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Abstract. We study the integral kernels of semigroups which need not be ultracon-
tractive by transferring them to appropriately chosen weigted spaces where they become
ultracontractive. Our construction depends mainly on two assumptions: the classical
Sobolev imbedding and a “desingularizing” (L', L') bound on the weighted semigroup.

1. Introduction and Main Results. In this paper we are concerned with a generaliza-
tion of singular heat kernel bounds in abstract setting. Our paper essentially contains a
singular case, i.e. when the standard bounds are not valid (rather than simply the standard
methods do not apply). In a special case of Schrodinger semigroups our abstract results
imply a stronger version of [MS] for critical potentials of c|z|~2 type.

Let (M,du) be a measurable space with o -finite measure and A > 0 be a selfadjoint
operator on the (complex) Hilbert space L? = L?(M,du) with the inner product (f,g) :=
[as fadu. Let Qu(A), v > 0 denote the Hilbert space (D(AY2), (f,g)q, = (AY2f,
AY2g) +v(f,g)). Then Qi(A) C L* C Q1(A).

We first consider the most common case of A possessing the Sobolev imbedding
property:

Q,(A) C L% for some v >0 and j > 1 (1)
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but such that e_’5‘4|L1 N L%, t >0, cannot be extended by continuity to a bounded map

on L' and the ultracontractivity estimate

le™* flloo < cellfllrs fEL'NL®, >0

is not valid.
In this case we will assume that there exists a family ¢ of weights, i.e. functions

{ps}s>o on M such that for all s >0

Ps 1/905 € leoc(M7 dﬂ) (2)

and there is a constant c¢; independent of s such that, for all 0 <t <'s,

lese™ o7l < el flli . feDs, (3)

where Dy := @ L2 (M) .

com

Let cs > 0 denote the constant in the inequality

115, > esllfll5; » feD(AY?), (1)
which exists due to (1).

Our first main result is the following

Theorem A. In addition to (1)-(3) assume that

inf > 0.
S>3{;EM|¢s(x)| > co >

Then, for all t >0 and a.e. z,y € M,

e (w,y)| < Ct7 (@) (y)] (5)

where C:C(C]_,CO,CS,j)7 J/:J/(J_l)

In applications of Theorem A to concrete operators the main difficulties are in ver-
ification of the assumption (3). It is not easy to establish (3) even in the regular case
(i.e. @ =1): general second order elliptic and parabolic operators produce non contrac-

tive L!-semigroups (propagators). In fact, the failure in establishing (3) (with ¢ = 1)
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from the first principals had been for a long time the main obstacle in adopting the most
fundamental in the area Nash method (see [Se 2,3] and also the proof of Corollary 2).

We apply Theorem A to the Schrodinger operators. The modeling operator —A—3V;
Vo(z) = %m—z, 0 < 8 <1, is of a special interest because the potential exhibits
critical local and global behaviour. This circumstance attracted great attention (see e.g.
[KPS], [BS], [BV], [LS], [SV], [BG], [CM], [Se 1,3], [MS], [DD], [BFT]). In a considerably
simpler case of bounded potentials behaving at infinity like SV, for S < 1 various heat
kernel estimates were obtained in [DS], [Zh].

The following is our main result for operator —A — gV, 0 << 1.

Theorem 1. Let H- = —A — BVy, 0< B <1 be the form sum of —A and —pV, in
L?(R%,dx), d > 3. If B =1 define H~ to be the strong resolvent L? -limit of —A - BVh
as (3 1. Define weights ¢ (t,z) € C?2(R4\{0}) by

VAN
ooty = { () iflal < Vi
5 iflel>2v

and 1/2 < ¢ (t,x) <1 for Vt <|z| < 2Vt, where o := %52(1—/T— ) . Then, for all
t >0 and all =,y € R"\{0},

6_tH_ (

T,y) < ot~ 5o (t3)e; (ty)

Remarks. 1. Except for the Gaussian factor the global upper bound is sharp in the
sense that o is the best possible exponent.
2. The choice of weights in Theorem 1 implies that operators e t4p=1 : L3 — Li.
and A= H~ are bounded from L? into L? only for p=1.
3. Our proof of Theorem 1 does not essentially differ in the critical (5 = 1) and non-critical
cases.

Next, we discuss the desingularizing method in a different situation. To motivate the

discussion let us consider the operator —A +V on R?, d > 3 with a non-negative po-

tential. The corresponding heat kernel, Zy (¢, x;s,y), satisfies the Gaussian upper bound

ZV(t,l‘; Say) S Ft—s(x - y)
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for all ¢ > s and a.e. =, y € R?, where
Ty (2) = (47t)~ Y2 exp(—|z|%/4t) = €2 (2,0) .

This bound holds as soon as the heat kernel can be rigorously defined, e.g. for any V €
LL . (R¥*1) . On the other hand the Gaussian lower bound

e " el oy ims) (@ —y) < Zv(t, 258, y)

(c1 >0, ca>1, w>0)
holds under some additional assumptions on V. The most general sufficient condition
seems to be the following: V € K% = the parabolic Kato class [MS]. In the case of time
independent potentials this condition reads as follows

inf [(A = 2)" V]l <00,

and is also necessary for the Gaussian lower bound to be valid [MS], [Sel]. Thus any
potential V' > 0 which violates it makes the Gaussian upper bound fundamentally rough
(not feasible). Inevitably the following question arises. What is a proper form of the
upper heat kernel bound if, for instance V(z) = |z|"%(log(e + |z|™1) ™"+ W, 2 <y <1,
W e kY with infy [[(A = A)"HW]llee =07

Theorem B below provides conditions which can be readily verified for appropriate
weights depending on the choice of the potential.

