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1. Introduction     

Cordgrasses (Genus Spartina) are one of the most abundant and geographically wide spread 
halophytes, due to natural and human-mediated dispersal. S. alterniflora Loisel, S. patens 
(Aiton) Muhl., S. spartinae (Trin.) Merr. ex Hitchc. and S. cynosuroides (L.) Roth are native 
from coastal salt marshes along the East Coast of the American continent, S. foliosa Trin. is 
native to South Californian salt marshes, S. densiflora Brongn. and S. argentinensis Parodi 
grow naturally in South American salt marshes and S. maritima (Curtis) Fernald, S. versicolor 
Fabre, S. x townsendii Groves and S. anglica C.E. Hubbard are autochthonous species from 
European estuaries (Fabre, 1849; Moberley, 1956). Cordgrasses have been introduced to 
distant salt marshes where they usually behave as invaders. For example, S. densiflora 
colonizes as an alien species the West Coast of North America from San Francisco Bay to 
British Columbia, the West Coast of Morocco and the Gulf of Cadiz at Southwest Iberian 
Peninsula (Bortolus, 2006).  
Cordgrasses are able to colonize contrasted environments throughout the intertidal gradient 
such as low marshes and salt pans, and along river channels such as sand spits at river 
mouths and brackish wetlands landwards. These different coastal marsh habitats show high 
abiotic and biotic environmental heterogeneity and cordgrasses exhibit a high level of 
phenotypic plasticity (e.g. Thompson, 1991; Thompson et al., 1991; Trnka & Zedler, 2000; 
Castillo et al., 2005a). Moreover, some Spartina species have developed ecotypes during the 
process of adaptation to different environmental conditions (e.g. Seliskar et al., 2002; 
Álvarez et al., 2010). It is also frequent that invasive and native Spartina species hybridized. 
Hybrids may become new allopolyploid species such as S. anglica (Schierenbeck & Ellstrand, 
2009) and they can develop transgressive traits (e.g. Castillo et al., 2010).  
Salt marshes are among the most productive ecosystems in spite of a low plant species 
richness due to a very stressful environment related with long flooding periods and high 
salinities (Adam, 1990). Living in this extreme environment, cordgrasses are able to develop 
dense tussocks, clumps and prairies that may accumulate very high below- and above-
ground biomass.  
The biomass of cordgrasses plays a very important role in the functioning of salt marshes 
and estuaries. For example, it controls the development of ecological succession, organizes 
space occupation of other plants and animals, and plays a key role in estuarine food webs. 
This chapter analyses inter- and intra-specific variations in the biomass of cordgrasses 
growing in coastal marshes all around the world. 

Source: Biomass, Book edited by: Maggie Momba and Faizal Bux,  
 ISBN 978-953-307-113-8, pp. 202, September 2010, Sciyo, Croatia, downloaded from SCIYO.COM
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Fig. 1. Small cordgrass (Spartina maritima) grows on intertidal mudflats in European salt 
marshes where it forms continuous prairies with its coalescent clumps that colonize bare 
sediments with long rhizomes. 

2. Sampling cordgrass biomass 

Cordgrasses colonize surrounding sediments by successive series of rhizomes, which is 
reflected in concentric and alternating rings of live and dead shoots with low and high densities 
and usually in central die-back areas that may remain occupied by necromass. This clonal 
growth has been described for cordgrasses such as S. maritima (Caldwel, 1957; Castellanos et al., 
1994) and S. densiflora (Castillo et al., 2003). Sediments without vegetation or colonized by other 
plants are found between expanding Spartina clumps prior to their coalescence.  
Abiotic factors such as topography, oxygen concentration in sediments, drainage, 
photoperiod or salinity determine a high degree of environmental heterogeneity at large, 
medium and small scales (microhabitats) in coastal marshes, which influences the area 
occupied by expanding Spartina clumps. For example, growth of S. anglica and S. maritima 
rhizomes is limited by the interference of erosive banks that obstruct their horizontal 
expansion (Van Hulzen et al., 2007; Castillo et al., 2008b). In contrast, the production of 
aerial and subterranean biomass is stimulated by high accretion rates for S. maritima 
(Castillo et al., 2008a) and for S. alterniflora (Ford et al., 1999; Mendelssohn & Kuhn, 2003; 
Deng et al., 2008) due to an increase in soil fertility and marsh elevation, reducing nutrient 
deficiency and flooding stress. In this environment, it is usual to find several levels of 
rhizome corresponding with different sedimentation events. Thus, hydrologic and 
sedimentary processes are very important for the inter- and intra-marsh variability of 
Spartina marshes (Montalto & Steenhuis, 2004).  
These biotic and abiotic processes usually produce an aggregated spatial pattern of Spartina 
biomass distribution, showing high spatial variability in biomass accumulation (Zedler, 1993). 
In this context, recorded values of biomass depend very much on the sampling method.  

