www.delta.com.tw/industrialautomation

ASIA

Delta Electronics, Inc.

Taoyuan1 31-1, Xingbang Road, Guishan Industrial Zone, Taoyuan County 33370, Taiwan, R.O.C. TEL: 886-3-362-6301 / FAX: 886-3-362-7267

Delta Electronics (Jiang Su) Ltd.

Wujiang Plant3
1688 Jiangxing East Road,
Wujiang Economy Development Zone,
Wujiang City, Jiang Su Province,
People's Republic of China (Post code: 215200)
TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Electronics (Japan), Inc.

Tokyo Office
Delta Shibadaimon Building, 2-1-14 Shibadaimon,
Minato-Ku, Tokyo, 105-0012, Japan
TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc.

Donghwa B/D 3F, 235-6, Nonhyun-dong, Kangnam-gu, Seoul 135-010, Korea TEL: 82-2-515-5303/5 / FAX: 82-2-515-5302

Delta Electronics (Singapore) Pte. Ltd.

8 Kaki Bukit Road 2, #04-18 Ruby Warehouse Complex, Singapore 417841 TEL: 65-747-5155 / FAX: 65-744-9228

Delta Energy Systems (India) Pvt. Ltd.

Plot No. 27 & 31, Sector-34, EHTP, Gurgaon-122001 Haryana, India TEL: 91-124-4169040 / FAX: 91-124-4036045

AMERICA

Delta Products Corporation (USA)

Raleigh Office P.O. Box 12173,5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3813 / FAX: 1-919-767-3939

EUROPE

Deltronics (The Netherlands) B.V.

Eindhoven Office
De Witbogt 15, 5652 AG Eindhoven, The Netherlands
TEL: 31-40-2592850 / FAX: 31-40-2592851

*We reserve the right to change the information in this manual without prior notice

0

n

ati

0

5

2

T

rogramming

Application Manual

Programming

Revision III

www.delta.com.tw/industrialautomation

DVP-PLC Application Manual [Programming]

Table of Contents

Chapter 1 Basi	ic Principles of PLC Ladder Diagram	
Foreword: Bad	ckground and Functions of PLC1-	-1
1.1 The Worki	ng Principles of Ladder Diagram1-	-1
1.2 Difference	es Between Traditional Ladder Diagram and PLC Ladder Diagram 1-	·2
1.3 Edition Ex	planation of Ladder Diagram1-	-3
1.4 How to Ed	lit Ladder Diagram1-	-8
1.5 The Conve	ersion of PLC Command and Each Diagram Structure1-	·12
1.6 Simplified	Ladder Diagram1-	-15
1.7 Basic Prog	gram Designing Examples1-	-17
Chanter 2 Fund	ctions of Devices in DVP-PLC	
•	s in DVP-PLC2-	-1
	onstants [K] / [H]2-	
	g and Functions of External Input/Output Contacts [X] / [Y]2-	
2.4 Numbering	g and Functions of Auxiliary Relays [M]2-	-11
	g and Functions of Step Relays [S]2-	
2.6 Numbering	g and Functions of Timers [T]2-	-12
	g and Functions of Counters [C]2-	
	g and Functions of Registers [D], [E], [F]2-	
	register [D]	
2.8.2 Index	Register [E], [F]	-29
2.8.3 Functi	ions and Features of File Registers2-	-30
2.9 Pointer [N], Pointer [P], Interruption Pointer [I]2-	-30
2.10 Special A	Auxiliary Relays and Special Data Registers2-	-33
2.11 Functions	s of Special Auxiliary Relays and Special Registers2-	-69
2.12 Error Cod	des 2-	·125
Chapter 3 Basi	ic Instructions	
•	ructions and Step Ladder Instructions 3-	-1
	ons on Basic Instructions 3-	

Chapter 4 Step Ladder Instructions	
4.1 Step Ladder Instructions [STL], [RET]	4-1
4.2 Sequential Function Chart (SFC)	4-2
4.3 How does a Step Ladder Instruction Work?	4-3
4.4 Things to Note for Designing a Step Ladder Prog	yram4-7
4.5 Types of Sequences	4-9
4.6 IST Instruction	4-17
Chapter 5 Categories & Use of Application In	structions
5.1 List of Instructions	5-1
5.2 Composition of Application Instruction	5-6
5.3 Handling of Numeric Values	5-11
5.4 E, F Index Register Modification	5-14
5.5 Instruction Index	5-16
Chapter 6 Application Instructions API 00-49	
• (API00~09) Loop Control	6-1
• (API10~19) Transmission Comparison	6-18
• (API20~29) Four Arithmetic Operation	6-32
• (API30~39) Rotation & Displacement	6-46
• (API40~49) Data Processing	6-57
Chapter 7 Application Instructions API 50-99	
• (API50~59) High Speed Processing	7-1
• (API60~69) Handy Instructions	7-39
• (API70~79) Display of External Settings	7-59
• (API80~88) Serial I/O	
Chapter 8 Application Instructions API 100-14	49
• (API100~109) Communication	8-1
• (API110~119) Floating Point Operation	8-23
• (API120~129) Floating Point Operation	8-31
• (API130~139) Floating Point Operatio	8-43
• (API140~149) Others	8-55
Chapter 9 Application Instructions API 150-19	99
• (API150~154) Others	9-1
■ (API155~159) Position Control	9-14

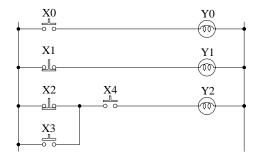
•	(API160	0~169) Real Time Calendar	9-39
•	(API170	0~171)Gray Code Conversion	9-49
•	(API172	$2\sim$ 175) Floating Point Operation	9-51
•	(API180	0~190) Matrix	9-59
•	(API191	1~199) Positioning Instruction	9-76
Chapt	er 10 App	olication Instructions API 215-246	
•	(API202	2~203) Others	10-1
•	(API215	$5\sim$ 223) Contact Type Logic Operation Instruction	10-7
•	(API224	4~246) Contact Type Compare Instruction	10-10

Foreword: Background and Functions of PLC

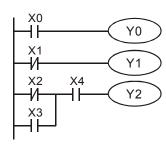
PLC (Programmable Logic Controller) is an electronic device, previously called "sequence controller". In 1978, NEMA (National Electrical Manufacture Association) in the United States officially named it as "programmable logic controller". PLC reads the status of the external input devices, e.g. keypad, sensor, switch and pulses, and execute by the microprocessor logic, sequential, timing, counting and arithmetic operations according the status of the input signals as well as the pre-written program stored in the PLC. The generated output signals are sent to output devices as the switch of a relay, electromagnetic valve, motor drive, control of a machine or operation of a procedure for the purpose of machine automation or processing procedure. The peripheral devices (e.g. personal computer/handheld programming panel) can easily edit or modify the program and monitor the device and conduct on-site program maintenance and adjustment. The widely used language in designing a PLC program is the ladder diagram.

With the development of the electronic technology and wider applications of PLC in the industry, for example in position control and the network function of PLC, the input/output signals of PLC include DI (digital input), AI (analog input), PI (pulse input), NI (numeric input), DO (digital output), AO (analog output), and PO (pulse output). Therefore, PLC will still stand important in the industrial automation field in the future.

1.1 The Working Principles of Ladder Diagram


The ladder diagram was a diagram language for automation developed in the WWII period, which is the oldest and most widely adopted language in automation. In the initial stage, there were only A (normally open) contact, B (normally closed) contact, output coil, timer and counter...the sort of basic devices on the ladder diagram (see the power panel that is still used today). After the invention of PLC, the devices displayable on the ladder diagram are added with differential contact, latched coil and the application commands which were not in a traditional power panel, for example the addition, subtraction, multiplication and division operations.

The working principles of the traditional ladder diagram and PLC ladder diagram are basically the same. The only difference is that the symbols on the traditional ladder diagram are more similar to its original form, and PLC ladder diagram adopts the symbols that are easy to recognize and shown on computer or data sheets. In terms of the logic of the ladder diagram, there are combination logic and sequential logic.


1. Combination Logic

Examples of traditional ladder diagram and PLC ladder diagram for combination logic:

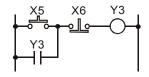
Traditional Ladder Diagram

PLC Ladder Diagram

Row 1: Using a normally open (NO) switch X0 ("A" switch or "A" contact). When X0 is not pressed, the contact will be open loop (Off), so Y0 will be Off. When X0 is pressed, the contact will be On, so Y0 will be On.

Row 2: Using a normally closed (NC) switch X1 ("B" switch or "B" contact). When X1 is not pressed, the contact will be On, so Y1 will be On. When X1 is pressed, the contact will be open loop (Off), so Y1 will be Off.

Row 3: The combination logic of more than one input devices. Output Y2 will be On when X2 is not pressed or X3 and X4 are pressed.


2. Sequential Logic

Sequential logic is a circuit with "draw back" structure, i.e. the output result of the circuit will be drawn back as an input criterion. Therefore, under the same input criteria, different previous status or action sequence will follow by different output results.

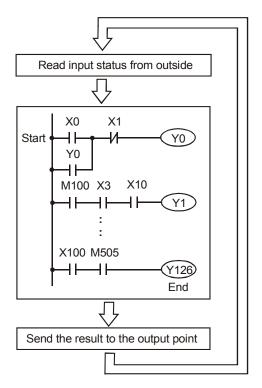
Examples of traditional ladder diagram and PLC ladder diagram for sequential logic:

Traditional Ladder Diagram

PLC Ladder Diagram

When the circuit is first connected to the power, though X6 is On, X5 is Off, so Y3 will be Off. After X5 is pressed, Y3 will be On. Once Y3 is On, even X5 is released (Off), Y3 can still keep its action because of the draw back (i.e. the self-retained circuit). The actions are illustrated in the table below.

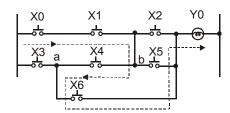
Device status Action sequence	X5	X6	Y3
1	No action	No action	Off
2	Action	No action	On
3	No action	No action	On
4	No action	Action	Off
5	No action	No action	Off

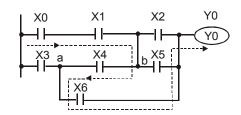

From the table above, we can see that in different sequence, the same input status can result in different output results. For example, switch X5 and X6 of action sequence 1 and 3 do not act, but Y3 is Off in sequence 1 and On in sequence 3. Y3 output status will then be drawn back as input (the so-called "draw back"), making the circuit being able to perform sequential control, which is the main feature of the ladder diagram circuit. Here we only explain contact A, contact B and the output coil. Other devices are applicable to the same method. See Chapter 3 "Basic instructions" for more details.

1.2 Differences Between Traditional Ladder Diagram and PLC Ladder Diagram

Though the principles of traditional ladder diagram and PLC ladder diagram are the same, in fact, PLC adopts microcomputer to simulate the motions of the traditional ladder diagram, i.e. scan-check status of all the input devices and output coil and calculate to generate the same output results as those from the traditional ladder diagram based on the logics of the ladder diagram. Due to that there is only one microcomputer, we can only check the program of the ladder diagram one by one and calculate the output results according to the program and the I/O status before the cyclic process of sending the results to the output interface \rightarrow re-reading of the input status \rightarrow calculation \rightarrow output. The time spent in the cyclic process is called the "scan time" and the time can be longer with the expansion of the program. The scan time can cause delay from the input detection to output response of the PLC. The longer the delay,

the bigger the error is to the control. The control may even be out of control. In this case, you have to choose a PLC with faster scan speed. Therefore, the scan speed is an important specification requirement in a PLC. Owing to the advancement in microcomputer and ASIC (IC for special purpose), there has been great improvement in the scan speed of PLC nowadays. See the figure below for the scan of the PLC ladder diagram program.


The output result is calculated based on the ladder diagram. (The result has not yet sent to the external output point, but the internal device will perform an immediate output.)


Executing in cycles

Besides the difference in the scan time, PLC ladder and traditional ladder diagram also differ in "reverse current". For example, in the traditional ladder diagram illustrated below, when X0, X1, X4 and X6 are On and others are Off, Y0 output on the circuit will be On as the dotted line goes. However, the PLC ladder diagram program is scanned from up to down and left to right. Under the same input circumstances, the PLC ladder diagram editing tool WPLSoft will be able to detect the errors occurring in the ladder diagram.

Reverse current of traditional ladder diagram

Reverse current of PLC ladder diagram

Error detected in the third row

1.3 How to Edit Ladder Diagram

Ladder diagram is a diagram language frequently applied in automation. The ladder diagram is composed of the symbols of electric control circuit. The completion of the ladder diagram by the ladder diagram editor is the completion of the PLC program design. The control flow illustrated by diagram makes the flow more straightforward and acceptable for the technicians of who are familiar with the electric control circuit. Many basic symbols and actions in

the ladder diagram come from the frequently-seen electromechanical devices, e.g. buttons, switches, relay, timer and counter, etc. in the traditional power panel for automation control.

Internal devices in the PLC: The types and quantity of the devices in the PLC vary in different brand names. Though the internal devices in the PLC adopts the names, e.g. transistor, coil, contact and so on, in the traditional electric control circuit, these physical devices do not actually exist inside the PLC. There are only the corresponding basic units (1 bit) inside the memory of the PLC. When the bit is "1", the coil will be On, and when the bit is "0", the coil will be Off. The normally open contact (NO or contact A) directly reads the value of the corresponding bit. The normally close contact (NC or contact B) reads the opposite state of the value of the corresponding bit. Many relays will occupy many bits. 8 bits equal a "byte". 2 bytes construct a "word" and 2 words combined is "double word". Byte, word or double words are used when many relays are processed (e.g. addition/subtraction, displacement) at the same time. The other two devices, timer and counter, in the PLC have coil, timer value and counter value and they have to process some values in byte, word or double word.

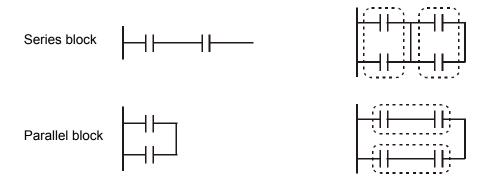
All kinds of internal devices in the value storage area in the PLC occupy their fixed amount of storage units. When you use these devices, you are actually read the contents stored in the form of bit, byte or word.

Introductions on the basic internal devices in the PLC (See Ch 2. Functions of Devices in DVP-PLC for more details.)

Device	Functions
	The input relay is an internal memory (storage) unit in the PLC corresponding to a external
	input point and is used for connecting to the external input switches and receiving external
	input signals. The input relay will be driven by the external input signals which make it "0" or
	"1". Program designing cannot modify the status of the relay, i.e. it cannot re-write the basic
	unit of a relay, nor can it force On/Off of the relay by HPP/WPLSoft. <u>SA/SX/SC/EH/EH2/SV</u>
	series MPU can simulate input relay X and force On/Off of the relay. But the status of the
Input relay	external input points will be updated and disabled, i.e. the external input signals will not be read
	into their corresponding memories inside PLC, but only the input points on the MPU. The input
	points on the extension modules will still operate normally. There are no limitations on the times
	of using contact A and contact B of the input relay. The input relays without corresponding input
	signals can only be left unused and cannot be used for other purposes.
	Device indication: X0, X1,X7, X10, X11, are indicated as X and numbered in octal
	form. The No. of input points are marked on MPU and extension modules.
	The output relay is an internal memory (storage) unit in the PLC corresponding to a external
	output point and is used for connecting to the external load. The output relay will be driven by
	the contact of an input relay, contacts of other internal devices and the contacts on itself. A
	normally open contact of the output relay is connected to the external load. Same as the input
Output relay	contacts, there are no limitations on the times of using other contacts of the output relay. The
	output relay without corresponding output signals can only be left unused and can be used as
	input relay if necessary.
	Device indication: Y0, Y1,Y7, Y10, Y11,are indicated as Y and numbered in octal
	form. The No. of output points are marked on MPU and extension modules.

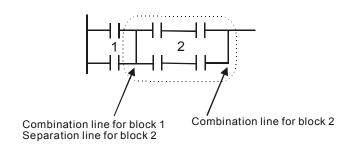
1	,
Internal relay	The internal relay does not have connection with the external. It is an auxiliary relay inside the PLC with the functions same as those of the auxiliary (middle) relay in the electric control circuit. Every internal relay corresponds to a basic internal storage unit and can be driven by the contacts of the input relay, contacts of the output relay and the contacts of other internal devices. There are no limitations on the times of using the contacts of the internal relay and there will be no output from the internal relay, but from the output point. Device indication: M0, M1,, M4095 are indicated as M and numbered in decimal form.
Step	DVP series PLC offers a step-type control program input method. STL instruction controls the transfer of step S, which makes it easy for the writing of the control program. If you do not use any step program in the control program, step S can be used as a internal relay M as well as an alarm point. Device indication: S0, S1,S1023 are indicated as S and numbered in decimal form.
Timer	The timer is used for timing and has coil, contact and register in it. When the coil is On and the estimated time is reached, its contact will be enabled (contact A closed, contact B open). Every timer has its fixed timing period (unit: 1ms/10ms/100ms). Once the coil is Off, the contact iwlwl be disabled (contact A open, contact B closed) and the present value on the timer will become "0". Device indication: T0, T1,,T255 are indicated as T and numbered in decimal form. Different No. refers to different timing period.
Counter	The counter is used for counting. Before using the counter, you have to give the counter a set value (i.e. the number of pulses for counting). There are coil, contact and registers in the counter. When the coil goes from Off to On, the counter will regard it as an input of 1 pulse and the present value on the counter will plus "1". We offer 16-bit and 32-bit high-speed counters for our users. Device indication: C0, C1,,C255 are indicated as C and numbered in decimal form.
Data register	Data processing and value operations always occur when the PLC conducts all kinds of sequential control, timing and counting. The data register is used for storing the values or all kinds of parameters. Every register is able to store a word (16-bit binary value). Double words will occupy 2 adjacent data registers. Device indication: D0, D1,,D9,999 are indicated as D and numbered in decimal form.

File register	The file register is used for storing the data or all kinds of parameters when the data registers			
	required for processing the data and value operations are insufficient. Every file register is able			
	to store a 16-bit word. Double words will occupy 2 adjacent file registers. In SA/SX/SC series			
	MPU, there are 1,600 file registers. In EH/EH2/SV series MPU, there are 10,000 file registers.			
The register	There is not an actual device No. for a file register. The reading and writing of file registers			
	should be executed by instructions API 148 MEMR, API 149 MEMW, or through the peripheral			
	device HPP02 and WPLSoft.			
	□ Device indication: K0 ~ K9,999, numbered in decimal form.			
	E and F index registers are 16-bit data registers as other data registers. They can be read and			
Index register	written and can be used in word devices, bit devices or as a constant for index indication.			
	□ Device indication: E0 ~ E7, F0 ~ F7 are indicated as E and F and numbered in decimal			
	form.			

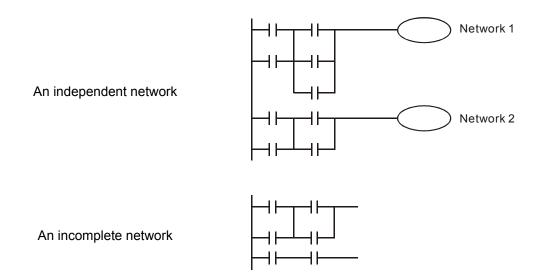

The structure of a ladder diagram:

Structure	Explanation	Instruction	Devices Used
⊢⊢	Normally open, contact A	LD	X, Y, M, S, T, C
 и 	Normally closed, contact B	LDI	X, Y, M, S, T, C
├	Normally open in series connection	AND	X, Y, M, S, T, C
	Normally closed in series connection	ANI	X, Y, M, S, T, C
	Normally open in parallel connection	OR	X, Y, M, S, T, C
	Normally closed in parallel connection	ORI	X, Y, M, S, T, C
	Rising-edge trigger switch	LDP	X, Y, M, S, T, C
├ - ↓ 	Falling-edge trigger switch		X, Y, M, S, T, C
	Rising-edge trigger in series connection	ANDP	X, Y, M, S, T, C
<u> </u>	Falling-edge trigger in series connection		X, Y, M, S, T, C
	Rising-edge trigger in parallel connection		X, Y, M, S, T, C
	Falling-edge trigger in parallel connection	ORF	X, Y, M, S, T, C
	Block in series connection	ANB	-
	Block in parallel connection	ORB	-

Structure	Explanation	Instruction	Devices Used
	Multiple output	MPS MRD MPP	-
——O	Coil driven output instruction	OUT	Y, M, S
├ ⟨s ⟩ ──	Step ladder	STL	S
	Basic instruction Application instruction	Application instructions	See Ch.3 for basic instructions (RST/SET and CNT/TMR) and Ch.5 ~ 10 for application instructions
_	Inverse logic	INV	-

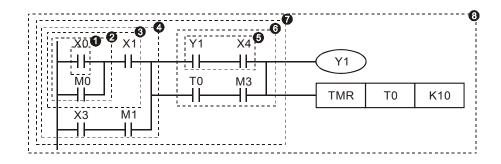

Block:

A block is a series or parallel operation composed of more than 2 devices. There are series block and parallel block.


Separation line and combination line:

The vertical line is used for separating the devices. For the devices on the left, the vertical line is a combination line, indicating that there are at least 2 rows of circuits on the left connected with the vertical line. For the devices on the right, the vertical line is a separation line, indicating that there are at least 2 rows of circuits interconnected on the right side of the vertical line).

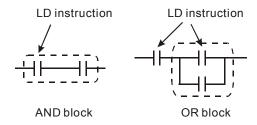
Network:


A complete block network is composed of devices and all kinds of blocks. The blocks or devices connectable by a vertical line or continuous line belong to the same network.

1.4 How to Edit a PLC Ladder Diagram

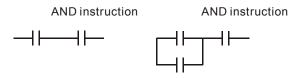
The editing of the program should start from the left power line and ends at the right power line, a row after another. The drawing of the right power line will be omitted if edited from WPLSoft. A row can have maximum 11 contacts on it. If 11 is not enough, you can continuously connect more devices and the continuous number will be generated automatically. The same input points can be used repeatedly. See the figure below:

The operation of the ladder diagram program is scanning from top left to bottom right. The coil and the operation frame of the application instruction belong to the output side in the program and are placed in the right if the ladder diagram. Take the figure below for example, we will step by step explain the process of a ladder diagram. The numbers in the black circles indicate the order.

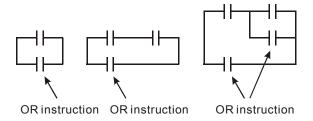

The order of the instructions:

1	LD	X0
2	OR	M0
3	AND	X1
4	LD	X3
	AND	M1

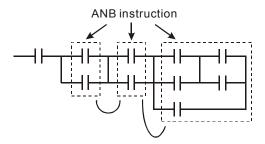
	ORB		
5	LD	Y1	
	AND	X4	
6	LD	T0	
	AND	M3	
	ORB		
7	ANB		
8	OUT	Y1	
	TMR	T0	K10


Explanations on the basic structures in the ladder diagram:

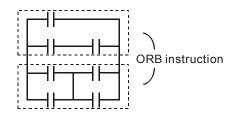
1. LD (LDI) instruction: Given in the start of a block.


The structure of LDP and LDF instructions are the same as that of LD instruction, and the two only differ in their actions. LDP and LDF instructions only act at the rising edge or falling edge when the contact is On, as shown in the figure below.

2. AND (ANI) instruction: A single device connects to another single device or a block in series


The structure of ANDP and ANDF instructions are the same. ANDP and ANDF instructions only act at the rising edge or falling edge.

3. OR (ORI) instruction: A single device connects to another single device or a block

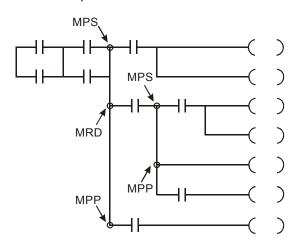


The structure of ORP and ORF instructions are the same. ORP and ORF instructions only act at the rising edge or falling edge.

4. ANB instruction: A block connects to a device or another block in series

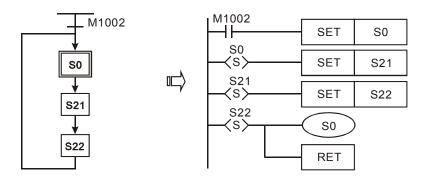
5. ORB instruction: A block connects to a device or another block in parallel

If the ANB and ORB operations are with several blocks, the operation should be performed from up to down or left to right, combining into a block or network.

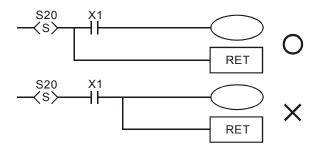

6. MPS, MRD, MPP instructions: Bifurcation point of multiple outputs, for generating many and diverse outputs.

MPS instruction is the start of the bifurcation point. The bifurcation point is the intersection of the horizontal line and vertical line. We will have to determine whether to give a contact memory instruction by the contact status of the same vertical line. Basically, every contact can be given a memory instruction, but considering the convenience of operating the PLC and the limitation on its capacity, some parts in the ladder diagram will be omitted during the conversion. We can determine the type of contact memory instruction by the structure of the ladder diagram. MPS is recognized as "¬" and the instruction can be given continuously for 8 times.

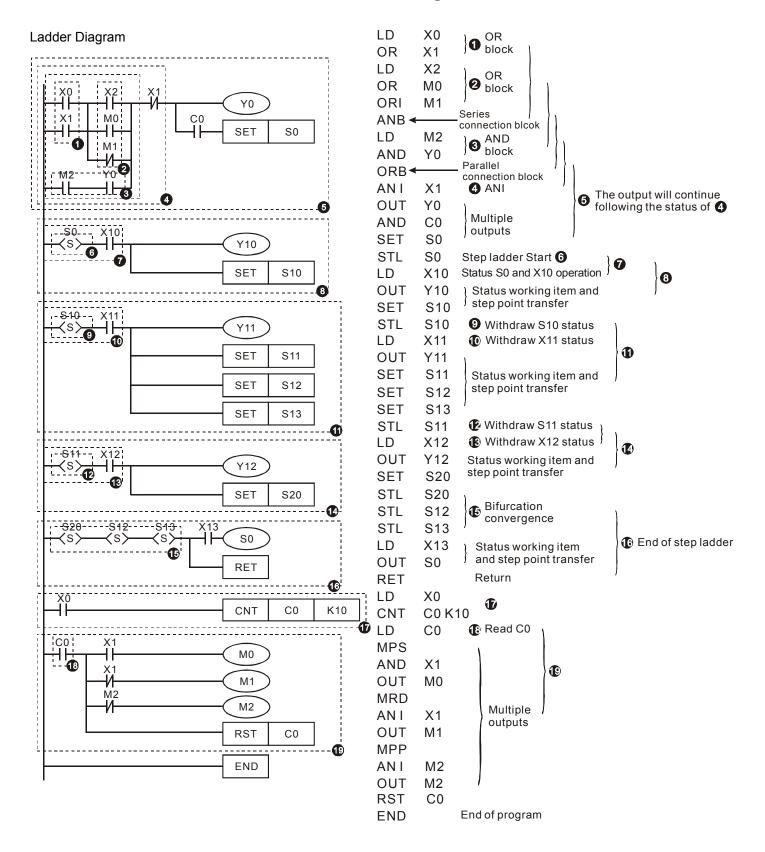
MRD instruction is used for reading the memory of the bifurcation point. Due to that the same vertical line is of the same logic status, in order to continue analyzing other ladder diagrams, we have to read the status of the original contact again. MRD is recognized as " \vdash ".


MPP instruction is used for reading the start status of the top bifurcation point and popping it out from the stack. Since MPP is the last item on the vertical line, the vertical line ends at this point.

MPP is recognized as "L". Using the method given above for the analysis cannot be wrong. However, sometimes the compiling program will ignore the same output status, as shown in the figure.


7. STL instruction: Used for designing the syntax of the sequential function chart (SFC).

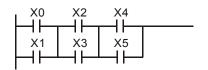
STL instruction allows the program designer a clearer and readable picture of the sequence of the program as when they draw a sequence chart. From the figure below, we can see clearly the sequence to be planned. When the step S moves to the next step, the original S will be "Off". Such a sequence can then be converted into a PLC ladder diagram and called "step ladder diagram".


8. RET instruction: Placed after the completed step ladder diagram.

RET also has be placed after STL instruction. See the example below.

See step ladder instructions [STL], [RET] in Ch. 4 for the structure of the ladder diagram.

1.5 The Conversion of PLC Command and Each Diagram Structure

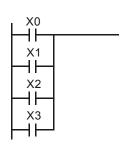


■ Fuzzy Syntax

The correct ladder diagram analysis and combination should be conducted from up to down and left to right. However, without adopting this principle, some instructions can make the same ladder diagram.

Example Program 1

See the ladder diagram below. There are 2 ways to indicate the ladder by instruction programs with the same result.



Ideal way		Less ideal way			
LD	X0		LD	X0	
OR	X1		OR	X1	
LD	X2		LD	X2	
OR	X3		OR	X3	
ANB			LD	X4	
LD	X4		OR	X5	
OR	X5		ANB		
ANB			ANB		

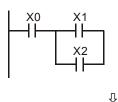
The two instruction programs will be converted into the same ladder diagram. The difference between the ideal one and less ideal one is the operation done by the MPU. For the ideal way, the combination is done block by block whereas the less idea way combines all the blocks combine with one another in the last step. Though the length of the program codes of the two ways are equal, the combination done in the last step (by ANB instruction, but ANB cannot be used continuously for more than 8 times) will have to store up the previous calculation results in advance. In our case, there are only two blocks combined and the MPU allows such kind of combination. However, once the number of blocks exceed the range that the MPU allows, problems will occur. Therefore, the best way is to execute the block combination instruction after a block is made, which will also make the logic sequence planned by the programmer more in order.

Example Program 2

See the ladder diagram below. There are 2 ways to indicate the ladder by instruction programs with the same result.

	Ideal way	L	ess ideal way
LD	X0	LD	X0
OR	X1	LD	X1
OR	X2	LD	X2
OR	X3	LD	X3
		ORB	
		ORB	
		ORB	

In this example, the program codes and the operation memory in the MPU increase in the less ideal way. Therefore, it is better that you edit the program following the defined sequence.


■ Incorrect Ladder Diagram

PLC processes the diagram program from up to down and left to right. Though we can use all kinds of ladder symbols to combine into various ladder diagrams, when we draw a ladder diagram, we will have to start the diagram from the left power line and end it at the right power line (In WPLSoft ladder diagram editing area, the right power line is omitted), from left to right horizontally, one row after another from up to down. See bellows for the frequently seen incorrect diagrams:

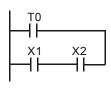
X	OR operation upward is not allowed.
Reverse flow	"Reverse flow" exists in the signal circuit from the beginning of input to output.
├ ★	The up-right corner should output first.
	Combining or editing should be done from the up-left to the bottom-right. The dotted-lined area should be moved up.
×	Parallel operation with empty device is not allowed.
	Empty device cannot do operations with other devices.
	No device in the middle block.
*	Devices and blocks in series should be horizontally aligned.
	Label P0 should be in the first row of a complete network.
	Blocks connected in series should be aligned with the upmost horizontal line.

1.6 Simplified Ladder Diagram

■ When a series block is connected to a parallel block in series, place the block in the front to omit ANB instruction.

X1 X0 X2

Ladder diagram complied into instruction


LD X0 LD X1 OR X2

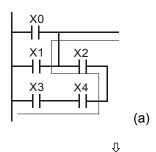
Ladder diagram complied into instruction

LD X1
OR X2
AND X0

■ When a single device is connected to a block in parallel, place the block on top to omit ORB instruction.

ANB

X1 X2 T0

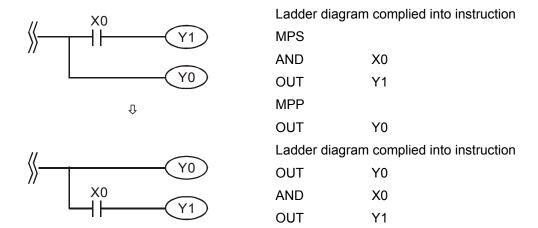

Ladder diagram complied into instruction

LD T0
LD X1
AND X2
ORB

Ladder diagram complied into instruction

LD X1
AND X2
OR T0

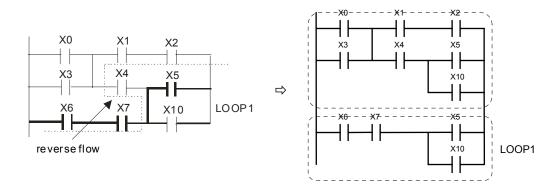
■ In diagram (a), the block on top is shorter than the block in the bottom, we can switch the position of the two blocks to achieve the same logic. Due to that diagram (a) is illegal, there is a "reverse flow" in it.

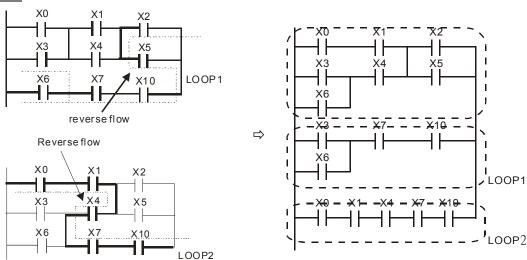

X3 X4 X1 X2 X0 (b) Ladder diagram complied into instruction

D X0
OR X1
AND X2
LD X3
AND X4
ORB

Ladder diagram complied into instruction

LD X3
AND X4
LD X1
OR X0
AND X2
ORB


■ MPS and MPP instruction can be omitted when the multiple outputs in the same horizontal line do not need to operate with other input devices.


Correct the circuit of reverse flow

In the following two examples, the diagram in the left hand side is the ladder diagram we desire. However, the illegal "reverse flow" in it is incorrect according to our definition on the ladder diagram. We modify the diagram into the diagram in the right hand side.

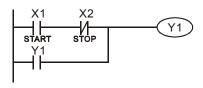
Example 1

Example 2

1.7 Basic Program Designing Examples

■ Start, Stop and Latched

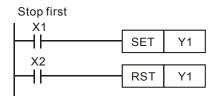
In some application occasions, we need to use the transient close/open buttons for the start and stop of an equipment. To maintain its continuous action, you have to design latched circuits.

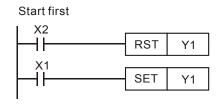

Example 1: Stop first latched circuit

When the normally open contact X1 = On and the normally closed contact X2 = Off, Y1 will be On. If you make X2 = On at this time, Y1 will be Off. It is the reason why this is called "stop first".

Example 2: Start first latched circuit

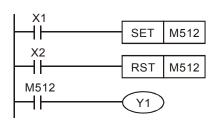
When the normally open contact X1 = On and the normally closed contact X2 = Off, Y1 will be On and latched. If you make X2 = On at this time, Y1 will continue to be On because of the latched contact. It is the reason why this is called "start first".

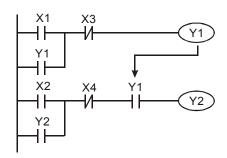

Example 3: Latched circuit for SET and RST instructions

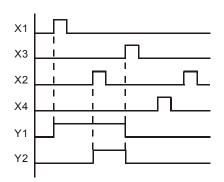

See the diagram in the right hand side for the latched circuit consist of RST and SET instructions.

In the stop first diagram, RST is placed after SET. PLC executes the program from up to down, so the On/Off of Y1 will be determined upon its status in the end of the program.

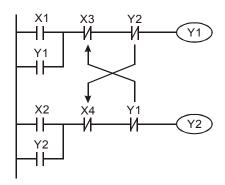
Therefore, when X1 and X2 are enabled at the same time, Y1 will be Off. It is the reason why this is called "stop first".

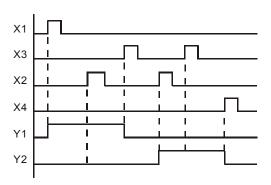

In the start first diagram, SET is placed after RST. When X1 and X2 are enabled at the same time, Y1 will be On. It is the reason why this is called "start first".


Example 4: Power shutdown latched


The auxiliary relay M512 is latched (see instruction sheets for DVP series PLC MPU). The circuit can not only be latched when the power is on, but also keep the continuity of the original control when the power is shut down and switched on again.

■ Frequently Used Control Circuit


Example 5: Conditional control

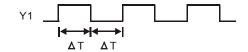


X1 and X3 enables and disables Y1; X2 and X4 enables and disables Y2, and all are latched. Due to that the normally open contact of Y1 is connected to the circuit of Y2 in series, Y1 becomes an AND condition for Y2. Therefore, only when Y1 is enabled can Y2 be enabled.

Example 6: Interlock control

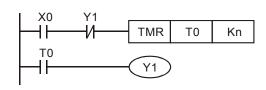
Which of the X1 and X2 is first enabled decides either the corresponding output Y1 or Y2 will be enabled first. Either Y1 or Y2 will be enabled at a time, i.e. Y1 and Y2 will not be enabled at the same time (the interlock). Even X1 and X2 are enabled at the same time, Y1 and Y2 will not be enabled at the same time due to that the ladder diagram program is scanned from up to down. In this ladder diagram, Y1 will be enabled first.

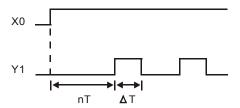
Example 7: Sequential control



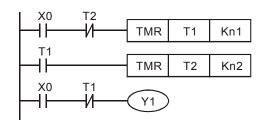
If we serially connect the normally closed contact of Y2 in example 5 to the circuit of Y1 as an AND condition for Y1 (as the diagram in the left hand side), the circuit can not only make Y1 as the condition for Y2, but also allow the stop of Y1 after Y2 is enabled. Therefore, we can make Y1 and Y2 execute exactly the sequential control.

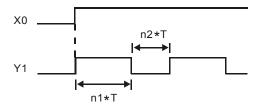
Example 8: Oscillating circuit


An oscillating circuit with cycle $\Delta T + \Delta T$

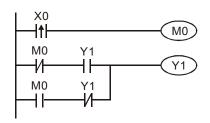


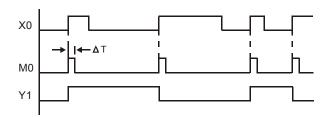
The ladder diagram above is a very simple one. When the program starts to scan the normally closed contact Y1, Y1 will be closed because coil Y1 is Off. When the program then scan to coil Y1 and make it On, the output will be 1. When the program scans to the normally closed contact Y1 again in the next scan cycle, because coil Y1 is On, Y1 will be open and make coil Y1 Off and output 0. The repeated scans will result in coil Y1 outputs oscillating pulses by the cycle $\Delta T(On) + \Delta T(Off)$.


An oscillating circuit with cycle nT+ Δ T

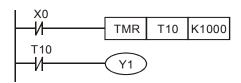


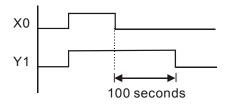
The ladder diagram program controls the On time of coil Y1 by timer T0 and disable timer T0 in the next scan cycle, resulting in the oscillating pulses in the output of Y1. n refers to the decimal set value in the timer and T is the cycle of the clock.


Example 9: Flashing circuit



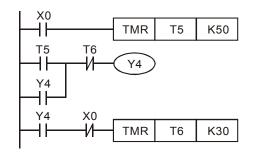
The ladder diagram is an oscillating circuit which makes the indicator flash or enables the buzzer alarms. It uses two timer to control the On/Off time of coil Y1. n1 and n2 refer to the set values in T1 and T2 and T is the cycle of the clock.

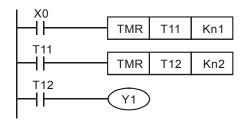

Example 10: Trigger circuit



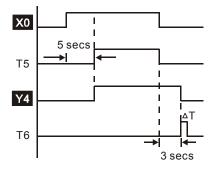
The rising-edge differential instruction of X0 makes coil M0 generate a single pulse of ΔT (one scan cycle). Coil Y1 will be On during this scan period. In the next scan period, coil M0 will be Off and the normally closed contact M0 and Y1 will all be closed, making coil Y1 continue to be On until another rising-edge arrives in input X0, making coil M0 On for another scan period and Y1 Off. Such kind of circuit relies on an input to make two actions execute interchangeably. Also from the timing diagram on the last page, we can see that input X0 are square pulse signals of the cycle T and coil Y1 output are square pulse signals of the cycle 2T.

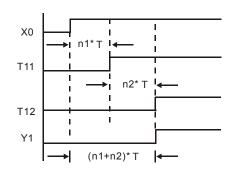
Example 11: Delay circuit

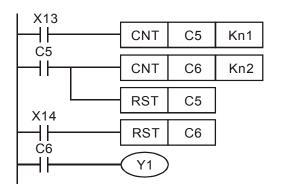

Time base: T = 0.1 sec


When input X0 is On, due to that its corresponding normally closed contact is Off, time T10 will be Off and the output coil Y1 will be On. T10 will be On and start to count until input X0 is Off. Output coil Y1 will be delayed for 100 seconds (K1,000 × 0.1 sec = 100 secs) and be Off. See the timing diagram above.

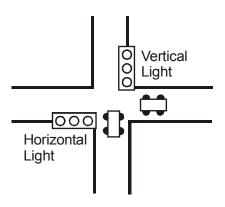
Example 12: Output delay circuit


The output delay circuit is the circuit composed of two timers. When input X0 is On and Off, output Y4 will be delayed.


Example13: Timing extension circuit

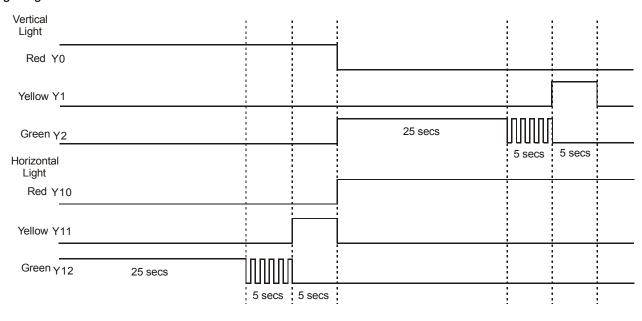

Timer = T11, T12 Clock cycle: T

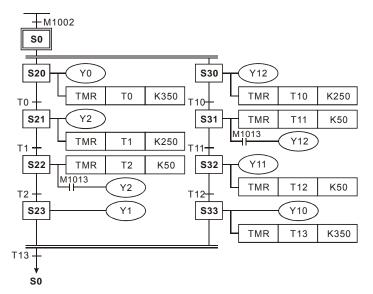
The total delay time from input X0 is closed to output Y1 is On = $(n1+n2)^*$ T. T refers to the clock cycle.



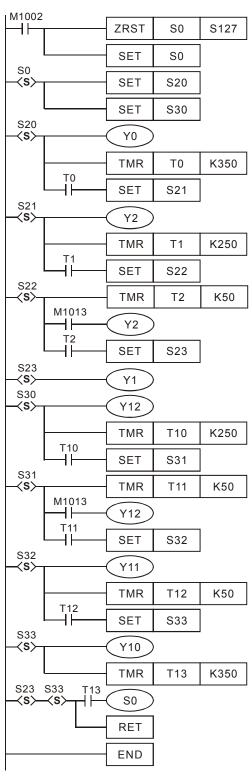
Example 14: How to enlarge the counting range

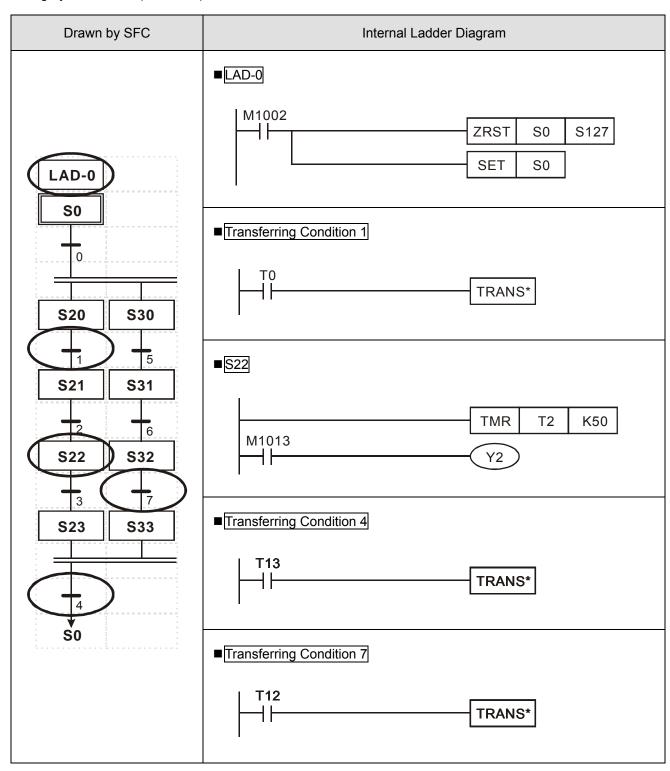
The counting range of a 16-bit counter is $0 \sim 32,767$. As the circuit in the left hand side, using two counters can increase the counting range to n1*n2. When the counting of counter C5 reaches n1, C6 will start to count for one time and reset for counting the pulses from X13. When the counting of counter C6 reaches n2, the pulses from input X13 will be n1*n2.


Example 15: Traffic light control (by using step ladder instruction)


Traffic light control

	Red light	Yellow light	Green light	Green light flashes
Vertical light	Y0	Y1	Y2	Y2
Horizontal light	Y10	Y11	Y12	Y12
On time	35 secs	5 secs	25 secs	5 secs


Timing Diagram:


SFC Figure:

Ladder Diagram:

■ Drawing by SFC Editor (WPLSoft)

MEMO

2.1 All Devices in DVP-PLC

ES/EX/SS series MPU:

Туре	Device	series iviP	Item		Range		Function		
7.	Х	External	input relay		X0 ~ X177, 128 points, octal	Total	Corresponds to external input points		
	Υ	External	output relay		Y0 ~ Y177, 128 points, octal	256 points	Corresponds to external output points		
			General purp	ose	M0 ~ M511, M768 ~ M999, 744 points				
	М	Auxiliary relay	Latched*		M512 ~ M767, 256 points	Total 1,280 points	The contact can be On/Off in the program.		
			Special purpo	ose	M1000 ~ M1279, 280 points (some are latched)				
			100ms timer		T0 ~ T63, 64 points		Timer indicated by TMR		
Relay (bit)	Т	Timer	10ms timer (N	И1028 = On)	T64 ~ T126, 63 points (M1028 = Off: 100ms)	Total 128 points	instruction. If timing reaches its target, the T contact of the same No. will be On.		
Zela			1ms timer		T127, 1 points		will be Off.		
			16-bit countir (general purp	oose)	C0 ~ C111, 112 points	Total 128 points			
				ng up (latched*)	C112 ~ C127, 16 points	120 points	Counter indicated by CNT (DCNT) instruction.		
	С	Counter	32-bit counting	1-phase 1 input	C235 ~ C238, C241, C242, C244, 7 points		If counting reaches its		
					up/down	1-phase 2 inputs	C246, C247, C249, 3 points	Total	target, the C contact of
			high-speed counter (latched*)	2-phase 2 inputs	C251, C252, C254, 3 points	13 points	the same No. will be On.		
			Initial step (la	tched*)	S0 ~ S9, 10 points				
	S	Step	Zero return (la	atched*)	S10 ~ S19, 10 points (used with IST instruction)	Total 128 points	Used for SFC.		
			Latched*		S20 ~ S127, 108 points		NAII (I C)		
ata)	Т	Present v	value of timer		T0 ~ T127, 128 points		When the timing reaches the target, the contact of the timer will be On.		
Register (word data)	С	Present v	value of counte	er Er	C0 ~ C127, 16-bit counter, 128 p C235 ~ C254, 32-bit counter, 13		When the counting reaches the target, the contact of the counter will be On.		
gist			General p	ourpose	D0 ~ D407, 408 points	Total	Memory area for data		
Re	D	Data	Latched*		D408 ~ D599, 192 points	600 points	storage; E, F can be		
		register	Special po		D1000 ~ D1311, 312 points	Total	used for index indication.		
			Index indi	cation	E, F, 2 points	312 points			
	N	For mast	er control nest	ed loop	N0 ~ N7, 8 points		Control point for main control loop		
ţe r	Р	For CJ, C	CALL instructio		P0 ~ P63, 64 points		Position index for CJ and CALL		
Pointer			External i	nterruption	1001, I101, I201, I301, 4 points				
<u> </u>	I	Interruption	ion Timed interruption		I6□□, 1 point (□□=10 ~ 99, 1ms) (for V5.7 and above)	time base =	Position index for interruption subroutine.		
			Communi	cation interruption	I150, 1 point				
tant	K	Decimal f	orm		K-32,768 ~ K32,767 (16-bit oper K-2,147,483,648 ~ K2,147,483,6		eration)		
Constant	Н	Hexadec	imal form		H0000 ~ HFFFF (16-bit operation) H00000000 ~ HFFFFFFFF (32-bit operation)				

^{*} The latched area is fixed and cannot be changed.

SA/SX/SC series MPU:

Туре	Device		Item	Range		Function	
	Х	External in	put relay	X0 ~ X177, 128 points, octal	Total 256	Corresponds to external input points	
	Υ	External or	utput relay	Y0 ~ Y177, 128 points, octal	points	Corresponds to external output points	
			General purpose	M0 ~ M511, 512 points (*1)			
	М	Auxiliary Relay	Latched*	M512 ~ M999, 488 points (*3) M2000 ~ M4095, 2,096 points (*3)	Total 4,096	The contact can be On/Off in the program.	
		,	Special purpose	M1000 ~ M1999, 1,000 points (some are latched)	points		
			100ms	T0 ~ T199, 200 points (*1) T192 ~ T199 for subroutine T250 ~ T255, 6 accumulative points (*4)	Total	Timer indicated by TMR instruction. If timing	
	Т	Timer	10ms	T200 ~ T239, 40 points (*1) T240 ~ T245, 6 accumulative points (*4)	256 points	reaches its target, the T contact of the same No. will be On.	
			1ms	T246 ~ T249, 4 accumulative points (*4)			
Relay (bit)			16-bit counting up	C0 ~ C95, 96 points (*1) C96 ~ C199, 104 points (*3)	Total 235		
Relay		Counter	32-bit counting up/down C200 ~ C215, 16 points (*1) points		points		
	С		For SA/SX, 32-bit high-speed counter	C235 ~ C244, 1-phase 1 input, 9 points (*3) C246 ~ C249, 1-phase 2 inputs, 3 points (*3) C251 ~ C254, 2-phase 2 inputs, 4 points (*3)	Total 16 points	Counter indicated by CNT (DCNT) instruction. If counting reaches its target, the C contact of the same No. will be On.	
			For SC, 32-bit high-speed counter	C235 ~ C245, 1-phase 1 input, 11 points (*3) C246 ~ C250, 1-phase 2 inputs, 4 points (*3) C251 ~ C255, 2-phase 2 inputs, 4 points (*3)	Total 19 points		
			Initial step	S0 ~ S9, 10 points (*1)			
			Zero return	S10 ~ S19, 10 points (used with IST instruction) (*1)	Total		
	S	Step point	ep point General purpose S20 ~ S511, 492 points (*1) 1,024		1,024 points	Used for SFC.	
			Latched*	S512 ~ S895, 384 points (*3)	points		
			Alarm	S896 ~ S1023, 128 points (*3)			
(1	Т	Present va	lue of timer	T0 ~ T255, 256 points		When the timing reaches the target, the contact of the timer will be On.	
(word data)	С	Present va	lue of counter	C0 ~ C199, 16-bit counter, 200 points C200 ~ C254, 32-bit counter, 50 poin points)	s ts (SC: 53	When the counting reaches the target, the contact of the counter will be On.	
ē			General purpose	D0 ~ D199, 200 points (*1)	T-4-1	Memory area for data	
Register	D	Data register	Latched*	D200 ~ D999, 800 points (*3) D2000 ~ D4999, 3,000 points (*3)	Total 5,000	storage; E, F can be used for index	
Ľ		Ŭ	Special purpose Index indication	DZ000 D4000, 0,000 points (0)		indication.	
	N/A	File registe	er	K0 ~ K1,599 (1,600 points) (*4)		Expanded register for data storage.	

	N For Master control loop		control loop	N0 ~ N7, 8 points	Control point for main control loop	
	Р	For CJ, CA	ALL instructions	P0 ~ P255, 256 points	Position index for CJ and CALL	
_		External interruption		1001, I101, I201, I301, I401, I501, total 6 points		
Pointer			Timed interruption	I6□□, I7□□, 2 points (□□ = 1 ~ 99, time base = 1ms)		
	I	Interruption	Interruption inserted when high-speed counter reaches target	I010, I020, I030, I040, I050, I060, total 6 points	Position index for interruption subroutine.	
			Communication interruption	I150, 1 point		
Constant	K	Decimal fo	rm	K-32,768 ~ K32,767 (16-bit operation) K-2,147,483,648 ~ K2,147,483,647 (32-bit operation)		
Cons	Н	Hexadecim	nal form	H0000 ~ HFFFF (16-bit operation) H00000000 ~ HFFFFFFFF (32-bit operation)		

^{*1.} Non-latched area cannot be modified.

Latched settings for all devices in SA/SX/SC series MPU:

	General p	urpose	La	Latched		Special auxiliary	/ relay	Latched	
	M0 ~ M	511	M512	2 ~ M999		M1000 ~ M19	999	M2000 ~ M4095	
M (Auxiliary relay)			Defau	Default: latched				Default: latched	
	It is fixed to be	non-latched	Start: D1200 (K512) End: D1201 (K999)		Some are latched and cannot be modified		Start: D1202 (K2,000) End: D1203 (K4,095)		
	100 n	าร	1	0 ms		10 ms	1	ms	100 ms
T (Timor)	T0 ~ T	199	T200) ~ T239		T240 ~ T245	T246	~ T249	T250 ~ T255
(Timer)	It is fixed to be	It is fixed to	be non-lat	ched			lative type to be latche		
	16-b	it counting u	p 32-bit co		counting up/down			n-speed counting ip/down	
	C0 ~ C95	C96	C96 ~ C199		215	C216 ~ C234		C235 ~ C255	
C (Counter)	It is fixed to be		: latched	It is fixed to be non-latched		Default: latched		Default: latched	
	non-latched		208 (K96) 209 (K199)			Start: D1210 (K216) End: D1211 (K234)		Start: D1212 (K235) End: D1213 (K255)	
	Initial	Zero return	General	purpose		Latched		Alarm step	
0	S0 ~ S9	S10 ~ S19	S20 ~	- S511		S512 ~ S895		S896 ~ S1023	
S (Step relay)						Default: latched			
, , , , , , , , , , , , , , , , , , , ,	It is	fixed to be n	on-latched			Start: D1214 (K512) End: D1215 (K895)		It is fixed to be latched	
	General p	urpose	La	tched		Special register		L	_atched
_	D0 ~ D	199	D200	~ D999		D1000 ~ D199	99	D200	00 ~ D4999
D (Register)			Defau	lt: latched		Cama ara lataba	ا ممما	Defa	ult: latched
(Register)	It is fixed to be		Start: D1216 (K200) End: D1217 (K999)		Some are latched and cannot be modified.		Start: D1218 (K2,000) End: D1219 (K4,999)		
F.1. D				ı	<0 ~ I	K1599			
File Register				It is fix	ed to	be latched.			

^{*2.} The preset non-latched area can be modified into latched area by setting up parameters.

^{*3.} The preset latched area can be modified into non-latched area by setting up parameters.

^{*4.} The fixed latched area cannot be modified

EH/EH2/SV series MPU:

Туре	Device		Item	Range		Function	
	Х	External	input relay	X0 ~ X377, 256 points, octal	Total 512	Corresponds to external input points	
	Υ	External	output relay	Y0 ~ Y377, 256 points, octal	Corresponds to external output points		
			General purpose	M0 ~ M499, 500 points (*2)	Total		
	М	Auxiliary relay	Latched	M500 ~ M999, 500 points (*3) M2000 ~ M4095, 2,096 points (*3) M1000 ~ M1999, 1,000 points (some are latched)	4,096 points	The contact can be On/Off in the program.	
			Special purpose				
	Т	Timer	100ms	T0 ~ T199, 200 points (*2) T192 ~ T199 is for subroutine T250~T255, 6 accumulative points (*4)	Total 256	Timer indicated by TMR instruction. If timing reaches its target, the T	
oit)			10ms	T200 ~ T239, 40 points (*2) T240 ~ T245, 6 accumulative points (*4)	points	contact of the same No. will be On.	
) S			1ms	T246 ~ T249, 4 accumulative points (*4)			
Relay (bit)			16-bit counting up	C0 ~ C99, 100 points (*2) C100 ~ C199, 100 points (*3)		Counter indicated by CNT (DCNT)	
	С	Counter	32-bit counting up/down	C200 ~ C219, 20 points (*2) C220 ~ C234, 15 points (*3)	Total 253	instruction. If counting	
		Counter	32-bit high-speed counter	C235 ~ C244, 1-phase 1 input, 10 points (*3) C246 ~ C249, 1-phase 2 inputs, 4 points(*3) C251 ~ C254, 2-phases 2 inputs, 4 points (*3)	points	reaches its target, the C contact of the same No. will be On.	
			Initial step point	S0 ~ S9, 10 points (*2)			
			Zero return	S10 ~ S19, 10 points (used with IST instruction) (*2)	Total		
	S	Step	General purpose	S20 ~ S499, 480 points (*2)	1,024	Used for SFC.	
			Latched	S500 ~ S899, 400 points (*3)	points		
			Alarm	S900 ~ S1023, 124 points (*3)			
	T Present value of timer		/alue of timer	T0 ~ T255, 256 points		When the timing reaches the target, the contact of the timer will be On.	
Register (word data)	С	Present	alue of counter	C0 ~ C199, 16-bit counter, 200 points C200 ~ C254, 32-bit counter, 53 points		When the counting reaches the target, the contact of the counter will be On.	
ster (v			General purpose	D0 ~ D199, 200 points, (*2)	Total	Memory area for data	
Regis	D	Data register	Latched	D200 ~ D999, 800 points (*3) D2000 ~ D9999, 8,000 points (*3)	Total 10,000	storage. E E can be	
		3	Special purpose Index indication	D1000 ~ D1999, 1,000 points E0 ~ E7, F0 ~ F7, 16 points (*1)	points	indication.	
	N/A	File regis	ter	K0 ~ K9,999 (10,000 points) (*4)		Expanded register for data storage.	
	N	For mast	er control loop	N0 ~ N7, 8 points		Control point for main control loop	
	Р	For CJ, (CALL instructions	P0~P255, 256 points		Position index for CJ and CALL	
ter	1	Exte	rnal interruption	100			
Pointer		Time	ed interruption	16	e = 1ms	Position index for interruption subroutine.	
		울 whe	ruption inserted n high-speed nter reaches target	I010, I020, I030, I040, I050, I060, 6 points			
		Puls	e interruption	I110, I120, I130, I140, 4 points			
			nmunication rruption	I150, I160, I170, 3 points		1	

Туре	Device	Item	Range	Function
		Frequency measurement card interruption	I180, 1 point	
Constant	K	Decimal form	K-32,768 ~ K32,767 (16-bit operation) K-2,147,483,648 ~ K2,147,483,647 (32-bit operation)	
Cons	Н	Hexadecimal form	H0000 ~ HFFFF (16-bit operation) H00000000 ~ HFFFFFFFF (32-bit operation)	

^{*1.} Non-latched area cannot be modified.

Latched settings for all devices in EH/EH2/SV series MPU:

	General pu	rpose		Latched		Special auxiliary	y relay	Latched	
M (Auxiliary relay)	M0 ~ M4	.99	M5	M500 ~ M999		M1000 ~ M1999		M2000 ~ M4095	
(Auxiliary relay)		Start: D12 End: D12	00 (K500) 01 (K999)		Some are latched and cannot be modified.		Start: D1202 (K2,000) End: D1203 (K4,095)		
	100 m	3		10 ms		10 ms	1	ms	100 ms
т	T0 ~ T1	99	T2	00 ~ T239		T240 ~ T245	T246	~ T249	T250 ~ T255
(Timer)	Default: non-	latched	Defaul	t: non-latch	ned		A coumu	lative type	
(Timer)	Start: D1204 End: D1205			D1206 (K-1 D1207 (K-1		It		be latche	
		counting up				iting up/down	32-bit hi	iah-speed	counting up/down
	C0 ~ C99		~ C199	C200 ~ (C220 ~ C234		~ C245	C246 ~ C255
C (Counter)	Default: non-latched	Default	Default: latched		Default: non-latched Defaul		Default: latched		
	Start: D1208 (K100)			Start: D1210 (K220)		Start: D1212 (K235)			
	End: D1209 (K199)				End: D1211 (K234)		End: D1213 (K255)		
	Initial	Zero retu	ırn İ	eneral urpose	Latched		Step alarm		alarm
S	S0 ~ S9	S10 ~ S	19 S20) ~ S499		S500 ~ S899		S900 ~ S1023	
(Step relay)	No	n-latched (default)	Latched (default)		tched (default)			
			Start: D121 End: D121	,			lt	is fixed to	be latched.
	General pu	rpose	ı	_atched		Special regis	ter		Latched
D	D0 ~ D1	99	D2	00 ~ D999		D1000 ~ D19	99	D20	000 ~ D9999
(Register)	Default: non-	latched	Defa	ault: latched	d	Some is latched	d and	Def	ault: latched
		16 (K200) 17 (K999)		cannot be mod					
File register			•		K0 ~ I	K9,999			
The register				It is f	ixed to	be latched.			

^{*1:} K-1 refers to the default setting is non-latched.

■ Power On/Off or the MPU switches between RUN/STOP:

Memory of ES/EX/SS V5.5 (and above)

Memory type	Power Off→On	STOP→RUN	RUN→STOP	Clear all non-latched areas (M1031)	Clear all latched areas (M1032)	Default setting	
Non-latched Clear		Clear when	M1033 = Off	Clear	Unchanged	0	
Non-lateneu	Cleai	Remain unchanged when M1033 = On		Cleal	Officialiged		
Latched		Unchange	ed	Unchanged	Clear	Unchanged	
Special M, Special D, index register	Initial	Unch	Unchanged		ged	Initial setting	

Memory of SA/SX/SC/EH/EH2/SV series MPU:

^{*2.} The preset non-latched area can be modified into latched area by setting up parameters.

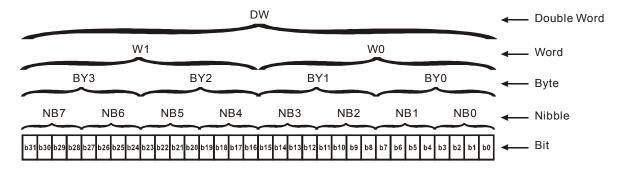
^{*3.} The preset latched area can be modified into non-latched area by setting up parameters.

^{*4.} The fixed latched area cannot be modified

Memory type	Power Off→On	STOP→RUN	RUN→STOP	Clear all non-latched area (M1031)	Clear all latched area (M1032)	Default setting	
No. 1.6.b. d		11	Clear when M1033 = Off	QL,		0	
Non-latched	Clear	Unchanged	Remain unchanged when M1033 = On	Clear	Unchanged		
Latched		Unch	anged	Unchanged	Clear	0	
Special M, Special D, index register	Initial		Unchanged	Unchan	ged	Initial setting	
File Register		Unchanged					

2.2 Values, Constants [K] / [H]

Constant	К	Decimal form	K-32,768 ~ K32,767 (16-bit operation) K-2,147,483,648 ~ K2,147,483,647 (32-bit operation)		
	Н	Hexadecimal form	H0 ~ HFFFF (16-bit operation) H0 ~ HFFFFFFF (32-bit operation)		


For different control purposes, there are five types of values inside DVP-PLC for executing the operations. See the explanations bellows for the functions and works of every type of value.

1. Binary value (BIN)

All the operations and storage of values in PLC are conducted in BIN. Belows are the terms for BIN values.

Bit:	The basic unit for a BIN value, either 1 or 0.
Nibble:	Composed of 4 continuous bits (e.g. b3 \sim b0). Presented as the decimal value 0 \sim 9 of a digit or 0 \sim F in hex.
Byte:	Composed of 2 continuous nibble (i.e. 8 bits, b7 ~ b0). Presented as 00 ~ FF in hex.
Word:	Composed of 2 continuous bytes (i.e. 16 bits, b15 ~ b0). Presented as 4-digit 0000 ~ FFFF in hex.
Double word:	Composed of 2 continuous words (i.e. 32 bits, b31 ~ b0). Presented as 8 digit 00000000 ~ FFFFFFF.

Bit, nibble, byte, word, and double word in a binary system:

2. Octal value (OCT)

The No. of external input and output terminals in DVP-PLC is numbered in octal system.

For example:

External input: X0 ~ X7, X10 ~ X17...(device No.)

External output: Y0 ~ Y7, Y10 ~ Y17...(device No.)

3. Decimal value (DEC)

Occassions of using decimal values in DVP-PLC:

- Set value in timer T and counter C, e.g. TMR C0 K50 (constant K)
- No. of device S, M, T, C, D, E, F, P, I, e.g. M10, T30. (device No.)
- Operands in application instructions, e.g. MOV K123 D0 (constant K)

4. Binary code decimal (BCD)

A decimal datum is presented by a nibble or 4 bits. Therefore, a continuous 16 bits can be presented as a 4-digit decimal value. BCD is mainly used on reading the input value from the DIP switch or the data output to a 7-section display.

5. Hexadecimal value (HEX)

Occassion of using hexadecimal values:

■ Operands in application instructions, e.g. MOV H1A2B D0 (constant H)

Constant K:

"K" is normally placed before a decimal value in the PLC. For example, K100 refers to a decimal value, 100.

Exception:

K and bit devices X, Y, M and S can combine into data in bit, byte, word or double word, e.g. K2Y10, K4M100. Here K1 refers to a 4-bit data and K2 ~ K4 refer to 8-bit, 12-bit and 16-bit data.

Constant H:

"H" is normally placed before a hexadecimal value in the PLC. For example, H100 refers to a hexadecimal value, 100.

Reference table:

Bina (BIN	-	Octal (OCT)	Decimal (DEC)	,	
For PLC internal operation		No. of device X, Y	Constant K, No. of device M, S, T, C, D, E, F, P, I	For DIP switch and 7-section display	Constant H
0 0 0 0	0 0 0 0	0	0	0 0 0 0 0 0 0	0
0 0 0 0	0 0 0 1	1	1	0 0 0 0 0 0 0 1	1
0 0 0 0	0 0 1 0	2	2	0 0 0 0 0 0 1 0	2
0 0 0 0	0 0 1 1	3	3	0 0 0 0 0 0 1 1	3
0 0 0 0	0 1 0 0	4	4	0 0 0 0 0 1 0 0	4
0 0 0 0	0 1 0 1	5	5	0 0 0 0 0 1 0 1	5
0 0 0 0	0 1 1 0	6	6	0 0 0 0 0 1 1 0	6
0 0 0 0	0 1 1 1	7	7	0 0 0 0 0 1 1 1	7
0 0 0 0	1 0 0 0	10	8	0 0 0 0 1 0 0 0	8
0 0 0 0	1 0 0 1	11	9	0 0 0 0 1 0 0 1	9
0 0 0 0	1 0 1 0	12	10	0 0 0 1 0 0 0 0	Α
0 0 0 0	1 0 1 1	13	11	0 0 0 1 0 0 0 1	В
0 0 0 0	1 1 0 0	14	12	0 0 0 1 0 0 1 0	С
0 0 0 0	1 1 0 1	15	13	0 0 0 1 0 0 1 1	D
0 0 0 0	1 1 1 0	16	14	0 0 0 1 0 1 0 0	Е
0 0 0 0	1 1 1 1	17	15	0 0 0 1 0 1 0 1	F
0 0 0 1	0 0 0 0	20	16	0 0 0 1 0 1 1 0	10

Binary (BIN)	Octal (OCT)	Decimal (DEC)	Binary Code Decimal (BCD) Hexadecimal (HEX)
For PLC internal operation	No. of device X, Y	Constant K, No. of device M, S, T, C, D, E, F, P, I	For DIP switch and 7-section display Constant H
0 0 0 1 0 0 0 1	21	17	0 0 0 1 0 1 1 1 11
:	:	:	: :
:	:	:	: :
:	:	:	: :
0 1 1 0 0 0 1 1	143	99	1 0 0 1 1 0 0 1 63

2.3 Numbering and Functions of External Input/Output Contacts [X] / [Y]

No. of input/output contacts (in octal):

The No. of input and output contacts on the PLC MPU starts from X0 and Y0. The range of the No. varies upon the number of points on the MPU. For I/O extension units, the No. of input and output contacts is calculated according to its connection sequence with the MPU.

■ ES/EX/SS series MPU:

Model	DVP-14ES	DVP-14SS	DVP-20EX	DVP-24ES	DVP-32ES	DVP-40ES	DVP-60ES	I/O Extension Unit
Input X	X0 ~ X7	X0 ~ X7	X0 ~ X7	X0 ~ X17	X0 ~ X17	X0 ~ X27	X0 ~ X43	X20/30/50 ~ X177
	(8 points)	(8 points)	(8 points)	(16 points)	(16 points)	(24 points)	(36 points)	(Note)
Output Y	Y0 ~ Y5	Y0 ~ Y5	Y0 ~ Y5	Y0 ~ Y7	Y0 ~ Y17	Y0 ~ Y17	Y0 ~ Y27	Y20/30 ~ Y177
	(6 points)	(6 points)	(6 points)	(8 points)	(16 points)	(16 points)	(24 points)	(Note)

Note: The input points on I/O extension units start from X20 and output points from Y20, except input points on DVP-40ES start from X30 and output from Y20; input points on DVP-60ES start from X50 and output from Y30. The No. of input/output points on the I/O extension units increases by 8's multiple. If the number of points is less than 8, it will be counted as 8.

■ SA/SX/SC serues MPU:

Model	DVP-10SX (Note1)	DVP-12SA	DVP-12SC	I/O Extension Unit (Note 2)	
Input X	X0 ~ X3 (4 points)	X0 ~ X7 (8 points)	X0 ~ X5, X10 ~ X11 (8 points)	X20 ~ X177	
Output Y	Y0 ~ Y1 (2 points)	Y0 ~ Y3 (4 points)	Y0 ~ Y1, Y10 ~ Y11 (4 points)	Y20 ~ Y177	

Note 1: Besides 4DI and 2DO, SX series MPU has also 2AI (12-bit) and 2AO (12-bit) of analog input/output.

Note 2: SX/SA/SC series MPU share the extension units with SS series MPU. The input points on I/O extension units start from X20 and output points start from Y20. The calculation on the No. of I/O points is the same as that in SS series.

■ EH series MPU:

Model	DVP-16EH	DVP-20EH (Note 1)	DVP-32EH (Note1, 2)	DVP-40EH	DVP-48EH	DVP-64EH	DVP-80EH	I/O Extension Unit (Note 3)
Input X	X0 ~ X7 (8 points)	X0 ~ X13 (12 points)	X0 ~ X17 (16 points)	X0 ~ X27 (24 points)	X0 ~ X27 (24 points)	X0 ~ X37 (32 points)	X0 ~ X47 (40 points)	X※~X377
Output Y	Y0 ~ Y7 (8 points)	Y0 ~ Y7 (8 points)	Y0 ~ Y17 (16 points)	Y0 ~ Y17 (16 points)	Y0 ~ Y27 (24 points)	Y0 ~ Y37 (32 points)	Y0 ~ Y47 (40 points)	Y※~Y377

Note 1: The output type of 20EH00T and 32EH00T is transistor, among which Y0 and Y2 are high-speed transistor output (200KHz) and other outputs are normal transistor output (10KHz). The output type of other MPUs with 16/48/64/80 points is transistor and all outputs are normal transistor output (10KHz).

Note 2: The terminal layouts of 32EH00T, 32EH00R and 32EH00M are different. See the instruction sheets of EH series MPU. In 32EH00M, CH0 (Y0, Y1) and CH1 (Y2, Y3) are high-speed differential output.

Note 3: The start No. of the input and output points on the I/O extension unit resumes from the last No. in the MPU. <u>The start No. of input points on the I/O extension unit of DVP-16EH and DVP-20EH start from X20 and output points start from Y20. The No. on the I/O extension unit are in sequence, with max. input point No. X377 and max. output point No. Y377.</u>

■ EH2 series MPU:

Model	DVP-16EH2	DVP-20EH2 (Note 1)	DVP-32EH2 (Note1)	DVP-40EH2 (Note 2)	DVP-48EH2	DVP-64EH2	DVP-80EH2	I/O Extension Unit (Note 3)
Input X	X0 ~ X7 (8 points)	X0 ~ X13 (12 points)	X0 ~ X17 (16 points)	X0 ~ X27 (24 points)	X0 ~ X27 (24 points)	X0 ~ X37 (32 points)	X0 ~ X47 (40 points)	X%~X377
Output Y	Y0 ~ Y7 (8 points)	Y0 ~ Y7 (8 points)	Y0 ~ Y17 (16 points)	Y0 ~ Y17 (16 points)	Y0 ~ Y27 (24 points)	Y0 ~ Y37 (32 points)	Y0 ~ Y47 (40 points)	Y※~Y377

Note 1: The output type of 20EH00T2 and 32EH00T2 is transistor, among which Y0 and Y2 are high-speed transistor output (200KHz) and other outputs are normal transistor output (10KHz). The output type of other MPUs with 16/48/64/80 points is transistor and all outputs are normal transistor output (10KHz).

Note 2: The output type of 40EH00T2 is transistor, among which CH0 (Y0, Y1), CH1 (Y2, Y3), CH2 (Y4) and CH3 (Y6) are high-speed transistor output (200KHz). The output type of other output points is normal transistor output (10KHz).

Note 3: The numbering of the I/O points on EH2 series MPU is the same as that of EH series MPU.

■ SV series MPU:

Model	DVP-28SV (Note 1)	I/O Extension Unit (Note 2)
Input X	X0 ~ X17 (16 points)	X20 ~ X377
Output Y	Y0 ~ Y13 (12 points)	Y20 ~ Y377

Note 1: The output type of 28SV11T is transistor output, among which CH0 (Y0, Y1), CH1 (Y2, Y3), CH2 (Y4) and CH3 (Y6) are high-speed transistor output (200KHz); others are normal transistor output (10KHz).

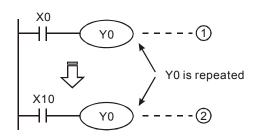
Note 2: The input points on I/O extension units start from X20 and output points start from Y20. The calculation on the No. of I/O points is the same as that in SS series.

■ Input Relay X0 ~ X377

The numbering of input relays (or input terminals) is in octal form. EH series MPU can have up to 256 points and the range is: $X0 \sim X7$, $X10 \sim X17$, ..., $X370 \sim X377$.

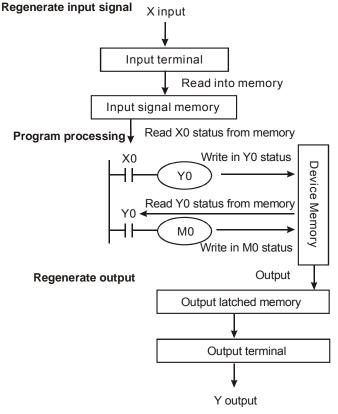
■ Output Relay Y0 ~ Y377

The numbering of output relays (or output terminals) is also in octal form. EH series MPU can have up to 256 points and the range is: $Y0 \sim Y7$, $Y10 \sim Y17$, ..., $Y370 \sim Y377$.


■ Functions of input contact X

The input contact X is connected to the input device and reads the input signals into the PLC. There is no limitation on the times of using contact A or B of input contact X in the program. On/Off of the input contact X only changes with On/Off of the input device. You cannot use the peripheral devices (HPP or WPLSoft) to force On/Off of the input contact X.

The special relay M1304 in SA/SX/SC/EH series MPU allows the peripheral devices HPP or WPLSoft to force On/Off of the input contact X, but the PLC will not be able to receive external input signals at this time.


■ Functions of output contact Y

Output contact Y sends out On/Off signals to drive the load connected to output contact Y. There are two types of output contacts, relay and transistor. There is no limitation on the times of using contact A or B of output contact Y in the program, but the No. of output coil Y can only be used once in the program; otherwise according to the scan principle of the PLC program, the output status will be determined by the circuit of the last output Y in the program.

The output of Y0 will be determined by circuit ②, i.e. On/Off of X10 will determine the output status of Y0.

The Handling Process of PLC Program (Batch I/O)

■ Regenerate input signal

- Before the execution of the program, PLC reads the On/Off status of the external input signals into the input signal memory at a time.
- The On/Off status of the input signal during the execution of the program will not change the signal status in the input signal memory. The new On/Off status will be read in in the next scan.
- There will be approximately a 10ms delay from the On→Off or Off→On changes to the status being recognized by the contact in the program. The delay time may be affected by the scan time in the program.

■ Program processing

After the PLC reads the On/Off status of every input signal in the input signal memory, it will start to execute every instruction in the program in order starting from address 0. The execution result (On/Off of every output coil) will be stored in order into the device memory.

■ Regenerate output

- When the program executes to END instruction, it will send the On/Off status of Y in the device memory to the output latched memory. The output latched memory is the coil of the output relay.
- There will be a 10ms delay from On→Off or Off→On
 of the relay coil to the On/Off status of the contact.
- There will be a 10 ~ 20us delay from On→Off or Off→On of the transistor module to the On/Off status of the contact.

2.4 Numbering and Functions of Auxiliary Relays [M]

No. of auxiliary relays (in decimal)

■ ES/EX/SS series MPU:

	General purpose	M0 ~ M511, M768 ~ M999, 744 points. Fixed to be non-latched.	Total 1 200
Auxiliary relay M	Latched	M512 ~ M767, 256 points. Fixed to be latched.	Total 1,280 points
	Special purpose	M1000 ~ M1279, 280 points. Some are latched.	points

■ SA/SX/SC series MPU:

	General purpose	M0 ~ M511, 512 points. Fixed to be non-latched.	
Auxiliary relay M	Latched	M512 ~ M999, M2000 ~ M4095, 2,584 points. Can be modified to be non-latched by setting up parameters.	Total 4,096 points
	Special purpose	M1000 ~ M1999, 1000 points. Some are latched.	

■ EH/EH2/SV series MPU:

	General purpose	M0 ~ M499, 500 points. Can be modified to be latched by setting up parameters.	
Auxiliary relay M	Latched	M500 ~ M999, M2000 ~ M4095, 2,596 points. Can be modified to be non-latched by setting up parameters.	Total 4,096 points
	Special purpose	M1000 ~ M1999, 1,000 points. Some are latched.	

Functions of auxiliary relays:

Both auxiliary relay M and output relay Y have output coils and contact A, B, and there is no limitation on the times of using the contact. You can use auxiliary relay M to assemble a control loop, but it cannot directly drive the external load. There are three types of auxiliary relays:

- General purpose auxiliary relay: If the relay encouters power cut during the operation of the PLC, its status will be reset to Off and stay Off when the power is on again.
- 2. Latched auxiliary relay: If the relay encounters power cut during the operation of the PLC, its status will be retained and stay at the status before the power cut when the power is on again.
- 3. **Special purpose auxiliary relay:** Every relay of this kind has its specific function. Do not use undefined special purpose auxiliary relay. See 2.10 for special puspose auxiliary relay of all series MPU and 2.11 for its functions.

2.5 Numbering and Functions of Step Relays [S]

No. of step relays (in decimal)

■ ES/EX/SS series MPU:

	Initial latched	S0 ~ S9, 10 points. Fixed to be latched.	
Step relay S	Zero return latched	S10 ~ S19, 10 points, used with IST instruction. Fixed to be latched.	Total 128 points
	Latched	S20 ~ S127, 108 points. Fixed to be latched.	

■ SA/SX/SC series MPU:

	Initial Zero return	S0 ~ S9, 10 points. Fixed to be non-latched. S10 ~ S19, 10 points, used with IST instruction. Fixed to be non-latched.	
0(2) 2012 0	Zero return General purpose	S10 ~ S19, 10 points, used with IST instruction. Fixed to be non-latched. S20 ~ S511, 492 points. Fixed to be non-latched.	Total
Step relay S	Latched	S512 ~ S895, 384 points. Can be modified to be non-latched by setting up parameters.	1,024 points
	Alarm	S896 ~ S1023, 128 points. Fixed to be latched.	

■ EH/EH2/SV series MPU:

	Initial	S0 ~ S9, 10 points. Can be modified to be latched by setting up parameters.	
	Zero return	S10 ~ S19, 10 points, used with IST instruction. Can be modified to be latched by setting up parameters.	Total
Step relay S	General purpose	S20 ~ S499, 480 points. Can be modified to be latched by setting up parameters.	1,024 points
	Latched	S500 ~ S899, 400 points. Can be modified to be non-latched by setting up parameters.	
	Alarm	S900 ~ S1023, 124 points. Can be modified to be latched by setting up parameters.	

Functions of step relays:

The step relay S can easily set up the procedure in the industrial automation, which is the most basic device in the the sequential function chart (SFC) and has to be used with STL, RET instructions.

The device No. of S is S0 \sim S1023 (total 1,024 points) and both step relay S and output relay Y have output coils and contact A, B, and there is no limitation on the times of using the contact. S cannot directly drive the external load. When the step relay is not used in SFC, it can be used as a normal auxiliary relay. There are four types of step relays:

- 1. **Initial step relay:** S0 ~ S9, total 10 points, used for initial steps.
- 2. **Zero return step relay:** S10 ~ S19, total 10 points. S10 ~ S19 are planned for zero return when used with API 60 IST instruction in the program. If they are not used with IST, they will become normal step relays.
- 3. **General purpose step relay:** S20 ~ S511, total 492 points (for SA/SX/SC series MPU); S20 ~ S499, total 480 points (for EH/EH2/SV series MPU). Used for general purposes in SFC and their status will all be cleared when the operation of the PLC encounters power cut.
- 4. Latched step relay: S512 ~ S895, total 384 points (for SA/SX/SC series MPU); S20 ~ S127, total 108 points (for ES/EX/SS series MPU); S500 ~ S899, total 400 points (for EH/EH2/SV series MPU). Used for latched function in SFC and their status will all be retained when the operation of the PLC encounters power cut. They will remain at the status before the power cut when the PLC is powered again.
- 5. **Alarm step relay:** S896 ~ S1023, total 128 points (for SA/SX/SC series MPU); S900 ~ S1023, total 124 points (for EH/EH2/SV series MPU). Used with alarm driving instruction API 46 ANS as an alarm contact for recording the alarm messages or eliminating external malfunctions.

2.6 Numbering and Functions of Timers [T]

No. of timers (in decimal)

■ ES/EX/SS series MPU:

	100ms general purpose	T0 ~ T63, 64 points	
Timer T	10ms general purpose	T64 ~ T126, 63 points (M1028 = On:10ms; M1028 = Off:100ms)	Total 128 points
	1ms general purpose	T127, 1 point	

■ SA/SX/SC series MPU:

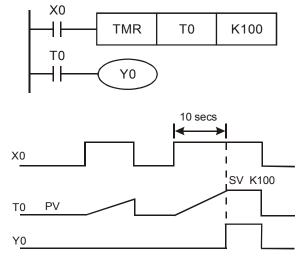
	100ms general purpose	T0 \sim T199, 200 points. T192 \sim T199 are the timers for subroutine. Fixed to be non-latched	
	100ms accumulative	T250 ~ T255, 6 points. Fixed to be latched.	Total
Time T	10ms general purpose	T200 ~ T239, 40 points. Fixed to be non-latched	256 points
	10ms accumulative	T240 ~ T245, 6 points. Fixed to be latched.	
	1ms accumulative	T246 ~ T249, 4 points. Fixed to be latched.	

■ EH/EH2/SV series MPU:

Timer T		100ms general purpose	T0 ~ T199, 200 points. Can be latched by setting up parameters. T192 ~ T199 are the timers for subroutine.	
		100ms accumulative	T250 ~ T255, 6 points. Fixed to be latched.	Total
	Timer I	10ms general purpose	T200 ~ T239, 40 points. Can be latched by setting up parameters.	256 points
		10ms accumulative	T240 ~ T245, 6 points. Fixed to be latched.	
		1ms accumulative	T246 ~ T249, 4 points. Fixed to be latched.	

Functions of timers:

The units of the timer are 1ms, 10ms and 100ms and the counting method is counting up. When the present value in the timer equals the set value, the output coil will be On. The set value should be a K value in decimal and the data register D can also be a set value.

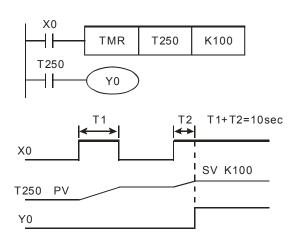

The actual set time in the timer = timing unit × set value

There are three types of timers:

1. General purpose timer:

For ES/SA series MPU: The timer executes once when the program reaches END instruction. When TMR instruction is executed, the output coil will be On when the timing reaches its target.

For EH/EH2/SV series MPU: The timer executes once when the program reaches TMR instruction. When TMR instruction is executed, the output coil will be On when the timing reaches its target.



- When X0 = On, The PV in timer T0 will count up by 100ms. When the PV = SV K100, the output coil T0 will be On.
- When X0 = Off or the power is off, the PV in timer T0 will be cleared as 0, and the output coil T0 will be Off.

2. Accumulative type timer:

For ES/SA series MPU: The timer executes once when the program reaches END instruction. When TMR instruction is executed, the output coil will be On when the timing reaches its target.

For EH/EH2/SV series MPU: The timer executes once when the program reaches TMR instruction. When TMR instruction is executed, the output coil will be On when the timing reaches its target.

- When X0 = On, The PV in timer T250 will count up by 100ms. When the PV = SV K100, the output coil T0 will be On.
- When X0 = Off or the power is off, timer T250 will temporarily stop the timing and the PV remain unchanged. When X0 is On again, the timing will resume and the PV will count up and when the PV = SV K100, the output coil T0 will be On.

3. Subrountine timer:

Timer T192 ~ T199 are used in subrountines or interruption subroutines.

For SA series MPU: The timer executes once when the program reaches END instruction. When END instruction is executed, the output coil will be On when the timing reaches its target.

For EH/EH2/SV series MPU: The timer executes once when the program reaches TMR or END instruction. When TMR or END instruction is executed, the output coil will be On when the PV equals SV.

If the general purpose timer is used in a subroutine or interruption subroutine but the subroutine is not being executed, the timer will not be able to time correctly.

How to designate SV: The actual set time in the timer = timing unit × set value

- a) Designating constant K: SV is a constant K
- b) Indirectly designating D: SV is data register D

2.7 Numbering and Functions of Counters [C]

No. of counters (in decimal)

■ ES/EX/SS series MPU:

Counter C	16-bit counting up, for general purpose	C0 ~ C111, 112 points. Fixed to be non-latched.	
Counter C	16-bit counting up, for latched	C112 ~ C127, 16 points. Fixed to be latched.	Total
32-bit counting up/down	1-phase 1 input	C235 ~ C238, C241, C242, C244, 7 points. Fixed to be latched.	141 points
high-speed counter C	1-phase 2 inputs	C246, C247, C249, 3 points. Fixed to be latched.	
	2-phase 2 inputs	C251, C252, C254, 3 points. Fixed to be latched.	

■ SA/SX/SC series MPU:

	16-bit counting up, for general purpose	C0 ~ C95, 96 points. Fixed to be non-latched.	
	16-bit counting up, for latched	C96 ~ C199, 104 points. Can be modified to be non-latched by setting up parameters.	Total
Counter C	32-bit counting up/down, for general purpose	C200 ~ C215, 16 points. Fixed to be non-latched.	Total 235 points
	32-bit counting up/down, for latched	C216 ~ C234, 19 points. Can be modified to be non-latched by setting up parameters.	

(SA/SV) 22 hit counting	1-phase 1 input, for latched	C235 ~ C242, C244, 9 points		
(SA/SX) 32-bit counting up/down high-speed counter C	1-phase 2 inputs, for latched	C246, C247, C249, 3 points		Total 16 points
counter C	2-phase 2 inputs, for latched	C251 ~ C254, 4 points	Can be modified to be non-latched by setting up	
(SC) 22 bit counting	1-phase 1 input, for latched	C235 ~ C245, 11 points	parameters.	
(SC) 32-bit counting up/down high-speed counter C	1-phase 2 inputs, for latched	C246 ~ C250, 4 points		Total 19 points
Counter C	2-phase 2 inputs, for latched	C251 ~ C255, 4 points		

■ EH/EH2/SV series MPU:

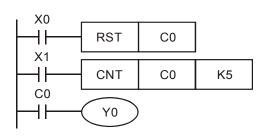
	40.1:1	00 000 400	. I P.C I. C. I I. C. I I. I.	
	16-bit counting up, for		n be modified to be latched by	
	general purpose	setting up parameters.		
	16-bit counting up, for	C100 ~ C199, 100 points.	Can be modified to be non-latched	
	latched	area by setting up parame		
Counter C	32-bit counting up/down, for general purpose	C200 ~ C219, 20 points. 0 setting up parameters.		
	32-bit counting up/down, for latched	C220 ~ C234, 15 points. (by setting up parameters.	Total 253 points	
	Software 1-phase 1 input	C235 ~ C240, 6 points		200 points
32-bit counting up/down	Hardware 1-phase 1 input	C241 ~ C244, 4 points	Can be modified to be non-latched by setting up	
high-speed counter C	Hardware 1-phase 2 inputs	C246 ~ C249, 4 points	parameters.	
	Hardware 2-phase 2 inputs	C251 ~ C254, 4 points		

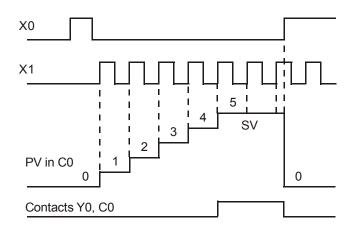
■ Features of counter:

	16 bits counters	32 bits	counters			
Type	General purpose	General purpose	High speed			
Counting direction	Counting up	Counting up,	counting down			
Set value	0 ~ 32,767	-2,147,483,648	~ +2,147,483,647			
SV designation	Constant K or data register D	Constant K or data registe	er D (designating 2 values)			
Present value	Counting will stop when the SV is reached.	Counter will continue when the SV is reached.				
Output contact	On and being retained when the counting reaches SV.		nen counting up reaches SV. nting down reaches SV.			
Reset	PV will be return to 0 when RST	instruction is executed and the	contact will be reset to Off.			
Contact action	Acts when the scanning is completed.	Acts when the scanning is completed.	Acts immediately when the counting reaches its target, has nothing to do with the scan period.			

Functions of counters:

When the pulse input signals of the counter go from Off to On and the present value in the counter equals the set value, the output coil will be On. The set value should be a K value in decimal and the data register D can also be a set value.

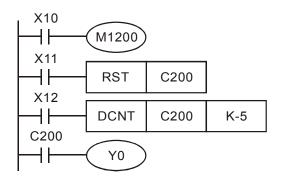

16-bit counters C0 ~ C199:

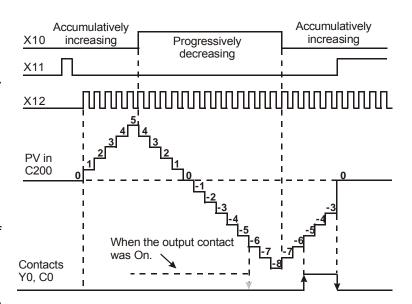

- 1. The setup range of 16-bit counter: K0 ~ K32,767. K0 is the same as K1. The output contact will be On immediately when the first counting starts.
- 2. PV in the general purpose counter will be cleared when the power of the PLC is switched off. If the counter is a latched type, the counter will retain the PV and contact status before the power is off and resume the counting

- after the power is on again.
- 3. If you use MOV instruction, WPLSoft or HPP to send a value bigger than the SV to the present value register of C0, next time when X1 goes from Off to On, the contact of counter C0 will be On and its PV will equal SV.
- 4. The SV in the counter can be constant K (set up directly) or the values in register D (set up indirectly, excluding special data registers D1000~ D1999).
- 5. If you set up a constant K as the SV, it should be a positive value. Data register D as SV can be positive or negative. When the PV reaches up to 32,767, the next PV will turn to -32,768.

Example:

- LD X0
 RST C0
 LD X1
 CNT C0 K5
 LD C0
 OUT Y0
- a) When X0 = On, RST instruction will be executed, PV in C0 will be "0" and the output contact will be reset to Off.
- b) When X1 goes from Off to On, the PV in the counter will count up (plus 1).
- c) When the counting of C0 reaches SV K5, the contact of C0 will be On and PV of C0 = SV = K5. The X1 trigger signal comes afterwards will not be accepted by C0 and the PV of C0 will stay at K5.


32-bit general purpose addition/subtraction counters C200 ~ C234:


- 1. The setup range of 32-bit counter: K-2,147,483,648 ~ K2,147,483,647 (not available for ES/EX/SS series MPU).
- 2. Addition or subtraction of the counters is designated by On/Off status of special auxiliary relays M1200 ~ M1234. For example, when M1200 = Off, C200 will be an addition counter; when M1200 = On, C200 will be a subtraction counter.
- 3. The SV can be constant K or data register D (excluding special data registers D1000 ~ D1999). Data register D as SV can be a positive or negative value and an SV will occupy two consecutive data registers.
- 4. PV in the general purpose counter will be cleared when the power of the PLC is switched off. If the counter is a latched type, the counter will retain the PV and contact status before the power is off and resume the counting after the power is on again.
- 5. When the PV reaches up to 2,147,483,647, the next PV will turn to -2,147,483,648. When the PV reaches down to -2,147,483,648, the next PV will turn to 2,147,483,647.

Example:

LD X10 OUT M1200 LD X11 RST C200 X12 LD CNT C200 K-5 LD C200 OUT Y0

- a) X10 drives M1200 to determine whether C200 is an addition or subtraction counter.
- b) When X11 goes from Off to On, RST instsruction will be executed and the PV in C200 will be cleared to "0" and the contact will be Off.
- c) When X12 goes from Off to On, the PV in the counter will count up (plus 1) or count down (minus 1).
- d) When the PV in C200 changes from K-6 to K-5, the contact of C200 will go from Off to On. When the PV in C200 changes from K-5 to K-6, the contact of C200 will go from On to Off.
- e) If you use MOV instruction, WPLSoft or HPP to send a value bigger than the SV to the present value register of C0, next time when X1 goes from Off to On, the contact of counter C0 will be On and its PV will equal SV.

32-bit high-speed addition/subtraction counters C235 ~ C255:

- 1. The setup range of 32-bit counter: K-2,147,483,648 ~ K2,147,483,647
- 2. Addition or subtraction of C235 ~ C244 is designated by On/Off status of special auxiliary relays M1235 ~ M1244. For example, when M1235 = Off, C235 will be an addition counter; when M1235 = On, C235 will be a subtraction counter.
- 3. Addition or subtraction of C246 ~ C255 is designated by On/Off status of special auxiliary relays M1246 ~ M1255. For example, when M1246 = Off, C246 will be an addition counter; when M1246 = On, C246 will be a subtraction counter.
- The SV can be constant K or data register D (excluding special data registers D1000 ~ D1999). Data register D

as SV can be a positive or negative value and an SV will occupy two consecutive data registers.

- 5. If using DMOV instruction, WPLSoft or HPP to send a value which is large than the setting to any high-speed counter, next time when the input point X of the counter goes from Off to On, this contact will remain unchanged and it will perform addition and subtraction with the present value.
- 6. When the PV reaches up to 2,147,483,647, the next PV will turn to -2,147,483,648. When the PV reaches down to -2,147,483,648, the next PV will turn to 2,147,483,647.

■ High-speed counters for ES/EX/SS series MPU, total bandwidth: 20KHz

Type		1-phase input								puts	2-phase 2 inputs			
Input	C235	C236	C237	C238	C241	C242	C244	C246	C247	C249	C251	C252	C254	
X0	U/D				U/D		U/D	U	U	U	Α	Α	Α	
X1		U/D			R		R	D	D	D	В	В	В	
X2			U/D			U/D			R	R		R	R	
X3				U/D		R	S			S			S	

U: Progressively increasing input

A: A phase input

S: Input started

D: Progressively decreasing input

B: B phase input

R: Input cleared

- Input points X0 and X1 can be planned as counters of higher speed with 1-phase 1 input reaching 20KHz. But the
 two counting frequencies added together has to be smaller or equal 20KHz. If the input is a 2-phase 2 input signal,
 the counting frequency will be approximately 4KHz. The 1-phase input of high-speed counters X2 and X3 and
 reach 10KHz.
- 2. The use of DHSCS instruction together with DHSCR instruction in ES series MPU cannot exceed 4 times.

■ High-speed counters for SA/SX series MPU, total bandwidth: 40KHz

Type		1-phase input								1-ph	ase 2 in	puts	2-phase 2 inputs			
Input	C235	C236	C237	C238	C239	C240	C241	C242	C244	C246	C247	C249	C251	C252	C253	C254
X0	U/D						U/D		U/D	U	C	U	Α	Α	В	Α
X1		U/D					R		R	D	D	D	В	В	Α	В
X2			U/D					U/D			R	R		R		R
Х3				U/D				R	S			S				S
X4					U/D											
X5						U/D										

U: Progressively increasing input

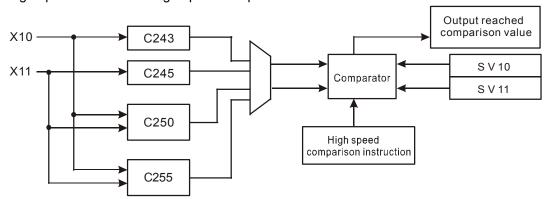
A: A phase input

S: Input started

D: Progressively decreasing input

B: B phase input

R: Input cleared


- The frequency of input points X0 and X1 of 1-phase input can reach up to 20KHz, X2 ~ X5 can reach 10KHz. The
 frequency of C251, C252 and C254 of 2-phase input (X0, X1) can reach up to 4KHz. The maximum frequency of
 C253 is 25KHz (only supports 4 times frequency counting).
- 2. Input point X5 has two functions:
 - a) When M1260 = Off, C240 will be normal U/D high-speed counter.
 - b) When M1260 = On and DCNT instruction enables C240, X5 will be the shared reset signal for C235 ~ C239. Counter C240 will continue to receive the input signals from X5.

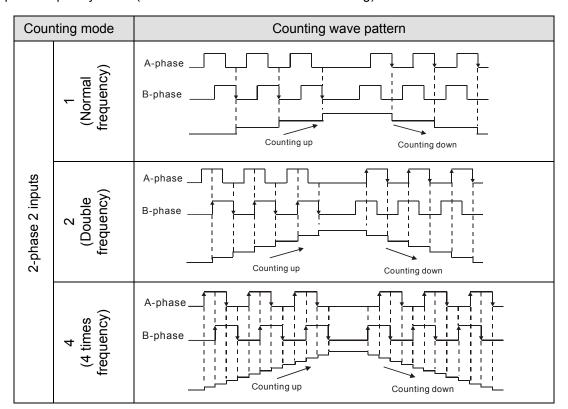
■ High-speed counters	s for SC series MPU,	total bandwidth: 130KHz
-----------------------	----------------------	-------------------------

Type		1-phase input								1-phase 2 inputs				2-phase 2 inputs					
Input	C235	C236	C237	C238	C239	C240	C241	C242	C243	C244	C245	C246	C247	C249	C250	C251	C252	C254	C255
X0	U/D						U/D			U/D		J	U	U		Α	Α	Α	
X1		U/D					R			R		D	D	D		В	В	В	
X2			U/D					U/D					R	R			R	R	
X3				U/D				R		S				S				S	
X4					U/D														
X5						U/D													
X10									U/D						כ				Α
X11											U/D				D				В

- U: Progressively increasing input
- A: A phase input
- S: Input started

- D: Progressively decreasing input
- B: B phase input
- R: Input cleared
- The functions of high-speed counters of input points X0 ~ X5 are the same of those in SA/SX series MPU.
- The maximum frequency of the input points X10 (C243), X11 (C245) and (X10, X11)(C250) of 1-phase input is 100KHz. The total bandwidth of X10 ~ X11 high-speed counting is 130KHz. The maximum input frequency of C255 (2-phase input X10, X11) is 50KHz.
- 3. The use of DHSCS instruction together with DHSCR instruction in SA/SX/SC series MPU cannot exceed 6 times. The use of DHSZ instruction cannot exceed 6 times as well. When DHSCS instruction designates I interruption, the designated high-speed counter cannot be used in DHSCS, DHSCR and DHSZ instruction.
- 4. Functions of high-speed counters X10 ~ X11 in SC series MPU:
 - a) When X10 and X11 are set to be 1-phase 1 input or 1-phase 2 outputs, the maximum frequency can reach 100KHz. When set to be 2-phase 2 inputs, the maximum frequency can reach 50KHz.
 - b) X10 and X11 can be set to be rising-edge or falling-edge counting. X10 is set by D1166 and X11 by D1167. K0: rising-edge counting; K1: falling-edge counting; K2: rising-/falling-edge counting (only available in X10).
 - c) Counting up or down of C243 is determined by On/Off status of M1243 anc that of C245 is determined by On/Off of M1245. Rising-edge and falling-edge countings cannot be performed at the same time. Rising edge or falling edge of C250 is determined by the content (K0 or K1) in D1166. C255 can only be used in 4 times frequency counting and rising-edge and falling-edge triggers are not available for C255.
 - d) When you use C243 or C245, you will not be able to use C250 or C255, and vice versa.
 - e) High-speed counter and high-speed comparator:

- f) Explanations on high-speed counter and high-speed comparator:
 - (i) When DHSCS and DHSCR instructions use new added high-speed counters, they can only use two groups of SVs in high speed comparison instruction. Assume you have used the comparison instruction DHSCS D0 C243 Y10, you can only set another group of instruction DHSCR D2 C243 Y10 or DHSCS D4 C245 Y10.


- (ii) When DHSZ instruction uses new added high-speed counters, it can only use one group of SV in the comparator.
- (iii) The number of SVs in high speed comparison instructions offered by SA/SX series MPU will not decrease owing to the increasing of high-speed counters.
- (iv) If the output device of the high-speed comparison instruction DHSCS requires high-speed output, it is recommended you use Y10 or Y11 for the output. If you use other general devices, the output will delay for 1 scan period for its setup or clearing. For example, if I0x0 interruption is set, C243 will correspond to I020, C245 to I040, and C250 and C255 to I060.
- (v) The high speed comparison instruction DHSCR is able to clear the counter, but only the counters used in the same instruction, e.g. DHSCR K10 C243 C243. This function only applies to 4 special high-speed counters C243, C245, C250 and C255.

5. Counting modes:

a) The 2-phase 2 inputs counting mode of the high speed counters in ES/EX/SS (V5.5 and above) and SA/SX/SC series MPU is set by special D1022 with normal frequency, double frequency and 4 times frequency modes. The contents in D1022 will be loaded in in the first scan when PLC is switched from STOP to RUN.

Device No.	Function
D1022	Setting up the multiplied frequency of the counter
D1022 = K1	Normal frequency mode selected
D1022 = K2 or 0	Double frequency mode selected (default)
D1022 = K4	4 times frequency mode selected

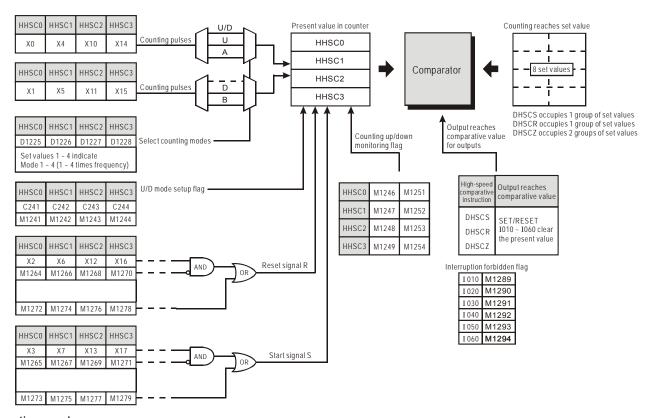
b) Multiplied frequency mode (11 indicates the occurrence of counting)

EH/EH2/SV series MPU supports high speed counters. C235 ~ C240 are program-interruption 1-phase high

speed counter with a total bandwidth of 20KHz, can be used alone with a counting frequency of up to 10KHz. C241 \sim C254 are hardware high speed counter (HHSC). There are four HHSC in EH/EH2/SV series MPU, HHSC0 \sim 3. The pulse input frequency of HHSC0 and HHSC1 can reach 200KHz and that of HHSC2 and HHSC3 can reach 20KHz (1 phase or A-B phase). The pulse input frequency of HHSC0 \sim 3 of 40EH2 series MPU can reach 200KHz, among which:

- C241, C246 and C251 share HHSC0
- C242, C247 and C252 share HHSC1
- C243, C248 and C253 share HHSC2
- C244, C249 and C254 share HHSC3
- 1. Every HHSC can only be designated to one counter by DCNT instruction.
- 2. There are three counting modes in every HHSC (see the table below):
 - a) 1-phase 1 input refers to "pulse/direction" mode.
 - b) 1-phase 2 inputs refers to "clockwise/counterclockwise (CW/CCW)" mode.
 - c) 2-phase 2 inputs refers to "A-B phase" mode.

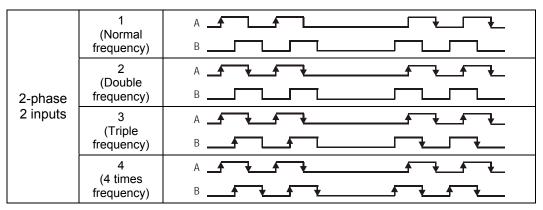
Counter type		Program-interruption high speed counter								На	ırdwar	e high	spee	ed cou	nter			
Туре		1-	phase	1 inp	ut		1-phase 1 input				1-phase 2 inputs				2-phase 2 inputs			
Input	C235	C236	C237	C238	C239	C240	C241	C242	C243	C244	C246	C247	C248	C249	C251	C252	C253	C254
X0	U/D						U/D				U				Α			
X1		U/D									D				В			
X2			U/D				R				R				R			
Х3				U/D			S				Ø				Ø			
X4					U/D			U/D				U				Α		
X5						U/D						D				В		
X6								R				R				R		
X7								S				S				S		
X10									U/D				U				Α	
X11													D				В	
X12									R				R				R	
X13									S				S				S	
X14										U/D				U				Α
X15														D				В
X16										R				R				R
X17										S				S				S


U: Progressively increasing input B: Progressively decreasing input

A: A phase input B: B phase input

S: Input started R: Input cleared

3. System structure of the hardware high speed counters:


- a) HHSC0 ~ 3 have reset signals and start signals from external inputs. Settings in M1272, M1274, M1276 and M1278 are reset signals of HHSC0, HHSC1, HHSC2 and HHSC3. Settings in M1273, M1275, M1277 and M1279 are start signals of HHSC0, HHSC1, HHSC2 and HHSC3.
- b) If the external control signal inputs of R and S are not in use, you can set M1264/M1266/M1268/M1270 and M1265/M1267/M1269/M1271 as True and disable the input signals. The corresponding external inputs can be used again as general input points (see the figure below).
- c) When special M is used as a high speed counter, the inputs controlled by START and RESET will be affected by the scan time.

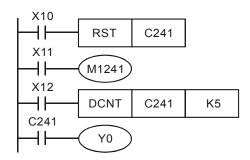
4. Counting modes:

The counting modes of the hardware high-speed counters in EH/EH2/SV series MPU can be set in D1225 ~ D1228.

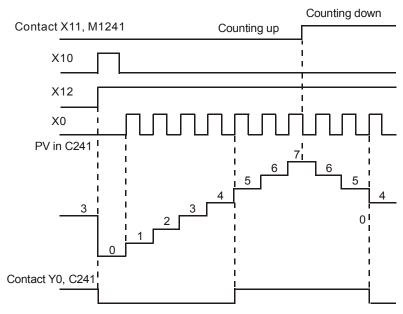
Countir	ng modes	Wave patte	ern
Туре	Set value in special D	Counting up(+1)	Counting down(-1)
1-phase	1 (Normal frequency)	U/DU/D FLAG	
1 input	2 (Double frequency)	U/D FLAG	
1-phase	1 (Normal frequency)	U	
2 inputs	2 (Double frequency)	U	

5. Special registers for relevant flags and settings of high speed counters:


Flag	Function
M1150	DHSZ instruction in multiple set values comparison mode
M1151	The execution of DHSZ multiple set values comparison mode is completed.
M1152	Set DHSZ instruction as frequency control mode
M1153	DHSZ frequency control mode has been executed.
	Designating the counting direction of high speed counters C235 ~ C245
M1235 ~ M1244	When M12 = Off, C2 will perform a counting up.
	When M12□□ = On, C2□□ will perform a counting down.
	Designating the counting direction of high speed counters C246 ~ C255
M1245~ M1255	When M12 = Off, C2 will perform a counting up.
	When M12 = On, C2 will perform a counting down.
M1160	X5 as the reset input signal of all high speed counters
M1261	High-speed comparison flag for DHSCR instruction
M1264	Disable the external control signal input point of HHSC0 reset signal point (R)
M1265	Disable the external control signal input point of HHSC0 start signal point (S)
M1266	Disable the external control signal input point of HHSC1 reset signal point (R)
M1267	Disable the external control signal input point of HHSC1 start signal point (S)
M1268	Disable the external control signal input point of HHSC2 reset signal point (R)
M1269	Disable the external control signal input point of HHSC2 start signal point (S)
M1270	Disable the external control signal input point of HHSC3 reset signal point (R)
M1271	Disable the external control signal input point of HHSC3 start signal point (S)
M1272	Internal control signal input point of HHSC0 reset signal point (R)
M1273	Internal control signal input point of HHSC0 start signal point (S)
M1274	Internal control signal input point of HHSC1 reset signal point (R)
M1275	Internal control signal input point of HHSC1 start signal point (S)
M1276	Internal control signal input point of HHSC2 reset signal point (R)
M1277	Internal control signal input point of HHSC2 start signal point (S)
M1278	Internal control signal input point of HHSC3 reset signal point (R)
M1279	Internal control signal input point of HHSC3 start signal point (S)
M1289	High speed counter I010 interruption forbidden

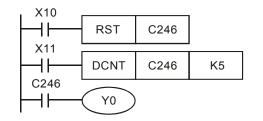

Flag	Function
M1290	High speed counter I020 interruption forbidden
M1291	High speed counter I030 interruption forbidden
M1292	High speed counter I040 interruption forbidden
M1293	High speed counter I050 interruption forbidden
M1294	High speed counter I060 interruption forbidden
M1312	C235 Start input point control
M1313	C236 Start input point control
M1314	C237 Start input point control
M1315	C238 Start input point control
M1316	C239 Start input point control
M1317	C240 Start input point control
M1320	C235 Reset input point control
M1321	C236 Reset input point control
M1322	C237 Reset input point control
M1323	C238 Reset input point control
M1324	C239 Reset input point control
M1325	C240 Reset input point control
M1328	Enable Start/Reset of C235
M1329	Enable Start/Reset of C236
M1330	Enable Start/Reset of C237
M1331	Enable Start/Reset of C238
M1332	Enable Start/Reset of C239
M1333	Enable Start/Reset of C240
D1022	Multiplied frequency of A-B phase counters for ES/EX/SS and SA/SX/SC series MPU
D1150	Table counting register for DHSZ multiple set values comparison mode
D1151	Register for DHSZ instruction frequency control mode (counting by table)
D1152 (low word) D1153 (high word)	In frequency control mode, DHSZ reads the upper and lower limits in the table counting register D1153 and D1152.
D1166	Switching between rising/falling edge counting modes of X10 (for SC_V1.4
	series MPU only)
D1167	Switching between rising/falling edge counting modes of X11 (for SC_V1.4
D4607	series MPU only)
D1225	The counting mode of the 1 st group counters (C241, C246, C251)
D1226	The counting mode of the 2 nd group counters (C242, C247, C252)
D1227	The counting mode of the 3 rd group counters (C243, C248, C253)
D1228	The counting mode of the 4 th group counters (C244, C249, C254)

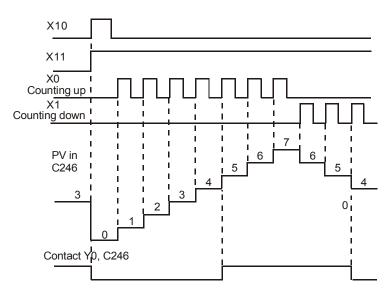
Flag	Function						
	Counting modes of HHSC0 ~ HHSC3 in EH/EH2/SV series MPU (default = 2)						
	1: Normal frequency counting mode						
D1225 ~ D1228	2: Double frequency counting mode						
	3: Triple frequency counting mode						
	4: 4 times frequency counting mode						


1-phase 1 input high-speed counter

Example:

- 1. X11 drives M1241 to determine whether C241 is an addition or subtraction counter.
- 2. When X10 is On, RST instsruction will be executed and the PV in C241 will be cleared to "0" and the contact will be Off.
- 3. In C241, when X12 is On and C241 receives the signals from X0, the PV in the counter will count up (plus 1) or count down (minus 1).
- 4. When the counting of C241 reaches SV K5, the contact of C241 will be On. If there are still input signals from X0, the counting will continue.
- 5. C241 in ES/EX/SS and SA/SX/SC series MPU has external input signals to reset X1.
- 6. C241 in EH/EH2/SV series MPU has external input signals to reset X2 and start X3.
- 7. The external input contact of reset signal of C241 (HHSC0) in EH/EH2/SV series MPU is disabled by M1264. The external input contact of start signal is disabled by M1265.
- 8. The internal input contact of reset signal of C241 (HHSC0) in EH/EH2/SV series MPU is disabled by M1272. The internal input contact of start signal is disabled by M1273.
- 9. The counting modes (normal frequency or double frequency) of C246 (HHSC0) in EH/EH2/SV series MPU can be set up by D1225. The default setting is double frequency mode.




1-phase 2 inputs high-speed counter

Example:

LD X10
RST C246
LD X11
DCNT C246 K5
LD C246
OUT Y0

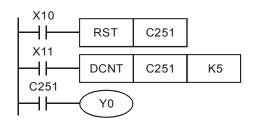
- When X10 is On, RST instsruction will be executed. The PV in C246 will be cleared to "0" and the output contact will be reset to be Off.
- In C246, when X11 is On and C246 receives the signals from X0, the PV in the counter will count up (plus 1) or count down (minus 1).
- When the counting of C246 reaches SV K5, the contact of C246 will be On. If there are still input signals from X0, the counting will continue.
- C246 in EH/EH2/SV series MPU has external input signals to reset X2 and start X3.

- 5. The counting modes (normal frequency or double frequency) of C246 (HHSC0) in EH/EH2/SV series MPU can be set up by D1225. The default setting is double frequency mode.
- 6. The external input contact of reset signal of C246 (HHSC0) in EH/EH2/SV series MPU is disabled by M1264. The external input contact of start signal is disabled by M1265.
- 7. The internal input contact of reset signal of C246 (HHSC0) in EH/EH2/SV series MPU is disabled by M1272. The internal input contact of start signal is disabled by M1273.

2-phase AB input high-speed counter

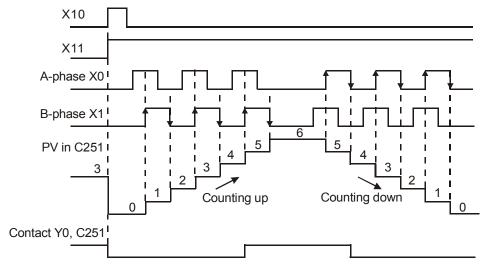
Example:

LD X10

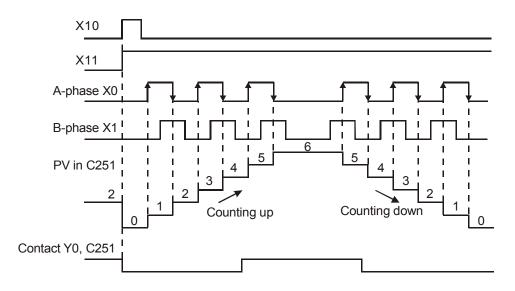

RST C251

LD X11

DCNT C251 K5


LD C251

OUT Y0



- 1. When X10 is On, RST instruction will be executed. The PV in C251 will be cleared to "0" and the output contact will be reset to be Off.
- 2. In C251, when X11 is On and C251 receives the A-phase signals from X0 and B-phase signals from X1, the PV in the counter will count up (plus 1) or count down (minus 1). You can select different counting modes if you use EH/EH2/SV series MPU.
- 3. When the counting of C251 reaches SV K5, the contact of C251 will be On. If there are still input signals coming in, the counting will continue.
- 4. The counting modes (normal frequency, double frequency or 4 times frequency) of C251 (HHSC0) in ES/SA series MPU can be set up by D1022. The default setting is double frequency mode.
- 5. C251 in EH/EH2/SV series MPU has external input signals to reset X2 and start X3.
- 6. The counting modes (normal frequency, double frequency, triple frequency or 4 times frequency) of C251 (HHSC0) in EH/EH2/SV series MPU can be set up by D1225. The default setting is double frequency mode.
- 7. The external input contact of reset signal of C246 (HHSC0) in EH/EH2/SV series MPU is disabled by M1264. The external input contact of start signal is disabled by M1265.
- 8. The internal input contact of reset signal of C246 (HHSC0) in EH/EH2/SV series MPU is disabled by M1272. The internal input contact of start signal is disabled by M1273.

ES/EX/SS and SA/SX/SC series MPU (double frequency)

EH/EH2/SV series MPU (double frequency)

2.8 Numbering and Functions of Registers [D], [E], [F]

2.8.1 Data register [D]

A data register is for storing a 16-bit datum of values between -32,768 to +32,767. The highest bit is "+" or "-" sign. Two 16-bit registers can be combined into a 32-bit register (D + 1; D of smaller No. is for lower 16 bits). The highest b it is "+" or "-" sign and it can store a 32-bit datum of values between -2,147,483,648 to +2,147,483,647.

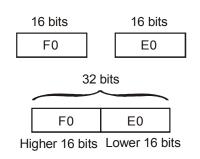
■ ES/EX/SS series MPU:

	General purpose	D0 ~ D407, 408 points	
Data register D	Latched	D408 ~ D599, 192 points. Fixed to be latched.	Total
Data register D	Special purpose	D1000 ~ D1143, 144 points. Some are latched.	744 points
	Index register E, F	E, F, 2 points	

■ SA/SX/SC series MPU:

0.40.400	•• • .		
	General purpose	D0 ~ D199, 200 points. Fixed to be non-latched.	
Data register D	Latched	D200 ~ D999, D2000 ~ D4999, 3,800 points. Can be modified to be non-latched by setting up parameter.	Total 5,000
	Special purpose	D1000 ~ D1999, 1,000 points. Some are latched.	points
	Index register E, F	E0 ~ E3, F0 ~ F3, 8 points	
File register		K0 ~ K1,599, MPU 1,600 points. Fixed to be latched.	1,600 points

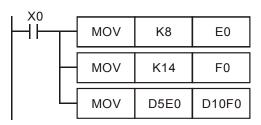
■ EH/EH2/SV series MPU:


	General purpose	D0 ~ D199, 200 points. Can be modified to be latched by setting up parameters.					
Data register D	Latched	D200 ~ D999, D2000 ~ D9999, 8,800 points. Can be modified to be non-latched by setting up parameters.	Total 10,000 points				
	Special purpose	D1000 ~ D1999, 1,000 pints. Some are latched. E0 ~ E7, F0 ~ F7, 16 points.					
	Index register E, F						
File register		K0 ~ K9,999, MPU 10,000 points. Fixed to be latched.	10,000 points				

There are five types of registers:

1. **General purpose register:** When PLC goes from RUN to STOP or the power of the PLC is switched off, the data in the register will be cleared to "0". When M1033 = On and PLC goes from RUN to STOP, the data will not be cleared, but will still be cleared to "0" when the power is off.

- 2. **Latched register:** When the power of PLC is switched off, the data in the register will not be cleared but will retain at the value before the power is off. You can use RST or ZRST instruction to clear the data in the latched register.
- 3. **Special purpose register:** Every register of this kind has its special definition and purpose, mainly for storing the system status, error messages and monitored status. See 2.10 and 2.11 for more details.
- 4. **Index register E, F:** The index register is a 16-bit register. There are 2 points of E, F in ES/EX/SS series MPU; 8 points (E0 ~ E3, F0 ~ F3) in SA/SX/SC series MPU; 16 points (E0 ~ E7, F0 ~ F7) in EH/EH2/SV series MPU. If the index register is to be used as a 32-bit register, please designate E. When E is already designated in a 32-bit instruction, using also F will not be allowed.
- 5. **File register:** There are 1,600 file registers (K0 ~ K1,599) in SA/SX/SC series MPU and 10,000 file registers (K0 ~ K9,999) in EH/EH2/SV series MPU. The file register does not have an exact device No.; therefore the read/write function of file registers has to be executed by instruction API 148 MEMR, API 149 MEMW or through peripheral devices HPP and WPLSoft.


2.8.2 Index Register [E], [F]

Index registers E, F are 16-bit data registers and can be written and read.

If you need to use a 32-bit register, you have to designate E. In this case, F will be covered by E and cannot be used anymore; otherwise, the content in E (32-bit) will be incorrect. We suggest you use DMOVP K0 E instruction, the content in E (including F) will be cleared to "0" when the power of PLC is switched on.

The combination of E, F when you use a 32-bit index register: (F0, E0), (F1, E1), (F2, E2), ...(F7, E7)

When X0 = On, E0 = 8, F0 = 14, D5E0 = D (5 + 8) = D13, D10F0 = D (10 + 14) = D24. At this moment, the content in D13 will be moved to D24.

The index register is the same as normal operands, can be used for moving or comparison on word devicies (KnX, KnY, KnM, KnS, T, C, D) and bit devices (X, Y, M, S). ES/SA series MPU does not support constant (K, H) index register, but EH/EH2/SV series MPU supports constant (K, H) index register.

ES/EX/SS series MPU has 2 points of index registers E0, F0

SA/SX/SC series MPU has 8 points of index registers E0 ~ E3, F0 ~ F3

EH/EH2/SV series MPU has 16 points of index registers E0 ~ E7, F0 ~ F7

- Some instructions do not support index registers. For how to use index register E, F to modify the operands, see Chapter 5.4 for more details.
- When you use the instruction mode in WPLSoft to generate constant (K, H) index register function, please use symbol "@". For example, "MOV K10@E0 D0F0"

■ When you use index register E, F to modify the operands, the modification range CANNOT exceed the range of special purpose registers D1000 ~ D1999 and special auxiliary registers M1000 ~ M1999 in case errors may occur.

2.8.3 Functions and Features of File Registers

When the power of PLC is switched on, SA/SX/SC and EH/EH2/SV series MPU will check the following devices:

- 1. M1101 (whether the file register is enabled)
- D1101 (No. of file registers in SA/SX/SC series MPU: K0 ~ K1,599; No. of file registers in EH/EH2/SV series MPU: K0 ~ K9,999)
- 3. D1102 (Number of file registers to be read in SA/SX/SC series MPU: K0 ~ K1,600; number of file registers to be read in EH/EH2/SV series MPU: K0 ~ K8,000)
- 4. D1103 (devices for storing the data read from file registers; the No. of designated data register D starts from K2,000 ~ K9,999; determining whether to automatically send the content in the file register to the designated data register.)

Note:

- 1. When D1101 of SA/SX/SC series MPU is bigger than 1,600, D1101 of EH/EH2/SV series MPU is bigger than 8,000 and D1103 is smaller than 2,000 or bigger than 9,999, the data read from file registers will not be sent to data register D.
- 2. When the program starts to send the data read from the file register to data register D and the address of the file register or the data register D exceed their ranges, PLC will stop the reading.
- 3. There are 1,600 file registers in SA/SX/SC series MPU and 10,000 in EH/EH2/SV series MPU. The file register does not have an exact device No.; therefore the read/write function of file registers has to be executed by instruction API 148 MEMR, API 149 MEMW or through peripheral devices HPP and WPLSoft.
- 4. If you tend to read a file register with an address that is not within the range, the read value will be "0".

2.9 Pointer [N], Pointer [P], Interruption Pointer [I]

■ ES/EX/SS series MPU:

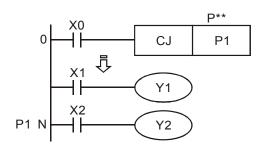
	N	For master co	ontrol loop	N0 ~ N7, 8 points	Control point of master control loop		
P For CJ, CALL instructions		instructions	P0 ~ P63, 64 points	Position pointer of CJ, CALL			
Pointer		Interruption	External interruption	1001, I101, I201, I301, 4 points			
	1		Timed interruption	16 \bigcirc , 1 point (\bigcirc = 10 ~ 99, time base = 1ms) (for V5.7)	Position pointer of interruption subroutine		
			Communication interrupt	I150, 1 point			

■ SA/SX/SC series MPU:

	N	Master contro	ol loop	N0 ~ N7, 8 points	Control point of master control loop
	Р	For CJ, CALI	L instructions	P0 ~ P255, 256 points	Position pointer of CJ, CALL
5		Interruption	External interruption	I001, I101, I201, I301, I401, I501, 6 points	
Pointer	,		Timer interruption	16□□, 17□□, 2 points (□□ = 1 ~ 99, time base = 1ms)	Position pointer of
	'		High-speed counter interruption	1010, 1020, 1030, 1040, 1050, 1060, 6 points	interruption subroutine
			Communication interruption	I150, 1 point	

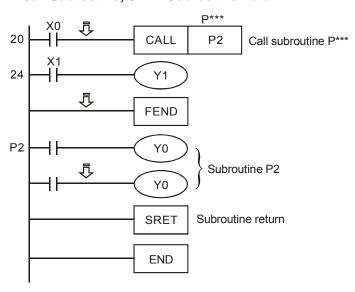
Note: Among the 6 pairs of interruption No. (I001, I010), (I101, I020), (I201, I030), (I301, I040), (I401, I050), (I501, I060), only 1 No. in the pair is allowed to be used in the program. If you use both No. in the pair and write them into the program, there may be syntax errors occurring.

■ EH/EH2/SV series MPU:


	N	Master contro	ol loop	N0 ~ N7, 8 points	Control point of master control loop		
	Р	For CJ, CALI	instructions	P0 ~ P255, 256 points	Position pointer of CJ, CALL		
			External interruption	$ 100 \square (X0), 110 \square (X1), 120 \square (X2), 130 \square (X3), 140 \square (X4), 150 \square (X5), 6 points (= 1, rising-edge trigger , = 0, falling-edge trigger)$			
Pointer		Internation	Timed interruption	I6, I7, 2 points (= 1 ~ 99, time base = 1ms) I8, 1 point (= 1 ~ 99, time base = 0.1ms)	Position pointer of		
	'	Interruption	High-speed counter interruption	I010, I020, I030, I040, I050, I060, 6 points	interruption subroutine		
			Pulse interruption	I110, I120, I130, I140, 4 points			
			Communication interruption	I150, I160, I170, 3 points			
			Frequency measurement card triggered interruption	I180, 1 point			

Note: Input point X as a high-speed counter cannot be used as an external interruption signal. For example, if C251 occupies X0, X1, X2 and X3, the external input interruption No. 100 (X0), 110 (X1), 120 (X2), and 130 (X3) cannot be used.

Pointer N: Used with MC and MCR instructions. MC is the master control start instruction. When MC instruction is executer, the instructions between MC and MCR will still be executed normally. See Chapter 3 explanations on MC and MCR instructions for more details.


Pointer P: Used with API 00 CJ, API 01 CALL and API 02 SRET. See Chapter 6 explanations on CJ, CALL and SRET instructions for more details.

CJ Conditional Jump:

- When X0 = On, the program will jump from address 0 to N (designated label P1) and keep on the execution. The addresses in the middle will be ignored.
- When X0 = Off, the program will execute from address 0 and keep on executing. At this time, CJ instruction will not be executed.

CALL Call Subroutine, SRET Subroutine Return:

When X0 = On, CALL instruction will be executed and the program will jump to P2 and executed the designated subroutine. When SRET instruction is executed, the program will return to address 24 and keep on the execution.

Interruption Pointer I: Used with API 04 EI, API 05 DI, API 03 IRET. See Chapter 5.5 for more details. There are 6 types of interruption pointer. To insert an interruption, you have to combine the action with EI (enable interruption), DI (disable interruption), IRET (interruption return) instructions.

- 1. External interruption: Due to the special hardware design inside the MPU, the input signals coming in at input terminals X0 ~ X5 when rising-edge or falling-edge triggers will not be affected by the scan cycle. The currently executed program will be interrupted immediately and the execution will jump to the designated interruption subroutine pointer I00 (X0), I10 (X1), I20 (X2), I30 (X3), I40 (X4), I50 (X5). Till the execution reaches IRET instruction, the program will return to the original position and keep on its execution.

 In SA/SX series MPU, X0 (pulse input point) works with X4 (external interruption point), corresponding to C235, C251 and C253 work with I401, which will be able to interrupt and intercept the present value in the high-speed counter. D1181 is the device to store the 32-bit value. X1 (pulse input point) works with X5 (external interruption point), corresponding to C236 works with I501, which will be able to interrupt and intercept the present value in the high-speed counter. D1198 and D1199 are the devices to store the 32-bit value.

 In SC series MPU, X10 (pulse input point) works with X4 (external interruption point), corresponding to C243 and
 - C255 work with I401, which will be able to interrupt and intercept the present value in the high-speed counter.

 D1180 and D1181 are the devices to store the 32-bit value. X11 works with X5, corresponding to C245 works with I501, which will be able to interrupt and intercept the present value in the high-speed counter. D1198 and D1199 are the devices to store the 32-bit value.
- 2. <u>Timed interruption:</u> PLC automatically interrupts the currently executed program every a fixed period of time and jumps to the execution of a designated interruption subroutine.
- 3. <u>Interruption when the counting reaches the target:</u> The high-speed counter comparison instruction API 53 DHSCS can designates that when the comparison reaches the target, the currently executed program will be interrupted and jump to the designated interruption subrountine executing the interruption pointers I010, I020, I030, I040, I050 and I060.
- 4. <u>Pulse interruption:</u> The pulse output instruction API 57 PLSY can be set up that the interruption signal is sent out synchronously when the first pulse is sent out by enabling flags M1342 and M1343. The corresponding

interruptions are I130 and I140. You can also set up that the interruption signal is sent out after the last pulse is sent out by enabling flags M1340 and M1341. The corresponding interruptions are I110 and I120.

5. Communication interruption:

I150: When the communication instruction RS is being used, you can send out interruption request when the program receives a specific word by interruption I150. The specific word is set up in the low byte of D1168. This function can be adopted when the PLC receives data of different length during the connection with the communication device. Set up the end word in D1168 and write the interruption subroutine I150 and when the PLC receives this end word, the program will execute I150.

I160: RS instruction sends out interruption request when receiving a specific length of data. When the data received equals the low byte of D1169, I160 will be triggered. When D1169 = 0, I160 will not be triggered. I170: In Slave mode, interruption I170 will be generated when the data receiving is completed. Normally when the communication terminal of the PLC is in Slave mode, PLC will not immediately process the communication data entered but process it after the END is executed. Therefore, when the scan time is very long and you need the communication data to be processed immediately, you can use interruption I170 for this matter.

6. Frequency measurement card triggered interruption:

I180: When the PLC sets up the frequency measurement card in mode 1 (pulse cycle measurement) and mode 3 (pulse number counting) by M1019 and D1034, I180 will be supported as well.

2.10 Special Auxiliary Relays and Special Data Registers

The types and functions of special auxiliary relays (special M) and special data registers (special D) are listed in the table below. Please be noted that some devices of the same No. may bear different meanings in different series MPUs. Special M and special D marked with "*" will be further illustrated in the 2.11. Columns marked with "R" regers to "read only", "R/W" refers to "read and write", "-" refers to the status remains unchanged and "#" refers to the system will set it up according to the status of the PLC.

