Problmes \# 3-SOLUTION

Topics \quad Force System Resultants (Chapter 4 in textbook).
Textbook: Engineering Mechanics, by R.C. Hibbeler, Pearson, 12th Edition.
*4-4. Two men exert forces of $\mathrm{F}=80 \mathrm{lb} \mathrm{N}$ and $\mathrm{P}=50 \mathrm{lb}$ on the ropes. Determine the moment of each force about A . Which way will the pole rotate, clockwise or counterclockwise?

$\left.\Gamma+\left(M_{A}\right) c=80\left(\frac{4}{5}\right)(12)=768 \mathrm{db} \cdot \mathrm{ft}\right)$ Ans
$\left(+\left(M_{A}\right)_{\mathrm{g}}=50\left(\cos 45^{\circ}\right)(18)=636 \mathrm{lb} \cdot \mathrm{ft}\right)$ Ans
Since $\left(M_{A}\right)_{c}>\left(M_{A}\right)_{z}$
Clockwise Ans

4-54. Determine the magnitude of the moments of the force F about the x, y, and z axes. Solve the problem (a) using a Cartesian vector approach and (b) using a scalar approach.

a) Vector Analysis

Position Vector :

$$
r_{A B}=\{(4-0) \mathbf{i}+(3-0) j+(-2-0) k\} f t=\{4 i+3 j-2 k\} f t
$$

Moment of Force F About x, y and z Axes: The unit vectors al x, y and z axes are i, j and k respectively. Applying Eq. $4-1$, we have

$$
\begin{aligned}
& M_{x}=\mathrm{i} \cdot\left(\mathbf{r}_{A B} \times \mathbf{F}\right) \\
&=\left|\begin{array}{ccc}
1 & 0 & 0 \\
4 & 3 & -2 \\
4 & 12 & -3
\end{array}\right| \\
&=1[3(-3)-(12)(-2)]-0+0=15.0 \mathrm{lb} \cdot \mathrm{ft} \quad \text { Ans } \\
& M_{y}=\mathbf{j} \cdot\left(\mathbf{r}_{A B} \times \mathbf{F}\right) \\
&=\left|\begin{array}{lll}
0 & 1 & 0 \\
4 & 3 & -2 \\
4 & 12 & -3
\end{array}\right| \\
&=0-1[4(-3)-(4)(-2)]+0=4.00 \mathrm{lb} \cdot \mathrm{ft} \quad \text { Ans } \\
& M_{Z}=\mathbf{k} \cdot\left(\mathbf{r}_{A B} \times \mathbf{F}\right) \\
&=\left|\begin{array}{lll}
0 & 0 & 1 \\
4 & 3 & -2 \\
4 & 12 & -3
\end{array}\right| \\
&=0-0+1[4(12)-4(3)]=36.0 \mathrm{lb} \cdot \mathrm{ft} \\
& \text { b) } \text { Scalar Analysis }
\end{aligned}
$$

$$
\begin{array}{lll}
M_{x}=\Sigma M_{x} ; & M_{x}=12(2)-3(3)=15.0 \mathrm{lb} \cdot \mathrm{ft} & \text { Ans } \\
M_{y}=\Sigma M_{y} ; & M_{y}=-4(2)+3(4)=4.00 \mathrm{lb} \cdot \mathrm{ft} & \text { Ans } \\
M_{z}=\Sigma M_{z} ; & M_{z}=-4(3)+12(4)=36.0 \mathrm{lb} \cdot \mathrm{ft} & \text { Ans }
\end{array}
$$

*4-56. Determine the moment produced by force \mathbf{F} about segment $A B$ of the pipe assembly.

Moment About Line AB: Either position vector $r_{A C}$ or $r_{B C}$ can be conveniently ${ }_{1}$ to determine the moment of F about line $A B$.

$$
\begin{aligned}
& \mathbf{r}_{A C}=(3-0) \mathbf{i}+(4-0) \mathbf{j}+(4-0) \mathbf{k}=[3 \mathbf{i}+4 \mathbf{j}+4 \mathbf{k}] \mathrm{m} \\
& \mathbf{r}_{B C}=(3-3) \mathbf{i}+(4-4) \mathbf{j}+(4-0) \mathbf{k}=[4 \mathbf{k}] \mathrm{m}
\end{aligned}
$$

The unit vector $\mathbf{u}_{A B}$, Fig. a, that specifies the direction of line $A B$ is given by

$$
u_{A B}=\frac{(3-0) i+(4-0) j+(0-0) k}{\sqrt{(3-0)^{2}+(4-0)^{2}+(0-0)^{2}}}=\frac{3}{5} i+\frac{4}{5} j
$$