In [MS] we considered operator H = —A + 8V, 0 < 8 < 1 and proved that
e~ (z,y) < ert= 2 lp(z)p(y), 0 <t < T, where p € C2(RY), o(z) = |z|' if |z| <
1/2, o(x)=11if |z > 1 and [:= E2(~1+ T+ f).

Here we obtain a sharp bound for all 8 > 0 and ¢ > 0 by making use of the following
abstract result.

Let (M,du) be a measurable space with o -finite measure and let A be a non-negative
selfadjoint operator on L?(M,dp) such that

i) et = (e t|L N L2)‘£?S_)L1 , t >0 is a Cy semigroup of bounded operators, i.e.

le™* i <, £20.
ii) e~* is ultracontractive, i.e.
||6_tA1 1200 < cot ™ , t>0

for some (j' > 1).



Theorem B. In addition to i), ii) assume that there exists a one-parameter family 1 of
weights s(x), s > 0, such that
B1) ¢s(z), vs(x)~t € LEA(M\N,du) for all s >0, where N is a closed set.

By ) There is a constant ¢, independent on s such that, for all t < s,

lpse el <allfl feDs,

where Dy := ¢,L3 (M\N,du) .
B3) For some € €]0,1] and any s > 0 there are constants ¢ = ¢é;(e), i = 1,2 and a
measurable Q° C M such that

(a) |Ys(z)|7° < é; for all € M\Q* .

(b) [s()7= € LY(2) and ||[9s ()|~ gt () < 287 /7, where ¢ = 2

l—e °

Then, for all t >0 and a.e. x,y € M,

e (@, y)| < et e (y)] -

We apply Theorem B to the Schrodinger operator HT = —A + BVo, B > 0 on
L3R, dz), d > 3.

Theorem 2. Define weights 1 = ¢*(s,z) = ¢/ (s,x) as C?(R4\{0}) functions ¢ < 2

¢
such that ¥+ (s,z) = (12} if |z| < /5, where £ = 9=2(—1+/TF B), and ¢ (s,z) = 2
/s 2

if |z| > 24/s, and such that 1 < <2, |Vy| <c/\s, |Ap]| <c¢/s for /s < |x| < 2¢/s.
Then, for all t >0 and z,y € R,

e (2, y) < et f () (L y)

q:
tH(

We remark that lower bounds on e~ x,y) can be obtained by combining Theorems

1 and 2 with the inequalities

B ) < (7T () (€A T T @)
B a,y) < (7 () (R T T, )
which are valid for all v €]0,1[ and vy €]0, (1 + 8)7 Y[ (see e.g. [MS]).
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Corollary 1. In the assumptions of Theorems 1 and 2 for any e €]0,3/2[ there are
constants ¢F(e) >0 and cx(e) > 0 such that, for all t >0 and z,y € R4\{0},

_le—y|? _
(et Ee YL (tw) T f (hy) T < e (a,y)

_le—y|?

c+(5)t_%e + O o (t,x)_lgog (t,y)_1 < etH" (x,y)

Whereg:&:d;zz(g—e?).

The lower on-diagonal bounds can be improved considerably.

Corollary 2. In the assumptions of Theorems 1 and 2 there are constants ¢t > 0 such

that, for all t > 0 and x € R%\{0},

c_t_%go;a(t,a:) < e tH (x, )

cttme Pyt x) < e~ tH" (x,x).

Theorem 1 and Corollary 2 imply that the on-diagonal upper and lower heat kernel
bounds are sharp.

The upper bounds from Theorems 1 and 2 can be supplied with the Gaussian factors.

Corollary 3. In the assumptions of Theorems 1 and 2, for any cx > 4 there are constants

cT such that, for all t >0 and z,y € R?,

_ _Jz—yl?

e (2,y) < co5 (tx)p; (ty)t™ Y e =

_ + . _\w—y\2
e (z,y) < et (tx))f (8 y)t= Y 2eT

Our next result is in the framework of symmetric Markov semigroups.

Theorem C. Let (M,dy) be a measurable space with o -finite measure. Let A be a
selfadjoint bounded from below operator on L?(M,dyu) such that the semigroup e~ 4,
t > 0 is positivity preserving. Also assume that

C1) The bottom of the spectrum FE :=info(A) is an eigenvalue and the corresponding
eigenfunction (ground state) ¢ >0 a.e. .

Cs) Qi(A—FE)CL?%» forsome j>1.
Cs3) 1/¢pe L and c1¢~' < (co+ A)*/? (in the sense of the quadratic forms) for some

loc
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constants ¢y >0, co > —F and a > 0.
Then, for all ¢t €]0,T] and a.e. z,y € M ,

e (w,y) < ert™ T G(x)d(y) - (6)

Also, for any ¢ > 0 there exists a sufficiently large T such that the following two-sided
inequality

(1= )e ™ Ph(x)p(y) < e (z,y) < (1 +e)e™ Fg(x)o(y) (7)

holds for all t > T and a.e. z,y € M .

