see COLUMN_ID) in the table JSON data:{ data: { tablesConnection: { nodes: [{ __typename: CustomSQLTable, id: QUERY_ID, columnsConnection: { nodes: [{ id: COLUMN_ID, ...Find the data source with DATASOURCE_ID in the data source JSON data. It should contain all of the columns (see COLUMN_ID) that are used by the query: { data: { datasourcesConnection: { nodes: [{ id: DATASOURCE_ID, fieldsConnection: { nodes: [{ upstreamColumnsConnection: { nodes: [{ id: COLUMN_ID ...The data source found for this query (meaning DATASOURCE_ID) might not be the right one for the TECHLIN VIEW definition. In this case, the data source DATASOURCE_ID might have the wrong relations between the Tableau Data Attribute asset and the Column asset.MIssing contentDatasource not foundRaised during the processing of custom SQL queries. Contains the line: Custom sql query with id QUERY_ID is skipped Indicates that query with QUERY_ID contains columns that are not referenced by any data source fields, so the data source can’t be assigned to the query. { data: { tablesConnection: { nodes: [{ __typename: CustomSQLTable, id: QUERY_ID, columnsConnection: { nodes: [{ id: COLUMN_ID, ... Missing contentQuery parsing errorRaised during the processing of custom SQL queries. Contains the line: Error parsing query with id QUERY_ID, error: ERROR Indicates that there is an issue when deriving column names from a query for a custom SQL with QUERY_ID. { data: { tablesConnection: { nodes: [{ __typename: CustomSQLTable, id: QUERY_ID, query: QUERYCustom SQL is still processed as TECHLIN VIEW with no columns.ConfigurationInvalid Collibra system namesRaised during the processing of the collibraSystemNames section in the <source ID> configuration file. Contains the lines:Collibra system name not found for database with hostname DB_HOSTNAMECollibra system name not found for file with path FILE_PATHCollibra system name not found for connector with url CONNECTION_URLCollibra system name not found for cloud file with name CLOUD FILE PATHConfigurationInvalid hostname mappingRaised during the processing of the hostnameMapping section the <source ID> configuration file.Contains the line: Collibra system name not found for database DB_NAME host HOST_NAME and schema SCHEMA_NAMEWhen you ingest Power BI metadata in Data Catalog, Collibra Data Lineage automatically creates a technical lineage for assets of the following types: Power BI Report Power BI Table Power BI ColumnTo view the technical lineage, go to the asset page of any asset of these types, and then click the Technical Lineage tab.If you ingest Power BI for the first time or if you change your geolocation or cloud provider,
you have to restart the DGC service before you can see your technical lineage.Technical lineage graphThe technical lineage graph shows relations of the type Data Element targets / sources Data Element between BI assets and other data objects in the data flow, for example Column assets or Power BI Column assets. These relations are created during the Power BI ingestion process as a result of automatic stitching.ExampleThe following technical lineage shows the relation of the type Data Element targets / sources Data Element between the Column asset LISTPRICE and the Power BI Column asset ListPrice.When harvesting Power BI, report attributes are not returned by the API. Therefore, for a given report, Collibra Data Lineage creates a dummy report attribute. This dummy report attribute is identified in the technical lineage by an asterisk (*), as shown in the following example image. Links are drawn from all data attributes in the data set that were used to create the report, to the dummy report attribute.Does your database or schema have the name Default in the technical lineage graph? This is the case if you use a Power Query M function that doesn’t have the schema or database name specified, or if Power BI hasn't returned the database or schema name. In this case, you can configure database and schema mapping in your <source ID> configuration file, to provide the name of the database or schema. This allows you to achieve stitching and view the lineage you need. For more information, go to Broken stitching and possible solutions.Sources tab pageThe Sources tab page shows the transformation details that were analyzed and processed on the Collibra Data Lineage service instances and the results of this analysis. The success rate of the analysis indicates how complete the technical lineage is.The Collibra Data Lineage server can process most, but not all, complex Power BI metadata. This means that the success rate of a Power BI ingestion can be very high, but almost never 100%.ExampleThe following image shows that you have created a technical lineage for four data sources. Power BI has a success rate of 83%. When you use the transformation logs to investigate the errors, you see that the Collibra Data Lineage service instance couldn't process some elements of the Power BI metadata, for example because they are not supported or there is an issue in the configuration file or the Power BI setup.When you ingest MicroStrategy metadata in Data Catalog, Collibra Data Lineage automatically creates a technical lineage.To view the technical lineage, click the Technical lineage tab on the asset page of any of the following asset types: TableColumnMicroStrategy Data AttributeMicroStrategy ReportThe Technical lineage tab is only shown if you have the Data Catalog global role with the Catalog and Technical lineageglobal permissions.If you ingest MicroStrategy for the first time or if you change your geolocation or cloud provider, you have to restart the DGC service before you can see the technical lineage.Technical lineage graphThe technical lineage graph shows relations of the type Data Element targets / sources Data Element between BI assets and other data objects in the data flow, for example Column assets or MicroStrategy Data Attribute assets. These relations are created during the MicroStrategy ingestion process as a result of automatic stitching.When harvesting MicroStrategy, report attributes are not returned by the API. Therefore, for a given report, Collibra Data Lineage creates a dummy report attribute. This dummy report attribute is identified in the technical lineage by an asterisk (*), as shown in the following example image. Links are drawn from all data attributes in the data set that were used to create the report, to the dummy report attribute.UUIDs in the MicroStrategy technical lineageCollibra Data Lineage uses unique full names to create a technical lineage and stitch objects within the technical lineage. Full names in Collibra are constructed in accordance with the hierarchy of data objects in MicroStrategy, for example: Server > Project > Folder > Report > Data Entity > Data Attribute Server > Project > Folder > Dossier > Data Entity > Data Attribute Server > Project > Folder > Document > Data Entity > Data AttributeIn Collibra, every node in this hierarchy must have a unique name. However, in MicroStrategy, the names of data objects do not have to be unique. As such, if MicroStrategy data objects in a technical lineage hierarchy have the same full name, Collibra Data Lineage adds the UUIDs of the corresponding assets to the names in the technical lineage, to maintain uniqueness.In the following example image, the names of the assets Priority, Opened and Active in the technical lineage have been appended with their UUIDs.UUIDs are not added to the names of the assets themselves; they are only added to the names of the data objects in the technical lineage.The UUID is always part of the full name of an asset, regardless of whether or not it is a duplicate.To keep Collibra Data Lineage from adding UUIDs to the names of the data objects in a technical lineage, ensure that the names of all data objects in MicroStrategy are unique.Sources tab pageThe Sources tab page shows the expressions that the Collibra Data Lineage service analyzed and processed, and the results of the analysis. It also shows the TECHLIN VIEW query definitions, based on custom SQL queries.MicroStrategy uses the term expressions instead of transformations.Source code is provided for the following MicroStrategy asset types:MicroStrategy DocumentMicroStrategy DossierMicroStrategy ReportMicroStrategy Data Entity The success rate of the analysis indicates how complete the technical lineage is.For example, the following image shows that you have created a technical lineage for two data sources. SAP HANA has a success rate of 83%. When you use the transformation logs to investigate the errors, you see that the Collibra Data Lineage service instance couldn't process some elements of the SAP HANA metadata, for example because they are not supported or because there is an issue in the configuration file.When you ingest Looker metadata, you automatically create a technical lineage for Looker Look assets. If you have the right permissions to view the technical lineage, you can go to a Looker Look asset page and click the Technical lineage tab, which allows you to access the technical lineage.Due to the limitations of the Looker REST API, we cannot stitch Looker assets and corresponding assets in Data Catalog. The Looker REST API does not provide transformations in Looker that are needed for stitching. As a result, the technical lineage only shows Looker metadata as it exists on the Collibra Data Lineage service and not as assets in Data Catalog.ExampleThe following technical lineage graph shows the technical lineage of Looker objects.When you ingest SQL Server Reporting Services (SSRS) and Power BI Report Server (PBRS) metadata in Data Catalog, you automatically create a technical lineage for SSRS Column assets. Each SSRS Column asset page has a Technical lineage tab page that shows the technical lineage of that asset Column asset. We cannot access PBRS lineage information. As a result, you can only create a technical lineage for SSRS Column assets.If you ingest SSRS and PBRS for the first time, or if you change your geolocation or cloud provider, you might have to restart the DGC service before you can see your technical lineage.Technical lineage graphThe technical lineage graph shows relations of the type Column is source for / is target of Data Attribute between BI assets and other data objects in the data flow, for example Column assets or Power BI Column assets. These relations are created during the ingestion process as a result of automatic stitching.For more information about the technical lineage, see the Collibra Data Lineage section in the documentation.ExampleThe following technical lineage shows the relation of the type Data Element sources / targets Data Element between the Column assets FOOD_NAME, FOOD_TYPE and FOOD_CODE and the SSRS Column assets food_name, food_type and food_code.Sources tab pageThe Sources tab page shows the transformation details that the Collibra Data Lineage service analyzed and processed and the results of this analysis. The success rate of the analysis indicates how complete the technical lineage is.The Collibra Data Lineage service can process most, but not all complex metadata. This means that the success rate of an ingestion job can be very high, but might not be 100%.Providing ODBC database names in Power BIYou can create a technical lineage for ODBC data sources in Power BI. However, ODBC database names often can't be determined. When a database name can't be determined, it's given a substitute name, which is the ODBC connection string.This substitute name can be seen in the technical lineage, but it is merely a placeholder that doesn't carry any meaning if you're trying to identify the database it represents in the technical lineage. A bigger problem is that if you want to stitch the ODBC database to assets in Data Catalog, the substitute name won't match with any ingested databases, so stitching won't work. To ensure that the true database names appear in the technical lineage, and to ensure successful stitching, you can use a Power BI <source ID> configuration file to provide the true system names of the ODBC databases in Power BI.The name <source ID> refers to the value of the sourceId property in the configuration file. If, for example, the value of the sourceId property in the lineage harvester configuration file is power-bi-source-1, then the name of your <source ID> configuration file should be power-bi-source-1.conf.Example of the <source ID> configuration fileFor each ODBC database in Power BI, add the following content to the JSON file: {
found_dbname=DSN_MYDATABASE;found_hostname=ODBC: { dbname: DB001, schema: MYSCHEMA, dialect: oracle, collibraSystemName: oracle-system-name } } PropertyDescriptionfound_dbname=<substitute database name>;found_hostname=<server name>found_dbname is the substitute database name. You need to convert it to uppercase and replace every non-alphanumeric character by an underscore (_). In this example, the substitute name is “dsn=MYDATABASE”, so you should use DSN_MYDATABASE.The substitute name is the ODBC connection string, which can be lengthy when it includes the driver and parameters in full.found_hostname should be “ODBC”, but you can also use an asterisk (*).dbnameThe true system name of the ODBC database in Power BI.schemaThe name of the default schema of the ODBC database in Power BI.If no schema is specified and the lineage harvester fails to find a specific schema, it uses the default schema.dialectThe dialect of the ODBC connection. The dialect must be one of the supported SQL dialects. If no dialect is specified, “mssql” is used, by default.You can enter one of the following values:azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.mssql, for a Microsoft SQL Server data source.oracle, for an Oracle data source.redshift, for an Amazon Redshift data source.snowflake, for a Snowflake data source.sybase, for a Sybase data source.collibraSystemNameThe system or server name of a database.Because you are using a <source ID> configuration file only for the purpose of providing the true system name of an ODBC database in Power BI, you are not required to:Set the useCollibraSystemName property in the lineage harvester configuration file to true.Specify a Collibra system name in the <source ID> configuration file.However, if the useCollibraSystemName property is set to true in the lineage harvester configuration file, then you must specify a Collibra system name in the <source ID> configuration file.Supported Power Query M functionsPower Query is a data transformation and preparation engine. It uses a scripting language called Power Query M formula language—also known as M—for all transformations.M is considered a mashup language. The Power Query engine filters and combines data from supported data sources. The mashed up data is then expressed using M. M is used by Power BI. It is not relevant to other integrations in Collibra.The Collibra Data Lineage service performs lexical and syntax analysis of M. With regard to syntax analysis, the Collibra Data Lineage service instances currently support the following functions.Not all functions have an impact on the technical lineage, so even though an error is raised for any unsupported functions, it might not mean that your lineage is incomplete. We are working to support the most common Power Query functions. If you have a Power Query function that is not yet supported and it’s very important to you, please create an Ideation ticket. For complete information on these functions, see the Microsoft documentation on accessing data functions.Backend-accessing data functions that impact the lineage diagramAmazonRedshift.DatabaseAnalysisServices.Database This function is fully supported if no MDX queries are used.If MDX queries are used and they resemble SQL, they will be parsed by the SQL parser.We don't currently support this function if used with MDX queries that resemble DAX, as the Collibra Data Lineage service instances can't parse such queries.AnalysisServices.DatabasesCsv.DocumentDatabricks.ContentsDatabricks.CatalogsExcel.Workbook File.Contents GoogleAnalytics.Accounts GoogleBigQuery.DatabaseOdbc.DataSource Odbc.QueryOracle.DatabasePostgreSQL.DatabaseSapHana.DatabaseSnowflake.DatabaseSql.DatabaseSql.DatabasesSybase.Database Web.Contents Transformations that impact the lineage diagramCube.AddAndExpandDimensionColumn Cube.TransformPowerBI.DataflowsWe only support dataflows without parameters that contain the following information:workspace IDdataflow IDentity (Power BI Table) IDPowerPlatform.DataflowsWe only support dataflows without parameters that contain the following information:workspace IDdataflow IDentity (Power BI Table) IDReplacer.ReplaceTextReplacer.ReplaceValueTable.AddColumnTable.AddIndexColumnTable.CombineAdditional informationIf Collibra Data Lineage can’t determine the column names in a source file or database, but the PowerBI column names are known and there is only one source file or database, then corresponding database/file columns are created and technical lineage is preserved. However, if column names can’t be determined and there are multiple source files or databases, as is the case when the Table.Combine function is used, then it’s not possible to know which source column corresponds to the Power BI column. This results in an error and the technical lineage is broken. To resolve this issue, a dummy column with the value “*” is created in the source table and the Power BI table:This preserves the technical lineage at the table level: Table.CombineColumns Table.DuplicateColumnTable.ExpandTableColumnTable.FromListTable.FromRecordsTable.FromRowsTable.NestedJoinTable.PromoteHeadersTable.RemoveColumnsTable.RenameColumnsTable.ReorderColumnsTable.ReplaceValueTable.SelectColumnsTable.SplitColumnTable.UnpivotTable.UnpivotOtherColumnsTable.TransformColumnNamesOnly the following parameters are supported: Text.Upper, Text.Lower, and Text.Proper.Value.NativeQueryQuery parameters are supported. Core parameters are not supported.Transformations that don't impact the lineage diagramTable.AddKeyTable.AlternateRowsTable.BufferTable.DistinctTable.ExpandListColumnTable.FillDownTable.FillUpTable.FindTextTable.FirstNTable.InsertRows Table.IsEmptyTable.LastNTable.MaxNTable.MinNTable.RangeTable.RemoveFirstNTable.RemoveLastNTable.RemoveMatchingRowsTable.RemoveRowsTable.RemoveRowsWithErrorsTable.RepeatTable.ReplaceErrorValuesTable.ReplaceKeysTable.ReplaceMatchingRowsTable.ReplaceRowsTable.ReverseRowsTable.SelectRowsTable.SelectRowsWithErrorsTable.SkipTable.SortTable.TransformColumnsTableTransformColumnTypesTable.FirstTable.LastTable.MaxTable.MinTable.SingleRow Unsupported transformationsUsing unsupported transformations can cause parsing errors.Table.FromRecordsSharePoint.TablesFolder.FilesPowerBIRESTAPI.NavigationDB2.DatabaseTable.ExpandRecordColumnTable.Group Working with Power Query parametersPower BI Power Query is a data transformation and data preparation engine. It gets data from your data sources and the Power Query Editor, and performs the extract, transform, and load (ETL) processing of data.You can use Power Query parameters to store and manage values that can be reused. Parameters give you the flexibility to dynamically change the output of your queries, depending on their values. For complete information on creating and managing parameters, see the Microsoft documentation.Power BI parameters in technical lineagePower BI parameters are configured at the dataset level and can be used in reports. When you integrate Power BI, the Power BI APIs return all parameters that are loaded in a report.When you select the Enable load option for a parameter, Power BI loads the columns from the parameterized table into its memory. The lineage harvester can then harvest these columns and create the full lineage. If the Enable load option is not selected for a parameter:The Power BI APIs can recognize the parameterized table, but not the columns in the table. In this case, Collibra Data Lineage can only create a table-level lineage; columns cannot be shown.If the parameter is used with, for example, the Table.AddColumn function or a similar function, a parsing error will be produced, because the Collibra Data Lineage service instance won’t know which column to add.Parameters of unsupported Power Query M functions are not supported. For the lists of supported and unsupported Power Query M functions, see Supported Power Query M functions. Likewise, global parameters are not supported. Global parameters are parameters that are not specific to a Power Query M function.Before Collibra Data Lineage introduced support for parameters, if you had a dataset or a report that had parameters, the following error message was shown: Could not process lineage. Please check if the Power Query expression contains schema, table(s) and column(s). Select the Enable load option for a parameter In the Home tab of the Power Query Editor, right-click the parameter, and then select Enable load.Ensure that the Enable load option is selected for all parameters.If you change the Enable load setting for a parameter, you must refresh the relevant data set. If the data set is not refreshed, the metadata processing fails due to an Unknown identifier analyze error. Technical lineage viewerThe technical lineage viewer shows the technical lineage and allows you to edit the view. You can access the technical lineage viewer via the Technical lineage tab on Column and Table asset pages and BI assets of the same level.For more information about the technical lineage for Looker or Power BI, we highly advise you to read the dedicated sections in the user guide.Technical lineage tabYou can only see the Technical lineage tab on a Column or Table asset page when you have the following prerequisites: You have a global role with the Catalog global permission, for example, Catalog Author.You have a global role with the Technical lineage global permission.View permissions are not enforced in Collibra Data Lineage. This means that anyone with the Technical Lineage global permission can see all of the assets in a technical lineage graph, regardless of their view permissions as determined at the community or domain level.Technical lineage viewerNoNameDescriptionToolbarThe toolbar to work with technical lineage. The toolbar helps you to edit basic settings that apply to the entire
lineage.Drop-down list to determine which details (attributes, objects or transformations) you want to show in the technical lineage graph.Button to zoom in on the technical lineage.Button to zoom out on the technical lineage.Button to refresh the technical lineage. This discards all the changes that you made to the technical lineage and restores it to the initial state.Button to reposition the technical lineage to the starting position.Button to show or hide the legend panel.Button to show or hide the source code pane.Button to show or hide the Browse and Settings tab panes.Technical lineage graphThe actual visualization of the traceability of the current data object, according to your selection in the Browse tab pane. If you select a specific column in a table with multiple columns, you can click Collapsed columns [menu] to show all other columns, collapse all columns or only show selected columns in the same table.Data objects that are stitched to assets in Data Catalog have a yellow background. Other data objects that the Collibra Data Lineage collected from your data source, but are not stitched and therefore are not assets in Data Catalog, have a gray background.Tab panesTab panes that contain useful tools to browse through your technical lineage or determine which content is visualized in the technical lineage.Browse tab paneThis pane can be used to search for specific data objects or show statistics on the amount of tables and views in use. More information.Settings tab paneThis pane can be used to search for transformation code, edit the visualization of the technical lineage, see the status of the source code, check the stitching results or export your technical lineage to PDF, PNG or CSV. More information.Source code paneThe source code pane shows the source code of specific data objects. It can be used to easily find issues in the data flow.The source code pane is shown when you click in the toolbar or when you right-click a column or table and click Transformations (IN) or Transformations (OUT) which shows the transformation logic in the source code pane.The technical lineage graphThe technical lineage graph consists of nodes and edges. Each node represents a corresponding object in a data source. Each edge shows a relation between nodes.Nodes and edges in the technical lineage graph show how data flows from source to destination. Understanding the nodes and edges better, enriches your technical lineage experience.Consider the following visual elements in the technical lineage graph:Relation typesMessagesColorsIconsArrowsCollapsed attributes menuRight-click menu Relation types The technical lineage graph shows relations between columns in the graph. The Collibra Data Lineage creates and shows the following relation type between stitched assets and other data objects:HeadRoleCo-roleTailIDData ElementtargetssourcesData Element00000000-0000-0000-0000-000000007069MessagesThe technical lineage graph might show different messages to alert you. The following messages are the most common:MessageDescriptionNo object found, try using a wildcard % When a data object name was entered in the search field on the Browse tab pane, this message is shown if the data object does not exist or a system name was entered. The following rules apply when you search for a data object:Use the percent sign (%) wildcard character if needed. Enter a database, schema, table or column name. Do not enter a system name.Nodes count exceeds the limit 350.Edges count exceeds the limit 1,000.The technical lineage graph exceeds the limit of 350 nodes or 1,000 edges and is too large to display. This happens, for example, if you have a table with many columns and you try to show the technical lineage of all columns in a table in one graph.You cannot manually change this limit.Depth was auto-adjusted to <number>. Graph was too large to display at once.The technical lineage graph exceeds the edge limit, which results in the automatic adjustment of the flow depth for the graph. The adjusted depth value is determined by the number of the edges that exceed the maximum edge limit.When the flow depth is automatically adjusted to a lower value than the actual graph size, you can find the icon in the technical lineage graph. To view the truncated lineage, right click the innermost node, and select Table lineage from the menu. The lineage information of the selected table is displayed. The current asset doesn't have a technical lineage yet.This message is shown if you didn't create a technical lineage for the data source of the asset.Use the Browse tab pane to navigate through the data object for which a technical lineage graph is available.Technical lineage cannot be shown.The technical lineage graph cannot be shown, because there are too many data objects. This happens, for example, when you created a technical lineage for multiple data source and you click All data objects in the Browse tab pane.Use the Browse tab pane to view specific parts of the technical lineage graph or click the suggested data objects to see their graph.ColorsThe technical lineage graph shows different colors to indicate which data objects are stitched to assets in Data Catalog and which are not.Background colorsThe background color of a node indicates whether or not the data object was stitched to an asset in Data Catalog, and whether something went wrong.A node has one of three background colors:ColorDescriptionYellowData objects from your data source that are stitched to assets in Data CatalogGrayData objects, for example temporary tables and columns, that Collibra Data Lineage collects from your data sources, but are not stitched to assets in Data Catalog.Collibra Data Lineage:Does not support stitching for Looker assets.Supports stitching for MicroStrategy assets only if you use the new integration method, which supports the latest MicroStrategy APIs.RedAttributes that are automatically assigned to a data object, because of missing DDL statements. If you want to remove objects with a red background, change the statements and rerun the lineage harvester or synchronize the technical lineage again if you use technical lineage via Edge.Since a technical lineage shows how data flows from source to destination, it is possible to see a lineage graph with both yellow, red and gray nodes.The following technical lineage graph shows two nodes with a gray background and three nodes with a yellow background. Node 1 and 4 contain data objects that are not stitched to assets in Data Catalog while nodes 2, 3 and 5 contain existing assets in Data Catalog that were stitched to the corresponding data objects when you created the technical lineage.Font colorsThe font color of data objects in the technical lineage graph indicates whether or not there is a relation between this data object and one or more other data objects.A node has one of two font colors:ColorDescriptionBlackAt least one direct or indirect relation exists between the data object and another.When a column flows from one table to another, the lineage reflects the direct dependency between the column in the source table and the column in the target table. This is considered a direct lineage. An indirect lineage, on the other hand, shows indirect dependencies. For example, if a JOIN clause is used in a query, the columns in the resulting view are generated by the JOIN clause; in other words, by an indirect dependency, not an actual flow of data.GrayNo relation exists between the data object and another.The following technical lineage graph shows three nodes. The node 1 contains data objects that have no incoming or outgoing edges to other data objects in the technical lineage. Nodes 2 and 3 only contain data objects that have a relation to other data objects in the technical lineage.IconsCollibra uses various icons in the technical lineage graph.IconDescriptionThe name of a table was found by the full-text search in the source code on which the analysis failed. Consequently, the lineage flow of the table is probably incomplete.If you click Show failed SQLs on the right click menu of the table, the failed SQL queries appear in the source code pane at the bottom of the page.The lineage is cyclic, for example A → B → C → A. It only appears if you enabled the only ending points option in the Settings tab pane.A relation for the data objects exists, but it isn't shown, for example because you set the technical lineage flow depth to a lower value than the actual graph size.The following Technical lineage graph shows two nodes. The first node has an icon to indicate that the lineage flow you currently see is probably incomplete. The second node has three data objects that have a relation to other data objects, but the edges that represent that relation are not shown.ArrowsArrows are incoming or outgoing edges that show how the data flows from source to destination. They represent relations of the type Data Element sources / targets Data Element.There are two ways in which an arrow can be shown: Arrow typeDescriptionSingleShows the full lineage without skipping certain data objects.DoubleShows that there are hidden data objects in the technical lineage graph. This happens when only the endpoints of the technical lineage flow are shown.The following Technical lineage graph shows three nodes. Edges with double arrows are shown between node 1 and 3. These edges indicate that there are other nodes between these nodes in the full technical lineage flow. Node 2 has outgoing edges with single arrows. These edges indicate that there is a direct relation between node 2 and 3.Collapsed attributes menuIf you select a specific column in a table with multiple columns, you can click Collapsed attributes [menu] to show all columns, collapse all columns or only show selected columns in the same table.Right-click menuIf you right-click a node, you can perform several specific actions on that node.FunctionalityDescriptionColumn/Table
lineageSwitch to the technical lineage graph of the selected column or table.Transformation (IN)Show the transformation logic of the incoming source code fragments in the source code pane.Transformation (OUT)Show the transformation logic of the outgoing source code fragments in the source code pane.Lineage treeShow an alternative way to view the flow of data objects, called the lineage tree. The lineage tree is particularly useful if there are many nodes in a lineage. It enables you to see the entire lineage in one pop-up, which means you no longer have to scroll through the technical lineage graph to see the full lineage.The lineage tree uses arrows to visualize the traceability of data objects:Green arrows represent outgoing edges.Black arrows represent incoming edges.Custom featuresWhen the lineage flow of the table is incomplete or there is an issue in the source code of a data object, the right-click menu shows the Show failed SQLs option. If you click this option, the source code pane opens and shows the SQL queries that failed.Technical lineage Browse tab paneThe Browse tab pane allows you to navigate to and search for a specific data object within the technical lineage tree.NoNameDescriptionSearchA search field that you can use to find a specific data object. You can enter the name of a database, schema, table or column. Searching for a system name is not supported. All data objectsA link to the complete technical lineage, showing all data objects in your data sources.Navigation treeA navigation tree in which you can search for specific data objects and visualize them in your technical lineage. The data objects are grouped by node type and have the following structure: system (if applicable) > database > schema > table > column.The list of data objects contains all systems, databases, schemas, tables and columns that were collected from the data sources by the lineage harvester. If available, it also shows the technical lineage of BI sources, for example Power BI and Looker. In that case, the structure follows the existing structure in the BI source metadata.The UNUSED branch contains data objects that were detected by Collibra Data Lineage, but are not included in any Technical lineage.StatsStatistics that show which information is or is not visualized in the technical lineage. The statistics contain the following data:Tables: the amount of tables that are shown in the technical lineage.Views: the amount of views that are shown in the technical lineage.Unused tables: the amount of tables in your data source that are not shown in the technical lineage. This metric is hidden when there are no unused tables.Unused views: the amount of views in your data source that are not shown in the technical lineage. This metric is hidden when there are no unused views.Done: the amount of queries that were processed successfully.Parsing errors: the amount of queries with invalid or unidentified syntax.Analyze errors: the amount of columns that are not linked to a table.Technical lineage Settings tab paneThe Settings tab pane allows you to edit the technical lineage, search for queries and export the technical lineage.NoNameDescriptionSearch fieldA search field to find specific transformation code in a selected object or attribute. As you type, corresponding object names from the technical lineage appear in a drop-down list. If you press Enter, the technical lineage only shows the parts that contain your search word(s).Visualization optionsOptions to define how you will see the data objects in the technical lineage.Group by parent objectOption to group tables and columns together by their hierarchical parent object. A schema is the parent object of a table. Only ending pointsOption to hide all data objects in the middle of the data flow and only show the ending points of the technical lineage.DepthA slider that determines the maximum flow depth. The relation path length from the first node in the technical lineage graph to any other node is automatically adjusted to the maximum flow depth.If you see in the technical lineage graph, the flow depth is set to a lower value than the actual graph size.DependenciesDrop-down to select the dependencies that you want to visualize. You can select one of the following dependencies:Inbound dependencies onlyOutbound dependencies only2-way dependenciesShow indirect dependenciesOption to include indirect dependencies in a technical lineage.When a column flows from one table to another, the lineage reflects the direct dependency between the column in the source table and the column in the target table. This is considered a direct lineage. By default,Collibra Data Lineage only shows direct lineage. An indirect lineage, on the other hand, shows indirect dependencies. For example, if a JOIN clause is used in a query, the columns in the resulting view are generated by the JOIN clause; in other words, by an indirect dependency, not an actual flow of data.Export Button to export your technical lineage. You can choose among the following export types: PDFPNGCSVFull CSVJSON Show statusButton to switch to the Sources tab page, which shows the analysis log files of your data sources and the Stitching tab page, which shows an overview of assets and data objects and shows which are stitched.Technical lineage Sources tab pageWhen you create a technical lineage, your data sources are uploaded to the Collibra Data Lineage service to be analyzed and processed. The Sources tab page shows the transformation details or source code that was analyzed and the results of this analysis.You can access the Sources tab page by clicking Show status on the Settings tab pane.If an analyzed data source has the following result, the data source does not appear in the Sources tab page:Parsing errors: 0Analysis errors: 0Done: 0NoNameDescriptionSummary per data sourceA summary per data source. You can also select data sources to filter the results.SelectedCheckboxes to filter on a data source in the transformations table. If you select none, the transformations table contains all transformations.Source IDThe ID of your data source. You entered this ID in the configuration file.Scanner typeThe type of scanner that is used to scan the queries in your data source.Success rateThe success rate of the data source analysis on the Collibra Data Lineage service. The success rate indicates how complete your technical lineage is.The success rate of a technical lineage gives a good indication of the processing success. A success rate less than 100%, however, does not mean processing was unsuccessful. A parsing error, for example, which negatively affects the success rate, does not always negatively affect the completeness of the lineage.DoneThe amount of queries that were scanned and analyzed.Parsing ErrorThe amount of parsing errors.Analyze ErrorThe amount of analysis errors.Last sync timeThe last time the data source was uploaded to the Collibra Data Lineage service, for analysis and processing.Search toolsTools to help you search for specific source code fragments.Full-text searchA search field to find specific queries in the log files. Type what you are looking for and press Enter. Filter byA drop-down list to filter the source codes based on their status code.Transformations tableThe table that contains details of the transformations and source code (fragments). You can filter the rows in the table by selecting data sources in the data source table and by using the search tools.If you click a source code fragment, you can see the log file attached to it.IDThe ID of the source code fragments or transformation details, which are assigned in chronological order.NameThe name of the specific source code fragment or transformation detail.You can also see the source code fragment name in the source code pane in the technical lineage graph.Status codeThe status of the analysis.A source code fragment or transformation detail can have one of the following status codes:DONE: All queries are processed successfully.ERROR: Some queries could not be processed.PARSING_ERROR: The syntax of some queries is invalid or unidentified.ANALYZE_ERROR: Some columns are not linked to a table.Status descriptionThe description of the status code that provides more information about the analysis and shows how many queries were processed.Group nameThe name of the package or procedure to which the source code fragment or transformation details belongs.Export Selected TransformationsThe button to export transformation details for the selected data sources. When you click this button, you download a ZIP file. The ZIP file contains an errors.csv file that includes the transformation details for the selected data sources. If you do not select any data sources, the transformation details for all listed data sources in the transformations table are exported. Show lineageThe button to go back to the technical lineage graph.Sort by each columnThe sorting icons that you can use to sort by each column in ascending or descending order. These columns include Scanner type, Success rate, Done, Parsing Error, Analyze Error, and Last sync time. Analysis resultsIf you click one of the rows in the Transformations table, a file with the analysis results attached to the source code or transformation details opens. You can use these files to easily find errors in the source code or transformation details of your data source.If the metadata that Collibra Data Lineage collects from your data source includes SQL queries, the analysis results might display comments from those SQL queries. If a comment ends with a statement separator, for example, /*select 2 from dual*/;, the comment is counted as a statement. Consequently, the number of queries that are displayed in the Done column under Summary per data source might be greater than the actual number of queries parsed.Technical lineage Stitching tab pageThe Stitching page shows
the full path of assets in Data Catalog and data objects of the data sources for which you created a technical lineage. You can use it to easily check which assets are stitched and which are not.You can access the Stitching tab page by clicking Show status on the Settings tab pane.NoNameDescriptionSearch fieldA search field to find specific assets or data objects. Type what you are looking for and press Enter. Full asset pathThe full path to all data objects on the Collibra Data Lineage service and all assets in Data Catalog.Found inThe location where the asset or data object was found. There are three possible locations:Data Catalog: The asset was found in Data Catalog, but it does not match the full path of a data object on the Collibra Data Lineage service. As a result, there is no technical lineage created for this asset.Technical lineage: The data object was found in the data source for which you created a technical lineage, but it does not match the full path of an asset in Data Catalog. As a result, the data object is shown in technical lineage with a gray background.Data Catalog & Technical lineage: An asset and a data object with the same full path were found in Data Catalog and on the Collibra Data Lineage service. As a result, they were stitched and are shown in technical lineage with a yellow background. In Collibra, full paths are case-sensitive. Show lineageThe button to go back to the technical lineage graph.Technical lineage troubleshootingFor complete troubleshooting information, go to the Collibra Support Portal.Troubleshooting for technical lineage via Edge Troubleshooting for technical lineage via EdgeIn this topicRetrieve your Edge Site Id and Job Id Message Source 'source_name' was never processed with the current useSystemName flagMessage Failed to load artifacts messageMessage A UNIQUE constraint failedMessage Failed to fetch lineage API key because of a client errorMessage MountVolume.NewMounter initialization failed does not existRetrieve your Edge Site Id and Job Id If you report an error with JDBC Technical lineage running on Edge, the Customer Support team can ask you for the Edge Site Id and Job Id. The team needs this information to access details about the error.To retrieve the Job Id, see View the summary of an technical lineage synchronization.To retrieve the Site Id:Go to Settings.In the Edge section, click Sites.Click the name of the Edge site.The Edge site Id is available in the ID field.Message Source 'source_name' was never processed with the current useSystemName flagDescriptionSolutionThis error occurs when atechnical lineage capability was synchronized with the following values set differently on Edge and for the lineage harvester:The value of the Collibra system name setting on Edge.The value of the useCollibraSystemName property in the lineage harvester configuration file.Both values must be the same even if you use technical lineage via Edge and the lineage harvester for different data sources.Complete the following steps:Ensure that the value for the Collibra system name setting is the same with the value of the useCollibraSystemName property in the lineage harvester configuration file.Synchronize the technical lineage capability again.Message Failed to load artifacts messageDescriptionSolutionIf the Technical Lineage synchronization activity was not successful and you see error failed to load artifacts in the Lineage harvester synchronization dialog, it means the Technical Lineage capability could not be loaded in Edge. Report this error and the Job Id to the Customer Support team for further investigation. Message A UNIQUE constraint failedMessage codeDescriptionSolutionMSG-LIN-2501A UNIQUE constraint failed.When a technical lineage capability was being synchronized, synchronization processing failed because two capabilities were added for one BI tool data source with two different source IDs.To resolve this issue, complete the following steps:If you do not have a lineage harvester installed, install one.Enter the list-sources command and review the listed data sources to identify the data source that was added twice.Take any of the following actions:If the technical lineage capability with the source ID that you want to remove still exists on Edge:On Edge, edit the technical lineage capability for the identified data source that you want to exclude by clearing the Active check box.Synchronize the technical lineage capability for your data source again.If the technical lineage capability no longer exists on Edge:Enter the ignore-source command with the source ID that you want to remove.Enter the full-sync command to synchronize the technical lineage again.Message Failed to fetch lineage API key because of a client errorMessage codeDescriptionSolutionMSG-LIN-3001The DGC user name and DGC user password are not defined or incorrect.Complete the following steps: Verify the Edge technical lineage settings.Synchronize the technical lineage again.Message MountVolume.NewMounter initialization failed does not existDescriptionSolutionYou get the following message:MountVolume.NewMounter initialization failed for volume \pv-shared-folder-2d53d256-fd6b-4be8-a732-fe0f1c98704e-edge\ : path \\/var\/lib\/edge\/storage\/dir\ does not existWhen a technical lineage capability that uses a Shared Storage connection was being synchronized, the Shared Storage connection folder with the name of dir did not exist. Complete the following steps: Create a folder on the Edge site server. The folder path must be relative to /var/lib/edge/storage/.When you create the Shared Storage connection, specify the folder name. Synchronize the technical lineage again. For more information, go to Create a technical lineage via Edge.
	 ContentsContents Collibra Data Lineage What is Collibra Data Lineage? BI tool integration Business value How do I create a technical lineage? Database Owners, BI and ETL Admins, and Collibra Admins Database Owners BI and ETL Admins Collibra Admins Software requirements Hardware requirements Network requirements Requirements and permissions Steps What's next? Typical command options and arguments Structure of the JSON file Examples of commands On Windows On other operating systems The lineage harvester configuration file Empty configuration file Configuration file generator Steps What's next Prerequisites Steps What's next? Requirements and restrictions Programming considerations Example Sample JSON file for a simple custom technical lineage Sample JSON file for an advanced custom technical lineage Requirements and restrictions Format Example Terminology Methodology Steps Naming convention Prerequisites Steps What's next? Prerequisites Steps Business users Technical lineage Automatic stitching for technical lineage BI tool business logic Technical lineage and stitching for BI tool integrations Business Summary Lineage Differences between Technical lineage and diagrams with Business Summary Lineage BI integration concepts Technical users Supported data sources for technical lineage Transformation logic Technical lineage export types BI integration concepts Technical lineage viewer Technical lineage troubleshooting Troubleshooting for technical lineage via Edge Collibra Data LineageIn this topic, we addresses the following:What is Collibra Data Lineage?BI tool integrationBusiness valueHow do I create a technical lineage?What is Collibra Data Lineage?Collibra Data Lineage is a cloud-only product that allows you to trace data from its source system, across the various contact points of your data landscape, to its final destination system. Ultimately, our objective is to help you establish trust in your reports and use the data to make sound business decisions. Collibra Data Lineage consists of two components:Technical lineageDiagrams with Business Summary LineageThe value of these components are the same, but they are designed for different audiences.Technical lineage Designed for Data Engineers, Data Architects, and other technically-focused roles. A detailed lineage graph that provides complete end-to-end lineage, to visualize the journey of the data objects in your external data sources.Allows you to explore data objects, including temporary tables and columns, in your external data sources. You don't need to register data sources in Collibra to include them in a technical lineage.We use the term data objects when referring to columns and tables in your external data sources. We use the term assets (specifically Column assets and Table assets) when referring to the representation of data objects in Collibra. Includes all source code and data transformation details. Shows you in which system data objects are used and how they are transformed from data source to data source.Automatically created as part of the technical lineage process.Diagrams with Business Summary Lineage Designed for Analysts, Governance roles, and other business-focused roles.Shows the relations between assets in Collibra that represent the data objects in your external data sources. Business Summary Lineage refers specifically to the relation type Data Element targets / sources Data Element that is drawn between Column assets. Shows how registered data sources relate to each another.Registering a data source means creating assets (and the relations between the assets) in Collibra that represent the data objects in your external data sources.Automatically created as part of the technical lineage process.The main difference between a technical lineage and a diagram with Business Summary Lineage:Technical lineage identifies data objects in your external data sources.Diagrams with Business Summary Lineage show assets in Collibra that represent some or all of those data objects.We illustrate this in the following example.Let's say that you have created a technical lineage for four different databases:The first database, Oracle, is not registered in Collibra, therefore there are no assets in Data Catalogthat represent the Oracle data objects.The second database, Raw, is registered in Collibra.The yellow background of the first node indicates that Table and Column assets that were created in Data Catalog are stitched to their corresponding data objects in the Raw database.The other node, the one with the gray background, is a temporary table. No assets are created for temporary data objects and so stitching is not relevant. That is why the node has a gray background.The third and fourth databases, Refined and Consumption, are ingested in Collibra. The assets that were created in Data Catalog are stitched to their corresponding data objects in the two databases.What we what to point out here is that Technical lineage shows the data flow of all data objects across all four databases, regardless of any assets in Collibra.The corresponding diagram with Business Summary Lineage shows only the relations between data objects that have corresponding assets in Data Catalog. In the following image, we see the data flow of assets from the second database, to the third, to the fourth. The first database, Oracle, which is not registered in Collibra, and , is not shown on the diagram.For more information on the differences between these two components, go to Differences between Technical lineage and diagrams with Business Summary Lineage.For a complete list of supported data sources, go to Supported data sources for technical lineage. If you want to create a technical lineage for a data source that is not currently supported, you can create a Custom technical lineage.BI tool integrationBusiness intelligence software helps organizations to collect data from the various data sources across their data ecosystem and present the data in interactive dashboards and reports, to facilitate decision-making and strategic planning. When you integrate your BI tool in Collibra: Metadata about the data objects in your external data sources is created as BI assets in Collibra.Relations are created: Between data objects in your external data source and assets in Collibra that represent those data objects.These assets are created when the data source is registered, which is automatically carried out during the technical lineage process.Between BI assets and the assets in Collibra that represent the data objects in your external data source. A technical lineage is automatically created. On specific BI asset pages, you can view the technical lineage, critical attributes of your reports and dashboards, and relations to other assets in Data Catalog.Business valueCollibra Data Lineage has many important use cases. Here are a few.Report certificationBy providing transparency and traceability to the data used in a report, data lineage plays a foundational role in the report certification process: Review data sources and transformations associated with the data in a report, to help ensure accuracy and reliability. Identify the original sources of data used in the report, and how the data moves from the source system to intermediate systems. View and analyze the calculation rules that are used to extract and transform the data before it reaches the report. All critical metadata is ingested during BI integration and shown on the Collibra asset pages. This includes information like data timestamps, quality metrics, data ownership, and other valuable attributes that help you to assess the reliability and quality of the data.If a report is certified in your BI tool, that metadata is ingested and shown in the Certified attribute on the BI report asset page in Data Catalog.You can manually synchronize the data in Collibra or set up a synchronization schedule, to help ensure the accuracy and completeness of the data over time. This can help identify inconsistencies or gaps in the data flow and transformation processes.Impact analysisCollibra Data Lineage can help you with impact analysis when making changes to data sources, adjusting the calculation rules that drive transformations, migrating data and more. It can help you assess the potential impact of changes on downstream systems, data and reports.Let's say you have data in a Snowflake data source, and you need to move everything to Databricks. After migration, you can create a technical lineage to trace the movement of data from one data source to the other and ensure data integrity throughout the migration process. Understanding data dependencies and relationships helps you to: Anticipate which downstream systems could be impacted if you've made changes to a data source or calculation rule. Anticipate how changes to a particular data object or system will propagate across your data landscape.Minimize risks and make better informed decisions. Root cause analysis in data-related issuesCollibra Data Lineage is a valuable tool for helping data analysts and engineers trace the source of data quality issues and anomalies. When you detect a discrepancy in your data, you can examine the lineage and source code to:Trace the issue back to the source system or process that is causing the problem. Analyze any calculations rules that might have affected the consistency or quality of the data. Identify how the issue is affecting downstream systems and reporting. This can help you identify potential areas where the root cause might exist.Regulatory ComplianceCompliance with data privacy regulations such as GDPR and CCPA, and various security, auditing and reporting standards, often requires organizations to show end-to-end traceability across their data landscape. In the data privacy
context, Collibra Data Lineage can give you a complete view of where sensitive and restricted data is processed, shared, and stored. Let's say that a individual customer of an organization wants to exercise their right to be forgotten, as dictated by GDPR. In compliance with the regulation, the organization has to purge Personally Identifiable Information (PII) about the individual from its systems. Once the organization has identified the PII, it can use data lineage to:Trace the information across its systems, data source and processes.Monitor any migrations and transformations to the data.Identify who has access to the systems and data sources that consume the data.BI integration: View critical metadata about your reports and dashboardsBI integration in Collibra enables you to view all of the critical metadata about your reports and dashboards on dedicated asset pages in Data Catalog. The many attributes help you to identify the most critical reports that have the highest impact. This can help you effectively allocate your resources and minimize disruptions.A few of the key attributes include the following:Document creation and modification dates: See when the report was created and updated in your BI tool. Visits count: See how many people have viewed the report.Let's say that you have two reports with the same name, but one has 400 views and the other has almost none. That gives a strong indication as to which is the more helpful report.Owner in Source: Easily identify who owns and who certified a report, to know where to turn for additional help and information Calculation Rule: See DAX calculations for calculated columns and measures on Power BI Column asset pages.URL: Easily access the report in your BI tool.Relation types allow you to immediately identify in which other reports a report is used. How do I create a technical lineage?There are two ways to create technical lineages and diagrams with Business Summary Lineage: Via Edge.Via the lineage harvester. The typical workflow for creating a technical lineage is the same whether you use the lineage harvester or Edge. If you want to use technical lineage via Edge and the lineage harvester together, you must use lineage harvester version 2023.04 or newer. If you want to maintain on Edge the technical lineage that you created by using the lineage harvester, you can add technical lineage capabilities for the data sources with the same source IDs. For details, go to Migrate the technical lineage of a data source.EdgeYou can create a technical lineage via Edge, for Tableau, Power BI and all supported JDBC and ETL data sources. Benefits include: Seamless integration with Data Catalog.The Edge User Interface (UI), instead of Command Line Interface.Connections via Edge, instead of lineage harvester drivers.Job scheduling via Data Catalog. The lineage harvesterThe lineage harvester is a connectivity tool that allows you to create a technical lineage. You can use the lineage harvester to create a technical lineage for any supported data source.You need to download the lineage harvester from the Collibra Community Downloads page.You need to use the Command Line Interface in conjunction with a lineage harvester configuration file.Database Owners, BI and ETL Admins, and Collibra AdminsThis section aims to provide information that is most relevant for the following people:Database Owners, who work with external data sources, to ensure that Collibra can connect to them.BI Admins, who maintain their organizations' BI and ETL platforms and ensure that Collibra can connect to, and communicate with, BI and ETL tools.Collibra Admins, who work with Collibra Data Lineage, as well as with Database Owners and BI Admins, to create a technical lineage. Collibra Admins work with Database Owners and BI AdminsThese roles work closely together to achieve their objectives. Collibra Admins also work with network and server administrators to, for example, configure proxy servers.Database Owners BI and ETL Admins Collibra Admins Software requirements Hardware requirements Network requirements Requirements and permissions Steps What's next? Typical command options and arguments Structure of the JSON file Examples of commands On Windows On other operating systems The lineage harvester configuration file Empty configuration file Configuration file generator Steps What's next Prerequisites Steps What's next? Requirements and restrictions Programming considerations Example Sample JSON file for a simple custom technical lineage Sample JSON file for an advanced custom technical lineage Requirements and restrictions Format Example Terminology Methodology Steps Naming convention Prerequisites Steps What's next? Prerequisites Steps Database OwnersThis section caters primarily to Database Owners, who work with external data sources, to ensure that Collibra can connect to them. Database Owners create databases and ensure that all of the required data source-specific permissions are met, so that Collibra can successfully connect to them and ingest the metadata.Data source permissionsBefore you can start ingesting metadata, ensure that you meet the required permissions for your specific data source.Select a data source, to show the required permissions.Currently, information is shown for:Amazon RedshiftAzure Data FactoryAzure SQL Data WarehouseAzure SQL ServerAzure Synapse AnalyticsDB2Google BigQueryGreenplumHiveQLIBM InfoSphere DataStageInformatica Intelligent Cloud ServicesInformatica PowerCenterLookerMatillionMicroStrategyOraclePostgreSQLPower BIMySQLNetezzaSAP HanaSnowflakeSpark SQLDownloaded SQL filesSQL ServerSQL Server Integration ServicesSSRS-PBRSSybaseTableauTeradataCustom technical lineageChoose another data sourceX My data source is not in this list.Amazon RedshiftAzure Data Factory Azure SQL Data Warehouse Azure SQL Server Azure Synapse Analytics Custom technical lineageDataStage DB2 Google BigQuery Greenplum Hive Informatica Intelligent Cloud Services Informatica PowerCenter LookerMatillion MicroStrategyMySQL Netezza OraclePostgreSQL Power BISAP Hana Snowflake Spark SQL SQL Server SQL Server Integration Services Downloaded SQL files SSRS-PBRSSybase Tableau TeradataEnsure that you meet the Set up Azure Data Factory.You need read access on information_schema. Only views that you own are processed.You need read access on the SYS schema.You need read access on information_schema:bigquery.datasets.getbigquery.tables.getbigquery.tables.listbigquery.jobs.createbigquery.routines.getbigquery.routines.listSELECT, at table level. Grant this to every table for which you want to create a technical lineage.You need Monitoring role permissions.A role with the LOGIN option.SELECT WITH GRANT OPTION, at Table level.CONNECT ON DATABASEYou need read access on the SYS schema and the View Definition Permission in your SQL Server.You need read access on definition_schema.GRANT SELECT, at table level. Grant this to every table for which you want to create a technical lineage.The role of the user that you specify in the username property in lineage harvester configuration file must be the owner of the views in PostgreSQL.You need read access on the DBC.You need read access to the following dictionary views: all_tab_colsall_col_commentsall_objectsALL_DB_LINKSall_mviewsall_sourceall_synonymsall_views Your user role must have privileges to export assets. You must have read permission on all assets that you want to export. You have added the Matillion certificate to a Java truststore.You have at least a Matillion Enterprise license.The following permissions are the same, regardless of the ingestion mode: SQL or SQL-API.You need a role that can access the Snowflake shared read-only database. To access the shared database, the account administrator must grant the IMPORTED PRIVILEGES privilege on the shared database to the user that runs the lineage harvester.If the default role in Snowflake does not have the IMPORTED PRIVILEGES privilege, you can use the customConnectionProperties property in the lineage harvester configuration file to assign the appropriate role to the user. For example:customConnectionProperties: role=METADATAThe source code files must be in the same directory as the lineage.json file. Otherwise, an error occurs indicating that the lineage harvester cannot find the source code files. For complete information, go to Working with custom technical lineage.Before you start the Power BI integration process, you have to perform a number of tasks in Power BI and Microsoft Azure. These tasks, which are performed outside of Collibra, are needed to enable the lineage harvester to reach your Power BI application and collect its metadata. For complete information, go to Set up Power BI.Before you start the Tableau integration process, you have to perform a number of tasks in Tableau. For complete information, go to the following topics:Set up TableauTableau roles and permissionsYou need the following roles, with user access to the server from which you want to ingest:A system-level role that is at least a System user role.An item-level role that is at least a Content Manager role.We recommend that you use SQL Server 2019 Reporting Services or newer. We can't guarantee that older versions will work.Before you start the Looker integration process, you need to set up Looker.The following permissions apply only to MicroStrategy on-premises customers. You need Admin API permissions.The first call we make to MicroStrategy is to authenticate. We connect to <MSTR URL>:<Port>/MicroStrategyLibrary/api-docs/ and use POST api/auth/login. You have to ensure that this API call can be made successfully. You need permissions to access the library server.The lineage harvester uses port 443. If the port is not open, you also need permissions to access the repository.If you have a MicroStrategy on-premises environment, you need the
permissions for all of the database objects that the lineage harvester accesses.You have to configure the MicroStrategy Modeling Service. For complete information, see the MicroStrategy documentation.There are no specific permission requirements for this data source type.There are no specific permissions requirements for downloaded SQL files.BI and ETL AdminsThis section caters primarily to BI and ETL Admins, who maintain their organizations' BI and ETL platforms and ensure that Collibra can connect to, and communicate with, BI and ETL tools. The following are examples of some BI and ETL Admin roles:For Tableau:Tableau Site AdministratorTableau Server AdministratorFor Power BI / Azure Data Factory: Power BI Platform AdministratorGlobal Administrator or Azure Cloud Application AdministratorFor Looker: Looker AdministratorFor Matillion: Matillion AdministratorFor MicroStrategy: MicroStrategy System AdministratorFor SQL Server Reporting Services (SSRS): Member of the local administrator group Set up Azure Data FactoryThe lineage harvester uses Azure APIs to get the information necessary to build technical lineage from Azure Data Factory. This topic guides you through the required tasks for registering Azure Data Factory in the Azure Portal and assigning the necessary permissions and access.Because the tasks covered in this topic are performed outside of Collibra, it is possible that the content changes without us knowing. We strongly recommend that you carefully read the source documentation.Topics in this section Required values for your Azure Data Factory configuration fileRegister your Azure Data Factory instance in the Azure PortalAssign the API permissionsCreate an authentication secretAdd your Azure Data Factory instance to a resource groupRetrieve the subscription ID of the resource groupAssign read-only permissions to the resource group Required values for your Azure Data Factory configuration fileThe tasks in this topic help you to identify the values you will need when you are preparing the lineage harvester configuration file for Azure Data Factory. You need the correct values for the properties shown in the following table. If you want to create a technical lineage for more than one Azure Data Factory instance, you need this information for each instance.PropertiesDescriptiontenantDomainThe directory ID of your Azure Data Factory instance.applicationIdThe application ID of your Azure Data Factory instance. Specifically, this is the associated service principal for Azure Data Factory, not the enterprise application ID.resourceGroupNameThe name of a resource group with the Reader role for the Azure Data Factory instance. subscriptionId The subscription ID of the resource group. passwordThe secret value for the application ID. Register your Azure Data Factory instance in the Azure Portal Follow the Microsoft Azure instructions on how to register an application and refer to the following table for help with the various settings:SettingDescriptionNameThe name of your Azure Data Factory instance.Supported account typesThe type of tenant. This indicates who can access the Azure Data Factory instance. Select Single tenant.Redirect URIThe location to which a user's client is redirected and where security tokens are sent after successful authorization. In this case, the redirect URI must be of the type Web. Leave this field empty. You don't have to specify a web location.The Azure Portal creates: The Application IDThe Directory IDWhen your Azure Data Factory instance is registered, you can find these two IDs in the Overview pane on the Azure Portal or in the upper-right menu.These IDs are the values you will use for the applicationId and tenantDomain properties, respectively, in your Azure Data Factory configuration file.Assign the API permissions In the Azure Portal, click the Authentication pane, and then: Click the Advanced settings section. For the Allow public client flows option, click Yes. Click the API permissions pane, and then: For the permission type, click Delegated permissions. Assign the Azure Data Factory instance in Microsoft Azure the Microsoft Graph User.Read permission.The user now has the following permissions: Microsoft Graph User.Read Create an authentication secret In the sidebar navigation, in the Manage section, click Certificates and secrets. Ciick New client secret. Note that certificates are not supported. Enter a description. Use the date picker to specify an expiration date for the authentication secret. Click Add.An authentication secret is shown.Make note of the authentication secret. For security purposes, It will not be available later. If you lose the authentication secret, you will need to create a new one.The authentication secret is the value you will use when prompted for the password to connect to Azure Data Factory.Add your Azure Data Factory instance to a resource groupYour Azure Data Factory instance should already be part of a resource group. If it is, you can skip this step. If it's not, you need to create a resource group and add your Azure Data Factory instance to it.The Data factories page shows all of your Azure Data Factory instances, including their subscriptions and resource groups. Check here to know if your instance is part of a resource group.Create a resource group and add your Azure Data Factory instance Go to the Group Management page for your Azure Data Factory instance. Follow the Microsoft Azure instructions on how to create a resource group, and refer to the following table for help with the various settings: SettingDescriptionGroup NameThe name of the new resource group that you are creating.Make a note of this name. You will need it later.The resource group name is the value you will use for the resourceGroupName property, in your Azure Data Factory configuration file.Group TypeThe type of resource group.Select Security.Service PrincipalThe identity an application uses to access Azure resources and APIs. Enter the Application ID that was generated when you registered Azure Data Factory in the Azure Portal.Retrieve the subscription ID of the resource groupOn the Data factories page, click the resource group for the Azure Data Factory instance for which you want to create a technical lineage, and make note of the subscription ID.The subscription ID is the value you will use for the subscriptionId property, in your Azure Data Factory configuration file.Assign read-only permissions to the resource groupTo gather the information needed for technical lineage, the resource group needs permission to read the APIs.Check to see which permissions the resource group has. On the Resource groups page, click Access control (IAM). In the Check access search box, type the name of the resource group.In the search results, click on the resource group to see the access assignments. If your resource group already has the Reader role, as shown in the previous image, this task is complete.If your resource group does not have the Reader role, click X in the upper-right corner, to close the Access assignments page.The Access control (IAM) page again appears. Click the Role assignments tab.Click Add > Add role assignment and follow the Microsoft Azure instructions on how to add a role assignment. Refer to the following table for help with the various settings:SettingDescriptionRolesThe role assignment for the resource group.Select Reader.The lineage harvester only needs read access. MembersEnsure that the User, group, or service principa radio button is selected. Search for and select the resource group.ConditionsNo conditions are necessary. Click Next.Review + assignClick Review +assign, to assign the Reader role to the resource group.After a few moments, the read-only permission is assigned to the resource group.Set up LookerBefore you start the Looker integration, you have to enable Collibra to access your Looker data. The Looker integration process uses a Looker API. To access the Looker metadata, the Looker API uses API3 credentials for authorization and access control.PrerequisiteYou have the necessary permissions in Looker to see the Looker data.StepsCreate a user with the Admin role. Only a user with a role that has the Admin permission set can create API3 credentials. Some Looker API calls also require a role that has the Admin permission set.Create the API3 credentials.Use the API3 credentials in your lineage harvester configuration file. API3 credentials are always linked to a Looker user account. As a result, calls to the API only return data that the user is allowed to see.For more information, see the Looker documentation.Set up MicroStrategyThe MicroStrategy integration supports both MicroStrategy Cloud and MicroStrategy on-premises environments. Before you start the integration, you have to enable Collibra to access your MicroStrategy data.Requirements and permissionsThe following permissions apply only to MicroStrategy on-premises customers. You need Admin API permissions.The first call we make to MicroStrategy is to authenticate. We connect to <MSTR URL>:<Port>/MicroStrategyLibrary/api-docs/ and use POST api/auth/login. You have to ensure that this API call can be made successfully. You need permissions to access the library server.The lineage harvester uses port 443. If the port is not open, you also need permissions to access the repository.If you have a MicroStrategy on-premises environment, you need the permissions for all of the database objects that the lineage harvester accesses.You have to configure the MicroStrategy Modeling Service. For complete information, see the MicroStrategy documentation.To access MicroStrategy data, you have to use the In-memory
Dataset connection method in MicroStrategy, not the Live Connect connection method. If the data is not stored in memory, the MicroStrategy APIs can't access it.If you are using a proxy server, confirm with your Collibra Admin that your proxy server is configured to access the library server. Set up Power BIBefore you start the Power BI integration process, you have to perform a number of tasks in Power BI and Microsoft Azure. These tasks, which are performed outside of Collibra, are needed to enable the lineage harvester to reach your Power BI application and collect its metadata.The tasks include the following:Attain authentication.Register your Power BI application in Microsoft Azure and set permissions.Fulfill the Power BI dedicated capacities and roles requirements for Power BI workspaces.Ensure that the lineage harvester can connect to the following URLs:https://login.microsoftonline.com:443https://api.powerbi.com:443The URL of your Power BI tenant, which you have to specify in the tenantDomain property of your lineage harvester configuration file.The metadata harvesting process explains in detail the prerequisites for enabling the lineage harvester to collect the Power BI metadata.There are some limitations to the metadata harvesting process. Ensure that you understand these limitations before you start the harvesting process.Because these tasks are performed outside of Collibra, it is possible that the content changes without us knowing. We strongly recommend that you carefully read the source documentation.Supported Power BI subscriptionsYou need one of the following subscriptions to ingest Power BI metadata in Data Catalog. The metadata collected by the lineage harvester is the same, regardless of your subscription. Power BI Pro. Power BI Premium.Power BI Premium Per User. We highly recommend you to have a Power BI Premium subscription.Power BI ingestion considerations and limitationsThere are a few considerations and limitations that you should be aware of when you use the Power BI metadata connector and lineage feature.General considerationsEnsure that the lineage harvester can connect to the following URLs:https://login.microsoftonline.com:443https://api.powerbi.com:443The URL of your Power BI tenant, which you have to specify in the tenantDomain property of your lineage harvester configuration file.The assets created in Collibra have the same names as their counterparts in Power BI. Full names and Display names cannot be changed in Data Catalog.Asset types are only created if you have all specific Power BI and Data Catalog permissions.The Power BI assets are created in the domain (or domains) that you specify in the Power BI <source ID> configuration file. Relations that were created between Power BI assets and other assets via a relation type in the Power BI operating model, are deleted upon synchronization. The same is true of any attribute types in the operating model that you add to Power BI assets. To ensure that the characteristics you add to Power BI assets are not deleted upon synchronization, be sure to use characteristics that are not part of the Power BI operating model.Supported subscriptionsYou need one of the following subscriptions to ingest Power BI metadata in Data Catalog. The metadata collected by the lineage harvester is the same, regardless of your subscription. Power BI Pro. Power BI Premium.Power BI Premium Per User. Other Power BI subscriptions are currently not supported.Power BI metadataCertified data sets and reportsIf a data set or report in Power BI is certified, the corresponding Power BI Data Model and Power BI Report assets in Collibra are automatically certified, as identified by the Certified attribute. If, however, certification of a data set or report in Power BI is rescinded, the corresponding assets in Collibra still identify as being certified.Collibra Data Lineage can connect only to datasets that are hosted by Power BI. It cannot connect to externally hosted datasets or models. For complete information, consult Microsoft's Power BI documentation.Partial access to metadata of certain Power BI elementsThe lineage harvester can only partially access metadata of the following Power BI elements:Classic Power BI workspaces, which include My Workspace. Only a full ingestion of new Power BI workspaces is supported.Descriptions of most Power BI elements.Power BI apps are not ingested. They can, however, be ingested as Power BI Reports.The prefix [App] in the name of a Power BI Report asset indicates that the report is distributed as part of an app, in Power BI. Direct links to app reports are only available if the name of the original report matches the name of the app report, and if the name is unique. In all other cases, the URL on the asset page links to the app, not to the app report.The lineage harvester cannot access metadata of the following Power BI elements:Tile subtitles.Data from external sources supplying the input for the Power Query expressions in Power BI.Power BI datamarts are currently not supported.The Power BI API doesn't provide information about the dataset ID for Paginated Reports, therefore lineage for Paginated Reports is not available.The Collibra Data Lineage service can process most, but not all, complex Power BI metadata. This means that the success rate of a Power BI ingestion can be very high, but almost never 100%.Known issuesThe following table presents the known issues of the Power BI integration in Collibra Data Intelligence Cloud.Known issueDescriptionThe data set Report Usage Metrics Model cannot be ingested.The Report Usage Metrics Model is a data set that is automatically created by Power BI. This data set does not contain actual data, which means that they contain nothing to ingest into Data Catalog.However, the lineage harvester still tries to access the metadata and, since there is nothing to access, shows an error message. All error messages about the Report Usage Metrics can be ignored.Report attributes are not returned by the API.When harvesting Power BI, report attributes are not returned by the API. Therefore, for a given report, Collibra Data Lineage creates a dummy report attribute. This dummy report attribute is identified in the technical lineage by an asterisk (*), as shown in the following example image. Links are drawn from all data attributes in the data set that were used to create the report, to the dummy report attribute.Power BI assets that are moved to a different domain are deleted after synchronization.We highly recommend that you do not move the ingested assets to other domains. If you do, the assets will be deleted and recreated in the initial Data Catalog BI domain (or domains) when you synchronize Power BI. As a result, any manually added characteristics of those assets are lost.You have successfully ingested Power BI metadata, but calculated tables and columns are not shown in the Technical lineage or in the browse tab pane.Calculated columns are virtually the same as a non-calculated columns, with one exception: their values are calculated using DAX formulas and values from other columns. Collibra Data Lineage currently does not support internal transformations via DAX language, and any data objects derived via DAX are not shown in the technical lineage or in the browse tab pane. Currently, only M Query/Power Query expressions are supported.You get an error message that mentions one of the following: “… function not implemented” “invalid lexical element” This means that the specific integration feature is not currently supported.You can add your ideas for product enhancements and new features in the Collibra Integrations Ideation Portal.Power BI authenticationYou have to attain authentication to access Power BI metadata. Your authentication method determines how you retrieve the metadata. The lineage harvester supports two authentication methods:Username and passwordService principalThe metadata harvesting process is different for each authentication method. Therefore, different configurations in Microsoft Azure and Power BI are required.We highly recommend that you use the service principal authentication, as detailed metadata scanning in Power BI is designed for use with service principal authentication.You can use a cURL command to check whether or not you can use username and password authentication.Show me howRun the following command, where the bolded text refers to your information:curl -v “https://login.microsoftonline.com/<your environment>.onmicrosoft.com/oauth2/v2.0/token” -F client_id=<your ID> -F “username=<your username>” -F “password=<your password>” -F “scope=https://analysis.windows.net/powerbi/api/.default” -F grant_type=passwordTo check on Windows, follow these steps:Download and install the cURL Command-Line Tool. In Windows, click Start > Run, and then enter cmd in the Run dialog box.Run the following command, where the bolded text refers to your information:“https://login.microsoftonline.com/<your environment>.onmicrosoft.com/oauth2/v2.0/token” -F client_id=<your ID> -F “username=<your username>” -F “password=<your password>” -F “scope=https://analysis.windows.net/powerbi/api/.default” -F grant_type=passwordTo ingest Power BI dataflows:You need access to the Power BI environment in which the data flow is stored.The data set in the data flow must exist in a premium workspace.Username and passwordThe username and password authentication method relies on the username, in the form of an email address, and a password you provide to access the Power BI metadata. To use the username and password authentication method, you need to be an Azure Active Directory user with a Power BI admin role in Power BI. When you become an Azure Active Directory user, a new email address is created. This email address is the username you use to sign in to Power BI. You can store the
username and password you use to sign in to Power BI in the lineage harvester configuration file.Only Azure Administrators can create users and require them to authenticate via username and password. The Azure Administrator also assigns the user the Power BI admin role. This user is only created for the purpose of Power BI integration in Collibra Data Intelligence Cloud. The user in Azure should have a Member user type.Service principalThe service principal authentication method allows an Azure Active Directory application to automatically access Power BI content and APIs.Service principal authentication relies on the Power BI Tenant ID and the Azure Active Directory application ID that you provide in the lineage harvester configuration file. The password you need to access Power BI is the client secret key of the Azure Active Directory application. To use service principal authentication, you need to embed Power BI content with a Service Principal and an application secret. This entails the following steps:In the Power BI Admin portal:Enable the Allow service principals to use read-only Power BI admin APIs option.Enable the Allow service principal to use Power BI APIs option in the Developer settings.This option is no longer required. You can leave it enabled, but you can also safely disable it, if you prefer. Enable the Enhance admin APIs responses with detailed metadata option.Enable the Enhance admin APIs responses with DAX and mashup expressions option.You need Power BI administrator rights to access the Power BI Admin portal.Do not confuse the Allow service principals to use read-only Power BI admin APIs option with the Allow service principal to use Power BI APIs option. You need to enable both options.Register Power BI in Microsoft Azure and set permissionsBefore you set up the lineage harvester, make sure that the harvester can reach Power BI by registering Power BI in Azure and setting the necessary permission to harvest the metadata.We highly recommend that you read about supported authentication methods before you register Power BI in Microsoft Azure. This procedure is performed outside of Collibra. A third-party might change the software without notification, which can render this documentation out-of-date. We highly recommend that you carefully read the source documentation.StepsThe content in this topic is different for the username / password authentication method or service principal authentication method. We highly recommend that you read the following instructions carefully before you register Power BI in Microsoft Azure:Service principal instructionsUsername / password instructionsRegister Power BI in the Azure Portal using the following settings: SettingDescriptionNameThe name of your Power BI application.Supported account typesThe type of tenant. This indicates who can access the Power BI application.In this case, the supported account type must be Single tenant.Redirect URIThe location to which a user's client is redirected and where security tokens are sent after a successful authorization.In this case, the redirected URI must be Web, but you do not have to specify any web location.When you have registered Power BI, the Azure portal creates two important IDs that you need in the lineage harvester configuration file: The Application (client) IDThe Directory (tenant) IDWe highly recommend that you store these IDs for further use. You can find the IDs in the Overview pane on the Azure portal or in the top right menu.Create a user with the Power BI Administrator role (only for username / password authentication).The user must have administrator rights (such as Office 365 Global Administrator or Power BI Service Administrator) in Power BI. (only for username / password authentication)Delegated permissions are supported.In the Azure portal, go to the Authentication pane and do the following:Go to the Advanced settings section.Set the Treat application as a public client to Yes.When Power BI is registered in Microsoft Azure, the Treat application as a public client setting label changes to Allow public client flows.Go to the API permissions pane and do the following:Select Delegated permissions as permission type.Grant the Power BI application in Microsoft Azure the Microsoft Graph User.Read permission.Grant the Power BI application in Microsoft Azure all Power BI Service permissions (only for username / password authentication).Set Admin consent required for Tenant.ReadAll permission to Yes (only for username / password authentication).Also ensure that the user who runs the lineage harvester has been granted the Admin consent.The user now has the following permissions:Microsoft GraphUser.ReadYou cannot have any API permissions with Admin consent set to Yes.Power BI Service (only for username / password authentication)App.Read.AllCapacity.Read.AllDashboard.Read.AllDataflow.Read.AllGroup.Read.AllReport.Read.AllWorkspace.Read.AllTenant.Read.All: You need explicit Admin consent. If you have explicit Admin consent, granted for is shown in the Status column.In the Power BI Admin portal, do the following (only for service principal authentication):Enable the Allow service principals to use read-only admin APIs option.Enable the Allow service principals to use Power BI APIs option in the Developer settings.This option is no longer required. You can leave it enabled, but you can also safely disable it, if you prefer. Enable the Enhance admin APIs responses with detailed metadata option.Enable the Enhance admin APIs responses with DAX and mashup expressions option.Apply the option to specific security groups.Enter the name of the security group to which you want to add the service principal.The Power BI APIs do not support mail-enabled security groups.You need Power BI administrator rights to access the Power BI Admin portal.In the Power BI Admin portal, do the following(Only for username / password authentication):Apply the integration setting to the entire organization (default) or to the specific security group to which your workspaces belong.Enable the Enhance admin APIs responses with detailed metadata option.Enable the Enhance admin APIs responses with DAX and mashup expressions option.The metadata harvesting processCollibra uses Power BI REST APIs to harvest Power BI metadata.To enable the lineage harvester to access metadata in Power BI workspaces, you must have the correct configurations in Microsoft Azure.There are some limitations to the metadata harvesting process. Ensure that you understand these limitations before you start the harvesting process.Overview of the metadata harvesting process with username / password authenticationStepDescription1The lineage harvester uses the username, password and application ID to access the Power BI APIs. These APIs retrieve basic Power BI metadata, for example metadata in the Power BI tenant or server and reports.2The lineage harvester uses Power BI API calls to retrieve more specific metadata, for example Power BI columns and lineage.The Power BI application in Microsoft Azure must be granted administrator rights, such as Office 365 Global Administrator or Power BI Service Administrator. Delegated permissions are supported.The lineage harvester accesses the metadata of all Power BI workspaces. If you don't use filtering, all workspaces are ingested in Collibra. We recommend that you use filtering and domain mapping to structure your Power BI assets in Collibra.Overview of the metadata harvesting process with service principal authenticationStepDescription1The lineage harvester uses the application ID and the client secret key of the Azure Active Directory application to access the Power BI APIs. These APIs retrieve basic Power BI metadata, for example metadata in the Power BI tenant or server and reports.2The lineage harvester uses Power BI API calls to retrieve more specific metadata, for example Power BI columns and lineage.The lineage harvester accesses the metadata of all Power BI workspaces. If you don't use filtering, all workspaces are ingested in Collibra. We recommend that you use filtering and domain mapping to structure your Power BI assets in Collibra.Set up SSRS-PBRSBefore you start the SSRS-PBRS integration, you have to enable Collibra to access your SSRS-PBRS data.You need the following roles, with user access to the server from which you want to ingest:A system-level role that is at least a System user role.An item-level role that is at least a Content Manager role.We recommend that you use SQL Server 2019 Reporting Services or newer. We can't guarantee that older versions will work.Limitations Transformations are not included in the integration. Therefore, no transformations details are shown on the Sources tab page.Some of the more complex SQL queries might not be supported.Set up TableauBefore you start the Tableau integration in Data Catalog, make sure that the lineage harvester can reach the Tableau metadata. Perform these tasks before you start the actual Tableau ingestion process.Because these tasks are performed outside of Collibra, it is possible that the content changes without us knowing. We strongly recommend that you carefully read the source documentation.Tableau ingestion considerations There are currently three supported methods for integrating Tableau metadata in Data Catalog: Via EdgeVia the lineage harvesterVia the Data Catalog user interfaceAs of October 2022, Tableau is enforcing multi-factor authentication for Tableau Cloud Admin users. However, the lineage harvester doesn’t support multi-factor authentication. Therefore, Tableau Cloud users with an Admin role must use token-based authentication. This does not affect Tableau Server users or Tableau Cloud users with an Explorer role.Data Catalog uses Tableau's REST API to get metadata information and follows Tableau's requirements regarding authentication methods. As such, you need a Tableau user with access to the relevant Tableau sites.
