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operator product aIgebra." The new symmetry algebra (K—Hopf algebra)

metry algebra which possesses tensor product corresponding to the

undefined. This difficulty was cirumvented by a new structure of the sym

product of the symmetry algebra associated with the primary fields is

in turn can be explained only in terms of primary fields. However, the tensor

displays the product coefficients depending upon the secondary fields which

Tl’lGOl'y, Op8l‘3TOl' pl'OClUCt 8lQ€bI’3 pOSS€SSll'Tg 8 SylTlIT`I€II'y QFOUQ structure

algebraic groups were later established? In 2—dimensionaI conformal field

kinship between the braid structure of R—matrices and the deformation of

developments of the theory of quantum integrable dynamical systems. ' The

ln Faddeev’s hand, quantum group appears as an abstraction of the

tures“ have become a forerunner in our understanding of quantum theory.

sequent analysis of cohomological properties associated with such struc

The development of deformation of algebraic structuresand sub
nz

I. Introduction

irreducibility property of E(G,g)—modules are also discussed.

phisms is constructed. The Hopf structure associated with E(G,g), and the

co-morphisms Z ' : E(G,g) <——E(G’,g'), given by faithful group homomor~

category of category of 2,- graded Lie groups E(G,g), E(G’,g’), with

Abstract : The quantum group as an object belonging to Gfk, the dual
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algebra structures respectively. OCR Output

We note that K(G) and U(g), E(G,g) possess K—Hopf and super K—Hopf

the universal enveloping algebra of the Z2—gradeol Lie algebra g = go + g,.

the smash product (semi direct product) of the K-group ringof G, K(G) and

co—associativity and co—unitary properties. We explicitly construct E (G,g) as

and y:A—-—>A (antipode) satisfying the associativity, existence of unit element,

1; : K———>·A (unit), A : A——> A ® A (commultiplication), e&A——->K (co-unit)

ry, A, ez, y) defined over the base field K, where M : A ®A——~> A (multiplication),

In Section ll, we quickly recall the definition of a Hopf algebra (A, Nl,

Our material is organised as follows.

venience, we will denote csc graded Lie group E(G,g) by G also.

of the category of K—Hopf algebras by (HopfK)" etc. For notational con

commutative K—Hopf algebras, Z?—graded Lie algebras), the dual category

Lie groups (resp. K—-algebras, commutative K—algebras, K—Hopf algebras,

Comm Algk, HcpfK, Comm Hopfk, SLiek) for the category of csc graded

zero, graded means Z2—graded unless stated otherwise, Grk (resp. Algk,

In the sequel, we will consider K, a fixed field (R or C) of characteristic

Kostant—KirriIov Scheme.

(g") into a non—commutative, co-commutative Hopf algebra' in the spirit of

group can be visualised also as deformation of the function algebra Func

quasi—Hopf algebra...) were later identified with quantum groups. Quantum

supplemented with the quasi-triangular conditions (quasi Hopf algebra, weak



phism E ` 2G'-—> G is a faithful (?) group homomorphism. OCR Output

algebras where any G E ob (QGrk) is called a quantum group with co—mor

Theorem :3: QGrk = (Hopfk)", the dual category of category of Hopf

tizable.

corresponding»Z2»graded Lie algebra. Let l—l‘(G,G) = {O}. Then G is quan

Theorem : 2 : Let G be a csc Z2-graded Lie group and let g be the

Our results in this direction can be summarised by

ln Section V, we discuss the conditions under which G is quantizable

module.

irreducible) g-module. Then, V has the same reducibility property as G

Theorem : 1 : Let V be a reducible (resp. completely reducible,

is also discussed. ln Section IV, we establish the Theorem ;

homomorphisms etc. The exactness property of the functors Kos and Kos

where E (G,g) E ob (Gr,) and morphisms E given by faithful group

2. Kos (0 :g——> g') = E : E (G,g)——> E (G’,g'),

1. Kos (g) = E (G,g)

Kos : SLiek——> Grk defined by

In Section lll, we construct the covariant functor



A ® A

A ® id

A ® A ® A

id ® A

A ® A

3. coassociativity:

A ® A A ® A

idid ® ey 27 ® id OCR Output

A ® K K ® A

2. existence of unit:‘

A ® A

l\/l® i

A ® A ® A

id ® M

A ® A

1. associativity

represented by the commutative diagrams:

over the field K of characteristic zero satisfying the following properties

Definition : 1: The Hopf algebra (A, l\/l, ry, A, e, y) is a vector space



then, we have the fcllcvving ccmmutative diagram

(2.1) OCR Outputi.e., X® y •—> y ® x

r 1 A ® A —>· A ® A

lf 1 is a permutaticn map

fcr all x, y E A.

The antipcde is an antihcmcmcrphism, i.e., y(x® y) = y (y) ® y (x)

and the inclusicn x —> x ® 1 (with 1 the muitiplicative unit cf K) respectively.

Here s : A ® K —> A and i : A —> A ® K dencte the scalar multiplicaticn

id

A ® A

y ® id

A ® A

id ® y

A ® A

5. existence cf antipcde

A ® A A ® A

idid ® e s ® id

A ® K K ® A

4. existence cf ccunit:



(23) OCR OutputV ll) = 1, 2/ (X) = —><,

y<¤®v> = <—i>.>»<y>®y<><>,
‘*"“

8(X) = 0. M3) = E-1 SU) = l,

A(x)==1®x + x®l, M1) = 1®1,

tive Hopf algebra satisfying

is injective for g and as usual g QU(g). U(g) is a Z,—graded co-commuta

T (9) ··—> U (9)

The quotient map

><® v —<—i> ve >< -i><,y1,><,y Eg. <2.2>
'*""

J is the two—sided ideal of T(g) defined by elements of the form

algebra of g, i.e., U(g) = T(g)/J, where T(g) is the tensor algebra over g and

algebra over K of characteristic zero. Let U(g) be the universal enveloping

Definition :2 : Let g = go + gi be afinite dimensional Z2—graded Lie

A®A A®A A®A

r ® 2/



Definition : 4 : Let E (G,g) = K (G) # U(g) be the smash product of OCR Output

i.e., G operates as a group of automorphism of U (g).

rr : G >< U (g) —> aut Ll (g) (2.7)

G. Then, az uniquely extends to a representation.

G >< g ——> g, i.e., rc (g) is a graded Lie algebra automorphism for any g ·E

adjoint mapping restricted to gn. Then, ad exponentiates to yr such that Jr :

We note that the 'antipode y is just the inverse. Let ad : gn >< g —> g be the

(2.6)y (x) = x ', x E K (G).

8 (X) = ‘l,

A (x) = x ® x ,

Further, we have

(r.g) . (r'. g') = (rr'. gg), r, r’ E K, g, g' E G (2.5)

(ro) + (ria) = (lr + tial.

r' lr-al = lr-al r' = (rr'-el.

such that

abelian group generated by elements of the form (r,g) or r.g, r G K, g G G

Definition : 3 : The group ring K(G) is a Hopf algebra, K(G) is a free

(X ey) (z aw) = (-1)(xz® yw), X, y, Z, W E g, 5e i<. (2.4)
"""

where the graded tensor product is given by



(211)r E(G’g) (Q # ><) = ix K(G) (QU,) it wg, (X) # V K(G) (QQ,) OCR Output

i.e., for g e K (G) and x E U(g), we have

y Em,) = (y K(G>®yU(g) (rr® 1) (y Km ® 1 ®1) (r® 1) (1 ® A) (2.10)

4. The anitpode y is defined by

(We note A, E are K—a|gebra morphisms).

(2.9)s (g # ><) = s (g) .2 (x).