2.1 Above-ground biomass 
The above-ground biomass of cordgrasses is usually sampled using plots that may be 
distributed randomly or regularly along radial transects from the edge of the Spartina 
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clumps to their centres. Randomly distributed plots are used for extensive and mature 
prairies where no clumps can be distinguished clearly. If this method is used for a Spartina 
population with isolated clumps, plots should be distributed randomly into the clumps, 
avoiding non-colonized areas, using stratified sampling. In contrast, radial transects are 
applied when isolated clumps are easy to distinguish (Castellanos et al., 1994; Nieva et al., 
2001a).  
The most frequent plot sizes are quadrants of 0.01 m2 (10 cm side) (Buchsbaum et al., 2009; 
Zhou et al., 2009a), 0.04 m2 (20 cm side) (Castillo et al., 2008a; Culbertson et al., 2008; 
Buchsbaum et al., 2009; Charles & Dukes, 2009), 0.09 m2 (30 cm side) (Holdredge et al., 2010) 
and 0.25 m2 (50 cm side) (Schmalzer et al., 1991; Darby & Turner, 2008a,b; Krull & Craft, 
2009; Wang et al., 2009; Zhou et al., 2009b) (Table 1).  
Larger plots normally show lower biomass values than smaller plots since they include 
both, areas with high and low shoot densities. However, heterogeneity of data series is 
usually lower with larger plots. In contrast, smaller plots coinciding with high shoot density 
areas record higher biomass values, however they may offer very heterogeneous data series 
when sampling high and low shoot densities. Castillo et al. (2008a) recorded above-ground 
biomass using quadrants of 0.04 m2 and 1.00 m2 in an expanding population of S. maritima 
and they obtained from two to five times less biomass using the larger plot size. Thus, the 
spatial scale to analyze cordgrass biomass has to be properly chosen since results are largely 
determined by it. 
The above-ground biomass of cordgrasses also changes temporarily. Thus, higher biomass 
accumulation values normally coincide with the end of the growing season, which usually 
matches up with warmer months. For example, higher biomass accumulation in the 
Southwest Iberian Peninsula has been recorded for S. maritima and S. densiflora during 
autumn and the beginning of winter (Castellanos et al., 1994; Nieva et al., 2001). As well, S. 

alterniflora shows higher biomass accumulation at the end of the summer time in invaded 
Chinese marshes (Zhou et al., 2009a) and in Louisiana estuaries (Darby & Turner, 2008b). 
Aboveground necromass remains until it is removed by tides, currents or it is decomposed 
in situ (Schubauer & Hopkinson, 1984; Nieva et al., 2001a). Therefore, biomass records will 
change depending on the season of the year. More complete sampling would result from 
recording biomass variations throughout the year. However, recording maximum biomass 
accumulation at the end of the growing season seems to be a good method for comparing 
studies (Kirwan et al., 2009). 
The above-ground biomass of cordgrasses may also be estimated by allometric relationships 
relating biomass with shoot density and shoot height (Castillo et al., 2008a; Tyrrell et al., 
2008; Gonzalez Trilla et al., 2009). Anyway, when recording Spartina above-ground biomass 
it is important also to document processes that could affect biomass accumulation such as 
herbivory by vertebrates (i.e. cattle, deers or goose) or invertebrates (i.e. grabs and insects) 
or mechanical impacts such as tides and currents. 

2.2 Below-ground biomass 
Below-ground biomass studies are much less abundant than those reporting aerial biomass, 
however subterranean Spartina biomass plays very important functions in coastal marshes 
(Darby & Turner, 2008a,b; Turner et al., 2009) (Table 1).  
Most of the roots and rhizomes of cordgrasses are accumulated close to the sediment surface 
due to their growth-form with superficial rhizomes parallel to the sediment surface and thin 
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roots, and to anoxic conditions in the sediments, especially at lower elevations, that limit 
root elongation (Padgett et al., 1998). 
The below-ground biomass of Spartina species is usually sampled using cores of 20-30 cm 
long and 10-20 cm diameter that are driven into the sediments and removed containing the 
soil and the subterranean biomass (roots and rhizomes); 20–50% underestimates can be 
generated using this method (Johnen & Sauerbeck 1977) (Table 1). Then, cores are usually 
divided into sections to analyze below-ground biomass distribution with depth (Nieva et al., 
2001a; Darby & Turner, 2008a,b; Michel et al., 2009; Zhou et al., 2009a,b). Normally, below-
ground biomass is sampled at the same points where the above-ground biomass has been 
removed previously.  
In-growth cores may be used to record below-ground biomass production. In-growth cores 
are created by removing a determined soil volume, which is replaced with root and 
rhizome-free sediment collected from an adjacent area. Then, ingrowth cores are removed 
seasonally, and subterranean biomass is sorted and dried to a constant weight. Total 
belowground production (g m-2 yr-1) is calculated by adding together the total amount of 
live and dead biomass produced at the end of the one year study period (Gallagher et al., 
1984; Perry & Mendelssohn, 2009). 
Temporal changes in subterranean biomass of cordgrasses are not well established. 
However, Spartina below-ground biomass does not seem to show as clear a temporal pattern 
as the aerial biomass does, with higher accumulations at the end of the warmer season 
(Darby & Turner, 2008b). 
 

 

Fig. 2. Sampling Spartina versicolor above-ground biomass along a transect in a representative 
tussock. Each transect was a belt of contiguous quadrants (10 cm radially × 15 cm wide) 
across the radius of a tussock; every quadrant sampled a concentric ring around the tussock 
centre so that the results integrated the zones of different density within the clone. 