For more information, see the Tableau documentation.If you use custom SQL that is not supported by the Tableau metadata API, the technical lineage might not be complete. For complete information, see the Tableau documentation on Tableau Catalog support for custom SQL and Tableau Lineage and custom SQL connections.If you use stored procedures, lineage is shown between the Tableau Data Source and the Tableau Worksheet, but the database information is missing, so stitching cannot be achieved.Collibra Data Lineage partially supports Unions and Joins. For example, Unions created via the Tableau UI are not represented in Data Catalog. Tableau Data Sources created via custom SQL are supported. Hidden Tableau worksheets are currently ingested in Collibra. You can find them by filtering on the attribute “Visible on server”, which has the value false.Data fields are ingested with their actual names. Labels and aliases are not returned by the APIs. Tableau versions and licensesBefore you ingest Tableau metadata in Data Catalog via the lineage harvester, you must ensure that the lineage harvester can access and harvest the Tableau metadata.If you want to create a technical lineage and stitch your Tableau assets to assets in Data Catalog, you must enable the Tableau metadata API in Tableau.Supported versionsWe will continue to update this list of supported versions, but we don't expect any issues with future versions of Tableau.2023.12022.x2021.42021.32021.22021.12020.42020.32020.2LicenseTableau ingestion results depend, in part, on whether or not you have the Data Management Add-on, which requires licensing. For more information about licensing the Data Management Add-on, see the Tableau documentation.Tableau roles and permissions The lineage harvester uses the Tableau Rest APIs and Tableau Metadata API to ingest the Tableau metadata. You need at least the minimum permissions in Tableau to enable the lineage harvester to access the Tableau metadata and ingest it in Data Catalog.Permissions on metadataPermissions control who is allowed to see and manage external assets and which metadata (for both Tableau content and external assets) is shown through lineage.In Tableau, the term external asset refers to databases, files and tables that act as Tableau data sources. You need to be able to access external assets if you want to ingest lineage information and benefit from stitching. If you only want to ingest Tableau assets and view the lineage between those assets, it is sufficient to have access only to data objects in Tableau.No particular role or permissions are needed to allow the lineage harvester access to data objects in Tableau and external assets for which you are the owner. The lineage harvester can automatically access all such data.Roles in Tableau The different roles in Tableau allow for different levels of access to data objects in Tableau and external assets.Viewer roleWith the Viewer role, you cannot access external assets, regardless of any other factors, for example even if you are the Project Leader for the projects you want to ingest.Tableau Data Attributes and Tableau Data Models are ingested as assets in Data Catalog and you can view the lineage for the ingested assets up until the table level only.Explorer roleWith the Explorer role, your access to external assets depends on the following combined factors: Whether or not your Tableau Online or Tableau Server is licensed with the Data Management add-on. Whether or not you are a Project Leader for the projects you want to ingest. Whether or not derived permissions are turned on in Tableau.Here are a few tested configurations for the Explorer role:Combination of accessibility factorsYou can access... Data Management add-on: YesProject leader: YesDerived permissions: No All Tableau data objects.External assets. Data Management add-on: NoProject leader: YesDerived permissions: Yes All Tableau data objects.External assets for which you have derived permissions. Data Management add-on: NoProject leader: YesDerived permissions: No All Tableau data objects only. Data Management add-on: NoProject leader: NoDerived permissions: Yes If you have manually granted permissions for all projects you want to ingest, on all levels, including databases and tables, you can access: All Tableau data objects for which you have permissions.External assets for which you have permissions. If you use the Explorer role, ensure that you configure the mandatory settings in Tableau, as described further on in this topic.For complete information, see the Tableau documentation. Tableau Server Administrator or Tableau Site Administrator With either or these roles, you can access all Tableau data objects and external assets, regardless of any other factors. No permissions need to be configured.Tableau users with a Server Administrator role have access to the entire Tableau Server. Tableau users with a Site Administrator role can only be assigned to specific Tableau sites. As a result, if you have the Site Administrator role, only metadata from specific Tableau sites can be ingested in Data Catalog.Minimum roles and permissions in TableauTo harvest Tableau metadata, you need the following minimum roles and permissions in Tableau:You have a View permission on the Tableau projects, workbooks and data sources you want to ingest.You have a Viewer role with access to the Tableau REST API.With the minimum roles and permissions, you can harvest Tableau metadata, ingest the corresponding Tableau assets and view the lineage between those assets. However, you cannot access external assets, meaning the databases, files and tables that act as Tableau data sources. Therefore, stitching is not possible.Recommended roles and permissions in TableauFor a full ingestion, you have to be able to access the external assets. We recommend the following roles and permissions in Tableau:You have at least a View permission on the Tableau projects, workbooks and data sources you want to ingest.You have an Administrator role or you have the Explorer role with a sufficient combination of accessibility factors, as previously described in Explorer role.Mandatory settings in TableauIf you use the Explorer role, you have to ensure that the lineage harvester can access all of the lineage information. Specifically, as a Tableau administrator, click Settings > General, and ensure that the following options are selected:Automatically grant authorized users access to metadata about databases and tablesShow complete lineage (default)Show me an imageIf you use the Explorer role and you have access to a subproject, but not the parent project, the parent project is ingested with the Tableau UUID, to maintain the hierarchy of assets.For complete information on ingestion results based on your Tableau permissions, see Tableau ingestion results.Tableau ingestion results The following tables shows the ingestion results based on Tableau permissions. By default, the lineage harvester uses both the Tableau REST API and the Tableau Metadata API, but you can limit the ingestion by allowing the lineage harvester to use only the Tableau REST API.If you ingest a Tableau dataset that doesn't have any attributes, asterisks (*) are shown as the Tableau Data Attribute asset names in Collibra.Tableau site roleResult in Data CatalogViewerTableau reports and data sources are ingested into Data Catalog, but with a limited scope. Resulting asset types:Tableau DashboardTableau Data ModelTableau ProjectTableau ServerTableau SiteTableau WorkbookTableau WorksheetTableau Data AttributesTableau Data Attributes are only ingested if the Metadata API is enabled in Tableau.Collibra Data Lineage cannot retrieve lineage information or perform automatic stitching.Explorer, without access to external assets.For more information, see Tableau roles and permissions.Tableau reports and data sources are ingested into Data Catalog, but with a limited scope. Resulting asset types:Tableau ServerTableau SiteTableau ProjectTableau DashboardTableau Data ModelTableau WorkbookTableau WorksheetTableau Data AttributesTableau Data Attributes are only ingested if the Metadata API is enabled in Tableau.We cannot retrieve lineage information or perform automatic stitching. This is the case if you don't have the Data Management add-on or derived permissions for the external assets.One of the following: Tableau Server Administrator Tableau Site Administrator Explorer with access to external assets.For more information, see Tableau roles and permissions. Data Catalog creates new assets according to your content in Tableau using metadata in Tableau databases and tables. Resulting asset types:Tableau ServerTableau SiteTableau ProjectTableau DashboardTableau Data ModelTableau WorkbookTableau WorksheetTableau Data AttributesTableau Data Attributes are only ingested if the Metadata API is enabled in Tableau.The Metadata API must be enabled in Tableau to retrieve lineage information or perform automatic stitching.Prepare an external directory folder for the lineage harvesterIf you want to create a technical lineage for Informatica PowerCenter, SQL Server Integration Services (SSIS) or IBM InfoSphere DataStage data sources, you have to prepare a folder with the external directory's data source files.If the external directory files do not have the necessary information, for example a database and a schema, to stitch the data sources, you have to provide the connection definitions manually via a JSON configuration
file, as addressed in the following procedure. This is required at each connection, regardless of whether the useCollibraSystemName property in the lineage harvester configuration file is set to true or false.Go to the online version of the user guide for more detailed steps and examples.PrerequisitesYou have IBM InfoSphere Information Server version 11.5 or newer. You have Informatica PowerCenter version 9.6 or newer.You have SQL Server Integration Services 2012 or newer with package format version 6 or newer.You have Microsoft Visual Studio version 2012 or newer.You have downloaded the lineage harvester and you have the necessary system requirements to run it.You have prepared the physical data layer in Data Catalog. To stitch the data objects in the source and target data sources in external directories with Data Catalog assets, you first have to register those data sources in Data Catalog.Steps to create a technical lineage for Informatica PowerCenter Create a local folder. Export the Informatica objects or repository for which you want to create a technical lineage to the local folder. If your folder contains previous versions of the parameter files, objects might be duplicated across different file versions. Collibra Data Lineage ignores any duplicated objects and issues an error message. For example, if a parameter file is exported after a column was added to a table, duplicated objects exist if the previous version of the parameter file remains in the folder. To avoid duplicated objects, export all objects and parameter files at the same time.All XML and parameter files, for example PAR, TXT or PRM files in this folder and its subfolders are taken into account when you create a technical lineage, but Collibra Data Lineage only shows a technical lineage for workflows that have mappings with sources, transformations and targets. Collibra supports the most common Informatica PowerCenter transformations. For more information, see the Informatica PowerCenter documentation.A technical lineage is created when the following tags are present in your XML file:<REPOSITORY><FOLDER><SOURCE> / <TARGET><SESSION><MAPPING><TRANSFORMATION> (within a <MAPPING> tag)In the local folder, create a folder named techlin-param and put the parameter files in the techlin-param folder.Optionally, create a source ID configuration file with connection definitions and system names: If you previously created a technical lineage for Informatica PowerCenter with connection definitions, the connection_definitions.conf file will still be taken into account.Create a new JSON file in the lineage harvester config folder.Give the JSON file the same name as the value of the Id property in the lineage harvester configuration file. The value of the Id property in the lineage harvester configuration file is informatica-source-1. As a result, the name of your JSON file should be informatica-source-1.conf.For each data source, add the following content to the JSON file: PropertyDescriptionconnectionDefinitionsThis section contains the connection properties to a source in Informatica PowerCenter.<connectionName>The type of your source or target data source.This section contains the connection properties to a source or target in Informatica PowerCenter.dbnameThe name of your source or target database.schemaThe name of your source or target schema.dialectThe dialect of the referenced database.You can enter one of the following values:azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.db2, for an IBM DB2 data source.hana, for an SAP HANA data source.hana-cviews, for getting lineage from calculated views in an SAP HANA data source.The hana-cviews dialect is supported for SAP HANA (on-premises). It is not supported for SAP HANA Cloud.To get technical lineage including calculated views, you must harvest SAP HANA by specifying two data sources in the lineage harvester configuration file. In one data source, specify the hana dialect, and in the other, specify the hana-cviews dialect.hive, for a HiveQL data source.greenplum, for a Greenplum data source.mssql, for a Microsoft SQL Server data source.mysql, for a MySQL data source.netezza, for a Netezza data source.oracle, for an Oracle data source.postgres, for a PostgreSQL data source.redshift, for an Amazon Redshift data source.snowflake, for a Snowflake data source.spark, for a Spark SQL data source.sybase, for a Sybase data source.teradata, for a Teradata data source.collibraSystemNamesThis section contains the system or server name that is specified in your database and referenced in your connection.This section is only required when the useCollibraSystemName flag in the lineage harvester configuration file is set to true.databasesThis section contains the database information. This is required to connect directly to the system or server of the database.dbnameThe name of the database. The database name is the same as the name you entered in the <connectionName> section.collibraSystemNameThe system or server name of the database.connectionsThis section contains the connection information. This is required to reference to the system or server of the connection.connectionNameThe name of the connection.collibraSystemNameThe system or server name of the connection.If you are using variables in Informatica PowerCenter, add the value of the variable instead of the name in the connection definitions JSON file. For example, if the parameter file contains $DBConnection_dwh=DWH_EXPORT then you add the following connection definitions to the JSON file: { DWH_EXPORT: { dbname: DWH, schema: DBO } }Add a new section for Informatica PowerCenter to the lineage harvester configuration file.Steps to create a technical lineage for SQL Server Integration Services Create a local folder. Export the SSIS files for which you want to create a technical lineage. You can export them directly from the SQL Server Integration Services repository or via Microsoft Visual Studio. For more information, see the SQL Server Integration Services documentation.Store the SSIS files to your local folder. Typically, the folder contains the following files:SSIS package files (DTSX), containing the SQL Server Integration Services source code.Connection manager files (CONMGR), containing environment and connection information.Parameter files (PARAMS), if applicable.All files in this folder and subfolders are taken into account when you create a technical lineage. The lineage harvester automatically detects data sources in the SSIS files.Not all SSIS files are processed and shown in the technical lineage. The lineage harvester retrieves all of the SSIS package files from the server, but only the files that contain lineage information, meaning those that contain a data flow, or Pipeline, are processed.Optionally, configure the connection definitions: If the useCollibraSystemName in the lineage harvester configuration file is set to true, you must provide the connection_definitions.conf file.Create a new JSON file in the local folder.Name the JSON file connection_definitions.conf.For each supported data source, specify the relevant translations.PropertyDescriptionConnStringRegExTranslationThe parent element that opens the connection definitions.<regular expression>A regular expression that must match one or more connection strings.Important considerations:By default, the regular expression is not case sensitive. As a consequence, a regular expression can match with connection strings containing uppercase characters or lowercase characters.The connection string is part of the SSIS connection manager.SSIS connection managers are included in an SSIS package files (DTSX) or in connection manager files (CONMGR).Regular expression: Server=sb-dhub;User ID=SYB_USER2;Initial Catalog=STAGEDB;Port=6306.*Explanation: The first section, up to .*, is a literal, but not case-sensitive, match of the characters. The dot (.) can match any single character. The asterisk (*) means zero or more of the previous, in this case any character.Match: Any connection string that starts with Server=sb-dhub;User ID=SYB_USER2;Initial Catalog=STAGEDB;Port=6306. Example: Server=sb-dhub;User ID=SYB_USER2;Initial Catalog=STAGEDB;Port=6306;Persist Security Info=True;Auto Translate=False;.dbnameThe name of your database, to which the data source connection refers.schemaThe name of your schema, to which the regular expression refers.dialectThe dialect of the referenced database.You can enter one of the following values:azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.db2, for an IBM DB2 data source.hana, for an SAP HANA data source.hana-cviews, for getting lineage from calculated views in an SAP HANA data source.The hana-cviews dialect is supported for SAP HANA (on-premises). It is not supported for SAP HANA Cloud.To get technical lineage including calculated views, you must harvest SAP HANA by specifying two data sources in the lineage harvester configuration file. In one data source, specify the hana dialect, and in the other, specify the hana-cviews dialect.hive, for a HiveQL data source.greenplum, for a Greenplum data source.mssql, for a Microsoft SQL Server data source.mysql, for a MySQL data source.netezza, for a Netezza data source.oracle, for an Oracle data source.postgres, for a PostgreSQL data source.redshift, for an Amazon Redshift data source.snowflake, for a Snowflake data source.spark, for a Spark SQL data source.sybase, for a Sybase data source.teradata, for a Teradata data source.collibraSystemNameThe name of the referenced data source's system or server.This property is only required when you set the useCollibraSystemName property in the lineage harvester configuration file to true. If this property is set to false, you can remove the collibraSystemName property or enter an empty string.Specify this property with the same name as the name of
the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.If the “useCollibraSystemName property is:false, system or server names in table references in analyzed SQL code are now ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset full name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName field is used as the default system or server name.Add a section for SQL Server Integration Services to the lineage harvester configuration file.Example of the connection_definitions.conf file { ConnStringRegExTranslation: { Data Source=dhb-sql-prod;Initial Catalog=SFG_repl_staging;Provider=SQLNCLI11;Integrated Security=SSPI.*: { dbname: DATAHUB, schema: DBO, dialect: mssql, collibraSystemName : WAREHOUSE }, Server=sb-dhub;User ID=SYS_USER;Initial Catalog=STAGEDB;Port=6306.*: { dbname: STAGEDB, schema: STAGE_OWNER, dialect: sybase, collibraSystemName : } } } Steps to create a technical lineage for DataStage Create a local folder. Export the DataStage project files (DSX) for which you want to create a technical lineage.You can either export a DataStage project manually or automatically via command line. Store the DataStage files in your local folder.Optionally, if your DataStage project uses environment variables, manually export the environment files (ENV).Give the environment files the same name as the DataStage project files. For example, if your project file is named datastage-project-1.dmx, name your environment file datastage-project-1.env.Store the environment files in the same local folder. Collibra Data Lineage only supports DSX and ENV files.You can have one DSX file per DataStage project.You can have more than one DSX file in the local folder. You can have one or none ENV file per DSX file.The name of the DSX file and the ENV file has to be the same.Optionally, configure the connection definitions: Create a new JSON file in the local folder.Name the JSON file connection_definitions.conf.For each data source, specify the relevant translations: PropertyDescriptionOdbcDataSourcesOpen Database Connectivity data sources in IBM InfoSphere DataStage for which you want to create a technical lineage.<data-source-name>The ODBC data source name that you use in your DataStage projects.This section contains the properties to translate the database, schema and dialect.dbnameThe name of your database, to which the ODBC data source connection refers.schemaThe name of your schema, to which the ODBC data source connection refers.dialectThe dialect of the referenced database.You can enter one of the following values:azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.db2, for an IBM DB2 data source.hana, for an SAP HANA data source.hana-cviews, for getting lineage from calculated views in an SAP HANA data source.The hana-cviews dialect is supported for SAP HANA (on-premises). It is not supported for SAP HANA Cloud.To get technical lineage including calculated views, you must harvest SAP HANA by specifying two data sources in the lineage harvester configuration file. In one data source, specify the hana dialect, and in the other, specify the hana-cviews dialect.hive, for a HiveQL data source.greenplum, for a Greenplum data source.mssql, for a Microsoft SQL Server data source.mysql, for a MySQL data source.netezza, for a Netezza data source.oracle, for an Oracle data source.postgres, for a PostgreSQL data source.redshift, for an Amazon Redshift data source.snowflake, for a Snowflake data source.spark, for a Spark SQL data source.sybase, for a Sybase data source.teradata, for a Teradata data source.collibraSystemNameThe name of the data source's system or server.This property is only required when you set the useCollibraSystemName property in the lineage harvester configuration file to true. If this property is set to false, you can remove the collibraSystemName property or enter an empty string.Specify this property with the same name as the full name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.NonOdbcConnectorsOther data source connectors in IBM InfoSphere DataStage for which you want to create a technical lineage. For example, DB2, Oracle or Netezza.This section is optional.<data-source-connector-ID>The data source username and database of the connector that you use in your DataStage projects. This usually looks like for example admin@database-name. The combination of the username and database name should be unique.The following section contains the properties to translate the database, schema and dialect.dbnameThe name of your database, to which the data source connection refers.schemaThe name of your schema, to which the data source connection refers.dialectThe dialect of the referenced database.collibraSystemNameThe name of the data source's system or server.This property is only required when you set the useCollibraSystemName property in the lineage harvester configuration file to true. If this property is set to false, you can remove the collibraSystemName property or enter an empty string.Specify this property with the same name as the full name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.JobsThe jobs that you want the lineage harvester to collect and process to create the technical lineage. This section is optional. The following rules apply when you specify this section:Specify jobs that are executed so that the technical lineage graph does not include any job parameters with undefined values. Specify only the first and parent jobs in a sequence of executed jobs. The lineage harvester automatically collects all jobs that are called by the parent jobs. For example, if you have the a sequence of jobs that include job1, job2, job3, job4, and job5, where job1 calls job2, job2 calls job3, job3 calls job5, and job4 calls job3. Specify only job1 and job4, and the lineage harvester collects and processes all five jobs based on the sequence.If you do not specify this section, the lineage harvester collects all jobs, but without proper sequencing. Therefore, some inherited parameters might not be parsed. JobParametersThe runtime parameters that are not in the DSX and ENV files. You can specify multiple job parameters. nameThe name of the job parameter. valueThe value of the job parameter. { OdbcDataSources: { oracle-data-source: { dbname: my-oracle-database, schema: my-oracle-schema, dialect: oracle, collibraSystemName: my-system }, mssql-data-source: { dbname: my-mssql-database, schema: my-mssql-schema, dialect: mssql, collibraSystemName: my-system } }, NonOdbcConnectors: { admin@database-name: { dbname: my-netezza-database, schema: my-netezza-schema, dialect: netezza, collibraSystemName: my-system }, admin@second-database-name: { dbname: my-second-netezza-database, schema: my-second-netezza-schema, dialect: netezza, collibraSystemName: my-system } }, jobs: [my_job_1, my_job_2], jobParameters: [{ name: job_parameter_name_1, value: job_parameter_value_1 }, { name: job_parameter_name_2, value: job_parameter_value_2 }] } Click to copy the example to your clipboard.Example of the connection_definitions.conf fileAdd a section for IBM InfoSphere DataStage to the lineage harvester configuration file.Example of the connection_definitions.conf file { OdbcDataSources: { oracle-data-source: { dbname: my-oracle-database, schema: my-oracle-schema, dialect: oracle, collibraSystemName: my-system }, mssql-data-source: { dbname: my-mssql-database, schema: my-mssql-schema, dialect: mssql, collibraSystemName: my-system } }, NonOdbcConnectors: { admin@database-name: { dbname: my-netezza-database, schema: my-netezza-schema, dialect: netezza, collibraSystemName: my-system }, admin@second-database-name: { dbname: my-second-netezza-database, schema: my-second-netezza-schema, dialect: netezza, collibraSystemName: my-system } }, jobs: [my_job_1, my_job_2], jobParameters: [{ name: job_parameter_name_1, value: job_parameter_value_1 }, { name: job_parameter_name_2, value: job_parameter_value_2 }] } What's nextYou can now prepare the rest lineage harvester configuration file and run it to create a technical lineage for Informatica PowerCenter, SQL Server Integration Services, IBM InfoSphere DataStage and, optionally, other data sources.When you run the lineage harvester, the content in your local folder is sent to the Collibra Data Lineage service for processing.For more information about the scope, see the overview of supported data sources.Collibra AdminsThis section caters primarily to Collibra Admins, who work with Collibra Data Lineage, as well as with Database Owners and BI Admins, to create a technical lineage.The lineage harvesterYou use the lineage harvester to collect source code from your data sources and create new relations between data elements from your data source and existing assets into Data Catalog. The lineage harvester runs close to the data source and can harvest transformation logic like SQL scripts and ETL scripts from a specific location, for example a database table or a folder on a file system.The lineage harvester
connects to different Collibra Data Lineage service instances based on your geographical location and cloud provider. Ensure you have the correct system requirements before you run the lineage harvester. If your location or cloud provider changes, the lineage harvester re-harvests all your data sources.Technical lineage is created by a cloud-based service. You only connect to the cloud via an API call that is triggered by the lineage harvester.The lineage harvester configuration fileThe lineage harvester uses a configuration file to connect to JDBC data sources, BI tools and ETL tools. The configuration file contains references to the data sources for which you want to create a technical lineage. You have to prepare the configuration file if you want to create a technical lineage and add new relations of the type Data Element targets / sources Data Element between existing assets in Data Catalog, and Column is target of / is source of Data Attribute between assets from ingested BI sources and assets in Data Catalog.You can only use UTF-8 or ISO-8859-1 characters in all lineage harvester files.The lineage harvester componentsThe lineage harvester consists of components that harvest the metadata from the data sources specified in your configuration file and send their metadata to the Collibra Data Lineage service.Using the lineage harvesterIf you want to separately process data sources on different servers, you can use more than one lineage harvester connected to a single Collibra Data Intelligence Cloud instance. In this case, you can create a configuration file for the lineage harvester on each server and configure different data sources in each configuration file. You can use different command options and arguments to perform various actions with the lineage harvester.PermissionsYou need a global role with the System Administration global permission, for example Sysadmin. This role must have access to all assets in the data sources in the configuration file and be able to create new relations between these assets.Typical workflowYou use the lineage harvester to run the full-sync command. That triggers the following actions: The lineage harvester: Harvests the metadata from the data sources that are specified in the configuration file.Uploads metadata collected from all configured data sources to Collibra Data Lineage’s Metadata Ingest Pipeline.Triggers the Sync Pipeline after all metadata has been completely processed.The Metadata Ingest Pipeline:Parses the metadata for all lineage assets and relations.Stores the assets and relations in the cloud storage. The Sync Pipeline: Merges all partial lineages into a single data store. Publishes discovered BI assets to Data Catalog. Matches asset IDs from Data Catalog to the assets discovered from the metadata (stitching). Stores the complete lineage in the cloud storage. Publishes newly discovered relations to Data Catalog. The Lineage Service: Upon request, creates HTML diagrams of the lineage. Data Catalog: Connects to the lineage service to get the technical lineage to be shown in the technical lineage viewer. The lineage harvester can only create Power BI, Tableau, Looker and other BI tool specific assets, if you included a reference to the specific BI tool in the configuration file. No other assets are created during the process. Only new relations between existing and newly created BI assets (for example between two Tableau Data Attribute assets), and between BI column and Column assets (for example between Power BI Column and Column assets) are created.The lineage harvester change logCollibra Data Lineage is updated and improved on a regular basis. On this page, you can see the most important changes between different versions of the lineage harvester. For a complete list, see the release notes.We highly recommend that you download and use the newest lineage harvester from the Collibra downloads page, even if you are on an older version of Collibra Data Intelligence Cloud.The following list contains the most important changes to the lineage harvester and the lineage harvester configuration file.Changed in versionNew lineage harvester improvements2023.08 The new MicroStrategy integration method, via the lineage harvester, is now generally available. The new integration method has the following benefits:Supports technical lineage with stitching.Supports the latest MicroStrategy APIs.Supports project filtering.Allows you to view the source code for all tables and transformations.When you integrate MicroStrategy via the new integration method, you can now view the source code for all tables and transformations, in the technical lineage Sources tab page. The source code shows information about the processes visible in the technical lineage and shows warnings and errors where a process has failed. This enhancement does not affect the success rate of metadata analysis. The Power BI and MicroStrategy global assignments are updated to show more details on respective asset pages.The Source Type attribute is now included on MicroStrategy Data Entity and MicroStrategy Data Attribute asset pages, to identify the MicroStrategy data object type, for example Attribute, Fact, Table, or Column.Collibra Data Lineage now supports the following Power Query M functions:AnalysisServices.DatabasesAnalysisServices.DatabaseThis function is fully supported if no MDX queries are used.If MDX queries are used and they resemble SQL, they will be parsed by the SQL parser.We don't currently support this function if used with MDX queries that resemble DAX, as the Collibra Data Lineage service instances can't parse such queries.GoogleAnalytics.AccountsThe relation “Data Asset contained in BI Folder” is now available between all Tableau Data Model and Tableau Project assets. When you integrate Tableau:Tableau Dashboard, Worksheet and Workbook asset pages now show the number of views in the Visits count attribute type.The Tableau API analysis documentation is updated with the visits count.The Tableau hostname mapping feature is now generally available. When integrating Tableau, you can use the optional “hostnameMapping” section in your <source ID> configuration file, to map Tableau technical database, server and schema names to the respective real names, to preserve stitching.When integrating Power BI, datamart metadata is now ingested in Collibra as assets of the new asset type Power BI Data Mart.When ingesting PostgreSQL data sources, the Collibra Data Lineage service instances now support x::typename cast constructs, where typename contains a dot (.), for example SELECT 'null'::qwerty.qwerty. When ingesting Snowflake data sources, the Collibra Data Lineage service instances now support LEVEL and CONNECT BY keywords.Previously, when creating technical lineage for SQL Server Integration Services, Collibra Data Lineage filtered out some queries due to legacy limitations. Collibra Data Lineage no longer filters out queries. You may find increased successful lineage as well as increased parsing or analysis errors, as Collibra Data Lineage tries to parse more queries. This is a backend change, and the new behavior will be seen during the next synchronization of the technical lineage for SQL Server Integration Services.Collibra Data Lineage now processes and generates technical lineage for Informatica PowerCenter four times faster with the following changes:Data Lineage now pre-processes data into pydantic models instead of using the slower xpath solution that existed previously.Shortcuts are handled faster, by keeping necessary objects in memory on the Collibra Data Lineage service instances.The Analysis Error messages are enhanced by adding information that is related to rejected files and unresolved parameters. 2023.07Collibra Data Lineage now supports the following Power Query M functions:Cube.TransformCube.AddAndExpandDimensionColumnTable.FromListAnyalysisServices.DatabasesThese functions enable technical lineage between SAP HANA (using SapHana.Database) and Analysis Services (using AnalysisServices.Databases), and improve the success rate of metadata analysis.When you create technical lineage for Snowflake with the SQL-API ingestion method, you can use the displaySampleQueries property in the new Snowflake source ID configuration file to control whether a question mark (?) is displayed in place of certain static values, such as numbers or dates.When ingesting Spark SQL data sources, the Collibra Data Lineage service instances now support PARTITIONED BY parameters in CREATE TABLE statements.Collibra Data Lineage now supports the following Power Query M functions:When you create technical lineage for Matillion, the lineage harvester now supports multiple data sources. Previously, the lineage harvester could only generate technical lineage from one source. When you create technical lineage for Informatica Intelligent Cloud Services and set the useCollibraSystemName property as true, the Collibra system name is used as root of the tree in the technical lineage graph. Previously, IICS was used. See an example. When you create technical lineage for Azure Data Factory, global parameters are now taken into consideration. SQL Extension now supports queries that have a WITH clause.When ingesting Oracle data sources, the Collibra Data Lineage service instances now correctly handle database links even when the remote database has a dot (.) in the name.When ingesting Snowflake data sources, the Collibra Data Lineage service instances now benefit from the following parsing enhancements:Undocumented usage of UPDATE FROM statement, when the FROM clause comes before the SET clause.IDENTIFIER keyword appears as a column name.When integrating MicroStrategy, any facts
that don't have expressions are now skipped. Previously, Collibra Data Lineage attempted to process such forms, which resulted in errors. 2023.06When integrating SQL Server Reporting Services (SSRS) or Power BI Report Server (PBRS):You no longer get an error if you filter on a folder to which you don’t have access.You no longer get an error if the “rd” namespace is not specified at the top level of a report (an RDL file). In that case, it is now taken from the child level.The Collibra Data Lineage service instances now support CommandText with SQL that starts with “=“. CommandText is split by either “+” or “&” and merged into a single parseable SQL command.If you filter on a specific folder, paginated reports at the root level of the folder are now correctly ingested.When integrating Tableau, backticks “`” in a query no longer result in missing columns when processing a CREATE TECHLIN VIEW.When integrating Power BI, you can now use HTTP1 streams if you are experiencing timeout issues with the default HTTP2 streams. To do so, include the new optional property “useHttp1” in your lineage harvester configuration file, and set the value to “true”.When you integrate MicroStrategy via the new integration method (beta), you can now view the source code for all tables and transformations, in the technical lineage Sources tab page. The source code shows information about the processes visible in the technical lineage and shows warnings and errors where a process has failed. This enhancement does not affect the success rate of metadata analysis.When ingesting CSV files as part of a Tableau integration, the “database > schema > table” structure in the technical lineage now matches the structure of the ingested CSV file in Data Catalog. This ensures that stitching can be achieved for CSV files.Collibra Data Lineage now supports the Power Query M function Table.CombineColumns.When integrating MicroStrategy, any forms that don't have expressions are now skipped. Previously, Collibra Data Lineage attempted to process such forms, resulting in errors.When integrating Power BI via the Power BI harvester (integration method v1), which has been deprecated since 2022, the Power BI source code now includes an end-of-life message. Please migrate to Power BI via the lineage harvester (integration method v2) by August 1, 2023.We have upgraded:The Snowflake driver to address the CVE-2023-30535 vulnerability.The BigQuery driver to mitigate the CVE-2022-45688 vulnerability.When ingesting Redshift data sources, the Collibra Data Lineage service instances now support the COLLATE function.When ingesting HiveQL metadata, the Collibra Data Lineage service instances now support the TBLPROPERTIES parameter with an empty list, for Hive CREATE TABLE statements.When ingesting Spark SQL data sources, the Collibra Data Lineage service instances now support identifiers that start with a number.When ingesting HiveQL, the Collibra Data Lineage service instances now support Hive extension for the multiple inserts clause.When ingesting Snowflake data sources, the Collibra Data Lineage service instances now support:Aliases in combination with the FLATTEN function.The DATA_RETENTION_TIME_IN_DAYS parameter for CREATE TABLE statements. 2023.05When you integrate Power BI, reports and dashboards that are part of an app in Power BI are ingested as Power BI Dashboard and Power BI Report assets, respectively. The URLs on these asset pages now correctly link to the corresponding dashboards and reports in the Power BI app.When integrating Power BI, the full names of Power BI capacities now include their unique identifiers. This helps to distinguish two capacities with the same name. Upon the first synchronization after this fix, if you use only one Power BI tenant, the Shared Capacity asset is deleted and recreated with the new naming format. If you have multiple Power BI tenants, a Shared Capacity asset with the new naming format is created for each tenant. If a data set or report in Power BI is certified, the corresponding Power BI Data Model and Power BI Report assets in Collibra are now automatically certified.When integrating Power BI, if you use the Databricks.Query query without specifying the database name, the database name in the technical lineage is “Default”.When you integrate Tableau, the lineage harvester now automatically connects to the REST API version that matches your Tableau Server or Tableau Online environment.When integrating Tableau:Filtering on sub-projects no longer results in FOREIGN KEY constraint errors.Custom SQL is now successfully processed when Tableau object names contain quotes. When ingesting Spark SQL data sources, the Collibra Data Lineage service instances now benefit from the following parsing enhancements: CREATE VIEW to support TBLPROPERTIESSELECT allowed as column nameTABLE allowed as column nameCREATE TABLE to support the USING clauseCREATE TBALE to support the OPTIONS clauseWhen ingesting Oracle data sources, SQL queries to extract views no longer include views for which the owner has a user name that start with “APEX”.Collibra Data Lineage support for creating technical lineage for Azure Data Factory by using the lineage harvester is now generally available.When you create technical lineage for Azure Data Factory, you can filter the factories that the lineage harvester collects and processes by using the new factories property in the lineage harvester configuration file to filter.The new MicroStrategy integration method, via the lineage harvester, is now in beta. The new integration method allows for technical lineage, supports the latest MicroStrategy APIs, and is no longer dependent on a direct connection to the repository.When you create technical lineage for Snowflake by using the SQL-API ingestion method, QUERY_TAG values are now shown in the transformation window for lineage queries.The lineage harvester optimized the results of the columns_joined query. Previously, the view definition would be saved for each column of a view. Now, a view definition is only saved once. This enhancement results in faster processing of lineage for your Snowflake database that has views with many columns.When you create technical lineage for Informatica PowerCenter, an error message is logged if any of the following issues occur:A parameter file cannot be parsed.A workflow XML file cannot be parsed or is invalid.The list-sources command is enhanced to:Indicate how each data source was ingested, by using the lineage harvester or technical lineage via Edge.List the useSystemName value to each data source.List up to 500 data sources. With this enhancement, you can determine which page to to be displayed and also the number of data sources to be listed on certain pages.2023.04 Power BI Data Flow asset pages now show the description of the data flow.When you integrate Looker, corrupt Looker Dashboards are now skipped.You can now include the new Calculation Rule attribute type on Power BI Column asset pages, to show DAX calculations.When ingesting Microsoft SQL Server data sources, the Collibra Data Lineage service instances can now parse QUALIFY statements.A partial technical lineage that is generated from queries that have analyze errors no longer produces a foreign key error.With the lineage harvester, you can now use the new ignore-source command to ignore the specified data source from the list of data sources to be used to create the technical lineage.2023.03When you create technical lineage for IBM DataStage, CollibraData Lineage now parses the following: The inner stage SQL statements, such as the INSERT and UPDATE statements, which are used to bind DataStage columns and target database objects in some stages. Parameters that are passed by when a Job is called or used. The parameters are typically passed to the Job activity in a Sequence Job. Previously, CollibraData Lineage only parsed and created technical lineage for default parameters. DataStage containers, including local and shared containers. Runtime column propagation that is enabled on stages. The account loop and stage variables of the Transformer stage.When you integrate Power BI or Azure Data Factory (ADF integration is currently in beta), the lineage harvester now connects to the Microsoft cloud instance, instead of the login.microsoftonline.com host.When you integrate Power BI, parameters are now ingested even if the “Enable load” option is not selected for the relevant parameters. To harvest columns and create a full technical lineage, the “Enable load” option must be selected. If it is not, the Power BI APIs will recognise parameterised tables, but not the columns in the tables. In which case, only table-level lineage is created; columns cannot be shown.When you integrate Tableau, And configure site filtering in your <source ID> configuration file, Tableau sites that are not mentioned in the filter are now correctly included in the ingestion. They are ingested in the default domain.The lineage harvester now ingests parameters.With a Google BigQuery data source, all BigQuery data objects now correctly appear in the technical lineage.You can use the new list-sources command to list all data sources that were ingested to create the technical lineage via the lineage harvester and technical lineage via Edge.When you integrate SQL Server Reporting Services (SSRS) or Power BI Report Server (PBRS), folder filtering no longer fails when you want to ingest everything.When ingesting Snowflake data sources, the correct source table is now shown in the technical lineage when the UNION operator is used.When ingesting MySQL data sources, the Collibra Data Lineage service instances now support the “as” keyword as optional in “create table” statements. Previously, parsing failed if the “as” keyword was missing.2023.02 When you integrate Tableau: Performance is significantly improved for Tableau users with
the Explorer role. The lineage harvester now filters out data objects for which you do not have permissions. You can now view the source code in the technical lineage Sources tab page. The source code shows information about the processes visible in the technical lineage and shows warnings and errors where a process has failed. This enhancement does not affect the success rate of metadata analysis. UUIDs no longer appear in the names of Tableau assets in a technical lineage, with the following exception: if Tableau data objects in a technical lineage hierarchy have the same full name, Collibra Data Lineage adds the UUIDs of the corresponding assets to the names in the technical lineage, to maintain uniqueness. For complete information, including how to resolve UUIDs in the names, see Technical lineage for Tableau. The Power BI integration can now connect to Power BI for US government customers. When you integrate Power BI or Azure Data Factory (currently in public beta), the lineage harvester now connects to the Microsoft cloud instance, instead of the login.microsoftonline.com host. When you synchronize any supported BI tool, if a corresponding data object of an asset in Data Catalog can no longer be found in the data source, the asset is no longer deleted from Data Catalog. Instead, the status of the asset changes to “Missing from source”. The lineage harvester logic is now based on the UUIDs of attribute types in the BI tool operating models, instead of the attribute type names. This means that when you integrate any of the supported BI tools, you can now change the names of the ingested attribute types. Collibra Data Lineage now supports Power Query parameters (public beta). For complete information, including how to ensure that the Power BI APIs return all parameters that are loaded in a report, see Working with Power Query parameters. When you run a full-sync of a Snowflake data source, the lineage harvester automatically refreshes the authentication token, to avoid a time-out error. Fixed the ordering of columns for Power BI technical lineage custom queries. 2023.01When you integrate Power BI, Collibra Data Lineage now supports the Power Query M function Table.Combine. If Collibra Data Lineage can’t determine the column names in multiple sources, a dummy column with the value “*” is now created in the sources and Power BI tables, which preserves the technical lineage at the table level. For complete details, see Supported Power Query M functions. If you use this function, Table.Combine function is used. You can now view a technical lineage at the table level, where previously analyze error “Cannot determine source table for column”.The technical lineage now correctly shows a yellow background when columns and tables are stitched. If you use a <source ID> configuration file, you no longer have to include the filters section.When you integrate Tableau:If a Tableau worksheet is hidden in Tableau, the “Visible on server” attribute of the Tableau Worksheet asset in Collibra now has the value false. If it is not hidden, the attribute has the value true. Metadata batches no longer fail if CREATE TECHLIN VIEW statements fail due to analysis errors. Collibra Data Lineage service benefits from improved parsing of BigQuery quoted identifiers, for example `a.b`.`c`. Tableau filtering now works as intended. Previously, filtering didn't work if, for example, you moved an older Tableau project under a newer project. Fixed the ordering of columns for Tableau technical lineage custom queries. Tableau Data Attributes are no longer shown twice, once with the UUID in the name and once without, in the technical lineage Browse tab pane. The Document size attribute type and value are now shown for Tableau Workbook assets.If you don't have permissions to access a parent project, but the lineage harvester identifies published data sources that belong to the project, the lineage harvester creates an ‘Unknown project’ that has the UUID of the inaccessible parent project. To avoid an error, the lineage harvester can now correctly link the published data sources to the unknown project. Collibra Data Lineage service now supports the Power Query M function Value.NativeQuery.Query parameters are supported, but core parameters are not.When you integrate Power BI or Azure Data Factory (currently in public beta), the lineage harvester now connects to the Microsoft cloud instance, instead of the login.microsoftonline.com host. When you ingest SQL Server Reporting Services (SSRS) and you set the “useCollibraSystemName” property to “true”, SSRS now has its own node in the navigation tree of the Technical lineage Browse tab pane. When you ingest Oracle data sources using the DatabaseOracle source type, passwords are now stored per url, username and db instead of just url and username. With this enhancement, you can connect to Oracle Pluggable Databases, for which a single user can have the same username and different passwords for each of their pluggable databases.For Informatica PowerCenter technical lineage, when a PowerCenter mapplet had an associated shortcut, technical lineage in Collibra would be broken up. Now, there is end-to-end lineage within PowerCenter even when a mapplet has an associated shortcut.Fixed a ValidationError related to the unsupported Exasol dialect. The Postgres dialect is now used in place of Exasol dialect. 2022.11 When you integrate Power BI:Inactive workspaces and personal workspaces are no longer ingested.Filtering is improved. You can now use the optional properties excludeWorkspaceNames and excludeWorkspaceIds to exclude specified workspaces. Before configuring your filters, ensure that you read all about the advantages, limitations and configuration considerations in Power BI workspaces.The ownership information (admin and creator email addresses only) for reports is now ingested in Collibra. The Owner in source attribute is included on Power BI Report asset pages.The email addresses of all admins and creators of Power BI data models and workspaces are now ingested. Previously only a single email address was ingested, even if there were multiple admins or creators of the data object in Power BI.When you ingest Snowflake data sources, the databaseNames property is now correctly taken into consideration.When you integrate Tableau:Previously, when you filtered on a site, a Tableau Site asset was created in Collibra, but no metadata was ingested. Now, when you filter on a site, all metadata in the site is ingested in the specified domain. If, however, a site is specified in the lineage harvester configuration file, but not in the filters and domainMapping properties in the Tableau <source ID> configuration file, the metadata is ingested in the default domain.You can now use wildcards in the filters property in the Tableau <source ID> configuration file. Also, the filters property is no longer case-sensitive.You can now ingest sites that don't have workbooks.Ownership information (email addresses only) for projects, data models, workbooks and dashboard is now ingested in Collibra. The Owner in source attribute is included on Tableau Project, Tableau Data Model, Tableau Workbook and Tableau Dashboard asset pages.When you ingest Informatica PowerCenter data sources, the lineage harvester now correctly processes session mapplets. Previously, this failed with error message 'NoneType' object has no attribute 'lower'.When you ingest Informatica Intelligent Cloud Services data sources and the useCollibraSystemNames property is set to true, databases are now shown in the Technical lineage Browse tab pane with the specified system name or as UNDEFINED”, if a database could not be mapped to a system name. If set to false, then all databases are now shown directly under the DATABASE node.When you ingest metadata from Oracle data sources, you can now add a new DatabaseOracle section in your lineage harvester configuration file, to specify the Oracle database name and ensure stitching without any workarounds.If you integrate SSRS-PBRS and use a <source ID> configuration file, the CustomDataSource section in the <source ID> configuration file is no longer mandatory.The lineage harvester now uses Looker 4.0 APIs, with paging options. 2022.10 The lineage harvester now supports the following IBM DB2 constructs: PREVVAL FOR <sequence>, PREVIOUS VALUE FRO <sequence>, NEXTVAL FOR <sequence> and NEXT VALUE FOR <sequence>. You can now use the new optional deleteRawMetadataAfterProcessing property in your lineage harvester configuration file. With this property, you can delete your raw metadata from the Collibra Data Lineage service after processing. This property is applicable for all supported data sources.When you specify a Data Catalog URL in the lineage harvester configuration file, it no longer matters whether you include a trailing slash (/) in the URL.The Collibra Data Lineage service now supports the following transformations: Table.FromRecords and Table.IsEmpty.Collibra Data Lineage now supports key-pair authentication when ingesting Snowflake data sources.The PostgreSQL JDBC Driver is upgraded to version 42.4.1.The Collibra Data Lineage service can now compute indirect lineage from set queries, which are queries with the UNION keyword with the ORDER BY clause.When you integrate Power BI, the lineage harvester is now more resilient to OutOfMemory errors.When you integrate Tableau and filter on a sub-project, the metadata of the parent project is no longer ingested in Collibra. However, the parent Tableau Project asset is created in the default domain, to preserve the hierarchy
required for stitching.Looker integration no longer fails if the collibraSystemName property is not included in the lineage harvester configuration file. If you want to specify the system name of a database in Looker, use the collibraSystemName property in the Looker source ID configuration file. If you don't specify a system name in the source ID configuration file, the system name in the technical lineage graph will be Default.In the case of a lookup procedure when ingesting Informatica Intelligent Cloud Services data sources, if the CONNECTIONSUBTYPE parameter is empty, the Collibra Data Lineage service now looks to the CONNECTIONREFERENCE parameter for the name. If that is also empty, then the name in the VARIABLE parameter is used. The ensures the correct detection of the SQL dialect. Fixed an issue related to dialect extraction when ingesting Informatica Intelligent Cloud Services data sources.2022.09 Previously, when you created a technical lineage for Power BI, SQL Server Reporting Services (SSRS) or Power BI Report Server (PBRS), the nodes in the technical lineage graph had a gray background, even if the data objects from your data source were stitched to assets in Data Catalog. Data objects now have the intended yellow background when creating a technical lineage for Power BI, SSRS or PBRS. We introduced this enhancement for Tableau and Looker in Collibra 2022.07. When you integrate Tableau, for every Tableau Workbook that you have permission to ingest, all Tableau Dashboards in the Workbooks are now correctly shown in the technical lineage graph. If you do not have permission on the Workbook or Dashboard level, the metadata of these data objects is not ingested.When integrating Power BI, the ownership information (email address only) for reports is now ingested in Collibra. The new Owner in source attribute is included on Power BI Report asset pages. The lineage harvester now uses Looker 4.0 APIs, with paging options.When you integrate Power BI, the lineage harvester is now more resilient against OutOfMemory errors.When you integrate Tableau and use domain mapping, subprojects are now ingested in the domains of their parent projects. The Collibra Data Lineage service instances now benefit from the following parsing enhancements when integrating Snowflake data sources: Support for the COLLATE keyword. Support for EXTERNAL TABLE syntax. When integrating Power BI, the descriptions of Data Set Tables and Data Set Columns in Power BI are now harvested.Fixed an issue that was resulting in a processing error when a column referenced in an ORDER BY clause references a repeated column in the SELECT column list.When integrating Tableau, you can now ingest sub-projects for which you have permission to ingest, even if you don’t have permission to ingest the parent projects.2022.08Previously, when you created a technical lineage for a supported BI tool, the nodes in the technical lineage graph had a gray background, even if the data objects from your data source were stitched to assets in Data Catalog. Data objects now have the intended yellow background when creating a technical lineage for Power BI. This enhancement was introduced for Tableau or Looker in Collibra 2022.07. Soon, the enhancement will also apply to SSRS and PBRS.When synchronizing Tableau, the synchronization no longer fails if two data sources in the same project with the same name are returned from the Tableau API. The assets of both data sources are now synchronized in Collibra.You can now filter on the Tableau project level. When integrating Power BI, you can now ingest measures and show them in the technical lineage. Measures are included as the value in the Role in Report attribute on Power BI Column asset pages.When attempting to integrate Power BI with invalid Power BI credentials, the lineage harvester log file now provides a more helpful error message. When you specify the Power BI workspaces for ingestion, the filters are not case sensitive now. When integrating Looker, the ownership information (email address only) for folders, Looks and dashboards is now ingested in Collibra. The new Owner in source attribute is included on Looker Folder, Looker Look and Looker Dashboard asset pages.When integrating Power BI, the ownership information (email address only) for data sets and workspaces is now ingested in Collibra. The new Owner in source attribute is included on Power BI Data Model and Power BI Workspace asset pages.The lineage harvester log file now identifies whether you are using Tableau Online or Tableau Server, and the version of your Tableau environment.2022.07The lineage harvester now retries to get a batch status again if the first HTTP call failed due to a network error. Fixed an issue that was causing custom SQL queries to be identified as belonging to two different Tableau data sources. This resulted in a Unique constraint failed error. Fixed an issue that was resulting in the No asset matches the specified criteria error.When the lineage harvester fetches an access key for a data store, only active records are now fetched. Inactive records are ignored. The lineage harvester is more resilient against authorization expiration when ingesting Looker metadata.The lineage harvester log file now includes the following information: Your Tableau environment type: Tableau Online or Tableau Server typeThe version of your Tableau environment2022.06 When synchronizing Power BI, the last sync time is now correctly shown in the Sources tab page. Fixed an issue that was causing the processing of harvested metadata batches to run without coming to completion. When ingesting Power BI, if there are Oracle data sources, the Oracle service name is now used, instead of the database name. When processing Tableau metadata, the Collibra Data Lineage servers no longer replace >> by <}, which was resulting in parsing errors. Fixed an [SQLITE_ERROR] issue that was breaking the technical lineage when attempting to synchronize a data source. When processing Power BI metadata, SQL statements are now in upper case. When creating a technical lineage for Tableau, any unnecessary brackets “][“ in the names of schemas are now removed. When integrating Power BI, you can now ingest measures without DAX. They are shown as attribute type Role in Report on Power BI Column asset pages. 2022.05The lineage harvester 2022.05 includes an internal format change to the password manager pwd.conf file. This means that if you use Lineage harvester 2022.05, you can no longer use the pwd.conf file with an older harvester. You can now integrate Power BI in Data Catalog via the lineage harvester, meaning you no longer need to use the Power BI harvester. Additional benefits include the following: Support for Power BI Data Flows. Descriptions of Power BI Reports. Statuses of Power BI Workspaces. Filtering and domain mapping. The new Power BI integration method is specifically for new integrations. For those who have been ingesting Power BI via the Power BI harvester, we will soon release a migration script. Collibra Data Lineage now also supports the following BI integrations: MicroStrategy SQL Server Reporting Services and Power BI Report Server. You can now use token-based authentication when creating a technical lineage for Matillion.This enhancement is not backwards compatible. You must update your configuration file.If you use the lineage harvester 2022.05, you can no longer use the pwd.conf file with an older harvester. The useCollibraSystemName property is now solely used for the configuration of the system name.If you set the useCollibraSystemName property to true in your lineage harvester configuration file, but don't define the system name in the Tableau <source ID> configuration file, the system name in the Tableau technical lineage shows DEFAULT as the system name. If using a Tableau <source ID> configuration file: You can now use wildcards throughout the file. The hostName and connectorUrl properties are no longer case-sensitive. The PostgreSQL JDBC driver is now upgraded from from 42.3.2 to 42.3.3.The Apache Hive JDBC driver is now upgraded from 2.6.17.1020 to 2.6.19.2022.The lineage harvester no longer hangs when harvesting metadata from certain data sources.The lineage harvester automatically refreshes Tableau tokens.You can now use the optional concurrencyLevel property in the lineage harvester configuration file, to specify the internal sizing, meaning the amount of tasks that can be executed at the same time. 2022.04 You can now use the databaseMapping property in your Tableau <source ID> configuration file, to map a Tableau technical database name to the real database name. When providing connection definitions for Informatica PowerCenter, the dbname property is no longer case-sensitive. When integrating Informatica PowerCenter data sources, Collibra Data Lineage now correctly creates a technical lineage when useCollibraSystemName is set to true.2022.03By default, the lineage harvester no longer harvests images. If you want to include images, include the optional excludeImages property in your configuration file and set the value to false. When ingesting Tableau metadata, you can now leave empty the collibraSystemName property in
your configuration file, even if the useCollibraSystemName property is set to true. The lineage harvester now correctly shows the help overview when you run the --help command. Hive source now skips harvesting DDL of exclusively locked tables. When you change the domain reference ID in the lineage harvester configuration file, Tableau assets are now successfully deleted from the previous domain and recreated in the new domain. You no longer see a Fiber Failed error while running the lineage harvester. Protobuf is upgraded to version 3.19.3. Fixed an issue that was causing incomplete technical lineage and stitching issues when using custom SQL in Tableau. Fixed an issue that resulted in a TableauHarvesterError when ingesting Tableau metadata via the linage harvester. Fixed a NullPointerException when no column data type is harvested.Fixed an issue that was causing the ingestion of Looker metadata to fail. Fixed an issue that was causing a JsonParseError when ingesting Tableau metadata. 2022.02Collibra Data Lineage service instancesThe Collibra Data Lineage service processes and analyzes the harvested metadata from supported (meta)data sources and uploads it to Data Catalog. The Collibra Data Lineage service processes or stores only metadata, but not actual data.When you run the lineage harvester or synchronize the technical lineage on Edge, the lineage harvester or technical lineage via Edge firstly connects to any available Collibra Data Lineage service instance to determine your cloud provider and geographic location of your Collibra Data Intelligence Cloud environment. Then, the lineage harvester or technical lineage via Edge sends the harvested metadata to the Collibra Data Lineage service instance with the same cloud provider and geographic location.Currently, your metadata can be processed on one of the following Collibra Data Lineage service instances:ServerIP addressDNS nametechlin-aws-ca15.222.200.199techlin-aws-ca.collibra.comtechlin-aws-eu18.198.89.106techlin-aws-eu.collibra.comtechlin-aws-sg13.228.38.245techlin-aws-sg.collibra.comtechlin-aws-us54.242.194.190techlin-aws-us.collibra.comtechlin-azure-eu51.105.241.132techlin-azure-eu.collibra.comtechlin-azure-us20.102.44.39techlin-azure-us.collibra.comtechlin-gcp-au35.197.182.41techlin-gcp-au.collibra.comtechlin-gcp-ca34.152.20.240techlin-gcp-ca.collibra.comtechlin-gcp-eu35.205.146.124techlin-gcp-eu.collibra.comtechlin-gcp-sg34.87.122.60techlin-gcp-sg.collibra.comtechlin-gcp-uk35.234.130.150techlin-gcp-uk.collibra.comtechlin-gcp-us34.73.33.120techlin-gcp-us.collibra.comYou have to allow all Collibra Data Lineage service instances in your geographic location. For example, if your data is located in Europe, you have to allow the following Collibra Data Lineage service instances: techlin-aws-eu and techlin-gcp-eu. In addition, we highly recommend that you always allow the techlin-aws-us instances as a backup, in case the lineage harvester cannot connect to other Collibra Data Lineage service instances.Technical lineage via EdgeThis section provides information on how to create a technical lineage via Edge. About Technical lineage via Edge You can use Edge to collect metadata from your data sources and create new relations between data elements from your data source and existing assets into Data Catalog. Edge collects transformation logic like SQL scripts and ETL scripts from a specified location, for example a database table or a folder on a file system.Just like the lineage harvester, Edge connects to different Collibra Data Lineage service instances based on your geographical location and cloud provider.For a list of the supported data sources and the technical lineage capabilities and connection types for each data source, go to Supported data sources for technical lineage. For specific steps to create a technical lineage on Edge, go to Creating technical lineage via Edge.You can also use Edge to create a custom technical lineage. For complete information, go to Create technical lineage via Edge and select Custom technical lineage.If you want to use technical lineage via Edge together with the lineage harvester, ensure that you use the lineage harvester version 2023.04 or newer. For more information, go to Migrate the technical lineage of a data source. Enabling and configuring technical lineage via EdgeTo create a technical lineage for different data sources via Edge, you must enable the features in the Collibra settings or in Collibra Console. You can define how technical lineage via Edge accesses the data sources by creating different connections. The following connection types are supported on Edge: JDBC connection, for JDBC data sources and ETL tools.Shared Storage connection, for JDBC data sources and some ETL tools.APIs, for MicroStrategy, Power BI, Tableau, Informatica Intelligent Cloud Services, and Matillion.Configurations for technical lineage via Edge include the following: General configuration settings in the Collibra settings or Collibra Console, which apply to all data sources for which you create the technical lineage. For example, you can enter your Collibra Data Intelligence Cloud username and user password in the general configuration settings. Specific configuration settings for each data source. You can add a technical lineage capability for each data source to provide specific configurations. After you create the connections and configure technical lineage via Edge for different data sources, you can manually synchronize the capabilities or add a synchronization schedules. BI tool ingestion via EdgeBI ingestion via Edge is currently available for MicroStrategy, Power BI, and Tableau. To integrate other supported BI tools, you need to use the lineage harvester. You can also use the lineage harvester to integrate MicroStrategy, Power BI, and Tableau.During the technical lineage process, relations of the type Data Element targets / sources Data Element are automatically created: Between data objects in your data source and assets from registered data sources. Between ingested assets from BI sources and Data Catalog assets from registered data sources. You can't work with Edge via the REST API.You can't migrate from Jobserver to Edge to preserve the metadata that you manually added to the assets that you ingested via Jobserver.PermissionsYou need a global role with the System Administration global permission, for example Sysadmin. This role must have access to all assets in the data sources and be able to create new relations between these assets.Specific permissions might be required to access different data sources. Select a data source in the Overview of Collibra-provided JDBC drivers topic to see the required permissions to create a technical lineage.Create a technical lineage via EdgeThis topic provides an overview of the necessary steps to create a technical lineage via Edge.You can also use the Collibra Catalog Cloud Ingestions API to create or update a technical lineage capability and start or schedule a synchronization to create a technical lineage. For more information about using APIs, go to Collibra Developer Portal.To view the steps to create technical lineage for your data source, select the data source and connection type, if applicable. For a listed of supported data sources and their corresponding connection types, go to Supported data sources for technical lineage.Before you beginUse Collibra Data Intelligence Cloud 2023.03 or later. Create an Edge site in Collibra Data Intelligence Cloud.Install an Edge site. Create a JDBC connection. Register the data source via Edge. Before you register the data source, ensure that you add the Catalog JDBC ingestion capability, so that Collibra Data Lineage can stitch the data objects in your technical lineage to the assets in Data Catalog. Requirements and permissionsCollibra Data Intelligence Cloud 2023.08 or laterA global role with the following global permissions: Data Stewardship ManagerManage all resourcesSystem administrationTechnical lineageA resource role with the following resource permission on the community level in which you created the BI Data Catalog domain: Asset: addAttribute: addDomain: addAttachment: addNecessary permissions to all database objects that technical lineage via Edge accesses.Some data sources require specific permissions. For the data source selected above: You need read access on the SYS schema.You need read access on the SYS schema and the View Definition Permission in your SQL Server.You need read access on information_schema:bigquery.jobs.createbigquery.readsessions.createbigquery.tables.getDatabigquery.readsessions.getDataGRANT SELECT, at table level. Grant this to every table for which you want to create a technical lineage.The role of the user must be the owner of the views in PostgreSQL, and the username of the user must be specified in the JDBC connection that you use to access PostgreSQL.You need read access on information_schema. Only views that you own are processed.SELECT, at table level. Grant this to every table for which you want to create a technical lineage.A role with the LOGIN option.SELECT WITH GRANT OPTION, at Table level.CONNECT ON DATABASEThe following permissions are the same, regardless of the ingestion mode: SQL or SQL-API.You need a role that can access the Snowflake shared read-only database. To access the shared database, the account administrator must grant the IMPORTED PRIVILEGES privilege on the shared database to the user. The username of the user must be specified in the JDBC connection that you use to access Snowflake. If the default role in Snowflake does not have the IMPORTED PRIVILEGES privilege, you can click the Add property button to add a custom parameter with the following values specified:
FieldValueNamecustomConnectionProperties TypeTextEncryptionSelect one of the following encryption methods: Not encrypted (plain text)Encrypted with public keyTo be encrypted by Edge management serverValuerole=METADATAYou need read access on the DBC.You need read access to the following dictionary views: all_tab_colsall_col_commentsall_objectsALL_DB_LINKSall_mviewsall_sourceall_synonymsall_viewsYou need read access on definition_schema. Your user role must have privileges to export assets. You must have read permission on all assets that you want to export. You have added the Matillion certificate to a Java truststore.You have at least a Matillion Enterprise license.The following permissions apply only to MicroStrategy on-premises customers. You need Admin API permissions.The first call we make to MicroStrategy is to authenticate. We connect to <MSTR URL>:<Port>/MicroStrategyLibrary/api-docs/ and use POST api/auth/login. You have to ensure that this API call can be made successfully. You need permissions to access the library server.The lineage harvester uses port 443. If the port is not open, you also need permissions to access the repository.If you have a MicroStrategy on-premises environment, you need the permissions for all of the database objects that the lineage harvester accesses.You have to configure the MicroStrategy Modeling Service. For complete information, see the MicroStrategy documentation.Before you start the Power BI integration process, you have to perform a number of tasks in Power BI and Microsoft Azure. These tasks, which are performed outside of Collibra, are needed to enable the lineage harvester to reach your Power BI application and collect its metadata. For complete information, go to Set up Power BI.Before you start the Tableau integration process, you have to perform a number of tasks in Tableau. For complete information, go to the following topics:Set up TableauTableau roles and permissionsStepsSet up Tableau.Set up Power BI.Set up MicroStrategy.What's next?View the technical lineage.Delete the technical lineage of a data source on EdgeYou can delete the technical lineage of a data source by updating the capability for the data source and synchronizing the technical lineage again. If you want to use technical lineage via Edge together with the lineage harvester, ensure that you use the lineage harvester version 2023.04 or newer. If you want to delete the technical lineage of a data source by using the lineage harvester, ensure that you use the lineage harvester version 2023.04 or newer. For details, go to Delete the technical lineage of a data source.StepsOpen an Edge site. On the main menu, click , and then click Settings.The Collibra settings page opens. In the tab pane, click Edge.The Sites tab opens and shows a table with an overview of the Edge sites.In the Edge site overview, click the name of the Edge site where you created the technical lineage capability for the data source.The Edge site page appears.In the Capabilities section, locate and click the technical lineage capability that you added for the data source when you created the technical lineage.Clear the Active check box. Click Save. The capability is updated.Synchronize the technical lineage capability for the data source.The data source is marked as ignored internally and will be excluded when the technical lineage is synchronized again.Synchronize your technical lineage by taking any of the following actions:On Edge, synchronize the technical lineage capability for any of your data sources that are active. With the lineage harvester, run any of the following commands: The sync command: For Windows: .\bin\lineage-harvester.bat syncFor other operating systems: ./bin/lineage-harvester syncThe full-sync command: For Windows: .\bin\lineage-harvester.bat full-syncFor other operating systems: ./bin/lineage-harvester full-syncFor more information, go to Typical command options and arguments.When synchronization is complete, the technical lineage of the data source is deleted.What's next?If you want to delete the technical lineage capability for the data source, ensure that the technical lineage of the data source is removed successfully after synchronization. For more information, go to Delete an Edge capability from an Edge site.You can view a summary of the results from the Activities list to see whether the technical lineage is synchronized successfully. If the synchronization fails or completes with errors, you can use the technical lineage via Edge troubleshooting guide or Collibra Support Portal to fix the errors.Migrate the technical lineage of a data sourceYou can use the lineage harvester and technical lineage via Edge together. You can migrate a data source from lineage harvester to technical lineage via Edge, and also from technical lineage via Edge to the lineage harvester.Prerequisites and permissionsA global role that has the following global permission:The Catalog, for example Catalog AuthorView Edge connections and capabilitiesA resource role with Configure external system resource permission, for example Owner.The permissions to retrieve the metadata of the following database components through the JDBC Driver Database Metadata methods:SchemasTablesColumnsThe lineage harvester version 2023.04 newer.Migrate to technical lineage via EdgeMigrate to the lineage harvesterMigrate to technical lineage via EdgeOpen the lineage harvester configuration file in the config folder of your lineage harvester. For the data source that you want to move to Edge, remove the section of the data source from the lineage harvester configuration file and save the configuration file. If needed, start the lineage harvester in the console and run the following command to ignore the data source. For Windows: .\bin\lineage-harvester.bat ignore-source <source_ID>, where <source_id> is the ID of the data source that you want to ignore.For other operating systems: ./bin/lineage-harvester ignore-source <source_ID>, where <source_id> is the ID of the data source that you want to ignore.The data source is excluded from the list of data sources that are used to create the technical lineage.This step is required only in the following cases: If you use a different source ID for the data source on Edge.If you are migrating SAP HANA data sources from the lineage harvester to Edge, regardless of the source IDs you use. When you created technical lineage for SAP HANA by using the lineage harvester, different sources IDs were required if you used the hana and hana-cviews dialects. However, in the Technical Lineage for SAP HANA capability, you can use one source ID for both SQL based and calculated views input. Technical lineage via Edge adds suffixes to the source ID automatically and internally. When you synchronize the Technical Lineage for SAP HANA capability, an error occurs if the source IDs from the lineage harvester exist for the same data source.On Edge, add the technical lineage capability for the data source with the same configurations, for example, the same source ID. Synchronize the technical lineage.When the synchronization completes, the technical lineage is created for the data source.Migrate to the lineage harvesterOpen an Edge site. On the main menu, click , and then click Settings.The Collibra settings page opens. In the tab pane, click Edge.The Sites tab opens and shows a table with an overview of the Edge sites.In the Edge site overview, click the name of the Edge site where you created the technical lineage capability for the data source.The Edge site page appears.In the Capabilities section, locate and click the technical lineage capability for the data source. The technical lineage capability page opens.Clear the Active check box. Click Save. The capability is updated.Synchronize the technical lineage. If you added a synchronization schedule for the technical lineage capability, ensure that you delete the schedule.When the synchronization completes, the technical lineage of the data source is deleted.Open the lineage harvester configuration file in the config folder of your lineage harvester. Specify the properties in the lineage harvester configuration file for the data source with the same configurations of the capability, for example, the same source ID, and save the configuration file. Run the lineage harvester.When the lineage harvester finishes processing, the technical lineage is created for the data source.For the overall steps to create technical lineage, go to Creating a Technical lineage via the lineage harvester or Create a technical lineage via Edge.What's next?View the technical lineage graph.You can check the progress of the technical lineage creation in Activities in your Collibra Data Intelligence Cloud environment. The Results field indicates how many relations were imported into Data Catalog. Go to the status page to see the log files of the SQL analysis.If the lineage harvester log shows an error message or the harvesting process fails, you can use the technical lineage troubleshooting guide or Collibra Support Portal to fix the error.For technical lineage via Edge, if the synchronization fails or completes with an error message, you can use the technical lineage via Edge troubleshooting guide or Collibra Support Portal to fix the error.Technical lineage via the lineage harvesterThe lineage harvester is a connectivity tool that allows you to create a technical lineage. The lineage harvester collects metadata from your data sources. Collibra then analyzes and processes the metadata, and creates new Table and Column assets in Data Catalog, with names that match those of the data objects in your data sources. If you integrate a BI tool, new BI assets are also created.You can download the lineage harvester from the Collibra Community downloads page.If you want to use technical lineage via Edge together with the lineage harvester, ensure that
you use the lineage harvester version 2023.04 or newer. For more information, go to Migrate the technical lineage of a data source. To delete the technical lineage of a data source in the lineage harvester version 2023.04 or newer, you must remove the section of the data source from the lineage harvester configuration file and also run the ignore-source command with the source ID specified. For complete information on technical lineage, see the Collibra Data Intelligence Cloud User Guide.Creating a technical lineage via the lineage harvesterThis topic describes the general steps on how to use the lineage harvester to create a technical lineage.Select a data source, to show the relevant integration steps.Currently, information is shown for:Amazon RedshiftAzure Data FactoryAzure SQL Data WarehouseAzure SQL ServerAzure Synapse AnalyticsDB2Google BigQueryGreenplumHiveQLIBM InfoSphere DataStageInformatica Intelligent Cloud ServicesInformatica PowerCenterLookerMatillionMicroStrategyOraclePostgreSQLPower BIMySQLNetezzaSAP HanaSnowflakeSpark SQLDownloaded SQL filesSQL ServerSQL Server Integration ServicesSSRS-PBRSSybaseTableauTeradataCustom technical lineageChoose another data sourceX My data source is not in this list.Amazon RedshiftAzure Data Factory Azure SQL Data Warehouse Azure SQL Server Azure Synapse Analytics Custom technical lineageDataStage DB2 Google BigQuery Greenplum Hive Informatica Intelligent Cloud Services Informatica PowerCenter LookerMatillion MicroStrategyMySQL Netezza OraclePostgreSQL Power BISAP Hana Snowflake Spark SQL SQL Server SQL Server Integration Services Downloaded SQL files SSRS-PBRSSybase Tableau TeradataAmazon RedshiftAzure SQL serverAzure Synapse AnalyticsGreenplumHiveIBM Db2PostgreSQLMicrosoft SQL ServerMySQLNetezzaSAP HANATeradatarequirements:Ensure that you meet the Set up Azure Data Factory.You need read access on information_schema. Only views that you own are processed.You need read access on the SYS schema.You need read access on information_schema:bigquery.datasets.getbigquery.tables.getbigquery.tables.listbigquery.jobs.createbigquery.routines.getbigquery.routines.listSELECT, at table level. Grant this to every table for which you want to create a technical lineage.You need Monitoring role permissions.A role with the LOGIN option.SELECT WITH GRANT OPTION, at Table level.CONNECT ON DATABASEYou need read access on the SYS schema and the View Definition Permission in your SQL Server.You need read access on definition_schema.GRANT SELECT, at table level. Grant this to every table for which you want to create a technical lineage.The role of the user that you specify in the username property in lineage harvester configuration file must be the owner of the views in PostgreSQL.You need read access on the DBC.You need read access to the following dictionary views: all_tab_colsall_col_commentsall_objectsALL_DB_LINKSall_mviewsall_sourceall_synonymsall_views Your user role must have privileges to export assets. You must have read permission on all assets that you want to export. You have added the Matillion certificate to a Java truststore.You have at least a Matillion Enterprise license.The following permissions are the same, regardless of the ingestion mode: SQL or SQL-API.You need a role that can access the Snowflake shared read-only database. To access the shared database, the account administrator must grant the IMPORTED PRIVILEGES privilege on the shared database to the user that runs the lineage harvester.If the default role in Snowflake does not have the IMPORTED PRIVILEGES privilege, you can use the customConnectionProperties property in the lineage harvester configuration file to assign the appropriate role to the user. For example:customConnectionProperties: role=METADATAThe source code files must be in the same directory as the lineage.json file. Otherwise, an error occurs indicating that the lineage harvester cannot find the source code files. For complete information, go to Working with custom technical lineage.Before you start the Power BI integration process, you have to perform a number of tasks in Power BI and Microsoft Azure. These tasks, which are performed outside of Collibra, are needed to enable the lineage harvester to reach your Power BI application and collect its metadata. For complete information, go to Set up Power BI.Before you start the Tableau integration process, you have to perform a number of tasks in Tableau. For complete information, go to the following topics:Set up TableauTableau roles and permissionsYou need the following roles, with user access to the server from which you want to ingest:A system-level role that is at least a System user role.An item-level role that is at least a Content Manager role.We recommend that you use SQL Server 2019 Reporting Services or newer. We can't guarantee that older versions will work.Before you start the Looker integration process, you need to set up Looker.The following permissions apply only to MicroStrategy on-premises customers. You need Admin API permissions.The first call we make to MicroStrategy is to authenticate. We connect to <MSTR URL>:<Port>/MicroStrategyLibrary/api-docs/ and use POST api/auth/login. You have to ensure that this API call can be made successfully. You need permissions to access the library server.The lineage harvester uses port 443. If the port is not open, you also need permissions to access the repository.If you have a MicroStrategy on-premises environment, you need the permissions for all of the database objects that the lineage harvester accesses.You have to configure the MicroStrategy Modeling Service. For complete information, see the MicroStrategy documentation.StepsOptionally, connect to a proxy server.Ensure that you meet the Azure Data Factory prerequisites.Ensure that you have the correct Tableau versions and permissions, as described in the Set up Tableau topics.Complete the tasks in Power BI and Microsoft Azure, as described in the Set up Power BI topics.If you are a MicroStrategy on-premises customer, ensure that you have enabled Collibra to access your MicroStrategy data, as described in Set up MicroStrategy.Ensure that you have API3 credentials for authorization and access control. For complete information, go to Set up Looker. Prepare the Data Catalog physical data layer. Prepare an external directory folder for the lineage harvester. Prepare a domain for BI asset ingestion.Optionally, assign the attribute type State to the global assignment of the Power BI Workspace asset type. For complete information, go to Power BI workspaces.Download and install the lineage harvester.Create a custom technical lineage JSON file.Prepare the lineage harvester configuration file.The project name in the configuration file must be the same as the full name of the Database asset.If necessary, prepare a <source ID> configuration file.Hostname mapping (beta) will replace database mapping and the collibraSystemName section for databases in a future Collibra version. For complete information and examples of hostname mapping, go to Tableau hostname mapping (beta).Manually refresh your Power BI datasets. The first time you integrate Power BI, you need to make sure that the data in your Power BI datasets is up-to-date. Carry out this step only if this is the first time you're integrating Power BI in Data Catalog. After that, Microsoft automatically refreshes the datasets every 90 days. For complete information, see: The Microsoft documentation. The Microsoft Power BI Blog.Run the lineage harvester. What's next?You can check the progress of the ingestion in Activities. The results field indicates how many relations were imported into Data Catalog.After the metadata is ingested in Data Catalog, you can go to the domain that you specified in your lineage harvester configuration file and view the newly created assets. These assets are automatically stitched to existing assets in Data Catalog.You can also view the Tableau technical lineage.We strongly recommend that you not edit the full names of any BI assets. Doing so will likely lead to errors during the synchronization process.We highly recommend that you do not move the ingested assets to a different domain. If you do, the assets will be deleted and recreated in the initial BI Catalog domain when you synchronize. As a consequence, any manually added data of those assets is lost.Prepare the Data Catalog physical data layer for technical lineageThis topic does not apply if you register a data source via Edge because in that case, Collibra automatically creates the system > database > schema > table > column hierarchy. To stitch data objects in your data sources to their corresponding assets in Collibra Data Intelligence Cloud, the full names of the data objects and assets must match exactly. The full names are constructed according to the full path of the data objects in your data source:(system name) > database name > schema name > table name > column nameHowever, when you register a data source via Jobserver or via the lineage harvester, only assets of the following asset types are created in Data Catalog: SchemaTableColumn Therefore, you have to create a Database asset and create a relation between it and the Schema asset, to construct the full path hierarchy required for full name matching. If you set the useCollibraSystemName property to true in your lineage harvester configuration file, you also need to create a System asset and create a relation between it and the Database asset. We refer to this as preparing the Data Catalog physical data layer.For more information, see Automatic stitching for technical lineage.Prerequisites You have a global role with the Catalog global permission, for example, Catalog Author.You have a resource role with the following resource permissions on the Schema community if you use a Jobserver and on the Database community if you use
Edge.Asset > addAttribute > addDomain > addAttachment > addAdditional prerequisites for JDBC data source typesIf you are working with a JDBC data source type, you also need to meet the following prerequisites: You have the permissions to retrieve the metadata of the following database components through the JDBC Driver Database Metadata methods:SchemasTablesColumnsYou have set up the JDBC driver of your source data, for example MySQL. You have registered a data source.The full name of your Schema asset must match the exact name of the schema (including for case-sensitivity) in the data source that you register in the configuration file.If you use Jobservers in Collibra Console and there is no available Jobserver, the Register data source actions will be grayed out in the global create menu in Collibra.StepsCreate a System asset:This is only required if you set the useCollibraSystemName property to true in your lineage harvester configuration file.The full name of the System asset must match (including for case-sensitivity) the exact name of the system of the data source that you register in the configuration file.Show me howOpen the product for which you want to create an asset, for example Business Glossary.On the main toolbar, click .The Create dialog box appears.On the Assets tab, click Database.The Create Asset dialog box appears.Enter the required information.FieldDescriptionTypeThe asset type of the asset that you are creating.DomainThe domain to which the asset will belong. Ensure that the domain type of the selected domain is assigned to the selected asset type.NameA name to identify the asset.You can simultaneously create multiple assets. To do so, after typing the name, press Enter, and then type the next name. Depending on the settings, asset names may need to be unique in their domain. If you enter a name that already exists, it appears in the strike-through style.Click Create.A message stating that one or more assets are created appears in the upper-right corner of the page.Create a Database asset: The full name of your Database asset must match (including for case-sensitivity) the exact name of the database or project, in case of Google BigQuery, that you register in the configuration file. The names are case-sensitive.Show me howOpen the product for which you want to create an asset, for example Business Glossary.On the main toolbar, click .The Create dialog box appears.On the Assets tab, click Database.The Create Asset dialog box appears.Enter the required information.FieldDescriptionTypeThe asset type of the asset that you are creating.DomainThe domain to which the asset will belong. Ensure that the domain type of the selected domain is assigned to the selected asset type.NameA name to identify the asset.You can simultaneously create multiple assets. To do so, after typing the name, press Enter, and then type the next name. Depending on the settings, asset names may need to be unique in their domain. If you enter a name that already exists, it appears in the strike-through style.Click Create.A message stating that one or more assets are created appears in the upper-right corner of the page.Create a relation between the System asset and the Database asset using the Technology Asset groups / is grouped by Technology Asset relation type.This step is only relevant if you created a System asset, in step 1.Show me how In the tab pane, click Add Characteristic.The Add a characteristic dialog box appears.Click Relations.Search for and click has schema.The Add has schema dialog box appears.Enter the required information.OptionDescriptionAssetsThe name of the schema.Filter suggested assets by organizationOption to filter the suggestions based on selected communities and domains.If this option is selected, the organization tree appears. You can then filter and select domains and communities.Start dateOptionally enter the date on which the relation between the assets becomes applicable. Leave this field empty to create a permanent relation.End dateOptionally enter the date on which the relation between the assets is no longer applicable. Leave this field empty to create a permanent relation.Click Save.Create a relation between the Database asset and the Schema asset using the Technology Asset has / belongs to Schema relation type.Show me how In the tab pane, click Add Characteristic.The Add a characteristic dialog box appears.Click Relations.Search for and click has schema.The Add has schema dialog box appears.Enter the required information.OptionDescriptionAssetsThe name of the schema.Filter suggested assets by organizationOption to filter the suggestions based on selected communities and domains.If this option is selected, the organization tree appears. You can then filter and select domains and communities.Start dateOptionally enter the date on which the relation between the assets becomes applicable. Leave this field empty to create a permanent relation.End dateOptionally enter the date on which the relation between the assets is no longer applicable. Leave this field empty to create a permanent relation.Click Save.What's next?If you haven't created a configuration file yet, you are now required to create it.If you created the configuration file and prepared the physical data layer, you can run the lineage harvester to start the technical lineage process.When the technical lineage process is finished and you have the required permissions, you can go to the asset page of a Table or Column asset from the data source that you added in the configuration file and visualize the technical lineage. At the same time, new relations of the type Data Element targets / sources Data Element between assets in Data Catalog are created.The lineage harvester also uses scheduled jobs to automate the technical lineage process.Set up the lineage harvesterThe lineage harvester is a software application that is needed to create a technical lineage and import metadata into Data Catalog.Lineage harvester system requirementsTo install and run the lineage harvester, you have to meet the following requirements.Software requirementsJava Runtime Environment version 11.0.18 or newer, or OpenJDK 11.0.18 or newer. To ingest Snowflake data sources, the minimum requirement is Java Runtime Environment version 16 or newer, or OpenJDK 16 or newer. For the lineage harvester to function properly, set the JAVA_OPTS environment variable when you run the lineage harvester. For example, to process data from all data sources including the Snowflake data sources, take the following steps: On Windows Enter one of the following commands:If you use OpenJDK 16: set JAVA_OPTS=-Djdk.module.illegalAccess=permitIf you use OpenJDK 17 or higher: set JAVA_OPTS=--add-opens=java.base/java.nio=ALL-UNNAMED In the same command line, enter the following command:.\bin\lineage-harvester.bat full-syncThe set command is specific to the Windows Command Shell. The command is different if you are using PowerShell.On LinuxEnter the following command:If you use OpenJDK 16: JAVA_OPTS=-Djdk.module.illegalAccess=permit ./bin/lineage-harvester full-syncIf you use OpenJDK 17 or higher: JAVA_OPTS=--add-opens=java.base/java.nio=ALL-UNNAMED ./bin/lineage-harvester full-syncHardware requirementsYou need to meet the hardware requirements to install and run the lineage harvester.Minimum hardware requirementsYou need the following minimum hardware requirements:2 GB RAM1 GB free disk spaceRecommended hardware requirementsThe minimum requirements are most likely insufficient for production environments. We recommend the following hardware requirements:4 GB RAM4 GB RAM is sufficient in most cases, but more memory could be needed for larger harvesting tasks. For instructions on how to increase the maximum heap size, see Technical lineage general troubleshooting.20 GB free disk spaceNetwork requirementsThe lineage harvester uses the HTTPS protocol by default and uses port 443. You need the following minimum network requirements:Firewall rules so that the lineage harvester can connect to:The host names of all data sources in the lineage harvester configuration file.All Collibra Data Lineage service instances in your geographic location:15.222.200.199 (techlin-aws-ca.collibra.com)18.198.89.106 (techlin-aws-eu.collibra.com)13.228.38.245 (techlin-aws-sg.collibra.com)54.242.194.190 (techlin-aws-us.collibra.com)51.105.241.132 (techlin-azure-eu.collibra.com)20.102.44.39 (techlin-azure-us.collibra.com)35.197.182.41 (techlin-gcp-au.collibra.com)34.152.20.240 (techlin-gcp-ca.collibra.com)35.205.146.124 (techlin-gcp-eu.collibra.com)34.87.122.60 (techlin-gcp-sg.collibra.com)35.234.130.150 (techlin-gcp-uk.collibra.com)34.73.33.120 (techlin-gcp-us.collibra.com)The lineage harvester connects to different Collibra Data Lineage service instances based on your geographic location and cloud provider. If your location or cloud provider changes, the lineage harvester rescans all your data sources. You have to allow all Collibra Data Lineage service instances in your geographic location. In addition, we highly recommend that you always allow the techlin-aws-us instance as a backup, in case the lineage harvester cannot connect to other Collibra Data Lineage service instances.Install the lineage harvesterBefore you can use the lineage harvester, you need to download and install it. You can download the lineage harvester from the Collibra Community downloads page.Requirements and permissionsCollibra Data Intelligence Cloud.You have purchased Collibra Data Lineage.A global role with the following global permissions:Catalog, for example Catalog AuthorData Stewardship ManagerManage all resourcesSystem administrationTechnical lineageA resource role with the following resource permissions on the community level in which you created the domain: Asset: addAttribute: addDomain: addAttachment: addNecessary permissions to all database objects that the lineage harvester accesses.You meet
the minimum system requirements.You have added Firewall rules so that the lineage harvester can connect to:The host names of all databases in the lineage harvester configuration file.All Collibra Data Lineage service instances within your geographical location: 15.222.200.199 (techlin-aws-ca.collibra.com)18.198.89.106 (techlin-aws-eu.collibra.com)13.228.38.245 (techlin-aws-sg.collibra.com)54.242.194.190 (techlin-aws-us.collibra.com)51.105.241.132 (techlin-azure-eu.collibra.com)20.102.44.39 (techlin-azure-us.collibra.com)35.197.182.41 (techlin-gcp-au.collibra.com)34.152.20.240 (techlin-gcp-ca.collibra.com)35.205.146.124 (techlin-gcp-eu.collibra.com)34.87.122.60 (techlin-gcp-sg.collibra.com)35.234.130.150 (techlin-gcp-uk.collibra.com)34.73.33.120 (techlin-gcp-us.collibra.com)The lineage harvester connects to different instances based on your geographic location and cloud provider. If your location or cloud provider changes, the lineage harvester rescans all your data sources. You have to allow all Collibra Data Lineage service instances in your geographic location. In addition, we highly recommend that you always allow the techlin-aws-us instance as a backup, in case the lineage harvester cannot connect to other Collibra Data Lineage service instances.StepsDownload the newest lineage harvester.Unzip the archive. You can now access the lineage harvester folder. The lineage harvester folder name is unique per version. Start the lineage harvester to create an empty lineage harvester configuration file by entering the following command: Windows: .\bin\lineage-harvester.batFor other operating systems: chmod +x bin/lineage-harvester and then bin/lineage-harvesterAn empty configuration file is created in the config folder.The lineage harvester is installed automatically. You can check the installation by running ./bin/lineage-harvester --help.What's next?Prepare the lineage harvester configuration file.Lineage harvesting app command options and argumentsAfter creating a configuration file, you can use the lineage harvester to perform specific actions with the data sources that are defined in your configuration file.If you run the lineage harvester in command line, you will see an overview of possible command options and arguments that you can use. If the lineage harvester process fails, you can use the technical lineage troubleshooting guide to fix your issue.Typical command options and argumentsThe following table shows the most commonly used command options and arguments.CommandDescriptionfull-syncUploads all of the metadata from the data sources mentioned in your configuration file to the Collibra Data Lineage service, where the metadata is then processed and uploaded to Data Catalog.After you enter this command, the lineage harvester starts synchronization processing and displays the total number of data sources that are being ingested. Synchronization processing ends with an error in the following situations:The lineage harvester does not find any data sources, The useSystemName value is not the same for all data sources. The value of useSystemName is based on the following settings:The useCollibraSystemName property in the lineage harvester configuration file for different data sources.The Collibra system name setting on Edge.-s <ID of data source>Uploads only the metadata from a specified data source. For example, full-sync -s myOracleDataSource. The specified data source must be mentioned in your configuration file.This command allows you to process data from a newly added data source or to refresh a data source in the configuration file, without refreshing the other data sources. This reduces the time you need to upload your data sources, since you only upload specific ones without affecting the others. If you want to process multiple data sources, add -s ID of another data source per data source to the command.You can use this argument multiple times to include multiple data sources.--no-matchingUploads a technical lineage without stitching the data objects in your technical lineage to the corresponding Column and Table assets in Data Catalog. As a result, you won't see the technical lineage of a specific Table or Column asset, but you can still see and browse the full technical lineage.syncWhereas full-sync ingests metadata onto the Collibra Data Lineage service, processes the metadata and syncs it with assets in Data Catalog, the sync command only performs this last part: it syncs the metadata—as it exists on the Collibra Data Lineage service—and your assets in Data Catalog.After you enter this command, the lineage harvester starts synchronization processing and displays the total number of data sources that are being ingested. Synchronization processing ends with an error in the following situations:The lineage harvester does not find any data sources, The useSystemName value is not the same for all data sources. The value of useSystemName is based on the following settings:The useCollibraSystemName property in the lineage harvester configuration file for different data sources.The Collibra system name setting on Edge.See the following example for advice on how to use the sync command to add a new data source without re-harvesting all data sources.ExampleLet's say you've run bin/lineage-harvester full-sync, to upload from all data sources, process the metadata and sync with Data Catalog. You then decide that you want to add a new data source, but not harvest all data sources again.Reference the new data source in the lineage harvester configuration file. Let's say that the new data source has the ID MyNewSource.Run bin/lineage-harvester load-sources -s MyNewSource, to load the new data source and create the ZIP file.Run bin/lineage-harvester analyze ${zip_file_from_step_2}, to analyze the new data source on the Collibra Data Lineage service.Run bin/lineage-harvester sync, to sync all of the data sources referenced in your configuration file and Data Catalog.-s <ID of data source>Syncs only the metadata on the Collibra Data Lineage service, from a specified data source. For example, sync -s myOracleDataSource. The specified data source must be mentioned in your configuration file.This command allows you to sync data from one data source without refreshing the other data sources. You must have previously uploaded the metadata to the Collibra Data Lineage service.Only the sources you specify are synced. This means that any previously ingested metadata from non-specified sources, in Data Catalog, is deleted, along with its existing technical lineage. If this is not your intention, consider using full-sync -s. With full-sync -s, all sources are synced, regardless of which sources are specified by the -s command. Therefore, any previously ingested metadata from non-specified data sources remains, as do the respective technical lineages.You can use this argument multiple times to include multiple data sources.analyze ${name-of-zip-file}Analyzes a specified batch (ZIP file) of metadata on the Collibra Data Lineage service instance. The Sources tab page shows the transformation details or source code that was analyzed and the results of the analysis.load-sourcesDownloads all your data sources in a separate ZIP file, per data source, to the lineage harvester output folder.-s <ID of data source>Downloads only the data source with a specific ID. For example, load-sources -s myOracleDataSource.You can use this argument multiple times to include multiple data sources.list-sourcesLists all of the data sources that will be used to create a technical lineage. When you enter this command, up to 500 data sources are listed per page by default. The list includes the following details for each data source: Source ID <ID of data source> (from edge: false|true) (useSystemName: false|true).Source ID <ID of data source>The source ID of your data source.from edge: false|trueIndicates whether the data source is ingested by using technical lineage via Edge. If the value is true, the data source is ingested by using technical lineage via Edge. If the value is false, the data source is ingested by using the lineage harvester.useSystemName: false|trueIndicates whether Collibra Data Lineage uses the system or server name of the data source to match the System asset in Data Catalog. If the value is true, the system or server name of the data source is used. If the value is false, the system or server name of the data source is not used.The value of useSystemName is based on the following settings: The useCollibraSystemName property in the lineage harvester configuration file for the data source.The Collibra system name setting for the data source on Edge.Source ID 1redshift (from edge: false) (useSystemName: false) indicates that the data source with the 1redshift source ID was ingested by using the lineage harvester, and the system name of the data source is not used to match the System asset in Data Catalog.-p <page number>Specifies the page to be displayed. The value of <page number> must be greater than 0. This option is optional. For example, if you enter list-sources -p 2, page 2 is displayed with a default page size of 500 data sources listed. If there are less than 500 data sources in total, an error message is issued. To use the -p, -s, and -all options, you must have the lineage harvester version 2023.05 or newer.-s <number of data sources>Specifies the number of data sources to be listed on one page. The value of <number of data sources> must be in the range 0 - 500. This option is optional. For example, if you enter list-sources -s 40, default page 1 is displayed with 40 data sources listed. If there are 80 data sources in total, you see the Displaying page 1 of 2 message and a list of 40 data sources. If you enter list-sources -p 3 -s 20, page 3 is displayed with 20 data sources listed. If there are 80 data sources, you see the Displaying page 3 of 4 message and a list of 20 data sources. To use the -p,
-s, and -all options, you must have the lineage harvester version 2023.05 or newer.-allLists all data sources. The data sources are not formatted in pages. If you enter this option with the -p and -s options, this option overrides the -p and -s options. For example, if you enter list-sources -p 3 -s 20 --all, all data sources are listed. To use the -p, -s, and -all options, you must have the lineage harvester version 2023.05 or newer.ignore-source <source_id>Ignores the specified data source from the list of data sources that will be used to create the technical lineage, where <source_id> is the ID of the data source that you want to ignore. When you create the technical lineage again by entering the sync command or synchronizing a technical lineage capability via Edge, the specified data source is ignored. You can specify only one source ID at a time. If your source ID includes spaces, enclose the source ID in double or single quotation marks, for example ignore-source Source A.You can use this command to delete the technical lineage of a data source by using the lineage harvester. For details, go to Delete the technical lineage of a data source if you use the lineage harvester and Delete the technical lineage of a data source on Edge for technical lineage via Edge. To use the ignore-source command, you must have the lineage harvester version 2023.04 or newer. cat passwords.json | ./bin/lineage-harvester <command-like-full-sync> --passwords-stdinProvides passwords of your Collibra Data Intelligence Cloud instance and the data sources in your configuration file to the lineage harvester without storing the passwords in the lineage harvester folder.You can replace cat passwords.json by a string generated by your password manager.test-connectionChecks the connectivity to the Collibra Data Lineage service instance and to Data Catalog. The logs will also show the IP addresses of the Collibra Data Lineage service instances that you have to allow.This command is mostly used for troubleshooting purposes.--helpShows an overview of all supported command options and arguments that you can use in the lineage harvester.--versionShows the version of the lineage harvester that you are using.-Dlineage-harvester.log.dir=path/to/log/dirDetermine the path of the log file.Technical lineage password manager integration designWhen you run the lineage harvester, you can either: Enter the passwords in the console. The passwords are then encrypted and stored in /config/pwd.conf.Lineage harvester 2022.05 includes an internal format change to the password manager pwd.conf file. This means that if you use Lineage harvester 2022.05, you can no longer use the pwd.conf file with an older lineage harvester version. Provide the passwords via command line, in a prescribed JSON structure via stdin. This allows you to store the passwords locally in your password manager, instead of in your lineage harvester folder. This topic provides guidance on how to structure the JSON file and which commands to use, to store the passwords locally in your password manager.Structure of the JSON fileIf you prepare a JSON file with your passwords, you have to name the file passwords.json.The JSON file must have two sections: The catalogs section defines the connection information and credentials to your Collibra Data Intelligence Cloud instance. The sources section defines the connection information and credentials to your data sources. You use the same id as the id property in the lineage harvester configuration file.The JSON file must have the following structure: { catalogs: [{ url : <url-to-collibra-cloud>, username:<username-to-sign-in-to-collibra>, password: <password-to-sign-in-to-collibra> }], sources: [{ id: <id-of-your-database>, username: <database-username>, password: <database-password> }] }Examples of commandsWhen you run the lineage harvester, you can use one of the following commands to provide the passwords:Passwords locationCommanda locally stored JSON filecat passwords.json | ./bin/lineage-harvester full-sync --passwords-stdina custom script, for example from a password manager<prepare-passwords-command> | ./bin/lineage-harvester full-sync --passwords-stdinDepending on your password manager, you may need different parameters. For example, see the LastPass documentation for the parameters needed by LastPass.Connecting to a proxy serverYou can connect to a proxy server when you use the lineage harvester. Collibra Data Lineage supports proxy server connection and authentication.Set the environment variable on Windows or set the system properties on other operating systems with the following parameters specified to connect to a proxy server. See the following steps for code examples. -Dhttps.proxyHost-Dhttps.proxyPort-Dhttps.proxyUser-Dhttps.proxyPassword-Dhttp.nonProxyHostsThe -Dhttps.proxyUser and -Dhttps.proxyPassword parameters are optional. On WindowsSet the -D parameter to the JAVA_OPTS environment variable. set JAVA_OPTS=-Dhttps.proxyHost=azusquid.imf.org -Dhttps.proxyPort=8080 -Dhttps.proxyUser=myusername -Dhttps.proxyPassword=mypasswordRun the lineage harvester in the same command line window: .\bin\lineage-harvester.batOn other operating systemsTo access the hosts via a proxy server, run the following command: bin/lineage-harvester -Dhttps.proxyHost=<Hostname or IP address of the proxy> -Dhttps.proxyPort=<port number> -Dhttps.proxyUser=<username> -Dhttps.proxyPassword= <password> full-sync If you want to use a proxy with hostname proxy.example.com and port number 443, run the following command: bin/lineage-harvester -Dhttps.proxyHost=proxy.example.com -Dhttps.proxyPort=443 Dhttps.proxyUser=myusername -Dhttps.proxyPassword=mypasswordTo exclude hosts that should be accessed without going through the proxy server, add the following parameter: -Dhttp.nonProxyHosts=<host to exclude>.You can exclude multiple hosts by using the pipe character (|) to separate the hostnames or IP addresses to exclude. You can also use an asterisk (*) as a wildcard to match multiple hostnames or IP addresses.If you want to exclude hosts with hostname localhost and hosts with IP address 127.0.0.1 and all IP addresses starting with 192.168*, run the following command: bin/lineage-harvester -Dhttps.proxyHost=proxy.example.com -Dhttps.proxyPort=443 -Dhttp.nonProxyHosts=localhost|127.0.0.1|192.168* In your configuration file, the value of the source url or hostname property (depending on the data source), and the value in your -Dhttp.nonProxyHosts parameter, as described above, must both be either an IP address or a host name. You will get an error if, for example, you have a host name in the hostname property and an IP address in the -Dhttp.nonProxyHosts parameter. Prepare the lineage harvester configuration fileBefore you can visualize the technical lineage, you have to create a configuration file for the (meta)data sources that you want to process. This configuration file is used by the lineage harvester to extract data from (meta)data sources for which you want to create a technical lineage or you want to ingest.If you use multiple lineage harvesters on different servers, you can create a separate configuration file for the lineage harvester on each server and configure different data sources in each configuration file.Technical lineage supports a limited list of (meta)data sources.In all lineage harvester files, you must use UTF-8 or ISO-8859-1 characters, with the exception of SQL files, which can only be UTF-8 encoded.Each data source has an ID property. The ID string must be unique and human readable. The ID can be anything and is only used to identify the batch of metadata that is processed on the Collibra Data Lineage service. The lineage harvester connects to different Collibra Data Lineage service instances based on your geographical location and cloud provider. Make sure you have the correct system requirements before you run the lineage harvester. If your location or cloud provider changes, the lineage harvester rescans all your data sources. Technical lineage supports the following means of authentication: For all data sources, except for external directories: username and password. Google BigQuery data sources: username and password or a service account key file. For more information, see the Google BigQuery documentation. Snowflake: username and password or key pair authentication. No other authentication methods are supported.Comments in the lineage harvester configuration file are not supported.Before you beginDownload and install the lineage harvester.You can use the configuration file generator to create an example configuration file to accommodate the data sources you specify in the generator. You can then copy the example code to your configuration file and replace the values of the properties to suit your needs.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of
catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive.Specify one of the following values: falseThe lineage harvester ignores all system or server names that you specify on the collibraSystemName properties in the configuration file. This is the default value.trueThe lineage harvester reads the system and server names that you specify on the collibraSystemName properties in all sections of the configuration file. Only specify this value when you have multiple databases with the same name. For SQL data sources, if this property is:false, system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName property is used as the default system or server name.sourcesThis section describes the data sources for which you want to create the technical lineage. You have to create a configuration section for each data source. idThe unique ID that identifies the data source on a Collibra Data Lineage service instance, for example, my_adf.type The type of data source. The value must be AzureDataFactory.collibraSystemNameThe system or server name of the data source. This property is optional. Use this property with the useCollibraSystemName property to override the default Collibra System asset name for this data source. Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.tenantDomainThe directory ID of the Azure Data Factory instance. loginFlowThis section contains the login application information.applicationIdThe application ID of the Azure Data Factory instance. typeThe identity of the application. The value has to be ServicePrincipal.resourceGroupNameThe name of the resource group with the Reader role for the Azure Data Factory instance.subscriptionIdThe subscription ID of the resource group.factories The Azure Data Factory factories that the lineage harvester collects and processes. Specify this property with an array of Azure Data Factory factory names. This property is optional. The following rules apply when you specify this property:Enter the factory names in square brackets ([]), enclose each factory name in double quotes (), and separate them by a comma, for example, [MyFirstFactory, MySecondFactory].The factory name is not case-sensitive. For example, the MyFactory and myfactory factories are considered the same by Azure Data Factory and the lineage harvester. If you do not specify any factory name, the lineage harvester collects and processes all factories that have datasets and piplelines in them.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive.Specify one of the following values: falseThe lineage harvester ignores all system or server names that you specify on the collibraSystemName properties in the configuration file. This is the default value.trueThe lineage harvester reads the system and server names that you specify on the collibraSystemName properties in all sections of the configuration file. Only specify this value when you have multiple databases with the same name. For SQL data sources, if this property is:false, system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName property is used as the default system or server name.sourcesThis section describes the data sources for which you want to create the technical lineage. You have to create a configuration section for each data source. This configuration section contains the required information of one individual SQL directory with connection type Folder.You can add multiple data sources to the same configuration file.idThe unique ID of the data source. For example, my_first_data_source.typeThe kind of data source. In this case, the value has to be SqlDirectory.pathThe full path to the folder where you added SQL files, for example, C:\path\to\config\dir.maskThe pattern of the file names in the directory. By default, this is *.recursiveIndication of the files you want to harvest:false (default): Only harvest the files in directly under the folder in the SQL directory path.true: Harvest all files under the folder in the SQL directory path and subdirectories.dialectThe dialect of the database: redshiftazurebigquerygreenplumhivedb2oraclepostgresmssqlmysqlnetezzasnowflakesybasesparkteradatahana, for an SAP HANA data source.hana-cviews, for getting lineage from calculated views in an SAP HANA data source.The hana-cviews dialect is supported for SAP HANA (on-premises). It is not supported for SAP HANA Cloud.To get technical lineage including calculated views, you must harvest SAP HANA by specifying two data sources in the lineage harvester configuration file. In one data source, specify the hana dialect, and in the other, specify the hana-cviews dialect.The value your put for this property has to match the dialect you provide with in the directory with your SQL files.databaseThe name of your database, which is the name of your Database asset.You have to use the same database name as the name of the Database asset that you create when you prepare the physical data layer in Data Catalog. The names are case-sensitive.The database and schema names in the SQL statements in your SQL files take precedence over the values that you provide for the database and schema properties in the lineage harvester configuration file. If your SQL statements contain database and schema names, Collibra Data Lineage uses them for stitching. If your SQL statements do not contain database and schema names, Collibra Data Lineage uses the values of the database and schema properties in the configuration file for stitching.. For more information, go to Steps and Automatic stitching for technical lineage.HiveQL data sources don't have schemas. Therefore, HiveQL databases are stored in Data Catalog and technical lineage as Schema assets. The technical lineageBrowse tab pane shows the following names:The database name is the name that you enter for the collibraSystemName property.The schema name is the name that you enter for the database property.MySQL data sources don't have schemas. Therefore, MySQL databases are stored in Data Catalog and technical lineage as Schema assets. The technical lineageBrowse tab pane shows the following names:The database name is the name that you enter for the database property.Teradata data sources don't have schemas. Therefore, Teradata databases are stored in Data Catalog and technical lineage as Schema assets. The technical lineageBrowse tab pane shows the following names:The database name is the name that you enter for the collibraSystemName property.The schema name is the name that you enter for the database property. collibraSystemNameThe name of the data source's system or server. This is also the name of your System asset in Data
Catalog.Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.Specify this property with the same name as the name of the System asset that you created when you registered the data source.schemaThe name of the default schema, if not specified in the data source itself. This corresponds to name of your Schema asset.You must use the same schema name as the name of the Schema asset that you create when you prepare the physical data layer in Data Catalog.verboseIndication whether you want to enable verbose logging.By default this is set to True. If you don't want to use verbose logging, set it to False.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive.Specify one of the following values: falseThe lineage harvester ignores all system or server names that you specify on the collibraSystemName properties in the configuration file. This is the default value.trueThe lineage harvester reads the system and server names that you specify on the collibraSystemName properties in all sections of the configuration file. Only specify this value when you have multiple databases with the same name. For SQL data sources, if this property is:false, system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName property is used as the default system or server name.sourcesThis section describes the data sources for which you want to create the technical lineage. You have to create a configuration section for each data source. This section contains the required information of one individual data source with connection type JDBC.You can add multiple data sources to the same configuration file.idThe unique ID of the data source. For example, my_first_data_source.typeThe kind of data source. In this case, the value has to be Database.usernameThe username that you use to sign in to your data source.dialectThe dialect of the database. For example, redshiftazurebigquerygreenplumhivedb2oraclepostgresmssqlmysqlnetezzasnowflakesybasesparkteradata.hana, for an SAP HANA data source.hana-cviews, for getting lineage from calculated views in an SAP HANA data source.The hana-cviews dialect is supported for SAP HANA (on-premises). It is not supported for SAP HANA Cloud.To get technical lineage including calculated views, you must harvest SAP HANA by specifying two data sources in the lineage harvester configuration file. In one data source, specify the hana dialect, and in the other, specify the hana-cviews dialect.The value your put for this property has to match the dialect you provide with in the directory with your SQL files.databaseNamesThe names or IDs of your databases.Enter the database names of your data source between double quotes () and put everything between square brackets. If you want to include more than one database, separate them by a comma. For example, [MyFirstDatabase, MySecondDatabase].Ensure that you use the same database names as the names of the Database assets. The names are case-sensitive.hostnameThe name of your database host.collibraSystemNameThe name of the data source's system or server. This is also the name of your System asset in Data Catalog.Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.Specify this property with the same name as the name of the System asset that you created when you registered the data source. If the useCollibraSystemName property is:false (default), system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName field is used as the default system or server name.portThe port number.customConnectionPropertiesAn option to enable the lineage harvester to read additional connection parameters. This parameter is only required in very specific situations. If you don't need it, you can remove it from the configuration file.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive.Specify one of the following values: falseThe lineage harvester ignores all system or server names that you specify on the collibraSystemName properties in the configuration file. This is the default value.trueThe lineage harvester reads the system and server names that you specify on the collibraSystemName properties in all sections of the configuration file. Only specify this value when you have multiple databases with the same name. For SQL data sources, if this property is:false, system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName property is used as the default system or server name.sourcesThis section describes the data sources for which you want to create the technical lineage. You have to create
a configuration section for each data source. This configuration section contains the required information of one individual SQL directory with connection type Folder.You can add multiple data sources to the same configuration file.idThe unique ID of the data source. For example, my_first_data_source.typeThe kind of data source. In this case, the value has to be SqlDirectory.pathThe full path to the folder where you added SQL files, for example, C:\path\to\config\dir.maskThe pattern of the file names in the directory. By default, this is *.recursiveIndication of the files you want to harvest:false (default): Only harvest the files in directly under the folder in the SQL directory path.true: Harvest all files under the folder in the SQL directory path and subdirectories.dialectThe dialect of the database. For example, bigquery.The value your put for this property has to match the dialect you provide with in the directory with your SQL files.databaseThe name of your database, which is the name of your Database asset.You have to use the same database name as the name of the Database asset that you create when you prepare the physical data layer in Data Catalog. The names are case-sensitive.The database and schema names in the SQL statements in your SQL files take precedence over the values that you provide for the database and schema properties in the lineage harvester configuration file. If your SQL statements contain database and schema names, Collibra Data Lineage uses them for stitching. If your SQL statements do not contain database and schema names, Collibra Data Lineage uses the values of the database and schema properties in the configuration file for stitching.. For more information, go to Steps and Automatic stitching for technical lineage.MySQL data sources don't have schemas. Therefore, MySQL databases are stored in Data Catalog and technical lineage as Schema assets. The technical lineageBrowse tab pane shows the following names:The database name is the name that you enter for the database property.collibraSystemNameThe name of the data source's system or server. This is also the name of your System asset in Data Catalog.Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.Specify this property with the same name as the name of the System asset that you created when you registered the data source.schemaThe name of the default schema, if not specified in the data source itself. This corresponds to name of your Schema asset.You must use the same schema name as the name of the Schema asset that you create when you prepare the physical data layer in Data Catalog.verboseIndication whether you want to enable verbose logging.By default this is set to True. If you don't want to use verbose logging, set it to False.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether you want to use the system or server name of a data source to match to the System asset you created when you prepared the Data Catalog physical data layer. The names are case-sensitive. This is useful when you have multiple databases with the same name.sources This configuration section contains the required information for a Google BigQuery database.idThe unique ID of your data source. For example, my_third_data_source.typeThe kind of data source. In this case, the value has to be DatabaseBigQuery.projectIDsThe IDs of your Google BigQuery project. You can add multiple projects. For example, [first-project, second-project, third-project].You have to use the same project ID as the name of the Database asset that you create when you prepare the physical data layer in Data Catalog.regionThe location of your BigQuery data. This is the region that you specified when you create a data set.You can only add one location as value. However, you can create separate BigQuery entries per location in the configuration file. As a result, you create a complete technical lineage with Google BigQuery data from different locations.This property is optional.authThe path to a JSON file that contains authentication information.For more information about setting up the authentication, see the Google Big Query user guide.collibraSystemNameThe name of the Google BigQuery system. This is also the name of your System asset in Data Catalog. Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.Specify this property with the same name as the name of the System asset that you created when you registered the data source.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.For complete information on creating custom technical lineage by using the lineage harvester, go to Working with custom technical lineage. Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameThe lineage harvester ignores this property for custom technical lineage.To use the system or server name of your data source to match the System asset in Data Catalog, specify the system data object in the tree and lineage sections in the custom technical lineage JSON file. sourcesContains the required information to retrieve a custom lineage. Use this property to locate the JSON file that defines the custom technical lineage.If you want to create the technical lineage for multiple data sources, create a sources section for each data source. typeThe kind of data source. The value must be ExternalDirectory.idThe unique ID of your custom technical lineage. This property identifies the metadata that the lineage harvester processes. Specify this property with an unique string, for example, MyCustomLineage. dirTypeThe type of external directory. The value is custom-lineage.collibraSystemNameThe lineage harvester ignores this property for custom technical lineage.To use the system or server name of your data source to match the System asset in Data Catalog, specify the system data object in the tree and lineage sections in the custom technical lineage JSON file. pathThe full path to the folder of the custom technical lineage JSON file, for example
C:\path\to\custom-lineage\dir.There must be only one JSON file that defines the lineage, and the JSON file must be named lineage.json. You can, however, add other files in the harvested directory and subdirectories and refer to those files from within the JSON file.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive. This is useful if you have multiple databases with the same name.sourcesThis configuration section contains the required information to connect to IBM InfoSphere DataStage. Make sure that you have prepared a local folder with the DataStage files for which you want to create a technical lineage.collibraSystemNameThe name of the data source's system or server. If the useCollibraSystemName property is set to true, you must prepare a configuration file to provide the system information.idThe unique ID of your data source. For example, my_datastage.typeThe kind of data source. In this case, the value has to be ExternalDirectory.dirTypeThe type of external directory. The value has to be datastage.pathThe full path to the folder where you stored the data source, for example, C:\path\to\config\dir.maskThe pattern of the file names in the directory. By default, this is *.recursiveIndication whether you want to use recursive queries.By default, this is set to False. If you want to use recursive query, set it to True. deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive. This is useful if you have multiple databases with the same name.sourcesThis configuration section contains the required information to enable the lineage harvester to collect and process Data Integration objects.You can create different Informatica Intelligent Cloud Services <source ID> configuration files for a large data source to avoid errors that might occur when the lineage harvester ingests metadata from one source with a large size. You can then decrease the size of the source by separating the projects to a different source with a different <source ID> configuration file name.Show me the examplesources : [{ type : IICS, id : iics_source-1, collibraSystemName : iics-development, loginUrl : https://dm-us.informaticaintelligentcloud.com, username : login-iics objects : [{ path : Default/Sales, type : Project }, { path : My Project/Statistics, type : Project }] } { type : IICS, id : iics_source-2, collibraSystemName : iics-development, loginUrl : https://dm-us.informaticaintelligentcloud.com, username : login-iics objects : [{ path : Finance/Task_Flows, type : Folder }, { path : Common/Task_Flows/tf_CalendarDimension, type : Taskflow }] }]Make sure you have READ permission on all data objects that you want to harvest.typeThe kind of data source. In this case, the value has to be IICS.idThe unique ID that is used to identify the data source on the Collibra Data Lineage service. For example, my_data_integration.collibraSystemNameThe name of the Informatica server or system.You must prepare a <source ID> configuration file to provide this system information. This is true regardless of whether the useCollibraSystemName property is set to true or false.loginURLThe URL of the Informatica Intelligent Cloud Services environment sign-in page. For example: https://dm-us.informaticaintelligentcloud.com.usernameThe username you use to sign in to Informatica Intelligent Cloud Services.objectsThe objects that you want to export. Each object requires a path and a type, for example:objects: [{ path : Sales, type : Project }, { path : Finance/Task_Flows, type : Folder }, { path : Common/Task_Flows/tf_CalendarDimension, type : Taskflow }]The following section provides information to identify and access Data Integration objects.For more information about the objects that you can export and the required information, see the Informatica documentation.pathThe full path to the object, for example, C:\path\to\object-dir.typeThe type of the object. For example, Taskflow.IICS scanner's starting point is a Taskflow. Therefore the only meaningful types to export are: Taskflow, Project and Folder.The types are not case sensitive.paramFilesThe full path to the directory in which your parameter files are stored. This is an optional parameter that allows you to harvest parameter files in Informatica Intelligent Cloud Services data sources.The hierarchy of the files in the directory must be an exact match of the hierarchy of the files in your file system.Show me how to do this Create a directory for your parameter files.For this example, let's name the directory my-parameter-files. In your lineage harvester configuration file, the value of the paramFiles property needs to be the full path to your parameter files directory, for example /full/path/<my-parameter-files>/. Copy your parameter files to your parameter files directory.Be sure to preserve the full path for each of your parameter files. For example, for parameter file /root/child/child2/paramfile.txt, run the following commands:cd /full/path/<my-parameter-files>/mkdir -p root/child/child2/cp /root/child/child2/paramfile.txt root/child/child2/deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the
lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive. This is useful if you have multiple databases with the same name.sourcesThis configuration section contains the required information to connect to Informatica PowerCenter.Make sure that you have prepared a local folder with the Informatica objects for which you want to create a technical lineage.collibraSystemNameThe name of the data source's system or server. If the useCollibraSystemName property is set to true, you must prepare a configuration file to provide the system information.idThe unique ID of your data source. For example, my_informatica.typeThe kind of data source. In this case, the value has to be ExternalDirectory.dirTypeThe type of external directory. The value has to be infa.pathThe full path to the folder where you stored the data source, for example, C:\path\to\config\dir.maskThe pattern of the file names in the directory. By default, this is *.recursiveIndication whether you want to use recursive queries.By default, this is set to False. If you want to use recursive query, set it to True. deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection information between the lineage harvester and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.urlThe URL of your Collibra Data Intelligence Cloud environment.You can only enter the public URL of your Collibra DGC environment. Other URLs will not be accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a data source to match to the System asset in Data Catalog. Collibra Data Lineage uses the system names to match the structure of databases in Looker to assets in Data Catalog. This is useful when you have multiple databases with the same name.By default, the useCollibraSystemName property is set to false. If you want to use it, set it to true.If you set this property to true, the lineage harvester reads the value of the collibraSystemName property in your Looker <source-ID> configuration file.If you set the useCollibraSystemName property to false, the lineage harvester ignores the collibraSystemName property in the Looker <source-ID> configuration file.sourcesThis section contains the Looker connection properties. idThe unique ID of your Looker metadata. For example, my_looker.This value can be anything as long as it is unique and human readable. The ID identifies the batch of Looker metadata on the Collibra Data Lineage service.In the sources section of your lineage harvester configuration file, you can only specify one id property per Looker instance. If you have multiple id properties for a single Looker instance, ingestion will fail. If you have multiple id properties in the configuration file, it means you intend to ingest from multiple unique Looker instances.typeThe kind of data source. In this case, the value has to be Looker.lookerUrlThe URL to your Looker API. There are two ways to find the Looker API URL:In the API Host URL field in the Looker Admin menu. If this field is empty, you can use the default Looker API URL which you can find in the interactive API documentation.In the interactive API documentation URL. It is the part of the URL before /api-docs/.Looker 3.1 APIs are deprecated; however, the API3 credentials for authorization and access control remain valid.clientIdThe username you use to access the Looker API.domainIdThe unique ID of the domain in Collibra Data Intelligence Cloud in which you want to ingest the Looker assets.This is the default domain. If you want to ingest the contents of specific Looker Folders into specific domains in Collibra, you specify the domain reference IDs in the filters section of the Looker <source ID> configuration file. pagingLimitOptional property for customizing the Looker API pagination settings.The default value of 50 is sufficient in most cases; however, you can decrease it to help mitigate node limit errors, or increase it to speed up API calls.pagingLimit: 10deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you intend to use a Matillion <source ID> configuration file to specify the system name of a data source. This is useful if you have multiple databases with the same name, or if you want to group a number of databases under one system.By default, this property is set to false.If you set this property to true, you must prepare a Matillion <source ID> configuration file.sourcesThis section contains the required information for Matillion.When you create a new project in Matillion, you define in which group you want to create the project, the project name and the environment name. This information is needed to enable the lineage harvester to access Matillion and scan your metadata.Currently, you can only create a technical lineage for Snowflake and Redshift projects in Matillion.idThe unique ID that is used to identify the data source on the Collibra Data Lineage service instance. For example, my_matillion_data_integration.typeThe kind of data source. In this case, the value has to be Matillion.urlThe URL of your Matillion environment. For example, https://<domain name> or https://<IP address>.groupNameThe name of your group in Matillion.projectNameThe name of your project in
Matillion.You can only add the name of one project. If you want to create a technical lineage for other projects within the same group, create a new section in the lineage harvester configuration file.environmentNameThe name of your environment in Matillion.You can only add the name of one environment. If you want to create a technical lineage for other environments within the same project, create a new section in the lineage harvester configuration file.dialectThe dialect of the database.You can enter one of the following values:redshift, for an Amazon Redshift data source. snowflake, for a Snowflake data source.startTimestampThe timestamp of tasks in Matillion. You can use this parameter to limit the amount of metadata that the lineage harvester scans.Specify this property with a UNIX timestamp in milliseconds.If this property remains empty or is deleted from the configuration file, all accessible tasks are scanned. Matillion provides seven days of history by default and automatically removes entries older than seven days.collibraSystemNameRegardless of the value set for the useCollibraSystemName property, the following is true:You must include this property in your configuration file.You can leave this property empty.Any value that you give is ignored.If the useCollibraSystemName property is set to true, you must prepare a Matillion <source-ID> configuration file. In that case, the CollibraSystemName property in the <source ID> configuration file is taken into account.This is a legacy property that will be deprecated in a future release.authThe section contains the authentication details for signing in to Matillion.typeThe authentication method you want to use to sign in to Matillion.The value must be either: Basic, for username and password authentication. Token, for token-based authentication. These values are case-sensitive.usernameThe username that you use to sign in to Matillion.This property is only required if you are using the username and password authentication method. If you are using token-based authentication, do not include this property.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance. Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection information between the lineage harvester and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.urlThe URL of your Collibra Data Intelligence Cloud environment.You can only enter the public URL of your Collibra DGC environment. Other URLs will not be accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a data source to match to the System asset in Data Catalog during automatic stitching. This is useful when you have multiple databases with the same name.By default, the useCollibraSystemName property is set to false. If you want to use it, set it to true.If you set this property to true, the lineage harvester reads the value of the collibraSystemName property in your MicroStrategy <source ID> configuration file.If you set the useCollibraSystemName property to false, the lineage harvester ignores the collibraSystemName property in the Power BI <source-ID> configuration file.sourcesThis section contains the MicroStrategy connection properties. idThe unique ID of your MicroStrategy metadata. For example, my_microstrategy.In the sources section of your lineage harvester configuration file, you can only specify one id property per MicroStrategy Intelligence Server. If you have multiple id properties for a single MicroStrategy Intelligence Server, ingestion will fail. If you have multiple id properties in the configuration file, it means you intend to ingest from multiple unique MicroStrategy Intelligence Servers.This value can be anything as long as it is unique and human readable. The ID identifies the batch of MicroStrategy metadata on the Collibra Data Lineage service.typeThe kind of data source. In this case, the value has to be MSTR_V2.urlThe URL of your MicroStrategy account.usernameThe username that you use to sign in to MicroStrategy.microStrategyLibraryUrlThis optional property allows you to specify a custom URL for your MicroStrategy Library.If the URL to your MicroStrategy Library is https://collibra.microstrategy.com/MicroStrategyLibrary/api, you don't need to use this property, as that is the default, hardcoded URL. However, if the URL is something like https://collibra.microstrategy.com/MicroStrategyLibraryProd/api, then include this property and configure it as follows:microStrategyLibraryUrl: MicroStrategyLibraryProdmaxParallelRequestsThis optional property allows you to specify the internal sizing, meaning the amount of tasks that can be executed at the same time. The default value is 1, which means that HTTP requests are run in a synchronous manner, instead of in parallel. As value of 5, for example, means that as many as 5 HTTP requests can take place in parallel. A lower value reduces the chances of experiencing HTTP 401 Unauthorized errors.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.appUrlSuffixThis optional property ensures that the correct URL to data objects in MicroStrategy is included on the asset pages of corresponding MicroStrategy assets. The required value depends on which platform you run MicroStrategy:For J2EE, use: appUrlSuffix: MicroStrategy/servlet/mstrWeb For .NET, use: appUrlSuffix: MicroStrategy/asp/Main.aspxSave the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property.PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive.Specify one of the following values: falseThe lineage harvester ignores all system or server names that you specify on the collibraSystemName properties in the configuration file. This is the default value.trueThe lineage harvester reads the system and server names that you specify on the collibraSystemName properties in all sections of the configuration file. Only specify this value when you have multiple databases with the same name. For SQL data sources, if this property is:false, system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName property is used as the default system or server name.sourcesThis section describes the data sources for which you want to create the technical lineage. You have to