(g # x) = 2(gm (g(1)# X(1))®(Q(2)# x(2))i.e., A

elements of U(g) are primitive,

. w.r.t the diagonal map A, the elements of K(G) are group-like and the

'7i<l<sl#u<g> : ’7+<<Gi QQ Vuigi. (28)

ie-, (Q # ><l (Q' # ><’l = (Qc! # >< rv (Q) ><’>,

><~·Q><Q `=¤<Q>><.Q¤i<lG),><¤U<g>·

that

E (G,g) is an algebra having K(G) and U (g) as sub algbras such

xbyg#x,gEK(G),><eU (g),

. As a graded vectdr space, E (G,g) = K (G) ® U (g). We dehcte g ®

algebra with aritipode.

K(G) with U(g) with respect t0 ar. E(G,g) is a c0—c0mmutative Z2-graded Hopf



gree of g. Hence the theorem.For a detailed derivation, see ref. 8. OCR Output

it can be shown that E commutes Jr and U(u) = E | Um preserves the de

G' >< qi

G >< g

exp><1exp ><1 19 I 19,

90 X 9
ad

90 X 9

ad

Proof: From the commutative diagram,

faithful matrix representation of E (G,g).

® U(g) —» K (G' ) ® U(g’). Then, E defines a unique finite dimensional and

define an isomorphism U(u) : U(g) —> U(g ). LetE = exp an ® U(<1) : K (G)

00 : G —> G'. Let exp oo ; K (G) —> K (G'). Also, by universality of U(g), let 0

g
representation of g, i.e., dim g»< OO. Let 00 = 0 [z g O—> go. Further, exp

Theorem : 4 2 Let a : g —> g' be a faithful finite dimensional matrix



relevant category. OCR Output

where O, O stand for the zero objects on the zero morphisms in the

Kos (O) = O', (3.4)

Obviously, we have

map in SLieK..

of elements of U(g) in Poincare'—Birl<off·Witt basis while O is the trivial natural

where g e G, x e U(g), ce K being the constant term in the expansion

o· ; c——» c, te., (rg # X) e (r.e # C)
"’‘2’

called zero morphisms defined by

O' e l-lorn (G, G), where g, gsob (SLieK). G, GE ob (GrK) are
mQ)mm)mw

with O being the trivially graded Lie algebra. Further, O E hom (g, g),
mm

O' = l<(e)# K (3.2)

Let 0,0 be the zero objects in SLieK and GrK respectively such that

(3.1)Kos (0 : g —> g') = E : E (G,g)———» E(G’,g’).

l<¤S (9) = E (Gs).

Let Kos : SLieK——> GrK be defined by

Lie algebras and csc graded Lie groups of finite type respectively.

Let SLieK and GrK be the categroies of finite dimensional Z2-graded

lll. Exactness of Kos and Kos

10



up =O and hence;3 = N H for some IB' G SLiek. l—lence[$ = l<os(N). Kos OCR Output

us assume Kos(cz),B =O’ for some pe SLiek. Then, ifp = Kos ' (6), we have

and some ,8’E SLiek. It follows immediately that Kos ez, Kosx = O'. Now, let

ap = 0 ==»[3 =X,8 V Be SLiek

Forpg E Kem, we have ag = O and

for an arbitrary morphisms Cz E SLiek and similar properties for Kos

and Kos (Coker er) = Coker (Koscz) (3.5b)

Kos (Ker cz) = Ker (Kosa) (3.5a)

Proof : lt is sufficient to_ prove that

Theorem : 5 : Kos and Kos ' are exact functors.

We can analogously show that Kos and Kos" map monics to monics.

Kos ' (E) = Kos ` (E') $2 is epic.

Applying Kos, ' we readily see that

Let E and E' be maps in SLiek : E ._>;= E.>;'

a0=a’0 => 0: =u'V cry'; SLiek.

by definition,

Proof : Let us assume 0 is epic in SLieK and let E = Kos (0). Then

Lemma : 1.. Kos and Kos" map epics —> epics and monics —> monics.

l\/laclane, we have
m

Following the notions of epics, monics, kernels and cokernels as in

11



Definition : 6.: V is said to be a G—moduie if there exists a morphism OCR Output

V) and hence G aut V act in a natural manner onV. We have thus

V = Kos (end V) = K (aut V0 ® aut V1) # U (end V). We know that U(end

Now, the graded Lie group corresponding to end V is given by G aut

oe hom (g, end V).