3. Aerial biomass of cordgrasses 

Spartina species are clonal plants and their ramet distribution and demography is a key 
factor determining the functioning of these species and their roles in plant communities 
(Suzuki & Hutchings, 1997). Some cordgrasses grow in dense tussocks (van Groenendael et 
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al., 1996) -“phalanx” growth species after Lovett Doust & Lovett Doust (1982)- and others in 
sparse clumps – “guerrilla”  growth. 
Despite the important presence in numerous ecosystems of clonal plants with “phalanx” 
growth, there have been few detailed studies of their growth strategy (Gatsuk et al., 1980; 
Bullock et al., 1996; Guardia et al., 2000). S. argentinensis, S. densiflora, S. bakeri, S. patens and 
S. versicolor forms dense tussocks that show a high occupation of available space inside 
tussocks by live shoots in expanding populations and by live and dead shoots in mature 
populations (Figueroa & Castellanos, 1988; Nieva et al., 2001b). These dense tussocks seem 
to show a high degree of physiological integration between ramets (Hester et al., 1994 for S. 
patens) reflected in very low mortality rates of young shoots (Pitelka & Ashmun, 1985; 
Maillette, 1992). Thus, interior areas of “phalanx” tussocks are not easily colonized by other 
species unless they develop central die-back areas (known as “monk’s tonsure”). On the 
other hand, high stem densities also favor the deposition of particles suspended in the tidal 
water, an additional source of nutrients (Adam, 1990). 
S. alterniflora, S. anglica, S. foliosa, S. maritima and S. x townsendii are “guerilla” species. They 
grow in clumps with low shoots densities in comparison with “phalanx” species. These 
cordgrasses expand with long rhizomes from which a rapid development of aerial tissues is 
carried out after colonization of bare sediments mainly during warmer periods. Their 
growth rate seems to decrease when different clumps are close to each other due to higher 
levels of intraspecific competition between ramets (Castellanos et al., 1998; Li et al., 2009). 
Intraspecific competition may also inhibite seedling recruitment as has been described for S. 
alterniflora in Willapa Bay (Washington, USA) (Lambrinos & Bandos, 2008). 
“Guerrilla” clumps frequently develop central die-back areas throughout their ontogenic 
development from expanding seedlings to mature tussocks (Turner et al., 2004). Clumps’ 
central areas are more elevated and show less shoot densities than peripherical zones of 
clumps. Thus, central areas may be colonized by more competitive species that are less 
tolerant to abiotic stress and that finally displace Spartina out by interspecific competition. 
For example, S. maritima facilitates the development of ecological succession by ameliorating 
anoxia at the centre of its tussocks, so other species such as Sarcocornia perennis subspecies 
perennis, Sarcocornia perennis x fruticosa and Atriplex portulacoides are able to colonize them 
and outcompete the small cordgrass (Castellanos et al., 1994; Figueroa et al., 2003). 
Most Spartina species with a “phalanx” growth-form accumulate more above-ground 
biomass than cordgrass species growing in “guerrilla”.  “Guerrilla” species expand faster by 
rhizomes (e.g. 0.13 m yr-1 for S. maritima in European marshes following Castillo & Figueroa, 
2008) than “phalanx” species (e.g. ca. 0.06 m yr-1 for S. densiflora as reported by Nieva et al., 
2005 and Kittelson & Boyd, 1997 in European and North American salt marshes, 
respectively). This faster colonization of surrounded sediment by “guerrilla” species has as a 
result a lower density of biomass in the occupied space. However, S. patens with high ramet 
densities shows low biomass values compare with S. alterniflora with “guerrilla” growth 
because its shoots are usually much thinner, having smaller leaves (Table 1). 
Cordgrass above-ground biomass varies markedly between and within species depending 
on many different environmental factors and the growth form of each taxon. Minimum 
aerial biomass values have been recorded for “guerrilla” species growing in low marshes 
(ca. 100 g DW m-2) and maximum values (ca. 15000-30000 g DW m-2) have been recorded for 
“phalanx“ species in brackish wetlands (Table 1). 
Between “phalanx“ growth species, S. bakeri accumulates ca. 400-700 g DW m-2 in the 
western Atlantic coast of North America (Chynoweth, 1975; Schmalzer et al., 1991). S. 
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densiflora above-ground biomass accumulation changes markedly between different invaded 
marsh habitats in SW Iberian Peninsula. Thus, dense-flowered cordgrass shows its highest 
biomass values (higher than 15000 g DW m-2) at brackish marshes (Nieva et al., 2001a), with 
its photosynthetic apparatus being more efficient at lower salinities (Castillo et al., 2005b). In 
contrast, invading European populations of S. densiflora in middle salt marshes show 
aboveground biomass values ca. 14000 g DW m-2 (with ca. 10500 shoot m-2). This value falls 
to ca. 400-600 g DW m-2 in low salt marshes (with ca. 6000-7000 shoot m-2) (Nieva et al., 
2001a; Castillo et al., 2008b) since S. densiflora is quite sensitive to long flooding periods 
(Castillo et al., 2000). In high marshes, S. densiflora accumulates intermediated biomass 
values between low and middle marshes (ca. 6000 g DW m-2 with ca. 4000 shoot m-2) (Nieva 
et al., 2001a). Similar above-ground biomass values have been recorded also for South 
American native populations of S. densiflora (Vicari et al., 2002) and invasive populations in 
California (Moseman-Valtierra et al., 2009) (Table 1). In addition, mature tussocks of S. 
densiflora normally to show elevated wrack accumulation (ca. 800 g DW m-2) (Castillo et al., 
2008b). Wrack accumulation may interfere with other species colonization of inner areas of 
Spartina clumps. 
S. patens, another cordgrass with “phalanx” growth, accumulates between 100 and 500 g 
DW m-2 of aerial biomass in North American Atlantic brackish marshes (Silander & 
Antonovics, 1979; Bertness, 1991; Buchsbaum et al., 2009) and S. spartinae accumulates 
between 200 and 500 g DW m-2 in coastal marshes of Texas (MacAtee et al., 1979). S. 