Thus, the magnitude of the moment of F about line $A B$ is given by

$$
\begin{aligned}
M_{A B}=\mathbf{u}_{A B} \cdot \mathbf{r}_{A C} \times \mathbf{F} & =\left|\begin{array}{ccc}
\frac{3}{5} & \frac{4}{5} & 0 \\
3 & 4 & 4 \\
-20 & 10 & 15
\end{array}\right| \\
& =\frac{3}{5}[4(15)-10(4)]-\frac{4}{5}[3(15)-(-20)(4)]+0 \\
& =-88 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

or

$$
\begin{aligned}
M_{A B}=\mathbf{u}_{A B} \cdot \mathbf{r}_{B C} \times \mathbf{F} & =\left|\begin{array}{ccc}
\frac{3}{5} & \frac{4}{5} & 0 \\
0 & 0 & 4 \\
-20 & 10 & 15
\end{array}\right| \\
& =\frac{3}{5}[\alpha(15)-10(4)]-\frac{4}{5}[\alpha(15)-(-20)(4)]+0 \\
& =-88 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

-4-61. If the tension in the cable is $\mathrm{F}=140 \mathrm{lb}$, determine the magnitude of the moment produced by this force about the hinged axis, CD, of the panel.

Moment About the $C D$ axis: Either position vector $\mathbf{r}_{C A}$ or $\mathrm{r}_{D B}$. Fig. a, can be used to deternine the moment of F about the $C D$ axis.
$\mathbf{r}_{C A}=(6-0) \mathbf{i}+(0-0) \mathbf{j}+(0-0) \mathbf{k}=[6 \mathbf{i}] \mathrm{ft}$
$\mathbf{r}_{D B}=(0-0) \mathbf{i}+(4-8) \mathbf{j}+(12-6) \mathbf{k}=[-4 \mathbf{j}+6 \mathbf{k}] f t$
Referring to Fig. a, the force vector \mathbf{F} can be written as
$\mathbf{F}=F \mathbf{u}_{A B}=140\left[\frac{(0-6) \mathbf{i}+(4-0) \mathbf{j}+(12-0) \mathbf{k}}{\sqrt{(0-6)^{2}+(4-0)^{2}+(12-0)^{2}}}\right]=[-60 \mathbf{i}+40 \mathbf{j}+120 \mathrm{k}] 1 \mathrm{~b}$
The unit vector ${ }^{\mathbf{a}} C D$, Fig. a, that specifies the direction of the $C D$ axis is given by $\mathbf{n}_{C D}=\frac{(0-0) \mathrm{j}+(8-0) \mathrm{j}+(6-0) \mathbf{k}}{\sqrt{(0-0)^{2}+(8-0)^{2}+(6-0)^{2}}}=\frac{4}{5} \mathrm{j}+\frac{3}{5} \mathrm{k}$

Thus, the magnitude of the moment of \mathbf{F} about the $C D$ axis is given by

$$
\begin{aligned}
M_{C D}=\mathbf{u}_{C D} \cdot \mathbf{r}_{C A} \times \mathbf{F} & =\left|\begin{array}{ccc}
0 & \frac{4}{5} & \frac{3}{5} \\
6 & 0 & 0 \\
-60 & 40 & 120
\end{array}\right| \\
& =0-\frac{4}{5}[6(120)-(-60)(0)]+\frac{3}{5}[6(40)-(-60)(0)] \\
& =-432 \mathrm{lb} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.
ar

$$
\begin{aligned}
M_{C D}=\mathbf{a}_{C D} \cdot \mathbf{r}_{D B} \times \mathbf{F} & =\left|\begin{array}{ccc}
0 & \frac{4}{5} & \frac{3}{5} \\
0 & -4 & 6 \\
-60 & 40 & 120
\end{array}\right| \\
& =0-\frac{4}{5}[0(120)-(-60)(6)]+\frac{3}{5}[0(40)-(-60)(-4)] \\
& =-432 \mathrm{lb} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.
The negative sign indicates that $\mathbf{M}_{C D}$ acts in the opposite sense to that of $\mathbf{u}_{C D}$.

4-103. Determine the magnitude of couple forces \mathbf{F}_{1} and \mathbf{F}_{2} so that the resultant couple moment acting on the block is zero.