Special M	Function	ES EX SS		EH EH2 SV		STOP RUN	RUN	Attribute	Latched	Default
M1000*	Monitoring normally open contact (A)	0	0	0	Off	On	Off	R	NO	Off
M1001*	Monitoring normally closed contact (B)	0	0	\circ	On	Off	On	R	NO	On
M1002*	Enabling positive pulses (On when RUN)	0	0	0	Off	On	Off	R	NO	Off
M1003*	Enabling negative pulses (Off when RUN)	0	0	0	On	Off	On	R	NO	On
M1004*	On when syntax errors occur	\circ	\circ	0	Off	Off	-	R	NO	Off
M1005*	Password of data backup memory card and password of MPU do not match	X	×	0	Off	-	-	R	NO	Off
M1006*	Data backup memory card has not been initialized	X	\times	0	Off	-	-	R	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH2	Off	STOP	RUN	Attribute	Latched	Default
M1007*	Data do not exist in the program area of data backup memory card	×	×	0	Off	-	-	R	NO	Off
M1008*	Scanning watchdog timer (WDT) On	0	0	0	Off	Off	-	R	NO	Off
M1009	Insufficient 24V DC supply, LV signal has been occurred.	0	0	0	Off	-	ı	R	NO	Off
M1010	ES/SA: PLSY Y0 mode selection, continuous output when On EH/EH2/SV: Pulse output when reaching END instruction	0	0	0	Off	-	ı	R/W	NO	Off
M1011*	10ms clock pulse, 5ms On/5ms Off	0	0	0	Off	-	-	R	NO	Off
M1012*	100ms clock pulse, 50ms On / 50ms Off	0	0	0	Off	-	-	R	NO	Off
M1013*	1s clock pulse, 0.5s On / 0.5s Off	0	\circ	0	Off	-	-	R	NO	Off
M1014*	1min clock pulse, 30s On / 30s Off	0	\circ	0	Off	-	-	R	NO	Off
M1015*	Enabling high-speed counter	\times	\circ	0	Off	-	-	R/W	NO	Off
M1016*	Displaying real time clock in A.D.	×	0	0	Off	-	-	R/W	NO	Off
M1017*	±30 seconds correction on real time clock	×	0	0	Off	-	-	R/W	NO	Off
M1018	Flag for radian/degree, On: for degree	\times	\circ	\circ	Off	-	-	R/W	NO	Off
M1019	Enabling frequency measurement card	\times	X	\circ	Off	Off	-	R	NO	Off
M1020	Zero flag	0	\circ	0	Off	-	-	R	NO	Off
M1021	Borrow flag	0	\circ	0	Off	-	ı	R	NO	Off
M1022	Carry flag	0	0	0	Off	-	-	R	NO	Off
M1023	PLSY Y1 mode selection, continuous output when On	0	0	X	Off	-	-	R/W	NO	Off
M1024	Requesting COM1 monitoring	0	0	0	Off	-	-	R	NO	Off
M1025	There is incorrect request for communication.	0	0	0	Off	-	ı	R	NO	Off
M1026	Enabling RAMP module	×	0	0	Off	-	-	R/W	NO	Off
M1027	Number of PR outputs	×	0	0	Off	-	-	R/W	NO	Off
	10ms time switching flag.									
M1028	Off: time base of T64 ~ T126 = 100ms On: time base of T64 ~ T126 = 10ms	0	×	×	Off	-	-	R/W	NO	Off
M1029*	ES/SA: Y0 pulse output of PLSY, PLSR instructions is completed, or other relevant instructions complete their executions. EH/EH2/SV: the 1 st group pulse output CH0 (Y0, Y1) is completed, or other relevant instructions complete their executions.	0	0	0	Off	-	-	R	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH2		STOP	RUN	Attribute	Latched	Default
M1030*	ES/SA: Y1 pulse output of PLSY, PLSR instructions is completed, or other relevant instructions complete their executions. EH/EH2/SV: the 2 nd group pulse output CH1 (Y2, Y3) is completed, or other relevant instructions complete their executions.	0	0	0	Off	-	1	R	NO	Off
M1031*	Clear all non-latched areas	0	\circ	\circ	Off	-	1	R/W	NO	Off
M1032*	Clear all latched areas	\circ	\circ	\circ	Off	-	1	R/W	NO	Off
M1033*	Memory latched when STOP	0	\circ	\circ	Off	-	ı	R/W	NO	Off
M1034*	Disabling all Y outputs	0	\circ	\circ	Off	-	ı	R/W	NO	Off
M1035*	Enabling input point X as the RUN/STOP switch, corresponding to D1035 (SA designates X7 only; SX designates X3 only; SC designates X5 only)	×	0	0	1	-	1	R/W	YES	Off
M1036	EH2/SV: the 3 rd group pulse output CH2 (Y4, Y5) is completed. (Not available in EH)	X	×	0	Off	-	-	R	NO	Off
W1030	SPD instruction is able to use X0 ~ X5 to detect the flag (only available in SC_V1.4 and above)	X	0	×	Off	Off	-	R/W	NO	Off
M1037	EH2/SV: the 4 th group pulse output CH3 (Y6, Y7) is completed. (Not available in EH)	X	×	\circ	Off	-	ı	R	NO	Off
M1039*	Fixing time scan mode	\circ	\circ	0	Off	-	-	R/W	NO	Off
M1040	Disabling step	0	0	\circ	Off	-	-	R/W	NO	Off
M1041	Starting step	0	0	0	Off	-	Off	R/W	NO	Off
M1042	Enabling pulses	0	0	0	Off	-	-	R/W	NO	Off
M1043	Zero return completed	0	0	0	Off	-	Off	R/W	NO	Off
M1044	Zero point condition	0	0	\circ	Off	-	Off	R/W	NO	Off
M1045	Diabling all output reset	0	0	0	Off	-	-	R/W	NO	Off
M1046	Setting STL status as On	0	\circ	0	Off	-	-	R	NO	Off
M1047	Enabling STL monitoring	X	\circ	\circ	Off	-	1	R/W	NO	Off
M1048	Alarm status	X	\circ	\circ	Off	-	ı	R	NO	Off
M1049	Setting up alarm monitoring	X	0	0	Off	-	-	R/W	NO	Off
M1050	Inhibiting I001	0	0	×	Off	-	-	R/W	NO	Off
M1051	Inhibiting I101	0	0	X	Off	-	-	R/W	NO	Off
M1052	Inhibiting I201	0	0	X	Off	-	-	R/W	NO	Off
M1053	Inhibiting I301	0	0	×	Off	-	-	R/W	NO	Off
M1054	Inhibiting I401	X	0	X	Off	-	-	R/W	NO	Off
M1055	Inhibiting I501	X	\bigcirc	X	Off	-	-	R/W	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH2	Off U On	STOP	RUN	Attribute	Latched	Default
M1056	Inhibiting I6	0	\circ	×	Off	-	-	R/W	NO	Off
M1057	Inhibiting I7	X	0	×	Off	-	-	R/W	NO	Off
M1059	Inhibiting I010 ~ I060	X	0	X	Off	-	-	R/W	NO	Off
M1060	System error message 1	0	0	0	Off	-	-	R	NO	Off
M1061	System error message 2	0	\circ	\circ	Off	-	-	R	NO	Off
M1062	System error message 3	0	\circ	0	Off	-	-	R	NO	Off
M1063	System error message 4	0	\circ	0	Off	-	-	R	NO	Off
M1064	Incorrect use of operands	0	\circ	\circ	Off	Off	ı	R	NO	Off
M1065	Syntax error	0	\circ	\circ	Off	Off	-	R	NO	Off
M1066	Loop error	0	\circ	\circ	Off	Off	ı	R	NO	Off
M1067*	Calculation error	0	\circ	\circ	Off	Off	ı	R	NO	Off
M1068*	Calculation error locked (D1068)	0	\circ	0	Off	-	1	R	NO	Off
M1070	ES/SA: Y1 time base switching for PWM instruction (On: 100us; Off: 1ms) EH/EH2/SV: Y0 time base switching for PWM instruction (On: 100us; Off: 1ms) EH_V1.2 and above/EH2/SV: when On, D1371 will decide the time base)	0	0	0	Off	-	-	R/W	NO	Off
M1071	Y2 time base switching for PWM instruction (On: 100us; Off: 1ms) EH_V1.2 and above/EH2/SV: when On, D1372 will decide the time base)	×	×	0	Off	-	-	R/W	NO	Off
M1072	Executing PLC RUN instruction	\circ	\circ	\circ	Off	On	Off	R/W	NO	Off
M1075	Error occurring when writing FLASH card	×	X	\circ	Off	-	-	R	NO	Off
M1076*	Real time clock malfunction	×	\circ	\circ	Off	-	-	R	NO	Off
M1077	Battery in low voltage, malfunction or no battery	×	0	\circ	Off	-	-	R	NO	Off
M1078	Immediately stopping Y0 pulse output for PLSY instruction	0	0	×	Off	-	-	R/W	NO	Off
M1079	Immediately stopping Y1 pulse output for PLSY instruction	0	0	×	Off	-	-	R/W	NO	Off
M1080	Requesting COM2 monitoring	0	\circ	\circ	Off	_	-	R	NO	Off
M1081	Changing direction for FLT instruction	X	\circ	0	Off	-	-	R/W	NO	Off
M1082	Real time clock has been changed	X	\circ	0	Off	-	-	R	NO	Off
M1083	Allowing interruption subroutine in FROM/TO instructions	×	0	0	Off	-	-	R/W	NO	Off
M1084*	Detecting bandwidth (only available in ES/EX/SS_V6.4, SA/SX_V1.6, SC_V1.4 and above)	0	\circ	×	Off	Off	Off	R/W	NO	Off

M1085 Selecting DVP-PCC01 duplicating function C C C C C C C RW NO Off M1086 Setting up the switch for enabling password function C C C C C RW NO Off M1087 Enabling LV signal C C RW NO Off M1087 Enabling LV signal C C RW NO Off M1087 Enabling LV signal C C RW NO Off M1087 C C RW NO Off	Special M	Function	ES EX SS	SA SX SC	EH2	Off U On	STOP RUN	RUN	Attribute	Latched	Default
M1080 Of DVP-PCC01	M1085	Selecting DVP-PCC01 duplicating function	0	0	0	Off	-	-	R/W	NO	Off
Matrix comparison. Comparing between equivalent values (M1088 = 1) or different values (M1088 = 0). Vol. 0 off Off Off - R/W NO Off M1089 Matrix search end flag. When the comparison reaches the last bit. M1089 = 1. Vol. 0 off Off Off - R NO Off M1090 Matrix search start flag. Comparing from bit 0 (M1090 = 1). Vol. 0 off Off Off - R NO Off M1091 Matrix bit search flag. When the comparison is completed, the comparison will stop immediately (M1091=1). Vol. 0 off Off Off - R NO Off M1092 Matrix pointer error flag. When the pointer Pr exceeds its range, M1092 = 1. Vol. 0 off Off Off - R/W NO Off M1093 Matrix pointer clear flag. Selding 1 to the current value of the Pr. Vol. 0 off Off - R/W NO Off M1094 Matrix pointer clear flag. Clearing the current value of the Pr to 0. Vol. 0 off Off Off R/W NO Off M1095 Matrix cotation/displacement/input complement flag Vol. 0 off Off Off	M1086		0	0	0	Off	-	-	R/W	NO	Off
M1088 Comparing between equivalent values (M1088 = 1)	M1087*	Enabling LV signal	×	X	\circ	Off	-	-	R/W	NO	Off
reaches the last bit, M1089 = 1. M1090 Matrix search start flag. Comparing from bit 0 X 0 0 0 0 0 0 0 0	M1088	Comparing between equivalent values (M1088 = 1)	×	0	0	Off	Off	-	R/W	NO	Off
Matrix bit search flag. When the comparison is completed, the comparison will stop immediately (M1091=1). Matrix pointer error flag. When the pointer Prexceeds its range, M1092 = 1. M1093 Matrix pointer error flag. When the pointer Prexceeds its range, M1092 = 1. M1093 Matrix pointer increasing flag. Adding 1 to the current value of the Pr. M1094 Matrix pointer clear flag. Clearing the current value M1095 M1096 M1096 M1097 M	M1089		×	0	0	Off	Off	-	R	NO	Off
M1091 completed, the comparison will stop immediately (M1091=1). X Off Off - R NO Off M1092 Matrix pointer error flag. When the pointer Pr exceeds its range, M1092 = 1. X Off Off - R NO Off M1093 Matrix pointer increasing flag. Adding 1 to the current value of the Pr. X Off Off - R/W NO Off M1094 Matrix pointer clear flag. Clearing the current value of the Pr. X Off Off - R/W NO Off M1095 Matrix pointer clear flag. Clearing the current value of the Pr. X Off Off - R/W NO Off M1095 Matrix rotation/displacement/output carry flag X Off Off - R NO Off M1096 Matrix rotation/displacement direction flag X Off Off - R/W NO Off M1097 Matrix counting the number of bits which are "1" or "0" X Off Off - R/W NO Off M1098 Matrix counting the number of bits which are "1" o	M1090		×	0	0	Off	Off	-	R	NO	Off
M1092 exceeds its range, M1092 = 1. M1093 Matrix pointer increasing flag. Adding 1 to the current value of the Pr. M1094 Matrix pointer clear flag. Clearing the current value of the Pr to 0. M1095 Matrix rotation/displacement/output carry flag	M1091	completed, the comparison will stop immediately	×	0	0	Off	Off	1	R	NO	Off
M1094 Matrix pointer clear flag. Clearing the current value of the Pr to 0. M1095 Matrix pointer clear flag. Clearing the current value of the Pr to 0. M1096 Matrix rotation/displacement/output carry flag	M1092	_ · · · · · · · · · · · · · · · · · · ·	×	0	\circ	Off	Off	ı	R	NO	Off
M1095 Matrix rotation/displacement/output carry flag	M1093		×	0	\circ	Off	Off	1	R/W	NO	Off
M1096 Matrix displacement/input complement flag	M1094	1	×	0	\bigcirc	Off	Off	1	R/W	NO	Off
M1097 Matrix rotation/displacement direction flag M1098 Matrix counting the number of bits which are "1" or "0"	M1095	Matrix rotation/displacement/output carry flag	×	\circ	0	Off	Off	-	R	NO	Off
Matrix counting the number of bits which are "1" or "0"	M1096	Matrix displacement/input complement flag	×	\circ	\circ	Off	Off	1	R/W	NO	Off
M1098 "0"	M1097	Matrix rotation/displacement direction flag	\times	\circ	\circ	Off	Off	-	R/W	NO	Off
M1100 SPD instruction sampling once	M1098	_	X	0	0	Off	Off	-	R/W	NO	Off
M1101* Whether to enable file registers	M1099	On when the matrix counting result is "0"	×	\circ	\circ	Off	Off	ı	R/W	NO	Off
M1102 Y10 pulse output ends (For SC)	M1100	SPD instruction sampling once	×	×	\circ	Off	-	-	R/W	NO	Off
M1103 Y11 pulse output ends (For SC)	M1101*	Whether to enable file registers	×	0	\circ	ı	-	-	R/W	Yes	Off
M1104* Status of SW1 on digital switch card/AX0 input point on 4Dl card (photpcoupler isolation) M1105* Status of SW2 on digital switch card/AX1 input point on 4Dl card (photpcoupler isolation) M1106* Status of SW3 on digital switch card/AX2 input point on 4Dl card (photpcoupler isolation) X X O Off Off - R NO Off M1106* Status of SW3 on digital switch card/AX2 input point on 4Dl card (photpcoupler isolation) X X O Off Off - R NO Off M1107* Status of SW4 on digital switch card/AX3 input point on 4Dl card (photpcoupler isolation) X X O Off Off - R NO Off	M1102	Y10 pulse output ends (For SC)	×	\circ	×	Off	-	-	R/W	NO	Off
on 4DI card (photpcoupler isolation) M1105* Status of SW2 on digital switch card/AX1 input point on 4DI card (photpcoupler isolation) X X O Off Off - R NO Off M1105* Status of SW2 on digital switch card/AX1 input point on 4DI card (photpcoupler isolation) X X O Off Off - R NO Off M1105* Status of SW3 on digital switch card/AX2 input point on 4DI card (photpcoupler isolation) X X O Off Off - R NO Off M1106* Status of SW3 on digital switch card/AX2 input point on 4DI card (photpcoupler isolation) X X O Off Off - R NO Off M1106* Status of SW3 on digital switch card/AX3 input point on 4DI card (photpcoupler isolation) Off Off - R NO Off	M1103	Y11 pulse output ends (For SC)	×	0	×	Off	-	-	R/W	NO	Off
on 4DI card (photpcoupler isolation) M1106* Status of SW3 on digital switch card/AX2 input point on 4DI card (photpcoupler isolation) X X O Off Off - R NO Off M1107* Status of SW4 on digital switch card/AX3 input point on 4DI card (photpcoupler isolation) X X O Off Off - R NO Off - R NO Off M1107* Off Off - R NO Off	M1104*	1	X	×	0	Off	Off	-	R	NO	Off
on 4DI card (photpcoupler isolation) Status of SW4 on digital switch card/AX3 input point on 4DI card (photpcoupler isolation) × × O Off Off - R NO Off	M1105*	_	×	×	0	Off	Off	-	R	NO	Off
on 4DI card (photpcoupler isolation)	M1106*	1	X	×	0	Off	Off	-	R	NO	Off
M1108* Status of SW5 on digital switch card	M1107*		X	×	0	Off	Off	-	R	NO	Off
	M1108*	Status of SW5 on digital switch card	\times	X	0	Off	Off	-	R	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH2	Off U On	STOP	RUN	Attribute	Latched	Default
M1109*	Status of SW6 on digital switch card	\times	X	\circ	Off	Off	-	R	NO	Off
M1110*	Status of SW7 on digital switch card	×	X	0	Off	Off	1	R	NO	Off
M1111*	Status of SW8 on digital switch card	×	×	0	Off	Off	1	R	NO	Off
M1112*	AY0 output point on 2DO card (transistor)	×	×	0	Off	-	Off	R/W	NO	Off
M1113*	AY1 output point on 2DO card (transistor)	×	X	0	Off	-	Off	R/W	NO	Off
M1115*	Switch for enabling pulse accelerating/decelerating output (not available in SC_V1.4 and above)	0	0	X	Off	Off	Off	R/W	NO	Off
M1116*	Pulse output is accelerating (not available in SC_V1.4 and above)	0	0	×	Off	Off	Off	R/W	NO	Off
M1117*	Accelerating/decelerating pulse output reaches its target (not available in SC_V1.4 and above)	0	0	×	Off	Off	Off	R/W	NO	Off
M1118*	Pulse output is decelerating (not available in SC_V1.4 and above)	0	0	×	Off	Off	Off	R/W	NO	Off
M1119*	Accelerating/decelerating pulse output is completed (not available in SC_V1.4 and above)	0	0	×	Off	Off	Off	R/W	NO	Off
M1120*	Retaining the communication setting of COM2 (RS-485), modifying D1120 will be invalid when M1120 is set.	0	0	0	Off	Off	1	R/W	NO	Off
M1121	Waiting for the sending of RS-485 communication data	0	0	0	Off	On	-	R	NO	Off
M1122	Sending request	0	0	0	Off	Off	-	R/W	NO	Off
M1123	Receiving is completed	0	0	0	Off	Off	-	R/W	NO	Off
M1124	Waiting for receiving	0	0	0	Off	Off	-	R	NO	Off
M1125	Communication reset	0	0	0	Off	Off	-	R/W	NO	Off
M1126	Selecting STX/ETX user defined or system defined	0	0	0	Off	Off	-	R/W	NO	Off
M1127	Sending/receiving data of communication instruction is completed (RS instruction not included)	0	0	0	Off	Off	1	R/W	NO	Off
M1128	Sending/receiving indication	0	0	0	Off	Off	1	R	NO	Off
M1129	Receiving time-out	0	0	0	Off	Off	-	R/W	NO	Off
M1130	Selectin STX/ETX user defined or system defined	0	\circ	0	Off	Off	-	R/W	NO	Off
M1131	On during MODRD/RDST/MODRW data are converted to hex data	0	0	0	Off	Off	-	R	NO	Off
M1132	On when there are no communication related instructions in the program	0	0	0	Off	-	-	R	NO	On
M1133*	Enabling special high-speed pulse output Y0 (50KHz) SC_V1.4 and above: 2-axis synchronous control, enabling Y10 output	×	0	×	Off	Off	Off	R/W	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH2	Off	STOP RUN	RUN	Attribute	Latched	Default
M1134*	Special high-speed pulse output Y0 (50KHz) On: continuous output (Not available in SC_V1.4 and above)	×	0	X	Off	Off	-	R/W	NO	Off
M1135*	Special high-speed pulse output Y0 (50KHz) reaches the target number of pulses. SC_V1.4 and above: 2-axis synchronous control, enabling Y11 output	×	0	×	Off	Off	Off	R/W	NO	Off
M1136*	Retaining the communication setting of COM3	×	X	0	Off	-	1	R/W	NO	Off
M1138*	Retaining the communication setting of COM1 (RS-232), modifying D1036 will be invalid when M1138 is set.	0	0	0	Off	-	-	R/W	NO	Off
M1139*	Selecting ASCII or RTU mode of COM1 (RS-232) when in Slave mode Off: ASCII; On: RTU	0	0	0	Off	-	1	R/W	NO	Off
M1140	MODRD/MODWR/MODRW data receiving error	0	0	0	Off	Off	1	R	NO	Off
M1141	MODRD/MODWR/MODRW parameter error	0	0	0	Off	Off	-	R	NO	Off
M1142	Data receiving of VFD-A commands error	0	\circ	\circ	Off	Off	ı	R	NO	Off
M1143*	Selecting ASCII or RTU mode of COM2 (RS-485) when in Slave mode Off: ASCII; On: RTU Selecting ASCII or RTU mode of COM2 (RS-485) when in Master mode (used together with MODRD/MODWR/MODRW instructions) Off: ASCII; On: RTU	0	0	0	Off	-	-	R/W	NO	Off
M1144*	Switch for enabling adjustable pulse accelerating/decelerating output Y0	×	0	×	Off	Off	Off	R/W	NO	Off
M1145*	Adjustable pulse output Y0 is accelerating	×	0	X	Off	Off	ı	R/W	NO	Off
M1146*	Adjustable pulse output Y0 reaches the target frequency	×	0	×	Off	Off	ı	R/W	NO	Off
M1147*	Adjustable pulse output Y0 is decelerating	×	\circ	\times	Off	Off	1	R	NO	Off
M1148*	Adjustable pulse output Y0 is completed	×	0	×	Off	Off	Off	R/W	NO	Off
M1149*	Adjustable pulse output Y0 temporarily stops counting the number of pulses.	X	0	×	Off	Off	-	R/W	NO	Off
M1150	DHSZ instruction in multiple set values comparison mode	×	×	0	Off	-	-	R/W	NO	Off
M1151	The execution of DHSZ multiple set values comparison mode is completed.	×	×	0	Off	-	-	R	NO	Off
M1152	Setting up DHSZ instruction as frequency control mode	X	×	0	Off	-	-	R/W	NO	Off
M1153	DHSZ frequency control mode has been executed.	X	×	0	Off	-	-	R	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH EH2 SV	Off ↓ On	STOP RUN	RUN	Attribute	Latched	Default
M1154*	Enabling the deceleration function of adjustable pulse output Y0	×	0	×	Off	-	-	R/W	NO	Off
M1161	8-bit mode On: in 8-bit mode	0	0	0	Off	-	-	R/W	NO	Off
M1162	Switching between decimal integer and binary floating point for SCLP instruction On: binary floating point; Off: decimal integer	\circ	0	0	Off	-	-	R/W	NO	Off
M1165	When On, the program and password on flash will be copied to the PLC when PLC is powered. (Not available in EH)	×	×	0	1	-	-	R/W	YES	Off
M1166	When On, the recipe on flash will be copied to the PLC when PLC is powered. (Not available in EH)	X	×	0	-	-	-	R/W	YES	Off
M1167	16-bit mode for HKY input	\times	0	\circ	Off	-	-	R/W	NO	Off
M1168	Designating work mode of SMOV	×	\circ	0	Off	-	-	R/W	NO	Off
M1169	Selecting PWD modes	×	X	\circ	Off	-	-	R/W	NO	Off
M1170*	Enabling single step execution	\times	X	\circ	Off	-	-	R/W	NO	Off
M1171*	Single step execution	X	X	0	Off	-	1	R/W	NO	Off
M1172*	Switch for 2-phase pulse output On: switch on	×	0	X	Off	Off	Off	R/W	NO	Off
M1173*	On: continuous output	X	\circ	X	Off	-	-	R/W	NO	Off
M1174*	The number of output pulses reaches the target	×	\circ	×	Off	Off	-	R/W	NO	Off
M1175	Losing PLC parameter data (not available in EH)	×	×	0	ı	-	-	R	YES	Off
M1176	Losing the data in PLC program (not available in EH)	×	X	0	-	-	-	R	YES	Off
M1178*	Enabling VR0 rotary switch	×	0	0	Off	-	-	R/W	NO	Off
M1179*	Enabling VR1 rotary switch	×	0	0	Off	-	-	R/W	NO	Off
M1184*	Enabling modem function (not available in SV)	×	X	0	Off	-	-	R/W	NO	Off
M1185*	Enabling initialization of modem (not available in SV)	×	X	0	Off	-	-	R/W	NO	Off
M1186*	Initialization of modem fails (not available in SV)	×	X	0	Off	-	-	R/W	NO	Off
M1187*	Initialization of modem is completed (not available in SV)	×	×	0	Off	-	-	R/W	NO	Off
M1188*	Displaying whether modem is connecting currently (not available in SV)	×	×	0	Off	-	-	R/W	NO	Off
M1196	Setting up the content type in the display (for SX) On: hex; Off: decimal	×	0	×	Off	-	-	R/W	NO	Off
M1197	Setting up the display of the 100ths digit (for SX)	X	\circ	×	Off	_	-	R/W	NO	Off
M1198	Setting up the display of the 10ths digit (for SX)	X	0	×	Off	-	-	R/W	NO	Off
M1200	Counting mode of C200 (On: counting down)	X	\circ	\circ	Off	-	-	R/W	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH EH2 SV	Off	STOP	RUN	Attribute	Latched	Default
M1201	Counting mode of C201 (On: counting down)	×	0	\circ	Off	-	-	R/W	NO	Off
M1202	Counting mode of C202 (On: counting down)	\times	\circ	\circ	Off	-	-	R/W	NO	Off
M1203	Counting mode of C203 (On: counting down)	×	0	\circ	Off	-	-	R/W	NO	Off
M1204	Counting mode of C204 (On: counting down)	×	0	\circ	Off	-	-	R/W	NO	Off
M1205	Counting mode of C205 (On: counting down)	×	\circ	\circ	Off	-	-	R/W	NO	Off
M1206	Counting mode of C206 (On: counting down)	×	\circ	\circ	Off	-	-	R/W	NO	Off
M1207	Counting mode of C207 (On: counting down)	×	\circ	0	Off	-	-	R/W	NO	Off
M1208	Counting mode of C208 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1209	Counting mode of C209 (On: counting down)	×	\circ	0	Off	-	-	R/W	NO	Off
M1210	Counting mode of C210 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1211	Counting mode of C211 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1212	Counting mode of C212 (On: counting down)	×	\circ	\circ	Off	-	-	R/W	NO	Off
M1213	Counting mode of C213 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1214	Counting mode of C214 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1215	Counting mode of C215 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1216	Counting mode of C216 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1217	Counting mode of C217 (On: counting down)	×	0	\circ	Off	-	-	R/W	NO	Off
M1218	Counting mode of C218 (On: counting down)	×	0	\circ	Off	-	-	R/W	NO	Off
M1219	Counting mode of C219 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1220	Counting mode of C220 (On: counting down)	×	0	\circ	Off	-	-	R/W	NO	Off
M1221	Counting mode of C221 (On: counting down)	×	0	\circ	Off	-	-	R/W	NO	Off
M1222	Counting mode of C222 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1223	Counting mode of C223 (On: counting down)	×	0	\circ	Off	-	-	R/W	NO	Off
M1224	Counting mode of C224 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1225	Counting mode of C225 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1226	Counting mode of C226 (On: counting down)	×	0	\circ	Off	-	-	R/W	NO	Off
M1227	Counting mode of C227 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1228	Counting mode of C228 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1229	Counting mode of C229 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1230	Counting mode of C230 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1231	Counting mode of C231 (On: counting down)	×	\circ	0	Off	-	-	R/W	NO	Off
M1232	Counting mode of C232 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1233	Counting mode of C233 (On: counting down)	X	\bigcirc	0	Off	_	_	R/W	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH2	Off	STOP RUN	RUN	Attribute	Latched	Default
M1234	Counting mode of C234 (On: counting down)	×	\circ	\circ	Off	-	-	R/W	NO	Off
M1235	Counting mode of C235 (On: counting down)	0	\circ	\circ	Off	-	-	R/W	NO	Off
M1236	Counting mode of C236 (On: counting down)	0	\circ	\circ	Off	-	-	R/W	NO	Off
M1237	Counting mode of C237 (On: counting down)	0	\circ	0	Off	-	-	R/W	NO	Off
M1238	Counting mode of C238 (On: counting down)	0	\circ	\circ	Off	-	-	R/W	NO	Off
M1239	Counting mode of C239 (On: counting down)	×	\circ	0	Off	-	-	R/W	NO	Off
M1240	Counting mode of C240 (On: counting down)	×	0	0	Off	-	-	R/W	NO	Off
M1241	Counting mode of C241 (On: counting down)	\circ	\circ	\circ	Off	-	-	R/W	NO	Off
M1242	Counting mode of C242 (On: counting down)	\circ	\circ	\circ	Off	-	-	R/W	NO	Off
M1243	Counting mode of C243 (On: counting down)	×	\circ	0	Off	-	-	R/W	NO	Off
M1244	Counting mode of C244 (On: counting down)	\circ	\circ	\circ	Off	-	-	R/W	NO	Off
M1245	Counting mode of C245 (On: counting down)	×	\circ	×	Off	-	-	R/W	NO	Off
M1246	C246 counter monitoring (On: counting down)	\circ	\circ	0	Off	-	-	R	NO	Off
M1247	C247 counter monitoring (On: counting down)	\circ	\circ	0	Off	-	-	R	NO	Off
M1248	C248 counter monitoring (On: counting down)	×	X	0	Off	-	-	R	NO	Off
M1249	C249 counter monitoring (On: counting down)	0	0	0	Off	-	-	R	NO	Off
M1250	C250 counter monitoring (On: counting down)	×	0	×	Off	-	-	R	NO	Off
M1251	C251 counter monitoring (On: counting down)	0	0	0	Off	-	-	R	NO	Off
M1252	C252 counter monitoring (On: counting down)	0	0	0	Off	-	-	R	NO	Off
M1253	C253 counter monitoring (On: counting down)	×	X	0	Off	-	-	R	NO	Off
M1254	C254 counter monitoring (On: counting down)	0	0	0	Off	-	-	R	NO	Off
M1255	C255 counter monitoring (On: counting down)	×	0	×	Off	-	-	R	NO	Off
M1258	Y0 pulse output signal reversing for PWM instruction	×	X	0	Off	-	-	R/W	NO	Off
M1259	Y2 pulse output signal reversing for PWM instruction	×	X	0	Off	-	-	R/W	NO	Off
M1260	X5 as the reset input signal for all high-speed counters	×	0	×	Off	-	-	R/W	NO	Off
M1261	High-speed comparator comparison flag for DHSCR instruction	X	×	0	Off	-	-	R/W	NO	Off
M1264	Enabling reset function of HHSC0	X	X	0	Off	-	-	R/W	NO	Off
M1265	Enabling start function of HHSC0	X	X	0	Off	-	-	R/W	NO	Off
M1266	Enabling reset function of HHSC1	X	X	0	Off	-	-	R/W	NO	Off
M1267	Enabling start function of HHSC1	×	X	0	Off	_	-	R/W	NO	Off
M1268	Enabling reset function of HHSC2	X	\times	\circ	Off	-	-	R/W	NO	Off
M1269	Enabling start function of HHSC2	X	\times	\circ	Off	_	_	R/W	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH EH2 SV	Off U On	STOP	RUN	Attribute	Latched	Default
M1270	Enabling reset function of HHSC3	×	X	\circ	Off	-	-	R/W	NO	Off
M1271	Enabling start function of HHSC3	×	X	\circ	Off	1	-	R/W	NO	Off
M1272	Reset control of HHSC0	×	X	\circ	Off	1	-	R/W	NO	Off
M1273	Start control of HHSC0	\times	×	\circ	Off	-	-	R/W	NO	Off
M1274	Reset control of HHSC1	×	X	\circ	Off	-	-	R/W	NO	Off
M1275	Start control of HHSC1	\times	×	\circ	Off	-	-	R/W	NO	Off
M1276	Reset control of HHSC2	×	×	\circ	Off	1	-	R/W	NO	Off
M1277	Start control of HHSC2	×	X	\circ	Off	1	-	R/W	NO	Off
M1278	Reset control of HHSC3	×	X	\circ	Off	1	-	R/W	NO	Off
M1279	Start control of HHSC3	×	X	\circ	Off	ı	-	R/W	NO	Off
M1280	Inhibiting I00□	×	X	\circ	Off	1	-	R/W	NO	Off
M1281	Inhibiting I10□	×	X	\circ	Off	ı	-	R/W	NO	Off
M1282	Inhibiting I20	×	X	0	Off	-	-	R/W	NO	Off
M1283	Inhibiting I30□	×	×	0	Off	ı	-	R/W	NO	Off
M1284	Inhibiting I40□	×	X	0	Off	-	-	R/W	NO	Off
M1285	Inhibiting I50□	×	X	0	Off	-	-	R/W	NO	Off
M1286	Inhibiting I6	×	X	0	Off	-	-	R/W	NO	Off
M1287	Inhibiting I7	×	×	0	Off	ı	-	R/W	NO	Off
M1288	Inhibiting I8	×	X	0	Off	-	-	R/W	NO	Off
M1289	Inhibiting I010	×	×	0	Off	-	-	R/W	NO	Off
M1290	Inhibiting I020	×	×	\circ	Off	ı	-	R/W	NO	Off
M1291	Inhibiting I030	×	X	0	Off	-	-	R/W	NO	Off
M1292	Inhibiting I040	×	X	0	Off	-	-	R/W	NO	Off
M1293	Inhibiting I050	×	X	0	Off	-	-	R/W	NO	Off
M1294	Inhibiting I060	×	X	\circ	Off	ı	-	R/W	NO	Off
M1295	Inhibiting I110	×	×	\circ	Off	1	-	R/W	NO	Off
M1296	Inhibiting I120	×	X	\circ	Off	ı	-	R/W	NO	Off
M1297	Inhibiting I130	X	×	0	Off	-	-	R/W	NO	Off
M1298	Inhibiting I140	X	×	0	Off	ı	-	R/W	NO	Off
M1299	Inhibiting I150	X	0	0	Off	-	-	R/W	NO	Off
M1300	Inhibiting I160	X	×	0	Off	-	-	R/W	NO	Off
M1301	Inhibiting I170	X	×	0	Off	-	-	R/W	NO	Off
M1302	Inhibiting I180	X	×	\circ	Off	-	-	R/W	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH2	Off U On	STOP	RUN	Attribute	Latched	Default
M1303	High/low bits exchange for XCH instruction	\times	\circ	\circ	Off	-	-	R/W	NO	Off
M1304*	Enabling force On/Off of input point X	\times	\circ	\circ	Off	-	-	R/W	NO	Off
M1305	Reverse operation of the 1 st group pulse CH0 (Y0, Y1) for PLSV/DPLSV/DRVI/DDRVI/DRVA/DDRVA instruction	×	×	0	Off	-	-	R	NO	Off
M1306	Reverse operation of the 2 nd group pulse CH1 (Y2, Y3) for PLSV/DPLSV/DRVI/DDRVI/DRVA/DDRVA instruction	×	×	0	Off	-	1	R	NO	Off
M1310*	Immediately disabling Y10 pulse output (for SC_V1.4 and above)	×	0	×	Off	Off	-	R/W	NO	Off
M1311*	Disabling Y11 pulse output (for SC_V1.4 and above)	\times	\circ	×	Off	Off	-	R/W	NO	Off
M1312	Controlling start input point of C235	\times	X	\circ	Off	-	-	R/W	NO	Off
M1313	Controlling start input point of C236	×	×	0	Off	-	-	R/W	NO	Off
M1314	Controlling start input point of C237	X	X	0	Off	-	ı	R/W	NO	Off
M1315	Controlling start input point of C238	×	×	0	Off	-	-	R/W	NO	Off
M1316	Controlling start input point of C239	X	X	0	Off	-	ı	R/W	NO	Off
M1317	Controlling start input point of C240	X	X	0	Off	-	ı	R/W	NO	Off
M1320	Controlling reset input point of C235	X	X	0	Off	-	ı	R/W	NO	Off
M1321	Controlling reset input point of C236	X	X	0	Off	-	ı	R/W	NO	Off
M1322	Controlling reset input point of C237	X	X	0	Off	-	ı	R/W	NO	Off
M1323	Controlling reset input point of C238	×	X	0	Off	-	1	R/W	NO	Off
M1324	Controlling reset input point of C239	×	×	0	Off	-	1	R/W	NO	Off
M1325	Controlling reset input point of C240	×	×	0	Off	-	-	R/W	NO	Off
M1328	Enabling start/reset of C235	×	X	0	Off	-	-	R/W	NO	Off
M1329	Enabling start/reset of C236	×	X	0	Off	-	-	R/W	NO	Off
M1330	Enabling start/reset of C237	×	X	0	Off	-	-	R/W	NO	Off
M1331	Enabling start/reset of C238	×	×	0	Off	-	1	R/W	NO	Off
M1332	Enabling start/reset of C239	×	X	0	Off	-	-	R/W	NO	Off
M1333	Enabling start/reset of C240	×	X	0	Off	-	-	R/W	NO	Off
M1334*	EH/EH2/SV: stopping the 1 st group pulse output CH0 (Y0, Y1)	×	0	0	Off	_	_	R/W	NO	Off
IVI I J J 4	SC_V1.4 and above: selecting Y10 pulse output stop modes				Oil	-	-	IN/VV	INO	Oii
M1335*	EH/EH2/SV: stopping the 2 nd group pulse output CH1 (Y2, Y3)	×	0	0	Off	_	_	R/W	NO	Off
-	SC_V1.4 and above: selecting Y11 pulse output stop modes									

Special M	Function	ES EX SS	SA SX SC	EH2	Off	STOP	RUN	Attribute	Latched	Default
M1336	Sending out the 1 st group pulse output CH0 (Y0, Y1)	×	X	\circ	Off	Off	Off	R	NO	Off
M1337	Sending out the 2 nd group pulse output CH1 (Y2, Y3)	X	×	\circ	Off	Off	Off	R	NO	Off
M1338	Enabling offset pulses of the 1 st group pulse output CH0 (Y0, Y1)	×	×	\circ	Off	-	-	R/W	NO	Off
M1339	Enabling offset pulses of the 2 nd group pulse output CH1 (Y2, Y3)	×	×	\bigcirc	Off	-	-	R/W	NO	Off
M1340	Generating interruption I110 after the 1 st group pulse output CH0 (Y0, Y1) is sent out	×	×	\circ	Off	-	-	R/W	NO	Off
M1341	Generating interruption I120 after the 2 nd group pulse output CH1 (Y2, Y3) is sent out	×	×	\circ	Off	-	-	R/W	NO	Off
M1342	Generating interruption I130 when the 1 st group pulse output CH0 (Y0, Y1) is sent out	×	×	0	Off	-	-	R/W	NO	Off
M1343	Generating interruption I140 when the 2 nd group pulse output CH1 (Y2, Y3) is sent out	X	×	0	Off	-	-	R/W	NO	Off
M1344	Enabling the offset of the 1 st group pulse output CH0 (Y0, Y1)	×	×	0	Off	-	-	R/W	NO	Off
M1345	Enabling the offset of the 2 nd group pulse output CH1 (Y2, Y3)	X	×	0	Off	-	-	R/W	NO	Off
M1346	Enabling ZRN CLEAR output signal	×	X	0	Off	-	-	R/W	NO	Off
M1347	Reset after the 1 st group pulse output CH0 (Y0, Y1) is completed for PLSY instruction	X	×	0	Off	-	-	R/W	NO	Off
M1348	Reset after the 2 nd group pulse output CH1 (Y2, Y3) is completed for PLSY instruction	×	×	0	Off	-	-	R/W	NO	Off
M1350*	Enabling EASY PLC LINK	×	\circ	0	Off	-	-	R/W	NO	Off
M1351*	Enabling auto mode on EASY PLC LINK	×	\circ	0	Off	-	-	R/W	NO	Off
M1352*	Enabling manual mode on EASY PLC LINK	×	0	\circ	Off	-	-	R/W	NO	Off
M1353*	Enable 32 slave unit linkage and up to 100 data length of data exchange on EASY PLC LINK	×	×	\circ	Off	-	-	R/W	NO	Off
M1354*	Enable simultaneous data read/write in a polling of EASY PLC LINK	X	0	0	Off	-	-	R/W	NO	Off
M1360*	Slave ID#1 status on EASY PLC LINK network	X	\circ	0	Off	-	-	R	NO	Off
M1361*	Slave ID#2 status on EASY PLC LINK network	X	\circ	0	Off	-	-	R	NO	Off
M1362*	Slave ID#3 status on EASY PLC LINK network	X	\circ	0	Off	-	-	R	NO	Off
M1363*	Slave ID#4 status on EASY PLC LINK network	X	\circ	0	Off	-	-	R	NO	Off
M1364*	Slave ID#5 status on EASY PLC LINK network	X	\circ	0	Off	=	-	R	NO	Off
M1365*	Slave ID#6 status on EASY PLC LINK network	X	0	\circ	Off	-	-	R	NO	Off
M1366*	Slave ID#7 status on EASY PLC LINK network	X	\bigcirc	0	Off	-	-	R	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH2		STOP	RUN	Attribute	Latched	Default
M1367*	Slave ID#8 status on EASY PLC LINK network	X	0	0	Off	-	-	R	NO	Off
M1368*	Slave ID#9 status on EASY PLC LINK network	X	\circ	0	Off	-	-	R	NO	Off
M1369*	Slave ID#10 status on EASY PLC LINK network	×	\circ	0	Off	-	-	R	NO	Off
M1370*	Slave ID#11 status on EASY PLC LINK network	×	\circ	0	Off	-	-	R	NO	Off
M1371*	Slave ID#12 status on EASY PLC LINK network	×	0	0	Off	-	-	R	NO	Off
M1372*	Slave ID#13 status on EASY PLC LINK network	×	\circ	0	Off	-	-	R	NO	Off
M1373*	Slave ID#14 status on EASY PLC LINK network	×	0	0	Off	-	-	R	NO	Off
M1374*	Slave ID#15 status on EASY PLC LINK network	X	\circ	\circ	Off	-	-	R	NO	Off
M1375*	Slave ID#16 status on EASY PLC LINK network	×	0	0	Off	-	-	R	NO	Off
M1376*	Indicating Slave ID#1 data transaction status on EASY PLC LINK	X	0	0	Off	-	-	R	NO	Off
M1377*	Indicating Slave ID#2 data transaction status on EASY PLC LINK	×	0	0	Off	-	-	R	NO	Off
M1378*	Indicating Slave ID#3 data transaction status on EASY PLC LINK	X	0	0	Off	-	-	R	NO	Off
M1379*	Indicating Slave ID#4 data transaction status on EASY PLC LINK	×	0	0	Off	-	-	R	NO	Off
M1380*	Indicating Slave ID#5 data transaction status on EASY PLC LINK	×	0	0	Off	-	-	R	NO	Off
M1381*	Indicating Slave ID#6 data transaction status on EASY PLC LINK	X	0	0	Off	-	-	R	NO	Off
M1382*	Indicating Slave ID#7 data transaction status on EASY PLC LINK	×	0	0	Off	-	-	R	NO	Off
M1383*	Indicating Slave ID#8 data transaction status on EASY PLC LINK	×	0	0	Off	-	-	R	NO	Off
M1384*	Indicating Slave ID#9 data transaction status on EASY PLC LINK	×	0	\circ	Off	-	-	R	NO	Off
M1385*	Indicating Slave ID#10 data transaction status on EASY PLC LINK	×	0	\circ	Off	-	-	R	NO	Off
M1386*	Indicating Slave ID#11 data transaction status on EASY PLC LINK	×	0	\bigcirc	Off	-	-	R	NO	Off
M1387*	Indicating Slave ID#12 data transaction status on EASY PLC LINK	×	0	\circ	Off	-	-	R	NO	Off
M1388*	Indicating Slave ID#13 data transaction status on EASY PLC LINK	×	0	\circ	Off	-	-	R	NO	Off
M1389*	Indicating Slave ID#14 data transaction status on EASY PLC LINK	×	0	0	Off	-	_	R	NO	Off
M1390*	Indicating Slave ID#15 data transaction status on EASY PLC LINK	×	0	0	Off	-	_	R	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH EH2 SV	Off U On	STOP RUN	RUN	Attribute	Latched	Default
M1391*	Indicating Slave ID#16 data transaction status on EASY PLC LINK	×	0	0	Off	-	-	R	NO	Off
M1392*	Slave ID#1 linking error	×	\circ	0	Off	-	-	R	NO	Off
M1393*	Slave ID#2 linking error	×	\circ	0	Off	-	-	R	NO	Off
M1394*	Slave ID#3 linking error	×	\circ	\circ	Off	-	ı	R	NO	Off
M1395*	Slave ID#4 linking error	×	\circ	0	Off	-	-	R	NO	Off
M1396*	Slave ID#5 linking error	×	\circ	0	Off	-	-	R	NO	Off
M1397*	Slave ID#6 linking error	×	\circ	0	Off	-	1	R	NO	Off
M1398*	Slave ID#7 linking error	×	\circ	0	Off	-	-	R	NO	Off
M1399*	Slave ID#8 linking error	×	0	0	Off	-	-	R	NO	Off
M1400*	Slave ID#9 linking error	×	0	0	Off	-	-	R	NO	Off
M1401*	Slave ID#10 linking error	×	0	0	Off	-	-	R	NO	Off
M1402*	Slave ID#11 linking error	X	0	0	Off	-	-	R	NO	Off
M1403*	Slave ID#12 linking error	×	0	0	Off	-	-	R	NO	Off
M1404*	Slave ID#13 linking error	X	0	\circ	Off	-	-	R	NO	Off
M1405*	Slave ID#14 linking error	×	0	0	Off	-	-	R	NO	Off
M1406*	Slave ID#15 linking error	×	0	0	Off	-	-	R	NO	Off
M1407*	Slave ID#16 linking error	×	0	0	Off	-	-	R	NO	Off
M1408*	Indicating reading from Salve ID#1 is completed	X	0	\circ	Off	-	-	R	NO	Off
M1409*	Indicating reading from Salve ID#2 is completed	X	0	0	Off	-	-	R	NO	Off
M1410*	Indicating reading from Salve ID#3 is completed	X	0	0	Off	-	-	R	NO	Off
M1411*	Indicating reading from Salve ID#4 is completed	X	0	0	Off	-	-	R	NO	Off
M1412*	Indicating reading from Salve ID#5 is completed	X	0	0	Off	-	-	R	NO	Off
M1413*	Indicating reading from Salve ID#6 is completed	X	0	\circ	Off	-	-	R	NO	Off
M1414*	Indicating reading from Salve ID#7 is completed	X	0	\circ	Off	-	-	R	NO	Off
M1415*	Indicating reading from Salve ID#8 is completed	X	0	0	Off	-	-	R	NO	Off
M1416*	Indicating reading from Salve ID#9 is completed	X	0	0	Off	-	-	R	NO	Off
M1417*	Indicating reading from Salve ID#10 is completed	X	0	0	Off	-	-	R	NO	Off
M1418*	Indicating reading from Salve ID#11 is completed	X	0	0	Off	-	-	R	NO	Off
M1419*	Indicating reading from Salve ID#12 is completed	×	0	0	Off	-	-	R	NO	Off
M1420*	Indicating reading from Salve ID#13 is completed	×	0	0	Off	-	-	R	NO	Off
M1421*	Indicating reading from Salve ID#14 is completed	×	0	0	Off	-	-	R	NO	Off
M1422*	Indicating reading from Salve ID#15 is completed	×	\circ	0	Off	-	-	R	NO	Off
M1423*	Indicating reading from Salve ID#16 is completed	×	0	0	Off	-	-	R	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH2	Off U On	STOP RUN	RUN	Attribute	Latched	Default
M1424*	Indicating writing to Salve ID#1 is completed	×	0	0	Off	-	-	R	NO	Off
M1425*	Indicating writing to Salve ID#2 is completed	×	\circ	\circ	Off	-	-	R	NO	Off
M1426*	Indicating writing to Salve ID#3 is completed	×	\circ	\circ	Off	-	ı	R	NO	Off
M1427*	Indicating writing to Salve ID#4 is completed	×	\circ	\circ	Off	-	ı	R	NO	Off
M1428*	Indicating writing to Salve ID#5 is completed	×	\circ	\circ	Off	-	ı	R	NO	Off
M1429*	Indicating writing to Salve ID#6 is completed	×	0	0	Off	-	-	R	NO	Off
M1430*	Indicating writing to Salve ID#7 is completed	×	0	0	Off	-	-	R	NO	Off
M1431*	Indicating writing to Salve ID#8 is completed	×	\circ	0	Off	-	-	R	NO	Off
M1432*	Indicating writing to Salve ID#9 is completed	×	0	0	Off	-	-	R	NO	Off
M1433*	Indicating writing to Salve ID#10 is completed	×	\circ	0	Off	-	-	R	NO	Off
M1434*	Indicating writing to Salve ID#11 is completed	×	\circ	0	Off	-	-	R	NO	Off
M1435*	Indicating writing to Salve ID#12 is completed	×	0	0	Off	-	-	R	NO	Off
M1436*	Indicating writing to Salve ID#13 is completed	×	\circ	\circ	Off	-	-	R	NO	Off
M1437*	Indicating writing to Salve ID#14 is completed	×	0	\circ	Off	-	-	R	NO	Off
M1438*	Indicating writing to Salve ID#15 is completed	×	\circ	0	Off	-	-	R	NO	Off
M1439*	Indicating writing to Salve ID#16 is completed	×	\circ	0	Off	-	-	R	NO	Off
M1440*	Slave ID#17 status on EASY PLC LINK network	×	X	0	Off	-	-	R	NO	Off
M1441*	Slave ID#18 status on EASY PLC LINK network	×	X	0	Off	-	-	R	NO	Off
M1442*	Slave ID#19 status on EASY PLC LINK network	×	X	0	Off	-	1	R	NO	Off
M1443*	Slave ID#20 status on EASY PLC LINK network	×	X	0	Off	-	-	R	NO	Off
M1444*	Slave ID#21 status on EASY PLC LINK network	×	X	0	Off	-	-	R	NO	Off
M1445*	Slave ID#22 status on EASY PLC LINK network	×	X	0	Off	-	-	R	NO	Off
M1446*	Slave ID#23 status on EASY PLC LINK network	×	X	0	Off	-	-	R	NO	Off
M1447*	Slave ID#24 status on EASY PLC LINK network	×	X	0	Off	-	-	R	NO	Off
M1448*	Slave ID#25 status on EASY PLC LINK network	×	X	\circ	Off	-	-	R	NO	Off
M1449*	Slave ID#26 status on EASY PLC LINK network	×	X	\circ	Off	-	-	R	NO	Off
M1450*	Slave ID#27 status on EASY PLC LINK network	×	X	\circ	Off	-	-	R	NO	Off
M1451*	Slave ID#28 status on EASY PLC LINK network	×	X	0	Off	-	-	R	NO	Off
M1452	Slave ID#29 status on EASY PLC LINK network	×	X	0	Off	-	-	R	NO	Off
M1453*	Slave ID#30 status on EASY PLC LINK network	×	X	0	Off	-	-	R	NO	Off
M1454*	Slave ID#31 status on EASY PLC LINK network	×	X	0	Off	-	-	R	NO	Off
M1455*	Slave ID#32 status on EASY PLC LINK network	×	X	0	Off	-	-	R	NO	Off
M1456*	Indicating Slave ID#17 data transaction status on EASY PLC LINK	×	×	0	Off	-	-	R	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH EH2 SV	Off	STOP	RUN	Attribute	Latched	Default
M1457*	Indicating Slave ID#18 data transaction status on EASY PLC LINK	×	×	\circ	Off	1	-	R	NO	Off
M1458*	Indicating Slave ID#19 data transaction status on EASY PLC LINK	×	×	\bigcirc	Off	-	1	R	NO	Off
M1459*	Indicating Slave ID#20 data transaction status on EASY PLC LINK	×	×	\circ	Off	ı	-	R	NO	Off
M1460*	Indicating Slave ID#21 data transaction status on EASY PLC LINK	×	×	\circ	Off	1	-	R	NO	Off
M1461*	Indicating Slave ID#22 data transaction status on EASY PLC LINK	×	×	\circ	Off	ı	-	R	NO	Off
M1462*	Indicating Slave ID#23 data transaction status on EASY PLC LINK	X	×	0	Off	-	-	R	NO	Off
M1463*	Indicating Slave ID#24 data transaction status on EASY PLC LINK	×	×	\circ	Off	1	-	R	NO	Off
M1464*	Indicating Slave ID#25 data transaction status on EASY PLC LINK	×	×	\circ	Off	1	1	R	NO	Off
M1465*	Indicating Slave ID#26 data transaction status on EASY PLC LINK	×	×	\bigcirc	Off	-	1	R	NO	Off
M1466*	Indicating Slave ID#27 data transaction status on EASY PLC LINK	×	×	\circ	Off	ı	-	R	NO	Off
M1467*	Indicating Slave ID#28 data transaction status on EASY PLC LINK	×	×	\circ	Off	ı	-	R	NO	Off
M1468*	Indicating Slave ID#29 data transaction status on EASY PLC LINK	×	×	\circ	Off	1	-	R	NO	Off
M1469*	Indicating Slave ID#30 data transaction status on EASY PLC LINK	×	×	\circ	Off	1	-	R	NO	Off
M1470*	Indicating Slave ID#31 data transaction status on EASY PLC LINK	×	×	\circ	Off	1	1	R	NO	Off
M1471*	Indicating Slave ID#32 data transaction status on EASY PLC LINK	×	×	\circ	Off	ı	1	R	NO	Off
M1472*	Slave ID#17 linking error	×	×	\circ	Off	ı	-	R	NO	Off
M1473*	Slave ID#18 linking error	×	×	\circ	Off	-	-	R	NO	Off
M1474*	Slave ID#19 linking error	×	×	\circ	Off	-	-	R	NO	Off
M1475*	Slave ID#20 linking error	×	×	0	Off	1	-	R	NO	Off
M1476*	Slave ID#21 linking error	×	×	0	Off	ı	-	R	NO	Off
M1477*	Slave ID#22 linking error	×	×	\circ	Off	-	-	R	NO	Off
M1478*	Slave ID#23 linking error	×	×	\circ	Off	-	-	R	NO	Off
M1479*	Slave ID#24 linking error	×	×	\circ	Off	-	-	R	NO	Off
M1480*	Slave ID#25 linking error	X	\times	\circ	Off	-	-	R	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH EH2 SV	Off U On	STOP	RUN	Attribute	Latched	Default
M1481*	Slave ID#26 linking error	×	X	0	Off	-	-	R	NO	Off
M1482*	Slave ID#27 linking error	\times	X	\circ	Off	-	-	R	NO	Off
M1483*	Slave ID#28 linking error	\times	X	\circ	Off	-	-	R	NO	Off
M1484*	Slave ID#29 linking error	×	X	\circ	Off	-	-	R	NO	Off
M1485*	Slave ID#30 linking error	×	X	\circ	Off	-	-	R	NO	Off
M1486*	Slave ID#31 linking error	×	X	\circ	Off	-	-	R	NO	Off
M1487*	Slave ID#32 linking error	×	X	0	Off	-	-	R	NO	Off
M1488*	Indicating reading from Salve ID#17 is completed	×	X	\circ	Off	-	-	R	NO	Off
M1489*	Indicating reading from Salve ID#18 is completed	×	X	0	Off	-	-	R	NO	Off
M1490*	Indicating reading from Salve ID#19 is completed	×	X	0	Off	-	-	R	NO	Off
M1491*	Indicating reading from Salve ID#20 is completed	×	X	0	Off	-	-	R	NO	Off
M1492*	Indicating reading from Salve ID#21 is completed	×	X	0	Off	-	-	R	NO	Off
M1493*	Indicating reading from Salve ID#22 is completed	×	X	0	Off	-	-	R	NO	Off
M1494*	Indicating reading from Salve ID#23 is completed	×	X	0	Off	-	-	R	NO	Off
M1495*	Indicating reading from Salve ID#24 is completed	×	X	0	Off	-	-	R	NO	Off
M1496*	Indicating reading from Salve ID#25 is completed	×	X	0	Off	-	-	R	NO	Off
M1497*	Indicating reading from Salve ID#26 is completed	×	X	0	Off	-	-	R	NO	Off
M1498*	Indicating reading from Salve ID#27 is completed	×	X	0	Off	-	-	R	NO	Off
M1499*	Indicating reading from Salve ID#28 is completed	×	X	0	Off	-	-	R	NO	Off
M1500*	Indicating reading from Salve ID#29 is completed	×	X	0	Off	-	-	R	NO	Off
M1501*	Indicating reading from Salve ID#30 is completed	×	X	\circ	Off	-	-	R	NO	Off
M1502*	Indicating reading from Salve ID#31 is completed	×	X	0	Off	-	-	R	NO	Off
M1503*	Indicating reading from Salve ID#32 is completed	×	X	0	Off	-	-	R	NO	Off
M1504*	Indicating writing to Salve ID#17 is completed	×	X	0	Off	-	-	R	NO	Off
M1505*	Indicating writing to Salve ID#18 is completed	×	X	0	Off	-	-	R	NO	Off
M1506*	Indicating writing to Salve ID#19 is completed	×	X	0	Off	-	-	R	NO	Off
M1507*	Indicating writing to Salve ID#20 is completed	×	X	0	Off	-	-	R	NO	Off
M1508*	Indicating writing to Salve ID#21 is completed	×	×	0	Off	-	-	R	NO	Off
M1509*	Indicating writing to Salve ID#22 is completed	×	×	0	Off	-	-	R	NO	Off
M1510*	Indicating writing to Salve ID#23 is completed	×	X	0	Off	=	-	R	NO	Off
M1511*	Indicating writing to Salve ID#24 is completed	X	X	0	Off	-	-	R	NO	Off
M1512*	Indicating writing to Salve ID#25 is completed	X	X	0	Off	=	-	R	NO	Off
M1513*	Indicating writing to Salve ID#26 is completed	X	\times	0	Off	_	_	R	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH2	Off U On	STOP	RUN	Attribute	Latched	Default
M1514*	Indicating writing to Salve ID#27 is completed	X	X	0	Off	-	-	R	NO	Off
M1515*	Indicating writing to Salve ID#28 is completed	\times	X	\circ	Off	-	-	R	NO	Off
M1516*	Indicating writing to Salve ID#29 is completed	×	X	0	Off	-	-	R	NO	Off
M1517*	Indicating writing to Salve ID#30 is completed	×	X	\circ	Off	-	-	R	NO	Off
M1518*	Indicating writing to Salve ID#31 is completed	X	X	\circ	Off	-	-	R	NO	Off
M1519*	Indicating writing to Salve ID#32 is completed	×	X	0	Off	-	-	R	NO	Off
M1520	EH2/SV: stopping the 3 rd group pulse output CH2 (Y4, Y5) (Not available in EH)	×	×	0	Off	-	-	R/W	NO	Off
M1521	EH2/SV: stopping the 4 th group pulse output CH3 (Y6, Y7) (Not available in EH)	×	×	0	Off	-	-	R/W	NO	Off
M1522	EH2/SV: sending out the 3 rd group pulse output CH2 (Y4, Y5) (Not available in EH)	×	×	0	Off	-	Off	R	NO	Off
M1523	EH2/SV: sending out the 4 th group pulse output CH3 (Y6, Y7) (Not available in EH)	X	×	\circ	Off	-	Off	R	NO	Off
M1524	EH2/SV: reset after the 3 rd group pulse output CH2 (Y4, Y5) is completed for PLSY instruction (Not available in EH)	×	×	0	Off	-	-	R/W	NO	Off
M1525	EH2/SV: reset after the 4 th group pulse output CH3 (Y6, Y7) is completed for PLSY instruction (Not available in EH)	×	×	0	Off	-	1	R/W	NO	Off
M1526	EH2/SV: reversing Y4 pulse output signal for PWM instruction (Not available in EH)	×	×	0	Off	-	-	R/W	NO	Off
M1527	EH2/SV: reversing Y6 pulse output signal for PWM instruction (Not available in EH)	×	×	0	Off	-	-	R/W	NO	Off
M1530	EH2/SV: switching time base unit of Y4 output for PWM instruction On: 100us; Off: 1ms (Not available in EH)	×	×	0	Off	-	-	R/W	NO	Off
M1531	EH2/SV: switching time base unit of Y6 output for PWM instruction On: 100us; Off: 1ms (Not available in EH)	×	×	0	Off	-	-	R/W	NO	Off
M1532	EH2/SV: reverse operation of the 3 rd group pulse CH2 (Y4, Y5) for PLSV/DPLSV/DRVI/DDRVI/DRVA /DDRVA instruction (Not available in EH)	X	×	0	Off	-	-	R/W	NO	Off
M1533	EH2/SV: reverse operation of the 4 th group pulse CH3 (Y6, Y7) for PLSV/DPLSV/DRVI/DDRVI/DRVA /DDRVA instruction	X	×	0	Off	-	-	R/W	NO	Off
M1534	EH2/SV: CH0 being able to designate deceleration time. Has to be used with D1348.	×	×	0	Off	-	-	R/W	NO	Off
M1535	EH2/SV: CH1 being able to designate deceleration time. Has to be used with D1349.	×	×	0	Off	-	-	R/W	NO	Off

Special M	Function	ES EX SS	SA SX SC	EH2		STOP RUN	RUN	Attribute	Latched	Default
M1536	EH2/SV: CH2 being able to designate deceleration time. Has to be used with D1350.	×	X	\circ	Off	-	1	R/W	NO	Off
M1537	EH2/SV: CH3 being able to designate deceleration time. Has to be used with D1351.	X	×	0	Off	-	1	R/W	NO	Off

Special D	Function		ss	SX SC	EH EH2 SV	Off U On		RUN	Attribute		Default
D1000*	Scanning watchdog timer (WDT) (Unit: ms	l	0	0	0	200	-	-	R/W	NO	200
D1001	Displaying the program version of DVP-PLC (initial factory setting)	EH		0	\circ	#	#	#	R	NO	#
D1002*	Program capacity # -> EH:15,872; SA: 7,920; ES: 3,792	ES/SA	0	0	0	#	-	-	R	NO	#
D1003	Sum of program memory # -> EH: -15,873; SA: -7,920; ES: -3,792		0	0	0	-	-	-	R	YES	#
D1004*	Syntax check error code		0	0	0	0	0	-	R	NO	0
D1008*	STSC address when WDT is On		0	0	0	0	-	-	R	NO	0
D1009	ES/SA: recording number of occurrances of signals EH2/SV: register for SRAM lost data error		0	0	0	-	-	-	R	YES	0
D1010*	Current scan time (Unit: 0.1ms)		0	0	0	0	-	-	R	NO	0
D1011*	Minimum scan time (Unit: 0.1ms)		\circ	\circ	\circ	0	-	-	R	NO	0
D1012*	Maximum scan time (Unit: 0.1ms)		\circ	0	\circ	0	-	-	R	NO	0
D1015*	0~32,767 (unit: 0.1ms) accumulative high-timer	speed	×	0	0	0	-	-	R/W	NO	0
D1018*	$\pi {\sf PI}$ (low byte)		\circ	\circ	\circ	H'0FDB	H'0FDB	H'0FDB	R/W	NO	H'0FDB
D1019*	$\pi\mathrm{PI}$ (high byte)		\circ	\circ	\circ	H'4049	H'4049	H'4049	R/W	NO	H'4049
D1020*	X0 ~ X7 input filter (Unit: ms)		0	\circ	\circ	10	-	-	R/W	NO	10
D1021*	ES/EH/EH2/SV: X10 ~ X17 input filter (Uni SC: X10 ~ X17 input filter (time base: scar range: 0 ~ 1,000 (Unit: times)	•	0	0	0	10	-	-	R/W	NO	10
D1022	Multiplied frequency of A-B phase counters ES/SA	s for	0	0	×	0	-	-	R/W	NO	0
D1023*	Register for detected pulse width, Unit: 0.1 (Available in ES/EX/SS_V6.4, SA/SX_V1.6 SC_V1.4 and above)		0	0	×	0	-	-	R/W	NO	0
D1025*	Code for communication request error		0	0	\circ	0	-	-	R	NO	0
D1028	Index register E0		0	0	0	0	-	-	R/W	NO	0
D1029	Index register F0		0	0	0	0	-	-	R/W	NO	0
D1030*	Number of Y0 output pulses (low word)		0	0	X	0	-	-	R	NO	0
D1031*	Number of Y0 output pulses (high word)		0	0	X	0	-	-	R	NO	0
D1032	Number of Y1 output pulses (low word)		0	0	X	0	-	-	R	NO	0
D1033	Number of Y0 output pulses (high word)		0	0	X	0	-	-	R	NO	0
D1034	Work mode of frequency measurement ca	rd	X	X	0	-	-	-	R	YES	1
D1035*	No. of input point X as RUN/STOP		X	X	\circ	-	-	-	R/W	YES	0

Special D	Function	ES EX SS		EH EH2 SV	Off	STOP RUN	RUN	Attribute	Latched	Default
D1036*	COM1 communication protocol	\circ	\circ	0	H'86	-	-	R/W	NO	H'86
D1037	Repetition time of HKY key	X	\times	\circ	-	-	-	R/W	NO	0
D1038*	Delay time of data response when PLC MPU as slave in RS-485 communication, range: 0 ~ 10,000 (unit: 0.1ms) SA/EH: delay time for sending the next communication data in EASY EASY PLC LINK (unit for SA/SX/SC: 1 scan cycle; EH/EH2/SV: 0.1ms)	0	0	0	-	-	-	R/W	YES	0
D1039*	Fixed scan time (ms)	\circ	\circ	0	0	-	-	R/W	NO	0
D1040	On status of step No. 1	X	0	0	0	-	_	R	NO	0
D1041	On status of step No. 2	X	0	\circ	0	-	_	R	NO	0
D1042	On status of step No. 3	X	0	\circ	0	-	-	R	NO	0
D1043	On status of step No. 4	X	0	0	0	-	-	R	NO	0
D1044	On status of step No. 5	X	0	0	0	-	-	R	NO	0
D1045	On status of step No. 6	X	\circ	0	0	-	-	R	NO	0
D1046	On status of step No. 7	X	0	0	0	-	-	R	NO	0
D1047	On status of step No. 8	X	0	0	0	-	-	R	NO	0
D1049	No. of alarm On	X	0	0	0	-	-	R	NO	0
D1050 ↓ D1055	Process of data for Modbus communication instruction. PLC automatically converts the ASCII data in D1070 ~ D1085 in to hex data.	0	0	0	0	-	-	R	NO	0
D1056*	Present value at analog input channel CH0 in SX/EX or at CH0 on AD card in EH/EH2	0	\circ	0	0	-	-	R	NO	0
D1057*	Present value at analog input channel CH1 in SX/EX or at CH1 on AD card in EH/EH2	0	0	0	0	-	-	R	NO	0
D1058*	Present value at analog input channel CH2 in EX	0	X	×	0	-	-	R	NO	0
D1059*	Present value at analog input channel CH3 in EX	0	X	×	0	-	-	R	NO	0
D1061	System error message: number of errors recorded in latched area	0	×	X	-	-	-	R	YES	0
D1062	Average times of AD0, AD1 in SX (2 ~ 4 times)	X	0	X	2	-	-	R/W	NO	2
D1067*	Error code for operational error	0	0	0	0	0	-	R	NO	0
D1068*	Locking the address of operational error	0	0	0	0	-	-	R	NO	0
D1070 ↓ D1085	Process of data for Modbus communication instruction. When the RS-485 communication instruction built-in the PLC sent out is received, the response messages will be stored in D1070 ~ D1085. You can view the response messages by checking these registers.	0	0	0	0	-	-	R	NO	0

Special D	Function			EH EH2 SV	Off	STOP	RUN	Attribute	Latched	Default
D1086	High word of the set password in DVP-PCC01 (displayed in hex corresponded by its ASCII characters)	0	0	0	0	-	-	R/W	NO	0
D1087	Low word of the set password in DVP-PCC01 (displayed in hex corresponded by its ASCII characters)	0	0	0	0	-	-	R/W	NO	0
D1089 ↓ D1099	Process of data for Modbus communication instruction. When the RS-485 communication instruction built-in the PLC is executed, the words of the instruction will be stored in D1089 ~ D1099. You can check whether the instruction is correct by the contents in these registers.	0	\bigcirc	0	0	-	-	R	NO	0
D1100	Corresponding status after LV signal is enabled	X	\times	0	0	-	-	R/W	NO	0
D1101*	Start address of file registers	X	\bigcirc	0	-	-	-	R/W	YES	0
D1102*	Number of data copied in file register	X	\circ	0	-	-	-	R/W	YES	1,600
D1103*	Start No. of file register D for storing data (has to be bigger than 2,000)	×	\circ	0	-	-	-	R/W	YES	2,000
D1104*	Start No. of register D for Y0 acceleration/ deceleration pulse output (Not available in SC_V1.4 and above)	0	\circ	×	0	-	-	R/W	NO	0
D1109*	COM3 communication protocol	X	X	0	0	-	-	R/W	NO	0
D1110*	Average value at analog input channel CH0 in SX/EX or at CH0 on AD card in EH/EH2	0	0	0	0	1	-	R	NO	0
D1111*	Average value at analog input channel CH1 in SX/EX or at CH1 on AD card in EH/EH2	0	\circ	\circ	0	1	-	R	NO	0
D1112*	Average value at analog input channel CH2 in EX	\bigcirc	\times	X	0	ı	-	R	NO	0
D1113*	Average value at analog input channel CH3 in EX	0	X	X	0	-	-	R	NO	0
D1116*	CH0 of analog output in SX/EX CH0 of DA card in EH/EH2	0	0	0	0	0	0	R/W	NO	0
D1117*	CH1 of analog output in SX/EX CH1 of DA card in EH/EH2	0	0	0	0	0	0	R/W	NO	0
D1118*	Sampling time of analog/digital converstion in SX/EX/EH/EH2 (ms)	0	0	0	5	-	-	R/W	NO	5
D1120*	COM2 (RS-485) communication protocol	\circ	\circ	0	H'86	ı	-	R/W	NO	H'86
D1121	PLC communication address (latched)	0	\circ	0	-	-	-	R/W	YES	1
D1122	Remaining number of words of sent data	0	\bigcirc	0	0	0	-	R	NO	0
D1123	Remaining number of words of received data	0	\circ	0	0	0	-	R	NO	0
D1124	Definition of start word (STX)	0	\bigcirc	0	H'3A	-	-	R/W	NO	H'3A
D1125	Definition of the first end word	\circ	\circ	0	H'0D	-	-	R/W	NO	H'0D
D1126	Defunition of the second end word	0	\circ	0	H'0A	ı	-	R/W	NO	H'0A

Special D	Function	EX		EH EH2 SV	Off ↓ On	STOP RUN	RUN	Attribute	Latched	Default
D1127	Interruption request for receiving specific word in RS instruction (I150)	0	×	×	0	-	-	R/W	NO	0
D1129	Abnormal communication time-out (time: ms)	0	\circ	\circ	0	-	-	R/W	NO	0
D1130	Error code returning from Modbus	0	0	0	0	-	-	R	NO	0
D1133*	SA/SX: start No. of register D for Y0 special high-speed pulse output (50KHz) SC_V1.4 and above: start No. of register D for Y10 2-axis synchronous control output	×	0	×	0	-	-	R/W	NO	0
D1134*	Number of sections in Y10 output for 2-axis synchronous control (available in SC_V1.4 and above)	×	0	X	0	-	-	R/W	NO	0
D1135*	SC_V1.4 and above: start No. of register D for Y11 2-axis synchronous control output	×	0	X	0	-	-	R/W	NO	0
D1136*	Number of sections in Y11 output for 2-axis synchronous control (available in SC_V1.4 and above)	×	0	×	0	-	-	R/W	NO	0
D1137*	Address where incorrect use of operand occurs	\circ	\circ	0	0	0	-	R	NO	0
D1140*	Number of right-side special extension modules (max. 8)	0	0	0	0	-	-	R	NO	0
D1142*	Number of points X in digital extension unit	\circ	0	0	0	-	-	R	NO	0
D1143*	Number of points Y in digital extension unit	0	0	0	0	-	-	R	NO	0
D1144*	Start No. of register D for Y0 adjustable acceleration/deceleration pulse output	×	0	X	0	-	-	R/W	NO	0
D1145*	Number of left-side special extension modules (max. 8) (only available in SV)	×	×	0	0	-	-	R	NO	0
D1147	Type of memory card b0 = 0: no card existing (H0000) b0 = 1: with flash card b8 = 0: flash card Off (H0001) b8 = 1: flash card On (H0101)	×	×	0	0	-	-	R	NO	0
D1149	Type of function extension card 0: no card 1: RS-232 card, DU-01 2: RS-422 card 3: COM3 card 4: analog rotary switch card 5: digital switch card 6: transistor output card 8: 2AD card 9: 2DA card 10: frequency measurement card	×	×	0	0	-	-	R	NO	0

Special D	Function	EX	SA SX SC	EH EH2 SV	Off ↓ On	STOP RUN	RUN	Attribute	Latched	Default
D1150	Table count register in multi-group setting comparison mode of DHSZ commnad	×	×	0	0	0	0	R	NO	0
D1151	Table counting register for DHSZ multiple set values comparison mode	×	×	0	0	0	0	R	NO	0
D1152	High word of changed D value for DHSZ instruciton	X	X	\circ	0	0	0	R	NO	0
D1153	Low word of changed D value for DHSZ instruction	X	X	\circ	0	0	0	R	NO	0
D1154*	Suggested deceleration time interval (10 ~ 32,767ms) for adjustable acceleration/deceleration pulse output Y0	×	0	×	200	-	-	R/W	NO	200
D1155*	Suggested deceleration frequency (-1 \sim -32,700Hz) for adjustable acceleration/deceleration pulse output Y0	×	0	×	-1,000	-	-	R/W	NO	-1,000
D1156 ↓ D1165	Designated special D for RTMU, RTMD instructions	×	×	0	0	-	-	R/W	NO	0
D1166*	Switching rising-/falling-edge counting mode of X10 (available in SC_V1.4 and above)	×	0	×	0	-	-	R/W	NO	0
D1167*	Switching rising-/falling-edge counting mode of X11 (available in SC_V1.4 and above)	×	0	×	0	-	-	R/W	NO	0
D1168	Interruption request for receiving specific word in RS instruction (I150)	×	0	0	0	1	-	R/W	NO	0
D1169	Interruption request for receiving specific word in RS instruction (I160)	×	×	0	0	ı	-	R/W	NO	0
D1170*	PC value when executing single step	X	X	0	0	0	0	R	NO	0
D1172*	Frequency of 2-phase pulse output (12Hz ~ 20KHz)	X	0	×	0	-	-	R/W	NO	0
D1173*	Modes of 2-phase pulse output (K1 and K2)	X	0	×	0	-	-	R/W	NO	0
D1174*	Low 16 bits of target numbers of 2-phase output pulses	×	0	X	0	-	-	R/W	NO	0
D1175*	High 16 bits of target numbers of 2-phase output pulses	×	0	X	0	-	-	R/W	NO	0
D1176*	Low 16 bits of current numbers of 2-phase output pulses	×	0	X	0	-	-	R/W	NO	0
D1177*	High 16 bits of current numbers of 2-phase output pulses	×	0	X	0	-	-	R/W	NO	0
D1178*	VR0 value	X	0	0	0	-	-	R	NO	0
D1179*	VR1 value	×	0	0	0	-	_	R	NO	0
D1180*	Low 16 bytes of high-speed counter value extracted by interruption I401	×	0	×	0	-	-	R	NO	0
D1181*	High 16 bytes of high-speed counter value extracted by interruption I401	×	0	×	0	-	-	R	NO	0
D1182	Index register E1	\times	\circ	\circ	0	-	-	R/W	NO	0

Special D	Function	ES EX SS		EH EH2 SV	Off	STOP RUN	RUN	Attribute	Latched	Default
D1183	Index register F1	X	0	0	0	-	-	R/W	NO	0
D1184	Index register E2	X	0	0	0	-	-	R/W	NO	0
D1185	Index register F2	X	0	\circ	0	-	-	R/W	NO	0
D1186	Index register E3	X	0	\circ	0	-	-	R/W	NO	0
D1187	Index register F3	X	0	\circ	0	-	-	R/W	NO	0
D1188	Index register E4	X	X	0	0	-	-	R/W	NO	0
D1189	Index register F4	X	X	\circ	0	-	-	R/W	NO	0
D1190	Index register E5	X	X	0	0	-	-	R/W	NO	0
D1191	Index register F5	X	X	0	0	-	-	R/W	NO	0
D1192	Index register E6	X	X	0	0	-	-	R/W	NO	0
D1193	Index register F6	X	X	0	0	-	-	R/W	NO	0
D1194	Index register E7	X	X	0	0	-	-	R/W	NO	0
D1195	Index register F7	X	X	0	0	-	-	R/W	NO	0
D1196	Content in the display (available in SX)	X	0	×	0	-	-	R/W	NO	0
D1198*	Low 16 bytes of high-speed counter value extracted by interruption I501	×	0	×	0	-	-	R	NO	0
D1199*	Low 16 bytes of high-speed counter value extracted by interruption I501	×	0	×	0	-	-	R	NO	0
D1200*	Start latched address for auxiliary relays M0 ~ M999 # -> EH: 500; SA/SX/SC: 512	×	0	0	-	-	-	R/W	YES	#
D1201*	End latched address for auxiliary relays M0 ~ M999	X	0	0	-	-	-	R/W	YES	999
D1202*	Start latched address for auxiliary relays M2000 ~ M4095	×	0	0	-	-	-	R/W	YES	2,000
D1203*	End latched address for auxiliary relays M2000 ~ M4095	×	0	0	_	-	-	R/W	YES	4,095
D1204*	Start latched address for 100ms timers T0 ~ T199	X	X	0	-	-	-	R/W	YES	H'FFFF
D1205*	End latched address for 100ms timers T0 ~ T199	X	X	0	-	-	-	R/W	YES	H'FFFF
D1206*	Start latched address for 10ms timers T200 ~ T239	X	X	\circ	-	-	-	R/W	YES	H'FFFF
D1207*	End latched address for 10ms timers T200 ~ T239	X	X	0	-	-	-	R/W	YES	H'FFFF
D1208*	Start latched address for16-bit counters C0 ~ C199 # -> EH: 100; SA/SX/SC: 96	×	0	0	-	-	-	R/W	YES	#
D1209*	End latched address for 16-bit counters C0 ~ C199	×	0	\circ	-	-	-	R/W	YES	199
D1210*	Start latched address for 32-bit counters C200 ~ C234 # -> EH: 220; SA/SX/SC: 216	×	0	0	-	-	-	R/W	YES	#
D1211*	End latched address for 32-bit counters C200 ~ C234	×	0	0	-	-	-	R/W	YES	234

Special D	Function	EX	SA SX SC	EH EH2 SV	Off U On	STOP	RUN	Attribute	Latched	Default
D1212*	Start latched address for 32-bit high-speed counters C235 ~ C255	×	0	0	-	-	-	R/W	YES	235
D1213*	End latched address for 32-bit high-speed counters C235 ~ C255	×	0	0	-	-	-	R/W	YES	255
D1214*	Start latched address for steps S0 ~ S899 # -> EH: 500; SA/SX/SC: 512	×	0	0	-	-	-	R/W	YES	#
D1215*	End latched address for steps S0 ~ S899 # -> EH: 899; SA/SX/SC: 895	×	0	0	-	-	-	R/W	YES	#
D1216*	Start latched address for registers D0 ~ D999	×	0	0	-	-	-	R/W	YES	200
D1217*	End latched address for registers D0 ~ D999	X	0	0	-	-	-	R/W	YES	999
D1218*	Start latched address for registers D2000 ~ D9999	×	0	0	-	-	-	R/W	YES	2,000
D1219*	End latched address for registers D2000 ~ D9999	×	0	0	-	-	-	R/W	YES	#
D1220	Phase of the 1 st group pulse output CH0 (Y0, Y1)	×	X	0	0	-	-	R/W	NO	0
D1221	Phase of the 2 nd group pulse output CH1 (Y2, Y3)	×	X	0	0	-	-	R/W	NO	0
D1222	Time difference between direction signal and pulse output for the 1 st group pulse CH0 (Y0, Y1) in DRVI, DDRVI, DRVA, DDRVA, PLSV, DPLSV	×	×	0	0	-	1	R/W	NO	0
D1223	Time difference between direction signal and pulse output for the 2 nd group pulse CH1 (Y2, Y3) in DRVI, DDRVI, DRVA, DDRVA, PLSV, DPLSV	×	×	0	0	-	-	R/W	NO	0
D1225	Counting mode of the counter HHSC0	X	X	0	2	-	-	R/W	NO	2
D1226	Counting mode of the counter HHSC1	X	X	0	2	-	-	R/W	NO	2
D1227	Counting mode of the counter HHSC2	X	X	0	2	-	-	R/W	NO	2
D1228	Counting mode of the counter HHSC3	X	X	0	2	-	-	R/W	NO	2
D1129	Phase of the 3 rd group pulse output CH2 (Y4, Y5) (available in EH2/SV)	×	×	0	0	-	1	R/W	NO	0
D1130	Phase of the 4 th group pulse output CH3 (Y6, Y7) (available in EH2/SV)	×	×	0	0	-	1	R/W	NO	0
D1256 ↓ D1295	When the RS-485 communication instruction MODRW built-in the PLC is executed, the words of sent out by the instruction will be stored in D1256 ~ D1259. You can check whether the instruction is correct by the contents in these registers.	0	0	0	0	-	-	R	NO	0
D1296 ↓ D1311	The RS-485 communication instruction MODRW built in the PLC automatically converts the ASCII data received in the designated register into hex and store the hex data into D1296 ~ D1311.	0	0	0	0	-	-	R	NO	0
D1313*	Second in RTC: 00 ~ 59 #: read RTC and write	×	0	0	#	-	-	R/W	NO	0
D1314*	Minute in RTC: 00 ~ 59 #: read RTC and write	×	0	0	#	-	-	R/W	NO	0

Special D	Function	EX	SA SX SC	EH EH2 SV	Off	STOP RUN	RUN	Attribute	Latched	Default
D1315*	Hour in RTC: 00 ~ 23 #: read RTC and write	×	0	0	#	-	-	R/W	NO	0
D1316*	Day in RTC: 01 ~ 31 #: read RTC and write	×	0	0	#	-	-	R/W	NO	1
D1317*	Month in RTC: 01 ~ 12 #: read RTC and write	×	0	0	#	-	-	R/W	NO	1
D1318*	Week in RTC: 1 ~ 7 #: read RTC and write	×	0	0	#	-	-	R/W	NO	6
D1319*	Year in RTC: 00 ~ 99 (A.D.) #: read RTC and write	×	0	0	#	-	-	R/W	NO	0
D1320*	ID of the 1 st right-side extension module (available in EH/EH2)	×	×	0	0	-	-	R	NO	0
D1321*	ID of the 2 nd right-side extension module (available in EH/EH2)	×	×	0	0	-	-	R	NO	0
D1322*	ID of the 3 rd right-side extension module (available in EH/EH2)	×	×	0	0	-	-	R	NO	0
D1323*	ID of the 4 th right-side extension module (available in EH/EH2)	×	×	0	0	-	-	R	NO	0
D1324*	ID of the 5 th right-side extension module (available in EH/EH2)	×	×	0	0	-	-	R	NO	0
D1325*	ID of the 6 th right-side extension module (available in EH/EH2)	×	×	0	0	-	-	R	NO	0
D1326*	ID of the 7 th right-side extension module (available in EH/EH2)	×	×	0	0	-	-	R	NO	0
D1327*	ID of the 8 th right-side extension module (available in EH/EH2)	×	×	0	0	-	-	R	NO	0
D1328	Low word of offset pulse the 1 st group pulses CH0 (Y0, Y1)	×	×	0	0	-	-	R/W	NO	0
D1329	High word of offset pulse the 1 st group pulses CH0 (Y0, Y1)	×	×	0	0	-	-	R/W	NO	0
D1330	Low word of offset pulse the 2 nd group pulses CH1 (Y2, Y3)	×	×	0	0	-	-	R/W	NO	0
D1331	High word of offset pulse the 2 nd group pulses CH1 (Y2, Y3)	×	×	0	0	-	-	R/W	NO	0
D1332	Low word of the remaining number of pulses of the 1 st group pulses CH0 (Y0, Y1)	×	×	0	0	-	-	R	NO	0
D1333	High word of the remaining number of pulses of the 1 st group pulses CH0 (Y0, Y1)	×	×	0	0	-	-	R	NO	0

Special D	Function		EX	SA SX SC	EH EH2 SV	Off	STOP RUN	RUN	Attribute	Latched	Default
D1334	Low word of the remaining number of puls 2 nd group pulses CH1 (Y2, Y3)	es of the	×	×	\circ	0	-	-	R	NO	0
D1335	High word of the remaining number of puls 2 nd group pulses CH1 (Y2, Y3)	ses of the	×	×	0	0	-	-	R	NO	0
D1336	Low word of the present value of the 1 st gr pulses CH0 (Y0, Y1) (EH2/SV are latached above EH_V1.2)	oup	×	×	0	-	-	-	R	YES	0
D1337	High word of the present value of the 1 st g pulses CH0 (Y0, Y1) (EH2/SV are latached above EH_V1.2)	roup	×	×	0	-	-	-	R	YES	0
D1338	Low word of the present value of the 2 nd g pulses CH1 (Y2, Y3) (EH2/SV are latached above EH_V1.2)	roup	×	×	0	-	-	-	R	YES	0
D1339	High word of the present value of the 2 nd g pulses CH1 (Y2, Y3) (EH_V1.2 and above are latached)	group	×	×	0	-	-	-	R	YES	0
D1340	EH/EH2/SV: start/end frequency of the 1 st pulse output CH0 (Y0, Y1)	group	×	0	0	-	_	_	R/W	YES	200
	SC: start/end frequency of Y10 output					200				NO	
D1341	Low word of max. output frequency	Fixed as	×	X	0	-	-	-	R	YES	H'04D0
D1342	High word of max. output frequency	200KHz	×	×	0	-	-	-	R	YES	3
D1343*	EH: acceleration/deceleration time for the pulse output CH0 (Y0, Y1)	1 st group	×	0	0	-	-	-	R/W	YES	100
	SC: acceleration/deceleration time of Y10	output				200				NO	200
D1344	Low word of the number of compensation the 1 st group pulses CH0 (Y0, Y1)	pulses of	×	×	\circ	1	-	-	R/W	YES	0
D1345	High word of the number of compensation the 1 st group pulses CH0 (Y0, Y1)	pulses of	×	×	0	-	-	-	R/W	YES	0
D1346	Low word of the number of compensation the 2 nd group pulses CH1 (Y2, Y3)	pulses of	×	×	0	-	-	-	R/W	YES	0
D1347	High word of the number of compensation the 2 nd group pulses CH1 (Y2, Y3)	pulses of	×	×	0	-	-	-	R/W	YES	0
	SC: low word of present value of Y10 puls	e output	×	0	X	0	-	-	R	NO	0
D1348	EH2/SV: CH0 pulse output. When M1534 refers to the deceleration time	= On, it	×	×	0	-	-	-	R/W	YES	100
	SC: high word of present value of Y10 pul	se output	\times	\circ	X	0	-	-	R	NO	0
D1349	EH2/SV: CH1 pulse output. When M1535 refers to the deceleration time	= On, it	×	×	0	-	-	-	R/W	YES	100

Special D	Function	ES EX SS		EH EH2 SV	Off U On	STOP	RUN	Attribute	Latched	Default
	SC: low word of present value of Y11 pulse output	×	\circ	X	0	-	-	R	NO	0
D1350	EH2/SV: CH2 pulse output. When M1536 = On, it refers to the deceleration time	×	×	0	ı	-	-	R/W	YES	100
	SC: high word of present value of Y11 pulse output	X	\bigcirc	×	0	-	-	R	NO	0
D1351	EH2/SV: CH3 pulse output. When M1537 = On, it refers to the deceleration time	×	X	0	1	-	-	R/W	YES	100
D1352	EH/EH2/SV: start/end frequency of the 2 nd group pulse output CH1 (Y2, Y3)	×	0	0	-	_	_	R/W	YES	200
	SC: start/end frequency of Y11 output				200				NO	
D1353*	EH/EH2/SV: acceleration/deceleration time of the 2 nd group pulse output CH1 (Y2, Y3)	×	0	0	-	_	_	R/W	YES	100
	SC: acceleration/deceleration time of Y11 output				200				NO	200
D1355*	Starting reference for Master to read from Salve ID#1	×	0	0	-	-	-	R/W	YES	H'1064
D1356*	Starting reference for Master to read from Salve ID#2	×	0	0	-	-	-	R/W	YES	H'1064
D1357*	Starting reference for Master to read from Salve ID#3	×	0	0	-	-	-	R/W	YES	H'1064
D1358*	Starting reference for Master to read from Salve ID#4	×	0	0	-	-	-	R/W	YES	H'1064
D1359*	Starting reference for Master to read from Salve ID#5	×	0	0	-	-	-	R/W	YES	H'1064
D1360*	Starting reference for Master to read from Salve ID#6	×	0	0	-	-	-	R/W	YES	H'1064
D1361*	Starting reference for Master to read from Salve ID#7	×	0	0	-	-	-	R/W	YES	H'1064
D1362*	Starting reference for Master to read from Salve ID#8	×	0	0	-	-	-	R/W	YES	H'1064
D1363*	Starting reference for Master to read from Salve ID#9	×	0	0	-	-	-	R/W	YES	H'1064
D1364*	Starting reference for Master to read from Salve ID#10	×	0	0	-	-	-	R/W	YES	H'1064
D1365*	Starting reference for Master to read from Salve ID#11	×	0	0	-	-	-	R/W	YES	H'1064
D1366*	Starting reference for Master to read from Salve ID#12	×	0	0	-	-	-	R/W	YES	H'1064
D1367*	Starting reference for Master to read from Salve ID#13	×	0	0	-	-	-	R/W	YES	H'1064
D1368*	Starting reference for Master to read from Salve ID#14	×	0	0	-	-	-	R/W	YES	H'1064

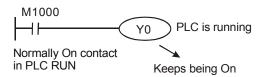
Special D	Function	EX	SA SX SC	EH EH2 SV	Off	STOP RUN	RUN	Attribute	Latched	Default
D1369*	Starting reference for Master to read from Salve ID#15	×	0	0	-	-	-	R/W	YES	H'1064
D1370*	Starting reference for Master to read from Salve ID#16	×	0	0	-	-	-	R/W	YES	H'1064
D1371	Time unit of PWM Y0 pulse output when M1070=On	×	X	\circ	1	-	-	R/W	NO	1
D1372	Time unit of PWM Y2 pulse output when M1071=On	X	X	0	1	-	-	R/W	NO	1
D1373	Time unit of PWM Y4 pulse output when M1530=On (available in EH2/SV)	×	×	0	1	-	-	R/W	NO	1
D1374	Time unit of PWM Y6 pulse output when M1531=On (available in EH2/SV)	×	×	0	1	-	-	R/W	NO	1
D1375	Low word of the present value of the 3 rd group pulses CH2 (Y4, Y5) (available in EH2/SV)	×	×	\circ	-	-	-	R/W	YES	0
D1376	High word of the present value of the 3 rd group pulses CH2 (Y4, Y5) (available in EH2/SV)	×	×	0	-	-	-	R/W	YES	0
D1377	Low word of the present value of the 4 th group pulses CH3 (Y6, Y7) (available in EH2/SV)	×	×	0	-	-	-	R/W	YES	0
D1378	High word of the present value of the 4 th group pulses CH3 (Y6, Y7) (available in EH2/SV)	×	×	0	-	-	-	R/W	YES	0
D1379	Start frequency of the 1 st section and end frequency of the last section for the 3 rd group pulse output CH2 (Y4, Y5) (available in EH2/SV)	×	×	0	1	-	-	R/W	YES	200
D1380	Start frequency of the 1 st section and end frequency of the last section for the 4 th group pulse output CH3 (Y6, Y7) (available in EH2/SV)	×	×	0	-	-	-	R/W	YES	200
D1381	Acceleration/deceleration time for the 3 rd pulse output CH2 (Y4, Y5) (available in EH2/SV)	×	×	0	-	-	-	R/W	YES	100
D1382	Acceleration/deceleration time for the 4 th pulse output CH3 (Y6, Y7) (available in EH2/SV)	×	X	0	-	-	-	R/W	YES	100
D1386*	ID of the 1 st left-side extension module (available in SV)	×	×	0	0	-	-	R	NO	0
D1387*	ID of the 2 nd left-side extension module (available in SV)	×	×	\circ	0	-	-	R	NO	0
D1388*	ID of the 3 rd left-side extension module (available in SV)	×	×	0	0	_	-	R	NO	0
D1389*	ID of the 4 th left-side extension module (available in SV)	×	×	0	0	-	-	R	NO	0
D1390*	ID of the 5 th left-side extension module (available in SV)	×	×	0	0	-	-	R	NO	0
D1391*	ID of the 6 th left-side extension module (available in SV)	×	×	0	0	-	-	R	NO	0

Special D	Function			EH EH2	Off U	STOP	RUN	Attribute	Latched	Default
D1392*	ID of the 7 th left-side extension module (available in SV)	ss ×	×	SV	On 0	RUN -	STOP -	R	NO	0
D1393*	ID of the 8 th left-side extension module (available in SV)	×	×	0	0	-	-	R	NO	0
D1399*	Starting Salve ID designated by EASY PLC LINK	X	0	\circ	-	-	-	R/W	YES	1
D1415*	Starting reference for Master to write in Salve ID#1	X	0	0	-	-	-	R/W	YES	H'10C8
D1416*	Starting reference for Master to write in Salve ID#2	X	0	\circ	-	-	-	R/W	YES	H'10C8
D1417*	Starting reference for Master to write in Salve ID#3	X	0	0	-	-	-	R/W	YES	H'10C8
D1418*	Starting reference for Master to write in Salve ID#4	X	0	0	-	-	-	R/W	YES	H'10C8
D1419*	Starting reference for Master to write in Salve ID#5	X	0	0	-	-	-	R/W	YES	H'10C8
D1420*	Starting reference for Master to write in Salve ID#6	X	0	0	-	-	-	R/W	YES	H'10C8
D1421*	Starting reference for Master to write in Salve ID#7	X	0	0	-	-	-	R/W	YES	H'10C8
D1422*	Starting reference for Master to write in Salve ID#8	X	0	0	-	-	-	R/W	YES	H'10C8
D1423*	Starting reference for Master to write in Salve ID#9	X	0	\circ	-	-	-	R/W	YES	H'10C8
D1424*	Starting reference for Master to write in Salve ID#10	X	0	0	-	-	-	R/W	YES	H'10C8
D1425*	Starting reference for Master to write in Salve ID#11	X	0	\circ	-	-	-	R/W	YES	H'10C8
D1426*	Starting reference for Master to write in Salve ID#12	X	0	0	-	-	-	R/W	YES	H'10C8
D1427*	Starting reference for Master to write in Salve ID#13	X	0	0	-	-	-	R/W	YES	H'10C8
D1428*	Starting reference for Master to write in Salve ID#14	X	0	0	-	-	-	R/W	YES	H'10C8
D1429*	Starting reference for Master to write in Salve ID#15	X	0	0	-	-	-	R/W	YES	H'10C8
D1430*	Starting reference for Master to write in Salve ID#16	X	0	0	-	-	-	R/W	YES	H'10C8
D1431*	Times of EASY PLC LINK polling cycle	X	0	0	0	-	-	R/W	NO	0
D1432*	Current times of EASY PLC LINK polling cycle	X	0	0	0	-	-	R/W	NO	0
D1433*	Number of salve units linked to EASY PLC LINK	X	0	0	0	-	-	R/W	NO	0
D1434*	Data length to be read on Salve ID#1	X	0	0	-	-	-	R/W	YES	16
D1435*	Data length to be read on Salve ID#2	X	0	0	-	-	-	R/W	YES	16
D1436*	Data length to be read on Salve ID#3	X	0	0	-	-	-	R/W	YES	16
D1437*	Data length to be read on Salve ID#4	X	0	0	-	-	-	R/W	YES	16
D1438*	Data length to be read on Salve ID#5	X	0	0	-	-	-	R/W	YES	16
D1439*	Data length to be read on Salve ID#6	X	0	0	-	-	-	R/W	YES	16
D1440*	Data length to be read on Salve ID#7	X	0	0	-	-	-	R/W	YES	16
D1441*	Data length to be read on Salve ID#8	X	0	0	-	-	-	R/W	YES	16
D1442*	Data length to be read on Salve ID#9	X	0	0	-	_	-	R/W	YES	16
D1443*	Data length to be read on Salve ID#10	×	0	0	-	-	-	R/W	YES	16

Special D	Function		SA SX SC	EH EH2 SV	Off	STOP RUN	RUN	Attribute	Latched	Default
D1444*	Data length to be read on Salve ID#11	X	0	0	-	-	-	R/W	YES	16
D1445*	Data length to be read on Salve ID#12	X	0	\circ	-	-	-	R/W	YES	16
D1446*	Data length to be read on Salve ID#13	X	0	\circ	-	-	-	R/W	YES	16
D1447*	Data length to be read on Salve ID#14	X	0	0	-	-	-	R/W	YES	16
D1448*	Data length to be read on Salve ID#15	X	0	\circ	-	-	-	R/W	YES	16
D1449*	Data length to be read on Salve ID#16	X	0	0	-	-	-	R/W	YES	16
D1450*	Data length to be written on Slave ID#1	X	0	0	-	-	-	R/W	YES	16
D1451*	Data length to be written on Slave ID#2	X	0	0	-	-	-	R/W	YES	16
D1452*	Data length to be written on Slave ID#3	X	0	\circ	-	-	-	R/W	YES	16
D1453*	Data length to be written on Slave ID#4	X	0	\circ	-	-	-	R/W	YES	16
D1454*	Data length to be written on Slave ID#5	X	0	0	-	-	-	R/W	YES	16
D1455*	Data length to be written on Slave ID#6	X	\circ	0	-	-	-	R/W	YES	16
D1456*	Data length to be written on Slave ID#7	×	0	\circ	-	-	-	R/W	YES	16
D1457*	Data length to be written on Slave ID#8	X	\circ	\circ	ı	-	-	R/W	YES	16
D1458*	Data length to be written on Slave ID#9	×	0	\circ	-	-	-	R/W	YES	16
D1459*	Data length to be written on Slave ID#10	X	\circ	\circ	ı	-	-	R/W	YES	16
D1460*	Data length to be written on Slave ID#11	X	0	\circ	İ	-	-	R/W	YES	16
D1461*	Data length to be written on Slave ID#12	×	\circ	\circ	ı	-	-	R/W	YES	16
D1462*	Data length to be written on Slave ID#13	X	\circ	\circ	-	-	-	R/W	YES	16
D1463*	Data length to be written on Slave ID#14	×	0	0	-	-	-	R/W	YES	16
D1464*	Data length to be written on Slave ID#15	X	0	0	-	-	-	R/W	YES	16
D1465*	Data length to be written on Slave ID#16	X	0	0	-	-	-	R/W	YES	16
D1466	Number of pulses required per revolution of motor at CH0 (low word)	×	×	0	-	-	-	R	YES	2,000
D1467	Number of pulses required per revolution of motor at CH0 (high word)	×	×	0	-	-	-	R	YES	0
D1468	Number of pulses required per revolution of motor at CH1 (low word)	×	×	0	-	-	-	R	YES	2,000
D1469	Number of pulses required per revolution of motor at CH1 (high word)	×	×	0	-	-	-	R	YES	0
D1470	Distance created for 1 revolution of motor at CH0 (low word)	×	×	0	-	-	-	R	YES	1,000
D1471	Distance created for 1 revolution of motor at CH0 (high word)	×	×	0	-	-	-	R	YES	0
D1472	Distance created for 1 revolution of motor at CH1 (low word)	×	×	0	-	-	-	R	YES	1,000

Special D	Function		SA SX SC	EH EH2 SV	Off	STOP RUN	RUN	Attribute	Latched	Default
D1473	Distance created for 1 revolution of motor at CH1 (high word)	×	×	0	1	-	-	R	YES	0
D1474	Machine unit of CH0 movement (low word)	X	X	\circ	1	-	-	R	YES	0
D1475	Machine unit of CH0 movement (high word)	X	X	0	-	-	-	R	YES	0
D1476	Machine unit of CH1 movement (low word)	\times	X	\circ	1	-	-	R	YES	0
D1477	Machine unit of CH1 movement (high word)	X	X	0	-	-	-	R	YES	0
D1480* ↓ D1495*	Data buffer to store the data read from Slave ID#1 when M1353 = Off. When M1353 = On, the starting D register No. to store data read from ID#1~16 by Master (available in EH/EH2/SV).	×	0	0	-	-	-	R	YES	0
D1496* ↓ D1511*	Data buffer to store the data written on Slave ID#1 when M1353 = Off. When M1353 = On, the starting D register No. to store data written on ID#1~16 by Master (available in EH/EH2/SV).	×	0	0	-	-	-	R/W	YES	0
D1512* ↓ D1527*	Data buffer to store the data read from Slave ID#2 when M1353 = Off. When M1353 = On, the starting D register No. to store data read from ID#17~32 by Master (available in EH/EH2/SV).	×	0	0	1	-	-	R	YES	0
D1528* ↓ D1543*	Data buffer to store the data written on Slave ID#2 when M1353 = Off. When M1353 = On, the starting D register No. to store data written on ID#17~32 by Master (available in EH/EH2/SV).	×	0	0	-	-	-	R/W	YES	0
D1544* ↓ D1559*	Data buffer to store the data read from Slave ID#3 when M1353 = Off. When M1353 = On, the length of data read from ID#17~32 by Master (available in EH/EH2/SV).	×	0	0	-	-	-	R	YES	0
D1560* ↓ D1575*	Data buffer to store the data written on Slave ID#2 when M1353 = Off. When M1353 = On, the length of data written on ID#17~32 by Master (available in EH/EH2/SV).	×	0	0	1	-	-	R/W	YES	0
D1576* ↓ D1591*	Data buffer to store the data read from Slave ID#4 when M1353 = Off. When M1353=On, the starting D register No. to store data read from ID#17~32 by EH Master (available in EH/EH2/SV).	×	0	0	-	-	-	R	YES	0
D1592* ↓ D1607*	Data buffer to store the data to be written on Slave ID#4 when M1353 = Off. When M1353=On, the starting D register No. to store data to be written on ID#17~32 by EH Master (available in EH/EH2/SV).	×	0	0	-	-	-	R/W	YES	0

Special D	Function	EX	SA SX SC	EH EH2 SV	Off	STOP RUN	RUN	Attribute	Latched	Default
D1608* ↓ D1623*	Data buffer to store the data read from Slave ID#5	×	0	0	1	-	-	R	YES	0
D1624* ↓ D1639*	Data buffer to store the data to be written on Slave ID#5	×	0	0	-	-	-	R/W	YES	0
D1640* ↓ D1655*	Data buffer to store the data read from Slave ID#6	×	0	0	ı	-	-	R	YES	0
D1656* ↓ D1671*	Data buffer to store the data to be written on Slave ID#6	×	0	0	ı	-	-	R/W	YES	0
D1672* ↓ D1687*	Data buffer to store the data read from Slave ID#7	×	0	0	1	-	-	R	YES	0
D1688* ↓ D1703*	Data buffer to store the data to be written on Slave ID#7	×	0	0	-	-	-	R/W	YES	0
D1704* ↓ D1719*	Data buffer to store the data read from Slave ID#8	×	\circ	0	ı	-	-	R	YES	0
D1720* ↓ D1735*	Data buffer to store the data to be written on Slave ID#8	×	0	0	-	-	-	R/W	YES	0
D1736* ↓ D1751*	Data buffer to store the data read from Slave ID#9	×	0	0	1	-	-	R	YES	0
D1752* ↓ D1767*	Data buffer to store the data to be written on Slave ID#9	×	0	0	ı	-	-	R/W	YES	0
D1768* ↓ D1783*	Data buffer to store the data read from Slave ID#10	×	0	0	1	-	-	R	YES	0
D1784* ↓ D1799*	Data buffer to store the data to be written on Slave ID#10	×	0	0	-	-	-	R/W	YES	0
D1800* ↓ D1815*	Data buffer to store the data read from Slave ID#11	×	0	0	-	-	-	R	YES	0


Special D	Function	EX	SA SX SC	EH EH2 SV	Off	STOP RUN	RUN	Attribute	Latched	Default
D1816* ↓ D1831*	Data buffer to store the data to be written on Slave ID#11	×	0	0	-	-	-	R/W	YES	0
D1832* ↓ D1847*	Data buffer to store the data read from Slave ID#12	×	0	0	-	-	-	R	YES	0
D1848* ↓ D1863*	Data buffer to store the data to be written on Slave ID#12	×	0	0	-	-	-	R/W	YES	0
D1864* ↓ D1879*	Data buffer to store the data read from Slave ID#13	×	0	0	1	-	-	R	YES	0
D1880* ↓ D1895*	Data buffer to store the data to be written on Slave ID#13	×	0	0	-	-	-	R/W	YES	0
D1896* ↓ D1911*	Data buffer to store the data read from Slave ID#14	×	0	0	ı	-	-	R	YES	0
D1912* ↓ D1927*	Data buffer to store the data to be written on Slave ID#14	×	0	0	-	-	-	R/W	YES	0
D1928* ↓ D1943*	Data buffer to store the data read from Slave ID#15	×	0	0	-	-	-	R	YES	0
D1944* ↓ D1959*	Data buffer to store the data to be written on Slave ID#15	×	0	0	-	-	-	R/W	YES	0
D1960* ↓ D1975*	Data buffer to store the data read from Slave ID#16	×	0	0	-	-	-	R	YES	0
D1976* ↓ D1991*	Data buffer to store the data to be written on Slave ID#16	×	0	0	-	-	-	R/W	YES	0

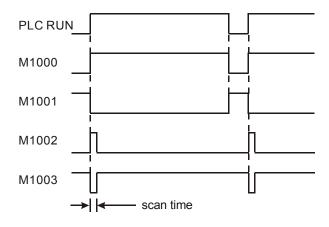
2.11 Functions of Special Auxiliary Relays and Special Registers

Function Group PLC Operation Flag **Number** M1000 ~ M1003

M1000:

M1000 (A contact) is constantly "On" during operation and detection. When PLC is in RUN status, M1000 remains "On".

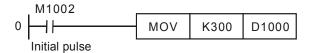
M1001:


M1001 (B contact) is constantly "On" during operation and detection. When PLC is in RUN status, M1001 remains "On".

M1002:

M1002 is "On" during the first scan when PLC starts to RUN and remains "Off" afterward. The pulse width = 1 scan time. Use this contact for all kinds of initial settings.

M1003:


M1003 is "Off" during the first scan when PLC starts to RUN and remains "On" afterward. M1003 enables negative-direction ("Off" immediately when RUN) pulses.

Function Group Monitor Timer

Number D1000

- Monitor timer is used for moitoring PLC scan time. When the scan time exceeds the set time in the moitor timer, the red ERROR LED indicator remains beaconing and all outputs will be "Off".
- 2. The initial set value of the time in the monitor timer is 200ms. If the program is long or the operation is too complicated, MOV instruction can be used for changing the set value. See the example below for SV = 300ms.

- 3. The maximum set value in the monitor timer is 32,767ms. Please be noted that if the SV is too big, the timing of detecting operational errors will be delayed. Therefore, it is suggested that you remain the scan time of shorter than 200ms.
- 4. Complicated instruction operations or too many extension modules being connected to the MPU will result in the scan time being too long. Check D1010 ~ D1012 to see if the scan time exceeds the SV in D1000. In this case, besides modifying the SV in D1000, you can also add WDT instruction (API 07) into the PLC program. When the CPU execution progresses to WDT instruction, the internal monitor timer will be cleared as "0" and the scan time will not exceed the set value in the monitor timer.

Function Group Program Capacity

Number D1002

Contents:

The program capacity differs in different series of MPUs.

1. ES/EX/SS series MPU: 3,792 Steps

2. SA/SX/SC series MPU: 7,920 Steps

3. EH/EH2/SV series MPU: 15,872 Steps

Function Group Syntax Check

Number M1004, D1004, D1137

Contents:

- 1. When errors occur in syntax check, ERROR LED indicator will flash and special relay M1004 = On.
- 2. Timings for PLC syntax check:
 - a) When the power goes from "Off" to "On".
 - b) When the program is written into PLC.
 - c) When on-line editing is being conducted.
- 3. The syntax check may start due to illegal use of instruction operands (devices) or incorrect program syntax loop. The error can be detected by the error code in D1004 and error table. The address where the error exists will be stored in D1137. (The address value in D1137 will be invalid if the error is a general loop error.)
- 4. See Chapter 2.12 for error codes for syntax check.

Function Group Data Backup Memory

Number M1005~M1007

When the data backup memory card is installed in EH/EH2 MPU, MPU will operate according to the On/Off of switch on the card. If the switch is "On", the following comparisons will be conducted and the card will be copied to MPU. If the switch is "Off", MPU will not perform any action.

- 1. M1005 = On: An error occurs in the comparison between the ciphers of MPU and the data backup memory card and MPU does not perform any action.
- 2. M1006 = On: The data backup memory card has not been initialized.
- 3. M1007 = On: Data in the program area of the data backup memory card do not exist, it means data doesn't exist in the program area of data backup memory card.

Function Group Scan Time-out Timer

Number M1008, D1008

Contents:

- M1008 = On: Scan time-out occurs during the execution of the program, and PLC ERROR LED indicator remains beaconing.
- 2. Users can use WPLSoft or HPP to monitor the content (STEP address when WDT timer is "On").

Function Group Checking Lost PLC SRAM Data

Number D1009, M1175, M1176

Contents:

- 1. bit0 ~ bit7 record the types of data lost. bit = 1 refers to losing data; bit = 0 refers to correct data.
- 2. What are lost

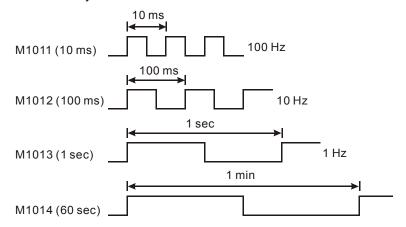
bit8 ~ 15	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Reserved	PLC program	D register	T register	C register	File register	M relay	S step	password

3. After the PLC is powered, the data in SRAM will be verified. If the SRAM data are lost, the PLC will record the error in D1009 and set on M1175 or M1176 according to the content of the data.

Function Group Scan Time Monitor **Number** D1010 ~ D1012

Contents:

The present value, minimum value and maximum value of scan time are stored in D1010 ~ D1012.


1. D1010: Present scan time value

2. D1011: Minimum scan time value

3. D1012: Maximum scan time value

Function Group Internal Clock Pulse **Number** M1011 ~ M1014

1. All PLC MPUs provide four different clock pulses. When PLC is powered, the four clock pulses will start automatically.

2. The clock pulses also start when PLC is in STOP status. The activation timing of clock pulses and that of RUN will not happen synchronously.

Function Group High-Speed Timer Number M1015, D1015

Contents:

- 1. The steps for using special M and special D directly:
 - a) High-speed counter is valid only when PLC is in RUN status for EH/EH2/SV, but is valid when PLC is in RUN or STOP stauts for SA/SX/SC.
 - b) M1015 = On: High-speed counter D1015 is enabled only whtn PLC scans to END instruction. (Min. timing unit of D1015: 100us)
 - c) Timing range of D1015: 0~32,767. When the timing reaches 32,767, the next timing restarts from 0.
 - d) M1015 = Off: D1015 stops timing immediately.
- 2. EH/EH2/SV series MPU offers high-speed timer instruction HST. See API 196 HST for more details.
- 3. Example:
 - a) When X10 = On, M1015 will be On. The high-speed timer will start to time and record the present value in D1015.
 - b) When X10 = Off, M1015 will be Off. The high-speed timer will be disabled.

Function Group Real Time Clock

Number M1016, M1017, M1076, D1313 ~ D1319

Contents:

1. Special M and special D relevant to RTC

No.	Name	Function			
M1016	Year (in A.D.) in RTC	Off: display the last 2 digits of year in A.D. On: display the last 2 digits of year in A.D. plus 2,000			

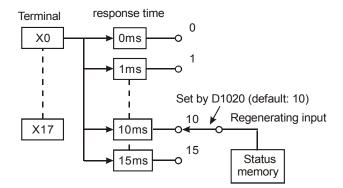
M1017 ±30 seconds correction		From "Off" to "On", the correction is enabled. 0 ~ 29 second: minute intact; second reset to 0 30~ 59 second: mimute + 1; second reset to 0
M1076	RTC malfunction	Set value exceeds the range; dead battery
M1082 Flag change on RTC		On: Modification on RTC
D1313	Second	0 ~ 59
D1314	Minute	0 ~ 59
D1315	Hour	0 ~ 23
D1316	Day	1 ~ 31
D1317	Month	1 ~ 12
D1318	Week	1~7
D1319	Year	0 ~ 99 (last 2 digits of Year in A.D.)

- 2. If the set value in RTC is incorrect, the time will be recovered as "Saturday, 00:00 Jan. 1, 2000" when PLC is powered and restarted.
- 3. D1313 ~ D1319 will immediately update the RTC only when in TRD instruction or WPLSoft monitoring mode.
- 4. How to make corrections on RTC:
 - a) Use TWR instruction fir SA/SX/SX/EH/EH2/SV series MPU. See API 167 TWR for more details.
 - b) Use WPLSoft or digital display panel DU-01.

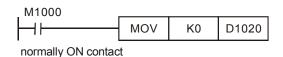
Function Group π (PI)

Number D1018, D1019

Contents:


- 1. D1018 and D1019 are combined as 32-bit data register for storing the floating point value of π (PI)
- 2. loating point value = H 40490FDB

Function Group Adjustment on Input Terminal Response Time


Number D1020, D1021

- D1020 can be used for setting up the response time of receiving pulses at X0 ~X7 for SS/ES/EX/SA/SX/SC series MPU. (Setup range: 0 ~ 20; Unit: ms)
- 2. D1021 can be used for setting up the response time of receiving pulses at X10 ~X17 for ES series MPU. (Setup range: 0 ~ 20; Unit: ms)
- 3. D1021 can be used for setting up the response time of receiving pulses at X10 \sim X11 for SC series MPU. (Setup range: 0 \sim 1,000; Unit: time)
- 4. D1020 can be used for setting up the response time of receiving pulses at X0 ~X7 for EH/EH2/SV series MPU. (Setup range: 0 ~ 60; Unit: ms)

- 5. D1021 can be used for setting up the response time of receiving pulses at X10 ~X17 for EH/EH2/SV series MPU. (Setup range: 0 ~ 60; Unit: ms)
- 6. When the power of PLC goes from "Off" to "On", the content of D1020 and D1021 turn to 10 automatically.

7. If the following programs are executed during the program, the response time of $X0 \sim X7$ will be set to 0ms. The fastest response time of input terminals is 50 μ s due to that all terminals are connected with RC filter loop.

- 8. There is no need to make adjustment on response time when using high-speed counters and interruptions during the program.
- 9. Using API 51 REFF instruction has the same effect as modifying D1020 and D1021.

Function Group Execution Completed Flag

Number M1029, M1030, M1036, M1037, M1102, M1103

Contents:

Using execution completed flag:

- API 52 MTR, API 71 HKY, API 72 DSW, API 74 SEGL, API 77 PR: M1029 = On whenever the instruction completes one scan period.
- 2. API 57 PLSY, API 59 PLSR:
 - a) M1029 will be "On" after Y0 pulse output of SA/SX/SC/ES/EX/SS is completed. M1030 will be "On" after Y1 pulse output is compeleted. When PLSY and PLSR instruction is "Off", M1029 and M1030 turn "Off". You have to reset M1029 and M1030 after the action is completed.
 - b) M1029 will be "On" after Y0 and Y1 pulse output of EH/EH2/SV is completed. M1030 will be "On" after Y2 and Y3 pulse output is compeleted. M1036 will be "On" after Y4 and Y5 pulse output of EH2/SV is completed. M1037 will be "On" after Y6 and Y7 pulse output is completed. When PLSY and PLSR instruction is "Off", M1029, M1030, M1036 and M1037 turn "Off". When the instruction is re-executed for the next time, M1029, M1030, M1036 and M1037 will turn "Off" and "On" again when the execution is completed.
- 3. API 63 INCD: M1029 will be "On" for a scan period when the assigned group number of data are compared.
- 4. API 67 RAMP, API 69 SORT:

- a) When the execution of the instruction is completed, M1029= On. You have to reset M1029.
- b) M1029 turns "Off" when the instruction is "Off".
- 5. API 155 DABSR, API 156 ZRN, API 158 DRVI, API 159 DRVA for EH/EH2/SV series MPU:
 - a) M1029 = On when the 1st output group Y0 and Y1 is completed. M1030 = On when the 2nd output group Y2 and Y3 is completed.
 - b) M1036 = On when the 3rd output group Y4 and Y5 of EH2/SV is completed. M1037 = On when the 4th output group Y6 and Y7 is completed.
 - c) When the instruction is re-executed for the next time, M1029 or M1030 will turn "Off" and "On" again when the execution is completed.
- 6. In API 57 PLSY, API 156 DZRN, API 158 DDRVI and API 159 DDRVA for SC series MPU: M1102 will be set On when Y10 pulse output is completed. M1103 will be set On when Y11 pulse output is completed. After PLSY instruction is disabled,M1102 and M1103 will be set Off. In DDRVA, DDRVI and DZRN, M1102 and M1103 will be set Off when next time these instructions are enabled.

Function Group Communication Error Code

Number M1025, D1025

Contents:

When HPP, PC or HMI is connected to the PLC and the PLC receives illegal communication request during the transmission of data, M1025 will be On and the error code will be written in D1025. See the error codes below.

01: Illegal instruction code

02: Illegal device address

03: Requested data exceed the range

07: Checksum error

Function Group Clear Instruction

Number M1031, M1032

Contents:

M1031 (clearing non-latched area), M1032 (clearing latched area)

Device No.	Cleared Device		
	■ Contact status of Y, general-purpose M and general-purpose S		
	■ General-purpose contact and timing coil of T		
M4024	■ General-purpose contact, counting coil reset coil of C		
M1031	■ General-purpose present value register of D		
	■ General-purpose present value register of T		
	■ General-purpose present value register of C		

Device No.	Cleared Device		
	■ Contact status of M and S for latched		
	■ Contact and timing coil of accumulative timer T		
M1032	■ Contac and timing coil of high-speed counter C for latched		
WI 1032	■ Present value register of D for latched		
	■ Present value register of accumulative timer T		
	■ Present value register of high-speed counter C for latched		

Function Group Output Latched During STOP

Number M1033

Contents:

When M1033 = On and PLC goes from "RUN" to "STOP", the On/Off status of output will be ratained.

Assume the output contact load of the PLC is a heater, when PLC switches from RUN to STOP, the status of the heater will be retained. After the PLC program is modified, the PLC will RUN again.

Function Group All Output Y Inhibited

Number M1034

Contents:

When M1034 = On, all Y outputs will turn "Off".

M1034 all outputs inhibited

Function Group RUN/STOP Switch Number M1035, D1035

Contents:

- 1. When M1035 = On, EH/EH2/SV series MPU will determine the content (K0 ~ K15) in D1035 to enable input points X0 ~ X17 as the RUN/STOP switch.
- 2. When M1035 = On, SA/SX/SC series MPU will enable the input point X7 (in SA), X3 (in SX) and X5 (in SC) as the RUN/STOP switch.

Function Group Detecting Speed of X0 ~ X5

Number M1036

- 1. For SC_V1.4 and above, SPD can detect the speed of X0 ~ X5 at the same time. The total bandwidth is 40KHz.
- 2. Program example:

3. Parameter D0 when X7 = On

Start No. of D0	Functions			
+ index value	Functions			
+0	Low 16 bits of the 32-bit speed detected at input point X0.			
+1	High 16 bits of the 32-bit speed detected at input point X0.			
+2	Low 16 bits of the 32-bit speed detected at input point X1.			
+3	High 16 bits of the 32-bit speed detected at input point X1.			
+4	Low 16 bits of the 32-bit speed detected at input point X2.			
+5	High 16 bits of the 32-bit speed detected at input point X2.			
+6	Low 16 bits of the 32-bit speed detected at input point X3.			
+7	High 16 bits of the 32-bit speed detected at input point X3.			
+8	Low 16 bits of the 32-bit speed detected at input point X4.			
+9	High 16 bits of the 32-bit speed detected at input point X4.			
+10	Low 16 bits of the 32-bit speed detected at input point X5.			
+11	High 16 bits of the 32-bit speed detected at input point X5.			
+12	Remaining time for speed detection (unit: ms)			

Function Group X0 Detecting Pulse Width

Number M1084, D1023

Contents:

When M1084 = On, X0 of ES/EX/SS_V6.4/SA/SX_V1.6/SC_V1.4 can detect pulse width. Whenever X0 turns from "On" to "Off", the value is updated once and stored in D1023 (unit: 0.1ms). The minimum detectable width is 0.1ms and maximum 10,000ms.

Function Group Communication Port Function

Number M1120, M1136, M1138, M1139, M1143, D1036, D1109, D1120

Contents:

- 1. Supports ES/EX/SS_V6.0/SA/SX_V1.2/SC_V1.0/EH_V1.1/SV_V1.0 and versions above.
- 2. COM ports (COM1: RS-232; COM2: RS-485) in SA/SX/SC series MPU and COM ports (COM1: RS-232; COM2: RS-232/RS-485/RS-422) in EH/EH2 series MPU support Modbus ASCII/RTU communication format with speed of up to 115,200bps. COM1 and COM2 can be used at the same time. COM3: RS-232/RS-485 in EH/EH2 series MPU supports Modbus ASCII communication format with speed of up to 38,400bps.

COM1: For slave stations only. Supports ASCII/RTU communication format, adjustable baud rate with speed of up to 115,200bps, and modification on data length (data bits, parity bits, stop bits).

COM2: For master or slave stations. Supports ASCII/RTU communication format, adjustable baud rate with speed of up to 115,200bps, and modification on data length (data bits, parity bits, stop bits).

COM3: For slave stations only. Supports ASCII communication format (data bits, parity bits, stop bits) 7, E, 1, adjustable baud rate with speed of up to 38,400bps. COM2 or COM3 cannot be used for slave stations at the same time.

■ Communication Format Settings:

COM1: 1. Communication format is set in D1036. b8 ~ b15 do not support the communication protocol of COM1 (RS-232) Slave

- 2. Communication setting in M1138 remains
- 3. M1139 is set in ASCII/RTU mode
- COM2: 1. Communication format is set in D1120. Communication protocol of COM2 (RS-232/RS-485/RS-422) Master or Slave
 - 2. Communication setting in M1120 remains
 - 3. M1143 is set in ASCII/RTU mode

COM3: 1. Communication format is set in D1109. b0 ~ b3 and b8 ~ b15 do not support the communication protocol of COM3 (RS-232/RS-485) Slave

2. Communication setting in M1136 remains

Communication protocols and how to set:

	Content			0	1	
b0	Data length			b0 = 0:7	b0 = 1:8	
b1 b2	parity bit			02, b1 = 00 : 02, b1 = 01 : 02, b1 = 11 :	None Odd Even	
b3	stop bits			b3 = 0:1 bit	b3 = 1:2 bit	
	b7 ~ b4 = 0001	(H1)	:	110	bps	
	b7 ~ b4 = 0010	(H2)	:	150	bps	
	b7 ~ b4 = 0011	(H3)	:	300	bps	
	b7 ~ b4 = 0100	(H4)	:	600	bps	
	b7 ~ b4 = 0101	(H5)	:	1,200	bps	
b7 ~ b4	b7 ~ b4 = 0110	(H6)	:	2,400	bps	
D7 ~ D4	b7 ~ b4 = 0111	(H7)	:	4,800	bps	
	b7 ~ b4 = 1000	(H8)	:	9,600	bps	
	b7 ~ b4 = 1001	(H9)	:	19,200	bps	
	b7 ~ b4 = 1010	(HA)	:	38,400	bps	
	b7 ~ b4 = 1011	(HB)	:	57,600	bps	
	b7 ~ b4 = 1100	(HC)	:	115,200	bps	
b8	Select start bit			b8 = 0:None	b8 = 1:D1124	
b9	Select the 1 st end bit			b9 = 0:None	b9 = 1:D1125	
b10	Select the 2 nd end bit			b10 = 0:None	b10 = 1:D1126	
b15 ~ b11	Not defined					

Example 1: Modifying communication format of COM2

- 1. Add the program code below on top of the program to modify the communication format of COM2. When PLC switches from STOP to TUN, the program will detect whether M1120 is On in the first scan time. If M1120 is On, the program will modify the relevant settings of COM2 according to the value set in D1120.
- 2. Modify the communication format of COM2 into ASCII mode, 57,600bps, 7 data bits, even parity, 1 stop bit (57,600, 7, E, 1)

```
M1002
MOV H86 D1120
SET M1120
```

Notes:

- 1. If COM2 is to be used as a Slave terminal, make sure there is no communication instruction existing in the program.
- 2. After the communication format is modified, the format will stay intact when PLC switches from RUN to STOP.
- 3. If you shut down the power of the PLC and repower it again, the modified communication format will return to default setting.

Example 2: Modifying the communication format of COM1

- Add the program code below on top of the program to modify the communication format of COM1. When PLC switches from STOP to TUN, the program will detect whether M1138 is On in the first scan time. If M1138 is On, the program will modify the relevant settings of COM1 according to the value set in D1036.
- 2. Modify the communication format of COM1 into ASCII mode, 115,200bps, 7 data bits, even parity, 1 stop bit (115,200, 7, E, 1)

```
M1002 MOV H86 D1036

SET M1138
```

Notes:

- After the communication format is modified, the format will stay intact when PLC switches from RUN to STOP.
- 2. If you shut down the power of the PLC and repower it again, the modified communication format will return to default setting.

Example 3: Modifying the communication format of COM3

 The communication format of COM3 is fixed as 7 data bits, even parity, 1 stop bit. Add the program code below on top of the program to modify the baud rate of COM3 into 38,400bps. When PLC switches from STOP to TUN, the program will detect whether M1136 is On in the first scan time. If M1136 is On, the program will modify the relevant settings of COM3 according to the value set in D1109.

2. Modify the baud rate of COM3 into 38,400bps

Notes:

- 1. After the communication format is modified, the format will stay intact when PLC switches from RUN to STOP.
- 2. If you shut down the power of the PLC and repower it again, the modified communication format will return to default setting.

Example 4: Setting up RTU mode of COM1 and COM2

- 1. COM1 and COM2 support ASCII/RTU mode. COM1 is set by M1139 and COM2 is set by M1143. When the flags are On, they are in RTU mode; when the flags are Off, they are in ASCII mode.
- 2. How to set up RTU mode

COM1: (9,600, 8, E, 1, RTU)

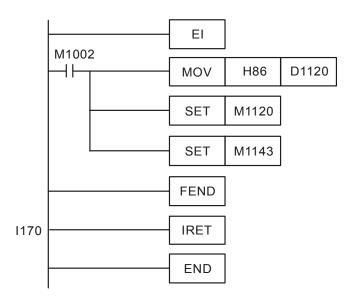
```
M1002

MOV H86 D1036

SET M1138

SET M1139
```

COM2: (9,600, 8, E, 1, RTU)


```
M1002

MOV H86 D1120

SET M1120

SET M1143
```

- 3. COM2 of EH/EH2/SV series MPU supports the generation of interruption I170 when the data receiving is completed in Slave mode.
- 4. Normally when the communication terminal of the PLC is in Slave mode, PLC will not immediately process the communication data entered but process it after the END is executed. Therefore, when the scan time is very long and you need the communication data to be processed immediately, you can use interruption 1170 for this matter.
- Example of interruption I170 (after the data receiving is completed in Slave mode)

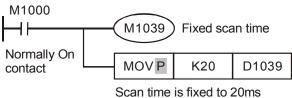
With I170 in the program, when COM2 is in Slave mode and there are communication data coming in, PLC will process the data and respond immediately.

Notes:

- 1. DO NOT updat program on-line when using I170.
- 2. The scan time of PLC will be slightly longer.

Function Group Communication Response Delay

Number D1038


Contents:

- 1. When PLC is used as slave station, in RS-485 communication interface, users can set up communication response delay time ranging from 0 to 10,000 (0 ~ 1 second). If the time is without the range, D1038 = O (time unit: 0.1ms). The set value of time must be less than that in D1000(scan time-out timer WDT).
- 2. In EASY PLC LINK, you can set up delayed transmission of the next communication data (unit: 1 scan period for SA/SX/SC; 0.1ms for EH/EH2/SV).

Function Group Fixed Scan Time Number M1039, D1039

Contents:

1. When M1039 = On, the scan time of program is determined by the content in D1039. When the execution of the program is completed, the next scan will take place when the fixed scan time is reached. If the content in D1039 is less than the actual scan time of the program, the scan time will follow the actual scan time of the program.

Instructions related to scan time, RAMP (API 67), HKY (API 71), SEGL (API 74), ARWS (API 75) and PR (API 77) should be used together with "fixed scan time" or "constant interruption".

- 3. Particularly for HKY instruction, when the 16-digit button input is operated by 4x4 matrix, the scan time has to be fixed to longer than 20ms.
- 4. The scan time in D1010 ~ D1012 also includes fixed scan time.

Function Group Analog Function

Number D1056 ~ D1059, D1062, D1110 ~ D1113, D1116 ~ D1118

Contents:

- 1. Resolution of analog input channel: 10 bits for EX, corresponding to $0 \sim \pm 10 \text{ V}$ (-512 $\sim +511$) or $0 \sim \pm 20 \text{ mA}$ (-512 $\sim +511$); 12 bits for SX, corresponding to $0 \sim \pm 10 \text{ V}$ (-2,000 $\sim +2,000$) or $0 \sim \pm 20 \text{ mA}$ (-1,000 $\sim +1,000$).
- 2. Resolution of analog output channel: 8 bits for EX, corresponding to $0 \sim 10 \text{ V}$ ($0 \sim 255$) or $0 \sim 20 \text{ mA}$ ($0 \sim 255$); 12 bits for SX, corresponding to $0 \sim \pm 10 \text{ V}$ (-2,000 $\sim \pm 20 \text{ mA}$ (-2,000 $\sim \pm 20 \text{ mA}$ (-2,000).
- 3. Sampling time of analog/digital conversion. Default setting = 5; unit: ms. If D1118 ≤ 5, it will be regarded as 5ms.
- 4. Resolution of EH/EH2 analog input AD card (DVP-F2AD): 12 bits $0 \sim 10 \text{ V}$ ($0 \sim +4,000$) or 11 bits $0 \sim 20 \text{ mA}$ ($0 \sim +2,000$)
- 5. Resolution of EH/EH2 analog input DA card (DVP-F2DA): 12 bits $0 \sim 10 \text{ V}$ ($0 \sim +4,000$) or $0 \sim 20 \text{ mA}$ ($0 \sim +4,000$)

Device No.	Function					
D1056	Present value of EX/SX analog input channel CH0 and EH/EH2 AD card channel CH0					
D1057	Present value of EX/SX analog input channel CH1 and EH/EH2 AD card channel CH1					
D1058	Present value of EX analog input channel CH 2					
D1059	Present value of EX analog input channel CH 3					
D1062	Average times (2 ~ 4) of SX AD0 and AD1					
D1110	Average value of EX/SX analog input channel CH0 and EH/EH2 AD card channel CH0					
D1111	Average value of EX/SX analog input channel CH1 and EH/EH2 AD card channel CH1					
D1112	Average value of EX analog input channel CH2					
D1113	Average value of EX analog input channel CH3					
D1116	EX/SX analog output channel CH0 and EH/EH2 DA card channel CH0					
D1117	EX/SX analog output channel CH1 and EH/EH2 DA card channel CH1					
D1118	Sampling time (ms) of EX/SX/EH/EH2 analog/digital conversion					

Function Group Operational Error Flag

Number M1067 ~ M1068, D1067 ~ D1068

Contents:

1. Operational error flag:

Device	Description	Latched	STOP → RUN	RUN → STOP
M1067	Operational error flag	None	Cleared	Latched
M1068	Operational error locked flag	None	Latched	Latched

Device	Description	Latched	STOP → RUN	RUN → STOP
D1067	Operational error code	None	Cleared	Latched
D1068	STEP value when operational error occurs	None	Latched	Latched

Error code explanation:

D1067 error code	Cause
H' 0E18	BCD conversion error
H' 0E19	Divisor is 0
H' 0E1A	Use of device exceeds the range (including E, F index register modification)
H' 0E1B	Square root value is negative
H' 0E1C	FROM/TO instruction communication error

Function Group Low Voltage
Number M1087, D1100

Contents:

1. When PLC detects LV (Low Voltage) signal, it will check if M1087 is "On" or not. If M1087 is "On", the content in D1100 will be stored in Y0 ~ Y17.

2. bit0 (LSB) of D1100 corresponds to Y0, bit1 corresponds to Y1, bit8 corresponds to Y10 and so on.

Function Group File Register

Number M1101, D1101 ~ D1103

Contents:

1. When the power of PLC turns from "Off" to "On", PLC determines whether to automatically send the content in the file register to the assigned data register by checking M1101, D1101 ~ D1103 (for SA/SX/SC/EH/EH2/SV).

M1101: Whether to automatically downland data from file register

D1101: Start No. of file register K0 ~ K1,599 (for SA/SX/SC)

Start No. of file register K0 ~ K9,999 (for EH/EH2/SV)

D1102: Number of data read from file register K0 ~ K1,600 (for SA/SX/SC)

Number of data read from file register K0 ~ K8,000 (for EH/EH2/SV)

D1103: Location for storing data read from file register

Start No. of assigned data register D K2,000 ~ K4,999 (for SA/SX/SC)

Start No. of assigned data register D K2,000 ~ K9,999 (for EH/EH2/SV)

2. See API 148 MEMR and API 149 MEMW for more details.

Function Group DIP Switch Function Card

Number M1104 ~ M1111

Contents:

 When PLC is in RUN status with digital switch function card inserted, the 8 DIP switches amd their status orrespond respectively to M1104 ~ M1111.

- 2. See API 109 SWRD for more details.
- When PLC is in RUN status with 4DI card inserted into the input AX0 (photocoupler isolation), the status of AX0
 AX3 correspond respectively to M1104 ~ M1107.

Function Group Transistor Output Function Card

Number M1112, M1113

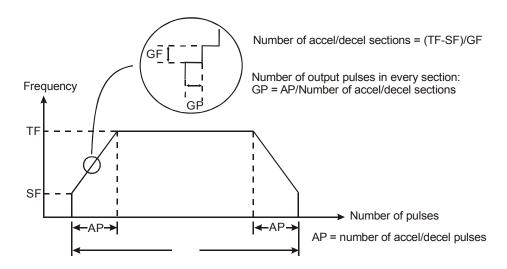
Contents:

When PLC is in RUN status with 2DO function card inserted, M1112 and M1113 will correspond respectively to 2 transistors output points, AY0 and AY1.

Function Group Pulse Output With Speed Acceleration/Deceleration

Number M1115 ~ M1119, D1104

Contents:

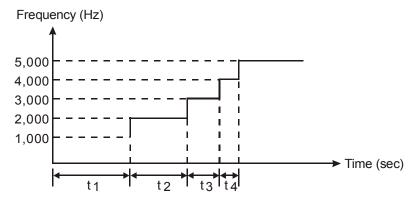

 Special D and special M for acceleration/ deceleration of speed pulse output for SA/SX/SC (not applicable to SC V1.4 and versions above):

Device No.	Function				
M1115	Activation switch				
M1116	"Accelerating" flag				
M1117	"Target frequency reached" flag				
M1118	"Decelerating" flag				
M1119	"Function completed" flag				
D1104	Start No. of control register (D)				

2. Parameters for D1104 (frequency range: 25Hz ~ 10KHz)

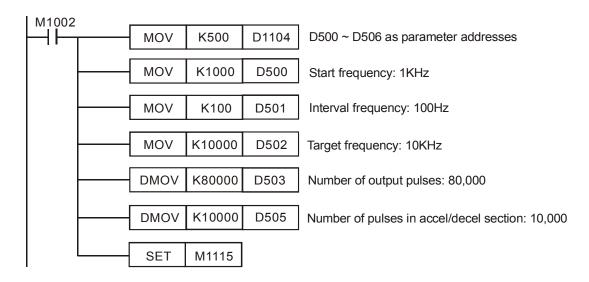
Index	Function				
+ 0	Start frequency (SF)				
+ 1	Gap frequency (GF)				
+ 2	Target frequency (TF)				
+ 3	The lower 16 bits of the 32 bits for the total number of output pulses				
+ 4	The higher 16 bits of the 32 bits for the total number of output pulses (TP)				
+ 5	The lower 16 bits of the 32 bits for the total number of output pulses in				
+ 5	accelerating/decelerating section	(AP)			
+ 6	The higher 16 bits of the 32 bits for the total number of output pulses in				
	accelerating/decelerating section				

3. No instruction is needed, users need only to fill out the parameter table and enable M1115 (in RUN mode). This functio only supports Y0 output and the timing chart is as below.

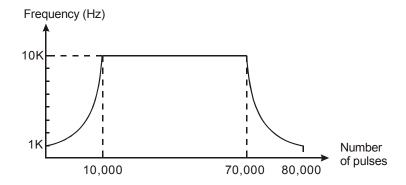

- 4. Note: this function is applicable only when "all" the conditions below are met.
 - a) Start frequency < target frequency.
 - b) Gap frequency ≤ (target frequency start frequency)
 - c) Total number of pulses > (accel/decel number of pulses × 2)
 - d) For start frequency and target frequency: Min. 25Hz; Max. 10KHz
 - e) Number of accel/decel pulses > number of accel/decel sections

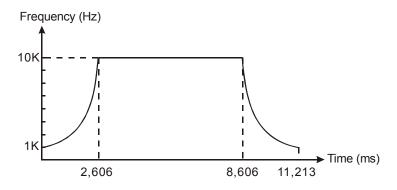
When M1115 turns from "On" to "Off", M1119 will be reset and M1116, M1117 and M1118 remain unchanged. When PLC goes from "STOP" to "RUN", M1115 ~ M1119 will be reset as "Off". D1104 will only be cleared as "0" when it turns from "Off" to "On".

Either accel/decel pulse output function or PLSY Y0 output can be executed at a time when PLC is operating.


5. How to calculate the action time of each section

Assume the start frequency is set as 1KHz, gap frequency as 1KHz, target frequency as 5KHz, total number of pulses as 100 and number of acceleration pulses as 40, the timing diagram of the acceleration sections is as the figure below.




From the conditions above, we can obtain the number of acceleration/deceleration sections is (5K - 1K)/1K = 4 and the number of output pulses in each section is 40/4 = 10. Therefore, in the diagram, $t1 = (1/1K) \times 10 = 10$ ms, $t2 = (1/2K) \times 10 = 5$ ms, $t3 = (1/3K) \times 10 = 3.33$ ms, $t4 = (1/4K) \times 10 = 2.5$ ms.

6. Program example: Forward/reverse acceleration/deceleration step motor control

- a) When PLC is in RUN status, store all parameter settings into the registers designated in D1104.
- b) When M1115 = On, the acceleration/deceleration pulse output will start.
- c) M1116 = On in the acceleration process. When the speed reaches its target, M1117 will be On. M1118 = On in the deceleration process. When the speed reaches its target, M1119 will be On.
- d) M1115 will not be reset automatically. You have to check the conditions during the process and reset it.
- e) Pulse output curves:

Function Group

Special High-Speed Pulse Output

Number

M1133 ~ M1135, D1133

Contents:

 Special D and special M for special high-speed pulse Y0 (50KHz) for SA/SX/SC (not applicable to SC_V1.4 and versions above):

No.	Function					
M1133	Output switch for special high-speed pulse Y0 (50KHz) (On = enabled)					
M1134	On = Continuous output switch for special high-speed pulse Y0 (50KHz)					
M1135	"Number of pulses reached" flag for special high-speed pulse Y0 (50KHz)					
D1133	Start No. of control register (D) for special high-speed pulse Y0 (50KHz)					

2. Parameters for D1133:

Index	Function
+ 0	The lower 16 bits of the 32 bits for output frequency of special high-speed pulse Y0
+ 1	The higher 16 bits of the 32 bits for output frequency of special high-speed pulse Y0
+ 2	The lower 16 bits of the 32 bits for number of output pulses of special high-speed pulse Y0
+ 3	The higher 16 bits of the 32 bits for number of output pulses of special high-speed pulse Y0
+ 4	The lower 16 bits of the 32 bits of the present number of special high-speed pulses Y0
+ 5	The higher 16 bits of the 32 bits of the present number of special high-speed pulses Y0

3. The function:

All output frequency and number of pulses stated in the table above can be modified when M1133 = On and M1135 = On. The modification will not affect the present output pulses. The present number of output pulses is updated in every scan time. When M1133 turns from "Off" to "on", the number will be cleared as "0". When 1133 turns from "On" to "Off", the last number of output pulses will be shown.

Note:

The special high-speed pulse output function can only be used on specific Y0 output point when PLC is in RUN status. It can coexist with PLSY (Y0) in the program and PLSY (Y1) will not be affected. If PLSY (Y0) instruction is executed prior to this function, the function cannot be used and vice versa. When the function is executed, the general function, general Y0 output will be invalid but Y1 ~ Y7 can be used.

The output frequency of this function is higher (max. 50KHz) than that of PLSY instruction.

Function Group 2-axis Synchronous Control (PH) **Number** M1133, M1135, D1133 ~ D1136

Contents:

1. Special D and special M for 2-axis synchronous drawing oblique and arc for SC_V1.4 and versions above:

Device No.	Function					
M1133	Start flag for Y10 output for two-axis synchronous control					
M1135	tart flag for Y11 output for two-axis synchronous control					
D1133	Start No. of control register (D) for Y10 output for two-axis synchronous control					
D1134	Number of sections for Y10 output for two-axis synchronous control					
D1135	Start No. of control register (D) for Y11 output for two-axis synchronous control					
D1136	Number of sections for Y11 output for two-axis synchronous control					

2. Parameters for D1133, D1135:

Index	Function
+ 0	Y10, Y11 2-axis synchronous control; output frequency of 1st section = low 16 bits of 32 bits
+ 1	Y10, Y11 2-axis synchronous control; output frequency of 1st section = high 16 bits of 32 bits
+ 2	Y10, Y11 2-axis synchronous control; output pulse number of 1st section = low 16 bits of 32 bits
+ 3	Y10, Y11 2-axis synchronous control; output pulse number of 1st section = high 16 bits of 32
+ 3	bits

3. The functions:

a) Definition of the 2 axes:

X axis: Y0 (direction output) and Y10 (pulse output) Y axis: Y1 (direction output) and Y11 (pulse output)

b) Define the format of output table:

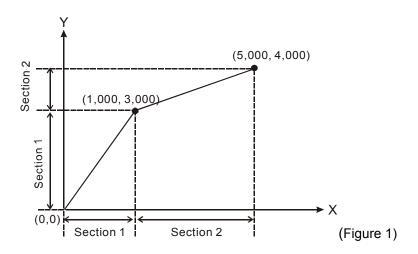
Assume D1133 = K100 and D1134 = K3 and the output table has to be set as:

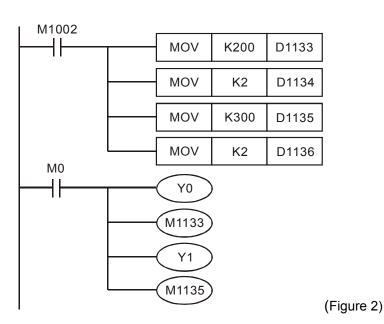
Section No.	Device D	Output frequency	Device D	Number of Output pulses	Description
1	D101,D100	K10,000	D103,D102	K1,000	Section 1 outputs 1,000 pulses in 10KHz
2	D105,D104	K15,000	D107,D106	K2,000	Section 2 outputs 2,000 pulses in 15KHz
3	D109,D108	K5,000	D111,D110	K3,000	Section 3 outputs 3,000 pulses in 5KHz

Note: The frequency and number of output pulses are all in 32-bit. Thus, the 3 sections will continuously occupy 12 D devices $(3 \times 2 \times 2 = 12)$.

4. Note:

- Make sure that the output frequency and the number of pulses have been set before using this function.
 The output frequency and the number of pulses cannot be modified during the execution of the function.
- b) When PLC program scans to END instruction, it will auto-check whether this function needs to be enabled.
- c) When M1133 and M1135 are set in the same scan period, the two axes will output pulses synchronously.
- d) When the output frequency < 100Hz, the output will be executed in 100Hz. When the output frequency > 100KHz, the output will be executed by 100KHz.
- e) Only device D (D0 ~ D999 and D2000 ~ D4999) can be used for this function. DO NOT use other devices or exceed the range of device D.
- f) The maximum number of segments for this function is 50. When the number of segments < 1 or > 50, this function will be disabled.
- g) After this function is enabled, M1102 = "On" indicates Y10 output is completed and M1103 = "On" indicates Y11 output is completed.


