PI AF architecture as backbone of digital transformation & advanced analytics developments in MOL Downstream

Tibor Komróczki Károly Ott

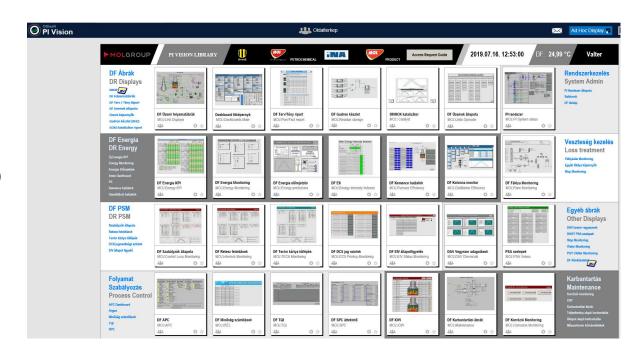
The MOL Group at a Glance

- ► MOL GROUP IS AN INTEGRATED, INTERNATIONAL OIL AND GAS COMPANY, HEADQUARTERED IN BUDAPEST, HUNGARY
- ► ACTIVE IN OVER 30 COUNTRIES
- ▶ INTERNATIONAL WORKFORCE OF OVER 25,000 PEOPLE
- ► TRACK RECORD OF MORE THAN 100 YEARS IN THE INDUSTRY

- ▶ 4 REFINERIES, 2 PETROCHEM PLANTS
- ▶ LOGISTICS INCLUDING 2,000 RETAIL STATIONS

MOL Process Information & Automation

- Closing the gap between process control and business
- Project and CR management
- Overall monitoring of refinery operation
- In-house developed PI solutions


- Team of 18 Process Information & Automation Engineers (APC/RTO/OTS & PI Systems)
- Report to Technology manager & group level
- IT in a supportive role...minimally involved –
 Operating Systems and SQL Servers

ADVANCED PROFITABILITY APPLIC	ATIONS REFINERY INFORMATION SYSTEMS	ADVANCED SAFETY & RELIABILITY APPLICATIONS
 ADVANCED PROCESS CONTRO INFERENTIAL MAINTENANCE KPI BREAKDOWN SOLOMON CALCULATION ENERGY MONITORING NAPHTHA POOL OPTIMIZATION 	 PLANT INFORMATION (PI) SEMAFOR (KPI SYSTEM) SHAREPOINT DEVELOPMENTS SIGMAFINE (MATERIAL BALANCE) 	 ALARM MANAGEMENT INDUSTRIAL NETWORK HUMAN MACHINE INTERFACE OPERATOR TRAINING SIMULATOR CONTROL PERFORMANCE MONITOR

PI SYSTEM OVERVIEW

- ▶ 4 HA COLLECTIVES, ~400K TAGS
- ► USED BY MOL, MPC, LOGISTIC
- **ELEMENTS:**
 - ▶ 350 ELEMENT TEMPLATES
 - ▶ 23K ELEMENTS & GROWING (65X SCALE)
- **EVENTS:**
 - ▶ 6K NOTIFICATIONS
 - ▶ 10K EVENT FRAMES ANALYSES
 - 50K EVENT FRAMES (EXCEPTION BASED OPERATIONS)

INCREASING PROFICIENCY AND PRODUCTIVITY THROUGH DIGITALIZATION

COMPETENCY INSTRUCTOR LED GAP ANALYSIS MANAGEMENT TRAINING COMPETENCY EMBRACING DIGITALIZATION **FRAMEWORK REVIEW LEARNING TECHNICAL**

PERFORMANCE **SUPPORT**

MANAGEMENT

EVALUATION

INVEST IN HUMAN CAPITAL AND **DEVELOPMENT THAT** PROMOTE DIGITAL

THINKING

WORKFORCE

PI SYSTEM DEVELOPMENT & PI VISION DISPLAYS

PI SYSTEM

SQC ÁTTEKINTŐ

AV1 középbenzin-2 VFF

AV1 petróleum VFP

AV2 PB C5 tart.

AV2 KGO T95

AV2 középbenzin VFF

AV2 nehézbenzin VFF

AV2 petróleum VFP

- **ORION TO PI INTERFACE**
- NICE TO PI INTERFACE
- NOTIFICATION WEBSERVICE UPGRADE

ADVANCED APPLICATIONS

ADVANCED PROCESS CONTROL STATISTICAL QUALITY CONTROL TANK QUALITY INTEGRATOR

AV3 könnyűbenzin KFF

AV3 nehézbenzin VFF

AV3 PB C5 tart.

AV3 KGO T95

AV3 VGO T95

PEM fej C8 tart.

PEM oldal Tol. tart

GFR N-C4 I-C4 tart

GFR propán C4 tart.

BK5 COMBPROD kén t

BK5 COMBPROD VFI

FCC LCO T95

FCC MCB BMCI

GOK3 gázolaj kén t.

GOK3 gázolaj T95

GOK3 gázolaj ZP

GOK3 benzin VFF

HDS gázolai T95

HDS gázolai kén t

GOK3 gázolaj PMLB

ARO benzol toluol tart.

ARO toluol benzol tart.

2/105 fenéktermék KFI

DCU HCGO CCR

RF4 REF-100 RON RF4 REF-100 benzol t.

