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Abstract

The CERN-CLAF School of High-Energy Physics is intended to give young physicists an introduction to the
theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on
field theory and the Standard Model, quantum chromodynamics, CP violation and flavour physics, as well as
reports on cosmic rays, the Pierre Auger Project, instrumentation, and trigger and data-acquisition systems.
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Preface

The third in the new series of Latin American Schools of High-Energy Physics took place in Malargiie, lo-
cated in the south-east of the Province of Mendoza in Argentina, from 27 February to 12 March 2005. It
was organized jointly by CERN and CLAF (Centro Latino Americano de Fisica), and with the strong support
of CONICET (Consejo Nacional de Investigaciones Cientificas y Técnicas). Fifty-four students coming from
eleven different countries attended the School. While most of the students stayed in Hotel Rio Grande, a few
students and the Staff stayed at Microtel situated close by. However, all the participants ate their meals to-
gether at Hotel Rio Grande. According to the tradition of the School the students shared twin rooms mixing
nationalities and in particular Europeans together with Latin Americans.

Maria Teresa Dova from La Plata University was the local director for the School. The lectures were
given at the Expositions and Convention Centre, ‘Thesaurus’, an ultra-modern building, some three hundred
metres from the two hotels and just across the road from the Pierre Auger Observatory central campus. The
proximity of the Auger Observatory was the main reason for choosing Malargiie as the site for the School,
and a special presentation on the Auger experiment, given by Alan Watson the present project spokesman, was
highly appreciated by the school participants. The presentation was followed by an interesting tour of Los
Leones where one of the Auger fluorescence detectors is installed and to some of the detectors of the surface
array deployed in Pampa Amarilla.

Our sincere thanks go to Tere who, together with the local committee, made it possible to organize the
School and contributed to its success, and to Esteban Roulet, Ricardo Piegaia and Juan Tirao, who helped
during the visit to the different locations which had been proposed for the School. We are also grateful to
CONICET for their financial support. Our thanks are due to the lecturers and discussion leaders for their active
participation in the School and for making the scientific programme so stimulating. The students, who in turn
manifested their good spirits during two intense weeks, undoubtedly appreciated the personal contributions of
the teaching staff in answering questions and explaining points of theory.

We are very grateful to Danielle Métral for her untiring efforts in the lengthy preparations for and the day-
to-day care of the School. Her continuous care of the participants and their needs was highly appreciated. We
are also grateful to Andrea Aparicio for her friendly assistance with translations, accounting, and other practical
problems. Our special thanks also go to Graciella Viollaz, head of the local Tourist Office, Raul Rodriguez,
Mayor of Malargiie, and Celso A. Jaque, former Mayor and now National Senator, who invited the school to
Malargiie, providing the local infrastructure for free.

The School participants enjoyed two memorable excursions, one to Castillos de Pincheira, a natural and
impressive geologic structure about thirty kilometres from the city of Malargiie, and another to Las Lefias,
Argentina’s largest ski resort. On the way to Las Lefias stops were made at the Well of the Souls (‘Pozo de las
Animas’), and the lagoon of the Enchanted Girl (‘La Nifia Encantada’).

However, the success of the School was to a large extent due to the students themselves. Their posters were
of excellent quality both technically and in content, and throughout the School they participated actively during
the lectures, in the discussion sessions, and with genuine interest in the different activities and excursions.

Egil Lillestgl
on behalf of the Organizing Committee
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Introductory lectures on quantum field theory*

L. Alvarez-Gaumé® and M.A. Vizquez-Mozo ¥ ¢

@ CERN, Geneva, Switzerland

b Departamento de Fisica Fundamental, Universidad de Salamanca, Salamanca, Spain

¢ Instituto Universitario de Fisica Fundamental y Matematicas (IUFFyM), Universidad de Salamanca,
Salamanca, Spain

Abstract

In these lectures we present a few topics in quantum field theory in detail.
Some of them are conceptual and some more practical. They have been se-
lected because they appear frequently in current applications to particle physics
and string theory.

1 Introduction

The audience for these lectures was composed to a large extent of students in experimental high-energy
physics with an important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable
introduction to a subject as vast as quantum field theory. For this reason these lectures are intended to
provide a review of those parts of the subject to be used later by other lecturers. Although a cursory
acquaintance with the subject of quantum field theory is helpful, the only requirement necessary to
follow the lectures is a working knowledge of quantum mechanics and special relativity.

The guiding principle in choosing the topics (apart from to serve as introductions to later courses)
was to cover some basic aspects of the theory that present conceptual subtleties: those topics one often is
uncomfortable with after a first introduction to the subject. Among them we have selected the following.

— The need to introduce quantum fields, with the great complexity this implies.

— Quantization of gauge theories and the role of topology in quantum phenomena. We have included
a brief study of the Aharonov—Bohm effect and Dirac’s explanation of the quantization of the
electric charge in terms of magnetic monopoles.

Quantum aspects of global and gauge symmetries and their breaking.

Anomalies.

The physical idea behind the process of renormalization of quantum field theories.

Some more specialized topics, like the creation of particles by classical fields and the very basics
of supersymmetry.

These notes follow closely the original presentation, with numerous clarifications. Sometimes the
treatment given to some subjects has been extended, in particular the discussion of the Casimir effect
and particle creation by classical backgrounds. Since no group theory was assumed, we have included
an Appendix with a review of the basic concepts.

Because of lack of space and purpose, few proofs have been included. Instead, very often we
illustrate a concept or property by describing a physical situation where it arises. Full details and proofs
can be found in the many textbooks on the subject, and in particular in the ones provided in the list
of references [1-9]. Especially modern presentations, very much in the spirit of these lectures, can be
found in Refs. [4,5,9]. We should nevertheless warn the reader that we have been a little cavalier about
references. Our aim has been to provide mostly a (non-exhaustive) list of references for further reading.
We apologize to those authors who feel misrepresented.

*Based on lectures delivered by L. Alvarez-Gaumé.
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1.1 A note about notation

Before starting it is convenient to review the notation used. Throughout these notes we will be using
the metric 7, = diag (1, —1, —1, —1). Derivatives with respect to the four-vector x# = (ct, &) will be
denoted by the shorthand

0 10 -
o=—=|-—,V|. 1
B Qo (c ot’ ) M
As usual, space-time indices will be labelled by Greek letters (u, v,... = 0,1, 2, 3) while Latin indices
will be used for spatial directions (¢,7,... = 1,2,3). In many expressions we will use the notation

o' = (1,0") where o' are the Pauli matrices

L (01 o (0 —i 5 (1 0
gl O R ) R RV ®

Sometimes we make use of Feynman’s slash notation ¢ = y*a,. Finally, unless stated otherwise, we
work in natural units & = ¢ = 1.

2 Why do we need quantum field theory after all?

In spite of the impressive success of quantum mechanics in describing atomic physics, it was immediately
clear after its formulation that its relativistic extension was not free of difficulties. These problems were
already clear to Schrodinger, whose first guess for a wave equation of a free relativistic particle was the
Klein—Gordon equation

s 2 2 -
<ﬁ—v +m)1/1(t,:p)=0. 3)

This equation follows directly from the relativistic ‘mass-shell’ identity £? = $? 4+ m? using the corre-
spondence principle

p — —iV. “4)
Plane wave solutions to the wave equation (3) are readily obtained:
U(t, T) = e Put! = oTIEHIDE with E=4w, =42+ m?. (5)

In order to have a complete basis of functions, one must include plane waves with both £ > 0 and
E < 0. This implies that given the conserved current

o= 5 (w0 — 0,07 ) ©)

its time component is j° = E and therefore does not define a positive-definite probability density.

A complete, properly normalized, continuous basis of solutions of the Klein—Gordon equation (3)
labelled by the momentum p'can be defined as

1 . oo
ft,T) = —————= T
(2m)2 /2wy
1 . oo
ffp(t,f) - - elwptflp-fl‘ . (7)

(272 /2
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Fig. 1: Spectrum of the Klein—Gordon wave equation

Given the inner product

(Wl = [ (w1000 - a0 )
the states (7) form an orthonormal basis:

(folf) = o(F—9"),
(fplf-p) = =0 -p"), ®)
<fp‘f*p’> = 0. )

The wave functions f,(t, z) describe states with momentum p'and energy given by w,=+/p? + m?2.
On the other hand, the states |f_,) not only have a negative scalar product but they actually correspond
to negative energy states:

iaOf*p(t’f) =V ﬁg + m2 f*p(t’f) . (10)

Therefore the energy spectrum of the theory satisfies | E'| > m and is unbounded from below (see Fig. 1).
Although in the case of a free theory the absence of a ground state is not necessarily a fatal problem,
once the theory is coupled to the electromagnetic field this is the source of all kinds of disasters, since
nothing can prevent the decay of any state by emission of electromagnetic radiation.

The problem of the instability of the ‘first-quantized’ relativistic wave equation can be heuristically
tackled in the case of spin—% particles, described by the Dirac equation

(—w% +a-v-— m) W(t, F) =0, (11)

where & and 3 are 4 x 4 matrices

. (0 o (01
O“(—wi 0)’ 6_(1 0)’ (12)
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Fig. 2: Creation of a particle—antiparticle pair in the Dirac sea picture

with o the Pauli matrices, and the wave function (¢, Z) has four components. The wave equation (11)
can be thought of as a kind of ‘square root’ of the Klein—Gordon equation (3), since the latter can be
obtained as

T 2

(—w% +a-v-— m> <—zﬂ% +a-v-— m> U(t,T) = (% -Vvi+ m2> O(t,E) . (13)

An analysis of Eq. (11) along the lines of the one presented above for the Klein—-Gordon equation

leads again to the existence of negative energy states and a spectrum unbounded from below as in Fig. 1.

Dirac, however, solved the instability problem by pointing out that now the particles are fermions and

therefore they are subject to Pauli’s exclusion principle. Hence, each state in the spectrum can be oc-

cupied by at most one particle, so the states with £ = m can be made stable if we assume that all the
negative energy states are filled.

If Dirac’s idea restores the stability of the spectrum by introducing a stable vacuum where all
negative energy states are occupied, the so-called Dirac sea, it also leads directly to the conclusion that a
single-particle interpretation of the Dirac equation is not possible. Indeed, a photon with enough energy
(E > 2m) can excite one of the electrons filling the negative energy states, leaving behind a ‘hole’ in
the Dirac sea (see Fig. 2). This hole behaves as a particle with equal mass and opposite charge that
is interpreted as a positron, so there is no escape from the conclusion that interactions will produce
particle—antiparticle pairs out of the vacuum.

In spite of the success of the heuristic interpretation of negative energy states in the Dirac equation,
this is not the end of the story. In 1929 Oskar Klein stumbled upon an apparent paradox when trying to
describe the scattering of a relativistic electron by a square potential using Dirac’s wave equation [10]
(for pedagogical reviews see Refs. [11, 12]). In order to capture the essence of the problem without
entering into unnecessary complication we shall study Klein’s paradox in the context of the Klein—
Gordon equation.

Let us consider a square potential with height V; > 0 of the type shown in Fig. 3. A solution to
the wave equation in regions I and II is given by

wj(t,.%') — efiE‘tJripl:v _i_Re*iEt*ipl:E’

Yrr(t,w) = Te Btirer (14)
where the mass-shell condition implies that

p = VE?—m?, p2 =+ (E—Vp)2 —m?2. (15)
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Fig. 3: Illustration of the Klein paradox

The constants R and 7" are computed by matching the two solutions across the boundary = = 0. The
conditions 1 (t,0) = r7(t,0) and 0,1 (t,0) = Ox1pr1(t,0) imply that

2 —
T— P1 R:pl P2

- , . (16)
p1+p2 P1+p2

At first sight one would expect a behaviour similar to that encountered in the nonrelativistic case.
If the kinetic energy is bigger than Vj both a transmitted and reflected wave are expected, whereas when
the kinetic energy is smaller than Vj one expects to find only a reflected wave, the transmitted wave being
exponentially damped within a distance of a Compton wavelength inside the barrier.

Indeed this is what happens if £ — m > V. In this case both p; and p- are real and we have a
partly reflected, and a partly transmitted wave. In the same way, if E —m < Vyand E —m < Vi —2m
then p, is imaginary and there is total reflection.

However, in the case when V; > 2m and the energy is in the range Vj — 2m < E —m < Vj
a completely different situation arises. In this case one finds that both p; and p, are real and therefore
the incoming wave function is partially reflected and partially transmitted across the barrier. This is a
shocking result, since it implies that there is a non-vanishing probability of finding the particle at any
point across the barrier with negative kinetic energy (£ — m — Vi < 0)! This weird result is known as
Klein’s paradox.

As with the negative energy states, the Klein paradox results from our insistence on giving a
single-particle interpretation to the relativistic wave function. Actually, a multiparticle analysis of the
paradox [11] shows that what happens when F — m > V; — 2m is that the reflection of the incoming
particle by the barrier is accompanied by the creation of particle—antiparticle pairs out of the energy of
the barrier. (Note that for this to happen it is required that Vy > 2m, the threshold for the creation of a
particle—antiparticle pair.)

Actually, this particle creation can be understood by noticing that the sudden potential step in
Fig. 3 localizes the incoming particle with mass m in distances smaller than its Compton wavelength
A= % This can be seen by replacing the square potential by another one where the potential varies
smoothly from 0 to Vy > 2m in distance scales larger than 1/m. This case was worked out by Sauter
shortly after Klein pointed out the paradox [13]. He considered a situation where the regions with V' = 0
and V' = V[ are connected by a region of length d with a linear potential V' (z) = %. He found that
when d > % the transmission coefficient is exponentially small!.

'In Section (8.1) we shall see how, in the case of the Dirac field, this exponential behaviour can be associated with the
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Fig. 4: Two regions R1, Ry that are causally disconnected

The creation of particles is impossible to avoid whenever one tries to locate a particle of mass
m within its Compton wavelength. Indeed, from the Heisenberg uncertainty relation we find that if
Ax ~ %, the fluctuations in the momentum will be of order Ap ~ m and fluctuations in the energy of
order

AE ~m (17)

can be expected. Therefore, in a relativistic theory, the fluctuations of the energy are enough to allow
the creation of particles out of the vacuum. In the case of a spin-% particle, the Dirac sea picture shows
clearly how, when the energy fluctuations are of order m, electrons from the Dirac sea can be excited to
positive energy states, thus creating electron—positron pairs.

It is possible to see how the multiparticle interpretation is forced upon us by relativistic invariance.
In non-relativistic quantum mechanics observables are represented by self-adjoint operators that in the
Heisenberg picture depend on time. Therefore measurements are localized in time but are global in
space. The situation is radically different in the relativistic case. Because no signal can propagate faster
than the speed of light, measurements have to be localized both in time and space. Causality demands
then that two measurements carried out in causally-disconnected regions of space—time cannot interfere
with each other. In mathematical terms this means that if Og, and Op, are the observables associated
with two measurements localized in two causally-disconnected regions R, Rs (see Fig. 4), they satisfy

[Or,,Or,] =0, if (x1 — 22)%? < 0,forall 2y € Ry, 75 € Ry . (18)

Hence, in a relativistic theory, the basic operators in the Heisenberg picture must depend on the
space—time position x#. Unlike the case in non-relativistic quantum mechanics, here the position Z is not
an observable, but just a label, similarly to the case of time in ordinary quantum mechanics. Causality is
then imposed microscopically by requiring

[O(x),0(y)] =0, if (z—y)?2<0. (19)

creation of electron—positron pairs due to a constant electric field (Schwinger effect).
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2 T

Fig. 5: Complex contour C' for the computation of the integral in Eq. (24)

A smeared operator O over a space—time region R can then be defined as

<%=/E%mmmm (20)
where fr(x) is the characteristic function associated with R,
1 zeR

T) = . 21

fr(x) { 0 z¢R 21

Equation (18) follows now from the microcausality condition (19).

Therefore, relativistic invariance forces the introduction of quantum fields. It is only when we
insist on keeping a single-particle interpretation that we come up against causality violations. To illustrate
the point, let us consider a single-particle wave function (¢, ¥) that initially is localized in the position
Z=0:

(0, %) = 8(7) . (22)

Evolving this wave function using the Hamiltonian H = +/—V?2 + m?2, we find that the wave function
can be written as

Integrating over the angular variables, the wave function can be recast in the form

1 & ik|Z i 2 2
U(t, &) = / k dk e*17] g itV +m® (24)

22| 7|

The resulting integral can be evaluated using the complex integration contour C' shown in Fig. 5. The
result is that, for any ¢ > 0, one finds that ¢ (¢, ) # 0 for any Z. If we insist on interpreting the wave
function (¢, Z) as the probability density of finding the particle at location  in time ¢, we find that the
probability leaks out of the light cone, thus violating causality.
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3 From classical to quantum fields

We have learned how the consistency of quantum mechanics with special relativity forces us to abandon
the single-particle interpretation of the wave function. Instead we have to consider quantum fields whose
elementary excitations are associated with particle states, as we shall see below.

In any scattering experiment, the only information available to us is the set of quantum numbers
associated with the set of free particles in the initial and final states. Ignoring for the moment other
quantum numbers like spin and flavour, one-particle states are labelled by the three-momentum p’ and
span the single-particle Hilbert space H,

p) € Ha, (plp”) = o(p — ") - (25)

The states {|p)} form a basis of ; and therefore satisfy the closure relation

[l =1, 26)

The group of spatial rotations acts unitarily on the states |[p). This means that for every rotation R €
SO(3) there is a unitary operator ¢/ (R) such that

U(R)|p) = |Rp) 27

where Rp represents the action of the rotation on the vector k, (Rp)! = R jk:j . Using a spectral decom-

position, the momentum operator P* can be written as

Pl = / d*p |p) p’ (] . (28)

With the help of Eq. (27) it is straightforward to check that the momentum operator transforms as a
vector under rotations:

UR)TPUR) = / d*p|R7'p) p' (R7'p) = R',P7 (29)

where we have taken the integration measure to be invariant under SO(3).

Since, as we argued above, we are forced to deal with multiparticle states, it is convenient to
introduce creation—annihilation operators associated with a single-particle state of momentum p),

[a(@),a (7")] = 65~ ") , [a(7), a(@")] = ' (), ' (5")] = 0, (30)

such that the state |p) is created out of the Fock space vacuum |0) (normalized such that (0|0) = 1) by
the action of a creation operator af(p),

p) = al(9)0) , a(p)0) =0 Vp'. 31)

Covariance under spatial rotations is all we need if we are interested in a non-relativistic theory.
However, in a relativistic quantum field theory we must preserve more than SO(3); in fact we need
the expressions to be covariant under the full Poincaré group ISO(1, 3) consisting of spatial rotations,
boosts and space—time translations. Therefore, in order to build the Fock space of the theory we need
two key ingredients: first an invariant normalization for the states, since we want a normalized state in
one reference frame to be normalized in any other inertial frame; and secondly a relativistic invariant
integration measure in momentum space, so the spectral decomposition of operators is covariant under
the full Poincaré group.
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Let us begin with the invariant measure. Given an invariant function f(p) of the four-momentum
pH of a particle of mass m with positive energy p? > 0, there is an integration measure which is invariant
under proper Lorentz transformations?

4
/ (ZTZ)L (2m)5(p — m?)6(6°) £(p) (32)

where (z) represents the Heaviside step function. The integration over p” can be easily done using the
é-function identity

Ve = Y e, (3)

x;=zeros of f

which in our case implies that

5(p? —m?) = i(5(])0— \/ﬁ2+m2> + $5<p0+ \/;,5‘2+m2> : (34)

2p0

The second term in the previous expression corresponds to states with negative energy and therefore does
not contribute to the integral. We can write then

d3p 1
27)3 9 52 + m2

4
[ i emit? — w06 o) = | - r(VPm) . 69

Hence, the relativistic invariant measure is given by

dp 1
/(_p with wp = VP2 +m?. (36)

27)3 2w,

Once we have an invariant measure the next step is to find an invariant normalization for the states.
We work with a basis {|p)} of eigenstates of the four-momentum operator P*:

POlp) = wplp) Pip) = 5'lp) - 37)

Since the states |p) are eigenstates of the three-momentum operator we can express them in terms of the
non-relativistic states |p) that we introduced in Eq. (25):

lp) = N(D)|p) (38)

with N (p) a normalization to be determined now. The states {|p) } form a complete basis, so they should
satisfy the Lorentz-invariant closure relation

4
| o A0 = )06 ) =1 9)

At the same time, this closure relation can be expressed, using Eq. (38), in terms of the non-relativistic
basis of states {|p)} as

4 3
/ (571; (2m)6(5 — m2) 6(°) p) (p] = / 57’;% N )15 @ (40)

Using now Eq. (28) for the non-relativistic states, expression (39) follows provided

IN®)[* = (27)° (2wy) - (41)

The factors of 27 are introduced for later convenience.
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Taking the overall phase in Eq. (38) so that N (p) is real, we define the Lorentz-invariant states |p) as

Ip) = (2m)% /20, |5 | (42)

and given the normalization of |p) we find the normalization of the relativistic states to be
(plp') = (2m)° (2)d (5 = ") (43)

Although not obvious at first sight, the previous normalization is Lorentz invariant. Although it
is not difficult to show this in general, here we consider the simpler case of 1+1 dimensions where the
two components (p°, p') of the on-shell momentum can be parametrized in terms of a single hyperbolic
angle )\ as

p° =mcosh X, p! =msinh \ . 44)
Now, the combination 2w,,§(p! — p*’) can be written as
2wpd(p' — p'') = 2mcosh A §(msinh A — msinh \') = 26(\ — \') , (45)

where we have made use of the property (33) of the J-function. Lorentz transformations in 1 + 1 di-
mensions are labelled by a parameter £ € R and act on the momentum by shifting the hyperbolic angle
A — XA+ & However, Eq. (45) is invariant under a common shift of A and )\’, so the whole expression is
obviously invariant under Lorentz transformations.

To summarize what we have done so far, we have succeeded in constructing a Lorentz-covariant
basis of states for the one-particle Hilbert space ;. The generators of the Poincaré group act on the
states |p) of the basis as

P!lp) = p"[p) UA)lp) = [A%,p") = [Ap)  with A €SO(L,3). (46)
This is compatible with the Lorentz invariance of the normalization that we checked above
(plp) = (U (M) UN)|P) = (Ap|AD') . (47)

On 'H; the operator PH admits the following spectral representation:

5 *p 1
| a2, PP - (48)

Using Eq. (47) and the fact that the measure is invariant under Lorentz transformation, one can easily
show that P* transforms covariantly under SO(1, 3):
d3p 1
(27)3 2w,

UN) ' PRUA) = / A~1p) pH (A 1p| = A*, PV . (49)

A set of covariant creation—annihilation operators can be constructed now in terms of the operators
a(p), af(p) introduced above

o) = (27) 2 \/2wpa(P), of (7) = (21) 2 /2w, (7) (50)

with the Lorentz-invariant commutation relations
[(p), (7)) = [l (p),al(5")] =0. 1)

10
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Particle states are created by acting with any number of creation operators «(p) on the Poincaré invariant
vacuum state |0) satisfying

0[0y =1, PH|0) =0, UMY =[0), VA eSO(1,3). (52)
A general one-particle state | f) € H; can then be written as

d3p 1

)= / L2 L i @al@)0) (53)

(27)3 2w,

while an n-particle state | f) € H™ can be expressed as

3.
)= [Tl 525 g [ Bl ) .l )10). (54)

That these states are Lorentz invariant can be checked by noting that from the definition of the creation—
annihilation operators follows the transformation

UN)(PIUA)T = a(Ap) (55)

and the corresponding one for creation operators.

As we have argued above, the very fact that measurements have to be localized implies the ne-
cessity of introducing quantum fields. Here we will consider the simplest case of a scalar quantum field
¢(x) satisfying the following properties:

Hermiticity.

o' (z) = ¢() . (56)

— Microcausality. Since measurements cannot interfere with each other when performed in causally
disconnected points of space—time, the commutators of two fields have to vanish outside the rela-
tive light-cone

[6(x),¢(y)] = 0, (x—y)*<0. (57)
— Translation invariance.
ePag(x)e P = gz — a). (58)
— Lorentz invariance.
UN) paU(A) = (A1) . (59)

— Linearity. To simplify matters we will also assume that ¢(x) is linear in the creation—annihilation
operators «(p), af (p),
dp 1
= | 2[5 2)a) + 97,2)0" ()] 60
¢(z) / 2r)5 20, {f(p,w)a(p) +g(p,z)al (p) (60)

Since ¢(x) should be Hermitian we are forced to take f(p, x)* = g(p, x). Moreover, ¢(x) satisfies
the equations of motion of a free scalar field, (9,0* + m?)¢(z) = 0, only if f(p, x) is a complete
basis of solutions of the Klein—Gordon equation. These considerations lead to the expansion

¢(]j) _ / d p 1 |:e—@wpt+zp-xa(p') + elwpt—lp'xa"-(m} ' (61)

(27)3 2w,

11
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Given the expansion of the scalar field in terms of the creation—annihilation operators it can be
checked that ¢(x) and ;¢ (x) satisfy the equal-time canonical commutation relations

[(ﬁ(t f)a 8t¢(t7 37)] = Z(s(f - g) . (62)

The general commutator [¢(z), ¢(y)] can also be computed to be

[¢(2), $(2)] = iA(w — ') . (63)
The function A(x — y) is given by
3 . ’ )
T B
)3 2w,
d'p 2 2\ ~ (0 p—ip-(z—2")
= /W(%)(S(P —m)e(p’)e ; (64)

where ¢(z) is defined as

1 x>0

) 65
-1 <0 (63)

e(z) =6(z) — 0(—x) = {

Using the last expression in Eq. (64) it is easy to show that iA(z — z’) vanishes when x and 2’
are space-like separated. Indeed, if (x — 2’)? < 0 there is always a reference frame in which both events
are simultaneous, and since iA(x — z’) is Lorentz-invariant we can compute it in this reference frame.
In this case ¢ = t' and the exponential in the second line of (64) does not depend on p°. Therefore, the
integration over k" gives

/ dpe(p”)s(p* — m?) = / dp" [56(190)5(190 —wp) + 56(190)5(1?0 + wp)
—00 —0o0 p D
1 1

So we have concluded that iA(z — 2') = 0 if (x — 2’)? < 0, as required by microcausality. Note that
the situation is completely different when (z — 2’)? > 0, since in this case the exponential depends on
p° and the integration over this component of the momentum does not vanish.

3.1 Canonical quantization

So far we have contented ourselves with requiring a number of properties of the quantum scalar field:
existence of asymptotic states, locality, microcausality and relativistic invariance. With only these ingre-
dients we have managed to go quite far. The above can also be obtained using canonical quantization.
One starts with a classical free scalar field theory in Hamiltonian formalism and obtains the quantum
theory by replacing Poisson brackets by commutators. Since this quantization procedure is based on the
use of the canonical formalism, which gives time a privileged role, it is important to check at the end of
the calculation that the resulting quantum theory is Lorentz invariant. In the following we shall briefly
overview the canonical quantization of the Klein—Gordon scalar field.

The starting point is the action function S[¢(x)] which, in the case of a free real scalar field of
mass m, is given by

Slp(z)] = / Az L(p,0,0) = % / d*z (0,00"¢ — m?¢?) . (67)

12
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The equations of motion are obtained, as usual, from the Euler-Lagrange equations:
oL oL
"

6.5 ~ 55 =

A
5.9 0 — (8,0" +m?)p =0. (68)

The momentum canonically conjugated to the field ¢(x) is given by

_ oL 99
m(z) = 5ad = Bt (69)

In the Hamiltonian formalism the physical system is described not in terms of the generalized coordinates
and their time derivatives, but in terms of the generalized coordinates and their canonically conjugated
momenta. This is achieved by a Legendre transformation after which the dynamics of the system is
determined by the Hamiltonian function:

H= /d% (HZ—‘? ~ .c) - %/d% [wg + (V) + mg} . (70)

The equations of motion can be written in terms of the Poisson brackets. Given two functions
Alo, 7|, B[¢, ] of the canonical variables,

Ap.r) = [dodom,  Blow) = [dBe.n). 1)
Their Poisson bracket is defined by
_ [, |0AB 0AB
{A’B}_/d x[éqﬁ on  on 5¢] ’ (72)

where % denotes the functional derivative defined as

0A 0A [ 0A }
— = - — . (73)
8¢ — ¢ M [0(0u0)
Then, the canonically conjugated fields satisfy the following equal-time Poisson brackets:
{o(t,2).6(t,2")} = {n(t,2),n(t,7")} =0,
{o(t, ), 7(t,7")} = oF 7). (74)

Canonical quantization proceeds now by replacing classical fields with operators and Poisson
brackets with commutators according to the rule

7’{’} - [7] : (75)

In the case of the scalar field, a general solution of the field equations (68) can be obtained by working
with the Fourier transform

(0,0" +m?)¢(z) =0 = (—p* +m?)d(p) =0, (76)

whose general solution can be written as’

o) = / <§w§4<2ﬂ>6<p2—m2>0<p0> [a(p)e™ P + a(p)*e??]

3In momentum space, the general solution to this equation is ¢(p) = f(p)d(p> — m?), with f(p) a completely general
function of p*. The solution in position space is obtained by inverse Fourier transform.

13
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dp 1 N\ it E Nk iwpt— T
22 o oo
)3 2wy

and we have required ¢(z) to be real. The conjugate momentum is

{ dgp SN\ —iwpt+pE S\ ¥ iwpt—p-Z
w(@) = =5 [ g [T ¢ a(g) ] (78)

Now ¢(x) and m(x) are promoted to operators by replacing the functions «(p), a(p)* by the
corresponding operators:

a(p) — a(p) a(p)* — al(p). (79)

=/

Moreover, demanding [¢(t, &), 7(t,#")] = id(& — &) forces the operators a(p), a(p)! to have the
commutation relations found in Eq. (51). Therefore they are identified as a set of creation—annihilation
operators creating states with well-defined momentum § out of the vacuum |0). In the canonical quanti-
zation formalism the concept of particle appears as a result of the quantization of a classical field.

Knowing the expressions of ¢ and 7 in terms of the creation—annihilation operators we can proceed
to evaluate the Hamiltonian operator. After a simple calculation one arrives at the expression

b= / &p [w,,af(ﬁ)a(ﬁ) + %wpa(ﬁ)} | (80)

The first term has a simple physical interpretation since af(7)a(p) is the number operator of particles
with momentum p. The second divergent term can be eliminated if we defined the normal-ordered
Hamiltonian :H: with the vacuum energy subtracted:

A = 1 — (0] H|0) = /dgpwpaT(ﬁ) a(p) . @81)

It is interesting to try to make sense of the divergent term in Eq. (80). This term has two sources
of divergence. One is associated with the delta function evaluated at zero coming from the fact that we
are working in a infinite volume. It can be regularized for large but finite volume by replacing § (6) ~V.
Hence, it is of infrared origin. The second one comes from the integration of w, at large values of
the momentum and it is then an ultraviolet divergence. The infrared divergence can be regularized by
considering the scalar field to be living in a box of finite volume V. In this case the vacuum energy is

. 1
Bvae = (0[H[0) = ) 59 - (82)
2

Written in this way the interpretation of the vacuum energy is straightforward. A free scalar quantum
field can be seen as an infinite collection of harmonic oscillators per unit volume, each one labelled by
p. Even if those oscillators are not excited, they contribute to the vacuum energy with their zero-point
energy, given by %wp. This vacuum contribution to the energy add up to infinity even if we work at
finite volume, since even then there are modes with arbitrary high momentum contributing to the sum,
p; = "ler with L; the sides of the box of volume V' and n; an integer. Hence, this divergence is of
ultraviolet origin.

3.2 The Casimir effect

The presence of a vacuum energy is not characteristic of the scalar field. It is also present in other
cases, in particular in quantum electrodynamics. Although one might be tempted to discard this infinite
contribution to the energy of the vacuum as unphysical, it has observable consequences. In 1948 Hendrik
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Fig. 6: Illustration of the Casimir effect. In Regions I and II the spectrum of modes of the momentum p; is
continuous, while in the space between the plates (Region II) it is quantized in units of %

Casimir pointed out [14] that although a formally divergent vacuum energy would not be observable, any
variation in this energy would be (see Ref. [15] for comprehensive reviews).

To show this he devised the following experiment. Consider a couple of infinite, perfectly con-
ducting plates placed parallel to each other and a distance d apart (see Fig. 6). Because the conducting
plates fix the boundary condition of the vacuum modes of the electromagnetic field, these are discrete
in between the plates (Region II), while outside there is a continuous spectrum of modes (Regions I and
III). In order to calculate the force between the plates we can take the vacuum energy of the electromag-
netic field as given by the contribution of two scalar fields corresponding to the two polarizations of the
photon. Therefore we can use the formulas derived above.

A naive calculation of the vacuum energy in this system gives a divergent result. This infinity can
be removed, however, by subtracting the vacuum energy corresponding to the situation where the plates
are removed:

E(d)reg = E(d)vac - E(Oo)vac . (83)

This subtraction cancels the contribution of the modes outside the plates. Because of the boundary
conditions imposed by the plates, the momenta of the modes perpendicular to the plates are quantized
according to p; = “F, with n a non-negative integer. If we consider that the size of the plates is much
larger than their separation d, we can take the momenta parallel to the plates pj as continuous. Forn > 0
we have two polarizations for each vacuum mode of the electromagnetic field, each contributing like

1 / p” + p? < to the vacuum energy. On the other hand, when p; = 0 the corresponding modes of the
field are effectively (2+1)-dimensional and therefore there is only one polarization. Keeping this in mind,

we can write
d? P p 1
E(d)weg = /( )H ‘pIIH_ S/ H 5
n:l

3
— 925d / dp 1 (84)

where S is the area of the plates. The factors of 2 take into account the two propagating degrees of
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freedom of the electromagnetic field, as discussed above. In order to ensure the convergence of integrals
and infinite sums we can introduce an exponential damping factor?:

S = 1o 01255 | 2 T Y

dp d*p ,L 521 p2
. Sd/ L/ ” A p‘ Pl /p”+pL (85)

where A is an ultraviolet cut-off. It is now straightforward to see that if we define the function

= o [Cwaye R (T 2 [ e
F(x)—Qﬂ/O ydye y2+<d> = (%)dee Vz (86)

the regularized vacuum energy can be written as

E(d)reg =S 0) + i F(n) — /000 dx F(x) (87)
n=1
This expression can be evaluated using the Euler—MacLaurin formula [16]:
> Fn) - | deF@) = <5 1FO) + P + 33 [F() - F'0]
n=1
— % [F"(c0) — F"(0)] + ... (88)

Since for our function F(co) = F’(0c0) = F"(00) = 0 and F'(0) = 0, the value of E(d)yeg is
determined by F"’(0). Computing this term and removing the ultraviolet cut-off, A — oo, we find the
result

S 728
E(d)reg = =—F"(0) = — . 89
Then, the force per unit area between the plates is given by
72 1
Peasimir = —5=—7 -
Cas 240 d4 (90)

The minus sign shows that the force between the plates is attractive. This is the so-called Casimir effect.
It was experimentally measured in 1958 by Sparnaay [17] and since then has been checked with better
and better precision in a variety of situations [15].

4 Theories and Lagrangians

Up to this point we have used a scalar field to illustrate our discussion of the quantization procedure.
However, nature is richer than that and it is necessary to consider other fields with more complicated be-
haviour under Lorentz transformations. Before considering other fields we pause and study the properties
of the Lorentz group.

4Actua11y, one could introduce any cut-off function f(p3 + pﬁ) going to zero fast enough as p,, p — oco. The result is
independent of the particular function used in the calculation.
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4.1 Representations of the Lorentz group

In four dimensions the Lorentz group has six generators. Three of them correspond to the generators
of the group of rotations in three dimensions SO(3). In terms of the generators .J; of the group, a finite
rotation of angle o with respect to an axis determined by a unitary vector € can be written as

RE )= J=|R| . 1)

The other three generators of the Lorentz group are associated with boosts M; along the three spatial
directions. A boost with rapidity A along a direction # is given by

B(ii,\) = e~ MM M= M| . (92)
Ms3
These six generators satisfy the algebra
i, J;] = iejrdy
[Ji, My] = deypMy, (93)
[MZ', M]] = _ieijkt]k .

The first line corresponds to the commutation relations of SO(3), while the second implies that the
generators of the boosts transform like a vector under rotations.

At first sight, to find representations of the algebra (93) might seem difficult. The problem is
greatly simplified if we consider the following combination of the generators:

1 4
JE = §(Jk + iMj,) . (94)

Using Eq. (93) it is easy to prove that the new generators J ki satisfy the algebra:

[Jiiajf] = i
[ J7] = 0. (95)

Then the Lorentz algebra (93) is actually equivalent to two copies of the algebra of SU(2) ~ SO(3).
Therefore the irreducible representations of the Lorentz group can be obtained from the well-known rep-
resentations of SU(2). Since the latter ones are labelled by the spin s = k + %, k (with k£ € N), any
representation of the Lorentz algebra can be identified by specifying (s, s_), the spins of the represen-
tations of the two copies of SU(2) that made up the algebra (93).

To get familiar with this way of labelling the representations of the Lorentz group we study some
particular examples. Let us start with the simplest one (si,s_) = (0,0). This state is a singlet under

JZ-jE and therefore also under rotations and boosts. Therefore we have a scalar.

The next interesting cases are (1,0) and (0, 1). They correspond, respectively, to a right-handed

and a left-handed Weyl spinor. Their properties will be studied in more detail below. In the case of
(%, %), since from Eq. (94) we see that J; = JZ-Jr + J;, the rules of addition of angular momentum
tell us that there are two states, one of them transforming as a vector and another one as a scalar under
three-dimensional rotations. Actually, a more detailed analysis shows that the singlet state corresponds

to the time component of a vector and the states combine to form a vector under the Lorentz group.

There are also more ‘exotic’ representations. For example we can consider the (1,0) and (0, 1)
representations corresponding, respectively, to a self-dual and an antiself-dual antisymmetric rank-two
tensor. In Table 1 we summarize the previous discussion.
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Table 1: Representations of the Lorentz group

Representation  Type of field

=
(=)

Scalar

N[ =
=

Right-handed spinor
Left-handed spinor
Vector

Self-dual antisymmetric 2-tensor

~— ~— ~ ~ ~— ~—

= O = N

Antiself-dual antisymmetric 2-tensor

To conclude our discussion of the representations of the Lorentz group, we note that under a parity
transformation the generators of SO(1,3) transform as

This means that P : J= — JF and therefore a representation (sq,sz) is transformed into (sz,s1).
This means that, for example, a vector (%7 %) is invariant under parity, whereas a left-handed Weyl
spinor (4,0) transforms into a right-handed one (0, %) and vice versa.

4.2 Spinors
Weyl spinors

Let us go back to the two spinor representations of the Lorentz group, namely (1,0) and (0, 7). These
representations can be explicitly constructed using the Pauli matrices as

1 _
=g =0 for (3,0,
1 .
J o= 0, J- =g for  (0,%). (97)

! 2

We denote by u4 a complex two-component object that transforms in the representation s+ = % of Ji.
If we define o/{ = (1, +0") we can construct the following vector quantities:

uiaiqu , u o u_ . (98)

1
)
To construct a free Lagrangian for the fields w4 we have to look for quadratic combinations of the

fields that are Lorentz scalars. If we also demand invariance under global phase rotations,

Note that since (J;)" = J; the Hermitian conjugated fields uit are in the (0, 1) and (3, 0), respectively.
ur — eug (99)

we are left with just one possibility up to a sign:
Lo = iul, (at +5- 6) us = ik o" Oy | (100)

This is the Weyl Lagrangian. In order to grasp the physical meaning of the spinors w4 we write the
equations of motion

(aoiaﬁ)ui:o. (101)
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Multiplying this equation on the left by (80 Fo- ﬁ) and applying the algebraic properties of the Pauli
matrices, we conclude that v satisfies the massless Klein—Gordon equation
00" uyr =0, (102)
whose solutions are
us () = ug (k)e *? with k0 = |K| . (103)

Plugging these solutions back into the equations of motion (101) we find

(\/2];12-&) us =0, (104)
which implies
gk
Uy - - = 1 s
|kl
u_ AL (105)
||

Since the spin operator is defined as § = %5’, the previous expressions give the chirality of the states
with wave function u4, i.e., the projection of spin along the momentum of the particle. Therefore we
conclude that u is a Weyl spinor of positive helicity A = %, while u_ has negative helicity A = —%.
This agrees with our assertion that the representation (%, 0) corresponds to a right-handed Weyl fermion
(positive chirality) whereas (0, %) is a left-handed Weyl fermion (negative chirality). For example, in
the Standard Model neutrinos are left-handed Weyl spinors and therefore transform in the representation

(0, 1) of the Lorentz group.

Nevertheless, it is possible that we were too restrictive in constructing the Weyl Lagrangian (100).
There we constructed the invariants from the vector bilinears (98) corresponding to the product repre-
sentations

(3,3)=(3,00®(0,3) and (3,3)=(0,3)®(3,0). (106)

In particular our insistence on demanding that the Lagrangian be invariant under the global symmetry
u4 — e"uq rules out the scalar term that appears in the product representations

(3,0)®(3,0) = (1,0)® (0,0), (0,3)®(0,3) =(0,1) ®(0,0) . (107)
The singlet representations correspond to the antisymmetric combinations
eapuduby, (108)

where €, is the antisymmetric symbol €150 = —€9; = 1.

At first sight it might seem that the term (108) vanishes identically because of the antisymmetry
of the e-symbol. However, we should keep in mind that the spin-statistic theorem (more on this later)
demands that fields with half-integer spin satisfy the Fermi—Dirac statistics and therefore satisfy anti-
commutation relations, whereas fields of integer spin follow the statistics of Bose—Einstein and, as a
consequence, quantization replaces Poisson brackets by commutators. This implies that the components
of the Weyl fermions w4 are anticommuting Grassmann fields:

ubul, +ulul =0. (109)
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It is important to realize that, strictly speaking, fermions (i.e., objects that satisfy the Fermi—Dirac statis-
tics) do not exist classically. The reason is that they satisfy the Pauli exclusion principle and therefore
each quantum state can be occupied, at most, by one fermion. Therefore the naive definition of the clas-
sical limit as a limit of large occupation numbers cannot be applied. Fermion fields do not really make
sense classically.

Since the combination (108) does not vanish, we can construct a new Lagrangian
+ T _p 1 a,b
EWeyl = uy ol 0yus + 5 MEabliL U + h.c. (110)

This mass term, said to be of Majorana type, is allowed if we do not worry about breaking the global
U(1) symmetry u+ — euy. This is not the case, for example, for charged chiral fermions, since
the Majorana mass violates the conservation of electric charge or any other gauge U(1) charge. In the
Standard Model, however, there is no such problem if we introduce Majorana masses for right-handed
neutrinos, since they are singlets under all Standard Model gauge groups. Such a term will, however,
break the global U(1) lepton number charge because the operator eabuﬁuﬁ’% changes the lepton number by
two units.

Dirac spinors

We have seen that parity interchanges the representations (1,0) and (0, 1), i.e., it changes right-handed
with left-handed fermions:

P:uy — ux. (I11)

An obvious way to build a parity-invariant theory is to introduce a pair of Weyl fermions v and u..
Actually, these two fields can be combined in a single four-component spinor

— (U+
Y= <u_) (112)

transforming in the reducible representation (,0) & (0, 3).
Since we now have both u and u_ simultaneously at our disposal, the equations of motion for
UL, ioiﬁﬂui = 0 can be modified, while keeping them linear, to

C
10 Oy uy = mu_ "
— i<0+ O)8u¢:m<0 1)1/). (113)

- 1
io" dyu_ = muy 0 @ 0

These equations of motion can be derived from the Lagrangian density

, a0 01
LDirac = it)" < N Uu) Ot — ! (1 0) v (114)
To simplify the notation it is useful to define the Dirac y matrices as
0 o
B -
= %) e
and the Dirac conjugate spinor 1),
D=ty =t (01
P=yi’ =y (1 0) - (116)
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Now the Lagrangian (114) can be written in the more compact form

Lpirac = ¢ (iy*0y, — m) 1. 117)
The associated equations of motion give the Dirac equation (11) with the identifications
V=8, Ai=id. (118)
In addition, the y-matrices defined in Eq. (115) satisfy the Clifford algebra

{47} =20 (119)

In D dimensions this algebra admits representations of dimension 2021, When D is even, the Dirac

fermions v transform in a reducible representation of the Lorentz group. In the case of interest, D = 4,
this is easy to prove by defining the matrix

. 1 0
7’ = =iy = <0 _1> : (120)
We see that +° anticommutes with all other v matrices. This implies that

1
4

Because of Schur’s lemma (see Appendix A) this implies that the representation of the Lorentz group
provided by o* is reducible into subspaces spanned by the eigenvectors of 7> with the same eigenvalue.
If we define the projectors Py = %(1 + ~%) these subspaces correspond to

Pm=<%)7 P¢=(£>7 (122)

which are precisely the Weyl spinors introduced before.

[v>, 0] =0, with oM = ——[y* 4] (121)

Our next task is to quantize the Dirac Lagrangian. This will be done along the lines used for the
Klein—Gordon field, starting with a general solution to the Dirac equation and introducing the corre-
sponding set of creation—annihilation operators. Therefore we start by looking for a complete basis of
solutions to the Dirac equation. In the case of the scalar field, the elements of the basis were labelled by
their four-momentum k*. Now, however, we have more degrees of freedom since we are dealing with
a spinor which means that we have to add extra labels. Looking back at Eq. (105) we can define the
helicity operator for a Dirac spinor as

1. k /1 0
A= —g - — . 123
27 17| (0 1) (123)

Hence, each element of the basis of functions is labelled by its four-momentum k£* and the corresponding
eigenvalue s of the helicity operator. For positive energy solutions we then propose the ansatz

u(k, s)e"*® s = i% , (124)
where uq(k, s) (o = 1,...,4) is a four-component spinor. Substituting in the Dirac equation we obtain
(fk —m)u(k,s) =0. (125)

In the same way, for negative energy solutions we have
v(k, s)eik'x , s = :l:% , (126)
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where v(k, s) has to satisfy
(£ +m)v(k,s)=0. (127)

Multiplying Egs. (125) and (127) on the left respectively by (k¥  m) we find that the momentum is on

the mass shell, k2 = m?2.

A detailed analysis shows that the functions u(k, s), v(k, s) satisfy the properties

uu = 2m v = —2m,
uyHu = 2k* | vty = 2k*, (128)
Z uag = (F + m)ags, Z VU = (f—m)ag -
s:i% s:i%

Then, a general solution to the Dirac equation including creation and annihilation operators can be written
as

S k1 DN o\ e—iwrttiRE 7 o\ iwgt—ih 7
w(t,x):/wﬂ Z [u(k,s) bk, s)e Wkt tik —i—v(k,s)c/fr(k,s)e wt—ik } ) (129)
s==+1

2

The operators b}, (1_5 R b (/2) create and annihilate, respectively, a spin-% particle (for example, an
electron) out of the vacuum with momentum k and helicity s. Because we are dealing with half-integer
spin fields, the spin-statistics theorem forces canonical anticommutation relations for z/b\ which means
that the creation—annihilation operators satisfy the algebra’

{ba(k, ), b5(k",s")} = 6(k —k ")0asdss |
k,s),bg(k', sy = {bl(k,s),bh(k" s} =0. (130)

In the case of dq(, s), dj(k,s) we have a set of creation-annihilation operators for the corre-
sponding antiparticles (for example, positrons). This is clear if we notice that dl(lg , ) can be seen as the
annihilation operator of a negative energy state of the Dirac equation with wave function va(lz, s). As
we saw, in the Dirac sea picture this corresponds to the creation of an antiparticle out of the vacuum (see
Fig. 2). The creation—annihilation operators for antiparticles also satisfy the fermionic algebra

{da(k, 5), d(

{da (K, s),ds(

)} = (5(];_ E /)5aﬁdss’ ,

k,s),d5(k', s
k.s).ds(k', s}y = {dl(k.s),d5(k" s")}=0. (131)
All other anticommutators between b, (k, s), bl (k, s) and d, (k, s), dl(k, s) vanish.

The Hamiltonian operator for the Dirac field is

H=>" / &k [wkbL(E, $)ba(k, s) — wyda (K, s)dl (K, 5)| . (132)

41
s==%3

At this point we realize again the necessity of quantizing the theory using anticommutators instead of
commutators. Had we used canonical commutation relations, the second term inside the integral in
Eq. (132) would give the number operator d(k, s)dq (K, s) with a minus sign in front. As a conse-
quence, the Hamiltonian would be unbounded from below and we would again be facing the instability

5To simplify notation, and since there is no risk of confusion, from now on we drop the hat (™) when indicating operators.

22



INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

of the theory already noticed in the context of relativistic quantum mechanics. However, because of the
anticommutation relations (131), the Hamiltonian (132) takes the form

=3 / P [wnbly (R, 5)ba(F.5) + wpdf, (R, 8)da (R 5) — w3 (0)] (133)
s:i%

As with the scalar field, we find a divergent vacuum energy contribution due to the zero-point energy
of the infinite number of harmonic oscillators. Unlike the Klein—Gordon field, the vacuum energy is
negative. In Section 8.2 we will see that in a certain type of theory called supersymmetric, where the
number of bosonic and fermionic degrees of freedom is the same, there is a cancellation of the vacuum
energy. The divergent contribution can be removed by the normal-order prescription

H:= Z /dBk {wkb:&(lg, $)ba (K, 8) + widl, (k, 8)do (K, s)} (134)

—41
s—iQ

Finally, let us mention that using the Dirac equation it is easy to prove that there is a conserved
four-current given by

G =yt " =0. (135)

As we shall explain further in Section 5, this current is associated with the invariance of the Dirac
Lagrangian under the global phase shift 1) — e??1). In electrodynamics the associated conserved charge

Q= e/d3xj0 (136)
is identified with the electric charge.

4.3 Gauge fields

In classical electrodynamics the basic quantities are the electric and magnetic fields E, B. These can be
expressed in terms of the scalar and vector potential (¢, A):

. . 94
E = —Vo— —
VSO at7
B = VxA. (137)

From these equations it follows that there is an ambiguity in the definition of the potentials given by the
gauge transformations

—

ww@eww@+%¢ﬁ% Alt, &) — At, &) + Ve(t, 7). (138)

—,

Classically (¢, A) are seen as only a convenient way to solve Maxwell’s equations, but without physical
relevance.

The equations of electrodynamics can be recast in a manifestly Lorentz-invariant form using the

—,

four-vector gauge potential A* = (¢, A) and the antisymmetric rank-two tensor: F,,, = 0,4, — 0, A,,.
Maxwell’s equations become

O =
oY, Fyy = 0, (139)
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where the four-current j# = (p, 7) contains the charge density and the electric current. The field strength
tensor F},,, and the Maxwell equations are invariant under gauge transformations (138), which in covari-
ant form read

Ay — AL+ Opue. (140)
Finally, the equations of motion of charged particles are given, in covariant form, by

d M
m% — ey, (141)

where e is the charge of the particle and u*(7) its four-velocity as a function of the proper time.

The physical role of the vector potential becomes manifest only in quantum mechanics. Using the
prescription of minimal substitution p — p'— e A, the Schrodinger equation describing a particle with
charge e moving in an electromagnetic field is

0,V = [—i (ﬁ - z'eff)Q + ego} v, (142)
2m
Because of the explicit dependence on the electromagnetic potentials ¢ and A, this equation seems
to change under the gauge transformations (138). This is physically acceptable only if the ambiguity
does not affect the probability density given by |W(t,Z)|2. Therefore a gauge transformation of the
electromagnetic potential should amount to a change in the (unobservable) phase of the wave function.
This is indeed what happens: the Schrodinger equation (142) is invariant under the gauge transformations
(138) provided the phase of the wave function is transformed at the same time according to

U(t, %) — e DY, 7). (143)

Aharonov—-Bohm effect

This interplay between gauge transformations and the phase of the wave function gives rise to surprising
phenomena. The first evidence of the role played by the electromagnetic potentials at the quantum level
was pointed out by Yakir Aharonov and David Bohm [18]. Let us consider a double-slit experiment
as shown in Fig. 7, where we have placed a shielded solenoid just behind the first screen. Although
the magnetic field is confined to the interior of the solenoid, the vector potentlal is non-vanishing also
outside. Of course the value of A outside the solenoid is a pure gauge, i.e., V x A = 0; however, because
the region outside the solenoid is not simply connected the vector potential cannot be gauged to zero
everywhere. If we denote by \IJEO) and \Ilgo) the wave functions for each of the two electron beams in the
absence of the solenoid, the total wave function once the magnetic field is switched on can be written as

v o= el Adz (0) o+ el E-dfqlg())
eie frl A-dZ [\I’(O zefF A. d:v\I,(O)} (144)

where I'; and I'y are two curves surrounding the solenoid from different sides, and I' is any closed loop
surrounding it. Therefore the relative phase between the two beams gets an extra term depending on the
value of the vector potential outside the solenoid as

U = exp [ze?{ A df} . (145)
I

Because of the change in the relative phase of the electron wave functions, the presence of the vector
potential becomes observable even if the electrons do not feel the magnetic field. If we perform the
double-slit experiment when the magnetic field inside the solenoid is switched off, we shall observe the
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Electron — S
source ‘

Screen

Fig. 7: Illustration of an interference experiment to show the Aharonov—Bohm effect. .S represents the solenoid
within which the magnetic field is confined.

usual interference pattern on the second screen. However, if now the magnetic field is switched on,
because of the phase (144), a change in the interference pattern will appear. This is the Aharonov—Bohm
effect.