Theorem C can be viewed as a far reaching generalization of the well known bound
e (z,y) < Ot ™' "2 go(w)doly) (0 <t <T)

for the Dirichlet operator —Aqg on a C? smooth bounded region © C R*,d > 3 (see
[Da]). In this case the assumption C ) is valid for j = 2% and is equivalent to Sobolev
imbedding W,*(Q) C L*(Q). Therefore, Ey := info(—Ag) > 0 is the first simple
eigenvalue, —Aq¢pg = Egdo, ¢o > 0. Thus C ) is verified. The Hopf boundary lemma,
ie. ¢o > cod(z) for some co > 0 and 6(x) := dist(x,dQ), together with the Hardy
inequality —Agq > ¢d~2 imply that C 3 ) holds with co =0 and a=1.

A more sophisticated example covered by Theorem C is the following. Again, let (2
be a C? smooth bounded region in R% and let 0 <V € L, _(Q) be form bounded with

relative bound < 1,i.e.V < B(—=Agq) + ¢. Due to the KLMN-theorem [Ka, Ch. VI] one

can define the selfadjoint operator H™ = —Aq — V associated with quadratic form
h-[f,g]:=(Vf,Vg) = (VI2[,VI2g) . D(h_) = Wy (Q) x Wy*(€) .

The imbedding C») with j = -4 (d > 3) holds due to the definition of H~ and

tH™ ¢ >0 is postivity

hence EF~ :=info(H~) (> —¢) is the first simple eigenvalue, e~
preserving and the ground state ¢_ > 0 on €, which proves C;). Since H™ + ¢ >
(1-8)(—Aq) > (1—B)cd™2 and e F ¢p_ =e tH ¢p_ > eP2p_ > ¢ we may conclude

by making use of the Hopf lemma that Cg3) holds with o« = 1, ¢o = ¢ and ¢; =
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¢ te™®\/(1 — B)c. Thus, according to Theorem C, (6) holds for A = H~ with a = 1
and j' = % :

e (z,y) < constTt_l_%qﬁ_(l‘)(ﬁ_ (y) . (8)

Let us note that if 0 < V' belongs to the elliptic Kato class with the corresponding
norm infysg||(A—Aq) 'V < 1, then ¢_ is also bounded and, moreover, we can show
that there is a constant ¢ > 0 such that cgy < ¢_ < ¢ 1y and hence from (8) we obtain

a more valuable bound
e " (z,y) < CTt_l_%%(x)(lso(y) . (9)

ct

2
Also, the Gaussian factor exp (—M) ,¢> 0 can be added to the R.H.S. of (9).
But this is not the case for form bounded potentials because this class contains fairly
singular potentials such as ¢1672(x) + ca|z — 10| ™2, mo € Q with suitably small constants

¢i = ¢;(f) > 0. The best information about possible singularities of ¢_ is this: ¢_ €

LP(Q) for any p < p'(B) := 725 - 1—\;ﬁ (see also [LS], [Se2]).

Now let us discuss the case of HT = —Aq + V, 0 <V € LL _(Q). Except for C3)

loc

the assumption of Theorem C are satisfied for A = H . Indeed, since e "2 |f| < etde|f]
C o) is trivially valid and hence ET := info(H™') > 0 is the first simple eigenvalue and
the ground state ¢, > 0 on . Thus the only non-trivial hypothesis is C 3 ), because
the inequality ¢4 > ¢d (¢ > 0) is no longer available (though it does hold for the elliptic
Kato potentials without any restriction on its Kato norm). But if C3) holds, then one

would have according to Theorem C the following bound:

et (1,y) < Opt™ 2, (2)d(y) - (10)

In conclusion we remark on possible magnitude of the constant « from (10) and
behaviour of ¢, near the boundary.

Fix 29 € Q and set Vj = %kﬂ — 20|72 . By the standard regularity theory the
ground state ¢, for H = —Aq + BVy, B> 0 is asmooth function on Q\{zo} behaving
near o like |z —=zo|*, £ = %2(—1+4+/1+ B). Its behaviour near the boundary is similar

to ¢p. Thus a = max(1,£). In general, however, the picture is not so simple. For
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o0

instance, for Vo(z) = ), ez With suitably small ¢; and dist(x;,002) = 0 (i — o0)

=1

the boundary behaviour of ¢ is quite different from that of ¢ .

2. Proofs of Theorems A,B and C.

Our proofs of the theorems are built on an idea of J. Nash [Na].

Remark-Notation. Set Li := L*(M, p?dp) and define the unitary mapping @ : L? —
L? by ®f = ¢f. Then the operator A, = ®"1AP of domain D(A,) = ¢~ 'D(4) is

selfadjoint on L2 and [le™4% |35, = [[e7"|]352 < 1 for all ¢ > 0. Here and below the

subscript ¢ indicates that the corresponding quantities are related to the measure @2du .

