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The csc Graded Lie Group as a Quantum Group

K.C. Tripathy and T. Karlo

Abstract : The quantum group as an object belonging to Gf"k, the dual

category of category of Z,- graded Lie groups E(G,g), E(G".g'), ... with
co-morphisms =7 E(G,g) «—E(G’,g’), given by faithful group homomor-
phisms is constructed. The Hopf structure associated with E(G,g), and the

irreducibility property of E(G,g)-modules are also discussed.

I. Introduction

The development of deformation of algebrai'c structures " and sub-
sequent analysis of cohomological properties associated with such struc-
tures® have become a forerunner in our understanding of quantum theory.
In Faddeev's hand, quantum group appears as an abstraction of the
developments of the theory of quantum integrable dynamical sy'stems,.4 The
kinship between the braid structure of R-matrices and the deformation of
- algebraic groups were later established.® In 2-dimensional conformal field
theory, operator product algebra possessing a symmetry group structure
displays thé product coefficients depending upon the secondary fields which
in turn can be explained only in terms of primary fields. However, the tensor
product of the symmetry algebra associated with the primary fields is
undefined. This difficulty was cirumvented by a new structure of the sym-
metry algebra which possesses tensor product corresponding to the

operator product algebra.6 The new symmetry algebra (K-Hopf algebra)
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supplemented with the quasi-triangular conditions (quasi Hopf algebra, weak
quasi-Hopf algebra...) were later identified with quantum groups. Quantum
group can be visualised also as deformation of the function algebra Funov
(g”) into a non-commutative, co-commutative Hopf algebra7 in the spirit of

Kostant-Kirrilov Scheme.

In the sequel, we will consider K, a fixed field (R or C) of chafacteristic
zero, graded means Z,-graded unless stated otherwise, Gr, (resp. Alg,,
Comm Alg,, Hopf,, Comm Hopfk, SLie,) for the category of csc graded
Lie groups (resp. K-algebras, commutative K-algebras, K-Hopf algebras,
commutative K-Hopf algebras, Z,-graded Lie algebras), the dual category
of the category of K-Hopf algebras by (Hopr)o etc. For notational con-

venience, we will denote csc graded Lie group E(G,g) by G also.

Our material is organised as follows.

In Section Il, we quickly recall the definition of a Hopf algebra (A, M,
n,A€,7) deﬁnéd over the base field K, where M : A ® A—> A (multiplication),
7 K—A (unit), A : A— A ® A (commultiplication), ;siA————z’_K (co-unit)
and y:A—A (antipode) satisfylng the associativity, existence of unit element,
co-associativity and co-unitary properties. We explicitly construct E (G,g) as
the smash product (semi direct product) of the K-group ring of G, K(G) and
the universal enveloping algebra of the Z,-graded Lie algebrag = g, + g,.
We note that K(G) and U(g), E(G,g) possess K-Hopf and super K-Hopf

. 8
algebra structures respectively.
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In Section Ill, we construct the covariant functor

Kos : SLie, — Gr, defined by

‘L Kos (g) = E(G,9)

2.Kos (v :g—g') =Z.E(G,g)— E (G'.9),

where E (G,g) € ob (Gr,) and morphisms Z given by faithful group

homomorphisms etc. The exactness property of the functors Kos and Kos™ (

is also discussed. In Section IV, we establish the Theorem :

Theorem : 1 : Let V be a reducible (resp. completely reducible,
irreducible) g-module. Then, V has the same reducibility property as G-

module.

In SectionV, we discuss the conditions under which G is quantizableg.

Our results in this direction can be summarised by

Theorem : 2 : Let G be a csc Z,-graded Lie group and let g be the
corresponding Z,-graded Lie algebra. Let HZ(G,G) = {0}. Then G is quan-.

tizable.