The first question that comes up is what happens with gauge invariance. Since we said that A can
be changed by a gauge transformation it seems that the resulting interference patterns might depend on
the gauge used. Actually, the phase U in Eq. (145) is independent of the gauge although unlike other
gauge-invariant quantities like E and B, is non-local. Note that, since V x A = 0 outside the solenoid,
the value of U does not change under continuous deformations of the closed curve I', so long as it does
not cross the solenoid.

The Dirac monopole
It is very easy to check that the vacuum Maxwell equations remain invariant under the transformation

E—iB — (E —iB), 0 € [0, 27] (146)

which, in particular, for § = 7/2 interchanges the electric and the magnetic fields: E— B, B— —E.
This duality symmetry is, however, broken in the presence of electric sources. Nevertheless the Maxwell
equations can be ‘completed’ by introducing sources for the magnetic field (p,,, 7,,) in such a way that
the duality (146) is restored when supplemented by the transformation

p—ipm —(p—ipm), T ifm — (T~ iTm) . (147)

Again for # = 7 /2 the electric and magnetic sources get interchanged.

In 1931 Dirac [19] studied the possibility of finding solutions of the completed Maxwell equation
with a magnetic monopole of charge g, i.e., solutions to

V- B = g4(2). (148)
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oy

Dirac string

Fig. 8: The Dirac monopole

Away from the position of the monopole, V- B = 0 and the magnetic field can still be derived locally
from a vector potential A according to B = V x A. However, the vector potential cannot be regular
everywhere since otherwise Gauss’s law would imply that the magnetic flux threading a closed surface
around the monopole should vanish, contradicting Eq. (148).

We look now for solutions to Eq. (148). Working in spherical coordinates we find

9

BT:W, B,=By=0. (149)

Away from the position of the monopole (Z # 0), the magnetic field can be derived from the vector
potential

A¢:i_,tang7 A, =Ag=0. (150)
72
As expected we find that this vector potential is actually singular around the half-line § = 7 (see Fig. 8).
This singular line starting at the position of the monopole is called the Dirac string; its position changes
with a change of gauge but cannot be eliminated by any gauge transformation. Physically we can see
it as an infinitely thin solenoid confining a magnetic flux entering the magnetic monopole from infinity
that equals the outgoing magnetic flux from the monopole.

Since the position of the Dirac string depends on the gauge chosen it seems that the presence of
monopoles introduces an ambiguity. This would be rather strange, since Maxwell equations are gauge
invariant also in the presence of magnetic sources. The solution to this apparent riddle lies in the fact that
the Dirac string does not pose any consistency problem as long as it does not produce any physical effect,
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i.e., if its presence turns out to be undetectable. From our discussion of the Aharonov—Bohm effect we
know that the wave function of charged particles picks up a phase (145) when surrounding a region where
magnetic flux is confined (for example the solenoid in the Aharonov—Bohm experiment). As explained
above, the Dirac string associated with the monopole can be seen as a infinitely thin solenoid. Therefore
the Dirac string will be unobservable if the phase picked up by the wave function of a charged particle is
equal to one. A simple calculation shows that this happens if

e®9 =1 — eg=2mn with n € Z. (151)

Interestingly, this discussion leads to the conclusion that the presence of a single magnetic monopole
somewhere in the Universe implies for consistency the quantization of the electric charge in units of 27,
where ¢ is the magnetic charge of the monopole.

Quantization of the electromagnetic field

We now proceed to the quantization of the electromagnetic field in the absence of sources p = 0, 7= 0.
In this case the Maxwell equations (139) can be derived from the Lagrangian density
1 v 1= 2 D2
EMaxweH = _ZF/LVFM = 5 (E - B > . (152)

Although in general the procedure to quantize the Maxwell Lagrangian is not very different from the
one used for the Klein—Gordon or the Dirac field, here we need to deal with a new ingredient: gauge
invariance. Unlike the cases studied so far, here the photon field A, is not unambiguously defined
because the action and the equations of motion are insensitive to the gauge transformations 4, — A, +
Oue. A first consequence of this symmetry is that the theory has fewer physical degrees of freedom than
one would expect from the fact that we are dealing with a vector field.

The way to tackle the problem of gauge invariance is to fix the freedom in choosing the electro-
magnetic potential before quantization. This can be done in several ways, for example by imposing the
Lorentz gauge fixing condition

D A" =0 (153)

Note that this condition does not fix completely the gauge freedom since Eq. (153) is left invariant by
gauge transformations satisfying 0,,0"e = 0. One of the advantages, however, of the Lorentz gauge
is that it is covariant and therefore does not pose any danger to the Lorentz invariance of the quantum
theory. Besides, applying it to the Maxwell equation 9, F'*" = 0 one finds

0= 0,0" A" — 8, (9, A") = 9,01 A” | (154)

which means that since A, satisfies the massless Klein—-Gordon equation, the photon, the quantum of the
electromagnetic field, has zero mass.

Once gauge invariance is fixed, A, is expanded in a complete basis of solutions to (154) and the
canonical commutation relations are imposed:

3k 1 o o e, o o Le e
=) /——E (k,)\)a(k,)\)e_”k““k'x+eu(k,)\)*aT(k,)\)e”k“_’k'x (155)
A==%1

where A = +1 represent the helicity of the photon, and e u(E> A) are solutions to the equations of motion
with well-defined momentum and helicity. Because of Eq. (153) the polarization vectors have to be
orthogonal to £,

kle,(k,\) = kPe (k)" =0. (156)

27



L. ALVAREZ-GAUME AND M.A VAZQUEZ-M0Z0

The canonical commutation relations imply that

) ,,)\,)] = ’L(S(E k)(S)\)\/
[k, A),a(k", \)) = [@'(k,\),a' (k" )] = (157)

Therefore a(k, \), @' (k, A) form a set of creation—annihilation operators for photons with momentum &
and helicity .

Behind the simple construction presented above there are a number of subleties related to gauge
invariance. In particular the gauge freedom seems to introduce states in the Hilbert space with negative
probability. A careful analysis shows that when gauge invariance is properly handled these spurious states
decouple from physical states and can be eliminated. The details can be found in standard textbooks [1—
9].

Coupling gauge fields to matter

Once we know how to quantize the electromagnetic field we consider theories containing electrically
charged particles, for example electrons. To couple the Dirac Lagrangian to electromagnetism we use
as guiding principle what we learned about the Schrodinger equation for a charged particle. There we
saw that the gauge ambiguity of the electromagnetic potential is compensated for by a U(1) phase shift
in the wave function. In the case of the Dirac equation we know that the Lagrangian is invariant under
1) — €'““1), with € a constant. However, this invariance is broken as soon as one identifies ¢ with the
gauge transformation parameter of the electromagnetic field which depends on the position.

Looking at the Dirac Lagrangian (117) it is easy to see that in order to promote the global U(1)
symmetry into a local one, ©) — e“¢¢(®)), it suffices to replace the ordinary derivative 0,, with a covariant
one D, satisfying

DM [eies(x)w} _ ezez—: Mw (158)
This covariant derivative can be constructed in terms of the gauge potential A, as
D, =0, —ieA, . (159)

The Lagrangian of a spin—% field coupled to electromagnetism is written as

1 — .
LqeD = _ZF‘“’FW +PEp —m)y, (160)
invariant under the gauge transformations
P — eles(@ 1/) , AN — AN + 8Hs(x) . (161)

Unlike the theories we have seen so far, the Lagrangian (160) describes an interacting theory. By
plugging Eq. (159) into the Lagrangian we find the interaction between fermions and photons to be

LI = —eA, PyH . (162)

As advertised above, in the Dirac theory the electric current four-vector is given by j# = eipyH1).

The quantization of interacting field theories poses new problems that we did not meet in the case
of the free theories. In particular, in most cases it is not possible to solve the theory exactly. When this
happens the physical observables have to be computed in perturbation theory in powers of the coupling
constant. An added problem appears when computing quantum corrections to the classical result, since
in that case the computation of observables is plagued with infinities that should be taken care of. We
shall return to this problem in Section 7.
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Non-Abelian gauge theories

Quantum electrodynamics (QED) is the simplest example of a gauge theory coupled to matter based
on the Abelian gauge symmetry of local U(1) phase rotations. However, it is possible also to construct
gauge theories based on non-Abelian groups. In fact, our knowledge of the strong and weak interactions
is based on the use of such non-Abelian generalizations of QED.

Let us consider a gauge group G with generators 7%, a = 1, ..., dim G satisfying the Lie algebra®
[T%, T = ifobere (163)

A gauge field taking values on the Lie algebra of G can be introduced, A, = AT, which transforms
under a gauge transformation as

1 L] a
A, — EUauU_l +UA U, U= X' @7 (164)

where g is the coupling constant. The associated field strength is defined as
Ff, = 0,A% — 0,A% — gf* AL AC. (165)

Note that this definition of F}j, reduces to the one used in QED in the Abelian case when f abe — (). In
general, however, unlike the case of QED the field strength is not gauge invariant. In terms of F,,, =
F, T it transforms as

F,, — UF,U". (166)

The coupling of matter to a non-Abelian gauge field is done by introducing again a covariant
derivative. For a field in a representation of G,

®—UD, (167)
the covariant derivative is given by
D,® =0, —igA,T*® . (168)

With the help of this we can write a generic Lagrangian for a non-Abelian gauge field coupled to scalars
¢ and spinors v as

L= ‘EFSVF“”“ + i P% + DD — ) My (¢) + s Ma(¢)] & — V() . (169)

In order to keep the theory renormalizable we have to restrict M;(¢) and Ms(¢) to be at most linear in
¢, whereas V' (¢) have to be at most of quartic order. The Lagrangian of the Standard Model is of the
form (169).

4.4 Understanding gauge symmetry

In classical mechanics the use of the Hamiltonian formalism starts with the replacement of generalized
velocities by momenta:

oL ) )
Pi = 5a = 4 = 4i(q,p) . (170)

Some basic facts about Lie groups are summarized in Appendix A.
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Most of the time there is no problem in inverting the relations p; = p;(q, ¢). However, in some systems
these relations might not be invertible and result in a number of constraints of the type

fa(Q7p):07 a:17"'7N1' (171)

These systems are called degenerate or constrained [20,21].

The presence of constraints of the type (171) makes the formulation of the Hamiltonian formalism
more involved. The first problem is related to the ambiguity in defining the Hamiltonian, since the
addition of any linear combination of the constraints does not modify its value. Secondly, one has to
make sure that the constraints are consistent with the time evolution in the system. In the language of
Poisson brackets this means that further constraints have to be imposed in the form

{fas, H} = 0. 172)

Following Ref. [20] we use the symbol ~ to indicate a ‘weak’ equality that holds when the constraints
fa(q,p) = 0 are satisfied. Note, however, that since the computation of the Poisson brackets involves
derivatives, the constraints can be used only after the bracket has been computed. In principle the condi-
tions (172) can give rise to a new set of constraints g;(q,p) = 0, b= 1,..., No. Again these constraints
have to be consistent with time evolution and we have to repeat the procedure. Eventually this finishes
when a set of constraints is found that does not require any further constraint to be preserved by the time
evolution’.

Once we find all the constraints of a degenerate system we consider the ‘first-class’ constraints
¢a(q,p) =0,a=1,..., M, which are those whose Poisson bracket vanishes weakly:

{¢au ¢b} = Cabc¢c ~0. (173)

The constraints that do not satisfy this condition, called ‘second-class’ constraints, can be eliminated by
modifying the Poisson bracket [20]. Then the total Hamiltonian of the theory is defined by

M
Hp =pigi— L+ Y A(t)oa - (174)

a=1

What has all this to do with gauge invariance? The interesting answer is that for a singular system
the first-class constraints ¢, generate gauge transformations. Indeed, because {¢,, dp} ~ 0 ~ {¢4, H}
the transformations

M
g — G+ cat){ti ba},

M
pi — Pit+ Y cat){pi;da} (175)

leave invariant the state of the system. This ambiguity in the description of the system in terms of
the generalized coordinates and momenta can be traced back to the equations of motion in Lagrangian
language. Writing them in the form

%L . *L . 0L

4 =9+, 176
9600, = " 0404, " g, (170

"In principle it is also possible that the procedure finishes because some kind of inconsistent identity is found. In this case
the system itself is inconsistent, as is the case with the Lagrangian L(q, ¢) = g.
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we find that in order to determine the accelerations in terms of the positions and velocities the matrix
% has to be invertible. However, the existence of constraints (171) precisely implies that the deter-
minant of this matrix vanishes and therefore the time evolution is not uniquely determined in terms of
the initial conditions.

Let us apply this to Maxwell electrodynamics described by the Lagrangian

1
L= -5 /d3 E, FH . (177)

The generalized momentum conjugate to A, is given by

oL
s ——
7 5O AL) F*F (178)

In particular, for the time component we find the constraint 7° = 0. The Hamiltonian is given by
1/ — O
H = /d?’x [TH O A, — L] = /d% [5 <E2 + B2> + 108040 + A0V - E| (179)

Requiring the consistency of the constraint 7° = 0 we find a second constraint
(n’ H} ~ 0yn° +V - E =0. (180)

Together with the first constraint 7 = 0 this one implies Gauss’s law V - E = 0. These two constraints
have vanishing Poisson brackets and therefore they are first class. Therefore the total Hamiltonian is
given by

Hr=H+ /d?’x [Al(:c)wo @)V B, (181)

where we have absorbed A in the definition of the arbitrary functions A1 (x) and A2(x). Actually, we can
fix part of the ambiguity by taking A\; = 0. Note that, because A has been included in the multipliers,
fixing A1 amounts to fixing the value of Ay and therefore it is equivalent to taking a temporal gauge. In
this case the Hamiltonian is

1/= -, S
Hp = /d% [5 (EQ + BQ) +e(z)V - E} (182)
and we are left just with Gauss’s law as the only constraint. Using the canonical commutation relations
{A;(t,2),Ej(t,2")} = 6;;6( — &) (183)

we find that the remaining gauge transformations are generated by Gauss’s law
6A; = {A;, | d®2' eV - E} = 9, (184)

while leaving Ay invariant, so for consistency with the general gauge transformations the function ()
should be independent of time. Note that the constraint V- E = 0 can be implemented by demanding
V - A = 0, which reduces the three degrees of freedom of A to the two physical degrees of freedom of
the photon.

So much for the classical analysis. In the quantum theory the constraint V- E = 0 has to be
imposed on the physical states |phys). This is done by defining the following unitary operator on the
Hilbert space:

U(e) = exp <i/d3x () V - E) . (185)
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© (o)

(a) (b)

Fig. 9: Compactification of the real line (a) into the circumference S* (b) by adding the point at infinity

By definition, physical states should not change when a gauge transformation is performed. This is
implemented by requiring that the operator U () act trivially on a physical state:

U(e)|phys) = |phys) = (V- E)|phys) = 0. (186)

In the presence of charge density p, the condition that physical states are annihilated by Gauss’s law
changes to (V - E — p)|phys) = 0.

The role of gauge transformations in the quantum theory is very illuminating in understanding
the real role of gauge invariance [22]. As we have learned, the existence of a gauge symmetry in a
theory reflects a degree of redundancy in the description of physical states in terms of the degrees of
freedom appearing in the Lagrangian. In classical mechanics, for example, the state of a system is usually
determined by the value of the canonical coordinates (q;, p;). We know, however, that this is not the case
for constrained Hamiltonian systems where the transformations generated by the first-class constraints
change the value of ¢; and p; without changing the physical state. In the case of Maxwell theory, for every
physical configuration determined by the gauge invariant quantities E, B there is an infinite number of
possible values of the vector potential that are related by gauge transformations 6 A, = 0,¢.

In the quantum theory this means that the Hilbert space of physical states is defined as the result of
identifying all states related by the operator I/ (¢) with any gauge function €(x) into a single physical state
|phys). In other words, each physical state corresponds to a whole orbit of states that are transformed
among themselves by gauge transformations.

This explains the necessity of gauge fixing. In order to avoid the redundancy in the states, a further
condition can be given that selects one single state on each orbit. In the case of Maxwell electrodynamics
the conditions Ay = 0, V - A = 0 select a value of the gauge potential among all possible ones giving
the same value for the electric and magnetic fields.

Since states have to be identified by gauge transformations, the topology of the gauge group plays
an important physical role. To illustrate the point let us first deal with a toy model of a U(1) gauge theory
in 1+1 dimensions. Later we shall be more general. In the Hamiltonian formalism gauge transformations
g(Z) are functions defined on R with values on the gauge group U(1):

g:R—U(1). (187)

We assume that g(z) is regular at infinity. In this case we can add to the real line R the point at infinity
to compactify it into the circumference S' (see Fig. 9). Once this is done, g(z) are functions defined on
St with values on U (1) = S! that can be parametrized as

g:8' —UQ), g(z) = @) | (188)

with z € [0, 27].
Because S! does have a non-trivial topology, g() can be divided into topological sectors. These
sectors are labelled by an integer number n € Z and are defined by

a2r) = a(0)+21n . (189)
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Geometrically n gives the number of times that the spatial S* winds around the S' defining the gauge
group U(1). This winding number can be written in a more sophisticated way as

74 g(x) " dg(z) = 2mn | (190)
Sl

where the integral is along the spatial S'.

In R? a similar situation happens with the gauge group® SU(2). If we demand ¢() € SU(2) to be
regular at infinity |#| — oo we can compactify R? into a three-dimensional sphere S®, exactly as we did
in 1+1 dimensions. On the other hand, the function g(Z) can be written as

9(%) = a(x)1 +d(z) - & (191)

and the conditions g(z)tg(z) = 1, detg = 1 imply that (a®)? 4+ @2 = 1. Therefore SU(2) is a three-
dimensional sphere and g(z) defines a function

g:58% — 53, (192)

As was the case in 1+1 dimensions, here the gauge transformations g(x) are also divided into topological
sectors labelled this time by the winding number

1
n =
2472

/53 Bz eiiTr [(97'0i9) (970,9) (97'0i9)] € Z. (193)

In the two cases analysed we find that because of the non-trivial topology of the gauge group
manifold the gauge transformations are divided into different sectors labelled by an integer n. Gauge
transformations with different values of n cannot be smoothly deformed into each other. The sector with
n = 0 corresponds to those gauge transformations that can be connected with the identity.

Now we can be a bit more formal. Let us consider a gauge theory in 3+1 dimensions with gauge
group G and let us denote by G the set of all gauge transformations: G = {g : S® — G}. At the same
time we define Gy as the set of transformations in G that can be smoothly deformed into the identity. Our
theory will have topological sectors if

G/Go#1. (194)

In the case of the electromagnetism we have seen that Gauss’s law annihilates physical states. For a
non-Abelian theory the analysis is similar and leads to the condition

U(go)Iphys) = exp [ [#ox@v- E} [phys) = [phys) . (195)

where go(Z) = eX*(@T* is in the connected component of the identity Go. The important point here is

that only the elements of Gy can be written as exponentials of the infinitesimal generators. Since these
generators annihilate the physical states this implies that I/ (go)|phys) = |phys) only when go € Go.

What happens then with the other topological sectors? If g € G/G there is still a unitary operator
U(g) that realizes gauge transformations on the Hilbert space of the theory. However, since g is not in
the connected component of the identity, it cannot be written as the exponential of Gauss’s law. Still
gauge invariance is preserved if U/ (g) only changes the overall global phase of the physical states. For
example, if g; is a gauge transformation with winding number n = 1

U(g1)|phys) = ¢”|phys) . (196)

8 Although we present for simplicity only the case of SU(2), similar arguments apply to any simple group.
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It is easy to convince oneself that all transformations with winding number n = 1 have the same value
of # modulo 27. This can be shown by noticing that if g() has winding number n = 1 then g(¥) ! has
opposite winding number n = —1. Since the winding number is additive, given two transformations g1,
g2 with winding number 1, g;° ! g5 has winding number n = 0. This implies that

Iphys) = U(g7 L g2)|phys) = U(g1) U(g2)|phys) = €@~ |phys) (197)

and we conclude that 6; = 62 mod 27. Once we know this, it is straightforward to conclude that a gauge
transformation g,, (#) with winding number n has the following action on physical states:

U(gn)|phys) = ¢ |phys) , ner. (198)

To find a physical interpretation of this result we are going to look for similar things in other
physical situations. One of them is borrowed from condensed-matter physics and refers to the quantum
states of electrons in the periodic potential produced by the ion lattice in a solid. For simplicity we
discuss the one-dimensional case where the minima of the potential are separated by a distance a. When
the barrier between consecutive degenerate vacua is high enough we can neglect tunnelling between
different vacua and consider the ground state |na) of the potential near the minimum located at x = na
(n € Z) as possible vacua of the theory. This vacuum state is, however, not invariant under lattice
translations:

¢P|na) = |(n+ 1)a) . (199)

However, it is possible to define a new vacuum state

k) => e *|na), (200)

ne”L
which under ¢*? transforms by a global phase:

eiaﬁ‘k> — Z efikna|(n + 1)a> — eika|k> ) (201)
nez

This ground state is labelled by the momentum k and corresponds to the Bloch wave function.

This looks very much the same as what we found for non-Abelian gauge theories. The vacuum
state labelled by 6 plays a role similar to the Bloch wave function for the periodic potential with the
identification of § with the momentum k. To make this analogy more precise let us write the Hamiltonian
for non-Abelian gauge theories

H= %/de (Fa+ Fot Ba- Ba) = %/de (Ba- B+ Ba-Ba) (202)
where we have used the expression of the canonical momenta 7 and we assume that the Gauss’s law
constraint is satisfied. Looking at this Hamiltonian we can interpret the first term within the brackets as
the kinetic energy T' = %ﬁa -7 and the second term as the potential energy V' = %Ea -B,. Since V>0
we can identify the vacua of the theory as those A for which V = 0, modulo gauge transformations. This
happens wherever Aisa pure gauge. However, since we know that the gauge transformations are labelled
by the winding number we can have an infinite number of vacua which cannot be continuously connected
with one another using trivial gauge transformations. Taking a representative gauge transformation g, (%)
in the sector with winding number n, these vacua will be associated with the gauge potentials

N 1 = .
A:@%m)w%@% (203)
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modulo topologically trivial gauge transformations. Therefore the theory is characterized by an infinite
number of vacua |n) labelled by the winding number. These vacua are not gauge invariant. Indeed, a
gauge transformation with n = 1 will change the winding number of the vacua in one unit:

U(gr)In) =|n+1). (204)

Nevertheless a gauge invariant vacuum can be defined as

10) =) e n), with 6 € R (205)
ne”
satisfying
U(g1)]0) = e?|6) . (206)

We have concluded that the non-trivial topology of the gauge group has very important physical
consequences for the quantum theory. In particular it implies an ambiguity in the definition of the vac-
uum. Actually, this can also be seen in a Lagrangian analysis. In constructing the Lagrangian for the
non-Abelian version of Maxwell theory we consider only the term F';j, F**“. However, this is not the
only Lorentz- and gauge-invariant term that contains just two derivatives. We can write the more general
Lagrangian

1 v 4 oy
L = _ZF:”FM @+ 39,2 F e (207)
where ﬁl‘}y is the dual of the field strength defined by
na 1 oA
Fl = S€warF7 (208)

2

The extra term in Eq. (207), proportional to E®. B4 is actually a total derivative and does not change the
equations of motion or the quantum perturbation theory. Nevertheless it has several important physical
consequences. One of them is that it violates both parity P and the combination of charge conjugation
and parity C'P. This means that since strong interactions are described by a non-Abelian gauge theory
with group SU(3) there is an extra source of C'P violation which puts a strong bound on the value of 6.
One of the consequences of a term like (207) in the QCD Lagrangian is a non-vanishing electric dipole
moment for the neutron [23]. The fact that this is not observed imposes a very strong bound on the value
of the #-parameter,

0] < 1077 (209)

From a theoretical point of view it is still to be fully understood why @ either vanishes or has a very small
value.

Finally, the f-vacuum structure of gauge theories that we found in the Hamiltonian formalism can
also be obtained using path integral techniques from the Lagrangian (207). The second term in Eq. (207)
gives then a contribution that depends on the winding number of the corresponding gauge configuration.

5 Symmetries
5.1 Noether’s theorem

In classical mechanics and classical field theory there is a basic result that relates symmetries and con-
served charges. This is called Noether’s theorem and states that for each continuous symmetry of the
system there is conserved current. In its simplest version in classical mechanics it can be easily proved.
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Let us consider a Lagrangian L(g;, ¢;) which is invariant under a transformation ¢;(t) — ¢/(t, €) labelled
by a parameter ¢. This means that L(q’,¢’') = L(q, ¢) without using the equations of motion®. If ¢ < 1
we can consider an infinitesimal variation of the coordinates d.¢;(t) and the invariance of the Lagrangian
implies

oL oL oL d oL oL
= L - O = — - _ v == _— e —— . 21
0 56 (q17 QI) aQi 56(]1 + 8@[1 56% |:an dt aQZ:| 5 + dt (a . 56(]1) ( 0)

When d.q; is applied on a solution to the equations of motion the term inside the square brackets vanishes
and we conclude that there is a conserved quantity

8L

Q=0 with Q=—-"6.. (211)
04;

Note that in this derivation it is crucial that the symmetry depend on a continuous parameter since other-
wise the infinitesimal variation of the Lagrangian in Eq. (210) does not make sense.

In classical field theory a similar result holds. Let us consider for simplicity a theory of a single
field ¢(x). We say that the variations J.¢ depending on a continuous parameter € are a symmetry of the
theory if, without using the equations of motion, the Lagrangian density changes by

5L =08,K". (212)

If this happens then the action remains invariant and so do the equations of motion. Working out now the
variation of £ under d.¢ we find

oL oL oL oL
0, K" = 8(56 B 8 B 0, | ——— 0cd .
K = 56,8 o+ 5 <z> oo = <a<au¢>> ¢> L% “<8<au¢>)} ¢ G

If ¢(z) is a solution to the equations of motion the last terms disappears, and we find that there is a
conserved current
oL

o, JH =0 with JH=_—-06.0—KF. 214
g 50,5)" -

Actually a conserved current implies the existence of a charge

Q= /d% JO(t, &) (215)

which is conserved

dQ _

T d3x 0y JO(t, %) = —/d%aiﬂ(t,f) =0, (216)

provided the fields vanish at infinity fast enough. Moreover, the conserved charge () is a Lorentz scalar.
After canonical quantization the charge () defined by Eq. (215) is promoted to an operator that generates
the symmetry on the fields

6¢ = (¢, Q] . (217)

As an example we can consider a scalar field ¢ () which under a coordinate transformation x — z’
changes as ¢/ (') = ¢(x). In particular, performing a space—time translation 2’ = z* + a* we have

¢ (z) — ¢(z) = —aOup + O(a?) = ¢ =—a 0,0 . (218)

The following result can also be derived in more general situations where the Lagrangian changes by a total time derivative.
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Since the Lagrangian density is also a scalar quantity, it transforms under translations as
0L = —ad"0,L . (219)

Therefore the corresponding conserved charge is

oL

JH = — v ML = —a,TH 220
8(8qu5)a Ld + a ay (220)

where we introduced the energy—momentum tensor

oL
m = d"p—nt"L . (221)
9(0u9)

We find that associated with the invariance of the theory with respect to space—time translations there
are four conserved currents defined by T+ with v = 0, ..., 3, each one associated with the translation

along a space-time direction. These four currents form a rank-two tensor under Lorentz transformations
satisfying

8,T" = 0. (222)

The associated conserved charges are given by
PY = / &z T (223)

and correspond to the total energy—momentum content of the field configuration. Therefore the energy
density of the field is given by 7°° while 7% is the momentum density. In the quantum theory the P*
are the generators of space—time translations.

Another example of a symmetry related to a physically relevant conserved charge is the global
phase invariance of the Dirac Lagrangian (117), v — 4. For small 6 this corresponds to variations
dgtp = 101, 991 = —i61) which by Noether’s theorem result in the conserved charge

G =yt duj* =0, (224)

thus implying the existence of a conserved charge
Q= / d*apy ) = / d*ayly. (225)

In physics there are several instances of global U(1) symmetries that act as phase shifts on spinors.
This is the case, for example, for baryon and lepton number conservation in the Standard Model. A
more familiar case is the U(1) local symmetry associated with electromagnetism. Note that although in
this case we are dealing with a local symmetry, § — e«a(x), the invariance of the Lagrangian holds in
particular for global transformations and therefore there is a conserved current j* = ey»y*4. In Eq. (162)
we saw that the spinor is coupled to the photon field precisely through this current. Its time component
is the electric charge density p, while the spatial components are the current density vector 7.

This analysis can be carried over also to non-Abelian unitary global symmetries acting as
Vi — Ui U'U =1 (226)

and leaving invariant the Dirac Lagrangian when we have several fermions. If we write the matrix U in
terms of the Hermitian group generators 7% as

U = exp (iagT) , (Tt =17, (227)
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we find the conserved current
gre = EiTiC}Vu%‘v auju =U. (228)
This is the case, for example, for the approximate flavour symmetries in hadron physics. The simplest

example is the isospin symmetry that mixes the quarks « and d:

u u
<d> — M <d> , M e SUQ2) . (229)

Since the proton is a bound state of two u quarks and one d quark while the neutron is made out of
one u quark and two d quarks, this isospin symmetry reduces at low energies to the well-known isospin
transformations of nuclear physics that mix protons and neutrons.

5.2 Symmetries in the quantum theory

We have seen that in canonical quantization the conserved charges (Q associated with symmetries by
Noether’s theorem are operators implementing the symmetry at the quantum level. Since the charges are
conserved they must commute with the Hamiltonian:

[Q*, H] =0. (230)
There are several possibilities in the quantum mechanical realization of a symmetry.

Wigner-Weyl realization

In this case the ground state of the theory |0) is invariant under the symmetry. Since the symmetry is
generated by Q¢ this means that

U)]0) = e Q|0) =10) = Q0)=0. (231)

At the same time the fields of the theory have to transform according to some irreducible representation
of the group generated by the Q. From Eq. (217) it is easy to prove that

U(a)pild (o)™ = Usj(@); (232)

where U;;(«) is an element of the representation in which the field ¢; transforms. If we consider now
the quantum state associated with the operator ¢;,

i) = ¢il0) (233)

we find that because of the invariance of the vacuum (231) the states |¢) transform in the same represen-
tation as ¢;:

U(a)i) = U(a)pld (a)~'U()|0) = Uij(e)¢;10) = Us(a)lj) - (234)

Therefore the spectrum of the theory is classified in multiplets of the symmetry group. In addition, since
[H,U(c)] = 0, all states in the same multiplet have the same energy. If we consider one-particle states,
then going to the rest frame we conclude that all states in the same multiplet have exactly the same mass.
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Nambu-Goldstone realization

In our previous discussion the result that the spectrum of the theory is classified according to multiplets
of the symmetry group depended crucially on the invariance of the ground state. However, this condition
is not mandatory and one can relax it to consider theories where the vacuum state is not left invariant by
the symmetry

@0y £[0) = Qo) #0. (235)

In this case it is also said that the symmetry is spontaneously broken by the vacuum.

To illustrate the consequences of Eq. (235) we consider the example of a number of scalar fields
¢’ (i =1,...,N) whose dynamics is governed by the Lagrangian

1 . .
L=350up"0"" = Vip), (236)
where we assume that V' (¢) is bounded from below. This theory is globally invariant under the transfor-
mations

Sp' = e (T)%¢7 (237)

with 7% a =1,..., L N(IV — 1) the generators of the group SO(NV).

To analyse the structure of vacua of the theory we construct the Hamiltonian
T R
H= | dx 3T +§V<p Vo' +V(p) (238)
and look for the minimum of
1o o =
V(p) = / d*x bvd V' + V(cp)] : (239)

Since we are interested in finding constant field configurations, ﬁw =0to preserve translational invari-
ance, the vacua of the potential V() coincide with the vacua of V(). Therefore the minima of the

potential correspond to the vacuum expectation values'°:

ov

5o 0 (240)

p'=(¢")

We divide the generators 7' of SO(/V) into two groups. First are those denoted by H* (o =
1,..., h) that satisfy

(H*)5 (") =0. (241)

This means that the vacuum configuration {?) is left invariant by the transformation generated by H <.
For this reason we call them unbroken generators. Note that the commutator of two unbroken generators
also annihilates the vacuum expectation value, [H®, H”];;(¢?) = 0. Therefore the generators {H“}
form a subalgebra of the algebra of the generators of SO(N). The subgroup of the symmetry group
generated by them is realized a la Wigner—Weyl.

The remaining generators K4, with A = 1,..., %N (N — 1) — h, by definition do not preserve
the vacuum expectation value of the field:

(K4)i(g?) #0. (242)

"%For simplicity we consider that the minima of V'(¢) occur at zero potential.
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These are called the broken generators. Next we prove a very important result concerning the broken
generators known as the Goldstone theorem: for each generator broken by the vacuum expectation value
there is a massless excitation.

The mass matrix of the excitations around the vacuum () is determined by the quadratic part of
the potential. Since we assumed that V' ({¢)) = 0 and we are expanding around a minimum, the first
term in the expansion of the potential V() around the vacuum expectation values is given by

a4
Op' O] p=(¥)

V(e) (@ = (NP — (@) + O (¢ — (9))?] (243)

and the mass matrix is

M2 | . (244)
T 00 p=(¥)

In order to avoid a cumbersome notation we do not show explicitly the dependence of the mass matrix

on the vacuum expectation values (¢?).

To extract some information about the possible zero modes of the mass matrix, we write down the
conditions that follow from the invariance of the potential under 6¢* = €*(T)j¢’. At first order in €

SV(p) =e"2—=(T")i¢) =0. (245)

O’

Differentiating this expression with respect to ©* we arrive at

o?V avi i OV ;
— ! (T"),. =0. 246
Now we evaluate this expression in the vacuum ¢’ = (*). Then the derivative in the second term cancels
while the second derivative in the first one gives the mass matrix. Hence we find

MZ(T*)5 (") = 0. (247)

Now we can write this expression for both broken and unbroken generators. For the unbroken ones, since
(H)5(¢’) = 0, we find a trivial identity 0 = 0. On the other hand for the broken generators we have

M (KN ip) =0. (248)

Since (K A);(W) # 0 this equation implies that the mass matrix has as many zero modes as broken
generators. Therefore we have proven Goldstone’s theorem: associated with each broken symmetry
there is a massless mode in the theory. Here we have presented a classical proof of the theorem. In the
quantum theory the proof follows the same lines as the one presented here but one has to consider the
effective action containing the effects of the quantum corrections to the classical Lagrangian.

As an example to illustrate this theorem, we consider a SO(3) invariant scalar field theory with a
‘Mexican hat’ potential

o A 2
V(@)= (@"—a)" . (249)
The vacua of the theory correspond to the configurations satisfying (3) 2 = a2. In field space this equa-
tion describes a two-dimensional sphere and each solution is just a point in that sphere. Geometrically
it is easy to visualize that a given vacuum field configuration, i.e., a point in the sphere, is preserved
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by SO(2) rotations around the axis of the sphere that passes through that point. Hence the vacuum
expectation value of the scalar field breaks the symmetry according to

(F): SO(3) — SO(2). (250)

Since SO(3) has three generators and SO(2) only one, we see that two generators are broken and there-
fore there are two massless Goldstone bosons. Physically these massless modes can be thought of as

corresponding to excitations along the surface of the sphere () 2 = a?.

Once a minimum of the potential has been chosen we can proceed to quantize the excitations
around it. Since the vacuum leaves invariant only a SO(2) subgroup of the original SO(3) symmetry
group, it seems that the fact that we are expanding around a particular vacuum expectation value of the
scalar field has resulted in a loss of symmetry. This is, however, not the case. The full quantum theory
is symmetric under the whole symmetry group SO(3). This is reflected in the fact that the physical
properties of the theory do not depend on the particular point of the sphere () 2 = a? that we have
chosen. Different vacua are related by the full SO(3) symmetry and therefore should give the same
physics.

It is very important to realize that given a theory with a vacuum determined by (); all other
possible vacua of the theory are inaccessible in the infinite volume limit. This means that two vacuum
states |01), |02) corresponding to different vacuum expectation values of the scalar field are orthogonal
(01]02) = 0 and cannot be connected by any local observable ®(z), (0;|®(x)|02) = 0. Heuristically
this can be understood by noticing that in the infinite volume limit switching from one vacuum into
another one requires changing the vacuum expectation value of the field everywhere in space at the same
time, something that cannot be done by any local operator. Note that this is radically different from our
expectations based on the quantum mechanics of a system with a finite number of degrees of freedom.

In high-energy physics the typical example of a Goldstone boson is the pion, associated with the
spontaneous breaking of the global chiral isospin SU(2); x SU(2), symmetry. This symmetry acts
independently in the left- and right-handed spinors as

<“’L=R) — Mg <“’L’R> , M reSUQ2)LR. (251)
dr.r " \drL,r ’ ’

Presumably since the quarks are confined at low energies this symmetry is spontaneously broken down
to the diagonal SU(2) acting in the same way on the left- and right-handed components of the spinors.
Associated with this symmetry breaking there is a Goldstone mode which is identified as the pion. Note,
nevertheless, that the SU(2);, xSU(2)r would be an exact global symmetry of the QCD Lagrangian only
in the limit when the masses of the quarks are zero, m,,mg — 0. Since these quarks have non-zero
masses the chiral symmetry is only approximate and as a consequence the corresponding Goldstone
boson is not massless. That is why pions have masses, although they are the lightest particle among the
hadrons.

Symmetry breaking also appears in many places in condensed matter [24]. For example, when a
solid crystallizes from a liquid the translational invariance that is present in the liquid phase is broken to
a discrete group of translations that represent the crystal lattice. This symmetry breaking has associated
Goldstone bosons which are identified with phonons which are the quantum excitation modes of the
vibrational degrees of freedom of the lattice.

The Higgs mechanism

Gauge symmetry seems to prevent a vector field from having a mass. This is obvious once we realize
that a term in the Lagrangian like mQAHA“ is incompatible with gauge invariance.

However, certain physical situations seem to require massive vector fields. This happened for
example during the 1960s in the study of weak interactions. The Glashow model gave a common de-
scription of both electromagnetic and weak interactions based on a gauge theory with group SU(2)xU(1)
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but, in order to reproduce Fermi’s four-fermion theory of the (3-decay, it was necessary that two of the
vector fields involved be massive. Also in condensed-matter physics massive vector fields are required
to describe certain systems, most notably in superconductivity.

The way out of this situation is found in the concept of spontaneous symmetry-breaking discussed
previously. The consistency of the quantum theory requires gauge invariance, but this invariance can be
realized a la Nambu—Goldstone. When this is the case the full gauge symmetry is not explicitly present in
the effective action constructed around the particular vacuum chosen by the theory. This makes possible
the existence of mass terms for gauge fields without jeopardizing the consistency of the full theory, which
is still invariant under the whole gauge group.

To illustrate the Higgs mechanism we study the simplest example, the Abelian Higgs model: a
U(1) gauge field coupled to a self-interacting, charged, complex scalar field ¢ with Lagrangian

1 — pyp
L=—1FuF" +DOD"0 - 2 (30— 1%)° (252)

where the covariant derivative is given by Eq. (159). This theory is invariant under the gauge transfor-
mations

P — )P Ay — A+ 9ua() . (253)

The minimum of the potential is defined by the equation |®| = p. We have a continuum of different
vacua labelled by the phase of the scalar field. None of these vacua, however, is invariant under the
gauge symmetry

<(I)> — ueiﬂo N Mei’&o+ia(:)§) (254)

and therefore the symmetry is spontaneously broken. Let us study now the theory around one of these
vacua, for example (®) = p, by writing the field ® in terms of the excitations around this particular
vacuum:

1 .
®(z) = |p+ —=o(z)| @ 255
(@) = [+ Z5000) (259)
Independently of whether we are expanding around a particular vacuum for the scalar field we should
keep in mind that the whole Lagrangian is still gauge invariant under (253). This means that perform-
ing a gauge transformation with parameter a(z) = —v(x) we can get rid of the phase in Eq. (255).
Substituting then ®(x) = p + %a(m) in the Lagrangian we find

1 1 1
L = _ZF/WFW +e*u A AR + 5(%08”0 - §Au202
A
— \uo® — 104 + 62[£AuAMO' + €2A#AMO'2 . (256)

What is the excitation of the theory around the vacuum (®) = p? First we find a massive real scalar field
o(z). The important point, however, is that the vector field A,, now has a mass given by

m2 =2e’p? . (257)

The remarkable thing about this way of giving a mass to the photon is that at no point have we given up
gauge invariance. The symmetry is only hidden. Therefore in quantizing the theory we can still enjoy all
the advantages of having a gauge theory but at the same time we have managed to generate a mass for
the gauge field.

It is surprising, however, that in the Lagrangian (256) we have not found any massless mode.
Since the vacuum chosen by the scalar field breaks the U (1) generator of U(1) we would have expected
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one massless particle from Goldstone’s theorem. To understand the fate of the missing Goldstone boson
we have to revisit the calculation leading to Eq. (256). Were we dealing with a global U(1) theory, the
Goldstone boson would correspond to excitation of the scalar field along the valley of the potential and
the phase ¥(z) would be the massless Goldstone boson. However, we have to keep in mind that in com-
puting the Lagrangian we managed to get rid of () by shifting it into A, using a gauge transformation.
Actually by identifying the gauge parameter with the Goldstone excitation we have completely fixed the
gauge and the Lagrangian (256) does not have any gauge symmetry left.

A massive vector field has three polarizations: two transverse ones k-é (E, +1) = 0 plus a lon-
gitudinal one &7,(k) ~ k. In gauging away the massless Goldstone boson () we have transformed it
into the longitudinal polarization of the massive vector field. In the literature this is usually expressed
by saying that the Goldstone mode is ‘eaten up’ by the longitudinal component of the gauge field. It
is important to realize that in spite of the fact that the Lagrangian (256) looks pretty different from the
one we started with, we have not lost any degrees of freedom. We started with the two polarizations of
the photon plus the two degrees of freedom associated with the real and imaginary components of the
complex scalar field. After symmetry breaking we end up with the three polarizations of the massive
vector field and the degree of freedom of the real scalar field o (x).

We can also understand the Higgs mechanism in the light of our discussion of gauge symmetry
in Section 4.4. In the Higgs mechanism the invariance of the theory under infinitesimal gauge trans-
formations is not explicitly broken, and this implies that Gauss’s law is satisfied quantum mechanically,
ﬁ-ﬁa |phys) = 0. The theory remains invariant under gauge transformations in the connected component
of the identity Gy, the ones generated by Gauss’s law. This does not pose any restriction on the possible
breaking of the invariance of the theory with respect to transformations that cannot be continuously de-
formed to the identity. Hence in the Higgs mechanism the invariance under gauge transformations that
are not in the connected component of the identity, G/Gy, can be broken. Let us try to put it in more
precise terms. As we learned in Section 4.4, in the Hamiltonian formulation of the theory, finite-energy
gauge field configurations tend to a pure gauge at spatial infinity:

S 1 e .

Au(x)—>@g(a:) Vy(Z), |Z] — oo . (258)
The set transformations go(Z) € Gy that tend to the identity at infinity are the ones generated by Gauss’s
law. However, one can also consider in general gauge transformations g(&) which, as || — oo, approach
any other element g € G. The quotient Go, = G/Gy gives a copy of the gauge group at infinity. There
is no reason, however, why this group should not be broken, and in general it is if the gauge symmetry
is spontaneously broken. Note that this is not a threat to the consistency of the theory. Properties like
the decoupling of unphysical states are guaranteed by the fact that Gauss’s law is satisfied quantum
mechanically and are not affected by the breaking of G ..

The Abelian Higgs model discussed here can be regarded as a toy model of the Higgs mechanism
responsible for giving mass to the W+ and Z° gauge bosons in the Standard Model. In condensed-matter
physics the symmetry breaking described by the non-relativistic version of the Abelian Higgs model can
be used to characterize the onset of a superconducting phase in the BCS theory, where the complex scalar
field @ is associated with the Cooper pairs. In this case the parameter ;2 depends on the temperature.
Above the critical temperature T, u?(T) > 0 and there is only a symmetric vacuum (®) = 0. When, on
the other hand, T < T, then p?(T) < 0 and symmetry breaking takes place. The onset of a non-zero
mass of the photon (257) below the critical temperature explains the Meissner effect: the magnetic fields
cannot penetrate inside superconductors beyond a distance of the order 1/m.

6 Anomalies

So far we have not worried too much about how classical symmetries of a theory are carried over to the
quantum theory. We have implicitly assumed that classical symmetries are preserved in the process of
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quantization, so they are also realized in the quantum theory.

This assumption, however, is not necessarily justified in the case of certain symmetries like scale
invariance. To be more concrete, let us think of a theory containing a single field with canonical dimen-
sion A. If there are no dimensionful parameters in the Lagrangian, the classical theory is invariant under
the conformal transformation

ot — Azt d(x) — A Pp(N 1) . (259)
This is the case, for example, for a massless A theory in four dimensions

1 A
L= 5 O — E(p4, (260)

where the scalar field has canonical dimension A = 1. The Lagrangian density transforms as
L— g 261)

and the classical action remains invariant.

This classical invariance of the theory is, however, not preserved in the process of quantization.
The reason lies in the necessity of making sense of divergent expressions that arise when calculating
quantum corrections, as we shall explain in Section 7 in detail. Here suffice it to say that in order
to regularize the divergent expressions it is necessary to introduce a cut-off at a given energy scale.
This breaking of the invariance of the theory under conformal transformations is not recovered after
renormalization has been carried out, and as a result the quantum properties of a theory like Eq. (260)
depend on the energy scale at which the physical processes take place. One of the consequences is that
the canonical dimension of the field also gets a correction A = 1 + y(\).

This is an example of an anomaly, i.e., a symmetry of the classical theory that is not preserved
upon quantization (for a review see Ref. [25]). It is important to avoid here the misconception that
anomalies appear due to a bad choice of the way a theory is regularized in the process of quantization.
When we talk about anomalies we mean a classical symmetry that cannot be realized in the quantum
theory, no matter how smart we are in choosing the regularization procedure. This is the case with the
conformal anomaly that we have just discussed: It does not matter in which way we regularize our Ap*
theory, the result is a quantum theory that breaks conformal invariance.

6.1 Axial anomaly

Probably the best known examples of anomalies appear when we consider axial symmetries. If we
consider a theory of two Weyl spinors v

L =i = iul 0" duy +iul 0" Ou_  with P = <“+) (262)

U_—

the Lagrangian is invariant under two types of global U(1) transformations. In the first one both helicities
transform with the same phase, this is a vector transformation:

Uy : usr — eug . (263)
In the second one, the axial U(1), the signs of the phases are different for the two chiralities:

Uy uy — ey . (264)
Using Noether’s theorem, there are two conserved currents: a vector current
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and an axial vector current

Jh = PyFysp = uiaiujL —ul oty = 9 Jl =0. (266)

The theory described by the Lagrangian (262) can be coupled to the electromagnetic field. The
resulting classical theory is still invariant under the vector and axial U(1) symmetries (263) and (264).
Surprisingly, upon quantization it turns out that the conservation of the axial current (266) is spoiled by
quantum effects:

d,Jh ~hE-B. (267)

To understand more clearly how this result comes about we study first a simple model in two
dimensions that captures the relevant physics involved in the four-dimensional case [26]. We work in
Minkowski space in two dimensions with coordinates (z°, 2!) = (¢, 2) and where the spatial direction
is compactified to a circle S'. In this set-up we consider a fermion coupled to the electromagnetic
field. Note that since we are living in two dimensions, the field strength F,,, has only one independent
component that corresponds to the electric field along the spatial direction, F'°! = £ (in two dimensions

there are no magnetic fields!).

To write the Lagrangian for the spinor field we need to find a representation of the algebra of ~y
matrices

(7,47} = 20 with = ((1) _01>. (268)

In two dimensions, the dimension of the representation of the v matrices is 2[2] = 2. Here take

01 0 1
0_ 1_ 1,2 _
V=0 (1 0) Y=o (_1 0> . (269)
This is a chiral representation since the matrix s is diagonal'!,
1 0
— A0 1
V=T (0 _1> : (270)

Writing the two-component spinor 1) as

—(U+
= (u_> (271)

and defining as usual the projectors Py = %(1 + 75), we find that the components u of v are, respec-
tively, a right- and a left-handed Weyl spinor in two dimensions.

Once we have a representation of the v matrices we can write the Dirac equation. Expressing it in
terms of the components u of the Dirac spinor we find

(0o — 01 )uy =0, (0o + 01)u— =0. (272)
The general solution to these equations can be immediately written as
uy = uy (2 + 2t u_ =u_(z" — 2. (273)

Hence u4 are two wave packets moving along the spatial dimension to the left (u ) and to the right
(u_), respectively. Note that according to our convention the left-moving u is a right-handed spinor
(positive helicity) whereas the right-moving w_ is a left-handed spinor (negative helicity).

"In any even number of dimensions s is defined to satisfy the conditions v2 = 1 and {vs, 7"} = 0.
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Fig. 10: Spectrum of the massless two-dimensional Dirac field
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Fig. 11: Vacuum of the theory

If we want to interpret Eq. (272) as the wave equation for two-dimensional Weyl spinors we have
the following wave functions for free particles with well defined momentum p* = (E, p):

(E)/..0 1 1 —iB(z0421) .
U T tx)=—e with p=FF. 274)

+ ( ) \/z
As is always the case with the Dirac equation, we have both positive and negative energy solutions. For
uy, since E = —p, we see that the solutions with positive energy are those with negative momentum
p < 0, whereas the negative energy solutions are plane waves with p > 0. For the left-handed spinor v _
the situation is reversed. Besides, since the spatial direction is compact with length L the momentum p
is quantized according to

_ 2mn

p_Tv nez. (275)

The spectrum of the theory is represented in Fig. 10.

Once we have the spectrum of the theory the next step is to obtain the vacuum. As with the Dirac
equation in four dimensions we fill all the states with £ < 0 (Fig. 11). Excitation of a particle in the
Dirac sea produces a positive-energy fermion plus a hole that is interpreted as an antiparticle. This gives
us a clue to how to quantize the theory. In the expansion of the operator u in terms of the modes (274)
we associate positive energy states with annihilation operators whereas the states with negative energy
are associated with creation operators for the corresponding antiparticle:

ur(@) = [as(BEp @) + oL (B @)] . 276)
E>0
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The operator a (E) acting on the vacuum |0, +) annihilates a particle with positive energy E and mo-
mentum FE. In the same way bl(E) creates out of the vacuum an antiparticle with positive energy E
and spatial momentum FE. In the Dirac sea picture the operator b (FE)' is originally an annihilation
operator for a state of the sea with negative energy —FE. As in the four-dimensional case the problem of
the negative energy states is solved by interpreting annihilation operators for negative energy states as
creation operators for the corresponding antiparticle with positive energy (and vice versa). The operators
appearing in the expansion of u4 in Eq. (276) satisfy the usual algebra

{ax(E), al, (E)} = {bA(E), b\ (E")} = 05, p/0v (277)

where we have introduced the label A\, \' = +. Also, a)(E), a:r\(E) anticommute with by, (E’), bi\/ (E").
The Lagrangian of the theory
L= Z’LL:_ (80 + 81)U+ + ZUT_ (80 - 81)u, (278)

is invariant under both U(1)y,, Eq. (263), and U(1) 4, Eq. (264). The associated Noether currents are in
this case

Jh — uz_qu + uT_u, Jh — uLqu — uT_u, (279)
v —uTu —}—uTu ’ A —uTu —uTu ’
+ %+ — U= + Ut —U—

The associated conserved charges are given, for the vector current by

L
Qv = / dat <u1u+ + uT_u_> (280)
0

and for the axial current by
L
Q4 :/ da (uhuy —ulu) . (281)
0
Using the orthonormality relations for the modes v(iE) (z)

L /
/ dxt v(iE) (x) vf )(:c) =0g.E , (282)
0
we find for the conserved charges

Qv = ) [QL(E)M(E) — bl (B)by (B) +al (B)a_(E) - bT_(E)b_(E)} ,
E>0

Q1 = > [aL(E)a+(E) — b (B)by (B) — o (B)a_(B) +bi(E)b_(E)} . (283)
E>0

We see that Q1 counts the net number (particles minus antiparticles) of positive helicity states plus the
net number of states with negative helicity. The axial charge, on the other hand, counts the net number of
positive helicity states minus the number of negative helicity ones. In the case of the vector current we
have subtracted a formally divergent vacuum contribution to the charge (the ‘charge of the Dirac sea’).
In the free theory there is of course no problem with the conservation of either ()1 or Q) 4, since the
occupation numbers do not change. What we want to study is the effect of coupling the theory to electric
field £. We work in the gauge Ay = 0. Instead of solving the problem exactly we are going to simulate
the electric field by adiabatically varying in a long time 7( the vector potential A; from zero value to
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-

Fig. 12: Effect of the electric field

—&T1p. From our discussion in Section 4.3 we know that the effect of the electromagnetic coupling in the
theory is a shift in the momentum according to

p—p—eAy, (284)

where e is the charge of the fermions. Since we assumed that the vector potential varies adiabatically,
we can assume it to be approximately constant at each time.