5. Examples:

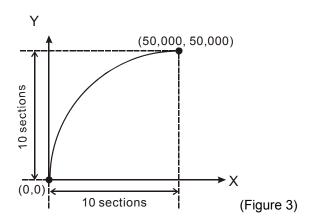

a) Draw oblique lines in 2 axes

Destination: Draw 2 oblique lines (as figure 1)

Program explanation: Y0 and Y10 belong to X axis, and Y1 and Y11 belong to Y axis (as figure 2)

Output frequency and number of pulses: see table 1

Axis	Section	Device D	Output frequency	Device D	Number of output pulses
X	1	D201, D200	K1,000	D203, D202	K1,000
^	2	D205, D204	K4,000	D207, D206	K4,000
_	1	D301, D300	K3,000	D303, D302	K3,000
ĭ	2	D305, D304	K1,000	D307, D306	K1,000


(Table 1)

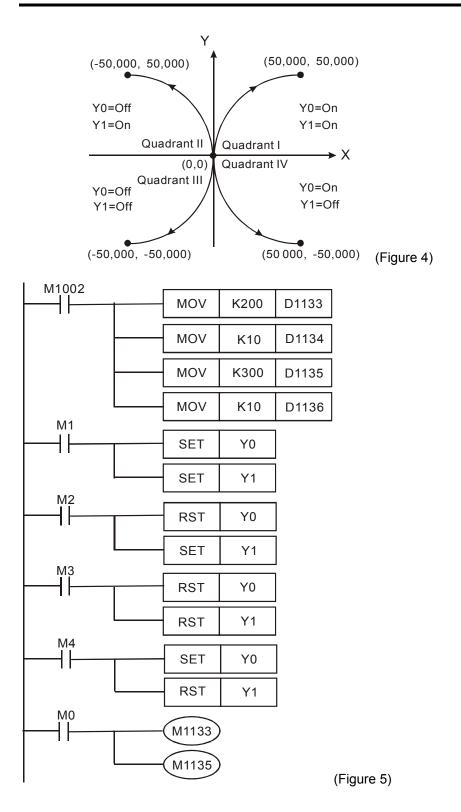
b) Draw an arc in 2 axes

Destination: Draw a 90° arc (see figure 3)

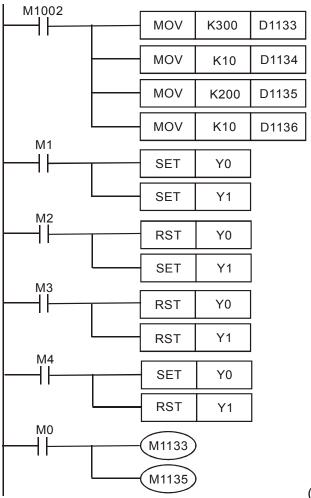
Program explanation: Same as the the example of draw oblique lines, except that D1134 and D1136 are modified as K10 (output 10 sections)

Output frequency and number of pulses: see table 2

Axis	Section	Device D	Output frequency	Device D	Number of output pulses
	1	D201, D200	K1,230	D203, D202	K615
	2	D205, D204	K3,664	D207, D206	K1,832
	3	D209, D208	K6,004	D211, D210	K3,002
	4	D213, D212	K8,200	D215, D214	K4,100
X	5	D217, D216	K10,190	D219, D218	K5,095
^	6	D221, D220	K11,932	D223, D222	K5,966
	7	D225, D224	K13,380	D227, D226	K6,690
	8	D229, D228	K14,498	D231, D230	K7,249
	9	D233, D232	K15,258	D235, D234	K7,629
	10	D237, D236	K15,644	D239, D238	K7,822
	1	D301, D300	K15,644	D303, D302	K7,822
	2	D305, D304	K15,258	D307, D306	K7,629
	3	D309, D308	K14,498	D311, D310	K7,249
	4	D313, D312	K13,380	D315, D314	K6,690
Y	5	D317, D316	K11,932	D319, D318	K5,966
'	6	D321, D320	K10,190	D323, D322	K5,095
	7	D325, D324	K8,200	D327, D326	K4,100
	8	D329, D328	K6,004	D331, D330	K3,002
	9	D333, D332	K3,664	D335, D334	K1,832
	10	D337,D336	K1,230	D339, D338	K615

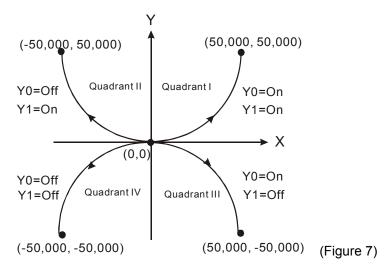

(Table 2)

c) Draw arcs in the four quadrants


Destination: Draw four 90° arcs (see figure 4)

Program explanation: When the direction signal is On, the direction will be a positive one; when the direction signal is Off, the direction will be a negative one (see figure 5)

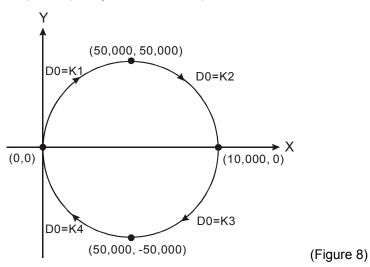
Output frequency and number of pulses: see table 2

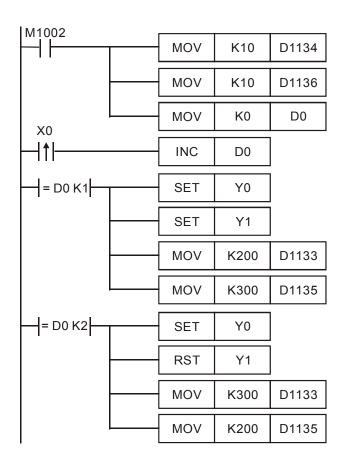


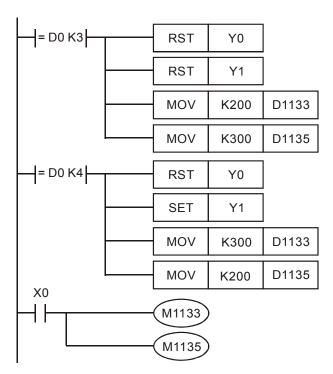
- M0, M1 = On refers to drawing a 90° arc in Quadrant I; M0, M2 = On refers to drawing a 90° arc in Quadrant II; M0, M4 = On refers to drawing a 90° arc in Quadrant III; M0, M4 = On refers to drawing a 90° arc in Quadrant IV.
- The four 90° arcs are drawn when acceleration in X and deceleration in Y. To draw the arcs when deceleration in X and acceleration in X, modify the program into figure 6, i.e. D1333 = K300 and D1335 = K200.

(Figure 6)

■ M0, M1 = On refers to drawing a 90° arc in Quadrant I; M0, M2 = On refers to drawing a 90° arc in Quadrant II; M0, M3 = On refers to drawing a 90° arc in Quadrant III; M0, M4 = On refers to drawing a 90° arc in Quadrant IV. (See figure 7)

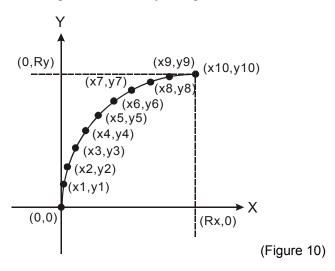



d) Draw a circle


Destination: Extract four 90° arcs from figure 4 and figure 7 and combine them into a circle (see figure 8).

Program explanation: When the direction control pin is On, the direction will be a positive one; otherwier, it will be a negative one (see figure 9). When X0 = On, D0 will accumulate once and the 2 axes will draw a 90° arc.

Output frequency and number of pulses: see table 2.



(Figure 9)

e) Calculate the frequency and number of output pulses in each section

Destination: Draw 10 sections of arcs clockwise until they reach (50,000, 50,000) (see figure 10)

Rx = target value in X; Ry = target value in Y; N = number of sections; π = 3.1416

■ Step 1: Calculate the position for each section

$$x_1 = Rx - Rx \times \sin [(N-1) \times \pi \div (2 \times N)]$$

$$x_2 = Rx - Rx \times sin [(N-2) \times \pi \div (2 \times N)] \dots$$
 See table 3

$$y_1 = Ry \times sin [1 \times \pi \div (2 \times N)]$$

$$y_2 = Ry \times sin [2 \times \pi \div (2 \times N)].... See table 4$$

Position	X ₁	X ₂	X ₃	X ₄	X ₅
With decimal point	615.55	2,447.12	5,449.61	9,549.08	14,464.59
Without decimal point	615	2,447	5,449	9,549	14,464

Position	X ₆	X ₇	X 8	X 9	x ₁₀ (R _X)
With decimal point	20,610.67	27,300.42	34,549.11	42,178.25	50,000
Without decimal point	20,610	27,300	34,549	42,178	50,000

(Table 3)

Position	y ₁	y ₂	y ₃	У4	y 5
With decimal point	7,821.74	15,450.88	22,699.57	29,389.32	35,355.40
Without decimal point	7,821	15,450	22,699	29,389	35,355
Position	y ₆	y ₇	y 8	y 9	$y_{10}(R_y)$
With decimal point	40,450.91	44,550.38	47,552.87	49,384.44	50,000
Without decimal point	40,450	44,550	47,552	49,384	50,000

(Table 4)

■ Step 2: Calculate the distance (number of pulses) between every section

In X axis:
$$x_1 = x_1 - 0$$
, $x_2 = x_2 - x_1$, ... $x_{10} = x_{10} - x_9$ (see table 5)

In Y axis:
$$y_1 = y_1 - 0$$
, $y_2 = y_2 - y_1$, ... $y_{10} = y_{10} - y_9$ (see table 5)

Position	X ₁	X ₂	X ₃	X ₄	X ₅	X 6	X ₇	X 8	X 9	X ₁₀
Number of pulses	615	1,832	3,002	4,100	5,095	5,966	6,690	7,249	7,629	7,822
Position	y ₁	y ₂	y ₃	y ₄	y ₅	y 6	y ₇	y ₈	y 9	y ₁₀
Number of pulses	7,821	7,629	7,249	6,690	5,966	5,095	4,100	3,002	1,832	616

(Table 5)

■ Step 3: Decide the execution time of every section and obtain the frequency of every section by table 5
Assume every section executes for 500ms, the equation for frequency (Hz) of each section is: $fx_1 = 1 \div 0.5 \times x_1 \cdot fx_2 = 1 \div 0.5 \times x_2...$ (see table 6)

Position	fx ₁	fx ₂	fx ₃	fx ₄	fx ₅	fx ₆	fx ₇	fx ₈	fx ₉	fx ₁₀
Frequency	1,230	3,664	6,004	8,200	10,190	11,932	13,380	14,498	15,258	15,644
Position	fy ₁	fy ₂	fy ₃	fy ₄	fy ₅	fy ₆	fy ₇	fy ₈	fy ₉	fy ₁₀
Frequency	15,642	15,258	14,498	13,380	11,932	10,190	8,200	6,004	3,644	1,232

(Table 6)

■ Step 4: Fill Device D into table 2 and complete all steps.

Reminder 1: When Rx=Ry, you can calculate X axis, and copy X axis to Y axis (as fy1 = fx10, fy2 = fx9, ...fy10 = fx1,and y1 = x10, y2 = x9,...y10 = x1)

Reminder 2: When drawing a counterclockwise arc, switch the index value of X axis with that of Y axis.

Function Group Detecting Extension

Number D1140, D1142, D1143, D1145

Contents:

- 1. D1140: Number of special right-side extension modules (AD, DA, XA, PT, TC...); Max. 8
- 2. D1142: Number of X input points on digital extension device
- 3. D1143: Number of Y output points on digital extension device

4. D1145: Number of special left-side extension modules (AD, DA, XA, PT, TC...); Max. 8 (available in SV only)

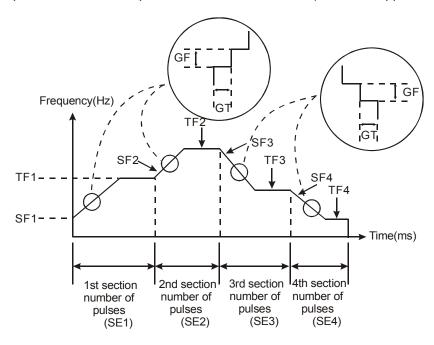
Function Group Adjustable Pulse Speed Acceleration/Deceleration

Number M1144 ~ M1149, M1154, D1030, D1031, D1144, D1154, D1155

Contents:

1. Special D and special M of Y0 adjustable pulse speed acceleration/deceleration for SA/SX/SC:

Device No.	Function
M1144	Activation switch for Y0 adjustable pulse speed acceleration/deceleration
M1145	Accerlerating flag for Y0 adjustable pulse speed acceleration/deceleration
M1146	"Target frequency reached" flag for Y0 adjustable pulse speed acceleration/deceleration
M1147	"Decerlerating" flag for Y0 adjustable pulse speed acceleration/deceleration
M1148	"Function completed" flag for Y0 adjustable pulse speed acceleration/deceleration
M1149	"Counting temporarily stops" flag for Y0 adjustable pulse speed acceleration/deceleration
M1154	"Enabling deceleration" flag for Y0 adjustable pulse speed acceleration/deceleration
D1030	The lower 16 bits in the 32-bit data register for accumulative Y0 output pulses
D1031	The higher 16 bits in the 32-bit data register for accumulative Y0 output pulses
D1144	Starting No. of the register (D) for Y0 adjustable pulse speed acceleration/deceleration
D1154	Recommended value for indicated gap time of deceleration(10 ~ 32,767 ms)
D1155	Recommended value for indicated gap frequency of deceleration (-1 ~ -32,700 Hz)

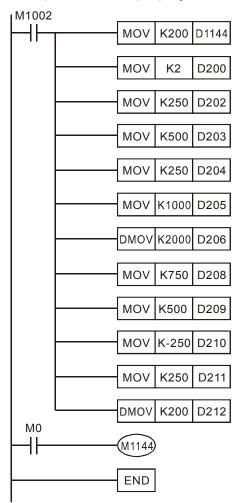

2. Parameters for D1144:

Index	Function			
+ 0	Total number of sections (n) (max. 10)			
+ 1	Currently executed section (read only)			
+ 2	Start frequency of the 1 st section (SF1)			
+ 3	Gap time of the 1 st section (GT1)			
+ 4	Gap frequency of the 1 st section (GF1)			
+ 5	Target frequency of the 1 st section (TF1)			
+ 6	The lower 16 bits of the 32 bits for the target number of output pulses in the 1 st section (SE1)			
+ 7	The higher 16 bits of the 32 bits for the target number of output pulses in the 1 st section (SE1)			
+ 8	Start frequency of the 2 nd section (SF2); Cannot be the same as TF1			
+ 9	Gap time of the 2 nd section (GT2)			
+ 10	Gap frequency of the 2 nd section (GF2)			
+ 11	Target frequency of the 2 nd section (TF2)			
+ 12	The lower 16 bits of the 32 bits for the target number of output pulses in the 2 nd section (SE2)			
+ 13	The higher 16 bits of the 32 bits for the target number of output pulses in the 2 nd section (SE2)			
:	· ·			
+ n*6 + 2	Start frequency of the n th section (SFn); Cannot be the same as the start frequency of the n-1 th			
T 11 0 T Z	section (TFn-1)			
+ n*6 + 3	Gap time of the n th section (GTn)			

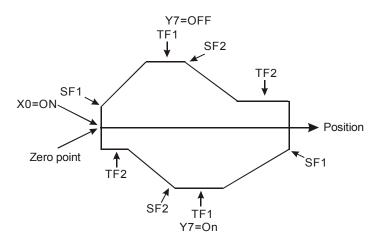
+ n*6 + 4	Gap frequency of the n th section (GFn)
+ n*6 + 5	Target frequency of the n th section (TFn)
+ n*6 + 6	The lower 16 bits of the 32 bits for the target number of output pulses in the n th section (SEn)
+ n*6 + 7	The higher 16 bits of the 32 bits for the target number of output pulses in the n th section (SEn)

3. The functions:

This function can only be used on Y0 output point and the timing chart is as follows. After filling out the parameter table, setup M1144 to start the function (should be applied in RUN mode).

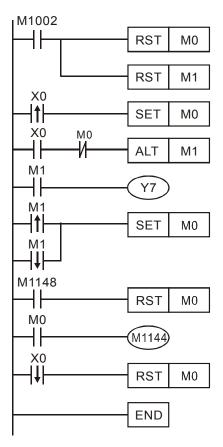


4. How to use and the restrictions:

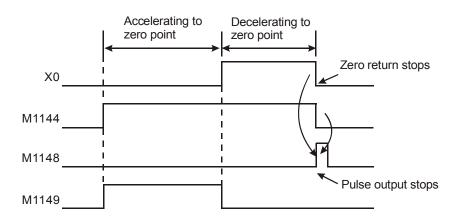

- a) The start frequency and target frequency have to be ≥ 200Hz; otherwise, the function will not be executed or complete execution.
- b) The start frequency and target frequency have to be < 32,700Hz. Frequency > 32,700Hz will be executed in 32,700Hz.
- c) Range of gap time: 1 ~ 32,767ms (Min. unit: ms)
- d) The range of gap frequency within acceleration section: 1Hz ~ 32,700Hz; within deceleration section: -1 ~ -32,700Hz. If the gap frequency is set as 0Hz, it will fail to reach target frequency in the executed section but in the next section when the target number of pulses is reached.
- e) The target number of pulses in a section has to be > (GF × GT/1,000) × [(TF SF)/GF]; otherwise the target may not be reached. To correct it, the user may extend gap time or increase the target number of pulses.
- f) When PLC is in RUN status and there is a high-speed instruction assigning Y0 input, the instruction will be executed prior to other instructions.
- g) After M1144 = On, if M1148 has not be reached and M1144 is "Off", deceleration will be enabled. And if M1154 = Off at the moment, the deceleration rule will be "decelerating 200Hz every 200ms" and M1147 will be set. The pulse output will stop when the frequency falls under 200Hz. If M1154 = On at the moment, the output will be executed following the gap time and frequency as set by the user. The time shall not be ≤ 0 (if ≤ 0, it will follow the initial setting 200ms) and the frequency shall not be ≥ 0 (if = 0, it will follow the initial setting -1KHz; if > 0, negative sign comes before the value).

- h) When M1148 = On but M1144 = Off, deceleration will not be enabled and M1148 will be reset. Whenever M1144 = Off, M1149 will be reset.
- The number of sections being executed is determined upon the total number of sections. (Max. number of sections = 10)
- j) Acceleration or deceleration is determined upon the start frequency of the next section. That is, if the target frequency of the current section < the start frequency of the next section, acceleration will take place in the next section and the target frequency of the next section must > its start frequency. If the target frequency of the current section > the start frequency of the next section, deceleration will take place in the next section and the target frequency of the next section must < its start frequency. Correct pulse output cannot be quaranteed if the user does not follow the rules.</p>
- k) When PLC goes from STOP to RUN, M1144 ~ M1149 will be reset to "Off". When PLC goes from RUN to STOP, only M1144 will be reset, not M1145 ~ M1149.
- I) SA/SX/SC uses parameter table D0 ~ D999 and D2000 ~ D4999. If the used parameter table (including all the used section parameters) falls off the range, the instruction will not be executed and M1144 will be "Off".
- 5. Example 1: Calculate the number of output pulses in every acceleration/deceleration section
 Assume you set the start frequency of a section as 200Hz, gap time as 100ms, gap frequency as 100Hz, target frequency as 500Hz, and target number of pulses as 1,000:
 - The number of output pulses at start frequency = 200 × 100 / 1,000 = 20
 - The number of output pulses in the first acceleration gap = 300 × 100 / 1,000 = 30
 - The number of output pulses in the second acceleration gap = 400 × 100 / 1,000 = 40
 - The number of output pulses at target frequency = 1,000 (40 + 30 + 20) = 910 (Please be noted that we suggest this number be bigger than 10.)
 - Output time for target frequency = 1 / 500 × 910 = 1,820 ms
 - Total time spent for this section = $1,820 + 3 \times 100 = 2,120 \text{ ms}$

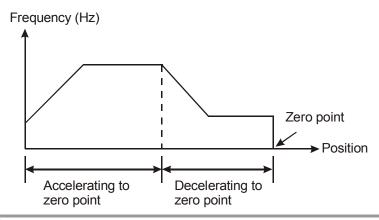
6. Example 2: Pulse output program for 1 acceleration section and 1 deceleration section



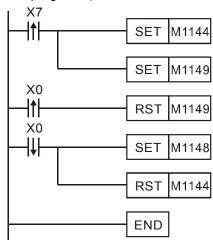
7. Example 3: Acceleration and deceleration in 1 section and the pulse output program with direction switch



Explanation:


- a) See example 2 for the settings for acceleration and deceleration. The acceleration/deceleration frequency is stored in the latched area; therefore, you do not have to write it in in the program.
- b) The figure above is the example of the motion. When X0 = On, it will start the motion back and forth; when X0 = Off, the motion will stop. Y7 is a direction switch.
- c) The program:

- 8. Example 4: Program of zero return for 1 acceleration section and 1 deceleration section
 - The timing diagram of relevant flags:


■ Frequency and the positions:

■ Settings of acceleration/deceleration time, frequency and number of pulses:

Started No. D + index value	Setting
+0	2
+2	250 (Hz)
+3	100 (ms)
+4	500 (Hz)
+5	10,000 (Hz)
+6, +7	10 (pulses)
+8	9,750 (Hz)
+9	50 (ms)
+10	-500 (Hz)
+11	250 (Hz)
+12, +13	30,000 (pulses)

■ The program: (Assume X7 is the switch for triggering zero return)

- Program explanations:
 - a) When X7 is triggered, M1144 will enable an acceleration. Set M1149 (counting temporarily stops) and 10 pulses will be sent out before the deceleration switch X0 is triggered and the program will enter the deceleration section.
 - b) When X0 is disabled (i.e. zero return is completed), set M1148 to disable this function.

Note: The example offered here is one of the applications. Please adjust the settings of the parameters according to the features of and restrictions on your machines.

Function Group Single Step Execution **Number** M1170, M1171, D1170

Contents:

1. Special D and special M for single step execution for EH/EH2/SV:

Device No.	Function
M1170	Start flag
M1171	Action flag
D1170	STEP No. of the currently executed instruction

2. The function:

- a) Execution timing: The flag is valid only when PLC is in RUN status.
- b) Action steps:
 - i) When M1170 is enabled, PLC enters the single step execution mode. PLC stays at a specific instruction, stores the location of STEP in D1170 and executes the instruction once.
 - ii) When M1171 is forced "On", PLC executes the next instruction and stops. At the same time, PLC auto-force "O ff" M1171 and stops at the next instruction. D1170 stores the present STEP value.
 - iii) When Y output is in single step execution mode, Y outputs immediately without having to wait until END instruction is being executed.

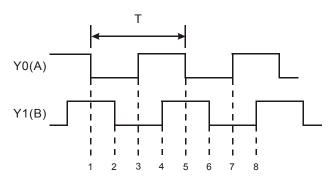
3. Note:

- a) Instruction that will be affected by scan time will be executed incorrectly due to the single step execution. For example, when HKY instruction is executed, it takes 8 scan times to obtain a valid input value from a key. Therefore, the single step execution will result in incorrect actions.
- b) High-speed pulse input/output and high-speed counter comparison instructions are executed by hardware; therefore, they will not be affected by the single step execution.

Function Group 2-phase Pulse Output

Number M1172 ~ M1174, D1172 ~ D1177

Contents:


1. Special D and special M for two-phase pulse output for SA/SX/SC:

Device No.	Function
M1172	Switch for two-phase pulse output (On = enabled)
M1173	On = Continuous output switch
M1174	"Number of pulses reached" flag
D1172	Output frequency (12Hz ~ 20KHz)
D1173	Output mode (K1 and K2)
D1174	The lower 16 bits of the 32 bits for the target number of pulses
D1175	The higher 16 bits of the 32 bits for the target number of pulses
D1176	The lower 16 bits of the 32 bits for the present number of pulses
D1177	The higher 16 bits of the 32 bits for the present number of pulses

2. The function:

Output frequency = 1/1 pulse cycle period (i.e. 1/T; as the figure below)

There are two output modes. K1 refers to "A-phase ahead of B-phase" and K2 refers to "B-phase ahead of A-phase". The number of pulses accumulates once whenever a phase gap occurs. For example, the number of pulses in the figure below = 8, and when the number is reached, M1174 turns "On". To clear the number, simply turn "Off" M1172.

The output frequency, target number of pulses and selection of modes can be modified when M1172 = On and M1174 = Off. Modification on output frequency and target number of pulses will not affect the present number of pulses, but when the mode is modified, the present number of pulses will be cleared as "0". The present number of output pulses is updated in every scan time. When M1133 turns from "Off" to "on", the number will be cleared as "0". When M1172 is cleared as "0" when PLC goes from STOP to RUN. When PLC goes from RUN to STOP, the last number of pulses will be shown.

3. Note:

This function can only be used when PLC is in RUN status and can coexist with PLSY instruction in the program. If PLSY instruction is executed prior to this function, the function cannot be used and vice versa.

Function Group VR Volume

Number M1178 ~ M1179, D1178 ~ D1179

Contents:

1. Special D and special M for built-in 2-point VR volume for EH/EH2/SV/SA/SC:

Device No.	Function
M1178	Enable VR0 volume
M1179	Enable VR1 volume
D1178	VR0 value
D1179	VR1 value

2. The function:

This function should be used when PLC is in RUN status. When M1178 = On, VR0 value will be converted into a value of $0 \sim 255$ and stored in D1178. When M1179 = On, VR1 value will be converted into a value of $0 \sim 255$ and stored in D1179.

3. See API 85 VRRD for more details.

Function Group Interruption Instruction for Reading the Number of Pulses

Number D1180 ~ D1181 , D1198 ~ D1199

Contents:

- SA/SX/SC can use external interruption to store the present value in the middle-high-speed counter into D1180 ~
 D1181, D1198 ~ D1199
- 2. The function:
- a) For SA/SX, X0 (pulse input point) has to work with X4 (external interruption point), C235/C251/C253 (high-speed counter) and I401 (interruption No.). D1180 and D1181 are the registers to store the 32-bit values. X1 (pulse input point) has to work with X5 (external interruption point), C236 and I501. D1198 and D1199 are the registers to store the 32-bit values.
- b) For SC, X10 (pulse input point) has to work with X4 (external interruption point), C243/C255 (high-speed counter) and I401 (interruption No.). D1180 and D1181 are the registers to store the 32-bit values. X11 (pulse input point) has to work with X5 (external interruption point), C245 and I501. D1198 and D1199 are the registers to store the 32-bit values.

Function Group MODEM Connection Function

Number M1184 ~ M1188

Contents:

1. The system connection

2. Special M for MODEM connection for EH/EH2:

Device No.	Function	Note
M1184	Enable MODEM	On: The following actions are valid
M1185	Initialize MODEM	Off: Initialization is completed
M1186	Fail to initialize MODEM	Off: M1185 = On
M1187	MODEM initialization is completed	Off: M1185 = On
M1188	Shows if MODEM is connected	On: Connecting

Note: The special Ms are both applicable when PLC is in RUN or STOP status.

- 3. How to conntect (Please follow the steps below):
 - a) Set "On" M1184 (Enable PLC MODEM connection).
 - b) Set "On" M1185 (Enable initialization of MODEM from PLC).
 - c) Check if the initialization of MODEM is successful from M1186, M1187.
 - d) Wait for the connection.

4. Note:

a) When PLC is to be connected with MODEM, a RS-232 extension card is required. If there is no RS-232 extension card, all special M above will be invalid.

- b) After enabling MODEM (M1184 = On), PLC has to initialize MODEM first (M1185 = On). If PLC fails to initialize MODEM, the auto-answering function of the MODEM will not be enabled.
- c) After MODEM is initialized, it will enter auto-answering mode automatically.
- d) If the remote PC is disconnected, MODEM will enter stand-by mode automatically and if the user turns off MODEM now, MODEM will have to be initialized again when it is turned on again.
- e) The connection speed is set by PLC as 9,600bps fixed and modification on the speed is not allowed. MODEM has to be able to support the speed of 9,600bps and above.
- f) The initialization format from PLC to MODEM are ATZ and ATS0 = 1.
- g) If PLC fails to initialize MODEM, use the super terminal in PC to initialize it by the format ATZ and ATS0 = 1.

Function Group Latched Area **Number** D1200 ~ D1219

Contents:

- 1. The latched area for EH/EH2/SV/SA/SX/SC is from the start address No. to the end address No.
- 2. See the tables in Chapter 2.1 for more details.

Function Group Force On/Off of Input Point X

Number M1304

Contents:

- For SA/SX/SC, when M1304 = On, peripheral devices, e.g. WPLSoft or HPP, can force On/Off of X0 ~ X17, but the hardware LED will not respond to it.
- 2. For EH/EH2/SV, when M1304 = On, peripheral devices, e.g. WPLSoft or HPP, can force On/Off of input point X, and the hardware LED will respond to it.

Function Group High-speed Output Pulse Stop Mode

Number M1310 ~ M1311, M1334 ~ M1335, D1166 ~ D1167, D1343 ~ D1353

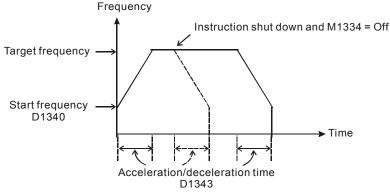
Contents:

 Special D and special M for high-speed pulse output stop mode: (SC_V1.4 and versions above are with an additional mode 3)

Device No.	Function
M1334	Select stop mode for Y10 pulse
M1335	Select stop mode for Y11 pulse
M1310	Immediately stop Y10 pulse output
M1311	Immediately stop Y11 pulse output
D1166	X10 rising-edge/falling-edge counting mode switch
D1167	X11 rising-edge/falling-edge counting mode switch
D1343	Acceleration/deceleration time for Y10 pulse output
D1353	Acceleration/deceleration time for Y11 pulse output

2. How do Y10 pulse output stop modes work:

a) Using Y10 pulse output

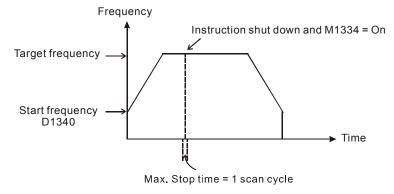

■ Mode 1 – Planned deceleration

Applicable to: DDRVI and DDRVA instructions

<u>Criteria for executing planned deceleration:</u> Shut down the criteria contact for pulse output instruction and turn "Off" M1334.

<u>The time from executing planned deceleration to the end of pulse output:</u> The time set in D1343 (for acceleration/deceleration)

The solid lines in the figure below are the originally planned routes and the dotted lines refer to the routes after planned deceleration is executed.

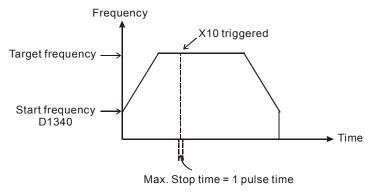

■ Mode 2 - Output shutdown

Applicable to: DDRVI, DDRVA, PLSY instructions

<u>Criteria for executing output shutdown:</u> Shut down the criteria contact for pulse output instruction and turn "On" M1334.(Because PLSY does not have acceleration/deceleration setting, M1334 does not need to be set in PLSY)

The time from executing output shutdown to the end of pulse output: Max. 1 scan cycle.

The solid lines in the figure below are the originally planned routes and the dotted lines refer to the routes after output shutdown is executed.


■ Mode 3 – Immediate output shutdown

Applicable to: DDRVI, DDRVA, PLSY instructions

Criteria for executing immediate output shutdown: M1310 = On (set before executing the instruction) and the criteria triggers set in X10 (D1166 = K0 refers to rising-edge; D1166 = K1 refers to falling-edge)

The time from executing immediate output shutdown to the end of pulse output: Max. 1 pulse time.

The solid lines in the figure below are the originally planned routes and the dotted lines refer to the routes after X10 is triggered.

b) Using Y11 pulse output

■ Mode 1 - Planned deceleration

Applicable to: DDRVI and DDRVA instructions

<u>Criteria for executing planned deceleration:</u> Shut down the criteria contact for pulse output instruction and turn "Off" M1335.

The time from executing planned deceleration to the end of pulse output: The time set in D1353 (for acceleration/deceleration)

■ Mode 2 - Output shutdown

Applicable to: DDRVI, DDRVA, PLSY instructions

<u>Criteria for executing output shutdown:</u> Shut down the criteria contact for pulse output instruction and turn "On" M1335. (Because PLSY does not have acceleration/deceleration setting, M1335 does not need to be set in PLSY)

The time from executing output shutdown to the end of pulse output: Max. 1 scan cycle.

■ Mode 3 – Immediate output shutdown

Applicable to: DDRVI, DDRVA, PLSY instructions

<u>Criteria for executing immediate output shutdown:</u> M1311 = On (set before executing the instruction) and the criteria triggers set in X11 (D1167 = K0 refers to rising-edge; D1167 = K1 refers to falling-edge)

The time from executing immediate output shutdown to the end of pulse output: Max. 1 pulse time.

3. Note:

- a) The execution criteria M1334 and M1335 for mode 1 and 2 have to be set before executing pulse output shutdown instruction. The execution criteria M1310, M1311 and trigger criteria D1166, D1167 for mode 3 have to be set before the pulse output instruction is executed.
- b) In mode 3 (immediate output shutdown), Y10 can only be used with X10 and Y11 with X11.
- c) When using X10 or X11 in mode 3, DO NOT use X10 or X11 as the input high-speed counter.

Function Group Right-Side Special Extension Module ID

Number D1320 ~ D1327

Contents:

1. The ID of special extension module, if any, connected to EH/EH2/SV are stored in D1320 ~ D1327 in seguence.

2. Special extension module ID for EH:

Module Name	Module ID (hex)	Module Name	Module ID (hex)
DVP04AD-H	H'0400	DVP01PU-H	H'0110

DVP04DA-H	H'0401	DVP01HC-H	H'0120
DVP04PT-H	H'0402	DVP02HC-H	H'0220
DVP04TC-H	H'0403	DVP01DT-H	H'0130
DVP06XA-H	H'0604	DVP02DT-H	H'0230

3. Special extension module ID for EH2:

Module Name	Module ID (hex)	Module Name	Module ID (hex)
DVP04AD-H2	H'6400	DVP01PU-H2	H'6110
DVP04DA-H2	H'6401	DVP01HC-H2	H'6120
DVP04PT-H2	H'6402	DVP02HC-H2	H'6220
DVP04TC-H2	H'6403	DVP01DT-H2	H'6130
DVP06XA-H2	H'6604	DVP02DT-H2	H'6230

4. Special extension module ID for SV:

Module Name	Module ID (hex)	Module Name	Module ID (hex)
DVP04AD-S	H'0088	DVP04PT-S	H'008A
DVP06AD-S	H'00C8	DVP04TC-S	H'008B
DVP02DA-S	H'0049	DVP06XA-S	H'00CC
DVP04DA-S	H'0089	DVP01PU-S	H'0110

Function Group Left-Side High-Speed Special Extension Module ID

Number D1386 ~ D1393

Contents:

1. The ID of left-side special extension module, if any, connected to SV are stored in D1386 ~ D1393 in sequence.

2. Left-side special extension module ID for SV:

Module Name	Module ID (hex)	Module Name	Module ID (hex)			
DVP04AD-SL	H'4400	DVP01HC-SL	H'4120			
DVP04DA-SL	H'4401	DVP02HC-SL	H'4220			
DVP04PT-SL	H'4402	DVPDNET-SL	H'4130			
DVP04TC-SL	H'4403	DVPEN01-SL	H'4050			
DVP06XA-SL	H'6404	DVPMDM-SL	H'4040			
DVP01PU-SL	H'4110					

Function Group EASY EASY PLC LINK

Number M1350 ~ M1354, M1360 ~ M1519, D1399, D1355 ~ D1370, D1415 ~ D1465, D1480 ~ D1991

Contents:

 Special D and special M for ID1 ~ ID8 of the 16 stations in EASY EASY PLC LINK (M1353 = Off) for SA/SX/SC/EH/EH2/SV:

	MASTER PLC														
SLAV	E ID 1	SLAV	E ID 2	SLAV	E ID 3	SLAV	E ID 4	SLAV	SLAVE ID 5		EID6	SLAV	EID7	SLAV	E ID 8
Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write
out	in	out	in	out	in	out	in	out	in	out	in	out	in	out	in
	s = Off:							on of re	eading/v	vriting r	nore tha	an 16 d	ata (RS	T M135	3); the
	special							1	ı	ı		1	1	ı	
D1480	D1496	D1512	D1528	D1544	D1560	D1576	D1592	D1608	D1624	D1640	D1656	D1672	D1688	D1704	D1720
 D1495	D1511	D1527	D1543	D1559	 D1575	D1591	 D1607	D1623	D1639	D1655	 D1671	 D1687	D1703	D1719	 D1735
Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data
	D1450														
	Start Communication Address														
D1355	D1415	D1356	D1416	D1357	D1417	D1358	D1418	D1359	D1419	D1360	D1420	D1361	D1421	D1362	D1422
		I	I	I		LIN	K in SL	AVE PI	C?	, l		II.	I	, l	
M1	360	M1:	361	M1:	362	M1:	363	M1364		M1365		M1366		M1:	367
				Α	ction fla	ag for S	LAVE P	LC fror	n MAS	TER PL	С				
M1	376	M1:	377	M1:	378	M1379		M1380		M1381		M1382		M1383	
						"Re	ad/write	e error"	flag						
M1	392	M1:	393	M1:	394	M1395 M1396			396	M1	397	M1	398	M1	399
		"Re	ading c	omplete	ed" flag	(turns "	Off" wh	enever	read/w	rite a st	ation is	comple	eted)		
M1	408	M1	409	M1	410	M1	411	M1	412	M1	413	M1	414	M1	415
		"Wı	riting co	mplete	d" flag (turns "C	Off" whe	never i	read/wr	ite a sta	ition is o	complet	ted)		
M1	424	M1	425	M1	426	M1	427	M1	428	M1	429	M1	430	M1	431
	↓ ↓		,	ļ	,	ļ		ļ	\downarrow		\downarrow		,	ļ	
OL AV		OL AV		CL AV		OL AV		OL AV		OL 4) /		OL AV		OL AV	

SLAV	SLAVE ID 1 SLAVE ID 2 SLAVE ID 3		SLAVE ID 4		SLAVE ID 5		SLAVE ID 6		SLAVE ID 7		SLAVE ID 8				
Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write
out	in	out	in	out	in	out	in	out	in	out	in	out	in	out	in
D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200
D115	D215	D115	D215	D115	D215	D115	D215	D115	D215	D115	D215	D115	D215	D115	D215

- Default start communication address D1355 ~ D1362 to be read = H1064 (D100)
- Default start communication address D1415 ~ D1422 to be written = H10C8 (D200)

2. Special D and special M for ID9 ~ ID16 of the 16 stations in EASY EASY PLC LINK (M1353 = Off) for SA/SX/SC/EH/EH2/SV:

	MASTER PLC														
SLAV	EID9	SLAVE	ID 10	SLAVE	E ID 11	SLAVE	ID 12	SLAVE	ID 13	SLAVE	ID 14	SLAVE	ID 15	SLAVE	ID 16
Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write
out	in	out	in	out	in	out	in	out	in	out	in	out	in	out	in
								on of re	eading/\	writing r	nore th	an 16 d	ata (RS	ST M135	3); the
		,	<u> </u>			ten data	,	1	1	1	1	1	1	1	
D1736	D1752	D1768	D1784	D1800	D1816	D1832	D1848	D1864	D1880	D1896	D1912	D1928	D1944	D1960	D1976
D1751	D1767	D1783	D1799	D1815	D1831	D1847	D1863	D1879	D1895	D1911	D1927	D1943	D1959	D1975	D1991
Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data
D144	D145													D1449	
2	8	2		D							D 1 100	2	<i>D</i>	5	2
	Start Communication Address														
D1363	D1423	D1364	D1424	D1365	D1425					D1368	D1428	D1369	D1429	D1370	D1430
	LINK in SLAVE PLC?														
M1	368	M1:	369	M13	370	M1371 M1372			M1373		M13	M1374		375	
				Α	ction fla	ag for S	LAVE F	PLC fror	n MAS	TER PL	С				
M1	384	M1:	385	M13	386	M1387 M1388			M1389 M1390			M1391			
						"Re	ad/write	e error"	flag						
M1	400	M1	401	M14	102	M1403 M1404			M1405 M1406			406	M1407		
		"Re	ading c	omplete	ed" flag	(turns "	Off" wh	enever	read/w	rite a st	ation is	comple	eted)		
M1	416	M14	417	M14	418	M14	119	M14	20	M14	121	M14	122	M14	423
		"Wi	riting co	mplete	d" flag ((turns "(Off" whe	enever i	ead/wr	ite a sta	ition is	complet	ted)		
M1	432	M14	433	M14	134	M14	135	M14	36	M14	137	M14	438	M14	439
`	ļ	1	ļ	1		1		\downarrow		1		1	•	1	
SLAV	E ID 9	SLAVE	E ID 10	SLAVE	E ID 11	SLAVE	E ID 12	SLAVE	E ID 13	SLAVE ID 14		SLAVE ID 15		SLAVE	ID 16
Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write
out	in	out	in	out	in	out	in	out	in	out	in	out	in	out	in
D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200

Di15 | Di

[■] Default start communication address D1363 ~ D1370 to be read = H1064 (D100)

[■] Default start communication address D1423 ~ D1430 to be written = H10C8 (D200)

3. Special D and special M for ID1 \sim ID8 of the 32 stations in EASY EASY PLC LINK (M1353 = On) for EH/EH2/SV:

	MASTER PLC															
SLAV	E ID 1		EID2		EID3	SLAVI		SLAV			EID6		EID7	SLAV		
Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	
	B = On: I						e function	on of re	ading/w	riting m	nore tha	n 16 da	ata (SE	T M135	3); the	
NO. Of	D regist	ers for	storing	tne rea	a/writte	n data.				<u> </u>		1		I		
D1480	D1496	D1481	D1497	D1482	D1498	D1483	D1499	D1484	D1500	D1485	D1501	D1486	D1502	D1487	D1503	
Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	
D1434	D1450	D1435	D1451	D1436	D1452	D1437	D1453	D1438	D1454	D1439	D1455	D1440	D1456	D1441	D1457	
	Start Communication Address															
D1355	D1415	D1356	D1416	D1357	D1417					D1360	D1420	D1361	D1421	D1362	D1422	
				1		LIN	K in SL	AVE PL	_C?	1		1		1		
M1	360	M1:	361	M1:	362	M1:	363	M1:	364	M1365 M1366				M1367		
				Α	ction fla	ag for S	LAVE P	LC fror	n MAS	ΓER PL	С					
M1	376	M1:	377	M1:	378	M1:	379	M1:	380	M1:	381	M1382		M1383		
						"Re	ad/write	e error"	flag							
M1	392	M1:	393	M1:	394	M1395 M1396			396	M1:	397	M1398		M1399		
		"Rea	ading c	omplete	d" flag	(turns "	Off" wh	enever	read/w	rite a st	ation is	comple	eted)			
M1	408	M1	409	M1	410	M1411 M1412				M1413		M1	414	M1	415	
		"Wı	riting co	mplete	d" flag (turns "C	Off" whe	never r	ead/wr	te a sta	ition is o	complet	ted)			
M1	424	M1	425	M1	426	M14	427	M1	428	M1	429	M1	430	M1	431	
,	<u> </u>	7	 	7		,		7		7		1				
SLAV	E ID 1	SLAV	E ID 2	SLAV	E ID 3	SLAV	E ID 4	SLAV	E ID 5	SLAV	E ID 6	SLAV	E ID 7	SLAV	E ID 8	
Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	
D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	
 D115	 D215	 D115	 D215	D115	 D215	 D115	 D215	 D115	 D215	 D115	 D215	 D115	 D215	 D115	 D215	

- Default start communication address D1355 ~ D1362 to be read = H1064 (D100)
- Default start communication address D1415 ~ D1422 to be written = H10C8 (D200)

4. Special D and special M for ID9 ~ ID16 of the 32 stations in EASY EASY PLC LINK (M1353 = On) for EH/EH2/SV:

MASTER PLC															
SLAVE ID 9 SLAVE ID 10 SLAVE ID 11				1				1		SLAVE ID 15					
Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write
				out	in	out	in odina/u	Out	in	out in		out in			
M1353 = On: Enable 32 stations in the Link and the function of reading/writing more than 16 data (SET M1353); the No. of D registers for storing the read/written data.															
110. 01	D rogio	010 101	otornig	110 100	a, wiitto	ii data.									
D1488	D1504	D1489	D1505	D1490	D1506	D1491	D1507	D1492	D1508	D1493	D1509	D1494	D1510	D1495	D1511
Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data
D1442	D1458	D1443	D1459	D1444	D1460	D1445	D1461	D1446	D1462	D1447	D1463	D1448	D1464	D1449	D1465
Start Communication Address															
D1363	D1423	D1364	D1424	D1365	D1425	D1366	D1426	D1367	D1427	D1368	D1428	D1369	D1429	D1370	D1430
						LIN	K in SL	AVE PL	C?	L					
M1:	368	M1369 M1370		370	M1371		M1372		M1373		M1374		M1375		
Action flag for SLAVE PLC from MASTER PLC															
M1384		M1:	M1385 M1386		386	M1387		M1388		M1389		M1390		M1391	
								e error"							
N/1	400	1.44	401	1/1/	102		1			N/1/	105	N/11	106	N/11	107
				M14		M14		M1404 M1405 nenever read/write a station is				M14		M1407	
		"Rea	ading co	omplete	ed" flag	(turns "	Off" wh	enever	read/w	rite a st	ation is	comple	eted)		
M14	416	M1	M1417 M1418		418	M14	119	M1420		M1421		M1422		M1423	
		"Wr	riting co	mplete	d" flag (turns "C	Off" whe	enever r	ead/wr	ite a sta	ition is o	complet	ed)		
M14	M1432		M1433 M1434		434	M1435		M1436		M1437		M1438		M1439	
	l		1	·		1	ı	1		ĺ					
	↓ ↓		↓		↓				↓				↓		
1				<u> </u>	<u> </u>	, , , , , , , , , , , , , , , , , , ,		, 		, , , , , , , , , , , , , , , , , , ,		1	<u></u>		·
SLAVI			E ID 10			SLAVE				SLAVE			E ID 15		
Read out	Write	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write	Read out	Write in
D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200
D115	D215	D115	D215	D115	D215	D115	D215	D115	D215	D115	D215	D115	D215	D115	D215

[■] Default start communication address D1363 ~ D1370 to be read = H1064 (D100)

[■] Default start communication address D1423 ~ D1430 to be written = H10C8 (D200)

5. Special D and special M for ID17 ~ ID24 of the 32 stations in EASY EASY PLC LINK (M1353 = On) for EH/EH2/SV:

MASTER PLC															
	SLAVE ID 17 SLAVE ID 18 SLAVE														
Read	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in
							and the function of reading/writing more than 16 data (SET M13								
No. of D registers for storing the read/written data.															
D1576	D1592	D1577	D1593	D1578	D1594	D1579	D1595	D1580	D1596	D1581	D1597	D1582	D1598	D1583	D1599
Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data
D1544	D1560	D1545	D1561	D1546	D1562	D1547	D1563	D1548	D1564	D1549	D1565	D1550	D1566	D1551	D1567
start Communication Address															
D1512	D1528	D1513	D1529	D1514	D1530	D1515	D1531	D1516	D1532	D1517	D1533	D1518	D1534	D1519	D1535
	l					LIN	IK in SL	AVE P	LC?	l		I.	l.	l	
M1	M1440		441 M1442		442	M1443		M1444		M1445		M1446		M1447	
Action flag for SLAVE PLC from MASTER PLC															
M1	M1456		M1457 M14		458	M1459		M1460		M1461		M1462		M1463	
						"Re	ad/write	e error"	flag						
M1	M1472		473	M14	474	M14	75	M14	76	M14	177	M14	178	M1479	
		"Rea	ading co	omplete	d" flag	(turns "	Off" wh	enever	read/wi	ite a sta	ation is	comple	ted)		
M1488 M148		489	M1490		M1491		M1492		M1493		M1494		M1495		
		"Wr	iting co	mpleted	d" flag (turns "C	Off" whe	never r	ead/wri	te a sta	tion is o	complet	ed)		
M1:	M1504 M15		505	M1506		M1507		M1508		M1509		M1510		M1511	
 		+ +			\		<u> </u>		<u> </u>		↓ ▼		$\overline{\qquad}$		
SLAVE	SLAVE ID 17		SLAVE ID 18 SLAVE ID 29		ID 29	SLAVE ID 20		SLAVE ID 21		SLAVE ID 22		SLAVE ID 23		SLAVE ID 24	
Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in	Read out	Write in
D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200
	 D215									 D115			 D215	 D115	 D215

- Default start communication address D1512 ~ D1519 to be read = H1064 (D100)
- Default start communication address D1528 ~ D1535 to be written = H10C8 (D200)

6. Special D and special M for ID25 ~ ID32 of the 32 stations in EASY EASY PLC LINK (M1353 = On) for EH/EH2/SV:

MASTER PLC																
			SLAVE ID 26 SLAVE ID 27 SLAVE ID 2					SLAVE ID 30		SLAVE ID 31						
Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	
out in out in out		in	out	in	out	in	out	in	out	in	out	in				
M1353 = On: Enable 32 stations in the Link and the function of reading/writing more than 16 data (SET M1353); the No. of D registers for storing the read/written data.																
110.01	l	010 101	otoring	110 100	a, wiitto	T data.										
D1584	D1600	D1585	D1601	D1586	D1602	D1587	D1603	D1588	D1604	D1589	D1605	D1590	D1606	D1591	D1607	
Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	Number of data	
	D1568											D1558				
D 1002	D 1300	D 1000	D1309	D 1004							D13/3	D 1006	D1374	D 1559	D1373	
Start Communication Address											1					
D1520	D1536	D1521	D1537	D1522	D1538	D1523	D1539	D1524	D1540	D1525	D1541	D1526	D1542	D1527	D1543	
	LINK in SLAVE PLC?															
M1	M1448		449	M1450		M1451		M1452		M1453		M1454		M1455		
Action flag for SLAVE PLC from MASTER PLC																
M1	M1464		M1465		M1466		M1467		M1468		M1469		M1470		M1471	
"Read/write" error flag																
M1480 M1481 N				M14	482	M1	483	M1	484	M14	485	M14	486	M1	487	
		"Rea	ading co	omplete	d" flan	(turns "	Off" wh	enever	read/wr	ite a st	ation is	comple	ted)		_	
N 1 1	496	M1										1		1.41	502	
IVI I	490						M1499 M1500 mns "Off" whenever read/writ				501	M1502		M1503		
		"VVr	iting co	mpleted	d" flag (turns "C	Off" whe	never r	ead/wri	te a sta	tion is o	complet	ed)			
M1	M1512 M1513		513	M1514		M1515		M1516		M1517		M1518		M1519		
				ı		1				1		I				
†		1	₩		₩		₩		V		V		↓			
SLAVE	LAVE ID 25 SLAVE ID 2		E ID 26	SLAVE ID 27		SLAVE ID 28		SLAVE ID 29		SLAVE ID 30		SLAVE ID 31		SLAVE ID 32		
Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	Read	Write	
out	in	out	in	out	in	out	in	out	in	out	in	out	in	out	in	
D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	D100	D200	
 D115	D215	 D115	D215	 D115	 D215	D115	D215	 D115	 D215	 D115	 D215	D115	D215	D115	 D215	

[■] Default start communication address D1520 ~ D1527 to be read = H1064 (D100)

[■] Default start communication address D1536 ~ D1543 to be written = H10C8 (D200)

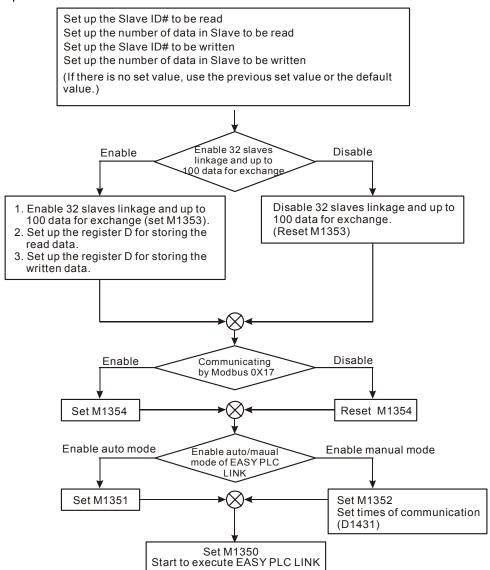
7. Note:

- a) EASY EASY PLC LINK is based on MODBUS communication protocol.
- b) EH/EH2/SV supports 32 stations in the LINK and reading/writing of more than 16 data (SET1353) (M1353 = On). SA/SX/SC supports 16 devices in the LINK and reading/writing of 16 data.
- c) EH/EH2/SV: When a MASTER PLC and a Slave PLC is connected, they are able to read/write maximum 100 WORD data (M1353 = On). SA/SX/SC: Does not support M1353. When a Master PLC and a Slave PLC is connected, they are able to read/write maximum 16 WORD data.
- d) When the Master PLC is connected through COM2 (RS-485), baud rates and communication formats of all Slave PLCs must be the same (set in D1120). When SA/SX/SC/EH/EH2/SV serves as Master, it supports ASCII and RTU format.
- e) When the Slave PLC is connected through COM2 (RS-232/RS-485/RS-422), baud rates and communication formats of all connected Slave PLCs must be the same as those in the Master PLC (set in D1120). When SA/SX/SC/EH/EH2/SV serves as Slave, it supports ASCII and RTU format.
- f) When the Slave PLC is connected through COM1 (RS-232), baud rates and communication formats of all connected Slave PLCs must be the same as those in the Master PLC (set in D1036). When SA/SX/SC/EH/EH2/SV serves as Slave, it supports ASCII and RTU format.
- g) When the Slave PLC is connected through COM3 (RS-232/RS-485), baud rates and communication formats of all connected Slave PLCs must be the same as those in the Master PLC (set in D1109). When SA/SX/SC/EH/EH2/SV serves as Slave, it only supports ASCII format (Max. baud rate = 38,400bps).
- h) The start station No. (K1 ~ K214) of Slave ID1 is assigned by D1399 of Master PLC. Station No. of every Slave and Master PLC can not be the same (set in D1121).
- i) For one-to-one LINK: Connected through RS-232, RS-485, RS-422. PLC COM1, COM2, COM3 support many communication formats.
- j) For one-to-many LINK: Connected through RS-485. PLC COM1, COM2, COM3 support many communication formats.

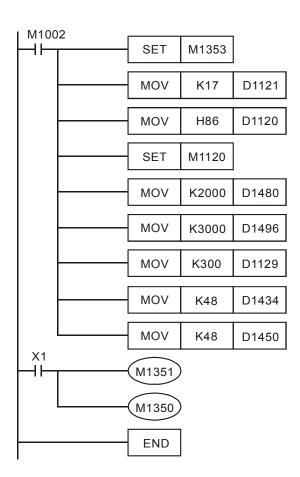
8. How to operate EASY EASY PLC LINK:

- a) Set up the baud rates and communication formats of Master PLC and all connected Slave PLCs and make them the same. COM1_RS-232: D1136; COM2_RS-232/RS-485/RS-422: D1120; COM3_RS-232/RS-485: D1109.
- b) Set up the station No. of Master PLC (in D1121) and assign the start station No. of Slave PLC from D1399 of Master PLC. Next, set up the station No. of Slave PLC. Station No. of Master and Slave cannot be the same.
- c) Set up the number of connected Slave stations and the number of data to be read in/written to Slave stations. For EH/EH2/SV (M1353 = On): Enable the function of the 32 connected Slaves and reading/writing of more than 16 data (Max. 100 data). Next, set up the No. of D registers for storing the read data (D1480 ~ D1495, D1576 ~ D1591) and written data (D1496 ~ D1511, D1592 ~ D1607) (See the explanations above on special D). SA/SX/SC only supports reading/writing of 16 data.
- d) Set up the length of data to be read from/written into the Slave. (If the user does not set up set them up, PLC will follow the initial setting or the setting set in the previous operation.) (See the explanations above on special D.)

- e) Set up the start communication address of the Slave to be read/written. (See the explanations above on special D). The default start communication address of Slave to be read: H1064 = D100. The default start communication address of Slave to be written: H10C8 = D200.
- f) Operation procedure:
 - i) Enable the function of more than 32 stations connected to EASY EASY PLC LINK and reading/writing of 16 data (Max. 100 data) (M1353).
 - ii) Enable reading/writing of EASY EASY PLC LINK in the same polling (M1354).
 - iii) Set up EASY EASY PLC LINK as auto mode (M1351), or manual mode (M1352) and the times of polling (D1431).
 - iv) Enable EASY EASY PLC LINK (M1350).

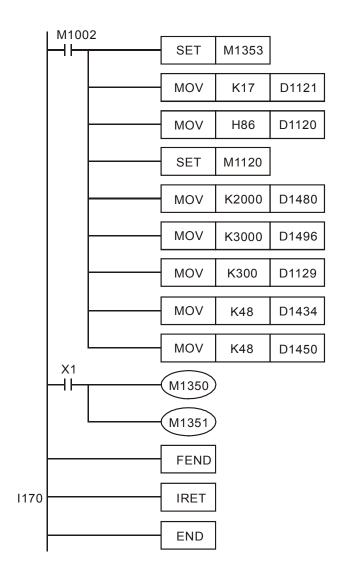

9. How does Master PLC work:

- a) To detect station No. of Slave: Set up the LINK to be automatic mode (M1351 = On) or manual mode (M1352 = On) (Note: M1351 and M1352 cannot be "On" at the same time) When M1350 = On, Master PLC starts to detect the total number of Slave stations connected to the LINK and records the number in D1433. The detection time may differ upon the number of Slave stations and the setting of communication timeout in D1129.
- b) When M1360 ~ M1375, M1440 ~ M1455 = On, Slave ID1 ~ ID32 exist.
- c) If the detected number Slave stations is 0, M1350 will be "Off" and the LINK will be stopped.
- d) M1353 and M1354 should be set before EASY EASY PLC LINK is enabled. When EASY EASY PLC LINK is executed, the two special M will not affec the action of EASY EASY PLC LINK.
- e) When 1353 = On, D1480 ~ D1607 (read/write buffer of SLAVE ID1 ~ 4) will be used for storing the No. of registers D for Slave ID1 ~ ID32, The No. of register D shall not be "> 9,900" or "< 0"; otherwise, PLC will auto-set it as 9,900. The data length shall not be "> 100" or "<0"; otherwise, PLC will auto-set it as 100.
- f) When M1354 = On, set up Modbus Function H17 (synchronous read/write) for EASY EASY PLC LINK communication. If the number of written data is set to be "0", the communication of EASY EASY PLC LINK will be automatically converted into Modbus Function H03 (read multiple words). Similarly, if the number of read data is set to be "0", the communication of EASY EASY PLC LINK will be converted into Modbus Function H06 (write 1 word) or Modbus Function H10 (write multiple words).
- g) If the number of read/written data > 16, the time for timeout (D1129) shall be > 500ms in case communication timeout may occur.
- h) After M1350 = On, Master PLC detects the ID of Slave E PLC only right after the LINK is enabled and will not detect the ID again afterward.
- i) After the detection on Slave PLCs is completed, Master PLC starts to read and write data from/into every Slave PLC. Please be noted that, Master PLC only reads/writes data from/into the detected Slave PLC. Master PLC will not read/write from/into the new Slave PLC to the LINK, unless it re-detects the ID of Slave PLCs.
- j) Master PLC conducts reading before writing. The ranges of Slave PLCs to be read/written will follow the setting.
- k) Master PLC will move to the reading/writing of the next Slave PLC after finishing reading/writing the current Slave PLC.

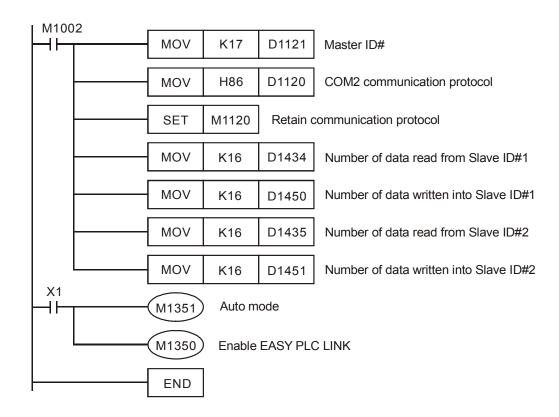

10. Auto mode and maual mode:

- a) Auto mode (M1351 = On): Master PLC automatically reads/writes from/to Slave PLC and stops when M1350/M1351 = Off to terminate EASY EASY PLC LINK.
- b) Manual mode (M1352 = On): When M1352 = On, you also have to set up the times of polling in D1431. One time of polling refers to the completion of reading and writing all Slaves. After the EASY PLC LINK is enabled, D1432 will start to count how many LINKs have been done. When D1431 = D1432, EASY EASY PLC LINK stops and M1352 is reset. To re-enable EASY EASY PLC LINK in the manual mode, simply turn "On" M1352 and D1431 will starts to count the times of LINK again.
- c) Note:
- Automatic mode (M1351) and manual mode (M1352) cannot be "On" at the same time; otherwise EASY EASY PLC LINK will stop and M1350 will be reset.
- ii) For EH/EH2/SV: M1350 has to be reset before switching between automatic mode and manual mode. For SA/SX/SC: No such restriction
- iii) The communication timeout is adjustable (D1129, range: 200 ≤ D1129 ≤ 3,000). If D1129 falls out the range, PLC will determine the time by 200 or 3,000. The timeout setting of EASY EASY PLC LINK is only valid if it is set before the LINK is enabled. If the number of read/written data >16, the communication timeout shall be > 500ms in case a communication timeout may occur.
- iv) EASY EASY PLC LINK is only workable when the baud rate is > 1,200bps. If the baud rate is < 9,600, the communication timeout setting shall be > 1 second.
- v) The communication is unworkable when the number of read/written data = 0.
- vi) EASY EASY PLC LINK does not support the reading/writing from/to 32-bit counters (C200 ~ C255).
- vii) The maximum set value for D1399 is 230. If the set value is bigger than 230, PLC will automatically correct it as 230. The minimum set value for D1300 is 1. If the set value is smaller than 1, PLC will automatically correct it as 1.
- viii)Setting up of D1399 has to be done before EASY EASY PLC LINK is enabled. After EASY EASY PLC LINK is enabled, setting up D1399 will not result in any changes.
- ix) Advantages (when using a multi-layer network): Assume you are using a network with 3 layers and the first and second layer and the second and third layer are using EASY EASY PLC LINK for communication, the IDs in the second and third layer will definitely overlap due to the old version of EASY PLC LINK detects only Slave ID#1 ~ 16. When the IDs of Slave and Master overlap, EASY PLC LINK will ignore the PLC of overlapping ID, resulting in the situation that the third layer can have only 15 PLCs. Therefore, D1399 allows more PLCs connected in a multi-layer network.

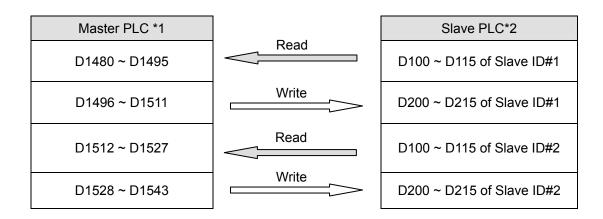
11. Operation Procedure of EASY EASY PLC LINK



 a) Example 1: Enabling 32 slave units linkage and up to 100 data for exchange in EASY EASY PLC LINK by M1353

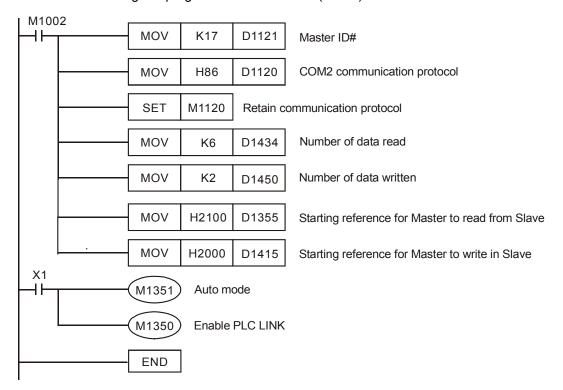


- M1353 has to be set On before EASY EASY PLC LINK is enabled. When EASY EASY PLC LINK is executed, On/Off of M1353 will not affect the execution.
- Registers designated in D1480 ~ D1495, D1576~D1591 (starting register for data read from Slave ID#1 ~ 16) and D1496 ~ D1511, D1592 ~ D1607 (starting register for data written into Slave ID#1 ~ 16) can only be register D, and every special D will correspond to one Slave ID#, e.g. D1480 corresponds to ID1, D1481 to ID2, and so on.
- D1480 ~ D1495, D1576 ~ D1591, D1496 ~ D1511 and D1592 ~ D1607 have to be set before EASY EASY PLC LINK is enabled. In the execution of EASY EASY PLC LINK, you can modify the contents in these special Ds, but the modified results will take effect in the next EASY EASY PLC LINK polling.
- If the ID# designated by D1480 ~ D1495, D1576 ~ D1591, D1496 ~ D1511 and D1592 ~ D1607 is smaller than 0 or bigger than 9,900, PLC will automatically correct the ID# into 9,900.
- If M1353 is not enabled during the execution of EASY PLC LINK, the range for D1434 ~ D1449, D1544 ~ D1559 (number of data read from Slave ID#) and D1450 ~ D1465, D1560 ~ D1575 (numbere of data written into Slave ID#) will be 0 ~ 16. If the setting in the special D exceeds the range, PLC will correct it to 16. When M1353 is enabled, the range will be 0 ~ 100. If the setting in the special D exceeds the range, PLC will correct it to 100.


- You can modify the settings in D1434 ~ D1449, D1544 ~ D1559, D1450 ~ D1465 and D1560 ~ D1575 during the execution of EASY EASY PLC LINK, but the modified results will take effect in the next EASY EASY PLC LINK polling.
- b) Example 2: EASY EASY PLC LINK with M1353 and I170

- With I170, the processing of data in EASY EASY PLC LINK will not be done at END, but at the enabling of I170 immediately after the receiving of data is completed
- If the reaction speed of the RS-485 IC direction control signal pin of the Slave is slow, it is suggested that you do not enable I170.
- You can set up D1399 (starting Slave ID designated by EASY PLC LINK), and the ID# of the next 15 Slaves have to be in sequence. For example, when D1399 is set as K20, the Master PLC will detect Slave ID# 20 ~ 35.
- c) Example 3: Connection of 1 Master and 2 Slaves by RS-485 and exchange of 16 data between Master and Slaves through EASY PLC LINK (M1353 = Off, linkage of 16 stations, 16 data read/write mode)
 - Write the ladder diagram program into Master PLC (ID#17)

■ When X1 = On, the data exchange between Master and the two Slaves will be automatically done in EASY PLC LINK, i.e. the data in D100 ~ D115 in the two Slaves will be read into D1480 ~ D1495 and D1512 ~ D1527 of the Master, and the data in D1496 ~ D1511 and D1528 ~ D1543 will be written into D200 ~ D215 of the two Slaves.


■ Assume the data in D for data exchange between Master and Slave before EASY PLC LINK is enabled (M1350 = Off) are as the follow:

Master PLC	Master PLC Preset value Slave PLC		Preset value
D1480 ~ D1495	K0	D100 ~ D115 of Slave ID#1	K5,000
D1496 ~ D1511	K1,000	D200 ~ D215 of Slave ID#1	K0
D1512 ~ D1527	K0	D100 ~ D115 of Slave ID#2	K6,000
D1528 ~ D1543	K2,000	D200 ~ D215 of Slave ID#2	K0

After EASY PLC LINK is enabled (M1350 = On), the data in D for data exchange will become:

Master PLC	Preset value	Slave PLC	Preset value
D1480 ~ D1495	K5,000	D100 ~ D115 of Slave ID#1	K5,000
D1496 ~ D1511	K1,000	D200 ~ D215 of Slave ID#1	K1,000
D1512 ~ D1527	K6,000	D100 ~ D115 of Slave ID#2	K6,000
D1528 ~ D1543	K2,000	D200 ~ D215 of Slave ID#2	K2,000

- The Master PLC has to be SA/SX/SC/EH/EH2/SV series MPU, and the Slave PLC can be any MPU of DVP series.
- There can be maximum 16 Slave PLCs in EASY PLC LINK. See the special Ds in the Master PLC corresponding to D100 ~ D115 and D200 ~ D215 in every Slave PLC in the tables of special M and special D.
- d) <u>Example 4:</u> Connection between Delta PLC and Delta VFD-M AC motor drive through EASY PLC LINK for STOP, forward/reverser revolution and writing/reading of frequency.
 - Write the ladder diagram program into Master PLC (ID#17)

- D1480 ~ D1485 correspond to parameters H2100 ~ H2105 in VFD-M. When X1 = On, EASY PLC LINK will be enabled, and the data in H2100 ~ H2105 will be displayed in D1480 ~ D1485.
- D1496 ~ D1497 correspond to parameters H2000 ~ H2001 in VFD-M. When X1 = On, EASY PLC LINK will be enabled, and the data in H2000 ~ H2001 will be displayed in D1496 ~ D1497.
- Modify D1496 to give command to VFD, e.g. D1496 = H12: enabling forward revolution of VFD-M; D1496 = H11: enabling reverse revolution of VFD.
- Modify D1497 to change the frequency of VFD, e.g. D1497 = K5,000: changing the frequency to 50KHz.
- The Master PLC has to be SA/SX/SC/EH/EH2/SV series MPU, and the Slave AC motor drive can be any VFD series models except VFD-A.

- The Slave can also be Delta temperature controller DTA, DTB, Delta servo ASDA and so on which are compatible to Modbus protocol. Maximum 16 devices are connectable to the LINK.
- See the tables of special M and special D for the starting ID of Slave to be read/written and the number of data to be read/written.

12. Communication addresses of devices in DVP series PLC:

Device	Range	Туре	Address	Δ	applicable to)	
Device	range	Турс	Addiess	ES/EX/SS	SA/SX/SC	EH/EH2/SV	
S	000 ~ 255	bit	0000 ~ 00FF	0 ~ 127			
S	246 ~ 511	bit	0100 ~ 01FF		0 4 000	0 4 000	
S	512 ~ 767	bit	0200 ~ 02FF	_	0 ~ 1,023	0 ~ 1,023	
S	768 ~ 1,023	bit	0300 ~ 03FF				
Х	000 ~ 377 (Oc	tal) bit	0400 ~ 04FF	0 ~ 177	0 ~ 177	0 ~ 377	
Υ	000 ~ 377 (Oc	tal) bit	0500 ~ 05FF	0 ~ 177	0 ~ 177	0 ~ 377	
Т	000 ~ 255	bit/word	0600 ~ 06FF	0 ~ 127	0 ~ 255	0 ~ 255	
М	000 ~ 255	bit	0800 ~ 08FF				
М	256 ~ 511	bit	0900 ~ 09FF				
М	512 ~ 767	bit	0A00 ~ 0AFF	0 ~ 1,279			
М	768 ~ 1,023	bit	0B00 ~ 0BFF				
М	1,024 ~ 1,279	bit	0C00 ~ 0CFF				
М	1,280 ~ 1,535	bit	0D00 ~ 0DFF			0 ~ 4,095	
М	1,536 ~ 1,791	bit	B000 ~ B0FF				
М	1,792 ~ 2,047	bit	B100 ~ B1FF		0 4 005		
М	2,048 ~ 2,303	bit	B200 ~ B2FF		0 ~ 4,095		
М	2,304 ~ 2,559	bit	B300 ~ B3FF				
М	2,560 ~ 2,815	bit	B400 ~ B4FF	-			
М	2,816 ~ 3,071	bit	B500 ~ B5FF				
М	3,072 ~ 3,327	bit	B600 ~ B6FF				
М	3,328 ~ 3,583	bit	B700 ~ B7FF				
М	3,584 ~ 3,839	bit	B800 ~ B8FF				
М	3,840 ~ 4,095	bit	B900 ~ B9FF				
	0 ~ 199 16-	bit bit/word	0E00 ~ 0EC7	0 ~ 127	0 ~ 199	0 ~ 199	
С	200 255 22	bit	0EC8 ~ 0EFF	222 255	200 255	200 255	
	200 ~ 255 32-	word	0700 ~ 076F	232 ~ 255	200 ~ 255	200 ~ 255	
D	000 ~ 256	word	1000 ~ 10FF				
D	256 ~ 511	word	1100 ~ 11FF				
D	512 ~ 767	word	1200 ~ 12FF	0 - 4 244	0 - 4 000	0 - 0 000	
D	768 ~ 1,023	word	1300 ~ 13FF	0 ~ 1,311	0 ~ 4,999	0 ~ 9,999	
D	1,024 ~ 1,279	word	1400 ~ 14FF				
D	1,280 ~ 1,535	word	1500 ~ 15FF				

Device	Dange	Tuno	Address	А	pplicable to)
Device	Range	Туре	Address	ES/EX/SS SA/SX/SC		EH/EH2/SV
D	1,536 ~ 1,791	word	1600 ~ 16FF			
D	1,792 ~ 2,047	word	1700 ~ 17FF			
D	2,048 ~ 2,303	word	1800 ~ 18FF			
D	2,304 ~ 2,559	word	1900 ~ 19FF			
D	2,560 ~ 2 815	word	1A00 ~ 1AFF			
D	2,816 ~ 3,071	word	1B00 ~ 1BFF			
D	3,072 ~ 3,327	word	1C00 ~ 1CFF		0 =: 4 000	
D	3,328 ~ 3,583	word	1D00 ~ 1DFF		0 ~ 4,999	
D	3,584 ~ 3,839	word	1E00 ~ 1EFF			
D	3,840 ~ 4,095	word	1F00 ~ 1FFF			
D	4,096 ~ 4,351	word	9000 ~ 90FF			
D	4,352 ~ 4,607	word	9100 ~ 91FF			
D	4 608 ~ 4863	word	9200 ~ 92FF			
D	4,864 ~ 5,119	word	9300 ~ 93FF			
D	5,120 ~ 5,375	word	9400 ~ 94FF			
D	5,376 ~ 5,631	word	9500 ~ 95FF			
D	5,632 ~ 5,887	word	9600 ~ 96FF			0 ~ 9,999
D	5,888 ~ 6,143	word	9700 ~ 97FF	_		0 ~ 9,999
D	6,144 ~ 6,399	word	9800 ~ 98FF			
D	6,400 ~ 6,655	word	9900 ~ 99FF			
D	6,656 ~ 6,911	word	9A00 ~ 9AFF			
D	6,912 ~ 7,167	word	9B00 ~ 9BFF			
D	7,168 ~ 7,423	word	9C00 ~ 9CFF			
D	7,424 ~ 7,679	word	9D00 ~ 9DFF			
D	7,680 ~ 7,935	word	9E00 ~ 9EFF		-	
D	7,936 ~ 8,191	word	9F00 ~ 9FFF			
D	8,192 ~ 8,447	word	A000 ~ A0FF			
D	8,448 ~ 8,703	word	A100 ~ A1FF			
D	8,704 ~ 8,959	word	A200 ~ A2FF			
D	8,960 ~ 9,215	word	A300 ~ A3FF			
D	9,216 ~ 9,471	word	A400 ~ A4FF			
D	9,472 ~ 9,727	word	A500 ~ A5FF			
D	9,728 ~ 9,983	word	A600 ~ A6FF			
D	9,984 ~ 9,999	word	A700 ~ A70F			

2.12 Error Codes

After you write the program into the PLC, the illegal use of operands (devices) or incorrect syntax in the program will result in flashing of ERROR indicator and M1004 = On. In this case, you can find out the cause of the error by checking the error code (hex) in special register D1004. The address where the error occurs is stored in the data register D1137. If the error is a general loop error, the address stored in D1137 will be invalid.

	D1137. If the error is a general loop error, the add		
Error	Cause of error	Error	Cause of error
0001	Use of device S exceeds the range	0F0A	Times of using TTMR, STMR instruction exceed the range
0002	Using P* repeatedly or use of P* exceeds the range	0F0B	Times of using SORT instruction exceed the range
0003	Use of KnSm exceeds the range	0F0C	Times of using TKY instruction exceed the range
0102	Using I* repeatedly or use of I* exceeds the range	0F0D	Times of using HKY instruction exceed the range
0202	Use of MC N* exceeds the range	1000	Improper use of operands of ZRST instruction
0302	Use of MCR N* exceeds the range	10EF	Incorrect use of E, F, or the modification exceeds the range
0401	Use of device X exceeds the range		Times of using TTMR, PR, HOUR instructions
0403	Use of KnXm exceeds the range	2000	exceed the range. Improper use of operands of MRT, ARWS
0501	Use of device Y exceeds the range		instructions
0503	Use of KnYm exceeds the range	C400	Illegal instruction
0601	Use of device T exceeds the range	C401	General loop error
0604	Use of register T exceeds the range	C402	Continuously using LD/LDI instructions for more than 9 times
0801	Use of device M exceeds the range	C403	Continuously using MPS for more than 9 times
0803	Use of KnMm exceeds the range	C404	More than 6 steps in FOR – NEXT
0B01	Incorrect use of KH		
0D01	Improper use of operands of DECO instruction		Using STL/RET between FOR – NEXT
0D02	ES/EX/SS/EH: improper use of operands of ENCO instruction SA/SX/SC: illegal use of the first operand of ANS instruction	C405	Using SRET/IRET between FOR – NEXT Using MC/MCR between FOR – NEXT Using END/FEND between FOR – NEXT
0D03	Improper use of operands of DHSCS instruction	C407	Continuously using STL for more than 9 times
0D04	Improper use of operands of DHSCR instruction	C408	Using MC/MCR in STL, using I/P in STL
0D05	Improper use of operands of pulse output instruction	C409	Using STL/RET in subroutine Using STL/RET in interruption subroutine
0D06	Improper use of operands of PWM instruction	C40A	Using MC/MCR in subroutine
0D07	Improper use of operands of FROM/TO instruction	C40B	Using MC/MCR in interruption subroutine MC/MCR does not start from N0, or is not continuous
0D08	Improper use of operands of PID instruction	C40C	Corresponding N of MC and MCR are different
0D09	Improper use of operands of SPD instruction	C40D	Improper use of I/P
0D0A	Incorrect operands in DHSZ instruction	C40E	IRET does not appear after the last FEND SRET does not appear after the last FEND

Error	Cause of error
0D0B	Improper use of operands in IST instruction
0E01	Use of device C exceeds the range
0E04	Use of register C exceeds the range
0E05	Improper use of operand CXXX of DCNT instsruction
0E18	BCD conversion error
0E19	Division error (divisor = 0)
0E1A	Use of device exceeds the range (including E, F index register modification)
0E1B	The index of the radical is a negative value
0E1C	Communication error of FROM/TO instruction
0F04	Use of register D exceeds the range
0F05	Improper use of operand DXXX of DCNT instruction
0F06	Improper use of operands of SFTR instruction
0F07	Improper use of operands of SFTL instruction
0F08	Improper use of operands of REF instruction
0F09	Improper use of operands of WSFR, WSFL instructions

Error	Cause of error
C40F	PLC program and data in parameters have not been initialized
C41B	Invalid RUN/STOP instruction to extension module
C41C	Points of extension module exceed the range
C41D	Number of extension modules exceeds the range
C41E	Incorrect hardware setting for extension module
C41F	Failing to write data into memory
C420	Read/write function card error
C430	Initializing parallel interface error
C440	Hardware error in high-speed counter
C441	Hardware error in high-speed comparator
C442	Hardware error in MCU pulse output
C443	No response from extension unit
C4EE	No END instruction in the program
C4FF	Invalid instruction (no such instruction existing)

3.1 Basic Instructions and Step Ladder Instructions

☐ Basic Instructions

Instruction	Function	Operands	Exec	STEP	Page		
Code	1 difetion	Operands	ES	SA	EH	5	r age
LD	Loading in A contact	X, Y, M, S, T, C	3.8	3.8	0.24 (0.56)	1~3	3-3
LDI	Loading in B contact	X, Y, M, S, T, C	3.88	3.88	0.24 (0.56)	1~3	3-3
AND	Series connection- A contact	X, Y, M, S, T, C	2.32	2.32	0.24 (0.56)	1~3	3-3
ANI	Series connection- B contact	X, Y, M, S, T, C	2.4	2.4	0.24 (0.56)	1~3	3-4
OR	Parallel connection- A contact	X, Y, M, S, T, C	2.32	2.32	0.24 (0.56)	1~3	3-4
ORI	Parallel connection- B contact	X, Y, M, S, T, C	2.4	2.4	0.24 (0.56)	1~3	3-5
ANB	Series connection- loop blocks	N/A	1.76	1.76	0.24	1~3	3-5
ORB	Parallel connection- loop blocks	N/A	1.76	1.76	0.24	1~3	3-6
MPS	Store the current result of the internal PLC operations	N/A	1.68	1.68	0.24	1~3	3-6
MRD	Reads the current result of the internal PLC operations	N/A	1.6	1.6	0.24	1	3-6
MPP	Pops (recalls and removes) the currently stored result	N/A	1.6	1.6	0.24	1	3-6

Output instructions

Instruction Code	Function	Operands	Exec	STEP	Page		
	i diisiisii	Operando	ES	SA	EH	0.21	i agc
OUT	Output coil	Y, M, S	5.04	5.04	0.24 (0.56)	1~3	3-7
SET	Latched (On)	Y, M, S	3.8	3.8	0.24 (0.56)	1~3	3-7
RST	Clear the contacts or the registers	Y, M, S, T, C, D, E, F	7.8	7.8	0.24 (0.56)	3	3-8

☐ Timers, Counters

API Instruction Code	Function	Operands	Execu	STEP	Page			
		Орегиназ	ES	SA	EH	0121	i age	
96	TMR	16-bit timer	T-K or T-D	10.6	10.6	9.6	4	3-8
97	CNT	16-bit counter	C-K or C-D (16 bits)	9.7	9.7	12.8	4	3-9
97	DCNT	32-bit counter	C-K or C-D (32 bits)	10.3	10.3	14.3	6	3-9

Instruction Code	Function	Operands -	Execu	STEP	Page		
	Tunction		ES	SA	EH	SILI	age
MC	Master control start	N0 ~ N7	5.6	5.6	5.6	3	3-10
MCR	Master control reset	N0 ~ N7	5.7	5.7	5.7	3	3-10

☐ Instructions for detecting the contacts of rising-/falling-edge

API Instruction Code	Function	Operands	Exec	STEP	Page			
	Code	1 dilonon	Operanas	ES	SA	EH	OTE	i age
90	LDP	Rising-edge detection operation	X, Y, M, S, T, C	5.1	5.1	0.56 (0.88)	3	3-11
91	LDF	Falling-edge detection operation	X, Y, M, S, T, C	5.1	5.1	0.56 (0.88)	3	3-12
92	ANDP	Rising-edge series connection	X, Y, M, S, T, C	4.9	4.9	0.56 (0.88)	3	3-12
93	ANDF	Falling-edge series connection	X, Y, M, S, T, C	4.9	4.9	0.56 (0.88)	3	3-12
94	ORP	Rising-edge parallel connection	X, Y, M, S, T, C	4.9	4.9	0.56 (0.88)	3	3-13
95	ORF	Falling-edge parallel connection	X, Y, M, S, T, C	4.9	4.9	0.56 (0.88)	3	3-13

Rising-/falling-edge output instructions

API Instruction		Function	Operands	Execu	STEP	Page		
,	Code		operariae	ES	SA	EH		. ago
89	PLS	Rising-edge output	Y, M	7.8	7.8	9.92	3	3-13
99	PLF	Falling-edge output	Y, M	7.8	7.8	10.16	3	3-14

End instruction

Instruction	Function	Operands	Execu	STEP	Page		
Code	i unction		ES	SA	EH	012.	r ago
END	Program ends	N/A	5	5	0.24	1	3-14

Other instructions

API Instruction Code		Function	Operands	Execu	STEP	Page		
		1 diletion	Operands	ES	SA	EH	OTLI	age
	NOP	No operation	N/A	0.88	0.88	0.16	1	3-15
98	INV	Inverting operation	N/A	1.6	1.6	0.24	1	3-15
	Р	Pointer	P0 ~ P255	0.88	0.88	_	1	3-15
	I	Interruption program marker	I	0.88	0.88	-	1	3-16

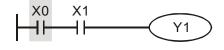
☐ Step ladder instructions

Instruction	Function	Operands	Execu	STEP	Page		
Code	, and a	operando	ES	SA	EH	0.2.	. ago
STL	Step transition ladder start instruction	S	11.6	10.6	0.56	1	4-1
RET	Step transition ladder return instruction	N/A	7.04	6.04	0.24	1	4-1

Note 1: ES includes ES/EX/SS; SA includes SA/SX/SC; EH includes EH/EH2/SV.

Note 2: For EH series MPU, the execution speed in the brackets () refers to the execution speed of designated operand M1536 \sim M4095.

3.2 Explanations on Basic Instructions


Mnemonic	Function		Prograi	Program steps		Controllers				
LD	Loading i	n A contact	1		ES EX SS SA SX SC EH SV					
Onevend	X0 ~ X377 Y0 ~ Y377 M0		M0 ~ M4095	S0 ~ S1023	T0 ~ T255	C0 ~ C255	D0 ~ D9999			
Operand	✓	✓	✓	✓	√	✓	-			

Explanations:

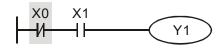
The LD instruction is used on the A contact that has its start from the left BUS or the A contact that is the start of a contact circuit. The functions are to save the present contents and store the acquired contact status into the accumulative register.

Program Example:

Ladder diagram:

Instruction code: O	peration:
---------------------	-----------

LD	X0	Loading in contact A of X0
AND	X1	Connecting to contact A of X1 in series
OUT	Y1	Driving Y1 coil


Mnemonic	Fun	Function		Program steps		Controllers				
LDI	Loading in B contact		1		ES EX SS SA SX SC EH SV					
0	X0 ~ X377	Y0 ~ Y377	M0 ~ M4095	S0 ~ S1023	T0 ~ T255	C0 ~ C255	D0 ~ D9999			
Operand	✓	✓	✓	✓	✓	✓	-			

Explanations:

The LDI instruction is used on the B contact that has its start from the left BUS or the B contact that is the start of a contact circuit. The functions are to save the present contents and store the acquired contact status into the accumulative register.

Program Example:

Ladder diagram:

peration

LDI	X0	Loading in contact B of X0
AND	X1	Connecting to contact A of X1 in series
OUT	Y1	Driving Y1 coil

Mnemonic	Fu	Function			ram steps							
AND	Series conne	eries connection- A contact			1			Controllers ES EX SS SA SX SC EH SV				
Operand	X0 ~ X377	Y0 ~ Y377	M0 ~	- M4095	S0 ~ S1023	T0 ~	~ T255	CC) ~ C255	DO) ~ D9	9999
Operand	✓	✓		✓	✓		✓		✓		-	

Explanations:

The AND instruction is used in the series connection of A contact. The functions are to read out the status of present d

series connection contacts and perform the "AND" operation with the logical operation result obtained. The final result will be store in the accumulative register.

Program Example:

Ladder diagram:

instruction	on code:	Operation:
LDI	X1	Loading in contact B of X1
AND	X0	Connecting to contact A of X0 in series
OUT	V1	Driving V1 coil

Mnemonic	Series connection- B contact			Prog	ıram steps	Controllers						
ANI					1	ES EX SS SA SX SC EH S						
Operand	X0 ~ X377 Y0 ~ Y377 M0 ~ N		M4095	S0 ~ S1023	T0 ~ T255	C0 ~ C255	D0 ~ D9999					
Operand	✓	✓		✓	✓	✓	✓	-				

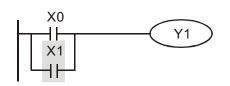
Explanations:

The ANI instruction is used in the series connection of B contact. The functions are to read out the status of present designated series connection contacts and perform the "AND" operation with the logical operation result obtained. The final result will be store in the accumulative register.

Program Example:

Ladder diagram:

Instruction code:		Operation:
LD X1		Loading in contact A of X1
ANI X0		Connecting to contact B of X0 in series
OUT Y1		Driving Y1 coil


Mnemonic	Function			Prog	ıram steps	Controllers					
OR	Parallel connection- A contact			1	ES EX SS SA SX SC EH						
Operand	X0 ~ X377 Y0 ~ Y377 M0 ~ N		M4095	S0 ~ S1023	T0 ~ T	255	C0 ~ C255	D0 ~ D9999			
Operana	✓	✓		✓	✓	✓		✓	-		

Explanations:

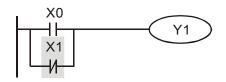
The OR instruction is used in the parallel connection of A contact. The functions are to read out the status of present designated parallel connection contacts and perform the "OR" operation with the logical operation result obtained. The final result will be store in the accumulative register.

Program Example:

Ladder diagram:

Instruction code:		Operation:
LD X0		Loading in contact A of X0
OR	X1	Connecting to contact A of X1 in parallel
OUT	Y1	Driving Y1 coil

Mnemonic		Function		Program step	os		С	ontrolle	ers
ORI	Parallel cor	Parallel connection- B contact		1	ES EX SS SA SX SC EH SV				
	X0 ~ X377	Y0 ~ Y377	M0 ~ M40	95 S0 ~ S1023	T0 ~	- T255	C0 ~ C	255	D0 ~ D9999


Operand	X0 ~ X377	Y0 ~ Y377	M0 ~ M4095	S0 ~ S1023	T0 ~ T255	C0 ~ C255	D0 ~ D9999
o por an a	✓	✓	✓	✓	✓	✓	-

Explanations:

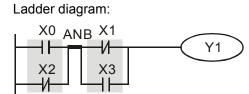
The OR instruction is used in the parallel connection of B contact. The functions are to read out the status of present designated parallel connection contacts and perform the "OR" operation with the logical operation result obtained. The final result will be store in the accumulative register.

Program Example:

Ladder diagram:

Instruction	code:	Operation:
LD	X0	Loading in contact A of X0
ORI	X1	Connecting to contact B of X1 in parallel
OUT	Y1	Driving Y1 coil

Mnemonic	Function	Program steps			(Contr	oller	S		
ANB	Series connection- loop blocks	1	ES	EX	SS	SA	SX	SC	EH	SV


Operand N/A	
-------------	--

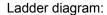
Explanations:

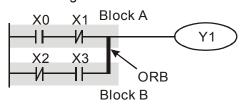
To perform the "AND" operation of the preserved logic results and content in the accumulative register.

Program Example:

Block A Block B

Instruction code:		Operation:					
LD X0		Loading in contact A of X0					
ORI	X2	Connecting to contact B of X2 in parallel					
LDI	X1	Loading in contact B of X1					
OR X3 ANB OUT Y1		Connecting to contact A of X3 in parallel					
		Connecting circuit block in series					
		Driving Y1 coil					


Mnemonic	Function	Program steps			(Contr	oller	s		
ORB	Parallel connection- loop blocks	1	ES	EX	SS	SA	SX	SC	EH	SV
Onered		NI/A								


Operand N/A

Explanations:

To perform the "OR" operation of the preserved logic results and content in the accumulative register.

Program Example:

LD X0 Loading in contact A of X0 ANI X1 Connecting to contact B of X1 in series LDI X2 Loading in contact B of X2 AND X3 Connecting to contact A of X3 in series ORB Connecting circuit block in parallel OUT Y1 Driving Y1 coil	Instruction code:		code:	Operation:				
LDI X2 Loading in contact B of X2 AND X3 Connecting to contact A of X3 in series ORB Connecting circuit block in parallel		LD	X0	Loading in contact A of X0				
AND X3 Connecting to contact A of X3 in series ORB Connecting circuit block in parallel		ANI	X1	Connecting to contact B of X1 in series				
ORB Connecting circuit block in parallel		LDI	X2	Loading in contact B of X2				
· · · · · · · · · · · · · · · · · · ·		AND	X3	Connecting to contact A of X3 in series				
OUT Y1 Driving Y1 coil		ORB		Connecting circuit block in parallel				
		OUT	Y1	Driving Y1 coil				

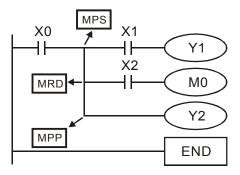
Mnemonic	Function	Program steps	Controllers				
MPS	Store the current result of the internal PLC operations	1	ES EX SS SA SX SC EH SV				
Operand		N/A					

Explanations:

To save the content in the accumulative register into the operational result (the pointer of operational result will plus 1).

Mnemonic	Function	Program steps	Controllers
MRD	Reads the current result of the internal PLC operations	1	ES EX SS SA SX SC EH SV
Operand		N/A	

Explanations:


To read the operational result and store it into the accumulative register (the pointer of operational result stays intact).

Mnemonic	Function	Program steps	Controllors						
MPP	Pops (recalls and removes) the currently stored result	1	Controllers ES EX SS SA SX SC EH SV						
Operand		N/A							

Explanations:

To retrieve the previous preserved logical operation result and store it into the accumulative register (the pointer of operational result will minus 1).

Ladder diagram:

Instruction	code:	Operation:
LD	X0	Loading in contact A of X0
MPS		Saving into stack
AND	X1	Connecting to contact A of X1 in series
OUT	Y1	Driving Y1 coil
MRD		Reading from stack
AND	X2	Connecting to contact A of X2 in series
OUT	MO	Driving M0 coil
MPP		Reading from stack and pop pointer
OUT	Y2	Driving Y2 coil
END		Program ends

Mnemonic	Function Output coil		Progra	Program steps		Controllers				
OUT				1		ES EX SS SA SX SC EH				
Operand	X0 ~ X377	Y0 ~ Y377	M0 ~ M4095	S0 ~ S1023	T0 ~ T255	C0 ~ C255	D0 ~ D9999			
Operand	-	✓	√	√	-	-	-			

Explanations:

- 1. To output the logical operation result before OUT instruction into a designated device.
- 2. Actions of coil contact:

		OUT instruction						
	Operational result	Coil	Contact					
		Coil	A contact (normally open)	B contact (normally closed)				
	FALSE	Off	Off	On				
	TRUE	On	On	Off				

Program Example:

Ladder diagram:

Instruction code: Operation:

LDI X0 Loading in contact B of X0
AND X1 Connecting to contact A of X1 in series

OUT Y1 Driving Y1 coil

Mnemonic	Function		Progr	am Steps	Controllers						
SET	Latched (On)			1		ES EX SS SA SX SC EH S					
Operand	X0 ~ X377	Y0 ~ Y377	M0 ~ M4095	S0 ~ S1023	T0 ~ T255	C0 ~ C255	D0 ~ D9999				
Operand	-	✓	✓	✓	_	_	_				

Explanations:

When the SET instruction is driven, its designated device will be "On" and keep being On both when SET instruction is still being driven or not driven. Use RST instruction to set "Off" the device.

Program Example:

SET

Y1

Ladder diagram: Instruction code: Operation:

LD X0 Loading in contact A of X0

ANI Y0 Connecting to contact B of Y0 in series

SET Y1 Y1 latched (On)

Mnemonic	Function			Program	steps				
RST	Clear the contacts or the registers			1		Controllers ES EX SS SA SX SC EH SV			
Operand	X0 ~ X377	Y0 ~ Y377	M0 ~ M4095	S0 ~ S1023	T0 ~ T	255	C0 ~ C255	D0 ~ D9999	E0 ~ E7 F0 ~ F7
Operana	-	✓	✓	√	✓		✓	√	✓

Explanations:

1. When the RST instruction is driven, the actions of the designated devices are:

Device	Status
Y, M, S,	Coil and contact will be set to "Off"
T, C	Present values of the timer or counter will be set to "0", and the coil and contact will be set to "Off"
D, E, F	The content will be set to "0".

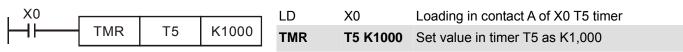
2. If RST instruction is not being executed, the status of the designated device will stay intact.

Program Example:

Ladder diagram: Instruction code: Operation:

LD X0 Loading in contact A of X0

RST Y5 Resetting contact Y5


Mnemonic	Function		Program steps	Controllers
TMR	16-bit timer		1	ES EX SS SA SX SC EH SV
Operand	T-K	T0 ~ T255, K0 ~	~ K32,767	
Operand	TD	T0 ~ T255 D0 a	~ D0000	

Explanations:

When TMR instruction is executed, the designated coil of the timer will be On and the timer will start to time. When the set value in the timer is reached (present ≥ set value), the contact will be:

NO (Normally Open) contact	Open collector
NC (Normally Closed) contact	Close collector

Ladder diagram: Instruction code: Operation:

Remarks:

See the specification of each model for the range of operand T.

Mnemonic	Function		Program steps				Contr	oller	s		
CNT	16-bit counter		1	ES	EX	SS	SA	SX	SC	EH	SV
On 2000 d	C-K	C0 ~ C199, k	<0~K32,767								
Operand	C-D	C0 ~ C199, E	D0 ~ D9999								

Explanations:

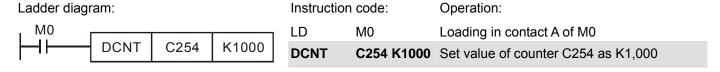
1. When the CNT instruction goes from Off to On, the designated counter coil will be driven, and the present value in the counter will plus 1. When the counting reaches the set value (present value = set value), the contact will be:

NO (Normally Open) contact	Open collector
NC (Normally Closed) contact	Close collector

2. If there are other counting pulse input after the counting reaches its target, the contact and present value will stay intact. Use RST instruction to restart or reset the counting.

Program Example:

Ladder diagram: Instruction code: Operation:

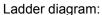

Mnemonic	Function		Program steps				Contr	oller		
DCNT	32-bit counter		1				SV			
						_				

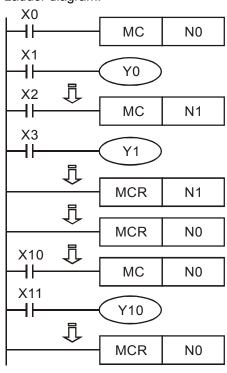
Operand	C-K	C200 ~ C255, K-2,147,483,648 ~ K2,147,483,647
Operand	C-D	C200 ~ C255, D0 ~ D9999

Explanations:

- 1. DCNT is the instruction for enabling the 32-bit high-speed counters C200 ~ C255.
- For general purpose addition/subtraction counters C200 ~ C234, when DCNT goes from Off to On, the present value in the counter will pulse 1 (counting up) or minus 1 (counting down) according to the modes set in special M1200 ~ M1235.
- 3. For high-speed addition/subtraction counters C235 ~ C255, when the high-speed counting pulse input goes from Off to On, the counting will start its execution. For the input terminals (X0 ~ X17) and counting methods

- (counting up/down) of the high-speed counter, see Chapter 2.7 Numbering and Function of Counter [C] for more details.
- 4. When DCNT is Off, the counting will stop, but the existing present value in the counter will not be cleared. To clear the present value and the contact, you have to use the instruction RST C2XX. Use externally designated input points to clear the present values and contacts of high-speed addition/subtraction counters C235 ~ C255.


Mnemonic	Function Program steps		Controllers
MC / MCR	Master control Start/Reset	1	ES EX SS SA SX SC EH SV
Operand	N0 ~ N7		


Explanations:

MC is the main-control start instruction. When MC instruction is executed, the execution of instructions between MC and MCR will not be interrupted. When MC instruction is Off, the actions of the instructions between MC and MCR are:

Instruction type	Explanation
General purpose timer	Present value = 0 Coil is Off, No action for the contact
Accumulative timer	Coil is Off, present value and contact stay intact
Subroutine timer	Present value = 0 Coil is Off, No action for the contact
Counter	Coil is Off, present value and contact stay intact
Coils driven by OUT instruction	All Off
Devices driven by SET and RST instructions	Stay intact
Application instructions	All disabled. The FOR-NEXT nested loop will still execute back and forth for N times. Instructions between FOR-NEXT will act as the instructions between MC and MCR.

- 2. MCR is the main-control end instruction that is placed in the end of the main-control program. There should not be any contact instructions prior to MCR instruction.
- 3. MC-MCR main-control program instructions support the nested program structure (max. 8 layers) and please use the instruction in the order N0 ~ N7.

Instruction	n code:	Operation:
LD	X0	Loading in A contact of X0
MC	N0	Enabling N0 common series connection contact
LD	X1	Loading in A contact of X1
OUT	Y0	Driving Y0 coil
:		
LD	X2	Loading in A contact of X2
MC	N1	Enabling N1 common series connection contact
LD	X3	Loading in A contact of X3
OUT	Y1	Driving Y1 coil
:		
MCR	N1	Disabling N1 common series connection contact
:		
MCR	N0	Disabling N0 common series connection contact
:		
LD	X10	Loading in A contact of X10
MC	N0	Enabling N0 common series connection contact
LD	X11	Loading in A contact of X11
OUT	Y10	Driving Y10 coil
:		
MCR	N0	Disabling N0 common series connection contact

Mnemonic	Ę	unction	Pro	gram steps		Controllers	
LDP	Rising-edge detection operation			1			
Operand	X0 ~ X377	Y0 ~ Y377	M0 ~ M4095	S0 ~ S1023	T0 ~ T255	C0 ~ C255	D0 ~ D9999
Operanu	✓	✓	✓	✓	✓	✓	-

Explanations:

The method of using LDP is the same as using LD, but the actions of the two instructions differ. LDP saves the current content and store the detected status of rising-edge to the accumulative register.

Program Example:

Ladder diagram:

LDP	X0	Starting X0 rising-edge detection	
AND	X1	Series connecting A contact of X1	
OUT	Y1	Driving Y1 coil	

Remarks:

- 1. See the specification of each model for the range of operands.
- 2. If the status of a designated rising-edge is On before the PLC is powered, the contact of the rising-edge will be TRUE after PLC is powered.

Mnemonic	Function			Pro	gram steps		Controllers	
LDF	Falling-edge detection operation 1 ES EX SS SA				SC EH SV			
Operand	X0 ~ X377	Y0 ~ Y377	M0 ~ N	14095	S0 ~ S1023	T0 ~ T255	C0 ~ C255	D0 ~ D9999
Operand	✓	✓	✓		✓	✓	✓	-

Explanations:

The method of using LDF is the same as using LD, but the actions of the two instructions differ. LDF saves the current content and store the detected status of falling-edge to the accumulative register.

Program Example:

Ladder diagram:

Instruction code:	Operation:
-------------------	------------

LDF	X0	Starting X0 falling-edge detection
AND	X1	Series connecting A contact of X1
OUT	Y1	Driving Y1 coil

Mnemonic	Function			onic Function Program steps					Controllers					
ANDP	Rising-edge	series connec	tion		1	ES I	EX S	S SA SX	SC EH SV					
Operand	X0 ~ X377	Y0 ~ Y377	M0 ~ M4095		S0 ~ S1023	T0 ~ 7	T255	C0 ~ C255	D0 ~ D9999					
Operand	✓	✓	✓		✓	✓	,	✓	-					

Explanations:

ANDP instruction is used in the series connection of the contacts' rising-edge detection.

Program Example:

Ladder diagram:

Instruction code: Operation:

LD X0 Loading in A contact of X0

ANDP X1 X1 rising-edge detection in series connection

OUT Y1 Driving Y1 coil

Masassas	Function	Drawen stans								
Mnemoni	Function	Program steps	Controllers							
ANDF	Falling-edge series connection	1	ES	EX	SS	SA	SX	SC	EH	SV

Operand	X0 ~ X377	Y0 ~ Y377	M0 ~ M4095	S0 ~ S1023	T0 ~ T255	C0 ~ C255	D0 ~ D9999
Operand	✓	✓	✓	✓	✓	✓	-

Explanations:

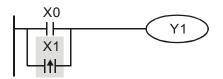
ANDF instruction is used in the series connection of the contacts' falling-edge detection.

[Program Example:

Ladder diagram:

Instruction code: Operation:

LD	X0	Loading in A contact of X0
ANDF	X1	X1 falling-edge detection in series connection
OUT	Y1	Drive Y1 coil


Mnemonic	Function			Prog	gram steps	Controllers				
ORP	Rising-edge	parallel conne	ction		1 ES EX SS SA SX SC			SC EH SV		
Operand	X0 ~ X377	Y0 ~ Y377	M0 ~	M4095	S0 ~ S1023	T0 ~ T255	C0 ~ C255	D0 ~ D9999		
Operand	✓	✓	,	✓	✓	✓	✓	-		

Explanations:

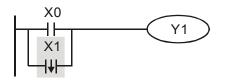
The ORP instructions are used in the parallel connection of the contact's rising-edge detection.

Program Example:

Ladder diagram:

Instruction code: Operation:

LD	X0	Loading in A contact of X0
ORP	X1	X1 rising-edge detection in parallel connection
OUT	Y1	Driving Y1 coil


Mnemonic	Function			Function Program steps				Controllers					
ORF	Falling-edge	parallel conne	ection	tion 1			ES EX SS SA SX SC EH S						
Operand	X0 ~ X377	Y0 ~ Y377	M0 ~	M4095	S0 ~ S1023	T0 ~	T255	C0 ~ C255	D0 ~ D9999				
Operand	✓	✓		✓	✓	,	✓	✓	-				

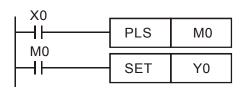
Explanations:

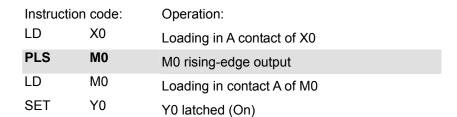
The ORP instructions are used in the parallel connection of the contact's falling-edge detection.

Program Example:

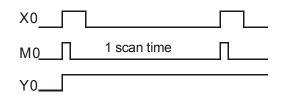
Ladder diagram:

Instruction code: Operation:


LD	X0	Loading in A contact of X0
ORF	X1	X1 falling-edge detection in parallel connection
OUT	Y1	Driving Y1 coil

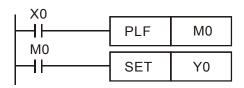

Mnemonic	Function			Prog	ıram steps				Controllers				
PLS	Rising-edge	output			1						SV		
Operand	X0 ~ X377	Y0 ~ Y377	M0 ~ M4095		S0 ~ S1023	T0 ~	T25	5	C0 ~	C255	DO) ~ D9	9999
Орегана	-	✓	✓		-		-		-			-	

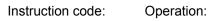
Explanations:


When X0 goes from Off to On (rising-edge trigger), PLS instruction will be executed and **S** will send out pulses for once of 1 scan time.

Ladder diagram:

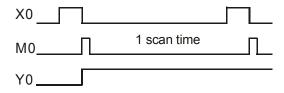
Timing Diagram:


Mnemonic	Function			Pro	gram steps	Controllers					
PLF	Falling-edge	output			1	ES EX S	SC EH SV				
Operand	X0 ~ X377	Y0 ~ Y377	M0 ~ M409		S0 ~ S1023	T0 ~ T255	C0 ~ C255	D0 ~ D9999			
Operand	-	✓	✓		-	-	-	-			


Explanations:

When X0 goes from On to Off (falling-edge trigger), PLF instruction will be executed and **S** will send out pulses for once of 1 scan time.

Program Example:


Ladder diagram:

LD	X0	Loading in A contact of X0			
PLF	МО	M0 falling-edge output			
LD	M0	Loading in contact A of M0			
SET	Y0	Y0 latched (On)			

Timing Diagram:

Mnemonic	Function	Program steps	Controllers
END	Program End	1	ES EX SS SA SX SC EH SV

Operand	N/A
---------	-----

Explanations:

END instruction has to be placed in the end of a ladder diagram or instruction program. PLC will start to scan from address 0 to END instruction and return to address 0 to restart the scan.

Mnemonic	Function	Program steps	Controllers
NOP	No operation	1	ES EX SS SA SX SC EH SV
Operand		N/A	

Explanations:

NOP instruction does not conduct any operations in the program; therefore, after the execution of NOP, the existing logical operation result will be kept. If you want to delete a certain instruction without altering the length of the program, you can use NOP instruction.

Program Example:

NOP instruction will be omitted in the ladder diagram

Instruction code:		Operation:
LD	X0	Loading in B contact of X0
NOP		No operation
OUT	Y1	Driving Y1 coil

Mnemonic	Function	Dragram stone								
winemonic	Function	Program steps			(Contr	oller	s		
INV	Inverting Operation	1	ES	EX	SS	SA	SX	SC	EH	SV

Operand	N/A
---------	-----

Explanations:

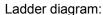
The logical operation result before INV instruction will be inverted and stored in the accumulative register.

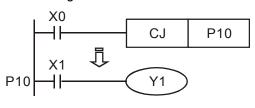
Program Example:

Ladder diagram:

LD X0 Loading in A contact of X0

INV Inverting the operation result


OUT Y1 Driving Y1 coil


Massassis	Fatian	Dua arrama atama	
Mnemonic	Function	Program steps	Controllers
Р	Pointer	1	ES EX SS SA SX SC EH SV
·		_	

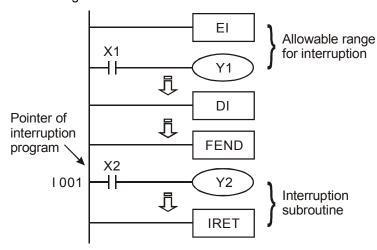
Operand	P0 ~ P255		

Explanations:

Pointer P is used in API 00 CJ and API 01 CALL instructions. The use of P does not need to start from No. 0, and the No. of P cannot be repeated; otherwise, unexpected errors may occur.

Instruction code:		Operation:
LD	X0	Loading in A contact of X0
CJ	P10	From instruction CJ to P10
:		
P10		Pointer P10

P10		Pointer P10
LD	X1	Loading in A contact of X1
OUT	Y1	Driving Y1 coil


Mnemonic	Function	Program steps	Controllers			
1	Interruption program marker (I)	1	ES EX SS SA SX SC EH SV			
100 110 120 130 140 150 16 17 18		8				
Operand	1010, 1020, 1030, 1040, 1050, 1060, 1110, 1120, 1130, 1140, 1150, 1160, 1170, 1180					

Explanations:

A interruption program has to start with a interruption pointer (I and ends with API 03 IRET. I instruction has to be used with API 03 IRET, API 04 EI, and API 05 DI. See Chapter 2.9 for pointers of all DVP series PLCs.

Program Example:

Ladder diagram:

Instruction code:		Operation:
El		Enabling interruption
LD	X1	Loading A contact of X1
OUT	Y1	Driving Y1 coil
:		
DI		Disabling interruption
:		
FEND		Main program ends
1001		Interruption pointer
LD	X2	Loading in A contact of X2
OUT	Y2	Driving Y2 coil
:		
IRET		Interruption return

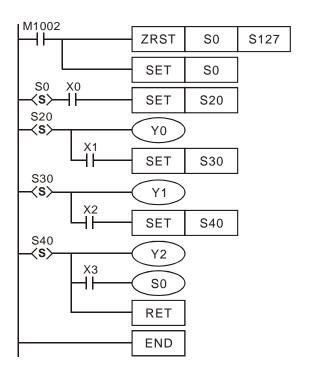
4.1 Step Ladder Instructions [STL], [RET]

Mnemonic	Function	Program steps	Controllers	
STL	Step Transition Ladder Start	1	ES EX SS SA SX SC EH SV	
Operand	S0 ~ S1023			

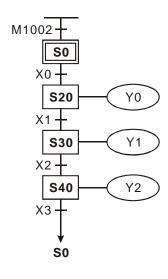
Explanations:

STL Sn constructs a step. When STL instruction appears in the program, the program will enter a step ladder diagram status controlled by steps. The initial status has to start from S0 \sim S9. RET instruction indicates the end of a step ladder diagram starting from S0 \sim S9 and the bus returns to a normal ladder diagram instruction. SFC uses the step ladder diagram composed of STL/RET to complete the action of a circuit. The No. of S cannot be repeated.

Mnomonio	Eunotion	Dragram stans								
Mnemonic	Function	Program steps	Controllers							
RET	Step Transition Ladder Return	1	ES	EX	SS	SA	SX	SC	EH	SV


Operand	N/A
---------	-----

Explanations:


RET indicates the end of a step. There has to be a RET instruction in the end of a series of steps. One PLC program can be written in maximum 10 steps (S0 ~ S9) and every step should end with a RET.

Program Example:

Ladder diagram:

SFC:

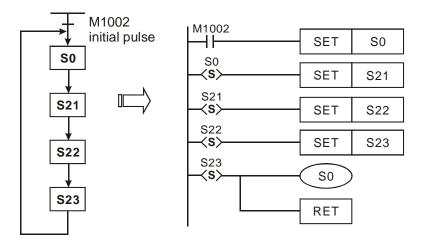
4.2 Sequential Function Chart (SFC)

In automation, we always need electric control to work with mechanical control for an automation control. The sequential control can be divided into several orderly steps (or stages). Each step has its actions that should be completed and the transition from one step to another normally requires some criteria. The action of the last step finishes when all criteria is true and the beginning of the next step will clear the actions of the last step. This is the concept of designing a sequential function chart (SFC).

Features:

- No sequential design is required for constant step actions, and PLC will automatically execute the interlocking and dual outputs among all status. An easy sequential design is the only thing required to make the machine work normally.
- 2. The actions in SFC are easy to understand, adjust for a trial operation, detect the errors and maintain.
- 3. SFC is a type of diagram editing. The structure of a SFC looks like a flow chart. Every No. of the step relay S inside the PLC represents a step, equal to every processing procedure in a flow chart. When the current procedure is completed, the program will move to the next step according to the set transition criteria. Therefore, you can repeat the cycle and obtain the result you desire.
- 4. See the SFC chart in the right hand side: The initial step S0 transfers to a general purpose step S21 by making the status transition condition X0 condition true. S21 transfer to S22 or jumps to S24 by making X1 or X2 true. In step S25, X6 will be true and the chart will return to S0 to complete a cycle. The cycle and be repeated to reach a cyclic control.
- Next are some basic icons for drawing SFC in WPLSoft SFC editor.

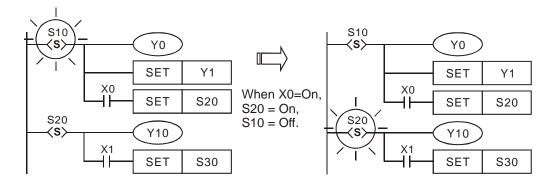
\$50 \$21 \$1 \$21 \$22 \$22 \$24 \$3 \$4 \$525 \$6 \$50


LAD	Ladder diagram mode. The icon indicates that the internal editing program is a general ladder diagram, not a step ladder program.			
	Initial step in SFC. Applicable for S0 ~ S9.			
	General step. Applicable for S10 ~ S1023.			
宀	Step jumps. Used for a step to jump to another non-adjacent step. (Jumping up/down to non-adjacent steps in the same sequence, returning to initial step, or jumping among different sequences.)			
+	Transition condition between steps.			
\vdash	Alternative divergence. The same step transfers to a corresponding step by different transition condition.			
1	Alternative convergence. More than 2 steps transfer to the same step by transition condition.			
	Simultaneous divergence. The same step transfers to more than 2 steps by the same transition condition.			
 	Simultaneous convergence. More than 2 steps transfer to the same step by a single transition condition.			

4.3 How does a Step Ladder Instruction Work?

STL instruction is used for designing the syntax of a sequential function chart (SFC), making the program designing similar to drawing a flow chart and allowing a more explicit and readable program. From the figure in the left hand side below, we can see very clearly the sequence to be designed, and we can convert the sequence into the step ladder diagram in the right hand side.

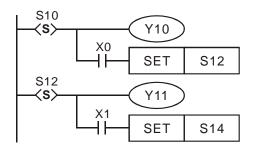
RET instruction has to be written at the end of every step sequence, representing the end of a sequence. There can be more than one step sequence in a program. Therefore, we have to write in RET at the end of every step sequence. There is no limitation on the times of using RET which is used together with S0 ~ S9.


If there is no RET instruction at the end of a step sequence, errors will be detected by WPL editor.

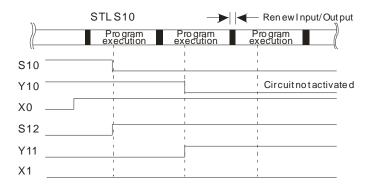
1. Actions of Step Ladder:

A step ladder is composed of many steps and every step controls an action in the sequence. The step ladder has to:

- a) Drive the output coil
- b) Designate the transition condition
- c) Designate which step will take over the control from the current step Example:

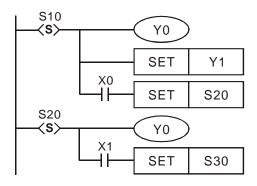


Explanation:


When S10 = On, Y0 and Y1 will be On. When X0 = On, S20 will be On and Y10 will be On. When S10 = Off, Y0 will be Off and Y1 will be On.

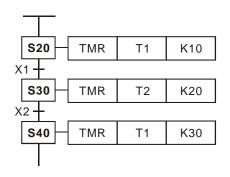
2. Timing Diagram of Step Ladder:

When the status contact Sn = On, the circuit will be activated. When Sn = Off, the circuit will be disactivated. The actions will delay for 1 scan time.



Executing the timing diagram below. After the status of S10 and S12 are transferred (taking place simultaneously), and after a delay of 1 scan time, Y10 will be Off and Y11 will be On. There will not be overlapping outputs.

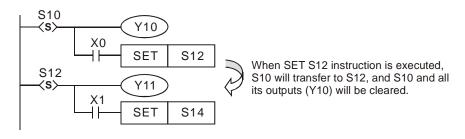
3. Repeated Use of Output Coil:


- a) You can use output coils of the same No. in different steps.
- b) See the diagram in the right. There can be the same output device (Y0) among different statuses. Y0 will be On when S10 or S20 is On. Such as right diagram, there is the same output device Y0 in the different state. No matter S10 or S20 is On, Y0 will be On.
- Y0 will be Off when S10 is transferring to S20. After S20 is On, Y0 will output again. Therefore in this case, Y0 will be On when S10 or S20 is On.
- d) Normally in a ladder diagram, avoid repeated use of an output coil. The No. of output coil used by a step should also avoid being used when the step ladder diagram returns to a general ladder diagram.

4. Repeated Use of Timer:

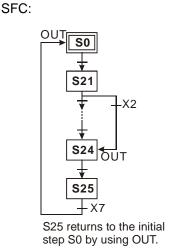
The timers in EH/EH2/SV series MPU are the same as general output points and can be repeatedly used in different steps. This is one of the features of the step ladder diagram. However, in a general ladder diagram, it is better not be repeatedly use the output coil. Also avoid using the No. of the output coil used by a step after the step ladder diagram returns to a general ladder diagram.

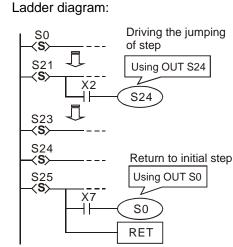
Note: See the figure in the right. The timers in ES/EX/SS/SA/SX/SC series MPU can be used repeatedly in non-adjacent steps.

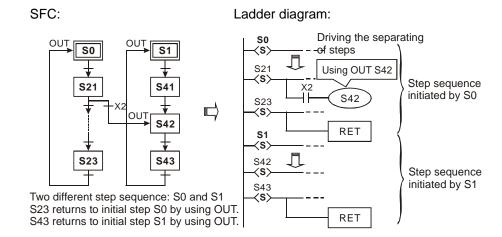


5. Transfer of Step:

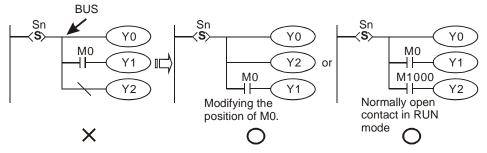
SET Sn and OUT Sn instructions are used to enable (or transfer to) another step. When the control power is shifted to another step, the status of the previous step S and the action of the output point will be cleared. Due to that there can be many step control sequences (i.e. the step ladder diagram starting with S0 ~ S9) co-existing in the program. The transfer of a step can take place in the same step sequence, or be transferred to different step sequence. Therefore, there are some slight differences regarding how to use SET Sn and OUT Sn. See the explanations below.


SET Sn Used for driving the next step in the same sequence. After the transition, all output from the previous status will be


cleared.


OUT Sn Used for returning to the initial step in the same step sequence. Also for jumping up/down to non-adjacent steps in the same sequence, or separating steps in different sequences. After the transition, all output from the previous status will be cleared.

- ① Returning to the initial step in the same sequence.
- ② Jumping up/down to non-adjacent steps in the same sequence.



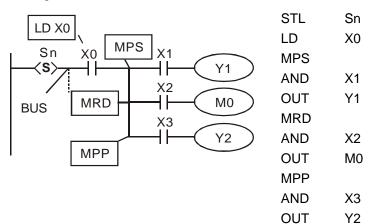
③ Separating steps in different sequences.

6. Cautions for Driving Output Point:

See the figure below. After the step point and once LD or LDI instructions are written into the second line, the bus will not be able to connect directly to the output coil, and errors will occur in the compilation of the ladder diagram. You have to correct the diagram into the diagram in the right hand side for a correct compilation.

7. Restrictions on Using Some Instructions:

The program of every step is the same as a general ladder diagram, in which you can use all kinds of series/parallel circuits or instructions. However, there are restrictions on some of the instructions.

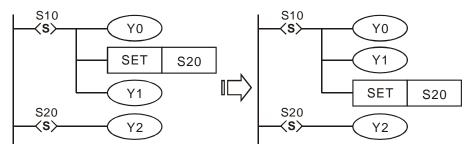

Basic instructions applicable in a step

Step	Instruction	LD/LDI/LDP/LDF AND/ANI/ANDP/ANDF OR/ORI/ORP/ORF INV/OUT/SET/RST	ANB/ORB MPS/MRD/MPP	MC/MCR
Initial step/general step		Yes	Yes	No
Divergence/	General output	Yes	Yes	No
convergence step	Step transfer	Yes	No	No

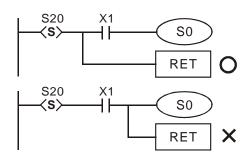
- DO NOT use MC/MCR instruction in the step.
- DO NOT use STL instruction in a general subroutine or interruption subroutine.
- You can still use CJ instruction in STL instruction, but this will make the actions more complicated. We do not recommend you do so.

■ The position of MPS/MRD/MPP instruction:

Ladder diagram:


Explanation:

MPS/MRD/MPP instruction cannot be used directly on the new bus. You have to execute LD or LDI instruction first before applying MPS/MRD/MPP.

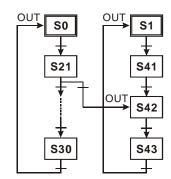

8. Other Points to Note:

The instruction used for transferring the step (SET S or OUT S) can only be executed after all the relevant outputs and actions in the current status are completed. See the figure below. The executed results by the PLC are the same, but if there are many conditions or actions in S10, it is recommended that you modify the diagram in the left hand side into the diagram in the right hand side. SET S20 is only executed after all relevant outputs and actions are completed, which is a more explicit sequence.

Instruction code:

Make sure to add RET instruction after STL at the end of the step ladder diagram.

4.4 Things to Note for Designing a Step Ladder Program


- 1. The first step in the SFC is called the "initial step", S0 ~ S9. Use the initial step as the start of a sequence and end a complete sequence with RET instruction.
- 2. If STL instruction is not in use, step S can be a general-purpose auxiliary relay.
- 3. When STL instruction is in use, the No. of step S cannot be repeated.
- 4. Types of sequences:

<u>Single sequence</u>: There is only one sequence without alternative divergence, alternative convergence, simultaneous divergence and simultaneous convergence in a program.

<u>Complicated single sequence</u>: There is only one sequence with alternative divergence, alternative convergence, simultaneous divergence and simultaneous convergence in a program.

Multiple sequences: There are more than one sequence in a program, maximum 10 sequences, S0 ~ S9.

- 5. Separation of sequence: Multiple sequences are allowed to be written into the step ladder diagram.
 - a) See the diagram in the right hand side. There are two sequences S0 and S1. The program writes in S0 ~ S30 first and S1 ~ S43 next.
 - b) You can designate a step in the sequence to jump to any step in another sequence.
 - c) When the condition below S21 is true, the sequence will jump to step S42 in sequence S1, which is called "separating the step".

- 6. Restrictions on diverging sequence: See 4.5 for example
 - a) You can use maximum 8 diverged steps in a divergence sequence.
 - b) You can use maximum 16 loops in multiple divergence sequences or in simultaneous sequences combined into one sequence.
 - c) You can designate a step in the sequence to jump to any step in another sequence.
- 7. Reset of the step and the inhibiting output:
 - a) Use ZRST instruction to reset a step to be Off.
 - b) Make M1034 = On to inhibit output Y.
- 8. Latched step:

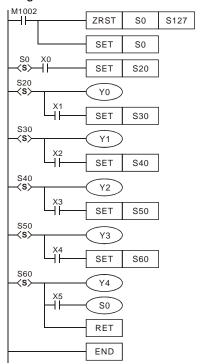
The On/Off status of the latched step will be memorized when the power of the PLC is switched off. When the PLC is re-powered, the status before the power-off will be recovered and the execution will resume. Please be aware of the area for the latched steps.

9. Special auxiliary relays and special registers: See 4.6refer to chapter 4.6 IST instruction for more details.

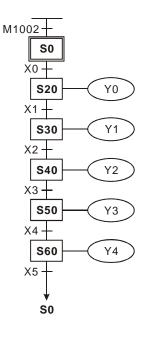
Device No.	Function
M1040	Disabling step. Disabling all the shifting of steps when On.
M1041	Starting step. Flag for IST instruction.
M1042	Enabling pulses. Flag for IST instruction.
M1043	Zero return completed. Flag for IST instruction.
M1044	Zero point condition. Flag for IST instruction.
M1045	Disabling all output reset. Flag for IST instruction.

Device No.	Function
M1046	Setting STL status as On. On when any of the steps is On.
M1047	Enabling STL monitoring
D1040	On status of step No. 1
D1041	On status of step No. 2
D1042	On status of step No. 3
D1043	On status of step No. 4
D1044	On status of step No. 5
D1045	On status of step No. 6
D1046	On status of step No. 7
D1047	On status of step No. 8

4.5 Types of Sequences

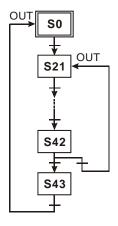

Single Sequence: The basic type of sequences

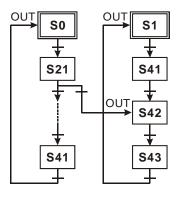
The first step in a step ladder diagram is called the initial step, which can be S0 \sim S9. The steps following the initial step are general steps, which can be S10 \sim S1023. If you are using IST instruction, S10 \sim S19 will become the steps for zero return.


a) Single sequence without divergence and convergence

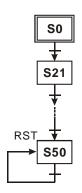
After a sequence is completed, the control power on the steps will be given to the initial step.

Step ladder diagram



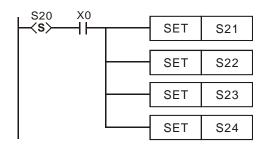

SFC:

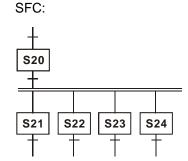
b) Jumping Sequence


- 1. The control power over the step is transferred to a certain step on top.
- 2. The control power over the step is transferred to the step in another sequence.

c) Reset Sequence

See the diagram in the right hand side. When the condition at S50 is true, S50 will be reset and the sequence will be completed at this time.

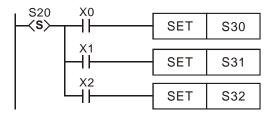

Complicated Single Sequence:

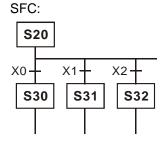

Including simultaneous divergence, alternative divergence, simultaneous convergence and alternative convergence.

a) Structure of simultaneous divergence

When the condition at the current step is true, the step can be transferred to many steps. See the diagrams below. When X0 = On, S20 will be simultaneously transferred to S21, S22, S23 and S24.

Ladder diagram:

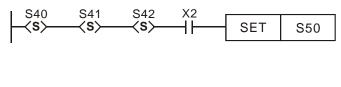


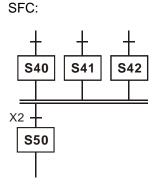


b) Structure of alternative divergence

When the individual condition at the current status is true, the step will be transferred to another individual step. See the diagrams below. When X0 = On, S20 will be transferred to S30; when X1 = On, S20 will be transferred to S31; when X2 = On, S20 will be transferred to S32.

Ladder diagram:

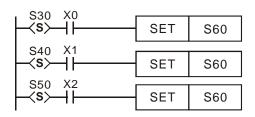


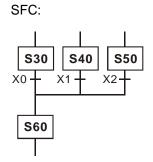


c) Structure of the simultaneous convergence

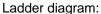
See the ladder diagram below. A continuous STL instruction represents a simultaneous convergence. When the condition is true after a continuous output, the step will be transferred to the next step. In the simultaneous convergence, only when several conditions are true will the transfer be allowed.

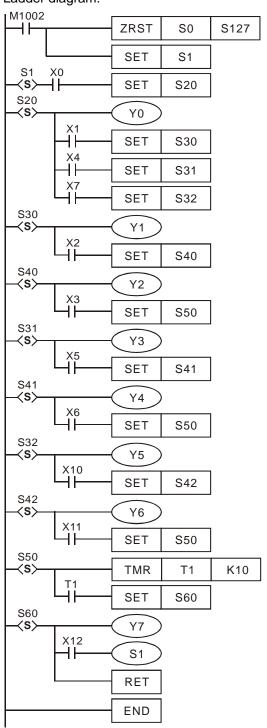
Ladder diagram:

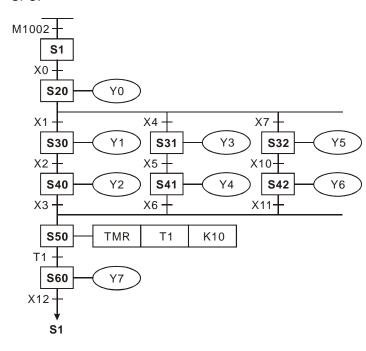




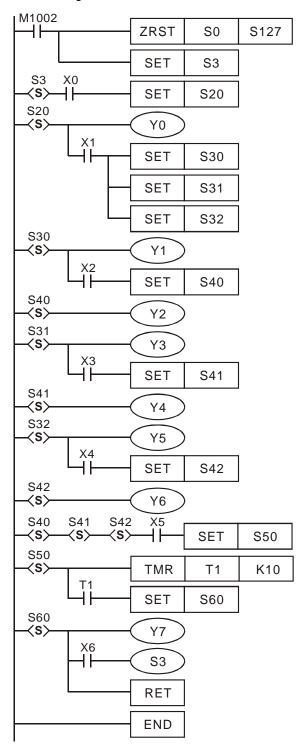
d) Structure of alternative convergence

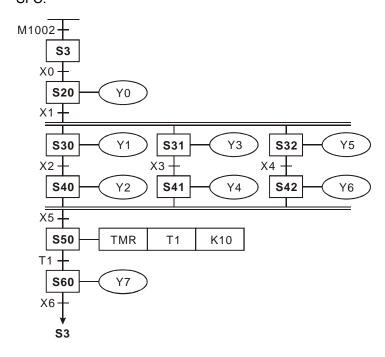

See the diagrams below. Depending on the condition of the input signal of which of S30, S40 and S50 becomes true first, the first one will be first transferred to S60.


Ladder diagram:



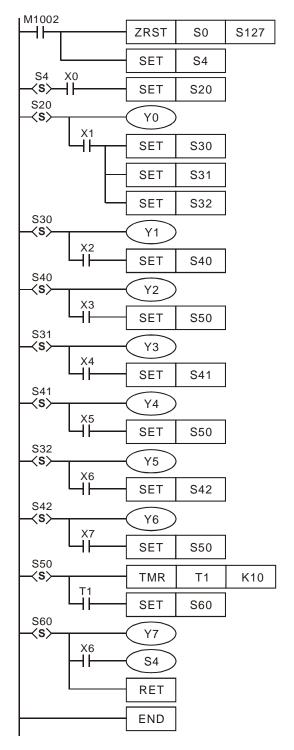
Examples of alternative divergence & alternative convergence:



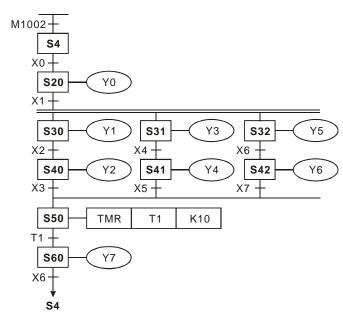


Examples of simultaneous divergence & simultaneous convergence:

Ladder diagram:

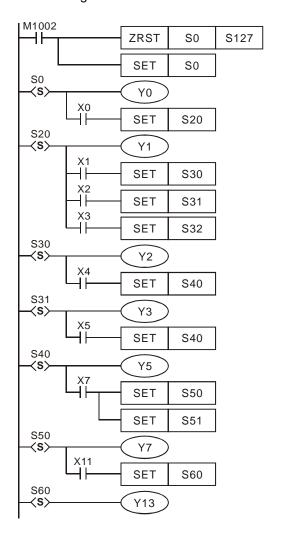


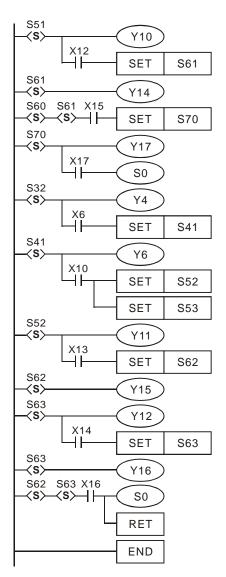
SFC:

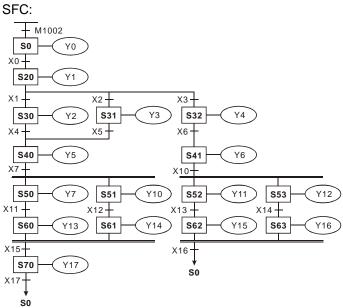


Example of the simultaneous divergence & alternative convergence:

Ladder diagram:

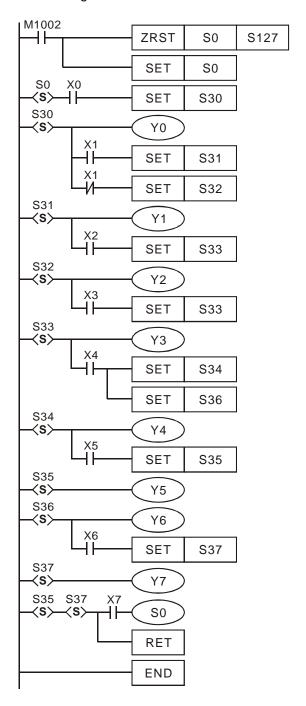


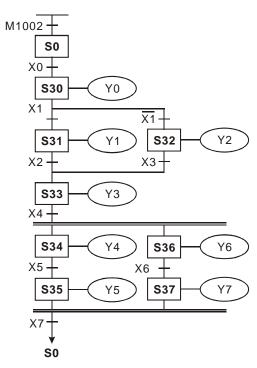



Combination Example 1:

(Including alternative divergence/convergence and simultaneous divergence/convergence)

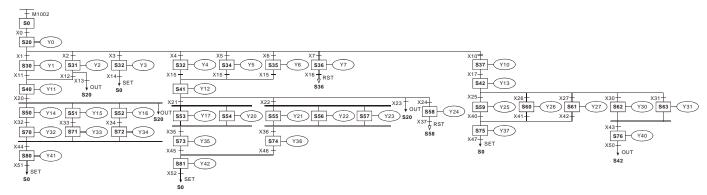
Ladder diagram:




Combination Example 2:

(Including alternative divergence/convergence and simultaneous divergence/convergence)

Ladder diagram:



Restrictions on Divergence Sequence:

- You can use maximum 8 divergence steps in a divergence sequence. As the diagram below, there are maximum 8 diverged steps S30 ~ S37 after step S20.
- 2. You can use maximum 16 loops in multiple divergence sequences or in simultaneous sequences combined into one sequence. As the diagram below, there are 4 steps diverged after S40, 7 steps diverged after S41, and 5 steps diverged after S42. There are maximum 16 loops in this sequence.
- 3. You can designate a step in the sequence to jump to any step in another sequence.

4.6 IST Instruction

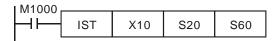
A	ŀΡΙ	Mnemonic	Operands	Function	Controllers
6	60	IST	S D1 D2	Initial State	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	evice	s	Word Devices										Program Steps	
О	P	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	О	Е	F	IST: 7 steps
	S	*	*	*													
	D_1				*												
	D_2				*												

	PULSE						16-bit						32-bit										
ES	EX	SS	SA	SX	SC	EΗ	S	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	ΕX	SS	SA	SX	SC	ΕH	SV

Operands:

 ${f S}$: Start device in the designated operation mode ${f D}_1$: The smallest No. of designated step in auto mode


D₂: The biggest No. of designated step in auto mode

Explanations:

- 1. **S** will occupy 8 consecutive points.
- 2. Range of D_1 and D_2 : for SA/SX/SC/EH/EH2/SV S20 ~ S899; for ES/EX/SS S20 ~ S127; $D_2 > D_1$.
- 3. See the specifications of each model for their range of use.
- 4. IST instruction can only be used once in the program.
- 5. Flags: M1040 ~ M1047. See remarks for more details.
- 6. IST instruction is a handy instruction specifically for the initial status of step ladder control procedure to accommodate special auxiliary relay.

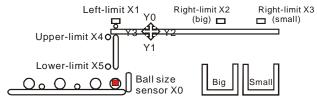
Program Example 1:

1. Use of IST instruction

S X10: Individual operation X14: Continuous operation X11: Zero return X15: Zero return enabled switch

X12: Step operation X16: Start switch X13: One cycle operation X17: Stop switch

2. When IST instruction is being executed, the following special auxiliary relays will switch automatically.

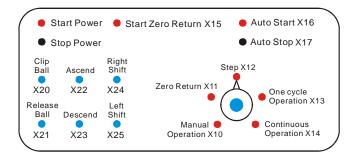

M1040: Operation forbidden
M1041: Operation starts
M1042: Pulse output enabled
S0: Initiates manual operation
S1: Initiates zero return
S2: Initiates auto operation

M1047: STL monitor enabled

- 3. S10 ~ S19 are for zero return and cannot be used as general steps. When S0 ~ S9 are in use, S0 ~ S2 represent manual operation mode, zero return mode and auto operation mode. Therefore, in the program, you have to write the circuit of the three steps in advance.
- 4. When switched to S1 (zero return) mode, any On in S10 ~ S19 will result in no zero return.
- 5. When switched to S2 (auto operation) mode, any On of the S in $D_1 \sim D_2$ or M1043 = On will result in no auto operation.

Program Example 2:

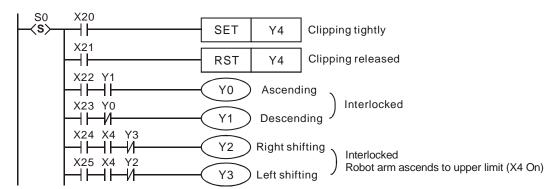
- 1. Robot arm control (by IST instruction):
 - a) Motion request: Separate the big ball and small ball and move them to different boxes. Configure the control panel for the control.
 - b) Motions of the robot arm: descending, clipping ball, ascending, right shifting, releasing ball, ascending, left shifting.
 - c) I/O devices:


2. Operation modes:

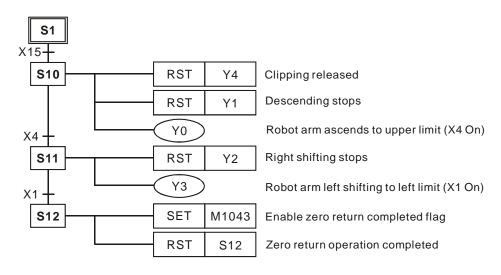
Manual operation: Turn On/Off of the load by a single button.

Zero return: Press the zero return button to automatically zero-return the machine.

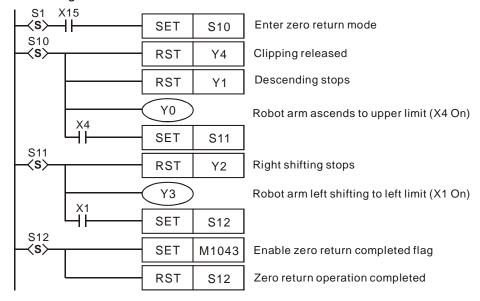
Auto operation:


- a) Single step operation: Press "auto start" button for every one step forward.
- b) One cycle operation: Press "auto start" button at the zero point. After a cycle of auto operation, the operation will stops at the zero point. Press "auto stop" button in the middle of the operation to stop the operation and press "auto start" to restart the operation. The operation will resume until it meets the zero point.
- c) Continuous operation: Press "auto start" button at the zero point to resume the operation. Press "auto stop" to operate until it meets the zero point.
- 3. The control panel:

- a) Ball size sensor X0.
- b) Robot arm: left limit X1, big ball right limit X2, small ball right limit X3, upper limit X4, lower limit X5.
- c) Robot arm: ascending Y0, descending Y1, right shifting Y2, left shifting Y3, clipping Y4.