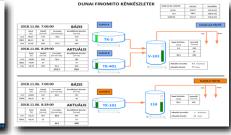
PROCESS INFORMATION SYSTEMS

- **UNIT BLOCK DASHBOARDS**
- GROUP WHITE PRODUCT YIELD
- **REFINERY N2 MONITOR**
- PLAN FACT REPORT

ENERGY MANAGEMENT

- **ENERGY KPI SYSTEM**
- **ENERGY MONITORING SYSTEM**
- **FFFICIENCY MONITORING**

PI Tag & AF structure establishment


- Bottomup development
- Rapid roll out of solutions

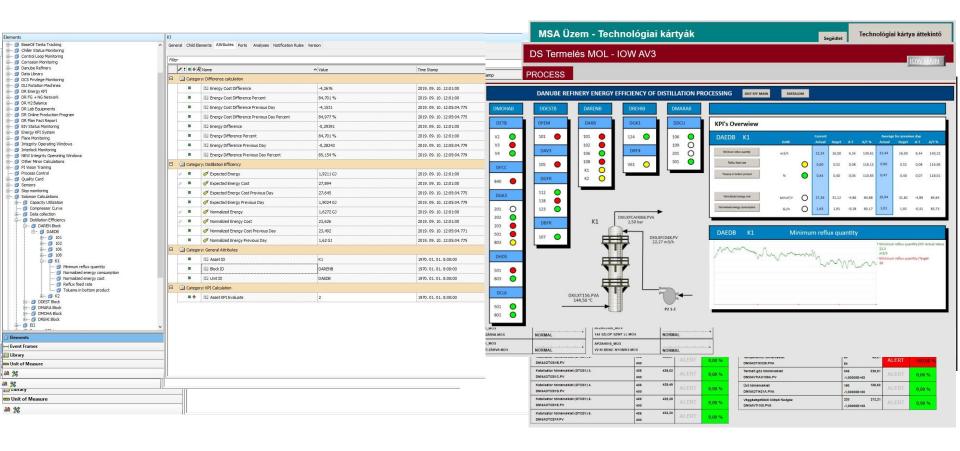
ARO xilol OX. tart. ARO xilol toluol tart. ARO orto-xilol IPB t.

OTHER REFINERY SYSTEMS

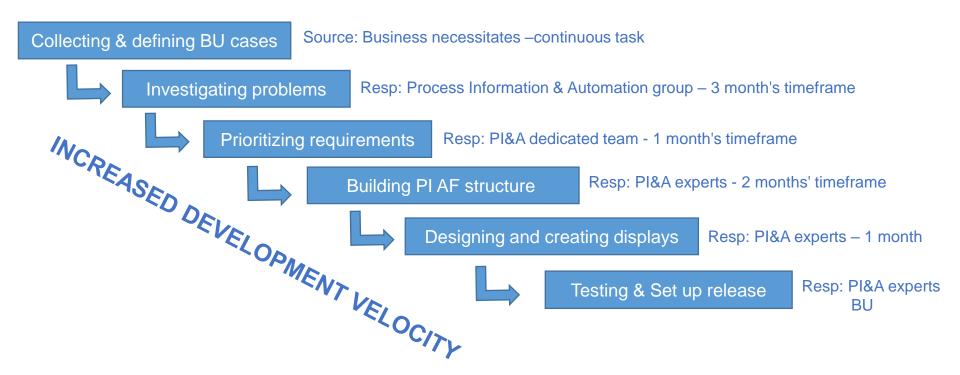
- LABOR EQUIPMENT AVAILABILITY
- ONLINE PRODUCTION PROGRAM
- SULFUR STOCK AND SHIPMENTS
- CATALYST REPORTS
- **CHILLER MONITORING**

ÜTEMEZÉSI		eli usemmod SK		_	Normal see									
ALAPANTAGO	ĸ		a trend	lek nagyitha	tek.				TERMÉNEX					
neo bealitás	1	58	DCU	ecc/co	HDS TOTAL H2 6		6081	PB		Berain		Gázolaj		
	_	abpropa	N845050	1.7.	glentsj	spinning	igány	imp bendin	Unap	hocam's	Elvap	hours %	thee	Name N
Digire	7			- 1			L-~		Part.		Part .		\neg	
2008.11.04	8550	3290	990	460	0	8240	104	42	141	1,71	596	7,28	7458	90,50
2018.11.09	8550	1210	990	600		8430	105	42	141	1,67	556	7,07	7159	88,48
	3550	3290	290	600	10	8430	105	42	141	1,67	556	7,07	7455	85,48
2008.13.33	3550	3290	997	600	10	8430	105	20	141	1,67	575	6,82	7400	55,49
2009.11.12	8550	8290	990	1400	p	8430	106	41	141	1,67	595	7,06	7459	22,42
2018.11.15	3550	3090	3820	580	, à	8240	105	31	141	1.71	587	6,97	7459	90.52
MINÖSÉGE	EK, KITÁ	ROLÁSON			1	_			GEMUT	asitásn	v vtets			
MINÖSÉGE		ROLÁSON		min			Maron				K, KÉRÉSE	K CK	iző utasításo	
MINÖSÉGE tarrolk H2 dec lately y		mindwigi	előirás	min			HP 1217g4	gwiec	GEM UT		K, KÉRÉSE	, C	izō utasitāso	
MINÖSÉGE terreik H2 dés lefejt j Stabilgés		mindeligi H25 tartai		min	max 800		HP 1313ga KSO MP a	gmine	Calo Fa	iled		Ja (%		
MINÖSÉGE terreik H2 dos letejt j Stabilgás H25 dás gás		mindwigi	előirás	min			HP 1213ga KSO MP a Claux Gree	gmine	Celo Fe	iled inimālis ber	gin hogam	Mercaraion	n selement:	
MINÖSÉGE terreik H2 dos letejt j stabilgás H25 dás gás P0		minduigi H25 tartai	eldirás om, třppm		800		HP 1313ga KGO MP a Claux Gree GFR Green	gmine	Calo Fa CH a mi Fages K	iled inimälis ber IU-ra 900 t	zin hozam termék legy	kéritartalon Gjés és sz	o delentele: étosztás	
MINÖSÉGE terreik H2 dús lefújt g Stabilgás H25 dús gás F0 Benzin		mindwigi H2S tartal vigitorpo	eldiran om, tilppm et, 10	120	800 160		HP 1313gs, HIGO MP a Claux Gree GFR Green VEB	Emise Parise	Celo Fe CH a mi Fagen K munkah	illed inimalis ber IU-ra 900 t Majok közi	zin hozam termék legy ét, dolgszó	kéritartalon Gjés és sz i elégedetts	n selemek: étosztás ég növelés	
MINÖSÉGE terreik H2 dos letejt j stabilgás H25 dás gás P0		reindeigi H25 tartal viglompo PM lobba	ettinis om, tippm et, "C nisport, "C	120	800 160 73		HP 1313gs, HIGO MP a Claux Gree GFR Green VEB	gmine	Celo Fe CH a mi Fagen K munkah	illed inimalis ber IU-ra 900 t Majok közi	zin hozam termék legy ét, dolgszó	kéritartalon Gjés és sz i elégedetts	o delentele: étosztás	
MINÖSÉGE terreik H2 dús lefújt g Stabilgás H25 dús gás F0 Benzin		mindeligi H25 tartal - vigitompo PM lobbe bietartah	eldinis on, tippre et, 'C nispont, 'C ore, appre	120 67 2	160 73 8		HP 1313gs, HIGO MP a Claux Gree GFR Green VEB	Emise Parise	Celo Fel Cel a mi Fugen K munkah eegapoi	illed Inimalis ber IU-ra 900 t Majok közi A minoség	zin hozam termék legy ét, dolgszó	kéntartalon újás és sz i elégedetts oxsartása m	n selemek: étosztás ég növelés	
MINÖSÉGE terreik H2 dús lefújt g Stabilgás H25 dús gás F0 Benzin		reindeigi H25 tartal viglompo PM lobba	eldinis on, tippre et, 'C nispont, 'C ore, appre	120	800 160 73		HP 1313gs, HIGO MP a Claux Gree GFR Green VEB	Emise Parise	Celo Fel Cel a mi Fugen K munkah eegapoi	illed Inimalis ber IU-ra 900 t Majok közi A minoség	zin hozam termék legy ét, dolgszól "Mőlrások l	kéntartalon újás és sz i elégedetts oxsartása m	n selemek: étosztás ég növelés	
MINÖSÉGE terreik H2 dús lefújt g Stabilgás H25 dús gás F0 Benzin		H25 tartal - H25 tartal - Vigformo PM lobbe bietartals toverpore	eldines our, tippes et. 'C nispont, 'C ore, appen i, 'C	120 67 2	160 73 8 -9.5		HP 1313gs, HIGO MP a Claux Gree GFR Green VEB	Emise Parise	Celo Fel Cel a mi Fugen K munkah eegapoi	illed Inimalis ber IU-ra 900 t Majok közi A minoség	zin hozam termék legy ét, dolgszól "Mőlrások l	kéntartalon újás és sz i elégedetts oxsartása m	n selemek: étosztás ég növelés	