Scalar Approach:

Resultant Moment $=0, \sum M_{R}=0 \Rightarrow \sum M=0, M_{x}=0 \quad M_{y}=0$ and $M_{z}=0$
$M_{x}=-250\left(\frac{4}{5}\right)(2)+F_{1}(2)=0 \Rightarrow F_{1}=200 \mathrm{lb}$
$M_{y}=-250\left(\frac{3}{5}\right)(2)+F_{2}(2)=0 \Rightarrow F_{2}=150 \mathrm{lb}$
$M_{y}=-250\left(\frac{4}{5}\right)(3)+250\left(\frac{3}{5}\right)(4)=0$

Vector Approach:

Couple Moment: The position vectors $\mathbf{r}_{1}, \mathbf{r}_{2}$, and \mathbf{r}_{3}, Fig. a, must be determined first.

$$
\mathbf{I}_{1}=[-2 k] \mathrm{ft} \quad \mathbf{r}_{2}=[2 k] \mathrm{ft} \quad \mathbf{r}_{3}=[2 \mathrm{k}] \mathrm{ft}
$$

The force vectors $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3} are given by

$$
\begin{aligned}
& \mathbf{F}_{1}=F_{1} \mathbf{j} \quad \mathbf{F}_{2}=F_{2} \mathbf{i} \\
& \mathbf{F}_{3}=F_{3} \mathbf{u}=250\left[\frac{(0-3) \mathbf{i}+(4-0) \mathbf{j}+(2-2) \mathbf{k}}{\sqrt{(0-3)^{2}+(4-0)^{2}+(2-2)^{2}}}\right]=[-150 \mathbf{i}+200 \mathrm{j}] 1 \mathrm{~b}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \mathbf{M}_{1}=\mathbf{r}_{1} \times \mathbf{F}_{1}=(-2 \mathbf{k}) \times\left(F_{1} \mathbf{j}\right)=2 F_{1} \mathbf{i} \\
& \mathbf{M}_{2}=\mathbf{r}_{2} \times \mathbf{F}_{2}=(2 \mathbf{k}) \times\left(F_{2} \mathbf{i}\right)=2 F_{2} \mathbf{j} \\
& \mathbf{M}_{3}=\mathbf{r}_{3} \times \mathbf{F}_{3}=(2 \mathbf{k}) \times(-150 \mathbf{i}+200 \mathbf{j})=[-400 \mathbf{i}-300 \mathrm{j}] 1 \mathrm{~b} \cdot \mathrm{ft}
\end{aligned}
$$

Resultant Moment: Since the resultant couple moment is required to be equal to zero,

$$
\begin{array}{ll}
\left(\mathbf{M}_{c}\right)_{R}=\Sigma \mathbf{M} ; & \mathbf{0}=\mathbf{M}_{1}+\mathbf{M}_{2}+\mathbf{M}_{3} \\
& \mathbf{0}=\left(2 F_{1} \mathbf{i}\right)+\left(2 F_{2} \mathbf{j}\right)+(-400 \mathbf{i}-300 \mathbf{j}) \\
& \mathbf{0}=\left(2 F_{1}-400\right) \mathbf{i}+\left(2 F_{2}-300\right) \mathbf{j}
\end{array}
$$

Equating the \mathbf{i}, \mathbf{j}, and \mathbf{k} components yields
$0=2 F_{1}-400$
$F_{1}=200 \mathrm{lb}$
Ans.
$0=2 F_{2}-300$
$F_{2}=150 \mathrm{lb}$
Ans.

-4-109. Replace the force system acting on the post by a resultant force and couple moment at point A.

Equivalent Resultant Force: Forces \mathbf{F}_{1} and \mathbf{F}_{2} are resolved into their x and y components, Fig. a. Summing these force components algebraically along the x and y axes,
$\stackrel{+}{\rightarrow} \Sigma\left(F_{R}\right)_{x}=\Sigma F_{x} ; \quad\left(F_{R}\right)_{x}=250\left(\frac{4}{5}\right)-500 \cos 30^{\circ}-300=-533.01 \mathrm{~N}=533.01 \mathrm{~N} \leftarrow$
$+\uparrow\left(F_{R}\right)_{y}=\Sigma F_{y} ; \quad\left(F_{R}\right)_{y}=500 \sin 30^{\circ}-250\left(\frac{3}{5}\right)=100 \mathrm{~N} \uparrow$

The magnitude of the resultant force \mathbf{F}_{R} is given by

$$
F_{R}=\sqrt{\left(F_{R}\right)_{x}^{2}+\left(F_{R}\right)_{y}^{2}}=\sqrt{533.01^{2}+100^{2}}=542.31 \mathrm{~N}=542 \mathrm{~N}
$$