Then, we have to understand what is the effect of Eq. (284) on the vacuum depicted in Fig. 11.
What we find is that the two branches move as shown in Fig. 12, resulting in some of the negative energy
states of the v branch acquiring positive energy while the same number of the empty positive energy
states of the other branch v_ will become empty negative energy states. Physically this means that the
external electric field £ creates a number of particle—antiparticle pairs out of the vacuum. Denoting by
N ~ e& the number of such pairs created by the electric field per unit time, the final values of the charges

Qv and Q) 4 are

Qa(mo) = (N N)=0,
Qv(rn) = (N-0)—(0—-N)=2N. (285)

Therefore we conclude that the coupling to the electric field produces a violation in the conservation of
the axial charge per unit time given by AQ 4 ~ e€. This implies that

Ot ~ ehe | (286)

where we have restored / to make clear that the violation in the conservation of the axial current is a
quantum effect. At the same time AQy = 0 guarantees that the vector current remains conserved also
quantum mechanically, d,,J{; = 0.

We have just studied a two-dimensional example of the Adler—Bell-Jackiw axial anomaly [27].
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The heuristic analysis presented here can be made more precise by computing the quantity

O = (O[T [ () (0)] [0) = 287)

Jh v

The anomaly is given then by 0,C*”. A careful calculation yields the numerical prefactor missing in
Eq. (286) leading to the result

B
9 Jh = ;—Ws""Fyg : (288)

with e = —¢10 = 1,

The existence of an anomaly in the axial symmetry that we have illustrated in two dimensions is

present in all even-dimensional space—times. In particular in four dimensions the axial anomaly is given
by

62

T = —WeMWFWFM : (289)

This result has very important consequences in the physics of strong interactions as we shall see in what
follows.

6.2 Chiral symmetry in QCD

Our knowledge of the physics of strong interactions is based on the theory of quantum chromodynamics
(QCD) [28]. This is a non-Abelian gauge theory with gauge group SU(N.) coupled to a number Ny

of quarks. These are spin—% particles Q7 labelled by two quantum numbers: colour i = 1,..., N,
and flavour f = 1,..., Ny. The interaction between them is mediated by the N, 2 _ 1 gauge bosons, the
gluons A, a=1,..., N, 2 1. In the real world N, = 3 and the number of flavours is six, corresponding

to the number of different quarks: up (u), down (d), charm (c), strange (s), top (¢) and bottom (b).

For the time being we are going to study a general theory of QCD with N colours and N flavours.
Also, for reasons that will be clear later we are going to work in the limit of vanishing quark masses,
my — 0. In this cases the Lagrangian is given by

Ny
1 _ _
Laop = ~1Fa P+ [ilQLDQL +iQRDQY] . (290)
f=1

where the subscripts L and R indicate left- and right-handed spinors, respectively, { r=Px Qf, and
the field strength £, and the covariant derivative D), are defined in Eqgs. (165) and (168), respectively.
Apart from the gauge symmetry, this Lagrangian is also invariant under a global U(N ) x U(Ny)g
acting on the flavour indices and defined by

Qf — XpULQf QL — @
U(Ny), UNp), - (291)
I i " U y
QR - QR QR - Zf’( R)ff’QR
with Ur,Ur € U(Ny). Actually, since U(NV) = U(1) x SU(IV) this global symmetry group can be
written as SU(Ny), X SU(Ny), x U(1)g, x U(1)g. The Abelian subgroup U(1);, x U(1) can now be
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decomposed into its vector U(1)p and axial U(1) 4 subgroups defined by the transformations
QL — °Qy Qr — °Qy
U)pg: A U(l)y, A (292)
Qh — Q4 Qn — ¢ Qf
According to Noether’s theorem, associated with these two Abelian symmetries we have two conserved
currents:

Ny Ny
=30l =30 vwal (293)
=1 =1

The conserved charge associated with vector charge J “j is actually the baryon number, defined as the
number of quarks minus the number of antiquarks.

The non-Abelian part of the global symmetry group SU(N )z X SU(Ny)g can also be decom-
posed into its vector and axial subgroups, SU(Ny),, x SU(Ny) 4, defined by the following transforma-
tions of the quark fields:

QL — XpUn)pQf Qf — XpWUnQf
SUNp),, : / SUNy) , : 299
Qh — X p(UL)rQh Qh — XpURYrQk

Again, the application of Noether’s theorem shows the existence of the following non-Abelian conserved
charges:

Ny Ny
Tr= 3 Q@@ = S Qs Q7 (295)
ff'=1 f.f'=1

To summarize, we have shown that the initial chiral symmetry of the QCD Lagrangian (290) can be
decomposed into its chiral and vector subgroups according to

UNp), x UN§), = SUWV), x SUNp) . x U(D)g x U(l) 4 - (296)

The question to address now is which part of the classical global symmetry is preserved by the quantum
theory.

As argued in Section 6.1, the conservation of the axial currents J/ and J4" can in principle be

spoiled due to the presence of an anomaly. In the case of the Abelian axial current J/| the relevant
quantity is the correlation function

Ny
C7 = (O[T [T (2) e (2') e (0)] 10) = (297)
f=1
L 4 symmetric
Here jgiuge is the non-Abelian conserved current coupling to the gluon field
Ny
e =S QM rreQr (298)
f=1
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where, to avoid confusion with the generators of the global symmetry, we have denoted by 7¢ the gen-
erators of the gauge group SU(N,). The anomaly can now be read from 9,C*"?. If we impose Bose
symmetry with respect to the interchange of the two outgoing gluons and gauge invariance of the whole
expression, ,C*7 = 0 = 0,C*"?, we find that the axial Abelian global current has an anomaly given
by12

9Ny

8”JZ = 32n2

e INFL, PO (299)

In the case of the non-Abelian axial global symmetry SU(/N )4 the calculation of the anomaly
is made as above. The result, however, is quite different since in this case we conclude that the non-
Abelian axial current J%" is not anomalous. This can easily be seen by noting that associated with the
axial current vertex we have a generator 7' of SU(V 1), whereas for the two gluon vertices we have the
generators 7% of the gauge group SU(/V,). Therefore, the triangle diagram is proportional to the group
theoretical factor,

~trTh tr {r%, 7% =0, (300)

4 symmetric

which vanishes because the generators of SU(NNy) are traceless.

From here we would conclude that the non-Abelian axial symmetry SU(/V ) 4 is nonanomalous.
However, this is not the whole story since quarks are charged particles that also couple to photons. Hence
there is a second potential source of an anomaly coming from the the one-loop triangle diagram coupling
Ji“ to two photons

7
Ny
O [J4" (@)t ()0 (0)] 10) = 3 Q' (301)
f=1 Jf‘“
Q7
L y 4 symmetric
where jb, is the electromagnetic current
Ny
it =>4 QN (302)
=1

with g the electric charge of the f-th quark flavour. A calculation of the diagram in Eq. (301) shows the
existence of an Adler—Bell-Jackiw anomaly given by

Ny

Z(Tl)ff QJQC EMWT)\F/LVFO')\ ) (303)

N,
1672

9 I = —

where F),, is the field strength of the electromagnetic field coupling to the quarks. The only chance for
the anomaly to cancel is that the factor between brackets in this equation be identically zero.

"2The normalization of the generators 77 of the global SU(N) is given by tr (T77T7) = %5”.
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Before proceeding let us summarize the results found so far. Because of the presence of anomalies,
the axial part of the global chiral symmetry, SU(/V ) 4 and U(1) 4, are not realized quantum mechanically
in general. We found that U(1) 4 is always affected by an anomaly. However, because the right-hand side
of the anomaly equation (299) is a total derivative, the anomalous character of J/; does not explain
the absence of U(1) 4 multiplets in the hadron spectrum, since a new current can be constructed which
is conserved. In addition, the non-existence of candidates for a Goldstone boson associated with the
right quantum numbers indicates that U(1) 4 is not spontaneously broken either, so it has to be explicitly
broken somehow. This is the so-called U(1)-problem which was solved by 't Hooft [29], who showed
how the contribution of quantum transitions between vacua with topologically nontrivial gauge field
configurations (instantons) results in an explicit breaking of this symmetry.

Because of the dynamics of the SU(V,) gauge theory the axial non-Abelian symmetry is sponta-
neously broken due to the presence at low energies of a vacuum expectation value for the fermion bilinear

o
0[Q" Q7 |0) £ 0 (No summation in f1) . (304)

This non-vanishing vacuum expectation value for the quark bilinear actually breaks chiral invariance
spontaneously to the vector subgroup SU(/V )y, so the only subgroup of the original global symmetry
that is realized by the full theory at low energy is

U(Np), x UNp), — SUNp), x U(D)p - (305)

Associated with this breaking, a Goldstone boson should appear with the quantum numbers of the broken
non-Abelian current. For example, in the case of QCD the Goldstone bosons associated with the sponta-
neous symmetry-breaking induced by the vacuum expectation values (@u), (dd) and ((@d — du)) have
been identified as the pions 7°, 7. These bosons are not exactly massless because of the non-vanishing
mass of the v and d quarks. Since the global chiral symmetry is already slightly broken by mass terms in
the Lagrangian, the associated Goldstone bosons also have masses although they are very light compared
with the masses of other hadrons.

In order to have a better physical understanding of the role of anomalies in the physics of strong
interactions we particularize now our analysis of the case of real QCD. Since the u and d quarks are
much lighter than the other four flavours, QCD at low energies can be well described by including only
these two flavours and ignoring heavier quarks. In this approximation, from our previous discussion we
know that the low-energy global symmetry of the theory is SU(2)y, xU(1) g, where now the vector group
SUQR)y is the well-known isospin symmetry. The axial U(1) 4 current is anomalous due to Eq. (299)
with Ny = 2. In the case of the non-Abelian axial symmetry SU(2) 4, taking into account that q,, = %e

and ¢; = —+e and that the three generators of SU(2) can be written in terms of the Pauli matrices as
TK = %O‘K, we find
2
Tl 2 _ 7! 2 _ T3 2_¢ 30
S (TMhYsrai= D (THsraf=0, > (Tpdf = (306)
f=u,d f=u,d f=u,d

Therefore Ji“ 18 anomalous.

Physically, the anomaly in the axial current Ji“ has an important consequence. In the quark
model, the wave function of the neutral pion 7 is given in terms of those for the u and d quarks by
1 -
0 _

) = — (|a)|u) — |d)|d)) . (307)

) = 75 (mlu) ~ Dla)
The isospin quantum numbers of |7°) are those of the generator 7. In fact the analogy goes further
since 0, Ji“ is the operator creating a pion w° out of the vacuum,

70 ~ 8,J5"0) . (308)
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This leads to the physical interpretation of the triangle diagram (301) with J i“ as the one-loop contribu-
tion to the decay of a neutral pion into two photons,

0 — 2y . (309)

This is an interesting piece of physics. In 1967 Sutherland and Veltman [30] presented a cal-
culation, using current algebra techniques, according to which the decay of the pion into two photons
should be suppressed. This, however, contradicted the experimental evidence that showed the existence
of such a decay. The way out of this paradox, as pointed out in Ref. [27], is the axial anomaly. What
happens is that the current algebra analysis overlooks the ambiguities associated with the regularization
of divergences in quantum field theory. A QED evaluation of the triangle diagram leads to a divergent in-
tegral that has to be regularized somehow. It is in this process that the Adler—Bell-Jackiw axial anomaly
appears, resulting in a non-vanishing value for the 70 — 2~ amplitude'?.

The existence of anomalies associated with global currents does not necessarily mean difficulties
for the theory. On the contrary, as we saw in the case of the axial anomaly it is its existence that allows
for a solution of the Sutherland—Veltman paradox and an explanation of the electromagnetic decay of
the pion. The situation, however, is very different if we deal with local symmetries. A quantum me-
chanical violation of gauge symmetry leads to all kinds of problems, from lack of renormalizability to
non-decoupling of negative norm states. This is because the presence of an anomaly in the theory implies
that the Gauss law constraint V - E, = P cannot be consistently implemented in the quantum theory. As
a consequence, states that classically are eliminated by the gauge symmetry become propagating fields
in the quantum theory, thus spoiling the consistency of the theory.

Anomalies in a gauge symmetry can be expected only in chiral theories where left- and right-
handed fermions transform in different representations of the gauge group. Physically, the most inter-
esting example of such theories is the electroweak sector of the Standard Model where, for example,
left-handed fermions transform as doublets under SU(2) whereas right-handed fermions are singlets. On
the other hand, QCD is free of gauge anomalies since both left- and right-handed quarks transform in the
fundamental representation of SU(3).

We consider the Lagrangian

Ny N_
1 T~ R
L=—gF B iy o P iy w Ty (310)
i=1

j=1

where the chiral fermions 9% transform according to the representations ;4 of the gauge group G

)

(a =1,...,dim G). The covariant derivatives D,(f are then defined by

DFEyi = ok +igAK Tyl . 311)

As for global symmetries, anomalies in the gauge symmetry appear in the triangle diagram with one
axial and two vector gauge current vertices,

Jt

(OIT 75" ()3 ()35 (0)] [0) = | Qg (312)
JA -br
Jv

L 4 symmetric

13 An early computation of the triangle diagram for the electromagnetic decay of the pion was made by Steinberger [31].
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where gauge vector and axial currents j{,”, j%/ are given by

Ny N_

. 1 ) 7 ]

G = ) LT+ Pyl
1 7j=1

i= j=
Ny N_

Ly S ST B A T S Ve (313)
i=1 =1

Luckily, we do not have to compute the whole diagram in order to find an anomaly cancellation condition,
it is enough if we calculate the overall group theoretical factor. In the case of the diagram in Eq. (312)
for every fermion species running in the loop this factor is equal to

tr [rerle ] | (314)

where the sign £ corresponds to the generators of the representation of the gauge group for the left- and
right-handed fermions, respectively. Hence the anomaly cancellation condition reads

Ny N_
Ztr [Ticf+{7'z'lf+77ic,+}} - Ztr [Tﬁf{TﬁfvTﬁf } =0. G15)
i=1 J=1

Knowing this we can proceed to check the anomaly cancellation in the Standard Model SU(3) x
SU2) x U(1). Left-handed fermions (both leptons and quarks) transform as doublets with respect to
the SU(2) factor whereas the right-handed components are singlets. The charge with respect to the U(1)
part, the hypercharge Y, is determined by the Gell-Mann—Nishijima formula

Q=T3+Y, (316)

where () is the electric charge of the corresponding particle and T’ is the eigenvalue with respect to the
third generator of the SU(2) group in the corresponding representation: 75 = %03 for the doublets and
T3 = 0 for the singlets. For the first family of quarks (u, d) and leptons (e, v.) we have the following
field content:

ua
quarks: ( do‘) ; u%% d%%
’6
leptons: <Ve> eRr—1 (317)
e); 1

’ 2

where o = 1,2, 3 labels the colour quantum number and the subscript indicates the value of the weak
hypercharge Y. Denoting the representations of SU(3) x SU(2) x U(1) by (n.,ny)y, with n. and n,,
the representations of SU(3) and SU(2), respectively, and Y the hypercharge, the matter content of the
Standard Model consists of a three-family replication of the representations:

left-handed fermions: (3,2)F (1,2)F,
6 2
(318)
right-handed fermions: 3,1)% (3,1)%, (1, D), .
3 3

In computing the triangle diagram we have 10 possibilities depending on which factor of the gauge group
SU@3) x SU(2) x U(1) couples to each vertex:
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SU@3)? SUQ)? u@)?
SU3)?SU(Q2) SU@2)? U(1)

SU3)? U(1) SUQ) U(1)?

SU(3) SU(2)?

SU3)SU(2) U(1)

SU@B) U(1)?

It is easy to check that some of them do not give rise to anomalies. For example the anomaly for
the SU(3)? case cancels because left- and right-handed quarks transform in the same representation.
In the case of SU(2)? the cancellation happens term by term because of the Pauli matrices identity
%0 = §% 4 je®5C that leads to

tr [aa{ab,(ﬁ}} —2(tro®) 6 = 0. (319)

However, the hardest anomaly cancellation condition to satisfy is the one with three U(1)’s. In this case
the absence of anomalies within a single family is guaranteed by the non-trivial identity

VP VP = 3x2x (é)3+2x (—%)3—3>< <§>3—3x (-%)3—(—1)3

left right
3 3
ey _— — = . 2
(-9)+(3) =0 (320)

It is remarkable that the anomaly exactly cancels between leptons and quarks. Note that this result holds
even if a right-handed sterile neutrino is added since such a particle is a singlet under the whole Standard
Model gauge group and therefore does not contribute to the triangle diagram. Therefore we see how the
matter content of the Standard Model conspires to yield a consistent quantum field theory.

In all our discussion of anomalies we only considered the computation of one-loop diagrams.
It may happen that higher loop orders impose additional conditions. Fortunately this is not so: The
Adler-Bardeen theorem [32] guarantees that the axial anomaly only receives contributions from one-
loop diagrams. Therefore once anomalies are cancelled (if possible) at one loop, we know that there will
be no new conditions coming from higher-loop diagrams in perturbation theory.

The Adler—Bardeen theorem, however, applies only in perturbation theory. It is nonetheless pos-
sible that non-perturbative effects can result in the quantum violation of a gauge symmetry. This is
precisely the case pointed out by Witten [33] with respect to the SU(2) gauge symmetry of the Standard
Model. In this case the problem lies in the non-trivial topology of the gauge group SU(2). The invari-
ance of the theory with respect to gauge transformations which are not in the connected component of
the identity makes all correlation functions equal to zero. Only when the number of left-handed SU(2)
fermion doublets is even does gauge invariance allow for a non-trivial theory. It is again remarkable that
the family structure of the Standard Model makes this anomaly cancel:

3 x (“) 11 x (”) — 4 SU(2)-doublets |, (321)
dj, € /L
where the factor of 3 comes from the number of colours.
7 Renormalization

7.1 Removing infinities

From its very early stages, quantum field theory was faced with infinities. They emerged in the calcula-
tion of most physical quantities, such as the correction to the charge of the electron due to the interactions
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with the radiation field. The way these divergences were handled in the 1940s, starting with Kramers,
was physically very much in the spirit of the quantum theory emphasis in observable quantities: Since
the observed magnitude of physical quantities (such as the charge of the electron) is finite, this number
should arise from the addition of a ‘bare’ (unobservable) value and the quantum corrections. The fact
that both of these quantities were divergent was not a problem physically, since only its finite sum was
an observable quantity. To make things mathematically sound, the handling of infinities requires the
introduction of some regularization procedure which cuts the divergent integrals off at some momentum
scale A. Morally speaking, the physical value of an observable O ppysical iS given by

Ophysical = Algréo [O(A)bare + AO(A)FL] ; (322)

where AO(A)y represents the regularized quantum corrections.

To make this qualitative discussion more precise we compute the corrections to the electric charge
in quantum electrodynamics. We consider the process of annihilation of an electron—positron pair to
create a muon—antimuon pair e et — pt . To lowest order in the electric charge e the only diagram
contributing is

In order to compute the renormalization of the charge we consider the first diagram which takes
into account the first correction to the propagator of the virtual photon interchanged between the pairs
due to vacuum polarization. We begin by evaluating

_ipho _inBv
[ e = aQﬁ S (323)
q® + 1€ q° + 1€
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where the diagram between brackets is given by

) Q B =11 (q) = i*(—ie)*(~1) / (d4k S mPk s g dmely (324)

2m)4 [k2 — m2 +ie| [(k + q)%2 — m2 + i€]

Physically this diagram includes the correction to the propagator due to the polarization of the vacuum,
i.e., the creation of virtual electron—positron pairs by the propagating photon. The momentum g is the
total momentum of the electron—positron pair in the intermediate channel.

It is instructive to look at this diagram from the point of view of perturbation theory in nonrela-
tivistic quantum mechanics. In each vertex the interaction consists of the annihilation of a photon and the
creation of an electron—positron pair or the creation of a photon and annihilation of an electron—positron
pair. This can be implemented by the interaction Hamiltonian

Hip =e / dBxpytpA, . (325)

All fields inside the integral can be expressed in terms of the corresponding creation—annihilation opera-
tors for photons, electrons and positrons. In quantum mechanics, the change in the wave function at first
order in the perturbation Hj,; is given by
. . <n‘Hint"Y7in>O
= e 326
"Yv 11’1) ’77 1n>0 + Zn: B — En ‘7’L> ( )

and similarly for |v,out), where we have denoted symbolically by |n) all the possible states of the
electron—positron pair. Since these states are orthogonal to |7, in), |7y, out)g, we find to order e?

in| Hine|n) (n|Hine[Y', out)o

4
(Ein — En)(Eout — En) +0(e) . (327)

(v, in]”y', out) = o(v, in”yl, out)o + Z et
n

Hence, we see that the diagram of Eq. (323) really corresponds to the order-e? correction to the photon
propagator (7, in|y’, out)

ANANANANANANANANC —_— O<’)/’ 1n|’yl’ou‘t>0

_ Z <’Ya in|f~rint‘n> <n|Hint|’Y/a OUt> (328)
0% ’Y/ n (El - En)(Eout - En)

Once we have understood the physical meaning of the Feynman diagram to be computed we
proceed to its evaluation. In principle there is no problem in computing the integral in Eq. (323) for
non-zero values of the electron mass. However, since here we are going to be mostly interested in seeing
how the divergence of the integral results in a scale-dependent renormalization of the electric charge, we
will set m, = 0. This is something safe to do, since in the case of this diagram we are not inducing
new infrared divergences in taking the electron as massless. Doing some y-matrices gymnastics it is not
complicated to show that the polarization tensor 11, (¢) defined in Eq. (324) can be written as

H;W(Q) = (qznul/ - Q,uQV) H(qz) (329)
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with

I(¢°) =

42 [ dk K24 k-
¢ /( thq (330)

3¢2 ) m)Ak2 + i€ [(k+ q) + i

Although by naive power counting we could conclude that the previous integral is quadratically divergent,
it can be seen that the quadratic divergence actually cancels leaving behind only a logarithmic one. In
order to handle this divergent integral we have to work out some procedure to render it finite. This can
be done in several ways, but here we choose to cut the integrals off at a high energy scale A, where new
. This gives the result

2 2
2\ ~ q :
II(g°) ~ — log (P) -+ finite terms . (331)
If we send the cut-off to infinity A — oo, the divergence blows up and something has to be done about
it.

If we want to make sense out of this, we have to go back to the physical question that led us to
compute Eq. (323). Our primordial motivation was to compute the corrections to the annihilation of two
electrons into two muons. Including the correction to the propagator of the virtual photon we have

(- o

= Uag Ve ue U/fY uu +77aﬁ Ve ue 4 q U/fyﬁuu>

47Tq
. o2 o2 2 B
= 7o (Tey ue) {47Tq2 [1 + Tom 5 log <A2>}} (v/ﬁﬁuu> . (332)

Now let us imagine that we are performing a e~ et — 1~ u™ with a centre-of-mass energy . From the
previous result we can identify the effective charge of the particles at this energy scale e(y) as

2
= Nap (Ee'yaue) I:%] <6u'yﬁuu> . (333)

This charge, e(u), is the quantity that is physically measurable in our experiment. Now we can make
sense of the formally divergent result (332) by assuming that the charge appearing in the classical La-
grangian of QED is just a ‘bare’ value that depends on the scale A at which we cut off the theory,
e = e(A)pare- In order to reconcile Eq. (332) with the physical results (333) we must assume that the
dependence of the bare (unobservable) charge e(A)pare On the cut-off A is determined by the identity

2 2
(0 = e |1+ L 0 (5 )] (34
If we still insist on removing the cut-off A — oo, we have to send the bare charge to zero e(A)pare — 0
in such a way that the effective coupling has the finite value given by the experiment at the energy scale
w. It is not a problem, however, that the bare charge is small for large values of the cut-off, since the
only measurable quantity is the effective charge that remains finite. Therefore all observable quantities
should be expressed in perturbation theory as a power series in the physical coupling e(y)? and not in
the unphysical bare coupling e(A)pare-
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7.2 The beta function and asymptotic freedom

We can look at the previous discussion, and in particular Eq. (334), from a different point of view. In
order to remove the ambiguities associated with infinities, we have been forced to introduce a dependence
of the coupling constant on the energy scale at which a process takes place. From the expression of the
physical coupling in terms of the bare charge (334) we can actually eliminate the cut-off A, whose value
after all should not affect the value of physical quantities. Taking into account that we are working in

perturbation theory in (1), we can express the bare charge e(A)2, _ in terms of e(u)? as

2 _ 2 e(w)? I 6
e(A)” =e(p) [1 + 1972 log (F + Ole(w)’] (335)
This expression allows us to eliminate all dependence on the cutoff in the expression of the effective
charge at a scale u by replacing e(A)pare in Eq. (334) with the one computed using Eq. (335) at a given
reference energy scale fig:

2 2
e()? = e(po)® [1 - 61(’2‘;; log (%)] : (336)
0

From this expression we can compute, at this order in perturbation theory, the effective value of
the coupling constant at an energy p, once we know its value at some reference energy scale (. In the
case of the electron charge we can use as a reference Thompson’s scattering at energies of the order of
the electron mass m. ~ 0.5 MeV, where the value of the electron charge is given by the well-known
value

1
e(leV)? ~ R (337)

Knowing this we can compute e(x)? at any other energy scale, for example at the mass of the Z" boson
uw= Mz =92 GeV

¢)? M2 1
e(Mz)? = e(m,)? [1 I 6(1?;”;3 log (m—g)} ~ o5 (338)

Therefore we find that the electromagnetic coupling grows with energy. This can be explained heuristi-
cally by remembering that the effect of the polarization of the vacuum shown in the diagram of Eq. (323)
amounts to the creation of a plethora of electron—positron pairs around the location of the charge. These
virtual pairs behave as dipoles that, as in a dielectric medium, tend to screen this charge and decrease its
value at long distances (i.e., lower energies).

The variation of the coupling constant with energy is usually encoded in quantum field theory in
the beta function defined by

dg
=u—. 339
Blg) = n i (339)
In the case of QED the beta function can be computed from Eq. (336) with the result

e3

1272 °

B(e)qep = (340)
The fact that the coefficient of the leading term in the beta function is positive 3y = 6% > 0 gives us
the overall behaviour of the coupling as we change the scale. Equation (340) means that, if we start
at an energy where the electric coupling is small enough for our perturbative treatment to be valid, the
effective charge grows with the energy scale. In particular this means that the coupling constant of the
theory will tend to zero when the energy scale tends to zero

lim e(u)> =0, (341)
u—0
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so the perturbative approximation gives better and better results as we go to lower energies. On the other
hand if we increase the energy scale, e(u)? grows until at some scale the coupling is of order one and the
perturbative approximation breaks down. In QED this is known as the problem of the Landau pole but in
fact it does not pose any serious threat to the reliability of QED perturbation theory: A simple calculation
shows that the energy scale at which the theory would become strongly coupled is Afandan =~ 10277 GeV.
However, we know that QED does not live that long! At much lower scales we expect electromagnetism
to be unified with other interactions, and even if this is not the case we shall enter the uncharted territory
of quantum gravity at energies of the order of 10! GeV.

So much for QED. The next question that one may ask at this stage is whether it is possible to
find quantum field theories with a behaviour opposite to that of QED, i.e., such that they become weakly
coupled at high energies. This is not a purely academic question. In the late 1960s a series of deep-
inelastic scattering experiments carried out at SLAC showed that the quarks behave essentially as free
particles inside hadrons. The apparent problem was that no theory was known at that time that would
become free at very short distances: the example set by QED seemed to be followed by all the theories
that were studied. This posed a very serious problem for quantum field theory as a way to describe
subnuclear physics, since it seemed that its predictive power was restricted to electrodynamics but failed
miserably when applied to describe strong interactions.

Nevertheless, this critical time for quantum field theory turned out to be its finest hour. In 1973
David Gross and Frank Wilczek [34] and David Politzer [35] showed that non-Abelian gauge theories
can actually display the required behaviour. For the QCD Lagrangian in Eq. (290) the beta function is
given by!4

3
g 11 2
=——"—|—N.,— =N¢| . 342
In particular, for real QCD (N. = 3, Ny = 6) we have that B(g) = — 17623 5> < 0. This means that

for a theory that is weakly coupled at an energy scale 1o the coupling constant decreases as the energy
increases 1 — oo. This explains the apparent freedom of quarks inside the hadrons: when the quarks
are very close together their effective colour charge tends to zero. This phenomenon is called asymptotic
freedom.

Asymptotic free theories display a behaviour that is opposite to that found above in QED. At
high energies their coupling constant approaches zero whereas at low energies they become strongly
coupled (infrared slavery). These features are at the heart of the success of QCD as a theory of strong
interactions, since this is exactly the type of behaviour found in quarks: They are quasi-free particles
inside the hadrons but the interaction potential between them increases at large distances.

Although asymptotic free theories can be handled in the ultraviolet, they become extremely com-
plicated in the infrared. In the case of QCD it is still to be understood (at least analytically) how the
theory confines colour charges and generates the spectrum of hadrons, as well as the breaking of the
chiral symmetry (304).

7.3 The renormalization group

In spite of its successes, the renormalization procedure presented above can be seen as some kind of pre-
scription or recipe to get rid of the divergences in an ordered way. This discomfort about renormalization
was expressed on occasions by comparing it to ‘sweeping the infinities under the rug’. However, thanks
to a large extent to Ken Wilson [38] the process of renormalization is now understood in a very profound
way as a procedure to incorporate the effects of physics at high energies by modifying the value of the
parameters that appear in the Lagrangian.

!4The expression of the beta function of QCD was also known to ’t Hooft [36]. There are even earlier computations in the
Russian literature [37].
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Fig. 13: Systems of spin in a two-dimensional square lattice

Statistical mechanics

Wilson’s ideas are both simple and profound and consist in thinking about quantum field theory as the
analogue of a thermodynamical description of a statistical system. To be more precise, let us consider an
Ising spin system in a two-dimensional square lattice such as the one depicted in Fig. 13. In terms of the
spin variables s; = i%, where ¢ labels the lattice site, the Hamiltonian of the system is given by

H=-J]) sis;, (343)
(i,5)
where (i, j) indicates that the sum extends over nearest neighbours and .J is the coupling constant be-

tween neighbouring spins (here we consider that there is no external magnetic field). The starting point
to study the statistical mechanics of this system is the partition function defined as

Z=) e, (344)
{si}

where the sum is over all possible configurations of the spins and 3 = % is the inverse temperature.
For J > 0 the Ising model presents spontaneous magnetization below a critical temperature 7., in any
dimension higher than one. Away from this temperature, correlations between spins decay exponentially
at large distances
_ Izl

(sisj) ~e €7, (345)
with |z;;| the distance between the spins located in the i-th and j-th sites of the lattice. This expression
serves as a definition of the correlation length &, which sets the characteristic length scale at which spins
can influence each other by their interaction through their nearest neighbours.

Suppose now that we are interested in a macroscopic description of this spin system. We can
capture the relevant physics by somehow integrating out the physics at short scales. A way in which this
can be done was proposed by Leo Kadanoff [39] and consists in dividing our spin system in spin-blocks
like the ones shown in Fig. 14. Now we can construct another spin system where each spin-block of the
original lattice is replaced by an effective spin calculated according to some rule from the spins contained
in each block B,:

{s;:ie B} — s, (346)

a

For example, we can define the effective spin associated with the block B, by taking the majority rule
with an additional prescription in case of a draw:

sa(l) = %sgn (Z si> , (347)

1€B,
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Fig. 14: Decimation of the spin lattice. Each block in the upper lattice is replaced by an effective spin computed
according to the rule of Eq. (347). Note that the size of the lattice spacing is doubled in the process.

where we have used the sign function, sign(z) = |§—|, with the additional definition sgn(0) = 1. This
procedure is called decimation and leads to a new spin system with a doubled lattice space.
The idea now is to rewrite the partition function (344) only in terms of the new effective spins

sa(l). Then we start by splitting the sum over spin configurations into two nested sums, one over the spin
blocks and a second one over the spins within each block

Z = Ze_BH[S"] = Z Z 0 lsa(l) — sign <Z sl>] e BHIsi] (348)

{5} (3} {5€Ba} i€Baq

The interesting point now is that the sum over spins inside each block can be written as the exponential

a(l)]

of a new effective Hamiltonian depending only on the effective spins: H (! [s

2.9 lsa(l) e (Z S)] e~PHIs = o= BHDIsV] (349)

{SEBa} iGBa

The new Hamiltonian is of course more complicated:

HY = —gO N sl (350)

(i.3)
where the dots stand for other interaction terms between the effective block spins. These new terms
appear because, in the process of integrating out short-distance physics, we induce interactions between
the new effective degrees of freedom. For example, the interaction between the spin-block variables s 51)
will in general not be restricted to nearest neighbours in the new lattice. The important point is that we
have managed to rewrite the partition function solely in terms of these new (renormalized) spin variables
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s(1) interacting through a new Hamiltonian H (1):

2= 3 BV (351)
(s}

Let us now think about the space of all possible Hamiltonians for our statistical system including
all possible types of coupling between the individual spins compatible with the symmetries of the system.
If we denote by R the decimation operation, our previous analysis shows that R defines a map in this
space of Hamiltonians,

R:H— HY . (352)

At the same time the operation R replaces a lattice with spacing a by another one with double spacing
2a. As a consequence the correlation length in the new lattice measured in units of the lattice spacing is
divided by two, R : £ — §.

Now we can iterate the operation R an indefinite number of times. Eventually we might reach a
Hamiltonian H, that is not further modified by the operation R,

H R go Rogeo R Rog (353)

The fixed-point Hamiltonian H, is scale invariant because it does not change as R is performed. Note
that because of this invariance the correlation length of the system at the fixed point does not change
under R. This fact is compatible with the transformation £ — % only if £ = 0 or & = oo. Here we shall
focus on the case of non-trivial fixed points with infinite correlation length.

The space of Hamiltonians can be parametrized by specifying the values of the coupling constants
associated with all possible interaction terms between individual spins of the lattice. If we denote by
O,lsi] these (possibly infinite) interaction terms, the most general Hamiltonian for the spin system under
study can be written as

Hisi] =) XaOalsi] , (354)
a=1

where )\, € R are the coupling constants for the corresponding operators. These constants can be thought
of as coordinates in the space of all Hamiltonians. Therefore the operation R defines a transformation in
the set of coupling constants,

R:Ag — A (355)

For example, in our case we started with a Hamiltonian in which only one of the coupling constants is
different from zero (say A\; = —J). As a result of the decimation A\; = —J — —J (1) while some of
the originally vanishing coupling constants will take a non-zero value. Of course, for the fixed-point
Hamiltonian the coupling constants do not change under the scale transformation R.

Physically the transformation R integrates out short-distance physics. The consequence for physics
at long distances is that we have to replace our Hamiltonian by a new one with different values for the
coupling constants. That is, our ignorance of the details of the physics going on at short distances results
in a renormalization of the coupling constants of the Hamiltonian that describes the long-range physical
processes. It is important to stress that although R is sometimes called a renormalization group trans-
formation, in fact this is a misnomer. Transformations between Hamiltonians defined by R do not form
a group: Since these transformations proceed by integrating out degrees of freedom at short scales they
cannot be inverted.

In statistical mechanics fixed points under renormalization group transformations with £ = oo
are associated with phase transitions. From our previous discussion we can conclude that the space
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Fig. 15: Example of a renormalization group flow

of Hamiltonians is divided in regions corresponding to the basins of attraction of the different fixed
points. We can ask ourselves now about the stability of those fixed points. Suppose we have a statistical
system described by a fixed-point Hamiltonian H, and we perturb it by changing the coupling constant
associated with an interaction term O. This is equivalent to replacing H, by the perturbed Hamiltonian

H=H,+5\0, (356)

where d\ is the perturbation of the coupling constant corresponding to O (we can also consider pertur-
bations in more than one coupling constant). At the same time, thinking of the A,’s as coordinates in the
space of all Hamiltonians, this corresponds to moving slightly away from the position of the fixed point.

The decision to make now is in which direction the renormalization group flow will take the
perturbed system. Working at first order in d\ there are three possibilities:

— The renormalization group flow takes the system back to the fixed point. In this case the corre-
sponding interaction O is called irrelevant.

— R takes the system away from the fixed point. If this is what happens the interaction is called
relevant.

— It is possible that the perturbation actually does not take the system away from the fixed point at
first order in §A. In this case the interaction is said to be marginal and it is necessary to go to
higher orders in A in order to decide whether the system moves to or away from the fixed point,
or whether we have a family of fixed points.

Therefore we can picture the action of the renormalization group transformation as a flow in the
space of coupling constants. In Fig. 15 we have depicted an example of such a flow in the case of a
system with two coupling constants Ay and As. In this example we find two fixed points, one at the
origin O and another at F' for a finite value of the couplings. The arrows indicate the direction in which
the renormalization group flow acts. The free theory at Ay = Ay = 0 is a stable fixed point since any
perturbation dA1,0\s > 0 makes the theory flow back to the free theory at long distances. On the
other hand, the fixed point F' is stable with respect to a certain type of perturbation (along the line with
incoming arrows) whereas for any other perturbations the system flows either to the free theory at the
origin or to a theory with infinite values for the couplings.
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Quantum field theory

We shall now see how these ideas of the renormalization group apply to field theory. Let us begin with a
quantum field theory defined by the Lagrangian

L[¢a] = Lo|da] + Z 9i0il¢a) , (357)

where L[] is the kinetic part of the Lagrangian and g; are the coupling constants associated with the
operators O;[¢,]. In order to make sense of the quantum theory we introduce a cut-off in momenta A. In
principle we include all operators O; compatible with the symmetries of the theory.

In Section 7.2 we saw how, in the cases of QED and QCD, the value of the coupling constant
changed with the scale from its value at the scale A. We can now understand this behaviour along the
lines of the analysis presented above for the Ising model. If we would like to compute the effective
dynamics of the theory at an energy scale ;1 < A, we only have to integrate out all physical models with
energies between the cut-off A and the scale of interest . This is analogous to what we did in the Ising
model by replacing the original spins with the block spins. In the case of field theory the effective action
S[ba, 1] at scale p can be written in the language of functional integration as

(i8I — / [[Doa cSloet] . (358)
u<p<A

Here S[¢q, A] is the action at the cut-off scale,

S[pa, A] = /d49€ {ﬁo[%] + Zgz‘(A)Oi[%]} ; (359)

and the functional integral in Eq. (358) is carried out only over the field modes with momenta in the
range ;# < p < A. The action resulting from integrating out the physics at the intermediate scales
between A and p depends not on the original field variable ¢, but on some renormalized field ¢/,. At
the same time the couplings g; () differ from their values at the cut-off scale g;(A). This is analogous
to what we learned in the Ising model: by integrating out short-distance physics we ended up with a new
Hamiltonian depending on renormalized effective spin variables and with renormalized values for the
coupling constants. Therefore the resulting effective action at scale p can be written as

Sl 1l = / d'x {ﬁo[sb;] +Zg¢(ﬂ)0i[¢;]} : (360)

This Wilsonian interpretation of renormalization sheds light on what in Section 7.1 might have looked
like just a clever way to get rid of the infinities. The running of the coupling constant with the energy
scale can be understood now as a way of incorporating into an effective action at scale u the effects of
field excitations at higher energies £/ > p.

As in statistical mechanics we can also find quantum field theories that are fixed points of the
renormalization group flow, i.e., whose coupling constants do not change with the scale. The most trivial
example of such theories are massless free quantum field theories, but there are also examples of four-
dimensional interacting quantum field theories which are scale invariant. Again we can ask what happens
when a scale-invariant theory is perturbed with some operator. In general the perturbed theory is not scale
invariant any more, but we may wonder whether the perturbed theory flows at low energies towards or
away from the theory at the fixed point.

In quantum field theory this can be decided by looking at the canonical dimension d[O] of the
operator O[¢p,] used to perturb the theory at the fixed point. In four dimensions the three possibilities are
defined by the following:
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— d[O] > 4: irrelevant perturbation. The running of the coupling constants takes the theory back to
the fixed point.

— d[O] < 4: relevant perturbation. At low energies the theory flows away from the scale-invariant
theory.

— d|O] = 4: marginal deformation. The direction of the flow cannot be decided only on dimensional
grounds.

As an example, let us consider first a massless fermion theory perturbed by a four-fermion inter-
action term:

L= ipdy — %(W)2 : (361)

This is indeed a perturbation by an irrelevant operator, since in four dimensions [¢)] = % Interactions
generated by the extra term are suppressed at low energies since typically their effects are weighted by
the dimensionless factor AE4—22 where F is the energy scale of the process. This means that as we try
to capture the relevant physics at lower and lower energies the effect of the perturbation is weaker and
weaker, rendering in the infrared limit £ — 0 again a free theory. Hence, the irrelevant perturbation in
Eq. (361) makes the theory flow back to the fixed point.

On the other hand, relevant operators dominate the physics at low energies. This is the case, for
example, for a mass term. As we lower the energy the mass becomes more important and once the energy
goes below the mass of the field its dynamics is completely dominated by the mass term. This is, for
example, how Fermi’s theory of weak interactions emerges from the Standard Model at energies below
the mass of the W+ boson:

At energies below My = 80.4 GeV the dynamics of the W+ boson is dominated by its mass term and
therefore becomes non-propagating, giving rise to the effective four-fermion Fermi theory.

To summarize our discussion so far, we have found that while relevant operators dominate the
dynamics in the infrared, taking the theory away from the fixed point, irrelevant perturbations become
suppressed in the same limit. Finally we consider the effect of marginal operators. As an example we
take the interaction term in massless QED, O = 1)y} A,. Taking into account that in d = 4 the
dimension of the electromagnetic potential is [A,] = 1, the operator O is a marginal perturbation. In
order to decide whether the fixed-point theory

1 _
Lo = _ZFWFW + ii/)lDib (362)

is restored at low energies or not, we need to study the perturbed theory in more detail. This we did in
Section 7.1 where we learned that the effective coupling in QED decreases at low energies. Then we
conclude that the perturbed theory flows towards the fixed point in the infrared.

As an example of a marginal operator with the opposite behaviour we can write the Lagrangian
for a SU(NV,) gauge theory, L = — iFﬁuFQ M g

1 v vV AQ aoc Aa cv
L= =7 (A7 = 0,AL) (" A™Y — 9 A™W) — dg ™ AL AL OV A
4 P pebepode b AC AN AT = Lo + O, (363)
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i.e., a marginal perturbation of the free theory described by L, which is obviously a fixed point under
renormalization group transformations. Unlike the case of QED we know that the full theory is asymp-
totically free, so the coupling constant grows at low energies. This implies that the operator O, becomes
more and more important in the infrared and therefore the theory flows away from the fixed point in this
limit.

It is very important to note here that in the Wilsonian view the cut-off is not necessarily regarded
as just some artefact to remove infinities, but actually has a physical origin. For example, in the case
of Fermi’s theory of §-decay there is a natural cut-off A = Myy at which the theory has to be replaced
by the Standard Model. In the case of the Standard Model itself the cut-off can be taken at the Planck
scale A ~ 10' GeV or the grand unification scale A ~ 10'6 GeV, where new degrees of freedom are
expected to become relevant. The cut-off serves the purpose of cloaking the range of energies at which
new physics has to be taken into account.

Provided that in the Wilsonian approach the quantum theory is always defined with a physical
cut-off, there is no fundamental difference between renormalizable and non-renormalizable theories.
Actually, a renormalizable field theory, like the Standard Model, can generate non-renormalizable opera-
tors at low energies such as the effective four-fermion interaction of Fermi’s theory. They are not sources
of any trouble if we are interested in the physics at scales much below the cut-off, £ < A, since their
contribution to the amplitudes will be suppressed by powers of %

8 Special topics
8.1 Creation of particles by classical fields
Particle creation by a classical source

In a free quantum field theory the total number of particles contained in a given state of the field is a
conserved quantity. For example, in the case of the quantum scalar field studied in Section 3 we have
that the number operator commutes with the Hamiltonian:

3k oo ~
~_ + ~1
n= | —=a'(k)alk H.n|=0. 364
[ Gel®ati) . (A (364)
This means that any states with a well-defined number of particle excitations will preserve this number
at all times. The situation, however, changes as soon as interactions are introduced, since in this case
particles can be created and/or destroyed as a result of the dynamics.

Another case in which the number of particles might change is if the quantum theory is coupled to
a classical source. The archetypal example of such a situation is the Schwinger effect, in which a classical
strong electric field produces the creation of electron—positron pairs out of the vacuum. However, before
plunging into this more involved situation, we can illustrate the relevant physics involved in the creation
of particles by classical sources with the help of the simplest example: a free scalar field theory coupled
to a classical external source J(x). The action for such a theory can be written as

m?
5= [ s [50.0@0"0(0)  "p-oa? + S| G6s)

where J(z) is a real function of the coordinates. Its identification with a classical source is obvious once
we calculate the equations of motion
(V2 +m?) ¢(z) = J(2) . (366)

Our plan is to quantize this theory but, unlike the case analysed in Section 3, now the presence of the
source .J(x) makes the situation a bit more involved. The general solution to the equations of motion can
be written in terms of the retarded Green function for the Klein—Gordon equation as

o(z) = go(x) + i/d4x' Gr(z —2)J(2'), (367)
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where ¢ (x) is a general solution to the homogeneous equation and

d‘k i " Pk 1 e
t. 7) = —thT _ s 0(t —twit+kd _ lwpt—ip & 36
Gr(t,7) / (2m)* k2 — m2° i6( )/ (27)3 2wy, (e ¢ ) ’ (368)

with () the Heaviside step function. The integration contour to evaluate the integral over p° surrounds
the poles at p® = 4-wy, from above. Since Gr(t, ) = 0 for t < 0, the function ¢o(z) corresponds to the

solution of the field equation at ¢ — —oo, before the interaction with the external source 3.

To make the argument simpler we assume that J(x) is switched on at ¢ = 0, and only lasts for a
time 7, that is

J(t, ) =0 ift <Oort>r. (369)

We are interested in a solution of Eq. (366) for times after the external source has been Ewitched off,
t > 7. In this case the expression (368) can be written in terms of the Fourier modes J(w, k) of the
source as

Bk 1 e~ e e
7) = ) - - —iwgt+ik-T _ * iwpt—ik-T
¢(t, ) = do(x) H/ (27)? 2n [J(wk,k)e J(wr, k)"e . (370)

On the other hand, the general solution ¢o(x) has already been computed in Eq. (77). Combining this
result with Eq. (370) we find the following expression for the late-time general solution to the Klein—
Gordon equation in the presence of the source:

B Bk 1 - (= | iwpttiked
o0 = [ mizae o+ =T | et

_.|_

+ [a*(z) _ (371)
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We should not forget that this is a solution valid for times ¢ > 7, i.e., once the external source has been
disconnected. On the other hand, for ¢ < 0 we find from Eqgs. (367) and (368) that the general solution
is given by Eq. (77).

Now we can proceed to quantize the theory. The conjugate momentum 7(z) = 9p¢(x) can be
computed from Eqs. (77) and (371). Imposing the canonical equal-time commutation relations (74) we
find that «(k), of (k) satisfy the creation—annihilation algebra (51). From our previous calculation we
find that for ¢ > 7 the expansion of the operator ¢(x) in terms of the creation—annihilation operators
a(k), ol (k) can be obtained from the one for ¢ < 0 by the replacement

~ -

ak) — BE) = alk) + J(wk, k)

i

AV 2wk
o) — B =al(B) - —

V2w

Actually, since .J (wg, k) is a c-number, the operators 3(k), 31 (k) satisfy the same algebra as a(k), of (k)

and therefore can be interpreted as well as a set of creation—annihilation operators. This means that we
can define two vacuum states |0_), |0 ) associated with both sets of operators:

~ -

Tlwn ). (372)

a(k)[0_) =0

V. (373)
B(k)|04) =0

'We could have taken instead the advanced propagator G 4 (z), in which case ¢o(z) would correspond to the solution to the
equation at large times, after the interaction with J(z).

68



INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

— —

For an observer at t < 0, a(k) and (k) are the natural set of creation—annihilation operators
in terms of which to expand the field operator ¢(x). After the usual zero-point energy subtraction the
Hamiltonian is given by

HO) = / Bk wy ol (F)a(k) (374)

and the ground state of the spectrum for this observer is the vacuum |0_). At the same time, a second
observer at t > 7 will also see a free scalar quantum field (the source has been switched off at £ = 7) and
consequently will expand ¢ in terms of the second set of creation—annihilation operators /3( E), ﬁT(E). In
terms of these operators the Hamiltonian is written as

H = / Plwg 81 (E)B(E) . (375)

Then for this late-time observer the ground state of the Hamiltonian is the second vacuum state [0 .).

In our analysis we have been working in the Heisenberg representation, where states are time
independent and the time dependence comes in the operators. Therefore the states of the theory are
globally defined. Suppose now that the system is in the ‘in’ ground state |0_). An observer at ¢t < 0 will
find that there are no particles,

A0y =0. (376)

However the late-time observer will find that the state |0_) contains an average number of particles given
by

3
(0-[p™0-) = / (d—ki J(wi, k) (377)

Moreover, |0_) is no longer the ground state for the ‘out’ observer. On the contrary, this state has a
vacuum expectation value for H(+)

~ 1 [ d%k
(+) - | ="
01Dy =5 [ 5

The key to understanding what is going on here lies in the fact that the external source breaks
the invariance of the theory under space-time translations. In the particular case we have studied here,
where J(x) has support over a finite time interval 0 < ¢ < 7, this implies that the vacuum is not invariant
under time translations, so observers at different times will make different choices of vacuum that will
not necessarily agree with each other. This is clear in our example. An observer in ¢ < 7 will choose the
vacuum to be the lowest energy state of her Hamiltonian, [0_). On the other hand, the second observer
at late times ¢t > 7 will naturally choose |0 ) as the vacuum. However, for this second observer, the
state [0_) is not the vacuum of his Hamiltonian, but actually an excited state that is a superposition of
states with a well-defined number of particles. In this sense it can be said that the external source has the
effect of creating particles out of the ‘in” vacuum. Besides, this breaking of time translation invariance
produces a violation in the energy conservation as we see from Eq. (378). Particles are actually created
from the energy pumped into the system by the external source.

~(Wk7 ]%,)‘2

(378)

The Schwinger effect

A classical example of creation of particles by a external field was pointed out by Schwinger [40] and
consists of the creation of electron—positron pairs by a strong electric field. In order to illustrate this effect
we are going to follow a heuristic argument based on the Dirac sea picture and the Wentzel-Kramers—
Brillouin (WKB) approximation.
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Fig. 16: Pair creation by an electric field in the Dirac sea picture

In the absence of an electric field the vacuum state of a spin-% field is constructed by filling all the

negative energy states as depicted in Fig. 2. Let us now connect a constant electric field E=—¢ Uy in
the range 0 < = < L created by an electrostatic potential

0 x <0
V(r) = E(x — xp) O<x<L . (379)
EL x> L

After the field has been switched on, the Dirac sea looks like in Fig. 16. In particular we find that if
EL > 2m there are negative energy states at v > L with the same energy as the positive energy states in
the region z < 0. Therefore it is possible for an electron filling a negative energy state with energy close
to —2m to tunnel through the forbidden region into a positive energy state. The interpretation of such a
process is the production of an electron—positron pair out of the electric field.

We can compute the rate at which such pairs are produced by using the WKB approximation.
Focusing for simplicity on an electron on top of the Fermi surface near x = L with energy FE, the
transmission coefficient in this approximation is given by !'®

L (Bo+y/m2+p7
Twk = exp [— / E( ’ pT) da:\/m2—[Eo—eS(:v—mg)]2+p:,g
%(Eo— m2+ﬁ2)
= exp [—%(ﬁ%er?)] , (380)

where p% = pz% + p?. This gives the transition probability per unit time and per unit cross-section dydz
for an electron in the Dirac sea with transverse momentum pp and energy Ej. To get the total probability
per unit time and per unit volume we have to integrate over all possible values of p'r and Ey. Actually,
in the case of the energy, because of the relation between E( and the coordinate x at which the particle
penetrates into the barrier, we can write d2—E£ = %dw and the total probability per unit time and per unit
volume for the creation of a pair is given by

e€ d*pr _n (52 4m2 e?E? _am?
W=2<%)/(27r)26 = (P7 ):4—71_3@ ez, (381)

!Note that the electron satisfies the relativistic dispersion relation E = /92 + m?2 4 V and therefore —p2 = m? — (E —
V)? + p2. The integration limits are set by those values of z at which p, = 0.
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where the factor of 2 accounts for the two polarizations of the electron.