PROCESS SAFETY MANAGEMENT


30 DAYS ILOCK MONITORING

#PIWorld


©2019 OSIsoft, LLC

EXAMPLES - BEIERNO DECORRERANS NO DE MANDICY

PI AF & PI Vision development workflow

BUILDING PLAF SYSTEMS STEP 1

DEFINING BUSINESS CASE

MONITORING OF FLARING ACTIVITIES:

UNDERSTANDING PROBLEM

TOO MUCH FLARING ACTIVITY IN THE REFINERY

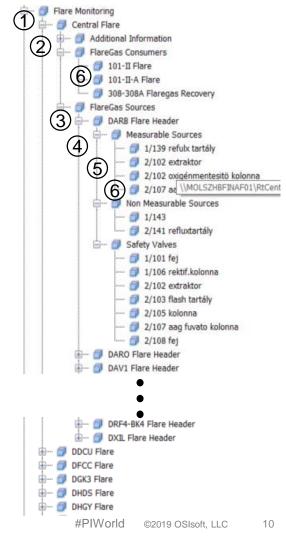
DEFINING SCOPE

WORKING OUT METHODOLOGY

DETECT FLARING (AND SAFETY VALVE BLOW-DOWNS) IN THE REFINERY AND DOCUMENTING IT (IN E-LOGBOOK)

VIA MEASUREMENT OF FLARE FLOWS (DIRECT) AND/OR VIA MEASUREMENT OF PRESSURES, TEMPERATURES, FLOWS, VALVE POSITIONS, ETC. (INDIRECT)

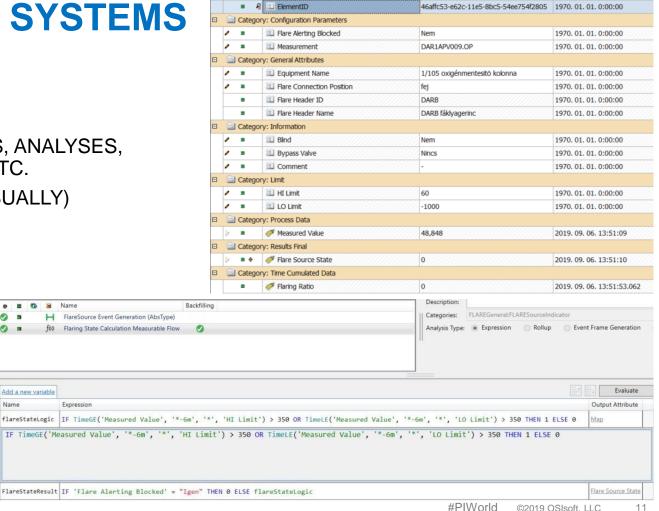
BUILDING PI AF SYSTEMS STEP 2


BUILDING UP AF STRUCTURE

- ► CREATING THE SKELETON
- ► FROM TOP TO BOTTOM

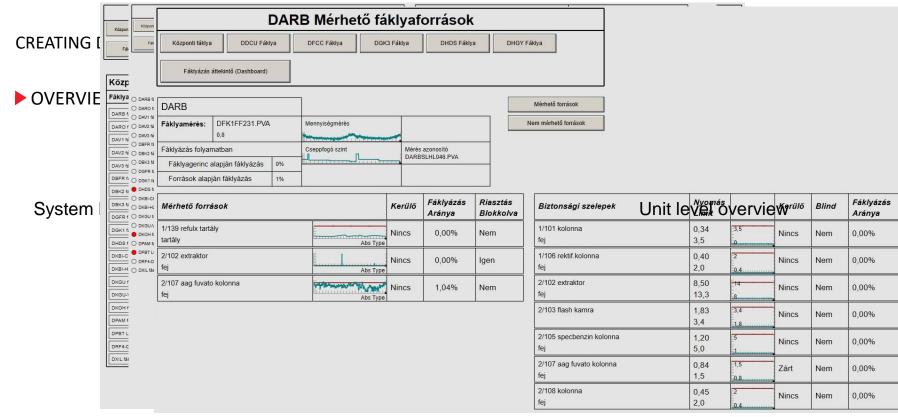
LAYERS:

- 1. SYSTEM
- 2. FLARES
- CATEGORY (CONSUMER/SOURCE)
- 4. UNITS
- CATEGORY (MEASURABLE OR NOT)
- 6. EQUIPMENT


BUILDING PLAF SYSTEMS STEP 3

Add a new variable

BUILDING IN FUNCTIONALITY


- CONFIGURING ATTRIBUTES, ANALYSES, NOTIFICATIONS, TABLES, ETC.
- ► FROM BOTTOM TO TOP (USUALLY)

Category: Auxiliary Attributes

BUILDING PI AF SYSTEMS STEP 4

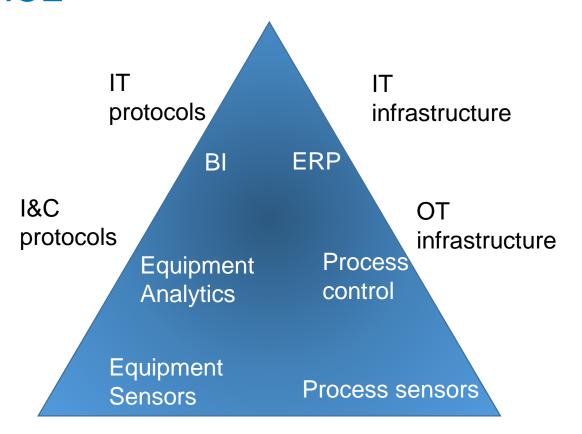
RATIONALIZATION OF ANALYTICS TECHNIQUES

BUSINESS OPERATIONS

- Ubiquitous data streams
- Advanced analytics techniques
- Establishment of a digital connection between refinery operation & IoT devices
- Collaborating & leveraging refinery knowledge

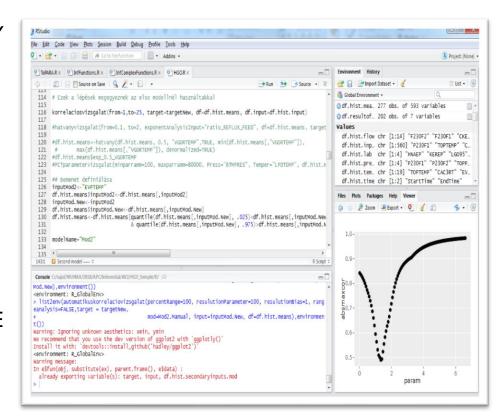
TRANSFORMATION

- Rich digital representation of processes
- Identification of new system integration & development opportunities
- Commissioning good practices


PRODUCTIVITY IMPROVEMENTS

- Maximized asset utilization
- Minimized unit shut-down times
- Driving direct energy efficiency
- Reach mechanical integrity in every level
- Smooth operation

IT / OT CONVERGENCE


- ► ESTABLISHING ELABORATED PRODUCTION SCHEDULE
- ► OPTIMIZING OPERATION PROCESSES VIA SUPERVISOR AND AUTOMATIC CONTROL SYSTEMS
- ► INCREASING THE MECHANICAL AVAILABILITY

THE IMPORTANCE OF HAVING AN OT DATA INFRASTRUCTURE

- ► RAPID DEVELOPMENT AND SCALABILITY OF APPLICATIONS
- ► REINFORCE THE USE OF DATA AND ANALYTICS BASED DECISION MAKING
- SUPPORT CULTURAL CHANGE AND NORMALIZATION
- ► LEVERAGE ADVANCED TECHNOLOGIES INCLUDING ADVANCED ANALYTICS AND IOT TO ACCELERATE BUSINESS VALUE
- ► ENABLE SUSTAINABLE BUSINESS VALUE

ADVANCED ANALYTICS & IOT

- ► UTILIZE OPERATIONAL DATA TO DRIVE PROACTIVE E&P DECISION-MAKING THAT WILL REDUCE COST AND IMPROVE RECOVERY RATE.
- ► INJECT CONFIDENCE IN YOUR DECISION-MAKING BY CAPITALIZING ON DATA SCIENCE TO STATISTICALLY PREDICT PRODUCTIVITY IN A QUICK AND COSTEFFICIENT MANNER.
- INCREASE PRODUCTIVITY AND EFFICIENCY ACROSS ALL MAJOR BUSINESS UNITS THROUGH THE BEST PRACTICES FOR DATA HARMONIZATION.
- ► DEEPER UNDERSTANDING OF TECHNOLOGICAL PROCESSES -ALTERNATIVE CRUDE OIL USAGE AS FEED

Strategic Machine Learning/Big
Data/Advanced Analytics
Enabled by the OT
Infrastructure

Tactical Machine Learning/Big
Data/Advanced Analytics
Enabled by the OT
Infrastructure