The angle $\boldsymbol{\theta}$ of $\mathbf{F}_{\boldsymbol{R}}$ is
$\theta=\tan ^{-1}\left[\frac{\left(F_{R}\right)_{y}}{\left(F_{R}\right)_{x}}\right]=\tan ^{-1}\left[\frac{100}{533.01}\right]=10.63^{\circ}=10.6^{\circ} \quad \searrow$
Equivalent Resultant Couple Moment: Applying the principle of moments, Figs. a, and summing the moments of the force components algebraically about point A,

$$
\begin{gathered}
\left(+\left(M_{R}\right)_{A}=\Sigma M_{A} ; \quad\left(M_{R}\right)_{A}=500 \cos 30^{\circ}(2)-500 \sin 30^{\circ}(0.2)-250\left(\frac{3}{5}\right)(0.5)-250\left(\frac{4}{5}\right)(3)+300(1)\right. \\
=441.02 \mathrm{~N} \cdot \mathrm{~m}=441 \mathrm{~N} \cdot \mathrm{~m} \text { (counterclockwise) Ans. }
\end{gathered}
$$

4-134. If , $\mathrm{F}_{\mathrm{A}}=40 \mathrm{KN}$ and $\mathrm{F}_{\mathrm{B}}=35 \mathrm{kN}$, determine the magnitude of the resultant force and specify the location of its point of application (x, y) on the slab.

Equivalent Resultant Force: By equating the sum of the forces along the zaxis to the resultant force $\mathrm{F}_{R}, \mathrm{~F} \in \stackrel{\dot{v}}{ }$,
$+\uparrow F_{R}=\Sigma F_{z} ;$

$$
\begin{aligned}
& -F_{R}=-30-20-90-35-40 \\
& F_{R}=215 \mathrm{kN}
\end{aligned}
$$

Ans.

Point of Application: By equating the moment of the forces and \mathbf{F}_{R}, about the x and y axes,
$\left(M_{R}\right)_{x}=\Sigma M_{x} ;$

$$
-215(y)=-35(0.75)-30(0.75)-90(3.75)-20(6.75)-40(6.75
$$

$$
y=3.68 \mathrm{~m}
$$

Ans.
$\left(M_{R}\right)_{y}=\Sigma M_{y} ;$
$215(x)=30(0.75)+20(0.75)+90(3.25)+35(5.75)+40(5.75)$
$x=3.54 \mathrm{~m}$
Ans.
*4-136. Replace the parallel force system acting on the plate by a resultant force and specify its location on the $x-z$ plane.

Resultant Force: Summing the forces acting on the plate,

$$
\begin{aligned}
\left(F_{R}\right)_{y}=\Sigma F_{y} ; \quad F_{R} & =-5 \mathrm{kN}-2 \mathrm{kN}-3 \mathrm{kN} \\
& =-10 \mathrm{kN}
\end{aligned}
$$

The negative sign indicates that F_{R} acts along the negative y axis.

Resultant Moment: Using the right - hand rule, and equating the moment of \mathbf{F}_{R} to the sum of the moments of the force system about the x and z axes,
$\left(M_{R}\right)_{x}=\mathbf{\Sigma} M_{x} ;$
$(10 \mathrm{kN})(\mathrm{z})=(3 \mathrm{kN})(0.5 \mathrm{~m})+(5 \mathrm{kN})(1.5 \mathrm{~m})+2 \mathrm{kN}(2.5 \mathrm{~m})$
$z=1.40 \mathrm{~m}$
$\left(M_{R}\right)_{2}=\Sigma M_{z} ;$
$-(10 \mathrm{kN})(x)=-(5 \mathrm{kN})(0.5 \mathrm{~m})-(2 \mathrm{kN})(1.5 \mathrm{~m})-(3 \mathrm{kN})(1.5 \mathrm{~m})$

$$
x=1.00 \mathrm{~m}
$$

4-150. The beam is subjected to the distributed loading. Determine the length b of the uniform load and its position a on the beam such that the resultant force and couple moment acting on the eam are zero.

Requite $F_{x}=0$.

$+\uparrow F_{k}=\Sigma F_{y}: \quad 0=180-40 \mathrm{~b}$

$$
b=4.50 \mathrm{ft}
$$

Require $M_{k_{A}}=0$. Using the result $b=4.50 \mathrm{ft}$, we heve

$$
\left(+M_{n_{4}}=\Sigma M_{\lambda}: \quad 0=180(12)-40(4.50)\left(a+\frac{4.50}{2}\right)\right.
$$

$$
a=9.75 \mathrm{ft}
$$