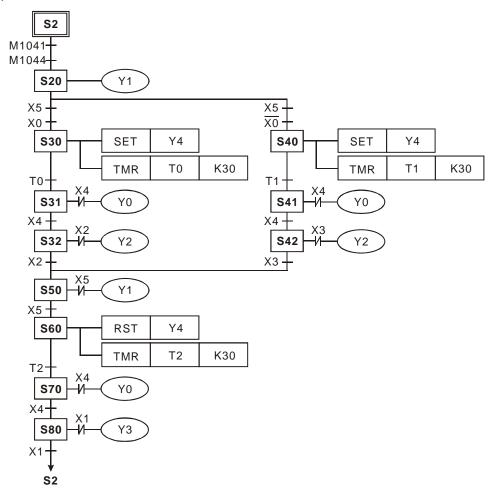

Start Circuit

Manual Operation Mode

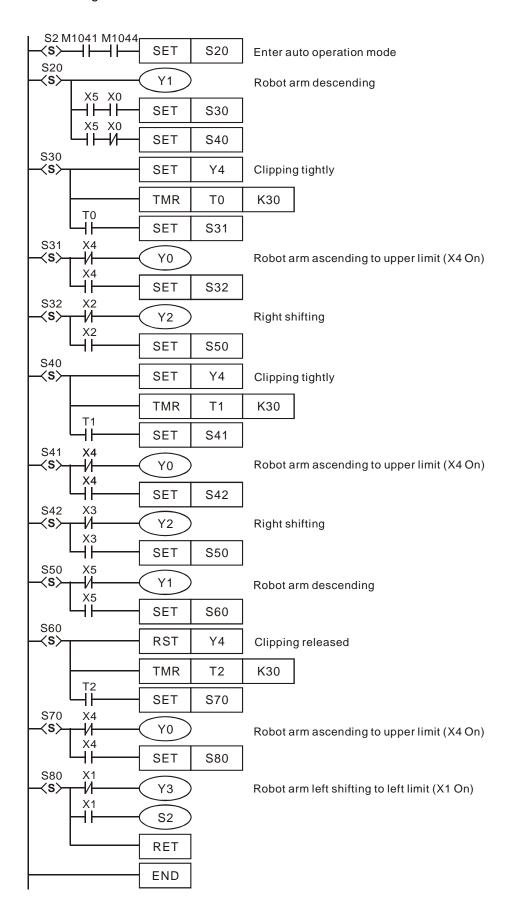


Zero Return Mode

SFC:



Ladder Diagram:



Auto Operation Modes

SFC:

Ladder Diagram:

MEMO

5.1 List of Instructions

		Mne	emonic	Р		Apr	olicab	le to	STE	EPS	_
Category	API	16-bit	32-bit	instruction	Function	ES	SA	EH	16-bit	32-bit	Page
	00	CJ	-	√	Conditional Jump	<u> </u>	<i>√</i>	✓	3	-	6-1
	01	CALL	_	√	Call Subroutine	✓	√	√	3	-	6-5
	02	SRET	-	_	Subroutine Return	√	√	√	1	-	6-5
ō	03	IRET	_	_	Interrupt Return	✓	√	√	1	-	6-8
ntr	04	El	_	_	Enable Interrupts	√	√	√	1	_	6-8
Loop Control	05	DI	_	_	Disable Interrupts	✓	√	√	1	-	6-8
<u>&</u>					The End of The Main Program						
Ŏ	06	FEND	-	-	(First End)	✓	✓	√	1	-	6-12
_	07	WDT	-	√	Watchdog Timer Refresh	√	✓	√	1	-	6-14
	08	FOR	-	-	Start of a FOR-NEXT loop	✓	✓	✓	3	-	6-15
	09	NEXT	-	-	End of a FOR-NEXT loop	✓	✓	✓	1	-	6-15
	10	CMP	DCMP	√	Compare	√	√	✓	7	13	6-18
	11	ZCP	DZCP	✓	Zone Compare	✓	✓	✓	9	17	6-19
	12	MOV	DMOV	✓	Move	✓	✓	✓	5	9	6-20
loi8	13	SMOV	-	✓	Shift Move	_	✓	✓	11	-	6-21
niss	14	CML	DCML	√	Compliment	√	√	√	5	9	6-23
Transmission Comparison	15	BMOV	-	✓	Block Move	√	√	√	7	-	6-24
an	16	FMOV	DFMOV	√	Fill Move	√	√	√	7	13	6-26
1 50	17	XCH	DXCH	√	Exchange	√	√	√	5	9	6-27
	18	BCD	DBCD	√	Binary Coded Decimal	√	✓	√	5	9	6-29
	19	BIN	DBIN	√	Binary	√	✓	√	5	9	6-30
	20	ADD	DADD	√	Addition	✓	√	√	7	13	6-32
	21	SUB	DSUB	√	Subtraction	√	√	√	7	13	6-34
ᇋ	22	MUL	DMUL	✓	Multiplication	√	√	√	7	13	6-35
net on	23	DIV	DDIV	√	Division	√	√	√	7	13	6-37
ur Arithme Operation	24	INC	DINC	√	Increment	√	√	√	3	5	6-39
Ari	25	DEC	DDEC	√	Decrement	√	√	✓	3	5	6-40
Four Arithmetic Operation	26	WAND	DAND	√	Logical Word AND	√	✓	✓	7	13	6-41
요	27	WOR	DOR	✓	Logical Word OR	✓	✓	✓	7	13	6-42
	28	WXOR	DXOR	✓	Logical Exclusive OR	✓	✓	✓	7	13	6-43
	29	NEG	DNEG	√	2's Complement (Negative)	✓	✓	✓	3	5	6-44
	30	ROR	DROR	✓	Rotation Right	✓	✓	✓	5	9	6-46
	31	ROL	DROL	✓	Rotation Left	✓	✓	✓	5	9	6-47
 	32	RCR	DRCR	✓	Rotation Right with Carry	✓	✓	✓	5	9	6-48
n & ment	33	RCL	DRCL	✓	Rotation Left with Carry	✓	✓	✓	5	9	6-49
ior	34	SFTR	-	✓	Bit Shift Right	✓	✓	✓	9	-	6-50
Rotation & Displacemer	35	SFTL	-	✓	Bit Shift Left	✓	✓	✓	9	-	6-51
Ro isp	36	WSFR	-	✓	Word Shift Right	-	✓	√	9	-	6-52
	37	WSFL	_	✓	Word Shift Left		✓	✓	9	-	6-54
	38	SFWR	_	✓	Shift Register Write		✓	✓	7	-	6-55
	39	SFRD	-	✓	Shift Register Read		✓	✓	7	_	6-56
	40	ZRST	-	✓	Zero Reset	✓	✓	✓	5	-	6-57
_	41	DECO	-	✓	Decode	✓	✓	✓	7	-	6-59
Data Processing	42	ENCO	-	✓	Encode	✓	✓	✓	7	-	6-61
SSS	43	SUM	DSUM	✓	Sum of Active Bits	✓	√	✓	5	9	6-63
200	44	BON	DBON	✓	Check Specified Bit Status	√	✓	✓	7	13	6-64
Prc	45	MEAN	DMEAN	✓	Mean	✓	✓	✓	7	13	6-65
<u>f</u> a	46	ANS	-	-	Timed Annunciator Set	-	✓	✓	7	-	6-66
Da	47	ANR	-	✓	Annunciator Reset	-	✓	✓	1	-	6-66
	48	SQR	DSQR	√	Square Root	√	√	√	5	9	6-72
	49	FLT	DFLT	✓	Floating Point	✓	✓	✓	5	9	6-70
0 0	50	REF	-	✓	Refresh	✓	✓	✓	5	-	7-1
Sin	51	REFF	-	✓	Refresh and Filter Adjust	-	✓	✓	3	-	7-2
High Speed Processing	52	MTR	-	-	Input Matrix	-	✓	✓	9	-	7-3
ligh roc	53	-	DHSCS	-	High Speed Counter Set	✓	✓	√	-	13	7-5
T T	54	-	DHSCR	-	High Speed Counter Reset	✓	✓	✓	-	13	7-15

	4 D.I	Mnei	monic	Р	F	App	olicabl	le to	STE	EPS	-
Category	API	16-bit	32-bit	instruction	Function	ES	SA	EH	16-bit	32-bit	Page
_	55	-	DHSZ	_	High Speed Zone Compare	-	<i>√</i>	<u>∠</u>	-	17	7-17
High Speed Processing	56	SPD	-	_	Speed Detection	√	√	√	7	-	7-24
Spe	57	PLSY	DPLSY	_	Pulse Y Output	√	√	√	7	13	7-26
rg oce	58	PWM	-	_	Pulse Width Modulation	√	√	√	7	-	7-32
풀집	59	PLSR	DPLSR	_	Pulse Ramp	√	√	√	9	17	7-35
	60	IST		_	Initial State	√	√	√	7	-	7-39
S	61	SER	DSER	√	Search a Data Stack	-	·	· ✓	9	17	7-45
Handy Instructions	62	ABSD	DABSD		Absolute Drum Sequencer		· /	· ·	9	17	7-46
털		INCD		-		-	∨	√			7-46
strı	63		-	-	Incremental Drum Sequencer	-	∨	∨	9 5	-	7-40
Ĕ	64	TTMR	-	-	Teaching Timer	-	∨	∨		-	
δρ	65	STMR	-	-	Special Timer	- ✓	∨	∨	7	-	7-52
an	66	ALT	-	✓	Alternate State		∨	✓	3	-	7-54
エ	67	RAMP	-	-	Ramp Variable Value	-		∨	9	-	7-55
	69	SORT	- DTIO(-	Sort Tabulated Data	-	√	✓	11	-	7-57
व्य	70	TKY	DTKY	-	Ten Key Input	-		-	7	13	7-59
erc	71	HKY	DHKY	-	Hexadecimal Key Input	-	√	√	9	17	7-61
Display of External Settings	72	DSW	-	-	Digital Switch	-	√	√	9	-	7-64
of E	73	SEGD	-	✓	Seven Segment Decoder	√	✓	√	5	-	7-66
) c	74	SEGL	-	-	Seven Segment with Latch	✓	√	√	7	-	7-67
pla	75	ARWS	-	-	Arrow Switch	-	✓	✓	9	-	7-70
)is	76	ASC	-	-	ASCII Code Conversion	-	✓	✓	11	-	7-72
	77	PR	-	-	Print (ASCII Code Output)	-	✓	✓	5	-	7-73
	78	FROM	DFROM	✓	Read CR Data in Special Modules	✓	√	✓	9	17	7-75
	79	ТО	DTO	✓	Write CR Data into Special	✓	✓	√	9	17	7-76
			2.0		Modules						
	80	RS	-	-	Serial Communication Instruction	✓	√	√	9	-	7-80
0	81	PRUN	DPRUN	√	Parallel Run	-	√	√	5	9	7-93
Serial I/O	82	ASCI	-	✓	Converts Hex to ASCII	✓	✓	✓	7	-	7-94
iris	83	HEX	-	✓	Converts ASCII to Hex	✓	✓	✓	7	-	7-98
Se	84	CCD	-	✓	Check Code	-	✓	✓	7	-	7-101
	85	VRRD	-	✓	Volume Read	-	✓	✓	5	-	7-103
	86	VRSC	-	✓	Volume Scale	-	✓	✓	5	-	7-105
	87	ABS	DABS	✓	Absolute Value	✓	✓	✓	3	5	7-106
	88	PID	DPID	-	PID Control Loop	√	✓	✓	9	17	7-107
	89	PLS	-	-	Rising-edge Output	✓	✓	✓	3	-	3-13
	90	LDP	-	-	Rising-edge Detection Operation	✓	✓	✓	3	-	3-11
ā	91	LDF	-	-	Falling-edge Detection Operation	✓	√	✓	3	-	3-12
ļ ģ	92	ANDP	-	-	Rising-edge Series Connection	✓	✓	✓	3	-	3-12
Basic Instructions	93	ANDF	-	-	Falling-edge Series Connection	✓	✓	✓	3	-	3-12
nst	94	ORP	-	-	Rising-edge Parallel Connection	✓	✓	✓	3	-	3-13
<u> </u>	95	ORF	-	-	Falling-edge Parallel Connection	✓	✓	✓	3	-	3-13
asi.	96	TMR	-	-	16-bit Timer	✓	✓	✓	4	-	3-8
ĕ	97	CNT	DCNT	-	16-bit / 32-bit Counter	✓	✓	✓	4	6	3-9
	98	INV	-	-	Inverting Operation	✓	✓	✓	1	-	3-15
	99	PLF	-	-	Falling-edge Output	✓	✓	✓	3	-	3-14
	100	MODRD	-	-	Read Modbus Data	√	✓	✓	7	_	8-1
ے	101	MODWR	-	-	Write Modbus Data	√	✓	✓	7	-	8-6
tio	102	FWD	-	-	Forward Running of VFD-A	✓	✓	✓	7	-	8-11
<u>c</u>	103	REV	-	-	Reverse Running of VFD-A	✓	✓	✓	7	-	8-11
Communication		STOP	-	-	Stop VFD-A	√	✓	✓	7	-	8-11
Ε		RDST	-	-	Read VFD-A Status	✓	✓	✓	5	-	8-14
οπ		RSTEF	-	-	Reset Abnormal VFD-A	√	✓	√	5	-	8-16
O	107	LRC	-	√	Checksum LRC Mode	√	✓	✓	7	-	8-17
	108		-	√	Checksum CRC Mode	√	✓	✓	7	-	8-19
	109	SWRD	-	√	Read Digital Switch	-	_	✓	3	-	8-22
L			ı	1	<u> </u>			1			

	A D.I	Mnei	monic	Р	Function	App	olicabl	le to	STE	EPS	Page
Category	API	16-bit	32-bit	instruction	Function	ES	SA	EH	16-bit	32-bit	rage
	110	-	DECMP	√	Floating Point Compare	<u>√</u>	<i>√</i>	✓	-	13	8-23
	111		DEZCP	∨		∨	∨	∨	-	17	8-24
				∨	Floating Point Zone Compare	∨	∨	∨			
	112	-	DMOVR		Move Floating Point Data		∨	∨	-	9	8-25
	116	-	DRAD	√ √	Angle → Radian	-		✓	-	9	8-26
	117	-	DDEG	✓ ✓	Radian → Angle	-	✓	✓	-	9	8-27
	118	-	DEBCD	∨ ✓	Float to Scientific Conversion	∨	∨	∨	-	9	8-28
	119	-	DEBIN	∨ ✓	Scientific to Float Conversion	∨	∨	∨	-	9	8-29
	120	-	DEADD	✓ ✓	Floating Point Addition	✓	∨	✓ ✓	-	13	8-31
Ę	121 122	-	DESUB	∨	Floating Point Subtraction	∨	∨	∨	-	13	8-32 8-33
) atic		-	DEMUL	∨ ✓	Floating Point Multiplication	∨	∨	∨	-	13	
ers	123	-	DEDIV	∨ ✓	Floating Point Division	∨	∨	∨	-	13	8-34
င်	124	-	DEXP		Exponent of Binary Floating Point	V	v	٧	-	9	8-35
Floating Point Operation	125	-	DLN	✓	Natural Logarithm of Binary Floating Point	✓	✓	✓	-	9	8-36
<u>a</u>	126	-	DLOG	✓	Logarithm of Binary Floating Point	✓	√	✓	-	13	8-37
ing	127	-	DESQR	√	Floating Point Square Root	✓	✓	✓	-	9	8-39
)ati	128	-	DPOW	✓	Floating Point Power Operation	✓	√	✓	-	13	8-40
Ĕ	129	INT	DINT	√	Float to Integer	√	√	√	5	9	8-42
	130	-	DSIN	✓	Sine	\	✓	✓	-	9	8-43
	131	-	DCOS	√	Cosine	✓	✓	✓	-	9	8-45
	132	-	DTAN	✓	Tangent	✓	✓	✓	-	9	8-47
	133	-	DASIN	✓	Arc Sine	-	✓	✓	-	9	8-49
	134	-	DACOS	✓	Arc Cosine	-	✓	✓	-	9	8-50
	135	-	DATAN	✓	Arc Tangent	-	✓	✓	-	9	8-51
	136	-	DSINH	✓	Hyperbolic Sine	-	-	✓	-	9	8-52
	137	-	DCOSH	✓	Hyperbolic Cosine	-	-	✓	-	9	8-53
	138	-	DTANH	✓	Hyperbolic Tangent	-	-	✓	-	9	8-54
	143	DELAY	-	✓	Delay Instruction	1	✓	✓	3	-	8-55
	144	GPWM	-	-	General PWM Output	1	✓	✓	7	-	8-57
	145	FTC	-	-	Fuzzy Temperature Control	-	✓	✓	9	-	8-58
	146	CVM	-	-	Valve Control (*)	-	-	✓	7	-	8-63
	147	SWAP	DSWAP	√	Byte Swap	✓	√	✓	3	5	8-66
<u>S</u>	148	MEMR	DMEMR	✓	Read File Register	-	✓	✓	7	13	8-67
Others	149	MEMW	DMEMW	✓	Write File Register	-	✓	✓	7	13	8-68
Ó	150	MODRW	-	-	Read/Write MODBUS Data	✓	✓	✓	11	-	9-1
	151	PWD	-	-	Detection of Input Pulse Width	-	-	✓	5	-	9-10
	152	RTMU			Start of the Measurement of			√	_		9-11
	132	KINIO	_	-	Execution Time of I Interruption	-	_	<u> </u>	5	-	9-11
	153	RTMD	-	-	End of the Measurement of the Execution Time of I Interruption	-	-	✓	3	-	9-11
	154	RAND	-	✓	Random Number	-	✓	✓	7	-	9-13
5	155	-	DABSR	-	Read the Absolute Position from a Servo Motor	-	✓	√	7	13	9-14
ļ io	156	ZRN	DZRN	_	Zero Return	-	_	√	9	17	9-19
Position Control	157	PLSV	DPLSV	_	Adjustable Speed Pulse Output	-	_	√	7	13	9-23
۾ <u>۾</u>		DRVI	DDRVI	_	Drive to Increment	_	-	√	9	17	9-24
	159		DDRVA	_	Drive to Absolute	_	_	· ✓	9	17	9-30
		TCMP	-	√	Time Compare	-	✓	√	11	-	9-39
		TZCP	-	√	Time Zone Compare	-	√	√	9	-	9-40
Real Time Calendar		TADD	-	√	Time Addition	_	✓	√	7	-	9-41
ΞĹ	163	TSUB	-	<i>√</i>	Time Subtraction	_	· ✓	· ✓	7	_	9-42
eal	166	TRD	_	√	Time Read	-	√	√	3	_	9-43
ھُ ن	167	TWR	-	√	Time Write	-	√	√	3	-	9-45
	169	HOUR	DHOUR	_	Hour Meter	_	√	√	7	13	9-47
	170	GRY	DGRY	√	BIN → Gray Code	_	· ✓	· ✓	5	9	9-49
	171	GBIN	DGBIN	<i>√</i>	Gray Code → BIN	_	· ✓	· ✓	5	9	9-50
	<u> </u>	05114	1 2 2 D II 4	<u> </u>	5.a, 55a6 / Dil4		1			J	5 50

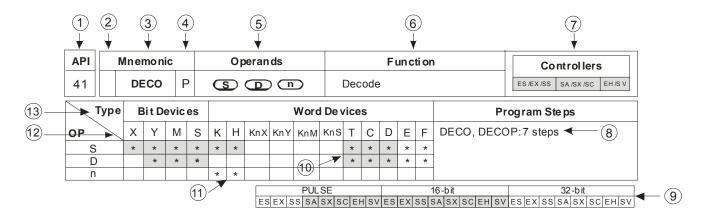
	API	Mne	monic	Р	Function	Арр	olicab	le to	STE	EPS	Dogo
Category	API	16-bit	32-bit	instruction	Function	ES	SA	EH	16-bit	32-bit	Page
	172	-	DADDR	√	Floating Point Addition	√	√	√	-	13	9-51
Floating Point Operation	173	-	DSUBR	√	Floating Point Subtraction	✓	✓	√	_	13	9-53
loat Poii pera	174	-	DMULR	√	Floating Point Multiplication	✓	✓	√	_	13	9-55
n Q	175	_	DDIVR	√	Floating Point Division	√	✓	√	_	13	9-57
	180	MAND	-	√	Matrix 'AND' Operation	-	✓	√	9	-	9-59
	181	MOR	_	√	Matrix 'OR' Operation	-	√	✓	9	-	9-61
	182	MXOR	-	✓	Matrix 'XOR' Operation	-	✓	✓	9	-	9-62
	183	MXNR	-	√	Matrix 'XNR' Operation	-	✓	✓	9	-	9-63
.≚	184	MINV	_	✓	Matrix Inverse Operation	-	✓	✓	7	-	9-64
Matrix	185	MCMP	-	✓	Matrix Compare	-	✓	✓	9	-	9-65
≥	186	MBRD	-	✓	Read Matrix Bit	-	✓	✓	7	-	9-67
	187	MBWR	-	✓	Write Matrix Bit	-	✓	✓	7	-	9-69
	188	MBS	-	✓	Matrix Bit Displacement	-	√	✓	7	-	9-71
	189	MBR	-	√	Matrix Bit Rotation	-	√	√	7	-	9-73
	190	MBC	-	✓	Matrix Bit Status Counting	-	✓	✓	7	-	9-75
uo	191	-	DPPMR	-	2-Axis Relative Point to Point Motion (*)	-	-	✓	-	17	9-76
Positioning Instruction	192	-	DPPMA	-	2-Axis Absolute Point to Point Motion (*)	-	-	✓	-	17	9-79
nl gu	193	-	DCIMR	-	2-Axis Relative Position Arc Interpolation (*)	-	-	✓	-	17	9-81
sition	194	-	DCIMA	-	2-Axis Absolute Position Arc Interpolation (*)	-	-	-	-	17	9-86
Ро	195	-	DPTPO	-	Single-Axis Pulse Output by Table (*)	-	1	-	-	13	9-91
	196	HST	-	✓	High Speed Timer	-	-	✓	3	-	9-93
	197	-	DCLLM	_	Close Loop Position Control (*)	-	-	✓	_	17	9-95
	202	SCAL	-	✓	Proportional Value Calculation	✓	✓	✓	9	-	10-1
	203	SCLP	-	✓	Parameter Proportional Value Calculation	✓	√	✓	9	-	10-3
	215	LD&	DLD&	-	S ₁ & S ₂	-	✓	✓	5	9	10-7
gic	216	LDI	DLD	-	$S_1 \mid S_2$	-	√	✓	5	9	10-7
u Le	217	LD^	DLD^	-	S ₁ ^ S ₂	-	✓	✓	5	9	10-7
ct Type L peration	218	AND&	DAND&	-	S ₁ & S ₂	-	\checkmark	✓	5	9	10-8
Ty era	219	AND	DAND	-	S ₁ S ₂	-	✓	✓	5	9	10-8
act Ope		AND^	DAND^	-	S ₁ ^ S ₂	-	✓	✓	5	9	10-8
Contact Type Logic Operation	221	OR&	DOR&	-	S ₁ & S ₂	-	√	√	5	9	10-9
ပိ	222		DOR	-	$S_1 \mid S_2$	-	√	√	5	9	10-9
	223	OR^	DOR^	-	S ₁ ^ S ₂	-	√	√	5	9	10-9
	224		DLD=	-	$S_1 = S_2$	✓ ✓	✓ ✓	✓ ✓	5	9	10-10
	225	LD>	DLD>	-	$S_1 > S_2$	✓ ✓	✓	✓ ✓	5	9	10-10
on	226	LD<	DLD<	-	$S_1 < S_2$	✓ ✓	∨	✓ ✓	5 5	9	10-10 10-10
Contact Type Comparison Instruction	228		DLD<>	-	$S_1 \neq S_2$	∨	∨	∨		9	
ίτυ	229		DLD<=	-	$S_1 \leq S_2$				5	9	10-10
<u>lns</u>	230		DLD>=	-	$S_1 \geq S_2$	√	√	√	5	9	10-10
nc		AND=	DAND=	-	$S_1 = S_2$	√	✓ ✓	√	5	9	10-11
ris(233	AND>	DAND>	-	$S_1 > S_2$	✓ ✓	✓	√	5	9	10-11
ра	234		DAND<	-	$S_1 < S_2$	∨	∨	✓ ✓	5	9	10-11
шo	236		DAND<>	-	$S_1 \neq S_2$				5	9	10-11
Ō	237		DAND<=	-	$S_1 \leq S_2$	√	√	√	5	9	10-11
/be	238		DAND>=	-	$S_1 \geq S_2$	√	√	√	5	9	10-11
<u></u>	240		DOR=	-	$S_1 = S_2$	√	√	√	5	9	10-12
act	241		DOR>	-	$S_1 > S_2$	√	√	√	5	9	10-12
ont	242	OR<	DOR<	-	$S_1 < S_2$	√	√	√	5	9	10-12
ŏ	244		DOR<>	-	$S_1 \neq S_2$	√	√	√	5	9	10-12
1		OR<=	DOR<=	-	$S_1 \leq S_2$	√	√	√	5	9	10-12
	246	OR>=	DOR>=	-	$S_1 \ge S_2$ SV series MPLI	✓	✓	✓	5	9	10-12

Instructions marked with * are available in EH2/SV series MPU.

Note:

- 1. For applicable models, ES includes ES/EX/SS; SA includes SA/SX/SC; EH includes EH/EH2/SV.
- 2. ES/EX/SS series MPU does not support pulse execution type instructions (P instruction).

5.2 Composition of Application Instruction

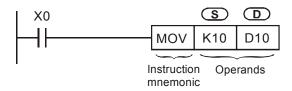

■ An application instruction has two parts: the instruction and operands.

Instruction: The function of the instruction

Operands: Devices for processing the operations of the instruction

The instruction part of an application instruction usually occupies 1 step, and one operand occupies 2 or 4 steps depending on the instruction is a 16-bit or 32-bit one.

■ Format of an application instruction:



- 1 API No.
- 2 Indication of if there is a 16-bit or 32-bit instruction. If there is a 32-bit instruction, the column will be marked with "D".
- 3 Mnemonic of the application instruction
- 4 Indication of if there is a pulse execution type instruction. If there is a pulse instruction, the column will be marked with "P".
- Operands
- 6 Function of the application instruction
- DVP-PLC applicable to the application instruction. ES includes ES/EX/SS, SA includes SA/SX/SC, EH includes EH/EH2/SV.
- 8 Steps occupied by the 16-bit/32-bit/pulse execution instruction
- DVP-PLC applicable to the pulse/16-bit/32-bit instruction
- Oclumn marked with * and in grey refers to E, F index register modification is applicable.
- (1) Column marked with * is the device applicable for the operand
- 12 Device name
- 13 Device type
- Input of application instruction:

Some application instructions are only composed of the instruction part (mnemonic), e.g. EI, DI, WDT.... Most application instructions are composed of the instruction part and many operands.

The application instructions for DVP-PLC are represented as API 00 ~ API 246. Every application instruction has its own mnemonic. For example, the mnemonic of API 12 is MOV. If you are using the ladder diagram editing software (WPLSoft) to input API 12 into the program, you only have to enter "MOV". If you are using the handheld programming panel (HPP) to input API 12 into the program, you will have to enter the API No. "12".

Different application instructions designate different operands. Take MOV instruction for example:


MOV instruction is to move the operand designated in **S** to the operand designated in **D**.

S	Source operand: If there are more than 1 source operands, they will be represented as S ₁ , S ₂ ,								
D	Destination operand: If there are more than 1 destination operands, they will be represented as $D_1, D_2,$								
If the op	If the operand can only be constant K/H or a register, it will be represented as m , m ₁ , m ₂ , n , n ₁ , n ₂ ,								

■ Length of operand (16-bit instruction or 32-bit instruction)

Depending on the contents in the operand, the length of an operand can be 16-bit or 32-bit. Therefore, a 16-bit instruction is for processing 16-bit operands, and 32-bit instruction is for processing 32-bit operands. The 32-bit instruction is indicated by adding a "D" before the 16-bit instruction.

16-bit MOV instruction

Continuous execution instruction and pulse execution instruction

Continuous execution and pulse execution are the two types of execution for an application instruction. Due to that the execution time required will be shorter when the instruction is not executer, the pulse execution instructions are used more to shorten the scan period. Instructions marked with a "P" following the mnemonic are pulse execution instruction. Some instructions are mostly used as pulse execution type, e.g. INC, DEC, the kind of displacement instructions.


5 Categories & Use of Application Instructions

Pulse execution instruction

When X0 goes from Off to On, MOVP instruction will be executed once and the instruction will not be executed again in the scan period.

Continuous execution instruction

In every scan period when X1 = On, MOV instruction will be executed once.

In the two figures, when X0, X1 = Off, the instruction will not be executed, and the content in operand \mathbf{D} will remain unchanged.

Designation of operands

- 1. Bit devices X, Y, M, and S can be combined into word device, storing values and data for operaions in the form of KnX, KnY, KnM and KnS in an application instruction.
- 2. Data register D, timer T, counter C and index register E, F are designated by general operands.
- 3. A data register is usually in 16 bits, i.e. of the length of 1 register D. A designated 32-bit data register refers to 2 consecutive register Ds.
- 4. If an operand of a 32-bit instruction designates D0, the 32-bit data register composed of (D1, D0) will be occupied. D1 is the higher 16 bits; D0 is the lower 16 bits. The same rule also apply to timer T, 16-bit timers and C0 ~ C199.
- 5. When the 32-bit counters C200 ~ C255 are used as data registers, they can only be designated by the operands of 32-bit instructions.

■ Format of operand

- 1. X, Y, M, and S can only On/Off a single point and are defined as bit devices.
- 2. 16-bit (or 32-bit) devices T, C, D, and registers E, F are defined as word devices.
- 3. You can place Kn (n = 1 refers to 4 bits. For 16-bit instruction, n = K1 ~ K4; for 32-bit instruction, n = K1 ~ K8) before bit devices X, Y, M and S to make it a word device for performing word-device operations. For example, K1M0 refers to 8 bits, M0 ~ M7.

When X0 = On, the contents in M0 \sim M7 will be moved to bit0 \sim 7 in D10 and bit8 \sim 15 will be set to "0".

Data processing of word devices combined from bit devices

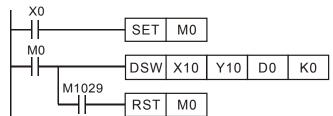
16-bit	16-bit instruction						
Designated value: K-32,768 ~ K32,767							
Values for designated K1 ~ K4							
K1 (4 bits)	0 ~ 15						
K2 (8 bits)	0 ~ 255						
K3 (12 bits)	0 ~ 4,095						
K4 (16 bits)	-32,768 ~ +32,767						

	32-bit instruction							
Designated value: K-2,147,483,648 ~ K2,147,483,647								
Values for designate	ed K1 ~ K8							
K1 (4 bits) 0 ~ 15								
K2 (8 bits)	0 ~ 255							
K3 (12 bits)	0 ~ 4,095							
K4 (16 bits)	0 ~ 65,535							
K5 (20 bits)	0 ~ 1,048,575							
K6 (24 bits)	0 ~ 167,772,165							
K7 (28 bits)	0 ~ 268,435,455							
K8 (32 bits)	-2,147,483,648 ~ +2,147,483,647							

■ Flags

1. General flags

a) The flags listed below are for indicating the operational result of the application instruction.


M1020: zero flag M1022: carry flag

M1021: borrow flag M1029: execution of instruction is completed

All flags will turn On or Off according to the operational result of an instruction. For example, the execution result of operation instructions ADD/SUB/MUL/DVI will affect the status of M1020 ~ M1022. When the instruction is not executed, the On/Off status of the flag will be held. The status of the four flags relates to many instructions. See relevant instructions for more details.

b) Example of M1029

When the contact of DSW (Digital Switch) instruction is On, 4 output points will automatically act in cycle at the frequency of 0.1 second in order to read the set value of the digital switch. If the contact goes Off during the execution, the action will be disable. When it is On again, the disabled action will be re-executed. If you do not wish the action to be disabled, you can take the circuit below as a reference.

When X0 = On, DSW will be enabled.

When X0 = Off, M0 will be Off only when DSW completes a cycle and M1029 = On.

2. Error Operation Flags

Errors occur during the execution of the instruction when the combination of application instructions is incorrect or the devices designated by the operand exceed their range. Other than errors, the flags listed in the table below will be On, and error codes will also appear.

5 Categories & Use of Application Instructions

Device	Explanation
M1067	When operational errors occur, M1067 will be On. D1067 displays the error code. D1069
D1067	displays the step where the error occurs. Other errors occurring will update the contents in
D1069	D1067 and D1069. M1067 will be Off when the error is eliminated.
M1068 D1068	When operational errors occur, M1068 will be On. D1068 displays the step where the error occurs. Other errors occurring wil not update the content in D1068. You have to use RST instruction to reset M1068 to Off; otherwise M1068 will keep being On.

3. Flags for expanding functions

Some application instructions can use some special flags to expand their functions or complete special functions. For example, the communication instruction RS can use M1161 to switch between 8-bit and 16-bit transmission mode.

■ Times of using instructions

There are limitation on the times of using some instructions in the program. However, you can use index register modification in the operands to expand the functions of the instruction.

1. Can be used only once in the program:

API 58 PWM (ES series MPU)	API 60 IST (ES/SA/EH series MPU)
API 74 SEGL (ES series MPU)	API 155 DABSR (SC/EH series MPU)

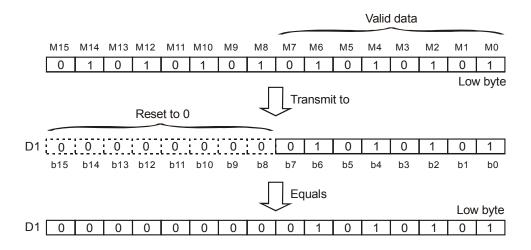
2. Can be used only twice in the program:

API 57 PLSY (ES series MPU)	API 59 PLSR (ES series MPU)
API 74 SEGL (EH series MPU)	API 77 PR (SA/EH series MPU)

3. Can be used only 4 times in the program:

A DI AGGLIGUE (GA AADLI)
API 169 HOUR (SA series MPU)
ALL 100 LICOT (OA SCHOS WILO)

4. Can be used only 8 times in the program:


API 64 TTMR (SA series MPU)

- 5. API 53 DHSCS and API 54 DHSCR together can be used only maximum 4 times in the program (ES series MPU).
- 6. API 53 DHSCS, API 54 DHSCR, and API 55 DHSZ together can be used only maximum 6 times in the program (SA series MPU).
- There is no limitation on the times of using the instructions listed below, but there are limitations on the times of executing the same instruction at the same time.
 - Instructions which can be executed only once: API 52 MTR (SA/EH), API 56 SPD (ES/SA/EH), API 69 SORT (SA/EH), API 70 TKY (SA/EH), API 71 HKY (SA/EH), API 72 DSW (SA), API 74 SEGL (SA), API 75 ARWS, API 80 RS (ES/SA/EH), API 100 MODRD (ES/SA/EH), API 101 MODWR (ES/SA/EH), API 102 FWD (ES/SA/EH),

- API 103 REV (ES/SA/EH), API 104 STOP (ES/SA/EH), API 105 RDST (ES/SA/EH), API 106 RSTEF (ES/SA/EH), API 150 MODRW (ES/SA/EH), API 151 PWD (EH).
- 2. Instructions which can be executed only twice: API 57 PLSY (EH), API 58 PWM (SA/EH), API 59 PLSR (SA/EH), API 72 DSW (EH).
- Instructions which can be executed only 4 times: API 57 PLSY (EH2/SV), API 58 PWM (EH2/SV), API 169
 HOUR (EH).
- 4. Instructions which can be executed only 8 times: API 64 TTMR (EH).
- 5. In SA series MPU, there is on limitation on the times of using the high-speed output instructions PLSY, PWM and PLSR, bit only one high-speed output instruction will be enabled in every scan.
- 6. In EH series MPU, there is no limitation on the times of using hardware high-speed counter instructions DHSCS, DHSCR and DHSZ, but when the three instructions are enabled at the same time, DHSCS will occupy 1 memory unit, DHSCR 1 memory unit, and DHSZ 2 memory units. The total memory units occupied by the three instructions cannot be more than 8 units. If there are more than 8 memory units occupied, the PLC system will execute the instruction that is first scanned and enabled and ignore the rest.

5.3 Handling of Numeric Values

- Devices only with On/Off status are called bit devices, e.g. X, Y, M and S. Devices used exclusively for storing numeric values are called word devices, e.g. T, C, D, E and F. Bit device plus a specific bit device (place a digit before the bit device in Kn) can be used in the operand of an application instruction in the form of numeric value.
- n = K1 ~ K4 for a 16-bit value; n = K1 ~ K8 for a 32-bit value. For example, K2M0 refers to a 8-bit value composed of M0 ~ M7.

- K1M0, K2M0, and K3M0 are transmitted to 16-bit registers and the vacant high bits will be filled in "0". The same rule applied to when K1M0, K2M0, K3M0, K4M0, K5M0, K6M0, and K7M0 are transmitted to 32-bit registers and the vacant high bits will be filled in "0".
- In the 16-bit (or 32-bit) operation, if the contents of the operand are designated as bit devices K1 ~ K3 (or K4 ~ K7), the vacant high bits will be regarded as "0". Therefore, the operation is a positive-value one.

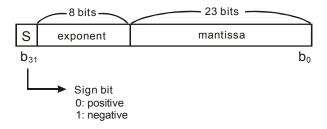
The BCD value composed of X4 ~ X13 will be converted to BIN value and sent to D0.

- You can choose any No. for bit devices, but please make the 1s digit of X and Y "0", e.g. X0, X10, X20, ...Y0, Y10..., and the 1s digit of M and S "8's multiple" ("0" is still the best choice), e.g. M0, M10, M20....
- Designating continuous device No.

Take data register D for example, continuous D refers to D0, D1, D2, D3, D4.... For bit devices with specifically designated digit, continuous No. refers to:

K1X0	K1X4	K1X10	K1X14
K2Y0	K2Y10	K2Y20	Y2X30
K3M0	K3M12	K3M24	K3M36
K4S0	K4S16	K4S32	K4S48

Please follow the No. in the table and do not skip No. in case confusion may occur. In addition, if you use K4Y0 in the 32-bit operation, the higher 16 bits will be regarded as "0". For 32-bit data, please use K8Y0.


The operations in DVP-PLC are conducted in BIN integers. When the integer performs division, e.g. $40 \div 3 = 13$ and the remainder is 1. When the integer performs square root operations, the decimal point will be left out. Use decimal point operation instructions to obtain the decimal point.

Application instructions revelant to decimal point:

API 49 (FLT)	API 110 (D ECMP)	API 111 (D EZCP)	API 112 (D MOVR)
API 116 (D RAD)	API 117 (D DEG)	API 118 (D EBCD)	API 119 (D EBIN)
API 120 (D EADD)	API 121 (D ESUB)	API 122 (D EMUL)	API 123 (D EDIV)
API 124 (D EXP)	API 125 (D LN)	API 126 (D LOG)	API 127 (D ESQR)
API 128 (D POW)	API 129 (INT)	API 130 (D SIN)	API 131 (D COS)
API 132 (D TAN)	API 133 (D ASIN)	API 134 (D ACOS)	API 135 (D ATAN)
API 136 (D SINH)	API 137 (D COSH)	API 138 (D TANH)	API 172 (D ADDR)
API 173 (D SUBR)	API 174 (D MULR)	API 175 (D DIVR)	

Binary Floating Point

DVP-PLC represents floating points in 32 bits, following the IEEE754 standard:

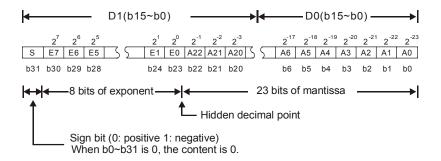
 $(-1)^S \times 2^{E-B} \times 1.M$, in which B = 127

Therefore, the range for the 32-bit floating point is $\pm 2^{-126} \sim \pm 2^{+128}$, i.e. $\pm 1.1755 \times 10^{-38} \sim \pm 3.4028 \times 10^{+38}$

Example 1: Representing "23" in 32-bit floating point

Step 1: Convert "23" into a binary value: 23.0 = 10111

Step 2: Normalize the binary value: $10111 = 1.0111 \times 2^4$, in which 0111 is mantissa and 4 is exponent


Step 3: Obtain the exponent: $\therefore E - B = 4 \rightarrow E - 127 = 4$ $\therefore E = 131 = 10000011_2$

Step 4: Combine the sign bit, exponent and mantissa into a floating point

Example 2: Representing "-23.0" in 32-bit floating point

The steps required are the same as those in Example 1. The only difference is you have to alter the sign bit into "1".

DVP-PLC uses registers of 2 continuous No. to combine into a 32-bit floating point. For example, we use registers (D1, D0) for storing a binary floating point as below:

Decimal Floating Point

- Since the binary floating point are not very user-friendly, we can convert it into a decimal floating point for use.

 Please be noted that the decimal point operation in DVP-PLC is still in binary floating point.
- The decimal floating point is represented by 2 continuous registers. The register of smaller No. is for the constant while the register of bigger No. is for the exponent.

Example: Storing a decimal floating point in registers (D1, D0)

Decimal floating point = [constant D0] × 10 [exponent D1]

Constant D0 = $\pm 1,000 \sim \pm 9,999$

Exponent D1 = -41 ~ +35

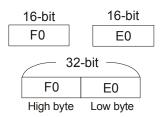
The constant 100 does not exist in D0 due to 100 is represented as $1,000 \times 10^{-1}$. The range of decimal floating point is $\pm 1175 \times 10^{-41} \sim \pm 3402 \times 10^{+35}$.

■ The decimal floating point can be used in the following instructions:

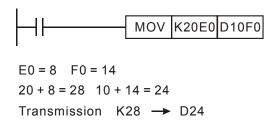
D EBCD: Converting binary floating point to decimal floating point

D EBIN: Converting decimal floating point to binary floating point

■ Zero flag (M1020), carry flag (M1021), carry flag (M1022) and the floating point operation instructions:


Zero flag: M1020 = On if the operational result is "0".

Borrow flag: M1021 = On if the operational result exceeds the minimum unit.


Carry flag: M1022 = On if the absolute value of the operational result exceeds the range of use.

5.4 E, F Index Register Modification

The index registers are 16-it registers. There are 2 points of E, F in ES/EX/SS, 8 points E0 \sim E3 and F0 \sim F3 in SA/SX/SC, and 16 points E0 \sim E7 and F0 \sim F7 in EH/EH2/SV series MPU.

- E and F index registers are 16-bit data registers, can be read and written.
- If you need a 32-bit register, you have to designate E. In this case, F will be covered up by E and cannot be used; otherwise, the contents in E may become incorrect. (We recommend you use MOVP instruction to reset the contents in D to 0 when the PLC is switched on.)
- Combination of E and F when you designate a 32-bit index register: (E0, F0), (E1, F1), (E2, F2), ... (E7, F7)

See the diagram in the left hand side. E, F index register modification refers to the content in the operand changes with the contents in E and F.

For example, E0 = 8 and K20E0 represents constant K28 (20 + 8). When the condition is true, constant K28 will be transmitted to register D24.

Devices modifiable in ES/EX/SS series MPU: P, X, Y, M, S, KnX, KnY, KnM, KnS, T, C, D.

Devices modifiable in SA/SX/SC series MPU: P, X, Y, M, S, KnX, KnY, KnM, KnS, T, C, D

Devices modifiable in EH/EH2/SV series MPU: P, I, X, Y, M, S, K, H, KnX, KnY, KnM, KnS, T, C, D

E and F can modify the devices listed above but cannot modify themselves and Kn. K4M0E0 is valid and K0E0M0 is invalid. Grey columns in the table of operand at the beginning page of each application instruction indicate the operands modifiable by E and F.

If you need to modify device P, I, X, Y, M, S, KnX, KnY, KnM, KnS, T, C and D by E, F, you have to select a 16-bit register, i.e. you can designate E or F. To modify constant K and H in a 32-bit instruction, you have to select a 32-bit register, i.e. you have to designate E.

When you use the instruction mode in WPLSoft to modify constant K and H, you have to use @, e.g. "MOV K10@E0 D0F0"

5.5 Instruction Index

Sorted by alphabetic order & API No.

0.1	4.51	Mne	monic	Р	- ··	App	olicable	e to	1
Category	API	16-bit	32-bit	Instruction	Function	ES	SA	EH	Page
	20	ADD	DADD	✓	Addition	✓	✓	✓	6-32
	46	ANS	-	-	Timed Annunciator Set	ı	✓	✓	6-66
	47	ANR	-	✓	Annunciator Reset	1	✓	✓	6-66
	62	ABSD	DABSD	-	Absolute Drum Sequencer	-	✓	✓	7-46
	66	ALT	-	✓	Alternate State	✓	✓	✓	7-54
	75	ARWS	-	-	Arrow Switch	-	✓	✓	7-70
	76	ASC	-	-	ASCII Code Conversion	-	✓	✓	7-72
	82	ASCI	-	✓	Converts Hex to ASCII	✓	✓	✓	7-94
	87	ABS	DABS	✓	Absolute Value	✓	✓	✓	7-106
	133	-	DASIN	✓	Arc Sine	-	✓	✓	8-49
	134	-	DACOS	✓	Arc Cosine	-	✓	✓	8-50
Α	135	-	DATAN	✓	Arc Tangent	-	✓	✓	8-51
	155	-	DABSR	-	Read the Absolute Position from a Servo Motor	-	✓	✓	9-14
	172	-	DADDR	✓	Floating Point Addition	✓	✓	✓	9-51
		AND&	DAND&	-	S ₁ & S ₂	-	✓	✓	10-8
		AND	DAND	-	$S_1 \mid S_2$	-	✓	✓	10-8
		AND^	DAND^	-	S ₁ ^ S ₂	-	✓	✓	10-8
		AND=	DAND=	-	$S_1 = S_2$	✓	✓	✓	10-11
		AND>	DAND>	-	$S_1 > S_2$	✓	✓	√	10-11
		AND<	DAND<	-	$S_1 < S_2$	✓	✓	✓	10-11
		AND<>	DAND<>	-	$S_1 \neq S_2$	√	✓	√	10-11
		AND<=	DAND<=	-	$S_1 \leq S_2$	√	√	√	10-11
	+	AND>=	DAND>=	-	$S_1 \geqq S_2$	√	√	√	10-11
	15	BMOV	-	√	Block Move	√	√	√	6-24
В	18	BCD	DBCD	√	Binary Coded Decimal	√	√	√	6-29
	19	BIN	DBIN	√	Binary	√	√	√	6-30
	44	BON	DBON	√	Check Specified Bit Status	√	√	√	6-64
	00	CJ	-	√	Conditional Jump	√	√	√	6-1
	01	CALL	-	√	Call Subroutine	√	√	√	6-5
	10	CMP	DCMP	√	Compare	√	✓	√	6-18
	14	CML	DCML	✓	Compliment	✓	✓	✓	6-23
	84	CCD	-	√	Check Code	-	√	√	7-101
С		CRC	-	√	Checksum CRC Mode	-	√	√	8-19
	131	-	DCOS	√	Cosine	✓	✓	√	8-45
	137	-	DCOSH	✓	Hyperbolic Cosine	-	-	√	8-53
		CVM	- DOIMED	-	Valve Control (*)	-	-	√	8-63
	193	-	DCIMA	-	2-Axis Relative Position Arc Interpolation (*)	-	-	✓ ✓	9-81
	194 197	-	DCIMA DCLLM	-	2-Axis Absolute Position Arc Interpolation (*) Close Loop Position Control (*)	-	-	∨	9-86 9-95
	05	DI	-	-	Disable Interrupts	<u>-</u> ✓	<u>-</u> ✓	√	6-8
	23	DIV	DDIV	<u>-</u>	Division	√	· ✓	·	6-37
	25	DEC	DDEC	√ ·	Decrement	√	√	✓	6-40
D	41	DECO	-	√	Decode	✓	✓	✓	6-59
_	72	DSW	-	-	Digital Switch	-	✓	✓	7-64
	117	-	DDEG	✓	Radian → Angle	-	√	✓	8-27
	143	DELAY	-	✓	Delay Instruction	_	√	✓	8-55

	4.51	Mne	monic	Р		Apı	plicable	e to	_
Category	API	16-bit	32-bit	Instruction	Function	ES	SA	EH	Page
	158	DRVI	DDRVI	-	Drive to Increment	-	-	√	9-24
D	159	DRVA	DDRVA	-	Drive to Absolute	-	-	✓	9-30
	175 - DDIVR		✓	Floating Point Division	✓	√	✓	9-57	
	04	EI	-	-	Enable Interrupts	√	√	√	6-8
	42	ENCO	-	✓	Encode	✓	✓	✓	6-61
	110	-	DECMP	✓	Floating Point Compare	√	✓	✓	8-23
	111	_	DEZCP	✓	Floating Point Zone Compare	√	✓	✓	8-24
	118	_	DEBCD	√	Float to Scientific Conversion	√	√	✓	8-28
_	119	_	DEBIN	√	Scientific to Float Conversion	√	√	√	8-29
Е	120	_	DEADD	√	Floating Point Addition	√	✓	√	8-31
	121	_	DESUB	✓	Floating Point Subtraction	√	√	√	8-32
	122	_	DEMUL	√	Floating Point Multiplication	√	√	√	8-33
	123	_	DEDIV	√	Floating Point Division	√	√	√	8-34
	124	-	DEXP	√	Exponent of Binary Floating Point	√	✓	√	8-35
	127	-	DESQR	√	Floating Point Square Root	√	✓	√	8-39
	06	FEND	-	-	The End of the Main Program (First End)	✓	✓	√	6-12
		FOR	_	_	Start of a FOR-NEXT Loop	√	√	√	6-15
	16	FMOV	DFMOV	√	Fill Move	√	✓	√	6-26
F		FLT	DFLT	<i>,</i>		· ·	· /	·	6-70
·	78	FROM	DFROM	√	Floating Point Read CR Data in Special Modules	√	√	∨	7-75
						\ \ \ \	∨	∨	
		FWD	-	-	Forward Running of VFD-A		∨	∨	8-11
	145	FTC	-	-	Fuzzy Temperature Control	-	∨	∨	8-58
G		GPWM	-	- ✓	General PWM Output	-	∨	∨	8-57
G	170 171	GRY GBIN	DGRY DGBIN	∨ ✓	BIN → Gray Code	-	∨	∨	9-49
	53		DHSCS		Gray Code → BIN	-	∨	∨	9-50 7-5
	54	-	DHSCR	-	High Speed Counter Set High Speed Counter Reset	→	∨	V	7-5 7-15
	55		DHSZ	_	High Speed Counter Reset High Speed Zone Compare	<u> </u>	· /	·	7-13
Н		HKY	DHKY	_	Hexadecimal Key Input	_	✓	√	7-61
• • •		HEX	-	√	Converts ASCII to Hex	√	· ✓	· ✓	7-98
		HOUR	DHOUR	_	Hour Meter	_	√	√	9-47
		HST	-	√	High Speed Timer	_	-	✓	9-93
		IRET	-	-	Interrupt Return	✓	✓	✓	6-8
		INC	DINC	✓	Increment	✓	√	✓	6-39
1	60	IST		-	Initial State	✓	✓	✓	7-39
	63	INCD	-	-	Increment Drum Sequencer	_	✓	✓	7-48
	129	INT	DINT	✓	Float to Integer	✓	✓	✓	8-42
	107	LRC	-	✓	Checksum LRC Mode	✓	✓	✓	8-17
	125	-	DLN	✓	Natural Logarithm of Binary Floating Point	✓	√	✓	8-36
	126	-	DLOG	✓	Logarithm of Binary Floating Point	√	✓	✓	8-37
		LD&	DLD&	_	S ₁ & S ₂	_	✓	√	10-7
	216		DLDI	_	S ₁ S ₂		√	√	10-7
L	217	-	DLD/	_	S ₁ \ S ₂	<u> </u>	√	√	10-7
		LD=	DLD"	-	$S_1 = S_2$	-	∨	V	10-10
		LD>	DLD>	_	$S_1 > S_2$	→	· /	· ✓	10-10
		LD<	DLD<	_	$S_1 < S_2$	· ✓	√	√	10-10
		LD<>	DLD<>	_	$S_1 \neq S_2$	· ·	· ✓	·	10-10
	220	LD >>	טרט יי	<u> </u>	Θ_1 , Θ_2		<u> </u>		.5 10

16-bit 32-bit Institution ES SA EH			Mne	monic	Р		Арі	olicable	e to	_
L 229 LD<= DLD>=	Category	API	16-bit	32-bit	-	Function	ES	SA	EH	Page
L 230 LD>= DLD>= - S₁ ≥ S₂		229			_	$S_{\nu} < S_{0}$				10-10
12 MOV DMOV	L									10-10
22 MUL DMUL ✓ Multiplication ✓ ✓ ✓ ✓ ✓							_			6-20
45 MEAN DMEAN				1						6-35
Fig. MTR - - Input Matrix -							-			6-65
100 MORD - Read Modbus Data				-	1					7-3
101 MODWR - Write Modbus Data				_						8-1
112			1		1		√	√		8-6
148 MEMR DMEMR							√	√	✓	8-25
149 MEMW DMEMW			MEMR		√		_	✓	√	8-67
M 150 MODRW - - Read/Write MODBUS Data			+	1	√	9	_	√	√	8-68
M 174 - DMULR ✓ Floating Point Multiplication ✓					_		√	√	√	9-1
180 MAND -					✓	Floating Point Multiplication	✓	✓	✓	9-55
181 MOR	IVI		MAND		✓		-	✓	√	9-59
182 MXOR -				-	✓		-	√	✓	9-61
184 MINV - ✓ Matrix Inverse Operation - ✓ ✓ ✓ ✓ 185 MCMP - ✓ Matrix Compare - ✓		182	MXOR	-	✓	·	-	✓	✓	9-62
185 MCMP		183	MXNR	-	✓	•	-	✓	✓	9-63
186 MBRD - ✓ Read Matrix Bit - ✓ ✓ ✓ 187 MBWR - ✓ <		184	MINV	-	✓	Matrix Inverse Operation	-	✓	✓	9-64
187 MBWR -		185	MCMP	-	✓	Matrix Compare	-	✓	✓	9-65
188 MBS		186	MBRD	-	✓	Read Matrix Bit	-	✓	✓	9-67
189 MBR		187	MBWR	-	✓	Write Matrix Bit	-	✓	✓	9-69
190 MBC		188	MBS	-	✓	Matrix Bit Displacement	-	✓	✓	9-71
N 09 NEXT - End of a FOR-NEXT Loop ✓		189	MBR	-	✓	Matrix Bit Rotation	-	✓	✓	9-73
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		190	MBC	-	✓	Matrix Bit Status Counting	-	✓	✓	9-75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N	09	NEXT	-	-	End of a FOR-NEXT Loop	✓	✓	✓	6-15
$P = \begin{array}{ c c c c c c c c } \hline 222 & OR & DOR & - & S_1 \mid S_2 & - & \checkmark & \checkmark & \checkmark \\ \hline 223 & OR^{\wedge} & DOR^{\wedge} & - & S_1^{\wedge} S_2 & - & \checkmark & \checkmark & \checkmark \\ \hline 240 & OR= & DOR= & - & S_1 = S_2 & & \checkmark & \checkmark & \checkmark & \checkmark & 1 \\ \hline 241 & OR> & DOR> & - & S_1 > S_2 & & \checkmark & \checkmark & \checkmark & 1 \\ \hline 242 & OR< & DOR< & - & S_1 < S_2 & & \checkmark & \checkmark & \checkmark & 1 \\ \hline 244 & OR<> & DOR<> & - & S_1 \neq S_2 & & \checkmark & \checkmark & \checkmark & 1 \\ \hline 245 & OR<= & DOR<= & - & S_1 \leq S_2 & & \checkmark & \checkmark & \checkmark & \checkmark & 1 \\ \hline 246 & OR>= & DOR>= & - & S_1 \leq S_2 & & \checkmark & \checkmark & \checkmark & \checkmark & 1 \\ \hline 57 & PLSY & DPLSY & - & Pulse Y Output & & \checkmark & \checkmark & \checkmark & \checkmark & 1 \\ \hline 58 & PWM & - & - & Pulse Width Modulation & & \checkmark & \checkmark & \checkmark & \checkmark & 5 \\ \hline 59 & PLSR & DPLSR & - & Pulse Ramp & & \checkmark & \checkmark & \checkmark & \checkmark & 5 \\ \hline 77 & PR & - & - & Print (ASCII Code Output) & & - & \checkmark & \checkmark & \checkmark & 5 \\ \hline 81 & PRUN & DPRUN & & Parallel Run & & - & \checkmark & \checkmark & \checkmark & 5 \\ \hline 128 & - & DPOW & & Floating Point Power Operation & & \checkmark & \checkmark & \checkmark & \checkmark & 5 \\ \hline 151 & PWD & - & - & Detection of Input Pulse Width & & - & - & \checkmark & \S & 5 \\ \hline 191 & - & DPPMR & - & 2-Axis Relative Point to Point Motion (*) & - & - & \checkmark & \S & 5 \\ \hline 191 & - & DPPMR & - & 2-Axis Relative Point to Point Motion (*) & - & - & \checkmark & \S & 5 \\ \hline \end{array}$	IN	29	NEG	DNEG	✓	2's Complement (Negative)	✓	✓	✓	6-44
$P = \begin{array}{ c c c c c c c c } \hline 223 & OR^{\wedge} & DOR^{\wedge} & - & S_1 \ S_2 & - & \checkmark & \checkmark & \checkmark & 1 \ \hline 240 & OR & DOR & - & S_1 \ S_2 & & \checkmark & \checkmark & \checkmark & 1 \ \hline 241 & OR \ DOR \ & - & S_1 \ S_2 & & \checkmark & \checkmark & \checkmark & 1 \ \hline 242 & OR \ DOR \ & - & S_1 \ S_2 & & \checkmark & \checkmark & \checkmark & 1 \ \hline 244 & OR \ DOR \ & - & S_1 \ S_2 & & \checkmark & \checkmark & \checkmark & 1 \ \hline 245 & OR \ & DOR \ & - & S_1 \ S_2 & & \checkmark & \checkmark & \checkmark & 1 \ \hline 246 & OR \ & DOR \ & - & S_1 \ S_2 & & \checkmark & \checkmark & \checkmark & 1 \ \hline 246 & OR \ & DOR \ & - & S_1 \ S_2 & & \checkmark & \checkmark & \checkmark & 1 \ \hline 246 & OR \ & DOR \ & - & S_1 \ S_2 & & \checkmark & \checkmark & \checkmark & 1 \ \hline 246 & OR \ & DOR \ & - & S_1 \ S_2 & & \checkmark & \checkmark & \checkmark & 1 \ \hline 246 & OR \ & DOR \ & - & S_1 \ S_2 & & \checkmark & \checkmark & \checkmark & 1 \ \hline 246 & OR \ & DOR \ & - & S_1 \ S_2 & & \checkmark & \checkmark & \checkmark & \checkmark & 1 \ \hline 246 & OR \ & DOR \ & - & S_1 \ S_2 & & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark & 1 \ \hline 257 & PLSY & DPLSY & - & Pulse Y Output & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \ \hline 258 & PWM & - & - & Pulse Width Modulation & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \ \hline 258 & PWM & - & - & Print (ASCII Code Output) & - & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \ \hline 258 & PUN & DPRUN & \checkmark & Parallel Run & - & \checkmark & \checkmark & \checkmark & \checkmark \ \hline 258 & PUN & DPRUN & \checkmark & Parallel Run & - & \checkmark & \checkmark & \checkmark & \checkmark \ \hline 258 & - & DPOW & \checkmark & Floating Point Power Operation & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \ \hline 258 & - & DPOW & \checkmark & Floating Point Power Operation & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \ \hline 257 & PLSV & DPLSV & - & Adjustable Speed Pulse Output & - & - & \checkmark & \% \ \hline 257 & PLSV & DPLSV & - & Adjustable Speed Pulse Output & - & - & \checkmark & \% \ \hline 258 & PUN & - & PUPPMR & - & 2-Axis Relative Point to Point Motion (*) & - & - & \checkmark & \% \ \hline 259 & PUR & PUPPMR & - & 2-Axis Relative Point to Point Motion (*) & - & - & \checkmark & \% \ \hline 250 & PUPPMR & - & 2-Axis Relative Point to Point Motion (*) & - & - & \checkmark & \% \ \hline 250 & PUPPMR & - & 2-Axis Relative Point to Point Motion (*) & - & - & - & \% \ \hline 250 & PUPPMR & - & 2-Axis Relative Point to Point Motion (*) & - & - & - & - & \% \ \hline 250 & PUPPMR & - & 2-Axis Relative Point to Point Motion (*) & - & - & - & - & - & - & - & - & - & $				DOR&	-	S ₁ & S ₂	_	✓	✓	10-9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		222	OR	DOR	-	S ₁ S ₂	-	✓	✓	10-9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				DOR^	-					10-9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		240			-		✓		✓	10-12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0				-		✓		✓	10-12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		-					10-12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		-					10-12
Fig. Section			1		-		-			10-12
Fig. 10			+				_			10-12
Figure 1 Figure 2 First National Medical Street			+	DPLSY	-	·				7-26
Parallel Run			1	-	-					7-32
81 PRUN DPRUN ✓			1	DPLSR	-		√			7-35
88 PID DPID - PID Control Loop ✓ <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>7-73</td>				-			-			7-73
128 - DPOW ✓ Floating Point Power Operation ✓ ✓ ✓ ₹ 151 PWD - Detection of Input Pulse Width - ✓ ✓ ₹ 157 PLSV DPLSV - Adjustable Speed Pulse Output - ✓ ✓ ₹ 191 - DPPMR - 2-Axis Relative Point to Point Motion (*) - ✓ ₹			1	1	√		-			7-93
128 - DPOW ✓ Floating Point Power Operation ✓	Р		PID							7-107
157 PLSV DPLSV - Adjustable Speed Pulse Output - - - - 9 191 - DPPMR - 2-Axis Relative Point to Point Motion (*) - - - 9	·		-	DPOW	√		✓	✓		8-40
191 - DPPMR - 2-Axis Relative Point to Point Motion (*) ✓ 9				-		·	-	-		9-10
			PLSV		-		-	-		9-23
192 - DPPMA - 2-Axis Absolute Point to Point Motion (*) - - √ 9			-		-		-	-		9-76
		192	-	DPPMA	-	2-Axis Absolute Point to Point Motion (*)	-	-	✓	9-79
195 - DPTPO - Single-Axis Pulse Output by Table (*) ✓ 9		195	-	DPTPO	-	Single-Axis Pulse Output by Table (*)		-	✓	9-91
R 30 ROR DROR ✓ Rotation Right ✓ ✓ ✓ ✓ 6	D.	30	ROR	DROR	✓	Rotation Right	✓	√	√	6-46
ROL DROL ✓ Rotation Left ✓ ✓ ✓ ✓ 6	IX	31	ROL	DROL	✓	Rotation Left	✓	√	√	6-47

		Mne	monic	Р	-		olicable	e to	
Category	API	16-bit	32-bit	Instruction	Function	ES	SA	EH	Page
	32	RCR	DRCR	√	Rotation Right with Carry	✓	√	✓	6-48
	33	RCL	DRCL	√	Rotation Left with Carry	✓	✓	✓	6-49
	50	REF	-	√	Refresh	√	√	√	7-1
	51	REFF	_	√	Refresh and Filter Adjust	-	√	√	7-2
	67	RAMP	_	_	Ramp Variable Value	-	√	√	7-55
	80	RS	_	_	Serial Communication Instruction	√	√	√	7-80
103 REV		_	_	Reverse Running of VFD-A	✓	√	√	8-11	
R		RDST	_	_	Read VFD-A Status	✓	√	√	8-14
		RSTEF	_	_	Reset Abnormal VFD-A	✓	√	√	8-16
	116	-	DRAD	√	Angle → Radian	_	√	√	8-26
		RTMU	-	-	Start of the Measurement of Execution Time of I Interruption	-	-	✓	9-11
	153	RTMD	-	-	End of the Measurement of the Execution Time of I Interruption	-	-	✓	9-11
	154	RAND	✓	-	Random Number	-	√	✓	9-13
	02	SRET	-	-	Subroutine Return	√	√	✓	6-5
	13	SMOV	-	√	Shift Move	-	✓	✓	6-21
	21	SUB	DSUB	✓	Subtraction	✓	√	✓	6-34
	34	SFTR	-	✓	Bit Shift Right	✓	✓	✓	6-50
	35	SFTL	-	✓	Bit Shift Left	✓	✓	✓	6-51
	38	SFWR	-	✓	Shift Register Write	-	✓	✓	6-55
	39	SFRD	-	✓	Shift Register Read	-	✓	✓	6-56
	43	SUM	DSUM	✓	Sum of Active Bits	✓	✓	✓	6-63
	48	SQR	DSQR	✓	Square Root	✓	✓	✓	6-72
	56	SPD	-	-	Speed Detection	✓	✓	✓	7-24
	61	SER	DSER	✓	Search a Data Stack	-	✓	✓	7-45
S	65	STMR	-	-	Special Timer	-	✓	✓	7-52
	69	SORT	-	-	Sort Tabulated Data	-	✓	✓	7-57
	73	SEGD	-	✓	Seven Segment Decoder	✓	✓	✓	7-66
	74	SEGL	-	-	Seven Segment with Latch	✓	✓	✓	7-67
		STOP	-	-	Stop VFD-A	✓	✓	✓	8-11
		SWRD	-	√	Read Digital Switch	-	-	✓	8-22
	130	-	DSIN	✓	Sine	✓	✓	✓	8-43
	136	-	DSINH	✓	Hyperbolic Sine	-	-	✓	8-52
	147	SWAP	DSWAP	✓	Byte Swap	✓	✓	✓	8-66
	173	-	DSUBR	✓	Floating Point Subtraction	\	✓	✓	9-53
	202	SCAL	-	✓	Proportional Value Calculation	✓	✓	✓	10-1
	203	SCLP	-	✓	Parameter Proportional Value Calculation	✓	✓	✓	10-3
	64	TTMR	-	_	Teaching Timer	-	√	✓	7-50
	70	TKY	DTKY	-	Ten Key Input	_	√	√	7-59
	79	ТО	DTO	√	Write CR Data into Special Modules	√	✓	✓	7-76
	132	-	DTAN	√	Tangent	√	√	√	8-47
	138	_	DTANH	√	Hyperbolic Tangent	_	_	√	8-54
Т	160	TCMP		√ ·	Time Compare		√	√ ·	9-39
		TZCP	_	·	Time Compare Time Zone Compare	-	· ✓	· ✓	9-40
		TADD		→	Time Addition	_	√	√	9-40
	-		-			-			
		TSUB	-	√	Time Subtraction	-	√	√	9-42
	166	TRD	-	√	Time Read	-	✓	\checkmark	9-43

5 Categories & Use of Application Instructions

Catagory	API	Mne	monic	Р	Function	App	olicable	e to	Dogo
Category	AFI	16-bit	32-bit	Instruction	Function	ES	SA	EH	Page
Т	167	TWR	-	✓	Time Write	1	✓	✓	9-45
V	85	VRRD	-	✓	Volume Read	-	✓	✓	7-103
V	86	VRSC	-	✓	Volume Scale	1	✓	√	7-105
	07	WDT	-	✓	Watchdog Timer Refresh	✓	✓	√	6-14
	26	WAND	DAND	✓	Logical Word AND	✓	✓	√	6-41
W	27	WOR	DOR	✓	Logical Word OR	✓	✓	√	6-42
V V	28	WXOR	DXOR	✓	Logical Exclusive OR	✓	✓	√	6-43
	36	WSFR	-	✓	Word Shift Right	-	✓	√	6-52
	37	WSFL	-	✓	Word Shift Left	-	✓	√	6-54
X	17	XCH	DXCH	✓	Exchange	✓	\	√	6-27
	11	ZCP	DZCP	✓	Zone Compare	✓	✓	✓	6-19
Z	40	ZRST	-	✓	Zero Reset	✓	✓	✓	6-57
	156	ZRN	DZRN	-	Zero Return	-	1	✓	9-19

Instructions marked with * are available in EH2/SV series MPU.

Note:

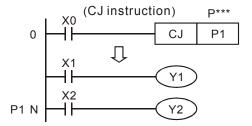
- 1. For applicable models, ES includes ES/EX/SS; SA includes SA/SX/SC; EH includes EH/EH2/SV.
- 2. ES/EX/SS series MPU does not support pulse execution type instructions (P instruction).

API	Mnemonic		Operands	Function	Controllers
00	CJ	Р	S	Conditional Jump	ES/EX/SS SA/SX/SC EH/SV

ОР	Range	Program Steps
S	P0~P255	CJ, CJP: 3 steps

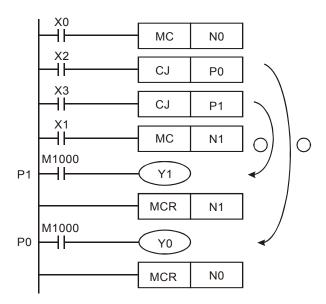
PULSE						16-bit						32-bit											
ES E	EΧ	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

Operands:


S: The destination pointer of conditional jump

Explanations:

- 1. Operand S can designate P
- 2. P can be modified by index register E, F
- 3. In ES/EX/SS series models: Operand S can designate P0 ~ P63
- 4. In SA/SX/SC/EH/EH2/SV series models: Operand S can designate P0 ~ P255
- 5. When the user does not wish a particular part of PLC program in order to shorten the scan time and execute dual outputs, CJ instruction or CJP instruction can be adopted.
- 6. When the program designated by pointer P is prior to CJ instruction, WDT timeout will occur and PLC will stop running. Please use it carefully.
- 7. CJ instruction can designate the same pointer P repeatedly. However, CJ and CALL cannot designate the same pointer P; otherwise an error will occur.
- 8. Actions of all devices while conditional jumping is being executed.
 - a) Y, M and S remain their previous status before the conditional jump takes place.
 - b) Timer 10ms and 100ms that is executing stops.
 - c) Timer T192 ~ T199 that execute the subroutine program will continue and the output contact executes normally.
- d) The high-speed counter that is executing the counting continues counting and the output contact executes normally.
- e) The ordinary counters stop executing.
- f) If the "reset instruction" of the timer is executed before the conditional jump, the device will still be in the reset status while conditional jumping is being executed.
- g) Ordinary application instructions are not executed.
- h) The application instructions that are being executed, i.e. API 53 DHSCS, API 54 DHSCR, API 55 DHSZ, API 56 SPD, API 57 PLSY, API 58 PWM, API 59 PLSR, API 157 PLSV, API 158 DRVI, API 159 DRVA, continue being executed.


Program Example 1:

- 1. When X0 = On, the program automatically jumps from address 0 to N (the designated label P1) and keeps its execution. The addresses between 0 and N will not be executed.
- 2. When X0 = Off, as an ordinary program, the program keeps on executing from address 0. CJ instruction will not be executed at this time.

Program Example 2:

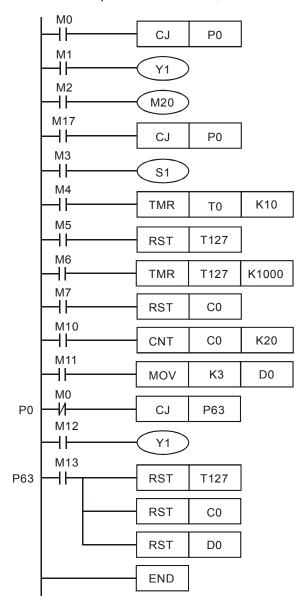
- 1. CJ instruction can be used in the following 5 conditions between MC and MCR instructions.
 - a) Without MC ~ MCR.
 - b) From without MC to within MC. Valid in the loop P1 as shown in the figure below.
 - c) In the same level N, inside of MC~MCR.
 - d) From within MC to without MCR.
- e) Jumping from this MC ~ MCR to another MC ~ MCR¹.
- 2. Actions in ES/EX/SS series models V4.7 (and below): When CJ instruction is used between MC and MCR, it can only be applied without MC ~ MCR or in the same N layer of MC ~ MCR. Jumping from this MC ~ MCR to another MC ~ MCR will result in errors, i.e. a) and c) as stated above can ensure correct actions; others will cause errors.
- 3. When MC instruction is executed, PLC will push the status of the switch contact into the self-defined stack in PLC. The stack will be controlled by the PLC, and the user cannot change it. When MCR instruction is executed, PLC will obtain the previous status of the switch contact from the top layer of the stack. Under the conditions as stated in b), d) and e), the times of pushing-in and obtaining stack may be different. In this case, the maximum stack available to be pushed in is 8 and the obtaining of stacks cannot resume once the stack becomes empty. Thus, when using CALL or CJ instructions, the user has to be aware of the pushing-in and obtaining of stacks.

-

This function is only available in ES/EX/SS series models V4.9 (and above) and SA/SX/SC/EH/EH2/SV series models.

Program Example 3:

1. The states of each device


Device	Contact state before CJ is executed	Contact state when CJ is being executed	Output coil state when CJ is being executed				
VMC	M1, M2, M3 Off	M1, M2, M3 Off→On	Y1 ^{*1} , M20, S1 Off				
Y, M, S	M1, M2, M3 On	M1, M2, M3 On→Off	Y1 ^{*1} , M20, S1 On				
10ms, 100ms	M4 Off	M4 Off→On	Timer T0 is not enabled.				
Timer ES/SA/EH	M4 On	M4 On→Off	Timer T0 immediately stops and is latched. M0 On→Off, T0 is reset as 0.				
	M6 Off	M6 Off→On	Timer T240 is not enabled.				
1ms, 10ms, 100ms Timer *2 (accumulative) SA/EH	M6 On	M6 On→Off	Once the timer function is enabled and when met with CJ instruction, all accumulative timers will stop timing and stay latched. M0 On→Off. T240 remains unchanged.				
	M7, M10 Off	M10 On/Off trigger	Counter does not count.				
C0 ~ C234 *3	M7 Off, M10 On/Off trigger	M10 On/Off trigger	Counter C0 stops counting and stays latched. After M0 goes Off, C0 resumes its counting.				
	M11 Off	M11 Off→On	Application instructions are not executed.				
Application instruction	M11 On	M11 On→Off	The skipped application instructions are not executed, but API 53 ~ 59, API 157 ~ 159 keep being executed.				

^{*1:} Y1 is a dual output. When M0 is Off, M1 will control Y1. When M0 is On, M12 will control Y1.

^{*2:} When the timers (T192 ~ T199, applicable in SA/EH series MPU) used by a subroutine re driven and encounter the execution of CJ instruction, the timing will resume. After the timing target is reached, the output contact of the timer will be On.

^{*3:} When the high-speed counters (C235 ~ C255) are driven and encounter the execution of CJ instruction, the counting will resume, as well as the action of the output points.

2. Y1 is a dual output. When M0 = Off, Y1 is controlled by M1. When M0 = On, Y1 is controlled by M12.

API	Mnemonio	2	Operands	Function	Controllers
01	CALL	Р	S	Call Subroutine	ES/EX/SS SA/SX/SC EH/SV

OP	Range	Program Steps
S	P0 ~ P255	CALL, CALLP: 3 steps

PULSE						16-bit							32-bit									
ES EX	SS :	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

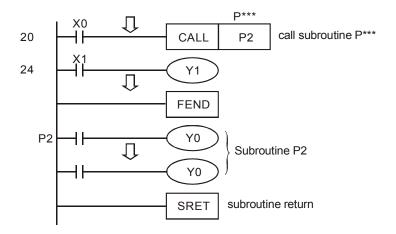
S: The pointer of call subroutine.

Explanations:

- 1. Operand S can designate P.
- 2. P can be modified by index register E, F.
- 3. In ES/EX/SS series models: Operand S can designate P0 ~ P63.
- 4. In SA/SX/SC/EH/EH2/SV series models: Operand S can designate P0 ~ P255.
- 5. Edit the subroutine designated by the pointer after FEND instruction.
- 6. The number of pointer P, when used by CALL, cannot be the same as the number designated by CJ instruction.
- 7. If only CALL instruction is in use, it can call subroutines of the same pointer number with no limit on times.
- 8. Subroutine can be nested for 5 levels including the initial CALL instruction. (If entering the sixth level, the subroutine won't be executed.)

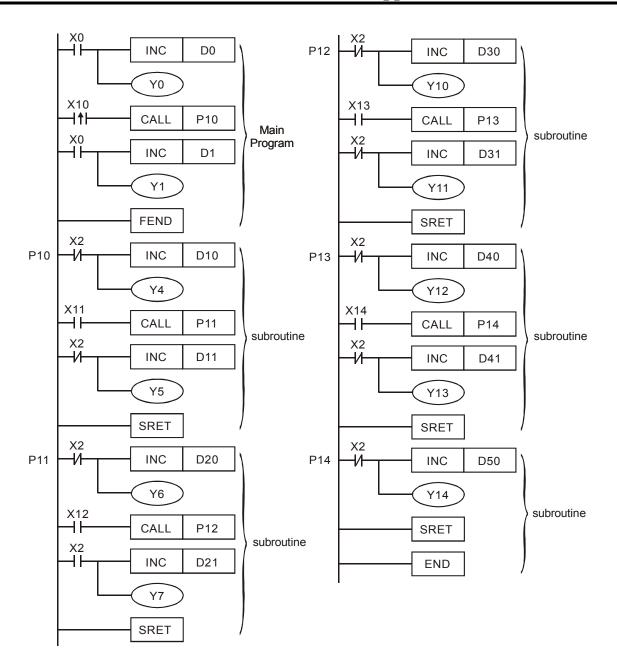
API	Mnemonic	Function	Controllers
02	SRET	Subroutine Return	ES/EX/SS SA/SX/SC EH/SV

OP	Descriptions	Program Steps
	Automatically returns to the step immediately following the	SRET: 1 steps
N/A	CALL instruction which activated the subroutine	


PULSE	16-bit	32-bit
FULSE	וט-טונ	32-DIL
1E5 EX 155 5A 5X 5C EH 5V	ES EX SS SA SX SC EH SV	IES IEX ISS ISA ISX ISC IEH ISV

Explanations:

- 1. No operand. No contact to drive the instruction is required.
- 2. The subroutine will return to main program by SRET after the termination of subroutine and execute the sequence program located at the next step to the CALL instruction.


Program Example 1:

When X0 = On, CALL instruction is executed and the program jumps to the subroutine designated by P2. When SRET instruction is executed, the program returns to address 24 and continues its execution.

Program Example 2:

- 1. When X10 goes from Off to On, its rising-edge trigger executes CALL P10 instruction and the program jumps to the subroutine designated by P10.
- 2. When X11 is On, CALL P11 is executed and the program jumps to the subroutine designated by P11.
- 3. When X12 is On, CALL P12 is executed and the program jumps to the subroutine designated by P12.
- 4. When X13 is On, CALL P13 is executed and the program jumps to the subroutine designated by P13.
- 5. When X14 is On, CALL P14 is executed and the program jumps to the subroutine designated by P14. When SRET is executed, the program returns to the previous P% subroutine and continues its execution.
- 6. After SRET instruction is executed in P10 subroutine, returning to the main program.

API	Mnemonic	Function		Controllers
03	IRET	Interrupt Return		ES/EX/SS SA/SX/SC EH/SV
ОР		Descriptions	P	rogram Steps
N/A	IRET ends the pro	ocessing of an interruption subroutine and	IRET: 1 steps	

PULSE				32-bit									
ES EX SS SA SX SC	EH SV	ES EX	SS SA	SX SC	EH S	V ES	EX	SS	SA	SX	SC	EΗ	SV

Explanations:

1. No operand. No contact to drive the instruction is required.

returns to the execution of the main program.

- 2. Interruption return refers to interrupt the subroutine.
- 3. After the interruption is over, returning to the main program from IRET to execute the next instruction where the program was interrupted.

API	Mnemonic	Function		Controllers
04	El	Enable Interrupts	ES/EX/SS SA/SX/SC EH/SV	
OP		Descriptions	Р	rogram Steps
NI/A	See more details	of the explanation on this instruction in DI	EI: 1 steps	
N/A	(Disable Interrupti	on) instruction.		

	PULSE						16-bit							32-bit									
E	SEX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

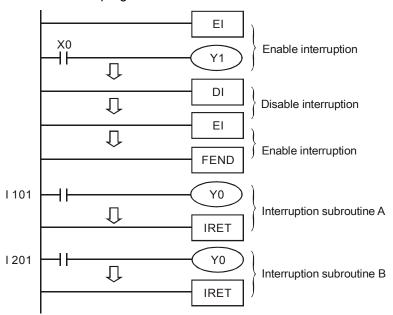
Explanations:

- 1. No operand. No contact to drive the instruction is required.
- 2. The pulse width of the interruption signal should be >200us.
- 3. See DI instruction for the range of the No. of I for all models.
- 4. See DI instruction for more details about M1050 ~ M1059, M1280 ~ M1299.

05 DI Disable Interrupts ES/EX/SS SA/SX/SC	API	Mnemonic	Function	Controllers
	05	DI	Disable Interrupts	ES/EX/SS SA/SX/SC EH/SV

OP	Descriptions	Program Steps
	When the special auxiliary relay M1050 ~ M1059, M1280 ~	DI: 1 step
NI/A	M1299 for disabling interruption is driven, the corresponding	
N/A	interruption request will not be executed even in the range	
	allowed for interruptions.	

DITICE	16 hit	32 hit					
FULSE	16-bit	32-bit					
	TO EVICE ON CVICO FUICV						
	IES IEX ISS ISA ISX ISCIENISV	1E5					


Explanations:

- 1. No operand. No contact to drive the instruction is required.
- 2. El instruction allows interrupting subroutine in the program, e.g. external interruption, timed interruption, and high-speed counter interruption.

- 3. In the program, using interruption subroutine between EI and DI instruction is allowed. However, you can choose not to use DI instruction if there is no interruption-disabling section in the program.
- 4. When M1050 ~ M1059 are the special auxiliary relays to drive disabling interruption in ES/SA, or M1280 ~ M1299 are the special auxiliary relays to drive disabling interruption in EH/EH2/SV, the corresponding interruptions will not be executed even in the area allowed for interruptions.
- 5. Pointer for interruption (I) must be placed after FEND instruction.
- 6. Other interruptions are not allowed during the execution of interruption subroutine.
- 7. When many interruptions occur, the priority is given to the firstly executed interruption. If several interruptions occur simultaneously, the priority is given to the interruption with the smaller pointer No.
- 8. The interruption request occurring between DI and EI instructions that cannot be executed immediately will be memorized and will be executed in the area allowed for interruption.
- 9. The time interruptions in ES/SA will not be memorized.
- 10. When using the interruption pointer, DO NOT repeatedly use the high-speed counter driven by the same X input contact.
- 11. When immediate I/O is required during the interruption, write REF instruction in the program to update the status of I/O.

Program Example:

During the operation of PLC, when the program scans to the area between EI and DI instructions and X1 = Off \rightarrow On or X2 = Off \rightarrow On, interruption subroutine A or B will be executed. When the subroutine executes to IRET, the program will return to the main program and resumes its execution.

Remarks:

- 1. No. of interruption pointer I in ES/EX/SS:
- a) External interruptions: (I001, X0), (I101, X1), (I201, X2), (I301, X3) 4 points².
- b) Time interruptions: $16 \square \square$, 1 point ($\square \square = 10 \sim 99$, time base = 1ms) (support V5.7 and above)

DVP-PLC Application Manual

² Input points occupied by external interruptions cannot be used for inputs of high-speed counters; otherwise grammar check errors may occur when the program is written in PLC.

- c) Communication interruption for receiving specific words (I150) (support V5.7 and above)
- 2. No. of interruption pointer I in SA/SX/SC:
 - a) External interruptions: (I001, X0), (I101, X1), (I201, X2), (I301, X3), (I401, X4), (I501, X5) 6 points.
 - b) Time interruptions: $16 \square$, $17 \square$ 2 points. (\square = 1 ~ 99ms, time base = 1ms)
 - c) High-speed counter interruptions: I010, I020, I030, I040 4 points. (used with API 53 DHSCS instruction to generate interruption signals)
 - d) Communication interruption for receiving specific words .(I150)
 - e) The order for execution of interruption pointer I: high-speed counter interruption, external interruption, time interruption and communication interruption for receiving specific words.
 - f) Among the following 6 interruption No., (I001, I010), (I101, I020), (I201, I030), (I301, I040), (I401, I050), (I501, I060), the program allows the user to use only one of the two numbers in a pair. If the user uses the two numbers in the pair, grammar check errors may occur when the program is written into PLC.
- 3. No. of interruption pointer I in EH/EH2/SV:
- a) External interruptions: (I00□, X0), (I10□, X1), (I20□, X2), (I30□, X3), (I40□, X4), (I50□, X5) 6 points. (□ = 0 designates interruption in falling-edge, □ = 1 designates interruption in rising-edge)
- b) Time interruptions: 16, 17, 2 points. ($= 1 \sim 99$ ms, time base = 1ms) 18 1 point. ($= 1 \sim 99$ ms, time base = 0.1ms)
- c) High-speed counter interruptions: I010, I020, I030, I040, 1050, 1060 6 points. (used with API 53 DHSCS instruction to generate interruption signals)
- d) When pulse output interruptions I110, I120 (triggered when pulse output is finished), I130, I140 (triggered when the first pulse output starts) are executed, the currently executed program is interrupted and jumps to the designated interruption subroutine.
- e) Communication interruption: I150, I160, I170
- f) Frequency measurement card interruption: I180
- g) The order for execution of interruption pointer I: external interruption, time interruption, high-speed counter interruption, pulse interruption, communication interruption and frequency measurement card interruption.
- 4. "Disable interruption" flags in ES/EX/SS:

Flag	Function
M1050	Disable external interruption I001
M1051	Disable external interruption I101
M1052	Disable external interruption I201
M1053	Disable external interruption I301
M1056	Disable time interruption I6

5. "Disable interruption" flags in SA/SX/SC:

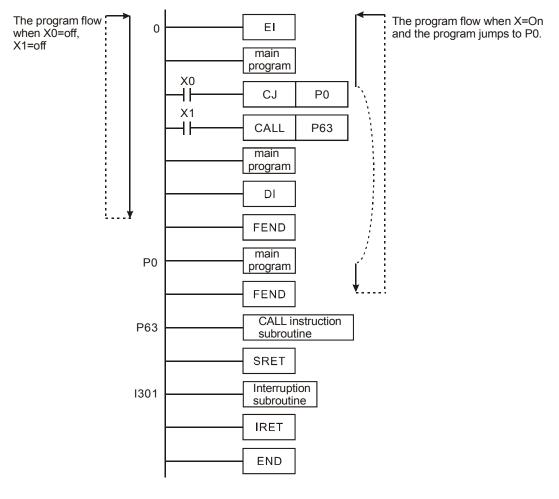
Flag	Function
M1050	Disable external interruption I001
M1051	Disable external interruption I101
M1052	Disable external interruption I201
M1053	Disable external interruption I301
M1054	Disable external interruption I401
M1055	Disable external interruption I501

M1056	Disable time interruption I6
M1057	Disable time interruption I7
M1059	Disable high-speed counter interruption I010 ~ I060

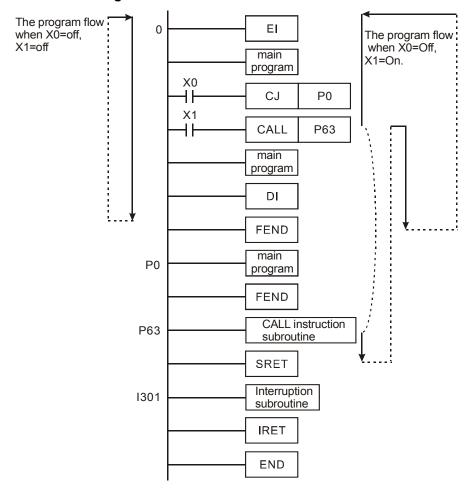
6. "Disable interruption" flags in EH/EH2/SV:

Flag	Function
M1280	Disable external interruption I00
M1281	Disable external interruption I10
M1282	Disable external interruption I20
M1283	Disable external interruption I30
M1284	Disable external interruption I40
M1285	Disable external interruption I50
M1286	Disable time interruption I6
M1287	Disable time interruption I7
M1288	Disable time interruption I8
M1289	Disable high-speed counter interruption I010
M1290	Disable high-speed counter interruption I020
M1291	Disable high-speed counter interruption I030
M1292	Disable high-speed counter interruption I040
M1293	Disable high-speed counter interruption I050
M1294	Disable high-speed counter interruption I060
M1295	Disable pulse output interruption I110
M1296	Disable pulse output interruption I120
M1297	Disable pulse output interruption I130
M1298	Disable pulse output interruption I140
M1299	Disable communication interruption I150
M1300	Disable communication interruption I160
M1301	Disable communication interruption I170
M1302	Disable frequency measurement card interruption I180
M1340	Generate interruption I110 after CH0 pulse is sent
M1341	Generate interruption I120 after CH1 pulse is sent
M1342	Generate interruption I130 when CH0 pulse is being sent
M1343	Generate interruption I140 when CH1 pulse is being sent

API	Mnemonic	Function	Controllers
06	FEND	The End of The Main Program (First End)	ES/EX/SS SA/SX/SC EH/SV
OB		Decerintions	Drogram Stone


OP	Descriptions	Program Steps
N/A	No contact to drive the instruction is required.	FEND: 1 steps

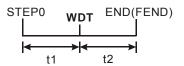
	PULSE							16-bit							32-bit								
ES	EX	SS	SA	SX	S	H	s٧	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	ΕX	SS	SA	SX	SC	Ε	SV


Explanations:

- This instruction denotes the end of the main program. It has the same function as that of END instruction when being executed by PLC.
- 2. CALL must be written after FEND instruction and add SRET instruction in the end of its subroutine. Interruption program has to be written after FEND instruction and IRET must be added in the end of the service program.
- 3. If several FEND instructions are in use, place the subroutine and interruption service programs between the final FEND and END instruction.
- 4. After CALL instruction is executed, executing FEND before SRET will result in errors in the program.
- 5. After FOR instruction is executed, executing FEND before NEXT will result in errors in the program.

CJ Instruction Program Flow:

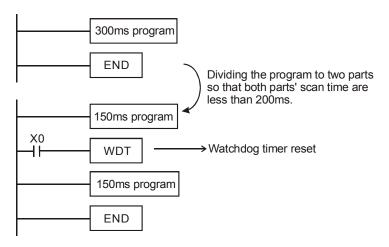
CALL Instruction Program Flow:



API	Mnemonic		Function	Function								
07	WDT	Р	Watchdog Timer Refresh	Controllers ES/EX/SS SA/SX/SC EH/SV								
ОР			Descriptions	Р	rogram Steps							
N/A				WDT, WDTP:	1 steps							
			PHISE	32-hit								

PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					

Explanations:


- 1. No operand.
- 2. The watchdog timer in DVP series PLCs is used for monitoring the operation of the PLC system.
- 3. WDT instruction can be used to reset Watch Dog Timer. If the PLC scan time (from step 0 to END or when FEND instruction is executed) exceeds 200ms, PLC ERROR LED will flash. The user will have to turn off PLC and back On again. PLC will determine RUN/STOP status by RUN/STOP switch. If there is no RUN/STOP switch, PLC will return to STOP status automatically.
- 4. When to use WDT:
- a) When errors occur in the PLC system.
- b) When the executing time of the program is too long, resulting in the scan time being larger than the content in D1000, the user can improve the problem by the following two methods.
 - Using WDT instruction

■ Using the set value in D1000 (default value: 200ms) to change the time for watchdog.

Program Example:

Assume the scan time of the program is 300ms, divide the program into two parts and place WDT instruction in the middle of the two parts, making scan time of the first half and second half of the program being less than 200ms.

API	Mnemonic	Operands	Function	Controllers
08	FOR	S	Start of a FOR-NEXT Loop	ES/EX/SS SA/SX/SC EH/SV

	Type Bit Devices								W	ord I	Devic	es					Program Steps
OP		Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Ε	F	FOR: 3 steps
	S					*	*	*	*	*	*	*	*	*	*	*	

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

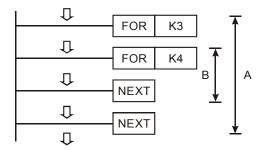
S: The number of repeated nested loops

Explanations:

- 1. No contact to drive the instruction is required.
- 2. See the specifications of each model for their range of use.

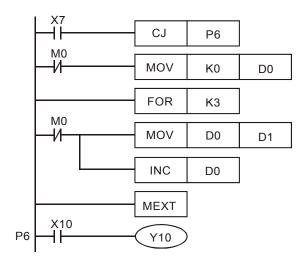
API	Mnemonic	Function	Controllers
09	NEXT	End of a FOR-NEXT Loop	ES/EX/SS SA/SX/SC EH/SV

ОР	Descriptions	Program Steps
N/A		NEXT: 1 steps

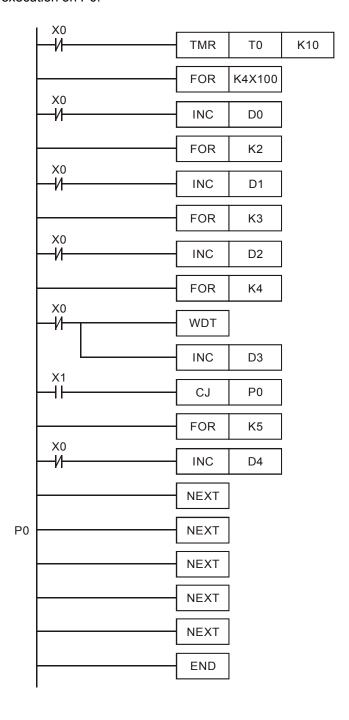

	PU	LSE							16	-bit							32	-bit			
ES EX SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

Explanations:

- 1. No operand. No contact to drive the instruction is required.
- 2. FOR instruction indicates FOR ~ NEXT loops executing back and forth N times before escaping for the next execution.
- 3. $N = K1 \sim K32,767$. N is regarded as K1 when $N \leq 1$.
- 4. When FOR~NEXT loops are not executed, the user can use the CJ instruction to escape the loops.
- 5. Error will occur when
 - a) NEXT instruction is before FOR instruction.
- b) FOR instruction exists but NEXT instruction does not exist.
- c) There is NEXT instruction after FEND or END instruction.
- d) The number of instructions between FOR ~ NEXT differs.
- FOR~NEXT loops can be nested for maximum five levels. Be careful that if there are too many loops, the
 increased PLC scan time may cause timeout of watchdog timer and error. Users can use WDT instruction to
 modify this problem.


Program Example 1:

After program A has been executed for 3 times, it will resume its execution after NEXT instruction. Program B will be executed for 4 times whenever program A is executed once. Therefore, program B will be executed $3 \times 4 = 12$ times in total.


Program Example 2:

When X7 = Off, PLC will execute the program between FOR \sim NEXT. When X7 = On, CJ instruction jumps to P6 and avoids executing the programs between FOR \sim NEXT.

Program Example 3:

When the programs between FOR \sim NEXT are not to be executed, the user can adopt CJ instruction for a jumping. When the most inner FOR \sim NEXT loop is in the status of X1 = On, CJ instruction executes jumping to P0 and skips the execution on P0.

API		Mnemonic		Operands	Function	Controllers
10	D	CMP	Р	S1 S2 D	Compare	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Ε	F	CMP, CMPP: 7 steps
S ₁					*	*	*	*	*	*	*	*	*	*	*	DCMP, DCMPP: 13 steps
S ₂	<u> </u>					*	*	*	*	*	, ,					
D		*	*	*												

Ī		PULSE S EX SS SA SX SC EH SV ES EX							16	-bit							32	-bit						
ĺ	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

 S_1 : Comparison Value 1 S_2 : Comparison Value 2 D: Comparison result

Explanations:

- 1. If S_1 and S_2 are used in device F, only 16-bit instruction is applicable.
- 2. Operand **D** occupies 3 consecutive devices.
- 3. See the specifications of each model for their range of use.
- 4. The contents in S_1 and S_2 are compared and the result will be stored in D.
- 5. The two comparison values are compared algebraically and the two values are signed binary values. When b15 = 1 in 16-bit instruction or b31 = 1 in 32-bit instruction, the comparison will regard the value as negative binary values.

Program Example:

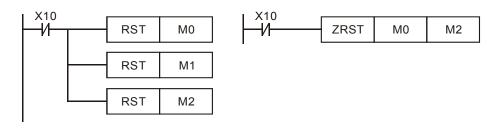
- 1. Designate device Y0, and operand D automatically occupies Y0, Y1, and Y2.
- 2. When X10 = On, CMP instruction will be executed and one of Y0, Y1, and Y2 will be On. When X10 = Off, CMP instruction will not be executed and Y0, Y1, and Y2 remain their status before X10 = Off.
- If the user need to obtain a comparison result with ≥ ≤, and ≠, make a series parallel connection between Y0 ~
 Y2.

```
X10

CMP K10 D10 Y0

Y0

If K10>D10, Y0 = On


Y1

If K10=D10, Y1 = On

Y2

If K10<D10, Y2= On
```

4. To clear the comparison result, use RST or ZRST instruction.

AP	I	Mnemonic	;	Operands	Function	Controllers
11		ZCP	Р	\$1 \$2 \$ D	Zone Compare	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	es				W	ord [Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	О	D	Ε	F	ZCP, ZCPP: 9 steps
S ₁					*	*	*	*	*	*	*	*	*	*	*	DZCP, DZCPP: 17 steps
S ₂				* * * * * * * *					*	*	*	*	2201, 22011. 11 otopo			
S					*	*	*	*	*	*	*	*	*	*	*	
D		*	*	*												

			PUI	_SE							16	-bit							32	-bit			
ES	EX	SS	SA	SX	SC	ΕH	S۷	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	ΕH	SV

 S_1 : Lower bound of zone comparison S_2 : Upper bound of zone comparison S_2 : Comparison value

D: Comparison result

Explanations:

- 1. If S_1 , S_2 and S are used in device F, only 16-bit instruction is applicable.
- 2. The content in S_1 should be smaller than the content in S_2 .
- 3. Operand **D** occupies 3 consecutive devices.
- 4. See the specifications of each model for their range of use.
- 5. **S** is compared with its S_1 , S_2 and the result is stored in **D**.
- 6. When $S_1 > S_2$, the instruction performs comparison by using S_1 as the lower/upper bound.
- 7. The two comparison values are compared algebraically and the two values are signed binary values. When b15 = 1 in 16-bit instruction or b31 = 1 in 32-bit instruction, the comparison will regard the value as negative binary values.

Program Example:

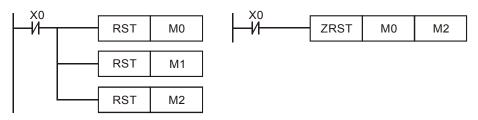
- 1. Designate device M0, and operand D automatically occupies M0, M1 and M2.
- 2. When X0 = On, ZCP instruction will be executed and one of M0, M1, and M2 will be On. When X0 = Off, ZCP instruction will not be executed and M0, M1, and M2 remain their status before X0 = Off.

```
X0

ZCP K10 K100 C10 M0

M0

If C10 < K10, M0 = On


M1

If K10 \leq C10 \leq K100, M1 = On

M2

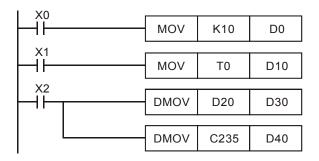
If C10 > K100, M2 = On
```

3. To clear the comparison result, use RST or ZRST instruction.

API		Mnemonic		Operands	Function	Controllers
12	D	MOV	Р		Move	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	vice	es				W	ord [Devic	es					Program Steps
OP		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Ε	F	MOV, MOVP: 5 steps
	S					*	*	*	*	*	*	*	*	*	*	*	DMOV, DMOVP: 9 steps
	D								*	*	*	*	*	*	*	*	2 t, 2 t : 6 6.6p6

	PULSE	16-bit	32-bit
ES EX SS	SA SX SC EH S	/ ESIEXISSISAISXISCIEHISV	


S: Source of data D: Destination of data

Explanations:

- 1. If **S** and **D** are used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. When this instruction is executed, the content of **S** will be moved directly to **D**. When this instruction is not executed, the content of **D** remains unchanged.
- 4. If the operation result refers to a 32-bit output, (i.e. application instruction MUL and so on), and the user needs to move the present value in the 32-bit high-speed counter, DMOV instruction has to be adopted.

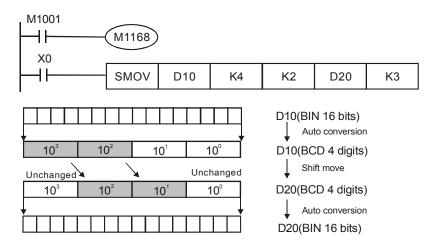
Program Example:

- 1. MOV instruction has to be adopted in the moving of 16-bit data.
- a) When X0 = Off, the content in D10 will remain unchanged. If X0 = On, the value K10 will be moved to D10 data register.
- b) When X1 = Off, the content in D10 will remain unchanged. If X1 = On, the present value T0 will be moved to D10 data register.
- 2. DMOV instruction has to be adopted in the moving of 32-bit data.
 - When X2 = Off, the content in (D31, D30) and (D41, D40) will remain unchanged. If X2 = On, the present value of (D21, D20) will be sent to (D31, D30) data register. Meanwhile, the present value of C235 will be moved to (D41, D40) data register.

API		Mne	mon	ic				Ор	eran	ds					F	un	ction Controllers
13		SM	IOV	F)	S	Œ	nı)	m ₂	D		n	S	hift	Mον	/e	ES/EX/SS SA/SX/SC EH/SV
	Type Bit Devices Word Devices											Program Steps					
OP		Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	C D E F			SMOV, SMOVP: 11 steps
S								*	*	*	*	*	*	*	*	*	7
m	1					*	*										
m ₂	2					*	*										
D		* * * * * *					*										

			PUl	SE							16	-bit							32	-bit			
ES	EX	SS	SA	SX	SC	EH	SV	ES	EX	SS	SA	SX	SC	EH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

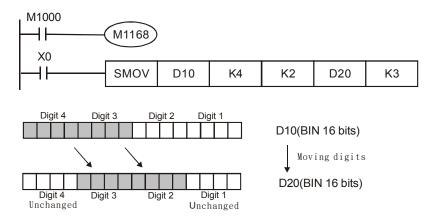
n


S: Source of data m_1 : Start digit to be moved of the source data m_2 : Number of digits (nibbles) to be moved of the source data m_2 : Destination device m_2 : Start digit of the destination position for the moved digits

Explanations:

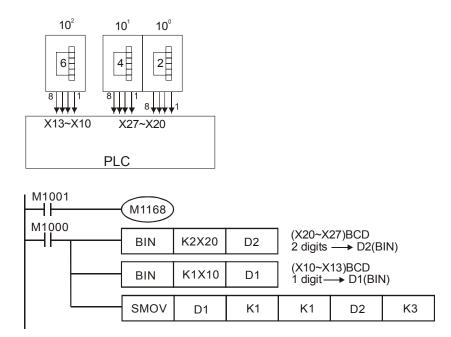
- This instruction is able to re-allocate or combine data. When the instruction is executed, m₂ digits of contents starting from digit m₁ (from high digit to low digit) of S will be sent to m₂ digits starting from digit n (from high digit to low digit) of D.
- 2. Range: $\mathbf{m}_1 = 1 \sim 4$; $\mathbf{m}_2 = 1 \sim \mathbf{m}_1$; $\mathbf{n} = \mathbf{m}_2 \sim 4$
- 3. See the specifications of each model for their range of use.
- 4. M1168 is designated by SMOV working mode. When M1168 = On, the program is in BIN mode. When M1168 = Off, the program is in BCD mode.

Program Example 1:


- 1. When M1168 = Off (in BCD mode) and X0 = On, the 4th (thousand) and 3rd (hundred) digit of the decimal value in D10 start to move to the 3rd (hundred) and 2nd (ten) digit of the decimal value in D20. 10³ and 10⁰ of D20 remain unchanged after this instruction is executed.
- 2. When the BCD value exceeds the range of 0 ~ 9,999, PLC will determine an operation error and will not execute the instruction. M1067, M1068 = On and D1067 records the error code OE18 (hex).

Before the execution, assume D10 = K1234 and D20 = K5678. After the execution, D10 will remain unchanged and D20 will become K5128.

Program Example 2:


When M1168 = On (in BIN mode) and SMOV instruction is in use, D10 and D20 will not be converted in BCD format but be moved in BIN format (4 digits as a unit).

Before the execution, assume D10 = H1234 and D20 = H5678. After the execution, D10 will remain unchanged and D20 will become H5128.

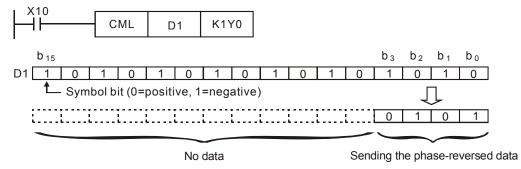
Program Example 3:

- 1. This instruction can be used to combine the DIP switches connected to the input terminals with interrupted No.
- 2. Move the 2nd right digit of the DIP switch to the 2nd right digit of D2, and the 1st left digit of the DIP switch to the 1st right digit of D1.
- 3. Use SMOV instruction to move the 1st digit of D1 to the 3rd digit of D2 and combine the two DIP switches into one.

API		Mnemonic		Operands	Function	Controllers
14	D	CML	Р	SD	Compliment	ES/EX/SS SA/SX/SC EH/SV

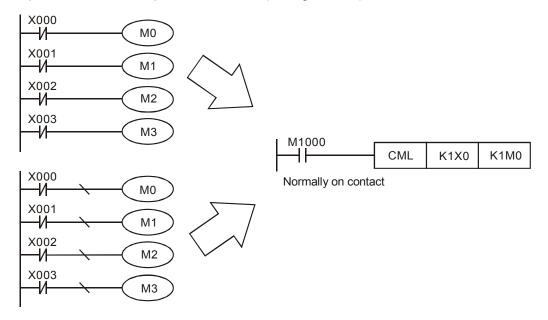
	Type	В	it De	evice	es				W	ord I	Devic	es					Program Steps
C	OP \	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	D	Е	F	CML, CMLP: 5 steps
	S					*	*	*	*	*	*	*	*	*	*	*	DCML, DCMLP: 9 steps
	D								*	*	*	*	*	*	*	*	

			PUI	_SE							16	-bit							32	-bit			
ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


S: Source of data D: Destination device

Explanations:

- 1. If **S** and **D** are used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. This instruction can be used for phase-reversed output.
- 4. Reverse the phase (0→1, 1→0) of all the contents in **S** and send the contents to **D**. Given that the content is a constant K, K will be automatically converted into a BIN value.


Program Example 1:

1. When X10 = On, b0 ~ b3 in D1 will be phase-reversed and send to Y0 ~ Y3.

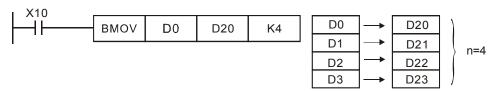
Program Example 2:

The loop below can also adopt CML instruction (see right below).

API	Mnemonic		Operands	Function	Controllers
15	BMOV	Р	S D n	Block Move	ES/EX/SS SA/SX/SC EH/SV

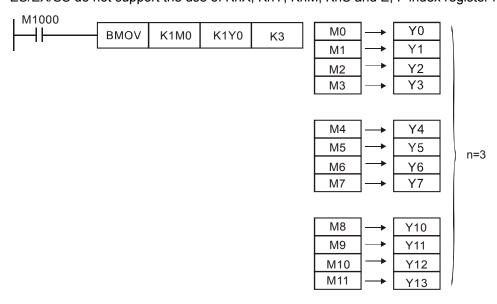
	Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
OP		Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Ε	F	BMOV, BMOVP: 7 steps
	S							*	*	*	*	*	*	*			
	D								*	*	*	*	*	*			
	n					*	*					*	*	*			

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV


S: Start of source devices D: Start of destination devices n: Number of data to be moved

Explanations:

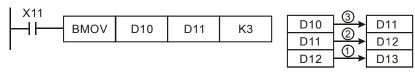
- 1. Range of **n**: 1 ~ 512
- 2. See the specifications of each model for their range of use.
- 3. The contents in n registers starting from the device designated by **S** will be moved to n registers starting from the device designated by **D**. If n exceeds the actual number of available source devices, only the devices that fall within the valid range will be used.


Program Example 1:

When X10 = On, the contents in registers D0 ~ D3 will be moved to the 4 registers D20 ~ D23.

Program Example 2:


- 1. Assume the bit devices KnX, KnY, KnM and KnS are designated for moving, the number of digits of **S** and **D** has to be the same, i.e. their n has to be the same.
- 2. ES/EX/SS do not support the use of KnX, KnY, KnM, KnS and E, F index register modification.


Program Example 3:

To avoid coincidence of the device numbers to be moved designated by the two operands and cause confusion, please be aware of the arrangement on the designated device numbers.

1. When S > D, the instruction is processed following the order $0 \rightarrow 2 \rightarrow 3$

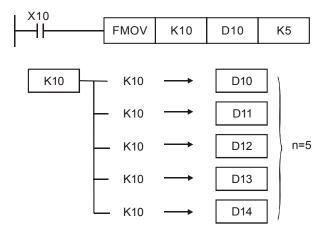
2. In EH/EH2/SV, when **S** < **D**, the instruction is processed following the order $\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc$

3. In ESEX/SS/SA/SX/SC, when **S** < **D**, avoid the number difference of "1" and the instruction is processed following the order ③→②→①. If the devices have the number difference of "1", the contents in D11 ~ D13 will all be the content in D10.

API		Mnemonic		Operands	Function	Controllers
16	D	FMOV	Р	S D n	Fill Move	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	evice	es				W	ord l	Devic	es					Program Steps
C	P \	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	FMOV, FMOVP: 7 steps
	S					*	*	*	*	*	*	*	*	*	*	*	DFMOV, DFMOVP: 13 steps
	D								*	*	*	*	*	*			21 me 1, 21 me 11 10 ctope
	n					*	*										

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV I	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV


S: Source of data D: Destination of data n: Number of data to be moved

Explanations:

- 1. If **S** is used in device F, only 16-bit instruction is applicable.
- 2. Range of \mathbf{n} : 1~ 512 (16-bit instruction); 1 ~ 256 (32-bit instruction).
- 3. See the specifications of each model for their range of use.
- 4. The contents in n registers starting from the device designated by **S** will be moved to n registers starting from the device designated by **D**. If n exceeds the actual number of available source devices, only the devices that fall within the valid range will be used.
- 5. ES/EX/SS do not support the use of KnX, KnY, KnM, KnS and E, F index register modification.

Program Example:

When X10 = On, K10 will be moved to the 5 consecutive registers starting from D10.

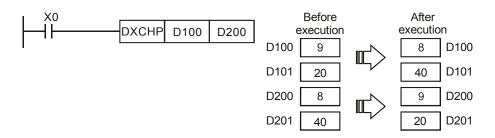
API		Mnemonic		Operands	Function	Controllers
17	D	XCH	Р	D 1 D 2	Exchange	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
(OP \	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	XCH, XCHP: 5 steps
	D_1								*	*	*	*	*	*	*	*	DXCH, DXCHP: 9 steps
Γ	D_2								*	*	*	*	*	*	*	*	27(0) I, 27(0) II : 0 0(0)

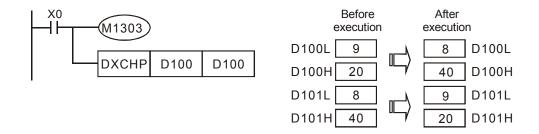
		PUI	SE							16	-bit							32	-bit			
ES EX	ES EX SS SA SX SC EH SV					ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	

Explanations:

- 1. If D_1 and D_2 are used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. The contents in the devices designated by D_1 and D_2 will exchange.
- 4. Flag: M1303 (designated by XCH working mode).


Program Example 1:

When X0 = Off→On, the contents in D20 and D40 exchange with each other.


Program Example 2:

When $X0 = Off \rightarrow On$, the contents in D100 and D200 exchange with each other.

Remarks:

- 1. ES/EX/SS do not support M1303.
- 2. As a 16-bit instruction, when the devices designated by $\mathbf{D_1}$ and $\mathbf{D_2}$ are the same and M1303 = On, the upper and lower 8 bits of the designated devices exchange with each other.
- 3. As a 32-bit instruction, when the devices designated by $\mathbf{D_1}$ and $\mathbf{D_2}$ are the same and M1303 = On, the upper and lower 16 bits in the individual designated device exchange with each other.
- 4. When X0 = On and M1303 = On, the 16-bit contents in D100 and those in D101 will exchange with each other.

1	ŀΡΙ		Mnemonic		Oper	ands	Function	Controllers
	18	D	BCD	Р	S		Binary Coded Decimal	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	О	D	Е	F	BCD, BCDP: 5 steps
S							*	*	*	*	*	*	*	*	*	DBCD, DBCDP: 9 steps
D								*	*	*	*	*	*	*	*	

			PUl	_SE							16	-bit							32	-bit			
ES E	X	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Source of data D: Conversion result

Explanations:

- 1. If **S** and **D** are used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. Flags: M1067 (operation error); M1068 (operation error); D1067 (error code)
- 4. The content in **S** (BIN value) is converted into BCD value and stored in **D**.
- 5. As a 16-bit (32-bit) instruction, when the conversion result exceeds the range of 0 ~ 9,999 (0 ~ 99,999,999), and M1067, M1068 = On, D1067 will record the error code 0E18 (hex).
- 6. The four arithmetic operations and applications in PLC and the execution of INC and DEC instructions are performed in BIN format. Therefore, if the user needs to see the decimal value display, simply use this instruction to convert the BIN value into BCD value.

Program Example:

1. When X0 = On, the binary value of D10 will be converted into BCD value, and the 1s digit of the conversion result will be stored in K1Y0 (Y0 ~ Y3, the 4 bit devices).

2. When D10 = 001E (hex) = 0030 (decimal), the execution result will be: $Y0 \sim Y3 = 0000(BIN)$.

API		Mnemonic		Operands	Function	Controllers
19	D	BIN	Р		Binary	ES/EX/SS SA/SX/SC EH/SV

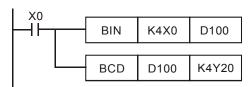
	Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
C	P \	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	D	Е	F	BIN, BINP: 5 steps
	S							*	*	*	*	*	*	*	*	*	DBIN, DBINP: 9 steps
	D								*	*	*	*	*	*	*	*	

	PULSE	16-bit	32-bit
ES EX SS	SA SX SC EH S	/ ESIEXISSISAISXISCIEHISV	

S: Source of data D: Conversion result

Explanations:

- 1. If **S** and **D** are used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. Flags: M1067 (operation error); M1068 (operation error); D1067 (error code)
- 4. The content in **S** (BCD value) is converted into BIN value and stored in **D**.
- 5. Valid range of **S**: BCD (0 ~ 9,999), DBCD (0 ~ 99,999,999)
- 6. Provided the content in S is not a BCD value (in hex and any one of its digits does not fall in the range of 0 ~ 9), an operation error will occur. M1067, M1068 = On and D1067 records the error code 0E18 (hex).
- 7. Constant K and H will automatically be converted into BIN format. Thus, they do not need to adopt this instruction.


Program Example:


When X0 = On, the BCD value of K1M0 will be converted to BIN value and stored in D10.

Remarks:

Explanations on BCD and BIN instructions:

- 1. When PLC needs to read an external DIP switch in BCD format, BIN instruction has to be first adopted to convert the read data into BIN value and store the data in PLC.
- When PLC needs to display its stored data by a 7-segment display in BCD format, BCD instruction has to be first adopted to convert the data into BCD value and send the data to the 7-segment display.
- 3. When X0 = On, the BCD value of K4X0 is converted into BIN value and sent it to D100. The BIN value of D100 will then be converted into BCD value and sent to K4Y20.

API		Mnemonic		Operands	Function	Controllers
20	D	ADD	Р	S1 S2 D	Addition	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	es				W	ord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Ε	F	ADD, ADDP: 7 steps
S ₁					*	*	*	*	*	*	*	*	*	*	*	DADD, DADDP: 13 steps
S ₂					*	*	*	*	*	*	*	*	*	*	*	27.22, 27.221 : 10 ctope
D								*	*	*	*	*	*	*	*	

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

S₁: Summand **S**₂: Addend **D**: Sum

Explanations:

- 1. If S_1 , S_2 and **D** are used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 4. This instruction adds S_1 and S_2 in BIN format and store the result in D.
- 5. The highest bit is symbolic bit 0 (+) and 1 (-), which is suitable for algebraic addition, e.g. 3 + (-9) = -6.
- 6. Flag changes in binary addition

In 16-bit BIN addition,

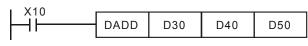
- a) If the operation result = 0, zero flag M1020 = On.
- b) If the operation result < -32,768, borrow flag M1021 = On.
- c) If the operation result > 32,767, carry flag M1022 = On.

In 32-bit BIN addition,

- a) If the operation result = 0, zero flag M1020 = 0n.
- b) If the operation result < -2,147,483,648, borrow flag M1021 = On.
- c) If the operation result > 2,147,483,647, carry flag M1022 = On.

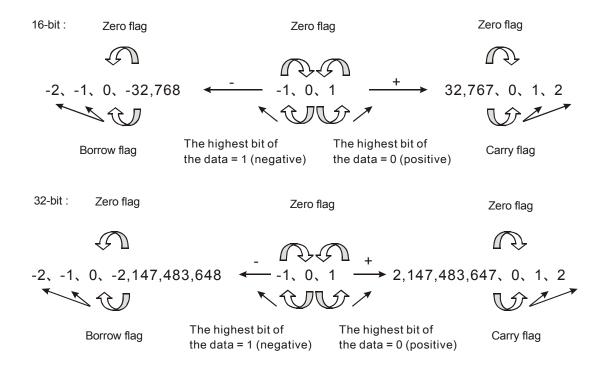
Program Example 1:

In 16-bit BIN addition:


When X0 = On, the content in D0 will plus the content in D10 and the sum will be stored in D20.

Program Example 2:

In 32-bit BIN addition:


When X0 = On, the content in (D31, D30) will plus the content in (D41, D40) and the sum will be stored in (D51, D50). D30, D40 and D50 are low 16-bit data; D31, D41 and D51 are high 16-bit data.

(D31, D30) + (D41, D40) = (D51, D50)

Remarks:

Flags and the positive/negative sign of the values:

API		Mnemonic		Operands	Function	Controllers
21	D	SUB	Р	S ₁ S ₂ D	Subtraction	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
	OP \	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	П	F	SUB, SUBP: 7 steps
ĺ	S ₁					*	*	*	*	*	*	*	*	*	*	*	DSUB, DSUBP: 13 steps
Ī	S_2					*	*	*	*	*	*	*	*	*	*	*	, 2002, 1000ps
ſ	D								*	*	*	*	*	*	*	*	

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV I	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

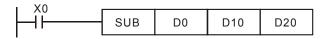
S₁: Minuend **S**₂: Subtrahend **D**: Remainder

Explanations:

- 1. If S_1 , S_2 and D are used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 4. This instruction subtracts S_1 and S_2 in BIN format and stores the result in D.
- 5. The highest bit is symbolic bit 0 (+) and 1 (-), which is suitable for algebraic subtraction.
- 6. Flag changes in binary subtraction

In 16-bit instruction:

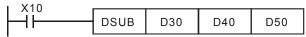
- a) If the operation result = 0, zero flag M1020 = 0n.
- b) If the operation result < -32,768, borrow flag M1021 = On.
- c) If the operation result > 32,767, carry flag M1022 = On.


In 32-bit instruction:

- a) If the operation result = 0, zero flag M1020 = 0n.
- b) If the operation result < -2,147,483,648, borrow flag M1021 = On.
- c) If the operation result > 2,147,483,647, carry flag M1022 = On.
- 7. For flag operations of SUB instruction and the positive/negative sign of the value, see the explanations in ADD instruction on the previous page.

Program Example 1:

In 16-bit BIN subtraction:


When X0 = On, the content in D0 will minus the content in D10 and the remainder will be stored in D20.

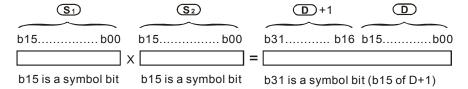
Program Example 2:

In 32-bit BIN subtraction:

When X10 = On, the content in (D31, D30) will minus the content in (D41, D40) and the remainder will be stored in (D51, D50). D30, D40 and D50 are low 16-bit data; D31, D41 and D51 are high 16-bit data.

(D31, D30) - (D41, D40) = (D51, D50)

API		Mnemonic		Operands	Function	Controllers
22	D	MUL	Р	S ₁ S ₂ D	Multiplication	ES/EX/SS SA/SX/SC EH/SV

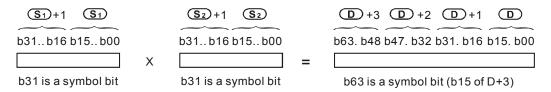

Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	T	С	D	Ε	F	MUL, DMULP: 7 steps
S ₁					*	*	*	*	*	*	*	*	*	*	*	DMUL, DMULP: 13 steps
S ₂					*	*	*	*	*	*	*	*	*	*	*	2.1.02. 1.10 daps
D								*	*	*	*	*	*	*		

ſ				PUI	LSE							16	-bit							32	-bit			
ſ	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S₁: Multiplicand S₂: Multiplicator D: Product

Explanations:

- 1. If S_1 and S_2 are used in device F, only 16-bit instruction is applicable.
- 2. If **D** is used in device E, only 16-bit instruction is applicable.
- 3. In 16-bit instruction, **D** occupies 2 consecutive devices.
- 4. In 32-bit instruction, **D** occupies 4 consecutive devices.
- 5. See the specifications of each model for their range of use.
- 6. This instruction multiplies S_1 by S_2 in BIN format and stores the result in D. Be careful with the positive/negative signs of S_1 , S_2 and D when doing 16-bit and 32-bit operations.
- 7. In 16-bit BIN multiplication,



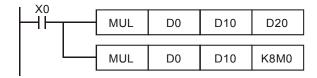
Symbol bit = 0 refers to a positive value.

Symbol bit = 1 refers to a negative value.

When D serves as a bit device, it can designate K1 ~ K4 and construct a 16-bit result, occupying consecutive 2 groups of 16-bit data. ES/EX/SS only stores low 16-bit data.

8. 32-bit BIN multiplication,

Symbol bit = 0 refers to a positive value.


Symbol bit = 1 refers to a negative value.

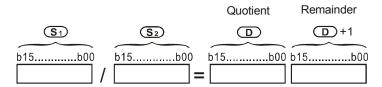
When D serves as a bit device, it can designate K1 ~ K8 and construct a 32-bit result, occupying consecutive 2 groups of 32-bit data.

Program Example:

The 16-bit D0 is multiplied by the 16-bit D10 and brings forth a 32-bit product. The higher 16 bits are stored in D21

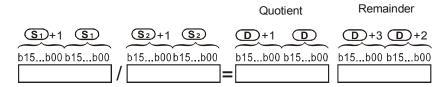
and the lower 16-bit are stored in D20. On/Off of the most left bit indicates the positive/negative status of the result value.

API		Mnemonic		Operands	Function	Controllers
23	D	DIV	Р	S ₁ S ₂ D	Division	ES/EX/SS SA/SX/SC EH/SV


Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K				KnM	KnS	T	С	D	Е	F	DIV, DIVP: 7 steps
S ₁					*	*	*	*	*	*	*	*	*	*		DDIV, DDIVP: 13 steps
S ₂					*	*	*	*	*	*	*	*	*	*		2211, 22111 : 10 01000
D								*	*	*	*	*	*	*		

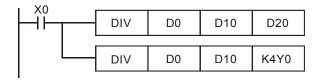
		PUI	SE							16	-bit							32	-bit			
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S₁: Dividend **S**₂: Divisor **D**: Quotient and remainder


Explanations:

- 1. If S_1 and S_2 are used in device F, only 16-bit instruction is applicable.
- 2. If **D** is used in device E, only 16-bit instruction is applicable.
- 3. In 16-bit instruction, **D** occupies 2 consecutive devices.
- 4. In 32-bit instruction, **D** occupies 4 consecutive devices.
- 5. See the specifications of each model for their range of use.
- 6. This instruction divides S_1 and S_2 in BIN format and stores the result in D. Be careful with the positive/negative signs of S_1 , S_2 and D when doing 16-bit and 32-bit operations.
- 7. This instruction will not be executed when the divisor is 0. M1067 and M1068 will be On and D1067 records the error code 0E19 (hex).
- 8. In 16-bit BIN division,

When D serves as a bit device, it can designate K1 ~ K4 and construct a 16-bit result, occupying consecutive 2 groups of 16-bit data and bringing forth the quotient and remainder. ES/EX/SS is able to bring forth only quotient without the remainder.


9. In 32-bit BIN division,

When D serves as a bit device, it can designate K1 ~ K8 and construct a 32-bit result, occupying consecutive 2 groups of 32-bit data and bringing forth the quotient and remainder.

Program Example:

When X0 = On, D0 will be divided by D10 and the quotient will be stored in D20 and remainder in D21. On/Off of the highest bit indicates the positive/negative status of the result value.

API		Mnemonic		Operands	Function	Controllers
24	D	INC	Р	D	Increment	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	vice	s				W	ord [Devic	es					Program Steps
(OP \	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	О	D	Е	F	INC, INCP: 3 steps
	D								*	*	*	*	*	*	*	*	DINC, DINCP: 5 steps

			PUI	_SE							16	-bit							32	-bit			
ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

D: Destination device

Explanations:

- 1. If **D** is used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. If the instruction is not a pulse execution one, the content in the designated device D will plus "1" in every scan period whenever the instruction is executed.
- 4. This instruction adopts pulse execution instructions (INCP, DINCP).
- 5. In 16-bit operation, 32,767 pluses 1 and obtains -32,768. In 32-bit operation, 2,147,483,647 pluses 1 and obtains -2,147,483,648.
- 6. The operation results will not affect M1020 ~ M1022.

Program Example:

When X0 = Off→On, the content in D0 pluses 1 automatically.

API	Mnemonic			Operands	Function	Controllers		
25	D	DEC	Р	D	Decrement	ES/EX/SS SA/SX/SC EH/SV		

	Туре	Bit Devices					Word Devices										Program Steps
OP		Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DEC, DECP: 3 steps
D)								*	*	*	*	*	*	*	*	DDEC, DDECP: 5 steps

PULSE	16-bit	32-bit			
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV			

D: Destination device

Explanations:

- 1. If **D** is used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. If the instruction is not a pulse execution one, the content in the designated device D will minus "1" in every scan period whenever the instruction is executed.
- 4. This instruction adopts pulse execution instructions (DECP, DDECP).
- 5. In 16-bit operation, -32,768 minuses 1 and obtains 32,767. In 32-bit operation, -2,147,483,648 minuses 1 and obtains 2,147,483,647.
- 6. The operation results will not affect M1020 ~ M1022.

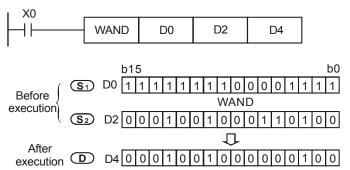
Program Example:

When X0 = Off→On, the content in D0 minuses 1 automatically.

API	Mnemonic		Operands	Function	Controllers
26	W AND	Р	S1 S2 D	Logical Word AND	ES/EX/SS SA/SX/SC EH/SV

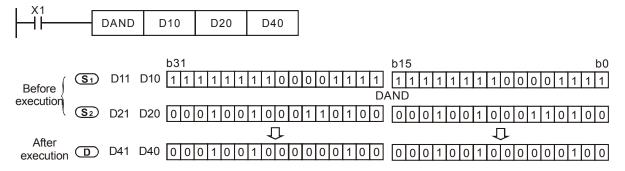
Туре	В	it De	evice	es				W	ord [Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	О	Е	F	WAND, WANDP: 7 steps
S ₁					*	*	*	*	*	*	*	*	*	*	*	DAND, DANDP: 13 steps
S ₂					*	*	*	*	*	*	*	*	*	*	*	
D								*	*	*	*	*	*	*	*	

		PUI	SE							16	-bit							32	-bit			
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


S₁: Source data device 1 **S**₂: Source data device 2 **D**: Operation result

Explanations:

- 1. If **S**₁, **S**₂ and **D** are used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. This instruction conducts logical AND operation of S_1 and S_2 and stores the result in D.
- 4. Operation rule: The corresponding bit of the operation result in **D** will be "0" if any of the bits in S_1 or S_2 is "0".


Program Example 1:

When X0 = On, the 16-bit D0 and D2 will perform WAND, logical AND operation, and the result will be stored in D4.

Program Example 2:

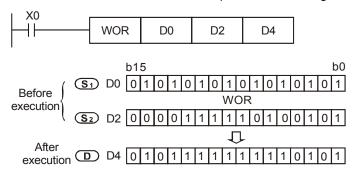
When X1 = On, the 32-bit (D11, D10) and (D21, D20) will perform DAND, logical AND operation, and the result will be stored in (D41, D40).

API		Mnemonic		Operands	Function	on	Controllers
27	W D	OR	Р	S1 S2 D	Logical Word OR		ES/EX/SS SA/SX/SC EH/SV
	_					_	

Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
ОР	X	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Ε	F	WOR, WORP: 7 steps
S ₁					*	*	*	*	*	*	*	*	*	*	*	DOR, DORP: 13 steps
S ₂					*	*	*	*	*	*	*	*	*	*	*	2014, 2014 1 10 00000
D								*	*	*	*	*	*	*	*	

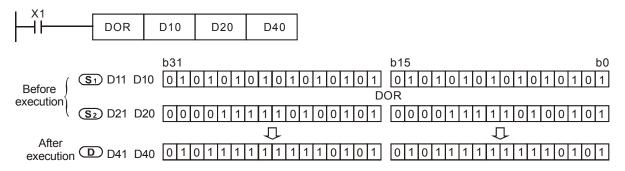
ſ		PL	JLSE							16-	-bit							32	-bit			
ſ	ES EX	SS SA	SX	SC	EH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

 S_1 : Source data device 1 S_2 : Source data device 2 D: O


D: Operation result

Explanations:

- 1. If S_1 , S_2 and **D** are used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. This instruction conducts logical OR operation of S_1 and S_2 and stores the result in D.
- 4. Operation rule: The corresponding bit of the operation result in \mathbf{D} will be "1" if any of the bits in \mathbf{S}_1 or \mathbf{S}_2 is "1".


Program Example 1:

When X0 = On, the 16-bit D0 and D2 will perform WOR, logical OR operation, and the result will be stored in D4.

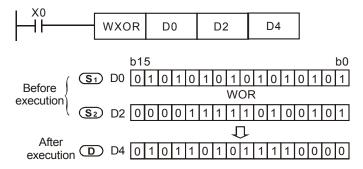
Program Example 2:

When X1 = On, the 32-bit (D11, D10) and (D21, D20) will perform DOR, logical OR operation, and the result will be stored in (D41, D40).

API		Mnemonic		Operands	Functi	on	Controllers
28	W D	XOR	Р	S ₁ S ₂ D	Logical Exclusive	OR	ES/EX/SS SA/SX/SC EH/SV
T	уре	Bit Devices	s	Word Devi	ces	Р	rogram Steps

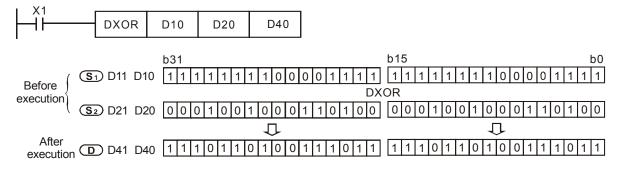
Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	О	Е	F	WXOR, WXORP: 7 steps
S ₁					*	*	*	*	*	*	*	*	*	*	*	DXOR, DXORP: 13 steps
S ₂					*	*	*	*	*	*	*	*	*	*	*	27.61.1, 27.61.1. 10 0.600
D								*	*	*	*	*	*	*	*	

			PUI	LSE							16	-bit							32	-bit			
ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV


S₁: Source data device 1 **S**₂: Source data device 2 **D**: Operation result

Explanations:

- 1. If S_1 , S_2 and D are used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. This instruction conducts logical XOR operation of S_1 and S_2 and stores the result in D.
- 4. Operation rule: If the bits in S_1 and S_2 are the same, the corresponding bit of the operation result in D will be "0"; if the bits in S_1 and S_2 are different, the corresponding bit of the operation result in D will be "1".


Program Example 1:

When X0 = On, the 16-bit D0 and D2 will perform WXOR, logical XOR operation, and the result will be stored in D4.

Program Example 2:

When X1 = On, the 32-bit (D11, D10) and (D21, D20) will perform DXOR, logical XOR operation, and the result will be stored in (D41, D40).

API		Mnemonic		Operands	Function	Controllers
29	D	NEG	Р	В	2's Complement (Negative)	ES/EX/SS SA/SX/SC EH/SV

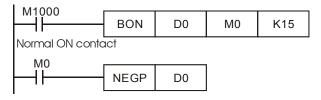
	Туре	В	it De	vice	es				W	ord [Devic	es					Program Steps
(OP \	Χ	Υ	М	S	K	Ξ	KnX	KnY	KnM	KnS	Т	С	D	Е	F	NEG, NEGP: 3 steps
	D								*	*	*	*	*	*	*	*	DNEG, DNEGP: 5 steps

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

D: Device to store 2's complement

Explanations:

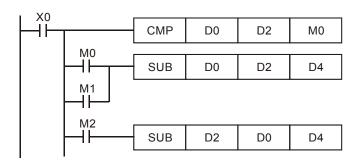
- 1. If **D** is used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. This instruction converts a negative BIN value into an absolute value.
- 4. This instruction adopts pulse execution instructions (NEGP, DNEGP).


Program Example 1:

When X0 = Off \rightarrow On, the phase of every bit of the content in D10 will be reversed (0 \rightarrow 1, 1 \rightarrow 0) and pluses 1. The result will then be stored in D10.

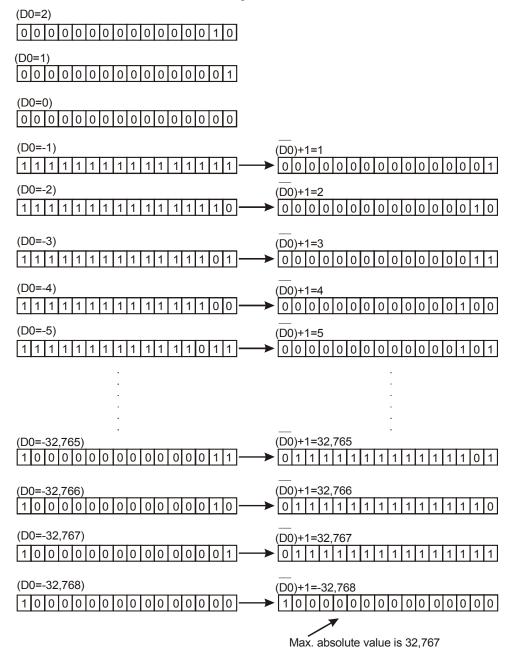
Program Example 2:

Obtaining the absolute value of a negative value:


- a) When the 15th bit of D0 is "1", M0 = On. (D0 is a negative value).
- b) When M0 = Off → On, NEG instruction will obtain 2's complement of D0 and further its absolute value.

Program Example 3:

Obtaining the absolute value by the remainder of the subtraction. When X0 = On,


- a) If D0 > D2, M0 = On.
- b) If D0 = D2, M1 = On.
- c) If D0 < D2, M2 = On.
- d) D4 is then able to remain positive.

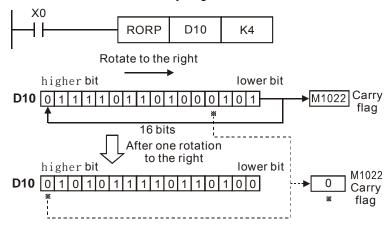
Remarks:

Negative value and its absolute value

- a) The sign of a value is indicated by the highest (most left) bit in the register. 0 indicates that the value is a positive one and 1 indicates that the value is a negative one.
- b) NEG instruction is able to convert a negative value into its absolute value.

API		Mr	nem	onic			0	perar	nds					Fι	ınct	ion	Controllers
30	D	P D n Rotation Right						ES/EX/SS SA/SX/SC EH/SV									
T	уре	В	it De	vice	s			V	ord I	Devic	es					Pr	ogram Steps
OP	X Y M S				S	KH	l KnX	KnY	KnM	KnS	Τ	С	D	Е	F	ROR, RORP:	5 steps

PULSE	16-bit	32-bit
I OLOL	וטיטונ	JZ-DIL
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV


D: Device to be rotated **n**: Number of bits to be rotated in 1 rotation

Explanations:

- 1. If **D** is used in device F, only 16-bit instruction is applicable.
- 2. If **D** is designated as KnY, KnM, and KnS, only K4 (16-bit) and K8 (32-bit) are valid.
- 3. Range of **n**: K1 ~ K16 (16-bit); K1 ~ K32 (32-bit)
- 4. See the specifications of each model for their range of use.
- 5. Flag: M1022 (carry flag)
- 6. This instruction rotates the device content designated by **D** to the right for **n** bits.
- 7. This instruction adopts pulse execution instructions (RORP, DRORP).

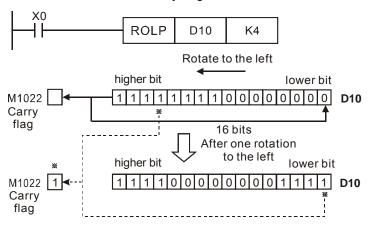
Program Example:

When $X0 = Off \rightarrow On$, the 16 bits (4 bits as a group) in D10 will rotate to the right, as shown in the figure below. The bit marked with % will be sent to carry flag M1022.

API		Mnemonic		Operands	Function	Controllers
31	D	ROL	Р	D n	Rotation Left	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	ROL, ROLP: 5 steps
D								*	*	*	*	*	*	*	*	DROL, DROLP: 9 steps
n					*	*										2

			PUI	_SE							16	-bit							32	-bit			
ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


D: Device to be rotated **n**: Number of bits to be rotated in 1 rotation

Explanations:

- 1. If **D** is used in device F, only 16-bit instruction is applicable.
- 2. If **D** is designated as KnY, KnM, and KnS, only K4 (16-bit) and K8 (32-bit) are valid.
- 3. Range of **n**: K1 ~ K16 (16-bit); K1 ~ K32 (32-bit)
- 4. See the specifications of each model for their range of use.
- 5. Flag: M1022 (carry flag)
- 6. This instruction rotates the device content designated by **D** to the left for **n** bits.
- 7. This instruction adopts pulse execution instructions (ROLP, DROLP).

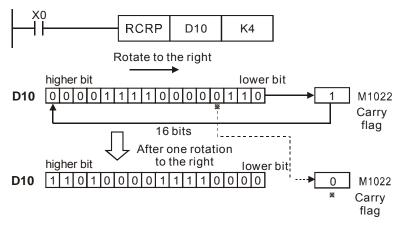
Program Example:

When X0 = Off→On, the 16 bits (4 bits as a group) in D10 will rotate to the left, as shown in the figure below. The bit marked with ¾ will be sent to carry flag M1022.

API		Mnemonic		Operands	Function	Controllers
32	D	RCR	Р	D n	Rotation Right with Carry	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	evice	es				W	ord [Devic	es					Program Steps
OP		Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	D	Е	F	RCR, RCRP: 5 steps
	D								*	*	*	*	*	*	*	*	DRCR, DRCRP: 9 steps
	n					*	*										2.13.1, 2.13.11.13.10

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV


D: Device to be rotated **n**: Number of bits to be rotated in 1 rotation

Explanations:

- 1. If **D** is used in device F, only 16-bit instruction is applicable.
- 2. If **D** is designated as KnY, KnM, and KnS, only K4 (16-bit) and K8 (32-bit) are valid.
- 3. Range of **n**: K1 ~ K16 (16-bit); K1 ~ K32 (32-bit)
- 4. See the specifications of each model for their range of use.
- 5. Flag: M1022 (carry flag)
- 6. This instruction rotates the device content designated by **D** together with carry flag M1022 to the right for **n** bits.
- 7. This instruction adopts pulse execution instructions (RCRP, DRCRP).

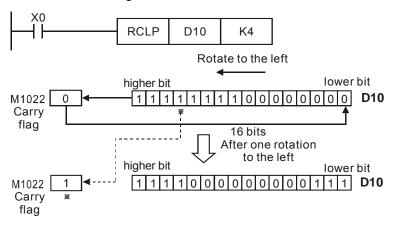
Program Example:

When X0 = Off \rightarrow On, the 16 bits (4 bits as a group) in D10 together with carry flag M1022 (total 17 bits) will rotate to the right, as shown in the figure below. The bit marked with % will be sent to carry flag M1022.

API		Mnemonic		Operands	Function	Controllers
33	D	RCL	Р	D n	Rotation Left with Carry	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Ε	F	RCL, RCLP: 5 steps
D								*	*	*	*	*	*	*	*	DRCL, DRCLP: 9 steps
n					*	*										

		PUI	SE							16	-bit							32	-bit			
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


D: Device to be rotated **n**: Number of bits to be rotated in 1 rotation

Explanations:

- 1. If **D** is used in device F, only 16-bit instruction is applicable.
- 2. If **D** is designated as KnY, KnM, and KnS, only K4 (16-bit) and K8 (32-bit) are valid.
- 3. Range of **n**: K1 ~ K16 (16-bit); K1 ~ K32 (32-bit)
- 4. See the specifications of each model for their range of use.
- 5. Flag: M1022 (carry flag)
- 6. This instruction rotates the device content designated by **D** together with carry flag M1022 to the left for **n** bits.
- 7. This instruction adopts pulse execution instructions (RCLP, DRCLP).

Program Example:

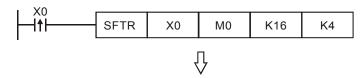
When X0 = Off \rightarrow On, the 16 bits (4 bits as a group) in D10 together with carry flag M1022 (total 17 bits) will rotate to the left, as shown in the figure below. The bit marked with % will be sent to carry flag M1022.