Then production of electron—positron pairs is exponentially suppressed and it is only sizeable for
strong electric fields. To estimate its order of magnitude it is useful to restore the powers of ¢ and A in
Eq. (381):

6252 _m m2¢e3
— m he& . (382)

The exponential suppression of the pair production disappears when the electric field reaches the critical
value &y at which the exponent is of order one:

m2c?

he

Eorit = ~1.3x10°%Vem™. (383)

This is indeed a very strong field which is extremely difficult to produce. A similar effect, however,
takes place also in a time-varying electric field [41] and there is the hope that pair production could be
observed in the presence of the alternating electric field produced by a laser.

The heuristic derivation that we followed here can be made more precise in QED. There the decay
of the vacuum into electron—positron pairs can be computed from the imaginary part of the effective
action I'[A,,] in the presence of a classical gauge potential A ,:

m@w@ﬁ%

1
u?m

This determinant can be computed using the standard heat kernel techniques. The probability of pair
production is proportional to the imaginary part of :I'[A,,] and gives

iT[A,

— log det [1 Cied (384)

W=l Lo (385)

Our simple argument based on tunnelling in the Dirac sea gave only the leading term of Schwinger’s
result (385). The remaining terms can also be captured in the WKB approximation by taking into account
the probability of production of several pairs, i.e., the tunnelling of more than one electron through the
barrier.

Here we have illustrated the creation of particles by semiclassical sources in quantum field theory
using simple examples. Nevertheless, what we learned has important applications to the study of quan-
tum fields in curved backgrounds. In quantum field theory in Minkowski space—time the vacuum state
is invariant under the Poincaré group and this, together with the covariance of the theory under Lorentz
transformations, implies that all inertial observers agree on the number of particles contained in a quan-
tum state. The breaking of such invariance, as happened in the case of coupling to a time-varying source
analysed above, implies that it is no longer possible to define a state which would be recognized as the
vacuum by all observers.

This is precisely the situation when fields are quantized on curved backgrounds. In particular, if
the background is time dependent (as happens in a cosmological set-up or for a collapsing star) different
observers will identify different vacuum states. As a consequence, what one observer calls the vacuum
will be full of particles for a different observer. This is precisely what is behind the phenomenon of
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Hawking radiation [42]. The emission of particles by a physical black hole formed from gravitational
collapse of a star is the consequence of the fact that the vacuum state in the asymptotic past contains
particles for an observer in the asymptotic future. As a consequence, a detector located far away from
the black hole detects a stream of thermal radiation with temperature

he?

8rGN kM (386)

THawking =
where M is the mass of the black hole, Gy is Newton’s constant and k is Boltzmann’s constant. There
are several ways in which results can be obtained. A more heuristic way is perhaps to think of this
particle creation as resulting from quantum tunnelling of particles across the potential barrier posed by
gravity [43].

8.2 Supersymmetry

One of the things that we have learned in our journey around the landscape of quantum field theory
is that our knowledge of the fundamental interactions in Nature is based on the idea of symmetry, and
in particular gauge symmetry. The Lagrangian of the Standard Model can be written just including all
possible renormalizable terms (i.e., with canonical dimension smaller than or equal to 4) compatible with
the gauge symmetry SU(3) x SU(2) x U(1) and Poincaré invariance. All attempts to go beyond start
with the question of how to extend the symmetries of the Standard Model.

In a quantum field theoretical description of the interaction of elementary particles the basic ob-
servable quantity to compute is the scattering or S-matrix giving the probability amplitude for the scat-
tering of a number of incoming particles with a certain momentum into some final products

A(in — out) = (p,...;in|S|F ;. .. ;out) . (387)
An explicit symmetry of the theory has to be necessarily a symmetry of the S-matrix. Hence it is fair to

ask what is the largest symmetry of the S-matrix.

Let us ask this question in the simple case of the scattering of two particles with four-momenta p;
and po in the t-channel:

D2
Ph

2
n
We shall make the usual assumptions regarding positivity of the energy and analyticity. Invariance of the

theory under the Poincaré group implies that the amplitude can only depend on the scattering angle v
through

t=p —p1)?=2(mi—p1-p}) =2 (m]— E1B] + |p1||p1 /| cos V) . (388)

If there were any extra bosonic symmetry of the theory it would restrict the scattering angle to a set of
discrete values. In this case the S-matrix cannot be analytic since it would vanish everywhere except for
the discrete values selected by the extra symmetry.

Actually, the only way to extend the symmetry of the theory without renouncing the analyticity of
the scattering amplitudes is to introduce ‘fermionic’ symmetries, i.e., symmetries whose generators are
anticommuting objects [44]. This means that in addition to the generators of the Poincaré group!” PH,

"The generators M*” are related with the ones for boost and rotations introduced in Section 4.1 by J* = M, M* =
%s”k’M % In this section we also use the ‘dotted spinor’ notation, in which spinors in the (%, 0) and (O, %) representations of
the Lorentz group are indicated by undotted (a, b, . . .) and dotted (a, b,...) indices, respectively.
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MH and the ones for the internal gauge symmetries (G, we can introduce a number of fermionic gen-
erators QGIL, Q, I =1,...,N), where Q;; = (Qé)f. The most general algebra that these generators
satisfy is the N -extended supersymmetry algebra [45]

{Q{zz@(}J} = QUngu51J7

Qi Q) = 2ewZ", (389)
—I —=J —=IJ
{Qa:Qi} = —26,542 7, (390)
where Z!7 € C commutes with any other generator and satisfies Z// = — 27! Besides we have the

commutators that determine the Poincaré transformations of the fermionic generators QGIL, Q-

[ ({NPM] = [@dlvpu] =0,
1
(Qu M) = 3(0™)JQp (391)
_ , 1, b=
(Qor, M"] = _§(Uu )abeh
where 0¥ = —io?, 0¥ = £UkgF and T = (0"¥)T. These identities simply mean that Q, Q, ;

transform in the (3, 0) and (0, ) representations of the Lorentz group, respectively.

We know that the presence of a global symmetry in a theory implies that the spectrum can be
classified in multiplets with respect to that symmetry. In the case of supersymmetry we start with the
case N/ = 1 in which there is a single pair of supercharges @Q,, Q,, satisfying the algebra

{Qm@j;} = QngPu s {QLH Qb} = {@dv@(}} =0. (392)

Note that in the A/ = 1 case there is no possibility of having central charges.

We study now the representations of the supersymmetry algebra (392), starting with the massless
case. Given a state |k) satisfying k? = 0, we can always find a reference frame where the four-vector k*
takes the form k* = (F,0,0, E). Since the theory is Lorentz covariant we can obtain the representation
of the supersymmetry algebra in this frame where the expressions are simpler. In particular, the right-
hand side of the first anticommutator in Eq. (392) is given by

0 0
20" P, = 2(P° — o3P3) = (0 A E) . (393)

Therefore the algebra of supercharges in the massless case reduces to

{Q1.Q1} = {Qu.Q}y=0,

{Q2,Q)} = 4E. (394)
The commutator {Q), Qi} = 0 implies that the action of (1 on any state gives a zero-norm state of the
Hilbert space |Q1|¥)| = 0. If we want the theory to preserve unitarity we must eliminate these null

states from the spectrum. This is equivalent to setting (21 = 0. On the other hand, in terms of the second
generator (Jo we can define the operators

1 1
— T i
a=—=0Q, a' = ——=Q) , 395
2VE ? 20WE *? %)
which satisfy the algebra of a pair of fermionic creation—-annihilation operators, {a,a} = 1, a®> =

(a™)? = 0. Starting with a vacuum state a|\) = 0 with helicity A we can build the massless multiplet
IA), A+ 1) =al|)). (396)

Here we consider two important cases.
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— Scalar multiplet: We take the vacuum state to have zero helicity [0™) so the multiplet consists of a
scalar and a helicity—% state

07, |1y =aljo") . (397)

However, this multiplet is not invariant under the CPT transformation which reverses the sign of
the helicity of the states. In order to have a CPT-invariant theory we have to add to this multiplet
1

its CPT conjugate which can be obtained from a vacuum state with helicity A = — 5

- 1
07), —32)- (398)
Putting them together we can combine the two zero-helicity states with the two fermionic ones

into the degrees of freedom of a complex scalar field and a Weyl (or Majorana) spinor.
Vector multiplet: Now we take the vacuum state to have helicity A = %, so the multiplet contains

also a massless state with helicity A =1

3)

1) = af| 5.

(399)

As with the scalar multiplet we add the CPT conjugate obtained from a vacuum state with helicity

A=—1

-4

)

(400)

which together with Eq. (399) give the propagating states of a gauge field and a spin—% gaugino.

In both cases we see the trademark of supersymmetric theories: the number of bosonic and fermionic
states within a multiplet are the same.

In the case of extended supersymmetry we have to repeat the previous analysis for each supersym-
metry charge. At the end, we have A\ sets of fermionic creation—annihilation operators {a’, a}} = ! 7>

(ar)? = (a})2 = 0. Let us work out the case of N/ = 8 supersymmetry. Since for several reasons we do
not want to have states with helicity larger than 2, we start with a vacuum state | — 2) of helicity A = —2.
The rest of the states of the supermultiplet are obtained by applying the eight different creation operators

a} to the vacuum.

8
A=2 a{...agl—% (8):lstate,
3 8
)\25: a}l...a}7|—2> (7):8states,
8
A=1 a}l . ..a}6| -2) (6) = 28 states ,
1 8
)\:5: a}l...a}5]—2> <5>:56states,
8
A=0: d} ...a}|-2) (4) = 70 states , (401)
1 8
A=——: a}lakak\ -2) = 56 states ,
2 3
8
A=-1 GRQL‘ —2) (2) = 28 states ,
3 8
)\:—5: a}1]—2> <1> = 8 states ,
A=—-2: | —2) 1 state .

Putting together the states with opposite helicity we find that the theory contains
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1 spin-2 field g,,,, (a graviton),

8 spin-% gravitino fields wﬁ,
28 gauge fields A,[f‘]],
56 spin-4 fermions ¢!/ K1,

70 scalars d)UJKL],

where by [I.J...] we have denoted that the indices are antisymmetrized. We see that, unlike the massless
multiplets of A/ = 1 supersymmetry studied above, this multiplet is CPT invariant by itself. As in the
case of the massless A/ = 1 multiplet, here we also find as many bosonic as fermionic states:

bosons: 1428470428 +1=128 states
fermions: 8+ 56+ 56 +8 =128 states .

Now we study briefly the case of massive representations |k), k2 = M?2. Things become simpler
if we work in the rest frame where P° = M and the spatial components of the momentum vanish. Then,
the supersymmetry algebra becomes

{Qh, Q1 =2M6,56" ;. (402)
We proceed now in a similar way to the massless case by defining the operators
1 1 —
Go=7=Qh,  ah;=—7=CQur. (403)

Noy; V2M

The multiplets are found by choosing a vacuum state with a definite spin. For example, for N' = 1 and
taking a spin-0 vacuum |0) we find three states in the multiplet transforming irreducibly with respect to
the Lorentz group:

0}, al|0), e*alal |0y, (404)

which, once transformed back from the rest frame, correspond to the physical states of two spin-0 bosons
and one spin—% fermion. For N -extended supersymmetry the corresponding multiplets can be worked
out in a similar way.

The equality between bosonic and fermionic degrees of freedom is at the root of many of the
interesting properties of supersymmetric theories. For example, in Section 4 we computed the divergent
vacuum energy contributions for each real bosonic or fermionic propagating degree of freedom as'®

Eype = 1%5(6) / dpwy , (405)

where the sign £ corresponds to bosons and fermions, respectively. Hence, for a supersymmetric the-
ory the vacuum energy contribution exactly cancels between bosons and fermions. This boson—fermion
degeneracy is also responsible for supersymmetric quantum field theories being less divergent than non-
supersymmetric ones.
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contribution of the four real propagating degrees of freedom of a Dirac spinor.
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Appendix
A Crash course in group theory

In this Appendix we summarize some basic facts about group theory. Given a group G, a representation
of GG is a correspondence between the elements of G and the set of linear operators acting on a vector
space V/, such that for each element of the group g € G there is a linear operator D(g)

D(g):V —V (A.1)
satisfying the group operations

D(g1)D(g2) = D(g192) , D(g7")=D(gq1)" ", 91,92 €G . (A.2)

The representation D(g) is irreducible if and only if the only operators A : V' — V commuting with all
the elements of the representation D(g) are the ones proportional to the identity

[D(g),A] =0, Vg — A=A, XeC. (A.3)

More intuitively, we can say that a representation is irreducible if there is no proper subspace U C V'
(i.e., U # V and U # () such that D(g)U C U for every element g € G.

Here we are especially interested in Lie groups whose elements are labelled by a number of con-
tinuous parameters. In mathematical terms this means that a Lie group is a manifold M together with
an operation M x M —— M that we shall call multiplication that satisfies the associativity property
g1 (g2 - 93) = (g1 - g2) - g3 together with the existence of unity g1 = 1g = g for every ¢ € M and
inverse gg~! = g lg = 1.

The simplest example of a Lie group is SO(2), the group of rotations in the plane. Each element
R(0) is labelled by the rotation angle 6, with the multiplication acting as R(01)R(62) = R(61 + 62).
Because the angle § is defined only modulo 27, the manifold of SO(2) is a circumference S

One of the interesting properties of Lie groups is that in a neighbourhood of the identity element

they can be expressed in terms of a set of generators 7¢ (¢ = 1,...,dim G) as
o ()"
D(g) = exp[—ia T = > Oy - g, T T (A4)
n=0

where «, € C are a set of coordinates of M in a neighbourhood of 1. Because of the general Baker—
Campbell-Haussdorf formula, the multiplication of two group elements is encoded in the value of the
commutator of two generators, which in general has the form

[T, T% = ifeT, (A.5)

where f¢ € C are called the structure constants. The set of generators with the commutator operation
form the Lie algebra associated with the Lie group. Hence, given a representation of the Lie algebra
of generators we can construct a representation of the group by exponentiation (at least locally near the
identity).

We illustrate these concepts with some particular examples. For SU(2) each group element is
labelled by three real number o, 7 = 1,2, 3. We have two basic representations: one is the fundamental
representation (or spin %) defined by

D, (a;) = e 27 (A.6)

with o the Pauli matrices; the other is the adjoint (or spin 1) representation, which can be written as

Dy (o) = e " | (A7)
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where

-1 0

0 0 0 10
1], J2=10 0 0|, J=1-10 0] . (A.8)
0 10 0 0

Actually, J? (i = 1,2, 3) generate rotations around the z, y and z axis, respectively. Representations of
spin j € N+ % can also be constructed with dimension
dimDj(g) =25+ 1. (A.9)

As a second example we consider SU(3). This group has two basic three-dimensional representa-
tions denoted by 3 and 3, which in QCD are associated with the transformation of quarks and antiquarks
under the colour gauge symmetry SU(3). The elements of these representations can be written as

D3(a%) = e29"Xe | Dz(a®) = e~29"\a (a=1,...,8), (A.10)

where A, are the eight Hermitian Gell-Mann matrices

010 0 — 0 1 0 0
Al = 10 0], =7 0 0], A3=10 -1 0
000 0 O 0 0 O
0 0 1 0 0 —1 000
M = |0 0 0], Xs=(0 0 0], =10 0 1], (A.11)
1 00 ¢ 0 0 010
1
00 0 s 0 0
Moo= (00 —i], =10 % 0
0 ¢« 0 0 0 —=
3
Hence the generators of the representations 3 and 3 are given by
1 = 1.7
T3) = 5)\6“ T%(3) = —§Aa . (A.12)

Irreducible representations can be classified in three groups: real, pseudoreal, and complex.

— Real representations: A representation is said to be real if there is a symmetric matrix S which acts
as intertwiner between the generators and their complex conjugates

T = —87°57 1, st =g. (A.13)

This is, for example, the case for the adjoint representation of SU(2) generated by the matrices
(A.8)

— Pseudoreal representations: These are the representations for which an antisymmetric matrix S
exists with the property

a

T =-ST1°S71, ST =-9. (A.14)
As an example we can mention the spin—% representation of SU(2) generated by %ai.

— Complex representations: A representation is complex if the generators and their complex con-
jugate are not related by a similarity transformation. This is for instance the case for the two
three-dimensional representations 3 and 3 of SU(3).
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There are a number of invariants that can be constructed associated with an irreducible represen-
tation 1 of a Lie group G and that can be used to label such a representation. If 1'% are the generators
in a certain representation R of the Lie algebra, it is easy to see that the matrix zgﬁc TRTy commutes
with every generator T';. Therefore, because of Schur’s lemma, it has to be proportional to the identity '°.
This defines the Casimir invariant Cy(R) as

dim G

> TTH = Cy(R)1. (A.15)

a=1
A second invariant T5(R) associated with a representation R can also be defined by the identity

Tr TATY = T (R)6™ . (A.16)
Actually, taking the trace in Eq. (A.15) and combining the result with Eq. (A.16) we find that both
invariants are related by the identity

Cy(R)dim R = T5(R) dim G, (A.17)

with dim R the dimension of the representation R.

These two invariants appear frequently in quantum field theory calculations with non-Abelian
gauge fields. For example T5(R) comes about as the coefficient of the one-loop calculation of the beta
function for a Yang—Mills theory with gauge group G. In the case of SU(N), for the fundamental repre-
sentation, we find the values

N? -1 1
fund) = T5(fund) = = A.l
C(fund) o 5(fund) 5 (A.18)
whereas for the adjoint representation the results are
Cy(adj) = N, T>(adj) = N . (A.19)

A third invariant A(R) is especially important in the calculation of anomalies. As discussed
in Section 6, the chiral anomaly in gauge theories is proportional to the group theoretical factor Tr
[T&{Th,TE}]. This leads us to define A(R) as

Tr {Tg{Tg,Tﬁz}} = A(R),d™ (A.20)

where d° is symmetric in its three indices and does not depend on the representation. Therefore the
cancellation of anomalies in a gauge theory with fermions transformed in the representation R of the
gauge group is guaranteed if the corresponding invariant A(R) vanishes.

It is not difficult to prove that A(R) = 0 if the representation R is either real or pseudoreal. Indeed,
if this is the case, then there is a matrix S' (symmetric or antisymmetric) that intertwines the generators
T, and their complex conjugates TaR = —STRS ~L. Then, using the hermiticity of the generators we can
write

a c a c T RO (FRb FRC
Tr [TR{TE,TR}} _ {TR{TIZ,TR}} = Tr [TR{TR,TR}} . (A21)
Now, using Eq. (A.13) or Eq. (A.14) we have
Tr [T;{T‘;,T;}} = —Tv [STgs*{STgs*,STgs*}} = —Tr [Tg{Tg,Tﬁ}} . (A22)

which proves that Tr [T8{T%, T5}] and therefore A(R) = 0 whenever the representation is real or pseu-
doreal. Since the gauge anomaly in four dimensions is proportional to A(R), this means that anomalies
appear only when the fermions transform in a complex representation of the gauge group.

19Schur’s lemma states that a representation of a group is irreducible if and only if all matrices commuting with every element
of the representation are proportional to the identity.
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Introduction to QCD in hadronic collisions

M.L. Mangano
CERN, Geneva, Switzerland

Abstract
I review in this series of lectures the basics of perturbative quantum chromo-
dynamics and some simple applications to the physics of high-energy hadronic
collisions.

1 Introduction

Quantum chromodynamics (QCD) is the theory of strong interactions. It is formulated in terms of ele-
mentary fields (quarks and gluons), whose interactions obey the principles of a relativistic quantum field
theory, with a non-Abelian gauge invariance SU(3). The emergence of QCD as a theory of strong inter-
actions could be reviewed historically, analysing the various experimental data and the theoretical ideas
available in the years 1960-1973 (see, for example, Refs. [17, 18]). To do this accurately and usefully
would require more time than I have available. I therefore prefer to introduce QCD right away, and to
use my time in exploring some of its consequences and applications. I will therefore assume that you all
know more or less what QCD is! I assume you know that hadrons are made of quarks, that quarks are
spin-1/2, colour-triplet fermions, interacting via the exchange of an octet of spin-1 gluons. I assume you
know the concept of running couplings, asymptotic freedom and of confinement. I shall finally assume
that you have some familiarity with the fundamental ideas and formalism of quantum electrodynamics
(QED): Feynman rules, renormalization, gauge invariance.

If you go through lecture series on QCD (e.g., the lectures given in previous years at the European
Schools of High-Energy Physics, Refs. [9—11]), you will hardly ever find the same item twice. This is
because QCD today covers a huge set of subjects and each of us has his own concept of what to do
with QCD and of what are the ‘fundamental’ notions of QCD and its ‘fundamental’ applications. As a
result, you will find lecture series centred around non-perturbative applications, (lattice QCD, sum rules,
chiral perturbation theory, heavy-quark effective theory), around formal properties of the perturbative
expansion (asymptotic behaviour, renormalons), techniques to evaluate complex classes of Feynman
diagrams, or phenomenological applications of QCD to possibly very different sets of experimental data:
structure functions, deep-inelastic scattering (DIS) sum rules, polarized DIS, small-z physics (including
hard pomerons, diffraction), LEP physics, pp collisions, etc.

I will not be able to cover or even to mention all of this. After introducing some basic material, I
will focus on some elementary applications of QCD in high-energy phenomena, and in particular on the
case of hadron—hadron collisions. The material covered in these lectures includes the following.

1. Gauge invariance and Feynman rules for QCD.

2. The structure of the proton.

3. The evolution of final states: from quarks and gluons to hadrons.
4.

Some key hard processes in hadron—hadron collisions: formalism, W/Z production, jet produc-
tion.

The treatment will be very elementary, and the emphasis will be on basic and intuitive physics concepts.
Explicit details and the derivation of equations and formulas is left for a few appendices, covering

a. renormalization, running coupling, renormalization group invariance;
b. deep-inelastic scattering and evolution equations;
c. jet observables in eTe™ collisions.
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Given the large number of papers which have contributed to the development of the field, it is impossible
to provide a fair bibliography. I therefore limit my list of references to some excellent books and review
articles covering the material presented here, and more. Papers on specific items can be easily found by
consulting the standard hep-th and hep-ph preprint archives.

2 QCD Feynman rules

Before starting with the applications, we need to spend some time developing the formalism and the nec-
essary theoretical ideas. I will start from the Feynman rules. I will use an approach which is not canoni-
cal, namely it does not follow the standard path of the construction of a gauge-invariant Lagrangian and
the derivation of Feynman rules from it. I will rather start from QED, and empirically construct the ex-
tension to a non-Abelian theory by enforcing the desired symmetries directly on some specific scattering
amplitudes. Hopefully, this will lead to a better insight into the relation between gauge invariance and
Feynman rules. It will also provide you with a way of easily recalling or checking your rules when books
are not around!

2.1 Summary of QED Feynman rules

We start by summarizing the familiar Feynman rules for QED. They are obtained from the Lagrangian

L= G0~ m)p — e — 3 Fyu F™ (1)

where ) is the electron field, of mass m and coupling constant e, and F'* is the electromagnetic field
strength.

F =0,A, —0,A, . ()
The resulting Feynman rules are summarized in the following table:
P 3 +m
= ‘ — 4 : (3)
p—mtic  p*—m?+ie

Iz P v v

NANNANNNNNAN = — 2g“ — (Feynman gauge) 4)
pe+ e
7

= —iey,Q (Q = —1 for the electron, ) = 2/3 for the u-quark, etc.)
5)

Let us start by considering a simple QED process, e"e~ — ~~ (for simplicity we shall always assume
m = 0):

q kl’ v’ q kl’ o2
= D1+ D>. (6)
E ]kg, v E ]kg, v
The total amplitude M, is given by
i _ 1 g 1 H_v
M, = Dy + Do =0(q) ¢y £rulg) + 0@, — ¢y n(e) = Mudics. (D)
e d— ¥ d— ko
Gauge invariance demands that
5O M, = €f0" M, = 0. 8)
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M, = M,y,e5 is in fact the current that couples to the photon k;. Charge conservation requires
o,M* = 0:
"

oM'=0 = / Mz = / doM° d*x
/v Md3x—/ dX =0. 9)
S—o00

KM, =0, (10)

In momentum space, this means

Another way of saying this is that the theory is invariant if €,,(k) — €,(k)+ f(k) k.. This is the standard
Abelian gauge invariance associated with the vector potential transformations:

Ay(x) = Ay(z) + 0uf(z) . (11)

Let us verify that M, is indeed gauge invariant. Using ¢u(q) = v(q)¢ = O from the Dirac
equation, we can rewrite k{' M), as

KM, = v<q>¢2ﬁ<kl—¢>u<q>+v<q><k1—q> —tau(a)
— —0(@)¢yulg) + 0(@)fyulg) = 0. (12)

Notice that the two diagrams are not individually gauge invariant, only the sum is. Notice also that the
cancellation takes place independently of the choice of e5. The amplitude is therefore gauge invariant
even in the case of emission of non-transverse photons.

Let us try now to generalize our QED example to a theory where the ‘electrons’ carry a non-
Abelian charge, i.e., they transform under a non-trivial representation R of a non-Abelian group G
(which, for the sake of simplicity, we shall always assume to be of the SU(/V) type. Likewise, we
shall refer to the non-Abelian charge as ‘colour’). The standard current operator belongs to the product
R ® R. The only representation that belongs to R ® R for any R is the adjoint representation. Therefore
the field that couples to the colour current must transform as the adjoint representation of the group G.
So the only generalization of the photon field to the case of a non-Abelian symmetry is a set of vector
fields transforming under the adjoint of G, and the simplest generalization of the coupling to fermions
takes the form

a,a

= 19k Ymn (13)

where the matrices A\ represent the algebra of the group on the representation R. By definition, they
satisfy the algebra

[)\a )\b] fabCAC (14)
for a fixed set of structure constants f°¢, which uniquely characterize the algebra. We shall call quarks
(¢) the fermion fields in 12 and gluons (g) the vector fields which couple to the quark colour current.

The non-Abelian generalization of the ete™ — ~ process is the ¢q§ — ¢g annihilation. Its
amplitude can be evaluated by including the A matrices in Eq. (6):

i i
5 My — g_zMg = (A°A%);; Dy + (A*A°);; Dy (15)
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where (a, b) are colour labels (i.e., group indices) of gluons 1 and 2, and (3, j) are colour labels of g, g,
respectively. Using Eq. (14), we can rewrite Eq. (15) as

My = (A"X0);; My, — g% f*°)X; Dy (16)
If we want the charge associated with the group G to be conserved, we still need to demand
k‘l‘egMg‘”:e‘fké’Mg“’ =0. (17)
Substituting €)' — k%' in Eq. (16) we get instead, using Eq. (12),

ki My = —g? [ A5 () £ouilg) - (18)

The gauge cancellation taking place in QED between the two diagrams is spoiled by the non-Abelian
nature of the coupling of quarks to gluons (i.e., \* and \® do not commute, and ¢ £ 0).

The only possible way to solve this problem is to include additional diagrams. That new interac-
tions should exist is by itself a reasonable fact, since gluons are charged (i.e., they transform under the
symmetry group) and might want to interact among themselves. If we rewrite Eq. (18) as

By = i (g k) x (19 X5, 0(@) 7 u(@)) (19)

we can recognize in the second factor the structure of the qgg vertex. The first factor has the appropriate
colour structure to describe a triple-gluon vertex, with a, b, ¢ the colour labels of the three gluons:
ke U2

b
ks M3

=49 fabc VH«IP&MS (k17 k2a k3) . (20)

C

ki
Equation (19) therefore suggests the existence of a coupling like Eq. (20), with a Lorentz structure
Vi uops 10 be specified, giving rise to the following contribution to ¢ — gg:

q k, v
p L o i
= —ig°Ds = (ig \{;)v(Q)iv" u(q); (p—2>

q ke p 9F " Viwp(=p, ki ko) e (k1) h(kz) . (1)

We now need to find V), 1,5 (P1, P2, p3) and to verify that the contribution of the new diagram to k1 - M,
cancels that of the first two diagrams. We will now show that the constraints of Lorentz invariance, Bose
symmetry and dimensional analysis uniquely fix V, up to an overall constant factor.

Dimensional analysis fixes the coupling to be linear in the gluon momenta. This is because each
vector field carries dimension 1, there are three of them, and the interaction must have total dimension
equal to 4. So at most one derivative (i.e., one power of momentum) can appear at the vertex. In principle,
if some mass parameter were available, higher derivatives could be included, with the appropriate powers
of the mass parameter appearing in the denominator. This is however not the case. It is important
to remark that the absence of interactions with a higher number of derivatives is also crucial for the
renormalizability of the interaction.

Lorentz invariance requires then that V' be built out of terms of the form g, ., p,.;. Bose symmetry
requires V' to be fully antisymmetric under the exchange of any pair (1, p;) < (145, p;) since the colour
structure £ is totally antisymmetric. As a result, for example, a term like GuapuePs” vanishes under
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antisymmetrization, while g, ,,,p{® does not. Starting from this last term, we can easily add the pieces
required to obtain the full antisymmetry in all three indices. The result is unique, up to an overall factor:

Vinpops = Vo [(kl - kQ)Mgg/ulm + (k2 - k3)mgu2u3 + (k3 - kl)wgmm] . (22)

To test the gauge variation of the contribution D3, we set ug = p,e1 = ki and ks = —(k1 + ko) in
Eq. (21), and we get

k1 eh? Vi (k1 ko, k3) = Vo {=(k1 + k)" (k1 - €2) + 2(k1 - ka)ey — (k- e2) Ry} . (23)
The gauge variation is therefore

ky-€ex
- 2]{:1]{2”((])%1“@)} : (24)

ki Dy = 2FPoNV, {v<q>¢2u<q>

The first term cancels the gauge variation of Dy + D5 provided Vj = 1; the second term vanishes for a
physical gluon ks, since in this case ks - €3 = 0. D1 + Dy + Ds is therefore gauge invariant but, contrary
to the case of QED, only for physical external on-shell gluons.

Having introduced a three-gluon coupling, we can induce processes involving only gluons, such

as gg — gg-
+ +

Once more it is necessary to verify the gauge invariance of this amplitude. It turns out that one more
diagram is required, induced by a four-gluon vertex. Lorentz invariance, Bose symmetry and dimensional
analysis uniquely determine once again the structure of this vertex. The overall factor is fixed by gauge
invariance. The resulting Feynman rule for the four-gluon vertex is given in Fig. 1.

You can verify that the three- and four-gluon vertices we introduced above are exactly those which
arise from the Yang—Mills Lagrangian:

1 a apy . a a abc pb gc
Lym =~ Z Fg P with  Ff, = 0y, A — g f*° A AY (26)

It can be shown that the three- and four-gluon vertices we generated are all is needed to guarantee gauge
invariance even for processes more complicated than those studied in the previous simple examples. In
other words, no extra five-or-more-gluon vertices have to be introduced to achieve the gauge invariance
of higher-order amplitudes. At the tree level this is the consequence of dimensional analysis and of the
locality of the couplings (no inverse powers of the momenta can appear in the Lagrangian). At the loop
level, these conditions are supplemented by the renormalizability of the theory [3,7].

Before one can start calculating cross-sections, a technical subtlety that arises in QCD when squar-
ing the amplitudes and summing over the polarization of external states needs to be discussed. Let us
again start from the QED example. Let us focus, for example, on the sum over polarizations of photon

k‘li
> IMP? = (ZEH*> M, M; . (27)
€1 €1

The two independent physical polarizations of a photon with momentum &k = (ko;0,0, ko) are given by
ei p=(0;1,44,0)/+/2. They satisfy the standard normalization properties:

€, - €, = —1=¢€pr-€p €L e =0
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p —ig®h
X g9 q0 0B = % 22 J —  (Feynman gauge)
p* + 1€
a p b — §ab ¢
T E P2+ ic
in P kmo _ ik i
P—m+ie mn
b,p
q
= 9" g0~ )+ " g — 7)" + g — p)?
ye T
a, X c,y
a, b, B
_ _Z‘g2fxa0fa:bd <gaﬁg'y5 o gaégﬂ'y)
_ig2fxadfxbc <gaﬁgv<§ o ga'yg,&S)
c,y d,é _ig2fxabfxcd <ga'ygﬁ6 _ gaégﬂ'y)
a, o
/%\ _ _gfabc qa
a g
b/ a, o ¢
= g )‘zz ’Y'rofzn
i“n k.m

Fig. 1: Feynman rules for QCD. The solid lines represent the fermions, the curly lines the gluons, and the dotted
lines the ghosts.
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We can write the sum over physical polarizations in a convenient form by introducing the vector k =
(k()a 07 07 _kO):
0

i = Kk

(28)

€
i=L,R

je = 9w+

0
0

We could have written the sum over physical polarizations using any other momentum ¢, provided
k- ¢ # 0. This would be equivalent to a gauge transformation (prove it as an exercise). In QED the
second term in Eq. (28) can be safely dropped, since k, M* = 0. As a cross-check, notice that k, M* = 0
implies My = M3, and therefore

o = O O

1
0 0
0

e MP =M + [Myf* = [My? + | Ma|? + [Ms|* — | Mo|* = —g™ M, M . (29)
i=L,R

Therefore, the production of the longitudinal and time-like components of the photon cancel each other.
This is true regardless of whether additional external photons are physical or not, since the gauge in-
variance k1 - M = 0 shown in Eq. (12) holds regardless of the choice for €, as already remarked. In
particular,

k! ngMIMMQ =0 (30)

(for n photons, ki k5* ... k" My, ., = 0) and the production of any number of unphysical photons
vanishes. The situation in the case of gluon emission is different, since k1 - M € - ko, which vanishes
only for a physical e5. This implies that the production of one physical gluon and one non-physical gluon
is equal to 0, but the production of a pair of non-physical gluons is allowed! If €5 - ko # 0, then My is
not equal to M3, and Eq. (28) is not equivalent to ) €65, = — g,

Exercise: show that

T 2
lekQU(q)k/l u(q)| - 3D

Y EMu = ig? fex

non-physical

In the case of non-Abelian theories, it is therefore important to restrict the sum over polarizations and
(because of unitarity) the off-shell propagators to physical degrees of freedom with the choice of physical
gauges. Alternatively, one has to undertake a study of the implications of gauge-fixing in non-physical
gauges for the quantization of the theory (see Refs. [3,7]). The outcome of this analysis is the appearance
of two colour-octet scalar degrees of freedom (called ghosts) whose rdle is to enforce unitarity in non-
physical gauges. They will appear in internal closed loops, or will be pair-produced in final states.
They only couple to gluons. Their Feynman rules are supplemented by the prescription that each closed
loop should come with a —1 sign, as if they obeyed Fermi statistics. Being scalars, this prescription
breaks the spin-statistics relation, and leads as a result to the possibility that production probabilities
are negative. This is precisely what is required to cancel the contributions of non-transverse degrees of
freedom appearing in non-physical gauges. Adding the ghosts contribution to ¢qg — gg decays (using
the Feynman rules from Fig. 1) gives in fact

2
F 2

. . 2 rabcyc —
8 = — A —— , 32
“« ig” f 2k1k2v(Q)k/1 u(q) (32)

which exactly cancels the contribution of non-transverse gluons in the non-physical gauge > €,€) =
—Yuv» given in in Eq. (31).
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The detailed derivation of the need for and properties of ghosts (including their Feynman rules and
the ‘—1’ prescription for loops) can be found in the suggested textbooks. I will not derive these results
here since we will not need them for our applications (we will use physical gauges or will consider
processes not involving the three-gluon vertex). The full set of Feynman rules for the QCD Lagrangian
is summarized in Fig. 1. Their application to the renormalization of vertices and couplings at one-loop
is discussed in Appendix A.

2.2 Some useful results in colour algebra

The presence of colour factors in the Feynman rules makes it necessary to develop some technology to
evaluate the colour coefficients which multiply our Feynman diagrams. To be specific, we shall assume
the gauge group is SU(NV). The fundamental relation of the algebra is

(X%, A7 = ifedne (33)

with f%¢ totally antisymmetric. This relation implies that all A matrices are traceless. For practical
calculations, since we will always sum over initial, final, and intermediate state colours, we will never
need the explicit values of f%¢. All of the results can be expressed in terms of group invariants (a.k.a.
Casimirs), some of which we will now introduce. The first such invariant (7F) is chosen to fix the
normalization of the matrices \:

tr(AA) = Tgdgp (34)

where by convention 7 = 1/2 for the fundamental representation. Should you change this convention,
you would need to change the definition (i.e., the numerical value) of the coupling constant g, since g A
appears in the Lagrangian and in the Feynman rules.

Exercise: Show that tr(\®\?) is indeed a group invariant. Hint: write the action on A\* of a general group
transformation with infinitesimal parameters €® as follows:

SN = Z enf N . (35)

b,c

The definition of 7T allows us to evaluate the colour factor for an interesting diagram, i.e., the quark

self-energy:
Y a
1 )\ﬁ)\ ‘]N Z()\QAG)Z‘]‘ = C]:(Sij . (36)

The value of Cf can be obtained by tracing the relation above:

N2 -1
2

CeN = tr Z NN = 59 TRg,, = (37)

where we used the fact that 6?8, = N? — 1, the number of matrices A (and of gluons) for SU(V).

There are some useful graphical tricks (which I learned from P. Nason [9]) that can be used to
evaluate complicated expressions. The starting point is the following representation for the quark and
gluon propagators, and for the qgg and ggg interaction vertices:

S fermion (38)

—— gluon 39)
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12 JL - % L fermion—gluon vertex (¢%) (40)
% /*K — 3-gluon vertex (f%%°) . (41)

Contraction over colour indices is obtained by connecting the respective colour (or anticolour) lines. A
closed loop of a colour line gives rise to a factor IV, since the closed loop is equivalent to the trace of the
unit matrix. So the above representation of the ggg vertex embodies the idea of ‘colour conservation’,
whereby the colour-anticolour quantum numbers carried by the gq pair are transferred to the gluon.
The piece proportional to 1/N in the gGg vertex appears only when the colour of the quark and of the
antiquark are the same. It ensures that A* is traceless, as it should be. This can be easily checked as an
exercise. The factor 1/1/2 is related to the chosen normalization of Tf.

S

As a first example of applications, let us re-evaluate Ck:

o e [ ),

1
V2 N V2

j

=zl

e =y “2)
As an exercise, you can calculate the colour factor for g¢ — ¢q scattering, and show that
j 1
1 1 1 1
Z()\“)ij()\“)ek = = = - = = = (5@'1@5@' - _5ij5£k) . (43)
- 2 N 2 N
i k

This result can be used to evaluate the one-loop colour factors for the interaction vertex with a photon:

1 A 1 IN2 -1
= N/\ = S0y = Crdy. (44

For the interaction with a gluon, we have instead

00

&9

2|~

DO | =
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Al

1
- _W\T )\ = —5% . (45)

Note that in the case of the coupling to the photon, the qq pair is in a colour-singlet state and the gluon
exchange effect has a positive sign (= attraction). In the case of the coupling to the gluon, the ¢¢
pair is in a colour-octet state and the gluon-exchange correction has a negative sign relative to the Born
interaction. The force between a ¢q pair is therefore attractive if the pair is in a colour-singlet state, and
repulsive if it is in a colour-octet state! This gives a qualitative argument for why no colour-octet gq
bound state exists.

The remaining important relation that one needs is the following:

Z fabepabd — 1, 594 with C)y = (46)

You can easily prove it by using the graphical representation given in Eq. (41), or by using Eq. (43) and
[0 = — 24 tr([A?, A°] X°).

3 QCD and the proton structure at large Q?

The understanding of the structure of the proton at short distances is one of the key ingredients to be able
to predict cross-section for processes involving hadrons in the initial state. All processes in hadronic col-
lisions, even those intrinsically of electroweak nature such as the production of W/Z bosons or photons,
are in fact induced by the quarks and gluons contained inside the hadron. In this lecture I will introduce
some important concepts, such as the notion of partonic densities of the proton, and of parton evolution.
These are the essential tools used by theorists to predict production rates for hadronic reactions.

We shall limit ourselves to processes where a proton—(anti)proton pair collides at high centre-
of-mass energy (v/S, typically larger than several hundred GeV) and undergoes a strongly inelastic
interaction, with momentum transfers between the participants in excess of several GeV. The outcome
of this hard interaction could be the simple scattering at large angle of some of the hadron’s elementary
constituents, their annihilation into new massive resonances, or a combination of the two. In all cases the
final state consists of a large multiplicity of particles, associated with the evolution of the fragments of
the initial hadrons, as well as of the new states produced. As discussed below, the fundamental physical
concept that makes this programme possible is ‘factorization’, the ability to isolate separate independent
phases of the overall collision. These phases are dominated by different dynamics, and the most appro-
priate techniques can be applied to describe each of them separately. In particular, factorization allows
one to decouple the complexity of the proton structure and of the final-state hadron formation from the
elementary nature of the perturbative hard interaction among parton constituents.

Figure 2 illustrates how this works. As the left proton travels freely before coming into contact
with the hadron coming in from the right, its constituent quarks are held together by the constant ex-
change of virtual gluons (e.g., gluons a and b in the picture). These gluons are mostly soft, because any
hard exchange would cause the constituent quarks to fly apart, and a second hard exchange would be
necessary to re-establish the balance of momentum and keep the proton together. Gluons of high virtu-
ality (gluon c in the picture) prefer therefore to be reabsorbed by the same quark, within a time inversely
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Fig. 2: General structure of a hard proton—proton collision

proportional to their virtuality, as prescribed by the uncertainty principle. The state of the quark is, how-
ever, left unchanged by this process. Altogether this suggests that the global state of the proton, although
defined by a complex set of gluon exchanges between quarks, is nevertheless determined by interactions
which have a time scale of the order of 1/m,. When seen in the laboratory frame where the proton is
moving with energy v/S /2, this time is furthermore Lorentz dilated by a factor v = V'S /2m,. If we
disturb a quark with a probe of virtuality () > m,, the time frame for this interaction is so short (1/Q)
that the interactions of the quark with the rest of the proton can be neglected. The struck quark cannot ne-
gotiate with its partners a coherent response to the external perturbation: it simply does not have the time
to communicate to them that it is being kicked away. On this time scale, only gluons with energy of the
order of () can be emitted, something which, to happen coherently over the whole proton, is suppressed
by powers of m,,/Q (this suppression characterizes the ‘elastic form factor’ of the proton). In this figure,
the hard process is represented by the rectangle labelled HP. In this example a head-on collision with a
gluon from the opposite hadron, leads to a gqg — qg scattering with a momentum exchange of the order
of (). This and other possible processes can be calculated from first principles in perturbative QCD.

When the constituent is suddenly deflected, the partons that it had recently radiated cannot be
reabsorbed (as happened to gluon c earlier) because the constituent is no longer there waiting for the
partons to come back. This is the case, for example, of the gluon d emitted by the quark, and of the
quark e from the opposite hadron; the emitted gluon got engaged in the hard interaction. The number of
‘liberated” partons will depend on the hard scale Q: the larger (), the more sudden the deflection of the
struck parton, and the fewer the partons that can reconnect before its departure (typically only partons
with virtuality larger than Q).

After the hard process, the partons liberated during the evolution prior to the collision and the
partons created by the hard collision will themselves emit radiation. The radiation process, governed
by perturbative QCD, continues until a low virtuality scale is reached (the boundary region labelled
with a dotted line, H, in our figure). To describe this perturbative evolution phase, proper care has
to be taken to incorporate quantum coherence effects, which in principle connect the probabilities of
radiation off different partons in the event. a0nce the low virtuality scale is reached the memory of the
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hard-process phase has been lost, once again as a result of different time scales in the problem, and the
final phase of hadronization takes over. Because of the decoupling from the hard-process phase, the
hadronization is assumed to be independent of the initial hard process, and its parametrization, tuned to
the observables of some reference process, can then be used in other hard interactions (universality of
hadronization). Nearby partons merge into colour-singlet clusters (the grey blobs in Fig. 2), which are
then decayed phenomenologically into physical hadrons. To complete the picture, we need to understand
the evolution of the fragments of the initial hadrons. As shown in the figure, this evolution cannot be
entirely independent of what happens in the hard event, because at least colour quantum numbers must
be exchanged to guarantee the overall neutrality and conservation of baryon number. In our example, the
gluons f and g, emitted early on in the perturbative evolution of the initial state, split into ¢g pairs which
are shared between the hadron fragments (whose overall interaction is represented by the oval labelled
UE, for Underlying Event) and the clusters resulting from the evolution of the initial state.

The above ideas are embodied in the following factorization formula, which represents the starting
point of any theoretical analysis of cross-sections and observables in hadronic collisions:

do dﬁjk(Qj7Qf) P

dx Z/X fi(z1, Qi) fir(w2, Qi) (X — X5 Qi,Qy), (47)
ik

where

X is some hadronic observable (e.g., the transverse momentum of a pion);

— the sum over j and k extends over the parton types inside the colliding hadrons;

— the function f;(z, @) (known as parton distribution function, PDF) represents the number density
of parton type j with momentum fraction x in a proton probed at a scale Q);;

- Xisa parton-level observable (e.g., the transverse momentum of a parton from the hard scatter-
ing);

— 0 is the parton-level cross-section, differential in the observable X;

- F(X — X; Q4,Qy) is a transition function, weighting the probability that the partonic state

defining X gives rise to the hadronic observable X;

— the scales (); and @)y correspond to the scales at which we separate the perturbative, hard process
from the initial- and final-state evolutions, respectively.

In the rest of this section I shall cover the above ideas in some more detail. While I will not provide
you with a rigorous proof of the legitimacy of this approach, I will try to justify it qualitatively to make
it sound at least plausible. In Appendix B I will collect some more explicit derivations and results.

3.1 The parton densities and their evolution

As mentioned above, the binding forces responsible for the quark confinement are due to the exchange
of rather soft gluons. If a quark were to exchange a hard virtual gluon with another quark, in fact, the
recoil would tend to break the proton apart. It is easy to verify that the exchange of gluons with virtuality
larger than () is then proportional to some large power of m, /@), m,, being the proton mass. Since the
gluon coupling constant gets smaller at large (), exchange of hard gluons is significantly suppressed .
Consider in fact the picture Fig. 3. The exchange of two gluons is required to ensure that the momentum
exchanged after the first gluon emission is returned to the quark, and the proton maintains its structure.
The contributions of hard gluons to this process can be approximated by integrating the loop over large

momenta: .
d*q 1
L~ )

IThe fact that the coupling decreases at large @ plays a fundamental role in this argument. Were this not true, the parton
picture could not be used!
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Fig. 3: Gluon exchange inside the proton
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Fig. 4: Gluon emission at different scales during the approach to a hard collision

At large () this contribution is suppressed by powers of (1m,,/ Q)?, where the proton mass my, is included
as being the only dimensionful quantity available. The interactions keeping the proton together are
therefore dominated by soft exchanges, with virtuality () of the order of m,. The typical time scale of
these exchanges is of the order of 1/m,, (in the laboratory system, where the proton travels with energy
E, this time is Lorentz dilated to 7 ~ v/m, = E/ m;). If we probe the proton with an off-shell photon,
the interaction takes place during the limited lifetime of the virtual photon, given by the inverse of its
virtuality as a result of the Heisenberg principle. Assuming the virtuality ¢ > m,,, once the photon gets
‘inside’ the proton and meets a quark, the struck quark has no time to negotiate a coherent response with
the other quarks, because the time scale for it to ‘talk’ to its pals is too long compared with the duration
of the interaction with the photon itself. As a result, the struck quark has no option but to interact with
the photon as if it were a free particle.

Let us look in more detail at what happens during such process. In Fig. 4 we see a proton as it
approaches a hard collision with a photon of virtuality (. Gluons emitted at a scale ¢ > () have the time
to be reabsorbed, since their lifetime is very short. Their contribution to the process can be calculated in
perturbative QCD, since the scale is large. Since after being reabsorbed the state of the quark remains
the same, their only effect is an overall renormalization of the wave function, and they do not affect the
quark density. A gluon emitted at a scale ¢ < (), however, has a lifetime longer than the time it takes for
the quark to interact with the photon, and by the time it tries to reconnect to its parent quark, the quark
has been kicked away by the photon, and is no longer there. Since the gluon has taken away some of the
quark momentum, the momentum fraction x of the quark as it enters the interaction with the photon is
different from the momentum it had before, and therefore its density f(z) is affected. Furthermore, when
the scale ¢ is of the order of 1 GeV the state of the quark is not calculable in perturbative QCD. This
state depends on the internal wave function of the proton, which perturbative QCD cannot easily predict.
We can however say that the wave function of the proton, and therefore the state of the ‘free’ quark, are
determined by the dynamics of the soft-gluon exchanges inside the proton itself. Since the time scale of
this dynamics is long relative to the time scale of the photon—quark interaction, we can safely argue that
the photon sees to good approximation a static snapshot of the proton’s inner guts. In other words, the
state of the quark had been prepared long before the photon arrived. This also suggests that the state of
the quark will not depend on the precise nature of the external probe, provided the time scale of the hard
interaction is very short compared to the time it would take for the quark to readjust itself. As a result,
if we could perform some measurement of the quark state using, say, a virtual-photon probe, we could
then use this knowledge on the state of the quark to perform predictions for the interaction of the proton
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Fig. 5: Scale dependence of the gluon emission during a hard collision
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with any other probe (e.g., a virtual W or even a gluon from an opposite beam of hadrons). This is the
essence of the universality of the parton distributions.

The above picture leads to an important observation. It appears in fact that which gluons are
reabsorbed and which ones are not depends on the scale @@ of the hard probe. As a result, the parton
density f(z) appears to depend on Q. This is illustrated in Fig. 5. The gluon emitted at a scale y has a
lifetime short enough to be reabsorbed before a collision with a photon of virtuality ) < p, but too long
for a photon of virtuality ¢ > p. When going from p to @, therefore, the partonic density f(x) changes.
We can easily describe this variation as follows:

1

Q 1
dn f (2 ) / d? /O dy Py, )8z —yom) . (49)

m

f@.Q) = flau) + /

T

Here we obtain the density at the scale () by adding to f(x) at the scale p (which we label f(x, p)) all
the quarks with momentum x;;, > x, which retain a momentum fraction x = y/x;, by emitting a gluon.
The function P(y,Q?) describes the ‘probability’ that the quark emits a gluon at a scale @, keeping a
fraction y of its momentum. This function does not depend on the details of the hard process, it simply
describes the radiation of a quark subject to an interaction with virtuality ). Since f(z, Q) does not
depend upon u (1 is just used as a reference scale to construct our argument), the total derivative of the
right-hand side with respect to x should vanish, leading to the following equation:

d d 14
%:0 = fc(ii’gu) :/I ?yf(y,u)P(:U/y,uz). (50)

One can prove (see Appendix B) that

9y Qs 1
P,Q%) = 52 o5 Pl@). (51)
from which the Altarelli—Parisi equation follows:
df (x, as [P dy
a0 [ ) Py 52)

dlog u? 2 ),y

The so-called splitting function Py,(x) can be calculated in perturbative QCD, and is given in Appendix
B. The subscript gq is a convention indicating that = refers to the momentum fraction retained by a quark
after emission of a gluon.

More in general, one should consider additional processes. For example, one should include cases
in which the quark interacting with the photon comes from the splitting of a gluon. This is shown in
Fig. 6: the left diagram is the one we considered above; the right diagram corresponds to processes
where an emitted gluon has the time to split into a gq pair, and it is one of these quarks which interacts
with the photon. The overall evolution equation, including the effect of gluon splitting, is given by
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Fig. 6: The processes leading to the evolution of the quark density

e, .,

Fig. 7: The processes leading to the evolution of the gluon density

Fig. 8: Gluon evolution leading to a charm-quark content of the proton

x Qg 1 T T
dQ(déQ) %/x dy [Q(yaQ)qu(a) + g(y,Q)qu(—)} ) (53)

Y Y
For external probes which couple to gluons (namely an external gluon, coming, for example, from an
incoming proton), we have a similar evolution of the gluon density (see Fig. 7):

dg(r,Q)  as L dy T T
—da o . ; [g(yaQ)ng(g) + %Q(%Q)qu(g)] . (54)

3.2 Example: the charm content of the proton

If the virtuality of the external probe is large enough, the time scale of the hard interaction is so short
that gluon fluctuations into virtual heavy-quark states can be intercepted, and the virtual heavy quarks
(charm quarks in our example) can be brought on-shell via the interaction with the photon (see Fig. 8).
To the external photon, it will therefore appear as if the proton contained some charm. Its density can
be calculated using the Altarelli—Parisi equation, assuming that the heavy-quark density itself is O at
Q@ ~ mc, and builds up according to the evolution equation

d s L g
Q) _ a / ?yg(y,@qu(g). (55)

dt 2
Assuming a gluon density behaving like g(z, Q) ~ A/x, which is a first approximation to a bremsstrahlung
spectrum, we can easily calculate

d s [d o [N A
Q) _ & Wotely @ Pul) = 52 [ dvZ 517+ -

dt o

T
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Fig. 9: Left: Valence up-quark momentum-density distribution, for different scales (). Right: gluon momentum-
density distribution.