create a configuration section for each data source. This configuration section contains the required information of one individual SQL directory with connection type Folder.You can add multiple data sources to the same configuration file.idThe unique ID of the data source. For example, my_first_data_source.typeThe kind of data source. In this case, the value has to be SqlDirectory.pathThe full path to the folder where you added SQL files, for example, C:\path\to\config\dir.maskThe pattern of the file names in the directory. By default, this is *.recursiveIndication of the files you want to harvest:false (default): Only harvest the files in directly under the folder in the SQL directory path.true: Harvest all files under the folder in the SQL directory path and subdirectories.dialectThe dialect of the database. For example, oracle.The value your put for this property has to match the dialect you provide with in the directory with your SQL files.databaseThe name of your database, which is the name of your Database asset.You have to use the same database name as the name of the Database asset that you create when you prepare the physical data layer in Data Catalog. The names are case-sensitive.The database and schema names in the SQL statements in your SQL files take precedence over the values that you provide for the database and schema properties in the lineage harvester configuration file. If your SQL statements contain database and schema names, Collibra Data Lineage uses them for stitching. If your SQL statements do not contain database and schema names, Collibra Data Lineage uses the values of the database and schema properties in the configuration file for stitching.. For more information, go to Steps and Automatic stitching for technical lineage.collibraSystemNameThe name of the data source's system or server. This is also the name of your System asset in Data Catalog.Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.Specify this property with the same name as the name of the System asset that you created when you registered the data source.schemaThe name of the default schema, if not specified in the data source itself. This corresponds to name of your Schema asset.You must use the same schema name as the name of the Schema asset that you create when you prepare the physical data layer in Data Catalog.verboseIndication whether you want to enable verbose logging.By default this is set to True. If you don't want to use verbose logging, set it to False.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive. This is useful if you have multiple databases with the same name.sourcesThis configuration section contains the required information for an Oracle database.We recommend the type: DatabaseOracle configuration described in this section, because it allows you to specify the Oracle database name and preserve stitching in cases where the database name is not the same as the SID or service name. You can, however, still use the legacy type: Database configuration to ingest Oracle databases.idThe unique ID of your Oracle database. For example, my_oracle_db.typeThe kind of data source. In this case, the value has to be DatabaseOracle.hostnameThe name of your database host.usernameThe username that you use to sign in to your Oracle database.portThe port number.sidsOne or more system identifiers (SID). An SID is a unique name for an Oracle database instance on a specific host. You can use this property in conjunction with the databaseNames property, to preserve stitching.You must specify either one or more SIDs via this property, or one or more service names via the serviceNames property. You cannot include both properties in the configuration file. Show me examples of how to configure the sids property, with and without the databaseNames propertyExample 1: You include the sids property, but not the databaseNames property: { id: oracle1, type: DatabaseOracle, hostname: host_url, username: user1, collibraSystemName: automation_csn, port: 1521, sids: [sid1, sid2] } Result: The database names in the technical lineage will be sid1 and sid2. If these don't match with your Database assets in Collibra, then stitching won't work.Example 2: You include the sids property and the databaseNames property: { id: oracle2, type: DatabaseOracle, hostname: host_url, username: user1, collibraSystemName: automation_csn, port: 1521, sids: [sid1, sid2], databaseNames: [db1, db2] } Result: The SID sid1 corresponds to the Database asset name db1 in Collibra, therefore stitching is preserved. The same is true for SID sid2 and Database asset name db2.serviceNamesOne or more service names. A service name is the TNS alias that you give when you remotely connect to your database. You can use this property in conjunction with the databaseNames property, to preserve stitching.You must specify either one or more service names via this property, or one or more SIDs via the sids property. You cannot include both properties in the configuration file. Show me examples of how to configure the serviceNames property, with and without the databaseNames propertyExample 1: You include the serviceNames property, but not the databaseNames property: { id: oracle3, type: DatabaseOracle, hostname: host_url, username: user1, collibraSystemName: automation_csn, port: 1521, serviceNames: [sn1, sn2] } Result: The database names in the technical lineage will be sn1 and sn2. If these don't match with your Database assets in Collibra, then stitching won't work.Example 2: You include the serviceNames property and the databaseNames property: { id: oracle4, type: DatabaseOracle, hostname: host_url, username: user1, collibraSystemName: automation_csn, port: 1521, serviceNames: [sn1, sn2], databaseNames: [db1, db2] } Result: The service name sn1 corresponds to the Database asset name db1 in Collibra, therefore stitching is preserved. The same is true for service name sn2 and Database asset name db2.databaseNamesThe names of one or more Oracle databases. You can use this optional property in conjunction with the sids or serviceNames property, to preserve stitching. The value you specify has to match your Database asset (or assets) in Collibra.Enter the Oracle database names between double quotes () and put everything between square brackets. If you want to include more than one database, separate them by a comma. For example, [MyFirstDatabase, MySecondDatabase]. If you use this property, the database names that you specify have to correlate with the databases that you specify in the sids or serviceNames property. If you don't use this property, the database name in the technical lineage will be the value that you put for the sids or serviceNames property. For examples of how to configure this property, see the sids or serviceNames property descriptions and examples.collibraSystemNameThe name of the data source's system or server. This is also the name of your System asset in Data Catalog.Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.Specify this property with the same name as the name of the System asset that you created when you registered the data source. If the useCollibraSystemName property is:false (default), system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName
field is used as the default system or server name.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the necessary connection information.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.urlThe URL of your Collibra environment.You can only enter the public URL of your Collibra DGC environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a data source to match to the System asset in Data Catalog during automatic stitching. This is useful when you have multiple databases with the same name.By default, the useCollibraSystemName property is set to false. If you want to use it, set it to true.If you set this property to true, the lineage harvester reads the value of the collibraSystemName property in your Power BI <source ID> configuration file.If you set the useCollibraSystemName property to false, the lineage harvester ignores the collibraSystemName property in the Power BI <source-ID> configuration file.sourcesThis section describes the data sources for which you want to create the technical lineage. You have to create a configuration section for each data source. You can add multiple data sources to the same configuration file.scopeOptional property that is intended only for customers with a different scope, such as Chinese tenants.“scope” : “https://analysis.chinacloudapi.cn/powerbi/api/.default”If you are a US government or national cloud Power BI customer, you must include and specify values for both this property and the apiUrl property. For complete information, consult Microsoft's documentation on Power BI for US government customers.apiUrlThe API URL of your Power BI service.The default value is https://api.powerbi.com.This property is only relevant for US government or national cloud Power BI customers, in which case you must include and specify values for both this property and the scope property. For complete information, consult Microsoft's documentation on Power BI for US government customers.typeThe kind of data source. In this case, the value has to be PowerBI.idThe unique ID to identify the Power BI service metadata that was uploaded to the Collibra Data Lineage service.In the sources section of your lineage harvester configuration file, you can only specify one id property per Power BI service. If you have multiple id properties for a single Power BI service, ingestion will fail. If you have multiple id properties in the configuration file, it means you intend to ingest from multiple unique Power BI services.tenantDomainThe Power BI tenant domain is the domain associated with the Microsoft Azure tenant.This domain is either a default domain or a custom domain. You can specify this property with the URL, such as collibrapowerbi.onmicrosoft.com or tenant ID, such as e**b****-****-****-****-1b**d****4663.Usually, you can find a list of Power BI tenant or server domains in your Azure Active Directory or in the top right menu.loginFlowThis section describes the authentication information for accessing your Power BI metadata.The lineage harvester supports two authentication methods: service principal, and username and password. For complete information on your authentication options, see Authentication.typeThis depends on the authentication method you use.Service principle: The value should be ServicePrincipal.Username and password: The value should be ResourceOwnerPasswordCredentials.applicationIdThe unique ID of the Microsoft Azure Application (client) ID.usernameThe email address of your Azure Active Directory user.This property only applies if you are using the username and password authentication method. domainIdThe reference ID of the domain in Collibra in which you want to ingest Power BI metadata.useHttp1Optional property to use HTTP/1.1 streams, in case file-size limitations are resulting in timeout errors when using the default HTTP/2 streams.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive. This is useful if you have multiple databases with the same name.sourcesThis configuration section contains the required information to connect to SQL Server Integration Services (SSIS).Make sure that you have prepared a local folder with the SSIS files for which you want to create a technical lineage.collibraSystemNameThe name of the data source's system or server. If the useCollibraSystemName property is set to true, you must prepare a configuration file to provide the system information.idThe unique ID of your data source. For example, my_ssis.typeThe kind of data source. In this case, the value has to be ExternalDirectory.dirTypeThe type of external directory. The value has to be ssis.pathThe full path to the folder where you stored the data source, for example, C:\path\to\config\dir.maskThe pattern of the file names in the directory. By default, this is *.recursiveIndication whether you want to use recursive queries.By default, this is set to False. If you want to use recursive query, set it to True. deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what
your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive.Specify one of the following values: falseThe lineage harvester ignores all system or server names that you specify on the collibraSystemName properties in the configuration file. This is the default value.trueThe lineage harvester reads the system and server names that you specify on the collibraSystemName properties in all sections of the configuration file. Only specify this value when you have multiple databases with the same name. For SQL data sources, if this property is:false, system or server names in table references in analyzed SQL code are ignored. This means that a table that exists in two different systems or servers is identified (either correctly or incorrectly) as a single data object, with a single asset name.true, system or server names in table references are considered to be represented by different System assets in Data Catalog. The value of the collibraSystemName property is used as the default system or server name.sourcesThis section describes the data sources for which you want to create the technical lineage. You have to create a configuration section for each data source. This configuration section contains the required information of one individual SQL directory with connection type Folder.You can add multiple data sources to the same configuration file.idThe unique ID of the data source. For example, my_first_data_source.typeThe kind of data source. In this case, the value has to be SqlDirectory.pathThe full path to the folder where you added SQL files, for example, C:\path\to\config\dir.maskThe pattern of the file names in the directory. By default, this is *.recursiveIndication of the files you want to harvest:false (default): Only harvest the files in directly under the folder in the SQL directory path.true: Harvest all files under the folder in the SQL directory path and subdirectories.dialectThe dialect of the database. For example, snowflake.The value your put for this property has to match the dialect you provide with in the directory with your SQL files.databaseThe name of your database, which is the name of your Database asset.You have to use the same database name as the name of the Database asset that you create when you prepare the physical data layer in Data Catalog. The names are case-sensitive.The database and schema names in the SQL statements in your SQL files take precedence over the values that you provide for the database and schema properties in the lineage harvester configuration file. If your SQL statements contain database and schema names, Collibra Data Lineage uses them for stitching. If your SQL statements do not contain database and schema names, Collibra Data Lineage uses the values of the database and schema properties in the configuration file for stitching.. For more information, go to Steps and Automatic stitching for technical lineage.collibraSystemNameThe name of the data source's system or server. This is also the name of your System asset in Data Catalog.Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.Specify this property with the same name as the name of the System asset that you created when you registered the data source.schemaThe name of the default schema, if not specified in the data source itself. This corresponds to name of your Schema asset.You must use the same schema name as the name of the Schema asset that you create when you prepare the physical data layer in Data Catalog.verboseIndication whether you want to enable verbose logging.By default this is set to True. If you don't want to use verbose logging, set it to False.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether or not you want to use the system or server name of a JDBC data source to match the System asset that you created when you prepared the physical data layer. The names are case-sensitive. This is useful if you have multiple databases with the same name.sourcesThis section contains the Snowflake connection properties. If you want to create the technical lineage for multiple data sources, create a sources section for each data source. idThe unique ID that identifies the data source on a Collibra Data Lineage service instance, for example, my_snowflake_2.typeThe type of data source. The value must be DatabaseSnowflake.modeThe Snowflake ingestion methods that Collibra Data Lineage uses to ingest metadata from Snowflake data sources. Specify one of the following values: SQLThe SQL Snowflake ingestion mode. Collibra Data Lineage creates a column-level technical lineage based on SQL statements. This is the default value. SQL-APIThe SQL-API Snowflake ingestion mode. Collibra Data Lineage creates a column-level technical lineage based on Snowflake schemas and the access history. For more information, go to Technical lineage for Snowflake ingestion methods.collibraSystemNameThe system or server name of the data source. This property is optional. Use this property with the useCollibraSystemName property to override the default Collibra System asset name for this data source. Specify this property with the same name as the name of the System asset that you create when you prepare the physical data layer in Data Catalog. If you don't prepare the physical data layer, Collibra Data Lineage cannot stitch the data objects in your technical lineage to the assets in Data Catalog.authThis section indicates the authentication details to connect to the Snowflake database. The username and auth properties are mutually exclusive.typeThe authentication method.Specify one of the following values. The values are case-sensitive.BasicThe username and password authentication method. Specify the auth.username property if you use this authentication method.KeyPairThe key pair authentication method. Specify the auth.username, auth.pathToPrivateKey, and auth.usePassword properties if you use this authentication method. usernameThe user name that you use to connect to the Snowflake database. This property is required for both the username and password authentication method and the key pair authentication method.pathToPrivateKeyThe path to your private key file. This property is required if you use the key pair authentication method. Ensure that the private key matches the public key; otherwise, an error occurs indicating that the JWT token is invalid. For more information about the error, go to Snowflake JDBC driver error at login: net.snowflake.client.jdbc.SnowflakeSQLException: JWT token is invalid in Collibra Support Portal.usePasswordThe private key file password. This property is required if you use the key pair authentication method. Specify one of the following values: trueThe password is required.falseThe password is not required. This is the default value. usernameThe username that you use to sign in to your Snowflake data source. This property is deprecated. Use the auth property instead. The property and the auth property are mutually exclusive. hostnameThe URL that you use to access Snowflake web console. When you enter the URL, do not include https:// or the trailing slash (/). For example, specify <accountName>.snowflakecomputing.com. databaseNamesAn array of database names. Ensure that the database names you specify match the Database asset names that you created when you prepared the physical data layer in Data Catalog.Enter the database names of your data source between
double quotes () and put everything between square brackets ([]). If you want to include more than one database, separate them by a comma, for example, [MyFirstSnowflakeDatabase, MySecondSnowflakeDatabase].extraDatabaseDefinitionsAn array of database names. Collibra Data Lineage collects metadata from the specified databases, but excludes these databases from the technical lineage that is created. This property is useful for stitching across databases. You can specify cross-referenced databases to ensure correct lineage across all databases that Collibra Data Lineage processes to create the technical lineage.This property is optional. To specify this property, enter the database names between double quotes () and put everything between square brackets ([]). If you want to include more than one database, separate them by a comma, for example, [MyFirstSnowflakeExternalDatabase, MySecondSnowflakeExternalDatabase].schemaNames An array of schema names of your data sources. This property takes effect only when you use the SQL-API Snowflake ingestion mode. You can use this property as a filter to include lineage for objects only in the specified schemas. Ensure that the schema names you specify match the Schema asset names that you created when you registered the data source in Data Catalog Enter the schema names between double quotes () and put everything between square brackets ([]). If you want to include more than one schema, separate them by a comma, for example, [MyFirstSnowflakeSchema, MySecondSnowflakeSchema].warehouseThe name of your virtual warehouse. This property is optional.daysThe number of days of the user access history that Collibra Data Lineage collects and processes. For example, if you set the value to 20, Collibra Data Lineage collects the last 20 days of user access history. You can use this property to limit reading from the ACCESS_HISTORY table. This property is optional and takes effect only when you use the SQL-API Snowflake ingestion mode.Specify a value in the range of 1 - 366. If you do not enter a value, all user access history is collected by default. customConnectionPropertiesAn option to enable the lineage harvester to read additional connection parameters. This parameter is only required in very specific situations. If you don't need it, you can remove it from the configuration file.If you get an OSCP scan error, you can turn OSCP checking off by using the following value: insecureMode=true.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection information between the lineage harvester and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.urlThe URL of your Collibra Data Intelligence Cloud environment.You can only enter the public URL of your Collibra Data Intelligence Cloud environment. Other URLs will not be accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndication whether you want to use the system or server name of a data source to match to the System asset you created when you prepared the physical data layer. This is useful when you have multiple databases with the same name.By default, the useCollibraSystemName property is set to false. If you want to use it, set it to true.If you set this property to true, the lineage harvester reads the value of the collibraSystemName property in your SSRS-PBRS <source-ID> configuration file.If you set the useCollibraSystemName property to false, the lineage harvester ignores the collibraSystemName property in the <source-ID> configuration file. sourcesThis section contains the SSRS connection properties.idThe unique ID to identify the SSRSmetadata that was uploaded to the Collibra Data Lineage service.This value can be anything as long as it is a unique. The lineage harvester uses the ID to identify a batch of data on the Collibra Data Lineage service.In the sources section of your lineage harvester configuration file, you can only specify one id property per SQL Server Reporting Service (SSRS) or Power BI Report Server (PBRS). If you have multiple id properties for a single SSRS or PBRS, ingestion will fail. If you have multiple id properties in the configuration file, it means you intend to ingest from multiple unique SSRS or PBRS.typeThe kind of data source. In this case, the value has to be SSRS or PBIRS.There is no difference between type SSRS or PBIRS.urlThe URL to the server's web portal. By default, the URL is http://<computer-name>/reports. For example, http://1.23.45.678/PowerBIReports.usernameThe username you use to sign in to the web portal.If you use NTLM authentication, your username also contains the NTLM domain name. For example MyDomain\\username.domainIdThe unique ID of the domain in Collibra Data Intelligence Cloud in which you want to ingest the assets.Finding the domain IDOpen the domain.Copy the domain ID. If you go to your domain, you can find the domain ID in the URL. The URL looks like: https://<yourcollibrainstance>/domain/22258f64-40b6-4b16-9c08-c95f8ec0da26?view=00000000-0000-0000-0000-000000040001. In this example, the domain ID is in bold.folderFilterAn option to include only specific folders that contain reports or KPIs in the ingestion process.You can filter on multiple folders by: Specifying folder names.Specifying the full path to folders.Using a wildcard.Using a combination of these approaches. For example: [folder1, /database/folder2, /folder3/*] Show me some examplesScenarioConfigurationFilter on all folders with the name Folder3, anywhere in the folder hierarchy.[Folder3]Reports in child folders of Folder3 are not included in the ingestion. As such:Reports in /Folder1/Folder2/Folder3 are included in the ingestion.Reports in /Folder3/ChildFolder are not included in the ingestion.Ingest two folders for which the folder names are unique.[Folder1, Folder2]Filter on a specific folder or folders, when the folder names are not unique.In this case, specify the full paths to the folders, for example:[/Database1/Folder1, /Database2/Database3/Folder2]Use a wildcard to ingest all child folders of a Folder1.[/Folder1/*]The reports in all child folders of Folder1 are ingested, but the reports in Folder1 itself are not ingested.This property must be included in your configuration file and it cannot be empty. If you want to ingest all folders, use *, for example: folderFilter:[*].For more information about connecting to a SSRS or PBRS folder, see the Microsoft documentation.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection information between the lineage harvester and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.urlThe URL of your Collibra Data Intelligence Cloud environment.You can only enter the public URL of your Collibra DGC environment. Other URLs will not be accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndication whether you want to use the system or server name of a data source to match to the System asset you created when you prepared the physical data layer. This is useful when you have multiple databases
with the same name.By default, the useCollibraSystemName property is set to false. If you want to use it, set it to true.If you set this property to true, the lineage harvester reads the value of the collibraSystemName property in your Tableau <source-ID> configuration file.If you set the useCollibraSystemName property to false, the lineage harvester ignores the collibraSystemName property in the <source-ID> configuration file.If you set the useCollibraSystemName property to true, but you don't define the system name in the Tableau <source ID> configuration file, the system name in the technical lineage is DEFAULT. typeThe kind of data source. In this case, the value has to be Tableau.sourcesThis section contains the Tableau connection properties.idThe unique ID to identify the Tableau metadata that was uploaded to the Collibra Data Lineage.In the sources section of your lineage harvester configuration file, you can only specify one id property per Tableau server or Tableau online account. If you have multiple id properties for a single Tableau server or Tableau online account, ingestion will fail. If you have multiple id properties in the configuration file, it means you intend to ingest from multiple unique Tableau servers or Tableau online accounts.If you are switching between the lineage harvester and Edge, the value of this property must exactly match the value of the Source ID field in your Edge capacity.This value can be anything as long as it is a unique. The lineage harvester uses the ID to identify a batch of data on the Collibra Data Lineage service.urlThe link to the data in Tableau.usernameThe username you use to sign in to the Tableau server.As of October 2022, Tableau is enforcing multi-factor authentication for Tableau Cloud Admin users. However, the lineage harvester doesn’t support multi-factor authentication. Therefore, Tableau Cloud users with an Admin role must use token-based authentication. This does not affect Tableau Server users or Tableau Cloud users with an Explorer role.If you want to use token-based authentication, you need to replace username with tokenName. You must specify either username or tokenName; if both exist, then tokenName is used.tokenNameThe lineage harvester authentication token.For token-based authentication, use this property in your lineage harvester configuration file, instead of the username property. If both properties are present, tokenName is used.siteIdsThe site IDs of the Tableau sites that you want to include in the ingestion process.If you want to ingest the metadata in a Tableau site in a specific domain, specify the following properties:This property.The site_name: domain_id property in the filters section in the Tableau <source ID> configuration file.The site ID is the URL of the site to which you want to sign in. When you manually sign in to Tableau Server or Tableau Online, the site ID is the value that appears after /site/ in the browser address bar. In the following example URLs, the site ID is MarketingTeam:Tableau Server: http://MyServer/#/site/MarketingTeam/projectsTableau Online: https://10ay.online.tableau.com/#/site/MarketingTeam/workbooksOn Tableau Server, however, the URL of the Default site does not specify the site. For example, the URL for a view named Profits, on a site named Sales, is http://localhost/#/site/sales/views/profits. The URL for this same view on the Default site is http://localhost/#/views/profits. The site name Sales does not figure in the URL. If you can't see the site ID, leave this property empty: siteIds: []If you want to ingest two Tableau sites Site 1 and Site 2, you can enter the following information in the siteIds property: [site ID of Site 1, site ID of Site 2].siteNamesThe site names of the corresponding site IDs.This property is:Optional for Tableau ServerMandatory for Tableau Online.If you have Tableau Server and you don't use this property, you must delete it from your configuration file. Don't leave the property in the configuration file without a value.restOnlyIndication whether or not you would like to use both the Tableau REST API and Tableau Metadata API to harvest Tableau metadata.false (default): The lineage harvester will use the REST API and Metadata API to harvest Tableau metadata.true: The lineage harvester will only use the REST API to harvest Tableau metadata.This property must be set to false, to:Enable technical lineage and the automatic stitching of Column assets to Tableau Data Attribute assets.Harvest owner information for Tableau projects, workbooks and data models.domainIdThe unique reference ID of the domain in Collibra Data Intelligence Cloud in which you want to ingest the Tableau assets. This property represents the default domain.How do I find a domain reference ID?Open the relevant domain in Collibra. The URL looks like: https://<yourcollibrainstance>/domain/22258f64-40b6-4b16-9c08-c95f8ec0da26?view=00000000-0000-0000-0000-000000040001. In this example, the reference ID is in bold.excludeImagesOptional property for excluding the downloading of images. To exclude the downloading of images, set this property to true.To indicate the projects that you want to ingest in different domains, specify the filters section in your Tableau <source ID> configuration file.The maximum number of images that can be uploaded to Collibra per day is determined by the configuration of the file upload service, in Collibra Console. For complete details, see the Upload configuration settings in DGC service configuration: options.concurrencyLevelThis optional property is intended to help if you are experiencing HTTP 401 Unauthorized errors due to too many concurrent HTTP calls, using the same token. It allows you to specify the internal sizing, meaning the amount of tasks that can be executed at the same time. The default value is 10, meaning as many as 10 HTTP requests can take place in parallel. Consider reducing the value if you are experiencing HTTP 401 Unauthorized errors. Setting the value to 1 effectively disables the concurrency level, so that HTTP requests will be run in a synchronous manner, instead of in parallel.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance.pagingOptional property for customizing the Tableau API pagination settings.The default values are sufficient in most cases; however, you can decrease them to help mitigate node limit errors, or increase them to speed up API calls.Show me the complete list of pagination settings, descriptions and default values paging: { databasesPageSize: 100, tablesPageSize: 100, tablesColumnsPageSize: 100, tableColumnsPageSize: 1000, datasourcesPageSize: 50, datasourcesFieldsPageSize: 50, datasourceFieldsPageSize: 100, worksheetsPageSize: 100, worksheetsFieldsPageSize: 100, worksheetFieldsPageSize: 1000, parametersPageSize: 1000, usersPageSize: 100, dashboardsPageSize: 100, columnsLimit: 20, fieldsLimit: 20 } Settings per metadata type and descriptionsMetadata typeSetting and descriptionDashboarddashboardsPageSize: The number of dashboards per page.WorksheetworksheetsPageSize: The number of worksheets per page.worksheetsFieldsPageSize: The number of worksheet fields per page.DatabasedatabasesPageSize: The number of databases per page.TabletablesPageSize: The number of tables per page.tablesColumnsPageSize: The number of table columns per page.Table columnstableColumnsPageSize: The number of table columns per page.ParameterparametersPageSize : The number of parameters per page. UsersusersPageSize: The number of users per page.Data sourcedatasourcesPageSize: The number of data sources per page.datasourcesFieldsPageSize: The number of data source fields per page.columnsLimit: The number of data source field columns per page.fieldsLimit : The number of referenced data source fields per page.Data source fielddatasourceFieldsPageSize: The number of data source fields per page.columnsLimit: The number of data source field columns per page.fieldsLimit : The number of referenced data source fields per page.Save the configuration file.Steps Open the lineage-harvester.conf file that was created when you installed the lineage harvester, and enter the values for each property. PropertiesDescriptiongeneralThis section describes the connection between Collibra Data Lineage and Data Catalog.techlinThis section contains information that is necessary to connect to the Collibra Data Lineage service instance.This section applies only to US government customers.urlThe URL of the Collibra Data Lineage service instance.“url”: “https://techlin-gov.collibra.com”This section applies only to US government customers.userKeyThe unique API key to connect to the Collibra Data Lineage service instance.A unique user key is needed for each Collibra environment. If you're not sure what your user key is, please contact your Collibra Customer Success Manager.This section applies only to US government customers.catalogThis section contains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Enter the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in to Collibra.useCollibraSystemNameIndicates whether you want to use the system or server name of a data source to match to the System
asset you created when you prepared the physical data layer. The names are case-sensitive. This is useful when you have multiple databases with the same name.sourcesThis configuration section contains the required information for SQL files of a data source that were previously downloaded by the lineage harvester and is stored in the lineage harvester output folder.typeThe kind of data source. In this case, the value has to be LoadedSource.idThe unique ID of the data source that you uploaded to the lineage harvester folder. For example, my_loaded_snowflake_source.zipFileThe full path to the ZIP file that was created in the lineage harvester folder.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance. Save the configuration file.What's nextRun the lineage harvester. When you run the lineage harvester and encounter errors that are related to the lineage harvester configuration file, you can use the technical lineage troubleshooting guide or Collibra Support Portal to fix the errors.The configuration file generatorThe configuration file generator helps you create your lineage harvester configuration file by providing the structure of the file with the correct properties per data source.The lineage harvester configuration fileThe lineage harvester uses a configuration file to connect to JDBC data sources, BI tools and ETL tools. The configuration file contains references to the data sources for which you want to create a technical lineage. You have to prepare the configuration file if you want to create a technical lineage and add new relations of the type Data Element targets / sources Data Element between existing assets in Data Catalog, and Column is target of / is source of Data Attribute between assets from ingested BI sources and assets in Data Catalog. You have to save the configuration file in the config directory in the lineage harvester folder.Empty configuration fileWhen you run the lineage harvester for the first time, it creates an empty configuration file. To create a technical lineage, you have to manually add properties and values, per data source, to this configuration file.The following image shows an example of the empty configuration file created by the lineage harvester. { general : { catalog : { url : , username : , }, useCollibraSystemName : false }, sources : [{ type : Database, id : MyDB, hostname : , username : , dialect : , collibraSystemName : , databaseNames : [], port : 1521 }] }Configuration file generatorThe configuration file generator is only available in the online version of this guide.The configuration file generator creates an example configuration file with the data source properties of your choosing:Scroll down to the configuration file example.Paste the example in your empty configuration file in the lineage harvesterconfig folder.Replace the values in the example to match your actual data source information. Make sure you understand each property and know which values you must use to access your data source information.Run the lineage harvester.Some browser plug-ins may slow the configuration file generator down.Lineage harvester configuration fileSource-specific configuration filesLineage harvester for GovCloud customers{ general: { catalog : { url : https://companydomain.collibra.com, username : my-Collibra-username }, useCollibraSystemName : false }, sources : [{ collibraSystemName : adf-system-name, id : adf_source, type : AzureDataFactory, tenantDomain: tenant-domain, loginFlow: { type: ServicePrincipal, applicationId: application-id }, subscriptionId : subscription-id, resourceGroupName : resource-group-name, factories : [factoryname1,factoryname2], deleteRawMetadataAfterProcessing: false } { collibraSystemName : datastage-system-name, id : datastage_source, type : ExternalDirectory, dirType : DATASTAGE, path : /path/to/the/datastage/folder/, mask : *, recursive : false, deleteRawMetadataAfterProcessing: false } { collibraSystemName : infa-system-name, id : informatica_source, type : ExternalDirectory, dirType : INFA, path : /path/to/the/informatica/folder/, mask : *, recursive : false, deleteRawMetadataAfterProcessing: false } { collibraSystemName : ssis-system-name, id : datastage_source, type : ExternalDirectory, dirType : SSIS, path : /path/to/the/ssis/folder/, mask : *, recursive : false, deleteRawMetadataAfterProcessing: false } { type : IICS, id : iics_source, collibraSystemName : iics-development, loginUrl : https://dm-us.informaticaintelligentcloud.com, username : login-iics, deleteRawMetadataAfterProcessing: false, objects : [{ path : Default/Sales, type : Project }, { path : My Project/Statistics, type : Project }] } { id : my-matillion-project, type : Matillion, url : https://my-domain, groupName : my-matillion-group, projectName : redshift-project, environmentName : redshift-environment, dialect : redshift, startTimestamp : 1594080796911, collibraSystemName: Matillion-system, deleteRawMetadataAfterProcessing: false, auth: { type: Basic, username: ec2-user } } { type: Tableau, id: unique-ID, url: URL to Tableau server?, username: Admin, siteIds: [site ID of Tableau Site 1, site ID of Tableau Site 2], siteNames: [site name of Tableau Site 1, site name of Tableau Site 2], restOnly: false, domainId: Domain-resource-ID, excludeImages: true, deleteRawMetadataAfterProcessing: false, paging: { pagination-setting: 100, pagination-setting-2: 100 } } { id : looker-source, type : Looker, lookerUrl : https://<instance-name.api.looker.com, clientId : my-looker-api-user-name, clientSecret: looker-api-userkey, domainId : 22258f64-40b6-4b16-9c08-c95f8ec0da26, deleteRawMetadataAfterProcessing: false } { id: <unique-id>, type: SSRS, url: http://<IP address or computer name>/Reports, username: <server-api-user-name>, domainId: <domain-resource-id>, folderFilter: [/Folder1/*, Folder2], deleteRawMetadataAfterProcessing: false } { collibraSystemName : custom-system-name, id : MyCustomLineage, type : ExternalDirectory, dirType : custom-lineage, path : /path/to/custom-lineage/dir, deleteRawMetadataAfterProcessing: false } { type : LoadedSource, id : MySource, zipFile : /path/to/source-MySource.zip, deleteRawMetadataAfterProcessing: false } { id : database_source, type : Database, username : MyUsername, dialect : hive, databaseNames : [MyDefaultDbName], hostname : localhost, collibraSystemName : apache-hive-system, port : 1521, deleteRawMetadataAfterProcessing: false, customConnectionProperties : } { id: oracle-id, type: DatabaseOracle, hostname: host_url, username: user1, collibraSystemName: automation_csn, port: 1521, serviceNames: [sn1, sn2], databaseNames: [db1, db2], deleteRawMetadataAfterProcessing: false } { id : bigquery_source, type : DatabaseBigQuery, projectIDs : [bigquery_project1, bigquery_project2], region: europe-west1 auth : /path/to/the/authentication/file.json, collibraSystemName : bigquery-system-name, deleteRawMetadataAfterProcessing: false } { id : snowflake_source, type : DatabaseSnowflake, mode : SQL|SQL-API, collibraSystemName : snowflake-system-name, auth: { type: KeyPair|Basic, username: some_username, pathToPrivateKey: path_to_your_private_key_file, usePassword: true|false }, hostname : MyAccountName.snowflakecomputing.com, databaseNames : [MyFirstDbName,MySecondDbName], extraDatabaseDefinitions: : [MyFirstExternalDbName,MySecondExternalDbName], schemaNames : [MyFirstSchemaName,MySecondSchemaName], warehouse : MySnowflakeWarehouseName, days : 1, deleteRawMetadataAfterProcessing: false, customConnectionProperties : role=MYROLE } { type: Microstrategy, id: microstrategy-batch, domainId: <domain-resource-id>, username: mstr, hostname: remote.postgres.com, port: 5432, databaseName: poc_metadata, deleteRawMetadataAfterProcessing: false } { type : PowerBI, id : power-bi-1, tenantDomain: collibra3.onmicrosoft.com, loginFlow: { type: ServicePrincipal, applicationId: be560fac-7545-4ce2-ad9f-cbce14c59af6 }, domainId: domain-reference-ID, deleteRawMetadataAfterProcessing: false } { id : sqldirectory_source, type : SqlDirectory, path : /path/to/the/sql/folder/, mask : *, recursive : false, dialect : db2, database : MyDefaultDbName, collibraSystemName : data-source-system, schema : MyDefaultDbSchema, verbose : true, deleteRawMetadataAfterProcessing: false }] }Informatica PowerCenterThe following example shows an Informatica PowerCenter <source ID> configuration file. { connectionDefinitions: { oracle_source: { dbname: oracle-source-database-name1, schema: my Oracle source schema, dialect: oracle }, oracle_target: { dbname: oracle-target-database-name2, schema: my other oracle target schema, dialect: oracle } }, collibraSystemNames: { databases: [{ dbname: oracle-source-database-name1, collibraSystemName: oracle-system-name1 }, { dbname: oracle-target-database-name2, collibraSystemName: oracle-system-name2 }], connections: [{ connectionName: oracle-connection-name1, collibraSystemName: oracle-system-name1 }, { connectionName: oracle-connection-name2, collibraSystemName: oracle-system-name2 }] } } SQL Server Integration ServicesThe following example shows an SQL Server Integration Services connection definitions configuration file. { ConnStringRegExTranslation: { Data Source=dhb-sql-prod;Initial Catalog=SFG_repl_staging;Provider=SQLNCLI11;Integrated Security=SSPI.*: { dbname: DATAHUB, schema: DBO, dialect: mssql, collibraSystemName :
WAREHOUSE }, Server=sb-dhub;User ID=SYS_USER;Initial Catalog=STAGEDB;Port=6306.*: { dbname: STAGEDB, schema: STAGE_OWNER, dialect: sybase, collibraSystemName : } } } IBM InfoSphere DataStageThe following example shows a DataStage connection definitions configuration file. { OdbcDataSources: { oracle-data-source: { dbname: my-oracle-database, schema: my-oracle-schema, dialect: oracle, collibraSystemName: my-system }, mssql-data-source: { dbname: my-mssql-database, schema: my-mssql-schema, dialect: mssql, collibraSystemName: my-system } }, NonOdbcConnectors: { admin@database-name: { dbname: my-netezza-database, schema: my-netezza-schema, dialect: netezza, collibraSystemName: my-system }, admin@second-database-name: { dbname: my-second-netezza-database, schema: my-second-netezza-schema, dialect: netezza, collibraSystemName: my-system } }, jobs: [my_job_1, my_job_2], jobParameters: [{ name: job_parameter_name_1, value: job_parameter_value_1 }, { name: job_parameter_name_2, value: job_parameter_value_2 }] } Informatica Intelligent Cloud ServicesThe following example shows an Informatica Intelligent Cloud Services <source ID> configuration file. { collibraSystemNames: { connections: [{ connectionName: DG_con_standby_cmdm_clientors, collibraSystemName: PUBLIC }, { connectionName: DG_con_dev_dg_dgiauser_su, collibraSystemName: PUBLIC }] }, connectionDefinitions: [{ connectionName: DG_con_standby_cmdm_clientors, databaseName: main, schemaName: dbo, dialect: oracle }, { connectionName: DG_con_dev_dg_dgiauser_su, databaseName: main, schemaName: dbo, dialect: oracle }] } TableauThe following example shows a Tableau <source ID> configuration file. { collibraSystemNames: { databases: [{ hostName: database-hostname, collibraSystemName: public }], files: [{filePath: C:\\ProgramData\\Tableau\\Tableau Server\\data\\files\\sample.xls, collibraSystemName: sample-files }], connectors: [{ connectorUrl: tableau-server-connector-url.com, collibraSystemName: Oracle-connector }], cloudFiles: [{ name: file-name, collibraSystemName: FILE }] }, databaseMapping: { <hostname:port>:<actual database name> }, filters: { sites:{ site_name:domain_id }, projects:{ site_name2 > project_name2: domain-reference-id2, site_name3 > project_name3 > subproject_name: domain-reference-id2 } } } LookerThe following example shows a Looker <source ID> configuration file. { Connections: { connection-object1: { dialect: mssql, schema: mssql-schema-name, dbname: mssql-database-name, collibraSystemName: mssql-system-name }, connection-object2: { dialect: oracle, schema: oracle-schema-name, dbname: oracle-database-name, collibraSystemName: oracle-system-name } } filters:[{ domainId:<reference ID>, description:any-description, folderNames:[Folder1, Folder2] }, { domainId:<reference ID>, description:any-description, folderNames:[Folder3, Folder4] }, { domainId:<reference ID>, description:any-description, folderIds:[123xxxx, 456xxxx] }] } } SQL Server Reporting Services and Power BI Report ServerThe following example shows a SQL Server Reporting Services and Power BI Report Server <source ID> configuration file. { DataSources: { Redshift: { dbname: redshift-database-name, schema: redshift-schema-name, dialect: redshift, collibraSystemName: redshift-system-name }, Oracle: { dbname: oracle-database-name, schema: oracle-schema-name, dialect: oracle, collibraSystemName: oracle-system-name } }, CustomDataSources: { /path to report/custom data souce name: { dbname: mssql-database-name, dialect: mssql } } } Power BIThe following example shows a Power BI <source ID> configuration file. { found_dbname=databasename1;found_hostname=*;found_schema=schema1: { dbname: mssql-database-name, schema: mssql-schema-name, dialect: mssql, collibraSystemName: mssql-system-name }, found_dbname=databasename2;found_hostname=server-name.onmicrosoft.com;found_schema=schema2: { dbname: oracle-database-name, schema: oracle-schema-name, dialect: oracle, collibraSystemName: oracle-system-name }, filters:[{ domainId: <domain-ref-id>, description: FirstFilter, workspaceNames: *, excludeWorkspaceIds: [workspaceC, workspaceD] }, { domainId: <domain-ref-id>, description: SecondFilter, workspaceNames: [workspace3, workspace4], capacityIds: [id1,id2] }] } MatillionThe following example shows a Matillion <source ID> configuration file.{ found_dbname=dbtest;found_hostname=test: { dialect: mssql, collibraSystemName: mssql-system-name }, found_dbname=testsid;found_hostname=*: { dbname: oracle-database-name, schema: oracle-schema-name, dialect: oracle, collibraSystemName: oracle-system-name } } MicroStrategyThe following example shows a MicroStrategy <source ID> configuration file. { default_domain_id: 1a0a942e-e3a7-45a1-83e8-ade30b1cab1a, filters: [{ projectIds: [], projectNames: [Customers,Research,Marketing] }], datasourceMapping: [{ found_datasource: REDSHIFT, found_project: *, mapping: { dbname: RD_pearl, schema: Default_North, dialect: spark, collibraSystemName: TV_dev } }] } The following is an example of a lineage harvester configuration file for US government customers using Power BI. The techlin section contains the information required to connect to the Collibra Data Lineage service instance. { general: { techlin: { url: https://techlin-gov.collibra.com, userKey: <your-unique-api-key> }, catalog: { url: https://catalog-instance.collibra.com, username: Admin }, useCollibraSystemName: false }, sources: [{ type: PowerBI, id: power-bi-id, tenantDomain: collibrapowerbi.onmicrosoft.com, loginFlow: { type: ServicePrincipal, applicationId: ab123cde-1234-1234-1234-abcd12e34fg5 }, domainId: domain-reference-ID, deleteRawMetadataAfterProcessing: true }] } Prepare an SQL directoryTo create technical lineage for JDBC data sources by using the folder connection type, you must provide SQL files that include your SQL queries. Collibra Data Lineage processes the metadata based on your queries to create the technical lineage. For more information about the connection types for different data sources, go to Supported data sources for technical lineage.For best technical lineage results, use the JDBC connection to ingest JDBC sources when possible, rather than using the folder connection type with the SQL files. StepsCreate a local folder. Create your SQL files. Ensure that the following requirements are met for the SQL files:The SQL files must be UTF-8 encoded. For better ingestion, include one SQL statement in one SQL file. Collibra Data Lineage processes the SQL files in alphabetical order. The SQL files that include the Data Definition Language (DDL) statements must be processed before the SQL files that include the Data Manipulation Language (DML) statements. To ensure this order, name the SQL files such that those containing DDL statements come before those containing DML statements alphabetically.The database and schema names in the SQL statements in your SQL files take precedence over the values that you provide for the database and schema properties in the lineage harvester configuration file. If your SQL statements contain database and schema names, Collibra Data Lineage uses them for stitching. If your SQL statements do not contain database and schema names, Collibra Data Lineage uses the values of the database and schema properties in the configuration file for stitching. For more information, go to lineage harvester configuration file and Automatic stitching for technical lineage.For more information, go to Supported SQL syntax.Store the SQL files in the local folder. Example 1 SQL statements do not include schema and database namesThis example shows the SQL files that include the queries on the Persons and JobInformation tables and the JobTitleView view. The SQL statements don't contain the database and schema values, so the lineage harvester uses the values of the database and schema properties that you specify in the lineage harvester configuration file for stitching. The SQL files are named in a way that ensures the DDL statements are processed before the DML statement. The ddl-persons.sql file CREATE TABLE Persons (PersonID int, LastName varchar(255), FirstName varchar(255), Address varchar(255), City varchar(255)); The ddl-jobinformation.sql file CREATE TABLE JobInformation (PersonID int, Department varchar(255), Title varchar(255));The view-jobtitle.sql file CREATE VIEW JobTitleView AS SELECT Persons.PersonID, Persons.FirstName, Persons.LastName, JobInformation.Title from Persons INNER JOIN JobInformation ON Persons.PersonID = JobInformation.PersonIdExample 2 SQL statements include schema and database namesThis example shows SQL files that include the queries on the Persons and JobInformation tables and the JobTitleView view. The SQL statements contain the database and schema names for each table and view, and Collibra Data Lineage uses them for stitching. The SQL files are named in a way that ensures the DDL statements are processed before the DML statement. The ddl-db1-schemaA-persons.sql file CREATE TABLE DB1.SchemaA.Persons (PersonID int, LastName varchar(255), FirstName varchar(255), Address varchar(255), City varchar(255));The ddl-db2-schemaB-jobinformation.sql file CREATE TABLE DB2.SchemaB.JobInformation (PersonID int, Department varchar(255), Title varchar(255));The view-db2-schemaC-jobtitleview.sql file CREATE VIEW DB2.SchemaC.JobTitleView AS SELECT Persons.PersonID, Persons.FirstName, Persons.LastName, JobInformation.Title from DB1.SchemaA.Persons INNER JOIN DB2.SchemaB.JobInformation ON Persons.PersonID = JobInformation.PersonIdWhat's nextAdd your data source information in the lineage harvester configuration file. Download SQL files to the lineage harvester folderYou can download the SQL files of a data source that is stored
locally and cannot be accessed via the network. The lineage harvester then stores the data source information in a ZIP file. To create a technical lineage for these data sources, you only have to include the ID of the data source and the path to the ZIP file in the configuration file.Click here to see a list of all supported data sources.PrerequisitesYou have downloaded the lineage harvester and you have the necessary system requirements to run it.You have the necessary permissions to all database objects that the lineage harvester accesses.You have the necessary data source-specific permissions to access the data objects of your data sources For a detailed overview of the permissions that you need to access the data objects of your data sources, see the online user guide.StepsStart the lineage harvester to create an empty lineage harvester configuration file by entering the following command: Windows: .\bin\lineage-harvester.batFor other operating systems: chmod +x bin/lineage-harvester and then bin/lineage-harvesterAn empty configuration file is created in the config folder.Save the configuration file in the config directory in the lineage harvester folder.Prepare the configuration file. Use the configuration file generator to easily create a configuration file.When prompted, enter the passwords to connect to Collibra and your data sources. Do one of the following: Enter the passwords in the console.The passwords are encrypted and stored in /config/pwd.conf.Provide the passwords via command line.The passwords are stored locally and not in your lineage harvester folder.Start the lineage harvester again and do one of the following: To download the SQL files of all data sources in the configuration file, run the following command: ./bin/lineage-harvester load-sourcesTo download the SQL files of specific data sources in the configuration file, run the following command: ./bin/lineage-harvester load-sources -s ID of the data sourceThis command allows you to download specific SQL files in the configuration file, without refreshing other SQL files. This reduces the time you need to download your SQL files, since you only download specific ones without affecting the others. If you want to download SQL files of multiple data sources, add -s ID of another data source per data source to the command.The lineage harvester downloads the SQL files of the data sources and stores them in a ZIP file per data source in the lineage harvester output folder.What's next?You can now prepare a configuration file for theSQL files of data sources that you want to include in your technical lineage.Prepare a <source ID> configuration fileDepending on your data source, you might have to, or want to, prepare a <source ID> configuration file. Select your data source below for data source-specific information.The lineage harvester uses a lineage harvester configuration file to collect the Azure Data Factory data objects. It then sends the metadata to the Collibra Data Lineage service instance. Example of the <source ID> configuration file { found_dbname=databasename1;found_hostname=server-name.onmicrosoft.com;found_schema=schema1: { dbname: mssql-database-name, schema: mssql-schema-name, dialect: mssql, collibraSystemName: mssql-system-name }, found_dbname=datafactory_linkedservice;found_hostname=*: { dbname: linkedservice-dbname, schema: linkedservice-schema, collibraSystemName: linkedservice-system-name } } StepsCreate a new JSON file in the lineage harvesterconfig folder.Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value of the sourceId property in the lineage harvester configuration file and the file extension must be .conf. If the value of the sourceId property in the lineage harvester configuration file is my-adf, the name of your JSON file must be my-adf.conf.For each database in Azure Data Factory, add the following content to the JSON file: PropertyDescriptionMandatory?found_dbname=<database name>;found_hostname=<server name>;found_schema=<schema name> | found_dbname=<datafactory_name>_<linkedservice_name>;found_hostname=*The information of the supported data sources in Azure Data Factory to be collected by Collibra Data Lineage. You can specify any of the following values for the found_dbname property:A database name. And then you can specify the following properties: found_hostname=<server name>, where <server name> is the name of the server that the database is running on. found_schema=<schema name>, where <schema name> is the name of the schema. This property is optional.The combination of <datafactory_name>_<linkedservice_name>, where <datafactory_name> is a data factory name and <linkedservice_name> is a linked service name. If you use this combination, specify * for the found_hostname property.You can use wildcards to capture multiple connection string combinations:Show me the supported wildcardsPatternDescription*Matches everything.?Matches any single character.[seq]Matches any character in seq.[!seq]Matches any character not in seq.YesdbnameThe name of the database asset in Data Catalog. Specify this property with the database name that you created when you prepared the Data Catalog physical data layer. Specify this property with the database name that you created when you registered the data source.NoschemaThe name of the schema asset in Data Catalog. Specify this property with the schema name that you created when you registered the data source. If the Collibra Data Lineage fails to find the schema that you specify, it uses the default schema.NodialectIf you specify a database name for the found_dbname property, select one of the following dialects. If you specify a linked service name for the found_dbname property, ignore this property. You can enter one of the following values:azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.db2, for a IBM Db2 data source.generic, for any data source.greenplum, for a Greenplum data source.hana, for a SAP HANA data source.hive, for a Hive data source.impala, for a Impala data source.mssql, for a Microsoft SQL Server data source.mysql, for a MySQL data source.netezza, for a Netezza data source.oracle, for an Oracle data source.postgres, for an PostgreSQL data source.redshift, for an Amazon Redshift data source.snowflake, for a Snowflake data source.spark, for a Spark SQL data source.sybase, for a Sybase data source.teradata, for a Teradata data source.vertica, for a Vertica data source.NocollibraSystemNameThe system or server name of a database.If you don't specify a value for this property, DEFAULT is shown in the technical lineage.How do I configure this property if I have two databases with the same name?Let's assume you have two databases named Customers. When you prepare the physical data layer in Data Catalog, you create a System asset for each of these databases. Let's say you named them Customers-Europe and Customers-USA. You can then configure this property as follows.If you have two databases named Customers, and you created a System asset for each of these databases in Data Catalog, Customers-Europe and Customers-USA, you can configure this property as follows. found_dbname=databasename1;found_hostname=*;found_schema=schema1: { dbname: Customers, schema: mssql-schema-name, dialect: mssql, collibraSystemName: Customers-Europe }, found_dbname=databasename2;found_hostname=server-name.onmicrosoft.com;found_schema=schema2: { dbname: Customers, schema: oracle-schema-name, dialect: oracle, collibraSystemName: Customers-USA }, The value of this property must exactly match (including for case-sensitivity) the name of your System asset in Collibra.If you are using a <source ID> configuration file for the purpose of providing the true system name of an ODBC database in Azure Data Factory, you are not required to:Set the useCollibraSystemName property in the lineage harvester configuration file to true.Specify a Collibra system name in the <source ID> configuration file.However, if the useCollibraSystemName property is set to true in the lineage harvester configuration file, you must specify a Collibra system name in the <source ID> configuration file.If you use the Source Configuration field for the purpose of providing the true system name of an ODBC database in Azure Data Factory, you are not required to:Set the value of the Collibra system name setting to True.Specify a Collibra system name in the Source Configuration field.However, if the value of the Collibra system name setting is set to true, you must specify a Collibra system name in the Source Configuration field.Yes Save the <source ID> configuration file.The lineage harvester uses a lineage harvester configuration file to collect the DataStage data objects. It then sends the metadata to the Collibra Data Lineage service instance. Example of the <source ID> configuration file { OdbcDataSources: { oracle-data-source: { dbname: my-oracle-database, schema: my-oracle-schema, dialect: oracle, collibraSystemName: my-system }, mssql-data-source: { dbname: my-mssql-database, schema: my-mssql-schema, dialect: mssql, collibraSystemName: my-system } }, NonOdbcConnectors: { admin@database-name: { dbname: my-netezza-database, schema: my-netezza-schema, dialect: netezza, collibraSystemName: my-system }, admin@second-database-name: { dbname: my-second-netezza-database, schema: my-second-netezza-schema, dialect: netezza, collibraSystemName: my-system } }, jobs: [my_job_1, my_job_2], jobParameters: [{ name: job_parameter_name_1, value: job_parameter_value_1 }, { name: job_parameter_name_2, value: job_parameter_value_2 }] } StepsCreate a new JSON file in the lineage harvesterconfig folder.Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value of the sourceId property in the lineage harvester configuration file and the
file extension must be .conf. If the value of the sourceId property in the lineage harvester configuration file is my-adf, the name of your JSON file must be my-adf.conf.For each database in DataStage, add the required content to the JSON file. Save the <source ID> configuration file.The lineage harvester uses a lineage harvester configuration file to collect the Informatica PowerCenter data objects. It then sends the metadata to the Collibra Data Lineage service instance.Example of the <source ID> configuration file { connectionDefinitions: { oracle_source: { dbname: oracle-source-database-name1, schema: my Oracle source schema, dialect: oracle }, oracle_target: { dbname: oracle-target-database-name2, schema: my other oracle target schema, dialect: oracle } }, collibraSystemNames: { databases: [{ dbname: oracle-source-database-name1, collibraSystemName: oracle-system-name1 }, { dbname: oracle-target-database-name2, collibraSystemName: oracle-system-name2 }], connections: [{ connectionName: oracle-connection-name1, collibraSystemName: oracle-system-name1 }, { connectionName: oracle-connection-name2, collibraSystemName: oracle-system-name2 }] } } StepsCreate a new JSON file in the lineage harvesterconfig folder.Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value of the sourceId property in the lineage harvester configuration file and the file extension must be .conf. If the value of the sourceId property in the lineage harvester configuration file is my-adf, the name of your JSON file must be my-adf.conf.For each database, add the required content to the JSON file. Save the <source ID> configuration file.You use the lineage harvester configuration file to access Informatica Intelligent Cloud Services Data Integration data objects. The lineage harvester processes the data objects to create a technical lineage. You also have to prepare a specific <source ID> configuration file that defines the Intelligent Cloud Services system name.You must prepare a <source ID> configuration file regardless of whether the useCollibraSystemName property in your lineage harvester configuration files is set to true or false.PrerequisitesYou have Admin permission on all objects that you want to harvest.StepsCreate a new JSON configuration file in the lineage harvesterconfig folder. If you have a data source with a large size for an Informatica Intelligent Cloud Services connection, consider creating more than one JSON file for the data source. Each JSON file must have a unique name. The contents in the JSON files are the same. In this way, you can avoid errors that might occur when the lineage harvester ingests metadata from one source with a large size.Give the JSON file the same name as the value of the Id property in the lineage harvester configuration file. If the value of the Id property in your lineage harvester configuration file is iics-source-1, then the name of your JSON file should be iics-source-1.conf.Your JSON file must have the file extension .conf.For each Informatica Intelligent Cloud Services connection, you can add the following content to the JSON file: PropertyDescriptionRequired? collibraSystemNamesThis section contains the system information for Informatica Intelligent Cloud Services.connectionsThis section contains the system connection information. This is required to reference to the system or server of the connection.connectionNameThe name of the connection.YescollibraSystemNameThe system or server name of the connection.YesconnectionDefinitionsThis section contains the database, schema and dialect information for each connection in Informatica Intelligent Cloud Services.You can add connection information for each connection in the connections section.connectionNameThe name of the connection. The name must match with the name in a connection name in the connections section. This property is required. YesdatabaseNameThe name of your database.YesschemaNameThe name of your schema. YesdialectThe dialect of the connection. Specify this property to properly extract and parse queries that are related to this connection.You can enter one of the following values:bigquerydb2hanahivegreenplummssqlmysqlnetezzaoraclepostgresredshiftsnowflakesparkteradataNoSave the configuration file.Example of the <source-ID>.conf file { collibraSystemNames: { connections: [{ connectionName: DG_con_standby_cmdm_clientors, collibraSystemName: PUBLIC }, { connectionName: DG_con_dev_dg_dgiauser_su, collibraSystemName: PUBLIC }] }, connectionDefinitions: [{ connectionName: DG_con_standby_cmdm_clientors, databaseName: main, schemaName: dbo, dialect: oracle }, { connectionName: DG_con_dev_dg_dgiauser_su, databaseName: main, schemaName: dbo, dialect: oracle }] } The lineage harvester uses the lineage harvester configuration file to collect the Looker data objects and send them to the Collibra Data Lineage service instance.The <source ID> configuration file allows you to: Filter on the Looker folders from which you want to ingest metadata. If useCollibraSystemName in the lineage harvester configuration file is set to true, use the collibraSystemName property to specify the system name of databases in Looker.Collibra Data Lineage uses the system names to match the structure of databases in Looker to assets in Data Catalog. Example of <source ID> configuration file{ general: { catalog: { url: https://<organization>.collibra.com, userName: <your-collibra-username> }, useCollibraSystemName: false }, sources: [{ id: looker-id, type: Looker, lookerUrl: https://<instance-name>.api.looker.com, clientId: looker-api-user-name, clientSecret: looker-api-userkey, domainId: domain-resource-id, deleteRawMetadataAfterProcessing: true }] } StepsCreate a new JSON file in the lineage harvesterconfig folder.Give the JSON file the same name as the value of the Id property in the lineage harvester configuration file. The value of the Id property in the lineage harvester configuration file is looker-source-1. As a result, the name of your JSON file should be looker-source-1.conf.Your JSON file must have the file extension .conf.For each database in Looker, add the following content to the JSON file: PropertyDescriptionMandatory?ConnectionsThis section contains all Looker connections for which you want to create a technical lineage.Yes<connection name>The name of a connection object in Looker.YesdialectThe dialect of the supported data source in Looker.NoschemaThe name of the default schema of a supported data source in Looker.If the lineage harvester fails to find a specific schema, it uses the default schema.NodbnameThe name of the database of a supported data source in Looker.NocollibraSystemNameThe system or server name of a database.If you set the useCollibraSystemName property to true in your lineage harvester configuration file, but you either don't create a <source ID> configuration file, or don't specify a value for the collibraSystemName property in your <source ID> configuration file, the system name in the technical lineage is DEFAULT.How do I configure this property if I have two databases with the same name?Let's assume you have two databases named Customers. When you prepare the physical data layer in Data Catalog, you create a System asset for each of these databases. Let's say you named them Customers-Europe and Customers-USA. You can then configure this property as follows.connection-object1: { dialect: mssql, schema: mssql-schema-name, dbname: Customers, collibraSystemName: Customers-Europe }, connection-object2: { dialect: oracle, schema: oracle-schema-name, dbname: Customers, collibraSystemName: Customers-USA } YesfiltersOptionally, use this section to specify the Looker folders from which you want to ingest metadata.You can filter on Looker folders, but not on Looker data sets. That's because Looker data sets are linked directly to the server, instead of a folder, as shown in the Looker metadata overview. Looker data sets are ingested in the default domain, regardless of any filtering.Let’s say, for example, you filter on folder B. A Looker Folder asset is created in the specified domain in Collibra, and all of the metadata in folder B is ingested. If folder B has a parent folder A, then a Looker Folder asset is created (in the domain specified for folder B) to preserve the hierarchy, but no metadata from folder A is ingested.You can specify more than one Looker folder for ingestion into a single domain in Collibra.If you don't want to filter on Looker Folders, you must completely remove this filters section.You can use wildcards to capture multiple connection string combinations:Show me the supported wildcardsPatternDescription*Matches everything.?Matches any single character.[seq]Matches any character in seq.[!seq]Matches any character not in seq.NodomainIdThe unique resource ID of the domain (or domains), in Collibra, in which you want to ingest data objects from one or more Looker Folders.You can find the domain ID by clicking the domain type. Then look in the URL of your browser to find the ID. The URL looks like https://<yourcollibrainstance>/domain/<domain ID>?<view>. descriptionAny description, as you see fit. folderNamesThe name (or names) of the Looker Folders from which you want to ingest.You must specify either a folder name, a folder ID, or both. folderIdsThe ID (or IDs) of the Looker Folder you want to ingest.You must specify either a folder ID, a folder name, or both. Save the <source ID> configuration file.The lineage harvester uses a lineage harvester configuration file to collect the Matillion data objects. It then sends the metadata to the Collibra Data Lineage service instance. Example of the <source ID> configuration file{ found_dbname=dbtest;found_hostname=test: { dialect: mssql, collibraSystemName: mssql-system-name }, found_dbname=testsid;found_hostname=*: { dbname: oracle-database-name, schema: oracle-schema-name,
 dialect: oracle, collibraSystemName: oracle-system-name } } StepsCreate a new JSON file in the lineage harvesterconfig folder.Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value of the sourceId property in the lineage harvester configuration file and the file extension must be .conf. If the value of the sourceId property in the lineage harvester configuration file is my-adf, the name of your JSON file must be my-adf.conf.Add the required content to the JSON file. Save the <source ID> configuration file.The lineage harvester uses the configuration file to connect to MicroStrategy. You must also prepare a MicroStrategy <source ID> configuration file to:Specify the default domain, meaning the domain in Collibra in which the corresponding assets of MicroStrategy metadata will be ingested.Optionally, sSpecify from which MicroStrategy projects you want to ingest metadata.Optionally, cConfigure data source mapping, to map the name of a data source returned by the lineage harvester to the true name of the data source.<source ID> refers to the value of the Id property in the lineage harvester configuration file.. { default_domain_id: 1a0a942e-e3a7-45a1-83e8-ade30b1cab1a, filters: [{ projectIds: [], projectNames: [Customers,Research,Marketing] }], datasourceMapping: [{ found_datasource: REDSHIFT, found_project: *, mapping: { dbname: RD_pearl, schema: Default_North, dialect: spark, collibraSystemName: TV_dev } }] } StepsCreate a new JSON file in the lineage harvesterconfig folder.Give the JSON file the same name as the value of the Id property in the lineage harvesterconfiguration file. If the value of the Id property in the lineage harvester configuration file is mstr-source-1, then the name of your JSON file should be mstr-source-1.conf.Your JSON file must have the file extension .conf.For each database in MicroStrategy, add the following content to the JSON file:You can use wildcards to capture multiple string combinations for any of these properties.Show me the supported wildcardsPatternDescription*Matches everything.?Matches any single character.[seq]Matches any character in seq.[!seq]Matches any character not in seq.PropertyDescriptionMandatorydefault_domain_idThe domain in which you want the corresponding assets of MicroStrategy metadata to be ingested.YesfiltersThis section allows you to specify from which MicroStrategy projects you want to harvest metadata.All metadata is ingested into the default domain, as specified via the default_domain_id property.If you don't want to filter on projects, don't include this section in your <source ID> configuration file.NoprojectIdsThe IDs of the MicroStrategy projects from which you want to ingest metadata.NoprojectNamesThe project names of the MicroStrategy projects from which you want to ingest metadata.NodatasourceMappingThis optional section allows you to configure data source mapping. Include this section only if you need to differentiate between multiple data sources that have the same name.Nofound_datasourceThe name of the data source that was returned by the lineage harvester, as shown in the technical lineage. The data source name is case-sensitive.Yesfound_projectThe name of the project in which the data source information resides. You can specify an asterisk (*) to search for data source information across all projects. YesmappingUse this section to map the data source name that was returned by the lineage harvester to the true name of the data source.You have a Redshift data source named RD_pearl, but the lineage harvester has returned the name Redshift_connection. You can configure the datasourceMapping section as follows: { datasourceMapping: [{ found_datasource: REDSHIFT, found_project: *, mapping: { dbname: RD_pearl, collibraSystemName: TV_dev } }] }YesdbnameThe name of the database to which you want to map the found data source.YesschemaThe name of the schema in MicroStrategy.NodialectThe dialect of the data source in MicroStrategy.NocollibraSystemNameThe system or server name of a database.If you set the useCollibraSystemName property to true in your lineage harvester configuration file, but you either don't create a <source ID> configuration file, or don't specify a value for the collibraSystemName property in your <source ID> configuration file, the system name in the technical lineage is DEFAULT.If you set the useCollibraSystemName property to false in your lineage harvester configuration file, leave this property empty as follows: collibraSystemName: .How do I configure this property if I have two databases with the same name?Let's assume that you have a data source named Customers. You use this data source connection in two different projects, Project_A and Project_B, but they are actually two different databases. When you prepare the physical data layer in Data Catalog, you create a System asset for each of these databases. Let's say you named them Customers-North and Customers-South. You can then configure this property as follows. datasourceMapping: [{ found_datasource: Customers, found_project: Project_A, mapping: { dbname: Customers, collibraSystemName: Customers_North } }, { found_datasource: Customers, found_project: Project_B, mapping: { dbname: Customers, collibraSystemName: Customers_South } }] The values of this property must exactly match the name of your System asset in Collibra.YesSave the <source ID> configuration file.The lineage harvester uses a lineage harvester configuration file to collect the Power BI data objects. It then sends the metadata to the Collibra Data Lineage service instances.The <source ID> configuration file allows you to: Specify the name of a database, on which server the database is running, and optionally, the name of the schema. Configure workspace filtering.We highly recommend that you read through Filtering Power BI workspaces for important information and guidance before configuring your filters. If useCollibraSystemName in the lineage harvester configuration file is set to true, use the collibraSystemName property to specify the system name of databases in Power BI. Collibra Data Lineage uses the system names to match the structure of databases in Power BI to assets in Data Catalog. Example of the <source ID> configuration file { found_dbname=databasename1;found_hostname=*;found_schema=schema1: { dbname: mssql-database-name, schema: mssql-schema-name, dialect: mssql, collibraSystemName: mssql-system-name }, found_dbname=databasename2;found_hostname=server-name.onmicrosoft.com;found_schema=schema2: { dbname: oracle-database-name, schema: oracle-schema-name, dialect: oracle, collibraSystemName: oracle-system-name }, filters:[{ domainId: <domain-ref-id>, description: FirstFilter, workspaceNames: *, excludeWorkspaceIds: [workspaceC, workspaceD] }, { domainId: <domain-ref-id>, description: SecondFilter, workspaceNames: [workspace3, workspace4], capacityIds: [id1,id2] }] } StepsCreate a new JSON file in the lineage harvesterconfig folder.Give the JSON file the same name as the value of the sourceId property in the lineage harvester configuration file. The value of the sourceId property in the lineage harvester configuration file is power-bi-source-1. Therefore, the name of your JSON file should be power-bi-source-1.conf.Your JSON file must have the file extension .conf.For each database in Power BI, add the following content to the JSON file: PropertyDescriptionMandatory?found_dbname=<database name>;found_hostname=<server name>;found_schema=<schema name>The database information of supported data sources in Power BI that is typically collected by the lineage harvester. It allows you to specify the name of the database (found_dbname), on which server a database is running (found_hostname), and optionally, the name of the schema (found_schema).You can use wildcards to capture multiple connection string combinations:Show me the supported wildcardsPatternDescription*Matches everything.?Matches any single character.[seq]Matches any character in seq.[!seq]Matches any character not in seq.YesdbnameThe name of the database of a supported data source in Power BI.NoschemaThe name of the default schema of a supported data source in Power BI.If the lineage harvester fails to find a specific schema, it uses the default schema.NodialectThe dialect of the supported data source in Power BI.You can enter one of the following values:azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.mssql, for a Microsoft SQL Server data source.oracle, for an Oracle data source.redshift, for an Amazon Redshift data source.snowflake, for a Snowflake data source.sybase, for a Sybase data source.NocollibraSystemNameThe system or server name of a database.If you set the useCollibraSystemName property to true in your lineage harvester configuration file, but you either don't create a <source ID> configuration file, or don't specify a value for the collibraSystemName property in your <source ID> configuration file, the system name in the technical lineage is DEFAULT.How do I configure this property if I have two databases with the same name?Let's assume you have two databases named Customers. When you prepare the physical data layer in Data Catalog, you create a System asset for each of these databases. Let's say you named them Customers-Europe and Customers-USA. You can then configure this property as follows. found_dbname=databasename1;found_hostname=*;found_schema=schema1: { dbname: Customers, schema: mssql-schema-name, dialect: mssql, collibraSystemName: Customers-Europe }, found_dbname=databasename2;found_hostname=server-name.onmicrosoft.com;found_schema=schema2: { dbname: Customers, schema: oracle-schema-name, dialect: oracle, collibraSystemName: Customers-USA }, The value of this property must