Proof of Theorem A. Let f = ¢~ 'h, h € Lg,, so that f € L.

o
e tAe ) Then puy = e tAt)pf and
(A + V)ug,ug), = [|AV2e A f |2 4yt A o p |2
> cslle o f|]3;
> gl 3 | tA ) o ) 720
= s ug) T o pe A TG f 2T

where we have used (1’) and Holder inequality.
By the definition of wu; , —%ut = (A, + v)u; . Hence —%%(ut, ut>¢ =

((Ap + v)ur, ur),, - Setting w := (us, ur), and using (4) we have

d .2 A oy
(@) =z Ses(ep llpe AT 1) 7

By our choice of f, ¢2f = ¢h € D. Therefore we may apply (3) . It follows

-2/j'
tv2/5'
|1,<p> € :

Integrating this inequality over [0,t], where ¢ = @5, s> t, gives

- > 2 -t
W) > 710 (Collf

Let Uy =

Since f € ¢ 7'Lg5,, and ¢'LgS, is a dense subspace of L, the last inequality yields

12,0, < ct=9'/? , 0<t<s,

||e_tAvs
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and (5) follows.
Let us note that there is no connection between the above proof of Theorem A and
the Beurling-Deny theory. Moreover, the assumption A = A* is not crucial for the result,

though one would also have to assume (3) for e=*4" .

Proof of Theorem B. Setting u; = e *vs f, f € D, , we have

(Ut, up)y = (A, Ut, Ut)y
— <A1/2’(/)’U,t,A1/2’Q/}Ut>

(T
S

> csldulls;
<Ut,Ut>12/,T

ZCs 2(2r—1
b | [327Y

where ¢ = lis and 2r = (17?% .

We have used above the imbedding Qo(A4) C L%, equivalent to ii), and then Hélder

inequality. B 3 ) allows us to estimate |[1)u:||, as follows

lpuellg = lle™ s fllg = lle™ A sl = lobs /£l
< éalle™ lgmsall Fllaw + 119sl ™l zar ey - le™ Mg - fllgw

< (é1e1 + 6202(8/t)j’/q,)||f||qﬂ/} :

Setting w := (u¢, us)y and using the last estimate, we have

d 1-2r 2cs

dt —2r—1

(érer + éz@(s/t)j'/q')—?(??“—l)||f||;12p(27"—1) .

Integrating this differential inequality yields

lutllop, < et G | fllow. . O<t<s. (11)

Rewriting B o) in the form |ju||1,4, < €1]/f]]1,5, and using (11) we obtain (see remark
below)

luell2, < ct™7 2| flly, , 0<t<s,
thus completing the proof of Theorem B.
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Remark 1. Let (P! t > 0) be asemigroup on L' = LY*(M,du) . If, for some 1 < q < 2,

v>0, cg and co,
IP*h||y < cal[hlly and [|[P*hll2 < cat™" ||kl
for all t >0 and h € L* N L?, then
|Pth|ly < ct™/A=|h|ly, t>0, heL*nL?,
where € = 2/q", ¢ = c1(2V¢cy)/(172)

Indeed, the semigroup property, the hypotheses and Holder inequality imply
1P*Rllz < eat™||P"R]lq
< et ™| PhI5|| PRl
< eaey t||PUR|5 )0
and hence

(26N PRI/ 1Al < e(t”/ O P hll2/ | hlly)°.

Setting Ry := sup;eigrq (#7/079)||P*hlly/||h]l1) , one has Rop < éR%.. But Ry < Rop <
2T/ A=E)(||h|4/|Ihll1)¢ so that Ry < ¢/(1=¢) and the required bound follows.

Assertions similar to that in Remark 1 are standard in the theory of elliptic operators

of the second order (cf. [VSC, p.9]).

Proof of Theorem C. Denote by ®f = ¢f the unitary map @ : L] — L?. Set
A=3YA—-E)®, D(A) = & 'D(A). Since ¢ € L?, one sees that 1 € L} and

—tA

e=tA1 =1, + > 0. Since ¢ > 0 and e~*4 is positivity preserving, e is positivity

preserving. Therefore e~*4

is a symmetric Markov semigroup. It is well known that the
semigroups (e_tA~|L§5 ﬂLg)Cngs_mz are strongly continuous on Ly forall 1 <r < oo. The
corresponding generators will be denoted by —A,. .

We will need the following general fact.

Proposition 1 [LS]. Let (e7*B t > 0) be a symmetric Markov semigroup acting on

L*(M,dp) . If 0 <u € D(B,) for some r €]1,00, then u"/?, u"=' € D(B'/?) and
-1
(Bou,u™™Y) > 4T || BY?ur /23,
r
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Lemma 1. ||e_t“i||2_)4,¢ < constpt—(@tiNG=1) forall 0 <t<T.

Proof. Set uy := exp[—t(A + E + ¢3)]ug, up € L;ﬁ where co > —F + 1. Then

— by = (A+ E + co)uy and —( Ly, u?>¢ = (A4 + E + c2)uy, u§’>¢ . By Proposition 1,

el > B+ B+ o) 213

Using that ® is unitary and setting w := [Ju||3 ¢ it follows
L > (A ) P (A ) )

(here we are using assumption C ) and a choice of co > —F +1)

> 3es||¢ui I3,

(here we are using Holder inequality)

wit1/d’
Thus
S w9 2 3es () oudITH

By C3) and the analyticity of e4,
ol = (e A ug , ¢~ e A+ puq)
< (e gug | (A 4 ep) ¥ e AT gug)
< const. =2 || pugl|3 .