Real-time Analytics – In the OT Infrastructure

Human Analytics Enabled <u>and</u> in the OT Infrastructure

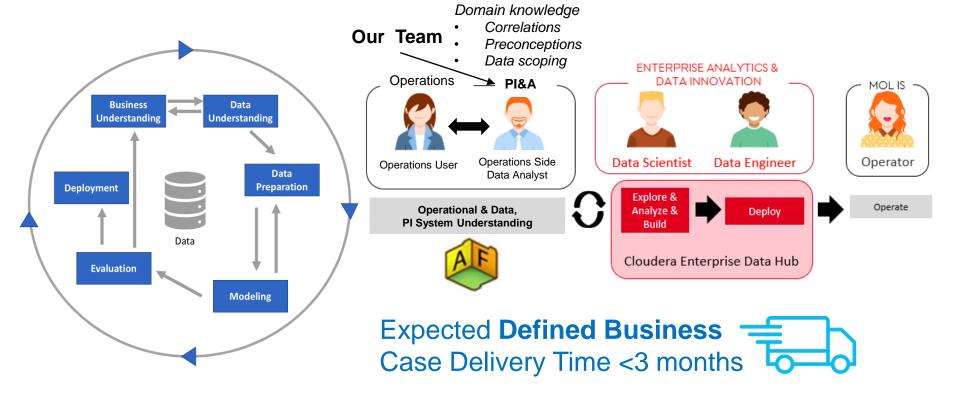
"OPERATIONAL DATA HUB" TYPICAL APPLICATIONS

- White product yield
- Energy consumption
- APC utilization

Asset monitoring

+notification

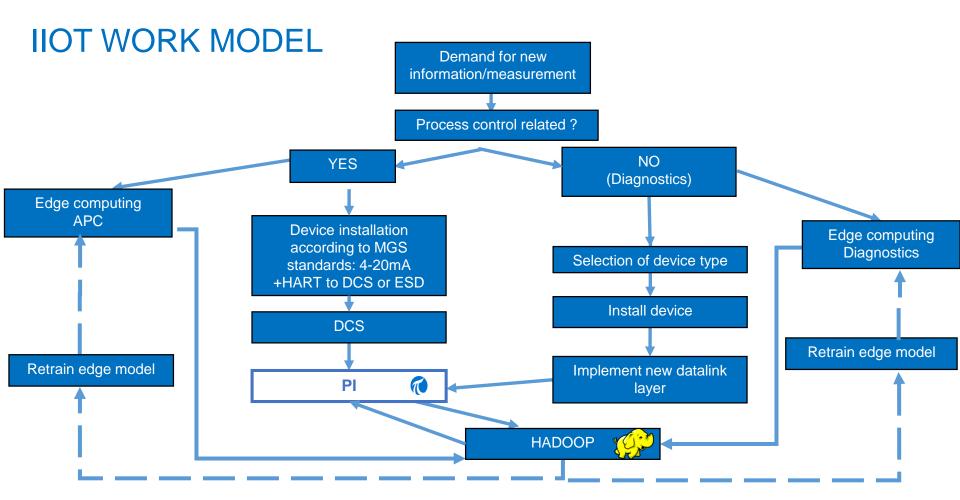
- Operation envelope
- IOW monitoring
- HTHA monitoring
- Analyzer validation
- SAP PM integration for CBM
- Flare monitoring
- Environmental reporting
- Control loop mode monitoring
- Failsafe mode monitoring
- Natural gas consumption forecasting (Predictive analytics)



Equipment / Asset models

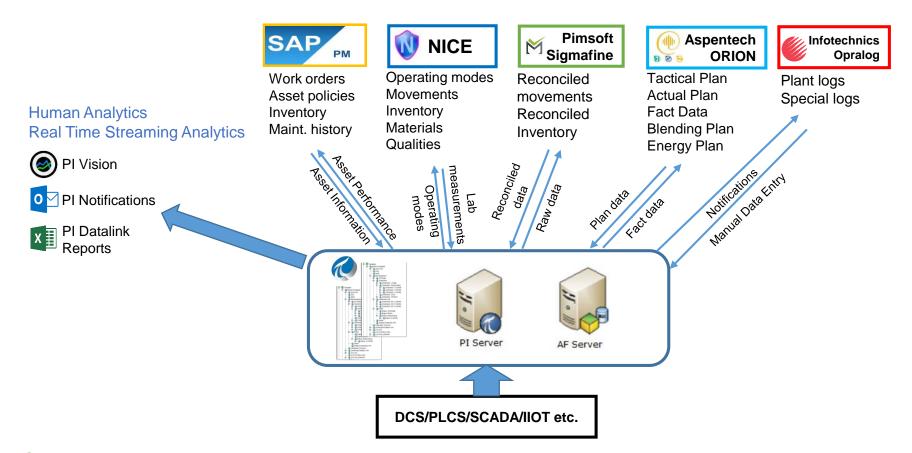
- Pump efficiency
- Exchanger Fouling
- PSA valve monitoring
- DCU feed composition calculation

ANALYSIS PROCESS – A PARTNERSHIP BETWEEN OT AND IT



DIGITAL TRANSFORMATION APPROACH

- ► PARTICIPATION IN OFFICIAL OSISOFT TRAINING TO LEARN THE BASIC TECHNIQUES OF THE PICLIENT APPLICATION'S USAGE.
- ▶ SHARE MATERIALS WITH THE REFINERY WORKERS AS A SIMPLIFIED PI TRAINING SESSION
- DEVELOPMENT TEAMS ARE DIVIDED TO GROUPS BASED ON INFORMATION TECHNOLOGY INTEREST AND STRENGTH


INSIDE TRAINING IS ORGANIZED TO **TEACH THE END-DECISION WHOM USERS THE NEW** ARE THE BEST SOLUTION USAGE. CANDIDATE TO SOLVE **NEW BUSINESS** THE PROBLEM REQUIREMENTS ARE CROSS FUNCTIONAL INITIATED AT FIRST COLLABORATION THE TEAM PROCESS THE BASIC DATA

TYPICAL SITE "OPERATIONAL DATA HUB"

NEW ADVANCED BI IMPLEMETATION PROGRAM IN MOL REFINING

Architecture Stream

Design, procure and implement on-premise data storage system.