exactly match (including for case-sensitivity) the name of your System asset in Collibra.If you are using a <source ID> configuration file for the purpose of providing the true system name of an ODBC database in Power BI, you are not required to:Set the useCollibraSystemName property in the lineage harvester configuration file to true.Specify a Collibra system name in the <source ID> configuration file. However, if the useCollibraSystemName property is set to true in the lineage harvester configuration file, then you must specify a Collibra system name in the <source ID> configuration file.Yes (unless you are using a <source ID> file to provide the true system names of ODBC databases in Power BI.)filtersThis section allows you to specify the Power BI workspaces from which you want to ingest metadata.The filters work as workspace AND workspace AND capacity AND capacity, meaning that if you specify a capacity, all of the workspaces in that capacity are also ingested.If you don't want to specify the Power BI workspaces from which to ingest, you must completely remove this filters section.You can use wildcards to capture multiple connection string combinations:Show me the supported wildcardsPatternDescription*Matches everything.?Matches any single character.[seq]Matches any character in seq.[!seq]Matches any character not in seq.NodomainIdThe unique resource ID of the domain (or domains), in Collibra Data Intelligence Cloud, in which you want to ingest the Power BI assets.You can find the domain ID by clicking the domain type. Then look in the URL of your browser to find the ID. The URL looks like https://<yourcollibrainstance>/domain/<domain ID>?<view>.YesdescriptionAny description, as you see fit.YesworkspaceNamesThe names of Power BI workspaces from which you want to ingest metadata.Any meta-characters in the name of a workspace must be enclosed in square brackets []. For example, a workspace with the name Sale and Marketing [automobiles] should be formatted as follows:Sale and Marketing [[]automobiles[]]NoworkspaceIdsThe IDs of Power BI workspaces from which you want to ingest metadata.We highly recommend that you read through Filtering Power BI workspaces for important information and guidance before configuring your filters.NocapacityNamesThe names of capacities on which you want to filter.NocapacityIdsThe IDs of capacities on which you want to filter.Any letters in a capacity ID must be in upper case.NoexcludeWorkspaceNamesThe names of Power BI workspaces that you want to exclude from the ingestion job.This is useful if you want to exclude, for example, dedicated development and testing workspaces.The metadata of inactive and personal workspaces is not harvested or uploaded to the Collibra Data Lineage service instance. An inactive workspace is one for which no reports or dashboards have been viewed in the past 60 days. My workspace is the personal workspace for any Power BI customer to work with their own, personal content.For complete details on the advantages, limitations and configuration considerations of this property, see Filtering Power BI workspaces.NoexcludeWorkspaceIdsThe IDs of Power BI workspaces that you want to exclude from the ingestion job.This is useful if you want to exclude, for example, dedicated development and testing workspaces.For complete details on the advantages, limitations and configuration considerations of this property, see Filtering Power BI workspaces.NoSave the <source ID> configuration file.The lineage harvester uses the lineage harvester configuration file to collect the SQL Server Reporting Services (SSRS) and Power BI Report Server (PBRS) data objects and send them to the Collibra Data Lineage service.The <source ID> configuration file allows you to: If useCollibraSystemName in the lineage harvester configuration file is set to true, use the collibraSystemName property to specify the system name of databases in SSRS and PBRS.Provide additional information about databases in SSRS and PBRS, which is necessary if the databases do not contain all information to process the SQL source code correctly. Example <source ID> configuration file { DataSources: { Redshift: { dbname: redshift-database-name, schema: redshift-schema-name, dialect: redshift, collibraSystemName: redshift-system-name }, Oracle: { dbname: oracle-database-name, schema: oracle-schema-name, dialect: oracle, collibraSystemName: oracle-system-name } }, CustomDataSources: { /path to report/custom data souce name: { dbname: mssql-database-name, dialect: mssql } } } StepsCreate a new JSON file in the lineage harvesterconfig folder.Give the JSON file the same name as the value of the Id property in the lineage harvester configuration file. The value of the Id property in the lineage harvester configuration file is ssrs-source-1. As a result, the name of your JSON file should be ssrs-source-1.conf.Your JSON file must have the file extension .conf.For each database in SSRS and PBRS, add the following content to the JSON file: PropertyDescriptionRequired?DataSourcesThis section contains all connections for which you want to create a technical lineage.The DataSources section refers to shared data sources in SSRS and PBRS. For more information about shared data sources, see the Microsoft documentation.Yes<data source type>The path of a connection object in SSRS and PBRS.YesdbnameThe name of the database of a supported data source in SSRS and PBRS.NoschemaThe name of the default schema of a supported data source in SSRS and PBRS.NodialectThe dialect of the supported data source in SSRS and PBRS.NocollibraSystemNameThe system or server name of the database.If you set the useCollibraSystemName property to true in your lineage harvester configuration file, but you either don't create a <source ID> configuration file, or don't specify a value for the collibraSystemName property in your <source ID> configuration file, the system name in the technical lineage is DEFAULT.How do I configure this property if I have two databases with the same name?Let's assume you have two databases named Customers. When you prepare the physical data layer in Data Catalog, you create a System asset for each of these databases. Let's say you named them Customers-Europe and Customers-USA. You can then configure this property as follows.Redshift: { dbname: Customer, schema: redshift-schema-name, dialect: redshift, collibraSystemName: Customers-Europe }, Oracle: { dbname: Customer, schema: oracle-schema-name, dialect: oracle, collibraSystemName: Customers-USA } YesCustomDataSourcesYou can use custom data processing extensions that are used to support embedded data sources of which the data source definition is specified locally in a report or embedded data set.The CustomDataSources section refers to embedded data sources in SSRS and PBRS. For more information about embedded data sources, see the Microsoft documentation.No<path to report>/<custom data source name>The full path to the report and the custom data source name.You can use wildcards to match multiple folders, reports or data sets. The connection information is this section is used to add missing information or to overwrite parsed information.NodbnameThe name of the database of a custom data source in SSRS and PBRS..NoschemaThe name of the schema of a custom data source in power. If you don't provide the schema name, the default schema is used.NodialectThe dialect of the custom data source in SSRS and PBRS..You can enter one of the following values:azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.db2, for an IBM DB2 data source.hana, for a SAP Hana data source.hive, for a HiveQL data source.greenplum, for a Greenplum data source.mssql, for a Microsoft SQL Server data source.mysql, for a MySQL data source.netezza, for a Netezza data source.oracle, for an Oracle data source.postgres, for a PostgreSQL data source.redshift, for an Amazon Redshift data source.snowflake, for a Snowflake data source.spark, for a Spark SQL data source.sybase, for a Sybase data source.teradata, for a Teradata data source.NoSave the <source ID> configuration file.The lineage harvester uses a lineage harvester configuration file to collect the SQL Server Integration Services data objects. It then sends the metadata to the Collibra Data Lineage service instance. Example of the <source ID> configuration file { ConnStringRegExTranslation: { Data Source=dhb-sql-prod;Initial Catalog=SFG_repl_staging;Provider=SQLNCLI11;Integrated Security=SSPI.*: { dbname: DATAHUB, schema: DBO, dialect: mssql, collibraSystemName : WAREHOUSE }, Server=sb-dhub;User ID=SYS_USER;Initial Catalog=STAGEDB;Port=6306.*: { dbname: STAGEDB, schema: STAGE_OWNER, dialect: sybase, collibraSystemName : } } } StepsCreate a new JSON file in the lineage harvesterconfig folder.Name the JSON file as <sourceId>.conf, where <sourceId> is the same as the value of the sourceId property in the lineage harvester configuration file and the file extension must be .conf. If the value of the sourceId property in the lineage harvester configuration file is my-adf, the name of your JSON file must be my-adf.conf.For each database, add the required content to the JSON file. Save the <source ID> configuration file.The lineage harvester uses the configuration file to connect to Tableau. You are not required to create a <source ID> configuration file, but you need one if you want to:Define your Tableau operating model.Provide additional information about databases and files in Tableau. For example, you can define the system name of databases in Tableau.Map a Tableau technical database name to the real database name, to preserve stitching. See the databaseMapping property.Try out the new hostnameMapping feature (beta), to map database, schema, or system names that were returned by the Tableau APIs to the actual names of the assets in Data Catalog. When the beta period ends and the
hostnameMapping is generally available, the databaseMapping section and the databases sub-section of the collibraSystemNames section will be deprecated.Define in which domains in Collibra you want to ingest assets from your Tableau sites and projects. See the domainMapping and filters properties.<source ID> refers to the value of the Id property in the lineage harvester configuration file. . { collibraSystemNames: { databases: [{ hostName: database-hostname, collibraSystemName: public }], files: [{filePath: C:\\ProgramData\\Tableau\\Tableau Server\\data\\files\\sample.xls, collibraSystemName: sample-files }], connectors: [{ connectorUrl: tableau-server-connector-url.com, collibraSystemName: Oracle-connector }], cloudFiles: [{ name: file-name, collibraSystemName: FILE }] }, databaseMapping: { <hostname:port>:<actual database name> }, filters: { sites:{ site_name:domain_id }, projects:{ site_name2 > project_name2: domain-reference-id2, site_name3 > project_name3 > subproject_name: domain-reference-id2 } } } . { collibraSystemNames: { databases: [{ hostName: database-hostname, collibraSystemName: public }], files: [{filePath: C:\\ProgramData\\Tableau\\Tableau Server\\data\\files\\sample.xls, collibraSystemName: sample-files }], connectors: [{ connectorUrl: tableau-server-connector-url.com, collibraSystemName: Oracle-connector }], cloudFiles: [{ name: file-name, collibraSystemName: FILE }] }, databaseMapping: { <hostname:port>:<actual database name> }, domainMapping: { <Site-1>: reference-id-of-Domain-1, <Site-1> > <Project-Default>: reference-id-of-Domain-2 } } Example <source ID> configuration file { collibraSystemNames: { databases: [{ hostName: database-hostname, collibraSystemName: public }], files: [{filePath: C:\\ProgramData\\Tableau\\Tableau Server\\data\\files\\sample.xls, collibraSystemName: sample-files }], connectors: [{ connectorUrl: tableau-server-connector-url.com, collibraSystemName: Oracle-connector }], cloudFiles: [{ name: file-name, collibraSystemName: FILE }] }, databaseMapping: { <hostname:port>:<actual database name> }, filters: { sites:{ site_name:domain_id }, projects:{ site_name2 > project_name2: domain-reference-id2, site_name3 > project_name3 > subproject_name: domain-reference-id2 } } } StepsCreate a new JSON file in the lineage harvesterconfig folder.Give the JSON file the same name as the value of the Id property in the lineage harvesterconfiguration file. If the value of the Id property in the lineage harvester configuration file is tableau-source-1, then the name of your JSON file should be tableau-source-1.conf.Your JSON file must have the file extension .conf.For each database in Tableau, add the following content to the JSON file:You can use wildcards to capture multiple string combinations for any of these properties.Show me the supported wildcardsPatternDescription*Matches everything.?Matches any single character.[seq]Matches any character in seq.[!seq]Matches any character not in seq.PropertyDescriptioncollibraSystemNamesThis section contains the system information for different Tableau data sources. Depending on the kind of data source or connection, you have to specify how to connect to this data source.For more information, see the Tableau documentation. We also recommend to check the list of supported connectors in Tableau.hostnameMappingThis section allows you to map Tableau technical database, server and schema names to the respective real names, to preserve stitching.This section replaces the following deprecated properties, and should not be used in combination with either of them:The databaseMapping property.The databases sub-section of the collibraSystemNames section.If you use the hostnameMapping section, you can still use the collibraSystemName property in conjunction with the files, connectors or cloudfiles sub-sections.Nofound_dbname=<database name>;found_hostname=<server name>;found_schema=<schema name>The database information of supported data sources in Tableau that is typically collected by the lineage harvester. It allows you to specify the name of the database (found_dbname), on which server a database is running (found_hostname), and optionally, the name of the schema (found_schema).NodbnameThe name of the database of a supported data source in Tableau.NoschemaThe name of the default schema of a supported data source in Tableau. If the lineage harvester fails to find a specific schema, it uses the default schema.NodialectThe dialect of the supported data source in Tableau.You don't have to specify a dialect; it will automatically be detected. If, however, you are using a dialect that is not supported, you can use this property to specify a supported dialect that is a close comparison. That way, most of your queries will be detected and processed.You can enter one of the following values:redshift, for an Amazon Redshift data source.azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.greenplum, for a Greenplum data source.hive, for a HiveQL data source.oracle, for an Oracle data source.postgres, for a PostgreSQL data source.mssql, for a Microsoft SQL Server data source.mysql, for a MySQL data source.netezza, for a Netezza data source.hana, for a SAP HANA data source.spark, for a Spark SQL data source.sybase, for a Sybase data source.teradata, for a Teradata data source.NocollibraSystemNameThe system or server name of the database.The value of this property must exactly match the name of your System asset in Collibra.NodatabasesThis property is deprecated. We recommend that you use the hostnameMapping section, instead. You cannot use this property in conjunction with the hostnameMapping section.This section contains connection information to one or more databases in Tableau.If you do not have databases in Tableau, you can remove this section.The values that you specify for this property are not case-sensitive.hostNameThe host name of the database.collibraSystemNameThe system name of the database.If you set the useCollibraSystemName property to true in your lineage harvester configuration file, but you either don't create a <source ID> configuration file, or don't specify a value for the collibraSystemName property in your <source ID> configuration file, the system name in the technical lineage is DEFAULT.How do I configure this property if I have two databases with the same name?Let's assume you have two databases named Customers. When you prepare the physical data layer in Data Catalog, you create a System asset for each of these databases. Let's say you named them Customers-Europe and Customers-USA. You can then configure this property as follows. collibraSystemNames: { databases: [{ hostName: database-hostname-1, collibraSystemName: Customers-Europe }, { hostName: database-hostname-2, collibraSystemName: Customers-USA }], The value of this property must exactly match (including for case-sensitivity) the name of your System asset in Collibra.filesThis section contains connection information to one or more files in Tableau.If you do not have files in Tableau, you can remove this section.filePathThe full path to the file. For example, the path to a JSON file.collibraSystemNameThe system name of the file.connectorsThis section contains connection information to one or more connectors in Tableau.If you do not have connectors in Tableau, you can remove this section.The values that you specify for this property are not case-sensitive.connectorUrlThe URL of the connector. For example, the URL to Google Analytics.collibraSystemNameThe system name of the connector.cloudFilesThis section contains connection information to one or more cloud files in Tableau's input data.If you do not have cloud files in Tableau, you can remove this section.nameThe name of the file. For example, the name of a Zendesk file.collibraSystemNameThe system name of the cloud file.databaseMappingThis property is deprecated. We recommend that you use the hostnameMapping section, instead. You cannot use this property in conjunction with the hostnameMapping section.The Tableau API returns a technical database name based on the hostname, instead of the actual database name, which breaks stitching. The values that you specify for this property are not case-sensitive.This property allows you to map a Tableau technical database name to the real database name, for example: databaseMapping: { <hostname:port>:<actual database name> }Including the port, as shown in the example, is optional.filtersThis section defines:From which Tableau sites and projects you want to harvest metadata.Into which domains in Collibra you want to ingest the corresponding assets.Filtering is transitive, which means that all resources in a specified project, such as Tableau workbooks and all sub-projects, are ingested. Tableau assets that are not mapped to the specified domains, for example the Tableau Server assets and the parent projects (if you specify their sub-projects), are ingested in the default domain.Filtering does not affect the amount of raw metadata that is harvested from Tableau and sent to the Collibra Data Lineage service instance. Rather, it determines which metadata is ingested as assets in Data Catalog.The domainMapping and filters sections are mutually exclusive. Do not include both domainMapping and filters sections in your JSON file. If you want to ingest all of the projects in a Tableau site into multiple domains in Collibra, use the domainMapping section.If you want to ingest all of the projects in a Tableau site into the default domain, use only the domainID property in the lineage harvester configuration file. The domainID property represents the default domain.If you want to ingest all of the projects in a Tableau site into a single domain in Collibra, use site
filtering.If you want to ingest metadata from only some of the projects in a Tableau site, use project filtering.You can use site filtering and project filtering together:If filtering on the same site, this filtering is actually domain mapping, because nothing is filtered out. The contents of the projects are ingested in the specified domains, and the rest of the contents of the site are ingested in a different, specified domain.If you are site filtering on a specific site and project filtering a different site, then site filtering is again a form of domain mapping, and the filtered projects are ingested in their specified domains.If your lineage harvester configuration file includes sites that are not mentioned in the filters section of your <source ID> configuration file, those sites are ingested in the default domain.sitesThe Tableau sites to be ingested and the domain in which you want to ingest metadata from the Tableau sites.If you have only one Tableau site, do not include a sites section in your <source ID> file. Instead, use a projects section, to filter on Tableau projects. Include a sites section only if all of the following are true:You have more than one Tableau site.You want to ingest all of the metadata from only one Tableau site into a single domain in Collibra.The domain into which you want to ingest is not the default domain, meaning the domain specified in the domainId property in your lineage harvester configuration file.site_name: domain_idsite_nameThe name of the site to be ingested. The site name is case-sensitive. domain_id The unique reference ID of the domain in Collibra in which you want to ingest metadata. The domain ID is case-sensitive. To ingest all metadata from a Tableau site in the specified domain, specify the site name and a separate domain ID for each site that you list on the siteIds property in the lineage harvester configuration file for Tableau. If the site_name or domain_id property is not specified for a site, the metadata from the site is ingested in the default domain. How do I find a domain reference ID?Open the relevant domain in Collibra. The URL looks like: https://<yourcollibrainstance>/domain/22258f64-40b6-4b16-9c08-c95f8ec0da26?view=00000000-0000-0000-0000-000000040001. In this example, the reference ID is in bold.Show me the example { filters:{ sites:{ Training:ca60b822-781b-4b3a-b44d-f65bd107ff92 }, projects:{ Testing > Databricks:e8f4e4a8-4062-4a33-9b44-3ce3e18e4e22, Product Demo > Customer Insights:a305e6f7-7a49-49aa-aa85-41b1e689121b } } }projectsThe Tableau projects to be ingested and the domain in which you want to ingest metadata from the Tableau projects or sub-projects.Project filtering is not relevant for those who have an Explorer role in Tableau, because Explorers need to configure permissions for each data object in Tableau that they want to ingest. As the Administrator role has access to all data objects, project filtering allows Administrators to specify which projects to ingest.site_name > project_name : domain_idThe site_name should be the Tableau site name. The project_name should be the Tableau project name. The domain_id should be the unique reference ID of the domain in Collibra in which you want to ingest metadata.When you specify the site and project names, the following rules apply:Add spaces before and after >. The spaces are separators between the site and project.Specify the full exact site and project names. The values are case-sensitive. When you specify a Tableau project, all assets in the project are ingested in the specified domain. If you want to ingest assets from different Tableau projects in one domain, you can specify the same value for domain id for different projects. ExampleCollibra_tab_partner_site > JB_Test_2812: d224a1a5-43b4-43b2-8df0-ddf8f2726b82site_name > project_name > sub-project_name : domain_idThe site_name should be the Tableau site name. The project_name should be the Tableau project name. Optionally, use sub-project_name to specify the Tableau sub-project name. The domain_id property should be the unique reference ID of the domain in Collibra in which you want to ingest metadata.When you specify the site, project and sub-project names, the following rules apply:Add spaces before and after >. The spaces are separators between the site and project.Specify the full exact site and project names. The values are case-sensitive. ExampleCollibra_tab_partner_site > JB_Test_2812 > ProjectJJ2: d224a1a5-43b4-43b2-8df0-ddf8f2726b82domainMappingThis section defines in which domains in Collibra you want to ingest assets from your Tableau sites and Tableau projects.Domain mapping is transitive, meaning that all resources, such as Tableau workbooks and data attributes in a parent Tableau site, project or sub-project, are ingested in the same domain as the parent.The domainMapping and filters sections are mutually exclusive. Do not include both domainMapping and filters sections in your JSON file. If you want to ingest all of the projects in a Tableau site into multiple domains in Collibra, use this domainMapping section.If you want to ingest all of the projects in a Tableau site into the default domain, use only the domainID property in the lineage harvester configuration file. The domainID property represents the default domain.Tableau assets that are not mapped to specific domains via this domainMapping section, for example Tableau Server assets, are ingested in that default domain.If you want to ingest all of the projects in a Tableau site into a single domain in Collibra, use site filtering.If you want to ingest metadata from only some of the projects in a Tableau site, use project filtering.Show me an exampleLet's say that you have a Tableau site named Site-1. You want to ingest all Tableau projects in Site-1 in a domain named Domain-1 in Collibra, with the exception of one Tableau project named Project-Default, which you want to ingest in Domain-2. You should configure the domainMapping section as follows. domainMapping: { <Site-1>: reference-id-of-Domain-1, <Site-1> > <Project-Default>: reference-id-of-Domain-2 }If you want to specify a domain for a sub-project of Project-Default, use the <site name> > <project name> > <sub-project name> property, as described below.For the properties in this domainMapping section, ensure that you maintain the spaces before and after >, for example Site-1 > Project-Default. The spaces serve as a separator between the site and the projects.site nameThe Tableau site name, followed by the unique reference ID of the domain in Collibra in which you want to ingest resources from the Tableau site.In the configuration file, use the actual site name, along with the domain reference ID, for example: Collibra_tab_partner_site: afc8cfb0-91f1-4075-a3e5-7ce6d1f9bcc9site name > project nameThe Tableau project name, preceded by the name of the Tableau site to which it belongs, and followed by the unique reference ID of the domain in Collibra in which you want to ingest resources from the Tableau project.In the configuration file, use the actual site and project names, along with the domain reference ID, for example: Collibra_tab_partner_site > JB_Test_2812: d224a1a5-43b4-43b2-8df0-ddf8f2726b82site name > project name > sub-project nameThe Tableau sub-project name, preceded by the name of the Tableau site and project to which it belongs, and followed by the unique reference ID of the domain in Collibra in which you want to ingest resources from the Tableau sub-project.In the configuration file, use the actual site, project and sub-project names, along with the domain reference ID, for example: Collibra_tab_partner_site > JB_Test_2812 > ProjectJJ2: d224a1a5-43b4-43b2-8df0-ddf8f2726b82Save the <source ID> configuration file.Harvesting materialized views that were generated via an external scriptThe lineage harvester can harvest materialized views that are native to a data source—meaning the data flow is performed by SQL code stored in the data source. If, however, an external script is used to materialize views into tables, so to speak, they cannot be harvested by the lineage harvester. In this case, you could create a custom technical lineage, which requires a user-defined JSON file.We recommend creating a script to generate a list of SQL queries to be harvested by the lineage harvester.For each pair of source (view) and target (materialized view table), create a script as follows: INSERT INTO 'dhw.sales.mv_customers' SELECT * FROM 'dhw.sales.v_customers';The generated SQL queries then need to be harvested by the lineage harvester. There are two options for this, depending on where you choose to store the generated SQL code: If you store the SQL code in text files, it is harvested using an additional SqlDirectory type source. If you store the SQL code in a table in the data source, you need to modify the harvesting query, to harvest the table. In this case, actually, the generated SQL queries don't have to be stored anywhere; rather, they are generated on the fly by a harvesting query. Modify the harvesting query as follows: SELECT t.table_name, t.ddl as sourceCode, CONCAT(t.table_schema, '.', t.table_name) as groupName, t.table_schema as schemaName FROM `##PROJECT_ID##`.`##DSNAME##`.`INFORMATION_SCHEMA.TABLES` t WHERE t.table_type IN ('MATERIALIZED VIEW','VIEW') UNION ALL SELECT CONCAT('m', t.table_name), CONCAT('INSERT INTO `m', t.table_name, '` SELECT * FROM `', t.table_name, '`') as sourceCode, CONCAT('Generated m', t.table_schema, '.', t.table_name) as groupName, t.table_schema as schemaName FROM `##PROJECT_ID##`.`##DSNAME##`.`INFORMATION_SCHEMA.TABLES` t WHERE t.table_type IN ('VIEW') AND STARTS_WITH(t.table_name, 'v_') The second SELECT generates the necessary INSERT INTOs for all views in your data source that have a name starting with v_.Manage technical lineage ingestionYou can create a customized SQL file to manage which data objects, for example columns
and tables, are ingested in the technical lineage. In the SQL file, you can exclude data objects or change queries that are used to extract data from the database. You specify:Which data objects you want to visualize in the technical lineage.Between which columns you want to create new relations of the type Data Element targets / sources Data Element in Data Catalog.If you change queries, you can only use supported SQL syntax.Collibra Support does not provide support for customized SQL files. StepsOpen the lineage harvester folder.Go to the sql folder and open the folder of the data source type of which you want to exclude tables or schemas or change queries.Create a copy of the file you want to edit.Rename the copy to [original name]-custom.sql. You want to change the file columns.sql, so you name the copy of this file and rename it to columns-custom.sql.Delete or edit the content of the new SQL file to include or exclude specific tables or schemas or change specific queries in the file.Save the new SQL file. The lineage harvester uses the new file and ignores the old one.Run the lineage harvesterAfter you have prepared the lineage harvester configuration file, run the lineage harvester to create the technical lineage. Before you beginIf you use a proxy server, connect to the proxy server. For more information, go to Connecting to a proxy server.Requirements and permissionsCollibra Data Intelligence Cloud.You have purchased Collibra Data Lineage.A global role with the following global permissions:Catalog, for example Catalog AuthorData Stewardship ManagerManage all resourcesSystem administrationTechnical lineageA resource role with the following resource permissions on the community level in which you created the domain: Asset: addAttribute: addDomain: addAttachment: addNecessary permissions to all database objects that the lineage harvester accesses.StepsStart the lineage harvester by entering the full-sync command. To process data from all data sources in the configuration file: For windows:.\bin\lineage-harvester.bat full-syncFor other operating systems:./bin/lineage-harvester full-sync To process data from specific data sources in the configuration file: For windows:.\bin\lineage-harvester.bat full-sync -s ID of the data sourceFor other operating systems:./bin/lineage-harvester full-sync -s ID of the data sourceIf you have Snowflake data sources in your lineage harvester configuration file, set the JAVA_OPTS environment variable first. For example, to process data from all data sources including the Snowflake data sources, take the following steps: On Windows Enter one of the following commands:If you use OpenJDK 16: set JAVA_OPTS=-Djdk.module.illegalAccess=permitIf you use OpenJDK 17 or higher: set JAVA_OPTS=--add-opens=java.base/java.nio=ALL-UNNAMED In the same command line, enter the following command:.\bin\lineage-harvester.bat full-syncThe set command is specific to the Windows Command Shell. The command is different if you are using PowerShell.On LinuxEnter the following command:If you use OpenJDK 16: JAVA_OPTS=-Djdk.module.illegalAccess=permit ./bin/lineage-harvester full-syncIf you use OpenJDK 17 or higher: JAVA_OPTS=--add-opens=java.base/java.nio=ALL-UNNAMED ./bin/lineage-harvester full-syncFor more information, see Lineage harvesting app command options and arguments. When prompted, enter the passwords to connect to Collibra and your data sources. Do one of the following: Enter the passwords in the console.The passwords are encrypted and stored in /config/pwd.conf.Provide the passwords via command line.The passwords are stored locally and not in your lineage harvester folder.What's nextThe lineage harvester sends the data source information to the Collibra Data Lineage service by using Collibra REST API, where it is parsed and analyzed. As a result, the technical lineage is created and shown in Data Catalog. You can view the technical lineage. For more information, go to Technical lineage viewer.You can check the progress of the technical lineage creation in Activities in your Collibra Data Intelligence Cloud environment. The Results field indicates how many relations were imported into Data Catalog. Go to the status page to see the log files of the SQL analysis.If the lineage harvester log shows an error message or the harvesting process fails, you can use the technical lineage troubleshooting guide or Collibra Support Portal to fix the error.If you want to synchronize the data sources on fixed times, you can use scheduled jobs.Schedule jobsYou can use Task Scheduler on Windows or Crontab on Mac and Linux to make the lineage harvester run scheduled jobs at specific times, dates or intervals. In a scheduled job, the lineage harvester uploads data source information to the Collibra Data Intelligence Cloud and Data Catalog automatically creates new relations of the type Data Element sources / targets Data Element Between data objects in your data source and assets from registered data sources. Between ingested assets from BI sources and Data Catalog assets from registered data sources. You can run one scheduled job for each data source that is listed in the same configuration file. If you provide the passwords to your Collibra environment and/or to your individual data sources via stdin, you have to use the correct command.You created a configuration file with two data sources. Data source A can run a scheduled job each day at 11 pm, while data source B can run a scheduled job every two days at 6 am.Upgrade the lineage harvesterEach new lineage harvester adds features and enhancements to the previous version. We highly recommend that you always use the newest lineage harvester available.If you have created a technical lineage using an older lineage harvester, you can easily upgrade to the newest lineage harvester and reuse your configuration file.For a list of differences between lineage harvester versions, see the lineage harvester change log.StepsDownload the newest lineage harvester from the Collibra Downloads page. To log in to the Collibra Downloads page, use your Collibra.com username and password. Install the lineage harvester and a new lineage harvester folder is created. Copy all files from your config folder in the old lineage harvester folder to the config folder in the new lineage harvester folder.All files, including the pwd.conf and lineage-harvester.conf files, are in the config folder in the new lineage harvester folder.In the config folder, open the lineage-harvester.conf file to check if there are other auxiliary files to be moved to the new lineage harvester folder. If needed, copy those files from the old lineage harvester folder to the new lineage harvester folder. Those files can be the custom technical lineage JSON file, the Informatica Intelligent Cloud Services <source ID> configuration file, the Matillion <source ID> configuration file, and so on.If you have customized SQL files that end with -custom.sql in the sql folder in the old lineage harvester folder, complete the following steps: Compare the original SQL files before customization with the SQL files in the new lineage harvester folder. For example, if you have a customized SQL file named access_history-custom.sql, compare the access_history.sql file in the old lineage harvester folder with the access_history.sql file in the new lineage harvester folder.Take any of the following actions: If the SQL files are identical, copy the customized SQL files from the old lineage harvester folder to the new lineage harvester folder. If the SQL files are not the same, complete the following steps:Create new SQL files that end with -custom.sql in the new lineage harvester folder based on the SQL files in the new lineage harvester folder. Review the customizations in the customized SQL files in the old lineage harvester folder, and make the same customizations to the newly created customized SQL files in the new lineage harvester folder. Take the access_history-custom.sql file as an example, and the customization in the access_history-custom.sql file was to change the database.schema from SNOWFLAKE.ACCOUNT_USAGE to MYDB.ACCOUNT_USAGE. Compare the following files: lineage-harvester-OLD/sql/snowflake/access_history.sqllineage-harvester-NEW/sql/snowflake/access_history.sql Take any of the following steps: If the access_history.sql files are identical, copy the access_history-custom.sql file from lineage-harvester-OLD/sql/snowflake to the lineage-harvester-NEW/sql/snowflake directory.If the access_history.sql files are not the same, complete the following steps: Create an access_history-custom.sql file in the lineage-harvester-NEW/sql/snowflake directory by copying the content of the lineage-harvester-NEW/sql/snowflake/access_history.sql file to the new access_history-custom.sql file. Customize the new access_history-custom.sql file by changing the database.schema from SNOWFLAKE.ACCOUNT_USAGE to MYDB.ACCOUNT_USAGE.Beginning with the lineage harvester version 2023.02, the SQL file that was named access_history_lineage_query_text.sql has been renamed to access_history.sql.Use the full-sync command to synchronize all data sources in your configuration file. The lineage harvester synchronizes your data sources on the Collibra Data Lineage service and refreshes your technical lineage.What's nextYou can check the progress of the technical lineage creation in Activities in your Collibra Data Intelligence Cloud environment. The Results field indicates how many relations were imported into Data Catalog. Go to the status page to see the log files of the SQL analysis.If the lineage harvester log shows an error message or the harvesting process fails, you can use the technical lineage troubleshooting guide or Collibra Support Portal to fix the error.Delete the technical lineage of a data sourceYou can delete the technical lineage of a data source if you no longer want to see it in the
technical lineage graph. To delete the technical lineage of the data source, you must remove the configuration of the data source from the lineage harvester configuration file and use the ignore-source command to exclude the data source when you synchronize the technical lineage again. You always need at least one source in your lineage harvester configuration file. Before you beginInstall the lineage harvester 2023.04 or newer. StepsOptional: To determine the data source that you want to exclude from the Technical lineage, enter the list-sources command: For Windows: .\bin\lineage-harvester.bat list-sourcesFor other operating systems: ./bin/lineage-harvester list-sourcesAll data sources that were used to create the technical lineage are listed. The list also includes the source ID of each data source. You can use the list to identify the data source to be excluded. In the lineage harvester folder, open your lineage harvester configuration file.Delete the section with connection properties of the data source.Save the configuration file.Start the lineage harvester in the console and run the following command to ignore the data source: For Windows: .\bin\lineage-harvester.bat ignore-source <source_ID>, where <source_id> is the ID of the data source that you want to ignore.For other operating systems: ./bin/lineage-harvester ignore-source <source_ID>, where <source_id> is the ID of the data source that you want to ignore.The data source is excluded from the list of data sources that are used to create the technical lineage.Synchronize the technical lineage by running any of the following commands: The sync command: For Windows: .\bin\lineage-harvester.bat syncFor other operating systems: ./bin/lineage-harvester syncThe full-sync command: For Windows: .\bin\lineage-harvester.bat full-syncFor other operating systems: ./bin/lineage-harvester full-syncFor more information, go to Typical command options and arguments.When prompted, enter the password to connect to your Collibra Data Intelligence Cloud and data sources in the configuration file.The lineage harvester uploads the metadata of the remaining data sources in the configuration file to the Collibra Data Lineage service.The Collibra Data Lineage service synchronizes the technical lineage and removes the deleted data source from the technical lineage graph.What's nextYou can view the technical lineage. For more information, go to Technical lineage viewer.You can check the progress of the technical lineage creation in Activities in your Collibra Data Intelligence Cloud environment. The Results field indicates how many relations were imported into Data Catalog. Go to the status page to see the log files of the SQL analysis.If the lineage harvester log shows an error message or the harvesting process fails, you can use the technical lineage troubleshooting guide or Collibra Support Portal to fix the error.Custom technical lineage via the lineage harvesterYou can create a custom technical lineage to include metadata of data sources that the lineage harvester does not support or add functionality that is not supported.To create a custom technical lineage, define the custom technical lineage in a JSON file and refer to the JSON file in the lineage harvester configuration file. The lineage harvester generates a technical lineage based on your definition in the JSON file. You can create the following custom technical lineages: A simple custom technical lineage, which defines a basic object hierarchy and creates a lineage between two or more data objects.An advanced custom technical lineage, which contains a simple custom technical lineage and uses separate source code files that define lineage transformations to create the lineage.You can use the custom technical lineage as your only lineage source. You can also combine custom technical lineage with other lineage sources. For example, you can configure the lineage harvester to collect data objects from Oracle, Tableau and the custom technical lineage definition in the JSON file. For steps to create a custom technical lineage by using the lineage harvester, go to Create custom technical lineage. For steps to create a custom technical lineage on Edge, go to Create a technical lineage via Edge.ExampleYou want to create a technical lineage that shows relations between tables and columns from system A and system B, to system C, to system D (A and B -> C -> D). System A, B and D are supported data sources, but system C is a custom application. You can create a JSON file that contains the metadata of system C and generate the following technical lineage graph.Creating custom technical lineage via lineage harvesterThis topic is an overview of steps to create a custom technical lineage. Before you beginSet up the latest lineage harvester. To stitch the data objects of your data sources with Data Catalog assets, prepare the Data Catalog physical data layer for technical lineage. When you prepare the Data Catalog physical data layer, you must register your data sources in Data Catalog and use a structure that matches the structure of ingested assets in Data Catalog. Determine whether you want to create a simple or advanced custom technical lineage.Requirements and permissionsA global role with the following global permissions:Manage all resourcesSystem administrationA resource role with the following resource permission on the community level in which you created the BI Data Catalog domain: Asset: addAttribute: addDomain: addAttachment: addStepsCreate a custom technical lineage JSON file.Configure the lineage harvester for the custom technical lineage.Run the lineage harvester. Create a custom technical lineage JSON fileTo create a custom technical lineage, create a JSON file that defines the custom technical lineage, refer to the JSON file in the lineage harvester configuration file, and run the lineage harvester. StepsCreate a local folder.Create a JSON file in the local folder and name the JSON file lineage.json. The JSON file must be named as lineage.json; otherwise, the process fails. You can have other types of files in this folder. If you want to create an advanced custom technical lineage, store all of the source code files that you want to reference in the JSON file in the same local folder. For more information about the simple and advanced custom technical lineage, go to Custom technical lineage via the lineage harvester. Specify the JSON file to define a simple or an advanced custom technical lineage. For details about the JSON file, go to Custom technical lineage JSON file and Custom technical lineage JSON file examples. What's nextConfigure the lineage harvester and refer to this JSON file in the lineage harvester configuration file. Custom technical lineage JSON fileIn the lineage.json file, you can define a basic data object hierarchy, a lineage between two or more data objects and transformations that create the custom technical lineage. The following sections in the JSON file define different parts in the resulting Collibra technical lineage graph:tree, which defines the data object hierarchy. The data objects are shown as nodes in the technical lineage graph.lineages, which defines the lineage relation. The lineage relations are shown as edges in the technical lineage graph. The edges represent the data flow from a source to a target.codebase_files, which points to transformation definitions in a source code file.If you want to create a simple custom technical lineage, specify the tree and lineages sections. You can add the transformation code in the lineages section. If you want to create an advanced custom technical lineage, specify the tree, lineages and codebase_files sections. Add references to transformation code in source code files in the codebase_files section. Transformation code in both simple and advanced custom technical lineages is displayed at the bottom part of the Collibra technical lineage graph. Requirements and restrictionsThe source code files must be in the same directory as the lineage.json file. Otherwise, an error occurs indicating that the lineage harvester cannot find the source code files. SectionsSectionsDescriptionversionThe version of the JSON architecture. Specify the value of 1.0, which is the only supported version. treeThis section contains tree definitions of data objects between which lineages can be defined. The data objects are systems, databases, schemas, tables, views, columns, dashboards and reports. Each node of a tree contains the name, type and optionally children or leaves properties which form a hierarchy of data objects. You must define a node only once in this section. With the nested tree format, you can reuse the properties of one node for multiple children. For example, you can define a database once and use the children array to define multiple tables in the database.Usually, the structure you map is the following: system > database > schema > table > column. The system is optional, unless the useCollibraSystemName property is set to true in the lineage harvester configuration file. Collibra Data Lineage can stitch these data objects to assets in Data Catalog. However, you can also map custom objects, for example dashboards and reports. Custom objects cannot be stitched to assets in Data Catalog.lineagesThis section contains the path from a source to a target and defines the transformation code or transformation references to be processed by the Collibra Data Lineage service.codebase_filesThis optional section defines the reference to source code files. Store the source code files that contain the transformation code in the same directory as the lineage.json file.Include this section only when you create an advanced custom technical lineage.tree section propertiesPropertiesDescriptionnameThe name of your data object. Specify this property with the system name, database name, schema name, table name, view name or column name. The following rules
apply when you specify this property: The names are case sensitive.The names of children and leaves can be identical if the children and leaves with the same names are in different parent nodes.typeThe type of your data object. You can specify one of the following options: system, database, schema, table, view, column, dashboard or report. If the useCollibraSystemName property in the lineage harvester configuration file for custom technical lineage is set to true, the system data object is used to stitch to the System asset in Data Catalog. If the useCollibraSystemName property is set to false, the system data object is not used for stitching.childrenThe sub-objects that have a hierarchical relation to the defined data object. Each child can contain children properties, except for the penultimate child. The penultimate children property must contain the leaves property. The leaves property cannot contain a children property. For example, you can use the children property to define a table and use the leaves properties to define columns that have a relation to the table node. Each child and leave have the name and type properties and the optional catalog_fullname, catalog_domain_id, catalog_asset_type_name and catalog_asset_type_uuid properties.leavesThe sub-objects of an object that is defined in a children property, but cannot have sub-objects of their own. A technical lineage is defined as relations between leaf nodes of the tree. The value of the type property of the leaves property must be column or report. Indirect and table-level technical lineages are not supported. For the workarounds to create a table level or indirect technical lineage, see Programming considerations.lineage section propertiesPropertiesRequiredDescriptionsrc_pathYesThe hierarchical path to the source data object. This data object is defined as a leaf in the tree section.This property represents where the data comes from for a transformation. trg_pathYesThe hierarchical path to the target data object. This data object is defined as a leaf in the tree section.This property represents where the data flows to. <data objects>YesAn ordered array of data object names. This array is required to define the sub-objects of the src_path and trg_path properties.Specify the array with the data object names that start from the top of the tree section and finish at a leaf node. This example shows data objects that can be stitched: system > database > schema > table > column.This example shows data objects that cannot be stitched: dashboard > report > column. If the useCollibraSystemName property in the lineage harvester configuration file for custom technical lineage is set to true, the system data object is used to stitch to the System asset in Data Catalog. If the useCollibraSystemName property is set to false, the system data object is not used for stitching.mappingYesSimple custom technical lineage onlyThe mapping name. This property specifies a name for the transformation code.source_codeYesSimple custom technical lineage onlyThe transformation code, which determines how the technical lineage is constructed. The transformation code can be a descriptive string or a SQL statement that manipulates data.mapping_refNoAdvanced custom technical lineage onlyThis property contains the name of the mapping reference to the transformation code in source code files. This property also contains the position and length of the transformation code to be highlighted in the technical lineage graph. source_codeNoAdvanced custom technical lineage onlyThe name of the source code file that contains the transformation code. The transformation code can be a SQL statement, code that manipulates data or a descriptive string. The source code file must be in the same directory as the lineage.json file.mappingNoAdvanced custom technical lineage onlyThe unique descriptor of a part of transformation code in a source code file that is in the same directory as the lineage.json file.A source code file can contain different parts of transformation code that represent different data flows. This property indicates the referenced data flow. The value of this property is the same as the value of the mapping_refs property in the codebase_files section.codebase_posNo Advanced custom technical lineage onlyThe positions indicate a string of the transformation code in a source code file to be highlighted in the bottom part of the Collibra technical lineage graph. The whole lines that include the transformation code are highlighted. The string must be a subset of the string of the transformation code that is defined by the pos_start and pos_len properties of the mapping_refs property in the codebase_files section. pos_startNo Advanced custom technical lineage onlyThe start position of the string of the transformation code to be highlighted. The start position is in characters, not bytes. The value must be equal to or greater than the value of the pos_start property of the mapping_refs property in the codebase_files section. pos_lenNo Advanced custom technical lineage onlyThe length of the string of the transformation code to be highlighted. The length is in characters, not bytes. Specify a value in the following range:Equal to or greater than 1.Less than or equal to the length of the string that is defined by the pos_len property of the mapping_refs property in the the codebase_files section. For example, if you specify pos_start: 10 and pos_len: 160 in the codebase_files section, specify a value for this property in the range of 0 - 149. codebase_files section propertiesPropertiesDescription<source code path>The file path to source code files that contain the transformation code. The transformation code can be a SQL statement or code that manipulates data. The source code file must be in the same directory as the lineage.json file.mapping_refsThe mapping of the transformation code and the position of the transformation code that is shown in the bottom part of the technical lineage graph. This property defines a string of the transformation code in the source code file to be shown in the technical lineage graph. The string must include the string that is defined by the pos_start and pos_len properties of the mapping property in the lineage section.<mapping>The unique descriptor of a part of transformation code in a source code file that is in the same directory as the lineage.json file.A source code file can contain different parts of transformation code that represent different data flows. This property indicates the referenced data flow. The value must match the value of the mapping property in the lineage section.pos_startThe start position of the string of the transformation code. The start position is in characters, not bytes.Specify a value in the following range: Equal to or greater than 0.Less than or equal to the value of the pos_start property in the mapping property in the lineage section.pos_lenThe length of the string of the transformation code. The length is in characters, not bytes. Specify a value in the following range: Greater than or equal to 1. Less than or equal to the length of the source code file minus the start position. For example, if you specify pos_start: 10 and the file length is 160 characters, specify a value for this property in the range of 1 - 150. Programming considerationsCurrently, there is no native support for indirect and table-level lineages. As a workaround, you can specify type: column and name: * for the leaves property to create a table level or indirect technical lineage. With this specification, the indirect technical lineage is shown as a solid line instead of a dashed line in the Collibra technical lineage graph, and is always shown, regardless of whether or not the Show indirect dependencies option is enable or disabled.ExampleFor sample JSON files that define a simple custom technical lineage and an advanced custom technical lineage, see Custom technical lineage JSON file example.Custom technical lineage JSON file examplesThis topic shows example lineage.json files that create a simple custom technical lineage and an advanced custom technical lineage.Each example can be used to generate technical lineage graphs in Collibra to represent the IOT_JSON and IOT_DEVICES_PER_COUNTRY tables with the following columns:IOT_JSONIOT_DEVICES_PER_COUNTRYCCA3COUNTRYDEVICE_IDNUMBER_DEVICESSample JSON file for a simple custom technical lineage In the following example, the tree section defines the IOT_JSON and IOT_DEVICES_PER_COUNTRY tables and columns. The tables are in a schema named COLLIBRA. The COLLIBRA schema is in a database named COLLIBRA and a system named Databricks.If you define the System asset in your lineage.json file, the useCollibraSystemName property in your lineage harvester configuration file must be set to true; otherwise, relations will not be created between the relevant assets in Collibra.To show the transformation code at the bottom of the Collibratechnical lineage graph that uses a simple custom technical lineage, specify the mapping and source_code properties in the lineages section. { version: 1.0, tree: [{ name: Databricks, type: system, children: [{ name: COLLIBRA, type: database, children: [{ name: COLLIBRA, type: schema, children: [{ name: IOT_JSON, type: table, leaves: [{ name: CCA3, type: column }, { name: DEVICE_ID, type: column }] }, { name: IOT_DEVICES_PER_COUNTRY, type: table, leaves: [{ name: COUNTRY, type: column }, { name: NUMBER_DEVICES, type: column }] }] }] }] }], lineages: [{ src_path: [{ system: Databricks }, { database: COLLIBRA }, { schema: COLLIBRA }, { table: IOT_JSON }, { column: CCA3
 }], trg_path: [{ system: Databricks }, { database: COLLIBRA }, { schema: COLLIBRA }, { table: IOT_DEVICES_PER_COUNTRY }, { column: COUNTRY }], mapping: dev_no_bat_per_country_view, source_code: INSERT INTO ... SELECT CCA3 AS COUNTRY...FROM IOT_JSON }] }Sample JSON file for an advanced custom technical lineageIn the following example, the tree section defines the IOT_JSON and IOT_DEVICES_PER_COUNTRY tables and columns. The tables are in a schema named COLLIBRA. The COLLIBRA schema is in a database named COLLIBRA and a system named Databricks.If you define the System asset in your lineage.json file, the useCollibraSystemName property in your lineage harvester configuration file must be set to true; otherwise, relations will not be created between the relevant assets in Collibra. { version: 1.0, tree: [{ name: Databricks, type: system, children: [{ name: COLLIBRA, type: database, children: [{ name: COLLIBRA, type: schema, children: [{ name: IOT_JSON, type: table, leaves: [{ name: CCA3, type: column }, { name: DEVICE_ID, type: column }] }, { name: IOT_DEVICES_PER_COUNTRY, type: table, leaves: [{ name: COUNTRY, type: column }, { name: NUMBER_DEVICES, type: column }] }] }] }] }], lineages: [{ src_path: [{ system: Databricks }, { database: COLLIBRA }, { schema: COLLIBRA }, { table: IOT_JSON }, { column: CCA3 }], trg_path: [{ system: Databricks }, { database: COLLIBRA }, { schema: COLLIBRA }, { table: IOT_DEVICES_PER_COUNTRY }, { column: COUNTRY }], mapping_ref: { source_code: transforms.sql, mapping: dev_no_bat_per_country_view, codebase_pos: [{ pos_start: 71, pos_len: 69 }] } }], codebase_files: { transforms.sql: { mapping_refs: { dev_no_bat_per_country_view: { pos_start: 0, pos_len: 246 } } } } }Sample technical lineage graphsBoth example lineage.json files generate the following technical lineage graph, which contains 2 nodes and 1 edge.The following technical lineage graph is generated by using the example lineage.json file for an advanced custom technical lineage. The bottom part shows the transformation code that generated the data flow. In the lineages section, the pos_start property is specified with 71 and the pos_len property is specified with 69. The specifications indicate that the transformation code that starts at position 71 and the following 69 characters are highlighted in blue. Line 2 in the technical lineage graph contains the highlighted transformation code. Configure the lineage harvester for a custom technical lineageTo create a custom technical lineage, create a JSON file that defines the custom technical lineage, refer to the JSON file in the lineage harvester configuration file, and run the lineage harvester. StepsStart the lineage harvester to create an empty lineage harvester configuration file by entering the following command: Windows: .\bin\lineage-harvester.batFor other operating systems: chmod +x bin/lineage-harvester and then bin/lineage-harvesterAn empty configuration file is created in the config folder.Specify the lineage harvester configuration file and save the configuration file. For details about the configuration file, see Lineage harvester configuration file for the custom technical lineage.What's nextRun the lineage harvester. Lineage harvester configuration file for the custom technical lineageThe lineage harvester uses this lineage harvester configuration file to extract data from the metadata of the data sources that you want to process. When you run the lineage harvester for the first time, it creates an empty lineage harvester configuration file. You can manually add properties and values to the configuration file.If you want to create the technical lineage for multiple data sources, use the configuration file generator to create an example configuration file with different data sources, and update the example to match your data source information. Requirements and restrictionsIn the configuration file, you must use UTF-8 or ISO-8859-1 characters, with the exception of SQL files, which can only be UTF-8 encoded. Comments in the lineage harvester configuration file are not supported. Technical lineage supports the username and password authentication method for the custom technical lineage. Format{ general : { catalog : { url : , username : , }, useCollibraSystemName : false|ture }, sources : [{ type : ExternalDirectory, id : , dirType : custom-lineage, collibraSystemName : , path : , deleteRawMetadataAfterProcessing: false|true }] }PropertiesDescriptiongeneralDescribes the connection between Collibra Data Lineage and Data Catalog.catalogContains information that is necessary to connect to Data Catalog.Versions of the lineage harvester older than 1.1.2 show collibra instead of catalog.urlThe URL of your Collibra environment.Specify the public URL of your Collibra environment. Other URLs are not accepted.usernameThe username that you use to sign in Collibra.useCollibraSystemNameIndicates whether you want to use the system or server name of a data source to match to the System asset you created when you prepared the physical data layer. The names are case-sensitive. This is useful when you have multiple databases with the same name.Specify one of the following values: falseThe lineage harvester does not stitch the system or server name of your data source to the System asset in Data Catalog. This is the default value.trueThe lineage harvester reads the system or server names that you specify for the system data object in the tree and lineage sections in the custom technical lineage JSON file and stitches the names to the System assets in Data Catalog.Only specify this value when you have multiple databases with the same name. sourcesContains the required information to retrieve a custom lineage. Use this property to locate the JSON file that defines the custom technical lineage.If you want to create the technical lineage for multiple data sources, create a sources section for each data source. typeThe kind of data source. The value must be ExternalDirectory.idThe unique ID of your custom technical lineage. This property identifies the metadata that the lineage harvester processes. Specify this property with an unique string, for example, MyCustomLineage. dirTypeThe type of external directory. The value is custom-lineage.collibraSystemNameThe lineage harvester ignores this property for custom technical lineage.To use the system or server name of your data source to match the System asset in Data Catalog, specify the system data object in the tree and lineage sections in the custom technical lineage JSON file. pathThe full path to the folder of the custom technical lineage JSON file, for example C:\path\to\custom-lineage\dir.There must be only one JSON file that defines the lineage, and the JSON file must be named lineage.json. You can, however, add other files in the harvested directory and subdirectories and refer to those files from within the JSON file.deleteRawMetadataAfterProcessingThe lineage harvester harvests raw metadata from specified data sources and uploads it in a ZIP file to a Collibra Data Lineage service instance, for processing. You can use this optional property to specify whether or not the raw metadata should be deleted from Collibra Data Lineage service instance after the metadata that is targeted for ingestion in Data Catalog is processed.The default value is false.If the property is set to true, the raw source metadata is deleted after processing. If set to false, it is stored in the Collibra infrastructure. Setting this property to true can negatively impact performance. Example{ general : { catalog : { url : https://companydomain.collibra.com, username : my-Collibra-username, }, useCollibraSystemName : false }, sources : [{ id: MyCustomLineage, type: ExternalDirectory, dirType: custom-lineage, path”: “/path/to/custom-lineage/dir/, collibraSystemName: MySystemName }] }Working with BI toolsThis section addresses BI tool-speicifc integration concepts and tasks for Collibra Admins.BI tool ingestion workflowYou run the lineage harvester to start the BI tool ingestion workflow. When you initiate the integration, each workflow component performs the following actions: The lineage harvester: Communicates with your BI tool.Harvests the BI tool metadata that will be ingested into Data Catalog.Sends the metadata to the Collibra Data Lineage service instance.Collibra: Analyzes the metadata.Creates new assets and relations.Stitches existing assets in Data Catalog to BI assets.This does not apply to Looker, as stitching is currently not available for Looker integration.Imports new BI assets and their relations in Data Catalog.Data Catalog:Includes the new BI assets.Includes a technical lineage tab on the relevant BI asset pages.Shows stitching results between BI Column assets and Column assets.This does not apply to Looker, as stitching is currently not available for Looker integration.Prepare a domain for BI asset ingestionBefore you can ingest BI metadata, you have to designate a domain for storing the new BI assets. You can choose an existing domain or create one or more new domains. You then have to include the domain reference ID (or IDs) in the appropriate configuration file.The amount of domains into which you ingest assets differs according to your BI tool: Looker: You can designate one domain in the lineage harvester configuration file. However, you can also set up a filter in the <source ID> configuration file,
to ingest into different domains. MicroStrategy: You can ingest into one domain. Power BI: You can ingest into one or more domains. SSRS-PBRS: You can ingest into one domain. Tableau: You can ingest into one or more domains. PrerequisitesYou have a resource role with the Domain > Add resource permission.StepsOn the main toolbar, click .The Create dialog box appears.Click the Organization tab.Click a domain type from the list.If you clicked the wrong domain type here, you can change it in the Type field in the next screen.The Create Domain dialog box appears.Enter the required information.FieldDescriptionTypeThe domain type of the domain you are creating. In this case, you need to select BI Catalog.CommunityThe community under which the domain will be located.NameThe name of the new domain or domains.You can create multiple domains in one go. To do this, press Enter after typing a value and then type the next. Domain names have to be unique in their parent community. If you type a name that already exists, it will appear in strike-through style.Click Create.Open your domain. If you created multiple domains, open each of them in turn.Copy the reference ID of each domain you created. If you go to your domain, you can find the domain ID in the URL. The URL looks like: https://<yourcollibrainstance>/domain/22258f64-40b6-4b16-9c08-c95f8ec0da26?view=00000000-0000-0000-0000-000000040001. In this example, the domain ID is in bold. Paste the domain reference ID (or IDs) in the appropriate configuration file, depending on whether you want to ingest Tableau assets in a single domain or multiple domains. For complete information on which properties and which configuration files to use, see the domainId property description in the Prepare the lineage harvester configuration file topic for the relevant BI tool.What's next?Prepare the Data Catalog physical data layer.Working with TableauThis section addresses tasks and concepts that can be of interest to Collibra Admins who are working with Tableau.Tableau supported data sourcesTableau is business intelligence software that can integrate with various data sources. When you ingest Tableau metadata, Collibra Data Lineage tries to automatically stitch the metadata to data sources registered in Data Catalog. It also creates a technical lineage that shows where metadata is used and how it transforms.The following table shows the supported data sources in Tableau that have been tested, and whether or not technical lineage and stitching is supported for the data source. We cannot guarantee that stitching works as expected for other data sources or versions.If you use custom SQL that is not supported by the Tableau metadata API, the technical lineage might not be complete. For complete information, see the Tableau documentation on Tableau Catalog support for custom SQL and Tableau Lineage and custom SQL connections.If you use stored procedures, lineage is shown between the Tableau Data Source and the Tableau Worksheet, but the database information is missing, so stitching cannot be achieved.For stitching, you must correctly prepare the Data Catalog physical data layer.Data sourceVersionSupport for technical lineageSupport for stitchingAmazon Redshift1.2.34.1058 and newerYesYesAzure SQL serverNewest versionYesYesAzure SQL Data WarehouseNewest versionYesYesAzure Synapse AnalyticsNewest versionYesYesDremio20.0.0YesYesGoogle BigQueryNewest versionYesYesGreenplum6.10 and newerYesYesHiveQL (SQL-like statements)2.3.5 and newerYesYesIBM DB211.5 and newerYesYesOracle11g, 12c and newerYesYesPostgreSQL9.4, 9.5 and newerYesYesMicrosoft SQL Server2014, 2016 and newerYesYesMySQL5.7, 8 and newerYesYesNetezza7.2.1.0 and newerYesYesSAP HANA2.00.40 and newerYesYesSnowflakeNewest versionYesYesSpark SQL2.4.3 and newerYesYesSybase Adaptive Server Enterprise16.0 SP02 and newerYesYesTeradata15.0, 16.20.07.01 and newerYesYesTest your connectivity with the Tableau serverBefore you run the lineage harvester, you need to test your connectivity with the Tableau server.Connectivity requires authentication. The user/token that you intend to use to ingest Tableau assets must be able to authenticate to your Tableau APIs via the command line, from the server on which you intend to install and run the lineage harvester.As of October 2022, Tableau is enforcing multi-factor authentication for Tableau Cloud Admin users. However, the lineage harvester doesn’t support multi-factor authentication. Therefore, Tableau Cloud users with an Admin role must use token-based authentication. This does not affect Tableau Server users or Tableau Cloud users with an Explorer role.To ensure that you can authenticate and connect to the Tableau server, try the following procedures.Make the signin API call using a cURL command Create a JSON file called signin.json.The file should contain the following: For username/password authentication: { credentials: { name: YOUR_USER, password: YOUR_PASSWORD, site: { contentUrl: YOUR_SITE_ID } } } For personal token-based authentication: { credentials: { personalAccessTokenName: YOUR_TOKEN_NAME, personalAccessTokenSecret: YOUR_TOKEN_SECRET, site: { contentUrl: YOUR_SITE_ID } } } Test this on your machine by running the following command:curl https://YOUR_TABLEAU_URL/api/3.7/auth/signin -H Content-Type: application/json -X POST -d @signin.jsonTo test on a Windows machine, you need to:Download and install the cURL Command-Line Tool. In Windows, click Start > Run, and then enter cmd in the Run dialog box.Run the following command:curl https://YOUR_TABLEAU_URL/api/3.7/auth/signin -H Content-Type: application/json -X POST -d @signin.jsonCheck the login request that the lineage harvester sends to the Tableau serverRun the lineage harvester with the following parameters:bin/lineage-harvester load-sources -Dakka.http.client.log-unencrypted-network-bytes=1024 -Dakka.loglevel=DEBUGThis generates many logs. In the log file, search for “signin”. The entry for “signin” will resemble the following log snippet, in which the login request is shown between curly brackets {}: [DEBUG] [11/08/2021 14:03:18.411] [default-akka.actor.default-dispatcher-4] [akka.stream.Log(akka://default/system/StreamSupervisor-1)] [client-plain-text ToNet] Element: SendBytes ByteString(375 bytes) 50 4F 53 54 20 2F 61 70 69 2F 33 2E 37 2F 61 75 | POST /api/3.7/au 74 68 2F 73 69 67 6E 69 6E 20 48 54 54 50 2F 31 | th/signin HTTP/1 Verify that the request is the same as the one you used in the signin.json file.Tableau hostname, schema, and system name mappingTo achieve end-to-end lineage and stitching, Collibra Data Lineage must match the full names of data objects in a technical lineage and the full names of their corresponding assets in Data Catalog. However, there are several situations that can impede full-name matching. In such cases, you can include a hostnameMapping section in your Tableau <source ID> configuration file, to map the database, schema or system names that were returned by the Tableau APIs to the actual names of the assets in Data Catalog.This feature has been validated by several customers. It is in beta, however, because it represents a significant change in your Tableau <source ID> configuration file. The beta period gives you time to adopt the new feature, while we gather more feedback about its functionality.Mapping means changing the full name of data objects as they appear in a technical lineage, so that they match the full names of their corresponding assets in Data Catalog.The following example scenarios can impede full-name matching:Tableau can't derive the schema name. In this case, the schema name in the technical lineage is DEFAULT.You have schema-less external data sources, such as HiveQL, MySQL or Teradata. In this case, the database name in the technical lineage is also the schema name.You have a data access layer between Tableau and your external data source. In this case, Tableau might incorrectly interpret the data access layer as the database name, and the data source as the schema. You have data sources that are created based on tables from other data sources in Tableau. These data sources do not have schemas. The Tableau APIs returned a technical database or server name that is different than the real name of the database or server.This section replaces the following deprecated properties, and should not be used in combination with either of them:The databaseMapping property.The databases sub-section of the collibraSystemNames section.If you use the hostnameMapping section, you can still use the collibraSystemName property in conjunction with the files, connectors or cloudfiles sub-sections.For descriptions of these properties, go to the Tableau section in the Prepare a <source ID> configuration file topic.Example configurationsThe following configuration:Changes the found database name Test to CData.Changes the found schema name “DEFAULT” to “Jan_1_2022”.Adds the Collibra system name TV_testing.The system name must match the name you specified for the id property in the lineage harvester configuration file, including for case-sensitivity. hostnameMapping: { found_dbname=Test;found_hostname=*;found_schema=DEFAULT: { dbname: CData, schema: Jan_1_2022, dialect: spark, collibraSystemName: TV_testing } }The following configuration: For all found databases on the host abc.net, changes their names to CData.Changes the found schema name “DEFAULT” to “Jan_1_2022”. hostnameMapping: { found_dbname=*;found_hostname=abc.net;found_schema=DEFAULT: { dbname: CData, schema: Jan_1_2022, dialect: spark, } }The following configuration:Changes the found database name Test to CData .Changes the found schema name “DEFAULT” to “Jan_1_2022”. hostnameMapping: { found_dbname=Test;found_hostname=*;found_schema=DEFAULT: { dbname: CData, schema: Jan_1_2022, dialect: spark, } }The