API	Mnemonic			Oper	ands		Function	Controllers
34	SFTR	Р	S	Ө	n ₁	n ₂	Bit Shift Right	ES/EX/SS SA/SX/SC EH/SV

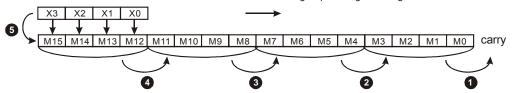
Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	D	Ε	F	SFTR, SFTRP: 9 steps
S	*	*	*	*												
D		*	*	*												
n_1					*	*										
n_2					*	*										

		PUI	_SE							16	-bit							32	-bit			
ES E	X SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Start No. of the shifted device \mathbf{D} : Start No. of the device to be shifted \mathbf{n}_1 : Length of data to be shifted \mathbf{n}_2 : Number of bits to be shifted in 1 shift


Explanations:

- 1. Range of **n**₁: 1~ 1,024
- 2. Range of $\mathbf{n_2}$: $1 \sim \mathbf{n_1}$
- 3. In ES/EX/SS, $1 \le n_2 \le n_1 \le 512$
- 4. ES/EX/SS series MPU does not support E, F index register modification.
- 5. See the specifications of each model for their range of use.
- 6. This instruction shifts the bit device of n_1 bits (desired length for shifted register) starting from **D** to the right for n_2 bits. **S** is shifted into **D** for n_2 bits to supplement empty bits.
- 7. This instruction adopts pulse execution instructions (SFTRP).


Program Example:

- 1. When $X0 = Off \rightarrow On$, $M0 \sim M15$ will form 16 bits and shifts to the right (4 bits as a group).
- 2. The figure below illustrates the right shift of the bits in one scan.
 - **1** M3 \sim M0 \rightarrow carry

 - **6** $X3 \sim X0 \rightarrow M15 \sim M12$ completed

4 bits as a group shifting to the right

API	Mnemonic		Operands		Function	Controllers
35	SFTL	Р	S D n1	n ₂	Bit Shift Left	ES/EX/SS SA/SX/SC EH/SV

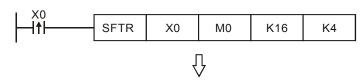
Туре	В	it De	evice	es				W	ord [Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	C	D	П	F	SFTL, SFTLP: 9 steps
S	*	*	*	*												
D		*	*	*												
n ₁					*	*										
n ₂					*	*										

			PUl	SE							16	-bit							32	-bit			
ſ	ES EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

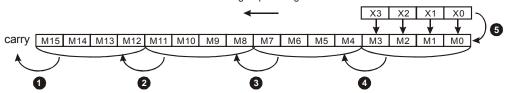
S: Start No. of the shifted device \mathbf{D} : Start No. of the device to be shifted \mathbf{n}_1 : Length of data to be shifted

${f n_2}$: Number of bits to be shifted in 1 shift

Explanations:


- 1. Range of **n**₁: 1~ 1,024
- 2. Range of $\mathbf{n_2}$: $1 \sim \mathbf{n_1}$
- 3. In ES/EX/SS, $1 \le n_2 \le n_1 \le 512$
- 4. ES/EX/SS series MPU does not support E, F index register modification.
- 5. See the specifications of each model for their range of use.
- 6. This instruction shifts the bit device of n_1 bits (desired length for shifted register) starting from **D** to the left for n_2 bits. **S** is shifted into **D** for n_2 bits to supplement empty bits.
- 7. This instruction adopts pulse execution instructions (SFTLP).

Program Example:


- 1. When $X0 = Off \rightarrow On$, $M0 \sim M15$ will form 16 bits and shifts to the left (4 bits as a group).
- 2. The figure below illustrates the left shift of the bits in one scan.

2 M11
$$\sim$$
 M8 \rightarrow M15 \sim M12

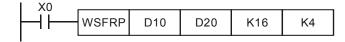
6
$$X3 \sim X0$$
 \rightarrow $M3 \sim M0$ completed

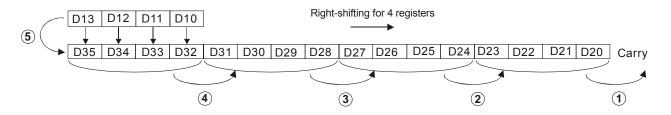
4 bits as a group shifting to the left

API	Mnemonic		Operands	Function	Controllers
36	WSFR	Р	S D n1 n2	Word Shift Left	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	es				W	ord l	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Ε	F	WSFR, WSFRP: 9 steps
S							*	*	*	*	*	*	*			
D								*	*	*	*	*	*			
n ₁					*	*										
n_2					*	*										

ſ			Р	ULS	Ε					1	6-bi	t					3	32-bi	it		
ſ	ES	ΕX	SS	SA	SX	SC	EΗ	ES	EX	SS	SA	SX	SC	Ħ	ES	EX	SS	SA	SX	SC	EΗ

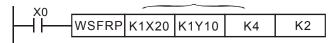

S: Start No. of the shifted device \mathbf{D} : Start No. of the device to be shifted \mathbf{n}_1 : Length of data to be shifted \mathbf{n}_2 : Number of words to be shifted in 1 shift

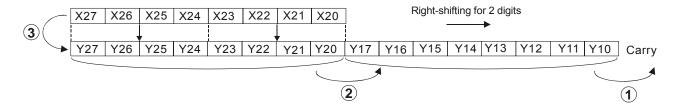

Explanations:

- 1. The type of devices designated by **S** and **D** has to be the same, e.g. K_nX , K_nY , K_nM , and K_nS as a category and T, C, and D as another category.
- 2. Provided the devices designated by **S** and **D** belong to K_n type, the number of digits of K_n has to be the same.
- 3. Range of **n**₁: 1~ 512
- 4. Range of $\mathbf{n_2}$: $1 \sim \mathbf{n_1}$
- 5. See the specifications of each model for their range of use.
- 6. This instruction shifts the stack data of n_1 words starting from D to the right for n_2 words. S is shifted into D for n_2 words to supplement empty words.
- 7. This instruction adopts pulse execution instructions (WSFRP)

Program Example 1:

- 1. When $X0 = Off \rightarrow On$, the 16 register stack data composed of D20 ~ D35 will shift to the right for 4 registers.
- 2. The figure below illustrates the right shift of the words in one scan.
 - **0** D23 ~ D20 \rightarrow carry
 - **②** D27 ~ D24 → D23 ~ D20
 - **3** D31 ~ D28 → D27 ~ D24
 - **4** D35 ~ D32 → D31 ~ D28
 - **6** D13 \sim D10 \rightarrow D35 \sim D32 completed




Program Example 2:

- 1. When X0 = Off→On, the bit register stack data composed of Y10 ~ Y27 will shift to the right for 2 digits.
- 2. The figure below illustrates the right shift of the words in one scan.

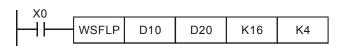
2 Y27 ~ Y20
$$\rightarrow$$
 Y17 ~ Y10

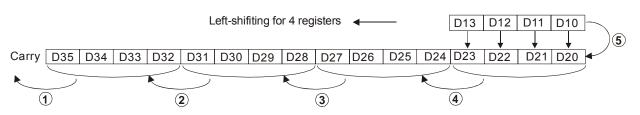
When using Kn type device, please designate the same number of digits.

API	Mnemonic		Operands	Function	Controllers
37	WSFL	Р	S D n1 n2	Word Shift Left	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	es				W	ord l	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Ε	F	WSFL, WSFLP: 9 steps
S							*	*	*	*	*	*	*			
D								*	*	*	*	*	*			
n ₁					*	*										
n_2					*	*										

		PU	LSE							16	-bit							32	-bit			
ES E	X S	S SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


S: Start No. of the shifted device \mathbf{D} : Start No. of the device to be shifted \mathbf{n}_1 : Length of data to be shifted \mathbf{n}_2 : Number of words to be shifted in 1 shift


Explanations:

- 1. The type of devices designated by **S** and **D** has to be the same, e.g. K_nX , K_nY , K_nM , and K_nS as a category and T, C, and D as another category.
- 2. Provided the devices designated by **S** and **D** belong to K_n type, the number of digits of K_n has to be the same.
- 3. Range of **n**₁: 1~ 512
- 4. Range of $\mathbf{n_2}$: $1 \sim \mathbf{n_1}$
- 5. See the specifications of each model for their range of use.
- 6. This instruction shifts the stack data of n_1 words starting from **D** to the left for n_2 words. **S** is shifted into **D** for n_2 words to supplement empty words.
- 7. This instruction adopts pulse execution instructions (WSFLP)

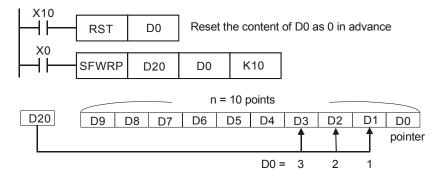
Program Example:

- When X0 = Off→On, the 16 register stack data composed of D20 ~ D35 will shift to the left for 4 registers.
- 2. The figure below illustrates the left shift of the words in one scan.
 - **1** D35 ~ D32 → carry
 - **②** D31 ~ D28 → D35 ~ D32
 - **❸** D27 ~ D24 → D31 ~ D28
 - **4** D23 ~ D20 → D27 ~ D24
 - **6** D13 \sim D10 \rightarrow D23 \sim D20 completed

API	Mnemonic		Operands	Function	Controllers
38	SFWR	Р	S D n	Shift Register Write	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	T	C	D	Е	F	SFWR, SFWRP: 7 steps
S					*	*	*	*	*	*	*	*	*	*	*	
D								*	*	*	*	*	*			
n					*	*										

PU	JLSE							16	-bit							32	-bit			
ES EX SS SA	S EX SS SA SX SC EH SV					EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


S: Device of stack data written in D: Start No. of stack data n: Length of stack data

Explanations:

- 1. Range of **n**: 2 ~ 512
- 2. See the specifications of each model for their range of use.
- 3. Flag: M1022 (carry flag)
- 4. The stack data of **n** words starting from **D** are defined as "first-in, first-out" stack data and designate the first device as the pointer. When the instruction is executed, the content in the pointer pluses 1, and the content in the device designated by **S** will be written into the designated location in the "first-in, first-out" stack data designated by the pointer. When the content in the pointer exceeds **n** 1, this instruction will not process any new value written in and the carry flag M1022 = On.
- 5. This instruction adopts pulse execution instructions (SFWRP)

Program Example:

- Pointer D0 is reset as 0. When X0 = Off→On, the content in D20 will be sent to D1 and the content in pointer D0 becomes 1. After the content in D20 is changed, make X0 = Off→On again, and the content in D2 will be sent to D2 and the content in D0 becomes 2.
- 2. The figure below illustrates the shift and writing in 1~2 execution of the instruction.
 - The content in D20 is sent to D1.
 - 2 The content in pointer D0 becomes 1.

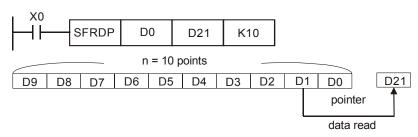
Remarks:

This instruction can be used together with API 39 SFRD for the reading/writing of "first-in, first-out" stack data.

API	Mnemonic		Operands	Function	Controllers
39	SFRD	Р	S D n	Shift Register Read	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
ОР		Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	SFRD, SFRDP: 7 steps
	S								*	*	*	*	*	*			
	D								*	*	*	*	*	*	*	*	
	n					*	*										

Ī				PUI	SE							16-	-bit							32	-bit			
ſ	ES I	EΧ	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


S: Start No. of stack data D: Device of stack data read out n: Length of stack data

Explanations:

- 1. Range of **n**: 2 ~ 512
- 2. See the specifications of each model for their range of use.
- 3. Flag: M1020 (zero flag)
- 4. The stack data of **n** words starting from **S** are defined as "first-in, first-out" stack data and designate the first device as the pointer. When the instruction is executed, the content in the pointer minuses 1, and the content in the device designated by **S** will be written into the designated location in the "first-in, first-out" stack data designated by the pointer. When the content in the pointer equals 0, this instruction will not process any new value written in and the zero flag M1020 = On.
- 5. This instruction adopts pulse execution instructions (SFRDP)

Program Example:

- When X0 = Off→On, the content in D1 will be sent to D21 and D9~D2 will shift to the right for 1 register (content
 in D9 remains unchanged) and the content in D0 minus 1.
- 2. The figure below illustrates the shift and reading in 1~3 execution of the instruction.
 - The content in D1 is sent to D21.
 - D9 ~ D2 shift to the right for 1 register.
 - The content in D0 minuses 1.

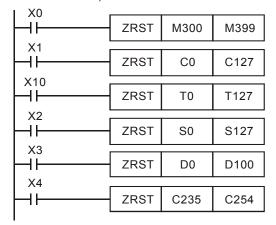
Remarks:

This instruction can be used together with API 38 SFWR for the reading/writing of "first-in, first-out" stack data.

API	Mnemonic		Operands	Function	Controllers
40	ZRST	Р	D 1 D 2	Zero Reset	ES/EX/SS SA/SX/SC EH/SV

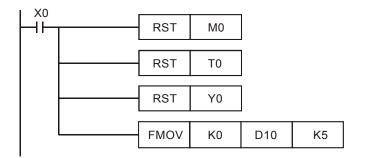
	Туре	В	it De	vice	s				W	ord I	Devic	es					Program Steps
C	P \	Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	D	Е	F	ZRST, ZRSTP: 5 steps
	D_1		*	*	*							*	*	*			
	D_2		*	*	*							*	*	*			

		PUl	SE							16	-bit							32	-bit			
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


 D_1 : Start device of the range to be reset D_2 : End device of the range to be reset

Explanations:

- 1. No. of operand $D_1 \le No.$ of operand D_2 .
- 2. D_1 and D_2 have to designate devices of the same type.
- 3. ES/EX/SS series MPU does not support E, F index register modification.
- 4. See the specifications of each model for their range of use.
- 5. When the instruction is executed, area from \mathbf{D}_1 to \mathbf{D}_2 will be cleared.
- 6. In ES/EX/SS, 16-bit counter and 32-bit counter cannot use ZRST instruction together.
- 7. In SA/EH, 16-bit counter and 32-bit counter can use ZRST instruction together.
- 8. When $D_1 > D_2$, only operands designated by D_2 will be reset.


Program Example:

- 1. When X0 = On, auxiliary relays M300 ~ M399 will be reset to Off.
- 2. When X1 = On, 16 counters C0 ~ C127 will all be reset (writing in 0; contact and coil being reset to Off).
- 3. When X10 = On, timers T0 ~ T127 will all be reset (writing in 0; contact and coil being reset to Off).
- 4. When X2 = On, steps S0 ~ S127 will be reset to Off.
- 5. When X3 = On, data registers D0 ~ D100 will be reset to 0.
- 6. When X4 = On, 32-bit counters C235 ~ C254 will all be reset. (writing in 0; contact and coil being reset to Off)

Remarks:

- 1. Devices, e.g. bit devices Y, M, S and word devices T, C, D, can use RST instruction.
- 2. API 16 FMOV instruction is also to send K0 to word devices T, C, D or bit registers KnY, KnM, KnS for reset.

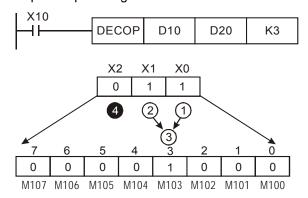
API	Mnemonic		Operands	Function	Controllers
41	DECO	Р	S D n	Decode	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	es				W	ord [Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	C	D	Е	F	DECO, DECOP: 7 steps
S	*	*	*	*	*	*					*	*	*	*	*	
D		*	*	*							*	*	*	*	*	
n					*	*										

	PU	LSE							16	-bit							32	-bit			
ES EX S	S EX SS SA SX SC EH SV					ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Source device to be decoded **D**: Device

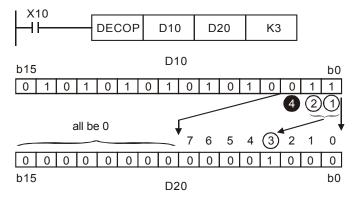
D: Device for storing the decoded result


n: Length of decoded bits

Explanations:

- 1. Range of **n** when **D** is a bit device: 1 ~ 8
- 2. Range of **n** when **D** is a word device: 1 ~ 4
- 3. ES/EX/SS series MPU does not support E, F index register modification.
- 4. See the specifications of each model for their range of use.
- 5. The lower "n" bits of **S** are decoded and the results of "2" bits are stored in **D**.
- 6. This instruction adopts pulse execution instructions (DECOP)

Program Example 1:


- 1. When **D** is used as a bit device, $\mathbf{n} = 1 \sim 8$. Errors will occur if $\mathbf{n} = 0$ or $\mathbf{n} > 8$.
- 2. When $\mathbf{n} = 8$, the maximum points to decode is $2^8 = 256$ points. (Please be aware of the storage range of the devices after the decoding and do not use the devices repeatedly.)
- 3. When X10 = Off \rightarrow On, this instruction will decode the content in X0 \sim X2 to M100 \sim M107.
- 4. When the source of data is 1 + 2 = 3, set M103, the 3^{rd} bit starting from M100, as 1.
- 5. After the execution of this instruction is completed and X10 turns to Off, the content that has been decoded and output keeps acting.

Program Example 2:

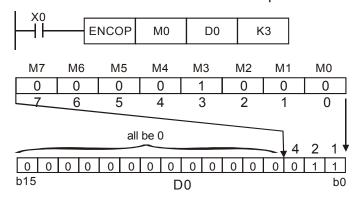
- 1. When **D** is used as a word device, $n = 1 \sim 4$. Errors will occur if n = 0 or n > 4.
- 2. When $\mathbf{n} = 4$, the maximum points to decode is $2^4 = 16$ points.
- 3. When X10 = Off→On, this instruction will decode b2 ~ b0 in D10 to b7 ~ b0 in D20. b15 ~ b8 that have not been used in D20 will all become 0.

- 4. The lower 3 bits of D10 are decoded and stored in the lower 8 bits of D20. The higher 8 bits of D20 are all 0.
- 5. After the execution of this instruction is completed and X10 turns to Off, the content that has been decoded and output keeps acting.

API	Mnemonic		Operands	Function	Controllers
42	ENCO	Р	S D n	Encode	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	s				W	ord [Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	C	D	П	F	ENCO, ENCOP: 7 steps
S	*	*	*	*							*	*	*	*	*	
D											*	*	*	*	*	
n					*	*										

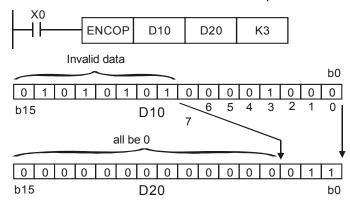
Ī				PUI	_SE							16	-bit							32	-bit			
П	ES EX SS SA SX SC EH SV				ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EH.	SV				


S: Source device to be encoded **D**: Device for storing the encoded result **n**: Length of encoded bits

Explanations:

- 1. Range of **n** when **S** is a bit device: 1 ~ 8
- 2. Range of **n** when **S** is a word device: 1 ~ 4
- 3. ES/EX/SS series MPU does not support E, F index register modification.
- 4. See the specifications of each model for their range of use.
- 5. The lower "2" bits of **S** are encoded and the result is stored in **D**.
- 6. If several bits of **S** are 1, the first bit that is 1 will be processed orderly from high bit to low bit.
- 7. If no bits of S is 1, M1067, M1068 = On and D1067 records the error code 0E1A (hex).
- 8. This instruction adopts pulse execution instructions (ENCOP)

Program Example 1:


- 1. When **S** is used as a bit device, $\mathbf{n} = 1 \sim 8$. Errors will occur if $\mathbf{n} = 0$ or $\mathbf{n} > 8$.
- 2. When $\mathbf{n} = 8$, the maximum points to encode is $2^8 = 256$ points.
- 3. When X10 = Off \rightarrow On, this instruction will encode the 2³ bits data (M0 \sim M7) and store the result in the lower 3 bits (b2 \sim b0) of D0. b15 \sim b3 that have not been used in D0 will all become 0.
- 4. After the execution of this instruction is completed and X10 turns to Off, the content in D remains unchanged.

Program Example 2:

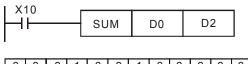
- 1. When **S** is used as a word device, $n = 1 \sim 4$. Errors will occur if n = 0 or n > 4.
- 2. When $\mathbf{n} = 4$, the maximum points to decode is $2^4 = 16$ points.
- 3. When X10 = Off \rightarrow On, this instruction will encode 2³ bits (b0 ~ b7) in D10 and stores the result in the lower 3 bits (b2 ~ b0) of D20. b15 ~ b3 that have not been used in D20 will all become 0. b8 ~ b15 of D10 are invalid data.

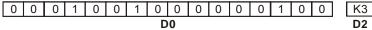
4. After the execution of this instruction is completed and X10 turns to Off, the content in D remains unchanged.

API		Mnemonic		Operands	Function	Controllers
43	D	SUM	Р	SD	Sum of Active Bits	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	es				W	ord [Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	D	Е	F	SUM, SUMP: 5 steps
S					*	*	*	*	*	*	*	*	*	*	*	DSUM, DSUMP: 9 steps
D								*	*	*	*	*	*	*	*	200m, 200m : 0 diapo

PULSE	16-bit	32-bit
E0 EV 00 04 0V 00 EV 0V		
ES EX SS SA SX SC EH SV	IES IEX ISS ISA ISX ISC IEH ISV	ES EX SS SA SX SC EH SV


S: Source device **D**: Destination device for storing counted value


Explanations:

- 1. If **S** and **D** are used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. Flag: M1020 (zero flag)
- 4. Among the bits of **S**, the total of bits whose content is "1" will be stored in **D**.
- 5. When all the 16 bits of **S** are "0", zero flag M1020 = On.
- 6. When 32- instruction is in use, **D** will occupy 2 registers.

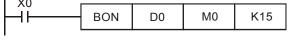
Program Example:

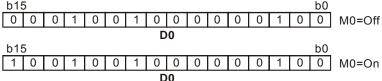
When X10 = On, among the 16 bits of D0, the total of bits whose content is "1" will be stored in D2.

API		Mnemonic		Operands	Function	Controllers
44	D	BON	Р	S D n	Check Specified Bit Status	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
ОР	X	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	BON, BONP: 7 steps
S					*	*	*	*	*	*	*	*	*	*	*	DBON, DBONP: 13 steps
D		*	*	*												
n					*	*					*	*	*	*	*	

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV


S: Source device D: Device for storing check result n: Bits specified for check


Explanations:

- 1. If **S** is used in device F, only 16-bit instruction is applicable.
- 2. Range of \mathbf{n} : 0 ~ 15 (16-bit instruction); 0 ~ 31 (32-bit instruction)
- 3. See the specifications of each model for their range of use.
- 4. When the \mathbf{n}^{th} bit of **S** is "1", D = On; when the \mathbf{n}^{th} bit of **S** is "0", D = Off.

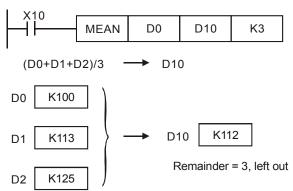
Program Example:

- 1. When X0 = On, assume the 15^{th} bit of D0 is "1", and M0 = On. Assume the 15^{th} bit of D0 is "0", and M0 = Off.
- 2. When X0 goes Off, M0 will remains in its previous status.

API		Mnemonic		Operands	Function	Controllers
45	D	MEAN	Р	S D n	Mean	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	T	С	D	Е	F	MEAN, MEANP: 7 steps
S							*	*	*	*	*	*	*			DMEAN, DMEANP: 13 steps
D								*	*	*	*	*	*	*	*	
n		,		,	*	*	*	*	*	*	*	*	*	*	*	

ſ				PUI	LSE							16	-bit							32	-bit			
ſ	ES EX SS SA SX SC EH SV				ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV				


S: Start device to obtain mean value **D**: Destination device for storing mean value **n**: The number of consecutive source devices used

Explanations:

- 1. If **D** is used in device F, only 16-bit instruction is applicable.
- 2. Range of **n**: 1 ~ 64
- 3. In ES/EX/SS series models: Operand S cannot designate KnX, KnY, KnM, KnS.
- 4. ES/EX/SS series MPU does not support E, F index register modification.
- 5. See the specifications of each model for their range of use.
- 6. After the content of **n** devices starting from **S** are added up, the mean value of the result will be stored in **D**.
- 7. Remainders in the operation will be left out.
- 8. Provided the No. of designated device exceeds its normal range, only the No. within the normal range can be processed.
- 9. If **n** falls without the range of 1 ~ 64, PLC will determine it as an "instruction operation error".

Program Example:

When X10 = On, the contents in 3 (n = 3) registers starting from D0 will be summed and then divided by 3. The obtained mean value will be stored in D10 and the remainder will be left out.

API	Mnemonic	Operands	Function	Controllers
46	ANS	S m D	Timed Annunciator Set	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	it De	evice	s		Word Devices								Program Steps		
0	P	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	ANS: 7 steps
	S											*					
	m					*											
	D				*												

PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					

S: Timer for monitoring annunciator m: Time setting D: Annunciator device

Explanations:

- 1. Range of **S**: for SA/SX/SC T0 ~ T191; for EH/EH2/SV T0 ~ T199.
- 2. **m** can designate K1 ~ K32,767 (unit: 100ms)
- 3. Range of **D**: for SA/SX/SC S896 ~ S1023; for EH/EH2/SV S900 ~ S1023.
- 4. See the specifications of each model for their range of use.
- 5. Flags: M1048 (annunciator in action); M1049 (valid monitoring)
- 6. This instruction is used for enabling the annunciator.

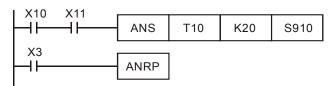
Program Example:

If X3 = On for more than 5 seconds, annuniciator point S999 = On. Even X3 goes Off afterwards, S999 will still keep On. However, T10 will be reset to Off and the present value = 0.

API	Mnemonic		Operands	Function	Controllers
47	ANR	Р		Annunciator Reset	ES/EX/SS SA/SX/SC EH/SV

OP	Descriptions	Program Steps
N/A		ANR, ANRP: 1 steps

PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					


Explanations:

- 1. No operand.
- 2. This instruction is used for resetting the annunciator.
- 3. When more than one annuciators are On, the annunciator of smaller number will be reset.
- 4. This instruction adopts pulse execution instructions (ANRP)

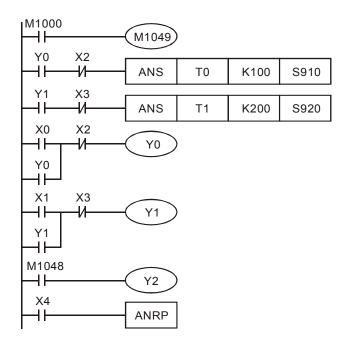
Program Example:

1. If X10 and X11 = On at the same time for more than 2 seconds, annuniciator point S910 = On. Even X10 and X11 go Off afterwards, S910 will still keep On. However, T10 will be reset to Off and the present value = 0.

- 2. When X10 and X11 are On at the same time for less than 2 seconds, the present value of T10 will be reset to 0.
- 3. When X3 goes from Off to On,
 - S896 ~ S1023 in SA/SX/SX are able to reset the annunciators in action.
 - S900 ~ S1023 in EH/EH2/SV are able to reset the annunciators in action.
- 4. When X3 goes from Off to On again, the annuniator with secondary smaller No. will be reset.

Remarks:

- Flag:
 - a) M1048 (annunciator in action): When M1049 = On, any of the annunciators among S896 \sim S1023 in SA/SX/SC or S900 \sim S1023 in EH/EH2/SV starts output, M1048 will be On.
 - b) M1049 (valid monitoring): When M1049 = On, D1049 will automatically display the annuciator of the smallest number in action.
- 2. Application of annunciators:


I/O point configuration:

X0: Forward switch Y0: Forward S910: Forward annunciator X1: Backward switch Y1: Backward S920: Backward annunciator

X2: Front position switch Y2: Annunciator indicator

X3: Back position switch

X4: Annunciatro reset button

- 1. M1048 and D1049 are valid only when M1049 = On.
- 2. When Y0 = On for more than 10 seconds and the device fails to reach the frong position X2, S910= On.
- 3. When Y1 = On for more than 10 seconds and the device fails to reach the back position X3, S920= On.

- 4. When backward switch X1 = On and backward device Y1 = On, Y1 will go Off only when the device reaches the back position switch X3.
- 5. Y2 will be On when any annunciator is enabled. Whenever X4 is on, 1 annunciator in action will be reset. The reset starts from the annunciator with the smallest No.

API		Mnemonic		Operands	Function	Controllers
48	D	SQR	Р	SD	Square Root	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	es	Wo			ord I	Devic	es					Program Steps	
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	SQR, SQRP: 5 steps
S					*	*							*			DSQR, DSQRP: 9 steps
D													*			20411, 204111 : 0 01000

PULSE								16-bit									32-bit						
ES E	X	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Source device **D**: Device for storing the result

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1067 (instruction operation error)
- 3. This instruction performs a square root operation on **S** and stores the result in **D**.
- 4. **S** can only be a positive value. If **S** is negative, PLC will regard it as an "instruction operation error" and will not execute this instruction. M1067 and M1068 = On and D1067 records the error code 0E1B (hex).
- 5. The operation result **D** should be integer only, and the decimal will be left out. Borrow flag M1021 = On.
- 6. When the operation result $\mathbf{D} = 0$, zero flag M1020 = On.

Program Example:

When X10 = On, the instruction performs a square root on D0 and stores the result in D12.

$$\sqrt{D0} \rightarrow D12$$

API	Mnemonic Operands			Operands	Function	Controllers
49	D	FLT	Р	SD	Convert BIN integer to binary floating point	ES/EX/SS SA/SX/SC EH/SV

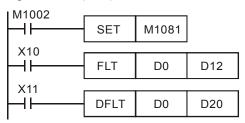
	Туре	Bit Devices							W	ord I	Devic	es					Program Steps
OP		Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	D	Е	F	FLT, FLTP: 5 steps
	S													*			DFLT, DFLTP: 9 steps
	D													*			

PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					

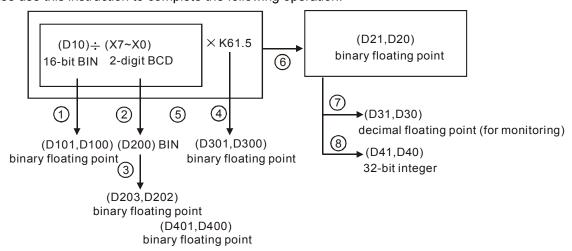

S: Source device for conversion **D**: Device for storing the conversion result

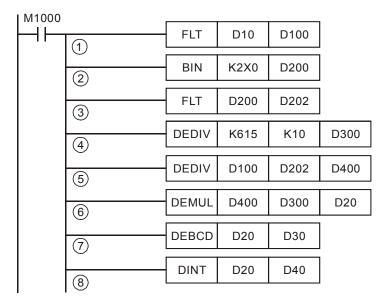
Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1081 (FLT instruction function switch); M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. **D** will occupy 2 consecutive devices
- 4. When M1081 is Off, BIN integer is converted into binary floating point value. At this time, **S** of the 16-bit instruction, FLT, occupies 1 register and **D** occupies 2 registers.
 - a) If the absolute value of the conversion result $> \max$ floating value, carry flag M1022 = On.
 - b) If the absolute value of the conversion result < min. floating value, carry flag M1021 = On.
 - c) If the conversion result is 0, zero flag M1020 = On.
- 5. When M1081 is On, binary floating point value is converted into BIN integer (digits after decimal point are left out). At this time, S of the 16-bit instruction, FLT, occupies 2 registers and D occupies 1 register (action same as that of INT instruction).
- a) If the conversion result exceeds the range of BIN integer available in \mathbf{D} (for 16-bit: -32,768 ~ 32,767; for 32-bit: -2,147,483,648 ~ 2,147,483,647), D will obtain the maximum or minimum value and carry flag M1022 = On.
- b) If any digits is left out during the conversion, borrow flag M1021 = On.
- c) If S = 0, zero flag M1020 = On.
- d) After the conversion, **D** stores the result in 16 bits.


Program Example 1:

- 1. When M1081 = Off, the BIN integer is converted into binary floating point value.
- 2. When X10 = On, D0 (BIN integer) is converted into D13 and D12 (binary floating point value).
- 3. When X11 = On, D1 and D0 (BIN integer) are converted into D21 and D20 (binary floating point value).
- 4. If D0 = K10, X10 will be On. The 32-bit value of the converted floating point will be H41200000 and stored in 32-bit register D12 (D13).
- 5. If 32-bit register D0 (D1) = K100,000, X11 will be On. The 32-bit value of the converted floating point will be H47C35000 and stored in 32-bit register D20 (D21).


Program Example 2:


- 1. When M1081 = On, the binary floating point value is converted into BIN integer (the decimal is left out).
- 2. When X10 = On, D0 and D1 (binary floating point value) are converted into D12 (BIN integer). If D0 (D1) = H47C35000, the floating point value will be presented as 100,000. Due to that the value is larger than the value presentable by the 16-bit register D12, the result will be D12 = K32, 767 and M1022 = On.
- 3. When X11 = On, D1 and D0 (binary floating point value) are converted into D21 and D20 (BIN integer). If D0 (D1) = H47C35000, the floating point value will be presented as 100,000. The result will be stored in the 32-bit register D20 (D21).

Program Example 3:

Please use this instruction to complete the following operation.

- ① D10 (BIN integer) is converted to D101 and D102 (binary floating point value).
- 2 X7 ~ X0 (BCD value) are converted to D200 (BIN value).
- D200 (BIN integer) is converted to D203 and D202 (binary floating point value).
 4The result of K615 ÷ K10 is stored in D301 and D300 (binary floating point value).
- ⑤ The result of binary decimal division (D101, D100) ÷ (D203, D202) is stored in D401 and D400 (binary floating point value).
- The result of binary decimal multiplication (D401, D400) × (D301, D300) is stored in D21 and D20 (binary floating point value).
- ② D21 and D20 (binary floating point value) are converted to D31 and D30 (decimal floating point value).
- ® D21 and D20 (binary floating point value) are converted to D41 and D40 (BIN integer).

API	Mnemonic		Operands	Function	Controllers
50	REF	Р	D n	Refresh	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	es				W	ord l	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	О	D	П	F	REF, REFP: 5 steps
D	*	*														
n					*	*										

PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					

D: Start device to be I/O refreshed **n**: Number of items to be I/O refreshed

Explanations:

- 1. **D** must designate X0, X10, Y0, Y10...the points whose 1s digit is "0". See remarks for more details.
- 2. Range of \mathbf{n} : 8 ~ 256 (has to be the multiple of 8).
- 3. See the specifications of each model for their range of use.
- 4. The status of all PLC input/output terminals will be updated after the program scans to END. When the program starts to scan, the status of the external input terminal is read and stored into the memory of the input point. The output terminal will send the content in the output memory to the output device after END instruction is executed. Therefore, this instruction is applicable when the latest input/output data are needed for the operation.

Program Example 1:

When X0 = On, PLC will read the status of input points $X0 \sim X17$ immediately and refresh the input signals without any input delay.

Program Example 2:

When X0 = On, the 8 output signal from $Y0 \sim Y7$ will be sent to output terminals and refreshed without having to wait for the END instruction for output.

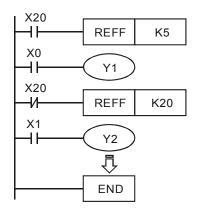
Remarks:

The instruction only process the I/O points X0 \sim X17 and Y0 \sim Y17 of ES/EX/SS/SA/SX/SC series MPU, namely \mathbf{n} = K8 or \mathbf{n} = K16.

API	Mnemonic		Operands	Function	Controllers		
51	REFF	Р	n	Refresh and Filter Adjust	ES/EX/SS SA/SX/SC EH/SV		

	Туре	В	it De	vice	s		Word Devices									Program Steps	
ОР		Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	REFF, REFFP: 3 steps
	n					*	*										

PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					


n: Response time (unit: ms)

Explanation:

- 1. Range of **n**: for SA/SX/SC, $\mathbf{n} = \mathrm{K0} \sim \mathrm{K20}$; for EH/EH2/SV, $\mathbf{n} = \mathrm{K0} \sim \mathrm{K60}$.
- To avoid interferences, X0 ~ X17 of EH/EH2/SV series MPU and X0 ~ X7 of SA/SX/SC series MPU are
 equipped with digital filters on output terminals. Digital filters adjust the response time by REFF instruction.
 This instruction sets up n directly in D1020 (adjusting the response time of X0 ~ X7) and D1021 (adjusting the
 response time of X10 ~ X17).
- 3. Rules for adjusting the reponse time of the filter at X0 ~ X17:
 - a) When the power of PLC turns from Off to On or the END instruction is being executed, the response time will be determined upon the contents in D1020 and D1021.
 - b) You can use MOV instruction in the program to move the time values to D1020 and D1021 and make adjustments in the next scan.
 - c) You can use REFF instruction to change the response time during the execution of the program. The changed response time will be move to D1020 and D1021 and you can make adjustments in the next scan.

Program Example:

- When the power of PLC turns from Off to On, the response time of X0 ~ X17 will be determined by the contents in D1020 and D1021.
- 2. When X20 = On, REFF K5 will be executed and the response time will be changed to 5ms for the adjustment in the next scan.
- When X20 = Off, the REFF K20 will be executed and the response time will be changed to 20ms for the adjustment in the next scan.

Remarks:

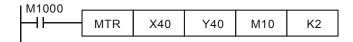
When inserting an interruption subroutine in the program or using the high speed counter or API 56 SPD instruction, the corresponding signals at the input terminals will not delay and has nothing to do with this instruction.

API	Mnemonic	Operands	Function	Controllers
52	MTR	\$ D ₁ D ₂ n	Input Matrix	ES/EX/SS SA/SX/SC EH/SV

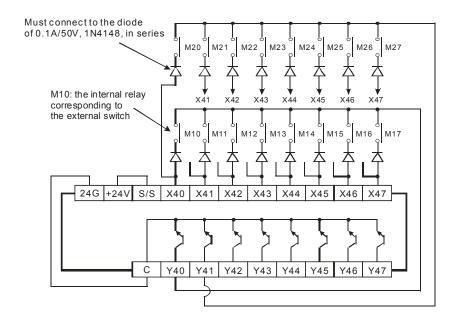
Туре	В	it De	evice	es		Word Devices									Program Steps	
ОР	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	О	Н	F	MTR: 9 steps
S	*															
D_1		*														
D_2		*	*	*												
n					*	*										

PULSE	16-bit	32-bit				
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV				

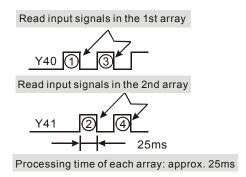
 $\textbf{S} : \text{Start device of matrix input} \qquad \textbf{D}_1 : \text{Start device of matrix output} \qquad \textbf{D}_2 : \text{Corresponding start device for matrix scan}$


n: Number of arrays in matrix scan

Explanations:


- 1. **S** must designate X0, X10...the X points whose 1st digit is "0" and occupies 8 consecutive points.
- 2. **D**₁ must designate Y0, Y10...the Y points whose 1st digit is "0" and occupies n consecutive points.
- 3. **D**₂ must designate Y0, M0. S0...the Y, M, S points whose 1st digit is "0".
- 4. Range of **n**: 2 ~ 8.
- 5. See the specifications of each model for their range of use.
- 6. Flag: M1029 (execution of the instruction is completed).
- 7. **S** is the start device No. of all input terminals connected to the matrix. Once **S** is designated, the 8 points following the No. will be the input terminals in the matrix.
- 8. **D**₁ designate the start device No. of transistor output Y in the matrix scan.
- 9. This instruction occupies continuous 8 input devices starting from S. n external output terminals starting from D₁ read the 8 switches of n arrays by matrix scan, obtaining 8 × n multiple-matrix input points. The status of scanned switches will be stored in the devices starting from D₂.
- 10. Maximum 8 input switches can be parallelly connected in 8 arrays and obtaining 64 input points (8 × 8 = 64).
- 11. When the 8-point 8-array matrix inputs are in use, the reading time of each array is approximately 25ms, totaling the reading of 8 arrays 200ms, i.e. the input signals with On/Off speed of over 200ms are not applicable in a matrix input.
- 12. The drive contact of this instruction uses normally On contact M1000.
- 13. Whenever this instruction finishes a matrix scan, M1029 will be On for one scan period.
- 14. There is no limitation on the number of times using the instruction, but only one instruction can be executed in a period of time.

Program Example:


1. When PLC RUN, MRT instruction will start to be executed. The statuses of the external 2 arrays of 16 switches will be read in order and stored in the internal relays M10 ~ M17, M20 ~ M27.

2. The figure below illustrates the external wiring of the 2-array matrix input loop constructed by X40 ~ X47 and Y40 ~ Y41. The 16 switches correponds to the internal relays M10 ~ M17, M20 ~ M27. Should be used with MTR instruction.

3. See the figure above. The 8 points starting from X40 start to perform a matrix scan from Y40 \sim Y41 (n = 2). D_2 designates that the start device No. of the read results is M10, indicating that the first array is read to M10 \sim M17 and the second array is read to M20 \sim M27.

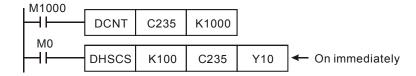
API		Mnemonic	Operands	Function	Controllers
53	D	HSCS	\$1\$2 D	High Speed Counter Set	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	O	D	П	F	DHSCS: 13 steps
S ₁					*	*	*	*	*	*	*	*	*	*		
S ₂												*				
D		*	*	*									·			

PULSE								16	-bit				32-bit								
ES EX SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S₁: Comparative value

S₂: No. of high speed counter

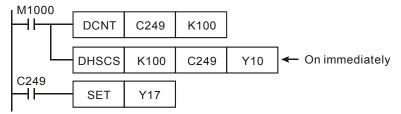

D: Comparison result

Explanations:

- 1. **S**₂ has to designate the No. of high speed counters C235 ~ C255. See remarks for more details.
- 2. **D** can designate $10 \square 0$; $\square = 1 \sim 6$. ES series MPU does not support this.
- 3. **D** of ES and SA series MPU does not support E, F index register modification.
- 4. See the specifications of each model for their range of use.
- 5. Flags: M1289 ~ M1294 are interruption disability of the high speed counters in EH/EH2/SV series MPU. See Program Example 3 for more details.
- 6. The high speed counter inputs counting pulses from the corresponding external input terminals $X0 \sim X17$ by inserting an interruption. When the high speed counter designated in S_2 pluses 1 or minuses 1, DHSCS instruction will perform a comparison immediately. When the present value in the high speed counter equals the comparative value designated in S_1 , device designated in D will turn On. Even the afterward comparison results are unequal, the device will still be On.
- 7. If the devices specified as the device **D** are Y0 ~ Y17, when the compare value and the present value of the high-speed counter are equal, the comparison result will immediately output to the external inputs Y0 ~ Y17, and other Y devices will be affected by the scan cycle. However, M, S devices are immediate output and will not be affected by the scan cycle.

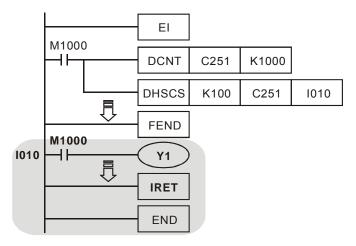
Program Example 1:

After PLC RUN and M0 = On, DHSCS instruction will be executed. When the present value in C235 changes from 99 to 100 or 101 to 100, Y10 will be On constantly.



Program Example 2:

Differences between Y output of DHSCS instruction and general Y output:


a) When the present value in C249 changes from 99 to 100 or 101 to 100, Y10 outputs immediately to the external output point by interruption and has nothing to do with the PLC scan time. However, the time will still be delayed by the relay (10ms) or transistor (10us) of the output module.

b) When the present value in C249 changes from 99 to 100, the drive contact of C249 will be On immediately. When the execution arrives at SET Y17, Y17 will still be affected by the scan time and will output after END instruction.

Program Example 3:

- 1. High speed counter interruption:
 - a) Operand **D** of DHSCS instruction can designate $10 \square 0$, $\square = 1 \sim 6$, as the timing of interruption when the counting reaches its target.
 - b) ES/EX/SS series MPU does not support high speed counter interruption.
 - c) SA/SX/SC series MPU supports high speed counter interruption. However, when DHSCS instruction designates an I interruption, the designated high speed counter cannot be used in DHSCS, DHSCR, DHSZ instructions. Misuse of high speed counter will result in error.
 - d) For SA/SX/SC series MPU, when the counting reaches the target, the interruption will occur. X0 is the counter for counting input and the interruption No. is I010 (1 phase 2 inputs and A-B phase counter No. C246 ~ C254 can only designate I010). X1 designates I020; X2 designates I030; X3 designates I040; X4 designates I050; X5 designates I060, totaling 6 points.
 - e) When the present value in C251 changes from 99 to 100 or 101 to 100, the program will jump to I010 and execute the interruption service subroutine.

- 2. In SA/SX/SC series MPU, M1059 is "I010 ~ I060 high speed counter interruption forbidden" flag.
- 3. In EH/EH2/SV series MPU, M1289 ~ M1294 are the respectively for I010 ~ I060 "high speed counter interruption forbidden flags", i.e. when M1294 = On, I060 interruption will be forbidden.

	Interruption pointer I No.	Interruption forbidden flag
Ī	I010	M1289
Ī	1020	M1290
Ī	1030	M1291

Interruption pointer I No.	Interruption forbidden flag
1040	M1292
1050	M1293
1060	M1294

Remarks:

- The output contact of the high speed counter and the comparative outputs of API 53 DHSCS, API 34 DHSCR and API 55 DHSZ instructions only perform comparison and contact outputs when there is a counting input. When using data operation instructions, e.g. DADD, DMOV, for changing the present value in the high speed counter or making the present value equals the set value, there will not be comparisons or comparative outputs because there is no counting inputs.
- High speed counters supported by ES/EX/SS series MPU (total bandwidth: 20KHz): 2.

Туре			1-pl	nase 1 ir	nput			1-ph	ase 2 in	puts	2-phase 2 inputs			
Input	C235	C236	C237	C238	C241	C242	C244	C246	C247	C249	C251	C252	C254	
X0	U/D				U/D		U/D	U	U	U	Α	Α	Α	
X1		U/D			R		R	D	D	D	В	В	В	
X2			U/D			U/D			R	R		R	R	
Х3				U/D		R	S			S			S	

- U: Progressively increasing input
- A: A phase input
- S: Input started
- D: Progressively decreasing input B: B phase input
- R: Input cleared
- Input points X0 and X1 can be planned as counters of higher speed (1 phase input can reach 20KHz). However, the total counting frequency of the two input points has to be smaller or equal 20KHz. Provided the input is a 2-phas input signal, the counting frequency will be approximately 4KHz. The frequency of the input points X2 and X3 (1-phase) can reach 10KHz.
- b) For ES/EX/SS series MPU, the uses of DHSCS instructio with DHSCR instruction cannot be more than 4 times.
- 3. High speed counters supported by SA/SX series MPU (total bandwidth: 40KHz):

Туре				1-pł	nase 1 i	input				1-ph	ase 2 ir	nputs	2-phase 2 inputs					
Input	C235	C236	C237	C238	C239	C240	C241	C242	C244	C246	C247	C249	C251	C252	C253	C254		
X0	U/D						U/D		U/D	U	U	U	Α	Α	В	Α		
X1		U/D					R		R	D	D	D	В	В	Α	В		
X2			U/D					U/D			R	R		R		R		
Х3				U/D				R	S			S				S		
X4					U/D													
X5						U/D												

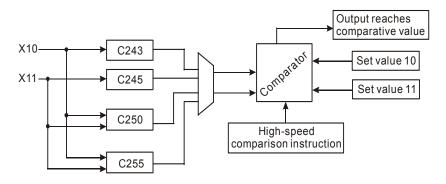
- U: Progressively increasing input
- A: A phase input

S: Input started

- D: Progressively decreasing input
- B: B phase input

- R: Input cleared
- a) Input points X0 and X1 for 1-phase input can reach a frequency of 20KHz and X2 ~ X5 can reach 10KHz. 2-phase input (X0, X1) C251, C252 and C254 can reach a frequency of 4KHz and C253 reach 25KHz (only supports 4 times frequency counting).
- Functions of the input point X5:
 - i) When M1260 = Off, C240 is the general U/D high speed counuter.
 - ii) When M1260 = On and C240 is enabled by DCNT instruction, X5 will be the shared reset signal for C235 ~ C239. The counter C240 will still receive the counting input signals from X5.

4. High speed counters supported by SC series MPU (total bandwidth: 130KHz):

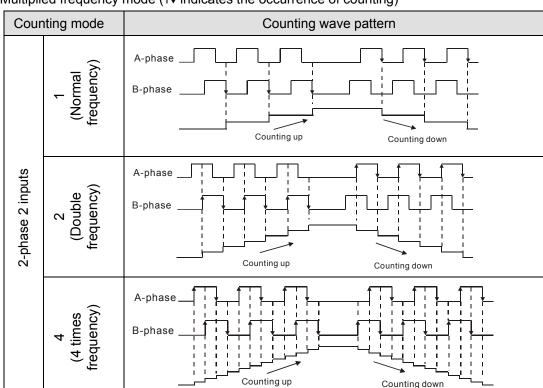

Туре					1-ph	ase 1	input					1-	phase	2 inpu	uts	2-phase inputs				
Input	C235	C236	C237	C238	C239	C240	C241	C242	C243	C244	C245	C246	C247	C249	C250	C251	C252	C254	C255	
X0	U/D						U/D			U/D		U	U	U		Α	Α	Α		
X1		U/D					R			R		D	D	D		В	В	В		
X2			U/D					U/D					R	R			R	R		
X3				U/D				R		S				S				S		
X4					U/D															
X5						D/D														
X10									U/D						J				Α	
X11											U/D				D				В	

- U: Progressively increasing input
- A: A phase input

S: Input started

- D: Progressively decreasing input
- B: B phase input

- R: Input cleared
- a) The functions of the high speed counters of input points X0 ~ X5 are the same of those in SA/SX series
 MPU.
- b) The input points of 1-phase input X10 (C243), X11 (C245) and (X10, X11) C250 can reach a frequency of 100KHz. The total bandwidth of X10 ~ X11 is 130KHz. C255 of the 2-phase input (X10, X11) can reach a frequency of 50KHz.
- c) For SA/SX/SC series MPU, the uses of DHSCS instruction with DHSCR instruction cannot be more than 6 times and the uses of DHSZ instruction cannot be more than 6 times as well. When DHSCR instruction designates I interruption, the designated high speed counter cannot be used in other DHSCS, DHSCR and DHSZ instructions.
- d) The functions of X10 ~ X11 high speed counters in SC series MPU:
 - i) When X10 and X11 are set as 1-phase 1 input or 1-phase 2 inputs. The maximum frequency of a single phase can reach 100KHz. When they are set as 2-phase 2 inputs, the maximum frequency can reach 50KHz.
 - ii) X10 and X11 can select rising-edge counting mode or falling-edge counting mode. X10 is set by D1166 and X11 is set by D1167. K0: rising-edge counting. K1: falling-edge counting. K2: rising/falling edge counting (only supports X10).
 - iii) The counting up and down of C243 are determined by the On/Off of M1243. The counting up and down of C245 are determined by the On/Off of M1245. Rising-edge and falling-edge counting are not able to take place at the same time. The rising-edge trigger and falling-edge trigger of C250 are determined by the content (K0 or K1) of D1166. C255 can only be used in a 4 times frequency counting and you can only select rising-edge trigger.
 - iv) When C243 or C245 is in use, you will not be able to use C250 or C255, and vice versa.
 - v) High speed counter and high speed comparator:



- vi) Explanations on high speed counter and high speed comparator:
 - (1) When DHSCS and DHSCR instructions use the high speed counter (C243/C245/C250/C255), they can only use the set values of 2 groups of high speed comparative instructions. Assume that a group of comparative instruction DHSCS D0 C243 Y10 is already in use, you can only set another group DHSCR D2 C243 Y10 or DHSCS D4 C245 Y10.
 - (2) When DHSZ instruction use the high speed counter (C243/C245/C250/C255), it can only use the set value of a group of comparators.
 - (3) The number of set values in a high-speed comparative instruction offered in SA/SX series MPU will not decrease becasus of the addition of the new high speed counters.
 - (4) If the high-speed comparative instruction DHSCS requires a high-speed reponse output, it is suggested that you use Y10 or Y11 for the output. If you use other general devices for the output, there will be delay of 1 scan period. For example, when in I0x0 interruption, C234 will correspond to I020, C245 to I040 and C250/C255 to I060.
 - (5) The high-speed comparative instruction DHSCR can clear output devices and counter devices, but only the counters used by the same instruction, e.g. DHSCR K10 C243 C243. This function can only applied in the four special high speed counters C243, C245, C250 and C255.

e) Counting modes:

i) The 2-phase 2 inputs counting mode of the high speed counters in ES/EX/SS (V5.5 and above) and SA/SX/SC series MPU is set by special D1022 with normal frequency, double frequency and 4 times frequency modes. The contents in D1022 will be loaded in in the first scan when PLC is switched from STOP to RUN.

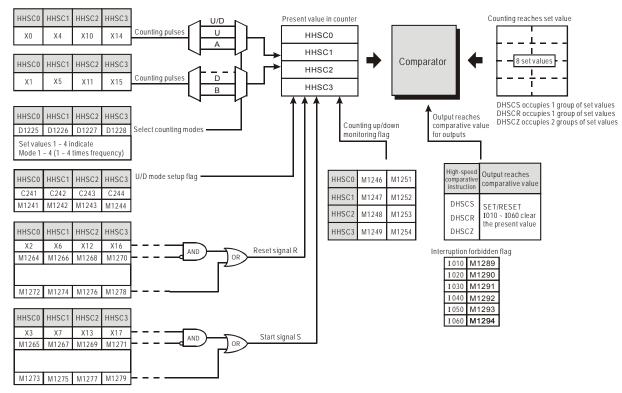
Device No.	Function
D1022	Setting up the multiplied frequency of the counter
D1022 = K1	Normal frequency mode selected
D1022 = K2 or 0	Double frequency mode selected (default)
D1022 = K4	4 times frequency mode selected

ii) Multiplied frequency mode (11 indicates the occurrence of counting)

- 5. EH/EH2/SV series MPU supports high speed counters. C235 ~ C240 are program-interruption 1-phase high speed counter with a total bandwidth of 20KHz, can be used alone with a counting frequency of up to 10KHz. C241 ~ C254 are hardware high speed counter (HHSC). There are four HHSC in EH/EH2/SV series MPU, HHSC0 ~ 3. The pulse input frequency of HHSC0 and HHSC1 can reach 200KHz and that of HHSC2 and HHSC3 can reach 20KHz (1 phase or A-B phase). The pulse input frequency of HHSC0 ~ 3 of 40EH2 series MPU can reach 200KHz, among which:
 - C241, C246 and C251 share HHSC0
 - C242, C247 and C252 share HHSC1
 - C243, C248 and C253 share HHSC2
 - C244, C249 and C254 share HHSC3
 - a) Every HHSC can only be designated to one counter by DCNT instruction.
 - b) There are three counting modes in every HHSC (see the table below):
 - i) 1-phase 1 input refers to "pulse/direction" mode.
 - ii) 1-phase 2 inputs refers to "clockwise/counterclockwise (CW/CCW)" mode.
 - iii) 2-phase 2 inputs refers to "A-B phase" mode.

Counter type			gram-ii n spee							На	rdwar	e high	speed	d cour	nter			
Туре		1-	phase	1 inp	ut		1-	phase	1 inp	ut	1-ր	ohase	2 inpu	uts	2-	phase	2 inpu	uts
Input	C235	C236	C237	C238	C239	C240	C241	C242	C243	C244	C246	C247	C248	C249	C251	C252	C253	C254
X0	U/D						U/D				J				Α			
X1		U/D									D				В			
X2			U/D				R				R				R			
Х3				U/D			S				S				S			
X4					U/D			U/D				U				Α		
X5						U/D						D				В		
X6								R				R				R		
X7								S				S				S		
X10									U/D				U				Α	
X11													D				В	
X12									R				R				R	
X13									S				S				S	
X14										U/D				U				Α
X15														D				В
X16										R				R				R
X17										S				S				S

U: Progressively increasing input B: Progressively decreasing input


A: A phase input

B: B phase input

S: Input started

R: Input cleared

- c) In EH/EH2/SV series MPU, there is no limitation on the times of using the hardware high speed counter related instructions, DHSCS, DHSCR and DHSZ. However, when these instructions are enabled at the same time, there will be some limitations. DHSCS instruction will occupy 1 group of settings, DHSCR 1 group of settings and DHSZ 2 groups of settings. There three instructions cannot occupy 8 groups of settings in total; otherwise the system will ignore the instructions which are not the first scanned and enabled.
- d) System structure of the hardware high speed counters:
 - i) HHSC0 ~ 3 have reset signals and start signals from external inputs. Settings in M1272, M1274, M1276 and M1278 are reset signals of HHSC0, HHSC1, HHSC2 and HHSC3. Settings in M1273, M1275, M1277 and M1279 are start signals of HHSC0, HHSC1, HHSC2 and HHSC3.
 - ii) If the external control signal inputs of R and S are not in use, you can set M1264/M1266/M1268/M1270 and M1265/M1267/M1269/M1271 as True and disable the input signals. The corresponding external inputs can be used again as general input points (see the figure below).
 - iii) When special M is used as a high speed counter, the inputs controlled by START and RESET will be affected by the scan time.

e) Counting modes:

Special D1225 \sim D1228 are for setting up different counting modes of the hardware high speed counters (HHSC0 \sim 3) in EH/EH2/SV series MPU. There are normal \sim 4 times frequency for the counting and the default setting is double frequency.

Countir	ng modes	Wave p	pattern
Туре	Set value in special D	Counting up(+1)	Counting down(-1)
1-phase	1 (Normal frequency)	U/D	
1 input	2 (Double frequency)	U/D FLAG	
1-phase	1 (Normal frequency)	U	
2 inputs	2 (Double frequency)	U	
	1 (Normal frequency)	A	
2-phase	2 (Double frequency)	A	
2 inputs	3 (Triple frequency)	A	
	4 (4 times frequency)	A A A A A A A A A A A A A A A A A A A	

f) Special registers for relevant flags and settings of high speed counters:

Flag	Function
M1150	DHSZ instruction in multiple set values comparison mode
M1151	The execution of DHSZ multiple set values comparison mode is completed.
M1152	Set DHSZ instruction as frequency control mode
M1153	DHSZ frequency control mode has been executed.
	Designating the counting direction of high speed counters C235 ~ C245
M1235 ~ M1245	When M12□□ = Off, C2□□ will perform a counting up.
	When M12 = On, C2 will perform a counting down.
	Monitor the counting direction of high speed counters C246 ~ C255
M1246 ~ M1255	When M12 = Off, C2 will perform a counting up.
	When M12□□ = On, C2□□ will perform a counting down.
M1260	X5 as the reset input signal of all high speed counters
M1261	High-speed comparison flag for DHSCR instruction
M1264	Disable the external control signal input point of HHSC0 reset signal point (R)
M1265	Disable the external control signal input point of HHSC0 start signal point (S)
M1266	Disable the external control signal input point of HHSC1 reset signal point (R)
M1267	Disable the external control signal input point of HHSC1 start signal point (S)
M1268	Disable the external control signal input point of HHSC2 reset signal point (R)
M1269	Disable the external control signal input point of HHSC2 start signal point (S)
M1270	Disable the external control signal input point of HHSC3 reset signal point (R)
M1271	Disable the external control signal input point of HHSC3 start signal point (S)
M1272	Internal control signal input point of HHSC0 reset signal point (R)
M1273	Internal control signal input point of HHSC0 start signal point (S)
M1274	Internal control signal input point of HHSC1 reset signal point (R)
M1275	Internal control signal input point of HHSC1 start signal point (S)
M1276	Internal control signal input point of HHSC2 reset signal point (R)
M1277	Internal control signal input point of HHSC2 start signal point (S)
M1278	Internal control signal input point of HHSC3 reset signal point (R)
M1279	Internal control signal input point of HHSC3 start signal point (S)
M1289	High speed counter I010 interruption forbidden
M1290	High speed counter I020 interruption forbidden
M1291	High speed counter I030 interruption forbidden
M1292	High speed counter I040 interruption forbidden
M1293	High speed counter I050 interruption forbidden
M1294	High speed counter I060 interruption forbidden
M1312	C235 Start input point control
M1313	C236 Start input point control

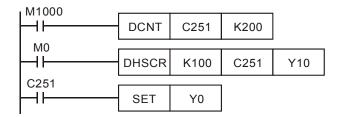
Flag	Function
M1314	C237 Start input point control
M1315	C238 Start input point control
M1316	C239 Start input point control
M1317	C240 Start input point control
M1320	C235 Reset input point control
M1321	C236 Reset input point control
M1322	C237 Reset input point control
M1323	C238 Reset input point control
M1324	C239 Reset input point control
M1325	C240 Reset input point control
M1328	Enable Start/Reset of C235
M1329	Enable Start/Reset of C236
M1330	Enable Start/Reset of C237
M1331	Enable Start/Reset of C238
M1332	Enable Start/Reset of C239
M1333	Enable Start/Reset of C240

Special D	Function						
D1022	Multiplied frequency of A-B phase counters for ES/SA series MPU						
D1150	Table counting register for DHSZ multiple set values comparison mode						
D1151	Register for DHSZ instruction frequency control mode (counting by table)						
D1152 (low word)	In frequency control mode, DHSZ reads the upper and lower limits in the table						
D1153 (high word)	counting register D1153 and D1152.						
D1166	Switching between rising/falling edge counting modes of X10 (for SC series						
DITOO	MPU only)						
D1167	Switching between rising/falling edge counting modes of X11 (for SC series						
Diloi	MPU only)						
D1225	The counting mode of the 1 st group counters (C241, C246, C251)						
D1226	The counting mode of the 2 nd group counters (C242, C247, C252)						
D1227	The counting mode of the 3 rd group counters (C243, C248, C253)						
D1228	The counting mode of the 4 th group counters (C244, C249, C254)						
	Counting modes of HHSC0 ~ HHSC3 in EH/EH2/SV series MPU (default = 2)						
	1: Normal frequency counting mode						
D1225 ~ D1228	2: Double frequency counting mode						
	3: Triple frequency counting mode						
	4: 4 times frequency counting mode						

API	N	Inemonic	Operands	Function	Controllers			
54	D	HSCR	\$1\$2D	High Speed Counter Reset	ES/EX/SS SA/SX/SC EH/SV			

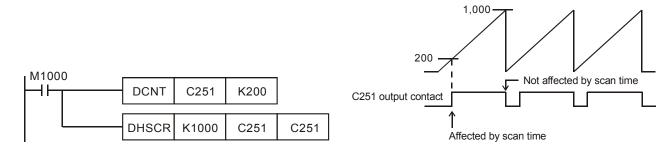
Туре	В	it De	vice	s		Word Devices									Program Steps	
ОР	Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	O	D	Е	F	DHSCR: 13 steps
S ₁					*	*	*	*	*	*	*	*	*	*		
S ₂												*				
D		*	*	*								*	·	•		

PULSE								16-bit							32-bit								
ES	ΕX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	H	SV	ES	EX	SS	SA	SX	SC	ΕH	SV


 S_1 : Comparative value S_2 : No. of high speed counter D: Comparison result

Explanations:

- S₂ has to designate the No. of high speed counters C235 ~ C255. See remarks of API 53 DHSCS for more details.
- 2. **D** of EH/EH2/SV series MPU can designate the No. of high speed counters C241 ~ C254 that are the same as the counters designated by **S**₂.
- 3. **D** of SC series MPU can designate the No. of high speed counters C243, C245, C250 and C255 that are the same as the counters designated by **S**₂.
- 4. **D** of ES/EX/SS/SA/SX series MPU does not support device C.
- 5. See the specifications of each model for their range of use.
- 6. Flags: M1150 ~ M1333; see remarks of API 53 DHSCS for more details. ES/EX/SS/SA/SX/SC series MPU does not support M1261 (high speed counter external reset mode designation); see remarks for more details.
- 7. The high speed counter inputs counting pulses from the corresponding external input terminals X0 ~ X17 by inserting an interruption. When the No. of high-speed counter designated in S₂ "+1" or "-1", DHSCR will perform a comparison immediately. When the present value in the high speed counter equals the comparative value designated in S₁, the device designated in D will turn Off and even the afterward comparison results are unequal, the device will still be Off.
- 8. If the devices designated in **D** are Y0 ~ Y17, when the comparative value equals the present value in the high speed counter, the comparison result will immediately output to the external output terminals Y0 ~ Y17 (and clear the designated Y output) and the rest of Y devices will be affected by the scan cycle. Devices M and S act immediately without being affected by the scan cycle.


Program Example 1:

- 1. When M0 = On and the present value in the high speed counter C251 changes from 99 to 100 or 101 to 100, Y10 will be cleared and Off.
- 2. When the present value in the high speed counter C251 changes from 199 to 200, the contact of C251 will be On and make Y0 = On. However, the program scan time will delay the output.
- 3. Y10 will immediately reset the status when the counting reaches its target. **D** is also able to designate high speed counters of the same No. See Program Example 2.

Program Example 2:

When DHSCR instruction designates the same high speed counter, and the present value in the high speed counter C251 changes from 999 to 1,000 or 1,001 to 1,000, C251 will be reset to Off.

Remarks:

- DVP all series MPU support high speec counters. For the limitation on the use of instructions, see remarks of API 53 DHSCS for more details.
- 2. M1261 of EH/EH2/SV series MPU designates the external reset modes of the high speed counter. Some high speec counters have input points for external reset; therefore, when the input point is On, the present value in the corresponding high speed counter will be cleared to 0 and the output contact will be Off. If you wish the reset to be executed immediately by the external output, you have to set M1261 to be On.
- 3. M1261 can only be used in the hardware high speed counter C241 ~ C255.
- 4. Example:
 - a) X2 is the input point for external reset of C251.
 - b) Assume Y10 = On.
 - c) When M1261 = Off and X2 = On, the present value in C251 will be cleared to 0 and the contact of C251 will be Off. When DHSCR instruction is executed, there will be no counting input and the comparison result will not output. The external output will not execute the reset; therefore Y10 = On will remain unchanged.
 - d) When M1261 = On and X2 = On, the present value in C251 will be cleared to 0 and the contact of C251 will be Off. When DHSCR instruction is executed, there will be no counting input but the comparison result will output. Therefore, Y10 will be reset.

```
DCNT C251 K1000

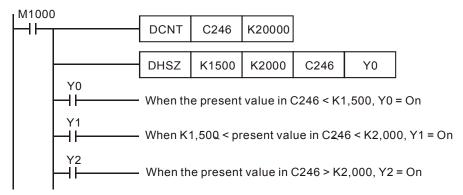
DHSCR K0 C251 Y10

M1261
```

API	ſ	Inemonic	Operands	Function	Controllers
55	D	HSZ	\$1\$2\$D	High Speed Zone Compare	ES/EX/SS SA/SX/SC EH/SV

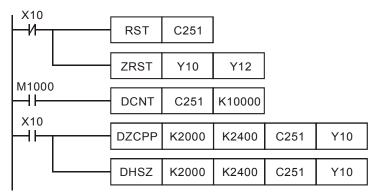
	Туре	В	it De	vice	s		Word Devices									Program Steps	
ОР		Χ	Υ	М	S	Κ	Ι	KnX	KnY	KnM	KnS	Τ	C	D	П	F	DHSZ: 17 steps
	S ₁					*	*	*	*	*	*	*	*	*	*		
	S ₂					*	*	*	*	*	*	*	*	*	*		
	S												*				
	D		*	*	*												

PULSE						16-bit							32-bit								
ES EX SS SA SX SC EH SV					SV	ES	EX	SS	SA	SX	SC	H	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

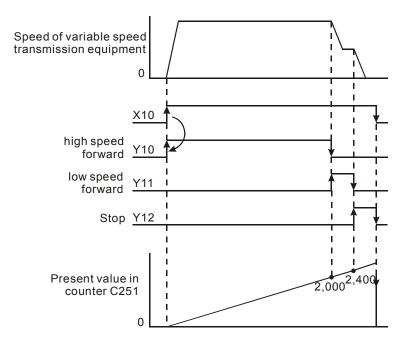

 S_1 : Lower bound of the comparison zone S_2 : Upper bound of the comparison zone S_2 : No. of high speed counter S_2 : Upper bound of the comparison zone S_2 : No. of high speed

Explanations:

- 1. S_1 has to be equal to or smaller than S_2 . $(S_1 \le S_2)$
- 2. When $S_1 > S_2$, the instruction will perform a comparison by using S_1 as the upper bound and S_2 as the lower bound.
- 3. **S** has to designate high speed counters C235 ~ C255, See remarks of API 53 DHSCS for more details.
- 4. **D** will occupy 3 consecutive devices.
- 5. Flags: M1150 ~ M1333; see remarks of API 53 DHSCS for more details. M1150, M1151 DHSZ executing multiple points comparison mode; see Program Example 3 for more details; SA/SX/SC series MPU does not support. M1152, M1153 DHSZ as frequency control mode; see Program Example 4 for more details; SA/SX/SC series MPU does not support.
- 6. The output will not be affected by the scan time.
- 7. The zone comparisons and outputs are all processed by inserting interruptions.

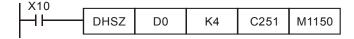

Program Example 1:

- 1. Designate device Y0 and Y0 ~ Y2 will be automatically occupied.
- 2. When DHSZ instruction is being executed and the counting of the high speed counter C246 reaches upper and lower bounds, one of Y0 ~ Y2 will be On

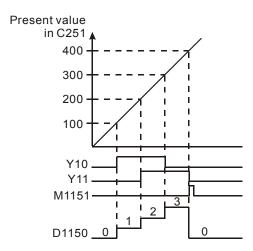


Program Example 2:

- Use DHSZ instruction for high/low speed stop control. C251 is an A-B phase high speed counter and DHSZ only
 performs comparison output when there is a C251 counting pulse input. Therefore, even when the present value
 in the counter is 0, Y10 will not be On.
- 2. When X10 = On, DHSZ will require that Y10 has to be On when the present value in the counter ≤ K2,000. To solve this requirement, you can execute DZCPP instruction when the program was first RUN and compare C251 with K2,000. When the present value in the counter ≤ K2,000, Y10 will be On. DZCPP instruction is a pulse execution instruction and will only be executed once with Y10 being kept On.
- 3. When the drive contact X10 = Off, Y10 ~ Y12 will be reset to Off.


4. The timing diagram

Program Example 3:


- 1. Program Example 3 is only applicable to EH/EH2/SV series MPU.
- 2. The multiple set values comparison mode: If **D** of DHSZ instruction designates a special auxiliary relay M1150, the instruction will be able to compare (output) the present value in the high speed counter with many set values.

- 3. In this mode,
 - **S**₁: start device in the comparison table. **S**₁ can only designate data register D and can be modified by E and F. Once this mode is enabled, **S**₁ will not be changed even the E and F has been changed.
 - S₂: number of group data to be compared. S₂ can only designate K1 ~ K255 or H1 ~ HFF and can be modified by E and F. Once this mode is enabled, S₂ cannot be changed. If S₂ is not within its range, error code 01EA (hex) will display and the instruction will not be executed.
 - S: No. of high speed counter (designated as C241 ~ C254).
 - **D**: Designated mode (can only be M1150)
- 4. The No. of start register designated in S₁ and the number of rows (groups) designated in S₂ construct a comparison table. Please enter the set values in every register in the table before executing the instruction.
- 5. When the present value in the counter C251 designated in **S** equals the set values in D1 and D0, the Y output designated by D2 will be reset to Off (D3 = K0) or On (D3 = K1) and be kept. Output Y will be processed as an interruption. No. of Y output pointss are in decimal (range: 0 ~ 255). If the No. falls without the range, SET/RESET will not be enabled when the comparison reaches its target.
- 6. When this mode is enabled, PLC will first acquire the set values in D0 and D1 as the target value for the first comparison section. At the same time, the index value displayed in D1150 will be 0, indicating that PLC performs the comparison based on the group 0 data.
- 7. When the group 0 data in the table have been compared, PLC will first execute the Y output set in group 0 data and determine if the comparison reaches the target number of groups. If the comparison reaches the target, M1151 will be On; if the comparison has not reached the final group, the content in D1150 will plus 1 and continue the comprison for the next group.
- 8. M1151 is the flag for the completion of one execution of the table, can be Off by the user. Or when the next comparion cycle takes place and the group 0 data has been compared, PLC will automatically reset the flag.
- 9. When the drive contact of the instruction X10 goes Off, the execution of the instruction will be interrupted and the content in D1150 (table counting register) will be reset to 0. However, the On/Off status of all outputs will be remained.
- 10. When the instruction is being executed, all set values in the comparison table will be regarded as valid values only when the scan arrives at END instruction for the first time.
- 11. This mode can only be used once in the program.
- 12. This mode can only be used on the hardware high speed counters C241 ~ C254.
- 13. When in this mode, the frequency of the input counting pulses cannot exceed 50KHz or the neighboring two groups of comparative values cannot differ by 1; otherwise there will not be enough time for the PLC to react and result in errors.

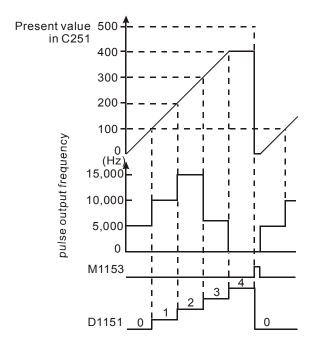
The comparison table:

32-	bit data fo	or com	parison	No.	of Y output	On/O	off indication	Table counting
Hig	High word Low w			140.	or r output	On	ii iiidication	register D1150
D1	(K0)	D0	(K100)	D2	(K10)	D3	(K1)	0
D5	(K0)	D4	(K200)	D6	(K11)	D7	(K1)	1
D9	(K0)	D8	(K300)	D10	(K10)	D11	(K0)	2
D13	(K0)	D12	(K400)	D14	(K11)	D15	(K0)	3
				K10:	Y10	K0: C	Off	$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 0$
				K11:	Y11	K1: C)n	Cyclic scan

14. Special registers for flags and relevant settings:

Flag	Function
M1150	DHSZ instruction in multiple set values comparison mode
M1151	The execution of DHSZ multiple set values comparison mode is completed.

Special D	Function
D1150	Table counting register for DHSZ multiple set values comparison mode

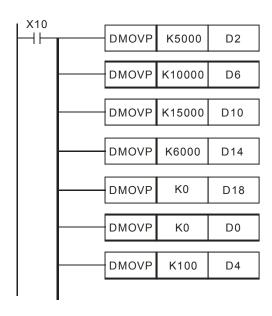

Program Example 4:

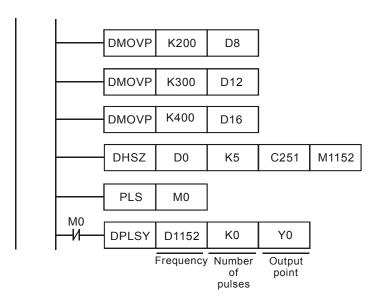
- 1. Program Example 4 is only applicable to EH/EH2/SV series MPU.
- DHSZ and DPLSY instructions are combined for frequency control. If **D** of DHSZ instruction is a special auxiliary relay M1152, the present value in the counter will be able to control the pulse output frequency of DPLSY instruction.
- 3. In this mode,
 - S₁: start device in the comparison table. S₁ can only designate data register D and can be modified by E and
 F. Once this mode is enabled, S₁ will not be changed even the E and F has been changed.
 - S₂: number of group data to be compared. S₂ can only designate K1 ~ K255 or H1 ~ HFF and can be modified by E and F. Once this mode is enabled, S₂ cannot be changed. If S₂ is not within its range, error code 01EA (hex) will display and the instruction will not be executed.
 - S: No. of high speed counter (designated as C241 ~ C254).

- **D**: Designated mode (can only be M1152)
- 4. This mode can only be used once. For EH/EH2/SV series MPU, this mode can only be used in the hardware high speed counter C241 ~ C254. Please enter the set values in every register in the table before executing the instruction.
- 5. When this mode is enabled, PLC will first acquire the set values in D0 and D1 as the target value for the first comparison section. At the same time, the index value displayed in D1152 will be 0, indicating that PLC performs the comparison based on the group 0 data.
- 6. When the group 0 data in the table have been compared, PLC will first execute at the frequency set in group 0 data (D2, D3) and copy the data to D1152 and D1153, determining if the comparison reaches the target number of groups. If the comparison reaches the target, M1153 will be On; if the comparison has not reached the final group, the content in D1151 will plus 1 and continue the comprison for the next group.
- 7. M1153 is the flag for the completion of one execution of the table, can be Off by the user. Or when the next comparion cycle takes place and the group 0 data has been compared, PLC will automatically reset the flag.
- 8. If you wish to use this mode with PLSY instruction, please preset the value in D1152.
- 9. If you wish to stop the execution at the last row, please set the value in the last row K0.
- 10. When the drive contact of the instruction X10 goes Off, the execution of the instruction will be interrupted and the content in D1151 (table counting register) will be reset to 0.
- 11. When in this mode, the frequency of the input counting pulses cannot exceed 50KHz or the neighboring two groups of comparative values cannot differ by 1; otherwise there will not be enough time for the PLC to react and result in errors.

The comparison table:

	32-bit data fo	or com	nparison	Pulse outpu	ut frequency	Table counting
Н	igh word	L	ow word	0 ~ 20	00KHz	register D1151
D1	(K0)	D0	(K0)	D3, D2	(K5,000)	0
D5	(K0)	D4	(K100)	D7, D6	(K10,000)	1
D9	(K0)	D8	(K200)	D11, D10	(K15,000)	2
D13	(K0)	D12	(K300)	D15, D14	(K6,000)	3
D17	(K0)	D16	(K400)	D19, D18	(K0)	4
						$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$
						Cyclic scan




12. Special registers for flags and relevant settings:

Flag	Function
M1152	DHSZ instruction in frequency control mode
M1153	The execution of DHSZ frequency control mode is completed.

Special D	Function					
D1151	Table counting register for DHSZ multiple set values comparison mode					
D1152 (low word) D1153 (high word)	In frequency control mode, DHSZ reads the upper and lower limits in the table counting register D1153 and D1152.					
D1336 (low word) D1337 (high word)	Current number of pulses output by DPLSY instruction					

13. The complete program:

- 14. During the execution of DHSZ instruction, do not modify the set values in the comparison table.
- 15. The designated data will be arranged into the the above program diagram when the program executes to END instruction. Therefore, PLSY instruction has to be executed after DHSZ instruction has been executed once.

API	Mnemonic	Operands	Function	Controllers
56	SPD	\$1\$2D	Speed Detection	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				V	Vord I	Devic	es					Program Steps
	OP \	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	SPD: 7 steps
Ī	S ₁	*															
	S_2					*	*	*	*	*	*	*	*	*	*	*	
	D											*	*	*			

PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					

S₁: External pulse input terminal **S**₂: Pulse receiving time (ms) **D**: Detected result

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flag: M1100 (SPD instruction performs sampling for one time)
- 3. External pulse input terminals designated in **S**₁ for all series MPU:

Input MPU	ES/EX/SS (V5.7and above)	SA/SX/SC	EH/EH2/SV
Available input points	X1, X2	X0, X1, X2	X0 ~ X3

- 4. For SA/SX (V1.4 and above) series MPU and SC (V1.2 and above) series MPU, the new X0 and X1 can be used together with A-B phase input points. When "A ahead of B" detection result is a positive value and "B ahead of A" detection result is a negative value, the multiplied frequency of the counter can be set by D1022.
- 5. The received number of pulses of the input terminal designated in S_1 is calculated within the time (in ms) designated in S_2 . The result is stored in the register designated in D.
- D will occupy 5 consecutive devices. D + 1 and D are the detected value obtained from the previous pulses; D +3 and D + 2 are the current accumulated number of values; D + 4 is the counting time remaining (max. 32,767ms).
- 7. Pulse frequency detection for all series:

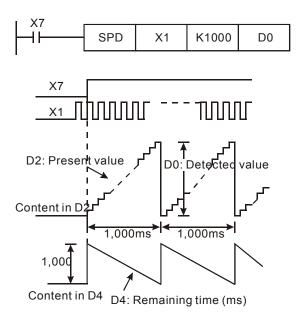
MPU	ES/EX/SS (V5.7 and above)	SA/SX/SC	EH/EH2/SV
Max. frequency	X1 (20KHz), X2 (10KHz)	X0/X1 A-B phase input (4KHz) X1 (30KHz), X2 (10KHz)	X0/X1 (100KHz) X2/X3 (10KHz)

8. This instruction is mainly used for obtaining a proportional value of rotation speed. The result **D** and rotation speed will be in proportion. The following equation is for obtaining the rotation speed of motor.

$$N = \frac{60(D0)}{nt} \times 10^{3} (rpm)$$

N: Rotation speed

n: The number of pulses produced per rotation


t: Detecting time designated in S₂ (ms)

- 9. The X input point designated by this instruction cannot be used again as the pulse input terminal of the high speed counter or as an external interruption signal.
- 10. When M1036 in SC (V1.4 and above) series MPU is enabled, SPD instruction can detect the speeds at X0 ~ X5

- at the same time with a total bandwidth of 40KHz. See 2.11 for more details for how to use M1036.
- 11. There is no limitation on the times of using this instruction in the program, but only one instruction will be executed at a time.
- 12. When SPD instruction is enabled and M1100 = On, SPD instruction will perform a sampling at the moment when M1100 goes from Off to On and stop the sampling. If you wish to resume the sampling, you have to turn Off M1100 and re-enable SPD instruction.

Program Example:

- 1. When X7 = On, D2 will calculate the high-speed pulses input by X1 and stop the calculation automatically after 1,000ms. The result will be stored in D0.
- 2. When the 1,000ms counting is completed, D2 will be cleared to 0. When X7 is On again, D2 will start the calculation again.

Remarks:

- When ES/EX/SS (V5.7 and above) and SA/SX/SC series MPU use X1 or X2, the relevant high speed counters or external interruptions I101 and I201 cannot be used.
- 2. For SC (V1.4 and above) series MPU, when M1036 is enabled, the speed of X0 ~ X5 can be detected at the same time.

API		Mnemonic	Operands	Function	Controllers
57	D	PLSY	\$1\$2D	Pulse Y Output	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ļ	OP \	Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	O	D	Е	F	PLSY: 7 steps
Ī	S ₁					*	*	*	*	*	*	*	*	*	*	*	DPLSY: 13 steps
Ī	S_2					*	*	*	*	*	*	*	*	*	*	*	2. 20 10 dispo
Ī	D		*														

ſ	PULSE										16	-bit				32-bit								
ſ	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

 S_1 : Pulse output frequency S_2 : Number of output pulses D: Pulse output device (please use transistor output module)

Explanations:

- The program of ES/EX/SS series MPU can use PLSY instruction two times but cannot designate the same Y device.
- 2. Flags: M1010 ~ M1345. See remarks for more details.
- 3. **S**₁ designates the pulse output frequency. With M1133 ~ M1135 and D1133, Y0 of SA/SX series MPU is able to output pulses at 50KHz. See 2.11 for M1133 ~ M1135 and D1133.

Range of output frequency for all series:

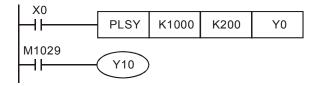
MPU	ES/EX/SS	SA/SX	SC	EH	EH2/SV
			Y0: 0 ~ 30KHz		Y0: 0 ~ 200KHz
Fraguenov range	Y0: 0 ~10KHz	Y0: 0 ~ 32KHz	Y1: 0 ~ 30KHz	Y0: 1 ~ 200KHz	Y2: 0 ~ 200KHz
Frequency range	Y1: 0 ~10KHz	Y1: 0 ~10KHz	Y10: 77 ~ 100KHz	Y2: 1 ~ 200KHz	Y4: 0 ~ 200KHz
			Y11: 77 ~ 100KHz		Y6: 0 ~ 200KHz

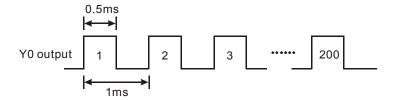
4. S_2 designates the number of output pulses. The 16-bit instruction can designate 1 ~ 32,767 pulses and the 32-bit instruction can designate 1 ~ 2,147,483,647 pulses.

Number of continuous pulses for all series:

MPU	ES/EX/SS/SA/SX/SC	SC	EH/EH2/SV
		M1010 (Y0) On	The number of output
How to designate	M1010 (Y0) On	M1023 (Y1) On	pulses designated for
continuous pulses	M1023 (Y1) On	The number of output pulses designated	Y0, Y2, Y4 and Y6 is set
		for Y10 and Y11 is set to K0.	to K0

- 5. For EH/EH2/SV series MPU, when the number of output pulses is set to 0, there will be continuous pulse output with no limitation on the number of pulses. For ES/EX/SS/SA/SX/SC series MPU, you have to make M1010 (Y0) or M1023 (Y1) On to allow a continuous pulse output with no limitation on the number of pulses.
- 6. For the pulse output device designated in D, EH series MPU can designate Y0 and Y2, EH2/SV series MPU can designate Y0, Y2, Y4 and Y6, ES/EX/SS/SA/SX series MPU can designate Y0 and Y1, SC series MPU can designate Y0, Y1, Y10 and Y11. (SC V1.2 and above series MPU supports Y10 and Y11).


- 7. EH series MPU has two groups of A-B phase pulse output from CH0 (Y0, Y1) and CH1 (Y2, Y3); EH2/SV series MPU has four groups of A-B phase pulse output from CH0 (Y0, Y1), CH1 (Y2, Y3), CH2 (Y4, Y5) and CH3 (Y6, Y7). See 2.3 and remarks for how to set up.
- 8. When PLSY instruction is executed, it will designate the number of output pulses (S_2) output from the output device (D) at a pulse output frequency (S_1) .
- 9. When PLSY instruction is used in the program, its outputs cannot be the same as those in API 58 PWM and API 59 PLSR.
- 10. Pulse output completed flags for all series:

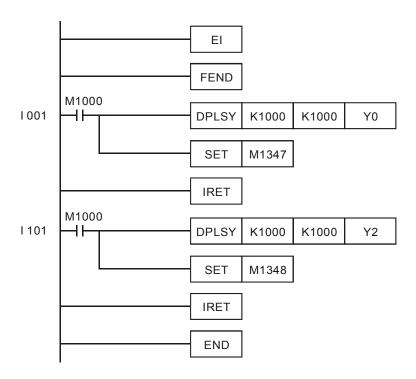

MPU		X/SS X/SC	S	С	EH/EI	H2/SV	EH2/SV			
Output device	Y0 Y1		Y10	Y11	Y0	Y2	Y4	Y6		
Flag	M1029 M1030		M1102	M1103	M1029	M1030	M1036	M1037		

- 11. For ES/EX/SS/SA/SX/SC/EH series MPU, when PLSY and DPLSY instruction is disabled, the pulse output completed flags will all be Off automatically.
- 12. For EH2/SV series MPU, when PLSY and DPLSY instruction is disabled, the user will have to reset the pulse output completed flags.
- 13. The user has to reset the pulse output completed flags after the pulse output is completed.
- 14. After PLSY instruction starts to be executed, Y will start a pulse output. Modifying **S**₂ at this moment will not affect the current output. If you wish to modify the number of output pulses, you have to first stop the execution of PLSY instruction and modify the number.
- 15. S_1 can be modified when the program executes to PLSY instruction.
- 16. Off time: On time of the pulse output = 1:1.
- 17. When the program executes to PLSY instruction, the current number of output pulses will be stored in the special data registers D1336 ~ D1339. See remarks for more details.
- 18. For SA/EH series MPU, there is no limitation on the times using this instruction. For SA/SX/SC/EH series MPU, the program allows two instructions being executed at the same time. For EH2/SV series MPU, the program allows four instructions being executed at the same time.

Program Example:

- 1. When X0 = On, there will be 200 pulses output from Y0 at 1KHz. When the pulse output is completed, M1029 will be On and Y10 will be On.
- 2. When X0 = Off, the pulse output from Y0 will stop immediately. When X0 is On again, the output will start again ffrom the first pulse.

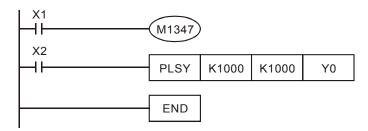
Remarks:


- Flags and special registers for ES/EX/SS series MPU:
 - M1010: When On, Y0 output will be continuous with no limitation on the number of pulses. When Off, the number of output pulses from Y0 will be decided by **S**₂.
 - M1023: When On, Y1 output will be continuous with no limitation on the number of pulses. When Off, the number of output pulses from Y1 will be decided by **S**₂.
 - M1029: On when Y0 pulse output is completed.
 - M1030: On when Y1 pulse output is completed.
 - M1078: Y0 output pauses.
 - M1079: Y1 output pauses.
 - D1030: Low word of the current number of output pulses from Y0
 - D1031: High word of the current number of output pulses from Y0
 - D1032: Low word of the current number of output pulses from Y1
 - D1033: High word of the current number of output pulses from Y1
- 2. Flags and special registers for SA/SX/SC series MPU:
 - M1010: (SA/SX/SC) When On, Y0 output will be continuous with no limitation on the number of pulses. When Off, the number of output pulses from Y0 will be decided by **S**₂.
 - M1023: (SA/SX/SC) When On, Y1 output will be continuous with no limitation on the number of pulses. When Off, the number of output pulses from Y1 will be decided by S₂.
 - M1029: (SA/SX/SC) On when Y0 pulse output is completed.
 - M1030: (SA/SX/SC) On when Y1 pulse output is completed.
 - M1078: (SA/SX/SC) Y0 output pauses.
 - M1079: (SA/SX/SC) Y1 output pauses.
 - M1102: (SC) On when Y10 pulse output is completed.
 - M1103: (SC) On when Y11 pulse output is completed.
 - D1030: (SA/SX/SC) Low word of the current number of output pulses from Y0
 - D1031: (SA/SX/SC) High word of the current number of output pulses from Y0
 - D1032: (SA/SX/SC) Low word of the current number of output pulses from Y1
 - D1033: (SA/SX/SC) High word of the current number of output pulses from Y1
 - D1348: (SC) Low word of the current number of output pulses from Y10
 - D1349: (SC) High word of the current number of output pulses from Y10
 - D1350: (SC) Low word of the current number of output pulses from Y11
 - D1351: (SC) High word of the current number of output pulses from Y11

- 3. Flags and special registers for EH/EH2/SV series MPU:
 - M1010: (EH/EH2/SV) When On, CH0, CH1, CH2 and CH3 will output pulses at END instruction. Off when the output starts.
 - M1029: (EH/EH2/SV) On when CH0 pulse output is completed.
 - M1030: (EH/EH2/SV) On when CH1 pulse output is completed.
 - M1036: (EH2/SV) On when CH2 pulse output is completed.
 - M1037: (EH2/SV) On when CH3 pulse output is completed.
 - M1334: (EH/EH2/SV) CH0 pulse output pauses.
 - M1335: (EH/EH2/SV) CH1 pulse output pauses.
 - M1520: (EH2/SV) CH2 pulse output pauses.
 - M1521: (EH2/SV) CH3 pulse output pauses.
 - M1336: (EH/EH2/SV) CH0 pulse output has been sent.
 - M1337: (EH/EH2/SV) CH1 pulse output has been sent.
 - M1522: (EH2/SV) CH2 pulse output has been sent.
 - M1523: (EH2/SV) CH3 pulse output has been sent.
 - M1338: (EH/EH2/SV) CH0 offset pulses enabled.
 - M1339: (EH/EH2/SV) CH1 offset pulses enabled.
 - M1340: (EH/EH2/SV) I110 interruption occurs after CH0 pulse output is completed.
 - M1341: (EH/EH2/SV) I120 interruption after occurs CH1 pulse output is completed.
 - M1342: (EH/EH2/SV) I130 interruption occurs when CH0 pulse output is sending.
 - M1343: (EH/EH2/SV) I140 interruption occurs when CH0 pulse output is sending.
 - M1344: (EH/EH2/SV) CH0 pulse compensation enabled.
 - M1345: (EH/EH2/SV) CH1 pulse compensation enabled.
 - M1347: (EH/EH2/SV) CH0 pulse output reset flag
 - M1348: (EH/EH2/SV) CH1 pulse output reset flag
 - M1524: (EH2/SV) CH2 pulse output reset flag
 - M1525: (EH2/SV) CH3 pulse output reset flag
 - D1220: (EH/EH2/SV) Phase setting of CH0 (Y0, Y1): D1220 determines the phase by the last two bits; other bits are invalid.
 - 1. K0: Y0 output
 - 2. K1: Y0, Y1 AB-phase output; A ahead of B.
 - 3. K2: Y0, Y1 AB-phase output; B ahead of A.
 - 4. K3: Y1 output
 - D1221: (EH/EH2/SV) Phase setting of CH1 (Y2, Y3): D1221 determines the phase by the last two bits; other bits are invalid.
 - 1. K0: Y2 output
 - 2. K1: Y2, Y3 AB-phase output; A ahead of B.
 - 3. K2: Y2, Y3 AB-phase output; B ahead of A.
 - 4. K3: Y3 output

- D1229: (EH2/SV) Phase setting of CH2 (Y4, Y5): D1229 determines the phase by the last two bits; other bits are invalid.
 - 1. K0: Y4 output
 - 2. K1: Y4, Y5 AB-phase output; A ahead of B.
 - 3. K2: Y4, Y5 AB-phase output; B ahead of A.
 - 4. K3: Y5 output
- D1230: (EH2/SV) Phase setting of CH3 (Y6, Y7): D1230 determines the phase by the last two bits; other bits are invalid.
 - 1. K0: Y6 output
 - 2. K1: Y6, Y7 AB-phase output; A ahead of B.
 - 3. K2: Y6, Y7 AB-phase output; B ahead of A.
 - 4. K3: Y7 output
- D1328: (EH/EH2/SV) Low word of the number of CH0 offset pulses
- D1329: (EH/EH2/SV) High word of the number of CH0 offset pulses
- D1330: (EH/EH2/SV) Low word of the number of CH1 offset pulses
- D1331: (EH/EH2/SV) High word of the number of CH1 offset pulses
- D1332: (EH/EH2/SV) Low word of the number of remaining pulses at CH0
- D1333: (EH/EH2/SV) High word of the number of remaining pulses at CH0
- D1334: (EH/EH2/SV) Low word of the number of remaining pulses at CH1
- D1335: (EH/EH2/SV) High word of the number of remaining pulses at CH1
- D1336: (EH/EH2/SV) Low word of the current number of output pulses at CH0
- D1337: (EH/EH2/SV) High word of the current number of output pulses at CH0
- D1338: (EH/EH2/SV) Low word of the current number of output pulses at CH1
- D1339: (EH/EH2/SV) High word of the current number of output pulses at CH1
- D1375: (EH2/SV) Low word of the current number of output pulses at CH2
- D1376: (EH2/SV) High word of the current number of output pulses at CH2
- D1377: (EH2/SV) Low word of the current number of output pulses at CH3
- D1378: (EH2/SV) High word of the current number of output pulses at CH3
- D1344: (EH/EH2/SV) Low word of the number of compensation pulses at CH0
- D1345: (EH/EH2/SV) High word of the number of compensation pulses at CH0
- D1346: (EH/EH2/SV) Low word of the number of compensation pulses at CH1
- D1347: (EH/EH2/SV) High word of the number of compensation pulses at CH1
- 4. When there are many high speed output instructions (PLSY, PWM, PLSR) for Y0 output in a program, PLC will only execute the settings and outputs of the instruction that is first enabled.
- 5. More explanations on M1347 and M1348:
 - If M1347 and M1348 is enabled, and when the execution of PLSY instruction has been completed, M1347/M1348 will be reset automatically, i.e. you do not have to turn the status of the drive contact from Off to On before PLSY instruction and when PLC scans to the instruction (assume the drive contact of the instruction is True), there will still be pulse output. PLC detects the status of M1347 and M1348 when END instruction is being executed.

Therefore, when the pulse output is completed and if PLSY instruction is a continuous execution one, there will be a scan time of delay in the next string of pulse output.


Program Example 1:

Explanations:

- a) Whenever X0 is triggered, Y0 will output 1,000 pulses; whenever X1 is triggered, Y2 will output 1,000 pulses.
- b) When X triggers Y pulse output, there should be an interval of at least one scan time between the end of Y pulse output and the next X-triggered output.

Program Example 2:

Explanations:

When both X1 and X2 are On, Y0 pulse output will keep operating. However, there will be a short pause (approx. 1 scan time) every 1,000 pulses before the output of the next 1,000 pulses.

API	Mnemonic	Operands	Function	Controllers
58	PWM	\$1 \$2 D	Pulse Width Modulation	ES/EX/SS SA/SX/SC EH/SV

Type	Е	Bit De	evice	s		Word Devices								Program Steps		
OP \	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	PWM: 7 steps
S ₁					*	*	*	*	*	*	*	*	*	*	*	
S_2					*	*	*	*	*	*	*	*	*	*	*	
D		*														

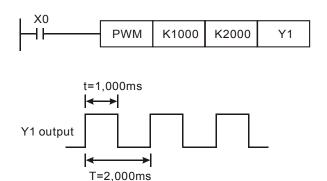
PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					

S₁: Pulse output width

S₂: Pulse output period

D: Pulse output device (please use transistor output module)

Explanations:


- 1. $S_1 \leq S_2$.
- 2. See the specifications of each model for their range of use.
- In ES/EX/SS series MPU, PWM instruction can only be used once in the program.
- 4. Flags: See remarks for more details.
- 5. Range of S_1 : (t) 0 ~ 32,767ms.
- 6. Range of S_2 : (T) 1 ~ 32,767ms (but $S_1 \le S_2$).
- 7. **D** for all series MPU:

MPU	ES/EX/SS/SA/SX/SC	EH	EH2/SV
Output point	Y1	Y0, Y2	Y0, Y2, Y4, Y6

- When PWM instruction is used in the program, its outputs cannot be the same as those of API 57 PLSY and API 59 PLSR.
- 9. PWM instruction designates the pulse output width in S_1 and pulse output period in S_2 and outputs from output device D.
- 10. For SA/SX/SC series MPU, When, S₁ ≤ 0 or S₂ ≤ 0 or S₁ > S₂, there will be operational errors (M1067 and M1068 will not be On), and there will be no output from the pulse output device. When S₁ = S₂, the pulse output device will keep being On.
- 11. For EH/EH2/SV series MPU, When, S₁ < 0 or S₂ ≤ 0 or S₁ > S₂, there will be operational errors (M1067 and M1068 will be On), and there will be no output from the pulse output device. When S₁ = 0, M1067 and M1068 will not be On and there will be no output from the pulse output device. When S₁ = S₂, the the pulse output device will keep being On.
- 12. $\mathbf{S_1}$ and $\mathbf{S_2}$ can be changed when PWM instruction is being executed.
- 13. For SA/EH series MPU, there is no limitation on the times using this instruction in the program. However, for SA/SX/SC/EH series MPU, two instructions are allowed to be executed at the same time; for EH2/SV series MPU, four instructions are allowed to be executed at the same time.

Program Example:

When X0 = On, Y1 will output the pulses as below. When X0 = Off, Y1 output will also be Off.

Remarks:

1. Flags for ES/EX/SS/SA/SX/SC series MPU:

M1070: Y1 pulse output time unit switch. When Off: 1ms; when On: 100us

2. Flags and special registers for EH/EH2/SV series MPU:

M1010: (EH/EH2/SV) When On, CH0, CH1, CH2 and CH3 will output pulses when END instruction is executed. Off when the output starts.

M1070: (EH/EH2/SV) The setting of time unit of CH0 has to work with D1371.

M1071: (EH/EH2/SV) The setting of time unit of CH1 has to work with D1372.

M1258: (EH/EH2/SV) CH0 pulse output signals reverse.

M1259: (EH/EH2/SV) CH1 pulse output signals reverse.

M1334: (EH/EH2/SV) CH0 pulse output pauses.

M1335: (EH/EH2/SV) CH1 pulse output pauses.

M1336: (EH/EH2/SV) CH0 pulse output has been sent.

M1337: (EH/EH2/SV) CH1 pulse output has been sent.

M1520: (EH2/SV) CH2 pulse output pauses.

M1521: (EH2/SV) CH3 pulse output pauses.

M1522: (EH2/SV) CH2 pulse output has been sent.

M1523: (EH2/SV) CH3 pulse output has been sent.

M1526: (EH2/SV) CH2 pulse output signals reverse.

M1527: (EH2/SV) CH3 pulse output signals reverse.

M1530: (EH2/SV) The setting of time unit of CH2 has to work with D1373.

M1531: (EH2/SV) The setting of time unit of CH3 has to work with D1374.

D1336: (EH/EH2/SV) Low word of the current number of output pulses from CH0.

D1337: (EH/EH2/SV) High word of the current number of output pulses from CH0.

D1338: (EH/EH2/SV) Low word of the current number of output pulses from CH1.

D1339: (EH/EH2/SV) High word of the current number of output pulses from CH1.

D1371: (EH/EH2/SV) Time unit of CH0 output pulses when M1070 = On.

D1372: (EH/EH2/SV) Time unit of CH1 output pulses when M1071 = On.

D1373: (EH2/SV) Time unit of CH2 output pulses when M1530 = On.

D1374: (EH2/SV) Time unit of CH3 output pulses when M1531 = On.

D1375: (EH2/SV) Low word of the current number of output pulses from CH2.

D1376: (EH2/SV) High word of the current number of output pulses from CH2.

D1377: (EH2/SV) Low word of the current number of output pulses from CH3.

D1378: (EH2/SV) High word of the current number of output pulses from CH3.

3. Time unit settings for EH/EH2/SV series MPU:

You cannot modify M1070 in the program.

D1371, D1372, D1373 and D1374 determine the time unit of the output pulses from CH0, CH1, CH2 and CH3 and the default setting is K1. If your set value is not within the range, the default value will be adopted.

D1371, D1372, D1373, D1374	K0	K1	K2	K3
Time unit	10us	100us	1ms	10ms

4. When there are many high speed pulse output instructions (PLSY, PWM, PLSR) in a program for Y0 output, and provided these instructions are being executed in the same scan period, PLC will set up and output the instructions with the fewest steps.

API	Mnemonic		Operands	Function	Controllers
59	D	PLSR	\$1\$2\$3D	Pulse Ramp	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	Bit De	evice	s	Word Devices										Program Steps	
ОР	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	C	D	Е	F	PLSR: 9 steps
S ₁					*	*	*	*	*	*	*	*	*	*	*	DPLSR: 17 steps
S ₂					*	*	*	*	*	*	*	*	*	*	*	Б. 2614. 17 бюро
S_3					*	*	*	*	*	*	*	*	*	*	*	
D		*												<u> </u>		

Г	PULSE							16-bit						32-bit							
E	ES EX SS SA SX SC EH SV				SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

 S_1 : Maximum speed of pulse output S_2 : Total number of output pulses S_3 : Acceleration/deceleration time (ms)

D: Pulse output device (please use transistor output module)

Explanations:

- 1. See the specifications of each model for their range of use.
- For ES/EX/SS series MPU, PLSR instruction can be used twice in the program but the outputs cannot be overlapped.
- 3. Flags: See remarks of API 57 PLSY.
- 4. Range of S₁: 10 ~ 32,767Hz (16-bit); 10 ~ 200,000Hz (32-bit). The maximum speed has to be 10's multiple; if not, the 1s digit will be left out. 1/10 of the maximum speed is the variation of one acceleration or deleration. Please be aware if the variation reponds to the acceleration/deceleration demand from the step motor, in case the step motor may crash.
- 5. Range of S_2 : 110 ~ 32,767 (16-bit); 110 ~ 2,147,483,647 (32-bit). If S_2 is less than 110, the pulet output will be abnormal.
- 6. Range of S₃: below 5,000ms. The acceleration time and deceleration time have to be the same.
 - a) The acceleration/deceleration time has to be 10 times longer than the maximum scan time (D1012). If not, the slope of accleration and deceleration will be incorrect.
 - b) The minimum set value of acceleration/deceleration time can be obtained from the following equation:

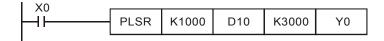
$$S_3 \geqslant \frac{90,000}{S_1}$$

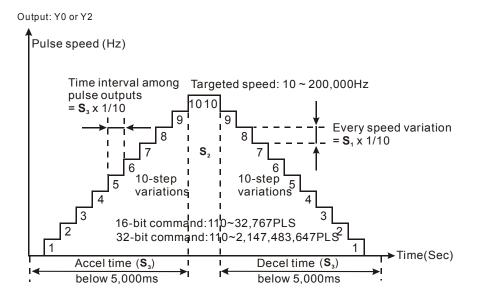
If the set value is less than the result obtained from the equation, the acceleration/deceleration time will be longer. If the set value is less than $90,000/\mathbf{S}_1$, use the result of $90,000/\mathbf{S}_1$ as the set value.

c) The maximum set value of acceleration/deceleration time can be obtained from the following equation:

$$\mathbf{S}_{3} \leqslant \frac{\mathbf{S}_{2}}{\mathbf{S}_{1}} \times 818$$

d) The speed variation is fixed to 10 steps. If the input acceleration/deceleration time is longer than the maximum set value, the acceleration/deceleration time will follow the maximum set time. If shorter than the minimum set value, the accleration/deceleration time will follow the minimum set time.


7. **D** for all series MPU:

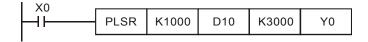

MPU	ES/EX/SS/SA/SX/SC	EH	EH2/SV
Output point	Y0, Y1	Y0, Y2	Y0, Y2, Y4, Y6

- 8. EH series MPU has two groups pf A-B phase pulse output CH0 (Y0, Y1) and CH1 (Y2, Y3). EH2/SV series MPU has four groups pf A-B phase pulse output CH0 (Y0, Y1), CH1 (Y2, Y3), CH2 (Y4, Y5) and CH3 (Y6, Y7). See remarks of API 57 PLSY for how to set up.
- 9. PLSR instruction is a pulse output instruction with acclerating and decelerating functions. The pulses accelerate from the static status to target speed and decelerates when the target distance is nearly reached. The pulse output will stop when the target distance is reached.
- 10. When PLSR instruction is executed, after S_1 , S_2 and S_3 are set, the pulses will output from D. The output starts at the frequency of increasing $S_1/10$ at a time. The time forf every frequency is fixed at $S_3/9$.
- 11. S_1 , S_2 and S_3 can be changed when PLSR instruction is being executed.
- 12. For ES/EX/SS/SA/SX/SC series MPU, when all the Y0 pulses have been sent, M1029 will be On; when all the Y1 pulses have been sent, M1030 will be On. Next time when PLSR instruction is enabled, M1029 or M1030 will be 0 again and after the pulse output is completed, it will become 1 again.
- 13. For EH/EH2/SV series MPU, when all the CH0 (Y0, Y1) pulses have been sent, M1029 will be On; when all the CH1 (Y2, Y3) pulses have been sent, M1030 will be On; when CH2 (Y4, Y5) pulses have been sent, M1036 will be On; when CH3 (Y6, Y7) pulses have been sent, M1037 will be On. Next time when PLSR instruction is enabled, M1029, M1030, M1036 or M1037 will be 0 again and after the pulse output is completed, they will become 1 again.
- 14. During every acceleration section, the number of pulses (frequency × time) may not all be integers. PLC will round up the number to an integer before the output. Therefore, the acceleration time of every section may not be exactly the same. The offset is determined upon the frequency and the decimal after rounding up. In order to ensure the correct number of output pulses, PLC will supplement insufficient pulses in the last section.
- 15. For SA/EH series MPU, there is no limitation on the times of using this instruction in the program. However, for SA/SX/SC/EH series MPU, two instructions can be executed at the same time; for EH2/SV series MPU, four instructions can be executed at the same time.

Program Example:

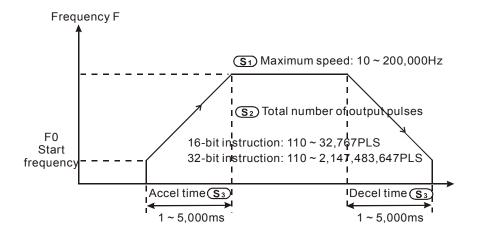
- 1. When X0 = On, the pulses will output at the maximum frequency 1,000Hz with the total number D10 at 3,000ms from Y0. The frequency will increase by 1,000/10Hz at a time and every frequency will last for 3,000/9ms.
- 2. When X10 is Off, the output will be interrupted. When X0 is On again, the counting of pulses will start from 0.

Remarks:

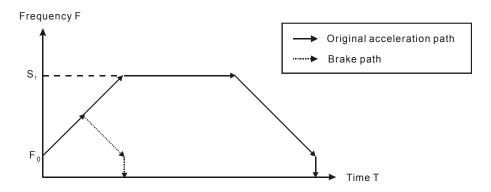

- 1. The outputs cannot be the same as those of API 57 PLSY and API 58 PWM.
- 2. When there are many high speed pulse output instructions (PLSY, PWM, PLSR) in a program for Y0 output, and provided these instructions are being executed in the same scan period, PLC will set up and output the instructions with the fewest steps.
- 3. With M1133 ~ M1135 and D1133, Y0 of SA/SX/SC series MPU can output pulses at up to 50KHz. See 2.11 for more details of special D and special M.

Range of output frequecies for all series:

MPU	ES/EX/SS	SA/SX/SC	EH	EH2/SV
				Y0: 10 ~ 200,000Hz
Danas	Y0: 10 ~ 10,000Hz	Y0: 10 ~ 30,000Hz	Y0: 10 ~ 200,000Hz	Y2: 10 ~ 200,000Hz
Range	Y1: 10 ~ 10,000Hz	Y1: 10 ~ 30,000Hz	Y2: 10 ~ 200,000Hz	Y4: 10 ~ 200,000Hz
				Y6: 10 ~ 200,000Hz


Functions in EH series MPU:

Relevant devices for EH/EH2/SV series MPU:



2. The range of pulse speed for this instruction is 10 ~ 200,000Hz. If the set values of maximum speed and acceleration/deceleration time exceed the range, PLC will operate by the default value that is within the range.

Operan	ıd	S ₁	S ₂	S ₃	D		
Explanation		Max. frequency	Total number of pulses	Accel/Decel time	Output point		
Dongo	16-bit	10 ~ 32,767Hz	110 ~ 32,767	1 ~ 5,000ms	Y0 ~ Y7		
Range 32-bit		10 ~ 200KHz	110 ~ 2,147,483,647	1 ~ 5,000ms	10~17		
Definition		K0: No output Kn: Designated frequency	Kn: Designated number	Flag: M1067, M1068	See settings of D1220, D1221		

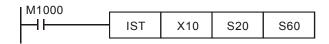
- 3. The acceleration/deceleration of EH/EH2/SV series MPU is based on the number of pulses. If the output cannot reach the maximum acceleration frequency within the acceleration/deceleration time offered, the instruction will automatically adjust the acceleration/deceleration time and the maximum frequency.
- 4. The operands have to be set before the execution of the instruction.
- 5. All acceleration/deceleration instructions are included with the brake function. The brake function will be enabled when PLC is performing acceleration and the switch contact is suddenly Off. The deceleration will operate at the slope of the acceleration.

API	Mnemonic	Operands	Function	Controllers
60	IST	S D1 D2	Initial State	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	s				٧	Vord I	Program Steps						
ОР	Χ	Υ	М	S	Κ	Ι	KnX	KnY	KnM	KnS	Т	O	D	П	F	IST: 7 steps
S	*	*	*													
D_1				*												
D_2				*												

PULSE							16-bit								32-bit						
ES EX	SS SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Start device in the designated operation mode D₁: The smallest No. of designated step in auto mode


D₂: The biggest No. of designated step in auto mode

Explanations:

- 1. **S** will occupy 8 consecutive points.
- 2. Range of D_1 and D_2 : for SA/SX/SC/EH/EH2/SV S20 ~ S899; for ES/EX/SS S20 ~ S127; $D_2 > D_1$.
- 3. See the specifications of each model for their range of use.
- 4. ES/SA series MPU does not support E, F index register modification.
- 5. IST instruction can only be used once in the program.
- 6. Flags: M1040 ~ M1047. See remarks for more details.
- 7. IST instruction is a handy instruction specifically for the initial status of step ladder control procedure to accommodate special auxiliary relay.

Program Example 1:

1. Use of IST instruction

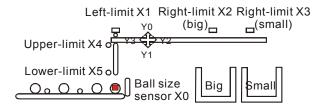
S X10: Individual operation X14: Continuous operation

X11: Zero return X15: Zero return enabled switch

X12: Step operation X16: Start switch X13: One cycle operation X17: Stop switch

2. When IST instruction is being executed, the following special auxiliary relays will switch automatically.

M1040: Operation forbidden S0: Initiates manual operation

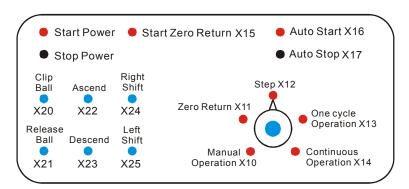

M1041: Operation starts S1: Initiates zero return M1042: Pulse output enabled S2: Initiates auto operation

M1047: STL monitor enabled

- 3. S10 ~ S19 are for zero return and cannot be used as general steps. When S0 ~ S9 are in use, S0 ~ S2 represent manual operation mode, zero return mode and auto operation mode. Therefore, in the program, you have to write the circuit of the three steps in advance.
- 4. When switched to S1 (zero return) mode, any On in S10 ~ S19 will result in no zero return.
- 5. When switched to S2 (auto operation) mode, any On of the S in $D_1 \sim D_2$ or M1043 = On will result in no auto operation.

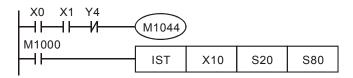
Program Example 2:

- 1. Robot arm control (by IST instruction):
 - a) Motion request: Separate the big ball and small ball and move them to different boxes. Configure the control panel for the control.
 - b) Motions of the robot arm: descending, clipping ball, ascending, right shifting, releasing ball, ascending, left shifting.
 - c) I/O devices:

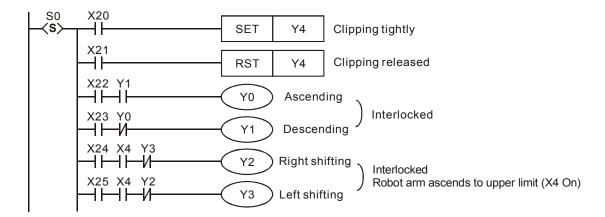

Operation modes:

Manual operation: Turn On/Off of the load by a single button.

Zero return: Press the zero return button to automatically zero-return the machine.

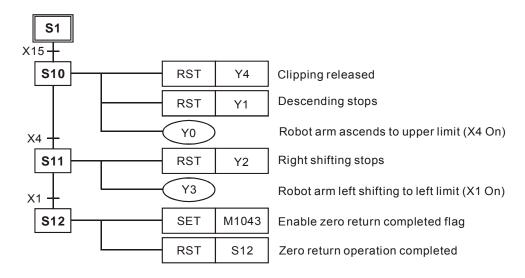

Auto operation:

- a) Single step operation: Press "auto start" button for every one step forward.
- b) One cycle operation: Press "auto start" button at the zero point. After a cycle of auto operation, the operation will stops at the zero point. Press "auto stop" button in the middle of the operation to stop the operation and press "auto start" to restart the operation. The operation will resume until it meets the zero point.
- c) Continuous operation: Press "auto start" button at the zero point to resume the operation. Press "auto stop" to operate until it meets the zero point.
- 3. The control panel:

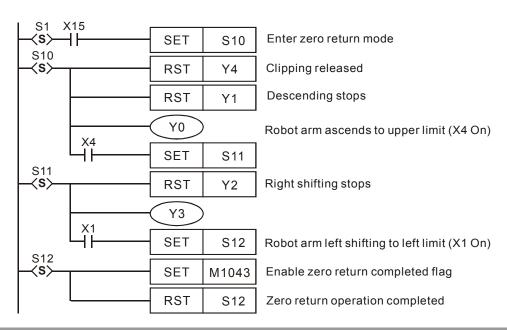


- a) Ball size sensor X0.
- b) Robot arm: left limit X1, big ball right limit X2, small ball right limit X3, upper limit X4, lower limit X5.
- c) Robot arm: ascending Y0, descending Y1, right shifting Y2, left shifting Y3, clipping Y4.

Start Circuit

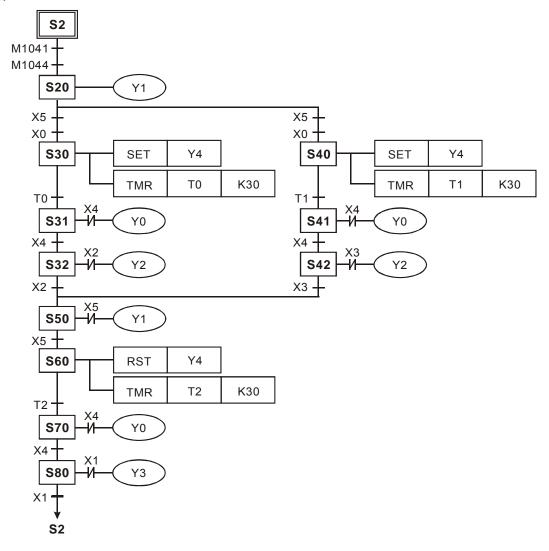


Manual Operation Mode

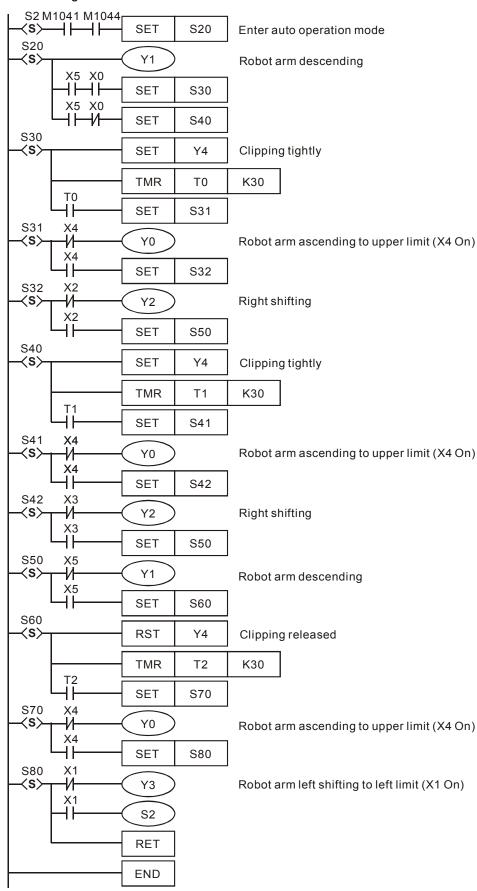


Zero Return Mode

SFC:



Ladder Diagram:



Auto Operation Modes

SFC:

Ladder Diagram:

Remarks:

Flag explanations:

M1040: When On, all step operations are forbidden.

- 1. Manual mode: M1040 keeps being On
- 2. Zero return/one cycle operation mode: Between the timing of pressing "auto stop" and "auto start" buttons, M1040 will keep being On.
- 3. Step mode: M1040 keeps being On until "auto start" button is pressed.
- Continuous operation mode: When PLC goes from STOP to RUN, M1040 will keep being On and turn Off when "auto start" button is pressed.

M1041: Step operation starts. Special M for initial S2 to move to the next step.

- 1. Manual/zero return mode: M1041 keeps being Off.
- 2. Step/one cycle operation mode: M1041 will only be On when "auto start" button is pressed.
- 3. Continuous operation mode: M1041 keeps On when "auto start" button is pressed; Off when "auto stop" button is pressed.

M1042: Enabling pulse output. Sending pulses once when "auto start" button is pressed.

M1043: On when zero return is completed.

M1044: In continuous operation mode, M1044 has to be On to more S2 to the next step.

M1045: All output resets are forbidden.

If the machine (not at the zero point) goes

- from manual (S0) to zero return (S1)
- from auto (S2) to manual (S0)
- from auto (S2) to zero return (S1)
- When M1045 is Off, and any of the S among D₁ ~ D₂ is On, SET Y output and the step in action will be reset to Off.
- 2. When M1045 is On, SET Y output will be remained but the step in action will be reset to Off If the machine executes zero return (at the zero point) and goes from zero return (S1) to manual (S0), no matter M1045 is On or Off, SET Y output will be remained but the step in action will be reset to Off.

M1046: STL state setting. On when any of the steps is On. When M1047 is forced On, On of any S will result in On of M1046. D1040 ~ D1047 will record the No. of the previous 8 points before On of S.

M1047: On for enabling STL monitor. When IST instruction starts to be executed, M1047 will be forced On. In every scan time, as long as IST instruction is still On, M1047 will be forced On. M1047 monitors all the S.

D1040 ~

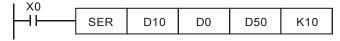
On status of step No. 1 ~ 8

D1047:

API		Mnemonio	;	Operands	Function	Controllers
61	D	SER	Р	\S_1 \S_2 D n	Search a Data Stack	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	s		Word Devices										Program Steps
ОР	Χ	Υ	М	S	Κ	Η	KnX	KnY	KnM	KnS	Т	O	D	П	F	SER, SERP: 9 steps
S ₁							*	*	*	*	*	*	*			DSER, DSERP: 17 steps
S ₂					*	*	*	*	*	*	*	*	*	*	*	Bozit, Boziti : 17 diapo
D								*	*	*	*	*	*			
n					*	*							*			

PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					


 $\mathbf{S_1}$: Start device for data stack comparison $\mathbf{S_2}$: Data to be compared \mathbf{D} : Start device for storing comparison result \mathbf{n} : Length of data to be compared

Explanations:

- 1. When S_2 are used in device F, only 16-bit instruction is applicable.
- 2. **D** will occupy 5 consecutive points.
- 3. Range of **n**: for 16-bit instruction $1 \sim 256$; for 32-bit instruction $1 \sim 128$.
- 4. See the specifications of each model for their range of use.
- 5. The **n** data in the registers starting from S_1 are compared with S_2 and the results are stored in the registers starting from **D**.
- 6. In the 32-bit instruction, **S**₁, **S**₂, **D** and **n** will designate 32-bit registers.
- 7. For **D**, the 16-bit counters and 32-bit counters in SA/SX/SC series MPU cannot be mixed when being used.

Program Example:

- 1. When X0 = On, the data stack consist of D10 ~ D19 will be compared against D0 and the result will be stored in D50 ~ D52. If there are equivalent values appearing during the comparison, D50 ~ D52 will all be 0.
- 2. The data are compared algebraically. (-10 < 2).
- 3. The No. of the register with the smallest value among the compared data will be recorded in D53; the biggest will be recorded in D54. When there are more than one smallest value or biggest value, device D will record the No. of the register with bigger value.

	-	S ₁	Content	Data to be compared	Data No.	Result
		D10	88	S ₂	0	
		D11	100		1	Equal
		D12	110		2	
(\mathbf{r})	り	D13	150		3	
		D14	100	D0 = K100	4	Equal
		D15	300		5	
		D16	100		6	Equal
		D17	5		7	Smallest
	-	D18	100		8	Equal
		D19	500		9	Biggest

D	Content	Description
D50	4	Total number of data with equivalent values
D51	1	No. of the first equivalent value
D52	8	No. of the last equivalent value
D53	7	No. of the smallest value
D54	9	No. of the biggest value

AP	M	nemonic	Operands	Function	Controllers
62	D	ABSD	\$1\\$2\D\n	Absolute Drum Sequencer	ES/EX/SS SA/SX/SC EH/SV

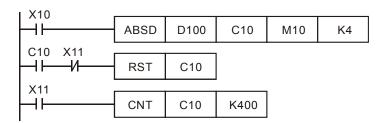
Туре		Bit I	De	vice	s	Word Devices										Program Steps	
ОР	X	Υ	′	М	S	Κ	Ι	KnX	KnY	KnM	KnS	Т	O	D	Е	F	ABSD: 9 steps
S ₁								*	*	*	*	*	*	*			DABSD: 17 steps
S ₂												*	*	*			Energy Tracepo
D		*	:	*	*												
n						*	*										

PULSE						16-bit							32-bit									
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S₁: Start device in the data table

S₂: No. of counter

D: Start No. of the devices for the comparison results

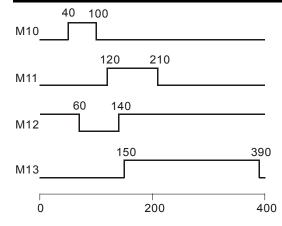

n: Number of data for comparison

Explanations:

- 1. When **S**₁ designates KnX, KnY, KnM and KnS, the 16-bit instruction has to designate K4 and 32-bit instruction has to designate K8.
- 2. Range of **n**: 1 ~ 64
- 3. See the specifications of each model for their range of use.
- 4. ABSD instruction is for the absolute control of the multiple output pulses generated by the present value in the counter.
- 5. **S**₂ of DABSD instruction can designate high speed counters. However, when the present value in the high speed counter is compared with the target value, the result cannot output immediately owing to the scan time. If an immediate output is required, please use DHSZ instruction that is exclusively for high speed counters.

Program Example:

- 1. Before the execution of ABSD instruction, use MOV instruction to write all the set values into D100 ~ D107 in advance. The even-number D is for lower bound value and the odd-number D is for upper bound value.
- When X10 = On, the present value in counter C10 will be compared with the four groups of lower and upper bound values in D100 ~ D107. The comprison results will be stored in M10 ~ M13.
- 3. When X10 = Off, the original On/Off status of M10 ~ M13 will be remained.


M10~ M13 will be On when the present value in C10 ≤ upper bound value or ≥ lower bound value.

Lower bound value	Upper bound value	Present value in C10	Output
D100 = 40	D101 = 100	40 ≤ C10 ≤ 100	M10 = On
D102 = 120	D103 = 210	120 ≤ C10 ≤ 210	M11 = On

Lower bound value	Upper bound value	Present value in C10	Output
D104 = 140	D105 = 170	140 ≤ C10 ≤ 170	M12 = On
D106 = 150	D107 = 390	150 ≤ C10 ≤ 390	M13 = On

5. If the lower bound value > upper bound value, when C10 < upper bound value (60) or > upper bound value (140), M12 will be On.

Lower bound value	Upper bound value	Present value in C10	Output
D100 = 40	D101 = 100	40 ≤ C10 ≤ 100	M10 = On
D102 = 120	D103 = 210	$120 \leq C10 \leq 210$	M11 = On
D104 = 140	D105 = 60	$60 \leq C10 \leq 140$	M12 = On
D106 = 150	D107 = 390	$150 \leq C10 \leq 390$	M13 = On

API	Mnemonic	Operands	Function	Controllers
63	INCD	S_1 S_2 D n	Incremental Drum Sequencer	ES/EX/SS SA/SX/SC EH/SV

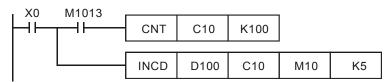
Туј	эе	В	it De	evice	s				V	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	С	D	Е	F	INCD: 9 steps
S ₁								*	*	*	*	*	*	*			
S ₂													*				
D			*	*	*												
n						*	*										

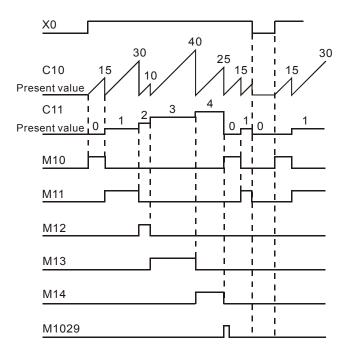
PULSE	16-bit	32-bit						
ES EX SS SA SX SC EH SV I	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV						

S₁: Start device in the data table

S₂: No. of counter

D: Start No. of the devices for the comparison results


n: Number of data for comparison


Explanations:

- 1. When **S**₁ designates KnX, KnY, KnM and KnS, it has to designate K4.
- 2. In the 16-bit instruction, S₂ has to designate C0 ~ C198 and will occupy 2 consecutive No. of counters.
- 3. Range of **n**: 1 ~ 64
- 4. See the specifications of each model for their range of use.
- 5. Flag: M1029 (instruciton execution completed)
- 6. INCD instruction is for the relative control of the multiple output pulses generated by the present value in the counter.
- 7. The present value in S_2 is compared with S_1 . S_2 will be reset to 0 whenever a comparison is completed. The current number of data processed in temporarily stored in $S_2 + 1$.
- 8. When n data have been processed, M1029 will be On for one scan period.

Program Example:

- 1. Before the execution of INCD instruction, use MOV instruction to write all the set values into D100 ~ D104 in advance. D100 = 15, D101 = 30, D102 = 10, D103 = 40, D104 = 25.
- 2. The present value in C10 is compared against the set values in D100 ~ D104. The present value will be reset to 0 whenever a comparison is completed.
- 3. The current number of data having been processed is temporarily stored in C11.
- 4. The number of times of reset is temporarily stored in C11.
- 5. Whenever the content in C11 pluses 1, M10 ~ M14 will also correspondingly change. See the timing diagram below.
- 6. After the 5 groups of data have been compared, M1029 will be On for one scan period.
- 7. When X0 goes from On to Off, C10 and C11 will both be reset to 0 and M10 ~ M14 will all be Off. When X0 is On again, the instruction will start its execution again from the beginning.

API	Mnemonic	Operands	Function	Controllers
64	TTMR	(a)	Teaching Timer	ES/EX/SS SA/SX/SC EH/SV

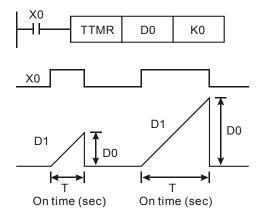
7	уре	Е	Bit De	evice	s				V	Vord I	Devic	es					Program Steps
OP		Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	O	D	П	F	TTMR: 5 steps
)													*			
r)					*	*										

PULSE	16-bit	32-bit
ESIEXISSISAISXISCIEHISV	ES EX SS SA SX SC EH SV	ES EX ISS ISA ISX ISCIENTSV

D: Device No. for storing the "On" time of button switch **n**: Multiple setting

Explanations:

- 1. **D** will occupy 2 consecutive devices.
- 2. Range of **n**: 0 ~ 2
- 3. See the specifications of each model for their range of use.
- 4. For SA series MPU, TTMR instruction can be used 8 times in the program.
- 5. The "On" time (unit: 100ms) of the external button switch is stored in device No. **D** + 1. The "On" time (unit: second) of the switch is multiplied by **n** and stored in **D**.
- 6. Multiple setting:

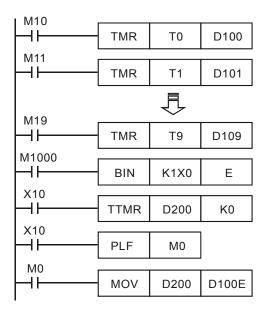

When n = 0, unit of D = second

When n = 1, unit of $\mathbf{D} = 100 \text{ms} (D \times 10)$

When n = 2, unit of \mathbf{D} = 10ms (D × 100)

Program Example 1:

- 1. The "On" (being pressed) time of button switch X0 is stored in D1. The setting of n is stored in D0. Therefore, the button switch will be able to adjust the set value in the timer.
- 2. When X0 goes Off, the content in D1 will be cleared to 0, but the content in D0 will remain.



3. Assume the "On" time of X0 is T (sec.), see the relation between D0, D1 and n in the table below.

n	D0	D1 (unit: 100ms)
K0 (unit: s)	1 × T	D1 = D0 × 10
K1 (unit: 100 ms)	10 × T	D1 = D0
K2 (unit: 10 ms)	100 × T	D1 = D0/10

Program Example 2:

- 1. Use TMR instruction to write in 10 groups of set time.
- 2. Write the set values into D100 ~ D109 in advance.
- 3. The timing unit for timer $T0 \sim T9$ is 0.1 sec. The timing unit for the teaching timer is 1 sec.
- 4. Connect the 1-bit DIP switch to X0 ~ X3 and use BIN instruction to convert the set value of the switch into a bin value and store it in E.
- 5. Store the "On" time (sec.) of X10 in D200.
- 6. M0 refers to the pulses generated from one scan period after the button switch of the teaching timer X10 is released.
- Use the set number of the DIP switch as the indirectly designated pointer and send the content in D200 to D100E (D100 ~ D109).

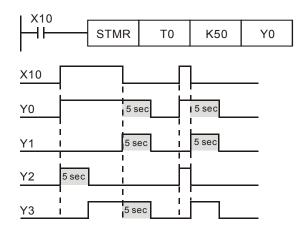
Remarks:

- 1. For SA series MPU, TTMR instruction can be used 8 times in the program. But in a subroutine or interruption subroutine, the instruction can only be used once.
- 2. For EH series MPU, there is no limitation on the times using this instruction in the program and 8 instructions can be executed at the same time.

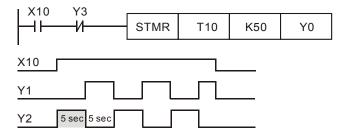
API	Mnemonic	Operands	Function	Controllers
65	STMR	SMD	Special Timer	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	evice	s		Word Devices									Program Steps	
ОР		Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	STMR: 7 steps
	S											*					
	m					*	*										
	D		*	*	*												

PULSE								16-bit									32-bit						
ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


S: No. of timer m: Set value in timer (unit: 100ms) D: No. of start output device

Explanations:


- 1. Range of **S**: for SA/SX/SC T0 ~ T191; for EH/EH2/SV T0 ~ T199
- 2. Range of m: 1 ~ 32,767
- 3. **D** will occupy 4 consecutive devices.
- 4. See the specifications of each model for their range of use.
- 5. STMR instruction is used for Off-delay, one shot timer and flashing sequence.
- 6. The No. of timers designated by STMR instructions can be used only once.

Program Example:

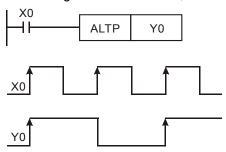
- 1. When X10 = On, STMR instruction will designate timer T0 and set the set value in T0 as 5 seconds.
- 2. Y0 is the contact of Off-delay. When X10 goes from Off to On, Y0 will be On. When X10 goes from On to Off, Y0 will be Off after a five seconds of delay.
- 3. When X10 goes from On to Off, there will be a five seconds of Y1 = On output.
- 4. When X10 goes from Off to On, there will be a five seconds of Y2 = On output.
- 5. When X10 goes from Off to On, Y3 will be On after a five seconds of delay. When X10 goes from On to Off, Y3 will be Off after a five seconds of delay.

6. Add a b contact of Y3 after X10, and Y1 and Y2 can operate for flashing sequence output. When X10 goes Off, Y0, Y1 and Y3 will be Off and the content in T10 will be reset to 0.

API	Mnemonic	;	Operands	Function	Controllers
66	ALT	Р	9	Alternate State	ES/EX/SS SA/SX/SC EH/SV

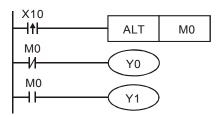
	Type Bit Devices							٧	Vord I	Devic	es					Program Steps	
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	ALT, ALTP: 3 steps
	D		*	*	*												

PULSE	16-bit	32-bit						
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV						


D: Destination device

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. When ALT instruction is executed, "On" and "Off" of **D** will switch.
- 3. This instruction adopts pulse execution instructions (ATLP).


Program Example 1:

When X0 goes from Off to On, Y0 will be On. When X0 goes from Off to On for the second time, Y0 will be Off.

Program Example 2:

Using a single switch to enable and disable control. At the beginning, M0 = Off, so Y0 = On and Y1 = Off. When X10 switches between On/Off for the first time, M0 will be On, so Y1 = On and Y0 = Off. For the second time of On/Off switching, M0 will be Off, so Y0 = On and Y1 = Off.

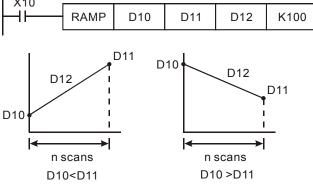
Program Example 3:

Generating flashing. When X10 = On, T0 will generate a pulse every 2 seconds and Y0 output will switch between On and Off following the T0 pulses.

API	Mnemonic	Operands	Function	Controllers
67	RAMP	S 1 S 2 D n	Ramp Variable Value	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	X	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	RAMP: 9 steps
S ₁													*			
S ₂													*			
D													*			
n					*	*										

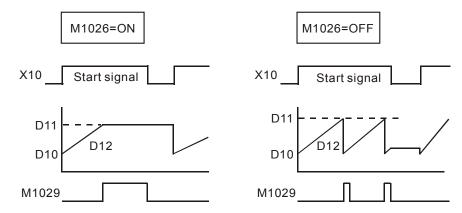
PULSE	16-bit	32-bit							
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV							


 S_1 : Start of ramp signal S_2 : End of ramp signal S_2 : Duration of ramp signal S_3 : Scan times

Explanations:

- 1. Range of **n**: 1 ~ 32,767
- 2. **D** will occupy 2 consecutive points.
- 3. See the specifications of each model for their range of use.
- 4. Flags: M1026 (enabling RAMP; see remarks for more details); M1029 (RAMP execution completed).
- 5. This instruction is for obtaining slope (the relation between linearity and scan time). Before using this instruction, you have to preset the scan time.
- 6. The set value of start ramp signal is pre-written in D10 and set value of end ramp signal in D11. When X10 = On, D10 increases towards D11 through n (= 100) scans (the duration is stored in D12). The times of scans are stored in D13.
- 7. In the program, first drive M1039 = On to fix the scan time. Use MOV instruction to write the fixed scan time to the special data register D1039. Assume the scan time is 30ms and take the above program for example, n = J100, the time for D10 to increase to D11 will be 3 seconds (30ms × 100).
- 8. When X10 goes Off, the instruction will stop its execution. When X10 goes On again, the content in D12 will be reset to 0 for recalculation.
- 9. When M1026 = Off, M1029 will be On and the content in D12 will be reset to the set value in D10.

Program Example:


When this instruction is used with analog signal outputs, it will be able to buffer START and STOP.

The scan times is stored in D13

Remarks:

D12 for enabling On/Off of M1026:

API	Mnemonic	Operands	Function	Controllers
69	SORT	\mathbb{S} \mathbb{m} \mathbb{m} \mathbb{D} \mathbb{n}	Sort Tabulated Data	ES/EX/SS SA/SX/SC EH/SV

Туре	В	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Τ	O	D	П	F	SORT: 11 steps
S													*			
m ₁					*	*										
m ₂					*	*										
D													*			
n					*	*							*			

			PUI	_SE							16	-bit							32	-bit			
ES	ES EX SS SA SX SC EH S								EX	SS	SA	SX	S	Ħ	S	ES	EX	SS	SA	SX	SC	EΗ	S

S: Start device for the original data m_1 : Groups of data to be sorted m_2 : Number of columns of data

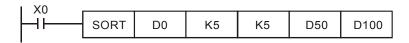
D: Start device for the sorted data **n**: Reference value for data sorting

Explanations:

1. Range of m_1 : 1 ~ 32.

2. Range of **m**₂: 1 ~ 6

3. Range of \mathbf{n} : $1 \sim m_2$


4. See the specifications of each model for their range of use.

5. Flag: M1029 (SORT execution completed).

- 6. The sorted result is stored in m1 × m2 registers starting from the device designated in **D**. Therefore, if **S** and **D** designate the same register, the sorted result will be the same as the data designated in **S**.
- 7. It is better that the start No. designated in **S** is 0.
- 8. The sorting will be completed after m₁ times of scans. After the sorting is completed, M1029 will be On.
- 9. There is no limitation on the times of using this instruction. However, only one instruction can be executed at a time.

Program Example:

1. When X0 = On, the sorting will start. When the sorting is completed, M1029 will be On. DO NOT change the data to be sorted during the execution of the instruction. If you wish to change the data, please make X0 go from Off to On again.

2. Example table of data sorting

		-	— Colun	nns of data: m ₂		-
				Data Column		
	Column	1	2	3	4	5
	Row	Students No.	Physics	English	Math	Chemistry
Ļ	1	(D0) 1	(D5) 90	(D10) 75	(D15) 66	(D20) 79
ata: n	2	(D1) 2	(D6) 55	(D11) 65	(D16) 54	(D21) 63
s of d	3	(D2) 3	(D7) 80	(D12) 98	(D17) 89	(D22) 90
Groups of data: m ₁	4	(D3) 4	(D8) 70	(D13) 60	(D18) 99	(D23) 50
<u> </u>	5	(D4) 5	(D9) 95	(D14) 79	(D19) 75	(D24) 69

Sorted data when D100 = K3.