Integrating the inequality

d —1 -1 i’ _4/.’
%(w /3 ) > const. t*/7 ||U0||2,¢J

over [0,t] yields

w7 > const. #4907 [ug|5 47

or, equivalently,

uella,p < ct= @ 4 ug|l2g
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which proves the lemma.

Next, Lemma 1 implies via duality that
le 155 < constyt= @G o<t < T, (12)
The ultracontractivity estimate

||e_t’§||1_>oo,¢ < constpt™ | 0<t<T

tA(xvy) =

follows now from (12) and Remark 1 after the proof of Theorem B. Since e~
e HA=E) (2 4)p(2) " p(y) ", the required in Theorem C bound (6) follows.

Finally, examining the above proof of (6) one easily obtains the following global in
time estimate

le™ 100, < ooyt esFren)t

valid for any e €]0,1]. Now the second assertion of Theorem C follows from this global

bound and Theorem 4.2.5 in [Da].

3. m-sectorial forms and contractivity criterions.

Our proofs of Theorems 1 and 2 are based on some general facts concerning m -
sectorial forms on the (complex) Hilbert space L? = L?({,dx), where Q C R is an open
set, related to formal differential operators of the form ¢o(—A)p~1!.

Let b:Q — R?% be a vector-valued function from [LZ _(Q)]¢ such that, for some real

loc

constants 0 < 8 <1 and cg,
(bh,bh) < B(Vh,Vh) 4+ cg(h,h), heC(Q),
or shortly
b? < B(—Aq) +cp - (13)
Define a sesquilinear form ¢, on L? by

tp[u, v] = (Vu, Vo) — (bu, bv) + (Vu, bv) — (bu, Vv) ,
D(1) = WEHQ) x WEH(©) |
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Set t;[u,v] :=ty[v,u], Rety := 1(tp +¢;), Imty, := (ty —t;) . Then

1
2v/—1
Retp|u, v] = (Vu, Vu) — (bu, bv) ,

Imty[u, v] = J%_l((Vu, bv) — (bu, Vv)) ,

and hence

t, = Retp + v —1Imty, ,

where both forms Ret; and Imt, are symmetric.
Using (13) one easily concludes that the form ¢; is m -sectorial and that the operator

H, associated with t; has the following property:
A+ Hy) =B Y21 +V=1G)™'B7Y2 | A > ¢5, (14)

where B = X\ — Aq b2 is the operator associated with Ret, + A and (with a minor
abuse of notation) G = —/—1B~2(b-V +V-b)B~/2 is a bounded symmetric operator
(see [Ka, Ch. VI, Theorem 3.2)).

Let b, : Q — R%, n =1,2,..., be another vector-valued functions such that b2 <
bi+1 < b ae. and b, —» b ae. as n — o0o. Let H,_  be the operator associated with
ty, . Then

A+ H,, )L Li‘f (A + Hy)~L as n — oo (15)

(meaning a strong convergence in L?).
The latter is a direct consequence of formula (14), assumption b, — b a.e. and of the
following fact:

B2y, — BY/2y strongly in L? as n — oo (16)

for all u € D(BY2) = D(By?) = W}h?, where B, := A — Aq — b2 (see [Ka, Ch. VIII,
Theorem 3.11]).

In turn, (15) is equivalent to the convergence

— S _
e~ Hon - e HHo a5 n — o0 (15")
L

uniformly in ¢ € [0, 1] (see [Yo, Ch. IX, Sect. 12]).
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Next, let a : Q — R? be a vector-valued function from [LZ (Q)]¢ such that pointwise

loc

a><(1—e)W+e (171)

for some W € LL (Q) and real constants ¢ €]0,1[ and ¢.

loc

Define form 7[u,v] on D x D, where D := W, > nD(|W|/?), by
T[u, v] = (Vu, Vv) — 2(au, Vv) + (Wﬁ/zu L (W2 |

where Wﬁ/2 = |[W[/2sgnW .

Using (17 1 ) we conclude that 7 is m -sectorial with the vertex > — & and C§°(Q2)x

C§°(£2) is a core of 7.

The following result is crucial for all subsequent considerations.

Proposition 2. Let J denote the m -sectorial operator associated with 7. In addition
to (171 ) assume that
a® <y(=Ag) + ¢ (172)

for some real constants v <1 and cy. Let V > 0 be a potential such that

W-V>-—w

pointwise a.e. for some real constant w. Set V,, :=V Am, m =1,2,.... Then
i) (e7®I=Vm) t>0) are postivity preserving semigroups.

ii) Forall t >0 and fe L'NL?,
le " T=Ym) £y < e[| |1 -

iii) e~*J=Vm) extends by continuity to a Cy semigroup on L'(Q) for each m and
strong L' —lime I —Vm) = ¢=t(T-V)1 exists and determines a Cy semigroup of
m

quasi contractions, i.e.

e HT =V, <e, t>0. (18)

Proof. We first claim that (e=*7,t > 0) is positivity preserving and that
e ' [L? N L>®] C [L? N L™]. One possible way to verify the claim is to make use of the

following abstract criterions.
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Criterion 1. Let (e7*4,¢t > 0) be a Cy semigroup of contractions on L?(M,dyu). Then

it is positivity preserving if and only if it is real, i.e. e *4ReL? C ReL?, and
(Af,fVv0)>0  for all f e D(A)NReL?.
Criterion 2. [BP]. Let (e7*4,¢ > 0) be a Cy semigroup on L?(M,dy). Then
e *h)|oo < |hlloo  for all he L>NL>® andt >0

if and only if
Re(Af,f— fa) >0  for all f e D(A),

where fa := (|f| A 1)sgnf, sgnf ::|—}c| it f#£0 and =0 if f=0.