Theorem:3:QGr, = (Hopfk)°, the dual category of category of Hopf

algebras where any G € ob (QGr,) is called a quantum group with co-mor-

phism =" G— Gis a faithful (?) group homomorphism.



1. Hopf algebra and construction of E(G, g)
Definition : 1: The Hopf algebra (A, M, 55, A, ¢, y) is a vector space
over the field K of characteristic zero satisfying the following properties

represented by the commutative diagrams:

1. associativity :

AQA
d®M -
m
AQRARA A
ARQA
2. existence of unit’
s S
AQK A K®A
id®n id n ®id
E M M
ARA A AQA
3. coassociativity:
® A

A
idy \A
AQRARA A
A@)id\ %
ARQA

®



4. existence of counit:

AQQK——""TA K®A
d®e id e ®id
AQA—A A®A
A A

5. existence of antipode :
®A

: A

PNy

AQA | A
CAQA

A id

A K A

Heres: A ® K- Aandi:A- A ® Kdenote the scalar multiplication

and the inclusion x - x ® 1 (with 1 the multiplicative unit of K) respectively.

The antipode is an antihomomorphism, i.e., y(x® y) =y (y) ® ¥ (X)

foralix,y € A.
If zis a permutation map
T:A®A-A QA
ie., X@Yyer» y®Xx | 2.1

then, we have the following commutative diagram :



T Yy
ARQA ARA ADA

NS

A A

Definition:2:letg = g, + g, be afinite dimensional Z,-graded Lie
algebra over K of characteristic zero. Let U(g) be the universal enveloping
algebra of g, i.e., U(g) = T(g)/J, where T(qg) is the tensor algebra over g and

J is the two-sided ideal of T(g) defined by elements of the form
x® y— (=D """ y® x -yl xy eq. (2.2)
The quotient map

T(@— U(9)

is injective for g and as usual g CU(g). U(g) is a Z,-graded co-commuta-

tive Hopf algeb\fa satisfying
AX) = 1Qx + x®1, A(1) = 1®1,
e(X) =0, 7)) =81 (1) =1,
yx®y) = 0"y ey,

y () =1yK ==X (2.3)



where the graded tensor product is given by
x®y) @®w) = (—)"" z® yw), x. v,z weg, EcK  (24)

Definition : 3 : The group ring K(G) is a Hopf algebra. K(G) is a free
abelian group generated by elements of the form (r,g) orr.g,r €K, g€ G

such that

r'(rg) = (rg)r = (r'.g),

(rg) + (r.g) = (r + r).q).

(rg). (.g) = (. 99),1,7" €K g, g’ G (2.5)
Further, we have

AKX = X®x,

e(x) =1,

y ) =x"", xEK(G). (2.6)

We note that the antipode y is just the inverse. Let ad : g, x g - g be the
- adjoint mapping restricted to g_. Then, ad exponentiates to & such that r :
G X g-g,ie., «(g)isagraded Lie algebra automorphism for any g €

G. Then, & uniquely extends to a representation.
7. GXU(g) - aut U(g) (2.7)
i.e., G operates as a group of automorphism of U (g).

Definition : 4 : Let E (G,g) = K (G) # U(g) be the smash product of



K(G) with U(g) with respect toz. E(G,g) is a co-commutative Z,-graded Hopf

algebra with antipode.

1. As a graded vector space, E (G,g) = K(G) @ U (g). We denote g ®
xbyg#x,geK(G), xeU(g).

2. E (G,g) is an algebra having K(G) and U (g) as sub algbras such
that

x>gxg ' =a(g)x geK(G) xe U(g).
ie., (@#x) (@ #x) = (gg" #xm(g)X),

M@ #ue = Tk @ Tug. (2.8)

3. w.r.t the diagonal map A, the elements of K(G) are group-like and the

elements of U(g) are primitive,

e, A(g#x) = 2o Gy # X)) B (9 # X))

£ (g # X) \= £(g) € (X). | (2.9)
(We note A ¢ are K-algebra morphisms).