		◀	Colu	ımns of data: m ₂	-	
				Data Column		
	Column	1	2	3	4	5
_	Row	Students No.	Physics	English	Math	Chemistry
₹ 	1	(D50) 4	(D55) 70	(D60) 60	(D65) 99	(D70) 50
Groups of data: m ₁	2	(D51) 2	(D56) 55	(D61) 65	(D66) 54	(D71) 63
s of c	3	(D52) 1	(D57) 90	(D62) 75	(D67) 66	(D72) 79
Group	4	(D53) 5	(D58) 95	(D63) 79	(D68) 75	(D73) 69
<u> </u>	5	(D54) 3	(D59) 80	(D64) 98	(D69) 89	(D74) 90

Sorted data when D100 = K5.

		◀	Co	olumns of data: n	n ₂	
				Data Column		
	Column	1	2	3	4	5
	Row	Students No.	Physics	English	Math	Chemistry
∳ Ě	1	(D50) 4	(D55) 70	(D60) 60	(D65) 99	(D70) 50
	2	(D51) 2	(D56) 55	(D61) 65	(D66) 54	(D71) 63
Groups of data:	3	(D52) 5	(D57) 95	(D62) 79	(D67) 75	(D72) 69
Group	4	(D53) 1	(D58) 90	(D63) 75	(D68) 66	(D73) 79
<u> </u>	5	(D54) 3	(D59) 80	(D64) 98	(D69) 89	(D74) 90

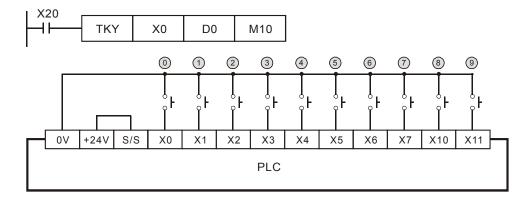
API	N	Mnemonic Operands TKY S D1 D2			Function		Controllers
70	D	TKY	S	D1 D2	Ten Key Input	ES/EX/SS SA/SX/SC EH/SV	
	Туре	Bit De	vices		Word Devices		Program Steps

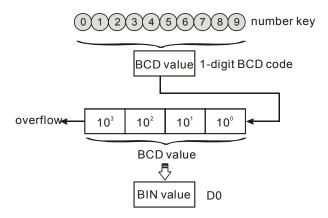
	Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
(OP \	Χ	Υ	М	S	K	Ι	KnX	KnY	KnM KnS T		C	D	П	F	TKY: 7 steps	
Ī	S	*	*	*	*												DTKY: 13 steps
	D_1								*	*	*	*	*	*	*	*	
	D_2		*	*	*												

	PULSE								16-bit									32-bit							
ES EX SS SA SX SC EH S					SV	ES	EX	SS	SA	SX	SC	H	SV	ES	EX	SS	SA	SX	SC	EH	SV				

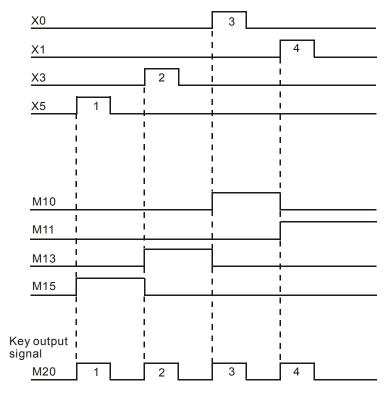
S: Start device for key input

D₁: Device for storing keyed-in value


D₂: Key output signal


Explanations:

- 1. **S** will occupy 10 consecutive points; **D**₂ will occupy 11 consecutive points.
- 2. See the specifications of each model for their range of use.
- 3. For SA series MPU, $\bf S$ and $\bf D_2$ do not support E, F index register modification.
- 4. This instruction designates 10 external input points (representing decimal numbers 0 ~ 9) starting from **S**. The 10 points are respectively connected to 10 keys. By pressing the keys, you can enter a 4-digit decimal figure 0 ~ 9,999 (16-bit instruction) or a 8-digit figure 0 ~ 99,999,999 (32-bit instruction) and store the figure in **D**₁. **D**₂ is used for storing key status.
- 5. There is no limitation on the times of using this instruction. However, only one instruction can be executed at a time.


Program Example:

1. Connect the 10 input points starting from X0 to the 10 keys (0 \sim 9). When X20 = On, the instruction will be executed and the keyed-in values will be stored in D0 in bin form. The key status will be stored in M10 \sim M19.

- 2. As shown in the timing chart below, the 4 points X5, X3, X0, and X1 connected to the keys are entered in order and you can obtain the result 5,301. Store the result in D0. 9,999 is the maximum value allowed to stored in D0. Once the value exceeds 4 digits, the highest digit will overflow.
- 3. M12 = On when from X2 is pressed to the other key is pressed. Same to other keys.
- 4. When any of the keys in X0 ~ X11 is pressed, one of M10 ~ 19 will be On correspondingly.
- 5. M20 = On when any of the keys is pressed.
- 6. When X20 goes Off, the keyed-in value prior to D0 will remain unchanged, but M10 ~ M20 will all be Off.

API	N	Inemonic	Operands	Function	Controllers
71	D	HKY	S D1 D2 D3	Hexadecimal Key Input	ES/EX/SS SA/SX/SC EH/SV

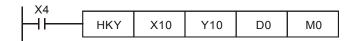
	Туре	В	it De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Τ	O	D	П	F	HKY: 9 steps
	S	*															DHKY: 17 steps
	D ₁		*														Britti. 17 steps
	D_2											*	*	*	*	*	
	D_3		*	*	*												

			PUI	_SE							16	-bit							32	-bit			
ES	EX	SS	SA	SX	SC	E	S	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	ΕH	SV

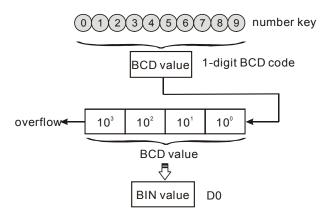
S: Start device for key scan input

D₁: Start device for key scan output

D₂: Device for storing keyed-in value

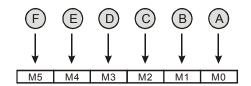

D₃: Key output signal

Explanations:


- 1. **S** will occupy 4 consecutive points.
- D₁ will occupy 4 consecutive points.
- 3. D₃ will occupy 8 consecutive points.
- 4. See the specifications of each model for their range of use.
- 5. For SA series MPU, \mathbf{S} , \mathbf{D}_1 and \mathbf{D}_3 do not support E, F index register modification.
- 6. Flags: M1029 (On whenever a matrix scan period is completed); M1167 (HKY input modes switch). See remarks for more details.
- 7. This instruction designates 4 continuous external input points starting from S and 4 continuous external input points starting from D₁ to construct a 16-key keyboard by a matrix scan. The keyed-in value will be stored in D₂ and D₃ is used for storing key status. If several keys are pressed at the same time, the first key pressed has the priority.
- 8. The keyed-in value is termporarily stored in D0. When the 16-bit instruction HKY is in use, 9,999 is the maximum value D0 is able to store. When the value exceeds 4 digits, the highest digit will overflow. When the 32-bit instruction DHKY is in use, 99,999,999 is the maximum value D0 is able to store. When the value exceeds 8 digits, the highest digit will overflow.
- 9. There is no limitation on the times of using this instruction. However, only one instruction can be executed at a time.

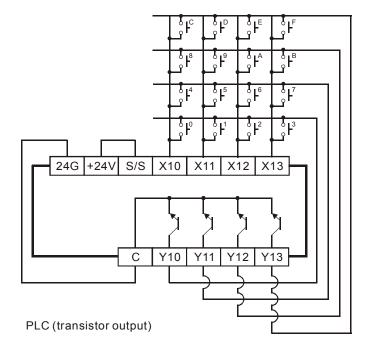
Program Example:

Designate 4 input points X10 ~ X13 and the other 4 input points Y10 ~ Y13 to construct a 16-key keyboard.
 When X4 = On, the instruction will be executed and the keyed-in value will be stored in D0 in bin form. The key status will be stored in M0 ~ M7.



2. Key in numbers:

3. Function keys input:


- a) When A is pressed, M0 will be On and retained. When D is pressed next, M0 will be Off, M3 will be On and retained.
- When many keys are pressed at the same time, the first key pressed has the priority.

4. Key output signal:

- a) When any of A ~ F is pressed, M6 will be On for once.
- b) When any of $0 \sim 9$ is pressed, M7 will be On for once.
- 5. When X4 goes Off, the keyed-in value prior to D0 will remain unchanged, but M0 ~ M7 will all be Off.

6. External wiring:

Remarks:

- 1. When this instruction is being executed, it will require 8 scans to obtain one valid keyed-in value. A scan period that is too long or too short may result in poor keyed-in effect, which can be avoided by the following methods:
 - a) If the scan period is too short, I/O may not be able to respond in time, resulting in not being able to read the keyed-in value correctly. In this case, please fix the scan time.
 - b) If the scan period is too long, the key may respond slowly. In this case, write this instruction into the time interruption subroutine to fix the time for the execution of this instruction.
- 2. Functions of M1167:
 - a) When M1167 = On, HKY instruction will be able to input the hexadecimal value of 0 ~ F.
 - b) When M1167 = Off, HKY instruction will see A \sim F as function keys.
- 3. Functions of D1037 (only supports EH/EH2/SV series MPU):

Write D1037 to set the overlapping time for keys (unit: ms). The overlapping time will vary upon different program scan time and the settings in D1037.

API	Mnemonic	Operands	Function	Controllers
72	DSW	\mathbb{S} \mathbb{D}_1 \mathbb{D}_2 \mathbb{D}_2	Digital Switch	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	s				V	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	Κ	Ι	KnX	KnY	KnM	KnS	Т	O	D	Ε	F	DSW: 9 steps
S	*															
D ₁		*														
D_2											*	*	*			
n					*	*										

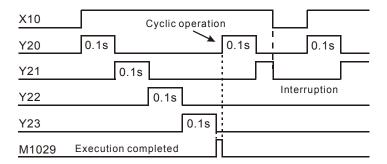
PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

S: Start device for switch scan input

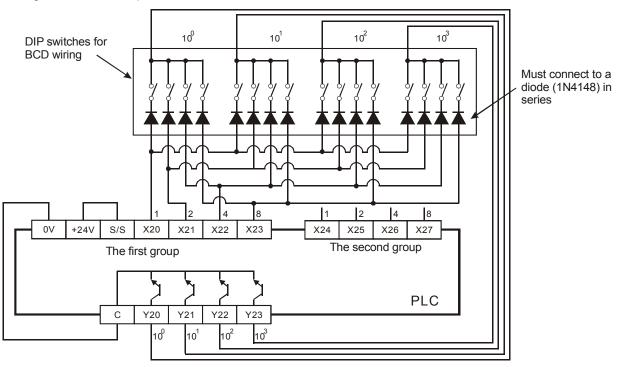
D₁: Start device for switch scan output

D₂: Device for storing the set value

of switch n: Groups of switches


Explanations:

- 1. Range of **n**: 1 ~ 2
- 2. See the specifications of each model for their range of use.
- 3. Flag: M1029 (DSW execution completed)
- 4. This instruction designates 4 or 8 consecutive external input points starting from **S** and 4 consecutive external input points starting from **D**₁ to scan read 1 or 2 4-digit DIP switches. The set values of DIP switches are stored in **D**₂. **n** decides to read 1 or 2 4-digit DIP switches.
- 5. There is no limitation on the times of using this instruction in the program. However, for SA series MPU, only one instruction can be executed at a time. For EH series MPU, two instructions are allowed to be executed at a time.


Program Example:

1. The first group of DIP switches consist of X20 ~ X23 and Y20 ~ Y23. The second group of switches consist of X24 ~ X27 and Y20 ~ Y23. When X10 = On, the instruction will be executed and the set values of the first group switches will be read and converted into bin values before being stored in D20. The set values of the second group switches will be read, converted into bin values and stored in D21.

- When X10 = On, the Y20 ~ Y23 auto scan cycle will be On. Whenever a scan cycle is completed, M1029 will be
 On for a scan period.
- 3. Please use transistor output for Y20 ~ Y23. Every pin 1, 2, 4, 8 shall be connected to a diode (0.1A/50V) before connecting to the input terminals on PLC.



4. Wiring for DIP swich input:

Remarks:

- 1. When $\mathbf{n} = K1$, $\mathbf{D_2}$ will occupy one register. When $\mathbf{n} = K2$, $\mathbf{D_2}$ will occupy 2 consecutive registers.
- 2. Follow the methods below for the transistor scan output:
 - a) When X10 = On, DSW instruction will be executed. When X10 goes Off, M10 will keep being On until the scan output completes a scan cycle and go Off.
 - b) When X10 is used as a button switch, whenever X10 is pressed once, M10 will be reset to Off when the scan output designated by DSW instruction completes a scan cycle. The DIP switch data will be read completely and the scan output will only operate during the time when the button switch is pressed. Therefore, even the scan output is a transistor type, the life span of the transistor can be extended because it does not operate too frequently.

API	M	Inemonic	;	Operands	Function	Controllers
73		SEGD	Р	SD	Seven Segment Decoder	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				V	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	T	С	О	Ш	F	SEGD, SEGDP: 5 steps
	S					*	*	*	*	*	*	*	*	*	*	*	
	D								*	*	*	*	*	*	*	*	

DILLOF	10 hit	20 F;t
PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

S: Source device to be decoded

D: Output device after the decoding

Explanations:

See the specifications of each model for their range of use.

Program Example:

When X10 = On, the contents (0 \sim F in hex) of the lower 4 bits (b0 \sim b3) of D10 will be decoded into a 7-segment display for output. The decoded results will be stored in Y10 \sim Y17. If the content exceeds 4 bits, the lower 4 bits are still used for the decoding.

Decoding table of the 7-segment display:

Hex	Bit combi-	Composition of the 7-		(Status	of each	segme	ent		Data
	nation	segment display	B0(a)	B1(b)	B2(c)	B3(d)	B4(e)	B5(f)	B6(g)	displayed
0	0000		ON	ON	ON	ON	ON	ON	OFF	
1	0001		OFF	ON	ON	OFF	OFF	OFF	OFF	ł
2	0010		ON	ON	OFF	ON	ON	OFF	ON	Ę
3	0011		ON	ON	ON	ON	OFF	OFF	ON	3
4	0100		OFF	ON	ON	OFF	OFF	ON	ON	닉
5	0101		ON	OFF	ON	ON	OFF	ON	ON	'5
6	0110	а	ON	OFF	ON	ON	ON	ON	ON	ΙΞι
7	0111	f g b	ON	ON	ON	OFF	OFF	ON	OFF	IT
8	1000	e c	ON	ON	ON	ON	ON	ON	ON	13
9	1001	d	ON	ON	ON	ON	OFF	ON	ON	'3
Α	1010		ON	ON	ON	OFF	ON	ON	ON	믐
В	1011		OFF	OFF	ON	ON	ON	ON	ON	Ь
С	1100		ON	OFF	OFF	ON	ON	ON	OFF	<u> </u>
D	1101		OFF	ON	ON	ON	ON	OFF	ON	ıd
Е	1110		ON	OFF	OFF	ON	ON	ON	ON	Ε
F	1111		ON	OFF	OFF	OFF	ON	ON	ON	F

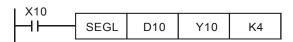
API	Mnemonic	Operands	Function	Controllers
74	SEGL	SDn	Seven Segment with Latch	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	SEGL: 7 steps
S					*	*	*	*	*	*	*	*	*	*	*	
D		*														
n					*	*										

				PUI	LSE							16	-bit							32	-bit			
Ī	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

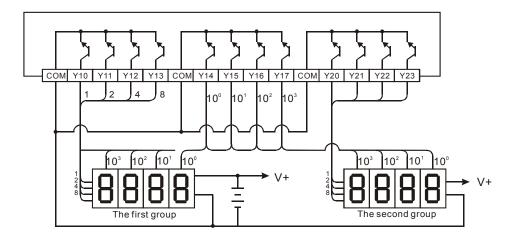
S: Source device to be displayed in 7-segment display

D: Start device for 7-segment display scan output

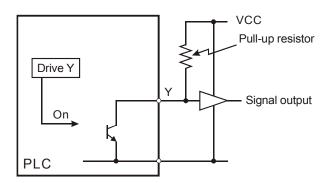

n: Polarity setting of output signal and scan signal

Explanations:

- 1. Range of $n: 0 \sim 7$. See remarks for more details.
- 2. For ES series MPU, the instruction can only be used once in the program. For EH series MPU, the instruction can be used twice in the program. For SA series MPU, there is no limitation on the times of using the instruction, but only one instruction can be executed at a time.
- 3. For ES/EX/SS/SA/SX/SC series MPU, the last digit of **D** should be 0 and it does not support E, F index register modification.
- 4. Flag: M1029 (SEGL execution completed)
- This instruction occupies 8 or 12 continuous external input points starting from **D** for displaying 1 or 2 4-digit 7-segment display data and outputs of scanned signals. Every digit carries a 7-segment display drive (to convert the BCD codes into 7-segment display signal). The drive also carries latch control signals to retain the 7-segment display.
- 6. n decides there be 1 group or 2 groups of 4-digit 7-segment display and designates the polarity for the output.
- 7. When there is 1 group of 4-digit output, 8 output points will be occupied. When there are 2 groups of 4-digit output, 12 output points will be occupied.
- 8. When this instruction is being executed, the scan output terminals will circulate the scan in sequence. When the drive contact of the instruction goes from Off to On again, the scan output terminal will restart the scan again.


Program Example:

1. When X10 = On, this instruction starts to be executed, Y10 ~ Y17 construct a 7-segment display scan circuit. The value in D10 will be converted into BCD codes and sent to the first group 7-segment display. The value in D11 will be converted into BCD codes as well and sent to the second group 7-segment display. If the values in D10 and D11 exceed 9,999, operational error will occur.


2. When X10 = On, Y14 ~ Y17 will circulate the scan automatically. Every cycle requires 12 scan period. Whenever a cycle is completed, M1029 will be On for a scan period.

- 3. When there is 1 group of 4-digit 7-segment display, $\mathbf{n} = 0 \sim 3$.
 - a) Connect the already decoded 7-segment display terminals 1, 2, 4, 8 in parallel an connect them to Y10 ~ Y13 on the PLC. Connect the latch terminals of each digit to Y14 ~ Y17 on the PLC.
 - b) When X10 = On, the instruction will be executed and the content in D10 will be sent to the 7-segment displays in sequence by the circulation of Y14 ~ Y17.
- 4. When there is 2 groups of 4-digit 7-segment display, $\mathbf{n} = 4 \sim 7$.
 - a) Connect the already decoded 7-segment display terminals 1, 2, 4, 8 in parallel an connect them to Y20 ~ Y23 on the PLC. Connect the latch terminals of each digit to Y14 ~ Y17 on the PLC.
 - b) The contents in D10 are sent to the first group 7-segment display. The contents in D11 are sent the the second group 7-segment display. If D10 = K1234 and D11 = K4321, the first group will display 1 2 3 4, and the second group will display 4 3 2 1.
- 5. Wiring of the 7-segment display scan output:

Remarks:

- 1. ES/EX/SS series MPU (V4.9 and above) supports this instruction but only supports 1 group of 4-digit 7-segment display and 8 points of output. This instruction can only be used once in the program. Range of **n**: 0 ~ 3.
- 2. **D** of ES/EX/SS series MPU can only designate Y0.
- 3. When this instruction is executed, the scan time has to be longer than 10ms. If the scan time is shorter than 10ms, please fix the scan time at 10ms.
- 4. **n** is for setting up the polarity of the transistor output and the number of groups of the 4-digit 7-segment display.
- 5. The output point must be a transistor module of NPN output type with open collector outputs. The output has to connect to a pull-up resistor to VCC (less than 30VDC). Therefore, when output point Y is On, the signal output will be in low voltage.

6. Positive logic (negative polarity) output of BCD code

	BCD	value		Υοι	utput (BCDc	ode)	Signal output				
b ₃	b ₂	b ₁	b ₀	8	4	2	1	Α	В	С	D	
0	0	0	0	0	0	0	0	1	1	1	1	
0	0	0	1	0	0	0	1	1	1	1	0	
0	0	1	0	0	0	1	0	1	1	0	1	
0	0	1	1	0	0	1	1	1	1	0	0	
0	1	0	0	0	1	0	0	1	0	1	1	
0	1	0	1	0	1	0	1	1	0	1	0	
0	1	1	0	0	1	1	0	1	0	0	1	
0	1	1	1	0	1	1	1	1	0	0	0	
1	0	0	0	1	0	0	0	0	1	1	1	
1	0	0	1	1	0	0	1	0	1	1	0	

7. Negative logic (positive polarity) output of BCD code

	BCD	value		Υοι	utput (BCDc	ode)	Signal output				
b ₃	b ₂	b ₁	b ₀	8	4	2	1	Α	В	С	D	
0	0	0	0	1	1	1	1	0	0	0	0	
0	0	0	1	1	1	1	0	0	0	0	1	
0	0	1	0	1	1	0	1	0	0	1	0	
0	0	1	1	1	1	0	0	0	0	1	1	
0	1	0	0	1	0	1	1	0	1	0	0	
0	1	0	1	1	0	1	0	0	1	0	1	
0	1	1	0	1	0	0	1	0	1	1	0	
0	1	1	1	1	0	0	0	0	1	1	1	
1	0	0	0	0	1	1	1	1	0	0	0	
1	0	0	1	0	1	1	0	1	0	0	1	

8. Scan latched signal display

Positive logic (n	egative polarity)	Negative logic (positive polarity)					
Y output (latch)	Output signal	Y output (latch)	Output signal				
1	0	0	1				

9. Settings of n:

Groups of 7-segment display	1 group				2 groups				
Y output of BCD code		H	-	_		H	_		
Scan latched signal display	+		+		+	_	+	_	
n	0	1	2	3	4	5	6	7	

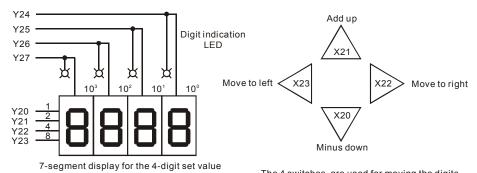
 $+ \colon \mathsf{Positive\ logic\ (negative\ polarity)\ output} \qquad - \colon \mathsf{Negative\ logic\ (positive\ polarity)\ output}$

10. The polarity of transistor output and the polarity of the 7-segment display input can be the same or different by the setting of **n**.

API	Mnemonic	Operands	Function	Controllers
75	ARWS	\mathbb{S} \mathbb{D}_1 \mathbb{D}_2 \mathbb{D}_2	Arrow Switch	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	it De	vice	s		Word D					ces					Program Steps
ОР	Χ	Υ	М	S	Κ	Η	KnX	KnY	KnM	KnS	Т	O	D	Е	F	ARWS: 9 steps
S	*	*	*	*												
D_1											*	*	*	*	*	
D ₂		*														
n					*	*										

PULSE	16-bit	32-bit				
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV				


S: Start device for key input D_1 : Device to be displayed in 7-segment display D_2 : Start device for 7-segment display scan output D_2 : Start device for 7-segment display scan output D_2 : Start device for 7-segment display D_2 :

Explanations:

- 1. **S** will occupy 4 consecutive points.
- 2. Range of n: 0 ~ 3. See remarks of API 74 SEGL for more details.
- 3. There no limitation on the times of using this instruction in the program. However, only one instruction is allowed to be executed at a time.
- 4. **S** and **D**₂ of SA series MPU do not support E, F index register modification and can only designate the devices whose last digit is 0 (e.g. Y0, Y10....)
- 5. See the specifications of each model for their range of use.
- 6. The output points designated by this instruction shall be transistor output.
- 7. When using this instruction, please fix the scan time, or place this instruction in the time interruption subroutine (16 \(\simeq \sime 18 \(\simeq \simeq \)).

Program Example:

- When this instruction is executed, X20 is defined as down key, X21 is defined as up key, X22 is defined as right key and X23 is defined as left key. The keys are used for setting up and displaying external set values. The set values (range: 0 ~ 9,999) are stored in D20.
- 2. When X10 = On, digit 10^3 will be the valid digit for setup. If you press the left key at this time, the valid digit will circulate as $10^3 \rightarrow 10^0 \rightarrow 10^1 \rightarrow 10^2 \rightarrow 10^3 \rightarrow 10^0$.
- 3. If you press the right key at this time, the valid digit will circulate as 10³ → 10² → 10¹ → 10⁰ → 10³ → 10². During the circulation, the digit indicators connected Y24 ~ Y27 will also be On interchangeably following the circulation.
- 4. If you press the up key at this time, the valid digit will change as 0 → 1 → 2 ... → 8 → 9 → 0 →1. If you press the down key, the valid digit will change as 0 → 9 → 8 ... → 1 → 0 → 9. The changed value will also be displayed in the 7-segment display.

The 4 switches are used for moving the digits and increasing/decreasing set values.

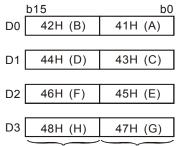
API	Mnemonic	Operands	Function	Controllers
76	ASC	SD	ASCII Code Conversion	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				٧	Word Devices						Program Steps	
(OP \	Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	O	D	П	F	ASC: 11 steps
Γ	S																
	D											*	*	*			

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV E	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

S: English letter to be converted into ASCII code

D: Device for storing ASCII code


Explanations:

- 1. **S**: enter 8 Engligh letters by using WPLSoft on computer or enter ASCII code by HPP.
- 2. See the specifications of each model for their range of use.
- 3. Flag: M1161 (8/16 bit mode switch)
- 4. If the execution of this instruction is connected to a 7-segment display, the error message can be displayed by English letters.

Program Example:

1. When X0 = On, convert A ~ H into ASCII code and stored it in D0 ~ D3.

Upper 8 bits Lower 8 bits

2. When M1161 = On, every ASCII code converted from the letters will occupy the lower 8 bits (b7 ~ b0) of a register. The upper 8 bits are invalid (filled by 0). One register stores a letter.

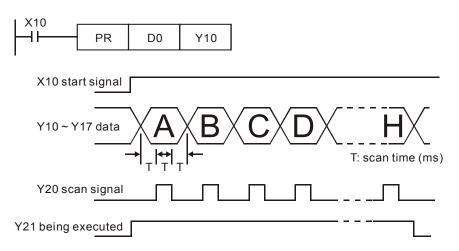
	b15	b0
D0	00 H	41H (A)
D1	00 H	42H (B)
D2	00 H	43H (C)
D3	00 H	44H (D)
D4	00 H	45H (E)
D5	00 H	46H (F)
D6	00 H	47H (G)
D7	00 H	48H (H)

Upper 8 bits Lower 8 bits

API	Mnemonic	Operands	Function	Controllers
77	PR	SD	Print (ASCII Code Output)	ES/EX/SS SA/SX/SC EH/SV

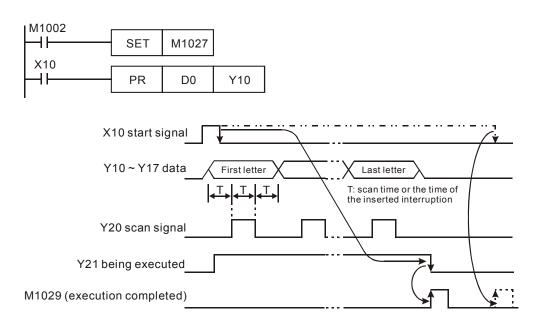
	Туре	E	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
0	P	X	Υ	М	S	Κ	Η	KnX	KnY	KnM	KnS	Т	C	О	П	F	PR: 5 steps
	S											*	*	*			
	D		*														

PULSE								16-bit								32-bit							
ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	H	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


S: Device for storing ASCII code
D: External ASCII code output points

Explanations:

- 1. **S** will occupy 4 consecutive points.
- 2. **D** will occupy 10 consecutive points.
- 3. This instruction can only be used twice in the program.
- 4. See the specifications of each model for their range of use.
- 5. Flags: M1029 (PR execution completed); M1027 (number of PR outputs)
- 6. This instruction will output the ASCII codes in the 4 registers starting from **S** from the output devices in the order designated in **D**.


Program Example 1:

- 1. Use API 76 ASC to convert A ~ H into ASCII codes and store them in D0 ~ D3 and use this instruction to output the codes in sequence.
- 2. When M1027 = Off and X10 goes On, the instruction will be executed. Designate Y10 (low bits) ~ Y17 (high bits) as the data output points and Y20 for scan signals. Designate Y21 for the monitor signals during the execution. In this mode, you can execute an output for 8 letters in sequence. During the output, if the drive contact goes Off, the data output will stop immediately and all the outputs will go Off.
- During the execution of the instruction, when X10 goes Off, all the data output will be interrupted. When X10 is On again, the output will be restarted.

Program Example 2:

- PR instruction is for outputing a string of 8 bits. When the special auxiliary relay M1027 = Off, PR is able to
 execute an output of maximum 8 letters in string. When M1027 = On, PR is able to execute an output of 1 ~ 16
 letters in string.
- 2. When M1027 = On and X10 goes from Off to On, the instruction will be executed. Designate Y10 (low bits) ~ Y17 (high bits) as the data output points and Y20 for scan signals. Designate Y21 for the monitor signals during the execution. In this mode, you can execute an output for 16 letters in sequence. During the output, if the drive contact goes Off, the data output will stop after it is completed.
- 3. When the string encounters 00H (NUL), the string output will finish. The letters coming after it will not be processed.
- 4. When X10 goes from On to Off, the data output will automatically stop after one cycle. If X10 keeps being On, M1029 will not be enabled.

Remarks:

- 1. Please use transistor output for the output designated by this instruction.
- 2. When using this instruction, please fix the scan time or place this instruction in a timed interruption subroutine.

API		Mnemonic		Operands	Function	Controllers
78	D	FROM	Р	m_1 m_2 D n	Read CR Data in Special Modules	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				V	Vord I	Devic	es					Program Steps
OP		Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	FROM, FROMP: 9 steps
	m ₁					*	*							*			•
	m ₂					*	*							*			DFROM, DFROMP: 17 steps
	D								*	*	*	*	*	*	*	*	
	n					*	*							*			

PULSE 16-bit 32-bit
ES | EX | SS | SA | SX | SC | EH | SV | ES | EX | SS | SA | SX | SC | EH | SV |

Operands:

 m_1 : No. of special module m_2 : CR# in special module to be read m_2 : Device for storing read data m_2 : Number of data to be read at a time

Explanations:

- 1. Range of \mathbf{m}_1 (16-bit and 32-bit): for ES/SA: $0 \sim 7$, for EH/EH2: $0 \sim 255$, for SV: $0 \sim 107$.
- 2. Range of m_2 (16-bit and 32-bit): for ES/SA: 0 ~ 48, for EH: 0 ~ 254, for EH2/SV: 0 ~ 499.
- 3. Range of n:
 - a) 16-bit: for ES/SA: $1 \sim (49 m_2)$, for EH: $1 \sim (255 m_2)$, for EH2/SV: $1 \sim (500 m_2)$.
 - b) 32-bit: for ES/SA: $1 \sim (49 m_2)/2$, for EH: $1 \sim (255 m_2)/2$, for EH2/SV: $1 \sim (500 m_2)/2$.
- 4. ES series MPU does not support E, F index register modification.
- 5. m_1 , m_2 and n of EH series MPU do not support word device D.
- 6. Flag: M1083 (On when allowing interruptions during FROM/TO instruction).
- 7. This instruction is for reading the data in the CR in special modules.
- 8. The 16-bit instruction can designate $\mathbf{D} = K1 \sim K4$; the 32-bit instruction can designate $\mathbf{D} = K1 \sim K8$.

Program Example:

- 1. Read CR#29 of special module No.0 into D0 and CR#30 into D1. Only 2 groups of data is read at a time (n = 2).
- 2. When X0 = On, the instruction will be executed. When X0 = Off, the instruction will not be executed and the data read will not be changed.

Ī	API		Mnemonic	;	Operands	Function	Controllers
	79	D	TO	Р	m1 m2 S n	Write CR Data into Special Modules	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	evice	s				V	Vord I	Devic	es					Program Steps	
OP		Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	D	Е	F	TO, TOP: 9 steps
	m ₁					*	*							*			DTO, DTOP: 17 steps
	m ₂					*	*							*			213, 2131 : 17 stops
	S					*	*	*	*	*	*	*	*	*	*	*	
	n					*	*							*			

PULSE	16-bit	32-bit						
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV						

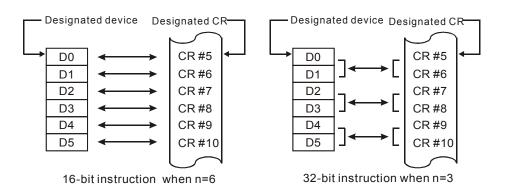

 m_1 : No. of special module m_2 : CR# in special module to be written m_2 : Data to be written in CR m_2 : Number of data to be written at a time

Explanations:

- 1. Range of \mathbf{m}_1 (16-bit and 32-bit): for ES/SA: $0 \sim 7$, for EH/EH2: $0 \sim 255$, for SV: $0 \sim 107$.
- 2. Range of m_2 (16-bit and 32-bit): for ES/SA: 0 ~ 48, for EH: 0 ~ 254, for EH2/SV: 0 ~ 499.
- 3. Range of n:
 - a) 16-bit: for ES/SA: $1 \sim (49 m_2)$, for EH: $1 \sim (255 m_2)$, for EH2/SV: $1 \sim (500 m_2)$.
 - b) 32-bit: for ES/SA: $1 \sim (49 m_2)/2$, for EH: $1 \sim (255 m_2)/2$, for EH2/SV: $1 \sim (500 m_2)/2$.
- 4. ES series MPU does not support E, F index register modification.
- 5. m_1 , m_2 and n of EH series MPU do not support word device D.
- 6. Flag: M1083 (On when allowing interruptions during FROM/TO instruction). See remarks for more details.
- 7. This instruction is for writing the data into the CR in special modules.
- The 16-bit instruction can designate S = K1 ~ K4; the 32-bit instruction can designate S = K1 ~ K8.

Program Example:

- 1. Use 32-bit instruction DTO to write the content in D11 and D10 into CR#13 and CR#12 of special module No.0. Only 1 group of data is written in at a time (n = 1).
- 2. When X0 = On, the instruction will be executed. When X0 = Off, the instruction will not be executed and the data written will not be changed.



3. Operand rules

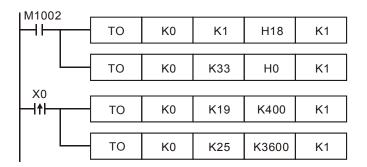
- a) **m**₁: The No. of special modules connected to PLC MPU. No. 0 is the module closest to te MPU. Maximum 8 modules are allowed to connected to a PLC MPU and they will not occupy any I/O points.
- b) **m**₂: CR#. CR (control register) is the n 16-bit memories built in the special module, numbered in decimal as #0 ~ #n. All operation status and settings of the special module are contained in the CR.
- FROM/TO instruction is for reading/writing 1 CR at a time. DFROM/DTO instruction is for reading/writing 2
 CRs at a time.

d) Number of groups "n" to be transmitted: n = 2 in 16-bit instructions and n = 1 in 32-bit instructions mean the same.

- 4. ES/EX/SS series MPU does not have M1083. During the execution of FROM/TO instruction, all external or internal interruption subroutines will be forbidden. The interruptions are allowed only after FROM/TO instruction finishes its execution. FROM/TO instruction can also be used in an interruption subroutine.
- 5. M1083 for switching instruction modes in SA/SX/SC/EH/EH2/SV series MPU:
 - a) When M1083 = Off, during the execution of FROM/TO instruction, all external or internal interruption subroutines will be forbidden. The interruptions are allowed only after FROM/TO instruction finishes its execution. FROM/TO instruction can also be used in an interruption subroutine.
 - b) When M1083 = On and an interruption signal occurs during the execution of FROM/TO instruction, the interruption will be processed first (with a 100us delay) and the execution of FROM/TO will be stopped. After the interruption subroutine finishes its execution, the program will jump to the next instructio of FROM/TO. FROM/TO cannot be used in an interruption subroutine.

FROM/TO Application Example 1:

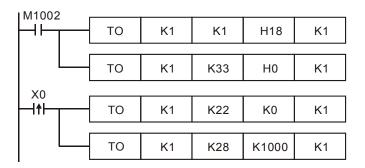
Adjust the A/D conversion curve of DVP-04AD. Set the OFFSET value of CH1 as 0V (= $K0_{LSB}$) and GAIN value as 2.5V (= $K2,000_{LSB}$).



- Write H0 to CR#1 of anlog input module No. 0 and set CH1 as mode 0 (voltage input: -10V ~ +10V).
- 2. Write H0 to CR#33 and allow OFFSET/GAIN tuning in CH1 ~ CH4.
- 3. When X0 goes from Off to On, write the OFFSET value K0 LSB into CR#18 and the GAIN value K2,000 LSB into

CR#24.

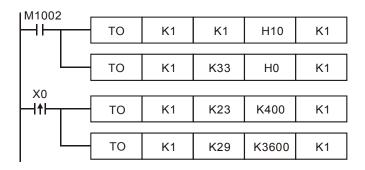
FROM/TO Application Example 2:


Adjust the A/D conversion curve of DVP-04AD. Set the OFFSET value of CH2 as 2mA (= $K400_{LSB}$) and GAIN value as 18mA (= $K3,600_{LSB}$).

- 1. Write H18 to CR#1 of anlog input module No. 0 and set CH2 as mode 3 (current input: -20mA ~ +20mA).
- 2. Write H0 to CR#33 and allow OFFSET/GAIN tuning in CH1 ~ CH4.
- 3. When X0 goes from Off to On, write the OFFSET value K400 $_{LSB}$ into CR#19 and the GAIN value K3,600 $_{LSB}$ into CR#25.

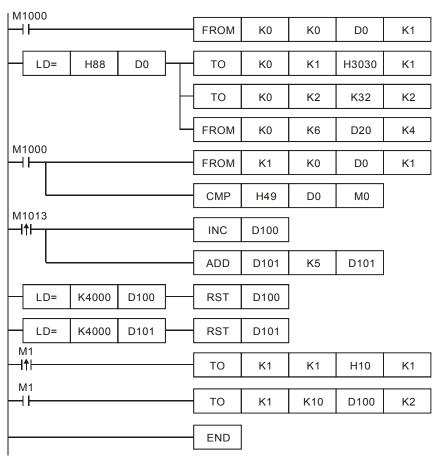
FROM/TO Application Example 3:

Adjust the D/A conversion curve of DVP-02DA. Set the OFFSET value of CH2 as 0mA (= $K0_{LSB}$) and GAIN value as 10mA (= $K1,000_{LSB}$).



- 1. Write H18 to CR#1 of anlog output module No. 1 and set CH2 as mode 3 (current output: 0mA ~ +20mA).
- 2. Write H0 to CR#33 and allow OFFSET/GAIN tuning in CH1 and CH2.
- 3. When X0 goes from Off to On, write the OFFSET value K0 _{LSB} into CR#22 and the GAIN value K1,000 _{LSB} into CR#28.

FROM/TO Application Example 4:


Adjust the D/A conversion curve of DVP-02DA. Set the OFFSET value of CH2 as 2mA (= $K400_{LSB}$) and GAIN value as 18mA (= $K3,600_{LSB}$).

- 1. Write H10 to CR#1 of anlog output module No. 1 and set CH2 as mode 2 (current output: +4mA ~ +20mA).
- 2. Write H0 to CR#33 and allow OFFSET/GAIN tuning in CH1 and CH2.
- 3. When X0 goes from Off to On, write the OFFSET value K400 _{LSB} into CR#23 and the GAIN value K3,600 _{LSB} into CR#29.

FROM/TO Application Example 5:

When DVP-04AD-S is used with DVP-02DA-S

- Read CR#0 of the extension module No. 0 and see if it is DVP-04AD-S: H88.
- 2. If D0 = H88, set the input modes: (CH1, CH3) mode 0, (CH2, CH4) mode 3.
- 3. Set the average times in CH1 and CH2 from CR#2 and CR#3 as K32.
- 4. Read the average of input signals at CH1 ~ CH4 from CR#6 ~ CR#9 and store the 4 data in D20 ~ D23.
- 5. Read CR#0 of the extension module No. 1 and see if it is DVP-02DA-S: H49.
- 6. D100 increases K1 and D101 increases K5 every second.
- 7. When D100 and D101 reach K4,000, they will be cleared as 0.
- 8. See if the model is DVP-02DA-S when M1 = On. If so, set up output mode: CH1 in mode 0 and CH2 is mode 2.
- 9. Write the output settings of D100 and D101 into CR#10 and CR#11. The analog output will change by the changes in D100 and D101.

API	Mnemonic	Operands	Function	Controllers
80	RS	SmDn	Serial Communication Instruction	ES/EX/SS SA/SX/SC EH/SV

	Туре		В	it De	evice	s		Word Devices				Program Steps						
ОР		$\sqrt{}$	(Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	RS: 9 steps
	S														*			
	m						*	*							*			
	D														*			
	n						*	*							*			

PULSE	16-bit	32-bit		
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV		

S: Start device for the data to be transmitted **m**: Length of data to be transmitted **D**: Start device for receiving data **n**: Length of data to be received

Explanations:

1. Range of **m**: 0 ~ 256

2. Range of **n**: 0 ~ 256

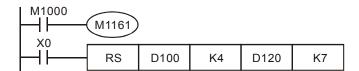
- 3. See the specifications of each model for their range of use.
- 4. ES series MPU does not support E, F index register modification.
- 5. This instruction is a handy instruction exclusively for MPU to use RS-485 serial communication interface. The user has to pre-store word data in **S** data register, set up data length **m** and the data receiving register **D** and received data length **n**. If E, F index registers are used to modify **S** and **D**, the user cannot change the set values of E and F when the instruction is being executed; otherwise errors may cause in data writing or reading.
- Designate m as K0 if you do not need to send data. Designate n as K0 if you do not need to receive data.
- 7. There is no limitation on the times of using this instruction in the program, but only one instruction is allowed to be executed at a time.
- 8. During the execution of RS instruction, changing the data to be transmitted will be invalid.
- 9. If the peripheral devices, e.g. AC motor drive, are equipped with RS-485 serial communication and its communication format is open, you can use RS instruction to design the program for the data transmission between PLC and the peripheral device.
- 10. If the communication format of the peripheral device is Modbus, DVP series PLC offers handy communication instructions API 100 MODRD, API 101 MODWR, and API 150 MODRW, to work with the device. See explanations of the instructions in this application manual.
- 11. For the special auxiliary relays M1120 ~ M1161 and special data registers D1120 ~ D1131 relevant to RS-485 communication, see remarks for more details.

Program Example 1:

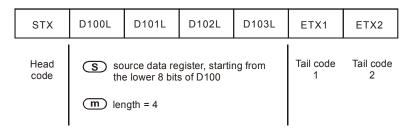
- 1. Write the data to be transmitted in advance into registers starting from D100 and set M1122 (sending request flag) as On.
- 2. When X10 = On, RS instruction will be executed and PLC will start to wait for the sending and receiving of data.

 D100 starts to continuousl send out 10 data and when the sending is over, M1122 will be automatically reset to

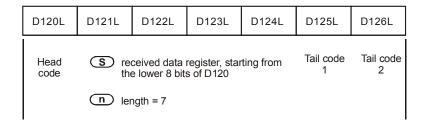
- Off (DO NOT use the program to execute RST M1122). After 1ms of waiting, PLC will start to receive the 10 data. Store the data in consecutive registers starting from D120.
- 3. When the receiving of data is completed, M1123 will automatically be On. After the program finishes processing the received data, M1123 has to be reset to Off and the PLC will start to wait for the sending and receiving of data again. DO NOT use the program to continuously execute RST M1123.



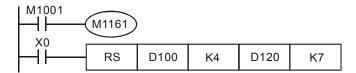
Program Example 2:

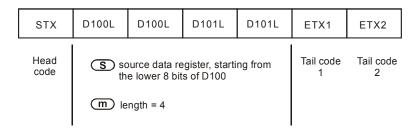

Switching between 8-bit mode (M1161 = On) and 16-bit mode (M1161 = Off)

1. 8-bit mode:

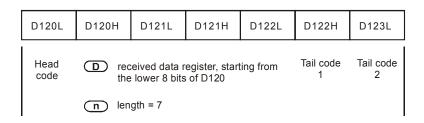

The head code and tail code of the data are set up by M1126 and M1130 together with D1124 ~ D1126. When PLC is executing RS instruction, the head code and tail code set up by the user will be sent out automatically. M1161 = On indicates PLC in 8-bit conversion mode. The 16-bit data will be divided into the higher 8 bits and lower 8 bits. The higher 8 bits are ignored and only the lower 8 bits are valid for data transmission.

Sending data: (PLC -> external equipment)

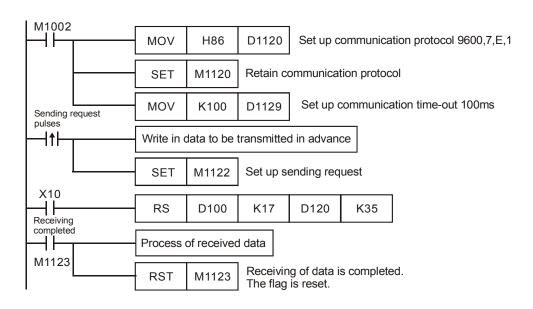

Receiving data: (External equipment -> PLC)


When receiving data, PLC will receive the head code and tail code of the data from the external equipment; therefore, the user has to be aware of the setting of data length **n**.

2. 16-bit mode:


The head code and tail code of the data are set up by M1126 and M1130 together with D1124 ~ D1126. When PLC is executing RS instruction, the head code and tail code set up by the user will be sent out automatically. M1161 = Off indicates PLC in 16-bit conversion mode. The 16-bit data will be divided into the higher 8 bits and lower 8 bits for data transmission.

Sending data: (PLC -> external equipment)


Receiving data: (External equipment -> PLC)

When receiving data, PLC will receive the head code and tail code of the data from the external equipment; therefore, the user has to be aware of the setting of data length **n**.

Program Example 3:

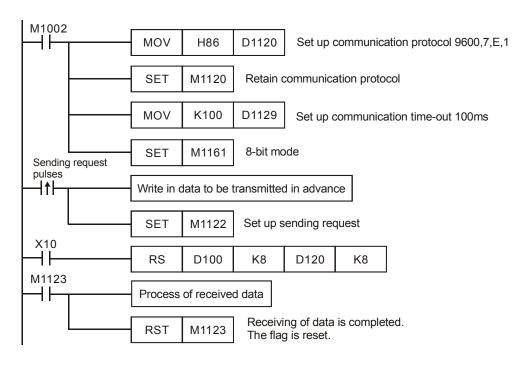
Connect PLC to VFD-B series AC motor drives (AC motor drive in ASCII Mode; PLC in 16-bit mode and M1161 = Off). Write in the 6 data starting from parameter address H2101 in VFD-B in advance as the data to be transmitted.

PLC \Rightarrow VFD-B, PLC sends ": 01 03 2101 0006 D4 CR LF "

VFD-B ⇒ PLC, PLC receives ": 01 03 0C 0100 1766 0000 0000 0136 0000 3B CR LF "

Registers for sent data (PLC sends out message)

Register	Data		Explanation		
D100 low	·. ·	3A H	STX		
D100 high	'0'	30 H	ADR 1	Address of AC motor drive: ADR	
D101 low	'1'	31 H	ADR 0	(1,0)	
D101 high	'0'	30 H	CMD 1	Instruction code: CMD (1.0)	
D102 low	'3'	33 H	CMD 0	Instruction code: CMD (1,0)	
D102 high	'2'	32 H			
D103 low	'1'	31 H	Start data address		
D103 high	'0'	30 H			
D104 low	'1'	31 H			
D104 high	'0'	30 H			
D105 low	'0'	30 H	Number of date	(acupted by words)	
D105 high	'0'	30 H	Number of data	a (counted by words)	
D106 low	'6'	36 H			
D106 high	'D'	44 H	LRC CHK 1	Error abooksum: LBC CHK (0.1)	
D107 low	'4'	34 H	LRC CHK 0 Error checksum: LRC CHK (0,1)		
D107 high	CR	DΗ	END		
D108 low	LF	АН	END		


Registers for received data (VFD-B responds with messages)

Register	Data		Explanation	
D120 low	·. ·	3A H	STX	
D120 high	'0'	30 H	ADR 1	
D121 low	'1'	31 H	ADR 0	
D121 high	'0'	30 H	CMD 1	
D122 low	'3'	33 H	CMD 0	
D122 high	'0'	30 H	Number of data (accepted by byte)	
D123 low	'C'	43 H	Number of data (counted by byte)	

Register	D	ata	Explanation		
D123 high	'0'	30 H			
D124 low	'1'	31 H	Content of address 2101 H		
D124 high	'0'	30 H			
D125 low	'0'	30 H			
D125 high	'1'	31 H			
D126 low	'7'	37 H	Content of address 2102 H		
D126 high	'6'	36 H	Content of address 210211		
D127 low	'6'	36 H			
D127 high	٠ <u>0</u>	30 H			
D128 low	o'	30 H	Content of address 2103 H		
D128 high	'0'	30 H	- Content of address 2103 H		
D129 low	٠ <u>0</u>	30 H			
D129 high	'0'	30 H	- Content of address 2104 H		
D130 low	'0'	30 H			
D130 high	'0'	30 H			
D131 low	'0'	30 H			
D131 high	'0'	30 H			
D132 low	'1'	31 H	Content of address 2105 H		
D132 high	'3'	33 H	Content of address 210311		
D133 low	'6'	36 H			
D133 high	'0'	30 H			
D134 low	'0'	30 H	Content of address 2106 H		
D134 high	'0'	30 H	Sometiment address 2 100 11		
D135 low	'0'	30 H	1		
D135 high	'3'	33 H	LRC CHK 1		
D136 low	'B'	42 H	LRC CHK 0		
D136 high	CR	DΗ	- END		
D137 low	LF	АН			

Program Example 4:

Connect PLC to VFD-B series AC motor drives (AC motor drive in RTU Mode; PLC in 16-bit mode and M1161 = On). Write in H12 to parameter address H2000 in VFD-B in advance as the data to be transmitted.

 $\mathsf{PLC} \Rightarrow \mathsf{VFD-B},\, \mathsf{PLC} \; \mathsf{sends} \mathsf{:} \; \mathbf{01} \; \mathbf{06} \; \mathbf{2000} \; \mathbf{0012} \; \mathbf{02} \; \mathbf{07}$

VFD-B ⇒ PLC, PLC receives: **01 06 2000 0012 02 07**

Registers for sent data (PLC sends out messages)

Register Data		Explanation	
D100 low	01 H	Address	
D101 low	06 H	Function	
D102 low	20 H	Data address	
D103 low	00 H	Data address	
D104 low	00 H	Data contant	
D105 low	12 H	Data content	
D106 low	02 H	CRC CHK Low	
D107 low	07 H	CRC CHK High	

Registers for received data (VFD-B responds with messages)

Register	Data	Explanation	
D120 low	01 H	Address	
D121 low	06 H	Function	
D122 low	20 H	Data address	
D123 low	00 H	Data address	
D124 low	00 H	Data contact	
D125 low	12 H	Data content	
D126 low	02 H	CRC CHK Low	
D127 low 07 H		CRC CHK High	

Remarks:

 Flags for the RS-485 communication of RS/MODRD/MODWR/FWD/REV/STOP/RDST/RSTEF/MODRW instructions

Flag	Function	Action	
M1120	For retain the communication setting. After the first program scan is completed, the communication setting will be reset according to the setting in the special data register D1120. When the second program scan starts and RS instruction is being executed, the communication settings will all be reset according to the settings in D1120. If your communication protocol is fixed, you can set M1120 to On and the communication protocol will not be reset whenever RS/MODRD/MODWR/FWD/REV/STOP/RDST/RSTEF/MODRW instruction is executed. In this case, even the settings in D1120 are modified, the communication protocol will not be changed.	Set up and reset by the user.	
M1121	Off when the RS-485 communication data is being transmitted.	By the system.	
M1122	Sending request. When you need to send out or receive data by RS/MODRD/MODWR/FWD/REV/STOP/RDST/RSTEF/MODRW instructions, you have to set M1122 to On by a pulse instruction. When these instructions start to execute, PLC will start to send out or receive data. When the data transmission is completed, M1122 will be reset automatically.	Set up by the user; reset automatically by the system.	
M1123	Receiving is completed. When the execution of RS/MODRD/MODWR/FWD/REV/STOP/RDST/RSTEF/MODRW instructions is completed, M1123 will be set to On. You can process the data received when M1123 is On in the program. You have to reset M1123 to Off when the process of received data is completed.	Set up automatically by the system; reset by the user.	
M1124	Waiting for receiving. On when PLC is waiting for receiving data.	By the system.	
M1125	Receiving status cleared. When M1125 = On, the waiting for receiving status of PLC will be cleared. You have to reset M1125 to Off after the staus is cleared.		
M1126	User/system defined STX/ETX selection of RS instruction (see the next table for details.)	Set up and reset by the user.	
M1130	User/system defined STX/ETX selection of RS instruction (see the next table for details.)		
M1127	Data transmission is completed for communication instructions (RS instruction not included)	Set up automatically by the system; reset by the user.	
M1128	Data being sent/received indication	By the systme.	
M1129	Receiving time-out. If you already set up a communication time-out in D1129 and the data have not been received completey when the time-out set is reached, M1129 will be On. You have to reset M1129 to Off after the problem is solved.	Set up automatically by the system; reset by the user.	
M1131	On when the data are converted into hex of MODRD/RDST/MODRW instructions when in ASCII mode; otherwise, M1131 is Off.		
M1140	Data receiving error of MODRD/MODWR/MODRW instructions	By the system	
M1141	Parameter error of MODRD/MODWR/MODRW instructions		
M1142	Data receiving error of VFD-A handy commands		
M1143	ASCII/RTU mode selection (used with MODRD/MODWR/MODRW instructions). On = RTU; Off = ASCII	Set up and reset by the	
M1161	8/16-bit mode selection. On = 8-bit; Off = 16-bit	user.	

2. Special data register for the RS-485 communication of RS/MODRD/MODWR/FWD/REV/STOP/RDST/RSTEF /MODRW instructions

Special D	Function
D1038	For setting up the data responding delay time when a PLC MPU using RS-485 communication is used as a slave. Range: 0 ~ 10,000 (unit: 0.1ms)
D1050 ~ D1055	When MODRD/RDST instruction is executed, PLC will automatically convert the ASCII characters in D1070 ~ D1085 into hex and store the hex value in D1050 ~ D1055.
D1070 ~ D1085	When the RS-485 communication instructions built in PLC are executed, the receiving end will respond with a message and the messages will be stored in D1070 ~ D1085. You can check on the responded data stored in these registers (not applicable for RS instruction).
D1089 ~ D1099	When the RS-485 communication instructions built in PLC are executed, the data sent will be stored in D1089 ~ D1099. You can check on whether the data sent are correct by checking these registers (not applicable for RS instruction).
D1120	RS-485 communication protocol. See the next table for more details.
D1121	The communication address of PLC when it operates as a slave.
D1122	Remaining number of words of the data being sent
D1123	Remaining number of words of the data being received
D1124	Definition of the start word (STX). See the table above for more details.
D1125	Definition of the first end word (ETX1) of RS instruction. See the table above for more details.
D1126	Definition of the second end word (ETX2) of RS instruction. See the table above for more details.
D1129	Abnormal communication time-out (in ms). When D1129 = 0, there will be no time-out occurring. When D1129 > 0 and RS/MODRD/ MODWR/FWD/REV/STOP/RDST/RSTEF/MODRW instructions are being executed, if the first word has not been received within designated time or the time interval between any two words exceeds the value (>0) after PLC enters the receiving mode, PLC will automatically set M1129 to On. You can also use M1129 for handling the communication time-out. Please be noted that you have to reset M1129 after the time-out.
D1130	Error code sent back by Modbus
D1168	For RS instruction, when the received number of words = the low byte of D1168, the interruption I150 will be triggered.
D1169	For RS instruction, when the received data length = the low byte of D1169, the interruption I160 will be triggered. When D1169 = 0, I160 will not be triggered.
D1256 ~ D1295	When the RS-485 communication instruction MODRW built in PLC is executed, the data sent will be stored in D1256 ~ D1295. You can check on whether the data sent are correct by checking these registers.
D1296 ~ D1311	For MODRW instruction, PLC will automatically convert the ASCII characters into hex.

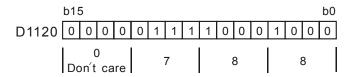
3. How to set up RS-485 communication protocol in D1120

	Content	0	1
b0	Data length	7	8
b1 b2	Parity bits	00: None 01: Odd 11: Even	
b3	Stop bits	1 bit	2 bits
b4 b5 b6 b7	0001 (H1) : 0010 (H2) : 0011 (H3) : 0100 (H4) : 0101 (H5) : 0110 (H6) : 0111 (H7) : 1000 (H8) : 1001 (H9) : 1010 (HA) :	110 150 300 600 1200 2400 4800 9600 19200 38400	ort FS/SS VE 9 and halow)
	1100 (HC) :		ort ES/SS V5.8 and below) ort ES/SS V5.8 and below)
b8	Start word	None	D1124
b9	First end word	None	D1125
b10	Second end word	None	D1126
b15 ~ b11	Not defined		

4. When RS instruction is in use, the frequently used communication format in the peripheral device will define the start word and end word of the control string. Therefore, you can set up the start word and end word in D1124 ~ D1126 or use the start word and end word defined by the PLC. When you use M1126, M1130 and D1124 ~ D1126 to set up the start word and end word, b8 ~ b10 of D1120 have to be set as 1 to make valid the RS-485 communication protocol. See the table below for how to set up.

		M1130						
		0	1					
26	0	D1124: user defined D1125: user defined D1126: user defined	D1124: H 0002 D1125: H 0003 D1126: H 0000 (no setting)					
M1126	1	D1124: user defined D1125: user defined D1126: user defined	D1124: H 003A (':') D1125: H 000D (CR) D1126: H 000A (LF)					

5. Example of how to set up the communication format:


Assume there is a communication format: Baud rate 9600 7, N, 2

STX : ":"

ETX1 : "CR"

ETX2 : "LF"

Check the table and obtain the communication format H788 and write it into D1120.

When STX, ETX1 and EXT2 are in use, please be aware of the On and Off of the special auxiliary relays M1126 and M1130.

6. M1143 is for the selection of ASCII mode or RTU mode. On = RTU mode; Off = ASCII mode.

Take the standard Modbus format for example:

In ASCII mode (M1143 = Off)

STX	Start word = ':' (3AH)						
Address Hi	Communication address:						
Address Lo	The 8-bit address consists of 2 ASCII codes						
Function Hi	Function code:						
Function Lo	The 8-bit function code consists of 2 ASCII codes						
DATA (n-1)							
	Data: The n × 8-bit data consists of 2n ASCII codes						
DATA 0							
LRC CHK Hi	LRC checksum:						
LRC CHK Lo	The 8-bit checksum consists of 2 ASCII code						
END Hi	End word:						
END Lo	END Hi = CR (0DH), END Lo = LF(0AH)						

The communication protocol is in Modbus ASCII mode, i.e. every byte is composed of 2 ASCII characters. For example, 64Hex is '64' in ASCII, composed by '6' (36Hex) and '4' (34Hex). Every hex '0'...'9', 'A'...'F' corresponds to an ASCII code.

Character	'0'	'1'	'2'	'3'	'4'	' 5'	'6'	'7'
ASCII code	30H	31H	32H	33H	34H	35H	36H	37H

Character	'8'	'9'	'A'	'B'	'C'	'D'	'E'	'F'
ASCII code	38H	39H	41H	42H	43H	44H	45H	46H

Start word (STX):

Fixed as ':' (3AH)

Address:

'0' '0': Broadcasting to all drivers

'0' '1': To the driver at address 01

'0' 'F': To the driver at address 15

'1' '0': To the driver at address 16

....and so on, maximum to the driver at address 255 ('F' 'F')

Function code:

'0' '3': Read contents of many registers

'0' '6': Write 1 word to register

'1' '0': Write in contents of many registers

Data characters: The data sent by the user.

LRC checksum:

LCR checksum is 2's complement of the value added from Address to Data Content.

For example: 01H + 03H + 21H + 02H + 00H + 02H = 29H. 2's complement of 29H = D7H

End word (END):

Fixed as END Hi = CR (0DH), END Lo = LF (0AH)

For example: Read 2 continuous data stored in the registers of the driver at address 01H (see the table below).

The start register is at address 2102H.

Inquiry message:

STX	". ' ·
Addross	'0'
Address	'1'
Function code	'0'
Function code	'3'
	'2'
Start address	'1'
Start address	'0'
	'2'
	'0'
Number of data	'0'
(counted by words)	'0'
	'2'
LRC checksum	'D'
LRC CHECKSUIII	'7'
END	CR
EIND	LF

Responding message:

STX	·. ·
Address	'0'
Address	'1'
Function code	'0'
1 diletion code	'3'
Number of data	'0'
(counted by byte)	'4'
	'1'
Content in start address	'7'
2102H	'7'
	'0'
	'0'
Content of address	'0'
2103H	'0'
	'0'
LRC check	'7'
LING CHECK	'1'
END	CR
LIND	LF

In RTU mode (M1143 = On)

START	See the following explanation						
Address	Communication address: In 8-bit binary						
Function	Function code: In 8-bit binary						
DATA (n-1)	Data:						
DATA 0	$n \times 8$ -bit data						
CRC CHK Low	CRC checksum: 16-bit CRC consists of 2 8-bit binary						
CRC CHK High							
END	See the following explanation						

START:

For ES/EX/SS/SA/SX series MPU, no input signal can be ≥ 10ms.

See the table below for EH/EH2/SV series MPU:

Baud rate(bps)	RTU timeout timer (ms)	Baud rate (bps)	RTU timeout timer (ms)
300	40	9,600	2
600	21	19,200	1
1,200	10	38,400	1
2,400	5	57,600	1
4,800	3	115,200	1

Address:

00H: Broadcasting to all drivers

01H: To the driver at address 01

0FH: To the driver at address 15

10H: To the driver at address 16.... And so on, maximum to the driver at address 254 (FE H)

Function code:

03H: Read contents of many registers

06H: Write 1 word to register

10H: Write in contents of many registers

Data characters: The data sent by the user.

CRC checksum: Starting from Address and ending at Data Content.

- Step 1: Make the 16-bit register (CRC register) = FFFFH
- Step 2: Exclusive OR the first 8-bit message and the low 16-bit CRC register. Store the result in the CRC register.
- Step 3: Right shift CRC register for a bit and fill "0" into the high bit.
- Step 4: Check the value shifted to the right. If it is 0, fill in the new value obtained in step 3 and store the value in CRC register; otherwise, Exclusive OR A001H and CRC register and store the result in the CRC register.
- Step 5: Repeat step 3 4 and finish operations of all the 8 bits.
- Step 6: Repeat step 2 5 for obtaining the next 8-bit message until the operation of all the messages are completed. The final value obtained in the CRC register is the CRC checksum. The CRC checksum has to be placed interchangeably in the checksum of the message.

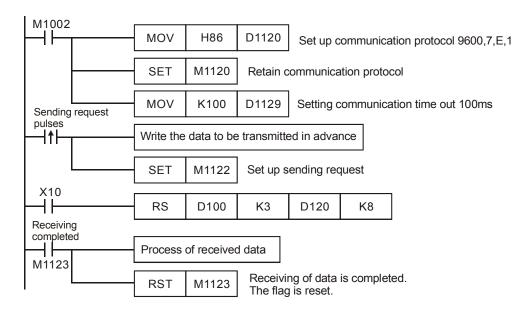
END:

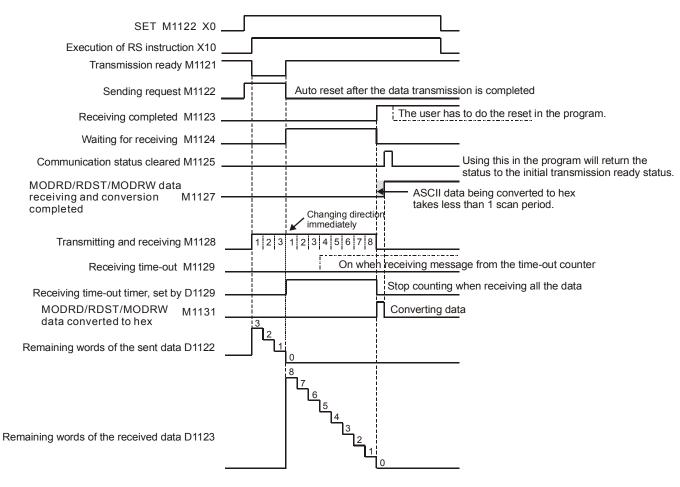
For ES/EX/SS V5.8 (and below) and SA/SX V1.1 (and below) series MPU, keep no input signal be ≥ 10ms. See the table below for EH/EH2/SV series MPU:

Baud rate(bps)	RTU timeout timer (ms)	Baud rate (bps)	RTU timeout timer (ms)
300	40	2	
600	21	19,200	1
1,200	10	38,400	1
2,400	5	57,600	1
4,800	3	115,200	1

For example: Read 2 continuous data stored in the registers of the driver at address 01H (see the table below).

The start register is at address 2102H.


Inquiry message:


Address	01 H
Function	03 H
Start data address	21 H
Start data address	02 H
Number of data	00 H
(counted by words)	02 H
CRC CHK Low	6F H
CRC CHK High	F7 H

Responding message:

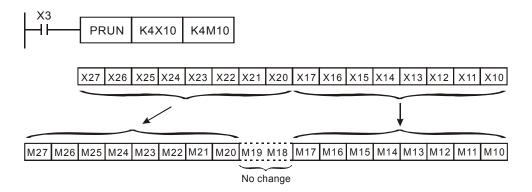
Address	01 H
Function	03 H
Number of data (counted by byte)	04 H
Content in data address	17 H
8102H	70 H
Content in data address	00 H
8103H	00 H
CRC CHK Low	FE H
CRC CHK High	5C H

7. Timing diagram of RS-485 communication flag:

API	Mnemonic Operands				Function	Controllers
81	D	PRUN	Р	9	Parallel Run	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s		Word Devices							Program Steps			
OP		Х	Υ	М	S	Κ	Ι	KnX	KnY	KnM	KnS	Т	C	О	П	F	PRUN, PRUNP: 5 steps
	S							*		*							DPRUN, DPRUNP: 9 steps
	D								*	*							

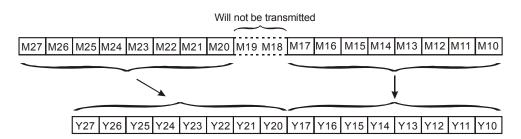
	PULSE										16	-bit				32-bit							
ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


S: Source device D: Destination device

Explanations:

- 1. The most right digit of X, Y and M of KnX, KnY and KnM has to be 0.
- 2. When **S** designates KnX, **D** has to designate KnM; when **S** designates KnM, **D** has to designate KnY.
- 3. See the specifications of each model for their range of use.
- 4. This instruction sends the content in **S** to **D** in the form of octal system.

Program Example 1:


When X3 = On, the content in K4X10 will be sent to K4M10 in octal form.

Program Example 2:

When X2 = On, the content in K4M10 will be sent to K4Y10 in octal form.

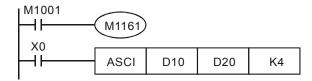
API	Mnemonic		Operands	Function	Controllers
82	ASCI	Р	SDn	Converts Hex to ASCII	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	Bit De	evice	s				V	Vord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	ASCI, ASCIP: 7 steps
S					*	*	*	*	*	*	*	*	*			
D								*	*	*	*	*	*			
n					*	*										

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

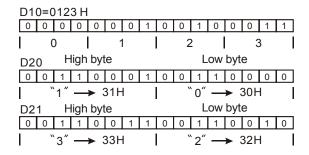
S: Start device for source data

D: Start device for storing the converted result


n: Number of bits to be converted

Explanations:

- 1. Range of **n**: 1 ~ 256
- 2. See the specifications of each model for their range of use.
- 3. Flag: M1161 (8/16 bit mode switch)
- 4. 16-bit conversion mode: When M1161 = Off, the instruction converts every bit of the hex data in **S** into ASCII codes and send them to the 8 high bits and 8 low bits of **D**. **n** = the converted number of bits.
- 5. 8-bit conversion mode: When M1161 = On, the instruction converts every bit of the hex data in **S** into ASCII codes and send them to the 8 low bits of **D**. **n** = the number of converted bits. (All 8 high bits of **D** = 0)


Program Example 1:

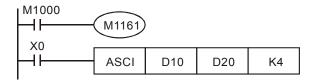
- 1. M1161 = Off: The 16-bit conversion mode
- When X0 = On, convert the 4 hex values in D10 into ASCII codes and send the result to registers starting from D20.

3. Assume

4. When **n** = 4, the bit structure will be as:

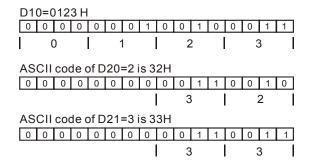
5. When **n** = 6, the bit structure will be as:

b15	D,	10 =	Н()12	3									b0
0 0	0	0	0	0	0	1	0	0	1	0	0	0	1	1
	0			1				2	2			;	3	
b15	D,	11 =	H 4	56	7									b0
0 1	0	0	0	1	0	1	0	1	1	0	0	1	1	1
'	4			5	5			6	6				7	
					Coi	nve	rted	l to						
b15		[D20											b0
0 0	1	1	0	1	1	1	0	0	1	1	0	1	1	0
	7	· ->	Н	37					6	→	н;	36		
b15		[D21											b0
0 0	1	1	0	0	0	1	0	0	1	1	0	0	0	0
	·1	· →	Н	31					.0.	→	Н;	30		
b15		[)22											b0
0 0	1	1	0	0	1	1	0	0	1	1	0	0	1	0
	3	· →	Н:	33					.2	-	Н:	32		

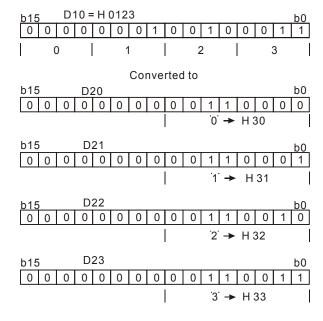

6. When $\mathbf{n} = 1 \sim 16$:

n D	K1	K2	K3	K4	K5	K6	K7	K8
D20 Low byte	"3"	"2"	"1"	"0"	"7"	"6"	"5"	"4"
D20 High byte		"3"	"2"	"1"	"0"	"7"	"6"	"5"
D21 Low byte			"3"	"2"	"1"	"0"	"7"	"6"
D21 High byte				"3"	"2"	"1"	"0"	"7"
D22 Low byte					"3"	"2"	"1"	"0"
D22 High byte						"3"	"2"	"1"
D23 Llow byte							"3"	"2"
D23 High byte								"3"
D24 Low byte								
D24 High byte				no				
D25 Low byte				change				
D25 High byte								
D26 Low byte								
D26 High byte								
D27 Low byte								
D27 High byte								

n D	K9	K10	K11	K12	K13	K14	K15	K16
D20 Low byte	"B"	"A"	"9"	"8"	"F"	"E"	"D"	"C"
D20 High byte	"4"	"B"	"A"	"9"	"8"	"F"	"E"	"D"
D21 Low byte	"5"	"4"	"B"	"A"	"9"	"8"	"F"	"E"
D21 High byte	"6"	"5"	"4"	"B"	"A"	"9"	"8"	"F"
D22 Low byte	"7"	"6"	"5"	"4"	"B"	"A"	"9"	"8"
D22 High byte	"0"	"7"	"6"	"5"	"4"	"B"	"A"	"9"
D23 Llow byte	"1"	"0"	"7"	"6"	"5"	"4"	"B"	"A"
D23 High byte	"2"	"1"	"0"	"7"	"6"	"5"	"4"	"B"
D24 Low byte	"3"	"2"	"1"	"0"	"7"	"6"	"5"	"4"
D24 High byte		"3"	"2"	"1"	"0"	"7"	"6"	"5"
D25 Low byte			"3"	"2"	"1"	"0"	"7"	"6"
D25 High byte				"3"	"2"	"1"	"0"	"7"
D26 Low byte			no		"3"	"2"	"1"	"0"
D26 High byte			no chango			"3"	"2"	"1"
D27 Low byte			change				"3"	"2"
D27 High byte								"3"


Program Example 2:

- 1. M1161 = On: The 8-bit conversion mode
- 2. When X0 = On, convert the 4 hex values in D10 into ASCII codes and send the result to registers starting from D20.



3. Assume

4. When **n** = 2, the bit structure will be as:

5. When $\mathbf{n} = 4$, the bit structure will be as:

6. When $\mathbf{n} = 1 \sim 16$:

n D	K1	K2	K3	K4	K5	K6	K7	K8
D20	"3"	"2"	"1"	"0"	"7"	"6"	"5"	"4"
D21		"3"	"2"	"1"	"0"	"7"	"6"	"5"
D22			"3"	"2"	"1"	"0"	"7"	"6"
D23		•		"3"	"2"	"1"	"0"	"7"
D24					"3"	"2"	"1"	"0"
D25						"3"	"2"	"1"
D26							"3"	"2"
D27								"3"
D28								
D29				no				
D30				change				
D31								
D32								
D33								
D34								
D35						,		

n D	K9	K10	K11	K12	K13	K14	K15	K16
D20	"B"	"A"	"9"	"8"	"F"	"E"	"D"	"C"
D21	"4"	"B"	"A"	"9"	"8"	"F"	"E"	"D"
D22	"5"	"4"	"B"	"A"	"9"	"8"	"F"	"E"
D23	"6"	"5"	"4"	"B"	"A"	"9"	"8"	"F"
D24	"7"	"6"	"5"	"4"	"B"	"A"	"9"	"8"
D25	"0"	"7"	"6"	"5"	"4"	"B"	"A"	"9"
D26	"1"	"0"	"7"	"6"	"5"	"4"	"B"	"A"
D27	"2"	"1"	"0"	"7"	"6"	"5"	"4"	"B"
D28	"3"	"2"	"1"	"0"	"7"	"6"	"5"	"4"
D29		"3"	"2"	"1"	"0"	"7"	"6"	"5"
D30			"3"	"2"	"1"	"0"	"7"	"6"
D31				"3"	"2"	"1"	"0"	"7"
D32			no		"3"	"2"	"1"	"0"
D33			no chango			"3"	"2"	"1"
D34			change				"3"	"2"
D35								"3"

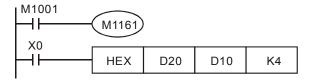
API	Mnemonic	;	Operands	Function	Controllers
83	HEX	Р	SDn	Converts ASCII to Hex	ES/EX/SS SA/SX/SC EH/SV

Тур	е	В	it De	evice	s				V	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	HEX, HEXP: 7 steps
S						*	*	*	*	*	*	*	*	*			
D									*	*	*	*	*	*			
n						*	*										

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

S: Start device for source data

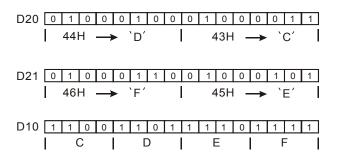
D: Start device for storing the converted result


n: Number of bits to be converted

Explanations:

- 1. Range of **n**: 1 ~ 256
- 2. See the specifications of each model for their range of use.
- 3. Flag: M1161 (8/16 bit mode switch)
- 4. 16-bit conversion mode: When M1161 = Off, the instruction is in 16-bit conversion mode. ASCII codes of the 8 high bits and 8 low bits of the hex data in **S** are converted into hex value and sent to **D** (every 4 bits as a group). **n** = the number of bits converted into ASCII codes.
- 5. 8-bit conversion mode: When M1161 = On, the instruction is in 8-bit conversion mode. Every bit of the hex data in **S** are converted into ASCII codes and sent to the 8 low bits of **D**. **n** = the number of converted bits. (All 8 high bits of **D** = 0)

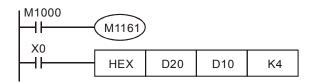
Program Example 1:


- 1. M1161 = Off: The 16-bit conversion mode
- 2. When X0 = On, convert the ASCII codes stored in the registers starting from D20 into hex value and send the result (every 4 bits as a group) to registers starting from D10. **n** = 4.

3. Assume

s	ASCII code	Converted to hex	S	ASCII code	Converted to hex
D20 low byte	H 43	"C"	D24 low byte	H 34	"4"
D20 high byte	H 44	"D"	D24 high byte	H 35	"5"
D21 low byte	H 45	"E"	D25 low byte	H 36	"6"
D21 high byte	H 46	"F"	D25 high byte	H 37	"7"
D22 low byte	H 38	"8"	D26 low byte	H 30	"0"
D22 high byte	H 39	"9"	D26 high byte	H 31	"1"
D23 low byte	H 41	"A"	D27 low byte	H 32	"2"
D23 high byte	H 42	"B"	D27 high byte	H 33	"3"

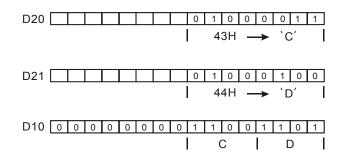
4. When **n** = 4, the bit structure will be as:



5. When $n = 1 \sim 16$:

n D	D13	D12	D11	D10
1				***C H
2				**CD H
3				*CDE H
4				CDEF H
5	The		***C H	DEF8 H
6	undesignated		**CD H	EF89 H
7	parts in the registers in use		*CDE H	F89A H
8	are all 0.		CDEF H	89AB H
9		***C H	DEF8 H	9AB4 H
10		**CD H	EF89 H	AB45 H
11		*CDE H	F89A H	B456 H
12		CDEF H	89AB H	4567 H
13	***C H	DEF8 H	9AB4 H	5670 H
14	**CD H	EF89 H	AB45 H	6701 H
15	*CDE H	F89A H	B456 H	7012 H
16	CDEF H	89AB H	4567 H	0123 H

Program Example 2:


1. M1161 = On: The 8-bit converstion mode

2. Assume

S	ASCII code	Converted to hex	S	ASCII code	Converted to hex
D20	H 43	"C"	D28	H 34	"4"
D21	H 44	"D"	D29	H 35	"5"
D22	H 45	"E"	D30	H 36	"6"
D23	H 46	"F"	D31	H 37	"7"
D24	H 38	"8"	D32	H 30	"0"
D25	H 39	"9"	D33	H 31	"1"
D26	H 41	"A"	D34	H 32	"2"
D27	H 42	"B"	D35	H 33	"3"

3. When n = 2, the bit structure will be as:

4. When **n** = 1 ~ 16:

n D	D13	D12	D11	D10
1				***C H
2				**CD H
3				*CDE H
4				CDEF H
5	The used		***C H	DEF8 H
6	registers		**CD H	EF89 H
7	which are not specified are		*CDE H	F89A H
8	all 0		CDEF H	89AB H
9		***C H	DEF8 H	9AB4 H
10		**CD H	EF89 H	AB45 H
11		*CDE H	F89A H	B456 H
12		CDEF H	89AB H	4567 H
13	***C H	DEF8 H	9AB4 H	5670 H
14	**CD H	EF89 H	AB45 H	6701 H
15	*CDE H	F89A H	B456 H	7012 H
16	CDEF H	89AB H	4567 H	0123 H

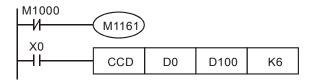
API	Mnemonic		Operands	Function	Controllers
84	CCD	Р	SDn	Check Code	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	Bit De	evice	s		Word Devices										Program Steps
ОР	X	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	CCD, CCDP: 7 steps
S							*	*	*	*	*	*	*			
D									*	*	*	*	*			
n					*	*							*			

PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV E	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					

S: Start device for source data

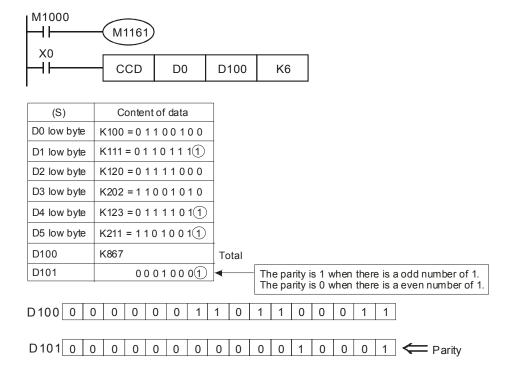
D: Device for storing the sum check result


n: Number of data

Explanations:

- 1. Range of **n**: 1 ~ 256
- 2. See the specifications of each model for their range of use.
- 3. Flag: M1161 (8/16 bit mode switch)
- 4. The sum check is used for ensuring the correctness of the data transmission.
- 5. 16-bit conversion mode: When M1161 = Off, the instruction is in 16-bit conversion mode. The instruction sums up **n** data (8 bits as a unit) from the start register designated in **S** and stores the results in the registers designated in **D**. The parity bits are stored in **D** + 1.
- 6. 8-bit conversion mode: When M1161 = On, the instruction is in 8-bit conversion mode. The instruction sums up **n** data (8 bits as a unit; only 8 low bits are valid) from the start register designated in **S** and stores the results in the registers designated in **D**. The parity bits are stored in **D** + 1.

Program Example 1:


- 1. M1161 = Off: The 16-bit conversion mode
- 2. When X0 = On, the instruction will sum up 6 data stored in the register designated in D0 (8 bits as a unit; **n** = 6 indicates D0 ~ D2 are designated) and store the result in the register designated in D100. The parity bits are stored in D101.

(S)	С	onte	nt of	data	a							
D0 low byte	K100	0 = 0	110	0 1	0 0							
D0 high byte	K111	= 0	1 1 0	11	1(1)							
D1 low byte	K120	0 = 0	111	110	0 0							
D1 high byte	K202	2 = 1	100	10	1 0							
D2 low byte	K123	= 0	111	10	1①							
D2 high byte	K211	= 1	1 0 1	0 0	1①							
D100	K867					To	otal					
D101		0	0 0 1	00	0①]←						nen there is a odd number of 1. nen there is a even number of 1.
D100 0 0	0	0	0	0	1	1	0	1	1	0	0	0 1 1
D101 0 0	0 0	0	0	0	0	0	0	0	0	1	0	0 0 1 ← Parity

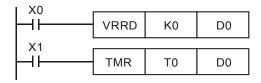
Program Example 2:

- 1. M1161 = On: The 8-bit conversion mode
- When X0 = On, the instruction will sum up 6 data stored in the register designated in D0 (8 bits as a unit; n = 6 indicates D0 ~ D5 are designated) and store the result in the register designated in D100. The parity bits are stored in D101.

API	Mnemonic		Operands	Function	Controllers
85	VRRD	Р	SD	Volume Read	ES/EX/SS SA/SX/SC EH/SV

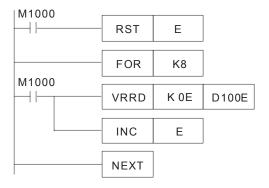
	Туре	В	it De	vice	s		Word Devices										Program Steps
OP		Χ	Υ	М	S	Κ	Η	KnX	KnY	KnM	KnS	Τ	C	D	Е	F	VRRD, VRRDP: 5 steps
	S					*	*										
	D								*	*	*	*	*	*	*	*	

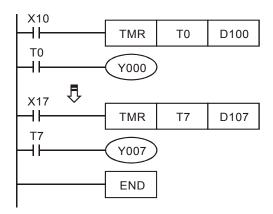
PULSE							16-bit							32-bit								
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


S: No. of VR **D**: Device for storing the volume of VR

Explanations:

- 1. Range of **S**: $0 \sim 7$; without function card: $0 \sim 1$.
- 2. See the specifications of each model for their range of use.
- 3. Flags: M1178, M1179. See remarks for more details.
- 4. VRRD instruction is used for reading 2 points (No.0, No.1) of PLC or the VR rotary switch volume change in the 6 points of the function cards (No.2 ~ No.7) and converting the data into values 0 ~ 255 (stored in **D**).
- 5. If you are to set up the timer by the VR volume, simply rotate the VR to modify the set time in the timer. If you are to acquire a value larger than 255, multiply **D** by a constant.


Program Example 1:


- 1. When X0 = On, VR0 volume changed will be converted into an 8-bit BIN value (0 ~ 255) and stored in D0.
- 2. When X1 = On, the imer T0 will start to time with the content in D0 as the set value in the timer.

Program Example 2:

- Read the VR volume in order: The VR0 ~ VR7 rotary switches on the PLC correspond to S = K0 ~ K7 of VRRD instruction. E index register modification is used in the example below, K0E = K0 ~ K7.
- 2. The timer converts the scale $0 \sim 10$ on the rotary switch into $0 \sim 255$. The timing unit of T0 \sim T7 is 0.1 second; therefore, the set time in the timer will be $0 \sim 25.5$ seconds.

- 3. Operation of FOR ~ NEXT instruction:
 - a) In the area between FOR ~ NEXT instruction, FOR designating K8 indicates the loop between FOR ~ NEXT will be executed repeatedly for 8 times before the next instruction is executed.
 - b) Between FOR ~ NEXT (INC E), E will be 0, 1, 2, ...7 plusing 1. Therefore, the 8 VR rotary switch volumes will be VR0→D100, VR1→D101, VR2→D102...VR7→D107 and be read to designated registers in order.

Remarks:

- 1. VR refers to Variable Resister.
- The 2 points of VR rotary switch built in SA/SC/EH/EH2/SV series MPU can be used together with special D and special M.

Device	Function
M1178	Enabling VR0
M1179	Enabling VR1
D1178	VR0 value
D1179	VR1 value

If there is no VR extension card inserted in the PLC, setting up the No. of rotary switches as K2 ~ K7 in VRRD
and VRSC instruction in the program will result in errors in grammar check.

API	Mnemonic	Operands	Function	Controllers
86	VRSC P	SD	Volume Scale	ES/EX/SS SA/SX/SC EH/SV

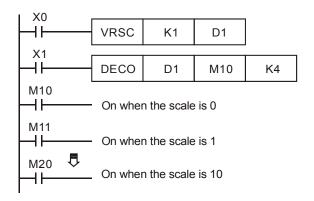
	Туре	Е	Bit De	vice	s	Word Devices									Program Steps		
OP		Х	Υ	М	S	Κ	Ι	KnX	KnY	KnM	KnS	Т	C	D	Е	F	VRSC, VRSCP: 5 steps
	S					*	*										
	D								*	*	*	*	*	*	*	*	

PULSE						16-bit							32-bit									
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: No. of VR **D**: Device for storing the scale of VR

Explanations:

- 1. Range of **S**: 0 ~ 7; without function card: 0 ~ 1
- 2. See the specifications of each model for their range of use.
- 3. VRSC instruction is used for reading 2 points (No.0, No.1) of PLC or the VR rotary switch scale (0 ~ 10) in the 6 points of the function cards (No.2 ~ No.7) and storing the data in **D**. If the position of the VR falls in the middle of two scales, VRSC will round up the value into an integer of 0 ~ 10.


Program Example 1:

When X0 = On, the scale of VR0 (0 \sim 10) will be stored in D10.

Program Example 2:

- When the VR is used as DIP switch, they will correspond to scale 0 ~ 10 and only one of M10 ~ M20 will be On.
 Use API 41 DECO instruction to decode the scales into M10 ~ M25.
- 2. When X0 = On, store the scale $(0 \sim 10)$ of VR1 into D1.
- 3. When X1 = On, use API 41 DECO to decode the scales into M10 \sim M25.

Remarks:

If the MPU is not inserted with a VR extension card, and the No. of the rotary switches inVRRD or VRSC instruction in the program are set as K2 ~ K7, errors will occur in the execution of grammar check.

API		Mnemonic	;	Operands	Function	Controllers		
87	D	ABS	Р	D	Absolute Value	ES/EX/SS SA/SX/SC EH/SV		

/	Туре	В	it De	vice	s	Word Devices								Program Steps			
(OP \	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	ABS, ABSP: 3 steps
	D	·							*	*	*	*	*	*	*	*	DABS, DABSP: 5 steps

PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					

D: Device of the absolute value

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. This instruction obtains the absolute value of the content in the designated in **D**.
- 3. This instruction adopts pulse execution instructions (ABSP, DABSP).

Program Example:

When X0 = Off→On, obtain the absolute value of the content in D0.

API		Mnemonic		Operands	Function	Controllers
88	D	PID		\$1\\$2\\$3\D	PID Control Loop	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s		Word Devices								Program Steps		
ОР		Х	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Τ	O	D	П	F	PID : 9 steps
	S ₁													*			DPID: 17 steps
	S ₂													*			151 15. 17 diopo
	S ₃													*			
	D													*			

PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					

 S_1 : Set value (SV) S_2 : Present value (PV) S_3 : Parameter D: Output value (MV)

Explanations:

- In 16-bit instruction, S₃ will occupy 20 consecutive devices; in 32-bit instruction, S₃ will occupy 21 consecutive devices.
- 2. See the specifications of each model for their range of use.
- 3. See the Remarks below for the times of using PID instruction allowed in the program.
- 4. This instruction is specifically for PID control. PID operation will be executed by the scan only when the sampling time is reached. PID refers to "proportion, integration and differential". PID control is widely applied to many machines, pneumatic and electronic equipments.
- 5. For the 16-bit instruction, the parameters are $S_3 \sim S_3+19$; for the 32-bit instruction, the parameters are $S_3 \sim S_3+20$. After all the parameters are set up, PID instruction will start to be executed and the results will be stored in **D**. **D** has to be the data register area without latched function. (If you wish to designate a latched data register area, place the data register in the latched area at the beginning of the program and clear it as 0.)

Program Example:

- 1. Complete the parameter setting before executing PID instruction.
- 2. When X0 = On, the instruction will be executed and the result will be stored in D150. When X0 goes Off, the instruction will not be executed and the data prior to the instruction will stay intact.

Remarks:

- 1. ES/EX/SS series MPU V5.7 (and above) supports PID instruction. Other versions do not support the instruction.
- 2. There is no limitation on the times of using this instruction. However, the register No. designated in S₃ cannot be repeated.
- 3. For the 16-bit instruction, S₃ will occupy 20 registers. In the program example above, the area designated in S₃ is D100 ~ D119. Before the execution of PID instruction, you have to transmit the setting value to the designated register area by MOV instruction, If the designated registers are latched, use MOVP instruction to transmit all setting value at a time.
- 4. Settings of **S**₃ in the 16-bit instruction

Device No.	Function	Setup Range	Explanation
S ₃ :	Sampling time (T _S) (unit: 10ms)	1 ~ 2,000 (unit: 10ms)	If T_S is less than 1 program scan time, PID instruction will be executed for 1 program scan time. If T_S = 0, PID instruction will not be enabled. The minimum T_S has to be longer than the program scan time.
S ₃ +1:	Proportional gain (K _P)	0 ~ 30,000 (%)	The magnified error proportional value between SV – PV.
S ₃ +2:	Integral gain (K _I)	0 ~ 30,000 (%)	The magnified proportional value of every sampling time unit × the accumulated value of the error.
S ₃ +3:	Differential gain (K _D)	-30,000 ~ 30,000 (%)	The magnified proportional value of the varied error in every samping timme unit.
S ₃ +4:	Control direction (DIR)	device will automatic completed and be fi K _D (not avaliable in	•
S ₃ +5:	The range that error value (E) doesn't work	0 ~ 32,767	E = the error of SV – PV. When \mathbf{S}_3 +5 = K0, the function will not be enabled, e.g. when \mathbf{S}_3 +5 is set as 5, MV of E between -5 and 5 will be 0.
S ₃ +6:	Upper bound of output value (MV)	-32,768 ~ 32,767	Ex: if S_3 +6 is set as 1,000, the output will be 1,000 when MV is bigger than 1,000. S_3 +6 has to be bigger or equal S_3 +7; otherwise the upper bound and lower bound will switch.
S ₃ +7:	Lower bound of output value (MV)	-32,768 ~ 32,767	Ex: if S ₃ +7 is set as -1,000, the output will be -1,000 when MV is smaller than -1,000.
S ₃ +8:	Upper bound of integral value	-32,768~32,767	Ex: if \mathbf{S}_3 +8 is set as 1,000, the output will be 1,000 when the integral value is bigger than 1,000 and the integration will stop. \mathbf{S}_3 +8 has to be bigger or equal \mathbf{S}_3 +9; otherwier the upper bound and lower bound will switch.
S ₃ +9:	Lower bound of integral value	-32,768 ~ 32,767	Ex: if S ₃ +9 is set as -1,000, the output will be -1,000 when the integral value is smaller than -1,000 and the integration will stop.
S ₃ +10,11:	Accumulated integral value	32-bit floating point	The accumulated integral value is only for reference. You can still clear or modify it (in 32-bit floating point) according to your need.
S ₃ +12:	The previous PV	-	The previous PV is only for reference. You can still modify it according to your need.
S ₃ +13:	For system use only.		

- 5. When parameter setting exceeds its range, the upper bound and lower bound will become the setting value. However, if the motion direction (DIR) exceeds the range, it will be set to 0.
- 6. PID instruction can be used in interruption subroutines, step points and CJ instruction.
- 7. The maximum error of sampling time $T_S = -(1 \text{ scan time} + 1 \text{ms}) \sim + (1 \text{ scan time})$. When the error affects the output, please fix the scan time or execute PID instruction in the interruption subroutine of the timer.
- 8. PV of PID instruction has to be stable before the execution of PID instruction. If you are to extract the input value

- of DVP04AD/04DA/06XA/04PT/04TC for PID operation, please be aware of the A/D conversion time of these modules.
- 9. For the 32-bit instruction, If **S**₃ designates the parameter setting area of PID instruction as D100 ~ D120, **S**₃ occupies 21 registers. Before the execution of PID instruction, you have to use MOV instruction first to send the setting value to the register area for setup. If the designated registers are latched one, use MOVP instruction to send all the setting value at a time.
- 10. Settings of S₃ in the 32-bit instruction

Device No.	Function	Setup range	Explanation				
S ₃ :	Sampling time (T _S) (unit: 10ms)	1 ~ 2,000 (unit: 10ms)	If T_S is less than 1 program scan time, PID instruction will be executed for 1 program scan time. If T_S = 0, PID instruction will not be enabled. The minimum T_S has to be longer than the program scan time.				
S ₃ +1:	Proportional gain (K _P)	0 ~ 30,000 (%)	The magnified error proportional value between SV – PV.				
S ₃ +2:	Integral gain (K _I)	0 ~ 30,000 (%)	The magnified proportional value of every sampling time unit × the accumulated value of the error.				
S ₃ +3:	Differential gain (K _D)	-30,000 ~ 30,000 (%)	The magnified proportional value of the varied error in every samping timme unit.				
S ₃ +4:	Control direction (DIR)	0: automatic control 1: forward control (E = 2: inverse control (E =	,				
S ₃ +5, 6:	The range that 32-bit error value (E) doesn't work	0 ~ 2,147,483,647	E = the error of SV – PV. When \mathbf{S}_3 +5,6 = K0, the function will not be enabled, e.g. when \mathbf{S}_3 +5,6 is set as 5, MV of E between -5 and 5 will be 0.				
S ₃ +7, 8:	Upper bound of 32-bit output value (MV)	-2,147,483,648 ~ 2,147,483,647	Ex: if \mathbf{S}_3 +7,8 is set as 1,000, the output will be 1,000 when MV is bigger than 1,000. \mathbf{S}_3 +7,8 has to be bigger or equal \mathbf{S}_3 +9,10; otherwise the upper bound and lower bound will switch.				
S ₃ +9, 10:	Lower bound of 32-bit output value (MV)	-2,147,483,648 ~ 2,147,483,647	Ex: if S ₃ +9,10 is set as -1,000, the output will be -1,000 when MV is smaller than -1,000.				
S ₃ +11, 12:	Upper bound of 32-bit integral value	-2,147,483,648 ~ 2,147,483,647	Ex: if \mathbf{S}_3 +11,12 is set as 1,000, the output will be 1,000 when the integral value is bigger than 1,000 and the integration will stop. \mathbf{S}_3 +11,12 has to be bigger or equal \mathbf{S}_3 +13,14; otherwier the upper bound and lower bound will switch.				
S ₃ +13, 14:	Lower bound of 32-bit integral value	-2,147,483,648 ~ 2,147,483,647	Ex: if S_3 +13,14 is set as -1,000, the output will be -1,000 when the integral value is smaller than -1,000 and the integration will stop.				
S ₃ +15, 16:	32-bit accumulated integral value	32-bit floating point	The accumulated integral value is only for reference. You can still clear or modify it (in 32-bit floating point) according to your need.				
S ₃ +17, 18:	32-bit previous PV	-	The previous PV is only for reference. You can still modify it according to your need.				
S ₃ +19:	For system use only.						

11. The explanation of 32-bit S_3 and 16-bit S_3 are almost the same. The difference is the capacity of $S_3+5 \sim S_3+20$.

PID Equations:

- 1. The PID operation is conducted according to the speed and the differential PV.
- 2. The PID operation has three control directions: automatic, foreward and inverse. Forward or inverse are designated in $S_3 + 4$. Other relevant settings of PID operation are set by the registers designated in $S_3 \sim S_3 + 5$.
- 3. Basic PID equation:

$$MV = K_P * E(t) + K_I * E(t) \frac{1}{S} + K_D * PV(t)S$$

Control direction	PID equation
Forward, automatic	E(t) = SV - PV
Inverse	E(t) = PV - SV

PV(t)S is the differential value of PV(t); $E(t)\frac{1}{S}$ is the integral value of E(t). When E(t) is less than 0

as the control direction is selected as forward or inverse, E(t) will be regarded as "0".

The equation above illustrates that this instruction is different from a general PID instruction by the variable use of the differential value. To avoid the flaw that the transient differential value is too big when a general PID instruction is executed for the first time, our PID instruction monitors the differentiation status of the PV. When the variation of PV is too big, this instruction will reduce the output of MV.

4. Symbol explanation:

MV: Output value

 K_p : Proprotional gain

E(t): Error value

PV: Present measured value

SV: Target value

 K_D : Differential gain

PV(t)S: Differential value of PV(t)

 K_i : Integral gain

 $E(t)\frac{1}{S}$: Integral value of E(t)

5. Temperature Control Equation:

When S₃ +4 is K3 and K4, the equation used in diagram 2 (see below) will be changed as:

$$MV = \frac{1}{K_P} \left[E(t) + \frac{1}{K_I} \left(E(t) \frac{1}{S} \right) + K_D * PV(t) S \right]$$

In which the error value is fixed as E(t) = SV - PV

This equation is exclusively designed for temperature control. Therefore, when the sampling time (T_S) is set as 4 seconds (K400), the range of output value (MV) will be K0 ~ K4,000 and the cycle time of GPWM instruction used together has to be set as 4 seconds (K4000) as well.

If you have no idea how to adjust the parameters, you can select K3 (auto-tuning) and after all the parameters are adjusted (the control direction will be automatically set as K4), you can modify your parameters to better ones according to the result of the control.

6. Control diagrams:

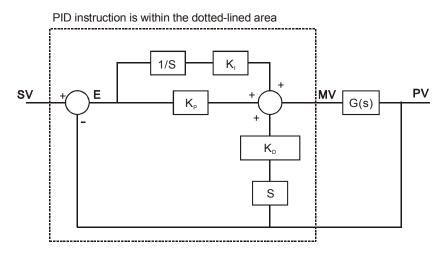


Diagram 1:**S**₃ + 4 = K0 ~ K2

In Diagram 1, S is differentiation, referring to "PV – previous PV / sampling time". 1 / S is integration, referring to "(previous integral value + error value) \times sampling time". G(S) refers to the device being controlled.

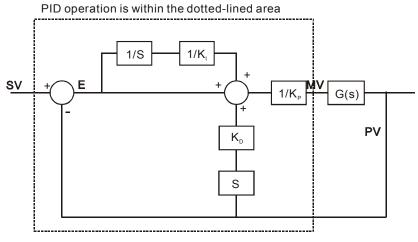
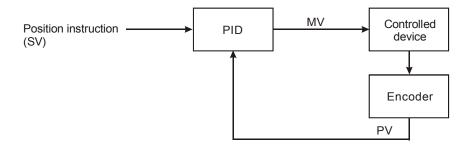
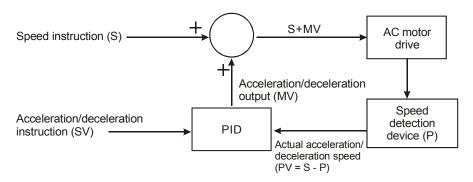


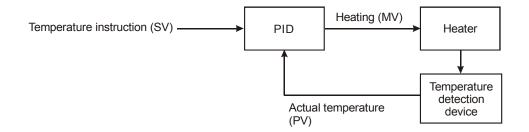
Diagram 2: $S_3 + 4 = K3 \sim K4$


In Diagram 2, $1/K_1$ and $1/K_P$ refer to "divided by K_1 " and "divided by K_P ". Due to that this is exclusively for temperature control, you have to use PID instruction together with GPWM instruction. See Application 3 for more details.

7. Notes:

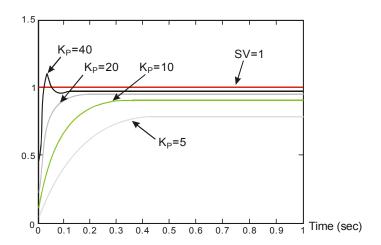

a) \mathbf{S}_3 + 6 ~ \mathbf{S}_3 + 13 are only available in SA/SX/SC/EH/EH2/SV series, and ES/EX/SS (v5.7 and above) series MPU.

- b) PID instruction can only be used once in ES/EX/SS (v5.6 and below) series MPU. There is no limitation on the times of using PID instruction in ES/EX/SS (v5.7 and above) series and SA/SX/SC/EH/EH2/SV series MPU.
- c) \mathbf{S}_3 + 3 of ES/EX/SS (v5.7 and below), SA/SX/SC (v1.1 and below) and EH (v1.0 and below) series MPU can only be the value within 0 ~ 30,000.
- d) There are a lot of circumstances where PID instruction can be applied; therefore, please choose the control functions appropriately. For example, when you select parameter auto-tuning for the temperature (\$\mathbf{S}_3 + 4 = K3)\$, you cannot use it in a motor control environment in case improper control may occur.
- e) When you adjust the three main parameters, K_p , K_l and K_D (\mathbf{S}_3 + 4 = K0 ~ K2), you have to adjust K_p first (according to your experiences) and set K_l and K_D as 0. When you can roughly handle the control, you then adjust K_l (increasingly) and K_D (increasingly) (see example 4 below for how to adjust). K_p = 100 refers to 100%, i.e. the gain of the error is 1. K_p < 100% will decrease the error and K_p > 100% will increase the error.
- f) When you select the parameter exclusively for temperature control (**S**₃ + 4 = K3, K4), it is suggested that you store the parameter in D register in the latched area in case the automatically adjusted parameter will disappear after the power is cut off. There is no guarantee that the adjusted parameter is suitable for every control. Therefore, you can modify the adjusted parameter according to your actual need, but it is suggested that you modify only K_I or K_D.
- g) PID instruction can to work with many parameters; therefore please do not randomly modify the parameters in case the control cannot be executed normally.


Example 1: Diagram of using PID instruction in position control ($S_3 + 4 = 0$)

Example 2: Diagram of using PID instruction with AC motor drive on the control ($S_3 + 4 = 0$)

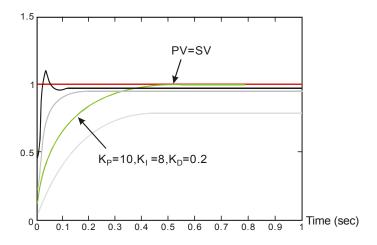
Example 3: Diagram of using PID instruction in temperature control ($S_3 + 4 = 1$)



Example 4: How to adjust PID parameters

Assume that the transfer function of the controlled device G(S) in a control system is a first-order function $G(s) = \frac{b}{s+a}$ (most models of motors are first-order function), SV = 1, and sampling time (T_S) = 10ms, we

suggest you to follow the steps below for adjusting the parameters.


Step 1: Set K_I and K_D as 0 and K_P as 5, 10, 20 and 40. Record the SV and PV respectively and the results are as the figure below.

Step 2: From the figure, we can see that when $K_p = 40$, there will be over-reaction, so we will not select it. When $K_p = 20$, the PV reaction curve will be close to SV and there will not be over-reaction, but due to its fast start-up with big transient MV, we will consider to put it aside. When $K_p = 10$, the PV reaction curve will get close to SV value more smoothly, so we will use it. Finally when $K_p = 5$, we will not consider it due to the slow reaction.

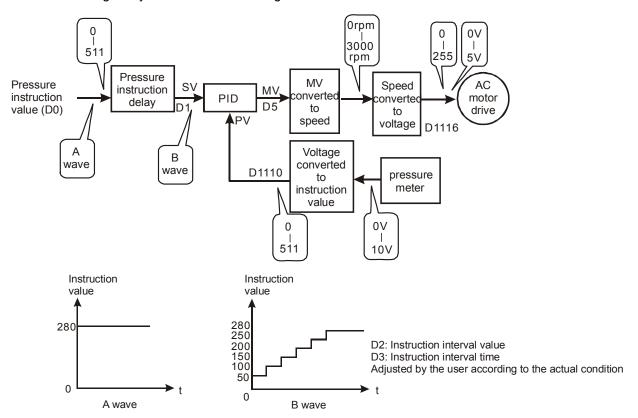
Step 3: Select $K_p = 10$ and adjust K_l from small to big (e.g. 1, 2, 4 to 8). K_l should not be bigger than K_p .

Adjust K_D from small to big (e.g. 0.01, 0.05, 0.1 and 0.2). K_D should not exceed 10% of K_p . Finally we obtain the figure of PV and SV below.

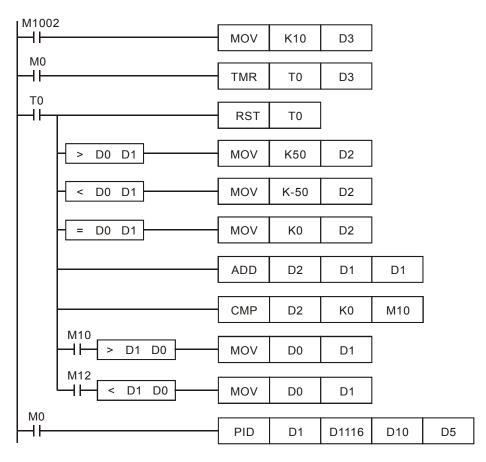
Note: This example is only for your reference. Please adjust your parameters to proper ones according to your actual condition of the control system.

Application Examples:

Application 1 Using PID instruction in the pressure control system (use the diagram of Example 1).

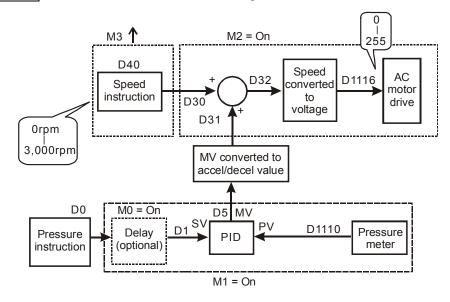

Purpose: Enabling the control system to reach the target pressure.

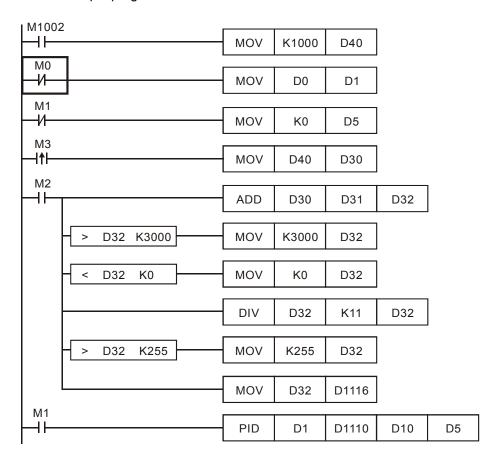
Explanation: The system requires a gradual control. Therefore, the system will be overloaded or out of control if the process progresses too fast.


Suggested solution:

Solution 1: Longer sampling time

Solution 2: Using delay instruction. See the figure below.

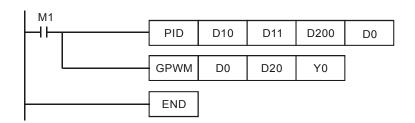

The example program of the instruction delay:


Application 2 Speed control system and pressure control system work individually (use diagram of Example 2).

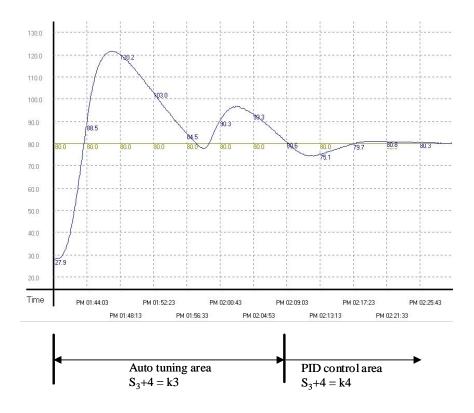
Purpose: After the speed control operates in open loop for a period of time, adding into it the pressure control system (PID instruction) for close loop control.

Explanation: Since the speed and pressure control systems are not interrelated, we have to structure a open loop for speed control first following by a close loop pressure control. If you fear that the control instruction of the pressure control system changes too fast, you can consider to add the instruction delay illustrated in Application 1 into the control. See the control diagram below.

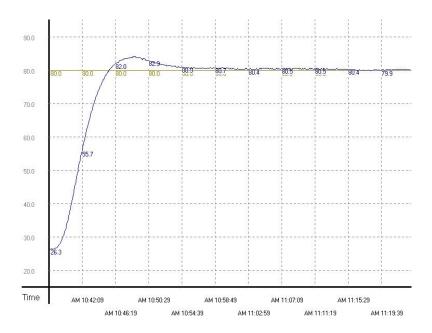
Part of the example program:



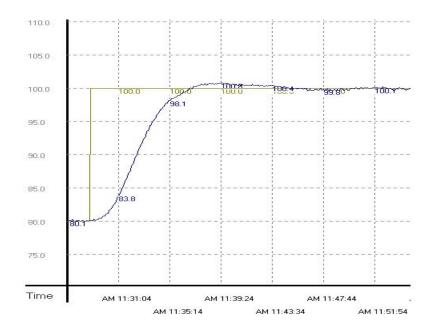
Application 3 Using auto-tuning on the parameter for the temperature control.


Purpose: Using auto-tuning to calculate the most suitable parameters for PID temperature control.

Explanation: You may not be familiar with the temperature environment for the first time, so you can use auto-tuning $(\mathbf{S}_3 + 4 = K3)$ for an initial adjustment. After this, PID instruction will become exclusively for temperature control $(\mathbf{S}_3 + 4 = K4)$. In this example, the control environment is an oven. See the example program below.



The experiment result of auto-tuning:



The experiment result of using the adjusted parameter exclusively for temperature control after auto-tuning:

From the figure above, we can see that the temperature control after auto-tuning is working fine and we use only

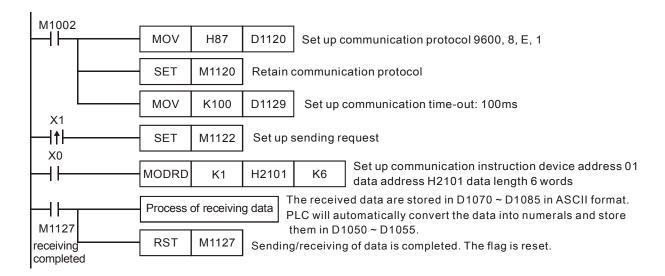
approximately 20 minutes for the control. Next, we modify the target temperature from 80°C to 100°C and obtain the result below.

From the result above, we can see that when the parameter is 100°C, we can still control the temperature without spending too much time.

API	Mnemonic	Operands	Function	Controllers
100	MODRD	\$1 \$2 n	Read Modbus Data	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	vice	s				٧	Vord I	Devic	es					Program Steps
OP		Χ	Υ	М	S	Κ	Ι	KnX	KnY	KnM	KnS	Τ	O	D	Е	F	MODRD: 7 steps
	S ₁					*	*							*			
	S ₂					*	*							*			
	n					*	*							*			

PULSE							16-bit							32-bit							
ES EX SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


 S_1 : Address of communication device S_2 : Address of data to be read n: Length of read data

Explanations:

- 1. Range of **S**₁: K0 ~ K254
- 2. Range of n: K1 \leq n \leq K6
- 3. See the specifications of each model for their range of use.
- 4. ES/EX/SS series MPU does not support E, F index register modification.
- 5. Flags: See API 80 RS for explanations on M1120 ~ M1131, M1140 ~ M1143
- 6. MODRD is a drive instruction exclusively for peripheral communication equipment in MODBUS ASCII mode /RTU mode. The built-in RS-485 communication ports in Delta VFD drives (except for VFD-A series) are all compatible with MODBUS communication format. MODRD can be used for controlling communication (read data) of Delta drives.
- 7. If the address of **S**₂ is illegal to the designed communication device, the device will respond with an error, PLC will records the error code in D1130 and M1141 will be On.
- 8. The feedback (returned) data from the peripheral equipment will be stored in D1070 ~ D1085. After receiving the feedback data is completed, PLC will auto-check if all data are correct. If there is an error, M1140 will be On.
- 9. In ASCII mode, due to that the feedback data are all in ASCII, PLC will convert the feedback data into numerals and store them in D1050 ~ D1055. D1050 ~ D1055 will be invalid in RTU mode.
- After M1140 or M1141 turn On, the program will send a correct datum to the peripheral equipment. If the feedback datum is correct, M1140 and M1141 will be reset.

Program Example 1:

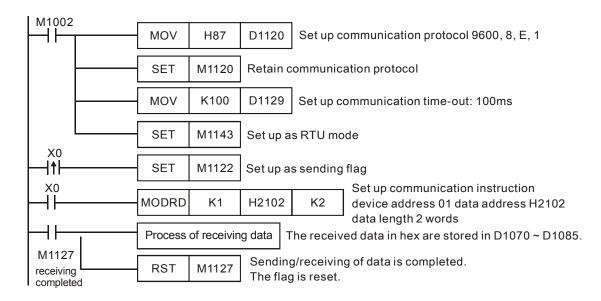
Communication between PLC and VFD-S series AC motor drives (ASCII Mode, M1143 = Off)

PLC ⇒ VFD-S, PLC sends: "01 03 2101 0006 D4"

VFD-S ⇒ PLC , PLC receives: "01 03 0C 0100 1766 0000 0000 0136 0000 3B"

Registers for sent data (sending messages)

Register		DATA		Explanation					
D1089 low	'0'	30 H	ADR 1	Address of AC motor					
D1089 high	'1'	31 H	ADR 0	drive: ADR (1,0)					
D1090 low	'0'	30 H	CMD 1	Instruction code: CMD					
D1090 high	'3'	33 H	CMD 0	(1,0)					
D1091 low	'2'	32 H							
D1091 high	'1'	31 H	Starting data address						
D1092 low	'0'	30 H	Starting data address						
D1092 high	'1'	31 H]						
D1093 low	'0'	30 H							
D1093 high	'0'	30 H	Number of de	to (counted by words)					
D1094 low	'0'	30 H	Number of data (counted by words						
D1094 high	'6 '	36 H							
D1095 low	'D'	44 H	LRC CHK 1	Checksum: LRC CHK					
D1095 high	'4'	34 H	LRC CHK 0	(0,1)					


Registers for received data (responding messages)

Register		DATA		Explanation
D1070 low	'0'	30 H	ADR 1	
D1070 high	'1'	31 H	ADR 0	
D1071 low	'0'	30 H	CMD 1	
D1071 high	'3'	33 H	CMD 0	
D1072 low	'0'	30 H	Number of data (counted by byte)
D1072 high	Ċ,	43 H	Number of data (counted by byte)
D1073 low	'0'	30 H		PLC automatically convert
D1073 high	'1'	31 H	Content of	ASCII codes to numerals
D1074 low	ΰ,	30 H	address 2101 H	and store the numeral in
D1074 high	o'	30 H		D1050 = 0100 H
D1075 low	'1'	31 H		PLC automatically convert
D1075 high	'7'	37 H	Content of	ASCII codes to numerals
D1076 low	'6'	36 H	address 2102 H	and store the numeral in
D1076 high	'6'	36 H		D1051 = 1766 H
D1077 low	'0'	30 H		PLC automatically convert
D1077 high	'0'	30 H	Content of	ASCII codes to numerals
D1078 low	' 0'	30 H	address 2103 H	and store the numeral in
D1078 high	'0'	30 H		D1052 = 0000 H

Register		DATA		Explanation
D1079 low	'0'	30 H		PLC automatically convert
D1079 high	'0'	30 H	Content of	ASCII codes to numerals
D1080 low	'0'	30 H	address 2104 H	and store the numeral in
D1080 high	'0'	30 H		D1053 = 0000 H
D1081 low	'0'	30 H		PLC automatically convert
D1081 high	'1'	31 H	Content of	ASCII codes to numerals
D1082 low	'3'	33 H	address 2105 H	and store the numeral in
D1082 high	'6'	36 H		D1054 = 0136 H
D1083 low	'0'	30 H		PLC automatically convert
D1083 high	'0'	30 H	Content of	ASCII codes to numerals
D1084 low	'0'	30 H	address 2106 H	and store the numeral in
D1084 high	'0'	30 H		D1055 = 0000 H
D1085 low	'3'	33 H	LRC CHK 1	
D1085 high	'B'	42 H	LRC CHK 0	

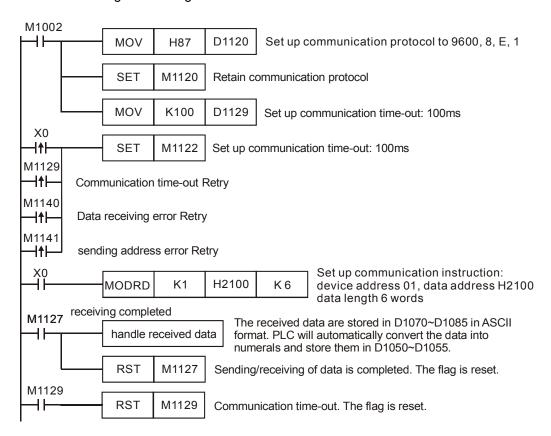
Program Example 2:

Communication between PLC and VFD-S series AC motor drives (RTU Mode, M1143 = On)

PLC ⇒ VFD-S, PLC sends: **01 03 2102 0002 6F F7**

VFD-S ⇒ PLC, PLC receives: **01 03 04 1770 0000 FE 5C**

Registers for sent data (sending messages)


Register	DATA	Explanation					
D1089 low	01 H	Address					
D1090 low	03 H	Function					
D1091 low	21 H	Starting data address					
D1092 low	02 H	Starting data address					
D1093 low	00 H	Number of data (counted by words)					
D1094 low	02 H	Number of data (counted by words)					
D1095 low	6F H	CRC CHK Low					
D1096 low	F7 H	CRC CHK High					

Registers for received data (responding messages)

Register	DATA	Explanation				
D1070 low	01 H	Address				
D1071 low	03 H	Function				
D1072 low	04 H	Number of data (counted by bytes)				
D1073 low	17 H	Content of address 2102 H				
D1074 low	70 H	Content of address 2102 H				
D1075 low	00 H	Content of address 2103 H				
D1076 low	00 H	Content of address 2103 H				
D1077 low	FE H	CRC CHK Low				
D1078 low	5C H	CRC CHK High				

Program Example 3:

- 1. In the communication between PLC and VFD-S series AC motor drive (ASCII Mode, M1143 = Off), retry when communication time-out, data receiving error and sending address error occur.
- When X0=On, PLC will read the data in VFFD-S data adress H2100 of device 01 and stores the data in ASCII format in D1070 ~ D1085. PLC will automatically convert the data into numerals and stores them in D1050 ~ D1055.
- 3. M1129 will be On when communication time-out occurs. The program will trigger M1129 and send request to M1122 for reading the data again.
- M1140 will be On when data receiving error occurs. The program will trigger M1140 and send request to M1122 for reading the data again.
- 5. M1141 will be On when sending address error occurs. The program will trigger M1141 and send request to M1122 for reading the data again.

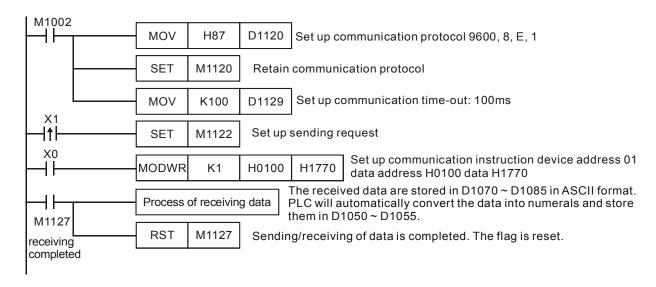
Remarks:

- The activation criteria placed before the three instructions, API 100 MODRD, API 105 RDST, and API 150 MODRW (Function Code H03), cannot use rising-edge contacts (LDP, ANDP ORP) and falling-edge contacts (LDF, ANDF, ORF); otherwise, the data stores in the receiving registers will be incorrect.
- 2. There is no limitation on the times of using this instruction in the program, but only one instruction is allowed to be executed at a time.

API	Mnemonic	Operands	Function	Controllers
101	MODWR	S1 S2 n	Write Modbus Data	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				V	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Τ	O	D	П	F	MODWR: 7 steps
	S ₁					*	*							*			
	S ₂					*	*							*			
	n					*	*							*			

	PULSE							16-bit						32-bit						
ES EX SS	SA SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


 S_1 : Address of communication device S_2 : Address of data to be read n: Data to be written

Explanations:

- 1. Range of **S**₁: K0 ~ K254
- 2. See the specifications of each model for their range of use.
- 3. ES/EX/SS series MPU does not support E, F index register modification.
- 4. Flags: See API 80 RS for explanations on M1120 ~ M1131, M1140 ~ M1143
- 5. MODWR is a drive instruction exclusively for peripheral communication equipment in MODBUS ASCII mode/RTU mode. The built-in RS-485 communication ports in Delta VFD drives (except for VFD-A series) are all compatible with MODBUS communication format. MODRD can be used for controlling communication (write data) of Delta drives.
- 6. If the address of **S**₂ is illegal to the designed communication device, the device will respond with an error, PLC will records the error code in D1130 and M1140 will be On. For example, if 8000H is illegal to VFD-S, M1141 will be On and D1130 = 2. For error codes, see the user manual of VFD-S.
- 7. The feedback (returned) data from the peripheral equipment will be stored in D1070 ~ D1076. After receiving the feedback data is completed, PLC will auto-check if all data are correct. If there is an error, M1140 will be On.
- 8. After M1140 or M1141 turn On, the program will send a correct datum to the peripheral equipment. If the feedback datum is correct, M1140 and M1141 will be reset.

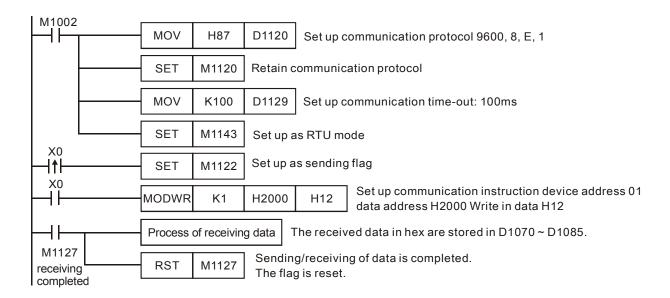
Program Example 1:

Communication between PLC and VFD-S series AC motor drives (ASCII Mode, M1143 = Off)

PLC ⇒ VFD-B, PLC sends: " 01 06 0100 1770 71 "

VFD-B ⇒ PLC, PLC receives: " **01 06 0100 1770 71** "

Registers for sent data (sending messages)


Register	DA	ιΤΑ		Explanation
D1089 low	'0'	30 H	ADR 1	Address of AC motor drive:
D1089 high	'1'	31 H	ADR 0	ADR (1,0)
D1090 low	'0'	30 H	CMD 1	Instruction code: CMD (1.0)
D1090 high	' 6'	36 H	CMD 0	Instruction code: CMD (1,0)
D1091 low	'0'	30 H		
D1091 high	'1'	31 H	Data address	
D1092 low	'0'	30 H	Data address	
D1092 high	' 0'	30 H		
D1093 low	'1'	31 H		
D1093 high	'7'	37 H	Data contents	
D1094 low	'7'	37 H	Data Contents	
D1094 high	'0'	30 H		
D1095 low	'7'	37 H	LRC CHK 1	Error checksum: LRC CHK
D1095 high	'1'	31 H	LRC CHK 0	(0,1)

PLC receiving data register (response messages)

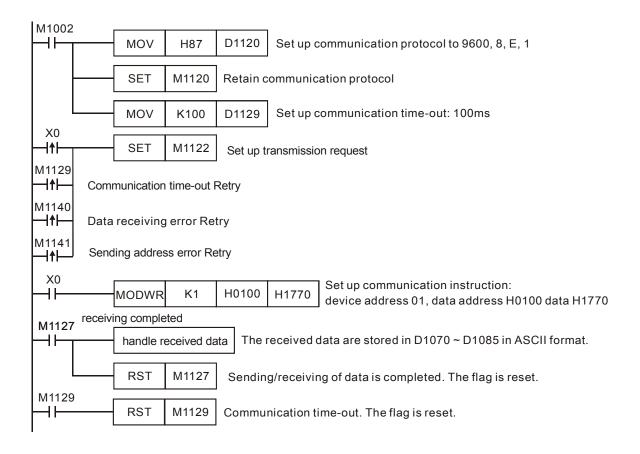
Register	DA	TA	Explanation				
D1070 low	'0'	30 H	ADR 1				
D1070 high	'1'	31 H	ADR 0				
D1071 low	'0'	30 H	CMD 1				
D1071 high	' 6'	36 H	CMD 0				
D1072 low	'0'	30 H					
D1072 high	'1'	31 H	Data address				
D1073 low	' 0'	30 H	Data address				
D1073 high	'0'	30 H					
D1074 low	'1'	31 H					
D1074 high	'7'	37 H	Data content				
D1075 low	'7'	37 H	Data Content				
D1075 high	' 0'	30 H					
D1076 low	'7'	37 H	LRC CHK 1				
D1076 high	'1'	31 H	LRC CHK 0				

Program Example 2:

Communication between PLC and VFD-S series AC motor drives (RTU Mode, M1143 = On)

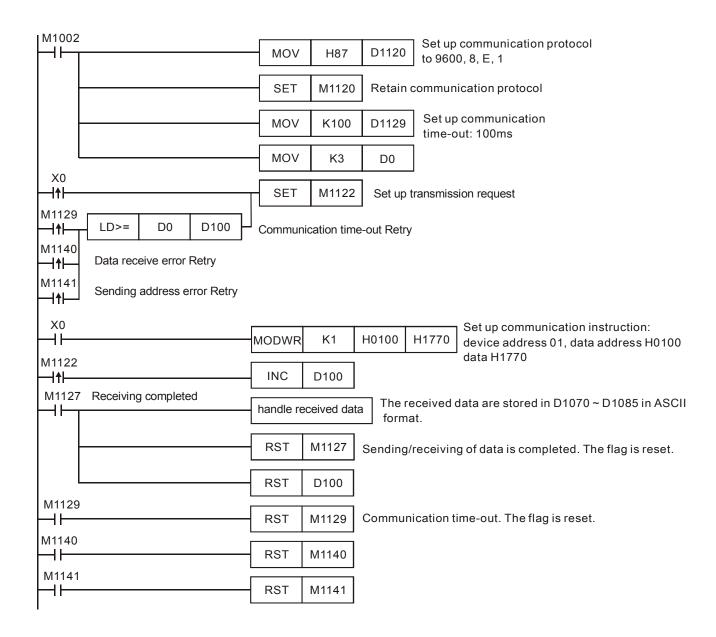
PLC ⇒ VFD-S, PLC sends: **01 06 2000 0012 02 07**VFD-S ⇒ PLC, PLC receives: **01 06 2000 0012 02 07**

Registers for sent data (sending messages)


Register	DATA	Explanation
D1089 low	01 H	Address
D1090 low	06 H	Function
D1091 low	20 H	Data address
D1092 low	00 H	Data address
D1093 low	00 H	Data contents
D1094 low	12 H	Data Contents
D1095 low	02 H	CRC CHK Low
D1096 low	07 H	CRC CHK High

Registers for received data (responding messages)

Register	DATA	Explanation
D1070 low	01 H	Address
D1071 low	06 H	Function
D1072 low	20 H	Data address
D1073 low	00 H	Data address
D1074 low	00 H	Data contents
D1075 low	12 H	Data Contents
D1076 low	02 H	CRC CHK Low
D1077 low	07 H	CRC CHK High


Program Example 3:

- 1. In the communication between PLC and VFD-S series AC motor drive (ASCII Mode, M1143 = Off), retry when communication time-out, data receiving error and sending address error occur.
- 2. When X0 = On, PLC will write H1770(K6000) into VFD-S data adress H0100 of device 01.
- M1129 will be On when communication time-out occurs. The program will trigger M1129 and send request to M1122 for writing the data again.
- 4. M1140 will be On when data receiving error occurs. The program will trigger M1140 and send request to M1122 for writing the data again.
- 5. M1141 will be On when sending address error occurs. The program will trigger M1141 and send request to M1122 for writing the data again.

Program Example 4:

- 1. In the communication between PLC and VFD-S series AC motor drive (ASCII Mode, M1143 = Off), retry when communication time-out, data receiving error and sending address error occur. Times of retry = D0 (default = 3). When communication Retry is successful, the user can return to controlling by triggering criteria.
- When X0 = On, PLC will write H1770(K6000) into VFD-S data address H0100 of device 01.
- 3. M1129 will be On when communication time-out occurs. The program will trigger M1129 and send request to M1122 for writing the data again. Times of Retry = D0 (default = 3)
- 4. M1140 will be On when data receiving error occurs. The program will trigger M1140 and send request to M1122 for writing the data again. Times of Retry = D0 (default = 3)
- 5. M1141 will be On when sending address error occurs. The program will trigger M1141 and send request to M1122 for writing the data again. Times of Retry = D0 (default = 3)

Remarks:

- 1. For the registers for flag settings, see explanations in API 80 RS.
- The activation criteria placed before the two instructions, API 101 MODWR and API 150 MODRW (Function Code H06, H10), cannot use rising-edge contacts (LDP, ANDP ORP) and falling-edge contacts (LDF, ANDF, ORF) and have to enable sending request M1122 first.
- 3. There is no limitation on the times of using this instruction in the program, but only one instruction is allowed to be executed at a time.

API	Mner	noni	С	Operands							Fui	nctio	on				Controlle	ers
102	F۱	VD		S 1	<u>S2</u>	0	บ	Forward Running of VFD-A									ES/EX/SS SA/SX/S	SC EH/SV
1	уре	В	Bit C	evice	s				٧	Vord I	Devic	es		Program Steps				
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	О	D	Е	F	FWD: 7 steps	
5	S ₁					*	*							*				
5	\mathbf{S}_2					*	*							*				
	ſ					*	*							*				
									PUL	SE				1	6-bit		32-bit	

PULSE						16-bit							32-bit										
ES	ΕX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

API	Mner	noni	С	Op	eran	ds					Fur	nctio	on					Controllers
103	R	EV	(<u>S</u> 1	S 2	C	อ	Reverse Running of VFD-A									ES/EX/SS SA/SX/SC EH/SV	
Ţ	ype	В	it D	evice	s			Word Devices									Program Steps	
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	О	D	Е	F	REV:	7 steps

	ווום	CE				- 1	C hit						22	h:+		
	PUL	.o⊏				- 1	6-bit						3Z-	bit		
=0 = 1/ 0		01/00			->/	20	N CV	00		. = 0	->.	~~	~ • •	0)//	CE	
ESTEXIS	SSISAL	SXISC	IEHISV	1+S	۱⊢X ۱۱	1.7	AISX	SCII	-HISV	/IFS	ı⊢x ı	SSI	SAB	SXIS	SCH-	HISV

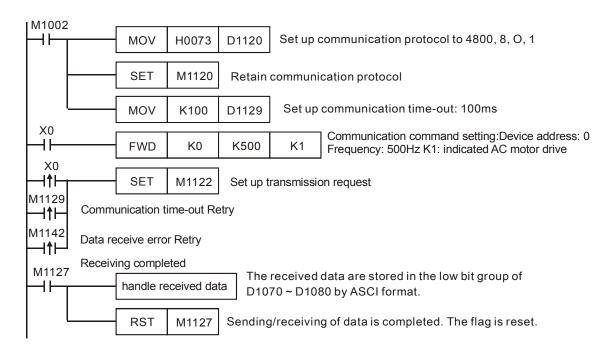
API	Mnemonic	Operands	Function	Controllers
104	STOP	\$1 \$2 n	Stop VFD-A	ES/EX/SS SA/SX/SC EH/SV

Туре	I	3it De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	X	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Τ	C	О	П	F	STOP: 7 steps
S ₁					*	*							*			
S ₂					*	*							*			
n					*	*							*			

PULSE	16-bit	32-bit						
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV						

 S_2

S₁: Address of communication device **S**₂: Rotation frequency of AC motor drive n: Target to be instructed


Explanations:

- Range of S₁: K0 ~ K31 1.
- 2. Range of **n**: K1 or K2
- See the specifications of each model for their range of use.
- 4. ES series MPU does not support E, F index register modification.
- Flags: See API 80 RS for explanations on M1120 ~ M1131, M1140 ~ M1143 5.
- FWD/REV/STOP are handy instructions exclusively for Delta VFD-A/H series AC motor drive to perform forward running/reverse running/stop. Be sure to set up communication time-out (D1129) when executing this instruction.
- S_2 = operation frequency of AC motor drive. Set frequency in A-series AC motor drive: K0 ~ K4,000 (0.0Hz ~

- 400.0Hz). Set frequency in H-series: K0 ~ K1,500 (0Hz ~ 1,500Hz).
- 8. **n** = instructed target. **n**=1: AC motor drive at designated address. **n**=2: all connected AC motor drives.
- 9. The feedback (returned) data from the peripheral equipment will be stored in D1070 ~ D1080. After receiving the feedback data is completed, PLC will auto-check if all data are correct. If there is an error, M1142 will be On. When **n** = 2, PLC will not receive any data.

Program Example:

Communication between PLC and VFD-A series AC drives, retry for communication time-out and received data error.

PLC ⇒ VFD-A, PLC sends: "**C** ♥ ⑤ **0001 0500** " VFD-A ⇒ PLC, PLC sends: "**C** ♥ ♠ **0001 0500** "

Registers for sent data (sending messages)

Register	DA	TΑ	Explanation						
D1089 low	'C'	43 H	Start word of instruction						
D1090 low	'♥'	03 H	Checksum						
D1091 low	'⊚'	01 H	Instructed target						
D1092 low	'0'	30 H							
D1093 low	'0'	30 H	Communication address						
D1094 low	'0'	30 H	Communication address						
D1095 low	'1'	31 H							
D1096 low	'0'	30 H							
D1097 low	' 5'	35 H	Punning instruction						
D1098 low	·0'	30 H	Running instruction						
D1099 low	'0')' 30 H							

Registers for received data (responding messages)

Register	DA	ιΤΑ	Explanation
D1070 low	'C'	43 H	Start word of instruction
D1071 low	'♥'	03 H	Checksum
D1072 low	'♠'	06 H	Reply authorization (correct: 06H, incorrect: 07 H)
D1073 low	'0'	30 H	
D1074 low	'0'	30 H	Communication address
D1075 low	'0'	30 H	Communication address
D1076 low	'1'	31 H	
D1077 low	'0'	30 H	
D1078 low	' 5'	35 H	Running instruction
D1079 low	'0'	30 H	
D1080 low	'0'	30 H	

Remarks:

There is no limitation on the times of using this instruction in the program, but only one instruction is allowed to be executed at a time.

API	Mnemonic	Operands	Function	Controllers
105	RDST	s n	Read VFD-A Status	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	s				V	Nord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	O	D	Ε	F	RDST: 5 steps
S					*	*							*			
n					*	*							*			

Ī		PULSE EXISSISAISXISCIEHIS										16	-bit							32	-bit			
Ī	ES E	EX S	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Address of communicatino device n: Target to be instructed

Explanations:

- 1. Range of **S**: K0 ~ K31
- 2. Range of **n**: K0 ~ K3
- 3. See the specifications of each model for their range of use.
- 4. ES series MPU does not support E, F index register modification.
- 5. Flags: See API 80 RS for explanations on M1120 ~ M1131, M1140 ~ M1143
- 6. **n**: Instructed target (to be read) in AC motor drive
 - n=0, frequency
 - n=1, output frequency
 - n=2, output current
 - n=3, running instruction
- Data sent back (feedback) from AC motor drive (11 bytes, see VFD-A user manual) are stored in the low bytes
 of D1070 ~ D1080.

"Q, S, B, Uu, Nn, ABCD"

Feedback	Explanation	Data storage
Q	Start word: 'Q' (51H).	D1070 low
S	Checksum code: 03H.	D0171 low
В	Instruction authorization. correct: 06H, incorrect: 07H.	D1072 low
U	Communication address (address: 00~31). "Uu" = ("00" ~ "31") indicated	D1073 low
U	in ASCII format.	D1074 low
N	Instructed target (00 ~ 03)."Nn" = ("00 ~ 03") indicated in ASCII format.	D1075 low
N	instructed target (00 ~ 05). Nit = (00 ~ 05) indicated in ASCII format.	D1076 low
Α	Instructed data. The content of "ABCD" differs upon the instructed targets	D1077 low
В	(00 ~ 03). 00 ~ 03 indicate frequency, current and running mode	D1078 low
С	respectively. Please refer to the explanations below for details.	D1079 low
D	respectively. I lease relet to the explanations below for details.	D1080 low
	Nn = "00" Frequency instruction = ABC.D (Hz) Nn = "01" Output instruction = ABC.D (Hz) Nn = "02" Output current = ABC.D (A) PLC will automatically convert the ASCII characters of "ABCD" into numera numeral in D1050. For example, assume "ABCD" = "0600", PLC will conver (0258 H) and store it in the special register D1050.	

Nn = "03"	Rur	nning instru	ıction			
'A' =	'0'	Stop,		' 5'	JOG (forward)	
	'1'		rd runnir	na '6'	JOG (reverse)	
	'2'	Stop,		'7'	JOG (reverse)	
	'3'		se runnir	ng '8'	Abnormal	
	'4'		forward).			
	ES series	PLCs will o	convert t	he ASCII cha	aracters of "A" into a n	umeral and store the
	numeral in	D1051. Fo	or exam	ole, assume	"A" = "3", PLC will con	vert A into K3 and
			register	D1051. SA/I	EH series PLCs will sto	ore the numeral in low
	bytes of D			T		
'B' =		6 b5	b4		Source of running in	
		0	0		Digital keypa	
		0 0	1		1 st Step Spee	ed
		0 1	0		2 nd Step Spec	ed ·
		0 1	1		3 rd Step Spee	
		1 0	0		4 th Step Spee	ed
		1 0	1		5 th Step Spec	<u>ed</u>
		1 1 1 1	<u>0</u> 1		6 th Step Spee 7 th Step Spee	
		1 1 0 0	0		JOG frequen	
		0	1	_	nalog signal frequenc	
		0 1	0		RS-485 communication	
		0 1	1		Up/Down con	
	b3 =		C brakin	a ston	DC braking stop	
	b2 =				1 DC braking startup	
	b1 =		ard runn		Reverse running	
	b0 =	0 Stop	<u></u>		1 Running	
			store "B"	in special au	uxiliary relay M1168 (b	0) ~ M1175 (b7).
					in the high bytes of sp	
"CD" =	"0		No abn	ormal record		OcA
	"0			ос	"11"	Ocd
	"0			OV	"12"	Ocn
	"0			оН	"13"	GFF
	"0			oL	"14"	Lv
	"0	-		oL1	"15"	Lv1
	"0	-		EF	"16"	cF2
	"0"			cF1	"17"	bb
	"0			cF3	"18"	oL2
	"O		<u> </u>	HPF	"19")" into a more and a!
						o" into a numerals and
						', PLC will convert CD
	IIIIU K IO A	iiu store It	iii iiie sp	ecial registe	ו טוטטב.	

Remarks:

- The activation criteria placed before the three instructions, API 100 MODRD, API 105 RDST and API 150 MODRW (Function Code 03), cannot use rising-edge contacts (LDP, ANDP ORP) and falling-edge contacts (LDF, ANDF, ORF); otherwise, the data stores in the receiving registers will be incorrect.
- 2. For the registers for flag settings, see explanations in API 80 RS.
- 3. There is no limitation on the times of using this instruction in the program, but only one instruction is allowed to be executed at a time.