Technogy: Cloudera Enterprise Data Hub (Hadoop technology)

Early 2018

Primary system integration and data ingestion setup:

- Sensor Data
- Laboratory Measurements
- Operating modes
- Reconciled Data
- Plan Data
- **Smart Data**

Deployed all scheduled jobs to production, handover for operation team

Early 2019

Integration of Opralog and NICE systems to

- Movements
- Inventory
 - Materials
- **Daily Unit Logs**

- Dispatcher Log
 - Special Entries

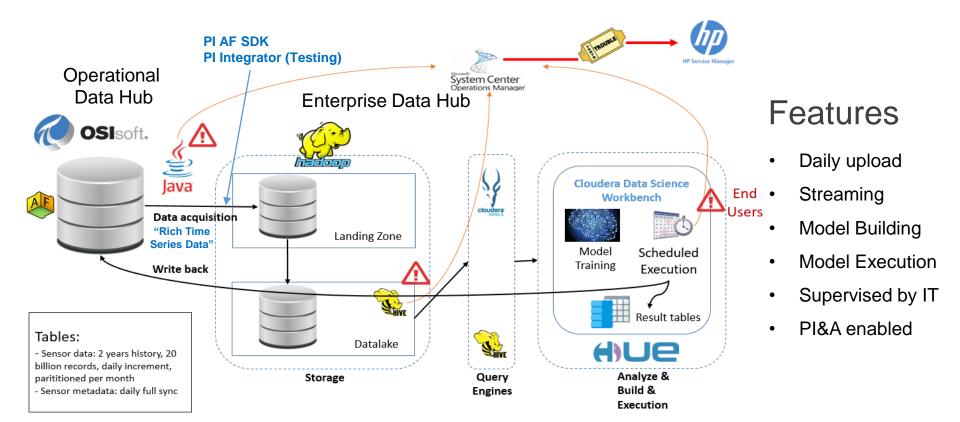
2018

Development and deployment of an energy nomination support application

2018

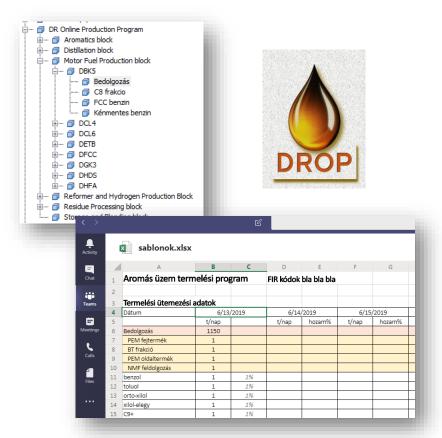
New Analysis Cases (Ongoing)

2019


Design and implement production management related reports, dashboards

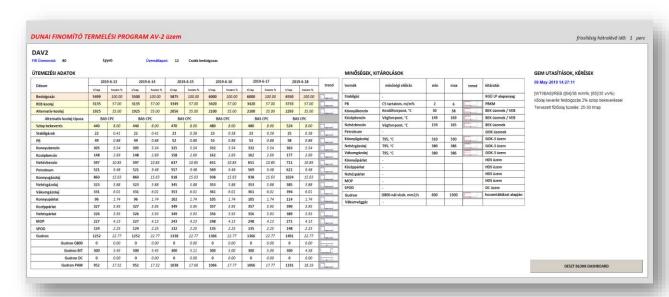
2020

Analytics Stream



INTRODUCING THE 'ENTERPRISE DATA HUB'

DROP - DANUBE REFINERY ONLINE PROGRAM


SYSTEM IS PROVIDING THE LATEST PLANNING DATA (THROUGHPUTS, YIELDS, QUALITY REQUIREMENTS) FROM PLANT-FLOOR LEVEL (OPERATORS, SHIFT LEADERS) TO OPERATIONAL MANAGEMENT LEVEL TO FACILITATE TRACKING OPERATIONAL DIRECTIVES CHANGES IN REALTIMF.

PI SYSTEM COLLECTS THE PLANNING DATA FROM ORION DATABASE, THE OPERATIVE EEM DIRECTIONS FROM OPRALOG AND QUALITY REQUIREMENTS FROM QUALITY MANAGEMENT SYSTEM

DROP / PI AF DISPLAY

DISPLAYS ARE CREATED BY A STANDARD TEMPLATE VISUALIZING THE FOLLOWING INFORMATION: SCHEDULING DATA (VOLUMES AND YIELDS)

- ▶ FEEDS AND PRODUCTS FOR THE NEXT 5 DAYS
- ► OPERATIONAL MODES, UNIT STATES
- QUALITY REQUIREMENTS
- ► ACTUAL EEM DIRECTIONS

IT INNOVATION – IT & BU COOPERATION TO PROCESS OPERATIONAL DATA

► CHANGE REQUESTS

PROOF OF CONCEPTS > INNOVATION

- ▶ PART OF MOL GROUP IT CTO TEAM
- ▶ PROOF OF CONCEPTS
- ▶ 1-3 MONTHS RUN (+ PREPARATION)
- ► TESTING IDEAS, INTRODUCING TECHNOLOGIES AND SOLUTIONS BASED ON PI DATA
- ▶ PROJECT GENERATION
- MARKETING (PRESENTATIONS, GROUP PORTAL, YAMMER, LINKEDIN)

INNOVATION TOPICS

▶ 2017-2018: BIG DATA AND MACHINE LEARNING, IOT/IIOT, CHATBOT

► REFINERY PRODUCTION PLANNING AND OPTIMISATION <a>ん

ADVANCED DOCUMENT MANAGEMENT

▶ UPSTREAM SPECTRA ANALYSES AND ROCK TYPING

► COKE YIELD AND STEAM ERUPTION ANALYSES 🦽

BUTADIENE ANOMALY DETECTION

RETAIL AND HELPDESK CHATBOT

...

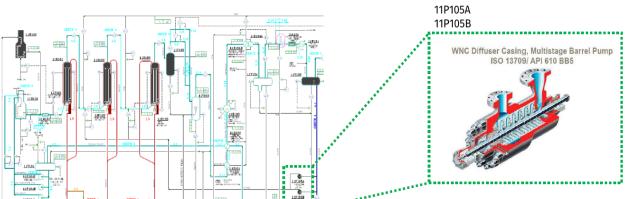
▶ 2019: AUGMENTED AND VIRTUAL REALITY, BLOCKCHAIN

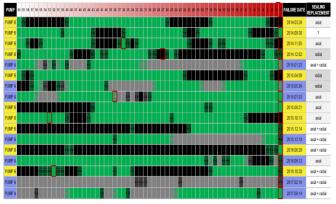
HIDDEN WORKS VISUALISATION


- MOL CAMPUS VISUALISATION
- POLYOL PLANT VISUALISATION
- ► RETAIL SHOP VISUALISATION

...