versicolor also forms dense tussocks and colonizes brackish marshes in Europe where it 
accumulates ca. 3000 g DW m-2 (unpublished data) since its shoots are much thicker and 
taller (ca. 60-95 cm) (Menéndez & Sanmartí, 2007) than those of S. patens (ca. 31 cm) 
(Silander & Antonovics, 1979) (Table 1).  
Among cordgrasses with a “guerrilla” growth-form, S. alterniflora in western Atlantic low 
salt marshes accumulates between 100 and 1100 g DW m-2. Changes in S. alterniflora biomass 
between populations are related mainly with its short and tall forms, varying its shoot 
height between 20 and 140 cm, also with a highly variable shoot density that changes 
markedly between 100 and 4000 shoot m-2 (Craft et al., 1999, 2002, 2003; Proffitt et al., 2005; 
Culbertson et al., 2008; Darby & Turner 2008b; McFarlin et al., 2008; Sala et al., 2008; Tyrrell 
et al., 2008; Buchsbaum et al., 2009; Gonzalez Trilla et al., 2009; Krull & Craft, 2009; Michel et 
al., 2009; Holdredge et al., 2010). One year after invading Chinese marshes, S. alterniflora 
accumulated ca. 300-450 g DW m-2 with shoot height between ca. 70-240 cm (An et al., 2007), 
accumulating in mature Chinese populations between 200 and 3700 g DW m-2 (Wang et al., 
2008; Li & Yang, 2009; Wang et al., 2009; Zhou et al., 2009a,b) (Table 1). 
Above-ground biomass of S. cynosuroides and S. maritima shows similar values than  those 
recorded for S. alterniflora, also showing very high inter-population differences. Thus, S. 

maritima accumulates ca. 1000 g DW m-2 in low European salt marshes, however it can vary 
very much depending on the abiotic environment, increasing to ca. 1500 g DW m-2 (Benito & 
Onaindia, 1991; Castellanos et al., 1994; Figueroa et al., 2003; Lillebo et al., 2006; Castillo et 
al., 2008a,b) (Table 1). 
As we have shown above cordgrass above-ground biomass accumulation depends on clone 
architecture and shoot morphology. These traits show high intraspecific variation as 
described for S. alterniflora (Lessmann et al., 1997; Proffitt et al., 2005), S. densiflora (Nieva et 
al., 2001a; Castillo et al., 2008b), S. maritima (Sanchez et al., 1997; Castellanos et al., 1998; 
Otero et al., 2000; Castillo et al. 2005a; Castillo et al., 2008a,b) and S. patens (Silander & 
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Antonovics, 1979). Intraspecific changes in growth form may be based on phenotypic 
plasticity or genotypic differences. Thus, several species of Spartina, such as S. alterniflora or 
S. maritima, show clearly distinguishable tall and short growth forms (Shea et al., 1975; 
Mendelssohn, 1979; Anderson & Treshow, 1980; Howes et al., 1986; Pezeshki & DeLaune, 
1991; Castillo et al., 2005a). Some studies have concluded that the observed variability in 
growth forms among Spartina populations may be the result of genetic differentiation 
(Gallagher et al., 1988; Sanchez et al., 1997; Proffitt et al., 2003), identifying ecotypes with 
different canopy heights and biomass accumulation (Lessmann et al., 1997; Daehler, 1999; 
Otero et al., 2000; Seliskar et al., 2002; Proffitt et al., 2005).  
In contrast, other studies have attributed different growth forms to phenotypic plasticity in 
response to differences in environmental factors (Anderson & Treshow, 1980), such as the 
availability of nutrients (Dai & Wiegert, 1997; Wigand et al., 2003; Zhao et al., 2010), salinity 
(Phelger et al., 1971; Trnka & Zedler, 2000) or sediment anoxia (Castillo et al., 2005a). The 
consequence of this is that the different growth forms are ecophenes. In this context, an 
increase in shoot height is a commonly reported growth strategy for increased water depth 
in emergent plants (Grace, 1989; Vandersman et al., 1991; Insausti et al., 2001; Sorrel et al., 
2002) including in the genus Spartina (Lessmann et al., 1997; Castillo et al., 2005a). Shoots 
might grow taller in response to sediment anoxia, a response possibly signaled by ethylene 
(Pezeshki et al., 1993), or in response to increased nutrient mobilization in the sediment 
under more anoxic conditions (Lenssen et al., 1999). Taller shoots would increase the 
effective photoperiod (i.e. average leaf emergence from tidal waters during daylight hours), 
a potent environmental factor in limiting the survival of Spartina clumps on low marshes, 
where a few centimeters of elevation in the tidal gradient may determine the lower 
distribution limit (Castillo et al., 2000). In addition, taller shoots may play a role in 
improving the oxygenation of rhizomes and roots via aerenchyma in anoxic environments, 
as in certain non-tidal wetland species (Sorrel et al., 2002); such internal ventilation might be 
associated with internal pressurization, as has been described for S. alterniflora (Hwang & 
Morris, 1991). Variations in canopy height of a dominant Spartina species can influence 
ecological functions and the structure of plant and animal communities in a marsh (Seliskar 
et al. 2002). 
As we have reported previously, Spartina biomass accumulation depends also on abiotic 
environmental factors. In warmer locations at lower latitudes, cordgrasses lack a dormant 
period, sustaining high biomass accumulation rates. For example, created marshes of S. 
maritima in the Odiel Marshes (Southwest Iberian Peninsula) develop faster (within 2-4 years 
with maximum net aerial primary productivity of ca. 600 g DW m-2 yr-1 following Castillo et 
al., 2008a) than North American marshes of S. alterniflora (Craft et al., 1999, 2002, 2003; 
Edwards & Mills, 2005), which seems to be related to warmer winters in Iberian salt 
marshes. Thus, S. alterniflora productivity decreases with latitude and air temperature along 
the western Atlantic coast of North America (Kirwan et al., 2009). Other climatic factors such 
as rainfall that determinates erosion, salinity and flooding may also limit cordgrasses 
biomass accumulation (Gonzalez Trilla et al., 2009). Experimental results in the western 
Atlantic coast indicated that modest daytime warming increased total above-ground 
biomass for S. alterniflora, but not for S. patens. Warming also increased maximum stem 
heights of S. alterniflora and S. patens (ca. 8%). In addition, drought markedly increased the 
total biomass of S. alterniflora and the live biomass of S. patens, perhaps by alleviating 
waterlogging of sediments (Charles & Dukes, 2009). On the other hand, Spartina biomass 
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also depends on nutrient availability, especially nitrogen, as it has been reported for S. 
alterniflora (Darby & Turner, 2008a; McFarlin et al., 2008). 
Biotic direct and indirect interactions also control biomass accumulation of Spartina 
populations. Thus, interspecific competition between two cordgrasses may limit their 
biomasses. Following the general theory of salt marsh zonation (sensu Pennings & 
Callaway, 1992 and Pennings et al., 2005): competitive dominants colonize higher elevation 
in the tidal frame displacing competitive subordinates to more stressful environments with 
long submergence periods or higher salinities. For example, invasive cordgrass such as S. 