Q2

= _ ~~ 1 - . 56
o(w,Q) ~ g= low() gl Q) (56)
The charm density is therefore proportional to the gluon density, up to an overall factor proportional to
as. When () becomes very large, the effect of the quark mass becomes subleading, and we expect all sea

quarks to reach asymptotically the same density!

3.3 Examples of parton density evolution

Figure 9 (left) describes the up-quark valence momentum density at different scales (). Note the softening
at large scales, and the clear log@? evolution. As Q? grows, the valence quarks emit more and more
radiation, since their deceleration is larger. They therefore lose more momentum to the emitted gluons,
and their spectrum becomes softer. The most likely momentum fraction carried by a valence up-quark
in the proton goes from x ~ 20% at Q = 3 GeV, to z < 10% at Q = 1000 GeV. Notice finally that the
density vanishes at small .

Figure 9 (right) shows the gluon momentum density at different scales (). Their density grows at
small z, with an approximate g(z) ~ 1/2'+% behaviour, and § > 0 slowly increasing at large Q2. This
low-z growth is due to the 1/x emission probability for the radiation of gluons, which was discussed
in the previous lecture and which is represented by the 1/x factors in the Py, () and Pyq(x) splitting
functions. As Q% grows we find an increasing number of gluons at small z, as a result of the increased
radiation off quarks, as well as off the harder gluons.

Figure 10 (left) shows the evolution of the up-quark sea momentum density. Shape and evolution
match those of the gluon density, a consequence of the fact that sea quarks come from the splitting of
gluons. Since the gluon-splitting probability is proportional to « g, the approximate ratio sea/gluon ~ 0.1
which can be obtained by comparing Figs. 9 (right) and 10 (left) is perfectly justified.

Finally, the momentum densities for gluons, up-sea, charm and up-valence distributions are shown
in Fig. 10 (right) for ) = 1000 GeV. Note here that u., and charm are approximately the same at very
large () and small x, as anticipated in the previous subsection. The proton momentum is mostly carried
by valence quarks and by gluons. The contribution of sea quarks is negligible.

Parton densities are extracted from experimental data. Their determination is therefore subject
to the statistical and systematic uncertainties of the experiments and of the theoretical analysis (e.g.,
the treatment of non-perturbative effects, the impact of missing higher-order perturbative corrections).
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Fig. 10: Left: Sea up-quark momentum-density distribution, for different scales ). Right: Momentum-density
distribution for several parton species, at () = 1000 GeV.

Techniques have been introduced recently to take into account these uncertainties, and to evaluate their
impact on concrete observables. A summary of such an analysis is given in Figs. 11 (for the Tevatron)
and 12 (for the LHC). What is plotted is the uncertainty bands for partonic luminosities corresponding
to various initial-state channels, such as gg, qg or q¢. The partonic flux is given as a function of 3, the
partonic centre-of-mass invariant mass. Obvious features include the growth of uncertainty of the gg
density at large mass, corresponding to the lack of data covering the large-x region of the gluon density.
As a result of this, notice for example that the uncertainty in the gg — t# production rate at the LHC is
smaller than at the Tevatron, since the relative range of mass (just above 2m; ~ 350 GeV) corresponds
at the LHC to gluon densities in better explored regions of z.

4 The evolution of quarks and gluons

We discussed in the previous section the initial-state evolution of quarks and gluons as the proton ap-
proaches the hard collision. We study here how quarks and gluons evolve, and finally transform into
hadrons, neutralizing their colours. We start by considering the simplest case, e Te™ collisions, which
provide the cleanest environment in which to study applications of QCD at high energy. This is the place
where theoretical calculations have today reached their best accuracy, and where experimental data are
the most precise, especially thanks to the huge statistics accumulated by LEP, LEP2 and SLC. The key
process is the annihilation of the et e~ pair into a virtual photon or Z° boson, which will subsequently
decay to a gq pair. eTe™ collisions have therefore the big advantage of providing an almost point-like
source of quark pairs, so that, contrary to the case of interactions involving hadrons in the initial state,
we at least know very precisely the state of the quarks at the beginning of the interaction process.

Nevertheless, it is by no means obvious that this information is sufficient to predict the properties
of the hadronic final state. We know that this final state is clearly not simply a g pair, but some high-
multiplicity set of hadrons. For example, the average multiplicity of charged hadrons in the decay of
a Z° is approximately 20! It is therefore not obvious that a calculation done using the simple picture
ete™ — qq will have anything to do with reality. For example, one may wonder why we do not need
to calculate o(ete™ — ¢@g...g...) for all possible gluon multiplicities to get an accurate estimate of
U(e+e* — hadrons). And since in any case the final state is not made of ¢’s and g¢’s, but of 7’s, K’s,
p’s, etc., why would o(eTe™ — ¢qg . . . g) be enough?

The solution to this puzzle lies both in time and energy scales, and in the dynamics of QCD. When
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Fig. 12: Uncertainty in the parton luminosity functions at the LHC

the ¢ pair is produced, the force binding ¢ and ¢ is proportional to as(s) (1/s being the e™e™ centre-
of-mass energy). Therefore it is weak, and ¢ and ¢ behave to good approximation like free particles.
The radiation emitted in the first instants after the pair creation is also perturbative, and it will stay so
until a time after creation of the order of (1 GeV)~!, when radiation with wavelengths > (1 GeV)™!
starts being emitted. At this scale the coupling constant is large, and non-perturbative phenomena and
hadronization start playing a role. However, as we will show, colour emission during the perturbative
evolution organizes itself in such a way as to form colour-neutral, low-mass parton clusters highly lo-
calized in phase-space. As a result, the complete colour-neutralization (i.e., the hadronization) does
not involve long-range interactions between partons far away in phase-space. This is very important,
because the forces acting among coloured objects at this time scale would be huge. If the perturbative
evolution were to separate far apart colour-singlet g pairs, the final-state interactions taking place during
the hadronization phase would totally upset the structure of the final state. As an additional result of this
‘pre-confining’ evolution, memory of where the local colour-neutral clusters came from is totally lost.
So we expect the properties of hadronization to be universal: a model that describes hadronization at a
given energy will work equally well at some other energy. Furthermore, so much time has passed since
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the original ¢ creation, that the hadronization phase cannot significantly affect the total hadron produc-
tion rate. Perturbative corrections due to the emission of the first hard partons should be calculable in
perturbation theory (PT), providing a finite, meaningful cross-section.

The nature of non-perturbative corrections to this picture can be explored. One can prove for ex-
ample that the leading correction to the total rate R+ is of order F'/s?, where F' oc (0]asF o FHe0) is
the so-called gluon condensate. Since F' ~ O(1 GeV*), these NP corrections are usually very small. For
example, they are of O(1078) at the Z" peak! Corrections scaling like A%/s or A/,/s can nevertheless
appear in other less inclusive quantities, such as event shapes or fragmentation functions.

We now come back to the perturbative evolution, and will devote the first part of this lecture to
justifying the picture given above. In Appendix C we shall discuss some applications, including jet
cross-sections and shape variables.

4.1 Soft gluon emission

Emission of soft gluons plays a fundamental role in the evolution of the final state [6, 15]. Soft glu-
ons are emitted with large probability, since the emission spectrum behaves like dE/FE, typical of
bremsstrahlung as familiar in QED. They provide the seed for the bulk of the final-state multiplicity
of hadrons. The study of soft-gluon emission is simplified by the simplicity of their couplings. Being
soft (i.e., long wavelength) they are insensitive to the details of the very-short-distance dynamics: they
cannot distinguish features of the interactions which take place on time scales shorter than their wave-
length. They are also insensitive to the spin of the partons: the only feature they are sensitive to is the
colour charge. To prove this let us consider soft-gluon emission in the qgq decay of an off-shell photon:

P ] P ]
k, a
k, a
p- 1 p 1 (57)

p+K
u(p) T (P + K)e(k) v(p) | AY; -

Aon = u<p>e<k><¢g>]ﬁr“v<p> Xe 4+ afp) T

= 2pg- : u(p)e(k) (p + k)T v(p) —

(ig)e(k) v(p) Ajj

g
%k

I used the generic symbol I';, to describe the interaction vertex with the photon to stress the fact that the
following manipulations are independent of the specific form of I',,. In particular, I';, can represent an
arbitrarily complicated vertex form factor. Neglecting the factors of  in the numerators (since k < p, p,
by definition of soft) and using the Dirac equations, we get

<€ 3
Asoft = g)\% <p— - pp—> ABorn . (58)

We then conclude that soft-gluon emission factorizes into the product of an emission factor, times the
Born-level amplitude. From this exercise, one can extract general Feynman rules for soft-gluon emission:

a

p’L*gF p.i o= gy 2pt. (59)
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Exercise: Derive the g — gg soft-emission rules:

a

CM&L b.op = igf®e 2ot g (60)

Example: Consider the ‘decay’ of a virtual gluon into a quark pair. One more diagram should be added
to those considered in the case of the electroweak decay. The fact that the quark pair is no longer in a
colour-singlet state makes things a bit more interesting:

P D] P ]
5 RQeQ.
k. a
k. a
joR i |8 i joB 1 (61)

Qe pe b pe Qe
— )\G}\b”___ AP | — — = . 62
The two factors correspond to the two possible ways colour can flow in this process:
i b 1
@ %—/ﬂé\ + a +/L/
b ] N (63)

In the first case, the antiquark (colour label j) is colour connected to the soft gluon (colour label b)
and the quark (colour label ¢) is connected to the decaying gluon (colour label a). In the second case,
the order is reversed. The two emission factors correspond to the emission of the soft gluon from the
antiquark, and from the quark line, respectively. When squaring the total amplitude, and summing over
initial- and final-state colours, the interference between the two pieces is suppressed by 1/N ? relative to
the individual squares:

N? -1
SN =Y (Aaxbxbv) - Cr = O(N?) (64)
a,b,i,j a,b 2
2
DA IACAY);5 ] =D (AN AN = Nl (Cg — %) = O(N). (65
a,b,i,j a,b N———
~aN

As a result, the emission of a soft gluon can be described, to the leading order in 1/N 2, as the incoherent
sum of the emission from the two colour currents.
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4.2 Angular ordering for soft-gluon emission

The results presented above have important consequences for the perturbative evolution of the quarks.
A key property of the soft-gluon emission is the so-called angular ordering. This phenomenon consists
in the continuous reduction of the opening angle at which successive soft gluons are emitted by the
evolving quark. As a result, this radiation is confined within smaller and smaller cones around the quark
direction, and the final state will look like a collimated jet of partons. In addition, the structure of the
colour flow during the jet evolution forces the g¢ pairs which are in a colour-singlet state to be close in
phase-space, thereby achieving the pre-confinement of colour-singlet clusters alluded to at the beginning
of this section.

Let us start by proving the property of colour ordering. Consider the ¢g pair produced by the decay
of a rapidly moving virtual photon. The amplitude for the emission of a soft gluon was given in Eq. (58).
Squaring, summing over colours and including the gluon phase-space we get the following result:

-2
dO'g — Z|Asoﬁ 32koz| 0‘2 p p 22 HE 32]@‘0

2(1?1?) 2 d¢ kodk‘o
dog (k) (k) g° Cg o 32 d cos@

asCk d_ko @ 1 — cos 0;;
7 kO 271 (1 —cosb)(1—cosby)

= doyg dcosf (66)
where 0,3 = 0, — 0, and i, j, k refer to the ¢, ¢ and gluon directions, respectively. We can write the
following identity:

1
—li = J = Wi +We .

1 —cosbir)(1 —cosbj) 1—cosb * 2 [ < J] @ TWe)
(67)
We would like to interpret the two functions W ;) and W/;) as radiation probabilities from the quark

and antiquark lines. Each of them is in fact only singular in the limit of gluon emission parallel to the
respective quark:

1 — cos 0;; 1 cos 0, — cos 0;; 1
(1 —cosb)(1 —cosfjp) 2 |(

W —  finiteif k[ j (cos Oy, — 1) (68)

Wiy — finiteif k|| 4 (cosfy — 1) . (69)

The interpretation as probabilities is however limited by the fact that neither W ;) nor W) are positive
definite. However, you can easily prove that

de i if O < 0
/ng _ {1 cos O (70)

0 otherwise

where the integral is the azimuthal average around the g direction. A similar result holds for W ;:

— 1 _  ife. < 0;;
/@W(]) — {l—cosejk 10 J . (71)

27 0 otherwise

As aresult, the emission of soft gluons outside the two cones obtained by rotating the antiquark direction
around the quark’s, and vice-versa, averages to 0. Inside the two cones, one can consider the radiation
from the emitters as being uncorrelated. In other words, the two colour lines defined by the quark and
antiquark currents act as independent emitters, and the quantum coherence (i.e., the effects of interference
between the two graphs contributing to the gluon-emission amplitude) is accounted for by constraining
the emission to take place within those fixed cones.
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wgﬁ“%

Fig. 13: Radiation off ¢q pair produced by an off-shell photon

Fig. 14: Collimation of soft gluon emission during the jet evolution

A simple derivation of angular ordering, which more directly exhibits its physical origin, can be
obtained as follows. Consider Fig. 13a, which shows a Feynman diagram for the emission of a gluon
from a quark line. The quark momentum is denoted by / and the gluon momentum by k; @ is the opening
angle between the quark and antiquark, and « is the angle between the nearest quark and the emitted
gluon. We will work in the double-log enhanced soft k° << [° and collinear a << 1 region. The
internal quark propagator p = (I + k) is off-shell, setting the time scale for the gluon emission:

1 1° 1

At ~

At~ — = ~ )
AE ~ (k+02 K002

(72)

In order to resolve the quarks, the transverse wavelength of the gluon A\ = 1/E| must be smaller than
the separation between the quarks b(t) ~ 6 At, giving the constraint 1/(ak®) < 0 At. Using the results
of Eq. (72) for At, we arrive at the angular ordering constraint o < 6. Gluon emissions at an angle
smaller than 6 can resolve the two individual colour quarks and are allowed; emissions at greater angles
do not see the colour charge and are therefore suppressed. In processes involving more partons, the angle
0 is defined not by the nearest parton, but by the colour connected parton (e.g., the parton that forms a
colour singlet with the emitting parton). Figure 13b shows the colour connections for the ¢g event after
the gluon is emitted. Colour lines begin on quarks and end on antiquarks. Because gluons are colour
octets, they contain the beginning of one line and the end of another.

If one now repeats the exercise for emission of one additional gluon, one will find the same angular
constraint, but this time applied to the colour lines defined by the previously established antenna. As
shown in the previous subsection, the ¢dg state can be decomposed at the leading order in 1/N into two
independent emitters: one given by the colour line flowing from the gluon to the quark, the other given
by the colour line flowing from the antiquark to the gluon. So the emission of the additional gluon will
be constrained to take place either within the cone formed by the quark and the gluon, or within the cone
formed by the gluon and the antiquark. Either way, the emission angle will be smaller than the angle of
the first gluon emission. This leads to the concept of angular ordering, with successive emission of soft
gluons taking place within cones which get smaller and smaller, as in Fig. 14.

The fact that colour always flows directly from the emitting parton to the emitted one, the colli-
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Fig. 15: The colour flow diagram for a deep-inelastic scattering event
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Fig. 16: Charge transfer in a dielectric medium, via a sequence of local polarizations

mation of the jet, and the softening of the radiation emitted at later stages ensure that partons forming a
colour-singlet cluster are close in phase-space. As a result, hadronization (the non-perturbative process
that will bind together colour-singlet parton pairs) takes place locally inside the jet and is not a long-
distance phenomenon connecting partons far away in the evolution tree: only pairs of nearby partons
are involved. In particular, there is no direct link between the precise nature of the hard process and the
hadronization. These two phases are totally decoupled and, as in the case of the partonic densities, one
can infer that hadronization factorizes from the hard process and can be described in a universal (i.e.,
hard-process independent) fashion. The inclusive properties of jets (particle multiplicity, jet mass, jet
broadening, etc.) are independent of the hadronization model, up to corrections of order (A//s)" (for
some integer power n, which depends on the observable), with A < 1 GeV.

The final picture, in the case of a DIS event, appears therefore as in Fig. 15. After being deflected
by the photon, the struck quark emits the first gluon, which takes away the quark colour and passes
on its own anticolour to the escaping quark. This gluon is therefore colour-connected with the last
gluon emitted before the hard interaction. As the final-state quark continues its evolution, more and
more gluons are emitted, each time leaving their colour behind and transmitting their anticolour to the
emerging quark. Angular ordering forces all these gluons to be close in phase-space, until the evolution is
stopped once the virtuality of the quark becomes of the order of the strong-interaction scale. The colour
of the quark is left behind, and when hadronization takes over it is only the nearby colour-connected
gluons which are transformed, with a phenomenological model, in hadrons. This mechanism for the
transfer of colour across subsequent gluon emissions is similar to what happens when we place a charge
near the surface of a dielectric medium. This will become polarized, and a charge will appear on the
opposite end of the medium. The appearance of the charge is the result of a sequence of local charge
shifts, whereby neighbouring atoms get polarized, as in Fig. 16.
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5 Applications to hadronic collisions

In hadronic collisions, all phenomena are QCD-related. The dynamics is more complex than in eTe™
or DIS, since both beam and target have a non-trivial partonic structure. As a result, calculations (and
experimental analyses) are more complicated. QCD phenomenology is however much richer, and the
higher energies available in hadronic collisions allow us to probe the structure of the proton and of its
constituents at the smallest scales attainable in a laboratory.

Contrary to the case of e*e™ and lepton-hadron collisions, where calculations are routinely avail-
able up to next-to-next-to-leading order (NNLO) accuracy, theoretical calculations for hadronic colli-
sions are available at best with next-to-leading-order (NLO) accuracy. The only exception is the case
of Drell-Yan production, where NNLO results are known for the total cross-sections. So we generally
have relatively small precision in the theoretical predictions, and theoretical uncertainties which are large
when compared to LEP or HERA.

However, pp collider physics is primarily discovery physics, rather than precision physics. (There
are exceptions, such as the measurements of the W mass and of the properties of b-hadrons; but these are
not QCD-related measurements.) As such, knowledge of QCD is essential both for the estimate of the
expected signals, and for the evaluation of the backgrounds. Tests of QCD in pp collisions confirm our
understanding of perturbation theory, or, when they fail, point to areas where our approximations need
to be improved. (see, e.g., the theory advances prompted by the measurements of 1/ production by CDF
at the Tevatron!).

Finally, a reliable theoretical control over the details of production dynamics allows one to extract
important information on the structure of the proton (parton densities) in regions of Q2 and x otherwise
inaccessible. Control of QCD at the current machines (the Tevatron at Fermilab) is therefore essential
for the extrapolation of predictions to higher energies (say for applications at the future LHC, at CERN).

The key ingredients for the calculation of production rates and distributions in hadronic collisions
are

— the matrix elements for the hard, partonic process (e.g., g9 — 99,99 — bb,q@ — W, ...);
— the hadronic parton densities, discussed in the previous lecture.

Then the production rate for a given final state H is given by a factorization formula similar to the one
used to describe DIS:

dd(pﬁ — H + X) = /d{L‘l dxg Z fi({L‘l, Q) f](fBQQ) dé’(l] — H) (73)
,J
where the parton densities f; are evaluated at a scale @ typical of the hard process under consideration.
For example () ~ Mpy for production of a Drell-Yan pair, () ~ ET for high transverse-energy (E'T)
jets, Q* =~ p7, + mg, for high-pr heavy quarks, etc.
In this lecture we will briefly explore two of the QCD phenomena currently studied in hadronic
collisions: Drell-Yan, and inclusive jet production. More details can be found in Refs. [4, §].

5.1 Drell-Yan processes

While the Z boson has been recently studied with great precision by the LEP experiments, it was actually
discovered, together with the W boson, by the CERN experiments UA1 and UA2 in pp collisions. W
physics is now being studied in great detail at LEP2, but the best direct measurements of its mass by
a single group still belong to pp experiments (CDF and DO at the Tevatron). Even after the ultimate
luminosity will have been accumulated at LEP2, with a great improvement in the determination of the
parameters of the W boson, the monopoly of W studies will immediately return to hadron colliders, with
the Tevatron data-taking resuming in the year 2000, and later on with the start of the LHC experiments.

104



INTRODUCTION TO QCD IN HADRONIC COLLISIONS

Precision measurements of W production in hadronic collisions are important for several reasons:

— this is the only process in hadronic collisions which is known to NNLO accuracy;

— the rapidity distribution of the charged leptons from W decays is sensitive to the ratio of the up-
and down-quark densities, and can contribute to our understanding of the proton structure;

— deviations from the expected production rates of highly virtual W’s (pp — W* — ev) are a
possible signal of the existence of new W bosons, and therefore of new gauge interactions.

The partonic cross-section for the production of a W boson from the annihilation of a ¢g pair can
be easily calculated, giving the following result [4, 8]:

L V2 R X
(g = W) = 3 \Vij|? Ge My, 6(3 — M) = Ay M, 6(5 — M) (74)

where § is partonic centre-of-mass (c.m.) energy squared, and V;; is the element of the Cabibbo-
Kobayashi-Maskawa matrix. The delta function comes from the 2 — 1 phase-space, which forces
the c.m. energy of the initial state to coincide with the W mass. It is useful to introduce the two variables

A~

§
T S T1T2 (75)

1 Ew + p%) 1 (m)
= —lo —> | ==log|— ), (76)
Y= g8 (EW ) 2 S\
where Sh,q is the hadronic c.m. energy squared. The variable y is called rapidity. For slowly moving
objects it reduces to the standard velocity, but, unlike the velocity, it transforms additively even at high
energies under Lorentz boosts along the direction of motion. Written in terms of 7 and y, the integration

measure over the initial-state parton momenta becomes dxidre = drdy. Using this expression and
Eq. (74) in Eq. (73), we obtain the following result for the leading-order total W production cross-

section: .
B mA;j dz TN T Ajj
opy = ,ZJ: Mz T/T ?fz(@ Y (;) = ZZJ: M—I%VTﬁz](T) (77)

where the function £;;(7) is usually called partonic luminosity. In the case of ud collisions, the overall
factor in front of this expression has a value of approximately 6.5 nb. It is interesting to study the partonic
luminosity as a function of the hadronic c.m. energy. This can be done by taking a simple approximation
for the parton densities. Following the indications of the figures presented in the previous lecture, we
shall assume that f;(x) ~ 1/2'%, with § < 1. Then

1 1
dr 1 T\ 146 1 dx 1 1
L(r) = /T Pl (;) ZW/T — = 15 108 <;> (78)
and 5
1 Sh Si,
_5 had had
ow T8 (T) (Mgv) 8 (MVZV) 7

The Drell-Yan cross-section grows therefore at least logarithmically with the hadronic c.m. energy. This
is to be compared with the behaviour of the Z production cross-section in e*e™ collisions, which is
steeply diminishing for values of s well above the production threshold. The reason for the different
behaviour in hadronic collisions is that while the energy of the hadronic initial state grows, it will always
be possible to find partons inside the hadrons with the appropriate energy to produce the W directly
on-shell. The number of partons available for the production of a W is furthermore increasing with the
increase in hadronic energy, since the larger the hadron energy, the smaller will be the value of hadron
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Fig. 17: Comparison of measured (a) o- B(W — ev) and (b) 0-B(Z° — e*e™) to two-loop theoretical predictions
using MRSA parton distribution functions. The UA1 and UA2 measurements and DO measurements are offset
horizontally by =+ 0.02 TeV for clarity. In the inset, the shaded area shows the 1o region of the CDF measurement;
the stars show the predictions using various parton distribution function sets (1) MRSA, (2) MRSD(’, (3) MRSD-/,
(4) MRSH and (5) CTEQ2M. The theoretical points include a common uncertainty in the predictions from choice
of renormalization scale (M /2 to 2Mw).

momentum fraction x necessary to produce the W. The increasing number of partons available at smaller
and smaller values of = causes then the growth of the total W production cross-section.

A comparison between the best available prediction for the production rates of W and Z bosons in
hadronic collisions, and the experimental data, is shown in Fig. 17. The experimental uncertainties will
soon be dominated by the limited knowledge of the machine luminosity, and will exceed the accuracy
of the NNLO predictions. This suggests that in the future the total rate of produced W bosons could be
used as an accurate luminometer.

It is also interesting to note that an accurate measurement of the relative W and Z production rates
(which is not affected by the knowledge of the total integrated luminosity, which will cancel in their
ratio) provides a tool to measure the total W width. This can be seen from the following equation:

ry — NOZ—eten) (Uwi> ( Tey > T,

Nobs(IV — ety) \ oy rz _
T NS 7
measure calculable LEP/SLC.

As of today, this technique provides the best measurement of I'y: I'yyy = 2.06 £ 0.06 GeV, which is a
factor of 5 more accurate than the current best direct measurements from LEP2.
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Fig. 18: Representative diagrams for the production of jet pairs in hadronic collisions

5.2 W rapidity asymmetry

The measurement of the charge asymmetry in the rapidity distribution of W bosons produced in pp
collisions can provide an important measurement of the ratio of the u-quark and d-quark momentum
distributions. Using the formulas provided above, you can in fact easily check as an exercise that

d(;—V;H o< fu(w1) fg(:cz) + fg(xl)fg(g;Q) (80)
% o fR(x1) fh(x2) + fh(21) f2(22) - @1

We can then construct the following charge asymmetry (assuming the dominance of the quark densities
over the antiquark ones, which is valid in the kinematical region of interest for W production at the

Tevatron):
doy,+ doy, —

Aly) = - _dy f5($1)ffl’(xz)—fﬁ(xl)fq’i(xz).
R T Y HEN RS HENNHEN 2
Setting fq(x) = fu(x) R(x), we then get

R(xo) + R(xq)’

which measures the R(z) ratio since 1 2 are known in principle from the kinematics: z12 = /7 exp(+y).?
The current CDF data provide the most accurate measurement to date of this quantity (see Ref. [8]).

5.3 Jet production

Jet production is the hard process with the largest rate in hadronic collisions. For example, the cross-
section for producing at the Tevatron (y/Shag = 1.8 TeV) jets of transverse energy Eﬂ;t < 50 GeV is of
the order of a ub. This means 50 events per second at the luminosities available at the Tevatron. The data
collected at the Tevatron so far extend all the way up to the ET values of the order of 450 GeV. These
events are generated by collisions among partons which carry over 50% of the available pp energy, and
allow us to probe the shortest distances ever reached. The leading mechanisms for jet production are
shown in Fig. 18.

The two-jet inclusive cross-section can be obtained from the formula

H H doij—k+i
do =" duyduy £ (21, 1) 17 (22, 1) Ty (84)
ijkl

*In practice one cannot determine x1 » with arbitrary precision on an event-by-event basis, since the longitudinal momentum
of the neutrino cannot be easily measured. The actual measurement is therefore done by studying the charge asymmetry in the
rapidity distribution of the charged lepton.
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which has to be expressed in terms of the rapidity and transverse momentum of the quarks (or jets) in
order to make contact with physical reality. The two-particle phase-space is given by

&3k )
d® 5210 (1 +p2 — k)], (85)

~ 2K0(2m)
and, in the c.m. of the colliding partons, we get

1
2(2m)?

ddy = Pkrdy 26 [§—4(k°)?] , (86)
where k7 is the transverse momentum of the final-state partons. Here y is the rapidity of the produced
parton in the parton c.m. frame. It is given by

:’yl—yz

5 (87)

where y; and y» are the rapidities of the produced partons in the laboratory frame (in fact, in any frame).
One also introduces

_ ity 1w 5

=1 = = . 88
Yo 5 5 108 s’ TEg o T T (83)
We have
dxydxo = dyg dr . (89)
We obtain
do =3 dyo o— £, 0) £ (g, ) DLy 2y (90)
oy Shad " T ’ d®y  2(27)2
ij
which can also be written as
do 1 (Hy) (Hs) doijk+i
= . , . ) ——. 91
dyy dyo A2k Shad 2(271.)2 ”% fz (xl M) f] ($2 M) d®, (29)
The variables x1, 2 can be obtained from y1, y» and k1 from the equations
+
y = Y1 ; Y2 93)
2k
Tz = \/Si (94)
had
7 = xzre¥ coshy 95)
9 = xzre Y coshy. (96)

For the partonic variables, we need § and the scattering angle in the parton c.m. frame 6, since

§

t:—§(1—cos ), u=—=(14cosf). 7

| 0>

Neglecting the parton masses, you can show that the rapidity can also be written as
0
y:—logtan§z77, (98)

with 7 usually being referred to as pseudorapidity.

The leading-order Born cross-sections for parton—parton scattering are reported in Table 1.

108



INTRODUCTION TO QCD IN HADRONIC COLLISIONS

Table 1: Cross-sections for light parton scattering. The notation is py ps — ki, § = (p1 + p2), t = (p1 — k)2,

= (p1—1)°
Process %
qq — qq %2% [% <§2;a2 n 5211_2{2) B ;_7%}
cheq’g/ %%P;@Z
i~ a1 [ (%5 + ) - 5]
qq — g9 %% {%?2—}12 . 252;_2@2}
g9 —qq & [LEET - 3L
99 — g9 %%%(3—2_2_%_5%

It is interesting to note that a good approximation to the exact results can be easily obtained
by using the soft-gluon techniques introduced in the third lecture. Based on the fact that even at 90°
min(|¢|, |u|) does not exceed s/2, and that therefore everything else being equal a propagator in the ¢ or
u channel contributes to the square of an amplitude four times more than a propagator in the s channel, it
is reasonable to assume that the amplitudes are dominated by the diagrams with a gluon exchanged in the
t (or u) channel. It is easy to calculate the amplitudes in this limit using the soft-gluon approximation.
For example, the amplitude for the exchange of a soft gluon among a qq’ pair is given by

a a 1 a a 4p p a a
(A%) (Ne) 2pp n 2p, = A e >\ 99)

The p,, and pL factors represent the coupling of the exchanged gluon to the g and ¢’ quark lines, respec-
tively [see Eq. (59)]. Squaring, and summing and averaging over spins and colours, gives

— 1 (N?-1)\ 4s* 8s4?
2 _ —
E Mgy |* = e ( 1 > T =9 (100)
colours, spin

Since for this process the diagram with a t-channel gluon exchange is symmetric for s <+ u exchange,
and since u — —s in the ¢ — 0 limit, the above result can be rewritten in an explicitly (s, u) symmetric
way as

4 82 +u?

9 2
which indeed exactly agrees with the result of the exact calculation, as given in Table 1. The corrections
which appear from s or u gluon exchange when the quark flavours are the same or when we study a g¢
process are small, as can be seen by comparing the above result with the expressions in the table.

(101)

As another example we consider the case of gg — qg scattering. The amplitude will be exactly
the same as in the q¢' — qq’ case, up to the different colour factors. A simple calculation then gives

~— 52 +u
Z ’ng’2 = Z‘ qq’ ‘2 : (102)

colours, spin

The exact result is
w42 4ul+s?

_ 103
12 9 wus (103)
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which even at 90°, the point where the ¢-channel exchange approximation is worst, only differs from this
latter by no more than 25%.

As a final example we consider the case of gg — gg scattering, which in our approximation gives

Zy wl? = 2t2. (104)

By u < t symmetry, we should expect the simple improvement

2 2
S M2 ~ 2 (i—fr%) - (105)

This only differs by 20% from the exact result at 90°.
Note that at small ¢ the following relation holds:

9 4
Gpg i Oga Oga = | =) :1: (=] . 106
Ogg - Oqg * Oqq <4> <9> (106)

The 9/4 factors are simply the ratios of the colour factors for the coupling to gluons of a gluon (C'») and
of a quark (TF), after including the respective colour-average factors: (1/(N? — 1) for the gluon, and
1/N for the quark). Using Eq. (106), we can then write

dOhadr = /d$1 dry Y fi(wr) fi(x2) doi; = /dx1 dxy F(x1) F(x2) doge(gg — jets) (107)

iJ
where the object

F() = fyla) + 5 3 fas(@) +as(a)] (108)
f

is usually called the effective structure function. This result indicates that the measurement of the in-
clusive jet cross-section does not allow us in principle to disentangle the independent contribution of
the various partonic components of the proton, unless of course one is considering a kinematical region
where the production is dominated by a single process. The relative contributions of the different chan-
nels, as predicted using the global fits of parton densities available in the literature, are shown in Fig. 19.

Predictions for jet production at colliders are available today at next-to-leading order in QCD. A
comparison between these calculations and the available data is given in Figs. 20 and 21. At the Tevatron,
jets up to 600 GeV transverse momentum have been observed. Thatis z > 0.6 and Q? ~ 400 000 GeV?.
This is a domain of = and Q2 not accessible to HERA. The current agreement between theory and data
is excellent over eight orders of magnitude of cross-section, from E1 ~ 50to Er ~ 600 GeV. The
experimental and theoretical systematic uncertainties, however, become larger than 30% when E1 2
400 GeV, preventing a very accurate test of the smallest scales. More data on jet production at large
rapidity will allow us to reduce the PDF uncertainties at large x. The uncertainty in the absolute energy
scale remains however a critical and difficult to overcome experimental limitation at the highest energies.

Appendices
A Renormalization, or ‘“Theorists are not afraid of infinities!”

QCD calculations are extremely demanding. Although perturbative, the size of the coupling constant
even at rather large values of the exchanged momentum, Q?, is such that the convergence of the per-
turbative expansion is slow. Several orders of perturbation theory are required in order to obtain a good
accuracy. The complexity of the calculations grows dramatically with the order of the approximation. As
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Fig. 19: Relative contribution to the inclusive jet- B rates from the different production channels
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an additional complication, the evaluation of a large class of higher-order diagrams gives rise to results
which are a priori ill-defined, namely to infinities. A typical example of what is known as an ultraviolet
divergence appears when considering the corrections to the quark self-energy. Using the Feynman rules
presented Section 2, one can obtain

L 2 [ igh
= (=i L (- ) =ipx Al
( /Lg) F/ (27T)4’Y}Lp+€’yv ( 62 ) Zp (p) I ( )
where simple manipulations lead to the following expression for ¥(p):

, dit 1
2(0) = iCr | Gt (A2)

which is logarithmically divergent in the ultraviolet (|¢| — oo) region. In this appendix we discuss how
to deal with these infinities. To start with, we study a simple example taken from standard electrostatics.

A.1 The potential of an infinite line of charge

Let us consider a wire of infinite length, carrying a constant charge density A. By definition, the dimen-
sions of \ are [length]~!. Our goal is to evaluate the electric potential, and eventually the electric field,
in a point P at distance R from the wire. There is no need to do any calculation to anticipate that the
evaluation of the electric potential will cause some problem. Using the fact that the potential should be
linear in the charge density A\, we write V(R) = Af(R). Since the potential itself has the dimensions
of [length]~!, we clearly see that there is no room for f(R) to have any non-trivial functional depen-
dence on R. The problem is made explicit if we try to evaluate V' ( R) using the standard electromagnetic
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formulas:
Ar) +oo dx

V(R) = / —dr = A —_—

(R) " T

where the integral runs over the position x on the wire. This integral is logarithmically divergent, and the
potential is ill-defined. We know however that this is not a serious issue, since the potential itself is not

a physical observable, only the electric field is measurable. Since the electric field is obtained by taking
the gradient of the scalar potential, it will be proportional to

(A.3)

+o00
VI(R) ~ A / 4 (A.4)

oo (RZ+22)3/2°

which is perfectly convergent. It is however interesting to explore the possibility of providing a useful
operative meaning to the definition of the scalar potential. To do that, we start by regularizing the integral
in Eq. (A.3). This can be done by introducing the regularized V' (R) defined as

i) = [ s = s | (A3
We can then define the electric field as
E(R) = lim [-VVA(R)].
It is easy to check that this prescription leads to the right result:
E(R) = lim R 2 A 2 b (A.6)

A—o0 E\/A2+R2—)E

Note that in this process we had to introduce a new variable A with the dimension of a length. This
allows us to solve the puzzle first pointed out at the beginning. At the end, however, the dependence
of the physical observable (i.e., the electric field) on this extra parameter disappears. Note also that the
object,
2
SV = lim [Va(rs) — Va(r1)] = A log (%) , (A7)
A—oo0 )
is well defined. This suggests a way of defining the potential which is meaningful even in the A — oo
limit. We can renormalize the potential by subtracting V (R) at some fixed value of R = R and taking
the A — oo limit:

2
V(R) — V(R) — V(Ro) = Alog (%) . (A.8)

The non-physical infinities present in V' (R) and V' (R() cancel each other, leaving a finite result, with a

non-trivial R-dependence. Once again, this is possible because a dimensionful parameter (in this case
Rp) has been introduced.

This example suggests a strategy for dealing with divergences.

i) Identify an appropriate way to regularize infinite integrals.

ii) Absorb the divergent terms into a redefinition of fields or parameters, e.g., via subtractions. This
step is usually called renormalization.

iii) Make sure the procedure is consistent by checking that the physical results do not depend on the
regularization prescription.

In the rest of this appendix I will explain how this strategy is applied to the case of ultraviolet divergences
encountered in perturbation theory.
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A.2 Dimensional regularization

The typical expressions we have to deal with have the form

d* 1
I(M?) = / S L (A.9)

It is easy to show that the integral encountered in the quark self-energy diagram can be rewritten as

11 /1 J 1
- @ = €r —
2a—pr Sy Ty
The most straightforward extension of the ideas presented above in the case of the infinite charged wire is
to regularize the integral using a momentum cutoff, and to renormalize it with a subtraction [for example

I(M?) — I(Mg)]. Experience has shown, however, that the best way to regularize I(M?2) is to take the
analytic continuation of the integral in the number of space-time dimensions. In fact

dPe 1
In(M?) :/ 5 TR (A1)

with L = £ — ap, M? = 2(1 — z)p*. (A.10)

is finite VD < 4. If we could assign a formal meaning to I p(M?) for continuous values of D away from
D = 4, we could then perform all our manipulations in D # 4, regulate the divergences, renormalize
fields and couplings, and then go back to D = 4.

To proceed, one defines (for Euclidean metrics)
dP0=dQp_, (P tar (A.12)

with d2p_ the differential solid angle in D dimensions. €2 p_1 is the surface of a D-dimensional sphere.
It can be obtained by using the following formal identity:

D
/de e = [/ dfeﬂ = 7P/2 (A.13)

The integral can also be evaluated, using Eq. (A.12), as
/ ac ()
r

/dee"2 - QD/ P = Qp
0
( ) (A.14)

1 o
= QD§/0 dr e *x
1 I'(2—-D/2)

Comparing Egs. (A.13) and (A.14), we get
/OO dra’z (x+M?)? =
(4m)P/2 T(D/2) Jo (4m)P/2 - T(2)

1 1
Defining D = 4 — 2¢ (with the understanding that € will be taken to O at the end of the day), and using
the small-€ expansion,

N =

|||
M\U

Ip(M?) = (M2)272 . (A.15)

1
T(e) = - + O(e) (A.16)
we finally obtain
1
(47)%Ip(M?) — = —logdnM? — . . (A.17)
€

The divergent part of the integral is then regularized as a pole in (D — 4). The M-dependent part of
the integral behaves logarithmically, as expected because the integral itself was dimensionless in D = 4.
The 1/¢ pole can be removed by a subtraction:

I(M?) = I(u?) + (47)* log (A’}—Z> , (A.18)
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where the subtraction scale 12 is usually referred to as the ‘renormalization scale’.

One can prove (and you will find this in the quoted textbooks) that other divergent integrals which
appear in other loop diagrams can be regularized in a similar fashion, with the appearance of 1/¢ poles.
Explicit calculations and more details on this technique can be found in the bibliography.

A.3 Renormalization

Let us come back now to our quark self-energy diagram, Eq. (A.1). After regulating the divergence using
dimensional regularization, we can eliminate it by adding a counterterm to the Lagrangian:

L— L+X(p)idy = [1+ Z(p)|idp + ... . (A.19)

In this way, the corrections at O(g?) to the inverse propagator are finite:

ﬁ . 2 = —ipS(p) + ip=(p) = 0. (A.20)

7Y

The inclusion of this counterterm can be interpreted as a renormalization of the quark wave function. To
see this, it is sufficient to define

Yr = [1+302)]% (A21)

and verify that the kinetic part of the Lagrangian written in terms of g takes again the canonical form.

It may seem that this regularization/renormalization procedure can always be carried out, with all
possible infinities being removed by ad hoc counter-terms. This is not true. That these subtractions can
be performed consistently for any possible type of divergence which develops in perturbation theory is a
highly non-trivial fact. To convince you of this, consider the following example.

Let us study the QCD corrections to the interaction of quarks with a photon:

q
g
4

, die i —— —i
= (—zg)QCp/ (2n) ol Py, (—ieyh) ]mvp (e_g)

1
p+0>*p+10)°

leading div. . o a*e [THf def . 9
—  —ig (—2)01:/ N EIE = iey"V(q?) .

4
[N =it [ s (G AT ) g

It is easily recognized that V' (¢?) is divergent. The divergence can be removed by adding a counter-term
to the bare Lagrangian:

Liw = —e A"y — —eA v — eV (q®) A"y
= —[1+V(¢*)]e A"y . (A.22)

If we take into account the counter-term that was introduced to renormalize the quark self-energy, the
part of the quark Lagrangian describing the interaction with photons is now

Lgr= [1 + E(pz)] vidp— [1 +V (qQ)} e Ay, Pyt . (A.23)
Defining a renormalized charge by
1+ V(p)
= A24
€ER e 1 (q2) 5 ( )
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we are left with the renormalized Lagrangian
Lr = YridyYr + er Ay Ry YR . (A.25)

Can we blindly accept this result, regardless of the values of the counter-terms V (p?) and ¥(¢?)? The
answer to this question is NO! Charge conservation, in fact, requires er = e. The electric charge carried
by a quark cannot be affected by the QCD corrections, and cannot be affected by the renormalization of
QCD-induced divergences. There are many ways to see that if eg # e the electric charge would not be
conserved in strong interactions. The simplest way is to consider the process e v, — W+ — ud. The
electric charge of the initial state is +1 in units of e. After including QCD corrections (which in the case
of the interaction with a W are the same as those for the interaction of quarks with a photon), the charge
of the final state is +1 in units of egr. Unless eg = e, the total electric charge would not be conserved
in this process! It is the non-renormalization of the electric charge in the presence of strong interactions
that makes the charge of the proton equal to the sum of the charges of its constituent quarks, in spite of
the complex QCD dynamics that holds the quarks together.

As a result, the renormalization procedure is consistent with charge conservation if and only if

V(qz) =0
= 1. A.26
Y(p?) (420

This identity should hold at all orders of perturbation theory. It represents a fundamental constraint on
the consistency of the theory, and shows that the removal of infinities, by itself, is not a trivial trick which
can be applied to arbitrary theories. Fortunately, the previous identity can be shown to hold. You can
prove it explicitly at the one-loop order by explicitly evaluating the integrals defining V'(¢) and X(p).

To carry out the renormalization programme for QCD at one-loop order, several other diagrams in
addition to the quark self-energy need to be evaluated. One needs the corrections to the gluon self-
energy, to the coupling of a quark pair to a gluon, and to the three-gluon coupling. Each of these
corrections gives rise to infinities, which can be regulated in dimensional regularization. For the purposes
of renormalization, it is useful to apply the concept of D dimensions not only to the evaluation of the
infinite integrals, but to the full theory as well. In other words, we should consider the Lagrangian as
describing the interactions of fields in D dimensions. Nothing changes in its form, but the canonical
dimensions of fields and couplings will be shifted. This is because the action (defined as the integral over
space-time of the Lagrangian) is a dimensionless quantity. As a result, the canonical dimensions of the
fields, and of the coupling constants, have to depend on D:

[/deL(m)} = 0=[L]=D=4-2e,

[0,00"¢] =D = [¢]=1—¢,
[WdY] =D = [Y]=3/2—c¢,
[Avg] =D = lgl=c.

The gauge coupling constant acquires dimensions! This is a prelude to the non-trivial behaviour of
the renormalized coupling constant as a function of the energy scale (“running"). But before we come
to this, let us go back to the calculation of the counter-terms and the construction of the renormalized
Lagrangian.

Replace the bare fields and couplings with renormalized ones:>

1/2

Q/)bare = Zz wR ’
Ao = 25 A

Jbare = Z4g HEGR -

3For the sake of simplicity, here and in the following we shall assume the quarks to be massless. The inclusion of the mass
terms does not add any interesting new feature in what follows.
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We explicitly extracted the dimensions out of gpyre, introducing the dimensional parameter p (renormal-
ization scale). In this way the renormalized coupling gr is dimensionless (as it should be once we go
back to four dimensions).

The Lagrangian, written in terms of renormalized quantities, becomes

_ 1 _
= it — 7 Z5F}, LY + 7 1 Zo 282 1€ g Anp + (gauge fixing, ghosts, ... ) . (A.27)

urvta

It is customary to define
7y = Z,7, 73" . (A.28)

If we set Z,, = 1 + 9,,, we then obtain
L = Yidyp— ZF;V FH® 4 1€ gip Arp + [ghosts, gauge mixing]
+ Gy idh — ZégngF“”“ + 1 g A (A.29)

The counter-terms &; are fixed by requiring the one-loop Green functions to be finite. The explicit
evaluation, which you can find carried out in detail, for example, in Refs. [3,7], gives

1
quark self-energy = Jo = —CF (E —> , (A.30)
47 €
5 4 1
gluon self-energy = 63 = | -Ca — =ngTr Qs 2 , (A31)
3 3 dm €
1
qqg vertex corrections = 01 = —(Cx + C’F)Z—S - (A.32)
T o€

As usual we introduced the notation oy, = g?/4n. The strong-coupling renormalization constant Z g can
be obtained using these results and Eq. (A.28):

Z as L[ 11, 2 def bo
St S N ——5 =T 11 I . (A33
7,73 oot +47T6[ 6 AT F] €(2>as (A3

Zy =
Note the cancellation of the terms proportional to CF, between the quark self-energy (Z2) and the Abelian
part of the vertex correction (Z). This is the same as in the case of the QCD non-renormalization of
the electric coupling, discussed at the beginning of this appendix. The non-Abelian part of the vertex
correction contributes viceversa to the QCD coupling renormalization. This is a consequence of gauge
invariance. The separation of the non-Abelian contributions to the self-energy and to the vertex is not
gauge-invariant, only their sum is. Note also that the consistency of the renormalization procedure re-
quires that the renormalized strong coupling g defining the strength of the interaction of quarks and
gluons should be the same as that defining the interaction of gluons among themselves. If this did not
happen, the gauge invariance of the qg — gg process so painfully achieved in Section 2 by fixing the
coefficient of the three-gluon coupling would no longer hold at one-loop! Once again, this additional
constraint can be shown to hold through an explicit calculation.

A.4 Running of o

The running of « is a consequence of the renormalization-scale independence of the renormalization
process. The bare coupling gpare knows nothing about our choice of p. The parameter p is an artifact
of the regularization prescription, introduced to define the dimensionful coupling in D dimensions, and
should not enter in measurable quantities. As a result

dgbare
dp

=0. (A.34)
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Using the definition of g, gpare = 1“2, g, we then get

dz da
2% 72 azg 2¢ 2 00 _
en= Zg as + 1 as2Z, o +p= Z prai 0 (A.35)
where J J p
—. A.36
7= TR Tog e (A.36)
Z4 depends upon 41 only via the presence of . If we define
dog
= — A.37
ﬂ(Oés) dt ) ( )
we then get
dZg
Blay) +25° Blag) = —eas . (A.38)
Zg dog
Using Eq. (A.33) and expanding in powers of «, we get
—€EQ —€EQ
Blas) = P = ——— = —bpal +0(al,€) (A.39)
1425 e 1-
and finally
. 1 /11 2 N=3
Blas) = —bpai with by = D (ECA -3 TF) =" 5 (83— 2ny) . (A.40)

We can now solve Eq. (A.37), assuming by > 0 (which is true provided the number of quark flavours is
less than 16) and get the famous running of a:

2 1

as(p”) = bolog (22 /A2) ° (A.41)

The parameter A describes the boundary condition of the first-order differential equation defining the
running of o, and corresponds to the scale at which the coupling becomes infinity.

A.5 Renormalization group invariance

The fact that the coupling constant oy depends on the unphysical renormalization scale u should not be
a source of worry. This is because the coupling constant itself is not an observable. What we observe are
decay rates, spectra, or cross-sections. These are given by the product of the coupling constant and some
matrix element, which in general will acquire a non-trivial renormalization-scale dependence through
the renormalization procedure. We therefore just need to check that the scale dependence of the coupling
constant and of the matrix elements cancel each other, leaving results which do not depend on p.

Consider now a physical observable, for example the ratio R = o(eTe~ — hadrons)/o(ete™ —
pt ). R can be calculated in perturbation theory within QCD, giving rise to an expansion in the
renormalized coupling v, (p):

Rlog,s/p®] = 1+ ag fi(t) + a2 fo(t) Za fn) (A42)

where t = s/u? (and we omitted a trivial overall factor 3 > f ch) R depends on p explicitly via the
functions f,) (t) and implicitly through a,. Since R is an observable, it should be independent of 4, and
the functions f,) (t) cannot be totally arbitrary. In particular, one should have

dR B B
P =0=|u 2 +ﬁ( )a] Rla,,s/p?]=0. (A.43)
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Before we give the general, formal solution to this differential equation, it is instructive to work out
directly its form within perturbation theory.

dR dfr df
2 _ 0 — 2 2 2
Wz 0 = Blas) fi(t) +asp 42 + 20 flas) fo(t) + o a2 +.. (A.44)
At order g (remember that (3 is of order o) we get
d,
_f12 =0 = f; = constant = a . (A.45)
dp

This is by itself a non-trivial result! It says that the evaluation of R at one-loop is finite, all UV infinities
must cancel without charge renormalization. If they did not cancel, f; would depend explicitly on . As
we saw at the beginning, this is a consequence of the non-renormalization of the electric charge.

At order o we have

d 2
I =0 = fo=byay log il + ag (integration constant) . (A.46)
S

ﬂ(as)fl(t) + ag dlog HQ

So up to order a2 we have

R=1+ alas—i—alboaz log /f/s—l—agag—i—.... (A47)
one-loop two-loops

Note that the requirement of renormalization group invariance allows us to know the coefficient of the
logarithmic term at two loops without having to carry out the explicit two-loop calculation! It is also
important to notice that in the limit of high energy, s — oo, the logarithmic term of the two-loop
contribution becomes very large, and this piece becomes numerically of order o, as soon as log s/u? >
1/by as. It is easy to check that renormalization scale invariance requires the presence of such logs at all
orders of perturbation theory. In particular,

21N
fo () = @ [bo log ’ﬂ T (A.48)
We can collect all these logs as follows:
p p
R = 1+ajo, |1+ agblog — (vsbg log ?)2 +.. ] + aza’ + ... (A.49)
as(p) 2 _ 2
1 Lo=1 e A.50
+a; T+ s (e)bo log 5 + azal + + aros(s) + agas + (A.50)
In fact,
as () 1 1

= = = as(s) . (A51)
Lt+as(ubolog iz bylog 4y +blog 5 bolog 3z ’

Renormalization group invariance constrains the form of higher-order corrections. All of the higher-order
logarithmic terms are determined in terms of lower-order finite coefficients. They can be resummed by
simply setting the scale of a5 to s. You can check by yourself that this will work also for the higher-order
terms, such as those proportional to as. So the final result has the form

R=1+aja.(s) + aza?(s) + aza(s) + ... . (A.52)

Of course ai, as, ... have to be determined by an explicit calculation. However, the truncation of the
series at order n has now an accuracy which is truly of order a”*!, contrary to before when higher-
order terms were as large as lower-order ones. The explicit calculation has been carried out up to the a3
coefficient. In particular,

(A.53)

Cr
al = —
T

1w
Il
N | =
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The formal proof of the previous equation can be obtained by showing that the general form of the
equation

d
{u e +ﬂ(as)} R (a, %) =0 (A.54)
is given by
R(as(s),1), with
dos (A.55)
dlog u% = Blas)

B Formal derivation of the evolution equations

Assuming the parton picture outlined above, we can describe the cross-section for the interaction of the
virtual photon with the proton as follows:

1
o0 :/0 dx Z e filx) 60(v'qs — ¢, x) (B.1)

where the 0 subscript anticipates that this description represents a leading order approximation. In the
above equation, f;(z) represents the density of quarks of flavour ¢ carrying a fraction x of the proton
momentum. The hatted cross-section represents the interaction between the photon and a free (massless)
quark:

1 ©—= a3p’
I * / — - M * /N2 2 464 I o
6o(v ¢ — ;) ﬂUXZI o(v*q — d)| P, (2m)%0"(p' —q —p)
| —
— RZ\MOPQW(S@’?) : (B.2)
Using p’ = xP + ¢, where P is the proton momentum, we get
(p)* = 22P q +q¢°=2aP q -Q, (B.3)
50(v'q — ¢) ﬂux ZI (w — pj) (B.4)
where xp,; = ?D is the so-called Bjorken-x variable. Finally,
2m Z!Mo\2 2= 2" S [Mof?
00 = o Zwb] fi(xpg) =i Q2 Fy(xy;) - (B.5)

The measurement of the inclusive ep cross-section as a function of Q2 and P - ¢ [= my(E" — E) in the
proton rest frame, with E’ = energy of final-state lepton and E = energy of initial-state lepton] probes
the quark momentum distribution inside the proton.