following configuration:Changes the found database name Test to CData. hostnameMapping: { found_dbname=Test;found_hostname=*;found_schema=DEFAULT: { dbname: CData, } }Migrating Tableau assets to the new Tableau operating modelA key feature of the Collibra Data Intelligence Cloud 2022.02 release was the ability to ingest Tableau metadata in Collibra Data Catalog and synchronize the metadata using the lineage harvester. However, this new integration method was only available to customers who did not need to migrate existing Tableau assets to the new operating model. A migration script now eliminates that limitation.In this section, we provide an overview of: How to integrate Tableau metadata via the lineage harvester. How to use the lineage harvester to migrate your existing Tableau assets to the new operating model. About the Tableau migrationThis section describes the terminology and methodology for migrating your existing Tableau assets to the new Tableau operating model.TerminologyTermDescriptionTableau integration v1The process of integrating and synchronizing Tableau metadata via the Data Catalog UI, including: The Tableau assets that were created in the process.Any custom asset types, attribute types and relation types. Any customizations to the Tableau asset types. Any customizations to your Tableau assets, for example added attributes and relations.Any tags that you added to your Tableau assets. The specific Tableau ingestion results, which differ from the v2 ingestion results. Tableau integration v2The process of integrating and synchronizing Tableau metadata via the lineage harvester, including: The Tableau assets that were created in the process. The specific Tableau ingestion results, which differ from the v1 ingestion results. Migration scriptA specific set of lineage harvester commands used to migrate your custom asset types, attribute types and relation types that were created as part of Tableau integration v1.You need lineage harvester version 2022.03.0-5 or newer. We recommend that you use the newest lineage harvester.MethodologyThe following is our methodology for migrating Tableau integration v1 metadata to the new operating model. For greater detail see Overview: Tableau integration v2 and migration. The purpose of this document is to guide you through the migration of assets that were created via step 1 in the table below. That step is included here merely to present the complete context, from ingesting assets via Tableau integration v1, through migration.No.StepDetails1Integrate and synchronize Tableau metadata via Tableau integration v1.Over time, you have likely customized the Tableau asset types, created custom attribute types and relation types, and added attributes and relations to your Tableau v1 assets. When you switch to the harvester integration, you want to ensure that you won't lose any of those customizations. All manually created asset types, attribute types and relation types will be migrated.2 Integrate the same Tableau metadata, but this time via Tableau integration v2. After successful integration, you will have: A single BI Catalog domain in Collibra with custom Tableau integration v1 assets and their custom attributes and relations. A single BI Catalog domain in Collibra with Tableau integration v2 assets.The new Tableau operating model is only available in Collibra versions 2021.10 and newer.3Run the migration script.The full name of each Tableau integration v1 asset is compared to the full name of the same assets from the Tableau integration v2. When the names match, all of the custom characteristics of the v1 assets are saved to the respective v2 assets.Assets of custom v1 asset types are recreated in the specified domain.Specifically: The following elements are migrated: Your custom v1 asset types, attribute types and relation types.All assets of your custom v1 asset types. The custom attributes and relations of your custom v1 assets.Any tags that you added to your v1 assets. The following elements are ignored during the migration:All assets of out-of-the-box v1 asset types:Their custom attributes and relations, however, are migrated and saved to their respective v2 assets.With the exception of Tableau Data Entity, Tableau Report Attribute and Tableau View assets, which are also ignored, but so too are the attributes and relations of such assets.Any attribute types and relation types that are included in the operating model.4Verify the migration results.Compare your Tableau integration v2 assets to the respective Tableau integration v1 assets. Look to see that the metadata that you manually added to your integration v1 assets has been added to your integration v2 assets.5Delete your Tableau integration v1 assets and custom assets.If you've reviewed the migration results and everything looks fine, you can delete your Tableau integration v1 assets and any assets of custom asset types.Overview: Tableau integration v2 and migrationThe Tableau integration v2 enables you to harvest Tableau metadata and create new Tableau assets in Data Catalog. Collibra Data Intelligence Cloud analyzes and processes the metadata and presents it as specific asset types, retaining their original names.StepsThe following table shows the steps and prerequisites required to ingest metadata in Collibra via lineage harvester (Tableau integration v2) and run the migration script.This overview assumes that you have already ingested Tableau assets via Tableau integration v1.In the commands that you enter to run the migration, you need to specify which custom asset types, attribute types and relation types you want to migrate.StepWhat?DescriptionPrerequisites1Set up Tableau.Before you start the Tableau integration in Data Catalog, make sure that the lineage harvester can reach the Tableau metadata. Perform these tasks before you start the actual Tableau ingestion process.Because these tasks are performed outside of Collibra, it is possible that the content changes without us knowing. We strongly recommend that you carefully read the source documentation.You have a Tableau subscription.2Create a new domain.Before you can ingest Tableau metadata, you have to create a new domain or choose an existing domain to store the new Tableau assets.If you are using Collibra Data Intelligence Cloud 2021.11 or older, you have to add all Tableau attributes in the operating model to a scope and create a scoped assignment before you ingest Tableau via the lineage harvester. For complete information and step-by-step instruction, see Tableau general troubleshooting.You have a resource role with the following resource permissions:Domain: Add3Prepare the physical data layer.You prepare Data Catalog's physical data layer to enable Data Catalog to automatically stitch the Tableau assets to existing assets in Data Catalog. You have a global role with the Catalog global permission, for example, Catalog Author.You have set up the JDBC driver of your source data, for example Snowflake. You have a resource role with the following resource permissions on the Schema community:Asset > addAttribute > addDomain > addAttachment > addYou have the permissions to retrieve the metadata of the following database components through the JDBC Driver Database Metadata methods:SchemasTablesColumns4Download and install the lineage harvesterYou use the lineage harvester to trigger the creation of Tableau assets, their relations and a technical lineage in Data Catalog.You can download the lineage harvester from the Collibra Product Resource Downloads page.Your environment meets the system requirements to install and use the lineage harvester.5Prepare the lineage harvester configuration file and run the lineage harvester.You create a lineage harvester configuration file with Tableau connection information and run the lineage harvester to import the results of the Tableau integration and the technical lineage for Tableau into Data Catalog.As a result, you now have a duplicate of your Tableau metadata in Collibra.You have downloaded the lineage harvester version 2022.03 or newer.Your environment meets the system requirements to install and run the lineage harvester. You have a global role with the Catalog global permission, for example, Catalog Author.You have a global role with the Technical lineage global permission.You have a global role with the Data Stewardship Manager global permission.A resource role with the following resource permission on the community level in which you created the BI Data Catalog domain: Asset: addAttribute: addDomain: addAttachment: add6Run the migration scriptThe migration script is triggered by a lineage harvester command. You then use arguments to migrate your customized asset types and custom attribute types and relation types.You need lineage harvester version 2022.03.0-5 or newer. We recommend that you use the newest lineage harvester.Same prerequisites as for the previous step.7Verify the migration resultsCompare your Tableau integration v2 assets to the respective Tableau integration v1 assets. Look to see that the metadata that you manually added to your integration v1 assets has been added to your integration v2 assets.None8Delete your Tableau integration v1 metadata.If you've reviewed the migration results and everything looks fine, you can delete your Tableau integration v1 assets and any assets of custom asset types. You have a global role with the Catalog global permission, for example, Catalog Author.You have a resource role with the following resource permission on the community level in which you created the BI Data Catalog domain: Asset:
RemoveDomain: RemoveNaming conventionWhen you synchronize Tableau, Collibra follows a strict naming convention for the names of the new assets. Each asset has a display name and full name. The full name represents the asset path from asset to the database it belongs to. You can freely edit the display name. However, you should never edit the full name, because Data Catalog needs it for a successful migration. Changing the full name may also break the synchronization process.We highly recommend that you not edit the full names of any Tableau assets. Doing so will likely lead to errors during the migration and synchronization process.Run the migration scriptThe migration script is triggered by a lineage harvester command. You then use arguments to migrate your customized asset types and custom attribute types and relation types.PrerequisitesYou have Collibra Data Intelligence Cloud 2022.01 or newer.You have downloaded lineage harvester version 2022.03 or newer and you have the necessary system requirements to run it.You have a global role that has the Manage all resources global permission. You have a global role with the Catalog global permission, for example, Catalog Author.You have a global role with the Technical lineage global permission.You have a global role with the Data Stewardship Manager global permission.You have a resource role with the following resource permission on the community level in which you created the BI Data Catalog domain: Asset: AddAttribute: AddDomain: AddAttachment: AddYou have tested your connectivity with the Tableau server.StepsRun the following command to start the lineage harvester and trigger the migration: Windows: .\bin\lineage-harvester migrate-tableau <v1_tableau_server_asset_id> <v2_source_id>for other operating systems: ./bin/lineage-harvester migrate-tableau <v1_tableau_server_asset_id> <v2_source_id> Use the following arguments to migrate:Customized asset types: -a <customAssetTypeId>Custom attribute types: -t <customAttributeTypeId>Custom relation types: -r <customRelationTypeId>You can migrate multiple asset types, attribute types and relation types by repeating the relevant command. In the following example, two asset types are migrated, one after the other, by repeating the -a command, followed by the relevant ID of each asset type../bin/lineage-harvester migrate-tableau 7cc9f692-bbe4-467f-8ffb-f43545465fcf testtableau22 \ -a asd13io2-sda2-sdi2-jsd9-asdoi124io12 \ -a ard86co4-sea5-sc4r-hk39-kjsv9she3hs9 \ -t 3ffafa8e-029c-4d01-a3c9-1c36e43c2655 \ -r d0086c90-98e6-4782-b07a-40fcb43845a3What's next? The following elements are migrated: Your custom v1 asset types, attribute types and relation types.All assets of your custom v1 asset types. The custom attributes and relations of your custom v1 assets.Any tags that you added to your v1 assets. The following elements are ignored during the migration:All assets of out-of-the-box v1 asset types:Their custom attributes and relations, however, are migrated and saved to their respective v2 assets.With the exception of Tableau Data Entity, Tableau Report Attribute and Tableau View assets, which are also ignored, but so too are the attributes and relations of such assets.Any attribute types and relation types that are included in the operating model.You can check the progress of the migration in Activities.To refresh the Tableau integration v2 metadata, you can run the lineage harvester again using the full-sync command, or schedule jobs to run them automatically.Soft delete of your Tableau integration v1 assetsIf you've reviewed the migration results and everything looks fine, you can delete your Tableau integration v1 assets and any assets of custom asset types. You can either manually delete the assets or use a lineage harvester argument to perform a soft delete of the assets. Technically speaking, the soft delete does not delete the assets from your Collibra environment; rather, it changes the status of the assets to Obsolete. You can then create an asset filter to view all assets with the status Obsolete, and then manually delete them.PrerequisitesYou have Collibra Data Intelligence Cloud 2022.01 or newer.You have downloaded lineage harvester version 2022.03 or newer and you have the necessary system requirements to run it.You have a global role that has the Manage all resources global permission. You have a global role with the Catalog global permission, for example, Catalog Author.You have a global role with the Technical lineage global permission.You have a global role with the Data Stewardship Manager global permission.You have a resource role with the following resource permission on the community level in which you created the BI Data Catalog domain: Asset: Update StatusStepsRun the following command to start the lineage harvester and trigger the migration: Windows: .\bin\lineage-harvester migrate-tableau --delete <v1_tableau_server_asset_id> <v2_source_id>for other operating systems: ./bin/lineage-harvester migrate-tableau --delete <v1_tableau_server_asset_id> <v2_source_id>./bin/lineage-harvester migrate-tableau --delete 7cc9f692-bbe4-467f-8ffb-f43545465fcf testtableau22You can check the progress of the migration in Activities.Working with Power BIThis section addresses tasks and concepts that can be of interest to Collibra Admins who are working with Power BI.Supported data sources in Power BIPower BI is business intelligence software that can integrate with various data sources. When you ingest Power BI metadata, Collibra Data Lineage tries to automatically stitch this metadata to data sources registered in Data Catalog. It also creates a technical lineage that shows where metadata is used and how it transforms.The following table shows the supported data source types in Power BI that have been tested. If a data source is identified as certified, it means that the data source: Is ingested in Data Catalog as a Power BI Data Model asset. Is shown in the technical lineage and stitching is possible. When selecting your data sources in Power BI, the data source types under the following tabs require the specified connection types:The Files tab refers to Parquet files. Connect via the URL to the files.All data source types under Database require a JDBC connection.For Power Platform, you need a live connection.The three data source types under the Azure tab require either a JDBC or ODBC connection.All data source types under Other require an ODBC connection.The connections types are mentioned in the following table, for each supported data source type.Although the following data sources have been tested extensively, there still may be some issues caused by unsupported elements within the data source or limitations in the Power BI integration process.Collibra Data Lineage can connect only to datasets that are hosted by Power BI. It cannot connect to externally hosted datasets or models. For complete information, consult Microsoft's Power BI documentation.Power BI data sourceConnection typeCertified ?Amazon RedshiftJDBCYesApache HiveODBCYesAzure Analysis ServicesODBCYes JDBCNo Via import, technical lineage is possible only from the data set to the report. Stitching is not supported. Via direct connection, technical lineage and stitching are not supported. Azure DatabricksJDBC, ODBCYesCollibra Data Lineage supports the following functions: Databricks.CatalogsDatabricks.ContentsDatabricks.QueryFor Databricks.Query, the ingestion success rate is high, but it's not 100%. Azure Synapse AnalyticsJDBCYesDremioJDBCNoDremio data sources are ingested as Power BI Data Model assets and shown in the technical lineage, but stitching is not possible.Google BigQueryJDBCYesImpalaODBCYesMySQLJDBCNoMySQL data sources are ingested as Power BI Data Model assets, but not shown in the technical lineage and stitching is not possible.NetezzaODBCYesODBCODBCYesYou need to use a Power BI <source ID> configuration file to provide the true system names of the ODBC databases in Power BI. For more information, see Providing ODBC database names in Power BI.OracleJDBC, ODBCYesIf you connect via ODBC: Oracle Views are supported.In most cases, you need to use a Power BI <source ID> configuration file for database mapping, as the database name returned by the API differs from the true database name.Parquet fileURL to the filesNoSAP HANAODBCYesSnowflakeJDBCYesSQL ServerJDBCYesSybaseJDBCYesPower BI with measures only, no columnsJDBCYesPower Platform > Power BI data setLive connectionYesSupported only if the data set is from one of these supported data sources.We cannot guarantee that other data sources in Power BI can be stitched successfully.Power BI workspacesPower BI workspaces represent the most used metadata in Power BI. It contains for example reports and data sets. If you want a full ingestion, you have to make sure that the lineage harvester can access all metadata in your Power BI workspaces. Consider the following:Depending on the authentication type, you must have specific roles and permissions to access the metadata in the Power BI workspaces. You can only fully ingest new Power BI workspaces. This means that classic workspaces and My Workspace in Power BI are not supported.Use the Power BI <source ID>_filter configuration file to filter on Power BI workspaces.To ingest Power BI dataflows:You need access to the Power BI environment in which the data flow is stored.The data set in the data flow must exist in a premium workspace.Filtering Power BI workspacesBy default, the lineage harvester accesses the metadata of all Power BI workspaces. If you don't use filtering, the metadata of all workspaces is uploaded to the Collibra Data Lineage service instance and ingested in Data Catalog. Filtering allows you to
process and ingest only the metadata that matters most to you. Inclusion and exclusion filtersYou can use the following inclusion filters to ingest only the Power BI capacities and workspaces you specify: capacityNamescapacityIdsworkspaceNamesworkspaceIds You can use the following exclusion filters to ingest all workspaces except for those you specify: excludeWorkspaceNamesexcludeWorkspaceIdsWildcards are supported for the capacityNames, workspaceNames and excludeWorkspaceNames properties.You can combine inclusion and exclusion filters in the same <source ID> configuration file.Show me an exampleIn this example, the metadata from all workspaces is uploaded to the Collibra Data Lineage service instance. Then, the metadata in all of the workspaces in CapacityABC, except for Workspace1, is ingested in Data Catalog. { filters:[{ domainId:07d5d441-b9f8-4add-982f-d7a5d6ba06cc, description:Domain for BICatalogJBTest1, capacityNames:[CapacityABC], excludeWorkspaceNames:[Workspace1] }] } In the Power BI <source ID> configuration file, you can also specify the domain (or domains) in which you want to ingest, to help structure your Power BI assets in Collibra.Two filtering methodsThe filter properties that you use in your Power BI <source ID> configuration file determine whether filtering is done by the lineage harvester or done on the Collibra Data Lineage service instance. The following table highlights the advantages, limitations and configuration considerations of the two methods.Filtering methodDescriptionBy the lineage harvesterThe lineage harvester accesses only the workspaces specified in your <source ID> configuration file, and sends metadata from only those workspaces to the Collibra Data Lineage service instance for processing and ingestion in Data Catalog.AdvantagesFaster integration testing, as you can filter on a single workspace. Enhanced data security and privacy by excluding workspaces that contain sensitive information. Metadata from workspaces that are filtered out by the lineage harvester is not sent to the Collibra Data Lineage service instance for processing.Improve processing times by excluding workspaces dedicated to, for example, development and testing. This is especially beneficial for organizations with more than 50,000 workspaces. Limitations For this to work as described, you can only use the workspaceIds property. None of the following properties can be included anywhere in your <source ID> configuration file: capacityNamescapacityIdsworkspaceNamesexcludeWorkspaceNamesexcludeWorkspaceIdsYou cannot use wildcards with the workspaceIds property.Show me an example setup for the <source ID> configuration file { filters:[{ domainId:b5d02896-8a79-49a3-bab0-12a7b37f45c6, description:Any description, for your internal use, workspaceIds:[ee23f25b-0ed9-490a-9cca-8a0e8886173e, 8e86429d-f985-4a81-818d-8e05ac256a74] }] } On the Collibra Data Lineage service instanceThe lineage harvester accesses all workspaces and filtering is carried only after knowing the names and IDs of all workspaces and capacties. As a result, the raw metadata is accessed by the lineage harvester, but only the filtered metadata is processed on the Collibra Data Lineage service instance and ingested in Data Catalog.Advantages Greater choice of filtering options. You can use any of the following properties:capacityNamescapacityIdsworkspaceNamesexcludeWorkspaceNamesexcludeWorkspaceIdsYou can use wildcards with the following properties:capacityNamesworkspaceNamesexcludeWorkspaceNames Limitations Longer processing times, especially if you have tens of thousands of workspaces.Although you can limit which workspaces are processed and ingested, you can't limit which workspaces are uploaded to the Collibra Data Lineage service instance. The raw metadata from all workspaces is uploaded.You can use the deleteRawMetadataAfterProcessing property in your lineage harvester configuration file, to automatically delete the uploaded raw metadata that you don't want to ingest in Data Catalog.Show me an example setup for the <source ID> configuration file { filters:[{ domainId:07d5d441-b9f8-4add-982f-d7a5d6ba06cc, decription:Domain for BICatalogJBTest1, capacityNames:[CapacityABC], excludeWorkspaceNames:[Workspace1] }] } The metadata of inactive and personal workspaces is not harvested or uploaded to the Collibra Data Lineage service instance. An inactive workspace is one for which no reports or dashboards have been viewed in the past 60 days. My workspace is the personal workspace for any Power BI customer to work with their own, personal content.Best practice: Filter on a capacityYou can filter on a capacity to ingest the metadata from all workspaces in that capacity. Let's say, for example, that you have 50,000 workspaces but you only want to ingest metadata from the workspaces related to a specific department in your organization. You could specify each of the relevant workspaces in the configuration file, but that could be tedious if there are lots of workspaces. Furthermore, if someone in your organization creates a new workspace, it will have to be added to your configuration file. Instead, you can filter on a capacity. Then, when a new workspace is created, ensure that it is added to the department' s capacity and metadata from that workspace will be automatically ingested, without having to update the configuration file.Workspace statesOn Power BI Workspace asset pages, you can include the attribute type State, to show the state of ingested Power BI workspaces, for example Active, Orphaned or Deleted. To do so, you have to edit the global assignment of the Power BI Workspace asset type and assign the attribute type State.For complete information on Power BI workspaces and possible states, see the Microsoft Power BI documentation.If you only want to see Power BI workspaces that have the state Active:Ensure that the attribute type State is assigned to the Power BI Workspace asset type via the global assignment.Go to the Global view, and then create an advance filter and filter by the following clauses:Asset type equals Power BI WorkspaceCharacteristic State equals Active.Deleted workspacesIf you delete a Power BI workspace, the workspace is maintained for a 90-day grace period, during which a Power BI administrator can restore the workspace. During the grace period, the workspace has the state Deleted. When you ingest Power BI metadata in Data Catalog, this deleted workspace is ingested. When the grace period elapses, the state of the workspace becomes Removing, for a short time, while it is being permanently removed. The state then becomes Not found. At this point, as the workspace no longer exists in Power BI, the Power BI Workspace asset in Collibra will also be deleted upon the next synchronization.If a workspace becomes inactive, meaning no reports or dashboards have been viewed in the past 60 days, it is excluded from the ingestion.Why are deleted workspaces ingested?Let's image that you ingest a Power BI workspace with the Active state and that over time, you add comments, tags and characteristics to the asset in Collibra. Now let's imagine that the workspace is deleted in Power BI and we do not ingest the deleted workspace. In this case, the Power BI Workspace asset in Collibra is deleted upon the next synchronization. But what if the Power BI administrator decides, during the 90-day grace period, to restore the workspace in Power BI? Upon the next synchronization, a new Power BI Workspace asset is created in Collibra, but all of the comments, tags and characteristics that were part of the deleted asset are lost.By ingesting deleted Power BI workspaces, we safeguard against losing any of the additional information on the Power BI Workspace asset, in case a Power BI administrator decides to restore a workspace during the grace period.Show DAX calculations on Power BI Column asset pagesData Analysis Expressions (DAX) is a programming language that is used in Power BI for creating calculated columns, measures and custom tables.Power BI columns and tables that are derived from DAX are shown in the technical lineage. However, the Collibra Data Lineage service instances are unable to parse DAX. Therefore, stitching between calculated columns in the technical lineage and the corresponding Power BI Column assets in Data Catalog is not possible.You can, however, show DAX calculations for calculated columns and measures on Power BI Column asset pages. To do so, you only have to ensure that the Calculation Rule attribute type is part of the global assignment of the Power BI Column asset type.All elements in the DAX, even comments for example, are included and shown in the Calculation Rule attribute.The following additional information on Power BI Column asset pages can also help you interpret the lineage: If a calculated column is a measure, the Role in Report attribute has the value Measure.The Technical Data Type attribute indicates the type of column, for example String or Number.Add the Calculation Rule attribute type to the global assignmentTo show DAX calculations, the Calculation Rule attribute type must be part of the global assignment of the Power BI Column asset type. By default, it is not included.PrerequisitesYou have a global role that has the System administration global permission.Steps Open the Power BI Column asset type. On the main menu, click , and then click Settings.The Collibra settings page opens.Click Operating Model.The operating model settings appear on the Asset types tab page.In the overview of asset types, click Power BI Column.The Asset type editor opens. In the tab pane, click Global assignment.If the Calculation Rule attribute type already exists in the table, you don't have to do anything more. However, as described in step 6, you might want to ensure that the Min. option is set to 1, to make the
attribute type automatically appear on the asset page.Above the table, to the right, click Edit.Above the table, to the right, click Add characteristic.The Add a Characteristic dialog box appears.Search for and click Calculation Rule.The Calculation Rule attribute type appears at the bottom of the table.If required, edit the minimum or maximum number of occurrences of the characteristic. OptionDescriptionMin.The minimum number of occurrences of the characteristic. Set this option to 1, to make the attribute type automatically appear on the asset page.Max.The maximum number of occurrences that you can assign to an asset type.Leave this option empty if you don't want a limit to the maximum number of occurrences.Above the table, to the right, click Save.Soft delete of Missing from source assetsWhen you integrate Tableau, data objects in the data source are ingested as assets in Data Catalog. But what if, during synchronization, some of the data objects can no longer be found in the data source because they were moved or deleted? In that case, the status of the corresponding assets of the missing data objects becomes Missing from source. We refer to this asset status evolution as a soft delete. If you want, you can then run the Delete Missing Assets workflow to permanently delete the assets, or manually delete them.If, for example, you remove the permissions to access a certain data object and then run the lineage harvester, the status of the corresponding asset in Data Catalog changes to “Missing from source”. If you then add back the permissions to the data object and run the lineage harvester, the status of the asset will revert to the status it had before Missing from source.Delete the Missing from source assetsThe Delete Missing Assets workflow enables you to delete all assets with the status Missing from source. You can download the workflow file from the Collibra Developer Portal and deploy it in your Collibra environment.Be sure to review assets before you delete them, as they might contain important information that will also be deleted.If you manually delete assets that are represented in a technical lineage, they are still shown in the technical lineage. To delete the corresponding assets of missing data objects and also delete the assets from the technical lineage, you have to:Run the lineage harvester, or wait for your scheduled synchronization job to run.The technical lineage is refreshed and the status of the assets in Data Catalog becomes “Missing from source”.Run a workflow to delete all assets with the status “Missing from source”, or manually delete them.Broken stitching and possible solutionsThis topic provides some examples where stitching is broken, and some advice on how to achieve stitching.For a more in-depth examination of stitching, how it works, and what causes stitching to break, go to Stitching for BI tool integrations.This is relevant for MicroStrategy, Power BI, SSRS-PBRS and Tableau. Collibra Data Lineage currently does not offer stitching for Looker assets.The technical lineage graph without stitchingGo to the relevant asset page and click the Technical Lineage tab. There will most likely be three nodes in the technical lineage graph. If you have integrated MicroStrategy, there will be four nodes. Instead of the BI data model node, there will be two nodes, one representing MicroStrategy Attributes, the other representing MicroStrategy Facts. There could also be four groups if you are integrating SQL Server Reporting Services (SSRS) or Power BI Report Server (PBRS) and have a shared data set.No.NodeDescriptionExternal databaseThis node represents the table from the database you used to create the report in your BI tool. This node is a prerequisite for stitching. If it is not shown in the technical lineage, stitching is not possible.BI data modelThis node represents the data set that you used to create the report in your BI tool. This node is always stitched because Collibra Data Lineage knows the full name of the data set in your BI tool, and it creates the corresponding BI Data Set asset with the exact same name. This is referred to as BI stitching.BI reportThis node represents the report you created in your BI tool. It is always part of the technical lineage. Like the BI data model node, this node is always stitched because Collibra Data Lineage knows the full name of the report in your BI tool, and it creates the corresponding BI Report asset with the exact same name.Example reasons for broken stitching and possible solutionsHere are a few common examples of broken stitching and possible solutions for achieving stitching.Power BI: database names don't matchFirst, let's look at the name of an unstitched database table in the technical lineage graph:MODEL.PRODUCT CATEGORY [ADVENTUREWORKS::database]We can identify the following:The database name: ADVENTUREWORKSThe schema name: MODELThe table name: PRODUCT CATEGORYNow let's find the table in the Stitching tab:Click the Settings tab.Click Show status.Click the Stitching tab.The Stitching tab shows a list of all tables that exist in Data Catalog and on the Collibra Data Lineage service instance.Use the Search field to find the unstitched database table PRODUCT CATEGORY.In the Found in column, the value Technical Lineage confirms what we already know: the table was found only in the technical lineage. An exactly matching asset was not identified in Collibra. Now try to find a likely match. Look for a table that has the same name and the value Catalog in the Found in column.The table shown in the following image looks like a match. The schema and table names match exactly; only the database names differ. To achieve stitching:Prepare the database mapping section of your Power BI <source ID> configuration file as follows: { found_dbname=adventrueworks;found_hostname=*: { dbname: aas-model, } } Run the lineage harvester again.Stitching is achievedTableau: database names don't matchFirst, let's look at the name of name of the unstitched database table in the technical lineage graph:DBADMIN.TESTING1 [111.93.0.181::database]We can identify the following:The database name: 111.93.0.181The schema name: DBADMINThe table name: TESTING1Now let's find the table in the Stitching tab:Click the Settings tab.Click Show status.Click the Stitching tab.The Stitching tab shows a list of all tables that exist in Data Catalog and on the Collibra Data Lineage service instance.Use the Search field to find the unstitched database table TESTING1.In the Found in column, the value Technical Lineage confirms what we already know: the table was found only in the technical lineage. An exactly matching asset was not identified in Collibra. Now try to find a likely match. Because DBADMIN.TESTING1 [111.93.0.181::database] was found only in the technical lineage, we know the match we're looking for must have the value Catalog in the Found in column.The table shown in the following image looks like a match. The schema and table names match exactly; only the database names differ. To achieve stitching:Configure the databaseMapping property in your Tableau <source ID> configuration file as follows: { databaseMapping: { 111.93.0.181: oracle-db, } } Run the lineage harvester again.Stitching is achieved Power BI: Unsupported Power Query M function or calculated columnsCollibra Data Lineage does not support DAX. Therefore, calculated columns result in missing lineage, as do unsupported Power Query M function.In this example, notice that the database node, which should be situated to the left of the BI data model node, is missing from the technical lineage graph:We can identify that these nodes represent, respectively: A Power BI data set table named al_test NewTable_jdbcA Power BI report named al_jdbc_mysql_powerbi_27MarThe same scenario can surface for Tableau if, for example, you do not have sufficient permission, or if you have stored procedures or custom SQL that is not supported by Tableau Catalog.Examine the BI data set table, to see if you can identify a problemClick the Settings tab.Click Show status.The Sources tab shows a list of all data sources on the Collibra Data Lineage service instance.Click one or more checkboxes, to show the transformations and source code fragments for specific data sources, or clear all checkboxes, to show for all data sources.Transformations and source code fragments are shown in the transformations table below. We can quickly identify that there was an analyze error, because the MySQL.Database function is not supported.To achieve stitching, ensure that your queries only include supported Power Query M functions. We also encourage you to create an Ideation ticket via the Collibra Integrations Ideation Portal, if you'd like to request support for a particular function.Synchronization: Continue on errorThis feature allows for continuous processing of an import or synchronization job, even if one or more commands fail. Before the release of this feature, calls to the Import and Sync APIs either fully succeed or fully fail. You might wait for a lengthy import or synchronization job to complete, only to have it fail completely because of a single error.Now, commands that have validation errors and those that failed to execute are skipped, allowing the processing of valid commands to continue until the job is complete or until an error threshold is met. The error threshold is determined by the Number of failed commands before stopping import job setting in Collibra Console. The default value is 100.This feature is relevant for the full-sync and sync commands.For more information, see the Import API Documentation in the Collibra Developer Portal.Benefits of this feature Errors are skipped and valid commands are processed, instead of immediate and complete failure of the job. All errors are identified at once, reducing the chances of running a job multiple times, only to discover
additional errors. Complete error information, including the resource identifier, to quickly identify the source and reason for errors. Job resultsThe following table shows the four possible job results for an import or synchronization job:Job resultDescriptionSuccessThe job was completed without errors.Completed With ErrorErrors were detected, but the error threshold was not reached and the job was completed.AbortedThe error threshold was exceeded, at which point, the job was stopped. All commands that were executed before the stoppage stay committed.FailureThe job was stopped and any executed commands were rolled back.List of errorsYou can view the results of a synchronization job in the Activities list.When you click Results in the relevant row, a dialog box opens, showing a general summary of the job. For jobs with the job result Completed With Error, Aborted, or Failure, the dialog box includes a link to a list of errors. The list of errors includes the following information: The resource type. The index number. The resource identifier. An error message. Business usersThis section caters primarily to the following business-focused Collibra Data Lineage customers:Types of business-focused rolesWhat you want from Collibra Data LineageGovernance roles: Data Governance ConsultantData Governance ManagerData Intelligence DirectorData Quality OfficerData StewardEnterprise Data Steward Easily find and view certified reports.View diagrams with Business Summary Lineage.Assign business terms to BI assets.Tell a story about the data. Analyst roles: Business AnalystData AnalystData ScientistQuantitative User ResearcherOperations ManagerProgram ManagerProduct ManagerProject Manager Use dashboards, for an overall view of the most important information.Certify and view reports.Shop for datasets and reports.Check technical lineage for data set life cycles.Check for missing data and request new integrations, if necessary.Identify data owners. Technical lineage Automatic stitching for technical lineage BI tool business logic Technical lineage and stitching for BI tool integrations Business Summary Lineage Differences between Technical lineage and diagrams with Business Summary Lineage BI integration concepts Technical lineageTechnical lineage is a detailed lineage graph that shows how data transforms and flows from source to destination across its entire lifecycle. It enables you to easily discover where tables and columns are used and how they relate to each other. You can view a technical lineage for the following asset types:TableColumnLooker LookMicroStrategy ReportMicroStrategy TableMicroStrategy ColumnPower BI ReportPower BI TablePower BI ColumnSSRS ReportSSRS TableSSRS ColumnTableau WorksheetTableau Data AttributeDuring the technical lineage process, relations of the type Data Element targets / sources Data Element are automatically created: Between data objects in your data source and assets from registered data sources. Between ingested assets from BI sources and Data Catalog assets from registered data sources. Data objectsYou can see two types of data objects in your technical lineage:Data objects from your data source that are stitched to assets in Data Catalog and for which you created the technical lineage. These assets have a yellow background. Other objects, for example temporary tables and columns, that are collected from your data sources, but are not stitched to assets in Data Catalog. These objects have a gray background. Collibra Data Lineage:Does not support stitching for Looker assets.Supports stitching for MicroStrategy assets only if you use the new integration method, which supports the latest MicroStrategy APIs.Exporting technical lineage informationYou can export technical lineage information and transformation details to formats such as PDF and PNG. For complete information, go to Export the technical lineage information and Export technical lineage transformation details.Naming conventionWhen you create a technical lineage, Data Catalog follows a strict naming convention for the full names of assets. Each asset has a display name and full name. You can freely edit the display name. However, do not edit the full name, because Data Catalog needs it to refresh data sources for which you created the technical lineage and to refresh the technical lineage itself.When you prepare the Data Catalog physical data layer and the configuration file, you should always use the full name as the name of the corresponding data object in your data source for the following assets:SystemDatabaseSchemaEditing the full name of the Schema, Database and System assets may lead to errors during the technical lineage creation process.Automatic stitching for technical lineageStitching is a process that creates relations between assets and data objects representing the same data source. More specifically, stitching creates relations between the following assets:The assets that were created when you prepared Data Catalog's physical data layer for a data source; andThe data objects in the same data source for which you created a technical lineage and that represent the assets in Data Catalog.For Collibra Data Lineage to stitch the assets to the data objects, you must prepare the Data Catalog physical data layer to create the database > schema > table > column or system > database > schema > table > column hierarchy. Note that when a table in your data source has a schema and a file as its parents, Collibra Data Lineage uses the schema as the parent for stitching. When the data sources are scanned, Collibra Data Lineage service automatically creates and pushes new relations of the type Data Element targets / sources Data Element: Between data objects in your data source and assets from registered data sources. Between ingested assets from BI sources and Data Catalog assets from registered data sources. If you don't prepare the Data Catalog physical data layer, Data Catalog creates a technical lineage without stitching. As a result, when you click the Technical lineage tab on any Column, Table, Tableau Data Attribute, Power BI Column or SSRS Column asset page, you get the message The current asset doesn't have a technical lineage yet. However, you can use the Browse tab pane to view the technical lineage of data objects in data sources for which you created the technical lineage.For a more in-depth look at BI tool stitching, specifically the relationship between technical lineage and stitching, what causes stitching to break, and how to achieve stitching: go to the following topics:Stitching for BI tool integrationsBroken stitching and possible solutionsStitching issuesTo stitch assets in Data Catalog to data objects collected by the lineage harvester, the Collibra Data Lineage service looks at the full path of the assets in Data Catalog and the full path of data objects in your data source. Stitching is based on the full path of objects with the following structure: (system) > database > schema > table > column. If the full paths match, the Collibra Data Lineage automatically stitches the data objects to the existing assets in Data Catalog. To indicate this, the assets have a yellow background in the technical lineage graph. Note that in Collibra, full paths are case-sensitive. If the full path of an asset in Data Catalog does not match (including for case-sensitivity) the full path of a data object in your data source, Collibra Data Lineage cannot stitch them. To indicate this, the data objects have a gray background in your technical lineage graph. To fix stitching issues, you must check the full path of the assets in Data Catalog and make sure they match the full path of the data objects that are shown in the technical lineage graph. If you change the full path, make sure to run the lineage harvester again. Note that in Collibra, full paths are case-sensitive. Collibra Data Lineage:Does not support stitching for Looker assets.Supports stitching for MicroStrategy assets only if you use the new integration method, which supports the latest MicroStrategy APIs.You can use the Stitching tab page to easily find the full path of assets in Data Catalog and data objects that were collected by the lineage harvester. The Stitching tab page also shows an overview of all assets and data objects that are stitched successfully. BI tool business logicBI tool business users usually work with BI reports to make business decisions. Collibra Data Lineage offers BI tool business users several advantages:Easily find certified BI tool content.Shop for reports.Find where content is stored in your BI tool.Trace BI tool data to its sources.Get information about a BI report in a single location.Due to limitations of the Looker REST API, Data Catalog cannot stitch Looker assets and corresponding assets in Data Catalog. The Looker REST API does not provide transformations in Looker that are needed for stitching.BI asset pagesDepending on the asset type, the asset page shows different information ingested from your BI tool. For complete information, go to BI tool operating models.You can find a specific asset pages by searching in Data Marketplace or by looking in the Data Catalog BI domain in which you ingested the metadata.DetailsAn asset page contains attributes and relations to other assets. This information is synchronized from your BI tool. You can, however, add additional characteristics, tags or comments directly via the asset page.If you want to use a report, you can add it to the Data Basket and check it out.The following Looker Look asset shows in which Looker Folder it is stored, in which Looker Dashboard it is shown, which Looker Tiles it uses and which Looker Queries it groups. This asset has a number of attributes that
give more information about the Looker Look.Business diagramsDiagrams is a feature that allows you to interact with assets based on their relations in an easy-to-read diagram. Diagrams help you to quickly understand how assets are related. As such, the diagram can show a high-level presentation of a data set or report. If the BI assets are stitched to registered assets in Data Catalog, you can also see the stitching results in the diagram.For each supported BI tool, we include the JSON code and instruction on how to create a diagram view of the BI tool operating model in your Collibra environment. For complete information, go to BI tool operating models, select your BI tool, and then scroll down to the section Create an operating model diagram view. The following diagram shows the Customer Sales Insights Tableau Workbook, which is stored in the Internet Sales Insights Tableau Project. The Tableau Workbook contains Tableau Report Attributes that have the CustomerSalesReporting Tableau Data Source as source. This Tableau Data Source is stitched to the CustomerSalesReporting Table asset in the SQL Server Cloud data source.Report viewsCollibra Data Lineage enables you to find all ingested BI asset types in a single location.In the Reports tab page in Data Catalog you can see an overview of all BI Report assets and their children. Optionally, you can create a view with a filter to only show, for example, Tableau assets. This is useful if you quickly want to see all reports or if you want find specific reports, for example certified reports or the most frequented reports.Technical lineage and stitching for BI tool integrationsBI tools, such as Power BI and Tableau, allow you to build reports that help you visualize and understand your data. To trust the data in your report, it's essential to know where the data came from. Collibra Data Lineage allows you to create a technical lineage, to trace the data from your data sources to your reports. Stitching then creates relations between the data objects in your technical lineage and the corresponding assets in Data Catalog, to give you a complete picture of your data landscape and all critical metadata.In this topic, we examine the relationship between technical lineage and stitching.This topic applies to MicroStrategy, Power BI, SSRS-PBRS and Tableau. Collibra Data Lineage currently does not offer stitching for Looker assets.For a more technical perspective, see Technical overview of BI tool lineage and Broken stitching and possible solutions.Stitching: The bridge between ingestion and technical lineageKeep in mind that metadata ingestion (which results in the creation of assets in Collibra) and technical lineage are separate and independent concepts. The single, seamless process of integrating a BI tool for the purpose of technical lineage could lead one to think otherwise.A technical lineage illustrates the flow of data in your external data sources. It does not inherently tell you anything about your assets in Collibra. The bridge between the metadata you ingest as assets in Data Catalog and the technical lineage, is stitching. As it concerns a technical lineage graph, stitching or the lack of stitching is reflected only in the color of the nodes in the technical lineage. A yellow node indicates stitching. Specifically:There is an asset in Collibra with a full name that exactly matches the data object in the technical lineage.A relation of the type Data Element targets / sources Data Element is created between the asset and the data object, and shown on the asset page.In the Stitching tab, the Found In column indicates that the database table was found in both Data Catalog and the technical lineage.A gray node indicates a lack of stitching. There is no asset in Data Catalog with a full name that exactly matches the name of the data object.In the Stitching tab, the Found In column indicates that the database table was found only in the technical lineage.If the database node is missing from the technical lineage graph, we refer to this as missing stitching. This can happen if, for example, your BI tool has limited support for custom SQL, or if your integration includes a data source that is not yet supported by Collibra Data Lineage. In these situations, the relations required to recognize the database are not exposed.If you can't view a technical lineage because you lack the permissions, you can still identify stitching by viewing a diagram. A relation of the type Data Element targets / sources Data Element between, for example, a Tableau Data Attribute asset and Column asset in a diagram, indicates stitching.Full path, full name matchingWhen you integrate your BI tool, the full names of the assets that are created in Data Catalog reflect the full paths (also considered the full names) of the corresponding data objects in the external data source. The full paths to data objects follow this hierarchy: (system name) > database name > schema name > table name > column nameThe system name is only relevant if you specify one as part of your pre-integration preparation. For complete information, go to Prepare the Data Catalog physical data layer.To stitch assets in Data Catalog to data objects in the technical lineage, Collibra Data Lineage looks at the full names of assets in Data Catalog and the full names of data objects in your data source, which figure in the technical lineage. If there is an exact match in the full names, stitching is achieved.The full path represents the full name of an asset, not the display name. As such, you can change the display name of an asset without breaking stitching, but if you change the full name of an asset, and it no longer exactly matches the full name of the corresponding data object, stitching will break.If an ingestion job was successful, and it's true that the full names of the assets in Data Catalog are taken directly from the full names of the corresponding data objects, then how is it possible that the full names don't match? The possibilities are addressed in the following section.What causes stitching to break?The following scenarios result in a lack of stitching:ScenarioWhy stitching breaksDuring integration of your BI tool, the API returns a technical name, IP address, or hostname of the database, instead of the true name of the database.The database name returned by the API doesn't match the name of the Database asset you created when you prepared the Data Catalog physical data layer.You have registered a schema-less data source, for example HiveQL, MySQL or Teradata.The full names of assets don't match because the full path hierarchy is altered because of the lack of a schema name.See an exampleLet’s say you ingest a HiveQL data source via Edge. Note that Edge gives the name “CDATA” for the database. The full path to a column is something like:Hive_123 (system) > CDATA (database) > Hive_ABC (schema) > Table > ColumnBecause HiveQL is database-less, the value that you give for the database property in your configuration file is used as the schema name in the technical lineage, and the value you give for collibraSystemName is used as the database name. But if useCollibraSystemName is set to true, then the value of collibraSystemName is also used as the system name. In that case, in the full path to the column, the system name and the database name are the same:Hive_123 (system) > Hive_123 (database) > Hive_ABC (schema) > Table > Column Notice the mismatch between the database names.The externalDbName property tells the lineage harvester to use the value that you specify here for the database name in the technical lineage, specifically CDATA”. This ensures that the full paths match and stitching is preserved.You haven't prepared the Data Catalog physical data layer, or did so incompletely or erroneously. The database name returned by the API doesn't match the name of the Database asset you created when you prepared the Data Catalog physical data layer.The name of the System asset you created doesn't match the name of the system of the data source that you register, as specified in the configuration file.You forgot to create the required relation between the Database asset and the Schema asset that was created when you registered your data source.A database query includes a function or query that Collibra Data Lineage does not support.The relations required to recognize the database are not exposed, resulting in missing stitching.You experience a rare exception, for example, SAP label names v. technical names When connecting to an SAP HANA data source, some BI tools use the label name instead of the technical name. This can result in a mismatch between the name of the data source in the technical lineage and the Database asset in Collibra. Creating the technical lineageLet's start with a lifehack: create the technical lineage without giving any thought to stitching. Specifically, prepare your source ID configuration file as you want, for filtering or to specify a system name, but don't worry about database mapping. Run the lineage harvester and analyze the technical lineage, to see what the APIs return for the database names. You can then set up database mapping in your source ID file and run the harvester again.What you've done so far You've pulled in data from a data source to your BI tool, and with that data set, you've created a report.You've either:Prepared a lineage harvester configuration file and run the lineage harvester.Added the relevant Edge capability and run the Edge job.You now have: A technical lineage that shows the flow of data from the data source to your BI tool. Assets in Data Catalog that represent the data objects in your data source. Among these assets are: Assets that represent the data set you used to create the report in your BI tool. These are assets of child asset types of the BI Data Model asset type, for example Power BI Data Model and
Tableau Data Model assets. Assets that represent the report in your BI tool. These are assets of child asset types of the BI Report asset type, for example Power BI Report and Tableau Report assets. Analyze the technical lineageGo to the asset page of your BI Data Model asset and click the Technical Lineage tab. As shown in the following image, there will most likely be three nodes or groupings of nodes: The external database.The BI data model.The BI report. The first thing we notice is that the database node has a gray background and the other two have a yellow background. The yellow nodes represent BI assets and data objects. As such, we say that this part of the technical lineage graph depicts BI lineage.Ultimately, what we want is for all three nodes to have the yellow background. Technically speaking, that means:Lineage is confirmed upstream of the BI lineage.The data sources that feed into the database node are shown. Let's examine more closely these three nodes.If you are integrating MicroStrategy, there will be four groups of nodes. In reference to the previous image, the BI data model node will consist of two groups nodes, one representing MicroStrategy Attributes and one representing MicroStrategy Facts. There could also be four groups if you are integrating SQL Server Reporting Services (SSRS) or Power BI Report Server (PBRS) and have a shared data set.The external database This node represents the table from the database you used to create the report in your BI tool. It is returned by the API and is shown in the technical lineage, as long as: You have the required roles and permissions in your BI tool, to access the data in your data sources. For example, in Tableau, you need certain roles and permissions to access external data objects.There are no unsupported custom SQL transformations or functions.No errors have caused the integration to fail. By the fact of its presence in the technical lineage, we know that the lineage harvester collected the source code from the BI tool and identified the flow of data from this data source to the BI data model. This node is a prerequisite for stitching. If it is not shown in the technical lineage, stitching is not possible.The node might be yellow if you previously ingested metadata in Data Catalog that matches the database tables used in your dataset.The gray background indicates that there might be a Table asset in Collibra that corresponds with this database table, but their full names do not exactly match. Look closely at the names of these nodes, to correctly identify if the nodes represent data objects from the data source or from your BI tool. In this example, you can tell by the names that the two yellow nodes are the BI data set and BI report nodes. When you view a technical lineage, it could be that the database and BI data set are stitched, and the BI report node does not appear in the technical lineage. This could be the case if you're viewing the lineage at the column level, and the attribute that the column represents is not used in the report. At first glance, one might incorrectly think that the database node, which is essential for stitching, is not shown.The BI data model This node represents the data set that you used to create the report in your BI tool. It will always be shown in the technical lineage, because it is the target of the database table and the source of the BI report.The yellow background indicates that the name of the BI Data Model asset in Data Catalog matches exactly the name of this data set in the technical lineage.This node is always stitched because Collibra Data Lineage knows the full name of the data set in your BI tool, and it creates the corresponding BI Data Model asset with the exact same name. This is referred to as BI stitching.The BI report This node (or grouping of nodes) represents the report you created in your BI tool. It is always part of the technical lineage.Like the BI data model node, this node is always stitched because Collibra Data Lineage knows the full name of the report in your BI tool, and it creates the corresponding BI Report asset with the exact same name.While the BI report node is always part of the technical lineage, it might not initially be visible when you view the technical lineage. If, for example, you're viewing the lineage at the column level, and the attribute that the column represents is not used in the report, there will be no arrow leading to the report node in the technical lineage. In this case, right-click on the data model node and click Table lineage to pull back and view the table-level lineage. The BI report node will appear and you will see which columns/data attributes are used in the report.How to achieve stitchingLet's have a look at a typical database mismatching scenario. First, let's look at the name of an unstitched database table in the technical lineage graph:MODEL.PRODUCT CATEGORY [ADVENTUREWORKS::database]We can identify the following:The database name: ADVENTUREWORKSThe schema name: MODELThe table name: PRODUCT CATEGORYNow let's find the table in the Stitching tab:Click the Settings tab.Click Show status.Click the Stitching tab.The Stitching tab shows a list of all tables that exist in Data Catalog and on the Collibra Data Lineage service instance.Use the Search field to find the unstitched database table PRODUCT CATEGORY.In the Found in column, the value Technical Lineage confirms what we already know: the table was found only in the technical lineage. An exactly matching asset was not identified in Collibra. Now try to find a likely match. Look for a table that has the same name and the value Catalog in the Found in column.The table shown in the following image looks like a match. The schema and table names match exactly; only the database names differ. To achieve stitching, you need to create a source ID configuration file and configure database mapping.For more broken stitching scenarios and suggestions for resolving the issue, go to Broken stitching and possible solutions.Business Summary LineageThe Business Summary Lineage is a representation of relations of the type Data Element sources / targets Data Element in a business diagram. It is not a separate diagram view, but refers to any diagram that contains that relation type. It allows you to trace data flows between registered databases and, as such, provides a summary of a technical lineage.Click here for an overview of the differences between Technical lineage and a diagram with Business Summary Lineage.You can create a new diagram view including the Business Summary Lineage or you can select one of the existing diagram views that shows the relation Data Element sources / targets Data Element between Column assets of registered data sources and between BI assets and assets of registered data sources.Before you can view a diagram with Business Summary Lineage, you have to:Register the data sources that you want to see in a diagram with Business Summary Lineage.Prepare a configuration file to create a technical lineage.Use the lineage harvester or technical lineage via Edge to upload the data sources in your configuration file to the Collibra Data Lineage service where they are scanned and processed.Once the data sources are scanned, the Collibra Data Lineage service automatically pushes relations of the type Data Element sources / targets Data Element to Collibra Data Intelligence Cloud.Example of a diagram with Business Summary LineageIn this business diagram, you see that the Column assets of the Table asset CustomerProductSales have a relation of the type Data Element sources / targets Data Element to Column assets of other Table assets.Differences between Technical lineage and diagrams with Business Summary LineageTechnical lineage is a detailed lineage graph that shows where data objects are used and how they are transformed. A diagram with the Business Summary Lineage shows the relations between Data Assets in Data Catalog after stitching. Both map the flow of data, but a technical lineage provides a detailed overview of the data flow, while a diagram with Business Summary Lineage only provides a summary of it.The Business Summary Lineage and a technical lineage are both visual representations of nodes. However, there are some key differences between them.For information on the steps required to create a technical lineage, including how to prepare the Data Catalog physical data layer, see About technical lineage.Business Summary LineageTechnical lineageA diagram with a Business Summary Lineage helps Business Analysts and other business users to understand their data by providing a summary of the technical lineage.A technical lineage helps Data Engineers, Data Architects and similar personas to easily navigate to data objects in the data flows and find relevant source code fragments by providing a detailed lineage graph.A diagram containing Business Summary Lineage is accessible via the Diagram tab pane of all assets.A technical lineage is accessible via the tab pane of all Table assets and Column assets. You can view a technical lineage via the tab pane of Table assets and Column assets if you added their database as data sources in the configuration file.A diagram shows assets and relations as defined in its diagram view. In the case of a Business Summary Lineage, the diagram shows, amongst others, relations of the type Data Element targets / sources Data Element between assets that exist in Data Catalog. Relations of this type are automatically created as part of the technical lineage process.A technical lineage shows relations of the type Data Element targets / sources Data Element between all data objects in the data source. Relations of this type are automatically created as part of the technical lineage process.The data objects that you see in the technical lineage are: Data Element assets for
which you created the technical lineage,Other objects, for example temporary tables and columns, that the lineage scanner collected from your data sources, but are not assets in Data Catalog. A diagram with a Business Summary Lineage shows how registered data sources relate to each other.Technical lineage shows how all data sources for which you create a technical lineage relate to each other. If the data source, or a part of the data source, is not registered in Data Catalog, the dependencies between the data elements in the data sources are still shown.You have created a technical lineage for four different databases:The first database, Oracle, is not ingested in Data Catalog and therefore has no assets in Data Catalog.The second database, Raw, contains tables that are ingested in Data Catalog, but also tables that are not ingested and therefore are not assets.The third and fourth database, Refined and Consumption, only contains data objects that are also assets in Data Catalog.Technical lineage shows the data flow from all data objects in the first database, to the second, the third, and the fourth. Databases or data objects that are not ingested in Data Catalog and therefore are not assets, have a gray background.A diagram with Business Summary Lineage only shows the relations between data objects that are also assets in Data Catalog, which means the data flow from assets in the second database to assets in the third, to assets in the fourth. The first database, which wasn't ingested, will not be shown on the diagram.DependenciesA dependency is a data object that is targeted by another data object. This is represented by a relation of the type Data Element targets / sources Data Element, where the dependency is the tail.There are two type of dependencies:a direct dependency: a data object that is the tail of a relation of the type Data Element targets / sources Data Element. If column A targets column B, then column B is the direct dependency of column A. an indirect dependency: a data object that is the target of a direct or another indirect dependency. Column A targets column B, which on its turn targets column C. This means that column A indirectly targets column C, so column C is the indirect dependency of column A.BI integration conceptsThis section addresses BI tool-specific integration concepts for business-focused customers.BI tool terminologyThe following tables show the supported BI tool terminology and corresponding asset types and terminology in Collibra Data Intelligence Cloud.Keep in mind, it is possible that your organization has renamed the out-of-the-box asset types.StepsTableau termDescriptionCollibra equivalentSiteA site is a stand-alone collection of content, such as projects, workbooks and users. Each site has its own URL and its own set of users.Subcommunity and Tableau Site assetProjectA project organizes related content resources. Content resources are workbooks, views and data sources.Tableau Project assetWorkbookA workbook is a collection of views.Tableau Workbook assetDashboardA dashboard is a collection of views from multiple worksheets.Tableau Dashboard assetWorksheetA worksheet contains a single view, along with shelves, legends, and the Data pane.Tableau Worksheet assetTableau data sourceTableau Data Sources consist of metadata that describe the connection information, information about how to access or refresh the data and customizations.Tableau Data Model assetDimensionDimensions contain qualitative values (such as names, dates, or geographical data).Attribute type Role in Report on a Tableau Data Attribute asset pageMeasureMeasures contain numeric, quantitative values that you can measure.Attribute type Role in Report on a Tableau Data Attribute asset pageTableau data attributeTableau Data Attributes define a property of a Tableau data entity.Tableau Data Attribute assetTableau data entityTableau Data Entities are an abstraction of the physical implementation of database tables, used for Tableau report creation.Tableau Data Model assetTableau data modelTableau Data Models are an abstraction for the physical implementation of databases, schemas, files, etc., used for Tableau report creation.Tableau Data Model assetTableau serverA Tableau server is a server on which Tableau users can publish data sources, as a means to share the data connections they've defined.Tableau Server assetPublished versus embedded data sourcesYou can create data sources in Tableau when you connect to data. After you set up the data sources in Tableau, you can publish data sources as standalone resources, or you can publish workbooks with the data sources embedded in. Unless you take actions to publish the data source separately, the data source is published as embedded in a workbook by default. For more information, see the Tableau documentation on Publishing data separately or embedded in workbooks.Collibra Data Lineage ingests metadata of data sources as assets of the Tableau Data Model asset type, regardless of the way the data sources are published.eTDM and pTDMWhen you ingest a Tableau data source in Collibra, each asset is identified as eTDM or pTDM with [eTDM] or [pTDM] added to the asset name.eTDM stands for embedded Tableau Data Model, which indicates that the asset represents the data source that is embedded in a workbook in Tableau. pTDM stands for published Tableau Data Model, which indicates that the asset represents the data source that is published separately in Tableau. For a data source that is both published separately and embedded in a workbook, Collibra Data Lineage ingests the metadata in one of the following ways:If the metadata of the embedded data source matches that of the published data source, Collibra Data Lineage ingests the metadata only from the published data source to avoid duplication. If the metadata of the embedded data source contains more fields than that of the published data source, Collibra Data Lineage ingests metadata from both the published and embedded data sources. As a result, a Tableau workbook can have one of the following relations:To the published and embedded data source.To the published data source only. Power BI termDescriptionAsset type in CollibraCapacityA resource that hosts Power BI Workspaces.Power BI CapacityDashboardA collection of Power BI tiles with metrics from one or more Reports and Data Models.Power BI DashboardDataflowA collection of tables that are created and managed in workspaces in the Power BI service.Power BI Data FlowDatamartA self-service analytics solutions, enabling users to store and explore data that is loaded in a fully managed database.Power BI Data MartData SetA collection of data that is used to create a Power BI report.Power BI Data ModelData Set ColumnA column in a Power BI Data Model.Power BI ColumnData Set TableA table in a Power BI Data Model.Power BI TableReportA detailed view of a Power BI Data Model, with visualizations of findings and insights.Power BI ReportServer or TenantA visual analytics platform for creating and storing Power BI Reports and Data Models.Power BI ServerTileAn element representing data on the Power BI Dashboard.Power BI TileWorkspaceA collection of Power BI Dashboards, Reports and Data Models.Power BI WorkspaceMicroStrategy termDescriptionAsset type in CollibraAttribute / FactA detailed view of a MicroStrategy visualization, with findings and insights.MicroStrategy Data EntityAttribute Form / Fact expression Additional descriptive information about an attribute.MicroStrategy Data AttributeColumnA column in a MicroStrategy data model.MicroStrategy Data AttributeDatasetA collection of data that is used to create MicroStrategy reports.MicroStrategy Data ModelDocumentA collection of grid and graph reports that can be viewed at the same time, along with images and text.MicroStrategy DocumentDossierA collection of MicroStrategy chapters and pages.MicroStrategy DossierFolderA collection of MicroStrategy reports and data models.MicroStrategy FolderProjectA collection of MicroStrategy visualizations, report attributes and tables.MicroStrategy ProjectReportA detailed view of a MicroStrategy data model, with visualizations of findings and insights.MicroStrategy ReportServerA visual analytics platform for creating and storing MicroStrategy reports and data models.MicroStrategy ServerVisualizationA visual representation of the data in a dossier, such as a grid, line chart, or heat map.MicroStrategy VisualisationLooker termDescriptionAsset type in CollibraDashboardA collection of Looker tiles with metrics from one or more Looker Looks.Looker DashboardExploreA collection of data that is used to define Looker Dimensions and Measures.Looker Data SetDimensions, MeasuresAn atomic unit of data that is used in a Looker Look or Looker Tile. It represents a column in a Looker Data Set.Looker Data Set ColumnFolder or SpaceA container that stores Looker Looks, Dashboards and other folders.Looker FolderLookA detailed view of a Looker Data Set, with visualizations of findings and insights.Looker LookDimensions, MeasuresAn atomic unit of data that is used in a Looker Look or Looker Tile. It represents the actual use a Looker Data Set Column.Looker Report AttributeQueryA query that creates a simple report in a Looker Tile or Looker Look.Looker QueryLooker instanceA platform to create Looker Dashboards and rich visualizations.Looker TenantTile or Dashboard elementAn element that represents data on the Looker Dashboard.Looker TileSSRS-PBRS termDescriptionAsset type in CollibraColumnA column in an SQL Server Reporting Services Report Data Set.SSRS ColumnData SetA collection of data that is used to create an SQL Server Reporting Services Report.SSRS Data ModelFolder A collection of SQL Server Reporting Services and Power BI Report Server Reports and Data Sets. SSRS FolderKPIA key performance indicator of SQL Server Reporting Services.SSRS KPIMobile reportA detailed view of an SQL Server Reporting