alterniflora, S. densiflora and S. patens may displace indigenous cordgrasses (SanLeon et al., 
1999; Chen et al., 2004; Castillo et al., 2008b). The outcome of competitive interactions 
changes depending on the abiotic environment. For example, S. densiflora invading 
European salt marshes displaces the native S. maritima at middle and high marshes but it 
seems to be displaced by small cordgrass at low salt marshes (Castillo et al., 2008b). In this 
sense, it has been described that the invasion of S. densiflora at North American salt marshes 
is limited by competition with native species (Kittelson & Boyd, 1997) and that S. patens 
competitively excludes S. alterniflora and forbs at New England salt marshes (Ewanchuk & 
Bertness, 2004).  
Cordgrass biomass is also affected by competition with other coastal plants as reported 
along the North-eastern coast of the United States where the reed Phragmites australis Cav. is 
invading high marshes reducing local biodiversity with S. alterniflora remaining on the 
seaward edge of marshes where porewater salinities are highest (Silliman & Bertness, 2004). 
To the South, in Louisiana, the expansion northward of the tree Avicennia germinans (black 
mangrove) driven by global warming is replacing S. alterniflora marshes by mangroves 
(Perry & Mendelssohn, 2009). 
Spartina biomass can be also influenced by interactions with marsh fauna. For example, 
deposit-feeding fiddler crabs (Uca sp.) increase S. alterniflora biomass accumulation growing 
on sandy sediment by enhancing nutrient deposition (Holdredge et al., 2010) and grazing by 
small grazers may carry out a top-down control on Spartina biomass dynamic (Sala et al., 
2008; Tyrrell et al., 2008). 
Above-ground biomass of cordgrasses may collapse very fast as a result of die-back 
processes related with long flooding periods and sediment anoxia, drought events or 
nutrient exhaustion (Webb et al., 1995; Castillo et al., 2000; McKee et al., 2004; Ogburn & 
Alber, 2006; Li et al., 2009). For example, S. densiflora invading populations in European salt 
marshes behave as perennial at middle and high marshes but they are biannual at low 
marshes. Biannual populations are composed of small tussocks that produce seeds and die, 
so populations disappear suddenly after two years (Castillo & Figueroa, 2007). Spartina 
shoots are semelparous (they die shortly after their first sexual reproduction event) and their 
mean shoot life span is about 2 years for species such as S. densiflora (Vicari et al., 2002; 
Nieva et al., 2005) and S. maritima (Cooper, 1993; Castellanos et al., 1998). In this sense, some 
studies predicted that fluctuating environments such as coastal marshes would promote 
semelparity (Bell, 1980; Goodman, 1984).  
On the other hand, cordgrass biomass accumulation is affected negatively, even in the long 
term, by anthropogenic impacts such as oil spills and erosion (Culbertson et al., 2008), 
however biomass production may be stimulated by pollutants such as saline oil (Gomes 
Neto & Costa, 2009). 
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Spartina 
Species 

Growth 
form 

AGB 
(g DW m-2) 

BGB 
(g DW m-2) 