B.1 Parton evolution

Let us now study the QCD corrections to the LO parton-model description of DIS. This study will exhibit
many important aspects of QCD (structure of collinear singularities, renormalization-group invariance)
and will take us to an important element of the DIS phenomenology, namely scaling violations. We start
from real-emission corrections to the Born level process:

q q k

P+ p'

P p (B.6)
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The first diagram is proportional to 1/(p — k)? = 1/2(pk), which diverges when k is emitted parallel to
p:
p-k=pk° (1 — cosf) =510 (B.7)

The second diagram is also divergent, if & is emitted parallel to p’. This second divergence turns out to
be harmless, since we are summing over all possible final states. Whether the final-state quark keeps
all of its energy, or whether it decides to share it with a gluon emitted collinearly, an inclusive final-
state measurement will not care. The collinear divergence can then be cancelled by a similar divergence
appearing in the final-state quark self-energy corrections.

The first divergence is more serious, since from the point of view of the incoming photon (which
only sees the quark, not the gluon) it does make a difference whether the momentum is all carried by the
quark or is shared between the quark and the gluon. This means that no cancellation between collinear
singularities in the real emission and virtual emission is possible. So let us go ahead, calculate explicitly
the contribution of these diagrams, and learn how to deal with their singularities.

First of all, note that while the second diagram is not singular in the region k-p — 0, its interference

with the first one is. It is possible, however, to select a gauge for which the interference of the two
diagrams is finite in this limit. It can be shown that the right choice is

. ku /1/+]€1/ yn
Z Eﬂeu(k) = —Guv + P TEP k- P . (B.8)

Note that in this gauge not only % - €(k) = 0, but also p’ - €(k) = 0. The key to getting to the end of a
QCD calculation in a finite amount of time is choosing a proper gauge (which we just did) and the proper
parametrization of the momenta involved. In our case, since we are interested in isolating the region
where k£ becomes parallel with p, it is useful to set

k,u =(1- Z)pu + ﬂpL + (kl),u ) (B.9)

with k| -p =k, - p' = 0. 3 is obtained by imposing

E=0=2801—-2)p p +k . (B.10)
Defining k2 = —k?, we then get
]-6‘2
f=—"t (B.11)
2(pp’) (1 = 2)
k,=(1—2x) +k7t2’+(k) (B.12)
W P o =gy Ve '

(k1 )y is therefore the gluon momentum vector transverse to the incoming quark, in a frame where ~*
and q are aligned. k; is the value of this transverse momentum. We also get

]-6‘2
kp=p8pp=-—=>tb— ad k-p = 1-2)pp. B.13
p=PBpp i—a & pr=>0-2)pp (B.13)
As aresult (p — k)2 = —k?/(1 — z). The amplitude for the only diagram carrying the initial-state
singularity is
p— k
M, = igh% a(p))T (;LW &(k)u(p) (B.14)

(where we introduced the notation & = ¢ = a,7"). We indicated by I' the interaction vertex with the
external current ¢. It is important to keep I" arbitrary, because we would like to get results which do not
depend on the details of the interaction with the external probe. It is important that the singular part of
the QCD correction, and therefore its renormalization, be process independent. Only in this way can we
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hope to achieve a true universality of the parton densities! So we will keep I" generic, and make sure that
our algebra does not depend on its form, at least in the p - £ — 0 limit. Squaring the most singular part
of the amplitude, and summing over colours and spins, we get

NXCF

S M = g2Ztr (A%AY) x—thr 'T(p—k)éepe* (p— k)T (B.15)
g polariz.
and colours

witht = (p — k)2 = —k2/(1 — z). Let us look first at

Ao . . | VI .. 2 . .
Yoepe = e = =y Fy 0Pk kpp) = T (k+5)  (B16)

€

(we used abé + éba = 2(a - b) é — 2(a - ¢) b+ 2(b - ¢) & and some of the kinematical relations from the
previous page). Then take

~

(p—k)(k+80) (p—k)=(P—k)k(p—k)+BP—k)p (H—k). (B.17)

In the second term, proportional to (8, we can approximate k= (1 — z)p. This is because the other
pieces (8p" + k. ) multiplied by 5 would cancel entirely the %2 singularity, and would only contribute a
non-singular term, which we are currently neglecting. So Eq. (B.17) becomes

pkp + B22pp'D = 2(p - k)p + B222(p - p')p = 2(p - k) (1 + 22)p (B.18)
and ,
1-— 1
37 M = 2¢° Cp kgz) <1+Z > N te[p'THr ] . (B.19)
t —Z

The last factor with the trace corresponds to the Born amplitude squared. So the one-gluon emission
process factorizes in the collinear limit into the Born process times a factor which is independent of the
beam’s nature! If we add the gluon phase-space

d3k dky dp 1 dk? dz 1

dk] = ——— = —L — — = dk? B.2
k] (2m)32k0 — KO 27w 872 2 (1—2z) 162 L7 (B-20)

we get
S 1, P (k) = k;d (52) Pua(2) D Mol (B.21)
where
1
Pyq(2) = Cr ;izz (B.22)

is the so-called Altarelli-Parisi splitting function for the ¢ — ¢ transition (z is the momentum fraction
of the original quark taken away by the quark after gluon emission). We are now ready to calculate the
corrections to the parton-model cross-section:

1 dk:L Qg — 9 9
o, = /dxf( v o /d T (22 Pogle) S IMof? 25 (B.23)
Using (p')* = (p — k +q)* ~ (2p + q)> = (2zP + ¢)* and
I VR N YO
o(p”) = 2P-qz§<x z)_ . o(x Z), (B.24)
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we finally obtain

27 S| Mp? ' dz _ xbj

We then find that the inclusion of the O(«a) correction is equivalent to a contribution to the parton

density:
Qg dk? d
fila) = fi(z) + = / / °p (%) : (B.26)

Note the presence of the integral [ dk? 1/ k2 The upper limit of integration is proportional to Q2. The
lower limit is 0. Had we included a quark mass, the propagator would have behaved like 1/ (k2 +m?).
But the quark is bound inside the hadron, so we do not quite know what m should be. Let us then assume
that we cut off the integral at a £ value equal to some scale jio, and see what happens. The effective
parton density becomes

2 z X
F(2.Q%) = f(x) +log (32) = E Zruf(%) (B.27)

0 z

The dependence on the scale /1, which is a non-perturbative scale, can be removed by defining f(z, Q?)
in terms of the parton density f measured at a large, perturbative scale y2:

2 d
f (@, 1%) = f(2) + log (Z—g) > / Zru1 (%) (B.28)
We can then perform a subtraction, and write
2 Lq
[(@,Q%) = f(w,1u?) + log (32) = Trar(3)- (B.29)

The scale p plays here a similar role to the renormalization scale introduced in the Appendix A. Its choice
is arbitrary, and f(x,Q?) should not depend on it. Requiring this independence, we get the following
‘renormalization-group (RG) invariance’ condition:

df(2,Q*) _ o df(z, 1) / d o\
i = e | SRS (5) =0 (B.30)
and then » 2) y
2 Z, - z z 9
H Cdpz 27T o qu(Z)f<Z7M> . (B.31)

This equation is usually called the DGLAP (Dokshitzer—Gribov—Lipatov—Altarelli—Parisi) equation. As
in the case of the resummation of leading logarithms in R_+.- induced by the RG invariance constraints,
the DGLAP equation—which is the result of RG invariance—resums a full tower of leading logarithms

of Q2.

Proof: Let us define ¢t = log . We can then expand f(x,t) in powers of ¢:

d 2 42
f@t) = f( 0)+td—‘];( ,0)+’;—,Wf( 0) 4. (B.32)

The first derivative is given by the DGLAP equation itself. Higher derivatives can be obtained by differ-
entiating it:

dz df x

Pt = 2 [ Ere T E

27r
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27r z 2!

Ldz as [Yd z
= Zr5E [ TP

as 1 as 1 dz™)

) (x,t) = = [ ...... — —qu(z(n))f(

2m J,, 21 Sy )zt 201 2(n) zz' ...

X

). (B.33)

The n-th term in this expansion, proportional to («a t)", corresponds to the emission of n gluons (it is
just the n-fold iteration of what we did studying the one-gluon emission case).

With similar calculations one can include the effect of the other O(a,) correction, originating from the
splitting into a qg pair of a gluon contained in the proton. With the addition of this term, the evolution
equation for the density of the ith quark flavour becomes

dfy(z,t) s [Ldz x x , 1, 9
T B |Paal?) S0 + Py f(Z.0)] 0 with Py = 5 [+ (1= 2)7] .
(B.34)
In the case of interactions with a coloured probe (say a gluon) we meet the following corrections, which
affect the evolution of the gluon density fg(x):

dfg(x,t) s [1dz x x
e e Z-Zq:qfi (Z:1) + P2 fa (5:1) (B.35)
with
1+ (1—2z)? 1—
Pyy(2) = Pyl — 2) = Cp# and Pyy(z) = 2Cx [ . ‘4 1 i . +2(1—2)
(B.36)
Defining the moments of an arbitrary function g(x) as follows,
Lda
gn= | —a"g(z),
o X

it is easy to prove that the evolution equations turn into ordinary linear differential equations:

(n)

Lo = R+ PR (B.37)
d m) s n) #(n

JZZ — g[P( fo + P M (B.38)

B.2 Properties of the evolution equations

We now study some general properties of these equations. It is convenient to introduce the concepts of
valence [V (z,t)] and singlet [X(z,t)] densities:

Viz) = Y filz) = > filx), (B.39)
Sa) = Y file)+Y filz), (B.40)
where the index 7 refers to the antiquark flavours. The evolution equations then become
av®) )
= 5 pm)y0) B.41
dt 2r Vi ( )
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S0 eyt o
i = LA O (B.42)
dfén) Qs n n n n
o [Péq)z( '+ P 1§ )} : (B.43)

Note that the equation for the valence density decouples from the evolution of the gluon and singlet
densities, which are coupled among themselves. This is physically very reasonable, since in perturbation
theory the contribution to the quark and the antiquark densities coming from the evolution of gluons (via
their splitting into gq pairs) is the same, and will cancel out in the definition of the valence. The valence
therefore only evolves because of gluon emission. On the contrary, gluons and ¢g pairs in the proton sea
evolve into one another.

The first moment of V (z), V(1) = fol dx V (x), counts the number of valence quarks. We there-
fore expect it to be independent of Q?:

dv @
dt

_ s 51 1
zozﬁpéq)v()zo. (B.44)

Since V() itself is different from 0, we obtain a constraint on the first moment of the splitting function:
Pq(; ) = 0. This constraint is satisfied by including the effect of the virtual corrections, which generate
a contribution to P,(z) proportional to §(1 — z). This correction is incorporated in Pg,(z) via the

redefinition: ) ) . )
1 1 1
qu(z)—>< “) 1t —5(1—2)/ dy< “’) (B.45)
-2/, 1-=2 0

1—y

where the + sign turns Py, (2) into a distribution. In this way, fol dz Pyy(z) = 0 and the valence sum-rule
is obeyed at all Q2.

Another sum-rule that does not depend on (2 is the momentum sum-rule, which imposes the
constraint that all of the momentum of the proton is carried by its constituents (valence plus sea plus
gluons):

1
/d:cm > fil@) + fola)| =8® + P =1, (B.46)
0 =

Once more this relation should hold for all Q? values, and this can be proved by using the evolution

equations that this implies:

2 2) _
pq(q) + pg(q) = 0, (B.47)
2 2

PP +on, P2 = 0. (B.48)
You can check using the definition of second moment, and the explicit expressions of the P, and Py,
splitting functions, that the first condition is automatically satisfied. The second condition is satisfied by
including the virtual effects in the gluon propagator, which contribute a term proportional to 6(1 — z). It
is a simple exercise to verify that the final form of the P,,(z) splitting function, satisfying Eq. (B.48), is
x 1—2z

(1—)4 v

Pyy — QCA{ (B.49)

+x(1—x)} +6(1 — ) [M] .

6

B.3 Solution of the evolution equations

The evolution equations formulated in the previous section can be solved analytically in moment space.
The boundary conditions are given by the moments of the parton densities at a given scale p, where in
principle they can be obtained from a direct measurement. The solution at different values of the scale
@ can then be obtained by inverting numerically the expression for the moments back to = space. The
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resulting evolved densities can then be used to calculate cross-sections for an arbitrary process involving
hadrons, at an arbitrary scale (). We shall limit ourselves here to studying some properties of the analytic
solutions, and will present and comment on some plots obtained from numerical studies available in the
literature.

As an exercise, you can show that the solution of the evolution equation for the valence density is
the following:

(n) (n)
1 2 A2 qu /27Tb0 2 qu /27Tb0
og Q*/ ] _ ™2 [Oés(ﬂ )} (B.50)

V(n)(Q2) _ V(n)(,u2) [log’u2//\2 QS(Q2)

where the running of s (142) has to be taken into account to get the right result. Since all moments p®)
are negative, the evolution to larger values of () makes the valence distribution softer and softer. This is
physically reasonable, since the only thing that the valence quarks can do is to lose energy because of
gluon emission.

The solutions for the gluon and singlet distributions f, and 3 can be obtained by diagonalizing
the 2x2 system in Egs. (B.42) and (B.43). We study the case of the second moments, which correspond
to the momentum fractions carried by quarks and gluons separately. In the asymptotic limit X2 goes to
a constant, and %f) = 0. Then, using the momentum sum-rule,

pq(g) Y@ 4 2 s pq(g)fé?) = 0, (B.51)
¥ 4 f£§2) - 1. (B.52)
The solution of this system is

1

»@ = e (=15/31 forny =5), (B.53)
ng

4C

féQ) = ﬁ (=16/31 forny =5) . (B.54)

As a result, the fraction of momentum carried by gluons is asymptotically approximately 50% of the
total proton momentum. It is interesting to note that, experimentally, this asymptotic value is actually
reached already at rather low values of Q2. It was indeed observed already since the early days of the DIS
experiments that only approximately 50% of the proton momentum was carried by charged constituents.
This was one of the early pieces of evidence for the existence of gluons.

A complete solution for the evolved parton densities in z space can only be obtained from a
numerical analysis. This work has been done in the past by several groups (see e.g., the discussions in
Ref. [8]), and is continuously being updated by including the most up-to-date experimental results used
for the determination of the input densities at a fixed scale.

C Jetrates in et e~ collisions

We present here explicit calculations of a few interesting jet observables in e Te™ collisions. For simplic-
ity, we will work with the soft-gluon approximation for the matrix elements and the phase-space. As a
result, the correction to the differential e™e~ — g cross-section from one-gluon emission becomes

2004 o % dcosf
T F ko 1—cos20 '’

doy = 09 where o is the Born amplitude . (C.1)

In this equation we used the fact that in the soft-g limit the ¢ and ¢ are back-to-back, and

q-4=2q0G , q-k=qoko(l—cost), gk = qoko(1+ cosb). (C2)
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Note the presence in do of soft and collinear singularities. They will have to cancel in the total cross-
section which, as we saw in the previous lecture, is finite. They do indeed cancel against the contribution
to the total cross-section coming from the virtual correction diagram, where a gluon is exchanged be-
tween the two quarks. In the total cross-section (and for other sufficiently inclusive observables) the final
states produced by the virtual diagrams and by the real emission diagrams in the soft or collinear limit
are the same, and both contribute. In order for the total cross-section to be finite, the virtual contribution
will need to take the following form:

dQO' 2cv vV 5/2 dk! 1 dcos @ 1

Tidoog = 000 P [7 TSV L s(ke) [8(1 — cos) + 8(1+ cos f

dkod cos 0 0 F/O K ) T—cos2¢/ X5 (ko) [6(1 —cos @) 4 d(1 + cos 0)]
(C.3)

plus finite corrections. In this way,
s/2 1 dQO' dQO'

dk dcos O g v _ finite . 4
/0 0/1 o8 [dkodcosé’ t dkodcosp| e (€4

With the form of the virtual corrections available (at least in this simplified soft-gluon-dominated ap-
proximation), we can proceed and calculate other quantities.

Jets are usually defined as clusters of particles close-by in phase-space. A typical jet definition
distributes particles in sets of invariant mass smaller than a given parameter M, requiring that one particle
only belongs to one jet, and that no other particles (or jets) can be added to a given jet without its mass
exceeding M. In the case of a three-particle final state, such as the one we are studying, we get three-jet
events if (¢ + k)2, (g + k)% and (¢ + ¢)? are all larger than M?2. We will have two-jet events when at
least one of these quantities gets smaller than M 2. For example emission of a gluon near the direction of
the quark, with 2¢k = 2¢°k°(1 — cos #) < M?, defines a two-jet event, one jet being given by the g, the
other by the system q + k.

One usually introduces the parameter y = M? /s, and studies the jet multiplicity as a function of
1. Let us calculate the two- and three-jet rates at order a;. The phase-space domain for two-jet events is
given by two regions. The first one is defined by 2qk = 2goko(1 — cosf) < ys. This region consists of
two parts:

(C.5)

ko < y+/s ko > y+/s

(D), ve 5 (D s

0<cosf <1 1— 55 < cosf <1

(I)q corresponds to soft gluons at all angles smaller than 7/2 (i.e., in the quark emisphere), and (I);
corresponds to hard gluons emitted at small angles from the quark.

The second region, (II), is analogous to (I), but the angles are now referred to the direction of the
antiquark. The integrals of do over (I) and (I) are of course the same. The O(«) contribution to the
two-jet rate is therefore given by

(as)

02 jet 1
—_— = — |2 dog + 2 dog + doy,
g0 70 Da Dy virtual
_ 4a,Cr /yﬁ% U dcost /\/8/2 dky [* dcosf
B T 0 ko Jo 1—cos?6 wE ko 1-(%5) 1 —cos?6

_/WE %/1 dcos @
0 ko Jo 1—-cos?6

4osCr {_/VS/2 dko L dcos /V8/2 dko 1 dcos }
y

T N ko Jo 1—00829+ s ko 1_(%) 1—cos26
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40y Ce /\/8/2 dko 1<'”kf>< dcos 6 )

p i ko 1—cos?f
20,Ce [V dk k :
- CF/ — [ —)log — = + (finite for y — 0)] _ Cr log”2y . (C.6)
yV's yv's "

Including the Born contribution, which always gives rise to two and only two jets, we finally have

If y — 0, 03_jer becomes larger than o2 je. If y is sufficiently small, we can even get o2 _jer < 0!
This is a sign that higher-order corrections become important. In the soft-gluon limit, assuming that the
emission of a second gluon will also factorize*, we can repeat the calculation at higher orders and obtain

asC 1 [a,C 2
02—jet =~ 00[1— ;Flgy"i‘E(S F 2 ) + ...

02—jet — UO[

agsUF 2
O3_jet = 00 log“y+....

asCf 2
——= log y7

= 0 €

asCg _asCf 2
S long e — log=y 7

O3—jet ~ 00

1 asCk " asCp 2
O(nt2)—jet ~ 00 — ( Sﬂ log? y) S (C.7)

It is immediate to recognize in this series a Poisson distribution, leading to an average number of jets
given by

(Njet) ™ (C.8)

The smaller the resolution parameter y, the smaller the mass of the jets, and the larger the importance
of higher-order corrections. If we take the parameter M down to the scale of a few hundred MeV
(M ~ Aqcp), each particle gets identified with an independent jet. We can therefore estimate the s-
dependence of the average multiplicity of particles produced:

CFozslzs_C'F 1 9 8 Ck s

A S — ~ — log — . C.
(pan) ~ —— log” 55 = — bolog ° A2 wby 0 A2 €9

The final-state particle multiplicity grows with log(s).

In practice, things are a bit more complicated than this. Once the first gluon is emitted, additional
gluons can be emitted from it as well. Therefore the final-state multiplicity will be dominated by the
emission of gluons from gluons. The analysis becomes more complicated (see e.g., Refs. [6] and [8] for
the details), and the final result is

2C S
(pan(s)) ~ exp | =% log(43) (C.10)
for the particle multiplicity, and
CF « CA 1 CF (67 CA 1
(njet(y)) = 2+ 2C_A (cosh ;—W log? . 1) ~ C &P ;—W 10g2§

“This is not true (see later on), but let us just accept it to see how things develop.
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for the average jet multiplicity.

Other interesting quantities that can be calculated using the simple formulas we developed so
far are the average jet mass and the thrust. To define the jet mass we just divide the final state into two
emispheres, separated by the plane orthogonal to the thrust axis. We now call jets the two sets of particles
on either side of the plane. The (m?) of the jet is then given by

(mt) = 5o [ (@ ko, + [ (a4 ko | (C.11)
! 200 UJqy a

The virtual correction does not enter here, since the pure ¢g final state has jet masses equal to 0. The
result of this simple computation leads to
asCE
(miy) = ——s. (C.12)

s

Another interesting variable often used in experimental studies is the thrust 7, defined by

T= max Y [5-T| /> [pil
i

T i

where 7 is the thrust axis, defined so as to maximize 7'. For three-body final states, T is the direction of
the highest-energy parton, and 7" is proportional to twice its energy:

_ k 2 m?
T:Qq_ozl_uzl_ﬂ_ (C.13)
NG s s
As a result, o
1-1)=22F (C.14)
T

AtLEP, (1 -T) ~ @ X % ~ (.05. The terms neglected in the soft-gluon approximation we used
throughout can be calculated, and give some small correction to the above results. Corrections will like-
wise come from higher-order effects. State-of-the-art calculations exist which evaluate all these ‘shape
variables’ (and more!) up to O(a?) accuracy, including a full next-to-leading-log accurate resummation
of higher-order logarithms (such as the log 1/y terms we encountered in the discussion of jet rates, or
terms of the form log™ (1 — T") which appear at higher orders in the evaluation of the thrust distributions).
These calculations allow a reliable estimate of several different observables directly proportional to acg,
and provide the theoretical input for the extraction of «s from the LEP QCD data [8].

%
impact on the extraction of «s. For example, a % correction to (1 — T") would be a 20% effect:

Note that non-perturbative corrections proportional to —=, with A ~ 1 GeV, can have a significant

A
— ~ 0.01 y <1 — T>PT ~ 0.05.

N

Indeed one measures (1 — T)pgp = 0.068 + 0.003 , compared with the full perturbation theory QCD
prediction of 0.055 (using az = 0.120).
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CP violation in meson decays

Y. Nir
Weizmann Institute of Science, Rehovot, Israel

Abstract

This contribution is aimed at graduate students in the field of (theoretical and
experimental) high-energy physics. The main topics covered are (i) the flavour
sector of the Standard Model and the Kobayashi—-Maskawa mechanism of CP
violation; (ii) formalism and theoretical interpretation of CP violation in meson
decays; (iii) K decays; (iv) D decays; (v) B decays (b — ccs, b — sSs,
b — wud and b — cus, ucs); and (vi) CP violation as a probe of new physics
and, in particular, of supersymmetry.

1 Introduction

The Standard Model (SM) predicts that the only way that CP is violated is through the Kobayashi—
Maskawa mechanism [1]. Specifically, the source of CP violation is a single phase in the mixing matrix
that describes the charged-current weak interactions of quarks. In this introduction, we briefly review
the present evidence that supports the Kobayashi-Maskawa (KM) picture of CP violation, as well as the
various arguments against this picture.

1.1 Why believe the Kobayashi-Maskawa mechanism?

Experiments have measured to date nine independent CP-violating observables':

1. Indirect CP violation in K — 77 decays [2] and in K — wlv decays is given by
ex = (2.28 £0.02) x 1073 ¢™/4 (1)
2. Direct CP violation in K — 7w decays [3-5] is given by
e'/e = (1.72£0.18) x 1073 . ()

3. CP violation in the interference of mixing and decay in the B — 1 K g and other, related modes is
given by [6,7]:
Syrg = +0.69 £0.03 . 3)

4. CP violation in the interference of mixing and decay in the B — K ™K~ K5 mode is given by [8,9]
Sk+r-Kg =—045+0.13. “)

5. CP violation in the interference of mixing and decay in the B — D** D*~ mode is given by [10,
11]
Spetpe— = —0.75+0.23 . (&)

6. CP violation in the interference of mixing and decay in the B — 1’ K° modes is given by [12-14]

Syis = +0.50 £ 0.09(0.13) . (6)

!The list of measured observables in B decays is somewhat conservative. I include only observables where the combined
significance of Babar and Belle measurements (taking an inflated error in case of inconsistencies) is above 3.
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7. CP violation in the interference of mixing and decay in the B — fyK g mode is given by [13,15]
Sprg =—0.75+£0.24. @)
8. Direct CP violation in the B® — K~ 7T mode is given by [16,17]
Agr.t = —0.115 £ 0.018 . ®)
9. Direct CP violation in the B — pm mode is given by [18, 19]

A =-0484+0.14 . 9)

All nine measurements — as well as many other, where CP violation is not (yet) observed at a level higher
than 30 — are consistent with the KM picture of CP violation. In particular, the measurement of the
phase 3 from the CP asymmetry B — ¢ K and the measurement of the phase o from CP asymmetries
and decay rates in the B — 7, pm and pp modes have provided the first two precision tests of CP
violation in the SM. Since the model has passed these tests successfully, we are able, for the first time,
to make the following statement: The Kobayashi-Maskawa phase is, very likely, the dominant source of
CP violation in low-energy flavour-changing processes.

In contrast, various alternative scenarios of CP violation that have been phenomenologically viable
for many years are now unambiguously excluded. Two important examples are the following.

— The superweak framework [20], that is, the idea that CP violation is purely indirect, is excluded
by the evidence that &’ /e # 0.

— Approximate CP, that is, the idea that all CP-violating phases are small (see, for example, [21]), is
excluded by the evidence that Sy, = O(1) .

Indeed, I am not aware of any viable, reasonably motivated, scenario which provides a complete alterna-
tive to the KM mechanism, that is, of a framework where the KM phase plays no significant role in the
observed CP violation.

The experimental results from the B-factories, such as those in Egs. (3)—(9), and their implications
for theory signify a new era in the study of CP violation. In this contribution we explain these recent
developments and their significance.

1.2 Why doubt the Kobayashi-Maskawa mechanism?
1.2.1 The baryon asymmetry of the universe

Baryogenesis is a consequence of CP-violating processes [22]. Therefore the present baryon num-
ber, which is accurately deduced from nucleosynthesis and Cosmic Microwave Background Radiation
(CMBR) constraints,
Yp="L2""B Lgyx101, (10)
S

is essentially a CP-violating observable! It can be added to the list of known CP-violating observables,
Egs. (1)—=(9). Within a given model of CP violation, one can check for consistency between the data from
cosmology, Eq. (10), and those from laboratory experiments.

The surprising point is that the Kobayashi-Maskawa mechanism for CP violation fails to account
for Eq. (10). It predicts present baryon number density that is many orders of magnitude below the
observed value [23-25]. This failure is independent of other aspects of the SM: The suppression of
Yp from CP violation is much too strong, even if the departure from thermal equilibrium is induced by
mechanisms beyond the SM. This situation allows us to make the following statement: There must exist
sources of CP violation beyond the Kobayashi—-Maskawa phase.
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Two important examples of viable models of baryogenesis are the following.

1. Leptogenesis [26]: a lepton asymmetry is induced by CP-violating decays of heavy fermions that
are singlets of the SM gauge group (sterile neutrinos). Departure from thermal equilibrium is
provided if the lifetime of the heavy neutrino is long enough that it decays when the temperature
is below its mass. Processes that violate B + L are fast before the electroweak phase transition
and partially convert the lepton asymmetry into a baryon asymmetry. The CP-violating parameters
may be related to CP violation in the mixing matrix for the light neutrinos (but this is a model-
dependent issue [27]).

2. Electroweak baryogenesis (for a review see Ref. [28]): the source of the baryon asymmetry is
the interactions of top (anti)quarks with the Higgs field during the electroweak phase transition.
CP violation is induced, for example, by supersymmetric interactions. Sphaleron configurations
provide baryon-number-violating interactions. Departure from thermal equilibrium is provided by
the wall between the false vacuum ((¢) = 0) and the expanding bubble with the true vacuum,
where electroweak symmetry is broken.

1.2.2 The strong CP problem

Nonperturbative QCD effects induce an additional term in the SM Lagrangian,

_ bqep

£0= gom2 e

Frraproa (11)

This term violates CP. In particular, it induces an electric dipole moment (EDM) to the neutron. The
leading contribution in the chiral limit is given by [29]

9rNNGxNN , My
dy = |

~5x107' ¢ 12
47T2MN n . X QCD e cm, ( )

where My is the nucleon mass, and g.nynN (Grnvn) is the pseudoscalar coupling (CP-violating scalar
coupling) of the pion to the nucleon. (The leading contribution in the large N, limit was calculated in
the Skyrme model [30] and leads to a similar estimate.) The experimental bound on d  is given by [31]

dy <6.3x10 % ecm. (13)
It leads to the following bound on fqcp:

fqcp S 10710 (14)

Since Oqcp arises from nonperturbative QCD effects, it is impossible to calculate it. Yet, there are
good reasons to expect that these effects should yield §gcp = O(1) (for a review, see Ref. [32]). Within
the SM, a value as small as in Eq. (14) is unnatural, since setting 6 gcp to zero does not add symmetry
to the model. [In particular, as we will see below, CP is violated by dxy = O(1).] Understanding why
CP is so small in the strong interactions is the strong CP problem.

It seems then that the strong CP problem is a clue to new physics. Among the solutions that have

been proposed are a massless u-quark (for a review, see Ref. [33]), the Peccei—Quinn mechanism [34,35]
and spontaneous CP violation.

1.2.3 New physics

Almost any extension of the SM provides new sources of CP violation. For example, in the supersym-
metric extension (with R-parity), there are 44 independent phases, most of them in flavour-changing
couplings. If there is new physics at or below the TeV scale, it is quite likely that the KM phase is not
the only source of CP violation that is playing a role in meson decays.
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1.3 Will new CP violation be observed in experiments?

The SM picture of CP violation is testable because the Kobayashi-Maskawa mechanism is unique and
predictive. These features are mainly related to the fact that there is a single phase that is responsible for
all CP violation. As a consequence of this situation, one finds two classes of tests:

1. Correlations. Many independent CP-violating observables are correlated within the SM. For ex-
ample, the SM predicts that the CP asymmetries in B — ¥ K g and in B — ¢Kg, which proceed
through different quark transitions, are equal to each other (to a few per cent accuracy) [36, 37].
Another important example is the strong SM correlation between CP violation in B — ¥ K g and
in K — wvv [38-40]. It is a significant fact, in this context, that several CP-violating observ-
ables can be calculated with very small hadronic uncertainties. To search for violations of the
correlations, precise measurements are important.

2. Zeros. Since the KM phase appears in flavour-changing, weak-interaction couplings of quarks,
and only if all three generations are involved, many CP-violating observables are predicted to be
negligibly small. For example, the transverse lepton polarization in semileptonic meson decays,
CP violation in ¢¢ production, tree-level D decays, and (assuming fgcp = 0) the electric dipole
moment of the neutron are all predicted to be orders of magnitude below the (present and near
future) experimental sensitivity. To search for lifted zeros, measurements of CP violation in many
different systems should be performed.

The strongest argument that new sources of CP violation must exist in Nature comes from baryoge-
nesis. Whether the CP violation that is responsible for baryogenesis would be manifest in measurements
of CP asymmetries in B decays depends on two issues.

1. The scale of the new CP violation. If the relevant scale is very high, such as in leptogenesis,
the effects cannot be signalled in these measurements. To estimate the limit on the scale, the
following three facts are relevant: First, the SM contributions to CP asymmetries in B decays are
O(1). Second, the expected experimental accuracy would reach in some cases the few per cent
level. Third, the contributions from new physics are expected to be suppressed by (Agw /Axp)?.
The conclusion is that, if the new source of CP violation is related to physics at Axp > 1 TeV, it
cannot be signalled in B decays. Only if the true mechanism is electroweak baryogenesis, can it
potentially affect B decays.

2. The flavour dependence of the new CP violation. If it is flavour diagonal, its effects on B decays
would be highly suppressed. It can still manifest itself in other, flavour-diagonal CP-violating
observables, such as electric dipole moments.

We conclude that new measurements of CP asymmetries in meson decays are particularly sensitive
to new sources of CP violation that come from physics at (or below) the few TeV scale and that are
related to flavour-changing couplings. This is, for example, the case, in certain supersymmetric models
of baryogenesis [41,42]. The search for electric dipole moments can reveal the existence of new flavour-
diagonal CP violation.

Of course, there could be new flavour physics at the TeV scale that is not related to the baryon
asymmetry and may give signals in B decays. The best motivated extension of the SM where this
situation is likely is that of supersymmetry.

Finally, we would like to mention that, in the past, flavour physics and the physics of CP viola-

tion did indeed lead to the discovery of new physics or to probing it before it was directly observed in
experiments:

I'(Kp —ptp)
MK+ — pty)
— the size of Amg led to a successful prediction of the charm mass;

— the smallness of led to predicting a fourth (the charm) quark;
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— the size of Amp led to a successful prediction of the top mass;
— the measurement of € led to predicting the third generation.

2 The Kobayashi-Maskawa mechanism
2.1 Yukawa interactions are the source of CP violation

A model of elementary particles and their interactions is defined by three ingredients:

1. the symmetries of the Lagrangian;
2. the representations of fermions and scalars;
3. the pattern of spontaneous symmetry breaking.

The Standard Model (SM) is defined as follows:

1. The gauge symmetry is
Gsm =SU3)c x SU2), x U(1)y . (15)

2. There are three fermion generations, each consisting of five representations of Ggnr:
Qiz(gv 2)+1/67 UI{ZZ(?)’ 1)+2/37 Dll%l(?)’ 1)71/37 Lil(lv 2)71/27 E{%z(lv 1)—1 : (16)

Our notations mean that, for example, left-handed quarks, Qi, are triplets of SU(3)c, doublets of
SU(2)1, and carry hypercharge Y = +1/6. The super-index I denotes interaction eigenstates. The
sub-index ¢ = 1, 2, 3 is the flavour (or generation) index. There is a single scalar representation,

¢(1,2) 112 - (17)

(9) = (i) : (18)
V2

so that the gauge group is spontaneously broken,

3. The scalar ¢ assumes a VEV,

Gsm — SU3)e x U(D)gw - (19)

The SM Lagrangian, Lgy, is the most general renormalizable Lagrangian that is consistent with
the gauge symmetry (15), the particle content (16), (17) and the pattern of spontaneous symmetry break-
ing (18). It can be divided in three parts:

£SM = Ekinetic + EHiggs + £Yukawva . (20)

Concerning the kinetic terms, to maintain gauge invariance one has to replace the derivative with
a covariant derivative:
DM = 0F +igsGH Ly + igW}'T, + ig' B"Y . (21)

Here G are the eight gluon fields, TV/' the three weak-interaction bosons and B* the single hypercharge
boson. The L,’s are SU (3)c generators (the 3 x 3 Gell-Mann matrices %Aa for triplets, O for singlets),
the T’s are SU(2)1, generators (the 2 x 2 Pauli matrices %Tb for doublets, O for singlets), and the Y’s are
the U(1)y charges. For example, for the left-handed quarks Qi, we have

Liineric( QL) = iQL (8“ + 59:GiNa + SgWi'n, + gg’Bﬂ) Qs 22)
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while for the left-handed leptons L, we have
Ekinetic(LL) - ZLifY/L <8M + §gWéL7—b - Zg/BM) Liz . (23)

These parts of the interaction Lagrangian are always CP conserving.

The Higgs potential, which describes the scalar self interactions, is given by

Litigs = 12076 — MNp19)? . (24)

For the SM scalar sector, where there is a single doublet, this part of the Lagrangian is also CP conserving.
For extended scalar sectors, such as that of a two Higgs doublet model, £ piggs can be CP violating. Even
in the case that it is CP symmetric, it may lead to spontaneous CP violation.

The quark Yukawa interactions are given by

_ pauarks _ Yi;‘l L¢¢DII%J' +Y LNEUII%J' +h.e.. (25)

Yukawa
This part of the Lagrangian is, in general, CP violating. More precisely, CP is violated if and only if [43]

Im(det[Y Y4 YUy i]) £0. (26)

An intuitive explanation of why CP violation is related to complex Yukawa couplings goes as
follows. The hermiticity of the Lagrangian implies that £y kawa has its terms in pairs of the form

Yijbridbrj + Yibrid i - 27)
A CP transformation exchanges the operators
bLid¥rj < VRO YL | (28)
but leaves their coefficients, Y;; and Ylj, unchanged. This means that CP is a symmetry of Lyukawa if
Yij =Y.
The lepton Yukawa interactions are given by
L e = Yi§ L1 0 Efy + huc. (29)

It leads, as we will see in the next section, to charged lepton masses but predicts massless neutrinos. Re-
cent measurements of the fluxes of atmospheric and solar neutrinos provide evidence for neutrino masses
(for a review, see Ref. [44]). That means that Lg); cannot be a complete description of Nature. The sim-
plest way to allow for neutrino masses is to add dimension-five (and, therefore, non-renormalizable)
terms, consistent with the SM symmetry and particle content:

. Y*
—Limes = 5 Liliod +he.. (30)
The parameter A has dimension of mass. The dimensionless couplings Y} are symmetric (Y7 = Y}7).

We refer to the SM extended to include the terms £I™ 5 of Eq. (30) as the ‘extended SM’ (ESM):

Yukawa

£ESM = £kinetic + £Higgs + £Yukawva + £dim_5 . (31)

Yukawa
The inclusion of non-renormalizable terms is equivalent to postulating that the SM is only a low-energy
effective theory, and that new physics appears at the scale M.

How many independent CP-violating parameters are there in L3 2 Each of the two Yukawa

matrices Y7 (¢ = u, d) is 3x 3 and complex. Consequently, there are 18 real and 18 imaginary parameters
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in these matrices. Not all of them are, however, physical. One can think of the quark Yukawa couplings
as spurions that break a global symmetry,

UB3)g x UB)p x UB)y — U(L)s . (32)

This means that there is freedom to remove nine real and 17 imaginary parameters [the number of pa-
rameters in three 3 X 3 unitary matrices minus the phase related to U (1) g]. We conclude that there are
10 quark flavour parameters: nine real ones and a single phase. This single phase is the source of CP
violation in the quark sector.

How many independent CP-violating parameters are there in the lepton Yukawa interactions? The
matrix Y¢ is a general complex 3 X 3 matrix and depends, therefore, on nine real and nine imaginary
parameters. The matrix Y” is symmetric and depends on six real and six imaginary parameters. Not all
of these 15 real and 15 imaginary parameters are physical. One can think of the lepton Yukawa couplings
as spurions that break (completely) a global symmetry,

UB) xUB)E . (33)

This means that six real and 12 imaginary parameters are not physical. We conclude that there are 12
lepton flavour parameters: nine real ones and three phases. These three phases induce CP violation in
the lepton sector.

2.2 CKM mixing is the (only!) source of CP violation in the quark sector

0
Upon the replacement Re(¢”) — —1_/5 [see Eq. (18)], the Yukawa interactions (25) give rise to mass
terms: L L
—L%, = (My)s; DY, DR + (My)s;ULUR; + hec. (34)
where "
M,=—=Y1?, 35
q \/5 ( )

and we decomposed the SU(2)r, quark doublets into their components:
Ul
Qf-:< LZ) : (36)
u=\pf,

The mass basis corresponds, by definition, to diagonal mass matrices. We can always find unitary
matrices V7, and Vg such that

VoL MgVl = M8 (g =u,d) | (37)

with M(? iag diagonal and real. The quark mass eigenstates are then identified as
qri = (VaL)ij4qL; - ari = (Var)ijqn; (q=1u,d). (38)
The charged-current interactions for quarks (that is the interactions of the charged SU(2)1, gauge

bosons W/fc = % [Wl} F iWi]), which in the interaction basis are described by (22), have a complicated

form in the mass basis:

—Liye = %U—MVu(VuLVJL)ijdL]’W: +h.c.. (39)

The unitary 3 x 3 matrix,
V=VuV,, (vvi=1), (40)

is the Cabibbo—Kobayashi-Maskawa (CKM) mixing matrix for quarks [1,45]. A unitary 3 X 3 matrix
depends on nine parameters: three real angles and six phases.
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The form of the matrix is not unique.

1. There is freedom in defining V' in that we can permute between the various generations. This free-
dom is fixed by ordering the up quarks and the down quarks by their masses, i.e., (u1, ug, u3) —
(u,c,t) and (dy,ds,ds) — (d, s,b). The elements of V' are written as follows:

Vud Vus Vub
V=|Vea Ves Vo | - (41)
Via Vis Vw

2. There is further freedom in the phase structure of V. Let us define P, (¢ = u, d) to be diagonal
unitary (phase) matrices. Then, if instead of using V;;, and Vg for the rotation (38) to the mass
basis we use f/q 1, and f/q R, which we define as f/q = PV, and f/q r = P, V4R, we still maintain a
legitimate mass basis since Méﬁag remains unchanged by such transformations. However, V' does
change:

vV — P VP]. (42)

This freedom is fixed by demanding that V' has the minimal number of phases. In the three-
generation case V' has a single phase. (There are five phase differences between the elements of
P, and P, and, therefore, five of the six phases in the CKM matrix can be removed.) This is the
Kobayashi-Maskawa phase dxyr which is the single source of CP violation in the quark sector of
the SM [1].

As a result of the fact that V is not diagonal, the W ¥ gauge bosons couple to quarks (mass
eigenstates) of different generations. Within the SM, this is the only source of flavour-changing quark
interactions.

2.3 The three phases in the lepton mixing matrix

The leptonic Yukawa interactions (29) and (30) give rise to mass terms:
—L4 = (M)l eh; + (M,)yvlvl, +hee. 43)

where

v 1)2

M,=—Y¢, M,=-—Y"
€ \/5 ’ 2M Y

and we decomposed the SU(2), lepton doublets into their components:

(44)

I Vi-
Ly = <61Z,) : (45)
Li
We can always find unitary matrices V., and V,, such that
Ve MMV, = diag(m2,m2,m2),  V, MM,V = diag(m?,m3,m3) . (46)

The charged-current interactions for leptons, which in the interaction basis are described by Eq. (23),
have the following form in the mass basis:

_Ef/[/i = %G_MV“(%LVJ)Z‘]‘I/L]‘WJ + h.c.. (47)

The unitary 3 x 3 matrix,
U=VerVf, (48)

is the lepton mixing matrix [46]. As with the CKM matrix, the form of the lepton mixing matrix is not
unique. But there are differences in choosing conventions.
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1. We can permute between the various generations. This freedom is usually fixed in the following
way. We order the charged leptons by their masses, i.e., (e1,e2,e3) — (e, pu, 7). With regard
to the neutrinos, one takes into account that the atmospheric and solar neutrino data imply that

Am?,,, > Am?2 . It follows that one of the neutrino mass eigenstates is separated in its mass from

the other two, which have a smaller mass difference. The convention is to denote this separated

state by v3. For the remaining two neutrinos, v; and v, the convention is to call the heavier state

vo. In other words, the three mass eigenstates are defined by the following conventions:
[Am3| > |Am3, |, Amj, > 0. (49)

Note in particular that /3 can be either heavier (‘normal hierarchy’) or lighter (‘inverted hierarchy’)
than 14 o. The elements of U are written as follows:

Uel Ue? UeB
U=|Un Up Us]| . (50)
U’Tl UT2 U’T‘3

2. There is further freedom in the phase structure of U. One can change the charged lepton mass
basis by the transformation e(z, r); — e'( LR) = (Pe)iie(r,R)i» Where P is a phase matrix. There
is, however, no similar freedom to redefine the neutrino mass eigenstates: from Eq. (43) one
learns that a transformation v;, — P,vy will introduce phases into the diagonal mass matrix.
This is related to the Majorana nature of neutrino masses, assumed in Eq. (30). The allowed
transformation modifies U:

U— PU. (51)

This freedom is fixed by demanding that U have the minimal number of phases. Out of six phases
of a generic unitary 3 X 3 matrix, the multiplication by P, can be used to remove three. We
conclude that the three-generation U matrix has three phases. One of these is the analogue of the
Kobayashi-Maskawa phase. It is the only source of CP violation in processes that conserve lepton
number, such as neutrino flavour oscillations. The other two phases can affect lepton number
changing processes.

With U # 1, the W+ gauge bosons couple to leptons (mass eigenstates) of different generations.
Within the ESM, this is the only source of flavour-changing lepton interactions.

2.4 The flavour parameters

Examining the quark mass basis, one can easily identify the flavour parameters. In the quark sector, we
have six quark masses and four mixing parameters: three mixing angles and a single phase.

The fact that there are only three real and one imaginary physical parameters in V' can be made
manifest by choosing an explicit parametrization. For example, the standard parametrization [47], used
by the particle data group, is given by

c12€13 512€13 s1ze”"
i i
V = | —s12c23 — c12523513€"  c12C23 — S12523513€" sa3c13 | (52)
i i
512523 — €12€23513€"°  —C12523 — $12¢23513€"  C23C13

where ¢;; = cos 0;; and s;; = sin 0;;. The three sin 0;; are the three real mixing parameters while ¢ is the
Kobayashi-Maskawa phase. Another, very useful, example is the Wolfenstein parametrization, where
the four mixing parameters are (X, A, p,n) with A\ = |V,4| = 0.22 playing the role of an expansion
parameter and 7 representing the CP-violating phase [48,49]:

1— 1321\ A AN (p — in)
V= -=A+3A2\5[1 — 2(p + in)] — INT— LM(1 4 442) AN? : (53)
AN[L— (1= IN)(p+in)] —AN+IANL—2(p+in)] 1- 142N
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Various parametrizations differ in the way that the freedom of phase rotation, Eq. (42), is used to
leave a single phase in V. One can define, however, a CP-violating quantity in Vg that is independent
of the parametrization [43]. This quantity, Joxn, is defined through

3
Im(VijVaVii Viiy) = Jokm Y €ikm€jin » (6,5, k,1=1,2,3) . (54)

m,n=1

In terms of the explicit parametrizations given above, we have
2 . 6 42
JoKM = €12€23€135125235138in0 ~ A\’ A%n . (55)

It is interesting to translate the condition (26) to the language of the flavour parameters in the mass
basis. One finds that the following is a necessary and sufficient condition for CP violation in the quark
sector of the SM (we define Amgj =m? — m?):

Am2.Am? Am2, Ami Ami;Am? Tk # 0 . (56)
Equation (56) puts the following requirements on the SM in order that it violates CP:

— within each quark sector, there should be no mass degeneracy;
— none of the three mixing angles should be zero or 7/2;
— the phase should be neither O nor 7.

With regard to the lepton sector of the ESM, the flavour parameters are the six lepton masses, and six
mixing parameters: three mixing angles and three phases. One can parametrize U in a convenient way
by factorizing it into U = UP. Here Pis a diagonal unitary matrix that depends on two phases, e.g.,
P = diag(e®1, €2, 1), while U can be parametrized in the same way as in Eq. (52). The advantage
of this parametrization is that for the purpose of analysing lepton number conserving processes and,
in particular, neutrino flavour oscillations, the parameters of P are usually irrelevant and one can use
the same Chau-Keung parametrization as is being used for V. (An alternative way to understand these
statements is to use a single-phase mixing matrix and put the extra two phases in the neutrino mass
matrix. Then it is obvious that the effects of these ‘Majorana-phases’ always appear in conjunction
with a factor of the Majorana mass that is a lepton-number-violating parameter.) On the other hand, the
Wolfenstein parametrization, Eq. (53), is inappropriate for the lepton sector: it assumes |Va3| < |Vi2| <
1, which does not hold here.

In order that the CP-violating phase J in U be physically meaningful, i.e., there be CP violation
that is not related to lepton-number violation, a condition similar to Eq. (56) should hold:

Am2, Am? Am”, AmzyAm3 Am3, Jy # 0 . (57)

2.5 The unitarity triangles

A very useful concept is that of the unitarity triangles. We focus on the quark sector, but analogous
triangles can be defined in the lepton sector. The unitarity of the CKM matrix leads to various relations
among the matrix elements, e.g.,

ViudVis + VedVes + ViaVis = 0, (58)
VusVJb —+ VcsVéﬁ —+ WsVZ}i =0, (59)
VuaVap + VeaVey, + ViaVi, = 0. (60)

Each of these three relations requires the sum of three complex quantities to vanish and so can be geo-
metrically represented in the complex plane as a triangle. These are the unitarity triangles, though the
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Fig. 1: Graphical representation of the unitarity constraint V,qV>, + VeqVi + ViqV,; = 0 as a triangle in the
complex plane

term ‘unitarity triangle’ is usually reserved for the relation (60) only. The unitarity triangle related to
Eq. (60) is depicted in Fig. 1.

It is a surprising feature of the CKM matrix that all unitarity triangles are equal in area: the area of
each unitarity triangle equals |Jckn|/2 and the sign of Jokn gives the direction of the complex vectors
around the triangles.

The rescaled unitarity triangle is derived from relation (60) by (a) choosing a phase convention
such that (V,4V}) is real, and (b) dividing the lengths of all sides by |V,4V;|. Step (a) aligns one side
of the triangle with the real axis, and step (b) makes the length of this side 1. The form of the triangle
is unchanged. Two vertices of the rescaled unitarity triangle are thus fixed at (0,0) and (1,0). The
coordinates of the remaining vertex correspond to theter Wolfenstein parameters (p, ). The area of the
rescaled unitarity triangle is || /2.

Depicting the rescaled unitarity triangle in the (p,7) plane, the lengths of the two complex sides

are
VuaVa ViaVi
Ry = |20 =V +n?, Ri= |22l =/(1=p)P+77. ©61)
VeaVen VeaVen
The three angles of the unitarity triangle are defined as follows [50,51]:
ViaVis } [ vch’z} [ Vudv*ﬂ
a=arg |——>—-|, fB=arg|-———|, Y=ag|—— | - (62)
[ VuaViy VidViy VeaVe,

They are physical quantities and can be independently measured by CP asymmetries in B decays. It is
also useful to define the two small angles of the unitarity triangles (59) and (58):

VisVip VesVe
1t = — @\ 63
At )

ﬂs = arg |:_

To make predictions for CP-violating observables, we need to find the allowed ranges for the CKM
phases. There are three ways to determine the CKM parameters (see, for example, Ref. [52]):

1. Direct measurements are related to SM tree-level processes. At present, we have direct measure-
ments of |Viyal, [Vusls [Vubls [Vedls [Ves|s |Ven| and |V

2. CKM unitarity (VTV = 1) relates the various matrix elements. At present, these relations are
useful to constrain |Vig|, |Vis|, |Vip| and |Ves).

3. Indirect measurements are related to SM loop processes. At present, we constrain in this way
|VisVia| (from Amp and Amp,) and the phase structure of the matrix (for example, from & g and
SpKg)-
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Direct measurements are expected to hold almost model independently. Most extensions of the SM
have a special flavour structure that suppresses flavour-changing couplings and, in addition, have a mass
scale Axp that is higher than the electroweak breaking scale. Consequently, new physics contributions
to tree-level processes are suppressed, compared to the SM ones, by at least O (mQZ / AQNP) < 1

Unitarity holds if the only quarks (that is fermions in colour triplets with electric charge +2/3 or
—1/3) are those of the three generations of the SM. This is the situation in many extensions of the SM,
including the supersymmetric SM (SSM).

Using tree-level constraints and unitarity, the 90% confidence limits on the magnitude of the ele-
ments are [53]
0.9739 — 0.9751 0.221 —0.227  0.0029 — 0.0045
0.221 —0.227 0.9730 — 0.9744 0.039 —0.044 . (64)
0.0048 — 0.014 0.037 —0.043  0.9990 — 0.9992

Note that |V,;;| and |V;4] are the only elements with uncertainties of order one.