Services Data Set, with visualizations of findings and insights.SSRS ReportPaginated reportA detailed view of an SQL Server Reporting Services Data Set, with visualizations of findings and insights.SSRS ReportParameterA column that is part of an SQL Server Reporting Services Data Set and that is used in a KPI.SSRS ParameterPower BI Report Server reportA detailed view of a Power BI Data Model, with visualizations of findings and insights.Power BI ReportSQL Server Reporting Services or Power BI Report Server server or tenant A visual analytics platform for creating and storing SQL Server Reporting Services and Power BI Report Server Reports and Data Sets. SSRS ServerTableA table in an SQL Server Reporting Services Report Data Set.SSRS TableBI asset types and domain typesBI tool integration uses a specific subset of out-of-the-box asset types and domain types.The following table shows the asset and domain types that are used for the BI tool integrations. Above each asset type you can see the parent asset types in the breadcrumbs.Keep in mind, it is possible that your organization has renamed the out-of-the-box asset types.Asset typeDescriptionDomain typeBusiness Asset Business Dimension BI Folder Looker FolderA container that stores Looker Looks, Dashboards and other folders.BI CatalogBusiness Asset Report BI Report Looker DashboardA collection of Looker tiles with metrics from one or more Looker Looks.BI CatalogBusiness Asset Report BI Report Looker LookA detailed view of a Looker Data Set, with visualizations of findings and insights.BI CatalogBusiness Asset Report BI Report Looker QueryA query that creates a simple report in a Looker Tile or Looker Look.BI CatalogBusiness Asset Report BI Report Looker TileAn element that represents data on the Looker Dashboard.BI CatalogData Asset Data Element Data Attribute BI Data Attribute Looker Data Set ColumnAn atomic unit of data that is used in a Looker Look or Looker Tile. It represents a column in a Looker Data Set.BI CatalogData Asset Data Element Report Attribute BI Report Attribute Looker Report AttributeAn atomic unit of data that is used in a Looker Look or Looker Tile. It represents the actual use a Looker Data Set Column.BI Catalog Data Asset Data Set BI Data Set Looker Data SetA collection of data that is used to define Looker Dimensions and Measures.BI CatalogTechnology Asset Server BI Server Looker TenantA platform to create Looker Dashboards and rich visualizations.BI CatalogAsset typeDescriptionDomain typeBusiness Asset Business Dimension BI Folder MicroStrategy FolderA collection of MicroStrategy reports and data models.BI CatalogBusiness Asset Business Dimension BI Folder MicroStrategy ProjectA collection of MicroStrategy visualizations, report attributes and tables.BI CatalogBusiness Asset Report BI Report MicroStrategy DossierA collection of MicroStrategy chapters and pages.BI CatalogBusiness Asset Report BI Report MicroStrategy DocumentA collection of grid and graph reports that can be viewed at the same time, along with images and text.BI CatalogBusiness Asset Report BI Report MicroStrategy ReportA detailed view of a MicroStrategy data model, with visualizations of findings and insights.BI CatalogData Asset Data Element Data Attribute BI Data Attribute MicroStrategy Data AttributeA column in a MicroStrategy data model.BI CatalogData Asset Data Element Report Attribute BI Report Attribute MicroStrategy VisualizationA detailed view of a MicroStrategy visualization, with findings and insights.BI CatalogData Asset Data Structure Data Entity BI Data Entity MicroStrategy Data EntityA detailed view of a MicroStrategy visualization, with findings and insights.BI CatalogData Asset Data Structure Data Model BI Data Model MicroStrategy Data ModelA collection of data that is used to create MicroStrategy reports.BI CatalogTechnology Asset Server BI Server MicroStrategy ServerA visual analytics platform for creating and storing MicroStrategy reports and data models.BI CatalogAsset typeDescriptionDomain typeBusiness Asset Business Dimension BI Folder Power BI CapacityA resource that hosts Power BI Workspaces.BI CatalogBusiness Asset Business Dimension BI Folder Power BI WorkspaceA collection of Power BI Dashboards, Reports and Data Models.BI CatalogBusiness Asset Report BI Report Power BI DashboardA collection of Power BI tiles with metrics from one or more Reports and Data Models.BI CatalogBusiness Asset Report BI Report Power BI ReportA detailed view of a Power BI Data Model, with visualizations of findings and insights.BI CatalogBusiness Asset Report BI Report Power BI TileAn element representing data on the Power BI Dashboard.BI CatalogData Asset Data Element Data Attribute BI Data Attribute Power BI ColumnA column in a Power BI Data Model.BI CatalogData Asset Data Structure Data Entity BI Data Entity Power BI TableA table in a Power BI Data Model.BI CatalogData Asset Data Structure Data Model BI Data Model Power BI Data FlowA collection of tables that are created and managed in workspaces in the Power BI service.BI CatalogData Asset Data Structure Data Model BI Data Model Power BI Data Mart BI CatalogData Asset Data Structure Data Model BI Data Model Power BI Data ModelA collection of data that is used to create a Power BI report.BI CatalogTechnology Asset Server BI Server Power BI ServerA visual analytics platform for creating and storing Power BI Reports and Data Models.BI CatalogAsset typeDescriptionDomain typeBusiness Asset Business Dimension BI Folder SSRS Folder A collection of SQL Server Reporting Services and Power BI Report Server Reports and Data Sets. BI CatalogBusiness Asset Report BI Report SSRS KPIA key performance indicator of SQL Server Reporting Services.BI CatalogBusiness Asset Report BI Report SSRS ReportA detailed view of an SQL Server Reporting Services Data Set, with visualizations of findings and insights.BI CatalogData Asset Data Element Data Attribute BI Data Attribute SSRS ColumnA column in an SQL Server Reporting Services Report Data Set.BI CatalogData Asset Data Element Report Attribute BI Report Attribute SSRS ParameterA column that is part of an SQL Server Reporting Services Data Set and that is used in a KPI.BI Catalog Data Asset Data Set BI Data Set SSRS Data ModelA collection of data that is used to create an SQL Server Reporting Services Report.BI CatalogData Asset Data Element Data Attribute BI Data Attribute Power BI TableSSRS Table A table in an SQL Server Reporting Services Report Data Set.BI CatalogTechnology Asset Server BI Server SSRS Server A visual analytics platform for creating and storing SQL Server Reporting Services and Power BI Report Server Reports and Data Sets. BI CatalogAsset typeDescriptionDomain typeBusiness Asset Business Dimension BI Folder Tableau ProjectCollection of Tableau workbooks and data sources.BI CatalogBusiness Asset Business Dimension BI Folder Tableau SiteCollection of content (workbooks, data sources, users, …) that's walled off from any other content on that instance of Tableau Server.BI CatalogBusiness Asset Report BI Report Tableau View Tableau DashboardA collection of several worksheets and supporting information, shown on a single screen, so that you can simultaneously compare and monitor a variety of data.BI CatalogBusiness Asset Report BI Report Tableau View Tableau WorksheetA worksheet is a single sheet on which you can build views of your data.BI CatalogBusiness Asset Report BI Report Tableau WorkbookCollection of sheets. A sheet can be a worksheet, a dashboard or a story.BI CatalogData Asset Data Element Data Attribute BI Data Attribute Tableau Data AttributeA specification that defines a property of a Tableau data entity.Examples: CustomerBirthDate, EmployeeFirstName.BI CatalogData Asset Data Structure Data Model BI Data Model Tableau Data ModelAn abstraction from the physical implementation of database, schema, file, etc., used for Tableau report creation.BI CatalogTechnology Asset Server BI Server Tableau ServerA visual analytics platform for creating interactive dashboards and rich visualisationsBI CatalogBI tool operating modelsThis section shows the BI tool operating models and related information. Keep in mind, it is possible that your organization has renamed the out-of-the-box asset types and characteristics.StepsOverview and diagram viewHarvested metadata per asset typeExample of ingested Tableau metadataRecommended hierarchy within a domainCreate a Tableau operating model diagram viewOverview and diagram viewSynchronizing means refreshing the assets that are currently in Data Catalog as a result of a previous ingestion or synchronization job. After synchronizing Tableau, the assets in Data Catalog accurately reflect the metadata as it exists at the time of synchronization.The assets have the same names as their counterparts in Tableau.Some asset types are only created if the Tableau user has specific permissions.Relations that were created between Tableau assets and other assets via a relation type in the Tableau operating model, are deleted upon synchronization. The same is true of any attribute types in the operating model that you add to Tableau assets. To ensure that the characteristics you add to Tableau assets are not deleted upon synchronization, be sure to use characteristics that are not part of the Tableau operating model.The following image shows the relations between Tableau asset types.You can easily recreate this diagram view in your Collibra environment. See Create a Tableau operating model diagram view.Harvested metadata per asset typeThis table shows the metadata for each Tableau asset type and the resource ID for each asset type and metadata.Asset typeSynchronized metadataResource IDTableau ServerResource ID: 00000000-0000-0000-0000-110000000005 Description00000000-0000-0000-0000-000000003114Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000URL: The link to the data in
Tableau00000000-0000-0000-0000-000000000258Tableau SiteResource ID: 00000000-0000-0000-0000-110000000000BI Folder assembles / Is assembled in BI Folder00000000-0000-0000-0000-120000000001Description00000000-0000-0000-0000-000000003114Server hosts / is hosted in Business Dimension 00000000-0000-0000-0000-120000000000URL: The link to the data in Tableau00000000-0000-0000-0000-000000000258Tableau ProjectResource ID: 00000000-0000-0000-0000-110000000001Description00000000-0000-0000-0000-000000003114 Owner in sourceThe only harvested metadata are email addresses. To harvest this metadata, you need to enable the Metadata API by setting the restOnly property in your lineage harvester configuration file to false.00000000-0000-0000-0000-200000000001BI Folder assembles / is assembled in BI Folder00000000-0000-0000-0000-120000000001Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Tableau WorkbookResource ID: 00000000-0000-0000-0000-110000000002Description00000000-0000-0000-0000-000000003114Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261Document size00000000-0000-0000-0000-000000000259 Owner in sourceThe only harvested metadata are email addresses. To harvest this metadata, you need to enable the Metadata API by setting the restOnly property in your lineage harvester configuration file to false.00000000-0000-0000-0000-200000000001Report Image00000000-0000-0000-0000-000000000262URL: The link to the data in Tableau00000000-0000-0000-0000-000000000258Visits countThis is the amount of times the workbook was viewed in Tableau.00000000-0000-0000-0000-000000000264Report groups / is grouped into Report00000000-0000-0000-0000-120000000004 Tableau Workbook contains / contained in Tableau Data Model00000000-0000-0000-0000-120000000020 Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Tableau DashboardResource ID: 00000000-0000-0000-0001-110000000301Assets of this type are only created if the Tableau user has the Download/Save As permission on the workbook.Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261 Owner in sourceThe only harvested metadata are email addresses. To harvest this metadata, you need to enable the Metadata API by setting the restOnly property in your lineage harvester configuration file to false.00000000-0000-0000-0000-200000000001Report image: The image of the report. Images are downloaded and stored in Data Catalog. You can configure the maximum file size and content types of the Tableau images in the Collibra DGC service settings. 00000000-0000-0000-0000-000000000262URL: The link to the data in Tableau00000000-0000-0000-0000-000000000258Visible on server00000000-0000-0000-0000-000000000265Visits countThis is the amount of times the dashboard was viewed in Tableau.00000000-0000-0000-0000-000000000264Report groups / is grouped into Report00000000-0000-0000-0000-120000000004 Report uses / used in Data Attribute 00000000-0000-0000-0000-120000000021 Report uses / used in Report00000000-0000-0000-0000-120000000007 Tableau WorksheetResource ID: 00000000-0000-0000-0001-110000000300Assets of this type are only created if the Tableau user has the Download/Save As permission on the workbook.Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261Report image: The image of the report. Images are downloaded and stored in Data Catalog. You can configure the maximum file size and content types of the Tableau images in the Collibra DGC service settings. 00000000-0000-0000-0000-000000000262URL: The link to the data in Tableau00000000-0000-0000-0000-000000000258Visible on server00000000-0000-0000-0000-000000000265Visits countThis is the amount of times the worksheet was viewed in Tableau.00000000-0000-0000-0000-000000000264Report groups / is grouped into Report00000000-0000-0000-0000-120000000004 Report uses / used in Data Attribute 00000000-0000-0000-0000-120000000021 Report uses / used in Report00000000-0000-0000-0000-120000000007 Tableau Data AttributeResource ID: 00000000-0000-0000-0000-110000000010Assets of this type are only created if the Tableau user has the Download/Save As permission on the data source.Description00000000-0000-0000-0000-000000003114Calculation Rule00000000-0000-0000-0000-000000003117Data Type: The data type of a data asset, as it is declared by the data source.00000000-0000-0000-0001-000500000005Role in Report00000000-0000-0000-0000-000000000266BI Data Model contains / is part of BI Data Attribute00000000-0000-0000-0000-000000007196Data Element targets / sources Data Element00000000-0000-0000-0000-000000007069Report uses / used in Data Attribute 00000000-0000-0000-0000-120000000021 Tableau Data ModelResource ID: 00000000-0000-0000-0000-110000000008Assets of this type are only created if the Tableau user has the Download/Save As permission on the data source.Description00000000-0000-0000-0000-000000003114CertifiedCertification is only possible for published Tableau data sources.00000000-0000-0000-0001-000500000001Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261Original Name: The name of the data source in Tableau00000000-0000-0000-0001-000500000032 Owner in sourceThe only harvested metadata are email addresses. To harvest this metadata, you need to enable the Metadata API by setting the restOnly property in your lineage harvester configuration file to false.00000000-0000-0000-0000-200000000001BI Data Model contains / is part of BI Data Attribute00000000-0000-0000-0000-000000007196Business Dimension source / is source of System00000000-0000-0000-0000-120000000003Tableau Workbook contains / contained in Tableau Data Model00000000-0000-0000-0000-120000000020 Data Asset contained in / contains BI Folder00000000-0000-0000-0000-120000000014Additional informationFor the Owner in source attribute, the following rules apply: If the system creates a Tableau data object and the Tableau data object does not have a user ID, the Owner in source attribute is shown as System on the asset page. If the user who created a Tableau data object no longer exists, the Owner in source attribute is shown as empty on the asset page.Example of ingested Tableau metadataThe following image shows an example structure after synchronizing Tableau.Recommended hierarchy within a domainYou can enable hierarchies for the domain (or domains) in which your Tableau assets were ingested. Doing so makes it easier to understand the relation between your Tableau assets, when viewing the assets on the domain page.Follow these steps to enable and configure the recommended hierarchy.Steps Open the domain page of the relevant BI Catalog domain. On the content toolbar, click .The Configure Hierarchy dialog box appears.Select Enable Hierarchy.Select Multipath.Start typing and select each of the following relation types:Server hosts Business DimensionBI Folder assembles BI FolderBusiness Dimension groups ReportReport groups ReportReport uses ReportReport uses Data AttributeBI Folder contains Data AssetBI Data Model contains BI Data AttributeTableau Workbook contains Tableau Data ModelClick Apply.In an asset view, if any asset is deleted, for example via synchronization or manual deletion, the view is recreated and the hierarchy is lost. In this case, you can again enable and configure the recommended hierarchy.When viewing the hierarchy for a community or domain, if the parent of a node that is in the community or domain belongs to a different community or domain, that node is not shown in the hierarchy.Create a Tableau operating model diagram viewYou can create a Tableau-specific diagram view, to visualize the operating model. The following procedure provides instruction on how to quickly create a new diagram view by copying and pasting the JSON code in the diagram view text editor.StepsOpen an asset page. In the tab pane, click Diagram.The diagram appears in the default diagram view.Click to add a new view.Click the Text tab, to switch to the diagram view text editor.Click Show me the JSON code below this procedure, to expand the code.Paste the code in diagram view text editor.Click Save.Edit the name and description of the diagram view, to suit your needs.Show me the JSON code { nodes:[{ id:Tableau Workbook, type:{ id:00000000-0000-0000-0000-110000000002 }, layoutRegion:context }, { id:Tableau Dashboard, type:{ id:00000000-0000-0000-0001-110000000301 }, layoutRegion:context }, { id:Tableau Worksheet, type:{ id:00000000-0000-0000-0001-110000000300 }, layoutRegion:context }, { id:Tableau Data Model, type:{ id:00000000-0000-0000-0000-110000000008 }, layoutRegion:context }, { id:Tableau Project, type:{ id:00000000-0000-0000-0000-110000000001 }, layoutRegion:context }, { id:Tableau Site, type:{ id:00000000-0000-0000-0000-110000000000 }, layoutRegion:context }, { id:Tableau Server, type:{ id:00000000-0000-0000-0000-110000000005 }, layoutRegion:context }, { id:Tableau Data Attribute, type:{ id:00000000-0000-0000-0000-110000000010 }, layoutRegion:context }, { id:Column, type:{ id:00000000-0000-0000-0000-000000031008 }, layoutRegion:context }, { id:Table, type:{ id:00000000-0000-0000-0000-000000031007 }, layoutRegion:context }, { id:Schema, type:{ id:00000000-0000-0000-0001-000400000002 }, layoutRegion:context }, { id:Database, type:{ id:00000000-0000-0000-0000-000000031006 }, layoutRegion:context }], edges:[{ from:Tableau Project, to:Tableau Workbook, label:, style:boxing, type:{ id:00000000-0000-0000-0000-120000000002 }, roleDirection:true }, { from:Tableau Site, to:Tableau Project, label:, style:boxing, type:{ id:00000000-0000-0000-0000-120000000001 }, roleDirection:true
}, { from:Tableau Server, to:Tableau Site, label:, style:boxing, type:{ id:00000000-0000-0000-0000-120000000000 }, roleDirection:true }, { from:Tableau Data Model, to:Tableau Data Attribute, label:, style:boxing, type:{ id:00000000-0000-0000-0000-000000007196 }, roleDirection:true }, { from:Tableau Data Attribute, to:Tableau Data Attribute, label:, style:arrow, type:{ id:00000000-0000-0000-0000-000000007069 }, roleDirection:false }, { from:Tableau Workbook, to:Tableau Data Model, label:, style:boxing, type:{ id:00000000-0000-0000-0000-120000000020 }, roleDirection:true }, { from:Tableau Project, to:Tableau Data Model, label:, style:arrow, type:{ id:00000000-0000-0000-0000-120000000014 }, roleDirection:true }, { from:Column, to:Column, label:, style:boxing, type:{ id:00000000-0000-0000-0000-000000007042 }, roleDirection:false }, { from:Column, to:Table, label:, style:boxed, type:{ id:00000000-0000-0000-0000-000000007042 }, roleDirection:true }, { from:Table, to:Schema, label:, style:boxed, type:{ id:00000000-0000-0000-0000-000000007043 }, roleDirection:false }, { from:Schema, to:Database, label:, style:boxed, type:{ id:00000000-0000-0000-0000-000000007024 }, roleDirection:false }, { from:Tableau Data Attribute, to:Tableau Worksheet, label:, style:arrow, type:{ id:00000000-0000-0000-0000-120000000021 }, roleDirection:false }, { from:Tableau Workbook, to:Tableau Worksheet, label:, style:boxing, type:{ id:00000000-0000-0000-0000-120000000004 }, roleDirection:true }, { from:Tableau Workbook, to:Tableau Dashboard, label:, style:boxing, type:{ id:00000000-0000-0000-0000-120000000004 }, roleDirection:true }, { from:Tableau Worksheet, to:Tableau Dashboard, label:, style:arrow, type:{ id:00000000-0000-0000-0000-120000000007 }, roleDirection:false }, { from:Tableau Data Attribute, to:Column, label:, style:arrow, type:{ id:00000000-0000-0000-0000-000000007069 }, roleDirection:false }, { from:Tableau Project, to:Tableau Project, label:, style:boxed, type:{ id:00000000-0000-0000-0000-120000000001 }, roleDirection:true }], showOverview:false, enableFilters:true, showLabels:true, showFields:true, showLegend:true, showPreview:true, visitStrategy:directed, layout:HierarchyLeftRight, maxNodeLabelLength:50, maxEdgeLabelLength:30, layoutOptions:{ compactGroups:false, componentArrangementPolicy:topmost, edgeBends:true, edgeBundling:true, edgeToEdgeDistance:5, minimumLayerDistance:auto, nodeToEdgeDistance:5, orthogonalRouting:true, preciseNodeHeightCalculation:true, recursiveGroupLayering:true, separateLayers:true, webWorkers:true, nodePlacer:{ barycenterMode:true, breakLongSegments:true, groupCompactionStrategy:none, nodeCompaction:false, straightenEdges:true } } } Overview and diagram viewHarvested metadata per asset typeExample of ingested Power BI metadataRecommended hierarchy within a domainCreate a Power BI operating model diagram viewOverview and diagram viewThe lineage harvester collects Power BI metadata and sends it to the Collibra Data Lineage service instances. Collibra processes the metadata and creates new Power BI assets and relations in Data Catalog. You can see them on the asset page overview or visualize them in a diagram or in a technical lineage.The assets have the same names as their counterparts in Power BI. Full names and Display names cannot be changed in Data Catalog.Asset types are only created if you have all specific Power BI and Data Catalog permissions.The Power BI assets are created in the domain (or domains) that you specify in the lineage harvester configuration file. Relations that were created between Power BI assets and other assets via a relation type in the Power BI operating model, are deleted upon synchronization. The same is true of any attribute types in the operating model that you add to Power BI assets. To ensure that the characteristics you add to Power BI assets are not deleted upon synchronization, be sure to use characteristics that are not part of the Power BI operating model. The following image shows the relations between Power BI asset types.Harvested metadata per asset typeThis table shows the harvested Power BI metadata for each Power BI asset type. This table also shows the resource ID for each asset type, attribute, and relation. Asset typeSynchronized metadataResource IDPower BI Capacity Resource ID: 00000000-0000-0000-0000-100000000002Full name Display name Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000BI Folder assembles / is assembled in BI Folder 00000000-0000-0000-0000-120000000001Power BI ColumnResource ID: 00000000-0000-0000-0000-100000000008Full name Display name Description 00000000-0000-0000-0000-000000003114Calculation Rule00000000-0000-0000-0000-000000003117Role in Report00000000-0000-0000-0000-000000000266Technical Data Type00000000-0000-0000-0000-000000000219BI Data Model contains / is part of BI Data Attribute00000000-0000-0000-0000-000000007196Data Element targets / sources Data Element 00000000-0000-0000-0000-000000007069Data Entity contains / is part of Data Attribute 00000000-0000-0000-0000-000000007047Power BI DashboardResource ID: 00000000-0000-0000-0000-100000000004Full name Display name URL If the dashboard is part of an app in Power BI, the URL on the asset page links to the dashboard in the Power BI app.00000000-0000-0000-0000-000000000258Data asset is source / Source for BI Report00000000-0000-0000-0000-120000000013Report uses / used in Report00000000-0000-0000-0000-120000000007 Report related to / impacted by Business Asset00000000-0000-0000-0000-120000000006 Power BI Data FlowResource ID: 00000000-0000-0000-0000-100000000010Full name Display name Description00000000-0000-0000-0000-000000003114BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Data Entity is part of / contains Data Model00000000-0000-0000-0000-000000007046BI Data Model is source for / sources BI Data Model00000000-0000-0000-0000-120000000022Power BI Data MartResource ID: 00000000-0000-0000-0000-100000000052Full name Display name Certified00000000-0000-0000-0001-000500000001Description00000000-0000-0000-0000-000000003114Document modification date00000000-0000-0000-0000-000000000261URL00000000-0000-0000-0000-000000000258Owner in source The only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001Data Asset is source for / sources BI Report00000000-0000-0000-0000-120000000013BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Data Entity is part of / contains Data Model00000000-0000-0000-0000-000000007046BI Data Model is source for / sources BI Data Model00000000-0000-0000-0000-120000000022Power BI Data ModelResource ID: 00000000-0000-0000-0000-100000000007Full name Display name Owner in source The only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001Source type00000000-0000-0000-0000-000000000230BI Data Model contains / is part of BI Data Attribute00000000-0000-0000-0000-000000007196BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Data Asset is source for / source BI report00000000-0000-0000-0000-120000000013Data Entity is part of / contains Data Model00000000-0000-0000-0000-000000007046BI Data Model is source for / sources BI Data Model00000000-0000-0000-0000-120000000022Power BI ReportResource ID: 00000000-0000-0000-0000-100000000006Full name Display name Description 00000000-0000-0000-0000-000000003114Owner in source The only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001Source type00000000-0000-0000-0000-000000000230URLIf the report is part of an app in Power BI, the URL on the asset page links to the report in the Power BI app.00000000-0000-0000-0000-000000000258Business Dimension groups / is grouped into Report 00000000-0000-0000-0000-120000000002 Data Asset is source for / source BI Report 00000000-0000-0000-0000-120000000013Report related to / impacted by Business Asset 00000000-0000-0000-0000-120000000006 Report uses / used in Report00000000-0000-0000-0000-120000000007 Power BI ServerResource ID: 00000000-0000-0000-0000-100000000001Full name Display name Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000Power BI TableResource ID: 00000000-0000-0000-0000-100000000009 Full name Display name Description 00000000-0000-0000-0000-000000003114Calculation Rule00000000-0000-0000-0000-000000003117Data Entity contains / is part of Data Attribute00000000-0000-0000-0000-000000007047Data Entity is part of / contains Data Model00000000-0000-0000-0000-000000007046Power BI TileResource ID: 00000000-0000-0000-0000-100000000005 Full name Display name URL 00000000-0000-0000-0000-000000000258Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Data Asset is source for / source BI Report00000000-0000-0000-0000-120000000013Report related to / impacted by Business Asset00000000-0000-0000-0000-120000000006 Report uses / used in Report00000000-0000-0000-0000-120000000007 Power BI WorkspaceResource ID: 00000000-0000-0000-0000-100000000003 Full name Display name Description 00000000-0000-0000-0000-000000003114State 00000000-0000-0000-0000-000000000227 Owner in source The only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001BI Folder assembles / is assembled in BI Folder00000000-0000-0000-0000-120000000001BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 The metadata that is shown on the assets' pages depends on the asset type's assignment. As a result, you might not see all harvested metadata on the asset's page by default.Additional informationFor the Owner in source attribute, the
following rules apply: If the system creates a Power BI data object and the Power BI data object does not have a user ID, the Owner in source attribute is shown as System on the asset page. If the user who created a Power BI data object no longer exists, the Owner in source attribute is shown as empty on the asset page.URLs to reports and dashboards that can't be found in Power BIWhen you add a report or dashboard to an app in Power BI, what happens is that copies of the original report or dashboard is created in the app. The URL on the corresponding asset page in Collibra links directly to the copied report or dashboard in the app. However, if the name of the original report or dashboard changes, or if it has been deleted in Power BI, the copies in the app remain unchanged. Therefore, to remedy what would otherwise be links to outdated copies of reports or dashboards in Power BI, the URLs on the asset pages instead link to the Power BI app.Example of ingested Power BI metadataThe following image shows an example structure after Power BI ingestion.Recommended hierarchy within a domainYou can enable hierarchies for the domain (or domains) in which your Power BI assets were ingested. Doing so makes it easier to understand the relation between your Power BI assets, when viewing the assets on the domain page.Follow these steps to enable and configure the recommended hierarchy.Steps Open the domain page of the relevant BI Catalog domain. On the content toolbar, click .The Configure Hierarchy dialog box appears.Select Enable Hierarchy.Select Single path.Start typing and select each of the following relation types:Server hosts Business DimensionBI Folder assembles BI FolderBusiness Dimension groups ReportBI Report source Data AssetData Model contains Data EntityData Entity contains Data AttributeClick Apply.In an asset view, if any asset is deleted, for example via synchronization or manual deletion, the view is recreated and the hierarchy is lost. In this case, you can again enable and configure the recommended hierarchy.When viewing the hierarchy for a community or domain, if the parent of a node that is in the community or domain belongs to a different community or domain, that node is not shown in the hierarchy.Create a Power BI operating model diagram viewYou can create a Power BI-specific diagram view, to visualize the operating model. The following procedure provides instruction on how to quickly create a new diagram view by copying and pasting the JSON code in the diagram view text editor.StepsOpen an asset page. In the tab pane, click Diagram.The diagram appears in the default diagram view.Click to add a new view.Click the Text tab, to switch to the diagram view text editor.Click Show me the JSON code below this procedure, to expand the code.Paste the code in diagram view text editor.Click Save.Edit the name and description of the diagram view, to suit your needs.Show me the JSON code{ nodes: [{ id: Power BI Server, type: { id: 00000000-0000-0000-0000-100000000001 }, fields: [] }, { id: Power BI Capacity, type: { id: 00000000-0000-0000-0000-100000000002 } }, { id: Power BI Workspace, type: { id: 00000000-0000-0000-0000-100000000003 } }, { id: Power BI Dashboard, type: { id: 00000000-0000-0000-0000-100000000004 } }, { id: Power BI Report, type: { id: 00000000-0000-0000-0000-100000000006 } }, { id: Power BI Tile, type: { id: 00000000-0000-0000-0000-100000000005 } }, { id: Power BI Data Model, type: { id: 00000000-0000-0000-0000-100000000007 } }, { id: Power BI Data Flow, type: { id: 00000000-0000-0000-0000-100000000010 } }, { id: Power BI Table, type: { id: 00000000-0000-0000-0000-100000000009 } }, { id: Power BI Column, type: { id: 00000000-0000-0000-0000-100000000008 } }, { id: Column, type: { id: 00000000-0000-0000-0000-000000031008 } }, { id: Table, type: { id: 00000000-0000-0000-0000-000000031007 } }, { id: Schema, type: { id: 00000000-0000-0000-0001-000400000002 } }, { id: Database, type: { id: 00000000-0000-0000-0000-000000031006 } }, { id: Power BI Data Mart, type: { id: 00000000-0000-0000-0000-100000000052 } }], edges: [{ from: Power BI Server, to: Power BI Capacity, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000000 }, roleDirection: true }, { from: Power BI Capacity, to: Power BI Workspace, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000001 }, roleDirection: true }, { from: Power BI Workspace, to: Power BI Dashboard, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Power BI Workspace, to: Power BI Report, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Power BI Workspace, to: Power BI Tile, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Power BI Workspace, to: Power BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000014 }, roleDirection: true }, { from: Power BI Workspace, to: Power BI Data Flow, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000014 }, roleDirection: true }, { from: Power BI Dashboard, to: Power BI Tile, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000007 }, roleDirection: true }, { from: Power BI Data Model, to: Power BI Tile, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: true }, { from: Power BI Data Model, to: Power BI Report, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: true }, { from: Power BI Data Flow, to: Power BI Report, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007196 }, roleDirection: true }, { from: Power BI Data Flow, to: Power BI Table, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000014 }, roleDirection: true }, { from: Power BI Tile, to: Power BI Report, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000007 }, roleDirection: true }, { from: Power BI Data Flow, to: Power BI Data Flow, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000022 }, roleDirection: true }, { from: Power BI Column, to: Column, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007069 }, roleDirection: false }, { from: Column, to: Table, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007042 }, roleDirection: true }, { from: Table, to: Schema, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007043 }, roleDirection: false }, { from: Schema, to: Database, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007024 }, roleDirection: false }, { from: Power BI Data Flow, to: Power BI Data Mart, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000022 }, roleDirection: false }, { from: Power BI Data Mart, to: Power BI Data Mart, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000022 }, roleDirection: true }, { from: Power BI Data Mart, to: Power BI Table, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000014 }, roleDirection: true }, { from: Power BI Data Mart, to: Power BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000022 }, roleDirection: true }, { from: Power BI Data Model, to: Power BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000022 }, roleDirection: false }, { from: Power BI Table, to: Power BI Data Model, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007046 }, roleDirection: true }, { from: Power BI Column, to: Power BI Table, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007047 }, roleDirection: false }], showOverview: false, enableFilters: true, showLabels: true, showFields: true, showLegend: true, showPreview: true, visitStrategy: directed, layout: HierarchyTopBottom, maxNodeLabelLength: 50, maxEdgeLabelLength: 30, layoutOptions: { compactGroups: false, componentArrangementPolicy: topmost, edgeBends: true, edgeBundling: true, edgeToEdgeDistance: 5, minimumLayerDistance: auto, nodeToEdgeDistance: 5, orthogonalRouting: true, preciseNodeHeightCalculation: true, recursiveGroupLayering: true, separateLayers: true, webWorkers: true, nodePlacer: {
barycenterMode: true, breakLongSegments: true, groupCompactionStrategy: none, nodeCompaction: false, straightenEdges: true } } }Overview and diagram viewHarvested metadata per asset typeCreate a MicroStrategy operating model diagram viewOverview and diagram viewWhen you integrate MicroStrategy, Collibra Data Lineage creates new MicroStrategy assets and relations in Data Catalog. You can see them on the asset page overview or visualize them in a diagram.The assets have the same names as their corresponding data objects in MicroStrategy.Asset types are only created if you have all specific MicroStrategy and Data Catalog permissions.All MicroStrategy assets are created in the same domain.Relations that were manually created between MicroStrategy assets and other assets via a relation type in the MicroStrategy operating model, are deleted after synchronizing the MicroStrategy metadata.The following image shows the relations between MicroStrategy asset types.Harvested metadata per asset typeThis table shows the harvested MicroStrategy metadata for assets of each MicroStrategy asset type, assuming you have the necessary subscriptions and configurations for a full ingestion.To access MicroStrategy data, you have to use the In-memory Dataset connection method in MicroStrategy, not the Live Connect connection method. If the data is not stored in memory, the MicroStrategy APIs can't access it.The following folders in MicroStrategy are not included in the ingestion:Object TemplatesSystem ObjectsVersion Update HistoryAsset typeHarvested MicroStrategy metadata in Data CatalogResource ID MicroStrategy Data AttributeResource ID: 00000000-0000-0000-0000-100000000047Description 00000000-0000-0000-0000-000000003114 Technical Data Type00000000-0000-0000-0000-000000000219Data Element targets / sources Data Element00000000-0000-0000-0000-000000007069Data Entity contains / is part of Data Attribute 00000000-0000-0000-0000-000000007047Data Attribute used in / uses Report00000000-0000-0000-0000-120000000021MicroStrategy Data EntityResource ID: 00000000-0000-0000-0000-100000000048Description00000000-0000-0000-0000-000000003114Data Entity contains / is part of Data Attribute00000000-0000-0000-0000-000000007047Data Entity is part of / contains Data Model00000000-0000-0000-0000-000000007046Data Asset is source for / source BI Report00000000-0000-0000-0000-120000000013MicroStrategy Data ModelResource ID: 00000000-0000-0000-0000-100000000046If the data model is embedded in the project, Collibra Data Lineage automatically creates a dummy data model.Description00000000-0000-0000-0000-000000003114 BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Data Model contains / is part of Data Entity 00000000-0000-0000-0000-000000007046MicroStrategy DocumentResource ID: 00000000-0000-0000-0000-100000000049Description00000000-0000-0000-0000-000000003114Certified00000000-0000-0000-0001-000500000001Owner in source The only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001URLYou can specify the platform on which you run MicroStrategy, in your lineage harvester configuration file, to ensure the correct URL.00000000-0000-0000-0000-000000000258Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 BI Report contains / contained in BI Data Model00000000-0000-0000-0000-120000000015MicroStrategy DossierResource ID: 00000000-0000-0000-0000-100000000043Description00000000-0000-0000-0000-000000003114Certified00000000-0000-0000-0001-000500000001Owner in source The only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Report uses / used in Report00000000-0000-0000-0000-120000000007MicroStrategy FolderResource ID: 00000000-0000-0000-0000-100000000042Description00000000-0000-0000-0000-000000003114BI Folder assembles / is assembled in BI Folder00000000-0000-0000-0000-120000000001Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014MicroStrategy ProjectResource ID: 00000000-0000-0000-0000-100000000041Description00000000-0000-0000-0000-000000003114BI Folder assembles / is assembled in BI Folder00000000-0000-0000-0000-120000000001Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000MicroStrategy ReportResource ID: 00000000-0000-0000-0000-100000000044Description00000000-0000-0000-0000-000000003114Certified00000000-0000-0000-0001-000500000001URL00000000-0000-0000-0000-000000000258Owner in source The only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001Report groups / is grouped into Report00000000-0000-0000-0000-120000000004 Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Data Asset is source for / source BI Report00000000-0000-0000-0000-120000000013MicroStrategy ServerResource ID: 00000000-0000-0000-0000-100000000040Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000Create a MicroStrategy operating model diagram viewYou can create a MicroStrategy-specific diagram view, to visualize the operating model. The following procedure provides instruction on how to quickly create a new diagram view by copying and pasting the JSON code in the diagram view text editor.StepsOpen an asset page. In the tab pane, click Diagram.The diagram appears in the default diagram view.Click to add a new view.Click the Text tab, to switch to the diagram view text editor.Click Show me the JSON code below this procedure, to expand the code.Paste the code in diagram view text editor.Click Save.Edit the name and description of the diagram view, to suit your needs.Show me the JSON code{ nodes: [{ id: MicroStrategy Report, type: { id: 00000000-0000-0000-0000-100000000044 } }, { id: MicroStrategy Data Attribute, type: { id: 00000000-0000-0000-0000-100000000047 }, editorSettings: { edgePropsExpanded: true } }, { id: BI Folder, type: { id: 00000000-0000-0000-0000-090000000002 }, display: expanded }, { id: MicroStrategy Dossier, type: { id: 00000000-0000-0000-0000-100000000043 } }, { id: MicroStrategy Document, type: { id: 00000000-0000-0000-0000-100000000049 } }, { id: BI Report Attribute, type: { id: 00000000-0000-0000-0000-090000000004 } }, { id: BI Data Entity, type: { id: 00000000-0000-0000-0000-090000000007 } }, { id: BI Data Model, type: { id: 00000000-0000-0000-0000-090000000008 } }, { id: Column, type: { id: 00000000-0000-0000-0000-000000031008 } }, { id: Table, type: { id: 00000000-0000-0000-0000-000000031007 } }, { id: Schema, type: { id: 00000000-0000-0000-0001-000400000002 } }, { id: Database, type: { id: 00000000-0000-0000-0000-000000031006 } }, { id: Business Term, type: { id: 00000000-0000-0000-0000-000000011001 } }], edges: [{ from: MicroStrategy Report, to: MicroStrategy Data Attribute, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000021 }, roleDirection: true }, { from: BI Folder, to: MicroStrategy Report, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: BI Folder, to: BI Folder, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000001 }, roleDirection: true }, { from: BI Folder, to: MicroStrategy Dossier, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: BI Folder, to: MicroStrategy Document, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: MicroStrategy Dossier, to: BI Report Attribute, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007058 }, roleDirection: false }, { from: MicroStrategy Document, to: BI Report Attribute, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007058 }, roleDirection: false }, { from: BI Report Attribute, to: MicroStrategy Data Attribute, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000010 }, roleDirection: true }, { from: BI Data Entity, to: MicroStrategy Data Attribute, label: , style: boxing, type: { id: 00000000-0000-0000-0000-000000007047 }, roleDirection: true }, { from: BI Data Model, to: BI Data Entity, label: , style: boxing, type: { id: 00000000-0000-0000-0000-000000007046 }, roleDirection: false }, { from: MicroStrategy Report, to: MicroStrategy Report, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: false }, { from: MicroStrategy Report, to: BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: false }, { from: MicroStrategy Document, to: BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: false }, { from: MicroStrategy Dossier, to: BI Data Model, label: , style:
arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: false }, { from: MicroStrategy Data Attribute, to: Column, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007069 }, roleDirection: false }, { from: MicroStrategy Dossier, to: BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000015 }, roleDirection: true }, { from: MicroStrategy Document, to: BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000015 }, roleDirection: true }, { from: MicroStrategy Report, to: BI Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000015 }, roleDirection: true }, { from: MicroStrategy Report, to: BI Data Entity, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007038 }, roleDirection: true }, { from: Column, to: Table, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007042 }, roleDirection: true }, { from: Table, to: Schema, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007043 }, roleDirection: false }, { from: Schema, to: Database, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007024 }, roleDirection: false }, { from: MicroStrategy Report, to: Business Term, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007021 }, roleDirection: false }, { from: MicroStrategy Report, to: BI Data Entity, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: false }], showOverview: false, enableFilters: true, showLabels: false, showFields: true, showLegend: true, showPreview: true, visitStrategy: directed, layout: HierarchyLeftRight, maxNodeLabelLength: 50, maxEdgeLabelLength: 30, layoutOptions: { compactGroups: false, componentArrangementPolicy: topmost, edgeBends: true, edgeBundling: true, edgeToEdgeDistance: 5, minimumLayerDistance: auto, nodeToEdgeDistance: 5, orthogonalRouting: true, preciseNodeHeightCalculation: true, recursiveGroupLayering: true, separateLayers: true, webWorkers: true, nodePlacer: { barycenterMode: true, breakLongSegments: true, groupCompactionStrategy: none, nodeCompaction: false, straightenEdges: true } } } Overview and diagram viewHarvested metadata per asset typeExample of ingested Looker metadataRecommended hierarchy within a domainCreate a Looker operating model diagram viewOverview and diagram viewThe Looker scanner collects Looker metadata and sends it to the Collibra Data Lineage service. Collibra processes the metadata and creates new Looker assets and relations in Data Catalog. You can see them on the asset page overview or visualize them in a diagram or in a technical lineage.The assets have the same names as their counterparts in Looker. Full names and Display names cannot be changed in Data Catalog.Asset types are only created if you have all specific Looker and Data Catalog permissions.All Looker asset types are created in the same domain.Relations that were manually created between Looker assets and other assets via a relation type in the Looker operating model are deleted after a refresh of the Looker metadata.The following image shows the relations between Looker asset types.Harvested metadata per asset typeThe following table shows the harvested Looker metadata for each Looker asset type. This table also shows the resource ID for each asset type and metadata. Asset typeSynchronized metadataResource IDLooker DashboardResource ID: 00000000-0000-0000-0000-100000000013Full name Display name Description 00000000-0000-0000-0000-000000003114Document creation date00000000-0000-0000-0000-000000000260Document last accessed date 00000000-0000-0000-0000-000000000268Favorites count00000000-0000-0000-0000-000000000269 Owner in sourceThe only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001Technical Data Type00000000-0000-0000-0000-000000000219URL00000000-0000-0000-0000-000000000258Visit count 00000000-0000-0000-0000-000000000264Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Report groups / is grouped into Report00000000-0000-0000-0000-120000000004 Report related to / impacted by Business Asset00000000-0000-0000-0000-120000000006 Report uses / used in Report00000000-0000-0000-0000-120000000007 Looker Data SetResource ID: 00000000-0000-0000-0000-100000000017Full name Display name Description 00000000-0000-0000-0000-000000003114Data Set contains / is part of Data Element00000000-0000-0000-0000-000000007062Technology Asset source system for / source system Data Asset00000000-0000-0000-0000-000000007050Looker Data Set ColumnResource ID: 00000000-0000-0000-0000-100000000018Full name Display name Description 00000000-0000-0000-0000-000000003114Data Set contains / is part of Data Element00000000-0000-0000-0000-000000007062Report Attribute sourced from / is source of Data Attribute00000000-0000-0000-0000-120000000010Looker FolderResource ID: 00000000-0000-0000-0000-100000000012Full name Display name Document creation date00000000-0000-0000-0000-000000000260Owner in sourceThe only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001BI Folder assembles / is assembled in BI Folder00000000-0000-0000-0000-120000000001Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000Looker LookResource ID: 00000000-0000-0000-0000-100000000014Full name Display name Description 00000000-0000-0000-0000-000000003114Document creation date00000000-0000-0000-0000-000000000260Document last accessed date 00000000-0000-0000-0000-000000000268Document modification date00000000-0000-0000-0000-000000000261Favorites count00000000-0000-0000-0000-000000000269 Owner in sourceThe only harvested metadata are email addresses.00000000-0000-0000-0000-200000000001Report image00000000-0000-0000-0000-000000000262URL00000000-0000-0000-0000-000000000258Visit count 00000000-0000-0000-0000-000000000264Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Report groups / is grouped into Report00000000-0000-0000-0000-120000000004 Report uses / used in Report00000000-0000-0000-0000-120000000007 Looker Report AttributeResource ID: 00000000-0000-0000-0000-100000000019Full name Display name Report Attribute contained in / contains Report00000000-0000-0000-0000-000000007058 Report Attribute sourced from / is source of Data Attribute00000000-0000-0000-0000-120000000010Looker QueryResource ID: 00000000-0000-0000-0000-100000000016Full name Display name URL00000000-0000-0000-0000-000000000258Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Report Attribute contained in / contains Report00000000-0000-0000-0000-000000007058 Report uses / used in Report00000000-0000-0000-0000-120000000007 Looker TenantResource ID: 00000000-0000-0000-0000-100000000011Full name Display name Description00000000-0000-0000-0000-000000003114Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000Technology Asset source system for / source system Data Asset00000000-0000-0000-0000-000000007050Looker TileResource ID: 00000000-0000-0000-0000-100000000015 Full name Display name Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Report uses / used in Report00000000-0000-0000-0000-120000000007 The metadata that is shown on the assets' pages depends on the asset type's assignment. As a result, you might not see all harvested metadata on the asset's page by default.Additional informationFor the Owner in source attribute, the following rules apply: If the system creates a Looker data object and the Looker data object does not have a user ID, the Owner in source attribute is shown as System on the asset page. If the user who created a Looker data object no longer exists, the Owner in source attribute is shown as empty on the asset page.Example of ingested Looker metadataThe following image shows an example structure after Looker ingestion.Recommended hierarchy within a domainYou can enable hierarchies for the domain in which your Looker assets were ingested. Doing so makes it easier to understand the relation between your Looker assets, when viewing the assets on the domain page.Follow these steps to enable and configure the recommended hierarchy.Steps Open the domain page of the relevant BI Catalog domain. On the content toolbar, click .The Configure Hierarchy dialog box appears.Select Enable Hierarchy.Select Multipath.Start typing and select each of the following relation types:Server hosts Business DimensionBusiness Dimension groups ReportReport contains Report AttributeTechnology Asset source system for Data AssetData Set contains Data ElementData Attribute is source of Report AttributeClick Apply.In an asset view, if any asset is deleted, for example via synchronization or manual deletion, the view is recreated and the hierarchy is lost. In this case, you can again enable and configure the recommended hierarchy.When viewing the hierarchy for a community or domain, if the parent of a node that is in the community or domain belongs to a different community or domain, that node is not shown in the hierarchy.Create a Looker operating model diagram viewYou
can create a Looker-specific diagram view, to visualize the operating model. The following procedure provides instruction on how to quickly create a new diagram view by copying and pasting the JSON code in the diagram view text editor.StepsOpen an asset page. In the tab pane, click Diagram.The diagram appears in the default diagram view.Click to add a new view.Click the Text tab, to switch to the diagram view text editor.Click Show me the JSON code below this procedure, to expand the code.Paste the code in diagram view text editor.Click Save.Edit the name and description of the diagram view, to suit your needs.Show me the JSON code{ nodes: [{ id: Looker Tenant, type: { id: 00000000-0000-0000-0000-100000000011 } }, { id: Looker Folder, type: { id: 00000000-0000-0000-0000-100000000012 } }, { id: Looker Project, type: { id: 750ee74c-84dc-494f-84c0-7ab14105432a } }, { id: Looker Board, type: { id: 1118d30f-846b-4bae-93d2-97488a0d9796 } }, { id: Looker Look, type: { id: 00000000-0000-0000-0000-100000000014 } }, { id: Looker Dashboard, type: { id: 00000000-0000-0000-0000-100000000013 } }, { id: Looker Data Model, type: { id: 3ed176fa-78c8-4116-a771-9dd100ad1129 } }, { id: Looker Data Attribute, type: { id: 232fecbc-7f20-45c2-bbcf-7329cd0b17df } }, { id: Looker Query, type: { id: 00000000-0000-0000-0000-100000000016 }, layoutRegion: flow }, { id: Looker Tile, type: { id: 00000000-0000-0000-0000-100000000015 } }], edges: [{ from: Looker Tenant, to: Looker Folder, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000000 }, roleDirection: true }, { from: Looker Tenant, to: Looker Project, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000000 }, roleDirection: true }, { from: Looker Tenant, to: Looker Board, label: , style: arrow, type: { id: f953c3da-6923-4301-b467-2f7066232b47 }, roleDirection: false }, { from: Looker Board, to: Looker Look, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000004 }, roleDirection: true }, { from: Looker Board, to: Looker Dashboard, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000004 }, roleDirection: true }, { from: Looker Project, to: Looker Dashboard, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Looker Project, to: Looker Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000014 }, roleDirection: true }, { from: Looker Data Model, to: Looker Data Attribute, label: , style: boxing, type: { id: 00000000-0000-0000-0000-000000007196 }, roleDirection: true }, { from: Looker Dashboard, to: Looker Data Attribute, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000021 }, roleDirection: true }, { from: Looker Look, to: Looker Data Attribute, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000021 }, roleDirection: true }, { from: Looker Query, to: Looker Data Attribute, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000021 }, roleDirection: true }, { from: Looker Folder, to: Looker Query, label: , type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Looker Folder, to: Looker Look, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Looker Folder, to: Looker Dashboard, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Looker Folder, to: Looker Tile, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: Looker Query, to: Looker Look, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000004 }, roleDirection: true }, { from: Looker Dashboard, to: Looker Tile, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000004 }, roleDirection: true }, { from: Looker Dashboard, to: Looker Look, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000007 }, roleDirection: true }, { from: Looker Query, to: Looker Tile, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000007 }, roleDirection: true }, { from: Looker Folder, to: Looker Folder, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000001 }, roleDirection: true }], showOverview: false, enableFilters: true, showLabels: true, showFields: true, showLegend: true, showPreview: true, visitStrategy: directed, layout: HierarchyLeftRight, maxNodeLabelLength: 50, maxEdgeLabelLength: 30, layoutOptions: { compactGroups: false, componentArrangementPolicy: topmost, edgeBends: true, edgeBundling: true, edgeToEdgeDistance: 5, minimumLayerDistance: auto, nodeToEdgeDistance: 5, orthogonalRouting: true, preciseNodeHeightCalculation: true, recursiveGroupLayering: true, separateLayers: true, webWorkers: true, nodePlacer: { barycenterMode: true, breakLongSegments: true, groupCompactionStrategy: none, nodeCompaction: false, straightenEdges: true } } } Overview and diagram viewHarvested metadata per asset typeExample of ingested SSRS and PBRS metadataRecommended hierarchy within a domainCreate a SSRS and PBRS operating model diagram viewOverview and diagram viewThe lineage harvester collects SQL Server Reporting Services (SSRS) metadata and sends it to the Collibra Data Lineage service. Collibra processes the metadata and creates new SSRS assets and relations in Data Catalog. You can see them on the asset page overview or visualize them in a diagram or in a technical lineage.The assets have the same names as their counterparts in SSRS and Power BI Report Server (PBRS). Full names and Names cannot be changed in Data Catalog.Assets ingested from SSRS and PBRS are called SSRS assets in Data Catalog, except for PBRS reports which are called Power BI Report assets.Asset types are only created if you have all specific Data Catalog permissions.All SSRS and PBRS assets are created in the same domain.Relations that were manually created between SSRS assets or PBRS assets and other assets via a relation type in the SSRS and PBRS operating model, are deleted after synchronizing the metadata.The following image shows the relations between SSRS asset types and the Power BI Report asset type.Harvested metadata per asset typeThis table shows the harvested SSRS and PBRS metadata for each SSRS asset type and Power BI Report asset type, assuming you have the necessary subscriptions and configurations for a full ingestion. This table also shows the resource ID for each asset type and metadata. Asset typeSynchronized metadataResource IDSSRS ColumnResource ID: 00000000-0000-0000-0000-100000000029Full name Display name Description 00000000-0000-0000-0000-000000003114Technical Data Type00000000-0000-0000-0000-000000000219BI Data Model contains / is part of BI Data Attribute00000000-0000-0000-0000-000000007196Data Element targets / sources Data Element 00000000-0000-0000-0000-000000007069Data Entity contains / is part of Data Attribute 00000000-0000-0000-0000-000000007047SSRS Data ModelResource ID: 00000000-0000-0000-0000-100000000028Full name Display name Certified00000000-0000-0000-0001-000500000001Description 00000000-0000-0000-0000-000000003114Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261Document size00000000-0000-0000-0000-000000000259Location00000000-0000-0000-0000-000000000203URL00000000-0000-0000-0000-000000000258Visible on server00000000-0000-0000-0000-000000000265BI Data Model contains / is part of BI Data Attribute00000000-0000-0000-0000-000000007196BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Data Asset is source for / source BI report00000000-0000-0000-0000-120000000013Data Entity is part of / contains Data Model 00000000-0000-0000-0000-000000007046SSRS FolderResource ID: 00000000-0000-0000-0000-100000000024Full name Display name Description 00000000-0000-0000-0000-000000003114Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261Location00000000-0000-0000-0000-000000000203URL00000000-0000-0000-0000-000000000258Visible on server00000000-0000-0000-0000-000000000265Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 BI Folder assembles / is assembled in BI Folder00000000-0000-0000-0000-120000000001BI Folder contains / contained in Data Asset00000000-0000-0000-0000-120000000014Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000SSRS KPIResource ID: 00000000-0000-0000-0000-100000000026Full name Display name Certified 00000000-0000-0000-0001-000500000001Description
00000000-0000-0000-0000-000000003114Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261Document size00000000-0000-0000-0000-000000000259Location00000000-0000-0000-0000-000000000203URL00000000-0000-0000-0000-000000000258Visible on server00000000-0000-0000-0000-000000000265Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Data Asset is source for / source BI Report00000000-0000-0000-0000-120000000013Report Attribute contained in / contains Report00000000-0000-0000-0000-000000007058 Report related to / impacted by Business Asset00000000-0000-0000-0000-120000000006 SSRS ParameterResource ID: 00000000-0000-0000-0000-100000000027Full name Display name Description00000000-0000-0000-0000-000000003114Business Asset represents / represented by Data Asset00000000-0000-0000-0000-000000007038Report Attribute contained in / contains Report00000000-0000-0000-0000-000000007058 Report Attribute sourced from / is source of Data Attribute00000000-0000-0000-0000-120000000010SSRS ReportResource ID: 00000000-0000-0000-0000-100000000025Full name Display name Certified 00000000-0000-0000-0001-000500000001Description 00000000-0000-0000-0000-000000003114Document creation date00000000-0000-0000-0000-000000000260Document modification date00000000-0000-0000-0000-000000000261Document size00000000-0000-0000-0000-000000000259Location00000000-0000-0000-0000-000000000203URL00000000-0000-0000-0000-000000000258Visible on server00000000-0000-0000-0000-000000000265Business Dimension groups / is grouped into Report00000000-0000-0000-0000-120000000002 Data Asset is source for / source BI Report00000000-0000-0000-0000-120000000013Report related to / impacted by Business Asset00000000-0000-0000-0000-120000000006 Report uses / used in Report00000000-0000-0000-0000-120000000007 SSRS ServerResource ID: 00000000-0000-0000-0000-100000000023Full name Display name Description00000000-0000-0000-0000-000000003114Server hosts / is hosted in Business Dimension00000000-0000-0000-0000-120000000000SSRS TableResource ID: 00000000-0000-0000-0000-100000000030 Full name Display name Description 00000000-0000-0000-0000-000000003114Data Entity contains / is part of Data Attribute00000000-0000-0000-0000-000000007047Data Entity is part of / contains Data Model00000000-0000-0000-0000-000000007046Example of ingested SSRS and PBRS metadataThe following image shows an example structure after SSRS and PBRS ingestion.Recommended hierarchy within a domainYou can enable hierarchies for the domain in which your SSRS assets were ingested. Doing so makes it easier to understand the relation between your SSRS assets, when viewing the assets on the domain page.Follow these steps to enable and configure the recommended hierarchy.Steps Open the domain page of the relevant BI Catalog domain. On the content toolbar, click .The Configure Hierarchy dialog box appears.Select Enable Hierarchy.Select Multipath.Start typing and select each of the following relation types:Server hosts Business DimensionBusiness Dimension groups ReportBI Folder contains Data AssetData Set is source for BI ReportReport contains Report AttributeBI Folder contains Data AssetBI Data Model contains BI Data AttributeData Entity contains Data AttributeClick Apply.In an asset view, if any asset is deleted, for example via synchronization or manual deletion, the view is recreated and the hierarchy is lost. In this case, you can again enable and configure the recommended hierarchy.When viewing the hierarchy for a community or domain, if the parent of a node that is in the community or domain belongs to a different community or domain, that node is not shown in the hierarchy.Create an SSRS and PBRS operating model diagram viewYou can create a diagram view for SSRS and PBRS to visualize the operating model. Complete the following steps to create a new diagram view by copying and pasting the JSON code in the diagram view text editor.StepsOpen an asset page. In the tab pane, click Diagram.The diagram appears in the default diagram view.Click to add a new view.Click the Text tab, to switch to the diagram view text editor.Click Show me the JSON code below this procedure, to expand the code.Paste the code in diagram view text editor.Click Save.Edit the name and description of the diagram view, to suit your needs.Show me the JSON code { nodes: [{ id: SSRS Column, type: { id: 00000000-0000-0000-0000-100000000029 } }, { id: SSRS Data Model, type: { id: 00000000-0000-0000-0000-100000000028 } }, { id: SSRS Table, type: { id: 00000000-0000-0000-0000-100000000030 } }, { id: SSRS KPI, type: { id: 00000000-0000-0000-0000-100000000026 } }, { id: SSRS Parameter, type: { id: 00000000-0000-0000-0000-100000000027 } }, { id: SSRS Folder, type: { id: 00000000-0000-0000-0000-100000000024 } }, { id: Power BI Report, type: { id: 00000000-0000-0000-0000-100000000006 } }, { id: SSRS Report, type: { id: 00000000-0000-0000-0000-100000000025 } }, { id: SSRS Folder 2, type: { id: 00000000-0000-0000-0000-100000000024 } }, { id: SSRS Server, type: { id: 00000000-0000-0000-0000-100000000023 } }, { id: Column, type: { id: 00000000-0000-0000-0000-000000031008 } }, { id: Table, type: { id: 00000000-0000-0000-0000-000000031007 } }, { id: Schema, type: { id: 00000000-0000-0000-0001-000400000002 } }, { id: Database, type: { id: 00000000-0000-0000-0000-000000031006 } }], edges: [{ from: SSRS Data Model, to: SSRS Column, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007196 }, roleDirection: true }, { from: SSRS Table, to: SSRS Column, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007047 }, roleDirection: true }, { from: SSRS Data Model, to: SSRS Table, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007046 }, roleDirection: true }, { from: SSRS Data Model, to: SSRS KPI, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: true }, { from: SSRS KPI, to: SSRS Parameter, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000014 }, roleDirection: true }, { from: SSRS Folder, to: SSRS Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000014 }, roleDirection: true }, { from: SSRS Folder, to: Power BI Report, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: SSRS Folder, to: SSRS Report, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000002 }, roleDirection: true }, { from: SSRS Folder, to: SSRS KPI, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000004 }, roleDirection: true }, { from: SSRS Server, to: SSRS Folder 2, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000000 }, roleDirection: false }, { from: SSRS Folder 2, to: SSRS Folder, label: , style: boxing, type: { id: 00000000-0000-0000-0000-120000000001 }, roleDirection: true }, { from: SSRS Folder, to: SSRS Server, label: , style: boxed, type: { id: 00000000-0000-0000-0000-120000000000 }, roleDirection: false }, { from: SSRS Report, to: SSRS Data Model, label: , style: arrow, type: { id: 00000000-0000-0000-0000-120000000013 }, roleDirection: false }, { from: SSRS Column, to: Column, label: , style: arrow, type: { id: 00000000-0000-0000-0000-000000007069 }, roleDirection: false }, { from: Column, to: Table, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007042 }, roleDirection: true }, { from: Table, to: Schema, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007043 }, roleDirection: false }, { from: Schema, to: Database, label: , style: boxed, type: { id: 00000000-0000-0000-0000-000000007024 }, roleDirection: false }], showOverview: false, enableFilters: true, showLabels: false, showFields: true, showLegend: true, showPreview: true, visitStrategy: directed, layout: HierarchyLeftRight, maxNodeLabelLength: 50, maxEdgeLabelLength: 30, layoutOptions: { compactGroups: false, componentArrangementPolicy: topmost, edgeBends: true, edgeBundling: true, edgeToEdgeDistance: 5, minimumLayerDistance: auto, nodeToEdgeDistance: 5, orthogonalRouting: true, preciseNodeHeightCalculation: true, recursiveGroupLayering: true, separateLayers: true, webWorkers: true, nodePlacer: { barycenterMode: true, breakLongSegments: true, groupCompactionStrategy: none, nodeCompaction: false, straightenEdges: true } } }Technical usersThis section caters primarily to the following technically-focused Collibra Data Lineage customers:Types of technical rolesWhat you want from Collibra Data Lineage Data EngineerEnterprise Data ArchitectIntegrations EngineerArtificial Intelligence / Machine Learning EngineerSystems EngineerData Infrastructure EngineerData Quality Engineer Shop for datasets.Collect and evaluate data.Consult data models in Data Catalog.Perform impact analysis.Evaluate data security.Ensure the success of data migration from one data source to another. Supported data sources for technical lineage Transformation logic Technical lineage export types BI integration concepts Technical lineage viewer Supported data sources for technical lineageCollibra Data Intelligence Cloud supports many data sources and metadata sources, including JDBC data sources, ETL tools and BI tools, for which you can create a technical lineage.For a complete list of required permissions per supported data source type, see the Requirements and permissions section in Prepare the lineage harvester configuration file.Using an older version of a data source might not work as expected; however, we don't expect problems if
you use a newer version.JDBC data sourcesThe following tables show the supported JDBC data sources.Lineage harvesterTechnical lineage via EdgeLineage harvesterThe following table shows the supported JDBC data sources and driver versions that have been tested. You can connect to them via a JDBC driver or by creating a folder. JDBC data source typeSupported versionsConnection typeScopeAmazon Redshift1.2.34.1058 and newerJDBC, FolderSQL based input without stored procedures.Azure SQL serverNewest versionJDBC, FolderSQL based input and stored procedures.Azure SQL Data WarehouseNewest versionJDBC, FolderSQL based input and stored procedures.Azure Synapse AnalyticsNewest versionJDBC, FolderSQL based input and stored procedures.Google BigQueryNewest versionJDBC, FolderSQL based input without stored procedures.Greenplum6.10 and newerJDBC, FolderSQL based input.HiveQL (SQL-like statements)2.3.5 and newerJDBC, FolderSQL based input and connection via an AWS host.IBM Db211.5 and newerJDBC, FolderSQL based input without stored procedures.Oracle11g, 12c and newerJDBC, FolderSQL based input and stored procedures.PostgreSQL9.4, 9.5 and newerJDBC, FolderSQL based input without stored procedures.Microsoft SQL Server2014, 2016 and newerJDBC, FolderSQL based input and stored procedures.MySQL5.7, 8 and newerJDBC, FolderSQL based input without stored procedures.Netezza7.2.1.0 and newerJDBC, FolderSQL based input without stored procedures.SAP Hana2.00.40 and newerJDBC, FolderSQL based input and SAP HANA Information views, which includes attributes, analytic views and calculation views from database table or view data sources.Script-based calculation views and stored procedures are out of scope.Collibra Data Lineage supports SQL based input and SAP HANA Information views are supported for SAP HANA on-premises. However, calculated views are not supported for SAP HANA Cloud.SnowflakeNewest versionJDBC, FolderSQL based input without stored procedures.SQL-API based input with stored procedures. For more information, go to Technical lineage for Snowflake ingestion methods.Spark SQL2.4.3 and newerJDBC, FolderSQL-based input without stored procedures and connection via an AWS host. For Spark SQL data source, we recommend using the folder connection type to connect to the directory with your SQL queries.Sybase Adaptive Server Enterprise16.0 SP02 and newerJDBC, FolderSQL based input without stored procedures.Teradata15.0, 16.20.07.01 and newerJDBC, FolderSQL based input, including BTEQ scripts.Technical lineage via EdgeThe following table lists the supported JDBC data sources and connection types you can use when you add capabilities for different data sources. The Shared Storage connection is equivalent to the folder connection type when you use the lineage harvester. JDBC data source typeSupported versionsConnection type ScopeAmazon Redshift1.2.34.1058 and newerJDBC connection, Shared Storage connectionSQL based input without stored procedures.Azure SQL serverNewest versionJDBC connection, Shared Storage connectionSQL based input and stored procedures.Azure SQL Data WarehouseNewest versionJDBC connection, Shared Storage connectionSQL based input and stored procedures.Azure Synapse AnalyticsNewest versionJDBC connection, Shared Storage connectionSQL based input and stored procedures.Google BigQueryNewest versionJDBC connection, Shared Storage connectionSQL based input without stored procedures.Greenplum6.10 and newerJDBC connection, Shared Storage connectionSQL based input.HiveQL (SQL-like statements)2.3.5 and newerJDBC connection, Shared Storage connectionSQL based input and connection via an AWS host.IBM Db211.5 and newerJDBC connection, Shared Storage connectionSQL based input without stored procedures.Oracle11g, 12c and newerJDBC connection, Shared Storage connectionSQL based input and stored procedures.PostgreSQL9.4, 9.5 and newerJDBC connection, Shared Storage connectionSQL based input without stored procedures.Microsoft SQL Server2014, 2016 and newerJDBC connection, Shared Storage connectionSQL based input and stored procedures.MySQL5.7, 8 and newerJDBC connection, Shared Storage connectionSQL based input without stored procedures.Netezza7.2.1.0 and newerJDBC connection, Shared Storage connectionSQL based input without stored procedures.SAP Hana2.00.40 and newerJDBC connection, Shared Storage connectionSQL based input and SAP HANA Information views, which includes attributes, analytic views and calculation views from database table or view data sources.Script-based calculation views and stored procedures are out of scope.SnowflakeNewest versionJDBC connection, Shared Storage connectionSQL based input without stored procedures.SQL-API based input with stored procedures. For more information, go to Technical lineage for Snowflake ingestion methods.Spark SQL2.4.3 and newerJDBC connection, Shared Storage connectionSQL-based input without stored procedures and connection via an AWS host.For Spark SQL data source, we recommend using the folder connection type to connect to the directory with your SQL queries.Sybase Adaptive Server Enterprise16.0 SP02 and newerJDBC connection, Shared Storage connectionSQL based input without stored procedures.Teradata15.0, 16.20.07.01 and newerJDBC connection, Shared Storage connectionSQL based input, including BTEQ scripts.ETL toolsThe following table shows the supported ETL tools.Lineage harvesterTechnical lineage via EdgeLineage harvesterThe following table shows the supported ETL tools and driver versions that have been tested. You can connect to them via an API or by creating a folder.ETL toolSupported versionsConnection typeScopeAzure Data Factory2 and newerAPICommonly supported transformations and activities in Azure Data Factory. For details, go to Supported transformation details.IBM InfoSphere DataStage11.5 and newerFolderCommonly used DataStage ETL components including SQL overrides and transformation details.Collibra Data Lineagesupports IBM InfoSphere DataStage transformation logic.You have to prepare a folder with all data objects that you want to process.Informatica Intelligent Cloud Services, specifically Cloud Data IntegrationData Integration is one of the Informatica Intelligent Cloud services. Cloud, newest onlyAPICommonly used transformations in Informatica Intelligent Cloud Services: Data Integration, including SQL overrides.Supported data sources are locally stored flat files and databases.Informatica PowerCenter9.6 and newerFolderCommonly used transformations in Informatica PowerCenter, including SQL overrides.You have to prepare a folder with all data objects that you want to process.MatillionNewest versionAPISQL based input without stored procedures.The lineage harvester can only access Redshift and Snowflake projects.SQL Server Integration Services (SSIS)2012 and newerPackage format version 6 or newer.FolderAll commonly used transformations in SSIS, data flows and mappings, including SQL overrides.SQL statements from Excel are not supported.You have to prepare a folder with all data objects that you want to process.Technical lineage via EdgeThe following table lists the supported ETL data sources and connection types you can use when you add capabilities for different data sources. The Shared Storage connection is equivalent to the folder connection type when you use the lineage harvester. The API connection type is not supported for Informatica Intelligent Cloud Services (IICS) and Matillion yet on Edge. You can use Shared Storage connections when you create the technical lineage for IICS and Matillion on Edge.ETL toolSupported versionsConnection typeScopeAzure Data Factory2 and newerAPICommonly supported transformations and activities in Azure Data Factory. For details, go to Supported transformation details.IBM InfoSphere DataStage11.5 and newerShared Storage connectionCommonly used DataStage ETL components including SQL overrides and transformation details.Collibra Data Lineage supports IBM InfoSphere DataStage transformation logic.You have to prepare a folder with all data objects that you want to process.Informatica Intelligent Cloud Services, specifically Cloud Data IntegrationData Integration is one of the Informatica Intelligent Cloud services. Cloud, newest onlyInformatica Intelligent Cloud Services (IICS) connectionCollibra Data Intelligence Cloud 2023.03 or newer is required to use the Informatica Intelligent Cloud Services (IICS) connection. Commonly used transformations in Informatica Intelligent Cloud Services: Data Integration, including SQL overrides.Supported data sources are locally stored flat files and databases.Informatica PowerCenter9.6 and newerShared Storage connectionCommonly used transformations in Informatica PowerCenter, including SQL overrides.You have to prepare a folder with all data objects that you want to process.MatillionNewest versionMatillion connectionCollibra Data Intelligence Cloud 2023.03 or newer is required to use the Matillion connection. SQL based input without stored procedures.Technical lineage via Edge can only access Redshift and Snowflake projects.SQL Server Integration Services (SSIS)2012 and newerPackage format version 6 or newer.Shared Storage connectionAll commonly used transformations in SSIS, data flows and mappings, including SQL overrides.SQL statements from Excel are not supported.You have to prepare a folder with all data objects that you want to process.BI toolsThe following table shows the supported BI tools.Lineage harvesterTechnical lineage via EdgeLineage harvesterThe following table shows the supported BI tools.BI toolTested versionsConnection typeTableauNewestAPI.You have to prepare:lineage harvester configuration file for Tableau ingestion. Optionally, a Tableau <source ID> configuration file. Power BINewestAPI.The new Power BI integration includes many enhancements, including consolidated harvesters, meaning you no longer need the Power BI harvester. You only need to