Location Sampling 
method 

Source 

S. 
alterniflora 

Guerilla 469  Louisiana, USA 50 cm 
quadrants 

Hopkinson et 
al., 1978 

  137 - Oak Island, USA 24 cm long x 
26 cm Ø 

cores 

Ferrell et al., 
1984 

  400-1200 - North Carolina 
coast, USA 

50 cm 
quadrants 

Cornell et al., 
2007 

  100-1100 - Great 
Sippewissett, 

Massachusetts, 
USA 

20 cm 
quadrants 

Culbertson et 
al., 2008 

  - 150-1200 Louisiana coast, 
USA 

50 cm 
quadrants 

30 cm long x 
11 cm Ø 

cores 

Darby & 
Turner 2008a 

  100-900 300-2300 Louisiana coast, 
USA 

50 cm 
quadrants 

30 cm long x 
11 cm Ø 

cores 

Darby & 
Turner 2008b 

  715-3477 - Yangtze River 
Estuary, China 

25 cm 
quadrants 

Li & Zhang 
2008 

  150 - Georgia coast, 
USA 

50 x 25 cm 
plots 

McFarlin et al., 
2008 

  450-950 - Narragansett 
Bay, USA 

10 cm 
quadrants 

Sala et al., 2008 

  100-1400 - Wells National 
Estuarine 
Research 

Reserve, Maine, 
USA 

Allometric 
estimation 

Tyrrel et al., 
2008 

  1350 - Yangtze River 
estuary, China 

50 cm 
quadrants 

Wang et al., 
2008 

  400 - Plum Island 
Estuary, 

Massachusetts, 
USA 

20 cm 
quadrants 

Charles & 
Dukes, 2009 

  1400 - Altamaha River 
Mouth, Georgia, 

USA 

50 cm 
quadrants 

Krull & Craft, 
2009 

  - 6500 Patuxent River, 
Maryland, USA

20 cm long x 
16 cm Ø 

cores 

Michel et al., 
2009 

  200 - Plum Island 
Sound, 

Massachusetts, 
USA 

10 cm 
quadrants 

Buchsbaum et 
al., 2009 
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  200-800 - Bahía Blanca 
Estuary, 

Argentina 

Allometric 
estimation 

Gonzalez 
Trilla et al., 

2009 
  3700 - Yangtze River 

Delta, China 
40 cm 

quadrants 
Li & Yang, 

2009 
  250-700 - Yangtze River 

Estuary, China 
50 cm 

quadrants 
Wang et al., 

2009 
  700-768  Altamaha River, 

Georgia, USA 
50 cm 

quadrants 
White & 

Albert, 2009 
  70-600 80-450 Jiangsu 

coastland, China
10 cm 

quadrants 
30 cm deep 

digging 

Zhou et al., 
2009a 

  2000 4500 Yancheng 
Natural Reserve, 

China 

50 cm 
quadrants 

30 cm deep 
digging 

Zhou et al., 
2009b 

  900 - Wellfleet, 
Massachusetts, 

USA 

30 cm 
quadrants 

Holdredge et 
al., 2010 

S. anglica Guerilla 320-1290 - Ramalhete 
marsh, England

16-19 cm Ø Neumeier & 
Amos 2006 

S. bakeri Phalanx 773 - Merritt Island, 
Florida, USA 

50 cm 
quadrants 

Schmalzer et 
al., 1991 

  429 - Merritt Island, 
Florida, USA 

33 cm 
quadrants 

Chynoweth, 
L.A. 1975 

S. 
cynusuroides 

Guerilla 762-1242 - Georgia, USA  Odum & 
Fanning, 1973 

  394 - Louisiana, USA 100 cm  
quadrants 

Hopkinson et 
al., 1978 

  840-1080  Essex, England 50 cm 
quadrants 

Potter et al., 
1995 

  - 9400 Patuxent River, 
Maryland, USA

20 cm long x 
16 cm Ø 

cores 

Michel et al., 
2009 

  236-832 - Altamaha River, 
Georgia, USA 

50 cm 
quadrants 

White & 
Albert, 2009 

S. densiflora Phalanx 400- 15000 1000-4500 Odiel Marshes, 
SW Iberian 
Peninsula 

15 x 10 cm 
plots 

20 cm long x 
5.5 cm Ø 

cores 

Nieva et al., 
2001a 

  475-725 - Otamendi 
Natural Reserve, 

Argentina 

10 cm 
quadrants 

Vicari et al., 
2002 

  3800-30000 - The Tijuana 
River National 

Estuarine 
Research 
Reserve, 

California, USA

50 cm 
quadrants 

Moseman-
Valtierra et al., 

2009 
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S. patens Phalanx 900 - Louisiana, USA 56 cm Ø Hopkinson et 
al., 1978 

  400 - Plum Island 
Estuary, 

Massachussets, 
USA 

20 cm 
quadrants 

Charles & 
Dukes, 2009 

  100-120 - Plum Island 
Sound, 

Massachussets, 
USA 

10 cm 
quadrants 

Buchsbaum et 
al., 2009 

S. maritima Guerilla 920-930 - Ramalhete 
marsh, England

16-19 cm Ø Neumeier & 
Amos 2006 

  672-1427 1190-8694 Odiel Marshes, 
SW Iberian 
Peninsula 

20 cm 
quadrants 

Castillo et al., 
2008a 

  193-486 (T) 
1063-4210 (M)

527-7189 (T)
850-3608 (M)

Tagus (T) and 
Mondego (M) 

estuary, Portugal

30 cm 
quadrants 

Sousa et al., 
2008 

  209-490 1510-4268 Tagus Estuary, 
Portugal 

30 cm 
quadrants 

Caçador et al., 
2009 

  1085-1313 - Mira River, 
Portugal 

20 cm 
quadrants 

Castro et al., 
2009 

S. spartinae Phalanx 207-513 - Texas, USA 50 cm 
quadrants 

McAtee et al., 
1979 

Table 1. Growth-form (‘guerrilla’ or ‘phalanx’ after Lovett Doust & Lovett Doust (1982)) and 
mean above- and below-ground biomass (AGB and BGB, respectively; in g DW m-2) studied 
location, applied sampling method and source for some cordgrasses species (Spartina genus) 
colonizing coastal marshes. 