Indirect measurements are sensitive to new physics. Take, for example, the BY — B° mixing
amplitude. Within the SM, the leading contribution comes from an electroweak box diagram and is
therefore O(g*) and depends on small mixing angles, (V;5V;)2. (It is this dependence on the CKM
elements that makes the relevant indirect measurements, particularly Am p and Sy, very significant
in improving our knowledge of the CKM matrix.) These suppression factors do not necessarily persist
in extensions of the SM. For example, in the SSM there are (gluino-mediated) contributions of O(g%)
and the mixing angles could be comparable to or even larger than the SM ones. The validity of indirect
measurements is then model dependent. Conversely, inconsistencies among indirect measurements (or
between indirect and direct measurements) can give evidence for new physics.

When all available data are taken into account, one finds [54]

A = 0.226+0.001, A=0.83+0.03, (65)

p = 021+£004, 7=0.33£0.02, (66)
sin28 = 0.720+£0.025, a=(99+£7)°, 4=(5B8+7)°, [s=(1.03+0.08)°, (67)
R, = 0404£0.02, R;=0.86+0.04. (68)

Of course, there are correlations between the various parameters. The present constraints on the
shape of the unitarity triangle or, equivalently, the allowed region in the p—n plane, are presented in
Fig. 2.

2.6 The uniqueness of the Standard Model picture of CP violation

In the previous subsections, we have learnt several features of CP violation as explained by the SM. It is
important to understand that various reasonable (and often well-motivated) extensions of the SM provide
examples where some or all of these features do not hold. Furthermore, until a few years ago, none of the
special features of the Kobayashi-Maskawa mechanism of CP violation had been experimentally tested.
This situation has dramatically changed recently. Let us survey some of the SM features, how they can
be modified with new physics, and whether experiment has shed light on these questions.

1. Oxwm is the only source of CP violation in meson decays. This is arguably the most distinguishing
feature of the SM and gives the model a strong predictive power. It is violated in almost any
low-energy extension. For example, in the supersymmetric extension of the SM there are 44
physical CP-violating phases, many of which affect meson decays. The measured value of Sk
is consistent with the correlation between K and B decays that is predicted by the SM. The value
of Syx 4 is equal (within the present experimental accuracy) to that of Sy, consistent with the
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Fig. 2: Allowed region in the p—n plane. Superimposed are the individual constraints from charmless semileptonic
B decays (|Vub/Ves|), mass differences in the BY (Amg) and B, (Am,) neutral-meson systems, and CP violation
in K — 7w (eg), B — YK (sin20), B — nm, pm, pp (), and B — DK (7). Taken from Ref. [54].

SM correlation between the asymmetries in b — s5s and b — ccs transitions. It is therefore very
likely that ok is indeed the dominant source of CP violation in meson decays.

2. CPviolation is small in K — ww decays because of flavour suppression and not because CP is an
approximate symmetry. In many (though certainly not all) supersymmetric models, the flavour sup-
pression is too mild, or entirely ineffective, requiring approximate CP to hold. The measurement
of Syk¢ = O(1) confirms that not all CP-violating phases are small.

3. CP violation appears in both AF = 1 (decay) and AF = 2 (mixing) amplitudes. Superweak
models suggest that CP is violated only in mixing amplitudes. The measurements of non-vanishing
¢ Je, A+ and .A;;r confirm that there is CP violation in AS = 1 and AB = 1 processes.

4. CP is not violated in the lepton sector. Models that allow for neutrino masses, such as the ESM
framework presented above, predict CP violation in leptonic charged-current interactions. Thus,
while there is no measurement of leptonic CP violation, the data from neutrino oscillation experi-
ments, which give evidence that neutrinos are massive and mix, make it very likely that charged-
current weak interactions violate CP also in the lepton sector.

5. CPviolation appears only in the charged-current weak interactions and in conjunction with flavour-
changing processes. Here both various extensions of the SM (such as supersymmetry) and non-
perturbative effects within the SM (6qcp) allow for CP violation in other types of interactions
and in flavour-diagonal processes. In particular, it is difficult to avoid flavour-diagonal phases in
the supersymmetric framework. The fact that no electric dipole moment has yet been measured
poses difficulties for many models with diagonal CP violation (and, of course, is responsible for
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the strong CP problem within the SM).

6. CP is explicitly broken. In various extensions of the scalar sector, it is possible to achieve sponta-
neous CP violation. It is very difficult to test this question experimentally.

This situation, where the SM has a unique and predictive description of CP violation, is the basis
for the strong interest, experimental and theoretical, in CP violation.

3 Meson decays

The phenomenology of CP violation is superficially different in K, D, B, and B decays. This is primar-
ily because each of these systems is governed by a different balance between decay rates, oscillations, and
lifetime splitting. However, the underlying mechanisms of CP violation are identical for all pseudoscalar
mesons.

In this section we present a general formalism for, and classification of, CP violation in the decay
of a pseudoscalar meson P that might be a charged or neutral K, D, B, or B; meson. Subsequent
sections describe the CP-violating phenomenology, approximations, and alternate formalisms that are
specific to each system. We follow here closely the discussion in Ref. [55].

3.1 Charged- and neutral-meson decays

We define decay amplitudes of a pseudoscalar meson P (which could be charged or neutral) and its CP
conjugate P to a multi-particle final state f and its CP conjugate f as

Ap=(fIIP) , Ay =(fIHIP) ., Az=(fH|IP) . Ay=(fIH|P), (69)

where H is the Hamiltonian governing weak interactions. The action of CP on these states introduces
phases {p and & that depend on their flavour content, according to

CP|P) = e*7[P) , CP|f)=¢""|f),
CPP) = ¢ *r|P) . CP|f)=c"|f), (70)
so that (CP )? = 1. The phases £p and ¢ ¢ are arbitrary and unphysical because of the flavour symmetry

of the strong interaction. If CP is conserved by the dynamics, [CP ,H] = 0, then A and ZT have the
same magnitude and an arbitrary unphysical relative phase

ZT — & —¢p) Ap. (71)

3.2 Neutral-meson mixing

A state that is initially a superposition of P° and PV, say
[4(0)) = a(0)|P°) + b(0)[P°) , (72)

will evolve in time acquiring components that describe all possible decay final states { f1, fo, ...}, that
is,

(1)) = a(t)|P°) + b(t)[P°) + c1(t)] f1) + c2(t)] fo) + -+ . (73)

If we are interested in computing only the values of a(t) and b(¢) (and not the values of all ¢;(t)), and
if the times ¢ in which we are interested are much larger than the typical strong interaction scale, then
we can use a much simplified formalism [56]. The simplified time evolution is determined by a 2 x 2
effective Hamiltonian A that is not Hermitian, since otherwise the mesons would only oscillate and not
decay. Any complex matrix, such as H, can be written in terms of Hermitian matrices M and I as

H:M—%I‘. (74)
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M and T are associated with (P°, P%) « (P° PY) transitions via off-shell (dispersive) and on-shell
(absorptive) intermediate states, respectively. Diagonal elements of M and I' are associated with the
flavour-conserving transitions P? — PY and P° — PY, while off-diagonal elements are associated with
flavour-changing transitions P? « PV,

The eigenvectors of H have well defined masses and decay widths. We introduce complex param-
eters pr, g and g7, g to specify the components of the strong interaction eigenstates, PY and P, in the
light (Pr) and heavy (Pp) mass eigenstates:

\Pr) = pr,ulP°) + a5 P°) (75)

with the normalization |py, g|? + |qz|> = 1. (Another possible choice, which is in standard usage for
K mesons, defines the mass eigenstates according to their lifetimes: K g for the short-lived and Ky, for
the long-lived state. The K7y, is the heavier state.) If either CP or CPT is a symmetry of H (independently
of whether T is conserved or violated) then My, = Maso and I';; = T'92, and solving the eigenvalue
problem for H yields pr, = pg = p and qr, = qg = g with

2 .
qy _ M7y — (i/2)[']y
<p> My — (i/2)T12 (76)

If either CP or T is a symmetry of H (independently of whether CPT is conserved or violated), then M2
and 'y, are relatively real, leading to

2
<€) _ e ‘2‘:1, )
p p

where & p is the arbitrary unphysical phase introduced in Eq. (70). If, and only if, CP is a symmetry of
‘H (independently of CPT and T) then both of the above conditions hold, with the result that the mass
eigenstates are orthogonal:

(Pu|Pr) = |p|* = |g]*=0. (78)

From now on we assume that CPT is conserved.

The real and imaginary parts of the eigenvalues of H corresponding to | Py, ) represent their
masses and decay widths, respectively. The mass difference Am and the width difference AT are defined
as follows:

ATI”LE]WH—]WL7 AFEFH—FL. (79)

Note that here Am is positive by definition, while the sign of AT is to be experimentally determined.
(Alternatively, one can use the states defined by their lifetimes to have AI' = I'g — I';, positive by
definition.) The average mass and width are given by

M M r r
m= Mp + My . T= lmtle _ (80)
2 2
It is useful to define dimensionless ratios x and y:
Am AT
= — = —. 81
=T Y= (81)
Solving the eigenvalue equation gives
1 *

(Am)? — Z(Ar)2 = (4|M1a* — |T12)?), AmAT = 4Re(My2T%,) . (82)
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3.3 CP-violating observables

All CP-violating observables in P and P decays to final states f and f can be expressed in terms of phase-
convention-independent combinations of Ay, Ay, A7 and A?, together with, for neutral-meson decays

only, ¢/p. CP violation in charged-meson decays depends only on the combination |ZT/A |, while CP
violation in neutral-meson decays is complicated by P? < P oscillations and depends, additionally, on

lq/p| and on \f = (q/p)(Ay/Af).

The decay rates of the two neutral K mass eigenstates, K g and K7, are different enough (I's /T'f, ~
500) that one can, in most cases, actually study their decays independently. For neutral D, B, and B
mesons, however, values of AT'/I" are relatively small and so both mass eigenstates must be considered
in their evolution. We denote the state of an initially pure |P%) or |P°) after an elapsed proper time ¢ as
]PphyS t)) or ]PphyS t)), respectively. Using the effective Hamiltonian approximation, we obtain

|Poys(8)) = g4+(8)[P°) — (a/p) g-(t)[P°)

[Pouys(®) = g+(t) [P°) = (p/q) 9-(1)|P°) , (83)
where 1

gi(t) = 5 (efimHtf%FHt + efimLtf%FLt) _ (84)

One obtains the following time-dependent decay rates:

dr [Pghys ) ]/dt
—Fth

(IAf* + |(q/p)Af|?) cosh(yI't) + (|As|* — |(q/p)Af|?) cos(aI't)

+ 2Re|(q/p)AsAy] sinh(yI't) — 2Zm[(q/p) A} Af] sin(alt) ,  (85)
dT[PY dt _
| phy_spt)j\/f i (I(p/@)Ap|? + [Af]?) cosh(yT't) — (I(p/a)As|* — [Af]?) cos(aT't)

+ 2Re[(p/q)Aijc] sinh(yI't) — QIm[(p/q)Aijc] sin(zI't),  (86)

where Ny is a common normalization factor. Decay rates to the CP-conjugate final state f are obtained
analogously, with N/ F= ./\/'? and the substitutions A; — A7 and Zf — Z7 in Egs. (85) and (86). Terms
proportional to |A|? or [Af|* are associated with decays that occur without any net P < P oscilla-
tion, while terms proportional to |(q/p)A|* or |(p/q)As|* are associated with decays following a net
oscillation. The sinh(yI't) and sin(zI't) terms of Egs. (85) and (86) are associated with the interference
between these two cases. Note that, in multi-body decays, amplitudes are functions of phase-space vari-
ables. Interference may be present in some regions but not others, and is strongly influenced by resonant
substructure.

3.4 Classification of CP-violating effects

We distinguish three types of CP-violating effects in meson decays [57]:
[I] CP violation in decay is defined by _
[A7/Af #1. (87)

In charged meson decays, where mixing effects are absent, this is the only possible source of CP
asymmetries:

(P~ — f7)—T(Pt — ) Ay JAp P -1

.Afi = F(P_ —>f_)+F(P+ _>f+) - ‘Zf*/AfHQ—i-l .

(88)
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[II] CP violation in mixing is defined by
la/p| # 1. (89)

In charged-current semileptonic neutral-meson decays P, P — (T X (taking |A,+ x| = |A;- x|
and A,- x = Ay x = 0, as is the case in the SM, to lowest order, and in most of its reasonable
extensions), this is the only source of CP violation, and can be measured via the asymmetry of
‘wrong-sign’ decays induced by oscillations:

_ dr/dt[?ghys(t) — (T X] - dr/dt[Pghys(t) — (" X] 1= |Q/p|4

- dT [dt[PYy ((t) — £+ X] 4 dT/dt[PO, ((t) — £~ X] 1+ lq/p/*

As(t) (90)

Note that this asymmetry of time-dependent decay rates is actually time independent.

[1II] CP violation in interference between a decay without mixing, P O — f, and a decay with
mixing, _PO — P% — £ (such an effect occurs only in decays to final states that are common to
PY and P, including all CP eigenstates), is defined by

Im(Af) #0, 1)
with .
_q4y

Afp==—=L . (92)
f pAf

This form of CP violation can be observed, for example, using the asymmetry of neutral-meson
decays into final CP eigenstates fcp

_dU/dt[P), ((t) — fep] —dT/dt[P), (t) — fcp]

= =5 0 : (93)
dU'/dt[Poy (t) — fep] +dl/dt[Pyy (1) — fep]

Afer (t)

If AT' = 0 and |¢/p| = 1, as expected to a good approximation for B mesons but not for K
mesons, then Ay, has a particularly simple form [58—60]:

Af(t) = Sysin(Amt) — Cycos(Amt)
2Zm(\y) _ 1P

s, = ZMMAD =__ 1A
/ IV A R W

(94)

If, in addition, the decay amplitudes fulfil |[A., | = |A, |, the interference between decays with
and without mixing is the only source of the asymmetry and

Afep (t) = Im(Ap, ) sin(zl't) . (95)

4 Theoretical interpretation: general considerations

Consider the P — f decay amplitude A ¢, and the CP-conjugate process, P — f, with decay amplitude
Af- There are two types of phase that may appear in these decay amplitudes. Complex parameters in
any Lagrangian term that contributes to the amplitude will appear in complex conjugate form in the CP-
conjugate amplitude. Thus their phases appear in A y and Zf with opposite signs. In the SM, these phases
occur only in the couplings of the T+ bosons and hence are often called ‘weak phases’. The weak phase
of any single term is convention dependent. However, the difference between the weak phases in two
different terms in A s is convention independent. A second type of phase can appear in scattering or decay
amplitudes even when the Lagrangian is real. Its origin is the possible contribution from intermediate
on-shell states in the decay process. Since these phases are generated by CP-invariant interactions, they
are the same in A; and Zf. Usually the dominant rescattering is due to strong interactions, hence
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the designation ‘strong phases’ for the phase shifts so induced. Again, only the relative strong phases
between different terms in the amplitude are physically meaningful.

The ‘weak’ and ‘strong’ phases discussed here appear in addition to the ‘spurious’ CP-transfor-
mation phases of Eq. (71). Those spurious phases are due to an arbitrary choice of phase convention, and
do not originate from any dynamics or induce any CP violation. For simplicity, we set them to zero from
here on.

It is useful to write each contribution a; to Ay in three parts: its magnitude |a;|, its weak phase ¢;,
and its strong phase ¢;. If, for example, there are two such contributions, A ¢ = ay + ag, we have

Af _ |a1|ei(51+¢1)+|a2|€i(52+¢2)7
Ay = a0 4 Jag|ei®2792) (96)

Similarly, for neutral-meson decays, it is useful to write
Mg = [Myp|e'™ | Tip = Tyae’r . o7)

Each of the phases appearing in Egs. (96) and (97) is convention dependent, but combinations such as
01— 02, 01 — P2, ¢ — ¢r and ¢pr + @1 — ¢ (Where ¢ is a weak phase contributing to A ;) are physical.

It is now straightforward to evaluate the various asymmetries in terms of the theoretical parame-
ters introduced here. We will do so with approximations that are often relevant to the most interesting
measured asymmetries.

1. The CP asymmetry in charged-meson decays of Eq. (88) is given by

B 2|a1a2\ SiIl((SQ — 51) sin((;Sg — qbl)
\al\Q + |CL2|2 + 2|a1a2\ COS(62 — 51) COS(¢2 — @1) '

Aps = (98)
The quantity of most interest to theory is the weak phase difference ¢ — ¢1. Its extraction from
the asymmetry requires, however, that the amplitude ratio and the strong phase are known. Both
quantities depend on non-perturbative hadronic parameters that are difficult to calculate.

2. In the approximation that |I'19/Mjs| < 1 (valid for B and Bs mesons), the CP asymmetry in
semileptonic neutral-meson decays, Eq. (90), is given by

sin(pnr — ¢r). (99)

The quantity of most interest to theory is the weak phase ¢ — ¢r. Its extraction from the asym-
metry requires, however, that |I"'19/Mj2| is known. This quantity depends on long distance physics
that is difficult to calculate.

3. In the approximations that only a single weak phase contributes to decay, Ay = |af ]ei(‘sf +41), and
that |I"12/Mi2| = 0, we obtain | ¢| = 1 and the CP asymmetries in decays to a final CP eigenstate
f» Eq. (93), with eigenvalue 7 = %1 are given by

Ajep (t) = Im(Ay) sin(Amt) with Zm(Xf) = ngsin(oy + 2¢y) . (100)

Note that the phase so measured is purely a weak phase, and no hadronic parameters are involved
in the extraction of its value from Zm (A ).

The discussion above allows us to introduce another classification.

1. Direct CP violation is one that cannot be accounted for by just ¢a; % 0. CP violation in decay
(type 1) belongs to this class.
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2. Indirect CP violation is consistent with taking ¢ s # 0 and setting all other CP-violating phases
to zero. CP violation in mixing (type II) belongs to this class.

With regard to type III CP violation, observing s Zm(As,) # npIm(Ay,) (for the same decaying
meson and two different final CP eigenstates f; and f5) would establish direct CP violation. The signif-
icance of this classification is related to theory. In superweak models [20], CP violation appears only in
diagrams that contribute to M2, hence they predict that there is no direct CP violation. In most models
and, in particular, in the SM, CP violation is both direct and indirect. The experimental observation of
€’ # 0 (see Section 5) excluded the superweak scenario.

5 K decays
CP violation was discovered in K — 7m decays in 1964 [2]. The same mode provided the first evidence
for direct CP violation [3-5].

The decay amplitudes actually measured in neutral /' decays refer to the mass eigenstates /1, and
K g rather than to the K and K states referred to in Eq. (69). We define CP-violating amplitude ratios
for two-pion final states,

(rO7O\H|K L) (mt7 |H|KL)
(MOmOH|Ks) T Gt [HKs)

Moo =

(101)

Another important observable is the asymmetry of time-integrated semileptonic decay rates:

F(KL — €+I/g7rf) — F(KL — 6717@7r+)
or, = — — . (102)
F(KL — Ty ) + F(KL —/ l/g7r+)

CP violation has been observed as an appearance of K decays to two-pion final states [53],

o] = (2275 +£0.017) x 1073 ¢ = 43.6° £0.8°
Ine_| =(2286+0.017) x 1073 ¢,_ =43.2°+0.6°
Im0oo/ns—| = 0.9950 £ 0.0008  ¢go — ¢4— = 0.4°+0.5°, (103)

where ¢;; is the phase of the amplitude ratio 7;; determined without assuming CPT invariance. (A fit
that assumes CPT gives [53] ¢ = ¢gp = 43.49° £+ 0.07°.) CP violation has also been observed in
semileptonic K decays [53]:

6 = (3.27£0.12) x 1073, (104)

where J7, is a weighted average of muon and electron measurements, as well as in K 7, decays to 77y
and 7t etTe™ [53].

Historically, CP violation in neutral K decays has been described in terms of parameters € and €’.
The observables 79, 17+—, and d, are related to these parameters, and to those of Section 3, by

M0 =T, = €7 2¢,
N+- = iiﬁ = €+ EI )
2
w o =R = 755 (109
where, in the last line, we have assumed that [Ap+,, | = [Ap-p,p+| and [Ag-p 0+ | = [Aptpn-| = 0.
A fit to the K — 7 data yields [53]
le] = (2.28340.017) x 1073,
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Re(€'/e) = (1.67+0.26) x 1072 . (106)

In discussing two-pion final states, it is useful to express the amplitudes A o0 and A +,- in
terms of their isospin components via

000 = \/I\Aoyei(éowo)_\/ZAQ,(;(&H@)
3 3 ’

A = \/?Ao|ei(6o+¢o) + \/;A2|ei(62+¢>2) , (107)

where we parametrize the amplitude A;(A;) for K° (70) decay into two pions with total isospin I = 0
or2 as

A

Ap = ((am)[|HIK) = |A7]e?O1F90) | A = (7)1 [H|IKC) = |Af|e!Or=21) (108)
The smallness of |ngg| and |74 _| allows us to approximate

1 1
€= (1= Awmme)s €2 5 (Anono = Anir) (109)

The parameter e represents indirect CP violation, while ¢’ parametrizes direct CP violation: Re(e’)
measures CP violation in decay (type I), Re(e) measures CP violation in mixing (type II), and Zm/(e)
and Zm(€¢') measure the interference between decays with and without mixing (type III).

The following expressions for € and €’ are useful for theoretical evaluations:
6i7r/4 Im(Mlg) ’ ) A2

€~ _— € =—|—

V2 Am V2 | Ao

The expression for ¢ is only valid in a phase convention where ¢ = 0, corresponding to areal V, ;V,7,,
and in the approximation that also ¢y = 0. The phase of 7/4 is approximate, and determined by hadronic
parameters, arge ~ arctan(—2Am/AT'), independently of the electroweak model. The calculation
of € benefits from the fact that Zm(M;2) is dominated by short distance physics. Consequently, the
main source of uncertainty in theoretical interpretations of € are the values of matrix elements such as
(K°|(3d)y_a(5d)y_a|K"). The expression for €’ is valid to first order in | A3 /Ag| ~ 1/20. The phase
of ¢’ is experimentally determined, /2 4 d2 — o ~ /4, and is independent of the electroweak model.
Note that, accidentally, €’ /¢ is real to a good approximation.

€'927%) gin (g — ¢p) . (110)

A future measurement of much interest is that of CP violation in the rare X — wvv decays. The
signal for CP violation is simply observing the K ; — mvi decay. The effect here is that of interference
between decays with and without mixing (type III) [61]:

'Ky — mvp) 1 9

TE Saton) — 2 1+ [Arsl” = 2Re(Arww)] ~ 1 —Re(Amw) , (111)
where in the last equation we neglect CP violation in decay and in mixing (expected, model indepen-
dently, to be of order 10~ and 103, respectively). Such a measurement would be experimentally very
challenging and theoretically very rewarding [62]. Similar to the CP asymmetry in B — J/¢¥Kg, the
CP violation in K — 7wvv decay is predicted to be large and can be very cleanly interpreted.

Within the SM, the K; — 7% decay is dominated by an intermediate top quark contribution
and, consequently, can be cleanly interpreted in terms of CKM parameters [63]. (For the charged mode,
K* — mtwp, the contribution from an intermediate charm quark is not negligible and constitutes a
source of hadronic uncertainty.) In particular, B(K; — 7°v) provides a theoretically clean way to
determine the Wolfenstein parameter 7 [64]:

B(Kp — 7°v0) = kp X2 (m? /mé,) A'n? (112)

where k7, = 1.80 x 10719 incorporates the value of the four-fermion matrix element which is deduced,
using isospin relations, from B(K T — 7Y% Tv), and X (m?/m?%,) is a known function of the top mass.
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5.1 Implications of € i

The measurement of € has had (and still has) important implications. Two implications of historical
importance are the following:

1. CP violation was discovered through the measurement of € . Hence this measurement played a
significant role in the history of particle physics.

2. The observation of e # 0 led to the prediction that a third generation must exist, so that CP
is violated in the SM. This provides an excellent example of how precision measurements at low
energy can lead to the discovery of new physics (even if, at present, this new physics is old...)

Within the SM, Zm/(M;2) is accounted for by box diagrams:

ex = €™ C.BkIm(ViiVia) {Re(ViVea) [m So(we) — nsSo(ze, 24)] — Re(ViaVia)naSo(we)}
(113)

G2 2 2 . . . . .
W is a well known parameter, the 7; are QCD correction factors, S is a kinematic
K

factor, and B is the ratio between the matrix element of the four-quark operator and its value in the
vacuum insertion approximation. The measurement of ¢  has the following implications within the SM.

where C, =

— This measurement allowed one to set the value of dky;. Furthermore, by implying that dxn =
O(1), it made the KM mechanism plausible. Having been the single measured CP-violating pa-
rameter it could not, however, serve as a test of the KM mechanism. More precisely, a value of
lexc| > 1072 would have invalidated the KM mechanism, but any value |¢ ;| < 1073 was accept-
able. It is only the combination of the new measurements in B decays (particularly S k) with
e that provides the first precision test of the KM mechanism.

— Within the SM, the smallness of ¢k is not related to suppression of CP violation but rather to
suppression of flavour violation. Specifically, it is the smallness of the ratio |(ViqVis)/ (Vg Vus)| ~
M* that explains |e x| ~ 1073,

— Until recently, the measured value of € i provided a unique type of information on the KM phase.
For example, the measurement of Re(eg ) > 0 tells us that > 0 and excludes the lower half of
the p—n plane. Such information cannot be obtained from any CP-conserving observable.

— The ek constraint in Eq. (113) gives hyperbole in the p—n plane. It is shown in Fig. 2. The
measured value is consistent with all other CKM-related measurements and further narrows the
allowed region.

Beyond the SM, € i is an extremely powerful probe of new physics. This aspect will be discussed
later.

6 D decays

Unlike the case of neutral K, B, and B, mixing, D"-D" mixing has not yet been observed. Long-
distance contributions make it difficult to calculate the SM prediction for the D°~D° mixing parameters.
Therefore, the goal of the search for D’—DP mixing is not to constrain the CKM parameters but rather
to probe new physics. Here CP violation plays an important role [65]. Within the SM, the CP-violating
effects are predicted to be negligibly small since the mixing and the relevant decays are described, to an
excellent approximation, by physics of the first two generations. Observation of CP violation in D°-D°
mixing (at a level much higher than O (1073)) will constitute an unambiguous signal of new physics.>
At present, the most sensitive searches involve the D — KK~ and D — K*7F modes.

%In contrast, neither Yp ~ 1072 [66], nor zp ~ 1072 [67] can be considered as evidence for new physics.
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The neutral D mesons decay via a singly-Cabibbo-suppressed transition to the CP eigenstate
KT K~. Since the decay proceeds via a SM tree diagram, it is very likely unaffected by new physics
and, furthermore, dominated by a single weak phase. It is safe then to assume that direct CP violation
plays no role here [68, 69]. In addition, given the experimental bounds [53], z = Am/T" < 0.03 and
y = ATl'/(2T") = 0.008 & 0.005, we can expand the decay rates to first order in these parameters. Using
Eq. (85) with these assumptions and approximations yields, for zt, yt < T 71,

I[Dpuys(t) = KFET] = e M AgxP[L ~ |a/pl(y cos ép — wsingp)T't]
F[ﬁghys(t) — KTK™] = e "Agg|*[1 — |p/q|(y cos ¢p + xsinép)TH] , (114)
where ¢p is defined via A+~ = —|q/ple’®P. [In the limit of CP conservation, choosing ¢p = 0

is equivalent to defining the mass eigenstates by their CP eigenvalue: |D<) = p|D%) & q|50>, with
D_ (D, ) being the CP-odd (CP-even) state; that is, the state that does not (does) decay into K+ K]
Given the small values of = and y, the time dependences of the rates in Eq. (114) can be recast into purely
exponential forms, but with modified decay-rate parameters [70]:

Cpog+kx- = I'x[l+]|g/pl(ycos¢pp —xsingp)] ,
I'po jrr— = DIx[1+[p/q|(ycospp+ xsingp)] . (115)

One can define CP-conserving and CP-violating combinations of these two observables (normalized to
the true width I'):

v = FEOHK-Q-K— +FD0—>K+K_ 1
- 2r
_ Mycosgj)l)_wxsingﬁp,
Ay = Ipo—ktx- —Tpokik-
- 2r
_ Mmsinqﬁl)_wycosgﬁp. (116)

In the limit of CP conservation (and, in particular, within the SM), Y = y and AY = 0.

The K* 77 states are not CP eigenstates but they are still common final states for D° and D° de-
cays. Since D°(D") — K~ 77 is a Cabibbo-favoured (doubly-Cabibbo-suppressed) process, these pro-
cesses are particularly sensitive to x and/or y = O(\?). Taking into account that |\ .+, |)\[_(1+7T_ | <1
and x,y < 1, assuming that there is no direct CP violation (again, these are SM tree-level decays domi-
nated by a single weak phase) and expanding the time-dependent rates for ¢, yt < I' !, one obtains

LD (1) — KTn~] 2,2 4 42
phys 2 ai . I a1 Yy =z 2
— = r54+rg|- cos — 2’ sin I't+|=| —(Tt)~,
T[DY,,(t) = K+7] e p‘“’ i #) |p g ™
DY (t) — K-77] 2.2 422
phys 2 A, I pl Yy T=x 2
= ri+ryg —| Yy cos¢p + x' sin¢p Ft+|— '), (117)
(DY, () — K-7t] d q ( ) q (Tt)
where
y = ycosd—xsind,
¥ = xcosd+ysind. (118)

The weak phase ¢p is the same as that of Eq. (114) (a consequence of the absence of direct CP vio-
lation), § is a strong phase difference for these processes, and rq = O(tan?6..) is the amplitude ratio,
ra = [Ag—mt/Ag—nt| = |Agsn—[Agsq-|, that is, \g—rv = r4(q/p)e®7¢P) and AL~ =
ra(p/q)e~"9+¢p) By fitting to the six coefficients of the various time dependences, one can extract r 4,
lq/pl, (22 + y?), y cos ¢p, and 2’ sin ¢p. In particular, finding CP violation, that is, |¢/p| # 1 and/or
sin op # 0, would constitute evidence for new physics.
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7 B decays
The upper bound on the CP asymmetry in semileptonic B decays [53] implies that CP violation in
BO-B° mixing is a small effect, where we use Agp,/2 ~ 1 — |q/p|, see Eq. (90):
As, = (03 £1.3) x 1072 = |q¢/p| = 0.998 +0.007 . (119)
The SM prediction is
2
Agt, = O (m—; sin5> < 0.001 . (120)
my

In models where I'15/M;o is approximately real, such as the SM, an upper bound on AT'/Am =
Re(I'12/Mi2) provides yet another upper bound on the deviation of |g/p| from one. This constraint
does not hold if T'y5 /M4 is approximately imaginary.

The small deviation (less than one per cent) of |¢/p| from one implies that, at the present level
of experimental precision, CP violation in B mixing is a negligible effect. Thus, for the purpose of
analysing CP asymmetries in hadronic B decays, we can use

Ap = e 9B(A;)Ay), (121)

where ¢ p refers to the phase of M2, see Eq. (97). Within the SM, the corresponding phase factor is
given by A
e P = (ViVia)/ (Vi Vii) - (122)

Some of the most interesting decays involve final states that are common to B° and B’ [71-73].
Here Eq. (94) applies [58-60]. The processes of interest proceed via quark transitions of the form
b — Gq with ¢ = s or d. For ¢ = c or u, there are contributions from both tree (¢) and penguin
(p?*, where q, = u,c,t is the quark in the loop) diagrams (see Fig. 3) which carry different weak
phases:
A= VaVa)tr+ 32 (VowVaur) pf- (123)
qu=u,c,t
(The distinction between tree and penguin contributions is a heuristic one, the separation by the operator
that enters is more precise. For a detailed discussion of the more complete operator product approach,
which also includes higher order QCD corrections, see, for example, Ref. [74].) Using CKM unitarity,
these decay amplitudes can always be written in terms of just two CKM combinations. For example, for
f = mr, which proceeds via b — @ud transition, we can write

Ane = (Vo Vaa) Trer + (Vg Vi) Pir (124)

where Trr = tor + p%, — pS, and PL_ = pl — pS.. CP-violating phases in Eq. (124) appear only in
the CKM elements, so that -
Ars _ (VigVia) Ton + (Vi Vi) Pl s)
Are (ViyVaa) Trm + (Vi Via) Phr

For f = J/¢ K, which proceeds via b — ¢c5 transition, we can write

AT/JK = (‘/cz‘/cs) TwK + (Vz;kbvus) P&JLK ’ (126)

where Tyx = tyr + P — iy and Py = piy — piyre. A subtlety arises in this decay that is
related to the fact that B — J/¢K° and B - J/WK°. A common final state, e.g., J/YKg, is
reached only via K'—K" mixing. Consequently, the phase factor corresponding to neutral K mixing,
e K = (ViVes)/(VoqVis), plays a role:

Aprs  VVi) Tyk + (Vp Vi) Pig VAV,

— X . 127
Aprcs  (ViVi) T + (ViVas) Pt VigVi (127)
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For ¢ = s or d, there are only penguin contributions to Ay, that is, t; = 0 in Eq. (123). (The tree
b — g transition followed by %u — Gq rescattering is included below in the P* terms.) Again, CKM
unitarity allows us to write A in terms of two CKM combinations. For example, for f = ¢K g, which
proceeds via b — 5s3 transition, we can write

Apres  Va Vi) Bire + (VipViis) Pilxe " VoaVes

(128)

Asks (chvcs) Pl + (V:bv )PJ!K VvV’

us

whete Py = Phic — Porc and Plic = Phic = Py

dors

(a) tf

Fig. 3: Feynman diagrams for (a) tree and (b) penguin amplitudes contributing to B® — f or B, — f via a
b — Gqq quark-level process

Since the amplitude A s involves two different weak phases, the corresponding decays can exhibit
both CP violation in the interference of decays with and without mixing, Sy # 0, and CP violation in
decays, C'y # 0. [At the present level of experimental precision, the contribution to C'y from CP violation
in mixing is negligible, see Eq. (119).] If the contribution from a second weak phase is suppressed, then
the interpretation of S in terms of Lagrangian CP-violating parameters is clean, while C'y is small. If
such a second contribution is not suppressed, Sy depends on hadronic parameters and, if the relevant
strong phase is large, C'y is large.

A summary of b — Ggq’ modes with ¢/ = s or d is given in Table 1. The b — ddq transitions lead
to final states that are similar to the b — @uq transitions and have similar phase dependence. Final states
that consist of two vector-mesons (y)¢ and ¢¢) are not CP eigenstates, and angular analysis is needed to
separate the CP-even from the CP-odd contributions.

The cleanliness of the theoretical interpretation of Sy can be assessed from the information in the
last column of Table 1. In case of small uncertainties, the expression for Sy in terms of CKM phases can
be deduced from the fourth column of Table 1 in combination with Eq. (122) [and, for b — ¢gs decays,
the example in Eq. (127)]. In the next three sections, we consider three interesting classes.

For B, decays, one has to replace Eq. (122) with
™ = (VigVie)/ (Vi Vi) - (129)

Note that one expects AT's /T’y = O(0.1), and therefore y 5, should not be put to zero in the expressions
for the time-dependent decay rates, but |¢/p| = 1 is expected to hold to an even better approximation than
for B mesons. The CP asymmetry in Bs — D} Dy (orin Bs — 1)¢ with angular analysis to disentangle
the CP-even and CP-odd components of the final state) will determine sin 23, where [, is defined in
Eq. (63). Since the SM prediction is that this asymmetry is small, see Eq. (67), sin28; ~ 0.036, an
observation of a .S B.p+p- > 0.04 will provide evidence for new physics.
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Table 1: Summary of b — ¢ modes with ¢/ = s or d. The second and third columns give examples of
final hadronic states. The fourth column gives the CKM dependence of the amplitude A, using the notation of
Egs. (124), (126), and (128), with the dominant term first and the sub-dominant second. The suppression factor of
the second term compared to the first is given in the last column. ‘Loop’ refers to a penguin-versus-tree suppression
factor (it is mode-dependent and roughly O(0.2 — 0.3)) and A = 0.22 is the expansion parameter of Eq. (53).

b—qq7 B°—f Bs;— f CKM dependence ofAy  Suppression
b—oces  PKs 9o (VaVe )T+ (VV,)P"  loop x A2
b—35ss  ¢Ks  dp  (ViVe )P+ (Vi Vi) P" N2
b—uus 7Kg KTK~ (ViV, )P+ (ViV,)T A2 /loop
b—ced DYD™  ypKg  (ViV.)T + (ViV,,)Pt loop
b—ssd  ¢m ¢oKs  (VpVi)P'+ (V3V.e)Pe Sl
b—uud 7wtn- 7Kg  (VARV,)T + (ViV,,) Pt loop

8 b — ccs transitions

For B — J/1Kg and other b — &c5 processes, we can neglect the P* contribution to Ay, in the SM,
to an approximation that is better than one per cent:

Mg = —€ 2P = Sy =sin28, Cprs=0. (130)

(Below the per cent level, several effects modify this equation [75,76].) The experimental measurements
give the following ranges [77]:

Syrg = 0.69£0.03, Cyrg=0.0210.05. (131)

The consistency of the experimental results (131) with the SM predictions means that the KM
mechanism of CP violation has successfully passed its first precision test. For the first time, we can make
the following statement based on experimental evidence:

Very likely, the Kobayashi—-Maskawa mechanism is the dominant source of CP violation in
flavour-changing processes.

There are three qualifications implicit in this statement, and we now explain them in a little more
detail [78].

— “Very likely’. It could be that the success is accidental. It could happen, for example, that sin 23
is significantly different from the SM value and that, at the same time, there is a significant CP-
violating contribution to the B°~B° mixing amplitude, and the sum of M + MNP accidentally
carries the same phase as the one predicted by the SM alone. It could also happen that the size of
NP contributions to b — d transitions is small, or that its phase is similar to the SM one, but that
in b — s transitions the deviation is significant.

— ‘Dominant’. While Sy is measured with an accuracy of order 0.04, the accuracy of the SM
prediction for sin 23 is only at the level of 0.2. Thus, it is quite possible that there is a new physics
contribution at the level of |[M Y /M| < 0(0.2).

— ‘Flavour changing’. It may well happen that the KM phase, which is closely related to flavour
violation through the CKM matrix, dominates meson decays while new, flavour-diagonal phases
(such as the two unavoidable phases in the universal version of the MSSM) dominate observables
such as electric dipole moments by many orders of magnitude.
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The measurement of Sy provides a significant constraint on the unitarity triangle. In the p—
plane, it reads:
sin 2 = 2277(1—_’))2 — 0.69 + 0.03 . (132)
7+ (1=p)
One can get an impression of the impact of this constraint by looking at Fig. 2, where the blue region
represents sin 23 = 0.69 &+ 0.03. An impression of the KM test can be achieved by observing that the
blue region has an excellent overlap with the region allowed by all other measurements. A comparison
between the constraints in the p—n plane from CP-conserving and CP-violating processes is provided
in Fig. 4. The impressive consistency between the two allowed regions is the basis for our statement
that the KM mechanism has passed its first precision tests. The fact that the allowed region from the
CP-violating processes is more strongly constrained is related to the fact that CP is a good symmetry of
the strong interactions and that, therefore, various CP-violating observables —in particular .S, x — can
be cleanly interpreted.

3 L — 15
[”  excluded area has CL>0.95 7 [”  excluded area has CL>0.95
i Am ] i
[ d 1 [ Y
1F § . §
[ 1 - sin 2B \\
Am_&Am,
05 - - i 05 |- = \S y
i Z ] L <
| [ oS o
] [
= 0 i B = 0 Y B
r |Vub/vcb|
05 - g 05 -
[ ] [ o ]
- — -1
. CP-conserving ] [ . v ‘ CP-violating ‘ ]
EPS 2005 ] | EPS2005 ]
Y T O U A B Y I O U TR S \ 0\ Vi

-1 -0.5 0 0.5 1 1.5 2 -1 -0.5 0 0.5 1 1.5 2
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Fig. 4: Constraints in the p—7 plane from (a) CP-conserving and (b) CP-violating loop processes

9 Penguin-dominated b — s transitions
9.1 General considerations

The present experimental situation concerning CP asymmetries in decays to final CP eigenstates domi-
nated by b — s penguins is summarized in Table 2.

For B — ¢Kg and other b — 555 processes, we can neglect the P* contribution to A f» in the
SM, to an approximation that is good to the order of a few per cent:

Aorcs = —e 20 = Sy ~sin2f, Cyxy ~0. (133)

In the presence of new physics, both Ay and M2 can get contributions that are comparable in size to
those of the SM and carry new weak phases [36]. Such a situation gives several interesting consequences
for b — 5s5 decays.

1. A new CP-violating phase in the b — s decay amplitude will lead to a deviation of —7 ¢S from
SyK-
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Table 2: CP asymmetries in b — s penguin-dominated modes

fep —NferStor Crep
PKg +0.47 £ 0.19 —0.09 £0.15
nKg +0.50 £ 0.09(0.13)  —0.07 4 0.07(0.10)
foKs +0.75 £ 0.24 +0.06 £ 0.21(0.23)
T Kg +0.31 +0.26 —0.02+0.13
wKg +0.63 £ 0.30 —0.44 4 0.24
KsKsKs +0.61+0.23 —0.31 £ 0.17(0.20)

2. The Sy’s will be different, in general, among the various f’s. Only if the new physics contribution
to Ay dominates over the SM should we expect a universal .S.

3. A new CP-violating phase in the b — s decay amplitude in combination with a strong phase will
lead to C'y # 0.

9.2 Calculating the deviations from Sy = Sk

It is important to understand how large a deviation from the approximate equalities in Eq. (133) is ex-
pected within the SM. The SM contribution to the decay amplitudes, related to b — g5 transitions,
can always be written as a sum of two terms, A?M = A‘]i + A%, with A‘]i ox V3 Ves and A; o Vi Vus-
Defining the ratio a'f = e~*7(A%}/A}), we have

AM = A5(1 + aYe™) . (134)
The size of the deviations from Eq. (133) is set by ay. For |a%| < 1, we obtain

—npSy =~ sin20 + 2cos 28 Re(a})siny,
Cy =~ —2Im(af)siny. (135)
For charmless modes, the effects of the a; terms (often called ‘the SM pollution’) are at least of order
|(V5, Vius) / (V3 Ves )| ~ a few per cent.

To calculate them explicitly, we use the operator product expansion (OPE). We follow the notations
of Ref. [79]. We consider the following effective Hamiltonian for AB = +1 decays:

10
G
Heft = 72 Z s Vb <C'10f + CL05 + Z CiO; + Cr,O7y + 089089> +h.c., (136)
p=u,c i=3
with
O = (pb)y_a(sp)v_a , O = (pgba)v—a(3aps)v—a
O3 = (sb)v-a Y (q@)v-a, O4 = (Sabg)v-a > _(0s0a)v-a ,
q q
O5 = (sb)y-a > (q@)v+a, O6 = (Sabg)v-a ¥ (0s0a)v 44 »
q q
Or = 2(sb 7 Os = 2(50b i
7= 5(3 Jv-a ;eq(QQ)V—i—A ) 8 = §(Sa ﬁ)V—Ageq(%qa)VJrA )
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3, _ 3 _ _
Oy = §(Sb)va ; eq(qq)v-a , O = §(Sab,8)V7A ; eq(q8qa)v—4 ;s
em m
Ory = — ngbgaw(l +75) Fuwb Osg = _g;T?bgUW(l +75)G b (137)

where (§1¢2)v+4 = @177, (1 £75)qe, the sum is over active quarks, with e, denoting their electric charge
in fractions of |e|, and «, /3 are colour indices. The decay amplitudes can be calculated from this effective
Hamiltonian:

Ap = (fIH|BY) , Af = (f|Hea| BY) . (138)

The electroweak model determines the Wilson coefficients while QCD (or, more practically, a calcula-
tional method such as QCD factorization) determines the matrix elements ( f \Oi\BO(§0)>.

Take, for example, the B® — K70 decay amplitude. It can be written as follows (for simplicity,
we omit the contributions from O7_19):

Gr
2
. * G —T —

Aforo = IV Vas—g [P (i) (m; — m2) (aa + ryag) — fF P75 (m3) (md; — mi)as] |

oo A iVaVes—— fc PP (i) (mp — m2) (as + ryag) | (139)

where 7, = 2m% /[my(ms + my)]. The a; parameters are related to the Wilson coefficients as follows:

1
a; =C; + ﬁCiil for i = even, odd . (140)
C

Within the SM, at leading order,
Ci(mw) =1, Ciz(mw)=0. (141)

(Strictly speaking, C7- (my ) and Cy4(myy ) are also different from zero. Their contributions to the decay
processes of interest occur, however, at next-to-leading order, which we neglect here for simplicity.) To
run the Wilson coefficients from the weak scale myy to the low scale of order my, we use

—

Cp) = [ovs(mw) /os ()]0 (142)

where By = (33 — 2f)/3, with f = 5 for m, < u < myy, and -y is the 12-dimensional leading-log
anomalous dimension matrix which can be found, for example, in Ref. [80]. The bottom line is the
following set of values for the relevant a; parameters at the scale u = my:

a; = 1.028, ag =0.105, a4 = —0.0233, ag = —0.0314 . (143)
We use the following values for the relevant hadronic parameters:
fr =131 MeV, fx =160MeV, F5~7(0) =028, F575(0)=0.34, r\(mp) = 1.170. (144)
Thus we can estimate a ;.

f7r FB—»K as 9
v AR, (1 - 25 ~ 2.5\ R, ~ 0.052 . 145
GnK " < [k FB~™ ay + ryag “ (145)

We learn that the SM and factorization predict that —S 0, — Syxgs =~ +0.05.

In Table 3 we give the values of the a; parameter (obtained in Ref. [80] by using factorization [79,
81, 82]) for all relevant modes.

An examination of Table 3 shows that the SM pollution is small (that is, at the naively expected
level of |(VipVii)/ (Ve V)| ~ a few per cent) for f = ¢Kg, nKg and 7™ Kg. It is larger for
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Table 3: The a} parameters, calculated in QCD factorization at leading log and to zeroth order in A /my (except
for chirally enhanced corrections), and the SM values of S for ;1 = m; and in parentheses the respective values
for = 2my, (first) and . = my /2 (second) if different from the central one. In the last column, the results of
Ref. [83], using QCD factorization at next-to-leading order, are given. Taken from Ref. [80].

f ay [80] —ncpSy [801  —nepSy [83]
OKs 0 069 | 069 ______
¢Ks  0.019 0.71 0.71 +0.01
m™Ks  0.052 [0.094,0.021]  0.75[0.79,0.72] 0.76105
nKsg  0.08 [0.16,0.02] 0.78 [0.84,0.72] 0.79704}
nKs  0.007 [-0.006,0.019] 0.70 [0.68,0.71] 0.70 +0.01
wKg 022 [0.37,0.04] 0.88 [0.94,0.74] 0.82 % 0.08
p°Ks —0.16 [-0.32,0.005] 0.45 [0.15,0.70] 0.6175%%

f =nKg, wKg and pOK 5. In these modes, a;ﬁ is enhanced because, within the QCD factorization
approach, there is an accidental cancellation between the leading contributions to A;. The reason for the
suppression of the leading A; piecein f = pK, wK versus f = 7K is that the dominant QCD-penguin
coefficients a4 and ag appear in Afp,w) i s (ag —7ryag) and in AS, . as (aq + 7ryag). Since 7, ~ 1 and,
within the SM, a4 ~ ag, there is a cancellation in Afpw) ;. While there is not one in Afro - The suppres-
sion for Af]  With respect to A;/ i has a different reason: it is due to the octet-singlet mixing, which
causes destructive (constructive) interference in the 7(n’) K penguin amplitude [84].

10 b — wud transitions

The present experimental situation concerning CP asymmetries in decays to final CP eigenstates via
b — d transitions is summarized in Table 4.

Table 4: CP asymmetries in b — ccd (above line) or b — uud (below line) modes

fep —Nfcr S fop Crep
Ym0 +0.69 4+ 0.25 —0.114+0.20
DtD~  +0.29+0.63 +0.11 £0.35
D**D*= +0.75+£0.23 —0.04+0.14
atn~ 40.50 £ 0.12(0.18) —0.37 & 0.10(0.23)
70n0 —0.28 £0.39
ptp~ +0.22 £0.22 —0.02 +£0.17

For B — mr and other b — #ud processes, the penguin-to-tree ratio can be estimated using
SU(3) relations and experimental data on related B — K decays. The result is that the suppression
is of order 0.2 — 0.3 and so cannot be neglected. The expressions for S, and C, to leading order in
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Rpr = ([VisVia Ple) / (Vi Vaad| T ) are

/\7r7r = e%a [(1 — RPTe_ia)/(l — RPT€+ia)] =
Srr & sin2a+ 2Re(Rpr)cos2asina, Crr~2Im(Rpr)sina. (146)

Note that Rpr is mode dependent and, in particular, could be different for 7+ 7~ and 7%7°. If strong
phases can be neglected then Rpr is real, resulting in C., = 0. The size of C'; is an indicator of how
large the strong phase is. With regard to S, it is clear from Eq. (146) that the relative size and strong
phase of the penguin contribution must be known to extract . This is the problem of penguin pollution.

The cleanest solution involves isospin relations among the B — 7w amplitudes. Let us derive this
relation step by step. The SU(2)-isospin representations of the w7 states are as follows:

(ntr| = \/g<(1,+1)(1,—1)+(1,—1)(1,+1)\:\/g<2,0\+\/g<0,0\,

= (ool = 2 o/ 0o,
1
(rtn? = \/;<(1,+1)(1,0)+(1,o)(1,+1)\:<2,+1|. (147)

The Hamiltonian, with its four quark operators, has two features that are important for our purposes:

1. There are A = 1/2 and AT = 3/2 pieces, but no A = 5/2 one. The absence of the latter gives
isospin relations among the B — 77 amplitudes.

2. The penguin operators are purely Al = 1/2. Thus we will find that they do not contribute to the

779 modes.

We contract the Hamiltonian with the (B+, B?) = (1/2,41/2) states:

1 1
Hyaoplt/2 12 o (Lo e y/E o).

3 1
Hyjoy121/2,41/2) \/; 2,1) \/; 1),

1 1
Hynaall/2.-172) o (/21,0 -2 00,

H1/27+1/2]1/2,+1/2> x [1,0) . (148)
Combining Egs. (147) and (148), we obtain
At = V1/6 A3/2_ V1/3 A1/27
Aﬂ-Oﬂ-O — \ 1/3 A3/2+\/ 1/6 A1/27
A0 = +/3/4 A3/2 . (149)

Analogous relations hold for the CP-conjugate amplitudes, A i ;. These isospin decompositions lead to
the Gronau-London triangle relations [85]:

1
ﬁAﬂ+ﬂ* + A7r07r0 = A7r+7r0 )
1 — _ _
EAW—HT_ + 7T07T0 - Aﬂfﬂo . (150)

The method further exploits the fact that the penguin contribution to Py is pure Al = % (this is not true
for the electroweak penguins which, however, are expected to be small), while the tree contribution to
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Trr contains pieces which are both Al = % and Al = % A simple geometric construction then allows
one to find Rpr and extract « cleanly from S+ ~-. Explicitly, one notes that, since A3/, comes purely
from tree contributions, we have

A ,
4282 _ _ 2o (151)
p A3/2
The branching ratios of the various modes determine |A,.i.;| and [A,i,;| (With |[A 40| = |A;— o).

This would determine the shape of each of the triangles (150). Defining
Ag=(1/V6) Arje, Az = (1/V12) Ay, (152)

we can obtain Ay = (1/3)A,+ 0 and Ag = (1/v/2)A,+,- — Ao. Similarly, we can obtain Ay and Aj.
Next, we define (and obtain)

0 = arg(AgAs), 0 =arg(ApAy). (153)

Then we have

ia | Az] — [Aole”
T = Tm [ —e—2ia A2l = 1Aole” 154
it m( C A= [Ale? o
On the other hand, we can use the experimentally measured quantities to extract ZmA .+ ,—:
S _
TmA mn (155)

The key experimental difficulty is that one must measure accurately the separate rates for B, B -
7070, It has been noted that an upper bound on the average rate allows one to put a useful upper bound on
the deviation of S, .+, from sin 2« [86-88]. Parametrizing the asymmetry by S+~ /1/1 — (Crt,-)% =
sin(2a. ), the bound reads

(156)

1 [1 2By i (By- —2B,o+ 2300)2]

cos(2ae — 2c¢) >
(20 ) 1— (Crir)? Bto 4B4_Bo

B;; are averages over CP-conjugate branching ratios, e.g., Bop = % [B(BO — 1079 + B (EO — WOWO)} .
CP asymmetries in B — p7 and, in particular, in B — pp can also be used to determine o [89-93]. At
present, the constraints read [54]

0T ™ —al <38, RS =037+017,

0% —al <14°, R =0.0704. (157)

Using isospin analyses for all three systems (77, pm and pp), one obtains [54]

a(rm, mp, pp) = [1011§°]" (158)
to be compared with the result of the CKM fit,
a(CKM fit) = 96 £+ 16° . (159)

We would like to emphasize the following points:

— The consistency of Eq. (158) with Eq. (159) means that the KM mechanism of CP violation has
successfully passed a second precision test.
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— The o measurement via the b — wud transitions provides a significant constraint on the unitarity
triangle.