Using assumption (171 ) the proof of the claim based on Criterions 1 and 2 is straight-

forward.

Let us verify, for example, that e *7 [L2NL>®] C L>NL>®. Set A = J*+ X,

¢ where ¢ and e are from (171). Let f € D(A). Then f € W,?(Q) and, since

l1—e?

A
f=Ian=1(fI-1)V 0]|—jff| ,also f — fa € Wy?(Q). Therefore

v

(Af, [ =T = VEV = Fa) =2V a(f = fa) AW+ ), f = fa) -
Setting x := (|f| —1) V0= (|f| — 1)+ and using that Re(fVf) = |f|V|f]| it follows

Re(Af, f — fa) = (V. ﬁw +(VIf, Vx) — (V|f], |—’;|V|f|>
— 2V|f],ax) + (W + N)|f], x) -

— 2 .
Since (Vf, V) = (VIf], 2, VIFD) = (g, "55725) , where ¢ = Ref, 5 = Imf, it

follows using (17 1) that
Re(Af, f — fa) > (Vx, Vx) — 2(Vx,ax) + (W + N)|f|, x)
= (Vx —ax, Vx —ax) + ((—a> + W+ X)x, x) + (W + 1), x)

>0.

In order to prove the assertion ii) of Proposition 2 set f; = eI =Vm) f  where

0 < f € L2NL> . Then applying the claim above yields f; > 0 and f; € L> . Therefore,
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since f; € D(J*) C Wol’2 , it easily follows that f/~' and f:/2 are also in Wol’2 for all

r > 2 and hence

1d
- D =T =V fu 1Y)
1 r r 4 r r r
=4 (VI V) = ~afy PV (W = V) f])
T‘il '

W -V > —w, it follows

where 1’ := Setting v := f//? and J :=||Vu||2, and using assumptions ( 175 ) and

d 2 2 1 Y €1 C 9
“ D)2 > - a(=g-Lg-Lyj- 2 .
0l > —rolg+ 4 (£ - Ly 2 - 2l

Choosing e1 = /7 it follows

d 1 1
— o= = (e[ ) ol + 4 (5 - ) 7

and, since v < 1 for r large enough T—l, — /7 >0, it follows

d 1
— 1018 2 = (o ey ol

1ol < TV,

The latter yields

Letting r — oo and using the continuity of r — || - ||, , one has

I felloo < e 11 flloo

which proves ii). Finally, assertion iii) follows from ii) by means of Fatou lemma.

4. Schrodinger semigroups on R?, d > 3.
Remark - Definition of H-. For 0 < 8 < 1, define H~ to be the form sum

—A — V. The latter definition is justified due to the famous Hardy inequality
(d—2)?

IVA[3 > llz]7'All3 , he C5°(RY) .

In this cases the hypothesis (1) holds because
Qo(H7) =Qo((B-1A)C LY, j=—-—7.
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For B =1 set H™ = s—L? —R—Bli/(rn1 H~(BVy) (the strong resolvent limit). The op-
erator H~ = H~(Vp) is selfadjoint, non-negative and C§°(R?) is dense in Q; (H~(Vp)) .
Hypothesis (1) now holds using a Hardy type inequality due to Mazja [Ma, Section 2.1.6]

(d—2)

2
IVA[3 > llz| 7 Al + cllnll3; . h e C5°(RY)

with ¢> 0, jzﬁ.

It is also clear that (e *H |t > 0) is positivity preserving and symmetric.

Definition of desingularizing weights. For any s > 0 define weight ¢ =
0~ (5,7) = ¢, (s,7) as a C?(R\{0}) function ¢ > 1/2 such that ¢~ (s,z) = (ﬁ)a for
all z € B 5 :={x eR* : |z] < s}, where 0 = 952(1—/T =), and ¢~ (s,z) = 1/2 for
all z € R¥\B, /;,and such that 1/2 < ¢ <1, |[Ve| < T |[Ap| < € for © € By 5\B 5 -

Proof of Theorem 1. Due to the preceeding remark and the definition of weights in
order to prove Theorem 1 it suffices to verify assumption (3) of Theorem A for A = H~
and ¢ = ¢, (s,x).

We will first treat the case of § < 1. The case of =1 requires minor changes and
we attend it at the end.

Define b = %, ¢ = ¢, (s,z). It follows from the definition of desingularizing
weights that b2 < BV, + < for some real constant co and all s > 0. Therefore

b2 < B(—A) + 2

s
For any n > 1 define
n if o >n

Von
n

On =% @ ifl/n<¢<n and b,:=
1/n ife<1/n
Then b, — b ae., b2 < bfbﬂ < b? and hence, setting Ho(p,) := Hy, , Ho(p) := Hy,

15") holds, i.e.
(

o—tHo(on) Lig e tH0(P) a5 — 00 . (19)
Next, we claim that
C,OnetA T_Ll — e_tHO(‘Pn) (20)
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forall n>1 and t > 0.