 

 
 

Fig. 3. Clump of the hybrid Spartina densiflora x maritima surrounded by S. densiflora and 
Sarcocornia fruticosa in Guadiana Marshes (Southwest Iberian Peninsula). 
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4. Subterranean biomass of cordgrasses 

The knowledge of environmental factors determining BGB of cordgrasses is very important 
for salt marsh conservation and management, as it is a critical factor regulating ecosystem 
functions. Thus, it seems that it is the plant's belowground accumulation of organic, rather 
than inorganic, matter that governs the maintenance of mature salt marsh ecosystems in the 
vertical plane (Turner et al., 2004). 
Spartina species usually accumulate 2-3 times much more subterranean than aerial biomass. 
Aerial : the subterranean biomass quotient of cordgrasses is usually lower than 1 (ca. 0.5) 
(Pont et al., 2002; Windham et al., 2003; Castillo et al., 2008a; Darby & Turner 2008b). Below-
ground biomass in cordgrasses carries out very important and diverse functions such as 
storing of resources in its abundant rhizome system (Suzuki & Stuefer, 1999), fixing the 
plant to sediments in a very dynamic environment subjected to frequent and intense 
mechanical impacts (grazing, waves and currents) or exploring the sediments for nutrient 
uptake. In this sense, competition for nutrients has been identified as a relevant factor 
organizing salt marsh plant zonation (Brewer, 2003). 
As in the case of aerial biomass, the subterranean biomass of cordgrasses varies markedly 
between and within species. S. densiflora accumulates ca. 1000-1600 g DW m-2 at low 
marshes, and ca. 4500-6500 g DW m-2 at middle, high and brackish marshes in the SW 
Iberian Peninsula (Nieva et al., 2001a; Castillo et al., 2008b). Below-ground biomass of S. 
versicolor is ca. 3500 g DW m-2 at brackish marshes in the SW Iberian Peninsula (non-
published data) (Table 1). 
In the Atlantic Coast of North America, S. alterniflora growing on sandy sediments 
accumulates ca. 450 g DW m-2 (Holdredge et al., 2010) and ca. 6500 g DW m-2 in fine 
sediments (Michel et al., 2009). In Louisiana salt marshes, Darby & Turner, (2008a,b) 
reported a below-ground biomass for S. alterniflora between 150 and 2300 g DW m-2. 
Subterranean biomass production of S. alterniflora in Louisiana salt marshes is about 440 g 
DW m-2 yr-1 (Perry & Mendelssohn, 2009) and ca. 4500 g DW m-2 in invaded Chinese salt 
marshes (Zhou et al., 2009b). S. cynosuroides accumulates between 760 and 1240 g DW m-2 in 
Georgia and Louisiana marshes (Odum & Fanning, 1973; Hopkinson et al., 1978) and  ca. 
9400 g DW m-2 in high marshes in Maryland, USA (Michel et al., 2009). S. maritima 
accumulates in the sediments between 400 and 8700 g DW m-2 at low salt marshes that it 
usually colonizes (Castellanos et al., 1994; Figueroa et al., 2003; Castillo et al., 2008a; Sousa et 
al., 2008; Caçador et al., 2009). 
Spartina below-ground biomass accumulation seemed to be favored by sediment accretion 
(Castillo et al., 2008a) and cordgrass subterranean biomass influences soil elevation rise by 
subsurface expansion, organic matter addition and sediment deposit stabilization (Ford et 
al., 1999; Darby & Turner, 2008a). Sedimentation may also increase the aeration of 
sediments, favoring root development (Castillo et al., 2008a). Thus, well-drained soils led to 
more-uniform vertical distribution of BGB for S. alterniflora and S. patens (Padgett et al., 1998; 
Saunders et al., 2006). 
However, fertilization with nitrogen and phosphorous usually increases Spartina above-
ground biomass, the addition of these nutrient seems to reduce root and rhizome biomass 
accumulation (Darby & Turner, 2008a). In view of this result and the importance of 
subterranean cordgrass biomass for marsh functioning, eutrophication is an important 
threat to salt marsh conservation. 
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Fig. 4. Spartina maritima prairie, a cordgrass with “guerilla” growth from, starting to be 
outcompeted by Sarcocornia perennis supspecies perennis in Odiel Marshes (Southwest 
Iberian Peninsula). 

5. Cordgrass biomass and ecosystem functioning 

Salt marshes fulfill many functions, such as biodiversity support, water quality 
improvement, or carbon sequestration and they are floristically simple, often dominated by 
one or a few herbaceous species (Adam, 1990). In this context, cordgrasses are especially 
important since they are dominant species in many coastal marshes all around the world. 
Cordgrasses are commonly used for salt marsh creation, restoration and protection (Bakker 
et al., 2002; Fang et al., 2004; Konisky et al., 2006; An et al., 2007; Castillo et al., 2008a; 
Castillo & Figueroa, 2008). In addition, cordgrasses are also used as biotools for 
phytoremediation (Czako et al., 2006). Primary productivity and biomass accumulation are 
important indicators of success for salt marsh creation and restoration projects (Edwards & 
Mills, 2005). Although plant biomass accumulation is a key factor in the functioning of 
Spartina dominated marshes, other ecological attributes, such as species richness and 
distribution, benthic infauna density or soil nutrient reservoirs, may develop at different 
rates than cordgrass biomass in restored wetlands (Craft et al., 1999; Onaindia et al., 2001; 
Craft et al., 2003; Edwards & Proffitt, 2003).  
Below- and above-ground biomasses are key functional traits that play very important roles 
in the ecological behavior of cordgrasses. Thus, Spartina biomass influences on the carbon 
content of marsh sediments (Tanner et al., 2010), the marsh carbon stock (Wieski et al., 2010), 
marsh methane emissions (Cheng et al., 2010), salt marsh microbial community (First & 
Hollibaugh, 2010; Lyons et al., 2010), grazing (Burlakova et al., 2009), sediment dynamic 
(Neumeier & Ciavola, 2004; Salgueiro & Cacador, 2007; Li & Yang, 2009), etc.  
Cordgrass biomass affects the emergent of the habitat structure, facilitating succession 
development by providing a base for habitat development (Castellanos et al., 1994; Figueroa 
et al., 2003; Proffitt et al., 2005; Castillo et al., 2008b). For example, S. maritima in European 
low salt marshes, S. alterniflora in western Atlantic low salt marshes and S. foliosa in 
Californian low salt marshes are important pioneers and ecosystem autogenic engineers 
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(Castellanos et al., 1994; Castillo et al., 2000; Proffitt et al., 2005). Thus, sediment deposition 
develops with the establishment of these foundation cordgrasses at low marshes, which 
yields abiotic environmental changes such as decreasing anoxia and flooding period 
(Castellanos et al., 1994; Craft et al., 2003; Bouma et al., 2005; Castillo et al., 2008a; Castillo et 
al., 2008b). 
 