Definition : 5: V is said to be a g—module if there exists a morphism

(G. 9) = KOS lei-

graded Lie algebra of graded endomorphisms of V. Let g e SLiek and G = E

Let V be a graded vector space over K and let end V denote the

lv. Reducibility of E(G, g).modules

selected objects, Kero, Ker.‘>Z, such that Kos (Ker o) = Ker.'>Z.

this choice. ln other words, given or in SLiek, E = Kos (o). Further, we have

fix the choice out of each equivalence class such that Kos and Kos ` preserve

equivalence class of subobjects and quotient objects. ln the sequel, one can

Remark : lt is evident from the above corolloary that one has

and Kos 'as direct sums.

Corollary : Objects and quotient objects are preserved under Kos

and Kos ` (Kem) = Ker (Kos 'or)

Kos (Ker cz) = Ker (Kosrx)

similarly proving

([3’).Thus, Ne Kerd »,Kos (N) e Ker (Kosa). The reverse implication follows

12



that either trivially follow or have been proved elsewhere. OCR Output

well—known results existing inthe literature. Consequently, proofs of Lemmas

To demonstrate that G e ob(QGrk), we recourse to some of the

V. E(G, g) a quantum group

module.

irreducible) g—module. Then, V has the same reducibility property as G—

Theorem : 1: Let V be a reducible (resp. completely reduclble,

summand of V as G—module. Thus we have the theorem;

Lemma : 5: W is a direct summand of V as a g—module ¢> W is a direct

Lemma is equally trivial .

Proof : Follows from the irreducibility of Kosfthe proof of following

of V.

Lemma : 4: Let W be a g—sub~moduIe of V. Then, W is a_sub—module

Proof : Follows trivially from Lemma 1.

Lemma : 3: Kos preserves faithful modules.

in definition 5 (rc.,p,definition 6) is monic.

A module V over g (resp. G) is said to be faithful if the map rr (resi )

trivlally from the above definitions.

Lemma : 2: V is a g-module ¢> V is a G- module the proof follows

Ee hom (G, G aut V).

13



with quantum group, i.e. R G A ® A ; OCR Output

Remark : 2: The quasitriangular super Hopf algebra can be identified

G' defined by the faithful (?) group homomorphism.

gebras. Any Ge ob (QGrk) is a quantum group with the morphism E ` : G
`4

(super Hopfk)", the dual category of the category of super Hopf al

Theorem 3 is a direct consequence of our construction; namely QGrk

with the quantizable orbits.
13

Lie groups to obtain the IRS (Harish—Chandra representations) associated

Auslander for solvable Lie groupand later it was generalised to semi-simple
m

The proof of the Theorem 2 has been discussed by Kostant and

is said to be quantizable if H° (G, G) = {O}.

on the orbit O = G. x is integral (integrability condition). ln other words, G

Then, any x E g is integral iff H‘ (O, R) defined by the symplectic structure

Theorem : 2: Let G be a csc and compact Z, —graded Lie group.

Consequently, H° (g, g) = {O}.

Lemma : 7: If g is strongly semisimple, then H" (g, g) = {O}, q > 1.

Theorem due to Chevally and Eilenberg.

This Lemma can be established as a generalisation of the well-known

Then, H" (g, g) == H" (G, G) and the ring H (g, g) == H (G, G).

corrpact, connected and simply connected (csc) Z,—graded Lie group G.

Lemma : 6: Let g be a finite dimensional Z,-graded Lie algebra of the



ef R for E (G, g). OCR Output

ln a future cemmuhicatieh, we will report en a detailed cehstructieh

R12 (A®id) (R) = (A’®id) (R) R
m

Thus, we have

3. (id ®A) R = R13 R12.

2. (A® id) R = R13 R23;

:2 ®’ QE A :

1) w,Ar lg) = T A <g> = 2 <—i><·><l>g2® g
‘“lg‘

1. R A (g)R ' = A' (g). where

15
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