API	Mnemonic	Operands	Function	Controllers
106	RSTEF	S n	Reset Abnormal VFD-A	ES/EX/SS SA/SX/SC EH/SV

Туре	В	Bit De	evice	s				V	Nord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	RSTEF: 5 steps
S					*	*							*			
n					*	*							*			

Ī		PULSE EXISSISAISXISCIEHIS										16	-bit							32	-bit			
Ī	ES E	EX S	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Address of communication device n: Target to be instructed

Explanations:

- 1. Range of **S**: K0 ~ K31
- 2. Range of **n**: K1 or K2
- 3. See the specifications of each model for their range of use.
- 4. Flags: See API 80 RS for explanations on M1120 ~ M1131, M1140 ~ M1143
- 5. RSTEF is a handy communication instruction exclusively for Delta VFD-A series AC motor drives and is used for reset when the AC motor drive operates abnormally.
- 6. n: instructed target. n=1: AC motor drive at assigned address. n=2: all connected AC motor drives.
- 7. The feedback (returned) data from the peripheral equipment will be stored in D1070 ~ D1089. If **n** = 2, there will be no feedback data.

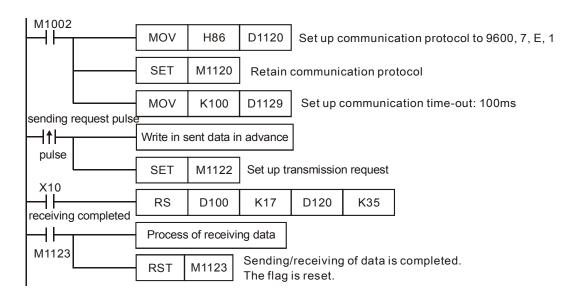
Remarks:

- The activation criteria placed before the three instructions, API 100 MODRD, API 105 RDST and API 150 MODRW (Function Code 03), cannot use rising-edge contacts (LDP, ANDP ORP) and falling-edge contacts (LDF, ANDF, ORF); otherwise, the data stores in the receiving registers will be incorrect.
- 2. For the registers for flag settings, see explanations in API 80 RS.
- 3. There is no limitation on the times of using this instruction in the program, but only one instruction is allowed to be executed at a time.

API	Mnemonic		Operands	Function	Controllers
107	LRC	Р	s n D	Checksum LRC Mode	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Τ	O	D	П	F	LRC, LRCP: 7 steps
S													*			
n					*	*							*			
D													*			

	PULSE S EX SS SA SX SC EH S										16	-bit							32	-bit			
ES	ΕX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


S: Start operation device for ASCII mode checksum **n**: Number of calculated bits **D**: Start device for storing the operation result LRC checksum: See remarks.

Explanations:

- 1. Range of **n**: K1 ~ K256
- 2. See the specifications of each model for their range of use.
- 3. Flag: M1161 (switching between 8/16 bit modes)
- 4. **n** has to be even. If **n** does not fall within its range, an operation error will occur, the instruction will not be executed, M1067, M1068 = On and D1067 will record the error code H'0E1A.
- 5. In 16-bit conversion mode: When M1161 = Off, **S** divides its hex data area into higher 8 bits and lower 8 bits and performs LRC checksum operation on each bit. The data will be sent to the higher 8 bits and lower 8 bits in **D**. **n** = the number of calculated bits.
- 6. In 8-bit conversion mode: When M1161 = On, **S** divides its hex data area into higher 8 bits (invalid data) and lower 8 bits and performs LRC checksum operation on each bit. The data will be sent to the lower 8 bits in **D** and occupy 2 registers. **n** = the number of calculated bits. (All higher bits in **D** are "0".)

Program Example:

When PLC communicates with VFD-S series AC motor drives (In ASCII mode, M1143 = Off), (In 8-bit mode, M1161 = On), the sent data write in advance the 6 data read starting from H2101 of VFD-S.

PLC \Rightarrow VFD-S, PLC sends: ": 01 03 2101 0006 D4 CR LF"

Registers for sent data (sending messages)

Register	DA	·ΤΑ	Expla	nation
D100 low	٠. ،	3A H	STX	
D101 low	'0'	30 H	ADR 1	Address of AC motor
D102 low	'1'	31 H	ADR 0	drive: ADR (1,0)
D103 low	'0'	30 H	CMD 1	Instruction code: CMD
D104 low	'3'	33 H	CMD 0	(1,0)
D105 low	'2'	32 H		
D106 low	'1'	31 H	Starting data address	
D107 high	'0'	30 H	Starting data address	
D108 low	'1'	31 H		
D109 low	'0'	30 H		
D110 low	'0'	30 H	Number of data (counted	l by words)
D111 low	'0'	30 H	Number of data (counted	i by words)
D112 low	'6'	36 H		
D113 low	'D'	44 H	LRC CHK 1	Error checksum: LRC
D114 low	'4'	34 H	LRC CHK 0	CHK (0,1)
D115 low	CR	ΑН	END	
D116 low	LF	DΗ	LIND	

The error checksum LRC CHK (0,1) can be calculated by LRC instruction (in 8-bit mode, M1161 = On).

LRC checksum: 01 H + 03 H + 21 H + 01 H + 00 H + 06 H = 2 C H. Obtain 2's complement, D4H, and store 'D'(44H) in the lower 8 bits of D113 and '4'(34H) in the lower 8 bits of D114.

Remarks:

1. The format of ASCII mode with a communication datum

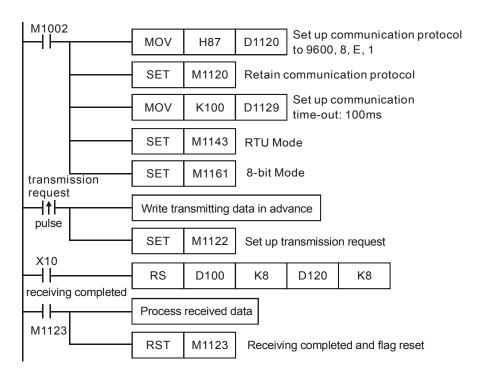
STX	·. '	Start word = ':' (3AH)
Address Hi	' 0 '	Communication:
Address Lo	'1'	8-bit address consists of 2 ASCII codes
Function Hi	' 0 '	Function code:
Function Lo	' 3 '	8-bit function consists of 2 ASCII codes
DATA (n-1)	' 2 '	Data content:
	'1'	n × 8-bit data consists of 2n ASCII
DATA 0	' 0 '	codes
	' 2 '	
	' 0 '	
	' 0 '	
	' 0 '	
	' 2 '	
LRC CHK Hi	' D '	LRC checksum:
LRC CHK Lo	' 7 '	8-bit checksum consists of 2 ASCII codes
END Hi	CR	End word:
END Lo	LF	END Hi = CR (0DH), END Lo = LF(0AH)

2. LRC checksum: 2's complement of the summed up value of communication address and data. For example, 01 H + 03 H + 21 H + 02 H + 00 H + 02 H = 29 H. Obtain 2's complement = D7H.

API	Mnemonic		Operands	Function	Controllers
108	CRC	Р	S n D	Checksum CRC Mode	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	O	D	П	F	CRC, CRCP: 7 steps
S													*			
n					*	*							*			
D													*			

	PU	LSE							16	-bit							32	-bit			
ES EX SS SA SX SC EH SV					SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

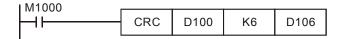

S: Start operation device for RTU mode checksum **n**: Number of calculated bits **D**: Start device for storing the operation result CRC checksum: See remarks.

Explanations:

- 1. Range of **n**: K1 ~ K256
- 2. Flags: M1161 (switching between 8/16-bit modes)
- If n does not fall within its range, an operation error will occur, the instruction will not be executed, M1067, M1068 = On and D1067 will record the error code H'0E1A.
- 4. In 16-bit conversion mode: When M1161 = Off, **S** divides its hex data area into higher 8 bits and lower 8 bits and performs CRC checksum operation on each bit. The data will be sent to the higher 8 bits and lower 8 bits in **D**. **n** = the number of calculated bits.
- 5. In 8-bit conversion mode: When M1161 = On, **S** divides its hex data area into higher 8 bits (invalid data) and lower 8 bits and performs CRC checksum operation on each bit. The data will be sent to the lower 8 bits in **D** and occupy 2 registers. **n** = the number of calculated bits. (All higher 8 bits in **D** are "0".)

Program Example:

When PLC communicates with VFD-S series AC motor drives (In RTU mode, M1143 = On), (In 16-bit mode, M1161 = On), the sent data write in advance H12 into H2000 of VFD-S.



PLC ⇒ VFD-S, PLC sends: 01 06 2000 0012 02 07

Registers for sent data (sending messages)

Register	DATA	Explanation
D100 low	01 H	Address
D101 low	06 H	Function
D102 low	20 H	Data address
D103 low	00 H	Data address
D104 low	00 H	Data content
D105 low	12 H	Data Content
D106 low	02 H	CRC CHK 0
D107 low	07 H	CRC CHK 1

The error checksum CRC CHK (0,1) can be calculated by CRC instruction (in 8-bit mode, M1161 = On).

CRC checksum: 02 H is stored in the lower 8 bits of D106 and 07 H in the lower 8 bits of D107,

Remarks:

The format of RTU mode with a communication datum

START	Time interval
Address	Communication address: 8-bit binary
Function	Function code: 8-bit binary
DATA (n-1)	Data content:
	n × 8-bit data
DATA 0	11 ^ 0-bit data
CRC CHK Low	CRC checksum:
CRC CHK High	16-bit CRC checksum consists of 2 8-bit binaries
END	Time interval

2. CRC checksum starts from Address and ends at Data content.

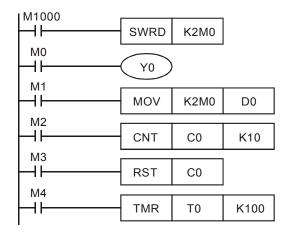
The operation of CRC checksum:

- Step 1: Make the 16-bit register (CRC register) = FFFFH
- Step 2: Exclusive OR the first 8-bit byte message instruction and the low-bit 16-bit CRC register. Store the result in CRC register.
- Step 3: Shift the CRC register one bit to the right and fill 0 in the higher bit.
- Step 4: Check the value that shifts to the right. If it is 0, store the new value from Step 3 into the CRC register, otherwise, Exclusive OR A001H and the CRC register, and store the result in the CRC register.
- Step 5: Repeat Step 3 ~ 4 and finish calculating the 8 bits.
- Step 6: Repeat Steps 2 ~ 5 for obtaining the next 8-bit message instruction until all the message instructions are calculated. In the end, the obtained CRC register value is the CRC checksum. Be aware that CRC checksum should be placed in the checksum of the message instruction.

API	Mnemonic	;	Operands	Function	Controllers
109	SWRD	Р	D	Read Digital Switch	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	evice	s				V	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	SWRD, SWRDP: 3 steps
	D								*	*	*	*	*	*	*	*	

			PUI	LSE							16	-bit							32	-bit			
ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


D: Device for storing the read value

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1104 ~ M1111 (status of digital switch)
- 3. This instruction stores the value read from digital switch function card into **D**.
- 4. The read value is stored in the low byte in D. Every switch has a corresponding bit.
- 5. When there is no digital function card inserted, the error message C400 (hex) will appear in grammar check.

Program Example:

 There are I 8 DIP switches on the digital switch function card. After the switches are read by SWRD instruction, the status of each switch will correspond to M0 ~ M7.

- 2. The status of M0 ~ M7 can be executed by each contact instruction.
- 3. The execution of END instruction indicates that the process of input is completed. REF (I/O refresh) instruction will be invalid.
- When SWRD instruction uses the data in digital switch function card, it can read minimum 4 bits (K1Y*, K1M* or K1S*).

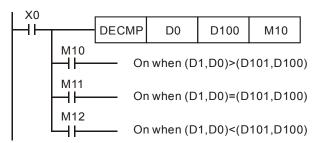
Remarks:

When digital switch function card is inserted, the status of the 8 DIP switches will correspond to M1104 ~ M1111.

API		Mnemonic		Operands	Function	Controllers
110	D	ECMP	Р	\$1 \$2 D	Floating Point Compare	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	it De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	Κ	Ι	KnX	KnY	KnM	KnS	Т	O	D	П	F	DECMP, DECMPP: 13 steps
S ₁					*	*							*			
S ₂					*	*							*			
D		*	*	*												

Pl	JLSE							16	-bit							32	-bit			
ES EX SS SA SX SC EH SV					ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


 $\mathbf{S_1}$: Binary floating point comparison value 1 $\mathbf{S_2}$: Binary floating point comparison value 2 \mathbf{D} : Comparison result

Explanations:

- 1. **D** occupies 3 consecutive devices.
- 2. See the specifications of each model for their range of use.
- 3. The binary floating point values S_1 and S_2 are compared with each other. The comparison result (>, =, <) is stored in D.
- 4. If S_1 or S_2 is an designated constant K or H, the instruction will convert the constant into a binary floating point value before the comparison.

Program Example:

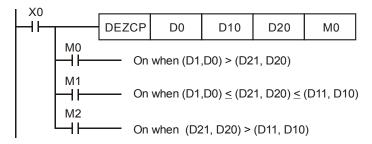
- 1. Designated device M10 and M10 ~ M12 are automatically occupied.
- 2. When X0 = On. DECMP instruction will be executed and one of M10 ~ M12 will be On. When X0 = Off, DECMP instruction will not be executed and M10 ~ M12 will remain their status before X0 = Off.
- 3. To obtain results \geq , \leq , \neq , serial-parallel M10 ~ M12.
- 4. Use RST or ZRST instruction to clear the result.

Remarks:

API		Mnemonic	;	Operands	Function	Controllers
111	D	EZCP	Р	\$1 \$2 \$ D	Floating Point Zone Compare	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	vice	s				V	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	Κ	Ι	KnX	KnY	KnM	KnS	Т	С	D	Ε	F	DEZCP, DEZCPP: 17 steps
	S ₁					*	*							*			
	S ₂					*	*							*			
	S					*	*							*			
	D		*	*	*												

				PUI	LSE							16	-bit							32	-bit			
П	ES E	X	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


 S_1 : Lower bound of binary floating point S_2 : Upper bound of binary floating point S: Binary floating point comparison result D: Comparison result

Explanations:

- 1. **D** occupied 3 consecutive devices.
- 2. $S_1 \le S_2$. See the specifications of each model for their range of use.
- 3. **S** is compared with S_1 and S_2 and the result (>, =, <) is stored in **D**.
- 4. If **S**₁ or **S**₂ is andesignated constant K or H, the instruction will convert the constant into a binary floating point value before the comparison.
- 5. When $S_1 > S_2$, S_1 will be used as upper/lower bound for the comparison.

Program Example:

- 1. Designated device M0 and M0 ~ M2 are automatically occupied.
- 2. When X0 = On. DEZCP instruction will be executed and one of M0 ~ M2 will be On. When X0 = Off, EZCP instruction will not be executed and M0 ~ M2 will remain their status before X0 = Off.
- 3. Use RST or ZRST instruction to clear the result.

Remarks:

API		Mnemonic	Operands	Function	Controllers
112	D	MOVR P	SD	Move Floating Point Data	ES/EX/SS SA/SX/SC EH/SV

Туре	В	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DMOVR, DMOVRP: 9 steps
S																
D								*	*	*	*	*	*			

PULSE				16-	-bit							32	-bit			
ES EX SS SA SX SC E	H SV	ES EX	(SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Source floating point data **D**: Destination device

Explanations:

- 1. **S** can only be in floating point (FX.XX).
- 2. See the specifications of each model for their range of use.
- 3. This instruction is able to enter floating point values directly in S.
- 4. When the instruction is executed, the content in **S** is moved directly into **D**. When the instruction is not executed, the content in **D** will not be modified.

Program Example:

- 1. User DMOVR instruction to move 32-bit floating point data.
- 2. When X0 = Off, the content in (D11 \cdot D10) remains unchanged. When X0 = On, the present value F1.20000004768372 will be moved to data registers (D11, D10).

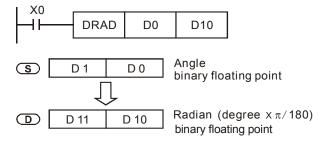
Remarks:

This instruction only supports ES V6.1, SA/SX_V1.1, SV_V1.2, EH_V1.2, EH2/SV_V1.0 and above versions.

API		Mnemonic	;	Operands	Function	Controllers
116	D	RAD	Р		Angle → Radian	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DRAD, DRADP: 9 steps
S					*	*							*			
D													*			

DIII SE	16-bit	32-bit
I OLOL		
IES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV


S: Source (angle) **D**: Result (radian)

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. Radian = degree × (π /180)
- 4. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
- 5. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
- 6. If the result = 0, the zero flag M1020 = On.

Program Example:

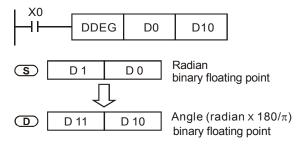
When X0 = On, designate the degree of binary floating point (D1, D0). Convert the angle into radian and store the result in binary floating point in (D11, D10).

Remarks:

API		Mnemonic		Operands	Function	Controllers
117	D	DEG	Р	S	Radian → Angle	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	C	D	П	F	DDEG, DDEGP: 9 steps
	S					*	*							*			
	D													*			

		PUI	SE							16	-bit							32	-bit			
ES EX	ES EX ISS ISA ISX ISCIEHIS							EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV


S: Source (radian) **D**: Result (angle)

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. Degree = radian × $(180/\pi)$
- 4. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
- 5. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
- 6. If the result = 0, the zero flag M1020 = On.

Program Example:

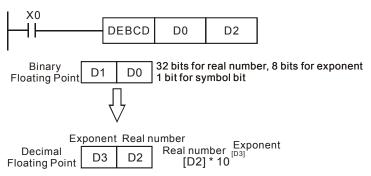
When X0 = On, designate the angle of binary floating point (D1, D0). Convert the radian into angle and store the result in binary floating point in (D11, D10).

Remarks:

API		Mnemonic	;	Operands	Function	Controllers			
118	D	EBCD	Р	SD	Float to Scientific Conversion	ES/EX/SS SA/SX/SC EH/SV			

Туре	В	Bit De	vice	s	Word Devices									Program Steps		
ОР	Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	О	Е	F	DEBCD, DEBCDP: 9 steps
S													*			
D													*			

PULSE	16-bit	32-bit						
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV						


S: Source D: Result

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. This instruction converts binary floating point value in the register designated by **S** into decimal floating point value and stores it in the register designated by **D**.
- 4. PLC conducts floating point operation in binary format. DEBCD instruction is exclusively for converting floating points from binary to decimal.
- 5. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
- 6. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
- 7. If the result = 0, the zero flag M1020 = On.

Program Example:

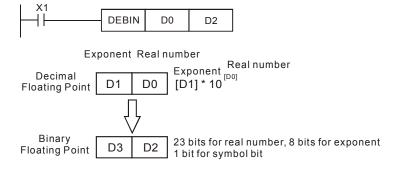
When X0 = On, the binary floating points in D1 and D0 will be converted into decimal floating points and stored in D3 and D2.

Remarks:

AF	ľ	I	Mnemonic	;	Operands	Function	Controllers			
11	9	D	EBIN	Р	S	Scientific to Float Conversion	ES/EX/SS SA/SX/SC EH/SV			

	Туре	Bit Devices					Word Devices										Program Steps		
ОР		Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DEBIN, DEBINP: 9 steps		
	S													*					
	D													*					

PULSE						16-bit							32-bit									
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


S: Source D: Result

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flag: M1020 (zero flag)
- 3. This instruction converts decimal floating point value in the register designated by **S** into binary floating point value and stores it in the register designated by **D**.
- 4. DEBIN instruction is exclusively for converting floating points from decimal to binary.
- 5. Range of decimal floating point real numbers: $-9.999 \sim +9,999$. Range of exponants: $-41 \sim +35$. Range of PLC decimal floating points: $\pm 1.175 \times 10^{-41} \sim \pm 3.402 \times 10^{+35}$.
- 6. If the result = 0, the zero flag M1020 = On.

Program Example 1:

When X1 = On, the decimal floating points in D1 and D0 will be converted into binary floating points and stored in D3 and D2.

Program Example 2:

- Use FLT instruction (API 149) to convert BIN integer into binary floating point before performing floating point operation. The value to be converted must be BIN integer and use DEBIN instruction to convert the floating point into a binary one.
- 2. When X0 = On, move K3,140 to D0 and K-3 to D1 to generate decimal floating point (3.14 = 3140×10^{-3}).

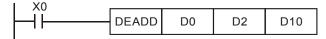
```
MOVP K3140 D0 K3140 \rightarrow D0 [D1] 3140 \times 10^{-3} MOVP K-3 D1 K-3 \rightarrow D1 [D0] (D1, D0) \rightarrow (D3, D2) 3140 \times 10^{-3} \rightarrow Binary floating point
```

R	ρ	m	а	r	k	c	•

API		Mnemonic		Operands	Function	Controllers
120	D	EADD	Р	\$1 \$2 D	Floating Point Addition	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	O	D	П	F	DEADD, DEADDP: 13 steps
S ₁					*	*							*			
S ₂					*	*							*			
D													*			

ſ				PUI	LSE							16	16-bit ES EX SS SA SX SC EH SV							32-bit							
ſ	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	H	SV	ES	EX	SS	SA	SX	SC	ΕH	SV			


S₁: Summand **S**₂: Addend **D**: Sum

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. $S_1 + S_2 = D$. The floating point value in the register designated by S_1 and S_2 are added up and the result is stored in the register designated by D. The addition is conducted in binary floating point system.
- 4. If S_1 or S_2 is an designated constant K or H, the instruction will convert the constant into a binary floating point value before the operation.
- 5. **S**₁ and **S**₂ can designate the same register. In this case, if the "continuous execution" instruction is in use, during the period when the criteria contact in On, the register will be added once in every scan by pulse execution instruction DEADDP.
- 6. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
- 7. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
- 8. If the result = 0, the zero flag M1020 = On.

Program Example 1:

When X0 = On, binary floating point (D1, D0) + binary floating point (D3, D2) and the result is stored in (D11, D10).

Program Example 2:

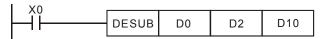
When X2 = On, binary floating point (D11, D10) + K1234 (automatically converted into binary floating point) and the result is stored in (D21, D20).

Remarks:

API		Mnemonic		Operands	Function	Controllers
121	D	ESUB	Р	\$1 \$2 D	Floating Point Subtraction	ES/EX/SS SA/SX/SC EH/SV

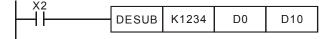
	Туре	В	it De	evice	s				٧	Vord I	Devic	es					Program Steps
OF	, \	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DESUB, DESUBP: 13 steps
	S ₁					*	*							*			
	S ₂					*	*							*			
	D													*			

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV


 S_1 : Minuend S_2 : Subtrahend D: Remainder

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. $S_1 S_2 = D$. The floating point value in the register designated by S_2 is subtracted from the floating point value in the register assigned by S_1 and the result is stored in the register designated by D. The subtraction is conducted in binary floating point system.
- 4. If **S**₁ or **S**₂ is an designated constant K or H, the instruction will convert the constant into a binary floating point value before the operation.
- 5. **S**₁ and **S**₂ can designate the same register. In this case, if the "continuous execution" instruction is in use, during the period when the criteria contact in On, the register will be subtracted once in every scan by pulse execution instruction DESUBP.
- 6. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
- 7. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
- 8. If the result = 0, the zero flag M1020 = On.


Program Example 1:

When X0 = On, binary floating point (D1, D0) — binary floating point (D3, D2) and the result is stored in (D11, D10).

Program Example 2:

When X2 = On, K1234 (automatically converted into binary floating point) — binary floating point (D1, D0) and the result is stored in (D11, D10).

Remarks:

API		Mnemonic		Operands	Function	Controllers
122	D	EMUL	Р	\$1 \$2 D	Floating Point Multiplication	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	it De	vice	s				Word Devices							Program Steps	
ОР	Х	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	O	D	П	F	DEMUL, DEMULP: 13 steps
S ₁					*	*							*			
S ₂					*	*							*			
D													*			

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

S₁: Multiplicand S₂: Multiplicator D: Product

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. $S_1 \times S_2 = D$. The floating point value in the register assigned by S_1 is multiplied with the floating point value in the register designated by S_2 and the result is stored in the register designated by S_2 . The multiplication is conducted in binary floating point system.
- 4. If S_1 or S_2 is an designated constant K or H, the instruction will convert the constant into a binary floating point value before the operation.
- 5. **S**₁ and **S**₂ can designate the same register. In this case, if the "continuous execution" instruction is in use, during the period when the criteria contact in On, the register will be multiplied once in every scan by pulse execution instruction DEMULP.
- 6. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
- 7. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
- 8. If the result = 0, the zero flag M1020 = On.

Program Example 1:

When X1 = On, binary floating point (D1, D0) × binary floating point (D11, D10) and the result is stored in (D21, D20).

Program Example 2:

When X2 = On, K1234 (automatically converted into binary floating point) × binary floating point (D1, D0) and the result is stored in (D11, D10).

Remarks:

API		Mnemonic		Operands	Function	Controllers
123	D	EDIV	Р	\$1 \$2 D	Floating Point Division	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DEDIV, DEDIVP: 13 steps
S ₁					*	*							*			
S ₂					*	*							*			
D													*		<u> </u>	

PULSE			16-bit					32	-bit			
ES EX SS SA SX SC EF	SV ES	EX SS	SA SX	(SC	EH SV	ES E	EX S	SA	SX	SC	ΕH	SV

S₁: Dividend **S**₂: Divisor **D**: Quotient and remainder

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. $S_1 \div S_2 = D$. The floating point value in the register designated by S_1 is divided by the floating point value in the register assigned by S_2 and the result is stored in the register designated by D. The division is conducted in binary floating point system.
- 4. If **S**₁ or **S**₂ is an designated constant K or H, the instruction will convert the constant into a binary floating point value before the operation.
- 5. If $S_2 = 0$, operation error will occur, the instruction will not be executed, M1067, M1068 = On and D1067 will recorded the error code H'0E19.
- 6. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
- 7. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
- 8. If the result = 0, the zero flag M1020 = On.

Program Example 1:

When X1 = On, binary floating point (D1, D0) ÷ binary floating point (D11, D10) and the quotient is stored in (D21, D20).

Program Example 2:

When X2 = On, binary floating point (D1, D0) ÷ K1234 (automatically converted into binary floating point) and the result is stored in (D11, D10).

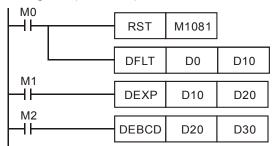
Remarks:

API		Mnemonic		Operands	Function	Controllers
124	D	EXP	Р	SD	Exponent of Binary Floating Point	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	X Y M S K					KnX	KnY	KnM	KnS	Τ	O	О	П	F	DEXP, DEXPP: 9 steps
S					*	*							*			
D													*			

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

S: Device for operation source D: D


D: Device for operation result

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. e = 2.71828 as the base and **S** as exponent for EXP operation: EXP (D+1, D) = (S+1, S)
- 4. Both positive and negative values are valid for **S**. When designating **D** registers, the data should be 32-bit and the operation should be performed in floating point system. Therefore, **S** should be converted into a floating point value.
- 5. The content in $\mathbf{D} = e^{S}$; e = 2.71828, e = 8 designated source data
- 6. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
- 7. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
- 8. If the result = 0, the zero flag M1020 = On.

Program Example:

- 1. When M0 = On, convert (D1, D0) into binary floating point and store it in register (D11, D10).
- 2. When M1= On, use (D11, D10) as the exponent for EXP operation and store the binary floating point result in register (D21, D20).
- 3. When M2 = On, convert the binary floating point (D21, D20) into decimal floating point (D30 \times 10^[D31]) and store it in register (D31, D30).

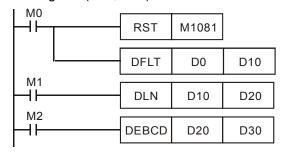
Remarks:

API		Mnemonic	;	Operands	Function	Controllers
125	D	LN	Р	6	Natural Logarithm of Binary Floating Point	ES/EX/SS SA/SX/SC EH/SV

Туре	E	Bit De	evice	s				V	Vord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DLN, DLNP: 9 steps
S					*	*							*			
D													*			

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

S: Device for operation source


D: Device for operation result

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. This instruction performs natural logarithm "LN" operation by **S**: LN (**S** + 1, **S**) = (**D** + 1, **D**)
- 4. Only positive values are valid for **S**. When designating **D** registers, the data should be 32-bit and the operation should be performed in floating point system. Therefore, **S** should be converted into a floating point value.
- 5. $e^{D} = S$. The content in D = lnS; S = designated source data.
- 6. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
- 7. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
- 8. If the result = 0, the zero flag M1020 = On.

Program Example:

- When M0 = On, convert (D1, D0) into binary floating point and store it in register (D11, D10).
- 2. When M1= On, use register (D11, D10) as the real number for LN operation and store the binary floating point result in register (D21, D20).
- 3. When M2 = On, convert the binary floating point (D21, D20) into decimal floating point (D30 \times 10^[D31]) and store it in register (D31, D30).

Remarks:

API		Mnemonic	;	Operands	Function	Controllers
126	D	LOG	Р	\$1 \$2 D	Logarithm of Binary Floating Point	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	O	D	П	F	DLOG, DLOGP: 13 steps
S ₁					*	*							*			
S ₂					*	*							*			
D													*			

Pl	JLSE							16	-bit							32	-bit			
ES EX SS SA SX SC EH SV						EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

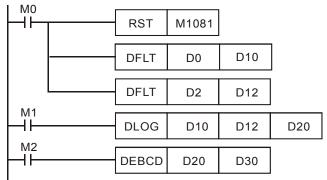
S₁: Device for base

S₂: Device for operation source

D: Device for operation result

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. This instruction performs "log" operation of the content in S_1 and S_2 and stores the result in D.
- 4. Only positives are valid for the content in **S**₁ and **S**₂. When designating **D** registers, the data should be 32-bit and the operation should be performed in floating point system. Therefore, **S**₁ and **S**₂ should be converted into floating point values.
- 5. $S_1^D = S_2$, $D = ? \rightarrow Log_{S_1}^{S_2} = D$


Example: Assume $S_1 = 5$, $S_2 = 125$, $D = log_5^{125} = ?$

$$S_1^D = S_2 \rightarrow 5^D = 125 \rightarrow D = \log_5^{125} = 3$$

- 6. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
- 7. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
- 8. If the result = 0, the zero flag M1020 = On.

Program Example:

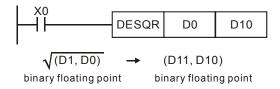
- 1. When M0 = On, convert (D1, D0) and (D3, D2) into binary floating points and store them in the 32-bit registers (D11, D10) and (D13, D12).
- 2. When M1= On, perform log operation on the binary floting points in 32-bit registers (D11, D10) and (D13, D12) and store the result in the 32-bit register (D21, D20).
- 3. When M2 = On, convert the binary floating point (D21, D20) into decimal floating point (D30 \times 10^[D31]) and store it in register (D31, D30).

Remarks:

API		Mnemonic		Operands	Function	Controllers
127	D	ESQR	Р	SD	Floating Point Square Root	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	S				٧	Vord I	Devic	es					Program Steps
OF	P \	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DESQR, DESQRP: 9 steps
	S					*	*							*			
	D													*			

		PUI	SE							16	-bit							32	-bit			
ES EX SS SA SX SC EH SV						SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


S: Source device D: Operation result

Explanations:

- 1. Range of **S**: ≥ 0
- 2. See the specifications of each model for their range of use.
- 3. Flags: M1020 (zero flag); M1067 (operation error)
- 4. This instruction performs a square root operation on the content in the register designated by **S** and stores the result in the register designated by **D**. The square root operation is performed in floating point system.
- 5. If **S** is an designated constant K or H, the instruction will convert the constant into a binary floating point value before the operation.
- 6. If the result of the operation = 0, the zero flag M1020 = On.
- 7. **S** can only be a positive value. Performing any square root operation on a negative value will result in an "operation error" and this instruction will not be executed. M1067 and M1068 will be On and D1067 will record the error code H'0E1B.

Program Example 1:

When M0 = On, calculate the square root of the binary floating point (D1, D0) and store the result in register (D11, D10).

Program Example 2:

When M2 = On, calculate the square root of K1,234 (automatically converted into binary floating point) and store the result in register (D11, D10).

Remarks:

API		Mnemonic	;	Operands	Function	Controllers
128	D	POW	Р	\$1 \$2 D	Floating Point Power Operation	ES/EX/SS SA/SX/SC EH/SV

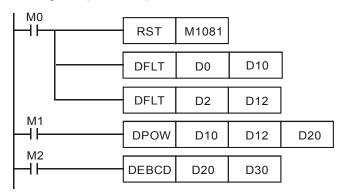
	Туре	В	it De	evice	s				٧	Vord I	Devic	es					Program Steps
(OP \	Χ	Υ	М	S	Κ	Ι	KnX	KnY	KnM	KnS	Т	O	О	Ε	F	DPOW, DPOWP: 13 steps
	S ₁					*	*							*			
	S_2					*	*							*			
Ī	D			, and the second										*			

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

 S_1 : Device for base. S_2 : Device for exponent. D: Device for operation result

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. This instruction performs power multiplication of binary floating point S_1 and S_2 and stores the result in D. $D = POW \{ S_1 + 1, S_1 \} \land \{ S_2 + 1, S_2 \}$
- 3. Only positives are valid for the content in S₁. Both positives and negatives are valid for the content in S₂. When designating D registers, the data should be 32-bit and the operation should be performed in floating point system. Therefore, S₁ and S₂ should be converted into floating point values.


Example: When $S_1^{S2} = D$, D = ?

Assume
$$S_1 = 5$$
, $S_2 = 3$, $D = 5^3 = 125$

- 4. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
- 5. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
- 6. If the result = 0, the zero flag M1020 = On.

Program Example:

- 1. When M0 = On, convert (D1, D0) and (D3, D2) into binary floating points and store them in the 32-bit registers (D11, D10) and (D13, D12).
- 2. When M1= On, perform POW operation on the binary floting points in 32-bit registers (D11, D10) and (D13, D12) and store the result in the 32-bit register (D21, D20).
- 3. When M2 = On, convert the binary floating point (D21, D20) into decimal floating point (D30 \times 10^[D31]) and store it in register (D31, D30).

Remarks:

For floating point operations, see "5.3 Handling of Numeric Values".	

API		Mnemonic	;	Operands	Function	Controllers
129	D	INT	Р	S	Float to Integer	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				V	Nord I	Devic	es					Program Steps
(OP \	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	INT, INTP: 5 steps
	S													*			DINT, DINTP: 9 steps
	D													*			

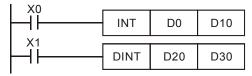
PULSE	16-bit	32-bit						
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV						

S: Source device D: Converted result

Explanations:

- 1. **S** occupies 2 consecutive devices. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. The binary floating point value of the register designated by **S** is converted to BIN integer and stored in the register designated by **D**. The decimal of BIN integer is left out.
- 4. This instruction is the inverse operation of API 49 FLT instruction.
- 5. If the converstion result = 0, the zero flag M1020 = On

If there is any decimal left out, the borrow flag M1021 = On.


If the result exceeds the range listed below, the carry flag M1022 = On.

16-bit instruction: -32,768 ~ 32,767

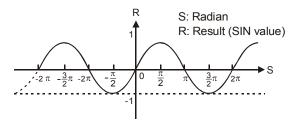
32-bit instruction: -2,147,483,648 ~ 2,147,483,647

Program Example:

- 1. When X0 = On, the binary floating point (D1, D0) will be converted into BIN integer and the result will be stored in (D10). The decimal of BIN integer will be left out.
- 2. When X1 = On, the binary floating point (D21, D20) will be converted into BIN integer and the result will be stored in (D31, D30). The decimal of BIN integer will be left out.

Remarks:

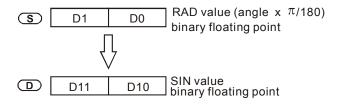
API		Mnemonic	;	Operands	Function	Controllers
130	D	SIN	Р	S	Sine	ES/EX/SS SA/SX/SC EH/SV


Туре	В	it De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	O	О	П	F	DSIN, DSINP: 9 steps
S					*	*							*			
D													*			

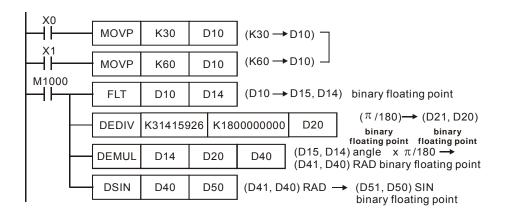
PULSE							16-bit								32-bit							
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

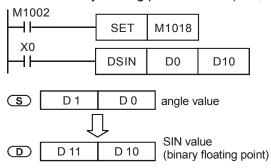
S: Source value D: SIN result


Explanations:


- 1. $0^{\circ} \le S < 360^{\circ}$. See the specifications of each model for their range of use.
- 2. Flags: M1018 (angle or radian); M1020 (zero flag)
- 3. **S** can be an angle or radian, decided by M1018.
- 4. When M1018 = Off, the program will be in radian mode and the RAD value = angle $\times \pi$ /180
- 5. When M1018 = On, the program will be in angle mode and the range of angle should be "0° ≤ angle < 360°"
- 6. If the result = On, M1020 = On.
- 7. The SIN value obtained by **S** is calculated and stored in the register designated by **D**. The figure below offers the relation between radian and the result.

Program Example 1:


When M1018 = Off, the program is in radian mode. When X0 = On, use the RAD value of binary floating point (D1, D0) and obtain its SIN value. The binary floating point result will be stored in (D11, D10).


Program Example 2:

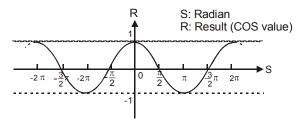
When M1018 = Off, the program is in radian mode. Input terminals X0 and X1 select the angle. The angles are converted into RAD value for calculating the SIN value.

Program Example 3:

When M1018 = On, the program is in angle mode. When X0 = On, use the angle of (D1, D0) to obtain SIN value and store the binary floating point result in (D11, D10). ($0^{\circ} \le \text{angle} < 360^{\circ}$)

Remarks:

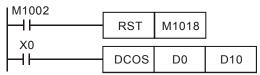
API		Mnemonic		Operands	Function	Controllers
131	D	cos	Р	SD	Cosine	ES/EX/SS SA/SX/SC EH/SV

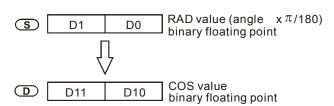

Туре	Е	Bit De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	O	О	П	F	DCOS, DCOSP: 9 steps
S					*	*							*			
D													*			

				PUI	LSE							16	-bit							32	-bit			
E	S	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Source value D: COS result

Explanations:

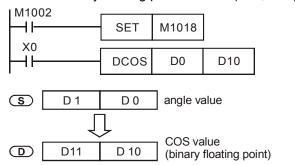

- 1. $0^{\circ} \le S < 360^{\circ}$. See the specifications of each model for their range of use.
- 2. Flags: M1018 (angle or radian); M1020 (zero flag)
- 3. **S** can be an angle or radian, decided by M1018.
- 4. When M1018 = Off, the program will be in radian mode and the RAD value = angle $\times \pi$ /180
- 5. When M1018 = On, the program will be in angle mode and the range of angle should be "0° ≤ angle < 360°"
- 6. If the result = On, M1020 = On.
- 7. The COS value obtained by **S** is calculated and stored in the register designated by **D**. The figure below offers the relation between radian and the result.



Switch between radian and angle by M1018: When M1018 = Off, S will be a RAD value; when M1018 = On, S will be an angle (0° ~ 360°).

Program Example 1:

When M1018 = Off, the program is in radian mode. When X0 = On, use the RAD value of binary floating point (D1, D0) and obtain its COS value. The binary floating point result will be stored in (D11, D10).



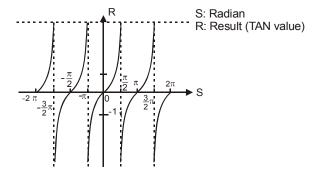
Program Example 2:

When M1018 = On, the program is in angle mode. When X0 = On, use the angle of (D1, D0) to obtain COS value and

store the binary floating point result in (D11, D10). (0 $^{\circ}$ ≤ angle < 360 $^{\circ}$)

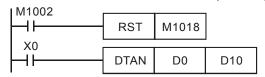
Remarks:

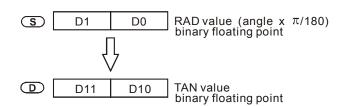
API		Mnemonic		Operands	Function	Controllers
132	D	TAN	Р	(S)	Tangent	ES/EX/SS SA/SX/SC EH/SV


Туре	В	it De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	O	О	П	F	DTAN, DTANP: 9 steps
S					*	*							*			
D													*			

		PUI	SE							16	-bit							32	-bit			
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

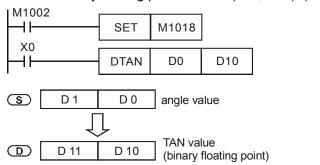
S: Source value D: TAN result


Explanations:


- 1. $0^{\circ} \le S < 360^{\circ}$. See the specifications of each model for their range of use.
- 2. Flags: M1018 (angle or radian); M1020 (zero flag)
- 3. S can be an angle or radian, decided by M1018.
- 4. When M1018 = Off, the program will be in radian mode and the RAD value = angle $\times \pi$ /180
- 5. When M1018 = On, the program will be in angle mode and the range of angle should be "0° ≤ angle < 360°"
- 6. If the result = On, M1020 = On.
- 7. The TAN value obtained by **S** is calculated and stored in the register designated by **D**. The figure below offers the relation between radian and the result.

Program Example 1:

When M1018 = Off, the program is in radian mode. When X0 = On, use the RAD value of binary floating point (D1, D0) and obtain its TAN value. The binary floating point result will be stored in (D11, D10).



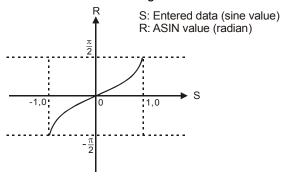
Program Example 2:

When M1018 = On, the program is in angle mode. When X0 = On, use the angle of (D1, D0) to obtain TAN value and

store the binary floating point result in (D11, D10). ($0^{\circ} \le \text{angle} < 360^{\circ}$)

Remarks:

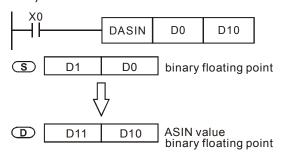
API		Mnemonic	;	Operands	Function	Controllers
133	D	ASIN	Р	SD	Arc Sine	ES/EX/SS SA/SX/SC EH/SV


	Туре	Е	Bit De	vice	s				٧	Vord [Devic	es					Program Steps
OF	,	Х	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	O	О	П	F	DASIN, DASINP: 9 steps
	S					*	*							*			
	D													*			

			PUI	_SE							16	-bit							32	-bit			
ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV

S: Source value (binary floating point) D: ASIN result

Explanations:


- 1. See the specifications of each model for their range of use.
- 2. Flag: M1020 (zero flag)
- 3. ASIN value=sin⁻¹. The figure below offers the relation between the entered sin value and the result.

- 4. The decimal floating point of the SIN value designated by **S** should be within -1.0 ~ +1.0. If the value falls without the range, M1067 and M1068 will be On without performing any action.
- 5. If the result = 0, M1020 = On.

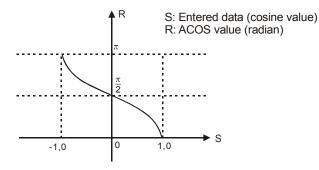
Program Example:

When X0 = On, obtain the ASIN value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).

Remarks:

API		Mnemonic		Operands	Function	Controllers
134	D	ACOS	Р	S	Arc Cosine	ES/EX/SS SA/SX/SC EH/SV

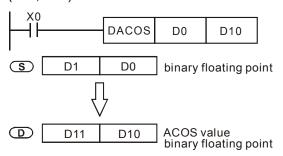
Туре	В	Bit De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DACOS, DACOSP: 9 steps
S					*	*							*			
D													*			


PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX ISS ISA ISX ISC IEH ISV	ES EX ISS ISA ISX ISC IEH ISV

S: Source value (binary floating point)

D: ACOS result

Explanations:


- 1. See the specifications of each model for their range of use.
- 2. Flag: M1020 (zero flag)
- 3. ACOS value=cos⁻¹. The figure below offers the relation between the entered cos value and the result.

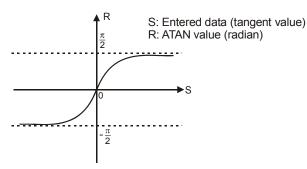
- 4. The decimal floating point of the COS value designated by **S** should be within -1.0 ~ +1.0. If the value falls without the range, M1067 and M1068 will be On without performing any action.
- 5. If the result = 0, M1020 = On.

Program Example:

When X0 = On, obtain the ACOS value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).

Remarks:

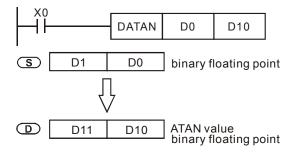
API		Mnemonic		Operands	Function	Controllers
135	D	ATAN	Р	SD	Arc Tangent	ES/EX/SS SA/SX/SC EH/SV


	Type	Е	Bit De	vice	s				٧	Vord I	Devic	es					Program Steps
C	P	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DATAN, DATANP: 9 steps
	S					*	*							*			
	D													*			

		PUI	SE							16	-bit							32	-bit			
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Source value (binary floating point) D: ATAN value

Explanations:


- 1. See the specifications of each model for their range of use.
- 2. Flag: M1020 (zero flag)
- 3. ATAN value=tan⁻¹. The figure below offers the relation between the entered tan value and the result.

4. If the result =0, M1020 = On.

Program Example:

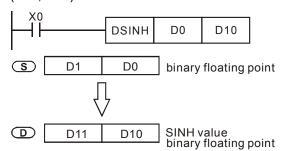
When X0 = On, obtain the ATAN value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).

Remarks:

API		Mnemonic	;	Operands	Function	Controllers
136	D	SINH	Р	S	Hyperbolic Sine	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	it De	evice	s				\	Nord (devic	es					Program Steps
ОР	Х	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	O	D	П	F	DSINH, DSINHP: 9 steps
S					*	*							*			
D													*			

1	PULSE	16-bit	32-bit
	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	


S: Source value (binary floating point) **D**: SINH value

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. SINH value=(e^s-e^{-s})/2. The result is stored in **D**.

Program Example:

1. When X0 = On, obtain the SINH value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).

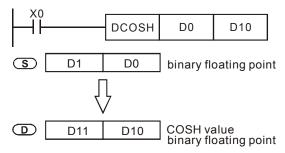
- 2. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
- 3. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
- 4. If the result = 0, the zero flag M1020 = On.

Remarks:

API		Mnemonic		Operands	Function	Controllers
137	D	COSH	Р	SD	Hyperbolic Cosine	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	Bit De	evice	s				V	Nord (devic	es					Program Steps
ОР	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	O	D	П	F	DCOSH, DCOSHP: 9 steps
S					*	*							*			
D													*			

		PUI	SE							16	-bit							32	-bit			
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV


S: Source value (binary floating point) D: COSH value

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. COSH value=(e^s+e^{-s})/2. The result is stored in **D**.

Program Example:

1. When X0 = On, obtain the COSH value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).

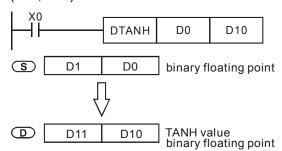
- 5. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
- 6. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
- 7. If the result = 0, the zero flag M1020 = On.

Remarks:

API		Mnemonic	;	Operands	Function	Controllers
138	D	TANH	Р	SD	Hyperbolic Tangent	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				\	Nord (devic	es					Program Steps
OF	,	Х	Υ	М	S	Κ	Η	KnX	KnY	KnM	KnS	Т	С	D	Ш	F	DTANH, DTANHP: 9 steps
	S					*	*							*			
	D													*			

			PUI	SE							16	-bit							32	-bit			
ES	ΕX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


S: Source value (binary floating point) D: TANH result

Explanations:

- 1. See the specifications of each model for their range of use.
- 2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
- 3. TANH value= $(e^s-e^{-s})/(e^s+e^{-s})$. The result is stored in **D**.

Program Example:

1. When X0 = On, obtain the TANH value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).

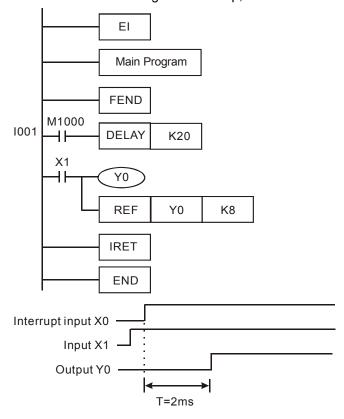
- 2. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
- 3. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
- 4. If the result = 0, the zero flag M1020 = On.

Remarks:

API	Mnem	nic	Оре	erands	Function		Controllers
143	DEL	Y	(S	Delay Instruction		ES/EX/SS SA/SX/SC EH/SV
					Wand Dada a	·	D

	Туре	В	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
OP		Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	O	О	П	F	DELAY, DELAYP: 3 steps
	S					*	*							*			

		PUI	LSE							16	-bit							32	-bit			
ES E	(SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	ΕX	SS	SA	SX	SC	EΗ	SV


S: delay time (unit: 0.1ms)

Explanations:

- 1. Range of **S**: K1 ~ K1,000. See the specifications of each model for their range of use.
- 2. After DELAY instruction is executed, the program after DELAY in every scan period will execute delay outputs according to the delay time designated by the user.

Program Example:

When X0 goes from Off to On and generates an external interruption, the interruption subroutine will execute DELAY for 2ms before executing the next step, X1 = On and Y0 = On.

Remarks:

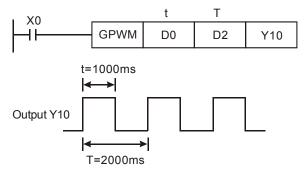
- 1. User can define the delay time based on their needs.
- 2. The delay time may increase due do the influences from communication, high-speed counters and high-speed pulse output instructions.
- 3. The delay time of designated external output (transistor or relay) will increase due to the delay on the transistor

or relay itself. See 2.3 for more information.

API	Mnemonic	Operands	Function	Controllers
144	GPWM	\$1 \$2 D	General PWM Output	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
OF	,	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	О	D	Е	F	GPWM: 7 steps
	S ₁													*			
	S_2													*			
	D		*	*	*												

PULSE ES IEX ISS ISA ISX ISC IEHISV											16	-bit							32	-bit			
ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


 S_1 : Width of output pulse S_2 : Pulse output cycle D: Pulse output device

Explanations:

- 1. **S**₂ occupies 3 consecutive devices.
- 2. $S_1 \le S_2$. See the specifications of each model for their range of use.
- 3. Range of S_1 : $t = 0 \sim 32,767$ ms.
- 4. Range of S_2 : $t = 1 \sim 32,767$ ms.
- 5. $S_2 + 1$ and $S_2 + 2$ are parameters for the system. Do not occupy them.
- 6. Pulse output devices **D**: Y, M, S.
- 7. When being executed, GPWM instruction designates S_1 and S_2 and that pulses output will be from device **D**.
- 8. When $S_1 \le 0$, there will be no pulse output. When $S_1 \ge S_2$, the pulse output device will keep being On.
- 9. S_1 and S_2 can be modified when GPWM instruction is being executed.

Program Example:

When X0 = On, D0 = K1,000, D2 = K2,000, and Y10 will output the pulse illustrated below. When X0 = Off, Y10 output will be Off.

Explanations:

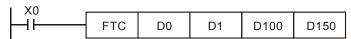
- 1. This instruction counts by the scan cycle; therefore the maximum offset will be one PLC scan cycle. S_1 , S_2 and $(S_2 S_1)$ should > PLC scan cycle; otherwise, errors will occur during GPWM outputs.
- 2. Please note that placing this instruction in a subroutine or interruption will cause inaccurate GPWM outputs.

API	Mnemonic	Operands	Function	Controllers
145	FTC	\$1 \$2 \$3 D	Fuzzy Temperature Control	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	it De	evice	s				V	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	D	Е	F	FTC: 9 steps
	S ₁					*	*							*			
	S ₂					*	*							*			
	S ₃													*			
	D													*			

PULSE 16-bit 32-bit
ES | EX | SS | SA | SX | SC | EH | SV | ES | EX | SS | SA | SX | SC | EH | SV | ES | EX | SS | SA | SX | SC | EH | SV

Operands:


 $\mathbf{S_1}$: Set value (SV) $\mathbf{S_2}$: Present value (PV) $\mathbf{S_3}$: Parameter (sampling time) \mathbf{D} : Output value (MV)

Explanations:

- 1. Range of S_1 : 1 ~ 5000 (shown as 0.1°C ~ 500°C). Unit: 0.1°. If (S_3 +1) is set as K0, the range will be 0.1°C ~ 500°C.
- 2. Range of S₂: 1 ~ 5000 (shown as 0.1°C ~ 500°C). Unit: 0.1°. If (S₃ +1) is set as bit0 = 0, the range will be 0.1°C ~ 500°C. Therefore, when the user obtain an A/D value from the temperature sensor, the value has to be converted into a value between 1 ~ 5,000 by four arithmetic operation instructions.
- 3. If S_3 < K1, the instruction will not be executed. If S_3 > K200, S3 will adopt K200. S_3 will occupy 7 consecutive devices.
- 4. See the specifications of each model for their range of use.
- 5. Settings of parameter **S**₃ +1: bit0 = 0 ->°C; bit1 = 0 ->°F; bit1 = 0 -> no filter function; bit1 = 1 -> with filter function; bit2 ~ bit5 -> 4 kinds of heating environments; bit6 ~ bit15 -> reserved. See remarks for more information.
- 6. **D** is the value between 0 ~ sampling time × 100. When using this instruction, the user has to adopt other instructions according to the types of the heater. For example, FTC can be used with GPWM for output pulse control. "Sampling time × 100" is the cycle of GPWM pulse output; MV is the width of GPWM pulse. See program example 1.
- 7. There is no limit on the times of using FTC instruction, but Do not repeatedly use a designated operand in case an error may occur..

Program Example:

- 1. Set up the parameter before executing FTC instruction.
- 2. When X0 = On, the instruction will be executed and result will be stored in D150. When X0 = Off, the instruction will not be executed and the previous data remain unchanged.

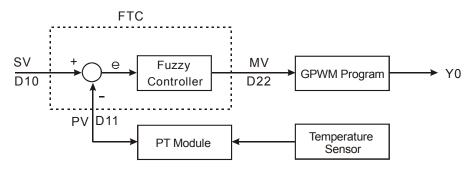
Remarks:

Setting of S₃:

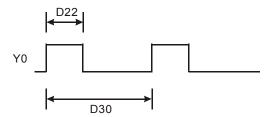
Device No.	Function	Range	Explanation								
(\$3)	Sampling time (T _s) (unit: 100ms)	1 ~ 200 (unit: 100ms)	If T_S is less than a scan time, PID instruction will be executed for a scan time. If T_S = 0, PID instruction will not be enabled. The minimum T_S must be greater than a scan time.								
S 3 +1	b0: temperature unit b1: filter function b2 ~ b5: heating environnment b6 ~ b15: reserved	b0 =0 means °C b0 =1 means °F b1=0 means without fileter function b1=1 means with filter function b2=1 b3=1 b4=1 b5=1	When the value exceeds the upper bound, use upper bound. When without filter function, PV = currently measured value. When with filter function, PV = (currently measured value + previous PV)/2 Slow heating environment General heating environment Fast heating environment High-speed heating environment								
\$3 +2 (\$3 +6	Parameters for system use only. Do not use them.										

2. Control Diagram:

3. Notes and suggestion:

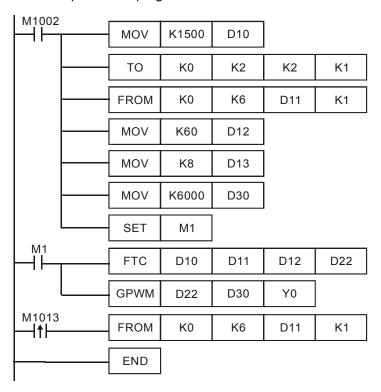

It is recommended that the sampling time be set to 2 times more than the sampling time of the temperature sensor for better temperature control.

bit2 \sim bit5 of S_3 +1 are for the control speed. If the user does not set up the parameter, FTC will automatically activate "general heating environment". When the user finds that the control is too slow to reach SV, select "slow


heating environment" to enhance the speed to reach SV. On the contrary, when the user finds that the control is too fast or with too many fluctuations, select "fast heating environment" to slow down the control speed.

When bit2 \sim bit5 of \mathbf{S}_3 +1 are all set as 1 or more than 1 environments are designated, FTC instruction will check from bit2 to bit 5 in order and enable the function that has been set as 1. The parameter can be modified during the control.

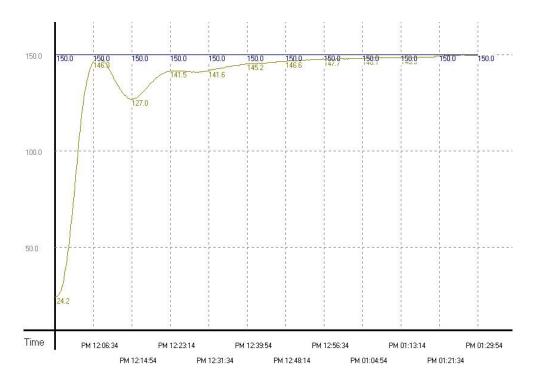
4. Example 1: control diagram



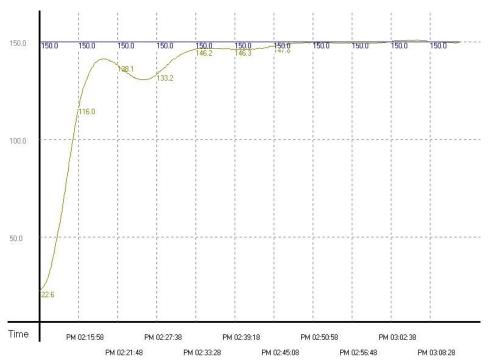
Output D22 (MV) of FTC instruction is the input D22 of GPWM instruction, as the duty cycle of ajustable pulses. D30 is the fixed cycle time of pulses. See below for the timing diagram of Y0 output.

Assume parameter settings: D10 = K1,500 (target temperature), D12 = K60 (sampling time: 6 secs.), D13 = K8 (bit3=1), D30 = K6,000 (=D12 * 100)

The example control program is indicated as:



Experiment in an oven which can be heated up to 250°C. See below for the records of target and present temperatures. As shown in the diagram below, we can see that after 48 minutes, the temperature is able to reach the target temperature with \pm 1°C inaccuracy and exceed approx. 10°C of the target temperature.


Example 2: Due to that the temperature once exceeds the target temperature, we modify the heating environment into "fast heating environment" (D13 = K16). The results are shown in the diagram below.

From the diagram below, we see that though the temperature no longer exceeds the target temperature, it still needs to take more than 1 hour and 15 minutes to reach the target temperature with \pm 1°C inaccuracy. It seems that we have chosen the right environment, but the sampling time is too long, resulting in the extension of heating time.

Example 3: To speed up the speed to reach the target temperature, we correct the sampling time as 4 seconds (D12 = K40, D30 = K4,000). The results are shown in the diagram below.

From the diagram below, we see that the overall control time has been shortened as 37 minutes. Therefore, we find out that modifying the sampling time can speed up the time for reaching the target temperature.

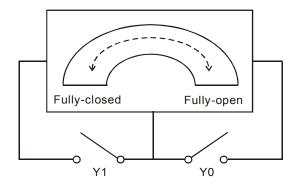
Example 4: To see if we can reach the target temperature faster, we modify the sampling time frim example 3 into 2 seconds (D12 = K20, D30 = K2,000). The results are shown in the diagram below.

From the diagram below, we see that the sampling time that is too short will cause the control system to become too sensitive and lead to up and down fluctuations.

API	Mnemor	ic	Operands	Function	Controllers
146	CVM		\$1 \$2 D	Valve Control	ES/EX/SS SA/SX/SC EH/SV

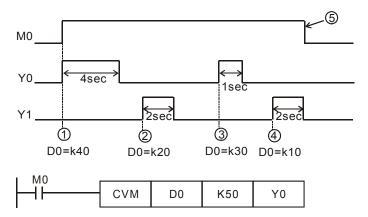
Туре	В	it De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	O	D	П	F	CVM: 7 steps
S ₁													*			
S ₂					*	*							*			
D		*	*	*												

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV


 S_1 : Target time of valve (absolute position) S_2 : Time from fully-closed to fully-open of valve (destination) D: Output device

Explanations:

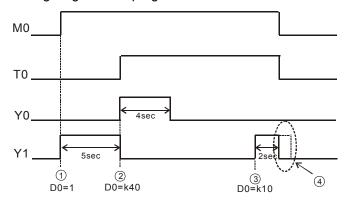
- S₁ occupies 3 consecutive registers when in use. S₁ + 0 are for the user to store the designated value; S₁ + 1 (the current position of the valve) and S₁ + 2 are for storing the parameters recorded in the instruction and please DO NOT use and alter these two registers.
- 2. **D** occupies 2 consecutive output devices when in use. **D** + 0 is the "open" contact and **D** + 1 is the "close" contact.
- 3. This instruction only supports EH2/SV and does not support EH.
- 4. The unit of time: 0.1 second. When the scan time of the program exceeds 0.1 second, DO NOT use this instruction to adjust the position of the valve.
- 5. Frequency of the output device: 10Hz.
- 6. When the time of $S_1 + 0 >$ the fully-opened time set in S_2 , D + 0 will keep being On and D + 1 being Off. When the time of $S_1 + 0 < 0$, D + 0 will keep being Off and D + 1 being On.
- 7. When the instruction is enabled, the instruction will start to control the valve from "0" time position. Therefore, if the user cannot be sure whether the valve is at "0" before executing the instruction, please designate $S_1 + 0$ as less than 0 and execute the instruction for S_2 (time) before sending in the correct target control time.

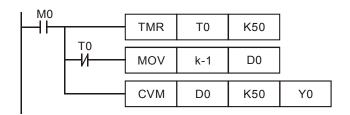

Program Example 1:

1. The control valve

- 2. Definitions of the control valve:
 - a) When Y0 and Y1 = Off: No valve action

- b) When Y0 = On and Y1 = Off: Valve "open"
- c) When Y0 = Off and Y1 = On: Valve "closed"
- d) When Y0 and Y1 = On: The action is prohibited.
- Timing diagram and program of the control:




4. Control phases:

- 1) Phase ①: When M0 = On, D0 = K40 refers to the valve shall be open (Y0 = On, Y1 = Off) till the position of 4 seconds.
- 2) Phase ②: Change the position of the valve and D0 = K20. Due to that the previous position was at 4 seconds, the valve shall be closed (Y0 = Off, Y1 = On) for 2 seconds, moving the valve to the position of 2 seconds.
- 3) Phase ③: Change the position of the valve and D0 = K30. Due to that the previous position was at 2 seconds, the valve shall be open (Y0 = On, Y1 = Off) for 1 second, moving the valve to the position of 3 seconds.
- 4) Phase ④: Change the position of the valve and D0 = K10. Due to that the previous position was at 2 seconds, the valve shall be closed (Y0 = Off, Y1 = On) for 2 seconds, moving the valve to the position of 1 second.
- 5) Phase ⑤: Switch off X0 and no actions at the valve (Y0 = Off, Y1 = Off).

Program Example 2:

1. Timing diagram and program of the control:

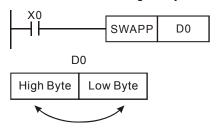
2. Control phases:

- 1) Phase ①: When M0 = On, due to that we are not sure about there the valve is, set D0 = K-1 to deliberately close the valve (Y0 = Off, Y1 = On) for 5 seconds and make sure the valve is at the position of 0 second before moving on to the next step.
- 2) Phase ②: When T0 = On, allow D0 = K40 to start is action. Open the valve (Y0 = On, Y1 = Off) for 4 seconds, moving the valve to the position of 4 seconds.
- 3) Phase ③: Change the position of the valve and D0 = K10. Due to that the previous position was at 4 seconds, the valve shall be closed (Y0 = Off, Y1 = On) for 3 seconds, moving the valve to the position of 1 second.
- 4) Phase 4: Switch off M0 and the valve will no longer move (Y0 = Off, Y1 = Off).

API		Mnemonic	;	Operands	Function	Controllers
147	D	SWAP	Р	S	Byte Swap	ES/EX/SS SA/SX/SC EH/SV

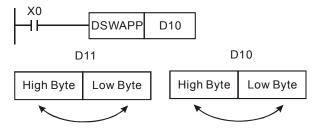
	Туре	Е	Bit De	evice	s				V	Nord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	SWAP, SWAPP: 3 steps
	S								*	*	*	*	*	*	*	*	DSWAP, DSWAPP: 5 steps

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV


S: Device for swapping 8 high/low byte.

Explanations:

- 1. If **D** is used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. As 16-bit instruction: the contents in the 8 high bytes and 8 low bytes are swapped.
- 4. As 32-bit instruction: the 8 high bytes and 8 low bytes in the two registers swap with each other respectively.
- 5. This instruction adopts pulse execution instructions (SWAPP, DSWAPP).


Program Example 1:

When X0 = On, the high 8 bytes and low 8 bytes in D0 will swap with each other.

Program Example 2:

When X0 = On, the high 8 bytes and low 8 bytes in D11 will swap with each other and the high 8 bytes and low 8 bytes in D10 will swap with each other.

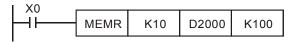
API		Mnemonic		Operands	Function	Controllers
148	D	MEMR	Р		Read File Register	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	Κ	Η	KnX	KnY	KnM	KnS	Т	С	D	П	F	MEMR, MEMRP: 7 steps
m					*	*							*			DMEMR, DMEMRP: 13 steps
D													*			•
n					*	*							*			

Ī				PUI	LSE							16	-bit							32	-bit			
I	ES	ΕX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EH	SV	ES	ΕX	SS	SA	SX	SC	ΕH	SV

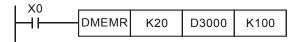
m: Address in the file register to be read

D: Device for storing the read data (starting from the designated D)


n: Number of data read at a time

Explanations:

- 1. Range of **m**: K0 ~ K1,599 (SA/SX/SC); K0 ~ K9,999 (EH/EH2/SV)
- 2. Range of **D**: D2000 ~ D4999 (SA/SX/SC); D2000 ~ D9999 (EH/EH2/SV)
- 3. Range of **n**: For 16-bit instruction K1 \sim K1,600 (SA/SX/SC), K1 \sim K8,000 (EH/EH2/SV); For 32-bit instruction K1 \sim K800 (SA/SX/SC), K1 \sim K4,000 (EH/EH2/SV)
- 4. See the specifications of each model for their range of use.
- 5. Flag: M1101. See explanations below.
- 6. SA/SX/SC/EH/EH2/SV uses this instruction to read the data in file registers and store them into data registers.
- 7. SA/SX/SC offers 1,600 16-bit file registers.
- 8. **m** and **n** of SA/SX/SC do not suppot E and F index register modification.
- 9. EH/EH2/SV offers 10,000 16-bit file registers.
- 10. If **m**, **D** and **n** fall without their range, operation error will occur. M1067, M1068 = On and D1067 will record the error code H'0E1A.


Program Example 1:

- 1. The 16-bit instruction MEMR reads 100 data at address 10 in the file register and store the read data in register D starting from D2000.
- 2. When X0 = On, the instruction will be executed. When X0 = Off, the instruction will not be executed and the previously read data will remain unchanged.

Program Example 2:

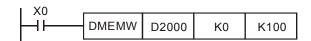
- The 32-bit instruction DMEMR reads 100 data at address 20 in the file register and store the read data in register D starting from D3000.
- 2. When X0 = On, the instruction will be executed. When X0 = Off, the instruction will not be executed and the previously read data will remain unchanged.

API		Mnemonic		Operands	Function	Controllers
149	D	MEMW	Р	S m n	Write File Register	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
OP	Χ	Υ	М	S	Κ	Н	KnX	KnY	KnM	KnS	Τ	O	D	П	F	MEMW, MEMWP: 7 steps
S													*			DMEMW, DMEMWP: 13 steps
m					*	*							*			
n					*	*							*			

ſ				PUL	SE							16	-bit							32	-bit			
ſ	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Device for storing the written data (starting from the designated D) m: Address in the file register to be written


n: Number of data to be written at a time

Explanations:

- 1. Range of **S**: D2000 ~ D4999 (SA/SX/SC); D2000 ~ D9999 (EH/EH2/SV)
- 2. Range of **m**: K0 ~ K1,599 (SA/SX/SC); K0 ~ K9,999 (EH/EH2/SV)
- Range of n: For 16-bit instruction K1 ~ K1,600 (SA/SX/SC), K1 ~ K8,000 (EH/EH2/SV); For 32-bit instruction K1 ~ K800 (SA/SX/SC), K1 ~ K4,000 (EH/EH2/SV)
- 4. See the specifications of each model for their range of use.
- 5. Flag: M1101. See explanations below.
- 6. SA/SX/SC/EH/EH2/SV uses this instruction to read the data in data registers and write them into file registers.
- 7. SA/SX/SC offers 1,600 16-bit file registers.
- 8. **m** and **n** of SA/SX/SC do not suppot E and F index register modification.
- 9. EH/EH2/SV offers 10,000 16-bit file registers.
- 10. If **S**, **m** and **n** fall without their range, operation error will occur. M1067, M1068 = On and D1067 will record the error code H'0E1A.

Program Example:

- 1. When X0 = On, the 32-bit instruction DMEMW writes 100 32-bit data starting from D2001 and D2000 into address 0 ~ 199 in the file register.
- 2. When X0 = On, the instruction will be executed. When X0 = Off, the instruction will not be executed and the previously data written in will remain unchanged.

File Register:

- EH/EH2/SV: When the PLC is powered, it will decide whether to automatically send the data in the file register
 to the designated data register by M1101 (whether to enable the function of file register), D1101 (start address
 in file register K0 ~ K9,999), D1102 (number of data to be read in file register K1 ~ k8,000), and D1103 (device
 for storing read data, starting from designated D, K2,000 ~ K9,999).
- 2. In EH/EH2/SV, the reading of data from file register to data register D will not be executed if D1101 < 0, D1101

- > K9,999, D1103 < K2,000 or D1103 > K9,999.
- 3. SA/SX/SC: When the PLC is powered, it will decide whether to automatically send the data in the file register to the designated data register by M1101 (whether to enable the function of file register), D1101 (start address in file register K0 ~ K1,599), D1102 (number of data to be read in file register K1 ~ k1,600), and D1103 (device for storing read data, starting from designated D, K2,000 ~ K4,999).
- In SA/SX/SC, the reading of data from file register to data register D will not be executed if D1101 < 0, D1101 >
 K1,599, D1103 < K2,000 or D1103 > K4,999.
- 5. When the reading of data from file register to data register D starts, PLC will stop the reading if the address of file register or data register exceed their range.
- 6. In PLC program, only API 148 MEMR and API 149 MEMW can be used to read or write the file register. See 2.8.3 for more information on file registers.
- 7. File registers do not have actual addresses in it. Reading and writing of file registers can only be done through API 148 MEMR, API 149 MEMW or peripheral devices HPP and WPLSoft.
- 8. If the address in the file register to be read exceeds its range, the read value will be 0.
- 9. Special relays of file register and other relevant special registers:

Flag	Function
M1101	Whether to enable the function of file register; latched; default = off

Special D	Function
D1101	Start address in file register. SA/SX/SC: K0 ~ K1,599; EH/EH2/SV: K0 ~ K9,999; latched; default = 0
D1102	Number of data to be read in file register. SA/SX/SC: K1 ~ K1,600; EH/EH2/SV: K1 ~ K8,000; latched; default = 0
D1103	Device for storing read data, starting from designated D. SA/SX/SC: K2,000 ~ K4,999; EH/EH2/SV: K2,000 ~ K9,999; latched; default = 2,000

MEMO

API	Mnemonic	Operands	Function	Controllers
150	MODRW	\$1 \$2 \$3 \$ n	Read/Write MODBUS Data	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Τ	О	D	Е	F	MODRW: 11 steps
	S ₁					*	*							*			
	S ₂					*	*							*			
	S ₃					*	*							*			
	S													*			
	n					*	*							*			

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

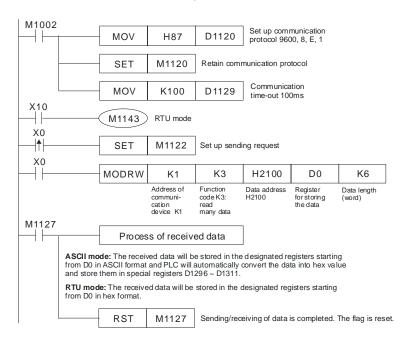
S₁: Address of communication device

S₂: Function code

S₃: Device address of data to be read/written

S: Register for storing read/written data (source or destination)

n: Length of read/written data


Explanations:

- 1. The content of **S**₂ shall only be: K3(H3), K6(H6), K16(H10).
- 2. ES/EX/SS V.4.9 (and above) support the continuous execution instruction (MODRW). Other versions do not support this instruction.
- 3. ES/EX/SS series MPU does not support E, F index register modification.
- 4. Flags: M1120 ~ M1131, M1140 ~ M1143. See remarks for more details.
- 5. Range of **S**₁: K0 ~ K254
- 6. S₂: Funcation code. For example, H03 is for AC motor drive or DVP-PLC to read many data; H06 is for AC motor drive or DVP-PLC to write a single data; H10 is for AC motor drive or DVP-PLC to write many data. Only these function codes are available currently; other function codes are still not executable. See program examples for more information.
- 7. S₃: Device address of data to be read/written. The device address inside the communication device. If the address is illegal to a designated communication device, the communication device will respond with an error message and PLC will store the error code in D1130 and M1141 = On. For example, if 8000H is illegal to VFD-S, M1141 will be On and D1130 = 2. See user manual of VFD-S for error codes.
- 8. **S**: Register for storing read/written data. The user sets up a register and stores the data to be written in the register in advance. The register can be register for storing the read data.
- n: Length of read/written data. For ES/SA, when M1143 = Off (in ASCII mode), the range of length: K1 ~ K8 (word); when M1143 = On (in RTU mode), the range of length: K1 ~ K16 (word). For EH/EH2/SV, the range of length: K1 ~ K16 (word).
- 10. There is no limitation on the times of using this instruction. However, only one instruction can be executed at a time.

Program Example 1:

Function code K3(H3): For reading many data in register
 When PLC is connected to VFD-S AC motor drive: M1143 = Off, in ASCII mode
 When PLC is connected to VFD-S AC motor drive: M1143 = On, in RTU mode

- 2. When in ASCII mode, the received data will be stored in the designated registers starting from D0 in ASCII format and PLC will automatically convert the data into hex value and store them in special registers D1296 ~ D1311. When the conversion into hex value starts, M1131 will be On and turn Off when the conversion is completed.
- If necessary, the user can move the hex values stored in D1296 ~ D1131 to other general registers by using MOV, DMOV or BMOV instruction. Other instructions of ES/EX/SS do not function on the data in D1296 ~ D1311
- 4. When in RTU mode, the received data will be stored in the designated registers starting from D0 in hex format.
- When In ASCII mode or RTU mode, PLC will store the data to be sent in D1256 ~ D1295. If necessary, the
 user can move the data to other general registers by using MOV, DMOV or BMOV instruction. Other
 instructions of ES/EX/SS do not function on the data in D1256 ~ D1295.
- The data sent back from AC motor drive are stored in the registers designated by the user. After the
 transmission is completed, PLC will auto-check if the received data are incorrect. M1140 will be On if there is
 an error.
- 7. If the device address is illegal to a designated communication device, the communication device will respond with an error message and PLC will store the error code in D1130 and M1141 = On. For example, if 8000H is illegal to VFD-S, M1141 will be On and D1130 = 2. See user manual of VFD-S for error codes.
- 8. After M1140 = On or M1141 = On, PLC will send another correct datum to AC motor drive. If the data sent back from AC motor drive is correct, M1140 and M1141 will be reset.

9. ASCII Mode: When PLC is connected to VFD-S AC motor drive.

PLC ⇒ VFD-S, PLC sends: "01 03 2100 0006 D5"

VFD-S ⇒ PLC, PLC receives: "01 03 0C 0100 1766 0000 0000 0136 0000 3B"

Registers for sent data (sending messages)

Register	D.	ATA		Explanation				
D1256 Low	'0'	30 H	ADR 1	Address of AC motor drive: ADR (1,0)				
D1256 High	'1'	31 H	ADR 0	Address of AC filotof drive. ADK (1,0)				
D1257 Low	'0'	30 H	CMD 1	Instruction code: CMD (1.0)				
D1257 High	'3'	33 H	CMD 0	Instruction code: CMD (1,0)				
D1258 Low	'2'	32 H						
D1258 High	'1'	31 H	Starting Data Ad	1droop				
D1259 Low	'0'	30 H	Starting Data At	duless				
D1259 High	'0'	30 H						
D1260 Low	'0'	30 H						
D1260 High	'0'	30 H	Number of Data	(counted by words)				
D1261 Low	'0'	30 H	─ Number of Data (counted by words)					
D1261 High	'6'	36 H	Н					
D1262 Low	'D'	44 H	LRC CHK 1 Error checksum: LRC CHK (0,1)					
D1262 High	' 5'	35 H	LRC CHK 0	Elloi cliecksuili. LRC CHK (0,1)				

Registers for received data D0 (responding messages)

Register	D	ATA		Explanation	
D0 Low	'0'	30 H	ADR 1		
D0 High	'1'	31 H	ADR 0		
D1 Low	'0'	30 H	CMD 1		
D1 High	'3'	33 H	CMD 0		
D2 Low	'0'	30 H	Number of D	ata (counted by byte)	
D2 High	Ċ	43 H	Number of Da	ata (counted by byte)	
D3 Low	'0'	30 H	Content of		
D3 High	'1'	31 H	address	PLC automatically convert ASCII codes to numerals and	
D4 Low	'0'	30 H	2100H	store the numeral in D1296 = H0100	
D4 High	'0'	30 H	210011		
D5 Low	'1'	31 H	Content of		
D5 High	'7'	37 H	Content of address	PLC automatically convert ASCII codes to numerals and store the numeral in D1297 = H1766	
D6 Low	'6'	36 H	2101H		
D6 High	'6'	36 H	210111		
D7 Low	'0'	30 H	Content of	PLC automatically convert ASCII codes to numerals and store the numeral in D1298 = H0000	
D7 High	'0'	30 H	Content of address 2102H		
D8 Low	'0'	30 H			
D8 High	'0'	30 H			
D9 Low	'0'	30 H	Content of		
D9 High	'0'	30 H	address	PLC automatically convert ASCII codes to numerals and store the numeral in D1299 = H0000	
D10 Low	'0'	30 H	2103H		
D10 High	'0'	30 H	210311		
D11 Low	'0'	30 H	Content of		
D11 High	'1'	31 H	Content of address	PLC automatically convert ASCII codes to numerals and	
D12 Low	'3'	33 H	2104H	store the numeral in D1300 = H0136	
D12 High	'6'	36 H	210411		
D13 Low	'0'	30 H	Content of		
D13 High	'0'	30 H	Content of address	PLC automatically convert ASCII codes to numerals and	
D14 Low	'0'	30 H	2105H	store the numeral in D1301 = H0000	
D14 High	'0'	30 H	210011		
D15 Low	'3'	33 H	LRC CHK 1		
D15 High	'B'	42 H	LRC CHK 0		

10. RTU Mode: When PLC is connected to VFD-S AC motor drive

PLC ⇒ VFD-S, PLC sends: "01 03 2100 0006 CF F4"

VFD-S ⇒ PLC, PLC receives: "01 03 0C 0000 0503 0BB8 0BB8 0000 012D 8E C5"

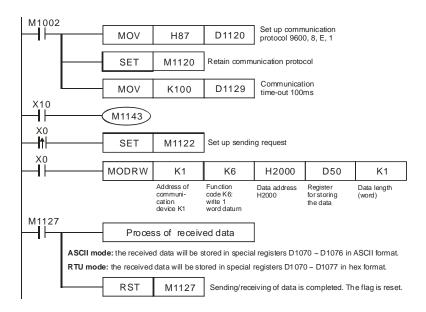
Registers for sent data (sending messages)

Register	DATA	Explanation	
D1256 Low	01 H	Address	
D1257 Low	03 H	Function	
D1258 Low	21 H	Starting Data Address	
D1259 Low	00 H		
D1260 Low	00 H	Number of Data (counted by words)	
D1261 Low	06 H		
D1262 Low	CF H	CRC CHK Low	
D1263 Low	F4 H	CRC CHK High	

Registers for received data D0 (responding messages)

Register	DATA		Explanation
D0 Low	01 H	Address	
D1 Low	03 H	Function	
D2 Low	OC H	Number of Data (t	pyte)
D3 Low	00 H	Content of	PLC automatically convert ASCII codes to numerals and
D4 Low	00 H	address 2100H	store the numeral in D1296 = H0000
D5 Low	05 H	Content of	PLC automatically convert ASCII codes to numerals
D6 Low	03 H	address 2101H	and store the numeral in D1297 = H0503
D7 Low	0B H	Content of	PLC automatically convert ASCII codes to numerals
D8 Low	B8 H	address 2102H	and store the numeral in D1298 = H0BB8
D9 Low	0B H	Content of	PLC automatically convert ASCII codes to numerals
D10 Low	B8 H	address 2103H	and store the numeral in D1299 = H0BB8
D11 Low	00 H	Content of	PLC automatically convert ASCII codes to numerals
D12 Low	00 H	address 2104H	and store the numeral in D1300 = H0000
D13 Low	01 H	Content of	PLC automatically convert ASCII codes to numerals
D14 Low	2D H	address 2105H	and store the numeral in D1301 = H012D
D15 Low	8E H	CRC CHK Low	
D16 Low	C5 H	CRC CHK High	·

Program Example 2:


1. Function code K6(H6): For writing a word data to register

When PLC is connected to VFD-S AC motor drive: M1143 = Off, in ASCII mode

When PLC is connected to VFD-S AC motor drive: M1143 = On, in RTU mode

- 2. When in ASCII mode, the user stores the data to be written in the designated register D50 in hex format. The data sent back from AC motor drive are stored in D1070 ~ D1076.
- 3. When in RTU mode, the user stores the data to be written in the designated register D50 in hex format. The data sent back from AC motor drive are stored in D1070 ~ D1077.
- 4. When In ASCII mode or RTU mode, PLC will store the data to be sent in D1256 ~ D1295. If necessary, the user can move the data to other general registers by using MOV, DMOV or BMOV instruction. Other instructions of ES/EX/SS do not function on the data in D1256 ~ D1295.

- 5. After receiving the data sent back from AC motor drive is completed, PLC will auto-check if the received data are incorrect. M1140 will be On if there is an error.
- 6. If the device address is illegal to a designated communication device, the communication device will respond with an error message and PLC will store the error code in D1130 and M1141 = On. For example, if 8000H is illegal to VFD-S, M1141 will be On and D1130 = 2. See user manual of VFD-S for error codes.
- 7. After M1140 = On or M1141 = On, PLC will send another correct datum to AC motor drive. If the data sent back from AC motor drive is correct, M1140 and M1141 will be reset.

8. ASCII Mode: When PLC is connected to VFD-S AC motor drive.

PLC ⇒ VFD-S, PLC sends: "01 06 0100 1770 71"

VFD-S ⇒ PLC, PLC receives: "01 06 0100 1770 71"

Registers for sent data (sending messages)

Register	DATA			Explanation
D1256 Low	'0'	30 H	ADR 1	Address of AC motor drive: ADB (1.0)
D1256 High	'1'	31 H	ADR 0	Address of AC motor drive: ADR (1,0)
D1257 Low	'0'	30 H	CMD 1	Instruction code: CMD (1,0)
D1257 High	'6'	36 H	CMD 0	Instruction code. Civid (1,0)
D1258 Low	'0'	30 H		
D1258 High	'1'	31 H	Data Address	
D1259 Low	'0'	30 H	Data Address	
D1259 High	'0'	30 H		
D1260 Low	'1'	31 H		
D1260 High	'7'	37 H	Doto contont	The content of register DEO (114770 MC 000)
D1261 Low	'7'	37 H	Data content	The content of register D50 (H1770 = K6,000)
D1261 High	'0'	30 H		
D1262 Low	'7'	37 H	LRC CHK 1	LPC CHK (0.1) is error shock
D1262 High	'1'	31 H	LRC CHK 0	LRC CHK (0,1) is error check

Registers for received data (responding messages)

Register	D/	ATA	Explanation		
D1070 Low	'0'	30 H	ADR 1		
D1070 High	'1'	31 H	ADR 0		
D1071 Low	'0'	30 H	CMD 1		
D1071 High	' 6'	36 H	CMD 0		
D1072 Low	'0'	30 H			
D1072 High	' 1'	31 H	Data Address		
D1073 Low	' 0'	30 H	Data Address		
D1073 High	' 0'	30 H			
D1074 Low	' 1'	31 H			
D1074 High	'7'	37 H	Data content		
D1075 Low	'7'	37 H	Data Content		
D1075 High	'0'	30 H			
D1076 Low	'7'	37 H	LRC CHK 1		
D1076 High	'1'	31 H	LRC CHK 0		

9. RTU Mode: When PLC is connected to VFD-S AC motor drive

PLC ⇒ VFD-S, PLC sends: "01 06 2000 0012 02 07"

VFD-S ⇒ PLC, PLC receives: "01 06 2000 0012 02 07"

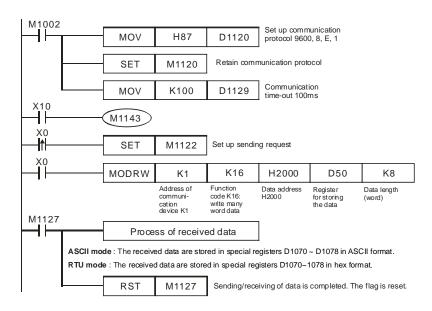
Registers for sent data (sending message)

Register	DATA		Explanation
D1256 Low	01 H	Address	
D1257 Low	06 H	Function	
D1258 Low	20 H	- Data Address	
D1259 Low	00 H		
D1260 Low	00 H	Data content	The content of register D50 (H12)
D1261 Low	12 H	Data Content	The content of register D50 (H12)
D1262 Low	02 H	CRC CHK Low	
D1263 Low	07 H	CRC CHK High	

Registers for received data (responding message)

Register	DATA	Explanation	
D1070 Low	01 H	Address	
D1071 Low	06 H	Function	
D1072 Low	20 H	- Data Address	
D1073 Low	00 H	Data Address	
D1074 Low	00 H	- Data content	
D1075 Low	12 H		
D1076 Low	02 H	CRC CHK Low	
D1077 Low	07 H	CRC CHK High	

Program Example 3:


1. Function code K16(H10): For writing many word data into register.

When PLC is connected to VFD-S AC motor drive: M1143 = Off, in ASCII mode

When PLC is connected to VFD-S AC motor drive: M1143 = On, in RTU mode

2. When in ASCII mode, the user stores the data to be written in the designated register D50 in hex format. The data sent back from AC motor drive are stored in D1070 ~ D1076.

- 3. When in RTU mode, the user stores the data to be written in the designated register D50 in hex format. The data sent back from AC motor drive are stored in D1070 ~ D1077.
- 4. When In ASCII mode or RTU mode, PLC will store the data to be sent in D1256 ~ D1295. If necessary, the user can move the data to other general registers by using MOV, DMOV or BMOV instruction. Other instructions of ES/EX/SS do not function on the data in D1256 ~ D1295.
- 5. After receiving the data sent back from AC motor drive is completed, PLC will auto-check if the received data are incorrect. M1140 will be On if there is an error.
- 6. If the device address is illegal to a designated communication device, the communication device will respond with an error message and PLC will store the error code in D1130 and M1141 = On. For example, if 8000H is illegal to VFD-S, M1141 will be On and D1130 = 2. See user manual of VFD-S for error codes.
- 7. After M1140 = On or M1141 = On, PLC will send another correct datum to AC motor drive. If the data sent back from AC motor drive is correct, M1140 and M1141 will be reset.

8. ASCII Mode: When PLC is connected to VFD-S AC motor drive.

PLC > VFD-S, PLC sends: "01 10 2000 0002 04 0012 1770 30"

VFD-S ⇒ PLC, PLC receives: "01 10 2000 0002 CD"

Registers for sent data (sending messages)

Register	D.	ATA		Explanation
D1256 Low	'0'	30 H	ADR 1	Address of AC motor drive: ADR (1,0)
D1256 High	'1'	31 H	ADR 0	Address of AC filotof drive. ADK (1,0)
D1257 Low	'1'	31 H	CMD 1	Instruction code: CMD (1.0)
D1257 High	'0'	30 H	CMD 0 Instruction code: CMD (1,0)	Instruction code. Civid (1,0)
D1258 Low	'2'	32 H	Data Address	
D1258 High	'0'	30 H		
D1259 Low	'0'	30 H		
D1259 High	'0'	30 H		
D1260 Low	'0'	30 H		
D1260 High	'0'	30 H	Number of Pogist	ore
D1261 Low	'0'	30 H	Number of Registers	
D1261 High	'2'	32 H		

Register	DATA		Explanation		
D1262 Low	'0'	30 H	Di ta Carret		
D1262 High	'4'	34 H	Byte Count		
D1263 Low	'0'	30 H			
D1263 High	'0'	30 H	Data contenta 1	The content of register D50 (H12)	
D1264 Low	'1'	31 H	Data contents 1		
D1264 High	'2'	32 H			
D1265 Low	'1'	31 H		The content of register D51 (H1770 = K6,000)	
D1265 High	'7'	37 H	Data contents 2		
D1266 Low	'7'	37 H	Data Contents 2		
D1266 High	'0'	30 H			
D1267 Low	'3'	33 H	LRC CHK 1	Error chacksum: LPC CHK (0.1)	
D1267 High	'0'	30 H	LRC CHK 0	Error checksum: LRC CHK (0,1)	

Registers for received data (responding messages)

Register	DATA		Explanation			
D1070 Low	'0'	30 H	ADR 1			
D1070 High	'1'	31 H	ADR 0			
D1071 Low	'1'	31 H	CMD 1			
D1071 High	'0'	30 H	CMD 0			
D1072 Low	'2'	32 H				
D1072 High	'0'	30 H	Data Address			
D1073 Low	'0'	30 H	Data Address			
D1073 High	'0'	30 H				
D1074 Low	'0'	30 H				
D1074 High	'0'	30 H	Number of Registers			
D1075 Low	'0'	30 H	Number of Registers			
D1075 High	'2'	32 H				
D1076 Low	C'	43 H	LRC CHK 1			
D1076 High	'D'	44 H	LRC CHK 0			

9. RTU Mode: When PLC is connected to VFD-S AC motor drives

PLC ⇒ VFD-S, PLC sends: "01 10 2000 0002 04 0012 1770 C4 7F"

VFD-S ⇒ PLC, PLC receives: "01 10 2000 0002 4A 08"

Registers for send data (sending messages)

Register	DATA		Explanation		
D1256 Low	01 H	Address			
D1257 Low	10 H	Function			
D1258 Low	20 H	- Data Address			
D1259 Low	00 H	Data Address	Data Address		
D1260 Low	00 H	Number of Begin	Number of Registers		
D1261 Low	02 H	inullibel of Regis			
D1262 Low	04 H	Byte Count			
D1263 Low	00 H	Data content 1	The content of register DE0 (H12)		
D1264 Low	12 H	Data Content 1	The content of register D50 (H12)		
D1265 Low	17 H	Data content 2	The content of register D51 (H1770 = K6,000)		
D1266 Low	70 H	Data Content 2	The content of register D51 (H1770 = K6,000)		
D1267 Low	C4 H	CRC CHK Low			
D1268 Low	7F H	CRC CHK High			

Registers for received data (responding messages)

Register	DATA	Explanation	
D1070 Low	01 H	Address	
D1071 Low	10 H	Function	
D1072 Low	20 H	Data Address	
D1073 Low	00 H	Data Address	
D1074 Low	00 H	Number of Registers	
D1075 Low	02 H	Number of Registers	
D1076 Low	4A H	CRC CHK Low	
D1077 Low	08 H	CRC CHK High	

Remarks:

- The activation condition placed before MODRD, RDST and MODRW instructions cannot use rising-edge or falling-edge contacts; otherwise the data stored in the registers for received data will encounter errors.
- 2. Flags and special registers for MODRW instruction in RS-485 communication. (For details, see API 80 RS).

Flags	Function
M1120	For retaining communication setups. After the setup is made, changes in D1120 will be invalid.
M1121	When Off, RS-485 is sending data.
M1122	Sending request
M1123	Receiving is completed
M1124	Waiting for receiving data
M1125	Disable receiving status
M1126	Selecting STX/ETX system
M1127	Sending/receiving data through MODRD / RDST / MODRW instructions is completed.
M1128	Sending data/receiving data
M1129	Receiving data time-out
M1130	User/system defined STX/ETX
M1131	On when MODRD / MODWR / MODRW is converting data to hex
M1140	MODRD / MODWR / MODRW data receiving error
M1141	MODRD / MODWR / MODRW parameter error
M1142	VFD-A handy instruction data receiving error
M1143	ASCII/RTU mode selection (used with MODRD/MODWR/MODRW) (Off = ASCII mode; On = RTU mode)
D1070 ~ D1085	When the built-in RS-485 communication instruction is executed and sends out data, the receiving end will respond with a message and the message will be stored in D1070 ~ D1085. The user can check the registers for the messages.
D1120	RS-485 communication protocol
D1121	PLC communication address (saving PLC communication address; latched)
D1122	Remaining words of the sent data
D1123	Remaining words of the received data
D1124	Start text definition (STX)
D1125	Definition of end text 1 (ETX1)
D1126	Definition of end text 2 (ETX2)
D1129	Abnormal communication time-out. Unit: ms
D1130	Records of error codes sent back from MODBUS
D1256 ~ D1295	When the built-in RS-485 communication instruction MODRW is executed, the sent out data will be stored in D1256 ~ D1295. The user can check whether the instruction is correct by the contents in the registers.
D1296 ~ D1311	PLC will automatically convert the ASCII data stored in the register designated by the use into hex format.

API	Mnemonic	Operands	Function	Controllers
151	PWD	SD	Detection of Input Pulse Width	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	evice	es				W	ord I	Devic	es					Program Steps
OP		Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	О	D	Е	F	PWD: 5 steps
	S	*															
	D													*			

	PULSE										16	-bit							32	-bit			
ES E	ΞX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	ΕH	SV

S: Source device

D: Destination device for storing the detected result

Explanations:

- 1. Range of **S**: X10 ~ X17
- 2. Range of **D**: D0 ~ D999, occupying 2 consecutive devices. Can only be used once in the program.
- 3. PWD instruction is for detecting the time span of output signals from X10 ~ X17; the valid frequency range is 1 ~1KHz. When M1169 = On, the instruction will detect the time span of the continuous rising edge and falling edge of the input signals (time unit: 100us). When M1169 = On, the instruction will detect the time span of 2 continuous rising edges of the input signals (time unit: 1us). It cannot designate the same X10 ~ X17 as does DCNT and ZRN instructions.
- D occupies two continuous devices. The longest detectable time is 21,474.83647 seconds, about 357.9139 minutes or 5.9652 hours.
- 5. There is no limitation on the times of using this instruction. However, only one instruction can be executed at a time.

Program Example:

When X0 = On, record the time span of X10 = On and store it in D1 and D0.

```
PWD X10 D0
```

API	Mnemonic	Operands	Function	Controllers
152	RTMU	D n	Start of the Measurement of Execution Time of I Interruption	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	es				W	ord l	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	О	D	П	F	RTMU: 5 steps
D					*	*							*			
n					*	*							*			

		PUI	_SE							16	-bit							32	-bit			
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

D: Device for storing the measuring time (unit: 1us) **n**: Measurement time base. Parameter range: K10 ~ K500 (time unit: 1us)

Explanations:

1. Range of **D**: K0 ~ K9

2. Range of **n**: K10 ~ K500

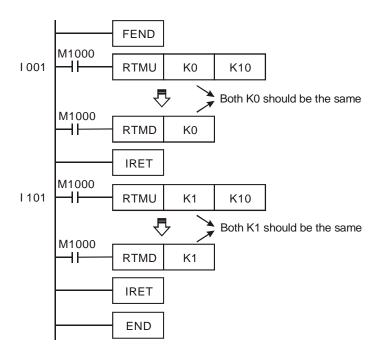
- 3. The designated special D registers (D1156 ~ D1165) can measure up to 10 interruption subroutines. For example, when **D** = K5, the designated D register will be D1161.
- 4. When RTMU is executed, if the **D** and **n** entered by the user are legal, interruption of the timer will be enabled and the counting starts and the special D designated by **D** is cleared as 0. When RTMD is executed, interruption of the timer is disabled and the calculated time will be assigned to special D designated by RTMD.
- 5. With API 153 RTMD, RTMU can measure the execution time of "I" interruption service subroutine, which can be reference for dealing with the high-speed response when the user is at the initial stage of developing the program.

API	Mnemonic	Operands	Function	Controllers
153	RTMD	Θ	End of the Measurement of the Execution Time of I Interruption	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	vice	es				W	ord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	RTMD: 3 steps
	D					*	*							*			

PULSE	16-bit	32-bit
FS FX SS SA SX SC FH SV	ES EX SS SA SX SC EH SV	FS FX SS SA SX SC FH SV

Operands:


D: Device to store the measuring time (unit: 1us).

Explanations:

1. Range of **D**: K0 ~ K9. The No. of **D** has to be the same as that designated by **D** in API 152 RTMU; otherwise the result of the measurement may be unexpectable.

Program Example:

When X0 goes from Off to On, the program will enter I001 interruption subroutine. RTMU will activate an 8-bit timer (unit: 10us) and RTMD (when D = K0) will shut down the timer and store the time in the timer in special D registers (D1156 ~ D1165, designated by $K0 \sim K9$).

Remarks:

- 1. We suggest you remove this instruction after you finish developing your PLC program.
- 2. Due to the lower priority of the interruption enabled by RTMU, when RTMU is enabled, other high-speed pulse input counting or high-speed pulse output may result in failure to trigger the timer.
- 3. If you activate RTMU but do not activate RTMD before the end of the interruption, the interruption will not be shut down.
- 4. RTMU instruction activates 1 timer interruption in PLC. Therefore, if many RTMU or RTMD are executed at the same time, confusion in the timer may occur. Please be aware of the situation.

API	M	Inemonic		Operands	Function	Controllers
154		RAND	Р	\$1 \$2 D	Random Number	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	it De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	O	О	П	F	RAND, RANDP: 7 steps
S ₁					*	*	*	*	*	*	*	*	*	*	*	
S_2					*	*	*	*	*	*	*	*	*	*	*	
D								*	*	*	*	*	*	*	*	

		PUI	_SE							16	-bit							32	-bit			
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

 $\mathbf{S_1}$: Lower bound of the random number $\mathbf{S_2}$: Upper bound of the random number \mathbf{D} : The random number produced

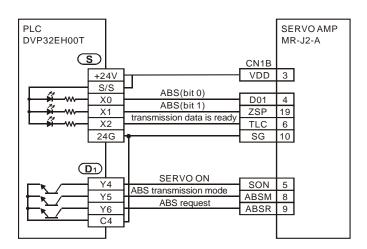
Explanations:

- 1. $\mathbf{S}_1 \leq \mathbf{S}_2$; K0 \leq S₁ , S₂ \leq K32,767
- 2. See the specifications of each model for their range of use.
- 3. Entering $S_1 > S_2$ will result in operation error. The instruction will not be executed at this time, M1067, M1068 = On and D1067 records the error code 0E1A (hex).

Program Example:

When X10 = On, RAND will produce the random number between the lower bound D0 and upper bound D10 and store the result in D20.

API		Mnemonic	Operands	Function	Controllers
155	D	ABSR	S D1 D2	Read the Absolute Position from a Servo Motor	ES/EX/SS SA/SX/SC EH/SV

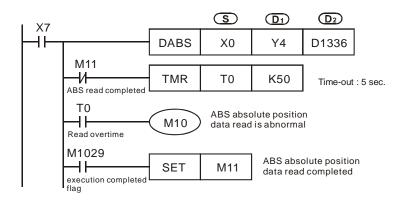

Туре	E	Bit De	evice	s				V	Nord I	Devic	es					Program Steps
ОР	X	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DABSR: 13 steps
S	*	*	*	*												
D_1		*	*	*												
D_2				·				*	*	*	*	*	*	*		

PULSE ES EX SS SA SX SC EH SV											16-	-bit							32	-bit			
ES E	ΞX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Input signal from Servo (occupies 3 consecutive devices) D₁: Control signal for controlling Servo (occupies 3 consecutive devices) D₂: Absolute position data (32-bit) read from Servo

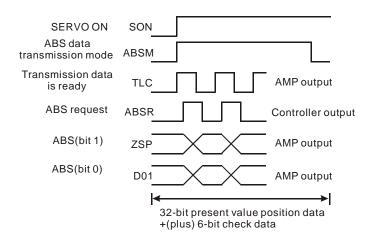
Explanations:

- 1. Operand S and D₁ of SA series MPU do not support E, F index register modification.
- 2. See the specifications of each model for their range of use.
- 3. This instruction can only be used once in the program.
- 4. Flag: see remarks for more details.
- 5. This instruction reads the absolute position (ABS) of MITSUBISHI MR-J2 servo drive (with absolute position check function).
- 6. **S** will occupy 3 consecutive devices, **S**, **S** +1, and **S** +2. **S** and **S** +1 are connected to the absolute position (bit 0, bit 1) on the servo for data transmitting. **S** +2 is connected to Servo for transmitting data ready flag. See the wiring example below for more details.
- 7. **D**₁ will occupy 3 consecutive devices, **D**₁, **D**₁ + 1, **D**₁ + 2. **D**₁ is connected to SERVO On (SON) of Servo. **D**₁+1 is connected to ABS transmisstion mode of Servo and **D**₁+2 is connected to ABS request signal. See the wiring example below for more details.


8. **D**₂ will occupy 2 consecutive devices **D**₂ and **D**₂ + 1. **D**₂ is the lower 16 bits and **D**₂ + 1 is the higher 16 bits. The absolute position data should be written into the present value registers (D1337, D1336) of CH0 pulse (Y0, Y1) or the present value registers (D1339, D1338) of CH1 pulse (Y2, Y3) in EH series MPU; therefore, we suggest you designate the two corresponding registers. If you designate other devices as the registers, you still have to

transmit the data to D1337 and D1336 of CH0 or D1339 and D1338 of CH1. In addition, the absolute position data should be written into the present value registers (D1348, D1349) of CH0 pulse (Y10) or the present value registers (D1350, D1351) of CH1 pulse (Y11) in SC series MPU; therefore, we suggest you designate the two corresponding registers. If you designate other devices as the registers, you still have to transmit the data to D1348 and D1349 of CH0 or D1350 and D1351 of CH1.

- When DABSR instruction starts to read, after finishing reading the absolute position of SERVO, flag M1029 will be On. The user has to reset the flag.
- 10. When driving the DABSR command, please specify normally open contact. If the drive contact of DABSR command turns Off when DABSR command read starts, the execution of absolute current value read will be interrupted and result in incorrect data. Please be careful and notice that.


Program Example:

- 1. When X7 = On, the 32-bit absolute position data read from Servo will be stored in the present value registers (D1337, D1336) of CH0 pulse in EH MPU. At the same time, the timer T10 is enabled and starts to count for 5 seconds. If the reading of the absolute position is not completed after 5 seconds, M10 will be On, indicating that the reading of absolute position encounters abnormality.
- 2. When enabling the connection to the system, please synchronize the power input of DVP-PLC EH/EH2/SV and SERVO AMP or activate the power of SERVO AMP earlier than DVP-PLC.

Remarks:

- If the instruction is interrupted when PLC is still reading the absolute position of SERVO, an ALARM message (ALE5) will occur in SERVO.
- 2. Timing chart of DABSR instruction reading absolute position:
 - a) When DABSR instruction starts to execute, it will drive SERBVO On (SON) and ABS transmittion mode for output.
 - b) By "transmission is ready" and "ABS request" signals, you can confirm the transmission and reciept of both sides as well as processing the transmission of the 32-bit present position data plus the 6-bit check data.
 - c) The data are transmitted by ABS (bit0, bit1).

- 3. This instruction is applicable to the Servo motor equipped with absolute positioning function, e.g. Mitsubishi MR-J2-A Servo drive.
- 4. Select one of the following methods for the initial reading of present absolute position.
 - a) Complete zero point return by using reset signal function to execute API 156 ZRN instruction.
 - b) After using JOG or manual operation to adjust the zero point position, input a reset signal in SERVO AMP. See the figure of external switch below for whether to use DVP-PLC for output. For the wiring of DVP-PLC and Mitsubishi MR-H2-_A, see remarks of API 159 DRVA instruction.

Ex: Mitsubishi MR-J2-\(_\ A \)

CR 8

reset

SG 10

5. Flags explanation:

M1010: (For EH/EH2/SV series MPU) When M1010 is On, CH0 (Y0, Y1) and CH1 (Y2, Y3) will output pulses while END instruction is being executed. When the output starts, M1010 will automatically turn Off.

M1029: (For EH/EH2/SV series MPU) When the first group CH0 (Y0, Y1) pulse output or the execution of other relevant instructions are completed, M1029 will turn On.

M1030: (For EH/EH2/SV series MPU) When the second group CH1 (Y2, Y3) pulse output is completed, M1030 will turn on.

M1102: (For SC series MPU) When the first group CH0 (Y10) pulse output is completed, M1102 will turn On.

M1103: (For SC series MPU) When the second group CH1 (Y11) pulse output is completed, M1103 will turn On.

M1258: (For EH/EH2/SV series MPU) When M1258 is On, CH0 (Y0, Y1) will output reverse pulses.

M1259: (For EH/EH2/SV series MPU) When M1259 is On, CH1 (Y2, Y3) will output reverse pulses.

M1305: (For EH/EH2/SV series MPU) PLSV, DPLSV, DRVI, DDRVI, DRVA, DDRVA instructions for CH0 (Y1, Y2) reverse running.

M1306: (For EH/EH2/SV series MPU) PLSV, DPLSV, DRVI, DDRVI, DRVA, DDRVA instructions for CH1 (Y2, Y3) reverse running.

M1334: (For EH series MPU) When M1334 = On, CH0 (Y0, Y1) pulse output will pause.
(For EH2/SV series MPU) When M1334 = On, CH0 (Y0, Y1) pulse output will stop.
(For SC series MPU) When M1334 = On, the DDRVI and DDRVA execution criteria will stop and CH0 (Y10) pulse output will stop immediately without deceleration.

M1335: (For EH series MPU) When M1335 = On, CH1 (Y2, Y3) pulse output will pause.
(For EH2/SV series MPU) When M1335 = On, CH1 (Y2, Y3) pulse output will stop.
(For SC series MPU) When M1335 = On, DDRVI and DDRVA execution criteria will stop and CH1 (Y11) pulse output will stop immediately without deceleration.

M1520: (For EH2/SV series MPU) When M1520 = On, CH2 (Y4, Y5) pulse output will stop.

M1521: (For EH2/SV series MPU) When M1521 = On, CH3 (Y6, Y7) pulse output will stop.

M1336: (For EH/EH2/SV series MPU) CH0 (Y0, Y1) pulse output indication flag

M1337: (For EH/EH2/SV series MPU) CH1 (Y2, Y3) pulse output indication flag

M1346: (For EH/EH2/SV series MPU) ZRN instruction for "enabling CLEAR output signal" flag

6. Special registers:

D1337, D1336:

- 1.(For EH/EH2/SV series MPU) Registers for the first group (Y0, Y1) output pulse present value of position control instructions (API 156 ZRN, API 157 PLSV, API 158 DRVI, API 159 DRVA). The present value increases or decreases according to the corresponding rotation direction. D1337 is for high word; D1336 is for low word.
- 2. (For EH/EH2/SV series MPU) Registers for storing the current number of output pulses of the first group (Y0, Y1) output of pulse output instructions (API 57 PLSY, API 59 PLSR). D1337 is for high word; D1336 is for low word.

D1338, D1339:

- 1.(For EH/EH2/SV series MPU) Registers for the second group (Y2, Y3) output pulse present value of position control instructions (API 156 ZRN, API 157 PLSV, API 158 DRVI, API 159 DRVA). The present value increases or decreases according to the corresponding rotation direction. D1339 is for high word; D1338 is for low word.
- 2.(For EH/EH2/SV series MPU) Registers for storing the current number of output pulses of the second group (Y2, Y3) output of pulse output instructions (API 57 PLSY, API 59 PLSR). D1339 is for high word; D1338 is for low word.

D1340 (D1352): For setting up the frequencies of the first acceleration segment and the last deceleration segment when the position control instructions (API 156 ZRN, API 158 DRVI, API 159 DRVA) are executing CH0 (CH1) outputs.

Range of setting:

For EH/EH2/SV series MPU, the speed has to be higher than 10Hz. Frequency lower than 10Hz or higher than maximum output frequency will be output by 10Hz. The default setting in EH/EH2/SV series MPU is 200Hz. For SC series MPU, the speed has to be 100 ~ 100KHz. Frequency lower than 100Hz will be output by 100Hz and frequency higher than

100KHz will be output by 100KHz. The default setting in SC series MPU is 100Hz.

Note: During the control of the stepping motor, please consider the resonance and the limitation on the start frequency when you set up the speed.

D1341, D1342:

(For EH/EH2/SV series MPU) For setting up the maximum speed when the position control instructions (API 156 ZRN, API 158 DRVI, API 159 DRVA) are being executed. D1342 is for high word; D1341 is for low word.

Range of setting: 200KHz fixed.

D1343 (D1353):

For setting up the time of the first acceleration segment and the last deceleration segment when the position control instructions (API 156 ZRN, API 158 DRVI, API 159 DRVA) are executing CH0 (CH1) outputs.

Range of setting:

For EH/EH2/SV series MPU, the acceleration/deceleration time has to be longer than 10ms. The time shorter than 10ms or longer than 10,000ms will be output by 10ms. The default setting in EH/EH2/SV series MPU is 100ms. For SC series MPU, the time has to be 50 ~ 20,000ms. The time shorter than 50ms will be regarded as 50ms. Note: During the control of the stepping motor, please consider the resonance and the

<u>Note:</u> During the control of the stepping motor, please consider the resonance and the limitation on the start frequency when you set up the speed.

D1348, D1349:

(For SC series MPU) Registers for the first group (Y0, Y1) output pulse present value of position control instructions (API 156 ZRN, API 158 DRVI, API 159 DRVA). The present value increases or decreases according to the corresponding rotation direction. D1349 is for high word; D1348 is for low word.

D1350, D1351:

(For SC series MPU) Registers for the second group (Y11) output pulse present value of position control instructions (API 156 ZRN, API 158 DRVI, API 159 DRVA). The present value increases or decreases according to the corresponding rotation direction. D1351 is for high word; D1350 is for low word.

API		Mnemonic	Operands	Function	Controllers
156	D	ZRN	S1 S2 S3 D	Zero Return	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Τ	C	О	П	F	ZRN: 9 steps
S ₁						*	*	*	*	*	*	*	*	*	*	*	DZRN: 17 steps
	S ₂					*	*	*	*	*	*	*	*	*	*	*	22. t. t. 7. dtope
	S_3	*	*	*	*												
	D		*														

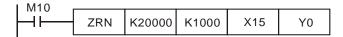
PULSE 16-bit 32-bit
ES | EX | SS | SA | SX | SC | EH | SV | ES | EX | SS | SA | SX | SC | EH | SV |

Operands:

 $\mathbf{S_{1}}$: Zero return speed $\mathbf{S_{2}}$: Creep speed $\mathbf{S_{3}}$: Near p oint signal (DOG) \mathbf{D} : Pulse output device (please use transistor output module)

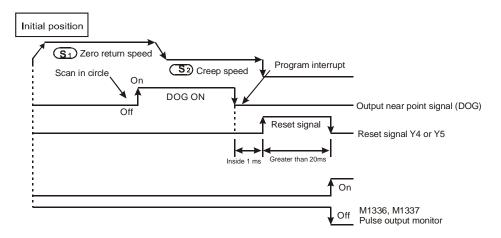
Explanations:

- 1. When S_1 and S_2 are used in device F, only 16-bit instruction is applicable.
- 2. **S**₁ and **S**₂ of SC series MPU only support device K, H and D. **S**₃ of SC series MPU only supports device X10 and X11.
- 3. Flag: see remarks of API 155 ABSR and API 158 DDRVI for more details.
- 4. **S**₁ is the starting speed of zero return operation. For EH/EH2/SV series MPU, the 16-bit instruction can designate the range of the speed, which is 10 ~ 32,767Hz and the range designated by the 32-bit instruction is 10 ~ 200,000Hz. If the designated speed is slower than 10Hz, the zero return will operate at 10Hz and when the designated speed is faster than 200KHz, the zero return will operate at 200KHz. For SC series MPU, the 32-bit instruction can designate the range of speed, which is 100 ~ 100,000Hz. If the designated speed is slower than 100Hz, the zero return will operate at 100Hz, and when the designated speed is faster than 100KHz, the zero return will operate at 100KHz.
- 5. S_2 is the designated low speed after the near point signal (DOG) is On. EH/EH2/SV series MPU can designate the range of S_2 , which is 10 ~ 32,767Hz and SC series MPU can designate the range 100 ~ 100,000Hz.
- 6. **S**₃ is the designated near point signal (DOG) input (input from A contact). In EH/EH2/SV series MPU, if devices other than the external output device (X10 ~ X17), e.g. X, Y, M, S are designated, they will be affected by the scan period, resulting in dispersion of the zero point. In addition, please note that the MPU cannot designate the same input points X10 ~ X17 as those designated by DCNT and PWD instructions. SC series MPU can only designate X10 and X11 and cannot designate the same input points as those designated by DCNT instruction.
- 7. EH series MPU has two groups of A/B phase pulse output, CH0 (Y0, Y1) and CH1 (Y2, Y3); EH2/SV series MPU has four groups of A/B phase pulse output, CH0 (Y0, Y1), CH1 (Y2, Y3), CH2 (Y4, Y5) and CH3 (Y6, Y7). See remarks for the setup methods.
- 8. Zero return output device in different models


Model	SC MPU	EH MPU	EH2/SV MPU
Zero return output	Y10, Y11	Y0, Y2	Y0, Y2, Y4, Y6

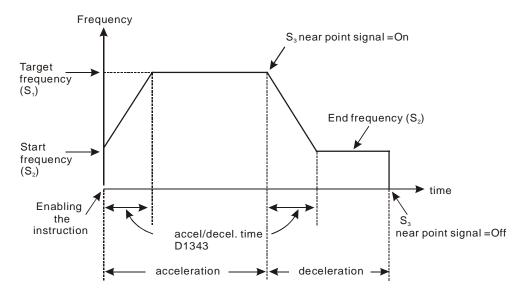
9. When executing API 158 DRVI (releative positioning) or API 159 DRVA (absolute positioning), PLC will automatically store the increasing or decreasing forward/reverse pulses in the present value registers. For

EH/EH2/SV series MPU, Y0: D1337, D1336; Y2: D1339, D1338, Y4: D1376, D1375; Y6: D1378, D1377. For SC series MPU, Y10: D1348, D1349; Y11: D1350, D1351. In this way, you can keep track of the position of the machine at any time. However, due to that the data will be lost when the power of the PLC is switched off, you have to enter the zero point position of the machine when executing zero return for the first time.


Program Example:

When M10= On, Y0 output pulses start to operate zero return at the frequency of 20KHz. When the zero return meets DOG X15 = On, Y0 output pulses will start to operate by creep speed 1KHz until X15 is Off.

Remarks:


- Timing chart of the reset signal output for EH/EH2/SV series MPU. (SC series MPU does not support this function.)
 - a) When the reset signal flag M1346 = On, after zero return is completed, the PLC can send the reset signal to the servo drive and the signal will last for approximately 20ms. After 20ms, the reset signal will return to Off again.
 - b) Output devices for reset signals of EH series MPU:
 - CH0 (Y0, Y1) reset output device (Y4)
 - CH1 (Y2, Y3) reset output device (Y5)
 - c) Output devices for reset signals of EH2/SV series MPU:
 - CH0 (Y0, Y1) reset output device (Y10)
 - CH1 (Y2, Y3) reset output device (Y11)
 - CH2 (Y4, Y5) reset output device (Y12)
 - CH3 (Y6, Y7) reset output device (Y13)

Note: The designated devices, X, Y, M, and S, other than the external input devices $X10 \sim X17$ will be affected by the scan period, 2 times of the scan period at worst.

- 2. The zero return operation:
 - a) When ZRN instruction is executed, the frequency of the first acceleration segment of CH0 (CH1) in EH/EH2/SV series MPU is set by D1340 (D1352). In SC series MPU, CH0 (CH1) will set creep speed as the

- start frequency. The acceleration time of EH/EH2/SV/SC series MPU is set by D1343 (D1353). S1 will start to move when the acceleration reaches the zero return speed.
- b) When the DOG signal goes from Off to On, the zero return speed will decelerate to S₂ by the time set in D1343 (D1353).
- c) When the DOG signal goes from On to Off and the pulse output stops, 0 will be written in the present value registers (D1337, D1336) of CH0 pulses, D1339 and D1338 of CH1 pulses, D1375 and D1376 of CH2 pulses, and D1377 and D1378 of CH3 pulses in EH/EH2/SV series MPU; 0 will also be written in D1348 and D1349 of Y10 (CH0) pulses or D1350 and D1351 of Y11 (CH1) pulses in SC series MPU.
- d) When the DOG signal goes from On to Off and the reset signal flag M1346 = On, Y4 (CH0) or Y5 (CH1) in EH series MPU will output a reset signal; Y10 (CH0), Y11 (CH1), Y12 (CH2) and Y13 (CH3) in EH2/SV series MPU will output a reset signal.
- e) For EH/EH2/SV series MPU, when the pulse output is completed and M1029, M1030, M1036 and M1037 are enabled, indication flag M1336 sent by CH0 pulses, M1337 by CH1, M1522 by CH2 and M1523 by CH3 will be Off. For SC series MPU, when the pulse output is completed, M1102 and M1103 will be enabled.
- f) Due to that ZRN (DZRN) instruction cannot locate the position of DOG, the zero return can only be done towards a single direction. In the zero return operation of EH/EH2/SV series MPU, D1337 and D1336 (present value registers) of CH0 pulses or D1339 and D1338 of CH1 pulses are decreasing. In the zero return operation of SC series MPU, D1348 and D1349 of CH0 pulses or D1350 and D1351 of CH1 pulses are also decreasing.

- g) ZRN (DZRN) instruction is applicable to servo motor with absolute positioning function, e.g. Mitsubishi MR-J2-A servo drive. Even when the power is switched off, the current position can still be recorded. In addition, the current position of servo drive can be read by API 155 DABSR of EH/EH2/SV/SV series MPU; therefore only one zero return operation is required and no zero return has to be done after the power is switched off.
- h) When the drive contact of ZRN instruction is On, CH0 (CH1) will read the acceleration/deceleration time set in D1343 (D1353) and accelerate to the zero return speed, waiting for the DOG and decelerate to creep speed. When the DOG is Off, the pulse output will stop immediately.

- i) For SC series MPU, many ZRN instructions can be compiled in the program but only one instruction can be executed when the PLC program is being executed. For example, provided there is already an instruction enabling Y10 output, other instructions enabling also Y10 output will not be executed. The principle of the instruction execution is "first come, first executed".
- j) For SC series MPU, when you designate Y10 as the output device, you can choose either X10 or X11 for DOG input in the "acceleration to deceleration" segment. In other words, when designating Y11 as the output device, you can also choose either X10 or X11 for DOG input.
- k) For SC series MPU, due to that this instruction does not compare between the number of output pulses, the DOG input (from Off to On) will therefore become the trigger of acceleration converting to deceleration. The "On" time of DOG has to be longer than 10us; otherwise the signal may be regarded as useless interference.
- I) For SC series MPU, when the execution of the instrucion enters the deceleration segment and the output frequency reaches creep speed (end frequency), the output will stop when DOG goes from On to Off.
- m) For SC series MPU, the current accumulated number of pulses of Y10 is stored in D1348 and D1349 and that of Y11 is stored in D1350 and D1351. Then the program operates from STOP to RUN or from RUN to STOP, the contents will not be cleared to 0.
- n) For SC series MPU, M1102 = On indicates the end of Y10 pulse output; M1103 = On indicates the end of Y11 pulse output.
- o) For SC series MPU, after the instruction is executed, all parameters cannot be modified unless the execution of the instruction stops.
- p) For SC series MPU, when the execution of the stops, all outputs will stop immediately no matter what type of the output it is.

API		Mnemonic	Operands	Function	Controllers
157	D	PLSV	S D1 D2	Adjustable Speed Pulse Output	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	Bit De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	PLSV: 7 steps
S					*	*	*	*	*	*	*	*	*	*	*	DPLSV: 13 steps
D_1		*														2. 20. 10 0.000
D_2	·	*	*	*												ļ

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

S: Pulse output frequency **D**₁: Pulse output device (please use transistor output module) **D**₂: Output device for the signal of rotation direction

Explanations:

- 1. See remarks for the setting range of S, D_1 and D_2 .
- 2. Flag: see remarks of API 155 ABSR and API 158 DDRVI for more details.
- 3. S is the designated pulse output frequency. The 16-bit instruction can designate its range 0 ~ +32,767Hz, 0 ~ -32,768Hz. The ranges designated by 32-bit instruction are 0 ~ +200,000Hz and 0 ~ -200,000Hz. "+/-" signs indicate forward/backward directions. During the pulse output, the frequency can be changed, but not the frequencies of different directions.
- 4. **D**₁ is the pulse output device. EH series MPU can designate Y0 and Y2 and EH2/SV series MPU can designate Y0, Y2, Y4 and Y6.
- 5. The operation of D_2 corresponds to the "+" or "-" of **S**. When **S** is "+", D_2 will be On; when **S** is "-", D_2 will be Off.
- PLSV instruction does not have settings for acceleration and deceleration. Please use API 67 RAMP for the acceleration and deceleration of pulse output frequency.
- 7. During the pulse output executed by PLSV instruction, the drive contact turning Off will result in the immediate stop of the output without going through a deceleration.
- When the absolute value of the input frequency during the execution of DPLSV is bigger than 200KHz, the output will operate at 200KHz.
- 9. For EH/EH2/SV series MPU, D1222, D1223, D1383 and D1384 are the time differences sent between the direction setup signal and pulse output points of CH0, CH1, CH2 and CH3.
- 10. For EH/EH2/SV series MPU, M1305, M1306, M1532 and M1533 are the flags of the direction signals of CH0, CH1, CH2 and CH3. When S is "+", the output will operate towards a forward direction and the flag will go Off. When S is "-", the output will operate towards a backward direction and the flag will go On.

Program Example:

When M10 = On, Y0 will output pulses at 20KHz. Y5 = On indicates forward pulses.

API	Mnemonic Operands D DRVI (\$1) (\$2) (D1) (D2)		Operands	Function	Controllers
158	D	DRVI	S1 S2 D1 D2	Drive to Increment	ES/EX/SS SA/SX/SC EH/SV

Туре	E	Bit De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Т	O	О	П	F	DRVI: 9 steps
S ₁					*	*	*	*	*	*	*	*	*	*	*	DDRVI: 17 steps
S ₂					*	*	*	*	*	*	*	*	*	*	*	BBITTI. 17 GLOPG
D_1		*														
D_2		*	*	*												

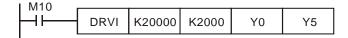
PULSE					16-bit							32-bit											
ES	EX	S	SA	sx	SC	EΗ	SV	S	EX	SS	SA	SX	S	ΕH	S۷	ES	EX	SS	SA	SX	SC	EH	SV

 S_1 : Number of output pulses (relative designation) S_2 : Pulse output frequency D_1 : Pulse output device (please use transistor output module) D_2 : Output device for the signal of rotation direction

Explanations:

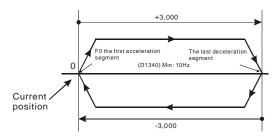
- 1. See remarks for the setting range of S_1 , S_2 , D_1 and D_2 .
- 2. **S**₁ and **S**₂ of SC series MPU only support device K, H and D.
- 3. Flag: see remarks for more details.
- 4. S₁ is the number of output pulses (relative designation). For EH/EH2/SV series MPU, the 16-bit instruction can designate the range -32,768 ~ +32,767. The range designated by 32-bit instruction is -2,147,483,648 ~ +2,147,483,647. For SC series MPU, the 32-bit instruction can designate the range -2,147,483,648 ~ +2,147,483,647. "+/-" signs indicate forward/backward directions.
- 5. **S**₂ is the designated pulse output frequency. For EH/EH2/SV series MPU, the 16-bit instruction can designate its range 10 ~ 32,767Hz. The range designated by 32-bit instruction is 10 ~ 200,000Hz. For SC series MPU, the 32-bit instruction can designate the range 100 ~ 100,000Hz.
- 6. EH series MPU has two groups of A/B phase pulse output, CH0 (Y0, Y1) and CH1 (Y2, Y3). EH2/SV series MPU has four groups of A/B phase pulse output, CH0 (Y0, Y1), CH1 (Y2, Y3), CH2 (Y4, Y5) and CH3 (Y6, Y7). See remarks for the setup methods.
- 7. Pulse output device D_1 in different models

Model	SC MPU	EH MPU	EH2/SV MPU
Pulse output end	Y10, Y11	Y0, Y2	Y0, Y2, Y4, Y6

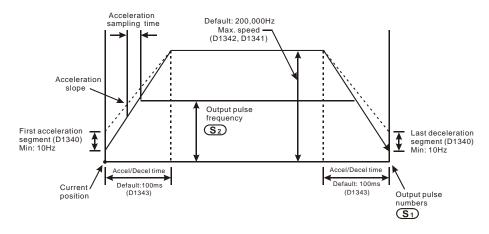

- 8. The operation of **D**₂ corresponds to the "+" or "-" of **S**₁. When **S**₁ is "+", **D**₂ will be On; when **S**₁ is "-", **D**₂ will be Off. **D**₂ will not be Off immediately after the pulse output is over; it will be Off only when the drive contact of the instruction turns Off.
- 9. For EH/EH2/SV series MPU, S₁ is
 - The 32-bit data stored in the present value registers D1337 (high word) and D1336 (low word) of CH0 (Y0, Y1).
 - The 32-bit data stored in the present value registers D1339 (high word) and D1338 (low word) of CH1 (Y2, Y3)
 - The 32-bit data stored in the present value registers D1376 (high word) and D1375 (low word) of CH2 (Y4, Y5).
 - The 32-bit data stored in the present value registers D1378 (high word) and D1377 (low word) of CH3 (Y5,

Y6).

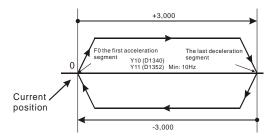
- When in backward direction, the content in the present value register will decrease.
- 10. For SC series MPU, S₁ is the 32-bit data stored in the present value registers D1348 (low word) and D1349 (high word) of CH0 (Y10) or the 32-bit data stored in the present value registers D1350 (low word) and D1351 (high word) of CH1 (Y11). When in backward direction, the content in the present value register will decrease. When the program goes from STOP to RUN or from RUN to STOP, the content in the present value register will remain unchanged.
- 11. When DRVI instruction is executing pulse output, you cannot change the content of all operands. The changes will be valid next time when DRVI instruction is enabled.
- 12. For EH/EH2/SV series MPU, when the drive contact of DRVI instruction is Off, even the indication flag M1336 sent by CH0 pulses, M1337 sent by CH1 pulses, M1522 sent by CH2 pulses and M1523 sent by CH3 pulses are "On", DRVI instruction will not be driven again.
- 13. When the absolute value of the input frequency of DDRVI insturction in EH/EH2/SV series MPU is larger than 200KHz, the output will be operated at 200KHz. When the absolute value of the input frequency is smaller than 10Hz, the output will be operated at 10Hz.
- 14. D1343 (D1353) is for setting up the time of the first acceleration segment and last deceleration segment of CH0 (CH1). The acceleration and deceleration time of EH/EH2/SV series MPU shall not be shorter than 10ms. The output will be operated for 10ms if the time is shorter than 10ms or longer than 10,000ms (default setting = 100ms). The time range for SC series MPU is 50 ~ 20,000ms. The output will be operated for 20,000ms or 50ms if the time set is longer than 20,000ms or shorter than 50ms.
- 15. D1340 (D1352) is for setting up the start/end frequency of Y10 (Y11). If S_2 is less than or equals start/end frequency, the pulse output frequency will be executed by the start/end frequency.
- 16. For EH/EH2/SV series MPU, M1305 (M1306) is the direction signal of CH0 (CH1). When **S**₁ is a positive number, the output will be operated in a forward direction and M1305 (M1306) will be Off. When **S**₁ is a negative number, the output will be operated in a backward direction and M1305 (M1306) will be On.

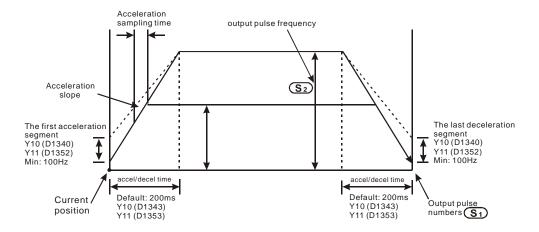

Program Example:

When M10= On, Y0 will output 20,000 pulses (relative designation) at 2KHz. Y5 = On indicates the pulses are executed in forward direction.



Remarks:


- 1. Explanations on EH/EH2/SV series MPU:
 - a) Relative position control: Designating the traveling distance starting from the current position by "+/ -" signs; also known as a relative driving method.


b) Settings of relative positioning and the acceleration/deceleration speed:

- 2. Explanations on SC series MPU:
 - a) Relative position control: Designating the traveling distance starting from the current position by "+/ -" signs;
 also known as a relative driving method.

b) Settings of relative positioning and the acceleration/deceleration speed: D1343 (D1353) is for settings of the time of the first acceleration segment and last deceleration segment of Y10 (Y11). D1340 (D1352) is for settings of start/end frequency of Y10 (Y11).

- c) Many DRVI instructions can be compiled synchronously in the program, but only one instruction can be activated whenever the PLC executes the program. For example, if Y10 output has already been activated by an instruction, other instructions that are also used to activate Y10 output will not be excecuted. Therefore, the principle of the instruction activation sequence is "first activated, first executed".
- d) When Y10 is activated by DDRVI instruction, the output function of Y10 will be disabled until DDRVI is OFF. The same rule applies to Y11.
- e) Once the instruction is activated, all other parameters cannot be modified until the instruction is disabled.
- f) When the instruction is disabled but the output has not yet completed:
 - M1334 = On indicates that Y10 will stop output immediately.
 - M1334 = Off indicates that Y10 will decelerate according to the deceleration time till it reaches end frequency and stop the pulse output.

M1335 corresponds to Y11 output and applies the same rule.

- 3. Flags for SC series MPU:
 - M1102 : M1102 = On after Y10 pulse output is completed.
 - M1103 : M1103 = On after Y11 pulse outout is completed.
 - M1334: Y10 pulse output stops immediately without deceleration when the pulse output instruction is
 - M1335: Y11 pulse output stops immediately without deceleration when the pulse output instruction is disabled.
- 4. Special registers for SC series MPU:
 - D1348: Low word of the current number of Y10 output pulses.
 - D1349: High word of the current number of Y10 output pulses.
 - D1350: Low word of the current number of Y11 output pulses.
 - D1351: High word of the current number of Y11 output pulses..
 - D1340: Settings of the first start frequency and the last end frequency of Y10 output pulses.
 - D1352: Settings of the first start frequency and the last end frequency of Y11 output pulses.
 - D1343: Settings of the acceleration/deceleration time of Y10 output pulses.
 - D1353: Settings of the acceleration/deceleration time of Y11 output pulses.
- 5. Flags for EH/EH2/SV series MPU:
 - M1010: For EH/EH2/SV, when M1010 = On, CH0, CH1, CH2 and CH3 will output pulses when END

instruction is being executed. M1010 will be Off automatically when the output starts.

- M1029: For EH/EH2/SV, M1029 = On after CH0 pulse output is completed.
- M1030 : For EH/EH2/SV, M1030 = On after CH1 pulse output is completed.
- M1036: For EH2/SV, M1036 = On after CH2 pulse output is completed.
- M1037: For EH2/SV, M1037 = On after CH3 pulse output is completed.
- M1305: For EH/EH2/SV, direction signal of CH0.
- M1306: For EH/EH2/SV, direction signal of CH1.
- M1334: For EH, CH0 pulse output pauses.
 - For EH2/SV, CH0 pulse output stops.

M1335: For EH, CH1 pulse output pauses.

For EH2/SV, CH1 pulse output stops.

M1336 : For EH/EH2/SV, "CH0 sends out pulses" indication.

M1337: For EH/EH2/SV, "CH1 sends out pulses" indication.

M1520: For EH2/SV, CH2 pulse output stops.

M1521: For EH2/SV, CH3 pulse output stops.

M1522: For EH2/SV, "CH2 sends out pulses" indication.

M1523: For EH2/SV, "CH3 sends out pulses" indication.

M1534: For EH2/SV, designated deceleration time of CH0 (should be used with D1348).

M1535: For EH2/SV, designated deceleration time of CH1 (should be used with D1349).

M1536: For EH2/SV, designated deceleration time of CH2 (should be used with D1350).

M1537: For EH2/SV, designated deceleration time of CH3 (should be used with D1351).

M1532: For EH2/SV, direction signal of CH2.

M1533: For EH2/SV, direction signal of CH3.

Special registers for EH/EH2/SV series MPU:

D1220: For EH/EH2/SV, phase setting of CH0 (Y0, Y1): D1220 determines the phase by the last two bits; other bits are invalid.

- 1. K0: Y0 output
- 2. K1: Y0, Y1 AB-phase output; A ahead of B.
- 3. K2: Y0, Y1 AB-phase output; B ahead of A.
- 4. K3: Y1 output

D1221: For EH/EH2/SV, phase setting of CH1 (Y2, Y3): D1221 determines the phase by the last two

bits; other bits are invalid.

- 1. K0: Y2 output
- 2. K1: Y2, Y3 AB-phase output; A ahead of B.
- 3. K2: Y2, Y3 AB-phase output; B ahead of A.
- 4. K3: Y3 output

D1222: For EH/EH2/SV, the time difference between the direction signal and pulse output sent by

CH0.

D1223: For EH/EH2/SV, the time difference between the direction signal and pulse output sent by

CH1.

D1229: For EH2/SV, phase setting of CH2 (Y4, Y5): D1229 determines the phase by the last two bits;

other bits are invalid.

- 1. K0: Y4 output
- 2. K1: Y4, Y5 AB-phase output; A ahead of B.
- 3. K2: Y4, Y5 AB-phase output; B ahead of A.
- 4. K3: Y5 output

D1230: For EH2/SV, phase setting of CH3 (Y6, Y7): D1230 determines the phase by the last two bits;

other bits are invalid.

- 1. K0: Y6 output
- 2. K1: Y6, Y7 AB-phase output; A ahead of B.
- 3. K2: Y6, Y7 AB-phase output; B ahead of A.
- 4. K3: Y7 output

D1336:	For EH/EH2/SV, low word of the current number of output pulses from CH0.
D1337:	For EH/EH2/SV, high word of the current number of output pulses from CH0.
D1338:	For EH/EH2/SV, low word of the current number of output pulses from CH1.
D1339:	For EH/EH2/SV, high word of the current number of output pulses from CH1.
D1340:	For EH/EH2/SV, settings of the first start frequency and the last end frequency of CH0.
D1343:	For EH/EH2/SV, settings of acceleration/deceleration time for CH0 pulse output.
D1352:	For EH/EH2/SV, settings of the first start frequency and the last end frequency of CH1.
D1353:	For EH/EH2/SV, settings of acceleration/deceleration time for CH1 pulse output.
D1375:	For EH2/SV, low word of the current number of output pulses from CH2.
D1376:	For EH2/SV, high word of the current number of output pulses from CH2.
D1377:	For EH2/SV, low word of the current number of output pulses from CH3.
D1378:	For EH2/SV, high word of the current number of output pulses from CH3.
D1379:	For EH2/SV, settings of the first start frequency and the last end frequency of CH2.
D1380:	For EH2/SV, settings of the first start frequency and the last end frequency of CH3.
D1348:	For EH2/SV, deceleration time for CH0 pulse output when M1534 = On.
D1349:	For EH2/SV, deceleration time for CH1 pulse output when M1535 = On.
D1350:	For EH2/SV, deceleration time for CH2 pulse output when M1536 = On.
D1351:	For EH2/SV, deceleration time for CH3 pulse output when M1537 = On.
D1381:	For EH2/SV, settings of acceleration/deceleration time for CH2 pulse output.
D1382:	For EH2/SV, settings of acceleration/deceleration time for CH3 pulse output.
D1383:	For EH2/SV, the time difference between the direction signal and pulse output sent by CH2.
D1384:	For EH2/SV, the time difference between the direction signal and pulse output sent by CH3.

API	Mnemonic		Operands	Function	Controllers		
159	D	DRVA	S1 S2 D1 D2	Drive to Absolute	ES/EX/SS SA/SX/SC EH/SV		

	Туре	В	it De	evice	s	Word Devices										Program Steps	
OP		Χ	Υ	М	S	Κ	Ι	KnX	KnY	KnM	KnS	Т	С	О	Е	F	DRVA: 9 steps
	S ₁					*	*	*	*	*	*	*	*	*	*	*	DDRVA: 17 steps
	S ₂					*	*	*	*	*	*	*	*	*	*	*	BBITTI IT GLOPG
	D_1		*														
	D_2		*	*	*												

 PULSE
 16-bit
 32-bit

 ES | EX | SS | SA | SX | SC | EH | SV | ES | EX | SS | SA | SX | SC | EH | SV | ES | EX | SS | SA | SX | SC | EH | SV

Operands:

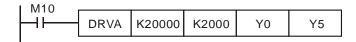
 S_1 : Number of output pulses (absolute designation) S_2 : Pulse output frequency D_1 : Pulse output device (please use transistor output module) D_2 : Output device for the signal of rotation direction

Explanations:

- 1. See remarks for the setting range of S_1 , S_2 , D_1 and D_2 .
- S₁ and S₂ of SC series MPU only support device K, H and D.
- 3. Flag: see remarks of API 158 DRVI for more details.
- 4. **S**₁ is the number of output pulses (absolute designation). For EH/EH2/SV series MPU, the 16-bit instruction can designate the range -32,768 ~ +32,767. The range designated by 32-bit instruction is -2,147,483,648 ~ +2,147,483,647. For SC series MPU, the 32-bit instruction can designate the range -2,147,483,648 ~ +2,147,483,647. "+/-" signs indicate forward/backward directions.
- 5. **S**₂ is the designated pulse output frequency. For EH/EH2/SV series MPU, the 16-bit instruction can designate its range 10 ~ 32,767Hz. The range designated by 32-bit instruction is 10 ~ 200,000Hz. For SC series MPU, the 32-bit instruction can designate the range 100 ~ 100,000Hz.
- 6. EH series MPU has two groups of A/B phase pulse output, CH0 (Y0, Y1) and CH1 (Y2, Y3). EH2/SV series MPU has four groups of A/B phase pulse output, CH0 (Y0, Y1), CH1 (Y2, Y3), CH2 (Y4, Y5) and CH3 (Y6, Y7). See remarks for the setup methods.
- 7. Pulse output device D_1 in different models

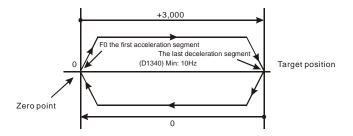
Model	SC MPU	EH MPU	EH2/SV MPU
Pulse output end	Y10, Y11	Y0, Y2	Y0, Y2, Y4, Y6

- 8. When **S**₁ is larger than the current relative position, **D**₂ will be Off; when **S**₁ is smaller than the current relative position, **D**₂ will be On. **D**₂ will not be Off immediately after the pulse output is over; it will be Off only when the drive contact of the instruction turns Off.
- 9. For EH/EH2/SV series MPU, S₁ is
 - The 32-bit data stored in the present value registers D1337 (high word) and D1336 (low word) of CH0 (Y0, Y1).
 - The 32-bit data stored in the present value registers D1339 (high word) and D1338 (low word) of CH1 (Y2, Y3)
 - The 32-bit data stored in the present value registers D1376 (high word) and D1375 (low word) of CH2 (Y4, Y5).
 - The 32-bit data stored in the present value registers D1378 (high word) and D1377 (low word) of CH3 (Y5,

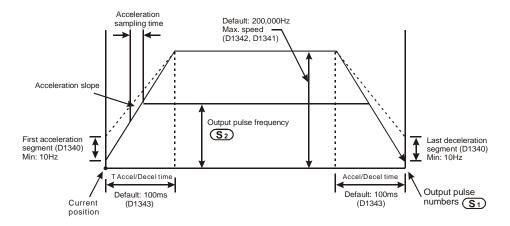

Y6).