FOLLOW-UPS


- ▶ PROJECTS
 - SALES DEMAND PREDICTION
 - ▶ DANUBE REFINERY ADVANCED ANALYTICS
 - **...**
- ▶ STRATEGY
 - PI SYSTEM AS DATA SOURCE OPTION
 - CLOUDERA HADOOP BIG DATA PLATFORM
 - CLOUDERA DATA SCIENCE WORKBENCH MACHINE LEARNING PLATFORM
 - MICROSOFT POWER BI VISUALISATION PLATFORM
 - ► CHATBOT NEW COMMUNICATION CHANNEL
 - **...**

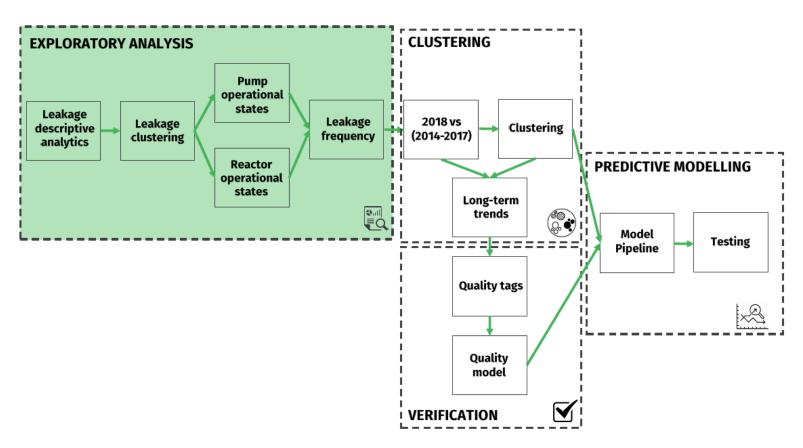


SLOVNAFT PUMP FAILURE POC

- ▶ POC'S SCOPE:
 - ▶ 2 COOLING OIL PUMPS
 - ► LEAKAGES ON THE SEALINGS MORE FREQUENTLY THAN EXPECTED
 - ► ONE PUMP MUST WORK, OTHERWISE SYSTEM SHUTDOWN
 - ▶ ROOT CAUSES ANALYSIS AND PREDICTION NEEDED