prepare:lineage harvester configuration file for Power BI ingestion. Optionally, a Power BI <source ID> configuration file. LookerNewestAPI.Collibra Data Lineage automatically creates a technical lineage, but stitching is not available.You have to prepare a lineage harvester configuration file for Looker ingestion.SQL Server Reporting Services (SSRS) or Power BI Report Server (PBRS) SSRS: 2017 and newerDue to a bug in 2017 that is resolved by the newer APIs, we recommend using SQL Server 2019 or newer Reporting Services. PBRS: 2019 and newer API.You have to prepare: A lineage harvester configuration file for SSRS-PBRS ingestion. Optionally, an SSRS-PBRS <source ID> configuration file. MicroStrategyNewestDirect connection to the repository.Stitching is not available and there is no true technical lineage. There is only a diagram view that you can access via a Column or Table asset, but not via MicroStrategy assets.You have to prepare a lineage harvester configuration file for MicroStrategy ingestion. You can access: Microsoft SQL Server repository. Any local or remote PostgreSQL database. The MicroStrategy Intelligence Server has an embedded PostgreSQL repository, as its default repository. For complete information on the default, embedded repository, see the MicroStrategy repository documentation. MicroStrategy (NEW)NewestYou have to prepare a lineage harvester configuration file for MicroStrategy ingestion.Benefits of the new integration method include:Support for the latest MicroStrategy APIsSupport for technical lineage and stitching.New operating model.No longer dependent on a direct connection to the repository.Technical lineage via EdgeThe following table lists the supported BI data sources and connection types you can use when you add capabilities for different data sources. BI toolTested versionsConnection typeCapabilityTableauNewestAPITechnical Lineage for TableauPower BINewestAPITechnical Lineage for Power BIMicroStrategyNewestAPITechnical Lineage for MicroStrategyCustom technical lineageYou can create a custom technical lineage to include data objects from data sources that are not listed above.For information on creating a custom technical lineage via Edge, go to Create technical lineage via Edge and select Custom technical lineage.For information on creating technical lineage by using the lineage harvester, go Custom technical lineage via the lineage harvester.AuthenticationTechnical lineage supports the following means of authentication: For all data sources, except for external directories: username and password. Google BigQuery data sources: username and password or a service account key file. For more information, see the Google BigQuery documentation. Power BI: username and password or service principal.Snowflake: username and password or key pair authentication. Tableau: username and password or token-based authentication.No other authentication methods are supported.Supported SQL syntaxThe SQL syntax used in your data sources has an impact on the technical lineage.Technical lineage supports SQL syntax that is relevant to process data for all supported data sources. This includes: DML (Data Manipulation Language) statements that are used to move and transform data. For example, INSERT, UPDATE and MERGE. Technical lineage supports the extraction of DML statements from supported procedures, but it does not support all SQL syntax.DDL (Data Definition Language) statements:that impact the technical lineage. For example, ALTER TABLE, which you use to add or rename columns.that are used to transform data. For example, CREATE A TABLE AS SELECT.Relevant syntax constructs. For example, nested subselects, aliases, different join methods, synonyms and cross-database references.You want to create a technical lineage for a Teradata source that has the following SQL syntax: ALTER TYPEALTER PROCEDURECREATE/REPLACE AUTHORIZATIONMLOAD (MultiLoad)RECORD (FastLoad)BEGIN/END QUERY LOGGINGFunctions with schema, for example schema_name.function.name(args...)Functions with conversation, for example function_name(args...) RETURNS VARCHAR(<number>) CHARACTER SET LATINMacro argument attributesCollibra Data Lineage will successfully parse this SQL syntax.Not supported SQL syntaxTechnical lineage does not support the following SQL syntax:DML statements that you use to access data in complex structures such as JSON objects or structs.Triggers, foreign keys and indexes.Cursors, functions or dynamic queries.Streams queries.This is not an exhaustive list. If the SQL syntax that you use is not supported, you can add an idea in the Collibra Integrations Ideation Portal. We will evaluate the SQL syntax for inclusion.Dynamic SQL statements yield limited results. For example, SSRS uses the columns defined by the first SELECT statement in a stored procedure to determine the columns in the result set. Therefore, if you want a full ingestion, you need a static SQL statement. Fortunately, you can transform dynamic SQL statements into static statements. If the dynamic SQL can be logged at the runtime of a table, the dynamic query is transformed into a static query that can be extracted by Collibra Data Lineage and processed without limitations.Supported transformation detailsCollibra Data Lineage supports the most commonly used transformations in the following sources:Azure Data FactoryIBM DataStageInformatica PowerCenterInformatica Intelligent Cloud ServicesSnowflakeSQL Server Integration ServicesAzure Data FactoryCollibra Data Lineage supports the most commonly used transformations and data sources in Azure Data Factory (Beta) . Supported transformations The following tables shows a non-exhaustive list of supported and unsupported transformations.Supported transformationsUnsupported transformationsAggregate1Alter RowAssertDerived Column1ExistsExternal Call2FilterFlatten1JoinLookupParse1Pivot3RankSelect1Sink4SortSource SplitStringifySurrogate KeyUnionUnpivotWindow1 Some reserved variables names, for example {@context}FlowletsLimitationsTransformations that contain column patterns or rule-based mappings can only be partially analyzed because they generate column names on the fly during the actual data flow run. If technical lineage is detected from a dynamically generated column, it is given the placeholder Dynamic Column in the technical lineage viewer.In the Mapping section of the editor, column patterns are not supported and not displayed in the technical lineage graph. Note that Auto mapping uses column patterns behind the scenes and is therefore not supported either.Pivoted columns can only be inferred when explicit values are provided in the Pivot Key tab. When columns cannot be inferred, a placeholder Pivoted Columns is added.The SQL scripts and rule-based mappings in the transformation are not supported.Supported data sourcesThe following table shows a non-exhaustive list of supported sources with the corresponding dataset and linked service types. CollibraData Lineage supports all data format types that are supported in Azure Data Factory, including binary, Excel file, Delimited text, JSON, Parquet, and so on. Data sourcesDataset typeLinked service typeAmazon RedshiftAmazonRedshiftTableAmazonRedshiftAzure Blob storageAzureBlobAzureBlobStorageAzure Data Lake Storage Gen2AzureBlobFSFileAzureBlobFSAzure Data Lake StoreAzureDataLakeStoreFile AzureDataLakeStoreAzure Databricks Delta LakeAzureDatabricksDeltaLakeAzureDatabricksDeltaLakeAzure SQL Managed InstanceAzureSqlMITableAzureSqlMIAzure SQL Server databaseAzureSqlTableAzureSqlDatabaseAzure Synapse AnalyticsAzureSqlDWTableAzureSqlDWDB2 data sourceDb2TableDb2Google Cloud StorageGoogleCloudStorageLocationGoogleCloudStorageMicrosoft Access MicrosoftAccessTableMicrosoftAccessMicrosoft Azure Cosmos DatabaseCosmosDbSqlApiCollectionCosmosDbOpen Database Connectivity (ODBC)OdbcTableOdbcOn-premises Oracle databaseOracleTableOracleRESTRestResourceRestServiceSalesforce SalesforceObjectSalesforceSalesforce Marketing Cloud SalesforceMarketingCloudObjectSalesforceMarketingCloudSalesforce Service CloudSalesforceServiceCloudObjectSalesforceServiceCloudSAP Business Warehouse (open hub)SapOpenHubTableSapBWSFTP serverSftpLocationSftpSnowflake SnowflakeTableSnowflakeSQL ServerSqlServerTableSqlServerIBM DataStage IBM DataStage uses jobs with stages instead of transformations. IBM Datastage has three job types: parallel jobs, sequence jobs and server jobs. For a list of all job stages per job type in IBM DataStage, read the IBM documentation.Informatica PowerCenter transformationsThe following table shows a non-exhaustive list of supported and unsupported transformations in Informatica PowerCenter.Supported transformationsUnsupported transformationsAggregatorExpression1FilterInputJoinerLookupMappletNormalizerOutputRankRouterSorterSourceSQL in the translate_db_type functionTargetTransaction ControlUnionUpdate StrategyData MaskingJavaSequence GeneratorStored Procedure2Web ServicesXMLThe transformation is shown if the column (expression) is using at least one column from another connected transformation.The stored procedures are stored and run in the databases that Informatica PowerCenter connects to. Collibra Data Lineage does not access the Informatica PowerCenter data sources, so Collibra Data Lineage collects the stored procedure names but does not support the Stored Procedure transformation.Informatica Intelligent Cloud ServicesThe following table shows a non-exhaustive list of supported and unsupported transformations and constructions in Informatica Intelligent Cloud Services. Specifically, transformations and constructions in the Cloud Data Integration service.Supported transformationsUnsupported transformations, functions and constructionsData-driven
conditionsExpression, including custom expressions in the supported transformationsFilterJoiner, including join conditionsLookupMappletRouterSequence GeneratorSourceStored ProcedureTargetUnionAggregatorCleanseData MaskingDeduplicateHierarchy BuilderHierarchy ParserHierarchy ProcessorInputJavaLabelerMachine LearningNormalizerNEXTVALParsePythonRankRule SpecificationStructure ParserTransaction ControlVelocityVerifierWeb ServicesSnowflakeYou can create technical lineage for Snowflake by using SQL Snowflake ingestion mode or SQL-API Snowflake ingestion mode. Collibra Data Lineage supports different queries and transformations for each ingestion method. For more information about the ingestion methods, go to Technical lineage for Snowflake ingestion methods.SQL Snowflake ingestion modeWith the SQL Snowflake ingestion mode, Collibra Data Lineage does not support the following non-exhaustive list of transformations: Snowflake Scripting SnowparkSQL-API Snowflake ingestion modeWith the SQL-API Snowflake ingestion mode, Collibra Data Lineage supports the Data Manipulation Language (DML) statements from the following sources. The table also shows a non-exhaustive list of unsupported queries and transformations.Supported transformationsUnsupported queries and transformationsUsing a driverDirect loginStored proceduresThe COPY INTO DML commandStreams 2Data Definition Language (DDL) queriesQueries or query paths that are not executed 1 Sequences, including generating new valuesSnowflake ScriptingSnowpark Snowpipes If you create technical lineage for Snowflake by using the JDBC connection type, only queries or query paths that are executed are supported. For example, if a SQL query contains a CASE statement, the technical lineage will only show lineage from the WHEN path that was executed. However, if you use the folder connection type to ingest Snowflake, SQL queries that include all paths of a CASE statement will be parsed and reflected in the technical lineage.Collibra Data Lineage supports lineage that uses streams as a source and lineage on tables that has streams. Collibra Data Lineage does not support lineage on a CREATE STREAM statement.SQL Server Integration Services (SSIS)Collibra Data Lineage supports the following non-exhaustive list of transformations in SQL Server Integration Services:AggregateCache TransformConditional SplitData Conversion Derived Column Fuzzy Grouping LookupMerge JoinMulticastOLE DB CommandRow CountScript ComponentSlowly Changing DimensionSortUnion AllCollibra Data Lineage supports SQL, but cannot parse other languages or scripts, for example SHELL and BAT scripts.SQL statements from Excel are not supported.All SQL queries must be preceded by the SELECT or WITH keyword, or else they will be skipped.If a comment precedes the SELECT or WITH keyword, the query will be parsed as expected.Technical lineage for Snowflake ingestion methodsTo create technical lineage for Snowflake, you can use the following connection types:The JDBC connection. With this connection type, you can choose to use the SQL or SQL-API Snowflake ingestion modes.The folder connection type if you use the lineage harvester or the Shared Storage connection if you use technical lineage via Edge.You can use different ingestion modes and connection types to collect and process the metadata of your Snowflake data sources with one technical lineage license. For example, you can use both the SQL-API ingestion mode and the folder or Shared Storage connection type. In this way, technical lineage is created based on the query execution and also provides a full coverage of stored procedures. The JDBC connection typeYou can use the JDBC connection type to establish connection to your Snowflake data sources. Collibra Data Lineage collects and processes the metadata from the data sources to create technical lineage.With the JDBC connection type, you can choose to use the SQL or SQL-API Snowflake ingestion modes. These modes are complementary and are designed to address different needs and use cases.SQL Snowflake ingestion modes With this ingestion mode, Collibra Data Lineage retrieves lineage from the database schema and views, providing a design lineage. You can understand the data flow at the schema level from the generated technical lineage. Note that stored procedures are not supported.SQL-API Snowflake ingestion modes Introduced in the 2023.02 release, the SQL-API mode retrieves lineage from views and executed database queries, providing an operational style of lineage. This mode accesses much more information and may take longer for lineage processing.Stored procedures are supported. However, if a stored procedure is defined but not executed, the generated technical lineage does not include lineage for that stored procedure. The technical lineage is based on Snowflake's interpretation of modified objects. Therefore, Collibra Data Lineage cannot show lineage for queries that Snowflake does not interpret or interprets differently than expected. For example, technical lineage does not include indirect lineage, as Snowflake does not interpret indirect lineage. Indirect lineage is the lineage that includes a column that does not appear in the target table but is used as a filter for data moving to the target table. Additionally, if database queries contain conditional statements, the technical lineage includes lineage only for the conditions that were executed. Only the executed path of a CASE WHEN/THEN or IF statement is shown in lineage for each executed query instance.If you use the lineage harvester, set the mode property in the lineage harvester configuration file to indicate which ingestion mode you want to use. If you use technical lineage via Edge, use the Ingestion Method field in the technical lineage for Snowflake capability to select the ingestion mode you want to use. The folder or Shared Storage connection type With this connection type, you must prepare the SQL queries. The SQL queries can come from a log, stored procedure definitions, and so on. Collibra Data Lineage processes each conditional statement to create the technical lineage for all possible conditions. If you use the lineage harvester, you must prepare a SQL directory and add your SQL queries to the folder. If you use technical lineage via Edge, you must add your SQL queries to the Shared Storage connection folder and use the Technical Lineage for SqlDirectory capability to create the technical lineage. See the following table for a summary of the connection types and ingestion modes. Connection typeIngestion modeDetailsRelease dateJDBCSQLCollibra Data Lineage extracts metadata and information about the Snowflake database schemas and views to calculate lineage. This is the default mode. You can use the technical lineage to understand the flow of data at the schema level. 2020SQL-APICollibra Data Lineage parses SQL from views and schemas, and additionally gets lineage information from the ACCESS_HISTORY system view, which is a log of all queries that are run on the system. The SQL-API mode supports stored procedures and other orchestration methods, for example, application queries and ad-hoc queries. You can use the technical lineage to see the operational lineage from executed queries. 2023.02Folder or Shared Storage connectionNot applicableCollibra Data Lineage retrieves lineage from the SQL queries that you upload to a SQL directory. The technical lineage captures all lineage paths from the SQL queries. Folder - 2020Shared Storage connection - 2023.05For more information about the supported queries and transformation, go to Supported transformation details.For an overview of the steps to create technical lineage, go to Creating a Technical lineage via the lineage harvester and Create a technical lineage via Edge.For more information about Snowflake, go to Snowflake Documentation.Transformation logicTransformation logic is used to transform source code in a technical lineage diagram that can be visualized in Data Catalog. Collibra Data Lineage supports the most commonly used transformations.Collibra Data Lineage enables you to trace how your data flows between multiple data sources and, at the same time, see the source code of each part of your technical lineage. By following the transformations in your technical lineage, you can easily find a specific source code fragment.Tables and columns in a technical lineage can have incoming and outgoing transformations. When you right-click on a table or column and click either Transformations (IN) or Transformations (OUT), the source code pane shows the following: The name of the source code fragment. On the Sources tab page, you can see the analysis log files of this source code fragment.If a table or column has more than one transformation, there are tabs for each source code fragment.The source code of the fragment. The source code that is relevant for the selected column or table is highlighted.You want to see the outgoing transformations of column A to columns B and C. When you right-click column A and then click Transformations (OUT), you see that there are two tabs containing source code. The first tab shows the outgoing source code from column A to column B. The second tab shows the source code from column A to column C.Technical lineage export typesIf you want to share a technical lineage graph of your technical lineage, you can export the information to one of the following export types, via the Settings tab pane: PDF PNG Graph CSV Full Batch CSV JSON Lineage PDF and PNGThe PDF and PNG exports show only the technical lineage graph of the selected table or column.Graph CSVThe CSV export option generates a ZIP file with the following CSV file:File nameFile contentcurrent_graph_column_lineage.csvThe technical lineage graph of the selected column or table.Full Batch CSVThe Full CSV option generates a ZIP file with the following CSV files:File
nameFile contentcurrent_graph_column_lineage.csvThe technical lineage graph of the selected column or table.full_batch_column_lineage.csvThe technical lineage graph of the full technical lineage.ExampleThe current_graph_column_lineage CSV file and the full_batch_column_lineage CSV files show the same information, but with a different scope. These files show how data flows from source to target.NoColumnDescriptionsource_systemThe name of the source system.This column is only shown when useCollibraSystemName is set to true in the lineage harvester configuration file.source_databaseThe name of the source database.source_schemaThe name of the source schema.source_tableThe name of the source table.source_columnThe name of the source column.target_systemThe name of the target system.This column is only shown when useCollibraSystemName is set to true in the lineage harvester configuration file.target_databaseThe name of the target database.target_schemaThe name of the target schema.target_tableThe name of the target table.target_columnThe name of the target column.procedure_nameThe name of the stored procedure. This column remains empty when an object in your technical lineage doesn't have stored procedure.This column is deprecated and will be removed in the future.query_nameThe name of the specific source code fragment or transformation detail.You can use this name to search for more information in the Sources tab page.The names of the source and target objects indicate the full path of the object. For example, the full name of a column is (system) > database > schema > table > column. This path is used to stitch your technical lineage objects to assets in Data Catalog.JSON LineageThis export option generates a JSON file that is formatted in the same manner that is required for creating a custom technical lineage.Export the technical lineage informationIf you want to share a technical lineage graph or the transformation logic of your technical lineage, for example with colleagues who don't have access to Collibra, you can export the information. For complete details on the various export options, see Technical lineage export types.StepsIn the Technical lineage viewer, click the Settings tab.On the Settings tab, click Export.Click the export type.The technical lineage information is downloaded.Export technical lineage transformation detailsIf you want to download analyzing and parsing errors for a data source, you can export the transformation details of one or more data sources on the Sources tab page of the technical lineage viewer.In the following example image, we've selected the OracleCloud data source and filtered on the error details.StepsIn the Technical lineage viewer, click the Settings tab.Click Show lineage.Select the data sources for which you want to download the transformation details. If you want to download the transformation details for all data sources, do not select any data source. Click Export Selected Transformations. A ZIP file that contains an errors.csv file is downloaded. BI integration conceptsThis section addresses BI tool-specific integration concepts for technically-focused customers.Technical overview of BI tool lineageThis topic provides information about the technical lineage that is created when you ingest BI tool metadata in Data Catalog.For a business perspective, see Technical lineage and stitching for BI tool integrations.StepsWhen you ingest Tableau metadata in Data Catalog, a technical lineage for Tableau Data Attribute assets is automatically created. PermissionsIf you have a Data Catalog global role with the Catalog and Technical lineage global permissions, you can see the technical lineage of Tableau assets by clicking on the Technical lineage tab on the asset page of any of the following asset types: TableColumnTableau Data AttributeTableau WorksheetTechnical lineage graphThe technical lineage graph shows relations of the type Data Element sources / targets Data Element between Tableau assets and other data objects in the data flow, for example between a Column asset and a Tableau Data Attribute asset. These relations are created during the Tableau ingestion process as a result of automatic stitching.If you use a Tableau <source ID> configuration file and don’t specify a value for the relevant collibraSystemName property, the designation “UNDEFINED” will be shown in the technical lineage.If you use custom SQL that is not supported by the Tableau metadata API, the technical lineage might not be complete. For complete information, see the Tableau documentation on Tableau Catalog support for custom SQL and Tableau Lineage and custom SQL connections.ExampleThe following technical lineage shows how data flows from a PostgreSQL data source to Tableau. It shows relations of the type Data Element sources / targets Data Element between the Column assets of the database and Tableau Data Attribute assets in Tableau. For example, Column asset L_RETURNFLAG has a relation of the type Data Element sources / targets Data Element to the Tableau Data Attribute assets Quantity and Adjusted Quantity.UUIDs in the Tableau technical lineageCollibra Data Lineage uses unique full names to create a technical lineage and stitch objects within the technical lineage. Full names in Collibra are constructed in accordance with the hierarchy of data objects in Tableau, for example: Server > Site > Project > Workbook > Worksheet > FieldServer > Site > Project > Workbook > Data Model > Column In Collibra, every node in this hierarchy must have a unique name. However, in Tableau, the names of data objects do not have to be unique. As such, if Tableau data objects in a technical lineage hierarchy have the same full name, Collibra Data Lineage adds the UUIDs of the corresponding assets to the names in the technical lineage, to maintain uniqueness.In the following example image, the names of the assets Priority, Opened and Active in the technical lineage have been appended with their UUIDs.UUIDs are not added to the names of the assets themselves; they are only added to the names of the data objects in the technical lineage.The UUID is always part of the full name of an asset, regardless of whether or not it is a duplicate.How to resolve UUIDs in names in a technical lineageTo keep Collibra Data Lineage from adding UUIDs to the names of the data objects in a technical lineage, ensure that the names of all fields and columns in Tableau are unique.Generally, Tableau doesn't allow you to create two fields or columns with the same name. However, hierarchy fields and non-hierarchy fields can have the same name. Duplication of names can also happen if:A Tableau worksheet is using two different data sources that have columns with the same name.You create a virtual connection that contains multiple data sources that have columns with the same name.There are multiple data sources in Tableau with the same name.Sources tab pageThe Sources tab page shows, for each Tableau data source and Tableau Worksheet, the transformation and calculation rules that the Collibra Data Lineage service analyzed and processed, and the results of the analysis. It also shows the TECHLIN VIEW query definitions, based on custom SQL queries.If a parameter is used in a Tableau worksheet, it is shown in the worksheet source code, for example:PARAMETERS: 'parameter1'.If a parameter is used in a calculation rule, it is also shown under the Tableau data source for data sources in the calculation rule, for example:CALCULATION RULE: '[List price]/[parameter1]'The success rate of the analysis indicates how complete the technical lineage is. There are a few limitations that prevent the Collibra Data Lineage service from processing all Tableau metadata.The Collibra Data Lineage service might not be able to process all complex Tableau metadata. This means that the success rate of a Tableau ingestion might not be 100%.Error codesThe Errors summary represents a summary of all errors per Tableau site. The continue on error feature allows for continuous processing of an import or synchronization job, even if one or more commands fail.Warning codesWarning codes indicate: Issues that might affect the technical lineage, but do not stop the processing.Issues that you can resolve. ElementDescriptionIDThe warning ID number.NameThe name of the warning. Possible values are: Empty nameField relation not foundParent project not foundParent workbook not foundParent database not foundDatasource not foundWorksheet not foundREST datasource not foundNot found in remote fieldsMultiple datasourcesQuery parsing errorInvalid Collibra system namesInvalid hostname mapping Status codeThe status label. The value is always WARNING.Status descriptionIdentifies a grouping of warnings. Warnings of the same type (meaning they have the same group name and name) are grouped together in parts of up to 100 warnings.In this example, there are 250 Configuration > Invalid Collibra system names warnings, grouped into parts 1, 2 and 3:Group nameThe type, or category, of warning. Possible values are: ConfigurationMismatched IDMissing content The following table shows the complete set of warning codes, by group and name.Group nameNameDescriptionMissing contentEmpty nameRaised during the processing of databases, tables, columns, worksheets and dashboards. Contains the following lines: Database with id DATABASE_ID is skipped Table with id TABLE_ID is skipped Column with id COLUMN_ID is skipped Worksheet with id WORKSHEET_ID is skipped Dashboard with id DASHBOARD_ID is skipped Indicates that the name property of a database, table, column, worksheet or dashboard, which has a specified value for the id property, has a null value or it is empty:Example for a
database: { data: { databasesConnection: { nodes: [{ id: DATABASE_ID, name: null, ...The name property is considered empty if the value is null or if it is empty.Missing contentParent database not foundRaised during the processing of tables. Contains the line: Table with id TABLE_ID is skipped Indicates that the parent database for a table with TABLE_ID was not found in the previously processed databases. Possible causes:The database property is not present in the JSON file.The database property is empty: database: {}.The DATABASE_ID is not present for the id property. { data: { tablesConnection: { nodes: [{ id: TABLE_ID, database: { id: DATABASE_ID } ... Missing contentParent project not foundRaised during the processing of projects, workbooks and published data sources. Contains the following lines: Workbook with id WORKBOOK_ID is skipped Published datasource with id DATASOURCE_ID is skippedProject with id PROJECT_ID has unreachable parent project Indicates that the parent project of a project, workbook, or published data source was not found in the previously processed projects.Possible causes: The project property is not present in the JSON file.The project property is empty: project: {}.The PROJECT_ID is not present for the id property.Example for a workbook: { workbooks: { workbook: [{ project: { id: PROJECT_ID }, id: WORKBOOK_ID, ...Example for a published datasource:To identify the PROJECT_ID, first find the DATASOURCE_LUID of the published data source, as returned by the metadata API: { data: { datasourcesConnection: { nodes: [{ __typename: PublishedDatasource, id: DATASOURCE_ID, luid: DATASOURCE_LUID ...Then, in the data returned by the REST API, reference the DATASOURCE_LUID to identify the PROJECT_ID of the data source.: { datasources: { datasource: [{ id: DATASOURCE_LUID, project: { id: PROJECT_ID, ...Example for a project:PARENT_PROJECT_ID is not found: { projects: { project: [{ id: PROJECT_ID, parentProjectId: PARENT_PROJECT_ID, ...Project is not skipped in this case. The new parent project is created with name Unknown project PARENT_PROJECT_ID.Missing contentMismatched IDParent workbook not foundRaised during processing of worksheets, dashboards, REST-only views and embedded data sources. Contains the following lines: Worksheet with id WORKSHEET_ID is skipped Dashboard with id DASHBOARD_ID is skipped View with id VIEW_ID is skipped (rest only)Embedded data source with id DATASOURCE_ID is skipped Indicates that the parent workbook of a worksheet, dashboard or view with a specified ID was not found in the previously processed workbooks. Possible causes:The workbook property is not present in the JSON file.The workbook property is empty: workbook: {}.WORKBOOK_ID is not present for the luid property.mismatched ID issue.Example for a worksheet: { data: { sheetsConnection: { nodes: [{ id: WORKSHEET_ID, workbook: { luid: WORKBOOK_ID ...Example for a dashboard: { data: { dashboardsConnection: { nodes: [{ id: DASHBOARD_ID, workbook: { luid: WORKBOOK_ID ...Example for an embedded data source: { data: { dashboardsConnection: { nodes: [{ id: DASHBOARD_ID, workbook: { luid: WORKBOOK_ID ...Use the luid property, not the id property, to find a workbook by ID.MIssing contentWorksheet not foundRaised during the processing of dashboards.Contains the line: Worksheet with id WORKSHEET_ID is skipped for dashboard with id DASHBOARD_ID Indicates that a worksheet with a given ID was not found in the previously processed worksheets. { data: { dashboardsConnection: { nodes: [{ id: DASHBOARD_ID, sheets: [{ id: WORKSHEET_ID }, ...Possible cause: WORKSHEET_ID is not present for the id property.Mismatched IDREST datasource not foundRaised during the processing of published data sources. Contains the line: Published datasource with id DATASOURCE_ID is skipped Indicates that a data source with DATASOURCE_ID could not be matched with the DATASOURCE_LUID returned by the REST API, resulting in a mismatched ID. { data: { datasourcesConnection: { nodes: [{ __typename: PublishedDatasource, id: DATASOURCE_ID, luid: DATASOURCE_LUID ...During processing, information returned by the metadata API and the REST API is combined. Collibra Data Lineage then looks to the DATASOURCE_LUID property in the REST metadata to identify the correct project ID, which is lacking from the information returned by the metadata API.This only applies to published data sources, as embedded data sources are assigned to workbooks, not projects.Missing contentDatasource not foundRaised during the processing of embedded data sources. Contains the line: Embedded datasource with id EMBEDDED_DATASOURCE_ID references non existing published datasource with id PUBLISHED_DATASOURCE_ID Indicates that an embedded data source with EMBEDDED_DATASOURCE_ID references a published data source with PUBLISHED_DATASOURCE_ID, which was not found in the previously processed data sources. { data: { datasourcesConnection: { nodes: [{ __typename: EmbeddedDatasource, id: EMBEDDED_DATASOURCE_ID, upstreamDatasources: [{ id: PUBLISHED_DATASOURCE_ID, ...Possible cause: PUBLISHED_DATASOURCE_ID is not present for the id property.Missing contentField relation not foundRaised during the processing of data source fields. Contains the lines:Referenced field with id FIELD_ID is skippedReport field with id FIELD_ID is skipped Indicates that a field with a given FIELD_ID was not found in remote fields, which is needed to create relations. { data: { datasourcesConnection: { nodes: [{ id: DATASOURCE_ID, fieldsConnection: { nodes: [{ __typename: DatasourceField, remoteField: { id: FIELD_ID ...Possible cause: An embedded datasource has a calculated field that is not mapped to any published data source field.This can occur:During the processing of referenced fields. In this case, the relation between the two Tableau Data Attributes cannot be created.During the processing of report fields. In this case, the relation between the Tableau Data Attribute and the Tableau Data Worksheet cannot be created.Missing contentMultiple datasourcesRaised during the processing of custom SQL queries. Contains the line: Custom sql query with id QUERY_ID contains columns of NUMBER_OF_DATASOURCES datasources. Found best datasource: DATASOURCE_ID Indicates that a query with QUERY_ID has matched multiple data sources. Only one data source can be used: datasource with DATASOURCE_ID. The warning is caused by the fact that there is no direct relation between the query and the data source. The algorithm tries to find the best data source, based on a comparison of the list of query columns and the data source columns. To verify this, do the following:Find the query with QUERY_ID and the columns (see COLUMN_ID) in the table JSON data:{ data: { tablesConnection: { nodes: [{ __typename: CustomSQLTable, id: QUERY_ID, columnsConnection: { nodes: [{ id: COLUMN_ID, ...Find the data source with DATASOURCE_ID in the data source JSON data. It should contain all of the columns (see COLUMN_ID) that are used by the query: { data: { datasourcesConnection: { nodes: [{ id: DATASOURCE_ID, fieldsConnection: { nodes: [{ upstreamColumnsConnection: { nodes: [{ id: COLUMN_ID ...The data source found for this query (meaning DATASOURCE_ID) might not be the right one for the TECHLIN VIEW definition. In this case, the data source DATASOURCE_ID might have the wrong relations between the Tableau Data Attribute asset and the Column asset.MIssing contentDatasource not foundRaised during the processing of custom SQL queries. Contains the line: Custom sql query with id QUERY_ID is skipped Indicates that query with QUERY_ID contains columns that are not referenced by any data source fields, so the data source can’t be assigned to the query. { data: { tablesConnection: { nodes: [{ __typename: CustomSQLTable, id: QUERY_ID, columnsConnection: { nodes: [{ id: COLUMN_ID, ... Missing contentQuery parsing errorRaised during the processing of custom SQL queries. Contains the line: Error parsing query with id QUERY_ID, error: ERROR Indicates that there is an issue when deriving column names from a query for a custom SQL with QUERY_ID. { data: { tablesConnection: { nodes: [{ __typename: CustomSQLTable, id: QUERY_ID, query: QUERYCustom SQL is still processed as TECHLIN VIEW with no columns.ConfigurationInvalid Collibra system namesRaised during the processing of the collibraSystemNames section in the <source ID> configuration file. Contains the lines:Collibra system name not found for database with hostname DB_HOSTNAMECollibra system name not found for file with path FILE_PATHCollibra system name not found for connector with url CONNECTION_URLCollibra system name not found for cloud file with name CLOUD FILE PATHConfigurationInvalid hostname mappingRaised during the processing of the hostnameMapping section the <source ID> configuration file.Contains the line: Collibra system name not found for database DB_NAME host HOST_NAME and schema SCHEMA_NAMEWhen you ingest Power BI metadata in Data Catalog, Collibra Data Lineage automatically creates a technical lineage for assets of the following types: Power BI Report Power BI Table Power BI ColumnTo view the technical lineage, go to the asset page of any asset of these types, and then click the Technical Lineage tab.If you ingest Power BI for the first time or if you change your geolocation or cloud provider,
you have to restart the DGC service before you can see your technical lineage.Technical lineage graphThe technical lineage graph shows relations of the type Data Element targets / sources Data Element between BI assets and other data objects in the data flow, for example Column assets or Power BI Column assets. These relations are created during the Power BI ingestion process as a result of automatic stitching.ExampleThe following technical lineage shows the relation of the type Data Element targets / sources Data Element between the Column asset LISTPRICE and the Power BI Column asset ListPrice.When harvesting Power BI, report attributes are not returned by the API. Therefore, for a given report, Collibra Data Lineage creates a dummy report attribute. This dummy report attribute is identified in the technical lineage by an asterisk (*), as shown in the following example image. Links are drawn from all data attributes in the data set that were used to create the report, to the dummy report attribute.Does your database or schema have the name Default in the technical lineage graph? This is the case if you use a Power Query M function that doesn’t have the schema or database name specified, or if Power BI hasn't returned the database or schema name. In this case, you can configure database and schema mapping in your <source ID> configuration file, to provide the name of the database or schema. This allows you to achieve stitching and view the lineage you need. For more information, go to Broken stitching and possible solutions.Sources tab pageThe Sources tab page shows the transformation details that were analyzed and processed on the Collibra Data Lineage service instances and the results of this analysis. The success rate of the analysis indicates how complete the technical lineage is.The Collibra Data Lineage server can process most, but not all, complex Power BI metadata. This means that the success rate of a Power BI ingestion can be very high, but almost never 100%.ExampleThe following image shows that you have created a technical lineage for four data sources. Power BI has a success rate of 83%. When you use the transformation logs to investigate the errors, you see that the Collibra Data Lineage service instance couldn't process some elements of the Power BI metadata, for example because they are not supported or there is an issue in the configuration file or the Power BI setup.When you ingest MicroStrategy metadata in Data Catalog, Collibra Data Lineage automatically creates a technical lineage.To view the technical lineage, click the Technical lineage tab on the asset page of any of the following asset types: TableColumnMicroStrategy Data AttributeMicroStrategy ReportThe Technical lineage tab is only shown if you have the Data Catalog global role with the Catalog and Technical lineageglobal permissions.If you ingest MicroStrategy for the first time or if you change your geolocation or cloud provider, you have to restart the DGC service before you can see the technical lineage.Technical lineage graphThe technical lineage graph shows relations of the type Data Element targets / sources Data Element between BI assets and other data objects in the data flow, for example Column assets or MicroStrategy Data Attribute assets. These relations are created during the MicroStrategy ingestion process as a result of automatic stitching.When harvesting MicroStrategy, report attributes are not returned by the API. Therefore, for a given report, Collibra Data Lineage creates a dummy report attribute. This dummy report attribute is identified in the technical lineage by an asterisk (*), as shown in the following example image. Links are drawn from all data attributes in the data set that were used to create the report, to the dummy report attribute.UUIDs in the MicroStrategy technical lineageCollibra Data Lineage uses unique full names to create a technical lineage and stitch objects within the technical lineage. Full names in Collibra are constructed in accordance with the hierarchy of data objects in MicroStrategy, for example: Server > Project > Folder > Report > Data Entity > Data Attribute Server > Project > Folder > Dossier > Data Entity > Data Attribute Server > Project > Folder > Document > Data Entity > Data AttributeIn Collibra, every node in this hierarchy must have a unique name. However, in MicroStrategy, the names of data objects do not have to be unique. As such, if MicroStrategy data objects in a technical lineage hierarchy have the same full name, Collibra Data Lineage adds the UUIDs of the corresponding assets to the names in the technical lineage, to maintain uniqueness.In the following example image, the names of the assets Priority, Opened and Active in the technical lineage have been appended with their UUIDs.UUIDs are not added to the names of the assets themselves; they are only added to the names of the data objects in the technical lineage.The UUID is always part of the full name of an asset, regardless of whether or not it is a duplicate.To keep Collibra Data Lineage from adding UUIDs to the names of the data objects in a technical lineage, ensure that the names of all data objects in MicroStrategy are unique.Sources tab pageThe Sources tab page shows the expressions that the Collibra Data Lineage service analyzed and processed, and the results of the analysis. It also shows the TECHLIN VIEW query definitions, based on custom SQL queries.MicroStrategy uses the term expressions instead of transformations.Source code is provided for the following MicroStrategy asset types:MicroStrategy DocumentMicroStrategy DossierMicroStrategy ReportMicroStrategy Data Entity The success rate of the analysis indicates how complete the technical lineage is.For example, the following image shows that you have created a technical lineage for two data sources. SAP HANA has a success rate of 83%. When you use the transformation logs to investigate the errors, you see that the Collibra Data Lineage service instance couldn't process some elements of the SAP HANA metadata, for example because they are not supported or because there is an issue in the configuration file.When you ingest Looker metadata, you automatically create a technical lineage for Looker Look assets. If you have the right permissions to view the technical lineage, you can go to a Looker Look asset page and click the Technical lineage tab, which allows you to access the technical lineage.Due to the limitations of the Looker REST API, we cannot stitch Looker assets and corresponding assets in Data Catalog. The Looker REST API does not provide transformations in Looker that are needed for stitching. As a result, the technical lineage only shows Looker metadata as it exists on the Collibra Data Lineage service and not as assets in Data Catalog.ExampleThe following technical lineage graph shows the technical lineage of Looker objects.When you ingest SQL Server Reporting Services (SSRS) and Power BI Report Server (PBRS) metadata in Data Catalog, you automatically create a technical lineage for SSRS Column assets. Each SSRS Column asset page has a Technical lineage tab page that shows the technical lineage of that asset Column asset. We cannot access PBRS lineage information. As a result, you can only create a technical lineage for SSRS Column assets.If you ingest SSRS and PBRS for the first time, or if you change your geolocation or cloud provider, you might have to restart the DGC service before you can see your technical lineage.Technical lineage graphThe technical lineage graph shows relations of the type Column is source for / is target of Data Attribute between BI assets and other data objects in the data flow, for example Column assets or Power BI Column assets. These relations are created during the ingestion process as a result of automatic stitching.For more information about the technical lineage, see the Collibra Data Lineage section in the documentation.ExampleThe following technical lineage shows the relation of the type Data Element sources / targets Data Element between the Column assets FOOD_NAME, FOOD_TYPE and FOOD_CODE and the SSRS Column assets food_name, food_type and food_code.Sources tab pageThe Sources tab page shows the transformation details that the Collibra Data Lineage service analyzed and processed and the results of this analysis. The success rate of the analysis indicates how complete the technical lineage is.The Collibra Data Lineage service can process most, but not all complex metadata. This means that the success rate of an ingestion job can be very high, but might not be 100%.Providing ODBC database names in Power BIYou can create a technical lineage for ODBC data sources in Power BI. However, ODBC database names often can't be determined. When a database name can't be determined, it's given a substitute name, which is the ODBC connection string.This substitute name can be seen in the technical lineage, but it is merely a placeholder that doesn't carry any meaning if you're trying to identify the database it represents in the technical lineage. A bigger problem is that if you want to stitch the ODBC database to assets in Data Catalog, the substitute name won't match with any ingested databases, so stitching won't work. To ensure that the true database names appear in the technical lineage, and to ensure successful stitching, you can use a Power BI <source ID> configuration file to provide the true system names of the ODBC databases in Power BI.The name <source ID> refers to the value of the sourceId property in the configuration file. If, for example, the value of the sourceId property in the lineage harvester configuration file is power-bi-source-1, then the name of your <source ID> configuration file should be power-bi-source-1.conf.Example of the <source ID> configuration fileFor each ODBC database in Power BI, add the following content to the JSON file: {
found_dbname=DSN_MYDATABASE;found_hostname=ODBC: { dbname: DB001, schema: MYSCHEMA, dialect: oracle, collibraSystemName: oracle-system-name } } PropertyDescriptionfound_dbname=<substitute database name>;found_hostname=<server name>found_dbname is the substitute database name. You need to convert it to uppercase and replace every non-alphanumeric character by an underscore (_). In this example, the substitute name is “dsn=MYDATABASE”, so you should use DSN_MYDATABASE.The substitute name is the ODBC connection string, which can be lengthy when it includes the driver and parameters in full.found_hostname should be “ODBC”, but you can also use an asterisk (*).dbnameThe true system name of the ODBC database in Power BI.schemaThe name of the default schema of the ODBC database in Power BI.If no schema is specified and the lineage harvester fails to find a specific schema, it uses the default schema.dialectThe dialect of the ODBC connection. The dialect must be one of the supported SQL dialects. If no dialect is specified, “mssql” is used, by default.You can enter one of the following values:azure, for an Azure SQL Server data source.bigquery, for a Google BigQuery data source.mssql, for a Microsoft SQL Server data source.oracle, for an Oracle data source.redshift, for an Amazon Redshift data source.snowflake, for a Snowflake data source.sybase, for a Sybase data source.collibraSystemNameThe system or server name of a database.Because you are using a <source ID> configuration file only for the purpose of providing the true system name of an ODBC database in Power BI, you are not required to:Set the useCollibraSystemName property in the lineage harvester configuration file to true.Specify a Collibra system name in the <source ID> configuration file.However, if the useCollibraSystemName property is set to true in the lineage harvester configuration file, then you must specify a Collibra system name in the <source ID> configuration file.Supported Power Query M functionsPower Query is a data transformation and preparation engine. It uses a scripting language called Power Query M formula language—also known as M—for all transformations.M is considered a mashup language. The Power Query engine filters and combines data from supported data sources. The mashed up data is then expressed using M. M is used by Power BI. It is not relevant to other integrations in Collibra.The Collibra Data Lineage service performs lexical and syntax analysis of M. With regard to syntax analysis, the Collibra Data Lineage service instances currently support the following functions.Not all functions have an impact on the technical lineage, so even though an error is raised for any unsupported functions, it might not mean that your lineage is incomplete. We are working to support the most common Power Query functions. If you have a Power Query function that is not yet supported and it’s very important to you, please create an Ideation ticket. For complete information on these functions, see the Microsoft documentation on accessing data functions.Backend-accessing data functions that impact the lineage diagramAmazonRedshift.DatabaseAnalysisServices.Database This function is fully supported if no MDX queries are used.If MDX queries are used and they resemble SQL, they will be parsed by the SQL parser.We don't currently support this function if used with MDX queries that resemble DAX, as the Collibra Data Lineage service instances can't parse such queries.AnalysisServices.DatabasesCsv.DocumentDatabricks.ContentsDatabricks.CatalogsExcel.Workbook File.Contents GoogleAnalytics.Accounts GoogleBigQuery.DatabaseOdbc.DataSource Odbc.QueryOracle.DatabasePostgreSQL.DatabaseSapHana.DatabaseSnowflake.DatabaseSql.DatabaseSql.DatabasesSybase.Database Web.Contents Transformations that impact the lineage diagramCube.AddAndExpandDimensionColumn Cube.TransformPowerBI.DataflowsWe only support dataflows without parameters that contain the following information:workspace IDdataflow IDentity (Power BI Table) IDPowerPlatform.DataflowsWe only support dataflows without parameters that contain the following information:workspace IDdataflow IDentity (Power BI Table) IDReplacer.ReplaceTextReplacer.ReplaceValueTable.AddColumnTable.AddIndexColumnTable.CombineAdditional informationIf Collibra Data Lineage can’t determine the column names in a source file or database, but the PowerBI column names are known and there is only one source file or database, then corresponding database/file columns are created and technical lineage is preserved. However, if column names can’t be determined and there are multiple source files or databases, as is the case when the Table.Combine function is used, then it’s not possible to know which source column corresponds to the Power BI column. This results in an error and the technical lineage is broken. To resolve this issue, a dummy column with the value “*” is created in the source table and the Power BI table:This preserves the technical lineage at the table level: Table.CombineColumns Table.DuplicateColumnTable.ExpandTableColumnTable.FromListTable.FromRecordsTable.FromRowsTable.NestedJoinTable.PromoteHeadersTable.RemoveColumnsTable.RenameColumnsTable.ReorderColumnsTable.ReplaceValueTable.SelectColumnsTable.SplitColumnTable.UnpivotTable.UnpivotOtherColumnsTable.TransformColumnNamesOnly the following parameters are supported: Text.Upper, Text.Lower, and Text.Proper.Value.NativeQueryQuery parameters are supported. Core parameters are not supported.Transformations that don't impact the lineage diagramTable.AddKeyTable.AlternateRowsTable.BufferTable.DistinctTable.ExpandListColumnTable.FillDownTable.FillUpTable.FindTextTable.FirstNTable.InsertRows Table.IsEmptyTable.LastNTable.MaxNTable.MinNTable.RangeTable.RemoveFirstNTable.RemoveLastNTable.RemoveMatchingRowsTable.RemoveRowsTable.RemoveRowsWithErrorsTable.RepeatTable.ReplaceErrorValuesTable.ReplaceKeysTable.ReplaceMatchingRowsTable.ReplaceRowsTable.ReverseRowsTable.SelectRowsTable.SelectRowsWithErrorsTable.SkipTable.SortTable.TransformColumnsTableTransformColumnTypesTable.FirstTable.LastTable.MaxTable.MinTable.SingleRow Unsupported transformationsUsing unsupported transformations can cause parsing errors.Table.FromRecordsSharePoint.TablesFolder.FilesPowerBIRESTAPI.NavigationDB2.DatabaseTable.ExpandRecordColumnTable.Group Working with Power Query parametersPower BI Power Query is a data transformation and data preparation engine. It gets data from your data sources and the Power Query Editor, and performs the extract, transform, and load (ETL) processing of data.You can use Power Query parameters to store and manage values that can be reused. Parameters give you the flexibility to dynamically change the output of your queries, depending on their values. For complete information on creating and managing parameters, see the Microsoft documentation.Power BI parameters in technical lineagePower BI parameters are configured at the dataset level and can be used in reports. When you integrate Power BI, the Power BI APIs return all parameters that are loaded in a report.When you select the Enable load option for a parameter, Power BI loads the columns from the parameterized table into its memory. The lineage harvester can then harvest these columns and create the full lineage. If the Enable load option is not selected for a parameter:The Power BI APIs can recognize the parameterized table, but not the columns in the table. In this case, Collibra Data Lineage can only create a table-level lineage; columns cannot be shown.If the parameter is used with, for example, the Table.AddColumn function or a similar function, a parsing error will be produced, because the Collibra Data Lineage service instance won’t know which column to add.Parameters of unsupported Power Query M functions are not supported. For the lists of supported and unsupported Power Query M functions, see Supported Power Query M functions. Likewise, global parameters are not supported. Global parameters are parameters that are not specific to a Power Query M function.Before Collibra Data Lineage introduced support for parameters, if you had a dataset or a report that had parameters, the following error message was shown: Could not process lineage. Please check if the Power Query expression contains schema, table(s) and column(s). Select the Enable load option for a parameter In the Home tab of the Power Query Editor, right-click the parameter, and then select Enable load.Ensure that the Enable load option is selected for all parameters.If you change the Enable load setting for a parameter, you must refresh the relevant data set. If the data set is not refreshed, the metadata processing fails due to an Unknown identifier analyze error. Technical lineage viewerThe technical lineage viewer shows the technical lineage and allows you to edit the view. You can access the technical lineage viewer via the Technical lineage tab on Column and Table asset pages and BI assets of the same level.For more information about the technical lineage for Looker or Power BI, we highly advise you to read the dedicated sections in the user guide.Technical lineage tabYou can only see the Technical lineage tab on a Column or Table asset page when you have the following prerequisites: You have a global role with the Catalog global permission, for example, Catalog Author.You have a global role with the Technical lineage global permission.View permissions are not enforced in Collibra Data Lineage. This means that anyone with the Technical Lineage global permission can see all of the assets in a technical lineage graph, regardless of their view permissions as determined at the community or domain level.Technical lineage viewerNoNameDescriptionToolbarThe toolbar to work with technical lineage. The toolbar helps you to edit basic settings that apply to the entire
lineage.Drop-down list to determine which details (attributes, objects or transformations) you want to show in the technical lineage graph.Button to zoom in on the technical lineage.Button to zoom out on the technical lineage.Button to refresh the technical lineage. This discards all the changes that you made to the technical lineage and restores it to the initial state.Button to reposition the technical lineage to the starting position.Button to show or hide the legend panel.Button to show or hide the source code pane.Button to show or hide the Browse and Settings tab panes.Technical lineage graphThe actual visualization of the traceability of the current data object, according to your selection in the Browse tab pane. If you select a specific column in a table with multiple columns, you can click Collapsed columns [menu] to show all other columns, collapse all columns or only show selected columns in the same table.Data objects that are stitched to assets in Data Catalog have a yellow background. Other data objects that the Collibra Data Lineage collected from your data source, but are not stitched and therefore are not assets in Data Catalog, have a gray background.Tab panesTab panes that contain useful tools to browse through your technical lineage or determine which content is visualized in the technical lineage.Browse tab paneThis pane can be used to search for specific data objects or show statistics on the amount of tables and views in use. More information.Settings tab paneThis pane can be used to search for transformation code, edit the visualization of the technical lineage, see the status of the source code, check the stitching results or export your technical lineage to PDF, PNG or CSV. More information.Source code paneThe source code pane shows the source code of specific data objects. It can be used to easily find issues in the data flow.The source code pane is shown when you click in the toolbar or when you right-click a column or table and click Transformations (IN) or Transformations (OUT) which shows the transformation logic in the source code pane.The technical lineage graphThe technical lineage graph consists of nodes and edges. Each node represents a corresponding object in a data source. Each edge shows a relation between nodes.Nodes and edges in the technical lineage graph show how data flows from source to destination. Understanding the nodes and edges better, enriches your technical lineage experience.Consider the following visual elements in the technical lineage graph:Relation typesMessagesColorsIconsArrowsCollapsed attributes menuRight-click menu Relation types The technical lineage graph shows relations between columns in the graph. The Collibra Data Lineage creates and shows the following relation type between stitched assets and other data objects:HeadRoleCo-roleTailIDData ElementtargetssourcesData Element00000000-0000-0000-0000-000000007069MessagesThe technical lineage graph might show different messages to alert you. The following messages are the most common:MessageDescriptionNo object found, try using a wildcard % When a data object name was entered in the search field on the Browse tab pane, this message is shown if the data object does not exist or a system name was entered. The following rules apply when you search for a data object:Use the percent sign (%) wildcard character if needed. Enter a database, schema, table or column name. Do not enter a system name.Nodes count exceeds the limit 350.Edges count exceeds the limit 1,000.The technical lineage graph exceeds the limit of 350 nodes or 1,000 edges and is too large to display. This happens, for example, if you have a table with many columns and you try to show the technical lineage of all columns in a table in one graph.You cannot manually change this limit.Depth was auto-adjusted to <number>. Graph was too large to display at once.The technical lineage graph exceeds the edge limit, which results in the automatic adjustment of the flow depth for the graph. The adjusted depth value is determined by the number of the edges that exceed the maximum edge limit.When the flow depth is automatically adjusted to a lower value than the actual graph size, you can find the icon in the technical lineage graph. To view the truncated lineage, right click the innermost node, and select Table lineage from the menu. The lineage information of the selected table is displayed. The current asset doesn't have a technical lineage yet.This message is shown if you didn't create a technical lineage for the data source of the asset.Use the Browse tab pane to navigate through the data object for which a technical lineage graph is available.Technical lineage cannot be shown.The technical lineage graph cannot be shown, because there are too many data objects. This happens, for example, when you created a technical lineage for multiple data source and you click All data objects in the Browse tab pane.Use the Browse tab pane to view specific parts of the technical lineage graph or click the suggested data objects to see their graph.ColorsThe technical lineage graph shows different colors to indicate which data objects are stitched to assets in Data Catalog and which are not.Background colorsThe background color of a node indicates whether or not the data object was stitched to an asset in Data Catalog, and whether something went wrong.A node has one of three background colors:ColorDescriptionYellowData objects from your data source that are stitched to assets in Data CatalogGrayData objects, for example temporary tables and columns, that Collibra Data Lineage collects from your data sources, but are not stitched to assets in Data Catalog.Collibra Data Lineage:Does not support stitching for Looker assets.Supports stitching for MicroStrategy assets only if you use the new integration method, which supports the latest MicroStrategy APIs.RedAttributes that are automatically assigned to a data object, because of missing DDL statements. If you want to remove objects with a red background, change the statements and rerun the lineage harvester or synchronize the technical lineage again if you use technical lineage via Edge.Since a technical lineage shows how data flows from source to destination, it is possible to see a lineage graph with both yellow, red and gray nodes.The following technical lineage graph shows two nodes with a gray background and three nodes with a yellow background. Node 1 and 4 contain data objects that are not stitched to assets in Data Catalog while nodes 2, 3 and 5 contain existing assets in Data Catalog that were stitched to the corresponding data objects when you created the technical lineage.Font colorsThe font color of data objects in the technical lineage graph indicates whether or not there is a relation between this data object and one or more other data objects.A node has one of two font colors:ColorDescriptionBlackAt least one direct or indirect relation exists between the data object and another.When a column flows from one table to another, the lineage reflects the direct dependency between the column in the source table and the column in the target table. This is considered a direct lineage. An indirect lineage, on the other hand, shows indirect dependencies. For example, if a JOIN clause is used in a query, the columns in the resulting view are generated by the JOIN clause; in other words, by an indirect dependency, not an actual flow of data.GrayNo relation exists between the data object and another.The following technical lineage graph shows three nodes. The node 1 contains data objects that have no incoming or outgoing edges to other data objects in the technical lineage. Nodes 2 and 3 only contain data objects that have a relation to other data objects in the technical lineage.IconsCollibra uses various icons in the technical lineage graph.IconDescriptionThe name of a table was found by the full-text search in the source code on which the analysis failed. Consequently, the lineage flow of the table is probably incomplete.If you click Show failed SQLs on the right click menu of the table, the failed SQL queries appear in the source code pane at the bottom of the page.The lineage is cyclic, for example A → B → C → A. It only appears if you enabled the only ending points option in the Settings tab pane.A relation for the data objects exists, but it isn't shown, for example because you set the technical lineage flow depth to a lower value than the actual graph size.The following Technical lineage graph shows two nodes. The first node has an icon to indicate that the lineage flow you currently see is probably incomplete. The second node has three data objects that have a relation to other data objects, but the edges that represent that relation are not shown.ArrowsArrows are incoming or outgoing edges that show how the data flows from source to destination. They represent relations of the type Data Element sources / targets Data Element.There are two ways in which an arrow can be shown: Arrow typeDescriptionSingleShows the full lineage without skipping certain data objects.DoubleShows that there are hidden data objects in the technical lineage graph. This happens when only the endpoints of the technical lineage flow are shown.The following Technical lineage graph shows three nodes. Edges with double arrows are shown between node 1 and 3. These edges indicate that there are other nodes between these nodes in the full technical lineage flow. Node 2 has outgoing edges with single arrows. These edges indicate that there is a direct relation between node 2 and 3.Collapsed attributes menuIf you select a specific column in a table with multiple columns, you can click Collapsed attributes [menu] to show all columns, collapse all columns or only show selected columns in the same table.Right-click menuIf you right-click a node, you can perform several specific actions on that node.FunctionalityDescriptionColumn/Table
lineageSwitch to the technical lineage graph of the selected column or table.Transformation (IN)Show the transformation logic of the incoming source code fragments in the source code pane.Transformation (OUT)Show the transformation logic of the outgoing source code fragments in the source code pane.Lineage treeShow an alternative way to view the flow of data objects, called the lineage tree. The lineage tree is particularly useful if there are many nodes in a lineage. It enables you to see the entire lineage in one pop-up, which means you no longer have to scroll through the technical lineage graph to see the full lineage.The lineage tree uses arrows to visualize the traceability of data objects:Green arrows represent outgoing edges.Black arrows represent incoming edges.Custom featuresWhen the lineage flow of the table is incomplete or there is an issue in the source code of a data object, the right-click menu shows the Show failed SQLs option. If you click this option, the source code pane opens and shows the SQL queries that failed.Technical lineage Browse tab paneThe Browse tab pane allows you to navigate to and search for a specific data object within the technical lineage tree.NoNameDescriptionSearchA search field that you can use to find a specific data object. You can enter the name of a database, schema, table or column. Searching for a system name is not supported. All data objectsA link to the complete technical lineage, showing all data objects in your data sources.Navigation treeA navigation tree in which you can search for specific data objects and visualize them in your technical lineage. The data objects are grouped by node type and have the following structure: system (if applicable) > database > schema > table > column.The list of data objects contains all systems, databases, schemas, tables and columns that were collected from the data sources by the lineage harvester. If available, it also shows the technical lineage of BI sources, for example Power BI and Looker. In that case, the structure follows the existing structure in the BI source metadata.The UNUSED branch contains data objects that were detected by Collibra Data Lineage, but are not included in any Technical lineage.StatsStatistics that show which information is or is not visualized in the technical lineage. The statistics contain the following data:Tables: the amount of tables that are shown in the technical lineage.Views: the amount of views that are shown in the technical lineage.Unused tables: the amount of tables in your data source that are not shown in the technical lineage. This metric is hidden when there are no unused tables.Unused views: the amount of views in your data source that are not shown in the technical lineage. This metric is hidden when there are no unused views.Done: the amount of queries that were processed successfully.Parsing errors: the amount of queries with invalid or unidentified syntax.Analyze errors: the amount of columns that are not linked to a table.Technical lineage Settings tab paneThe Settings tab pane allows you to edit the technical lineage, search for queries and export the technical lineage.NoNameDescriptionSearch fieldA search field to find specific transformation code in a selected object or attribute. As you type, corresponding object names from the technical lineage appear in a drop-down list. If you press Enter, the technical lineage only shows the parts that contain your search word(s).Visualization optionsOptions to define how you will see the data objects in the technical lineage.Group by parent objectOption to group tables and columns together by their hierarchical parent object. A schema is the parent object of a table. Only ending pointsOption to hide all data objects in the middle of the data flow and only show the ending points of the technical lineage.DepthA slider that determines the maximum flow depth. The relation path length from the first node in the technical lineage graph to any other node is automatically adjusted to the maximum flow depth.If you see in the technical lineage graph, the flow depth is set to a lower value than the actual graph size.DependenciesDrop-down to select the dependencies that you want to visualize. You can select one of the following dependencies:Inbound dependencies onlyOutbound dependencies only2-way dependenciesShow indirect dependenciesOption to include indirect dependencies in a technical lineage.When a column flows from one table to another, the lineage reflects the direct dependency between the column in the source table and the column in the target table. This is considered a direct lineage. By default,Collibra Data Lineage only shows direct lineage. An indirect lineage, on the other hand, shows indirect dependencies. For example, if a JOIN clause is used in a query, the columns in the resulting view are generated by the JOIN clause; in other words, by an indirect dependency, not an actual flow of data.Export Button to export your technical lineage. You can choose among the following export types: PDFPNGCSVFull CSVJSON Show statusButton to switch to the Sources tab page, which shows the analysis log files of your data sources and the Stitching tab page, which shows an overview of assets and data objects and shows which are stitched.Technical lineage Sources tab pageWhen you create a technical lineage, your data sources are uploaded to the Collibra Data Lineage service to be analyzed and processed. The Sources tab page shows the transformation details or source code that was analyzed and the results of this analysis.You can access the Sources tab page by clicking Show status on the Settings tab pane.If an analyzed data source has the following result, the data source does not appear in the Sources tab page:Parsing errors: 0Analysis errors: 0Done: 0NoNameDescriptionSummary per data sourceA summary per data source. You can also select data sources to filter the results.SelectedCheckboxes to filter on a data source in the transformations table. If you select none, the transformations table contains all transformations.Source IDThe ID of your data source. You entered this ID in the configuration file.Scanner typeThe type of scanner that is used to scan the queries in your data source.Success rateThe success rate of the data source analysis on the Collibra Data Lineage service. The success rate indicates how complete your technical lineage is.The success rate of a technical lineage gives a good indication of the processing success. A success rate less than 100%, however, does not mean processing was unsuccessful. A parsing error, for example, which negatively affects the success rate, does not always negatively affect the completeness of the lineage.DoneThe amount of queries that were scanned and analyzed.Parsing ErrorThe amount of parsing errors.Analyze ErrorThe amount of analysis errors.Last sync timeThe last time the data source was uploaded to the Collibra Data Lineage service, for analysis and processing.Search toolsTools to help you search for specific source code fragments.Full-text searchA search field to find specific queries in the log files. Type what you are looking for and press Enter. Filter byA drop-down list to filter the source codes based on their status code.Transformations tableThe table that contains details of the transformations and source code (fragments). You can filter the rows in the table by selecting data sources in the data source table and by using the search tools.If you click a source code fragment, you can see the log file attached to it.IDThe ID of the source code fragments or transformation details, which are assigned in chronological order.NameThe name of the specific source code fragment or transformation detail.You can also see the source code fragment name in the source code pane in the technical lineage graph.Status codeThe status of the analysis.A source code fragment or transformation detail can have one of the following status codes:DONE: All queries are processed successfully.ERROR: Some queries could not be processed.PARSING_ERROR: The syntax of some queries is invalid or unidentified.ANALYZE_ERROR: Some columns are not linked to a table.Status descriptionThe description of the status code that provides more information about the analysis and shows how many queries were processed.Group nameThe name of the package or procedure to which the source code fragment or transformation details belongs.Export Selected TransformationsThe button to export transformation details for the selected data sources. When you click this button, you download a ZIP file. The ZIP file contains an errors.csv file that includes the transformation details for the selected data sources. If you do not select any data sources, the transformation details for all listed data sources in the transformations table are exported. Show lineageThe button to go back to the technical lineage graph.Sort by each columnThe sorting icons that you can use to sort by each column in ascending or descending order. These columns include Scanner type, Success rate, Done, Parsing Error, Analyze Error, and Last sync time. Analysis resultsIf you click one of the rows in the Transformations table, a file with the analysis results attached to the source code or transformation details opens. You can use these files to easily find errors in the source code or transformation details of your data source.If the metadata that Collibra Data Lineage collects from your data source includes SQL queries, the analysis results might display comments from those SQL queries. If a comment ends with a statement separator, for example, /*select 2 from dual*/;, the comment is counted as a statement. Consequently, the number of queries that are displayed in the Done column under Summary per data source might be greater than the actual number of queries parsed.Technical lineage Stitching tab pageThe Stitching page shows
the full path of assets in Data Catalog and data objects of the data sources for which you created a technical lineage. You can use it to easily check which assets are stitched and which are not.You can access the Stitching tab page by clicking Show status on the Settings tab pane.NoNameDescriptionSearch fieldA search field to find specific assets or data objects. Type what you are looking for and press Enter. Full asset pathThe full path to all data objects on the Collibra Data Lineage service and all assets in Data Catalog.Found inThe location where the asset or data object was found. There are three possible locations:Data Catalog: The asset was found in Data Catalog, but it does not match the full path of a data object on the Collibra Data Lineage service. As a result, there is no technical lineage created for this asset.Technical lineage: The data object was found in the data source for which you created a technical lineage, but it does not match the full path of an asset in Data Catalog. As a result, the data object is shown in technical lineage with a gray background.Data Catalog & Technical lineage: An asset and a data object with the same full path were found in Data Catalog and on the Collibra Data Lineage service. As a result, they were stitched and are shown in technical lineage with a yellow background. In Collibra, full paths are case-sensitive. Show lineageThe button to go back to the technical lineage graph.Technical lineage troubleshootingFor complete troubleshooting information, go to the Collibra Support Portal.Troubleshooting for technical lineage via Edge Troubleshooting for technical lineage via EdgeIn this topicRetrieve your Edge Site Id and Job Id Message Source 'source_name' was never processed with the current useSystemName flagMessage Failed to load artifacts messageMessage A UNIQUE constraint failedMessage Failed to fetch lineage API key because of a client errorMessage MountVolume.NewMounter initialization failed does not existRetrieve your Edge Site Id and Job Id If you report an error with JDBC Technical lineage running on Edge, the Customer Support team can ask you for the Edge Site Id and Job Id. The team needs this information to access details about the error.To retrieve the Job Id, see View the summary of an technical lineage synchronization.To retrieve the Site Id:Go to Settings.In the Edge section, click Sites.Click the name of the Edge site.The Edge site Id is available in the ID field.Message Source 'source_name' was never processed with the current useSystemName flagDescriptionSolutionThis error occurs when atechnical lineage capability was synchronized with the following values set differently on Edge and for the lineage harvester:The value of the Collibra system name setting on Edge.The value of the useCollibraSystemName property in the lineage harvester configuration file.Both values must be the same even if you use technical lineage via Edge and the lineage harvester for different data sources.Complete the following steps:Ensure that the value for the Collibra system name setting is the same with the value of the useCollibraSystemName property in the lineage harvester configuration file.Synchronize the technical lineage capability again.Message Failed to load artifacts messageDescriptionSolutionIf the Technical Lineage synchronization activity was not successful and you see error failed to load artifacts in the Lineage harvester synchronization dialog, it means the Technical Lineage capability could not be loaded in Edge. Report this error and the Job Id to the Customer Support team for further investigation. Message A UNIQUE constraint failedMessage codeDescriptionSolutionMSG-LIN-2501A UNIQUE constraint failed.When a technical lineage capability was being synchronized, synchronization processing failed because two capabilities were added for one BI tool data source with two different source IDs.To resolve this issue, complete the following steps:If you do not have a lineage harvester installed, install one.Enter the list-sources command and review the listed data sources to identify the data source that was added twice.Take any of the following actions:If the technical lineage capability with the source ID that you want to remove still exists on Edge:On Edge, edit the technical lineage capability for the identified data source that you want to exclude by clearing the Active check box.Synchronize the technical lineage capability for your data source again.If the technical lineage capability no longer exists on Edge:Enter the ignore-source command with the source ID that you want to remove.Enter the full-sync command to synchronize the technical lineage again.Message Failed to fetch lineage API key because of a client errorMessage codeDescriptionSolutionMSG-LIN-3001The DGC user name and DGC user password are not defined or incorrect.Complete the following steps: Verify the Edge technical lineage settings.Synchronize the technical lineage again.Message MountVolume.NewMounter initialization failed does not existDescriptionSolutionYou get the following message:MountVolume.NewMounter initialization failed for volume \pv-shared-folder-2d53d256-fd6b-4be8-a732-fe0f1c98704e-edge\ : path \\/var\/lib\/edge\/storage\/dir\ does not existWhen a technical lineage capability that uses a Shared Storage connection was being synchronized, the Shared Storage connection folder with the name of dir did not exist. Complete the following steps: Create a folder on the Edge site server. The folder path must be relative to /var/lib/edge/storage/.When you create the Shared Storage connection, specify the folder name. Synchronize the technical lineage again. For more information, go to Create a technical lineage via Edge.
	Collibra Data Lineage
	What is Collibra Data Lineage?
	BI tool integration
	Business value
	How do I create a technical lineage?

	Database Owners, BI and ETL Admins, and Collibra Admins
	Database Owners
	BI and ETL Admins
	Collibra Admins
	Software requirements
	Hardware requirements
	Network requirements
	Requirements and permissions
	Steps
	What's next?
	Typical command options and arguments
	Structure of the JSON file
	Examples of commands
	On Windows
	On other operating systems
	The lineage harvester configuration file
	Empty configuration file
	Configuration file generator
	Steps
	What's next
	Prerequisites
	Steps
	What's next?
	Requirements and restrictions
	Programming considerations
	Example
	Sample JSON file for a simple custom technical lineage
	Sample JSON file for an advanced custom technical lineage
	Requirements and restrictions
	Format
	Example
	Terminology
	Methodology
	Steps
	Naming convention
	Prerequisites
	Steps
	What's next?
	Prerequisites
	Steps

	Business users
	Technical lineage
	Automatic stitching for technical lineage
	BI tool business logic
	Technical lineage and stitching for BI tool integrations
	Business Summary Lineage
	Differences between Technical lineage and diagrams with Business Summary Lineage
	BI integration concepts

	Technical users
	Supported data sources for technical lineage
	Transformation logic
	Technical lineage export types
	BI integration concepts
	Technical lineage viewer

	Technical lineage troubleshooting
	Troubleshooting for technical lineage via Edge