When in backward direction, the content in the present value register will decrease.

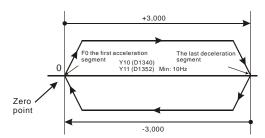
- 10. For SC series MPU, S₁ is the 32-bit data stored in the present value registers D1348 (low word) and D1349 (high word) of CH0 (Y10) or the 32-bit data stored in the present value registers D1350 (low word) and D1351 (high word) of CH1 (Y11). When in backward direction, the content in the present value register will decrease. When the program goes from STOP to RUN or from RUN to STOP, the content in the present value register will remain unchanged.
- 11. For EH/EH2/SV series MPU, when DRVA instruction is executing pulse output, you cannot change the content of all operands. The changes will be valid next time when DRVA instruction is enabled.
- 12. For EH/EH2/SV series MPU, when the drive contact of DRVA instruction is Off, the pulse output will decelerate to stop and M1029 and M1030 will be enabled. For SC series MPU, the pulse output will decelerate to stop and M1102 and M1103 will be enabled.
- 13. For EH/EH2/SV series MPU, when the drive contact of DRVA instruction is Off, even the indication flag M1336 sent by CH0 pulses or M1337 sent by CH1 pulses are "On", DRVA instruction will not be driven again.
- 14. When the absolute value of the input frequency of DRVA and DDRVA insturctions in EH/EH2/SV series MPU is larger than 200KHz, the output will be operated at 200KHz. When the absolute value of the input frequency is smaller than 10Hz, the output will be operated at 10Hz.
- 15. D1343 (D1353) is for setting up the time of the first acceleration segment and last deceleration segment of CH0 (CH1). The acceleration and deceleration time of EH/EH2/SV series MPU shall not be shorter than 10ms. The output will be operated for 10ms if the time is shorter than 10ms or for 100ms (default) if the time is longer than 10,000ms. The time range for SC series MPU is 50 ~ 20,000ms. The output will be operated for 20,000ms or 50ms if the time set is longer than 20,000ms or shorter than 50ms.
- 16. For EH/EH2/SV series MPU, M1305 (M1306) is the direction signal of CH0 (CH1). When S₁ is a positive number, the output will be operated in a forward direction and M1305 (M1306) will be Off. When S₁ is a negative number, the output will be operated in a backward direction and M1305 (M1306) will be On.
- 17. D1340 (D1352) is for setting up the start/end frequency of Y10 (Y11). If S₂ is less than or equals start/end frequency, the pulse output frequency will be executed by the start/end frequency.

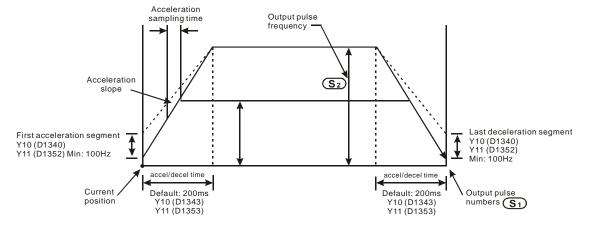

Program Example:

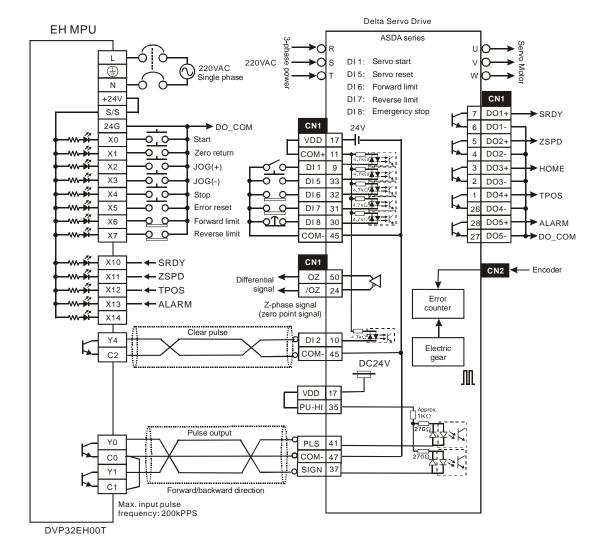
When M10= On, Y0 will output 20,000 pulses (absolute designation) at 2KHz. Y5 = On indicates the pulses are executed in forward direction.



Remarks:

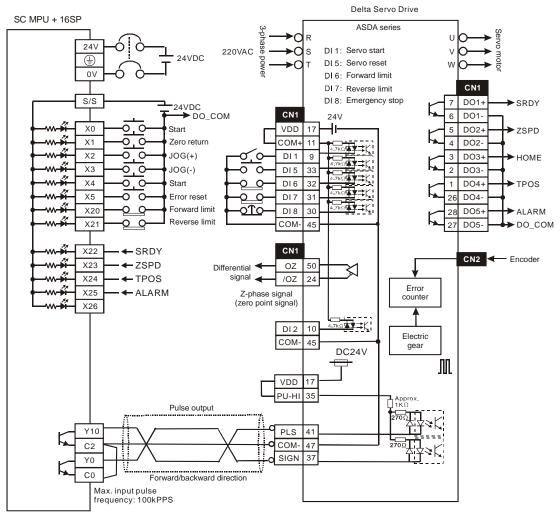

- Explanations on EH/EH2/SV series MPU:
 - a) Absolute position control: Designating the traveling distance starting from the zero point (0); also known as a absolute driving method.


b) Settings of absolute positioning and the acceleration/deceleration speed:


- 2. Explanations on SC series MPU:
 - a) Absolute position control: Designating the traveling distance starting from the zero point (0); also known as a absolute driving method.

b) Settings of absolute positioning and the acceleration/deceleration speed: D1343 (D1353) is for settings of the time of the first acceleration segment and last deceleration segment of Y10 (Y11). D1340 (D1352) is for settings of start/end frequency of Y10 (Y11).

- c) Many DRVA instructions can be compiled synchronously in the program, but only one instruction can be activated whenever the PLC executes the program. For example, if Y10 output has already been activated by an instruction, other instructions that are also used to activate Y10 output will not be excecuted. Therefore, the principle of the instruction activation sequence is "first activated, first executed".
- d) When Y10 is activated by DDRVA instruction, the output function of Y10 will be disabled until DDRVAis OFF. The same rule applies to Y11.
- e) Once the instruction is activated, all other parameters cannot be modified until the instruction is disabled.
- f) When the instruction is disabled but the output has not yet completed:
 - M1334 = On indicates that Y10 will stop output immediately.
 - M1334 = Off indicates that Y10 will decelerate according to the deceleration time till it reaches end frequency and stop the pulse output.
 - M1335 corresponds to Y11 output and applies the same rule.
- 3. See remarks of DDRVI instruction for more details on the flags.
- 4. Wiring of DVP-EH series and Delta ASDA servo drive:


Note:

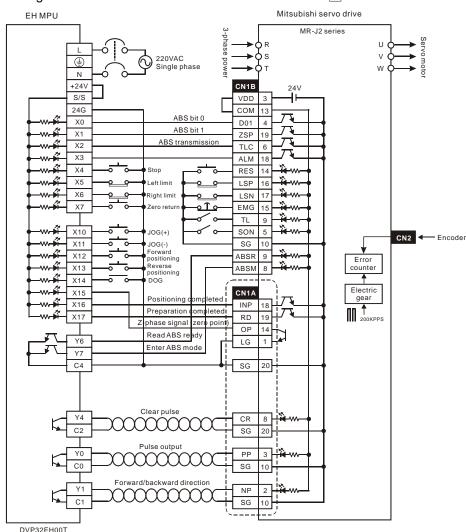
(a) The parameter setting of Delta ASDA servo drive:

P1-01: position mode

P1-00: pulse input type as Pulse+DIR.

- (b) The forward/reverse limit switch should be connected to SERVO AMP.
- (c) The "clear pulse" signal will clear the current number of pulses left inside the servo.
- 5. Wiring of DVP-SC series and Delta ASDA servo drive:

DVP12SC11T+DVP16SP11T


Note:

(a) The parameter setting of Delta ASDA servo drive:

P1-01: position mode

P1-00: pulse input type as Pulse+DIR.

(b) The forward/reverse limit switch should be connected to SERVO AMP.

6. Wiring of DVP-EH series PLC and a Mitsubishi MR-J2
A Servo drive:

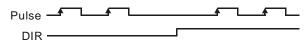
Note:

(a) When detecting an absolute position by using DABSR instruction, the parameter setting of a Mitsubishi MR-J2-\[\sigma \text{servo drive that connects to Delta EH series PLC:} \]

P0: position mode.

P1: using absolute value.

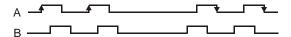
P21: pulse input type as Pulse+DIR.


- (b) The forward/reverse limit switch should be connected to SERVO AMP.
- (c) When using OP (Z-phase signal) in servo and given that the Z-phase signal is a high-frequency one when the motor is running at high speed, the valid detection can only be possible when the signal is within the range detectable by PLC. When using OP (Z phase signal) of the servo, if Z phase signal is a high frequency signal during high-speed motor operation, the high frequency signal shall be within the available range that can be detected by PLC.
- 7. Cautions when designing a position control program:
 - a) There is no limitation on the times of using the position control instructions, API 156 ZRN, API 157 PLSV, API 158 DRVI, and API 159 DRVA. However, the user still have to note that:

- i. Do not drive the position control instructions which use the same output CH0(Y0, Y1) or CH1(Y2, Y3) simultaneously. Otherwise, they will be treated as repeated outputs and cannot function normally.
- ii. It is recommended that you use the step ladder instruction (STL) to design the position control program (see the example below).
- b) How to use the position control instructions (API 156 ABSR, API 157 PLSV, API 158 DRVI, and API 159 DRVA) and pulse output instructions (API 57 PLSY, API 58 PWM and API 59 PLSR) at the same time. The position control instruction and pulse output instruction share the 32 bits of the present value register (D1337 high word; D1336 low word) of CH0 (Y0, Y1) or the present value register of CH1 (Y2, Y3), which will make the operation complicated. Therefore, it is recommanded that you replace the pulse output instruction with position control instruction.
- c) Explanations on the (Y0, Y1) pulses from CH0 and (Y2, Y3) pulses from CH1.

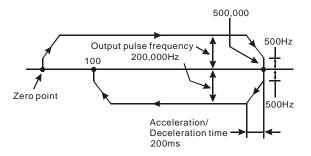
Voltage range: DC5V ~ DC24V Current range: 10mA ~ 100mA

Output pulse frequency: Y0, Y2 at 200KHz; Y1, Y3 at 10KHz.

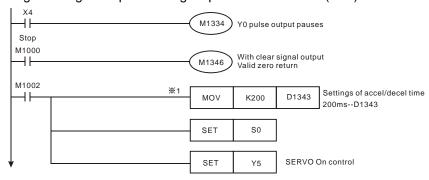

- 8. Settings of pulse output signals in the operation of position control for EH/EH2/SV series MPU:
 - a) Pulse + DIR (recommended)

b) CW/CCW (limited frequency at 10KHz)

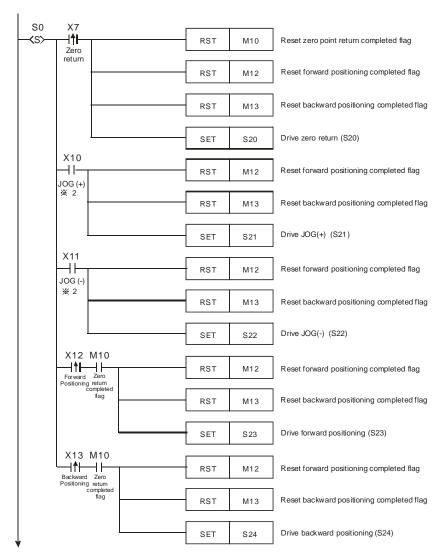
c) A/B-phase output (limited frequency at 10KHz)

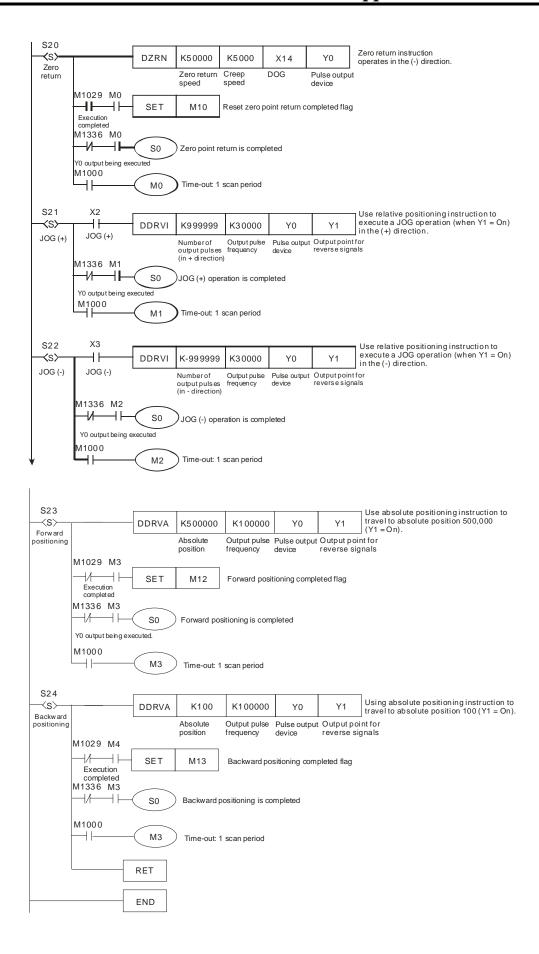


- Follow the above output settings of PLC for the pulse input parameters of SERVO AMP or stepping motor.
- 10. For EH/EH2/SV series MPU, when Y0 output adopts many high-speed pulse output instructions (PLSY, PWM, PLSR) and position control instructions (ZRN, PLSV, DRVI, DRVA) in a program and these instructions are executed synchronously in the same scan period, PLC will execute the instruction with the fewest step numbers.


Programming example for forward/reverse operation:

For the wiring, see the wiring drawing of DVP-EH series and Mitsubishi MR-J2-_A servo drive


One operation mode performs positioning by absolute position:


11. Programming example of using step ladder instruction (STL):

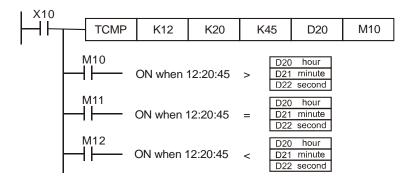
※1. If the accel./decel. time (D1343) of CH1 can be default setting, (100ms) this program step can be ignored.

※2. The max. traveling distance of a JOG operation equals to the max. number of output pulses
(-2,147,483,648 ~ +2,147,483,647) of API 158 DDRVI instruction. Please re-execute JOG of the traveling distance exceeds the range.

API	Mnemonic	Operands	Function	Controllers
160	TCMP P	\$1 \$2 \$3 \$ D	Time Compare	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	C	О	П	F	TCMP, TCMPP: 11 steps
	S ₁					*	*	*	*	*	*	*	*	*	*	*	
	S ₂					*	*	*	*	*	*	*	*	*	*	*	
	S ₃					*	*	*	*	*	*	*	*	*	*	*	
	S											*	*	*			
	D		*	*	*												

			PUI	_SE							16	-bit							32	-bit			
ES	EX	SS	SA	SX	SC	EΗ	S۷	ES	EX	SS	SA	SX	SC	Ħ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


 S_1 : "Hour" for comparison S_2 : "Minute" for comparison S_3 : "Second" for comparison S_3 : "Second" for comparison S_4 : "Second" for comparison

Explanations:

- 1. Range of S_1 : K0 ~ K23; range of S_2 and S_3 : K0 ~ K59
- 2. **S** will occupy 3 consecutive devices; **D** will occupy 3 consecutive points.
- 3. See the specifications of each model for their range of use.
- 4. **S**₁, **S**₂ and **S**₃ are compared with the present values of "hour", "minute" and "second" starting from **S**. The comparison result is stored in **D**.
- 5. **S** is the "hour" of the current time (K0 \sim K23) in RTC; **S** + 1 is the "minute" (K0 \sim K59) and **S** + 2 is the "second" (K0 \sim K59).
- 6. **S** is read by TRD instruction and the comparison is started by TCMP instruction. If **S** exceeds the range, the program will regard this as an operation error and the instruction will not be executed, M1067 and M1068 = On and D1067 will record the error code 0E1A (hex).

Program Example:

- 1. When X10= On, the instruction will compare the current time in RTC (D20 ~ D22) with the set value 12:20:45 and display the result in M10 ~ M12. When X10 goes from On to Off, the instruction will not be executed, but the On/Off stauts prior to M10 ~ M12 will remain.
- 2. Connect M10 ~ M12 in series or in parallel to obtain the result of \geq , \leq , and \neq .

API	Mnemoni	Operands	Function	Controllers
161	TZCP	S1 S2 S D	Time Zone Compare	ES/EX/SS SA/SX/SC EH/SV

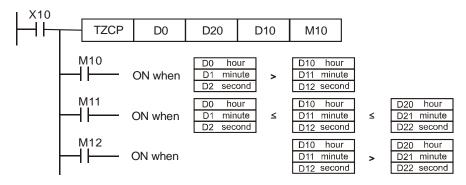
Туре	В	it De	evice	s				V	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	Κ	Η	KnX	KnY	KnM	KnS	Т	С	О	Е	F	TZCP, TZCPP: 9 steps
S ₁											*	*	*			
S ₂											*	*	*			
S											*	*	*			
D		*	*	*												

				PUL	_SE							16	-bit							32	-bit			
Ī	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S₁: Lower bound of the time for comparison **S**₂: Upper bound

S₂: Upper bound of the time for comparison

S: Current time of


RTC D: Comparison result

Explanations:

- 1. S₁, S₂, and S will occupy 3 consecutive devices.
- The content in S₁ must be less than the content in S₂.
- 3. **D** will occupy 3 consecutive points.
- 4. See the specifications of each model for their range of use.
- 5. **S** is compared with S_1 and S_2 . The comparsion result is stored in **D**.
- 6. S_1 , $S_1 + 1$, $S_1 + 2$: The "hour", "minute" and "second" of the lower bound of the time for comparison.
- 7. S_2 , S_2 +1, S_2 +2: The "hour", "minute" and "second" of the upper bound of the time for comparison.
- 8. **S**, **S** +1, **S** +2: The "hour", "minute" and "second" of the current time of RTC.
- 9. D0 designated by S is read by TRD instruction and the comparison is started by TZCP instruction. If S₁, S₂, and S exceed their ranges, the program will regard this as an operation error and the instruction will not be executed, M1067 and M1068 = On and D1067 will record the error code 0E1A (hex).
- 10. When $S < S_1$ and $S < S_2$, D will be On. When $S > S_1$ and $S > S_2$, D + 2 will be On. In other occasions, D + 1 will be On.

Program Example:

When X10= On, TZCP instruction will be executed and one of M10 \sim M12 will be On. When X10 = Off, TZCP instruction will not be executed and the status of M10 \sim M12 prior to X10 = Off will remain unchanged.

API	Mnemonic		Operands	Function	Controllers
162	TADD	Р	\$1 \$2 D	Time Addition	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	TADD, TADDP: 7 steps
S ₁											*	*	*			
S ₂											*	*	*			
D											*	*	*			

		PUI	_SE							16	-bit							32	-bit			
ES EX SS SA SX SC EH S							ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

 S_1 : Time summand S_2 : Time

S₂: Time addend

D: Time sum

Explanations:


- 1. **S**₁, **S**₂, and **D** will occupy 3 consecutive devices.
- 2. See the specifications of each model for their range of use.
- 3. Flags: M1020 (zero flag); M1022 (carry flag)
- 4. $S_1 + S_2 = D$. The hour, minute, and second of the RTC designated in S_1 plus the hour, minute, and second designated in S_2 . The result is stored in the hour, minute, and second of the register designated in D.
- 5. If **S**₁ and **S**₂ exceed their ranges, the program will regard this as an operation error and the instruction will not be executed. M1067 and M1068 will be On and D1067 record the error code 0E1A (hex).
- 6. If the sum is larger than 24 hours, the carry flag M1022 will be On and the value in **D** will be the result of "sum minuses 24 hours".
- 7. If the sum equals 0 (00:00:00), the zero flag M1020 will be On.

Program Example:

When X10= On, TADD instruction will be executed and the hour, minute and second in RTC designated in D0
 ~ D2 will plus the hour, minute and second in RTC designated in D10 ~ D12. The sum is stored in the hour,
 minute and second of the register designated in D20 ~ D22.

2. If the sum is larger than 24 hours, M1022 will be On.

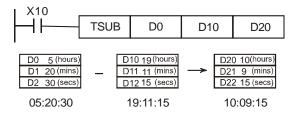
API	Mnemonic	;	Operands	Function	Controllers
163	TSUB	Р	\$1 \$2 D	Time Subtraction	ES/EX/SS SA/SX/SC EH/SV

Туре	В	Bit De	evice	s				V	Vord I	Devic	es					Program Steps
ОР	X	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	TSUB, TSUBP: 7 steps
S ₁											*	*	*			
S ₂											*	*	*			
D											*	*	*			

ſ				PUI	SE							16	-bit							32	-bit			
ſ	ES I	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

 S_1 : Time minuend S_2 : Time subtrahend D: Time remainder

Explanations:


- 1. S₁, S₂, and **D** will occupy 3 consecutive devices.
- 2. See the specifications of each model for their range of use.
- 3. Flags: M1020 (zero flag); M1021 (borrow flag)
- 4. $S_1 S_2 = D$. The hour, minute, and second of the RTC designated in S_1 minus the hour, minute, and second designated in S_2 . The result is stored in the hour, minute, and second of the register designated in D.
- 5. If **S**₁ and **S**₂ exceed their ranges, the program will regard this as an operation error and the instruction will not be executed. M1067 and M1068 will be On and D1067 record the error code 0E1A (hex).
- 6. If the remainder is a negative value, the borrow flag M1021 will be On. The value in **D** will be the result of "the negative value pluses 24 hours".
- 7. If the remainder equals 0 (00:00:00), the zero flag M1020 will be On.

Program Example:

When X10= On, TADD instruction will be executed and the hour, minute and second in RTC designated in D0
 ~ D2 will minus the hour, minute and second in RTC designated in D10 ~ D12. The remainder is stored in the hour, minute and second of the register designated in D20 ~ D22.

2. If the subtraction result is a negative value, M1021 will be On.

API	Mnemonic		Operands	Function	Controllers				
166	TRD	Р	Θ	Time Read	ES/EX/SS SA/SX/SC EH/SV				

	Туре	Е	Bit De	vice	s				٧	Vord I	Program Steps						
OP		Χ	Υ	М	S	K	I	KnX	KnY	KnM	KnS	Т	С	D	Е	F	TRD, TRDP: 3 steps
	D											*	*	*			

PULSE							16-bit								32-bit							
ES EX SS SA SX SC EH SV					SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	

D: The device for storing the current time read in RTC

Explanations:

- 1. **D** will occupy 7 consecutive devices.
- 2. See the specifications of each model for their range of use.
- 3. Flags: M1016, M1017, M1076. See remarks for more details.
- 4. The built-in RTC in EH/EH2/SV/SA/SX/SC series MPU offers 7 data (year, week, month, day, hour, minute, second) stored in D1319 ~ D1313. TRD instruction is for program designers to read the current data in RTC and store the data to the 7 registers designated.
- 5. D1319 only reads the 2-digit year in A.D. If you wish D1319 to read the 4-digit year, see remarks for more information.

Program Example:

- When X0 = On, the instruction will read the current time in RTC to the designated registers D0 ~ D6.
- 2. The content of D1318: 1 = Monday; 2 = Tuesday ... 7 = Sunday.

Special D	Item	Content
D1319	Year (A.D.)	00~99
D1318	Day (Mon ~ Sun)	1~7
D1317	Month	1~12
D1316	Day	1~31
D1315	Hour	0~23
D1314	Minute	0~59
D1313	Second	0~59

	General D	Item
-	D0	Year (A.D.)
-	D1	Day (Mon ~ Sun)
_	D2	Month
_	D3	Date
_	D4	Hour
_	D5	Minute
-	D6	Second

1. Flags and special registers for the built-in RTC in EH/EH2/SV/SA/SX/SC series MPU.

Device	Name	Function
M1016	Displaying year in A.D. in RTC	When Off, D1319 will display 2-digit year in A.D. When On, D1319 will display "2-digit year in A.D + 2,000".
M1017	±30 seconds correction	Correction takes place when M1017 goes from Off to On (reset to 0 when in 0 ~ 29 second; minute pluses 1 and second resets to 0 in 30 ~ 59 second)
M1076	Malfunction of RTC	On when the set value exceeds the range. (only available when the power is being switched on).
D1313	Second	0 ~ 59
D1314	Minue	0 ~ 59
D1315	Hour	0 ~ 23
D1316	Day	1 ~ 31
D1317	Month	1 ~ 12
D1318	Week	1 ~ 7
D1319	Year	0 ~ 99 (2-digit year in A.D.)

2. How to correct RTC:

There are 2 ways to correct the built-in RTC.

- a) By a specific instruction. (See API 167 TWR instruction)
- b) By peripheral devices, WPLSoft, the ladder diagram editing software.
- 3. How to display 4-digit year in A.D.:
 - a) Normally, the year is only displayed in 2 digits (e.g. 2003 displayed as 03). If you wish the year to be displayed in 4 digits, please key in the following program at the start of the program.

- b) The original 2-digit year will be switched to a 4-digit year, i.e. the 2-digit year will pluses 2,000.
- c) If you wish to write in new time in the 4-digit year display mode, you can only write in a 2-digit year (0 ~ 99, indicating year 2000 ~ 2099). For example, 00=year 2000, 50=year 2050 and 99=year 2099.

API	Mnemonic		Operands	Function	Controllers				
167	TWR	Р	S	Time Write	ES/EX/SS SA/SX/SC EH/SV				

	Туре	В	evice	s				٧	Vord I	Program Steps							
ОР		Χ	Υ	М	S	K	I	KnX	KnY	KnM	KnS	Т	С	D	Е	F	TWR, TWRP: 3 steps
	S											*	*	*			

PULSE							16-bit								32-bit						
ES EX SS SA SX SC EH SV					SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

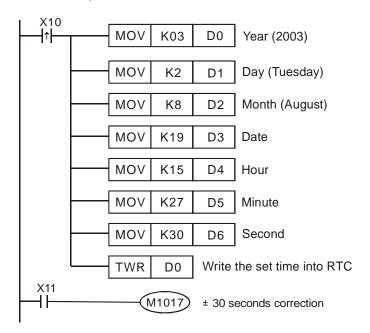
S: Device for storing the new time to be written into RTC

Explanations:

- 1. **S** will occupy 7 consecutive devices.
- 2. See the specifications of each model for their range of use.
- 3. Flags: M1016, M1017, M1076. See remarks of API 166 TRD for more details.
- 4. To make adjustment on the RTC built in EH/EH2/SV/SA/SX/SC series MPU, use this instruction to write the correct time into the RTC.
- When this instruction is executed, the new set time will be written in the RTC built in PLC immediately.
 Therefore, please be noted that the new set time has to match the current time then when the instruction is executed.
- 6. If **S** exceeds its range, the program will regard it as an operation error and the instruction will not be executed. M1067 and M1068 will be On and D1067 will record the error code 0E1A (hex).

Program Example 1:

When X0= On, write the correct current time into the RTC.


	General D	Item	Content
	D20	Year (A.D.)	00~99
Φ	D21	Day (Mon ~ Sun)	1~7
t time	D22	Month	1~12
New set time	D23	Date	1~31
Nev	D24	Hour	0~23
	D25	Minute	0~59
	D26	Second	0~59

	Special D	Item		
-	D1319	Year (A.D.)		
-	D1318	Day (Mon ~ Sun)	Re	
—	D1317	Month	Real Time	
-	D1316	Date	ïme	
-	D1315	Hour	Clock	
-	D1314	Minute	×	
-	D1313	Second		

Program Example 2:

- 1. Set the current time in the RTC as 15:27:30, Tuesday, August 19, 2003.
- 2. $D0 \sim D6$ indicate the new set time in the RTC.
- 3. X10 = On for changing the current time in the RTC and make the changed value the new set value.

4. Whenever X11 = On, RTC will perform a ±30 second correction. The correction is performed according to the rules: When the second hand of RTC locates at 1 ~ 29, the second will be automatically reset to "0" and the minute hand will remain at its location. When the second hand locates at 30 ~ 59, the second will be automatically reset to "0" and the minute hand will increase by 1 minute.

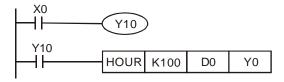
API	Mnemonic		Operands	Function	Controllers
169	D	HOUR	S D1 D2	Hour Meter	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	HOUR: 7 steps
S					*	*	*	*	*	*	*	*	*	*	*	DHOUR: 13 steps
D_1													*			21100111110010
D_2		*	*	*												

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

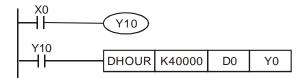
S: Period of time when **D**₂ is On (in hour)

D₁: Current value being measured (in hour)


D₂: Output device

Explanations:

- 1. If **S** is used in device F, only 16-bit instruction is applicable.
- 2. D_1 will occupy 2 consecutive points. $D_1 + 1$ uses 16-bit register in 16-bit or 32-bit instruction.
- 3. See the specifications of each model for their range of use.
- 4. HOUR instruction can be used 4 times of SA/SX/SC.
- 5. Range of **S**: K1 ~ K32,767 (unit: hour); range of \mathbf{D}_1 : K0 ~ K32,767 (unit: hour). \mathbf{D}_1 + 1 refers to the current time that is less than an hour (range: K0 ~K3,599; unit: second).
- 6. This instruction times the time and when the time reaches the set time (in hour), **D**₂ will be On. This function allows the user to time the operation of the machine or conduct maintenance works.
- 7. After **D**₂ is On, the timer will resume the timing.
- 8. In the 16-bit instruction, when the current time measured reaches the maximum 32,767 hours/3,599 seconds, the timing will stop. To restart the timing, \mathbf{D}_1 and $\mathbf{D}_1 + 1$ have to be reset to "0".
- 9. In the 32-bit instruction, when the current time measured reaches the maximum 2,147,483,647 hours/3,599 seconds, the timing will stop. To restart the timing, $\mathbf{D_1} \sim \mathbf{D_1} + 2$ have to be reset to "0".
- 10. There is no limitations on the times of using this instruction in the program for EH series MPU; however, only 4 instructions can be executed at the same time.


Program Example 1:

In 16-bit instruction, when X0 = On, Y10 will be On and the timing will start. When the timing reaches 100 hours, Y0 will be On and D0 will record the current time measured (in hour) and D1 will record the current time that is less than an hour (0 ~ 3,599; unit: second).

Program Example 2:

In 32-bit instruction, when X0 = On, Y10 will be On and the timing will start. When the timing reaches 40,000 hours, Y0 will be On. D1 and D0 will record the current time measured (in hour) and D2 will record the current time that is less than an hour (0 ~ 3,599; unit: second).

API		Mnemonic	;	Operands	Function	Controllers
170	D	GRY	Р	SD	BIN → Gray Code	ES/EX/SS SA/SX/SC EH/SV

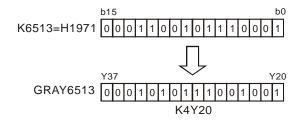
	Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	GRY, GRYP: 5 steps
	S					*	*	*	*	*	*	*	*	*	*	*	DGRY, DGRYP: 9 steps
	D								*	*	*	*	*	*	*	*	2011., 2011 a atapa

			PUL	SE							16	-bit							32	-bit			
ES I	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Source device for BIN value

D: Device for storing Gray code

Explanations:


- 1. If **S** and **D** are used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. This instruction converts the BIN value in the device designated in **S** into Gray code and stores the value in **D**.
- 4. See the ranges of **S** as indicated below. If **S** exceeds the ranges, the program will regard it as an operation error and the instruction will not be executed. M1067 and M1068 will be On and D1067 will record the error code 0E1A (hex).

In 16-bit instruction: 0 ~ 32,767

In 32-bit instruction: 0 ~ 2,147,483,647

Program Example:

When X0 = On, the instruction will convert constant K6,513 into Gray code and store the result in K4Y20.

API		Mnemonic	;	Operands	Function	Controllers
171	D	GBIN	Р		Gray Code → BIN	ES/EX/SS SA/SX/SC EH/SV

Туре		В	it De	evice	s				V	Nord I	Devic	es					Program Steps
ОР	$\sqrt{\ }$	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	GBIN, GBINP: 5 steps
S						*	*	*	*	*	*	*	*	*	*	*	DGBIN, DGBINP: 9 steps
D			<u> </u>						*	*	*	*	*	*	*	*	

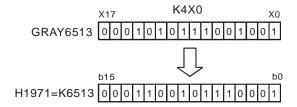
PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV I	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

S: Source device for Gray code

D: Device for storing BIN value

Explanations:

- 1. If **S** and **D** are used in device F, only 16-bit instruction is applicable.
- 2. See the specifications of each model for their range of use.
- 3. This instruction converts the Gray code in the device designated in **S** into BIN value and stores the value in **D**.
- 4. This instruction converts the content (in Gray code) in the absolute position encoder connected at the PLC input terminal into BIN value and store the result in the designated register.
- 5. See the ranges of **S** as indicated below. If **S** exceeds the ranges, the program will regard it as an operation error and the instruction will not be executed. M1067 and M1068 will be On and D1067 will record the error code 0E1A (hex).


In 16-bit instruction: 0 ~ 32,767

In 32-bit instruction: 0 ~ 2,147,483,647

Program Example:

When X20 = On, the Gray code in the absolute position encoder connected at $X0 \sim X17$ will be converted into BIN value and stored in D10.

API		Mnemonic	;	Operands	Function	Controllers
172	D	ADDR	Р	\$1 \$2 D	Floating Point Addition	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	X	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DADDR, DADDRP: 13 steps
S ₁													*			
S ₂													*			
D													*			

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

S₁: Floating point summand **S**₂: Floating point addend **D**: Sum

Explanations:

- 1. S₁ and S₂ can be floating point values (FX.XX).
- 2. See the specifications of each model for their range of use.
- 3. Flags: M1020 (zero flag), M1021 (borrow flag), M1022 (carry flag)
- 4. In DADDR instruction, floating point values (e.g. F1.2) can be entered directly into S₁ and S₂ or stored in register D for operation. When the instruction is being executed, operand D will store the operation result.
- 5. When S_1 and S_2 stores the floating point values in register D, their functions are the same as API 120 EADD.
- S₁ and S₂ can designate the same register. In this case, if the "continuous execution" type instruction is in use and during the On period of the drive contact, the register will be added once in every scan by a "pulse execution" type instruction (DADDRP).
- 7. If the absolute value of the operation result is larger than the maximum floating point displayable, the carry flag M1022 will be On.
- 8. If the absolute value of the operation result is smaller than the minimum floating point displayable, the borrow flag M1021 will be On
- 9. If the operation result is "0", the zero flag M1020 will be On.

Program Example 1:

When X0 = On, the floating point F1.20000004768372 will plus F2.20000004768372 and the result F3.40000009536743 will be stored in the data registers (D10, D11).

Program Example 2:

When X0 = On, the floating point value (D1, D0) + floating point value (D3, D2) and the result will be stored in the registers designated in (D11, D10).

The functions of this instruction are in V6.6 of ES/EX/SS series, V1.6 of SA/SX series and V1.4 of SC series. DADDR instruction supports EH2/SV series, but not EH series.

API		Mnemonic		Operands	Function	Controllers
173	D	SUBR	Р	\$1 \$2 D	Floating Point Subtraction	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	O	D	Е	F	DSUBR, DSUBRP: 13 steps
S ₁													*			
S ₂													*			
D	, and the second			, and the second									*			

PULSE	16-bit	32-bit							
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV							

S₁: Floating point minuend

S₂: Floating point subtrahend

D: Remainder

Explanations:

- 1. S_1 and S_2 can be floating point values (FX.XX).
- 2. See the specifications of each model for their range of use.
- 3. Flags: M1020 (zero flag), M1021 (borrow flag), M1022 (carry flag)
- 4. In DSUBR instruction, floating point values (e.g. F1.2) can be entered directly into **S**₁ and **S**₂ or stored in register D for operation. When the instruction is being executed, operand **D** will store the operation result.
- 5. When S_1 and S_2 stores the floating point values in register D, their functions are the same as API 121 ESUB.
- S₁ and S₂ can designate the same register. In this case, if the "continuous execution" type instruction is in use and during the On period of the drive contact, the register will be subtracted once in every scan by a "pulse execution" type instruction (DSUBRP).
- 7. If the absolute value of the operation result is larger than the maximum floating point displayable, the carry flag M1022 will be On.
- 8. If the absolute value of the operation result is smaller than the minimum floating point displayable, the borrow flag M1021 will be On
- 9. If the operation result is "0", the zero flag M1020 will be On.

Program Example 1:

When X0 = On, the floating point F1.20000004768372 will minus F2.20000004768372 and the result F-1 will be stored in the data registers (D10, D11).

Program Example 2:

When X0 = On, the floating point value (D1, D0) – floating point value (D3, D2) and the result will be stored in the registers designated in (D11, D10).

The functions of this instruction are in V6.6 of ES/EX/SS series, V1.6 of SA/SX series and V1.4 of SC series. DADDR instruction supports EH2/SV series, but not EH series.

API		Mnemonic		Operands	Function	Controllers
174	D	MULR	Ρ	S1 S2 D	Floating Point Multiplication	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	О	D	Е	F	DMULR, DMULRP: 13 steps
S ₁													*			
S ₂													*			
D													*			

PULSE	16-bit	32-bit							
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV							

S₁: Floating point multiplicand

S₂: Floating point multiplicator

D: Product

Explanations:

- 1. S_1 and S_2 can be floating point values (FX.XX).
- 2. See the specifications of each model for their range of use.
- 3. Flags: M1020 (zero flag), M1021 (borrow flag), M1022 (carry flag)
- 4. In DMULR instruction, floating point values (e.g. F1.2) can be entered directly into S₁ and S₂ or stored in register D for operation. When the instruction is being executed, operand D will store the operation result.
- 5. When S₁ and S₂ stores the floating point values in register D, their functions are the same as API 122 EMUL.
- 6. **S**₁ and **S**₂ can designate the same register. In this case, if the "continuous execution" type instruction is in use and during the On period of the drive contact, the register will be multiplied once in every scan by a "pulse execution" type instruction (DMULRP).
- 10. If the absolute value of the operation result is larger than the maximum floating point displayable, the carry flag M1022 will be On.
- 11. If the absolute value of the operation result is smaller than the minimum floating point displayable, the borrow flag M1021 will be On.
- 12. If the operation result is "0", the zero flag M1020 will be On.

Program Example 1:

When X0 = On, the floating point F1.20000004768372 will multiply F2.20000004768372 and the result F2.64000010490417 will be stored in the data registers (D10, D11).

Program Example 2:

When X1 = On, the floating point value (D1, D0) × floating point value (D11, D10) and the result will be stored in the registers designated in (D21, D20).

The functions of this instruction are in V6.6 of ES/EX/SS series, V1.6 of SA/SX series and V1.4 of SC series. DADDR instruction supports EH2/SV series, but not EH series.

API	ı	Mnemonic	;	Operands	Function	Controllers
175	D	DIVR	Р	\$1 \$2 D	Floating Point Division	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	vice	s	Word Devices											Program Steps
ОР	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DDIVR, DDIVRP: 13 steps
S ₁													*			
S ₂													*			
D													*			

PULSE	16-bit	32-bit							
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV							

S₁: Floating point dividend S₂

S₂: Floating point divisor

D: Quotient

Explanations:

- S₁ and S₂ can be floating point values.
- 2. See the specifications of each model for their range of use.
- 3. Flags: M1020 (zero flag), M1021 (borrow flag), M1022 (carry flag)
- 4. In DDIVR instruction, floating point values (e.g. F1.2) can be entered directly into **S**₁ and **S**₂ or stored in register D for operation. When the instruction is being executed, operand **D** will store the operation result.
- 5. When S₁ and S₂ stores the floating point values in register D, their functions are the same as API 123 EDIV.
- 6. If **S**₂ is "0", the program will regard it as an operation error and the instruction will not be executed. M1067 and M1068 will be On and D1067 will record the error code H'0E19.
- 7. If the absolute value of the operation result is larger than the maximum floating point displayable, the carry flag M1022 will be On.
- 8. If the absolute value of the operation result is smaller than the minimum floating point displayable, the borrow flag M1021 will be On.
- 9. If the operation result is "0", the zero flag M1020 will be On.

Program Example 1:

When X0 = On, the floating point F1.20000004768372 will be divided by F2.20000004768372 and the result F0.545454561710358 will be stored in the data registers (D10, D11).

Program Example 2:

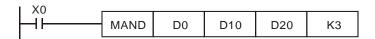
When X1 = On, the floating point value (D1, D0) ÷ floating point value (D11, D10) and the quotient will be stored in the registers designated in (D21, D20).

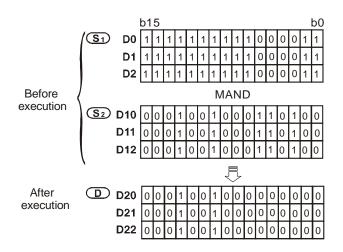
The functions of this instruction are in V6.6 of ES/EX/SS series, V1.6 of SA/SX series and V1.4 of SC series. DADDR instruction supports EH2/SV series, but not EH series.

API	Mnemonic		Operands	Function	Controllers
180	MAND	Р	\$1 \$2 D n	Matrix 'AND' Operation	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	vice	s				V	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	MAND, MANDP: 9 steps
	S ₁							*	*	*	*	*	*	*			
	S ₂							*	*	*	*	*	*	*			
	D								*	*	*	*	*	*			
	n					*	*							*	ď		

Operands:

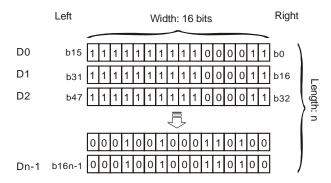

S₁: Matrix source device 1 S₂: Matrix source device 2 D: Operation result n: Array length


Explanations:

- 1. Range of **n**: K1 ~ K256
- 2. S₁, and S₂ designate KnX, KnY, KnM and KnS; D designates KnYm KnM and KnS
- 3. SA/SX/SC can designate n = 4. EH/EH2/SV can designate $n \le 4$.
- 4. See the specifications of each model for their range of use.
- 5. The two matrix sources S_1 and S_2 perform matrix 'AND' operation according to the array length n. The result is stored in D.
- 6. Operation rule of matix 'AND': The result will be 1 if both two bits are 1; otherwise the result will be 0.

Program Example:

When X0 = On, the 3 arrays of 16-bit registers D0 \sim D2 and the 3 arrays of 16-bit registers D10 \sim D12 will perform a matrix 'AND' operation. The result will be stored in the 3 arrays of 16-bitd registers D20 \sim D22.



Remarks:

- 1. Explanations on the matrix instruction:
 - a) A matix consists of more than 1 consecutive 16-bit registers. The number of registers in the matrix is the

- length of the array (n). A matrix contains $16 \times n$ bits (points) and there is only 1 bit (point) offered for an operand at a time.
- b) The matrix instruction gathers a series of 16 \times n bits (b₀ ~ b_{16n-1}) and designates a single point for operation. The point will not be seen as a value.
- c) The matrix instruction processes the moving, copying, comparing and searching of one-to-many or many-to-many matrix status, which is a very handy and important application instruction.
- d) The matrix operation will need a 16-bit register to designate a point among the 16n points in the matrix for the operation. The register is the Pointer (Pr) of the matrix, designated by the user in the instruction. The vaild range of Pr is 0 ~ 16n -1, corresponding to b0 ~ b16n-1 in the matrix.
- e) There are left displacement, right displacement and rotation in a matrix operation. The bit number decreases from left to right (see the figure below).

- f) The matrix width (C) is fixed at 16 bits.
- g) Pr: matrix pointer. E.g. if Pr is 15, the designated point will be b15.
- h) Array length (R) is n: $n = 1 \sim 256$.

Example: The matrix is composed of D0, n = 3; D0 = HAAAA, D1 = H5555, D2 = HAAFF

	C_{15}	C_{14}	C_{13}	C_{12}	C ₁₁	C_{10}	C ₉	C ₈	C_7	C_6	C_5	C_4	C_3	C_2	C_1	C^0	
R_0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	D0
R_1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	D1
R_2	1	0	1	0	1	0	1	0	1	1	1	1	1	1	1	1	D2

Example: The matrix is composed of K2X0, n = 3; K2X0 = H37, K2X10 = H68, K2X20 = H45

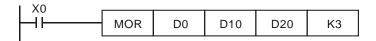
	C_{15}	C_{14}	C_{13}	C_{12}	C ₁₁	C_{10}	C ₉	C8	C_7	C^{e}	C_5	C_4	C_3	C_2	C ₁	C_0	
R_0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	$X_0 \sim X_7$
R_1	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	X ₁₀ ~X ₁₇
R_2	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	$X_{20} \sim X_{27}$

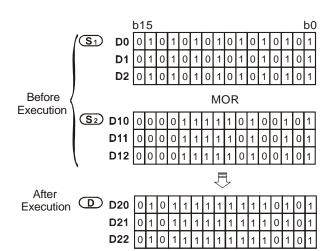
Fill "0" into the blank in R0(C_{15} - C_{8}), R1(C_{15} - C_{8}), and R2(C_{15} - C_{8}).

API	Mnemonic	;	Operands	Function	Controllers
181	MOR	Р	\$1 \$2 D n	Matrix 'OR' Operation	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	Bit De	evice	s				V	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	C	D	П	F	MOR, MORP: 9 steps
	S ₁							*	*	*	*	*	*	*			
	S ₂							*	*	*	*	*	*	*			
	D								*	*	*	*	*	*			
	n					*	*							*			

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV


S₁: Matrix source device 1 S₂: Matrix source device 2. D: Operation result n: Array length


Explanations:

- 1. Range of **n**: K1 ~ K256
- 2. S₁, and S₂ designate KnX, KnY, KnM and KnS; D designates KnYm KnM and KnS
- 3. SA/SX/SC can designate n = 4. EH/EH2/SV can designate $n \le 4$.
- 4. See the specifications of each model for their range of use.
- 5. The two matrix sources S_1 and S_2 perform matrix 'OR' operation according to the array length n. The result is stored in D.
- 6. Operation rule of matrix 'OR': The result will be 1 if either of the two bits is 1. The result is 0 only when both two bits are 0.

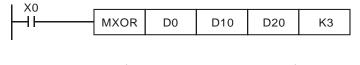
Program Example:

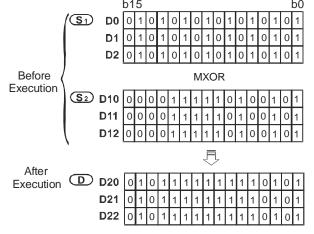
When X0 = On, the 3 arrays of 16-bit registers D0 \sim D2 and the 3 arrays of 16-bit registers D10 \sim D12 will perform a matrix 'OR' operation. The result will be stored in the 3 arrays of 16-bit registers D20 \sim D22.

API	I	Mnemonic	;	Operands	Function	Controllers
182		MXOR	Р	\$1 \$2 D n	Matrix 'XOR' Operation	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	evice	s				V	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	Κ	Η	KnX	KnY	KnM	KnS	Т	С	О	Е	F	MXOR, MXORP: 9 steps
	S ₁							*	*	*	*	*	*	*			
	S ₂							*	*	*	*	*	*	*			
	D								*	*	*	*	*	*			
	n					*	*							*			

				PUL	_SE							16	-bit							32	-bit			
Ī	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV


S₁: Matrix source device 1 S₂: Matrix source device 2 D: Operation result n: Array length


Explanations:

- 1. Range of **n**: K1 ~ K256
- 2. S₁, and S₂ designate KnX, KnY, KnM and KnS; **D** designates KnYm KnM and KnS
- 3. SA/SX/SC can designate n = 4. EH/EH2/SV can designate n \leq 4.
- 4. See the specifications of each model for their range of use.
- 5. The two matrix sources **S**₁ and **S**₂ perform matrix 'XOR' operation according to the array length **n**. The result is stored in **D**.
- 6. Operation rule of matrix 'XOR': The result will be 1 if the two bits are different. The result will be 0 if the two bits are the same.

Program Example:

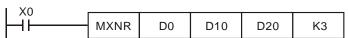
When X0 = On, the 3 arrays of 16-bit registers $D0 \sim D2$ and the 3 arrays of 16-bit registers $D10 \sim D12$ will perform a matrix 'XOR' operation. The result will be stored in the 3 arrays of 16-bit registers $D20 \sim D22$.

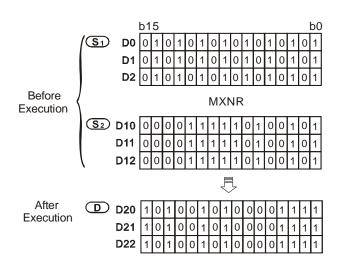
API	Mnemonic		Operands	Function	Controllers
183	MXNR	Ρ	S ₁ S ₂ D n	Matrix 'XNR' Operation	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	vice	s				V	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	MXNR, MXNRP: 9 steps
	S ₁							*	*	*	*	*	*	*			
	S ₂							*	*	*	*	*	*	*			
	D								*	*	*	*	*	*			
	n					*	*							*			

PULSE 16-bit 32-bit
ES | EX | SS | SA | SX | SC | EH | SV | ES | EX | SS | SA | SX | SC | EH | SV |

Operands:


S₁: Matrix source device 1 S₂: Matrix source device 2 D: Operation result n: Array length


Explanations:

- 1. Range of **n**: K1 ~ K256
- 2. S₁, and S₂ designate KnX, KnY, KnM and KnS; D designates KnYm KnM and KnS
- 3. SA/SX/SC can designate n = 4. EH/EH2/SV can designate $n \le 4$.
- 4. See the specifications of each model for their range of use.
- 5. The two matrix sources S_1 and S_2 perform matrix 'XNR' operation according to the array length n. The result is stored in D.
- 6. Operation rule of matrix 'XNR': The result will be 1 if the two bits are the same. The result will be 0 if the two bits are different.

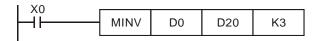
Program Example:

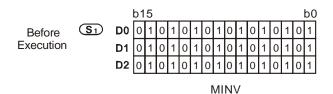
When X0 = On, the 3 arrays of 16-bit registers D0 ~ D2 and the 3 arrays of 16-bit registers D10 ~ D12 will perform a matrix 'XNR' operation. The result will be stored in the 3 arrays of 16-bit registers D20 ~ D22.

API	Mnemonic	;	Operands	Function	Controllers
184	MINV	Р	S D n	Matrix Inverse Operation	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	it De	evice	s				V	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	O	D	Е	F	MINV, MINVP: 7 steps
S							*	*	*	*	*	*	*			
D								*	*	*	*	*	*			
n					*	*							*			

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV


S: Matrix source device D: Operation result n: Array length


Explanations:


- 1. Range of **n**: K1 ~ K256
- 2. **S** designates KnX, KnY, KnM and KnS; **D** designates KnY, KnM and KnS.
- 3. SA/SX/SC can designate n = 4. EH/EH2/SV can designate $n \le 4$.
- 4. See the specifications of each model for their range of use.
- 5. **S** performs an inverse matrix operation according to the array length **n**. The result is stored in **D**.

Program Example:

When X0 = On, the 3 arrays of 16-bit registers $D0 \sim D2$ perform a matrix inverse operation. The result will be stored in the 3 arrays of 16-bit registers $D20 \sim D22$.

API	Mnemonic	Operands	Function	Controllers
185	MCMP F	S1 S2 N D	Matrix Compare	ES/EX/SS SA/SX/SC EH/SV

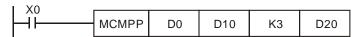
Туре	•	В	it De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	O	D	Е	F	MCMP, MCMPP: 9 steps
S ₁								*	*	*	*	*	*	*			
S ₂								*	*	*	*	*	*	*			
n						*	*							*			
D									*	*	*	*	*	*	*	*	

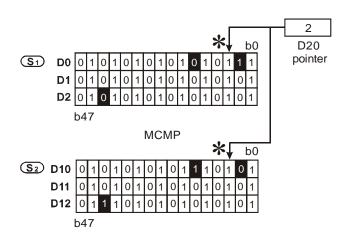
PULSE							16-bit								32-bit								
ES E	EΧ	SS	SA	SX	SC	EH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV

S₁: Matrix source device 1 S₂: Mat

S₂: Matrix source device 2 **n**: Array length

D: Pointer (Pr), for storing the value of target location


Explanations:


- 1. Range of **n**: K1 ~ K256
- 2. **S**₁, and **S**₂ designate KnX, KnY, KnM and KnS; **D** designates KnY, KnM and KnS.
- 3. SA/SX/SC can designate n = 4. EH/EH2/SV can designate $n \le 4$.
- 4. See the specifications of each model for their range of use.
- 5. Flags: M1088 ~ M1092. See remarks for more details.
- 6. This instruction compares every bit in S_1 with every bit in S_2 starting from location D and finds out the location of different bits. The location will be stored in D.
- 7. The matrix comparison flag (M1088) decides to compare between equivalent values (M1088 = 1) or different values (M1088 = 0). When the comparison is completed, it will stop immediately and the matrix bit search flag will turn "On" (M1091 = 1). When the comparison progresses to the last bit, the matrix search end flag (M1089) will turn "On" and the No. where the comparison is completed is stored in **D**. The comparison will start from the 0th bit in the next scan period and the matrix search start flag will turn "On" (M1090 = 1). When **D** exceeds the range, the pointer error flag will turn "On" (M1092 = 1).
- 8. The matrix operation will need a 16-bit register to designate a point among the 16n points in the matrix for the operation. The register is the Pointer (Pr) of the matrix, designated by the user in the instruction. The vaild range of Pr is 0 ~ 16n -1, corresponding to b0 ~ b16n-1 in the matrix. Please avoid changing the Pr value during the operation in case the comparing and searching will not ne correct. If the Pr value exceeds its range, M1092 will be On and the instruction will not be executed.
- 9. When M1089 and M1091 take place at the same time, both flags will be "1" at the same time.

Program Example:

- 1. When X0 goes from Off to On, the matrix search start falg M1090 = 0. The searching will start from the bit marked with "*" (current Pr value +1) for bits of different status (M1088 = 0).
- 2. Set the Pr value D20 = 2. When X0 goes from Off to On for 4 times, we can obtain the 4 execution results **0**, **2**,
 - ❸, ❹.
 - **1** D20 = 5, M1091 = 1, M1089 = 0.
 - **2** D20 = 45, M1091 = 1, M1089 = 0.

- **9** D20 = 47, M1091 = 0, M1089 = 1.
- **4** D20 = 1, M1091 = 1, M1089 = 0.

Flags explanations:

Flags	Function
M1088	Matrix comparison flag. Comparing between equivalent values (M1088 = 1) or different
IVITUOO	values (M1088 = 0).
M1089	Matrix search end flag. When the comparison reaches the last bit, M1089 = 1.
M1090	Matrix search start flag. Comparing from bit 0 (M1090 = 1).
M1091	Matrix bit search flag. When the comparison is completed, the comparison will stop
WITO91	immediately (M1091=1).
M1092	Matrix pointer error flag. When the pointer Pr exceeds its range, M1092 = 1.

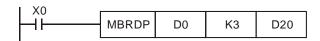
API	ı	Mnemonic		Operands	Function	Controllers
186		MBRD	Р	s n D	Read Matrix Bit	ES/EX/SS SA/SX/SC EH/SV

Туре	Е	Bit De	vice	s				V	Vord I	Program Steps						
ОР	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	D	Е	F	MBRD, MBRDP: 7 steps
S							*	*	*	*	*	*	*			
n					*	*							*			
D						,		*	*	*	*	*	*	*	*	ļ

PULSE								16-bit									32-bit							
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV		

S: Matrix source device

n: Array length


D: Pointer (Pr), for storing the value of target location

Explanations:

- 1. Range of **n**: K1 ~ K256
- 2. **S** designates KnX, KnY, KnM and KnS; **D** designates KnY, KnM and KnS.
- 3. SA/SX/SC can designate n = 4. EH/EH2/SV can designate $n \le 4$.
- 4. See the specifications of each model for their range of use.
- 5. Flags: M1089 ~ M1095. See remarks for more details.
- 6. When this instruction is executed, it first determines if the matrix pointer clear flag (M1094) is "On". If it is "On", pointer D is cleared as 0. The instruction then reads the On/Off status from the 0th bit of **S** to the matrix rotation/displacement/output carry flag (M1095). Whenever finishing reading 1 bit, the instruction determines whether the matrix pointer increasing flag (M1093) is "On". If it is "On", the value of pointer D will plus 1. When the reading is processed to the last bit, the matrix search end flag (M1089) will turn "On" and pointer D record the No. of read bits.
- 7. The Pointer (Pr) of the matrix is designated by the user in the instruction. The vaild range of Pr is $0 \sim 16n 1$, corresponding to $b_0 \sim b_{16n-1}$ in the matrix. If the Pr value exceeds its range, M1092 will be On and the instruction will not be executed.

Program Example:

- 1. When X0 goes from Off to On, M1094 will be set to "0" and M1093 to "1". Therefore, the Pr will plus 1 after every reading.
- 2. Set the Pr value D20 = 45. When X0 goes from Off to On for 3 times, we can obtain the 3 execution results **1**,
 - ❷, ❸.
 - **1** D20 = 46, M1095 = 0, M1089 = 0.
 - **2** D20 = 47, M1095 = 1, M1089 = 0.
 - **3** D20 = 47, M1095 = 1, M1089 = 1.

Flag explanations:

Flags	Function
M1088	Matrix search end flag. When the comparison reaches the last bit, M1089 = 1.
M1092	Matrix pointer error flag. When the pointer Pr exceeds its range, M1092 = 1.
M1093	Matrix pointer increasing flag. Adding 1 to the current value of the Pr.
M1094	Matrix pointer clear flag. Clearing the current value of the Pr to 0.
M1095	Matrix rotation/displacement/output carry flag.

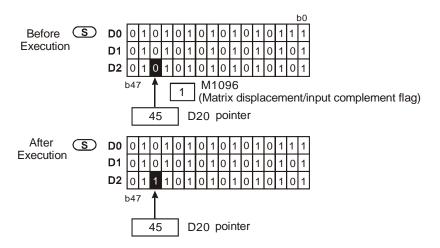
API	M	Inemonic	Operands	Function	Controllers
187		MBWR P	S n D	Write Matrix Bit	ES/EX/SS SA/SX/SC EH/SV

Ту	ре	В	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	MBWR, MBWRP: 7 steps
S								*	*	*	*	*	*	*			
n						*	*							*			
D									*	*	*	*	*	*	*	*	

PULSE										16	16-bit									32-bit							
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV					

S: Matrix source device

n: Array length


D: Pointer (Pr), for storing the value of target location

Explanations:

- 1. Range of **n**: K1 ~ K256
- 2. **S** designates KnX, KnY, KnM and KnS; **D** designates KnY, KnM and KnS.
- 3. SA/SX/SC can designate n = 4. EH/EH2/SV can designate $n \le 4$.
- 4. See the specifications of each model for their range of use.
- 5. Flags: M1089 ~ M1096. See remarks for more details.
- 6. When this instruction is executed, if first determines if the matrix pointer clear flag (M1094) is "On", If it is "On", pointer D is cleared as 0. The instruction then writes the value in the matrix displacement/input complement flag (M1096) into the location starting from the 0th bit of **S**. Whenever finishing writing 1 bit, the instruction determines whether the matrix pointer increasing flag (M1093) is "On". If it is "On", the value of pointer D will plus 1. When the writing is processed to the last bit, the matrix search end flag (M1089) will turn "On" and pointer D records the No. of written bits. If D exceeds its range, M1092 will be On.
- 7. The Pointer (Pr) of the matrix is designated by the user in the instruction. The vaild range of Pr is $0 \sim 16n 1$, corresponding to $b_0 \sim b_{16n-1}$ in the matrix. If the Pr value exceeds its range, M1092 will be On and the instruction will not be executed.

- 1. When X0 goes from Off to On, M1094 will be set to "0" and M1093 to "1". Therefore, the Pr will plus 1 after every writing.
- 2. Set the Pr value D20 = 45 and M1096 = 1. When X0 goes from Off to On for 1 time, we can obtain the execution results: D20 = 45, M1096 = 1, M1089 = 0.

```
MBWRP D0 K3 D20
```


Remarks:

Flag explanations:

Flags	Function
M1088	Matrix search end flag. When the comparison reaches the last bit, M1089 = 1.
M1092	Matrix pointer error flag. When the pointer Pr exceeds its range, M1092 = 1.
M1093	Matrix pointer increasing flag. Adding 1 to the current value of the Pr.
M1094	Matrix pointer clear flag. Clearing the current value of the Pr to 0.
M1096	Matrix displacement/input complement flag.

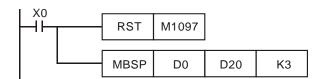
API	Mnemonic		Operands	Function	Controllers
188	MBS	Р	s D	Matrix Bit Displacement	ES/EX/SS SA/SX/SC EH/SV

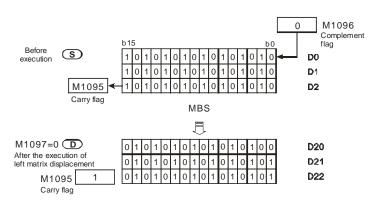
Туре	В	it De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	О	D	Е	F	MBS, MBSP: 7 steps
S							*	*	*	*	*	*	*			
D								*	*	*	*	*	*			
n					*	*							*			

			PUI	_SE							16	-bit							32	-bit			
ES E	ΞX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Matrix source device

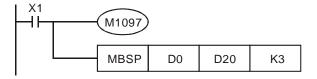
D: Operation result

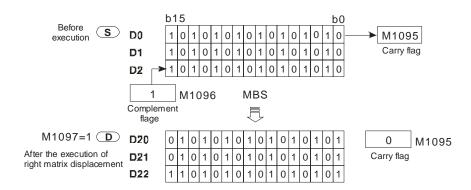

n: Array length


Explanations:

- 1. Range of **n**: K1 ~ K256
- 2. **S** designates KnX, KnY, KnM and KnS; **D** designates KnY, KnM and KnS.
- 3. SA/SX/SC can designate n = 4. EH/EH2/SV can designate $n \le 4$.
- 4. See the specifications of each model for their range of use.
- 5. Flags: M1095 ~ M1097. See remarks for more details.
- 6. This instruction performs left-right displacement on the matrix bits in **S** according to array length **n**. M1097 determines the left (M1097 = 0) or right (M1097 = 1) displacement of matrix bits. The empty bits derived from every displacement of 1 bit (when left displacement: b₀; when right displacement: b_{16n-1}) is filled by the status of the complement flag (M1096). The spare bits (when left displacement: b_{16n-1}; when right displacement: b₀) are sent to the carry flag (M1095). The result is stored in **D**.
- 7. The pulse execution instruction MBSP is generally adopted.

Program Example 1:


When X0 = On, M1097 = Off, indicating a left matrix displacement is performed. Set M1096 = 0 and the 16-bit registers $D0 \sim D2$ will perform a left matrix displacement and the result will be stored in the matrix of the 16-bit registers $D20 \sim D22$. The carry flag M1095 will be "1".



Program Example 2:

When X1 = On, M1097 = On, indicating a right matrix displacement is performed. Set M1096 = 1 and the 16-bit registers $D0 \sim D2$ will perform a right matrix displacement and the result will be stored in the matrix of the 16-bit registers $D20 \sim D22$. The carry flag M1095 will be "0".

Explanations:

Flag explanations:

Flags	Function
M1095	Matrix rotation/displacement/output carry flag.
M1096	Matrix displacement/input complement flag.
M1097	Matrix rotation/displacement direction flag.

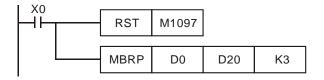
API	Mnemonic		Operands	Function	Controllers
189	MBR	Р	(S)	Matrix Bit Rotation	ES/EX/SS SA/SX/SC EH/SV

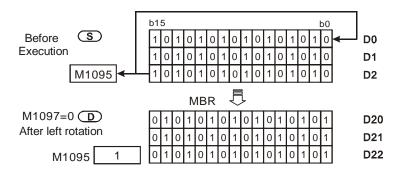
Туре	Е	Bit De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	O	D	Е	F	MBR, MBRP: 7 steps
S							*	*	*	*	*	*	*			
D								*	*	*	*	*	*			
n					*	*							*			

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

S: Matrix source device

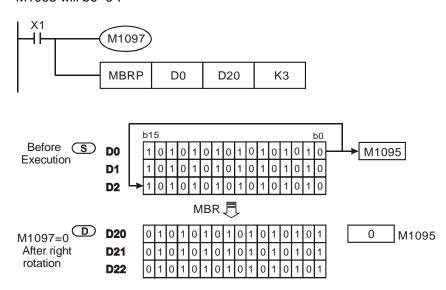
D: Operation result


n: Array length


Explanations:

- 1. Range of **n**: K1 ~ K256
- 2. **S** designates KnX, KnY, KnM and KnS; **D** designates KnY, KnM and KnS.
- 3. SA/SX/SC can designate n = 4. EH/EH2/SV can designate $n \le 4$.
- 4. See the specifications of each model for their range of use.
- 5. Flags: M1095, M1097. See remarks for more details.
- 6. This instruction performs left-right rotation on the matrix bits in **S** according to array length **n**. M1097 determines the left (M1097 = 0) or right (M1097 = 1) rotation of matrix bits. The empty bits derived from every rotation of 1 bit (when left rotation: b_0 ; when right rotation: b_{16n-1}) is filled by rotation bits (when left rotation: b_{16n-1} ; when right rotation: b_0). The result is stored in **D**. Rotation bits not only fill the empty bits but also send the status of bits to the carry flag M1095.
- 7. The pulse execution instruction MBRP is generally adopted.

Program Example 1:


When X0 = On, M1097 = Off, indicating a left matrix rotation is performed. The 16-bit registers $D0 \sim D2$ will perform a left matrix rotation and the result will be stored in the matrix of the 16-bit registers $D20 \sim D22$. The carry flag M1095 will be "1".

Program Example 2:

When X1 = On, M1097 = On, indicating a right matrix rotation is performed. The 16-bit registers $D0 \sim D2$ will perform a right matrix rotation and the result will be stored in the matrix of the 16-bit registers $D20 \sim D22$. The carry flag M1095 will be "0".

Remarks:

Flag explanations:

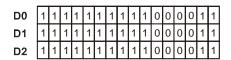
Flags	Function
M1095	Matrix rotation/displacement/output carry flag.
M1097	Matrix rotation/displacement direction flag.

API	Mnemonic		Operands	Function	Controllers		
190	MBC	Р	S n D	Matrix Bit Status Counting	ES/EX/SS SA/SX/SC EH/SV		

Туре	Е	Bit De	vice	s		Word Devices										Program Steps
ОР	Х	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	О	Е	F	MBC, MBCP: 7 steps
S							*	*	*	*	*	*	*			
n					*	*							*			
D								*	*	*	*	*	*	*	*	ļ

PULSE							16-bit							32-bit						
ES EX SS SA SX SC EH SV				SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S: Matrix source device **n**: Array length **D**: Counting result


Explanations:

- 1. Range of **n**: K1 ~ K256
- 2. **S** designates KnX, KnY, KnM and KnS; **D** designates KnY, KnM and KnS.
- 3. SA/SX/SC can designate n = 4. EH/EH2/SV can designate $n \le 4$.
- 4. See the specifications of each model for their range of use.
- 5. Flags: M1098, M1099. See remarks for more details.
- 6. This instruction counts the number of bits which are "1" or "0" in **S** by array length **n**. The result is stored in **D**.
- 7. The instruction counts the number of bits which are "1" when M1098 = 1 and counts the number of bits which are "0" when M1098 = 0. When the operation result is "0", M1099 = 1.

Program Example:

When X10 = On, in the matrix of $D0 \sim D2$, when M1098 = 1, the instruction counts the total number of bits which are "1" and store the number in D10. When M1098 = 0, the instruction counts the total number of bits which are "0" and store the number in D10.

D10 12 M1098=0

D10 36 M1098=1

Remarks:

Flag explanations:

Flags	Function
M1098	Counting the number of bits which are "1" or "0"
M1099	On when the counting result is "0".

Α	PI	Mnemonic			Operands	Function	Controllers		
19	91	D	PPMR		\$1\$2\$D	2-Axis Relative Point to Point Motion	ES/EX/SS SA/SX/SC EH/SV		

	Туре	В	it De	vice	s		Word Devices									Program Steps	
ОР		Χ	Υ	М	S	Κ	Ι	KnX	KnY	KnM	KnS	Т	O	О	Е	F	DPPMR: 17 steps
	S ₁					*	*							*			
	S ₂					*	*							*			
	S					*	*							*			
	D		*														

PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					

S₁: Number of output pulses of X axis

S₂: Number of output pulses of Y axis

S: Max. point to point output

frequency **D**: Pulse output device

Explanations:

- 1. Flags: M1029, M1030, M1334, M1335. See remarks for more details.
- 2. This instruction only supports EH2/SV series MPU, not EH series. In terms of pulse output methods, this instruction only supports "pulse + direction" mode.
- 3. **S**₁ and **S**₂ are the designated (relative designation) number of output pulses in X axis (Y0 or Y4) and Y axis (Y2 or Y6). The range of the number is -2,147,483,648 ~ +2,147,483,647 (+/- represents the forward/backward direction). When in forward direction, the pulse present value registers CH0 (D1337 high word, D1336 low word), CH1 (D1339 high word, D1338 low word), CH2 (D1376 high word, D1375 low word) and CH3 (D1378 high word, D1377 low word) will increase. When in backward direction, the present value will decrease.
- 4. **D** can designate Y0 and Y4.

When Y0 is designated:

Y0 refers to 1st group X-axis pulse output device.

Y1 refers to 1st group X-axis direction signal.

Y2 refers to 1st group Y-axis pulse output device.

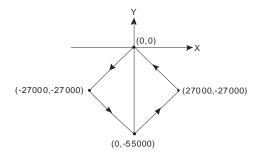
Y3 refers to 1st group Y-axis direction signal.

Y4 refers to 2nd group X-axis pulse output device.

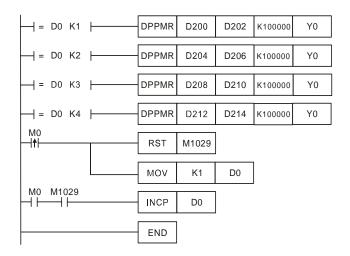
Y5 refers to 2nd group X-axis direction signal.

Y6 refers to 2nd group Y-axis pulse output device.

Y7 refers to 2nd group Y-axis direction signal.


When direction signal outputs, Off will not occur immediately after the pulse output is over. Direction signal will turn Off when the drive contact is Off.

- 5. D1340 (D1379) refers to the settings of the start/end frequencies of the 1st/2nd 2-axis motion. D1343 (D1381) refers to the time of the first acceleration segment and last deceleration segment of the 1st/2nd 2-axis motion. The time shall be longer than 10ms. If the time is shorter than 10ms or longer than 10,000ms, the output will be operated at 10ms. Default setting = 100ms.
- 6. If the maximum output frequency setting is less than 10Hz, the output will be operated at 10Hz. If the setting is more than 200KHz, the output will be operated at 200KHz.


- 7. When the 2-axis synchronous motion instruction is enabled, the start frequency and acceleration/deceleration time in Y axis will be same as the settings in X axis.
- 8. The number of output pulses for the 2-axis motion shall not be less than 59; otherwise the line drawn will not be straight enough.
- 9. There is no limitation on the number of times using the instruction. However, assume CH1 or CH2 output is in use, the 1st group X/Y axis will not be able to output. If CH3 or CH4 output is in use, the 2nd group X/Y axis will not be able to output.

Program Example:

1. Draw a rhombus as the figure below.

- 2. Steps:
- a) Set the four coordinates (0,0), (-27000, -27000), (0, -55000), (27000, -27000) (as the figure above). Calculate the relative coordinates of the four points and obtain (-27000, -27000), (27000, -28000), (27000, 27000), and (-27000, 27000). Place them in the 32-bit (D200, D202), (D204, D206), (D208, D210), (D212, D214).
- b) Write program codes as follows.
- c) PLC RUN. Set M0 as On and start the 2-axis line drawing.

3. Motion explanation:

When PLC RUN and M0 = On, PLC will start the first point-to-point motion by 100KHz. D0 will plus 1 whenever a point-to-point motion is completed and the second point-to-point motion will start to execute automatically. The same motion will keep executing until the fourth point-to-point motion is completed.

Remarks:

1. Flag explanations:

On when the 1st group 2-axis pulse output is completed. M1029: On when the 2nd group 2-axis pulse output is completed. M1036:

On when the 1st group 2-axis pulse output is forbidden. M1334:

M1336: 1st group 2-axis pulse output indication flag

On when the 2nd group 2-axis pulse output is forbidden. M1520:

2nd group 2-axis pulse output indication flag M1522:

2. S

Special register e	xplanations:
D1336, D1337	: Pulse present value register for Y0 output of the 1 st group X-axis motion. The present value
	increases or decreases following the rotation direction. (D1337 high word; D1336 low word)
D1338, D1339	: Pulse present value register for Y2 output of the 1 st group Y-axis motion. The present value
	increases or decreases following the rotation direction. (D1339 high word; D1338 low word)
D1340	: Frequency settings of the first acceleration and last deceleration segment for the Y0 output
	of the 1 st group X-axis motion and Y2 of the Y-axis motion for API 191 DPPMR and API 192
	DPPMA.
D1343	: Time settings of the first acceleration and last deceleration segment for the Y0 output of the
	1 st group X-axis motion and Y2 of the Y-axis motion for API 191 DPPMR and API 192
	DPPMA.
D1375, D1376	: Pulse present value register for Y4 output of the 2 nd group X-axis motion. The present value
	increases or decreases following the rotation direction. (D1337 high word; D1336 low word)

: Pulse present value register for Y6 output of the 2nd group Y-axis motion. The present value D1377, D1378

increases or decreases following the rotation direction. (D1339 high word; D1338 low word)

: Frequency settings of the first acceleration and last deceleration segment for the Y4 output of the 2nd group X-axis motion and Y6 of the Y-axis motion for API 191 DPPMR and API 192 DPPMA.

: Time settings of the first acceleration and last deceleration segment for the Y4 output of the 2nd group X-axis motion and Y6 of the Y-axis motion for API 191 DPPMR and API 192 DPPMA.

D1379

D1381

API	Mnemonic		Operands	Function	Controllers			
192	D	PPMA	\$1\$2\$D	2-Axis Absolute Point to Point Motion	ES/EX/SS SA/SX/SC EH/SV			

	Туре	evice	s				٧	Vord I	Devic	es					Program Steps		
ОР		Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Τ	O	О	Ш	F	DPPMA: 17 steps
	S ₁					*	*							*			
	S ₂					*	*							*			
	S					*	*							*			
	D		*														

PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					

S₁: Number of output pulses of X axis

S₂: Number of output pulses of Y axis

S: Max. point to point output

frequency **D**: Pulse output device

Explanations:

- 1. Flags: M1029, M1030, M1334, M1335. See remarks of API 191 DPPMR for more details.
- 2. This instruction only supports EH2/SV series MPU, not EH series. In terms of pulse output methods, this instruction only supports "pulse + direction" mode.
- 3. **S**₁ and **S**₂ are the designated (absolute designation) number of output pulses in X axis (Y0 or Y4) and Y axis (Y2 or Y6). The range of the number is -2,147,483,648 ~ +2,147,483,647 (+/- represents the forward/backward direction). When in forward direction, the pulse present value registers CH0 (D1337 high word, D1336 low word), CH1 (D1339 high word, D1338 low word), CH2 (D1376 high word, D1375 low word) and CH3 (D1378 high word, D1377 low word) will increase. When in backward direction, the present value will decrease.
- 4. **D** can designate Y0 and Y4.

When Y0 is designated:

Y0 refers to 1st group X-axis pulse output device.

Y1 refers to 1st group X-axis direction signal.

Y2 refers to 1st group Y-axis pulse output device.

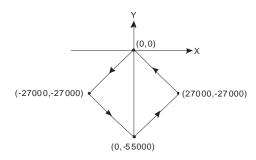
Y3 refers to 1st group Y-axis direction signal.

Y4 refers to 2nd group X-axis pulse output device.

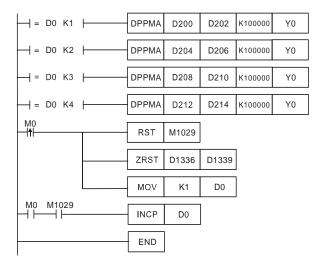
Y5 refers to 2nd group X-axis direction signal.

Y6 refers to 2nd group Y-axis pulse output device.

Y7 refers to 2nd group Y-axis direction signal.


When direction signal outputs, Off will not occur immediately after the pulse output is over. Direction signal will turn Off when the drive contact is Off.

- 5. D1340 (D1379) refers to the settings of the start/end frequencies of the 1st/2nd 2-axis motion. D1343 (D1381) refers to the time of the first acceleration segment and last deceleration segment of the 1st/2nd 2-axis motion. The time shall be longer than 10ms. If the time is shorter than 10ms or longer than 10,000ms, the output will be operated at 10ms. Default setting = 100ms.
- 6. If the maximum output frequency setting is less than 10Hz, the output will be operated at 10Hz. If the setting is more than 200KHz, the output will be operated at 200KHz.


- 7. When the 2-axis synchronous motion instruction is enabled, the start frequency and acceleration/deceleration time in Y axis will be same as the settings in X axis.
- 8. The number of output pulses for the 2-axis motion shall not be the values within 1 ~ 59; otherwise the line drawn will not be straight enough.
- 9. There is no limitation on the number of times using the instruction. However, assume CH1 or CH2 output is in use, the 1st group X/Y axis will not be able to output. If CH3 or CH4 output is in use, the 2nd group X/Y axis will not be able to output.

Program Example:

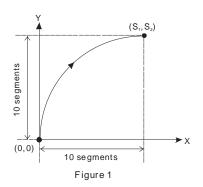
1. Draw a rhombus as the figure below.

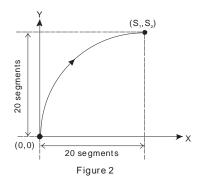
- 2. Steps:
- a) Set the four coordinates (0,0), (-27000, -27000), (0, -55000), (27000, -27000) (as the figure above). Place them in the 32-bit (D200, D202), (D204, D206), (D208, D210), (D212, D214).
- b) Write program codes as follows.
- c) PLC RUN. Set M0 as On and start the 2-axis line drawing.

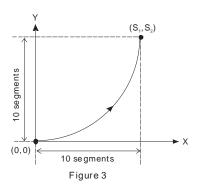
3. Motion explanation:

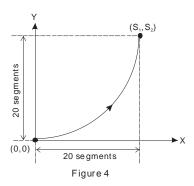
When PLC RUN and M0 = On, PLC will start the first point-to-point motion by 100KHz. D0 will plus 1 whenever a point-to-point motion is completed and the second point-to-point motion will start to execute automatically. The same motion will keep executing until the fourth point-to-point motion is completed.

API		Mnemonic	Operands	Function	Controllers
193	D	CIMR	\$1\$2\$ D	2-Axis Relative Position Arc Interpolation	ES/EX/SS SA/SX/SC EH/SV


Туре	Е	Bit De	evice	s	Word Devices								Program Steps			
ОР	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	О	D	Е	F	DCIMR: 17 steps
S ₁					*	*							*			
S ₂					*	*							*			
S													*			
D		*														


PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					


S₁: Number of output pulses of X axis
 S₂: Number of output pulses of Y axis
 S: Parameter setting
 D: Pulse output device


Explanations:

- 1. Flags: M1029, M1030, M1334, M1335. See remarks of API 191 DPPMR for more details.
- 2. This instruction only supports EH2/SV series MPU, not EH series. In terms of pulse output methods, this instruction only supports "pulse + direction" mode.
- 3. S₁ and S₂ are the designated (relative designation) number of output pulses in X axis (Y0 or Y4) and Y axis (Y2 or Y6). The range of the number is -2,147,483,648 ~ +2,147,483,647 (+/- represents the forward/backward direction). When in forward direction, the pulse present value registers CH0 (D1337 high word, D1336 low word), CH1 (D1339 high word, D1338 low word), CH2 (D1376 high word, D1375 low word) and CH3 (D1378 high word, D1377 low word) will increase. When in backward direction, the present value will decrease.
- 4. The lower 16 bits of **S** (settings of direction and resolution): K0 refers to clockwise 10-segment (average resolution) output; K2 refers to clockwise 20-segment (higher resolution) output and a 90° arc can be drawn (see figure 1 and 2). K1 refers to counterclockwise 10-segment (average resolution) output; K3 refers to counterclockwise 20-segment (higher resolution) output and a 90° arc can be drawn (see figure 3 and 4).
- 5. The higher 16 bits of **S** (settings of motion time): K1 refers to 0.1 second. The setting range for average resolution is K1 ~ K100 (0.1 sec. ~ 10 secs.), for higher resolution is K2 ~ K200 (0.2 sec. ~ 20 secs.) This instruction is restricted by the maximum pulse output frequency; therefore when the set time goes faster than the actual output time, the set time will be automatically modified.

6. **D** can designate Y0 and Y4.

When Y0 is designated:

Y0 refers to 1st group X-axis pulse output device.

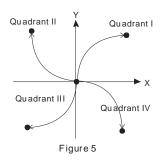
Y1 refers to 1st group X-axis direction signal.

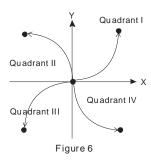
Y2 refers to 1st group Y-axis pulse output device.

Y3 refers to 1st group Y-axis direction signal.

When Y4 is designated:

Y4 refers to 2nd group X-axis pulse output device.

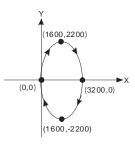

Y5 refers to 2nd group X-axis direction signal.


Y6 refers to 2nd group Y-axis pulse output device.

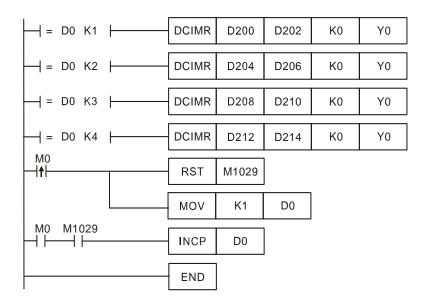
Y7 refers to 2nd group Y-axis direction signal.

When direction signal outputs, Off will not occur immediately after the pulse output is over. Direction signal will turn Off when the drive contact is Off.

- 7. Draw four 90° arcs.
- 8. When the direction signal is On, the direction is positive. When the direction signal is Off, the direction is negative. When **S** is set as K0, K2, the arcs will be clockwise (see figure 5). When **S** is set as K1, K3, the arcs will be counterclockwise (see figure 6).


- 9. When the 2-axis motion is being executed in 10 segments (of average resolution), the operation time of the instruction when the instruction is first enabled is approximately 5ms. The number of output pulses cannot be less than 100 and more than 1,000,000; otherwise, the instruction cannot be enabled.
- 10. When the 2-axis motion is being executed in 20 segments (of high resolution), the operation time of the instruction when the instruction is first enabled is approximately 10ms. The number of output pulses cannot be less than 1,000 and more than 10,000,000; otherwise, the instruction cannot be enabled.

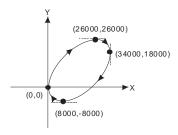
- 11. If you wish the number of pulses in 10-segment or 20-segment motion to be off the range, you may adjust the gear ratio of the servo for obtaining your desired number.
- 12. Every time when the instruction is executed, only one 90° arc can be drawn. It is not necessary that the arc has to be a precise arc, i.e. the numbers of output pulses in X and Y axes can be different.
- 13. There are no settings of start frequency and acceleration/deceleration time.
- 14. There is no limitation on the number of times using the instruction. However, assume CH1 or CH2 output is in use, the 1st group X/Y axis will not be able to output. If CH3 or CH4 output is in use, the 2nd group X/Y axis will not be able to output.
- 15. The settings of direction and resolution in the lower 16 bits of **S** can only be K0 ~ K3.
- 16. The settings of motion time in the high 16 bits of **S** can be slower than the fastest suggested time but shall not be faster than the fastest suggested time.
- 17. The fastest suggested time for the arc interpolation:


Segments	Max. target position (pulse)	Fastest suggested set time (unit:100ms)				
	100 ~ 10,000	1				
Average	10,001 ~ 19,999	2				
resolution	:	:				
	Less than 1,000,000	Less than 100				
	1,000 ~ 20,000	2				
Higher	20,000 ~ 29,999	3				
resolution	:	:				
	Less than 10,000,000	Less than 200				

Program Example 1:

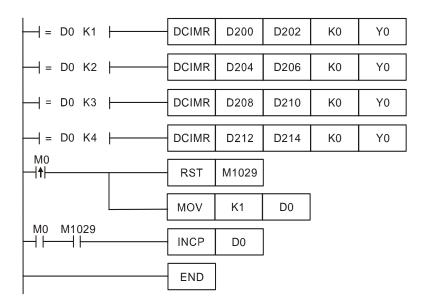
1. Draw an ellipse as the figure below.

- 2. Steps:
- a) Set the four coordinates (0,0), (1600, 2200), (3200, 0), (1600, -2200) (as the figure above). Calculate the relative coordinates of the four points and obtain (1600, 2200), (1600, -2200), (-1600, -2200), and (-1600, 2200). Place them in the 32-bit (D200, D202), (D204, D206), (D208, D210), (D212, D214).
- b) Select "draw clockwise arc" and "average resolution" (**S** = K0).
- c) Write program codes as follows.
- d) PLC RUN. Set M0 as On and start the drawing of the ellipse.



3. Motion explanation:

When PLC RUN and M0 = On, PLC will start the drawing of the first segment of the arc. D0 will plus 1 whenever a segment of arc is completed and the second segment of the arc will start to execute automatically. The same motion will keep executing until the fourth segment of arc is completed.


Program Example 2:

1. Draw a tilted ellipse as the figure below.

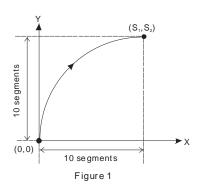
2. Steps:

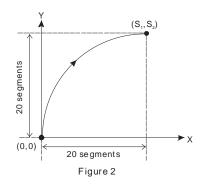
- a) Find the max. and min. coordinates on X and Y axes (0,0), (26000,26000), (34000,18000), (8000,-8000) (as the figure above). Calculate the relative coordinates of the four points and obtain (26000,26000) (8000,-8000) (-26000,-26000), (-8000,8000). Place them respectively in the 32-bit (D200,D202), (D204,D206), (D208,D210) and (D212,D214).
- b) Select "draw clockwise arc" and "average resolution" (**S** = K0).
- c) Select DCIMR instruction for drawing arc and write program codes as follows.
- d) PLC RUN. Set M0 as On and start the drawing of the ellipse.

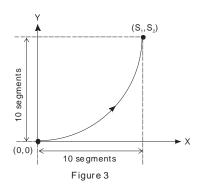
3. Motion explanation:

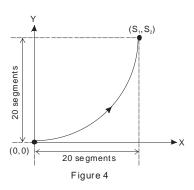
When PLC RUN and M0 = On, PLC will start the drawing of the first segment of the arc. D0 will plus 1 whenever a segment of arc is completed and the second segment of the arc will start to execute automatically. The same motion will keep executing until the fourth segment of arc is completed.

API	Mnemonic		Operands	Function	Controllers
194	D	CIMA	\$1\$2\$D	2-Axis Absolute Position Arc Interpolation	ES/EX/SS SA/SX/SC EH/SV


	Туре	В	it De	evice	s		Word Devices										Program Steps
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DCIMA: 17 steps
	S ₁					*	*							*			
	S ₂					*	*							*			
	S													*			
	D		*														


PULSE	16-bit	32-bit					
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV					


S₁: Number of output pulses of X axis
 S₂: Number of output pulses of Y axis
 S: Parameter setting
 D: Pulse output device


Explanations:

- 1. Flags: M1029, M1030, M1334, M1335. See remarks of API 191 DPPMR for more details.
- 2. This instruction only supports EH2/SV series MPU, not EH series. In terms of pulse output methods, this instruction only supports "pulse + direction" mode.
- 3. S₁ and S₂ are the designated (absolute designation) number of output pulses in X axis (Y0 or Y4) and Y axis (Y2 or Y6). The range of the number is -2,147,483,648 ~ +2,147,483,647. When S₁ and S₂ are larger than pulse present value registers CH0 (D1337 high word, D1336 low word), CH1 (D1339 high word, D1338 low word), CH2 (D1376 high word, D1375 low word), and CH3 (D1378 high word, D1377 low word), the output direction will be positive and direction signals Y1, Y3, Y5, Y7 will be On. When S₁ and S₂ are less than pulse present value registers, the output direction will be negative and direction signals Y1, Y3, Y5, Y7 will be Off.
- 4. The lower 16 bits of **S** (settings of direction and resolution): K0 refers to clockwise 10-segment (average resolution) output; K2 refers to clockwise 20-segment (higher resolution) output and a 90° arc can be drawn (see figure 1 and 2). K1 refers to counterclockwise 10-segment (average resolution) output; K3 refers to counterclockwise 20-segment (higher resolution) output and a 90° arc can be drawn (see figure 3 and 4).
- 5. The higher 16 bits of **S** (settings of motion time): K0 refers to 0.1 second. The setting range for average resolution is K1 ~ K100 (0.1 sec. ~ 10 secs.), for higher resolution is K2 ~ K200 (0.2 sec. ~ 20 secs.) This instruction is restricted by the maximum pulse output frequency; therefore when the set time goes faster than the actual output time, the set time will be automatically modified.

6. D can designate Y0 and Y4.

When Y0 is designated:

Y0 refers to 1st group X-axis pulse output device.

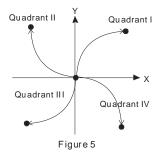
Y1 refers to 1st group X-axis direction signal.

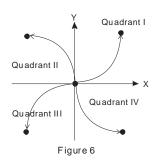
Y2 refers to 1st group Y-axis pulse output device.

Y3 refers to 1st group Y-axis direction signal.

When Y4 is designated:

Y4 refers to 2nd group X-axis pulse output device.

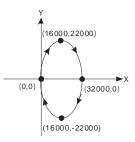

Y5 refers to 2nd group X-axis direction signal.


Y6 refers to 2nd group Y-axis pulse output device.

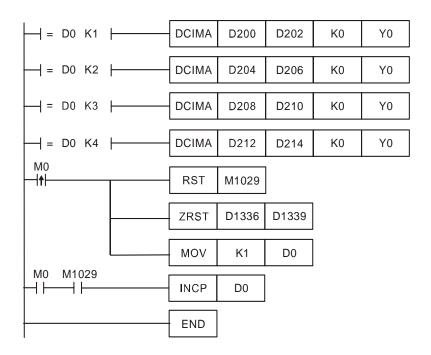
Y7 refers to 2nd group Y-axis direction signal.

When direction signal outputs, Off will not occur immediately after the pulse output is over. Direction signal will turn Off when the drive contact is Off.

- 7. Draw four 90° arcs.
- 8. When the direction signal is On, the direction is positive. When the direction signal is Off, the direction is negative. When **S** is set as K0, K2, the arcs will be clockwise (see figure 5). When **S** is set as K1, K3, the arcs will be counterclockwise (see figure 6).


- 9. When the 2-axis motion is being executed in 10 segments (of average resolution), the operation time of the instruction when the instruction is first enabled is approximately 5ms. The number of output pulses cannot be less than 100 and more than 1,000,000; otherwise, the instruction cannot be enabled.
- 10. When the 2-axis motion is being executed in 20 segments (of high resolution), the operation time of the instruction when the instruction is first enabled is approximately 10ms. The number of output pulses cannot be less than 1,000 and more than 10,000,000; otherwise, the instruction cannot be enabled.

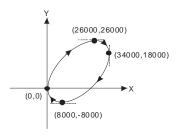
- 11. If you wish the number of pulses in 10-segment or 20-segment motion to be off the range, you may adjust the gear ratio of the servo for obtaining your desired number.
- 12. Every time when the instruction is executed, only one 90° arc can be drawn. It is not necessary that the arc has to be a precise arc, i.e. the numbers of output pulses in X and Y axes can be different.
- 13. There are no settings of start frequency and acceleration/deceleration time.
- 14. There is no limitation on the number of times using the instruction. However, assume CH1 or CH2 output is in use, the 1st group X/Y axis will not be able to output. If CH3 or CH4 output is in use, the 2nd group X/Y axis will not be able to output.
- 15. The settings of direction and resolution in the lower 16 bits of **S** can only be K0 ~ K3.
- 16. The settings of motion time in the high 16 bits of **S** can be slower than the fastest suggested time but shall not be faster than the fastest suggested time.
- 17. The fastest suggested time for the arc interpolation:


	<u>'</u>					
Segments	Max. target position (pulse)	Fastest suggested set time (unit:100ms)				
	100 ~ 10,000	1				
Average	10,001 ~ 19,999	2				
resolution	:	:				
	Less than 1,000,000	Less than 100				
	1,000 ~ 20,000	2				
Higher	20,000 ~ 29,999	3				
resolution	:	:				
	Less than 10,000,000	Less than 200				

Program Example 1:

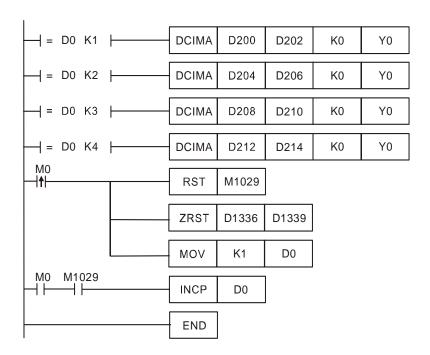
1. Draw an ellipse as the figure below.

- 2. Steps:
- a) Set the four coordinates (0,0), (16000, 22000), (32000, 0), (16000, -22000) (as the figure above). Place them in the 32-bit (D200, D202), (D204, D206), (D208, D210), (D212, D214).
- b) Select "draw clockwise arc" and "average resolution" (**S** = K0).
- Select DCIMA instruction for drawing arc and write program codes as follows.
- d) PLC RUN. Set M0 as On and start the drawing of the ellipse.



3. Motion explanation: :

When PLC RUN and M0 = On, PLC will start the drawing of the first segment of the arc. D0 will plus 1 whenever a segment of arc is completed and the second segment of the arc will start to execute automatically. The same motion will keep executing until the fourth segment of arc is completed.


Program Example 2:

1. Draw a tilted ellipse as the figure below.

2. Steps:

- a) Find the max. and min. coordinates on X and Y axes (0,0), (26000,26000), (34000,18000), (8000,-8000) (as the figure above). Place them respectively in the 32-bit (D200,D202), (D204,D206), (D208,D210) and (D212,D214).
- b) Select "draw clockwise arc" and "average resolution" (**S** = K0).
- c) Select DCIMA instruction for drawing arc and write program codes as follows.
- d) PLC RUN. Set M0 as On and start the drawing of the ellipse.

3. Motion explanation:

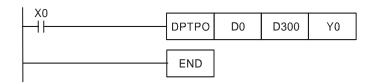
When PLC RUN and M0 = On, PLC will start the drawing of the first segment of the arc. D0 will plus 1 whenever a segment of arc is completed and the second segment of the arc will start to execute automatically. The same motion will keep executing until the fourth segment of arc is completed.

API		Mnemonic	Operands	Function	Controllers					
195	D	РТРО	\$1\\$2\D	Single-Axis Pulse Output by Table	ES/EX/SS SA/SX/SC EH/SV					

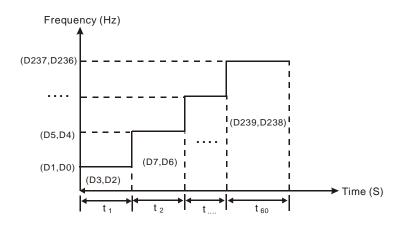
Туре	В	it De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	DPTPO: 13 steps
S ₁													*			
S_2													*			
D		*														

PULSE							16-bit								32-bit					
ES EX SS SA SX SC EH SV					ES	EX	SS	SA	SX	SC	EΗ	S	ES	EX	SS	SA	SX	SC	EΗ	SV

 S_1 : Source start device S_2 : Number of segments D: Pulse output device


Explanations:

- 1. Flags: M1029, M1030, M1334, M1335. See remarks for more details.
- 2. This instruction only supports EH2/SV series MPU, not EH series.
- 3. According to the value of $S_2 + 0$, every segment consecutively occupy four register D. $(S_1 + 0)$ refers to output frequency. $(S_1 + 2)$ refers to the number of output pulses.
- 4. When the output frequency of **S**₁ is less than 1, PLC will automatically modify it as 1. When the value is larger than 200,000KHz, PLC will automatically modify it as 200,000KHz.
- 5. **S**₂ + 0: number of segments (range: 1 ~ 60). **S**₂ + 1: number of segments being executed. Whenever the program scans to this instruction, the instruction will automatically update the segment No. that is currently being executed.
- 6. **D** can only designate output devices Y0, Y2, Y4 and Y6 and can only perform pulse output control. For the pin for direction control, the user has to compile other programs to control.
- 7. This instruction does not offer acceleration and deceleration functions. Therefore, when the instruction is disabled, the output pulses will stop immediately.
- 8. In every program scan, each channel can only be executed by one instruction. However, there is no limitation on the number of times using this instruction.
- 9. When the instruction is being executed, the user is not allowed to update the frequency or number of the segments. Changes made will not be able to make changes in the actual output.


- When X0 = On, the output will be operated according to the set frequency and number of pulses in every segment.
- 2. Format of the table:

S_2 = D300, number of segments (D300 = K60)	$\mathbf{S}_1 = D0$, frequency $(\mathbf{S}_1 + 0)$	$S_1 = D0$, number of output pulses $(S_1 + 2)$
K1 (1 st segment)	D1, D0	D3, D2
K2 (2 nd segment)	D5, D4	D7, D6
:	:	:
K60 (60 th segment)	D237, D236	D239, D238

3. Monitor the segment No. that is currently being executed in register D301.

The pulse output curve:

Remarks:

1. Flag explanations:

M1029 : On when CH0 (Y0) pulse output is completed.M1030 : On when CH1 (Y2) pulse output is completed.

M1036: On when CH2 (Y4) pulse output is completed.

M1037: On when CH3 (Y6) pulse output is completed.

M1334: When On, CH0 (Y0) pulse output will be forbidden.

M1335: When On, CH1 (Y2) pulse output will be forbidden.

M1520: When On, CH2 (Y4) pulse output will be forbidden.

M1521: When On, CH3 (Y6) pulse output will be forbidden.

M1336: CH0 (Y0) pulse output indication flag

M1337: CH1 (Y2) pulse output indication flag

M1522: CH2 (Y4) pulse output indication flag

M1523: CH3 (Y6) pulse output indication flag

2. Special register explanations:

D1336, D1337: Pulse present value register of CH0 (Y0) (D1337 high word, D1336 low word)

D1338, D1339: Pulse present value register of CH1 (Y2) (D1339 high word, D1338 low word)

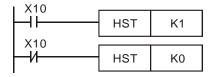
D1375, D1376: Pulse present value register of CH2 (Y4) (D1376 high word, D1375 low word)

D1377, D1378: Pulse present value register of CH3 (Y6) (D1378 high word, D1377 low word)

API	Mnemonic		Operands	Function	Controllers			
196	HST	Р	S	High Speed Timer	ES/EX/SS SA/SX/SC EH/SV			

	Туре	В	Bit De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	О	D	Е	F	HST, HSTP: 3 steps
	S					*	*										

		PUI	_SE							16	-bit							32	-bit			
ES EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	ΕX	SS	SA	SX	SC	EΗ	SV


S: Condition to stop the startup of high speed timer

Explanations:

- 1. Range of **S**: S = K0 (H0), K1 (H1).
- 2. Flag: M1015
- 3. When **S** = 1, the high speed timer will be enabled and M1015 = On. The high speed timer starts to time and record the present value in D1015 (min. unit: 100us).
- 4. Timing range of D1015: K0 ~ K32,767. When the timing reaches K32,767, the next timing will restart from 0.
- 5. When $\mathbf{S} = 0$, the high speed timer will be disabled and M1015 = Off. D1015 will stop the timing immediately.
- 6. When **S** is neither 1 nor 0, HST instruction will not be executed.

Program Example:

- 1. When X10 = On, M1015 will be On. The high speed timer will start to time and record the present value in D1015.
- 2. When X10 = Off, M1015 will be Off. The high speed timer will be shut down.

Remarks:

1. Flag explanations:

M1015: high speed timer start-up flag

D1015: high speed timer

- 2. EH/EH2/SV series MPU do not use this instruction and use special M and special D directly for the timer.
 - a) Special M and special D are only applicable when PLC RUN.
 - b) When M1015 = On and PLC scans to END instruction, the high speed timer D1015 will be enabled. The minimum timing unit of D1015: 100us.
 - c) Timing range of D1015: K0 ~ K32,767. When the timing reaches K32,767, the next timing will restart from K0.
 - d) When M1015 = Off, D1015 will stop the timing when encountering END or HST instruction.
- SA/SX/SC series MPU do not use this instruction and use special M and special D directly for the timer.
 - a) Special M and special D are applicable when PLC RUN or STOP.

- b) When M1015 = On, the high speed timer D1015 will be enabled. The minimum timing unit of D1015:
- c) Timing range of D1015: K0 ~ K32,767. When the timing reaches K32,767, the next timing will restart from K0.
- d) When M1015 = Off, D1015 will stop the timing immediately.

4	API		Mnemonic	Operands	Function	Controllers
	197	D	CLLM	\$1\$2\$3D	Close Loop Position Control	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР		Х	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Τ	C	О	Ш	F	DCLLM: 17 steps
	S ₁	*											*				
	S ₂					*	*							*			
	S ₃					*	*							*			
	D		*														

PULSE	16-bit	32-bit
ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV	ES EX SS SA SX SC EH SV

S₁: Feedback source device

S₂: Target number of feedbacks

S₃: Target frequency of output

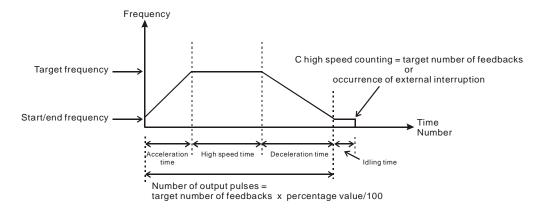
D: Pulse output device

Explanations:

1. Flags: M1029, M1030, M1334, M1335. See remarks for more details.

2. This instruction only supports EH2/SV series MPU, not EH series.

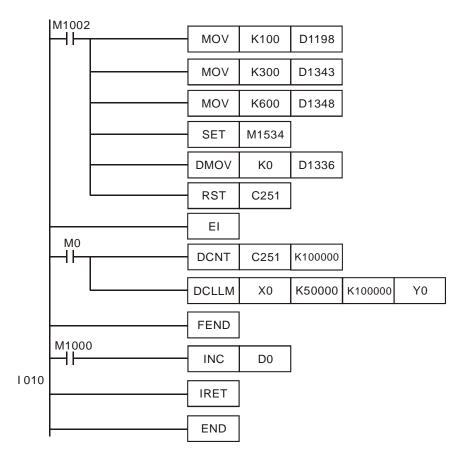
3. The corresponding interruption of S₁:

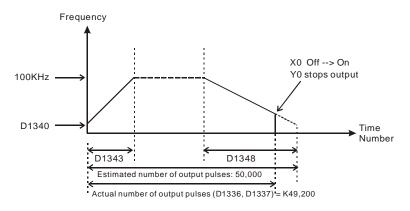

Source device	X0	X1	X2	Х3		C241 ~	C254	
Corresponding outout	Y0	Y2	Y4	Y6	Y0	Y2	Y4	Y6
Interruption No.	100□	I10□	120□	130□	I010	1020	1030	1040

- \square = 1: rising-edige trigger; \square = 0: falling-edge trigger
- a) When **S**₁ designates X as the input points and the pulse output reaches the set target number of feedbacks in **S**₂, the output will continue to operate by the frequency of the last segment until the interruption of X input points occurs.
- b) When **S**₁ designates a high speed counter and the pulse output reaches the set target number of feedbacks in **S**₂, the output will continue to operate by the frequency of the last segment until the feedback pulses reaches the target number.
- c) **S**₁ can be a high speed counter C or an external interruption X. If **S**₁ is C, DCNT instruction should be first executed to enable the high-speed counting function and EI and I0x0 interruption service program to enable the high-speed interruption. If **S**₁ is X, EI instruction and I0x0 interruption service program should be executed to enable the external interruption function.
- 4. The range of S₂: -2,147,483,648 ~ +2,147,483,647 (+/- represents the forward/backward direction). When in forward direction, the pulse present value registers CH0 (D1337 high word, D1336 low word), CH1 (D1339 high word, D1338 low word), CH2 (D1376 high word, D1375 low word) and CH3 (D1378 high word, D1377 low word) will increase. When in backward direction, the present value will decrease.
- 5. If S_3 is lower than 10Hz, the output will operate at 10Hz; if S_3 is higher than 200KHz, the output will operate at 200KHz.
- 6. **D** can only designate Y0, Y2, Y4 and Y6 and the direction signals repectively are Y1, Y3, Y5 and Y7. When there is a direction signal output, the direction signal will not be Off immediately after the pulse output is completed. The direction signal will be Off only when the drive contact is Off.

- 7. D1340, D1352, D1379 and D1380 are the settings of start/end frequencies of CH0 ~ CH3. The minimum frequency is 10Hz and default is 200Hz.
- 8. D1343, D1353, D1381 and D1382 are the settings of the time of the first segment and the last deceleration segment of CH0 ~ CH3. The acceleration/deceleration time cannot be shorter than 10ms. The output will be operated in 10ms if the time set is shorter than 10ms or longer than 10,000ms. The dafault setting is 100ms.
- 9. D1198, D1199, D1478 and D1479 are the output/input ratio of the close loop control in CH0 ~ CH3. K1 refers to 1 output pulse out of the 100 target feedback input pulses; K200 refers to 200 output pulses out of the 100 target feedback input pulses. D1198, D1199, D1478 and D1479 are the numerators of the ratio (range: K1 ~ K10,000) and the denominator is fixed as K100 (the user does not have to enter a denominator).
- 10. M1305, M1306, M1532 and M1533 are the direction signal flags for CH0 ~ CH3. When **S**₂ is a positive value, the output will be in forward direction and the flag will be Off. When **S**₂ is a negative value, the output will be in backward direction and the flag will be On.

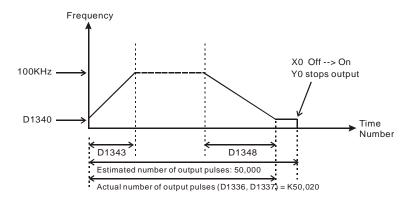
Close Loop Explanations:


- 1. Function: Immediately stop the high-speed pulse output according to the number of feedback pulses or external interruption signals.
- 2. The execution:

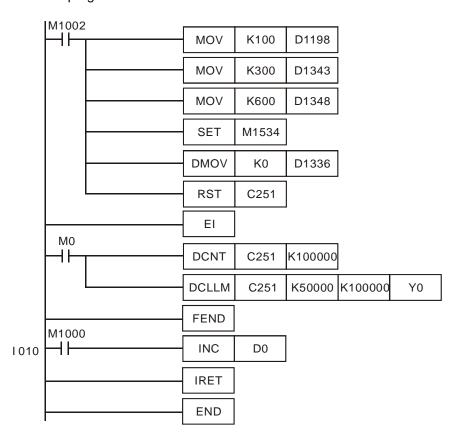

- 3. How to adjust the time for the completion of the positioning:
 - a) The time for the completion of the positioning refers to the time for "acceleration + high speed + deceleration + idling" (see the figure above). For example, you can increase or decrease the entire number of output pulses by making adjustment on the percentage value and further increase or decrease the time required for the positioning.
 - b) Among the four segments of time, only the idling time cannot be adjusted directly by the user. However, you can determine if the execution result is good or bad by the length of the idling time. In theory, a bit of idling left is the best result for a positioning.
 - Owing to the close loop operation, the length of idling time will not be the same in every execution. Therefore, when the content in the special D for displaying the actial number of output pulses is smaller or larger than the calculated number of output pulses (taget number of feedbacks x percentage value/100), you can improve the situation by adjusting the percentage value, acceleration/decelartion time or target frequency.

Program Example:

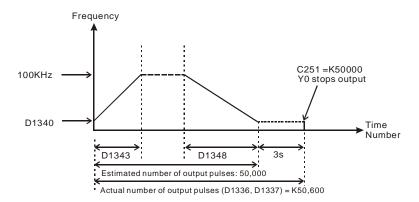
- Assume we adopt X0 as the external interruption, together with I001 (rising-edge trigger) interruption program; target number of feedbacks = 50,000; target frequency = 10KHz; Y0, Y1 (CH0) as output pulses; start/end frequency (D1340) = 200Hz; acceleration time (D1343) = 300ms; deceleration time (D1348) = 600ms; percentage value (D1198) = 100; current number of output pulses (D1336, D1337) = 0.
- 2. Write the program codes as follows:



3. Assume the first execution result as:

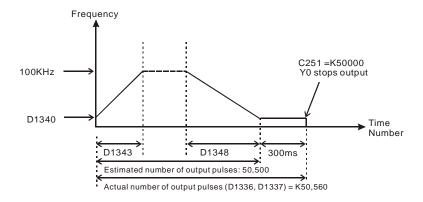

- 4. Observe the result of the first execution:
 - a) The actual output number 49,200 estimated output number 50,000 = -800 (a negative value). A negative value indicates that the entire execution finishes earlier and has not completed yet.
 - b) Try to shorten the acceleration time (D1343) into 250ms and deceleration time (D1348) into 550ms.

5. Obtain the result of the second execution:



- 6. Observe the result of the second execution:
 - a) The actual output number 50,020 estimated output number 50,000 = 20
 - b) $20 \times (1/200 \text{Hz}) = 100 \text{ms}$ (idling time)
 - c) 100ms is an appropriate value. Therefore, set the acceleration time as 250ms and deceleration time as 550ms to complete the design.

- Assume the feedback of the encoder is an A/B phase input and we adopt C251 timing (we suggust you clear it to 0 before the execution); target number of feedbacks = 50,000; target output frequency = 100KHz; Y0, Y1 (CH0) as output pulses; start/end frequency (D1340) = 200Hz; acceleration time (D1343) = 300ms; deceleration time (D1348) = 600ms; precentage value (D1198) = 100; current number of output pulses (D1336, D1337) = 0.
- 2. Write the program codes as follows:



3. Assume the first execution result as:

- 4. Observe the result of the first execution:
 - a) The actual output number 50,600 estimated output number 50,000 = 600
 - b) $600 \times (1/200 \text{Hz}) = 3s \text{ (idling time)}$
 - c) 3 seconds are too long. Therefore, increase the percentage value (D1198) to K101.

5. Obatin the result of the second execution:

- 6. Observe the result of the second execution:
 - a) The actual output number 50,560 estimated output number 50,500 = 60
 - b) $60 \times (1/200 \text{Hz}) = 300 \text{ms} \text{ (idling time)}$
 - c) 300ms is an appropriate value. Therefore, set the percentage value (D1198) as K101 to complete the design.

Remarks:

Flag explanations:

M1010: When On, CH0, CH1, CH2 and CH3 will output pulses when encountering END instruction. Off

when the output starts.

M1029: On when CH0 pulse output is completed.

M1030: On when CH1 pulse output is completed.

M1036: On when CH2 pulse output is completed.

M1037: On when CH3 pulse output is completed.

M1334: When On, CH0 pulse output will be forbidden.

M1335: When On, CH1 pulse output will be forbidden.

M1520: When On, CH2 pulse output will be forbidden.

M1521: When On, CH3 pulse output will be forbidden.

M1336: CH0 pulse output indication flag

M1337: CH1 pulse output indication flag

M1522: CH2 pulse output indication flag

M1523: CH3 pulse output indication flag

M1305: CH0 direction signal flag

M1306: CH1 direction signal flag

M1532: CH2 direction signal flag

M1533: CH3 direction signal flag

M1534: Deceleration time of CH0 setup flag (must used with D1348)

M1535: Deceleration time of CH1 setup flag (must used with D1349)

M1536: Deceleration time of CH2 setup flag (must used with D1350)

M1537: Deceleration time of CH3 setup flag (must used with D1351)

2. Special register explanations:

D1198: Close loop output/input ratio of CH0 (default: K100)

D1199: Close loop output/input ratio of CH1 (default: K100)

D1478: Close loop output/input ratio of CH2 (default: K100)

D1479: Close loop output/input ratio of CH3 (default: K100)

D1220: Phase setting of CH0 (Y0, Y1): determined by the last 2 digits of D1220; other digits are invalid.

1. K0: Y0 output

2. K1: Y0, Y1 AB-phase output; A ahead of B

3. K2: Y0, Y1 AB-phase output; B ahead of A

D1221: Phase setting of CH1 (Y2, Y3): determined by the last 2 digits of D1221; other digits are invalid.

1. K0: Y2 output

2. K1: Y2, Y3 AB-phase output; A ahead of B

3. K2: Y2, Y3 AB-phase output; B ahead of A

D1229: Phase setting of CH2 (Y4, Y5): determined by the last 2 digits of D1229; other digits are invalid.

1. K0: Y4 output

2. K1: Y4, Y5 AB-phase output; A ahead of B

3. K2: Y4, Y5 AB-phase output; B ahead of A

D1230: Phase setting of CH3 (Y6, Y7): determined by the last 2 digits of D1230; other digits are invalid.

1. K0: Y6 output

2. K1: Y6, Y7 AB-phase output; A ahead of B

3. K2: Y6, Y7 AB-phase output; B ahead of A

D1222: Time difference between the direction signal and pulse output of CH0

D1223: Time difference between the direction signal and pulse output of CH1

D1383: Time difference between the direction signal and pulse output of CH2

D1384: Time difference between the direction signal and pulse output of CH3

D1336:	Low word of the current number of output pulses of CH0
D1337:	High word of the current number of output pulses of CH0
D1338:	Low word of the current number of output pulses of CH1
D1339:	High word of the current number of output pulses of CH1
D1375:	Low word of the current number of output pulses of CH2
D1376:	High word of the current number of output pulses of CH2
D1377:	Low word of the current number of output pulses of CH3
D1378:	High word of the current number of output pulses of CH3
D1340:	Start/end frequency settings of CH0 (default: K200)
D1352:	Start/end frequency settings of CH1 (default: K200)
D1379:	Start/end frequency settings of CH2 (default: K200)
D1380:	Start/end frequency settings of CH3 (default: K200)
D1348:	Deceleration time of CH0 pulse output when M1534 = On (default: K100)
D1349:	Deceleration time of CH1 pulse output when M1535 = On (default: K100)
D1350:	Deceleration time of CH2 pulse output when M1536 = On (default: K100)
D1351:	Deceleration time of CH3 pulse output when M1537 = On (default: K100)
D1343:	Acceleration/deceleration time of CH0 pulse output (default: K100)
D1353:	Acceleration/deceleration time of CH1 pulse output (default: K100)
D1381:	Acceleration/deceleration time of CH2 pulse output (default: K100)
D1382:	Acceleration/deceleration time of CH3 pulse output (default: K100)

MEMO

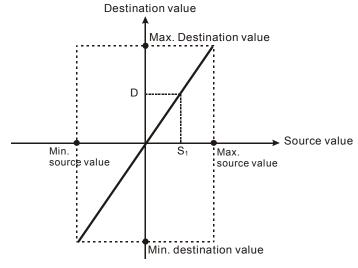
API	Mnemonic	;		Oper	rands		Function	Controllers
202	SCAL	Р	(S)	<u>\$2</u>	S 3	Ф	Proportional Value Calculation	ES/EX/SS SA/SX/SC EH/SV

	Туре	В	it De	vice	s				٧	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Ι	KnX	KnY	KnM	KnS	Τ	O	D	П	F	SCAL, SCALP: 9 steps
	S ₁					*	*							*			
	S ₂					*	*							*			
	S ₃					*	*							*			
	D													*			

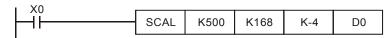
				PUL	SE							16-	-bit							32-	-bit			
П	ΞS	ΕX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

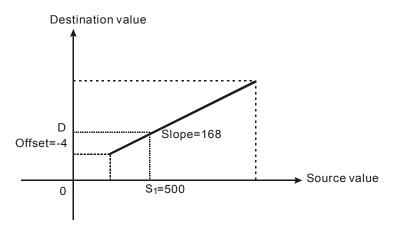
 S_1 : Source value S_2 : Slope S_3 : Offset D: Destination device

Explanations:

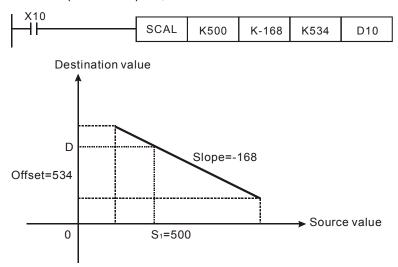

- 1. Range of S1, S2, S3: -32,768 ~ 32,767
- 2. Unit of S2: 0.001
- 3. See the specifications of each model for their range of use.
- 4. Operation equation in the instruction: $D = (S_1 \times S_2) \div 1000 + S_3$.

Users have to obtain S_2 and S_3 (decimals are rounded up into 16-bit integers) by using the slope and offset equations below.


Slope equation: $S_2 = [(max. destination value - min. destination value) ÷ (max. source value - min. source value)] × 1,000$


Offset equation: S_3 = min. destination value – min. source value × S_2 ÷ 1,000

The output curve is shown as the figure:


- 1. Assume $S_1 = 500$, $S_2 = 168$, $S_3 = -4$. When X0 = On, SCAL instruction will be executed and obtain the proportional value at D0.
- 2. Equation: D0 = $(500 \times 168) \div 1{,}000 + (-4) = 80$

Program Example 2:

- 1. Assume $S_1 = 500$, $S_2 = -168$, $S_3 = 534$. When X10 = On, SCAL instruction will be executed and obtain the proportional value at D10.
- 2. Equation: D0 = $(500 \times -168) \div 1,000 + 534 = 450$

Remarks:

- 1. This instruction is applicable for known slope and offset. If slope and offset are unknown, use SCLP instruction for the calculation.
- 2. S_2 has to be within the range -32,768 ~ 32,767. If S_2 falls without the range, use SCLP instruction for the calculation.
- 3. When using the slope equation, please be aware that the max. source value must > min. source value, but it is not necessary that max. destination value > min. destination value.
- 4. If the value of $\mathbf{D} > 32,767$, $\mathbf{D} = 32,767$; if the value of $\mathbf{D} < -32,768$, $\mathbf{D} = -32,768$.
- 5. Only ES_V6.2, SA/SX_V1.6, SC_V1.4, EH2/SV_V1.0 and versions above support this instruction. EH series MPU does not support this instruction.

		Mnemonic	;	Operands	Function	Controllers
203	D	SCLP	Р	\$1 \$2 D	Parameter Proportional Value Calculation	ES/EX/SS SA/SX/SC EH/SV

Туре	В	it De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	O	О	П	F	SCLP, SCLPP: 7 steps
S ₁					*	*							*			DSCLP, DSCLPP: 13 steps
S ₂													*			20021, 2002111100000
D													*			

	PULSE							16-bit										32-	-bit				
ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

 S_1 : Source value S_2 : Parameter D: Destination device

Explanations:

- 1. See the specifications of each model for the range of operands.
- 2. Flags: M1162 (decimal integer or binary floating point); M1162 = On -> Binary floating point
- 3. Settings of S₂ for 16-bit instruction:

S₂ occupies 4 consecutive devices in 16-bit instruction.

Device No.	Parameter	Range
S ₂	Maximum source value	-32,768 ~ 32,767
S ₂ + 1	Minimum source value	-32,768 ~ 32,767
S ₂ + 2	Maximum destination value	-32,768 ~ 32,767
S ₂ + 3	Minimum destination value	-32,768 ~ 32,767

4. Settings of S₂ for 32-bit instruction:

S₂ occupies 8 consecutive devices in 32-bit instruction.

Device No.	Parameter	Rai	nge
Device No.	Parameter	Integer	Floating point
S ₂ , S ₂ + 1	Maximum source value		
S ₂ + 2, 3	Minimum source value	-2,147,483,648 ~	Range of 32-bit
S ₂ + 4, 5	Maximum destination value	2,147,483,647	floating point
S ₂ + 6, 7	Minimum destination value		

- 5. Operation equation in the instruction: $\mathbf{D} = [(\mathbf{S}_1 \min. \text{ source value}) \times (\max. \text{ destination value} \min. \text{ destination value})] \div (\max. \text{ source value} \min. \text{ source value}) + \min. \text{ destination value}$
- 6. The operational relation between source value and destination value is as stated below:

$$y = kx + b$$

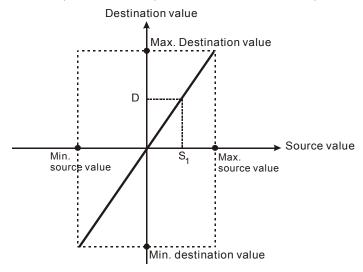
y= Destination value (D)

k= Slope = (max. destination value – min. destination value) ÷ (max. source value – min. source value)

 $x = Source value (S_1)$

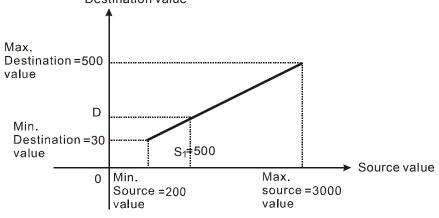
b= Offset = Min. destination value - Min. source value × slope

Bring all the parameters into equation y = kx + b and obtain the equation in the instruction:

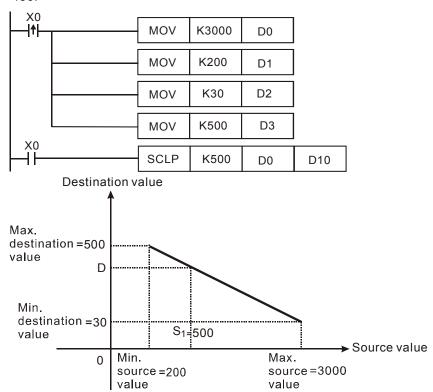

 $y = kx + b = D = k S_1 + b = slope \times S_1 + offset = slope \times S_1 + min. destination value - min. source value \times slope$

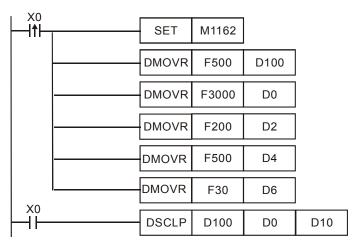
= slope × (S_1 – min. source value) + min. destination value = (S_1 – min. source value) × (max. destination value – min. destination value) + min. destination value

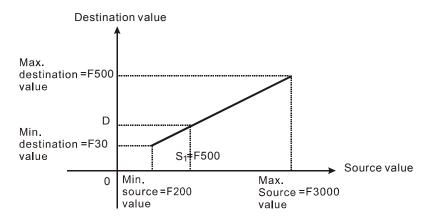
7. If S1 > max. source value, S1 = max. source value


If **S1** < min. source value, **S1** = min. source value

When all the input values and parameters are set, the output curve is shown as the figure:


- 1. Assume $S_1 = 500$, max. source value D0 = 3,000, min. source value D1 = 200, max. destination value D2 = 500, and min. destination value D3 = 30. When X0 = On, SCLP instruction will be executed and obtain the proportional value at D10.
- 2. Equation: D10 = $[(500 200) \times (500 30)] \div (3,000 200) + 30 = 80.35$. Round off the result into an integer D10 = 80.




Program Example 2:

- 1. Assume **S**₁ = 500, max. source value D0 = 3,000, min. source value D1 = 200, max. destination value D2 = 30, and min. destination value D3 = 500. When X0 = On, SCLP instruction will be executed and obtain the proportional value at D10.
- 2. Equation: D10 = $[(500 200) \times (30 500)] \div (3,000 200) + 500 = 449.64$. Round off the result into an integer D10 = 450.

- 1. Assume the source of **S**₁ D100 = F500, max. source value D0 = F3000, min. source value D2 = F200, max. destination value D4 = F500, and min. destination value D6 = F30. When X0 = On, set up M1162, adopt floating point operation and execute DSCLP instruction. The proportional value will be obtained at D10.
- 2. Equation: D10 = $[(F500 F200) \times (F500 F30)] \div (F3000 F200) + F30 = F80.35$. Round off the result into an integer D10 = F80.

Remarks:

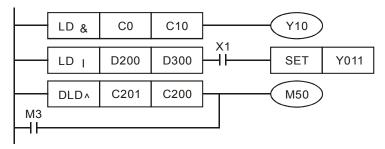
- 1. Range of S_1 for 16-bit instruction: max. source value $\geq S_1 \geq$ min. source value; -32,768 ~ 32,767. If the value falls without the bounds, the bound value will be used for calculation.
- 2. Range of integer S_1 for 32-bit instruction: max. source value $\geq S_1 \geq$ min. source value; -2,147,483,648 ~ 2,147,483,647. If the value falls without the bounds, the bound value will be used for calculation.
- 3. Range of floating point S_1 for 32-bit instruction: max. source value $\geq S_1 \geq$ min. source value; following the range of 32-bit floating point. If the value falls without the bounds, the bound value will be used for calculation.
- 4. Please be aware that the max. source value must > min. source value, but it is not necessary that max. destination value > min. destination value.
- 5. Only ES_V6.2, SA/SX_V1.6, SC_V1.4, EH2/SV_V1.0 and versions above support this instruction. EH series MPU does not support this instruction.

API		Mnemonic	Operands	Function	Controllers
215~ 217	D	LD#	<u>\$1</u> <u>\$2</u>	Contact Logical Operation LD#	ES/EX/SS SA/SX/SC EH/SV

Туре	В	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР	Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	C	D	П	F	LD#: 5 steps
S ₁					*	*	*	*	*	*	*	*	*	*	*	DLD#: 9 steps
S ₂					*	*	*	*	*	*	*	*	*	*	*	122m. 5 stop5

PULSE							16-bit											32	-bit			
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S₁: Data source device 1 S₂: Data source device 2


Explanations:

- 1. See the specifications of each model for the range of operands.
- 2. This instruction compares the content in S_1 and S_2 . If the result is not "0", the continuity of the instruction is enabled. If the result is "0", the continuity of the instruction is disabled.
- 3. LD# (#: &, |, ^) instruction is used for direct connection with BUS.

API No.	16 -bit instruction	32 -bit instruction	Continuity condition	No-continuity condition
215	LD&	D LD&	$S_1 \& S_2 \neq 0$	S ₁ & S ₂ =0
216	LD	D LD	$S_1 S_2 \neq 0$	S ₁ S ₂ =0
217	LD^	D LD^	S ₁ ^ S ₂ ≠0	S ₁ ^ S ₂ =0

- 4. **&:** Logical "AND" operation
- 5. |: Logical "OR" operation
- 6. ^: Logical "XOR" operation
- 7. When 32-bit counters (C200 ~ C255) are used in this instruction for comparison, make sure to adopt 32-bit instruction (DLD#). If 16-bit instructions (LD#) is adopted, a "program error" will occur and the ERROR indicator on the MPU panel will flash.

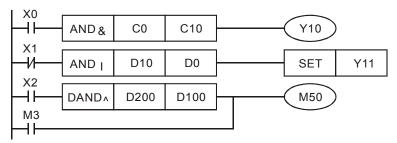
- 1. When the result of logical AND operation of C0 and C10 \neq 0, Y10 = On.
- 2. When the result of logical OR operation of D200 and D300 \neq 0 and X1 = On, Y11 = On will be retained.
- When the result of logical XOR operation of C201 and C200 ≠ 0 or M3 = On, M50 = On.

API	N	I nemonic	Operands	Function	Controllers
218~ 220	D	AND#	S 1 S 2	Contact Logical Operation AND#	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				V	Vord I	Devic	es					Program Steps		
	OP \	X Y M				Κ	Η	KnX	KnY	KnM	KnS	Т	С	D	Е	F	AND#: 5 steps		
Ī	S ₁					*	*	*	*	*	*	*	*	*	*	*	DAND#: 9 steps		
	S ₂					*	*	*	*	*	*	*	*	*	*	*	27 11 12 11 . O OLOPO		

	PULSE								16-bit 32-bit														
ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S₁: Data source device 1 **S**₂: Data source device 2


Explanations:

- 1. See the specifications of each model for the range of operands.
- 2. This instruction compares the content in S_1 and S_2 . If the result is not "0", the continuity of the instruction is enabled. If the result is "0", the continuity of the instruction is disabled.
- 3. AND# (#: &, |, ^) is an operation instruction used on series contacts.

API No.	16 -bit instruction	32 -bit instruction	Continuity condition	No-continuity condition
218	AND&	DAND&	S1 & S2≠0	S1 & S2=0
219	AND	DAND	S1 S2≠0	S1 S2=0
220	AND^	DAND^	S1 ^ S2≠0	S1 ^ S2=0

- 4. &: Logical "AND" operation
- 5. |: Logical "OR" operation
- 6. ^: Logical "XOR" operation
- 7. When 32-bit counters (C200 ~ C255) are used in this instruction for comparison, make sure to adopt 32-bit instruction (DAND#). If 16-bit instructions (AND#) is adopted, a "program error" will occur and the ERROR indicator on the MPU panel will flash.

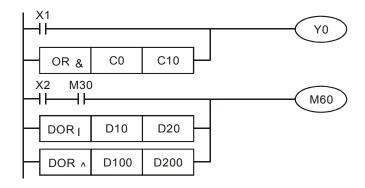
- 1. When X0 = On and the result of logical AND operation of C0 and C10 \neq 0, Y10 = On.
- 2. When X1 = Off and the result of logical OR operation of D10 and D0 ≠ 0 and X1 = On, Y11 = On will be retained.
- 3. When X2 = On and the result of logical XOR operation of 32-bit register D200 (D201) and 32-bit register D100 (D101) ≠ 0 or M3 = On, M50 = On.

API		Mnemonic	Operands	Function	Controllers
221~ 223	D	OR#	<u>\$1</u> <u>\$2</u>	Contact Logical operation OR#	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
ОР		Χ	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	Т	С	D	Е	F	OR#: 5 steps
	S ₁					*	*	*	*	*	*	*	*	*	*	*	DOR#: 9 steps
	S_2					*	*	*	*	*	*	*	*	*	*	*	2 Grunt o otopo

		PUL	SE							16-	-bit							32	-bit			
ES EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	ΕH	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S₁: Data source device 1 **S**₂: Data source device 2


Explanations:

- 1. See the specifications of each model for the range of operands.
- 2. This instruction compares the content in S_1 and S_2 . If the result is not "0", the continuity of the instruction is enabled. If the result is "0", the continuity of the instruction is disabled.
- 3. OR# (#: &, |, ^) is an operation instruction used on parallel contacts.

API No.	16 -bit instruction	32 -bit instruction	Continuity condition	No-continuity condition
221	OR&	DOR&	$S_1 \& S_2 \neq 0$	S ₁ & S ₂ =0
222	OR	D OR	$S_1 \mid S_2 \neq 0$	$S_1 S_2 = 0$
223	OR^	D OR^	S ₁ ^ S ₂ ≠0	S ₁ ^ S ₂ =0

- 4. **&:** Logical "AND" operation
- 5. |: Logical "OR" operation
- 6. ^: Logical "XOR" operation
- 7. When 32-bit counters (C200 ~ C255) are used in this instruction for comparison, make sure to adopt 32-bit instruction (DOR#). If 16-bit instructions (OR#) is adopted, a "program error" will occur and the ERROR indicator on the MPU panel will flash.

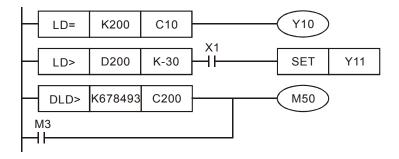
- 1. When X1 = On and the result of logical AND operation of C0 and C10 \neq 0, Y10 = On.
- 2. M60 will be On when X2 = On and M30 = On, or the result of logical OR operation of 32-bit register D10 (D11) and 32-bit register D20 (D21) ≠ 0, or the result of logical XOR operation of 32-bit register D200 (D201) and 32-bit counter C235 ≠ 0.

API	Mner	nonic	Operands	Function	Controllers
224~ 230	D LC	×	<u>\$1</u> <u>\$2</u>	LoaD Compare	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
0	P	Х	Υ	М	S	K	Н	KnX	KnY	KnM	KnS	T	С	D	Е	F	LD%: 5 steps
	S ₁					*	*	*	*	*	*	*	*	*	*	*	DLD%: 9 steps
	S_2					*	*	*	*	*	*	*	*	*	*	*	,

		PUL	PULSE							16-	-bit							32	-bit			
ES EX	ES EX SS SA SX SC EH SV					SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S₁: Data source device 1 S₂: Data source device 2


Explanations:

- 1. See the specifications of each model for the range of operands.
- 2. This instruction compares the content in S₁ and S₂. Take API224 (LD=) for example, if the result is "=", the continuity of the instruction is enabled. If the result is "≠", the continuity of the instruction is disabled.
- 3. LD% (%: =, >, <, <>, \leq) instruction is used for direct connection with BUS.

API No.	16 -bit instruction	32 -bit instruction	Continuity condition	No-continuity condition
224	LD=	D LD=	$S_1 = S_2$	$S_1 \neq S_2$
225	LD>	D LD>	$S_1 > S_2$	$S_1 \leq S_2$
226	LD<	D LD<	S ₁ <s<sub>2</s<sub>	$S_1 \ge S_2$
228	LD<>	D LD<>	$S_1 eq S_2$	$S_1 = S_2$
229	LD<=	DLD < =	S₁≦S₂	S ₁ >S ₂
230	LD>=	DLD>=	$S_1 \ge S_2$	$S_1 < S_2$

4. When 32-bit counters (C200 ~ C255) are used in this instruction for comparison, make sure to adopt 32-bit instruction (DLD%). If 16-bit instructions (LD%) is adopted, a "program error" will occur and the ERROR indicator on the MPU panel will flash.

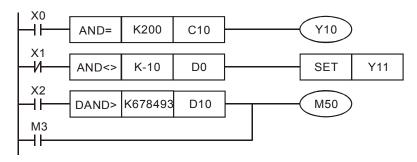
- 1. When the content in C10 = K200, Y10 = On.
- 2. When the content in D200 > K-30 and X1 = On, Y11= On will be retained.
- 3. When the content in C200 < K678,493 or M3 = On, M50 = On.

API	Mnemonic	Operands	Function	Controllers
232~ 238	D AND*	S 1 S 2	AND Compare	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	Bit De	evice	s				٧	Vord I	Devic	es					Program Steps
OP		Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	D	Е	F	AND%: 5 steps
	S ₁					*	*	*	*	*	*	*	*	*	*	*	DAND: 9 steps
	S_2					*	*	*	*	*	*	*	*	*	*	*	27 ii 12 //.: 0 diapo

			PUL	SE							16-	-bit							32	-bit			
ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	EΗ	SV

S₁: Data source device 1 S₂: Data source device 2


Explanations:

- 1. See the specifications of each model for the range of operands.
- 2. This instruction compares the content in S₁ and S₂. Take API232 (AND=) for example, if the result is "=", the continuity of the instruction is enabled. If the result is "≠", the continuity of the instruction is disabled.
- 3. AND (%: =, >, <, <>, ≤) is a comparison instruction is used on series contacts.

API No.	16 –bit instruction	32 –bit instruction	Continuity condition	No-continuity condition
232	AND=	D AND=	$S_1 = S_2$	$S_1 \neq S_2$
233	AND>	D AND>	$S_1 > S_2$	$S_1 \leq S_2$
234	AND<	D AND<	S ₁ <s<sub>2</s<sub>	$S_1 \ge S_2$
236	AND<>	D AND<>	$S_1 \neq S_2$	$S_1 = S_2$
237	AND<=	$ extbf{D}AND < =$	S₁≦S₂	$S_1 > S_2$
238	AND>=	D AND>=	S₁≧S₂	S ₁ <s<sub>2</s<sub>

4. When 32-bit counters (C200 ~ C255) are used in this instruction for comparison, make sure to adopt 32-bit instruction (DAND*). If 16-bit instructions (AND*) is adopted, a "program error" will occur and the ERROR indicator on the MPU panel will flash.

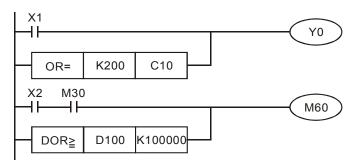
- 1. When X0 = On and the content in C10 = K200, Y10 = On.
- 2. When X1 = Off and the content in D0 \neq K-10, Y11= On will be retained.
- 3. When X2 = On and the content in 32-bit register D0 (D11) < 678,493 or M3 = On, M50 = On.

API	I	Mnemonic	Operands	Function	Controllers
240~ 246	D	OR*	S 1 S 2	OR Compare	ES/EX/SS SA/SX/SC EH/SV

	Туре	Е	evice	s	Word Devices									Program Steps			
(OP \	Χ	Υ	М	S	K	Η	KnX	KnY	KnM	KnS	Т	С	D	Е	F	OR*: 5 steps
	S ₁					*	*	*	*	*	*	*	*	*	*	*	DOR*: 9 steps
	S ₂					*	*	*	*	*	*	*	*	*	*	*	DON' : 0 stops

PULSE						16-bit						32-bit											
ES	EX	SS	SA	SX	SC	EΗ	SV	ES	EX	SS	SA	SX	SC	H	SV	ES	EX	SS	SA	SX	SC	ΕH	SV

S₁: Data source device 1 S₂: Data source device 2


Explanations:

- 1. See the specifications of each model for the range of operands.
- 2. This instruction compares the content in S₁ and S₂. Take API240 (OR=) for example, if the result is "=", the continuity of the instruction is enabled. If the result is "≠", the continuity of the instruction is disabled.
- 3. OR※ (**※:** =, >, <, <>, ≤) is an comparison instruction used on parallel contacts.

API No.	16 -bit instruction	32 -bit instruction	Continuity condition	No-continuity condition
240	OR=	D OR=	$\mathbf{S_1} \mathbf{=} \mathbf{S_2}$	$S_1 \neq S_2$
241	OR>	D OR>	$S_1 > S_2$	$S_1 \leqq S_2$
242	OR<	D OR<	S ₁ < S ₂	$S_1 \ge S_2$
244	OR<>	D OR<>	$S_1 \neq S_2$	$S_1 = S_2$
245	OR<=	D OR<=	S₁≦S₂	S ₁ >S ₂
246	OR>=	DOR>=	$S_1 \ge S_2$	S ₁ < S ₂

4. When 32-bit counters (C200 ~ C255) are used in this instruction for comparison, make sure to adopt 32-bit instruction (DOR*). If 16-bit instructions (OR*) is adopted, a "program error" will occur and the ERROR indicator on the MPU panel will flash.

- 1. When X1 = On and the present value of C10 = K200, Y0 = On.
- 2. M60 will be On when X2 = On, M30 = On and the content in 32-bit register D100 (D101) \geq K100,000.