4. The anitpode y is defined by

Y eco = 0ko 87 ug @O N 0 g @180 (F® 1) (184) (210)
i.e., for g e K (G) and x e U(g), we have

4 E(G,9) @#x) =y K(G) (g(1)) Y U(g) (X) #y K(G) (9(2))- (2.11)



Thus one has y(g) = g, ¥(X) = —xand e(g) =1, e(x) =0. (2.12)

Theorem : 4 : Let v : g - g’ be a faithful finite dimensional matrix
representation of g, i.e., dmg’ < «. Leto, =0 lg.ﬁ g, g;. Further, exp
g,: G- G". Letexp oy, : K(G) = K (G"). Also, by universality of U(g), let o
define an isomorphism U(v) : U(g) - U(g'). LetZ =expo,®U(): K(G)
® Ug)— K (G )® U(g'). Then, Z defines a unique finite dimensional and

faithful matrix representation of E (G,g).

Proof: From the commutative diagram,

’ ’ ad ’
9, X9 g
Z 2
ad |
g, % 9 g
exp X 19, expx1, 1, 19,
G xg i g
2 >
GI x gl n g,

it can be shown that £ commutes & and U(v) = X Ugg) PreEserves the de-

gree of g. Hence the theorem.For a detailed derivation, see ref. 8.
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Il. Exactness of Kos and Kos ™"

Let SLie, and Gr, be the categroies of finite dimensional Z,-graded

Lie algebras and csc graded Lie groups of finite type respectively.
Let Kos : SLie, — Gr, be defined by
Kos (g) = E (G.9),
Kos(c:9—~9g) = Z:E(Gg)— EG'.a). 3.1)
Let 0,0' be the zero objects in SLie, and Gr, respectively such that
0’ = K(e) # K (3.2)

with O being the trivially graded Lie algebra. Further, O € hom (gm, g(z)),
0’ e Hom (G, G®), where g, g® e ob (sLiey). G, G® cob (Gr,) are

called zero morphisms defined by
reoll) @ .
O:G ' — G, ie, (rg#x)+ (re#c) (3.3)

where g € G, x e U(g), ce K being the constant term in the expansion
of elements of U(g) in Poincare’-Birkoff-Witt basis while O is the trivial natural

map in SLie,.
Obviously, we have
Kos (0O) = O, (3.4)

where O, O stand for the zero objects on the zero morphisms in the

relevant category.
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Following the notions of epics, monics, kernels and cokernels as in

10
Maclane *, we have
-1 . . . "
Lemma: . Kosand Kos map epics -~ epics and monics —~ monics.

Proof : Let us assume o is epic in SLie, and let £ = Kos (0). Then

by definition,

ao=a'g > a=a'Vau’e Slie,.
Let Zand =’ be maps in SLie, : E 3= Z.3".

Applying Kos,™" we readily see that

Kos™ (2) = Kos ™' (=) =% is epic.

We can analogously show that Kos and Kos ™' map monics to monics.

Theorem : 5 : Kos and Kos™' are exact functors.
Proof : It is sufficient to, prove that
Kos (Ker @) = Ker (Kosa) (3.5a)

and Kos (Coker «) = Coker (Kosa) : (3.5b)
for an arbitrary morphisms «  SLie, and similar properties for Kos .

Fory e Kera, we have«y = 0 and

af =0=p =y V pe SLie,
and some B'e SLie,. It follows immediately that Kos a, KosX = Q'. Now, let
us assume Kos(a)8 =0’ for some fe SLie,. Then, if = Kos™ (8), we have

¢ff =0 and hence 8 = N ' for some ' ¢ Skie,. Hence 8 = Kos(N). Kos
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(B8').Thus, Re Kera = Kos (X) € Ker (Kosa). The reverse implication follows

similarly proving

Kos (Ker a) = Ker (Kosa)

and Kos™' (Kera) = Ker (Kos™'a) .