 

Fig. 5. Clump of the hybrid of Spartina foliosa x alterniflora colonizing a mudflat, where the 
native Spartina foliosa is not able to survive, in San Francisco Bay (California). 

On the other hand, biomass production by cordgrasses plays a very important role in the 
nutrient cycle of coastal marshes. Spartina species add organic matter to the sediments that 
they colonize (Craft et al., 2002; Lillebo et al., 2006) and even to adjacent bare sediments by 
necromass exportation in the form of dead leaves and shoots (Castillo et al., 2008a). 
Although cordgrasses are essential for healthy marsh functioning in their native distribution 
ranges, some of them are very aggressive when introduce to exotic environments. For 
example, S. alterniflora invades salt marshes in China, Europe and the Pacific coast of North 
America from the Atlantic coast of America. S. anglica is colonizing also Chinese and North 
American salt marshes coming from European marshes. S. densiflora is invading the Pacific 
coast of Chile and North America, African and European marshes from the Atlantic coast of 
South America (Bortolus, 2006) where it is a salt-marsh dominant of wide latitudinal range 
(Isacch et al., 2006). Once introduced by anthropogenic activities, exotic cordgrasses are able 
to invade contrasted marsh habitats due to their high capacity to colonize as pioneer species 
new formed environments and disturbed locations, showing a wide tolerance to abiotic 
stress factors such as salinity, anoxia or long flooding periods (Nieva et al., 1999, 2003; 
Castillo et al., 2005a). Moreover, Spartina species with “phalanx” growth develop very dense 
tussocks with tall canopy and high above- and bellow-ground biomass, avoiding the 
colonization of native species, stopping the development of ecological succession during 
very long periods and representing strong competitors (Figueroa & Castellanos, 1988). In 
addition, some invasive cordgrasses usually show an abundant seed production and long 
distance dispersion by tidal water and currents (Kittelson & Boyd, 1997; Nieva et al., 2001a; 
Castillo et al., 2003; Nieva et al., 2005; for S. densiflora in European and North American salt 
marshes). Alien Spartina usually modify the abiotic environment during their invasion faster 
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than native species. For example, the introduced S. alterniflora in Chinese salt marshes is 
significantly more efficient in trapping suspended sediment than the native Scirpus and 
Phragmites species (Li & Yang, 2009). 

6. Conclusions 

Cordgrasses usually are dominant species in salt marshes all around the world and they 
play very important roles in ecosystem functioning. Cordgrass biomass accumulation below 
and above the sediment surface determines energy and material flows in salt marshes. 
Most cordgrasses show markedly spatial variations in their biomass accumulation pattern, 
depending on biotic and abiotic environmental factors and on their growth form (“guerrilla” 
versus “phalanx”, and “short” versus “tall” form). Thus, specific studies to evaluate the 
ecological roles of cordgrasses should be carried out for each specific location and for each 
taxon, analyzing both below- and above-ground biomass production and accumulation.  In 
this context, it is very important to choose an appropriate sampling method adapted to our 
own goals and that would allow comparisons with previous studies. 
Future research is needed specially to improve our knowledge about cordgrass below-
ground biomass accumulation, dynamic and functions. The evaluation of the salt marsh 
ecosystem will be incomplete if based exclusively on what is happening aboveground, or as 
though what happens aboveground is a satisfactory indicator of what is driving changes 
belowground. Monitoring programs, for example, could be improved if belowground soil 
processes were included, rather than excluded, as happens frequently. Furthermore, it may 
be that because of the dominance of the changes in biomass pools belowground compared 
to aboveground, what happens belowground may be more influential to the long-term 
maintenance of the salt marsh than are changes in the aboveground components. 
 
 

 

 

Fig. 6. Salt marsh invaded by the South American neophyte Spartina densiflora in Humboldt 
Bay, California. 
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Future studies should also analyze specifically the development and functions carried out 
by recently formed Spartina hybrids between native and invasive species invading salt 
marshes in San Francisco Bay and the South-west Iberian Peninsula. The comparision of the 
biomass dynamic for these hybrids with their parental species will help us to clarify their 
ecological roles and to prevent serious environmental impacts. 
It is also important to study how invasive cordgrasses respond to intra-specific competition 
with native species by changing their biomass allocation, accumulation and production. In 
addition, finding and selecting ecotypes for native cordgrasses with different biomass 
accumulation patterns would be very usefull to improve our technology for salt marsh 
restoration projects. 
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