Indeed, @pet®p;! is a Cp semigroup on L% = L2(R%dz). Let F denote the
negative of its generator. Then ¢,(A — A)~lp-t = (A + F)~! for any A > 0. Set
u=\+F)"lf, feL? Since o ;lu=(A—A)"Lp 1f it follows o, lu € W2 and
(A= A)p, tu=p, L f. Therefore

(A= Ao u, o) = (f0), veEWH?.
Since ¢,v € W2 | it easily follows from the last equality

(= Apy M, ppv) = (Vo tu, Vo)

or, equivalently,

ty, [u,v] = (f — Au,v) .

Since v € W12 is arbitrary, it follows using the last equality and the definition of Hy(¢y,)
that uw € D(Ho(p,)) and Ho(py)u = f — Au. Therefore D(F) C D(Ho(p,)) and
Ho(pn) D F. But —Hy(p,) and —F are both the generators and hence Hy(p,) = F'.
Consequently (20) is proved.

Now let f € L? and g € L, . Then

com
lim (pne'on ' £, 9) = (2071 f, o)

and by (19), (e tHo(@) £ g) = (e p~1f,pg). The latter shows that e!2p~1f € D(p) =
{h € L?;oh € L?} and that @e!®p~1f = e tHo(#) f

Hence the following representation formula holds:

e—tHo(®) — petB =l 1>
Since V,, := (BVh) Am, m =1,2,..., are bounded operators, we also have
e HHo(@)=Vm) — pe=tH(=A=Vm),=1 = 50 . (21)
Next, consider the form 7[u,v] with a =5 (: %) and W = _T%‘p . Then ¢, =7 on

C° (R x C5° (RY) and the latter is a core of t;, and 7. Therefore J = Hy(¢p). Also, W —
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® |0

Vi > =%, (H) W > b2 — <. Applying Proposition 2 yields et Ho(9)=Vim) ], <

est||fll1, and due to (21)

lpse M ATV flly < eFt|f|ly, feL'NL*, t>0

where ¢ is an absolute constant.

s - _
Finally, since e=t{=4=Vm) = et and in fact e H=A=Vm)|f| AetH7|f| a.e. as
L
m — oo, it follows

lose™ o fllh < ellflli, feL'nL?, 0<t<s. (22)

We may now apply Theorem A . This completes the proof of Theorem 1 in the case that
<1 .

The case of f=1. Set H :=—A — (1—€)Vp, € > 0. Since now |V — b?| < <,
the assumption (17 3) holds but with v =1, namely : b*> < —A + 2. On the other
hand the crucial estimate ii) of Proposition 2 holds for f; = e~t(J"=Vm) f because now
Vi = (1—eo)VoAm , W=V > eVp—< , and hence —& || f||7 > —<r|| || for all r such that
+ (1" = &) <e. Therefore ||ft||oo < e5%||f]loc - The latter means that ¢ in (22) does not
depend on & > 0. Finally, by the definition of H~ we have ¢~ "7 % et (ase \,0).
Hence (22) also holds in the case that g =1. .

Proof of Theorem 2. Set b= Vlog1ys, V =p3Vy, 3> 0. Then divb = % — b2

and V —b?>-% V4 % > —2 s> 0. Define the sesquilinear form ¢ by

tlu, v] == (Vu, Vo) + (V — bHu,v) + (Vu, bv) — (bu, Vo) , D(t) = W2 x Wh2 .
It is easy to see that t is m-sectorial. Let H™T (1)) denote the operator associated

with form ¢. Setting B=A—A+(V—=b%), A> < D(BY2) = W'? and (with a minor
abuse of notation) G' = —/—=1B~/2(b-V 4+ V -b)B~/2 it follows

A+ H () ' =B72(1+V-1G)"'B~Y/2 .

Using this formula and an approximation argument similar to that in the proof of Theorem

1 it follows that

gt gt 00
pe YTl = e tHT W f e Dy = oL

com °

20



Next we prove that

— + c
|le tH W’s)f||1§est fli, 0<t<s.

The latter follows by a straightforward verification of Criterion 2.
Indeed, let A = H*(¢,) + A, A > <2 We have to show that Re(A*f, f — fa) >0
for all f € D(A*). Since f € D(A*) CW12 = f— f, € WH2 it follows

Re(A*f, f— fa) > (Vx, Vx) — 2(Vx, bx) + (V — b* — divb + A)|f], x) -

Using equality —2(Vx, bx) = (x, (divb)x) yields

Re(A*f, f — fr) >(Vx, VX) + (V= b2 + X)x, X)
+ ((V = b% —divb + A), x)

2((>\—c—;)x,x>+<(>\—9>x>

]
>0 .

The latter shows that in the case that A = HT the hypotheses B;) and By ) of
Theorem B are valid.

We next fix € €]0, ﬁdze[ and set Q° := {z € R% |z| < \/s}. Then by definition
(a) ts(x)™1 <1 forall x € RN\Q®.