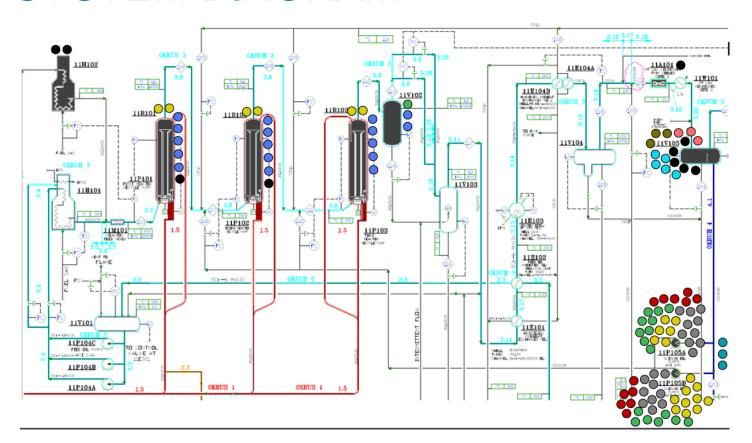
Operating the whole day

Mixed operating and warm standby

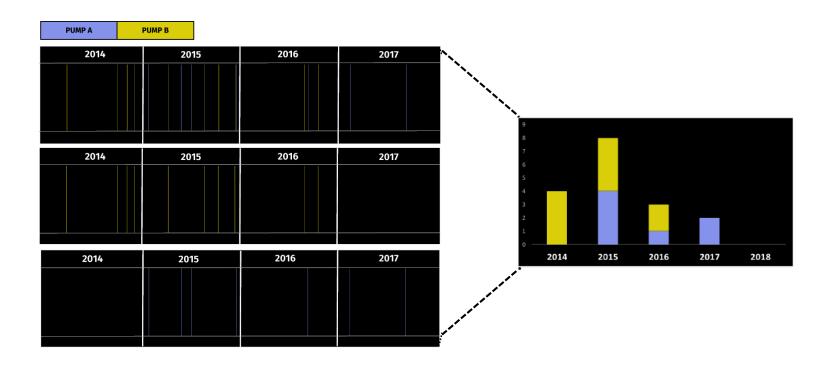

Warm standby the whole day

Mixed operating and non-operating

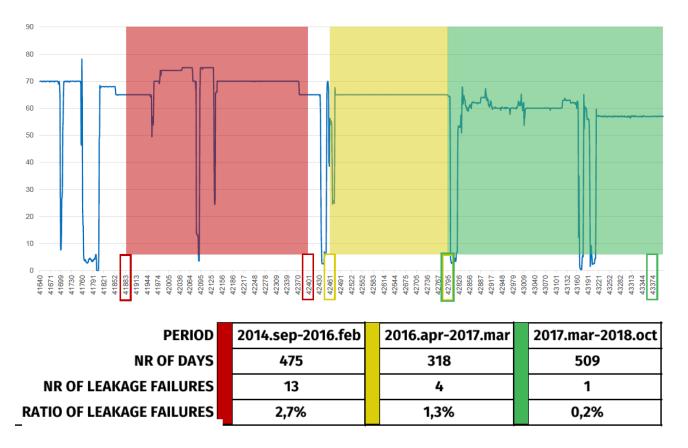
Non-operating the whole day


Leakage failure

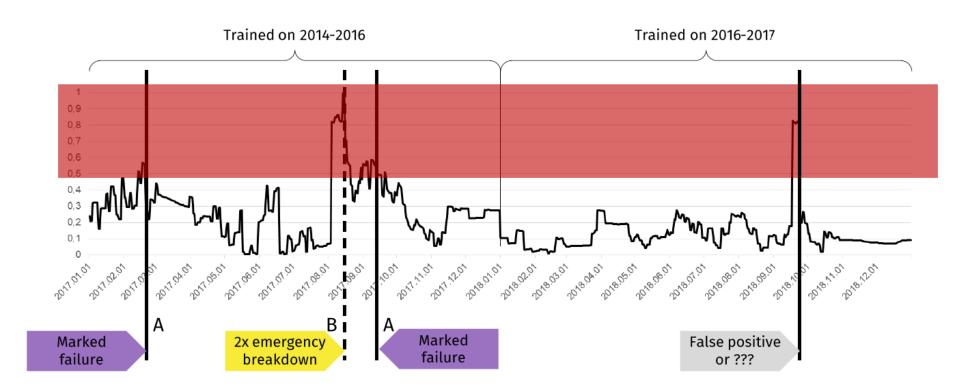
ANALYSIS APPROACH



SYSTEM DIAGRAM

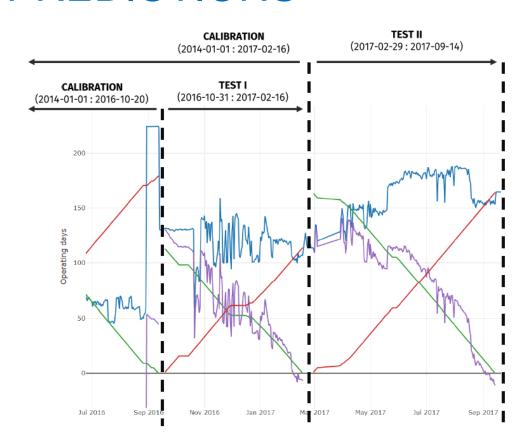

- Temperature
- Vibration
- Densitometer
- Operation
- Seal
- Interface
- Quench oil
- Vapors
- Suction
- Other

LEAKAGE FREQUENCY

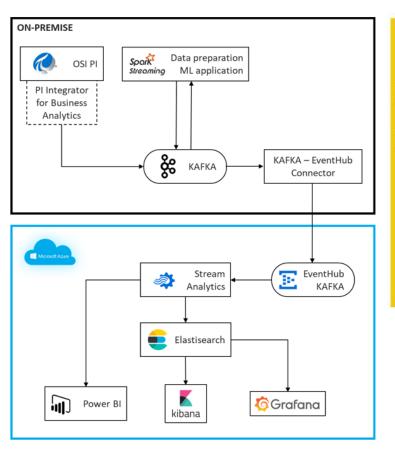


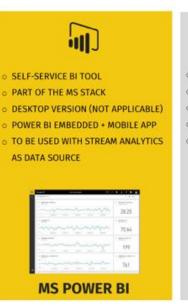
LONG-TERM TRENDS – CLUSTERS OF DAYS

MODEL TRAINING



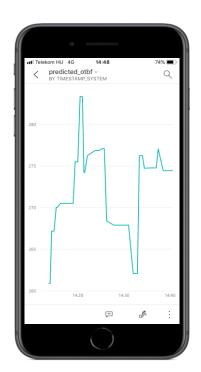
PREDICTION METRICS


PREDICTIONS



	TESTI	TEST II	Overall 2017
Accuracy	0.94	0.97	0.96
F1	0.80	0.88	0.84
Precision	1.00	0.78	0.85
Recall	0.67	1.00	0.83
Specificity	1.00	0.96	0.98

STREAMING SOLUTIONS AND VISUALIZATION



OSIsoft PI Advanced Integrator connected PI to Kafka and Hadoop

COMPARISON OF INTEGRATION TOOLS

VISUALISATION IN SMART PHONE

FEATURE	CUSTOM-MADE INTEGRATOR	PI INTEGRATOR
DEVELOPMENT/SETUP TIME	10+ days	1 day
LOAD FREQUENCY	Daily	Minutely
COMPLEXITY	Predefined tags	Selected tags
PRICE	\$	\$\$\$

"For testing purpose and short-term solutions custom-made integrator can be enough.

For long-term solution PI Integrator is suggested."

CHALLENGES

- Volatile Business Environment
- New business request > waiting quick fix
- Competition situation about digitalization worldwide and region
- Difficulty of cleansing business data to Advanced analytics engineer

SOLUTION

- Rapid application development with PI AF -> Quick solution for business pain points
- Collecting smart data (cleansing) in PI AF -> Easy handover and collaboration between Business Analyst and subject matter expert
- Innovative thinking Quick proof of concepts

BENEFITS

- Effective solution covers all business area and processes
- Optimize yields, energy, asset health
- Mitigate risk in processes
- Valuable digital transformation

The goal is to turn data into information, and information into insight.

"

Carly Fiorina

Presenters

Tibor Komróczki

- Process Information and Automation Leader
- MOL Plc.
- tkomroczki@mol.hu

Károly Ott

- Innovation Manager
- Mol Group
- kott@mol.hu

Questions?

Please wait for the **microphone**

State your name & company

Please remember to...

Complete Survey!

Navigate to this session in mobile agenda for survey

DZIĘKUJĘ CI NGIYABONGA 🗃

KEA LEBOHA

KÖSZÖNÖM

БЛАГОДАРЯ

ТИ БЛАГОДАРАМ ₹

TAK DANKE ₹

RAHMAT

HATUR NUHUN

OSIsoft.

MULŢUMESC

HVAIA XBAЛA BAM

TEŞEKKÜR EDERIM

GRATIAS DANKJE

PAXMAT CAFA

ありがとうございました

TERIMA KASIH SIPAS JI WERE

UA TSAUG RAU KOJ

ТИ БЛАГОДАРАМ

ДЗЯКУЙ

DAKUJEM MATUR NUWUN