Corollary : Objects and quotient objects are preserved under Kos

-1 .
and Kos ' as direct sums.

Remark : It is evident from the above corolloary that one has
equivalence class of subobjects and quotient objects. In the sequel, one can
_fix the choice out of each equivalence class such that Kos and Kos™ preserve
this choice. In other words, given o in SLiek, 3 = Kos (0). Further, we have

selected objects, Ker g, KerZ, such that Kos (Ker 0) = KerZ.
IV. Reducibility of E(G, g)-modules

Let V be a graded vector space over K and let end V denote the

graded Lie algebra of graded endomorphisms of V. Let g e SLie, and G =E
(G, g) = Kos (g)..

Definition : 5: V is said to be a g-module if there exists a morphism

oehom (g, end V).

Now, the graded Lie group corresponding to end V is given by G aut
V = Kos (end V) = K (autV_® autV,) # U (end V). We know that U(end

V) and hence G aut V act in a natural manner onV. We have thus

Definition : 6: V is said to be a G-module if there exists a morphism
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Ze hom (G, G aut V).

Lemma : 2: V is a g-module « V is a G- module the proof follows

trivially from the above definitions.

A module V over g (resp. G) is said to be faithful if the map ¢ (res.X ) ‘

in definition 5 (reop. definition 6) is monic.
Lemma : 3: Kos preserves faithful modules.

Proof : Follows trivially from Lemma 1.

G-

N~

Lemma: 4: Let W be a g—sub-module of V. Then, Wis a  sub-module

of V.

Proof : Follows from the irreducibility of Kos:the proof of following

Lemma is equally trivial .

Lemma: 5: Wis adirect summand of V as a g-module < W is adirect-

summand of V as G-module. Thus we have the theorem:

Theorem : 1: Let V be a reducible (resp. completely reducible,
irreducible) g-module. Then, V has the same reducibility property as G-

module.
V. E(G, g) a quantum group

To demonstrate that G « ob(QGr,), we recourse to some of the
well-known results existing in the literature. Consequently, proofs of Lemmas

that either trivially follow or have been proved elsewhere.
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Lemma: 6: Let g be afinite dimensional Z,-graded Lie algebra of the
corrpact, connected and simply connected (csc) Z,-graded Lie group G.

Then, H* (g, g) = H* (G, G) and the ring H (g, g) ~ H (G, G).

This Lemma can be established as a generalisation of the well-known

Theorem due to Chevally and Eilenberg.11

Lemma : 7: If g is strongly semisimple, then H* (g, @) = {0}, q > 1.
Consequently, H? (g,9) = {0}

" Theorem : 2: Let G be a csc and compact Z, —graded Lie group.
Then, any x e g is integral iff H (0, R) defined by the symplectic structure
on the orbit O = G. x is integral (integrability condition). In other words, G

is said to be quantizable if H® (G, G) = {0}.

The proof of the Theorem 2 has been discussed by Kostant and
Auslander for solvable Lie groupmand later it was generalised to semi-simple
Lie groups to obtain the IRS (Harish-Chandra representations) associated

with the quantizable orbits.”

Theorem 3 is a direct consequence of our construction; namely QGr,

= (super Hopfk)o, the dual category of the category of super Hopf al-

gebras”. Any Ge ob (QGr,) is a quantum group with the morphism = .G
< G’ defined by the faithful (?) group homomorphism.

Remark : 2: The quasitriangular super Hopf algebra can be identified

with quantum group, ie. REARA:
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1. RA(QR™' = A’ (g). where
A (g) =7A(Q) =31 g, ®g,,

A(9) =291y ® gy, geA:
2. (A®id)R=R, R,,;
3. (d®A\)R=R,R,,
Thus, we have
R,, (A®id) (R) = (A'®id) (R) R".

In a future communication, we will report on a detailed construction

of Rfor E (G, g).
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