_gsl_zs
) 196N, gy = (77 (5) T Jalt i

= c(d,é,g)sgl_gs =c(d, l,e)si /T | j = g, ¢ = .

1—¢
2

This verifies the hypothesis B 3 ) of Theorem B and completes the proof of Theorem 2.
We remark on the main difference between operators H~ (¢), and H7 (1), : the
generators —H1(¢),, 1 < r < 2, are well defined, while H~(¢), make sense only for
r=1.
Proof of Corollary 1. The Trotter product formula and Holder inequality imply
that

A (z,y) = e HEATVEVI (g y) < (e (2, )" (7R T TV (2, )t

where V =0V, 0< <1 andforall 0<v <1.
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Applying Theorem 2 we have
e ATV (g, y) < et TPy (t )0 (¢, y)

with £, = 52(-14+ /T+7B), v = £% . Therefore

1—v

e T (z,y) > Loz, y) (W (8 2)0p (ty) ~

t, R
Since ¢ (t,2)|B 5 = (%) , it follows (wzj(t,q;))lm = w;(t,x) on B /s, where £ =

]y = d=2___ B 54 decreasing function of «. This proves the first estimate in

2 144/1448

Corollary 1. A similar argument applies to et +(

z,y) .

Proof of Corollary 2. Let VT := -V —-2b, b= % and Ay = (V1)V be the
selfadjoint operator associated with the closure of aglu,v] = (Vu, Vv><p initially defined on
C3°(R%) . We will use the following representation of H~ = ®~'H~® , where ®f = ¢of
and = 93 (5,)

- —A
H™ = (VHV+W, W= 7@ BV, W< <.

It follows from the Trotter product formula that pointwise a.e.

e~ fte 0| f| < et | f| < eftet | f| for all t < .

Therefore, letting p(t, z,y) = e~tAo (x,y), we obtain the following important bound

p(t,x,y) < ct_%, 0<t<s. (23)

In order to simplify the procedure below we reformulate the problem by working with
regular weights and potentials by simply setting ¢(y/22 + u) instead of ¢(z) and %f‘”
instead of BV,. We then will obtain the required estimates with constants independent
on g > 0, and will let p tend to zero afterwards. Note that p(¢,z,y) and its time and
spatial derivatives have regular behaviour. In particular, p(¢,z,y) not only satisfies (23)
but also enjoys the qualitative Gaussian lower and upper bounds, (p(t, =, .)>tp =1, and

weighted analogs @, M and AN of Nash functions are well defined, namely:
Q(t) :== —(plogp), = — /de(t,:c,y) logp(t, =, y)¢*(y)dy, 0<t<s.
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M) = (o = lptta D, = [ o= lp(t. .06 0)d

N(t) = ((Vp)*/p), = /Rd(Vyp(t,fﬁ,y))z/p(tx,y)soz(y)dy-
Our main goal is to prove the Nash entropy estimate (NEE):
~C_ < Q(t) - Q1) < Cy,

where Q(t) := d)ogt and C are constants independent on 4.
;From (23) it follows that Q(t) > Q(t) — C_ and hence we are left to prove only the

upper bound. Following Nash [Na] we have
FM() = (lz — | gp(t, 2, ), = ~(lz = (V) Vp), = (V|z — [, Vp),
and hence £ M(t) < \/N(t). Since £Q(t) =N (t) and M(0) =0, we have

M(t) < 71/ L Q(r)dr.

We estimate the last integral by using Holder inequality, integration by parts and the
L.H.S. of (NEE) as follows

fg \/%dT < \/fot 7_—1/2d7-\/f(;t VTdQ(T) < \/2t(Q(t) —Q+d+C).

Therefore,

M2(t) < 26(Q(t) — O(t) + O).

On the other hand plogp > —np — e~ 17" for all real n. Setting n = m + k|z — | with
k > 0 and integrating over spatial variables yields Q(t) < m+ kM (t) +e_1_m<e_k|f”_'|>w.
Using the latter inequality, that (e‘k|$_'|>¢ < C(k=%+5%2) and letting m = C —dlogk

and kM = d, we obtain that Q(t) < C' + dlog(M(t) + /s) . For s/2 <t < s it follows

QOO < =12 (M(1) + /5) < C1/Q(t) — O(1) + C.

The latter yields the R.H.S. of (NEE).
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In turn, the R.H.S. of (NEE), the reproductive property of p(¢,z,y) and Jensen

inequality combined yield

p(2t, z,z) > ePtmlospte), — =) > g%

4
2

or e 2H (g x) > Co,, (t,x)t>. tH™

Thus Corollary 2 is proven for e~ A similar

_ +
argument works for e *H ",

Remarks. 1. As soon as (NEE) is obtained Corollary 3 can be proven by repeating
the corresponding proof of the Gaussian upper bound in [Se2] for the ”simplest” case of
the uniformly elliptic operator V -a - V.

2. Due to Corollary 3 it becomes possible to exploit the L!-perturbation techniques [Se3]
and to establish weighted Gaussian upper heat kernel bound in the case of
—A—=pVo+a-V+V, [ <1, with a and V from (the weighted) Nash and Kato classes
respectively.

3. The problem of improving Corollary 1 remains open.
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