— The isospin analysis determines the relative phase between the BO-B’ mixing amplitude and the
tree decay amplitude A3 /5, independent of the electroweak model. The tree decay amplitude is not
affected by new physics. Any new physics modification of the mixing amplitude is measured by
Syr- Thus, the combination of Sy and the isospin analysis of Sy ,r ,, constrains o even in the

_ =0 . .
presence of new physics in B°~B"~ mixing.

11 b — cus, ucs transitions

An interesting set of measurements is that of B — DK which proceed via the quark transitions b — ¢us
or b — uc5 (and their CP conjugates). Given the quark processes, it is clear that there is no penguin
contribution here. Thus, the quark transitions are purely tree processes. The interference between the two
quark transitions (if they lead to the same final states, see below) is sensitive to arg[(V, Vi) / (Vi Ves)] =
.

There are three variants on this method: GLW [94,95], ADS [96] and GGSZ [97]. The simplest
one to explain involves branching ratios of charged B decays, and thus BO-B’ mixing plays no role.
Consider the decay B* — D{K=*, where D, = %(D0 + D°) are the CP eigenstates. Taking into
account that

ABY = D'KT)x A(D° — DY) o (ViyVes) x (ViVius)
ABY - DK x AD’ - DY) o« (V3Vis) x (ViVis) (160)

C

we can write the relevant decay amplitudes as follows:

\/§AD9K+ = ’ADOKHei(éH) + ’A50K+‘ = Apog+ + A50K+ )

V2Apog- = |Apog-e®) 4 [Ago, | =Age, + Apog— . (161)

Measuring the rates for the six relevant decay modes (DK™, DK™, D K+ and the CP-conjugate
modes), one can construct an amplitude triangle for each of the two relations in Eq. (161). We can
choose a phase convention where Aﬁo K+ = Apog—. Then, the relative angle between A pox+ and
AEO K- is 2’)/ .

The method of Ref. [97] gives, at present, the most significant constraints. It allows one to deter-

mine the amplitude ratios, rp = 0.121“8:82 and rp = 0.091“8:82, and the weak phase v [54]:

V(DK) = (63713)° . (162)

This range is to be compared with the range of ~ derived from the CKM fit (not including the direct
measurements):
(CKM fit) = (5777 ,)°. (163)

We would like to emphasize the following points:

— The consistency of Eq. (162) with Eq. (163) means that the KM mechanism of CP violation has
successfully passed a third precision test.

— The v measurement via the b — cus,ucs y transitions provides yet another constraint on the
unitarity triangle. The constraint will become more significant when the experimental precision
improves.

— The determination of  here relies on tree decay amplitudes. Thus, the analysis of B — DK
decays constrains <y even in the presence of new physics in loop processes.
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12 CP violation as a probe of new physics

We have argued that the SM picture of CP violation is unique and highly predictive. We have also
stated that reasonable extensions of the SM have a very different picture of CP violation. Experimental
results are now starting to decide between the various possibilities. Our discussion of CP violation in the
presence of new physics is aimed to demonstrate that, indeed, models of new physics can significantly
modify the SM predictions and that present and near future measurements have therefore a strong impact
on the theoretical understanding of CP violation.

To understand how the SM predictions could be modified by new physics, we focus on CP vi-
olation in the interference between decays with and without mixing. As explained above, this type of
CP violation may give, owing to its theoretical cleanliness, unambiguous evidence for new physics most
easily. We now demonstrate what type of questions can be (or have already been) answered when many
such observables are measured.

L. Consider Sy, the CP asymmetry in B — 9 Kg. This measurement cleanly determines the

relative phase between the BB’ mixing amplitude and the b — cc¢s decay amplitude (sin 273 in the
SM). The b — ccs decay has Standard Model tree contributions and therefore is very unlikely to be
significantly affected by new physics. On the other hand, the mixing amplitude can be easily modified
by new physics. We parametrize such a modification as follows:

, M
2 2i0g __ 12
rye = —%=. (164)
Mt
Then the following observables provide constraints on rfl and 20,:
Spkg = sin(26 + 26,) ,
Amp = r3(Amp)™M,
SM . SM
Flg Sin 29d Flg COS 29d
A = —-R A . 165
SL e <M12) -2 +Im Moo 2 (165)

Examining whether Sy, Amp and Agy, fit the SM prediction, that is, whether 64 # 0 and/or 73 # 1,
we can answer the following question (see, for example, Ref. [98]):

(i) Is there new physics in BB’ mixing?

Thanks to the fact that quite a few observables that are related to SM tree-level processes have
already been measured, we are able to refer to this question in a quantitative way. The tree-level processes
are insensitive to new physics and can be used to constrain p and 7 even in the presence of new physics
contributions to loop processes, such as Amp. Among these observables we have |V ;| and |V,,5| from
semileptonic B decays, the phase v from B — DK decays, and the phase a from B — pp decays (in
combination with Sy x). One can fit these observables, and the ones in Eq. (165), to the four parameters
0,1, r?l and 26,. The resulting constraints are shown in Fig. 5.

A long list of models that require a significant modification of the B 0_g° mixing amplitude are
excluded. We can further conclude from Fig. 5 that a new physics (NP) contribution to the B 0_j°
mixing amplitude at a level higher than 20% is now disfavoured. Yet, it is still possible that p and 7 are
well outside their SM range and that NP gives 204 very different from zero and/or 7"62, very different from
one. In this case, the SM and the NP ‘conspire’ to mimic the SM values of the observables (165). This is
what we meant concretely in our statement that the KM dominance of the observed CP violation is now
very likely but not guaranteed.

IL. Consider Sy, the CP asymmetry in B — ¢Kg. This measurement is sensitive to the relative
phase between the B—B mixing amplitude and the b — sSs decay amplitude (sin 20 in the SM). The
b — s5s decay has only SM penguin contributions and therefore is sensitive to NP. For the simple case
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Fig. 5: Constraints in the (a) p—7 plane and (b) r2-26, plane, assuming that NP contributions to tree-level processes
are negligible [54]

that the NP contribution depends on a single CP-violating phase ¢, we parametrize the modification of
the decay amplitude as follows [for simplicity, we neglect here the a; terms of Eq. (134)]:

Ap = A5 (14 by ) (166)

Here by is complex only if it carries a strong phase. The effects of this NP contribution are simple to
understand in two limits.

1. The NP contribution is dominant, |bs| > 1. The shift in all modes where this condition is valid is
universal and depends only on ¢p,:

—npSy =~ sin(26 + 204) cos 2¢ps + cos(208 + 264) sin 2¢ys
C; ~ 0. (167)

2. The NP contribution is small. Explicitly, |b¢| < 1. The shift is mode dependent and depends on
both b and sin ¢p:

—ngSy =~ sin(28 + 204) + 2cos(26 + 264)Re(by) sin ¢ ,
Cp =~ —2Tm(b5)sin dp, . (168)

Note that the effect of the NP is similar to that of the SM a; terms (with by < a; and ¢ps < ), SO
that the latter have to be known in order to probe the b; terms. Once that is done, the value of Sy
determines 23 + 26, and one can examine whether ¢35 # 0 and answer the following question:

(ii) Is there new physics in b — s transitions?

So far, the experimental data— see Table 2—do not provide any evidence for ¢ # 0. Yet, the
experimental accuracy is still not sufficient to make qualitative statements such as we made for b — d
transitions (BO—F0 mixing). To see this, we compare the constraints in the p—n plane that arise from tree
plus b — dloops (Amp, Sy, Spp. etc.) to those from tree plus b — s loops (S¢xg, Syig, Ams).
This is done in Fig. 6.
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Fig. 6: Constraints in the p—7 plane from tree processes and (a) b — d or (b) b — s loop processes

IIL. Together with a future measurement of B,—B, mixing, we may also try to answer the follow-
ing question:

(iii) Is there new physics in AB = 1 processes? in AB = 2? in both?

IV. Consider ar,p = I, 70,5/ g+ —n+ui» se€ Eq. (111). This measurement will cleanly de-
termine the relative phase between the K 0_%° mixing amplitude and the s — drv decay amplitude (of
order sin? 3 in the SM). The experimentally measured small value of ¢ ;c requires that the phase of the
K"K’ mixing amplitude is not modified from the SM prediction. (More precisely, it requires that the
phase of the mixing amplitude is very close to twice the phase of the s — duu decay amplitude [99].)
On the other hand, the decay, which in the SM is a loop process with small mixing angles, can be easily

modified by new physics. Examining whether the SM correlation between a5 and Sy is fulfilled,
we can answer the following question:

(iv) Is there new physics related solely to the third generation? to all generations?

To understand the present situation, we present in Fig. 7 the constraints in the p—n plane from tree
plus loop processes that do not involve external third generation quarks, namely s — d transitions only
[e and B(K+ — ©tvw)]. This can be compared with the constraints from tree plus loop processes that
do involve the third generation, namely b — d and b — s transitions. Again, one can see that there is a

lot to be learned from future measurements. (For a recent, comprehensive analysis of this question, see
Ref. [100].)

V. Consider ¢p, defined in Eq. (117), which is the relative phase between the D°—D° mixing
amplitude and the ¢ — d5u and ¢ — sdu decay amplitudes. Within the SM, the two decay channels are
tree level. It is unlikely that they are affected by NP. On the other hand, the mixing amplitude can be
easily modified by NP. Examining whether ¢ p # 0, we can answer the following question:

(v) Is there new physics in the down sector? in the up sector? in both?

VI. Consider d v, the electric dipole moment of the neutron. We have not discussed this quantity so
far because, unlike CP violation in meson decays, flavour-changing couplings are not necessary for d .
In other words, the CP violation that induces dy is flavour diagonal. It does in general get contributions
from flavour-changing physics, but it could be induced by sectors that are flavour blind. Within the SM
(and ignoring 0qcp), the contribution from dx arises at the three-loop level and is at least six orders of
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Fig. 7: Constraints in the p—7 plane from tree processes and (a) s — d or (b) b — d and b — s loop processes

magnitude below the experimental bound (13). If the bound is further improved (or a signal observed),
we can answer the following question:

(vi) Are there new sources of CP violation that are flavour changing? flavour diagonal? both?

It is no wonder then that with such rich information, flavour and CP violation provide an excellent
probe of NP. We next demonstrate this situation more concretely by discussing CP violation in super-
symmetry.

13 Supersymmetric CP violation

Supersymmetry solves the fine-tuning problem of the SM and has many other virtues. But at the
same time, it leads to new problems: baryon-number violation, lepton-number violation, large flavour-
changing neutral-current processes and large CP violation. The first two problems can be solved by
imposing R-parity on supersymmetric models. There is no such simple, symmetry-related solution to
the problems of flavour and CP violation. Instead, suppression of the relevant couplings can be achieved
by demanding very constrained structures of the soft supersymmetry breaking terms. There are two im-
portant questions here: First, can theories of dynamical supersymmetry breaking naturally induce such
structures? Second, can measurements of flavour-changing and/or CP-violating processes shed light on
the structure of the soft supersymmetry breaking terms? Since the answer to both questions is in the
affirmative, we conclude that flavour-changing neutral-current processes and, in particular, CP-violating
observables will provide clues to the crucial question of how supersymmetry breaks.

13.1 CP-violating parameters

A generic supersymmetric extension of the SM contains a host of new flavour- and CP-violating param-
eters. (For a review of CP violation in supersymmetry see Refs. [101, 102].) It is an amusing exercise to
count the number of parameters [103]. The supersymmetric part of the Lagrangian depends, in addition
to the three gauge couplings of Ggyp, on the parameters of the superpotential W':

W = Z (K?HUQLZ‘ULJ' + Yi;‘lHdQLiELj + Ygﬁ-HdLLiFLj) +pHHy . (169)
i?-j
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In addition, we have to add soft supersymmetry breaking terms:

Loofs = — <A%HUQ~LZ'UL]' + Ag'HdQLiELj + Af-HdiLiELj + BH,H; + h.c.)
1
2)
- ) (md) 52 M) (AN) (@) + h.c.) | (170)
all scalars )=1

where S = @, Dy, Uy, L, Er. The three Yukawa matrices Y/ depend on 27 real and 27 imaginary
parameters. Similarly, the three A/ matrices depend on 27 real and 27 imaginary parameters. The five
m% Hermitian 3 x 3 mass-squared matrices for sfermions have 30 real parameters and 15 phases. The
gauge and Higgs sectors depend on

0qeD, (1), 2y, T3), 91, 92, 93, 14 B, mi,,mi (171)

that is, 11 real and 5 imaginary parameters. Summing over all sectors, we get 95 real and 74 imaginary
parameters. The various couplings (other than the gauge couplings) can be thought of as spurions that
break a global symmetry,

U x U(l)pg x U(1)g — U(L)g x U(1)f . (172)
The U(1)pq x U(1)g charge assignments are

H, Hy QU QD LE
Ulpg 1 1 -1 -1 -1 . (173)
UL 1 1 1 1 1

Consequently, we can remove 15 real and 30 imaginary parameters, which leaves

{80 real .
124 = . ) physical parameters . 174)
44  imaginary

In particular, there are 43 new CP-violating phases! In addition to the single Kobayashi—-Maskawa of
the SM, we can put three phases in M7, Mo, 1 (we used the U(1)pq and U(1)g to remove the phases
from pB* and M3, respectively) and the other 40 phases appear in the mixing matrices of the fermion—
stermion—gaugino couplings. (Of the 80 real parameters, there are 11 absolute values of the parameters
in (171), 9 fermion masses, 21 sfermion masses, 3 CKM angles and 36 SCKM angles.) Supersymmetry
provides a nice example of our statement that reasonable extensions of the SM may have more than one
source of CP violation.

The requirement of consistency with experimental data provides strong constraints on many of
these parameters. For this reason, the physics of flavour and CP violation has had a profound impact on
supersymmetric model building. A discussion of CP violation in this context can hardly avoid addressing
the flavour problem itself. Indeed, many of the supersymmetric models that we analyse below were
originally aimed at solving flavour problems.

With regard to CP violation, one can distinguish two classes of experimental constraints. First,
bounds on nuclear and atomic electric dipole moments determine what is usually called the supersym-
metric CP problem. Second, the physics of neutral mesons and, most importantly, the small experimental
value of e pose the supersymmetric € i problem. In the next two subsections we describe the two prob-
lems.
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13.2 The supersymmetric CP problem

One aspect of supersymmetric CP violation involves effects that are flavour preserving. Then, for sim-
plicity, we describe this aspect in a supersymmetric model without additional flavour mixings, i.e., the
minimal supersymmetric standard model (MSSM) with universal sfermion masses and with the trilinear
supersymmetry-breaking scalar couplings proportional to the corresponding Yukawa couplings. (The
generalization to the case of non-universal soft terms is straightforward.) In such a constrained frame-
work, there are four new phases beyond the two phases of the SM (dxn and Ogcp). One arises in the
bilinear p-term of the superpotential (169), while the other three arise in the soft supersymmetry break-
ing parameters of Eq. (170): m (the gaugino mass), A (the trilinear scalar coupling) and B (the bilinear
scalar coupling). Only two combinations of the four phases are physical [104, 105]:

pa =arg(A*m), ¢p=arg(muB®). (175)

In the more general case of non-universal soft terms, there is one independent phase ¢ 4, for each quark
and lepton flavour. Moreover, complex off-diagonal entries in the sfermion mass-squared matrices rep-
resent additional sources of CP violation.

The most significant effect of ¢ 4 and ¢p is their contribution to electric dipole moments (EDMs).
For example, the contribution from one-loop gluino diagrams to the down-quark EDM is given by [106,

107]
ew . .
dg = mg—— (|A|sin ¢4 + tan Blp| sin ¢ ) , (176)
18mm

where we have taken mg, ~ m%, ~ mZ ~ m?, for left- and right-handed squark and gluino masses.

We define, as usual, tan 3 = (H,)/(H4). Similar one-loop diagrams give rise to chromoelectric dipole
moments. The electric and chromoelectric dipole moments of the light quarks (u,d, s) are the main
source of d (the EDM of the neutron), giving [108]

2

100 GeV \ 2
dy ~ 2 <7e> singap x 1072 e cm (177)
m

where, as above, m represents the overall supersymmetry (SUSY) scale. In a generic supersymmetric
framework, we expect m = O(mz) and sing4 p = O(1). Then the constraint (13) is generically
violated by about two orders of magnitude. This is the supersymmetric CP problem.

Equation (177) shows two possible ways to solve the supersymmetric CP problem:

1. heavy squarks, m = 1 TeV;
2. approximate CP, sin ¢4 p < 1.

13.3 The supersymmetric & i problem

The supersymmetric contribution to the € parameter is dominated by diagrams involving @ and d
squarks in the same loop. For m = mg ~ mg ~ mp (our results depend only weakly on this as-
sumption) and focusing on the contribution from the first two squark families, one gets (see, for exam-

ple, [109])
5a3 [rm ( mg )2 3 d d
. 1622 m2Amyg | \'ms +my 25 (012)L(012) RR) (178)
Here
m2~ —m%
(5?2)LL - <M) Kf%,
"G
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m2 —mZ
(0%)rr = (%) K, (179)

where K fQL (K fQR) are the mixing angles in the gluino couplings to left-handed (right-handed) down
quarks and their scalar partners. Note that CP would be violated even if there were two families
only [110]. Using the experimental value of € i, we get

2 2 2 2
Ampe)SUSY 300 GeV\ 2 [ Mg, ™5, \ (™Mb, — ™: .
)~ 107 (A0 ) (T gt ctfsn 50

) D

where ¢ is the CP-violating phase. In a generic supersymmetric framework, we expect m = O(myz),
omg p/mg p = O(1), Kg’D = O(1) and sing = O(1). Then the constraint (180) is generically
violated by about seven orders of magnitude.

The Am constraint on Re[(6%,)11(6%,) rr] is about two orders of magnitude weaker. One can

distinguish then three interesting regions for (0%) = 1/(6%) 1L (6%)rR

> 0.003 excluded;
((5il2> € [0.0002,0.003] viable with small phases; (181)
< 0.0002 viable with O(1) phases.

The first bound comes from the Am constraint (assuming that the relevant phase is not particularly
close to 7/2). The bounds here apply to squark masses of order 500 GeV and scale like m. There is also
dependence on mg/m, which is here taken to be one.

Equation (180) also shows the possible ways to solve the supersymmetric € i problem:

heavy squarks, m > 300 GeV;
universality, dmg, p < m§ ps
alignment, |K{,| < 1;
approximate CP, sin ¢ < 1.

el e

13.4 More on supersymmetric flavour and CP violation

The flavour and CP constraints on supersymmetric models apply to almost all flavour-changing cou-
plings. The size of supersymmetric flavour violation depends on the overall scale of the soft supersym-
metry breaking terms, on mass degeneracies between sfermion generations, and on the mixing angles in
gaugino couplings. One can choose a representative scale (say, m ~ 300 GeV) and then conveniently
present the constraints in terms of the (5;-1]-) MmN parameters, see Eq. (179). In a given supersymmetric
flavour model, one can find predictions for the (5;1]-) MmN and test the model.

A summary of upper bounds on the supersymmetric flavour-changing couplings is given in Table 5.
The bounds on the 7 m(éfz) LR,RL parameters are taken from Ref. [111], on 55’3 from Ref. [112], and on
533 from Refs. [113, 114]. The bounds are expressed in powers of the Wolfenstein parameter A, which
makes it easy to compare with model predictions. As an example, we give the range of these parameters
that is expected in a large class of viable models of alignment [115-117].

Until some time ago, the 533 parameters had been only weakly constrained (the improving ac-
curacy of the measurements of B(B — X/¢*¢7) has strengthened the constraints considerably). Fur-
thermore, measurements of various CP asymmetries in penguin-dominated modes (particularly Sz and
Sy i) gave central values that were far off the expected value ~ Sy (at present the strongest discrep-
ancy is down to the 20 level). One may still ask whether effects of order 0.1, which is the order of
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Table 5: Theoretical predictions for supersymmetric flavour-changing couplings in viable models of alignment,
and the experimental constraints

(69,x)i; Prediction  Upper bound (64,5)i; Prediction Upper bound
(6F )iz N> =3 z? (07 g1z AT(my /1) A"(Zm)
@hrhe  AT=X  AN/Of)e Ofphe N(my/m) _ A(Tm)
(67 1)13 = A (07 g)1s  A*(my /1) z?
@hrhis  AT=X NYfs Ofphis N mo/m) A
(64, )3 A2 A2(Re) — AM(Zm) (6% )23 A2(mp/m) A4 (Re) — N3 (Zm)
(0hg)2s At — A2 1 (0%)23  X(my/m) A3

the expected experimental accuracy and probably above the theoretical error on Sy x and S,y ., are still
possible within supersymmetric flavour models and, in particular, alignment models.

To answer this question, we use the results of Ref. [113]. From their Fig. 3, we make the following
estimates:

ASyx N ASor o4
ATm(5F ;)23 ATZm(0fp)2s ’
Aok AS6K 0. (182)

AIm(é%R)Q?’ AIm(5%L)23
Thus, for Sk to be shifted by O(0.1), we need at least one of the following four options:

Im(é%L)Qg ~ )\ 5 Im(é%R)gg ~ )\ s
Im(6%p)as ~ A, Tm(6%y)as ~ AL, (183)

Examining Table 5, we learn that in alignment models Zm(6% )23 ~ 7 x 1074(350 GeV/rn) is the
closest to satisfying the condition in Eq. (183), though the unknown numbers of order one should be on
the large side to give an observable effect.

13.5 Discussion

We define two scales that play an important role in supersymmetry: A g, where the soft supersymmetry
breaking terms are generated, and A, where flavour dynamics takes place. When Arp > Ag, it is
possible that there are no genuinely new sources of flavour and CP violation. This class of models, where
the Yukawa couplings (or, in the mass basis, the CKM matrix) are the only source of flavour and CP
breaking, is often called ‘minimal flavour violation.” The most important features of the supersymmetry
breaking terms are universality of the scalar masses-squared and proportionality of the A-terms. When
Ar < Ag, we do not expect, in general, that flavour and CP violation are limited to the Yukawa matrices.
One way to suppress CP violation would be to assume that, similarly to the SM, CP violating-phases
are large, but their effects are screened, possibly by the same physics that explains the various flavour
puzzles, such as models with Abelian or non-Abelian horizontal symmetries. It is also possible that CP-
violating effects are suppressed because squarks are heavy. Another option, which is now excluded, was
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to assume that CP is an approximate symmetry of the full theory (namely, CP-violating phases are all
small).

We would like to emphasize the following points:

1. For supersymmetry to be established, a direct observation of supersymmetric particles is necessary.
Once it is discovered, then measurements of CP-violating observables will be a very sensitive
probe of its flavour structure and, consequently, of the mechanism of dynamical supersymmetry
breaking.

2. It seems possible to distinguish between models of exact universality and models with genuine
supersymmetric flavour and CP violation. The former tend to give dy < 1073! e cm, while the
latter usually predict dy > 10728 e cm.

3. The proximity of Sy x to the SM predictions is obviously consistent with models of exact uni-
versality. It disfavours models of heavy squarks such as that of Ref. [118]. Models of flavour
symmetries allow deviations of order 20% (or smaller) from the SM predictions. To be convinc-
ingly signalled, an improvement in the theoretical calculations that lead to the SM predictions for
Syr g Will be required [119].

4. Alternatively, the fact that K — wvv decays are not affected by most supersymmetric flavour
models [120-122] is an advantage here. The SM correlation between ar,; and Sy is a much
cleaner test than a comparison of Sy to the CKM constraints.

5. The neutral D system provides a stringent test of alignment. Observation of CP violation in the
D — K decays will make a convincing case for new physics.

6. CP violation in b — s transitions remains an interesting probe of supersymmetry. Deviations of
order 0.1 from the SM predictions are possible if one of the conditions in Eq. (183) is satisfied.

14 Lessons from the B factories

Let us summarize the main lessons that have been learned from the measurements of CP violation in B
decays:

— The KM phase is different from zero, that is, the SM violates CP.

— The KM mechanism is the dominant source of CP violation in meson decays.

— The size and the phase of new physics contributions to b — d transitions (BO—EO mixing) is
severely constrained (< O0(0.2)).

— Complete alternatives to the KM mechanism (the superweak mechanism and approximate CP) are
excluded.

— Corrections to the KM mechanism are possible, particularly for b — s transitions, but there is no
evidence at present for such corrections.

— There is still a lot to be learned from future measurements.
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Abstract

High-energy cosmic rays are detected as extensive air showers, and proper-
ties of the primary cosmic rays are deduced from measurements of those air
showers. The physics of air showers is reviewed here in order to explain how
the measurement techniques work. The Pierre Auger Cosmic Ray Observatory
(near this school in Malargue) is used to illustrate the experimental methods.
The Auger Observatory combines a surface array of water Cherenkov detec-
tors with atmospheric fluorescence detectors. This ‘hybrid’ measurement tech-
nique provides high resolution and measurement cross-checks. In conjunction
with a complementary site in the northern hemisphere, the Auger Observatory
expects to map the arrival directions over the full sky as well as measuring the
cosmic-ray energy spectrum and statistical properties of the mass distribution.

1 Introduction

A high-energy cosmic ray observatory records individual cosmic ray particles using the atmosphere as a
transducer and amplifier. Each extremely high energy cosmic ray converts into a cascade that grows to
billions of secondary particles. A large observatory records the air showers landing in a collection area
that spans thousands of square kilometres. Because of the indirect measurement method, it is impossible
to measure exactly the arrival direction, energy, and mass of the primary cosmic ray. Air shower mea-
surements can determine the arrival direction to a small fraction of a degree. The energy, however, is hard
to measure to better than 10% accuracy. The atomic mass of the primary particle cannot be estimated
reliably for individual cosmic rays, and only some statistical properties of the primary mass distribution
can be derived from air shower studies.

The flux of high-energy cosmic rays is tiny. Above 10'° eV, for example, the detection rate is
approximately one per square kilometre per year. The rate falls by two orders of magnitude for each
decade increase in particle energy. Direct measurement of the highest energy cosmic rays above the
atmosphere is far from feasible. The study of extremely high energy cosmic rays must rely on indirect
measurements via the air showers that those particles produce. Modern (hybrid) observatories combine
a surface array of particle detectors with telescopes that observe radiation produced by the developing
shower front as it traverses the atmosphere.

Physicists have used air showers to study cosmic rays near 10'4 eV and above since Pierre Auger
demonstrated the technique in 1938 [1]. The largest air-shower array, located near Malargue, is the
Pierre Auger Observatory. It is designed for the study of the highest energy cosmic rays, making quality
measurements of all air showers above 10! eV that land within its 3000 km? area. Its surface detector
(SD) is an array of 1600 water Cherenkov tanks. On good-weather nights, its air fluorescence detector
(FD) measures the longitudinal development of the cascade as it descends through the atmosphere. The
Auger Observatory will be used to illustrate the experimental techniques that are employed to measure
the highest energy cosmic rays.

2 Air shower physics

An extremely high energy cosmic ray collides with a nucleus high in the atmosphere. The interaction
produces many new energetic particles. Those also collide with air nuclei, and each collision adds a
large number of particles to the developing cascade. Some of the produced particles are neutral pions,
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each one of which immediately decays to a pair of gamma rays. The gamma rays produce e* pairs when
passing near nuclei. The electrons and positrons re-generate gamma rays via bremsstrahlung, thereby
building the electromagnetic cascade. This is an extensive air shower.

The number of charged particles in the air shower reaches a maximum size Np,.x that is nearly
proportional to the primary energy E. There are billions of charged particles in high-energy air showers.
The size Npx at shower maximum is approximately equal to £/1.5 GeV, although this conversion factor
depends slightly on the choice of hadronic interaction model that is adopted to simulate collisions at
energies above the reach of collider experiments, and it depends slightly on the atomic mass of the
cosmic ray.

Experimental evidence so far indicates that extremely high energy cosmic rays are atomic nuclei
(including protons which are hydrogen nuclei). The cosmic-ray nucleus initiates its air-shower cascade
by hadronic interaction with an atomic nucleus in the atmosphere. The hadronic cascade (mostly pions)
grows until the energy per pion falls to the level where pions are likely to decay before colliding. In each
generation of the hadronic cascade, 1/3 of the energy on average goes to neutral pions which instantly
decay to pairs of gamma rays. Each gamma ray develops an electromagnetic subcascade. After n
hadronic cascade generations, only (2/3)" of the total energy remains in the hadronic cascade.

The decay of 7¥ mesons into gamma rays eventually transfers most of the primary cosmic ray’s
energy to the electromagnetic cascade. Each gamma ray converts to an e* pair. The electrons and
positrons create new gamma rays by bremsstrahlung. The radiation length X is the grammage path
length in which their energies attenuate by the factor 1/e. In air, this radiation length X is 36.2 g/cm?.
The electromagnetic cascade grows via pair production and bremsstrahlung.

Heitler’s heuristic picture [2] of the electromagnetic cascade gives intuitive understanding of its
essential properties. One imagines the cascade developing by a sequence of generations. At each gen-
eration, any gamma ray produces an e* pair, while each electron or positron produces a gamma ray in
addition to itself. Every generation therefore doubles the number of cascade particles. The grammage
interval for each generation is X;x In(2), i.e., the path over which the energy of any one particle is
expected to be reduced by 1/2. The process continues until the average particle energy is reduced to
the critical energy below which charged particles lose their energy in less than one radiation length by
ionizing atoms. Given that the ionization energy loss is about 2.2 MeV/g/cm?, the critical energy E.
is (2.2 MeV/g/ch)x(36.2 g/cmg) = 80 MeV. The cascade grows until it reaches size N = F/E..
The number of generations n needed to reach this maximum size depends on the total energy E. Since
the number of particles doubles at each generation, one has at maximum, Ny.x = 2" = E/E., so
n = In(E/E.)/In(2). The maximum size occurs at a slant depth X,0x = n X X; X In(2) =X; x
In(E/E.) (measured along the shower axis from the top of the atmosphere).

Rigorous treatments show that this heuristic model gives the correct depth of maximum (X %)
for each energy. In particular, the depth of maximum X,,x for electromagnetic cascades increases by
X;x In(10) for each decade of increase in energy E. This elongation rate of 85 g/cm?/decade is greater
than what is expected for air showers that are fed by hadronic cascades.

The heuristic model’s suggestion that Ny, is proportional to energy is only approximately true.
The total energy is equal to 2.2 MeV times the charged particle shower size integrated over all depths,
as the electromagnetic energy is dissipated by charged particles at the rate of 2.2 MeV/g/cm?/particle.
Because the longitudinal profile N.(X) gets longer (X, larger) with energy, the height of the profile
curve cannot be strictly proportional to energy. In fact, Ny,x < E/+/In(E). To a good approximation,
this is proportional to E in accordance with the heuristic model.

Rigorous treatments show that the electromagnetic longitudinal profile is accurately given by the

Greisen formula [3]:

Ne — 0.31 eT SigT/Q ]

Vv Tmax
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Here T is the atmospheric depth measured in radiation lengths (' = X/X;) from the point of the
gamma ray’s production, Ti.,x = In(E/E,), and s is the shower age: s = 3T /(T + 2Tax). Many
shower properties are well parametrized by shower age. All positive values of atmospheric depth occur
in the range 0 < s < 3, and shower maximum occurs at shower age s = 1.

In the hadronic cascade, the charged pions produce air shower muons when they decay. The num-
ber of shower muons depends on the amount of energy that is left in the hadronic cascade when pion
energies have dropped to the level where decay is more likely than collision. If this happens after rela-
tively few cascade generations, then copious muon production occurs. If the reduction of pion energies
takes relatively many generations, then more of the energy will have been lost from the hadronic cascade
to the electromagnetic cascade, and meager muon production occurs.

A cascade initiated by an iron nucleus develops like a superposition of 56 nucleons, each with 1/56
of the primary energy. In effect, this jump-starts the cascade, and pions get down to energies where they
can decay to muons before the electromagnetic cascade has drained too much energy from the hadronic
cascade. An iron shower therefore typically has more muons than a proton shower of the same total
energy. Moreover, the superposition of 56 lower energy subshowers reaches its maximum size higher in
the atmosphere than a proton shower of the same total energy. Statistical determinations of the primary
mass distribution (chemical composition) exploit these differences between heavy and light nuclei: heavy
nucleus showers produce more muons and they reach maximum size higher in the atmosphere.

The longitudinal development (rise and fall of the number of charged particles) is frequently ap-
proximated by a parametrized Gaisser—Hillas functional form [4]:

Ne() = N ()" "7

where w = (Xmax — X0)/A = (X — Xg)/A, and ) is an interaction scale length in g/cm?. The
four parameters (NVyax, Xmax> X0, A) provide ample size and shape freedom for fitting longitudinal
profiles. As an exercise, try fitting the Greisen function (given above) by a Gaisser—Hillas function with
appropriate choice of parameters.

3 Geometric reconstruction

Surface arrays determine the arrival direction by recording the arrival time of the shower front at three
or more non-collinear stations on the ground. The method is conceptually simple assuming the shower
front to be a perfect plane. Any pair of stations A and B determine the arrival direction cosine along the
direction from A to B as c(ty — tg)/AB, where c is the speed of light, t5 and tp are the trigger times for
stations A and B, respectively, and AB is the distance between them. Two independent direction cosines
determine a unique arrival direction in the hemisphere above the plane of the detectors.

The shower front is actually a curved surface, not a plane. The trigger times of three or more
stations give the geometry by chi-square minimization, using the expected relative arrival times based on
a realistic curved shower front moving at the speed of light. Those expected times depend not only on
the arrival direction but also on the core position, so the core should first be determined from the relative
station signal amplitudes.

Geometric reconstruction is quite different for a fluorescence detector eye, which sees an air
shower as a spot of light that moves downward through the atmosphere at the speed of light. The track
of the spot’s centre defines a great circle in the direction space of the eye which, together with the eye’s
location, determines the shower-detector plane (SDP). If two eyes at different locations record the same
shower, then the shower axis must lie in both SDPs. The intersection of the planes determines the shower
axis (provided the two planes are not the same). This is the stereo reconstruction method. The angular
resolution depends on the accuracy of determining the SDPs and on the opening angle between them.
The SDP accuracy is better for longer tracks and smaller pixels [5].
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Data from a single FD eye together with the trigger time(s) from one or more SD stations yield a
hybrid geometric reconstruction that offers better accuracy than stereo reconstruction. After determining
the SDP, ‘geometric reconstruction’ means identifying the shower axis within the SDP together with the
time when the shower front passes some point on that axis. To understand the hybrid method, imagine
that you know precisely the angular velocity of the track as the spot passes the centre of some particular
pixel. If somebody were to tell you the distance to the shower axis at that point of the track, you could
calculate when the light was emitted from that point of the axis and (using the measured angular velocity)
what angle the axis makes with the pixel’s viewing direction. The geometric reconstruction is therefore
complete if you are told that one distance to the axis. Since you may not know it accurately from
the FD data alone, you can try all possible distance hypotheses. Each one gives a unique geometric
reconstruction and therefore a unique prediction for the trigger time of any SD station on the ground. The
trigger time of any ground station therefore identifies which distance hypothesis is correct and therefore
the true geometry. This timing method typically picks out the axis within the SDP with less uncertainty
than if the axis is determined by a second (stereoscopic) SDP. For stereo hybrid events, there are timing
determinations in two independent planes, providing reconstruction accuracy that is superior to both
stereo reconstruction and monocular hybrid reconstruction.

4 Energy measurement

Conceptually, energy determination by a fluorescence detector is straightforward. The amount of emitted
fluorescence light is proportional to the ionization energy loss by all the charged particles. Measuring the
fluorescence emission from the full shower development should yield the total electromagnetic shower
energy. Itis a robust calorimetric measurement. The only dependence on hadronic model or composition
is in the small fraction of primary energy that is assumed to escape the hadronic cascade as muons and
neutrinos rather than being transferred to the electromagnetic cascade. Simulations suggest that this
fraction is approximately 5% for proton showers and 15% for iron showers. By assuming 10%, the error
due to ignorance of the primary particle should not be more than about 5%. Still, it is important to
recognize that air shower measurements are an indirect method for determining the energy of a cosmic
ray, and there is some systematic model uncertainty that is difficult to quantify. The fraction of the cosmic
ray energy not dissipated electromagnetically also fluctuates shower-to-shower, especially for protons.

Implementing this conceptually simple calorimetric method encounters numerous difficulties:

1. The full longitudinal development is never observed. The FD records only the portion of the
shower development that is above ground level and large enough to produce a detectable light flux
at the detector. Some extrapolation using a fitted functional form is needed to account for the parts
of the development that are not measured.

2. Light scattered to the FD from the intense forward Cherenkov beam contaminates the fluorescence
signal. This scattered Cherenkov light distorts the spectrum of detected photons as well as their
number.

3. The optical clarity of the atmosphere is variable because of changes in the aerosol density and
aerosol composition. This makes it problematic to infer the amount of emitted light based on the
observed flux. Detailed atmospheric monitoring can, in principle, overcome this difficulty.

4. The fluorescence efficiency is not precisely known. The number of fluorescence photons pro-
duced per metre along a charged particle’s trajectory depends on the particle’s energy and also on
the atmospheric temperature and pressure where the particle is. Uncertainty in the fluorescence
efficiency causes uncertainty in inferring energy deposition based on the amount of produced flu-
orescence light.

Numerous laboratory experiments are tackling the last itemized difficulty [6], and they can be
expected to reduce the uncertainty in cosmic-ray energy measurements which is due to uncertainty in the
fluorescence yield. The other difficulties introduce energy errors that are more random than systematic.
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Fig. 1: Longitudinal development curves for the NKG electromagnetic particle density at seven fixed distances
from the shower axis. The distances are fixed in Moliere units but converted to metres using the Auger detector
altitude. Top to bottom, the distances (in surface metres) to the axis are 10, 32, 100, 320, 1000, 3200, 10 000.
Note that the depth of maximum increases with distance from the axis. Two horizontal lines mark the maximum of
s1000 curve and the value 30% lower. The density remains within 30% of its maximum from 850 to 1300 g/crnz.
The units are approximate number of vertical equivalent muons per 10 m? for this shower of Npa = 6 x 10°.

The FD quasi-calorimetric energy measurement can provide an important calibration for SD en-
ergy measurements which otherwise rely on shower simulations. Shower simulations are necessarily
uncertain in their treatment of hadronic interactions at energies that have not been studied by collider
experiments.

Simulations show that the signal collected in SD stations far from the core is approximately pro-
portional to the total shower energy. In the case of the Auger array, the signal (s19g09) deposited in a
water tank 1000 meters from the core is taken to be proportional to shower energy. At that distance, the
longitudinal development of particle density reaches its maximum value near ground level for a large
range of zenith angles. Since a smooth function changes very little near its maximum value, this method
is relatively insensitive to fluctuations in shower development.

Figure 1 shows the longitudinal development profiles for the particle density at seven different
distances from the shower axis. The curves are analytic: the total shower size as a function of depth is
taken to be a Gaisser—Hillas development curve and the lateral distribution at each depth (hence shower
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age) is given by the NKG function [7, 8]:

N(s)
p(r) = R,
where N (s) is the number of charged particles at age s and B(x,y) = I'(x)['(y)/T'(z+y) is the standard
‘beta function’. The different curves correspond to different fixed distances from the axis measured in
Moliere units, using the single conversion to metres that pertains at the Auger ground level. Each density
longitudinal profile has a dot indicating its maximum. You can see that the depth of maximum increases
with Moliere distance from the core. Although the total shower size reaches maximum at 800 g/cm?
in this example, the density s1ggg (measured at the Moliere radius that corresponds to one kilometre at
ground level) reaches maximum at more than 1000 g/cm?. A detector at vertical depth 850 g/cm? (Auger)
or 920 g/cm? (AGASA) is therefore well positioned to be near the 51999 maximum for zenith angles at
least up to 45 degrees. The horizontal dashed lines in the figure mark the maximum of the s1gpg curve
and the value that is 30% less. You can also see that the density stays within 30% of its maximum
from 850 g/cm? to 1300 g/cm?. Fluctuations in shower development (and even the systematic difference
between protons and iron) shift the maximum by only about 100 g/cm? or less.

P (L)t ) [2mB(s 45 — 2s)]

Knowing the slant depth of a shower’s measurement, the expected longitudinal development pro-
file of s100p allows one to correct the measured s1ggp to what it likely was at maximum. For large zenith
angles, these correction factors become dangerously large for scintillator arrays. For water Cherenkov
detectors, the longitudinal profiles fall much slower with slant depth than the (electromagnetic) NKG
behaviour plotted in Fig. 1. For water Cherenkov arrays, therefore, relatively small corrections to s 100
are needed even at large zenith angles to give the ground parameter (siggg at its maximum), which is
proportional to energy.

None of the triggered ground stations is likely to be exactly 1000 metres from the axis. Interpola-
tion using numerous stations closer to and farther from the axis gives the estimate for the signal density
at 1000 m. Rather than using linear interpolation, one fits an empirical average lateral distribution func-
tional form and takes as s1ggg the value of that fitted function at 1000 metres from the axis.

A statistical correlation of s1g99p with shower energy measured calorimetrically by the FD yields
the conversion factor from siggg to energy without relying on shower simulations that use untested
hadronic interaction models. A large hybrid data set will determine the conversion factor’s dependence
on zenith angle.

5 Composition analysis

The indirect measurement of a cosmic ray by its air shower makes it impossible to measure the mass of
the primary particle exactly. Shower-to-shower fluctuations in longitudinal development can make an air
shower produced by a particle of one mass indistinguishable from an air shower initiated by a particle
of a different mass. As described in Section 2, however, each mass value leads to its own expected
value for the shower depth of maximum and number of muons (at each energy). These quantities are
both intimately related to the speed of shower development, but fluctuations in X, are not highly
correlated with fluctuations in NV,,. For example, a fluctuation in depth of first interaction relates directly
to a shower’s Xpax, but it has little impact on the shower’s N,. Direct or indirect measurements of
Xmax and/or N, provide important information about the primary mass distribution, even though it is not
feasible to determine the masses of individual primary cosmic rays.

The ‘superposition model’ is a useful approximation that is remarkably accurate (although not
exactly correct). Its premise is that an air shower by a nucleus (E,A) behaves like the superposition of A
proton showers, each with energy E/A. (Note that this is not the same as supposing that it breaks into A
nucleons at its first interaction.) The expected difference between proton and iron air showers of a given
energy can be evaluated simply using this superposition model. Their difference in X ,,x and number of
muons N, will be considered here.
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Denoting the expected value of X.x by Xnax, the difference between proton and iron at fixed
energy F is given by
xP

max

(B) — Xmn(B) = Xy,

max

(E) — XP (E/56) = ER x Log(56) .

Here E'R is the proton elongation rate (change in X per decade change in energy). Taking ER ~
57 g/cm?/decade implies that proton air showers are expected to reach maximum development approxi-
mately 100 g/cm? deeper in the atmosphere than iron showers of the same total energy.

To evaluate the difference in muon content N, one assumes a power-law dependence of N, on
energy for proton showers: N, (E) = aFEP. For this argument, this power-law dependence only needs to
be a good approximation over an energy range E /56 to E for the energy of interest. With this assumption,
then,

vF _ranP _ B — 5l-BoEB — 5g1-BNP
N,5(E) = 56N, (E/56) = 56a(E/56)” =56"""ak” =56 "N, (E) .

Therefore,
o F P _ rpl-p
Nue(E)/NM(E) = 56 .

At energies near 109 eV, 3 ~ 0.93, so this ratio is approximately 1.3. Iron showers are expected to have
30% more muons than proton showers of the same total energy.

A surface detector measures shower parameters that are sensitive to Xpx. These include the
lateral steepness and the shower front curvature. A shower whose maximum is farther above the surface
has a flatter lateral distribution and less curvature in its shower front. The shape of the detector signal
pulses can be sensitive to the relative contribution from muons. Muons suffer less Coulomb scattering
and arrive more promptly than electromagnetic particles. A shower by a heavy nucleus (like iron) is
expected to produce signal pulses that rise and fall rapidly relative to pulses in showers produced by light
nuclei (like protons). Cronin [9] has therefore advocated studying composition by the distribution of the
‘shape parameter’ of signal pulses in water Cherenkov detectors at a distance of 1000 metres from the
core. The suggested parameter is the ratio of signal accumulated in the first 600 ns to signal collected
after the first 600 ns. Heavy primaries are indicated by large values of the shape parameter and light
primaries by small values.

Fluorescence detectors can measure X, directly. Analyses of the mean X« as a function of
energy in Fly’s Eye [10] and HiRes [11, 12] data have suggested that the composition gets significantly
lighter with energy near or before the spectrum’s ankle.

A hybrid data set has special value in studying the cosmic ray chemical composition. The FD mea-
sures the electromagnetic shower energy and the depth of maximum X ,,x. Water Cherenkov detectors
are sensitive to the muon composition. At any fixed electromagnetic energy, heavy and light components
can be separated when s1gqg is plotted versus X,x, as shown in Fig. 2 [13].

Combining also a scintillator array with a water Cherenkov array and fluorescence detectors should
allow an even more powerful probe of the primary mass distribution. The scintillator array is sensitive
to the surface electromagnetic particle density, allowing that to be subtracted from the water Cherenkov
signal to measure the contribution due to muons.

Determining the primary mass distribution is challenging because of the indirect method of mea-
suring cosmic rays by their air showers. There are many measurable parameters that correlate with the
primary mass, however. These include the depth of shower maximum X ., the shower front curvature,
the signal rise times, and the steepness of the lateral distribution. Multi-parameter analyses may provide
the best sensitivity. Neural networks are a special kind of multiparameter analysis. A neural net can
provide a mass likelihood distribution for each measured shower, based on its multiparameter training
with simulated showers.
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Fig. 2: Proton showers (o) are separated from iron showers () in this scatter plot of s1g99 VS. Xmax. These are
simulated showers of 1019 eV at zenith angles of 0, 37, 53, and 66 degrees, using CORSIKA and QGSJET.

6 Identifying photon primaries

Extremely high energy gamma-ray primary particles produce electromagnetic air showers that differ sig-
nificantly from those produced by primary nuclei. Some muons occur by virtue of pion photoproduction,
but the number of muons is an order of magnitude less than in showers initiated by primary hadrons.
Moreover, the depth of maximum is expected to be greater for a gamma-ray primary than for a primary
hadron. Recall that the ‘elongation rate’ for electromagnetic showers is 85 g/cm?/decade, whereas it is
only about 57 g/cm?/decade for protons. (High-multiplicity hadronic interactions serve to divide the pri-
mary energy faster than the electromagnetic pair-production and bremsstrahlung processes.) Although
proton showers develop similarly to gamma-ray showers at much lower energies, the proton showers
develop significantly faster near 10'” eV and above.

The techniques for studying chemical composition using direct or indirect measures of X pax Or
muon content are able to detect the existence or not of a component of gamma rays in the extremely
high energy cosmic rays. The Cronin shape parameter, shower front curvature, lateral steepness, and
direct measurement of X ,x should all be able to identify gamma-ray primaries if they are present in
the cosmic ray flux. Some models for cosmic ray production (especially the ‘top-down’ models in
which the cosmic rays result from the decays of supermassive particles) predict a dominant (or at least
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sponds to optical depth of 1 for neutrinos coming 10'7 eV. Above 10'® eV, the neutrinos must only skim
through the Earth as a function of neutrino energy. The the Earth at an upward angle less than 2 degrees from
Earth is nearly opaque above 10'7 eV. horizontal.

significant) component of primary gamma rays at extremely high energy. The absence of a clear gamma-
ray component would rule out many such scenarios.

Above 10 eV, two other effects introduce a different signature of a gamma-ray component. One
effect is the Landau—Pomeranchuk—Migdal (LPM) effect [14], which decreases the electromagnetic cross
sections and consequently lengthens the electromagnetic shower development. The other effect is mag-
netic pair production in the Earth’s magnetosphere [15]. A superhigh-energy gamma ray crossing mag-
netic field lines can produce an e pair. Those will synchrotron-radiate in the magnetic field, producing
additional high-energy gamma rays. A different kind of electromagnetic cascade develops in the magne-
tosphere, but the effect is similar to adding some radiation lengths above the atmosphere. The important
thing is that this occurs only if the primary gamma ray arrives transverse to the geomagnetic field. If
it arrives approximately parallel to field lines, then there is no ‘pre-showering’. Gamma rays arriving
transverse to field lines cascade to lower energy particles above the atmosphere and are little affected by
the LPM effect. Their atmospheric longitudinal developments are shortened by their head-start in the
magnetosphere. In contrast, those same gamma rays arriving parallel to the magnetic field lines would
get the full LPM effect and have stretched-out shower developments. Looking at shower development
speed as a function of arrival direction relative to the local magnetic field direction is a way to look for
evidence (or not) of gamma rays at the highest energies.

7 Neutrino detection

A giant cosmic-ray observatory like Auger makes an effective neutrino observatory at EeV energies.
The detection is especially efficient for tau neutrinos, so it is fortunate that neutrino mixing makes tau
neutrinos approximately as abundant as the other flavours for astrophysical high-energy neutrinos. An
EeV tauon lives long enough to travel 50 km, on average. A tauon produced in the ground with a
trajectory of small elevation angle will decay into showering particles above the surface array, and the air
shower will be sampled by the particle detectors. The signature of a young (small age) electromagnetic
shower is clearly distinguishable from a (very old) near-horizontal shower produced by a normal cosmic
ray. The shower front curvature is much smaller, and the individual detector flash-analog-to-digital
converter (FADC) traces are much broader.
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Fig. 5: The exposure versus celestial declination. This is for an observatory array with acceptance out to 60 degrees
in zenith angle. The southern site is assumed to be at latitude —35 degrees and the northern site at +39 degrees.

The Earth is opaque to neutrinos at EeV energies and above, as shown in Figs. 3 and 4. This means
that detectable neutrinos must come from near-horizontal ‘Earth-skimming’ directions, so that the total
grammage of their trajectory in the Earth is not too large. This does not reduce the Auger aperture (as
it does for detectors like IceCube) because Auger can only detect and distinguish air showers resulting
from neutrino interactions if they are nearly horizontal. Auger should be able to detect some neutrinos
arising from the GZK pion photoproduction process [16]. The magnitude of this neutrino flux at EeV
energies is an important handle on the production and propagation of the highest energy cosmic rays.

8 Anisotropy analysis

The search for the sources of high-energy cosmic rays requires measuring more than their energy spec-
trum and composition. Those do not adequately constrain the possible theories. Whatever spectrum and
composition might be measured, theorists would find multiple models for the origin of cosmic rays that
are compatible with those results. An anisotropy fingerprint is needed to identify the sources definitively.
This is true whether the sources are resolved as discrete spots on the sky or whether their signature is a
large-scale pattern.
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The Auger Observatory was designed to detect cosmic rays with almost uniform sensitivity over
the entire celestial sphere. Because the Earth is opaque to cosmic rays (and rotates only about one axis),
full-sky exposure requires detectors in both the northern and southern hemispheres. Figure 5 shows that
the southern site by itself is blind to 1/4 of the sky, and there is a steep gradient over half of the remainder.
Similarly, the northern site is blind to the 1/4 of the sky that the southern site sees well, and its gradient
is opposite that of the southern site in the 1/2 of the sky where they overlap. Their combination produces
nearly uniform sensitivity to the entire sky.

It is interesting to note that the blind spot of the southern site includes the richest concentration of
matter in the nearby universe (out to 21 Mpc) [17]. It is therefore dangerous to suppose that the cosmic
rays observed at the southern site are a fair representation of the full sky. The energy spectrum, the
composition, and the clustering of arrival directions could all be different in the north and south. It is
essential to make high-statistics measurements with identical detector types in both hemispheres.

Multipole moments are the natural way to characterize celestial anisotropy, provided full-sky cov-
erage is available [18]. Each moment is the coefficient a;,,, of a spherical harmonic function Y7,,,(6, ¢) in
a series expansion of the celestial function. The lowest order harmonics (small /-values) govern the large-
scale structure (dipole, quadrupole, octupole moments). The moments with large /-values determine the
fine structure. Expansions out to [ ~ 30 are ample for cosmic-ray measurements with angular resolution
on the order of a degree. Magnetic dispersion may make it pointless to go beyond about [ = 10. (At
the highest energies where the magnetic dispersion is small, there will be too few arrival directions to
determine many multipole moments.)

An example of an anisotropy fingerprint up to ! = 10 is shown in Fig. 6. This heuristic example
is based on an artificial assumption that the cosmic-ray sources are nearby infrared sources given in
the point source catalogue PSCz [19]. The number of arrival directions from each source is taken in
proportion to its apparent infrared luminosity. The magnetic dispersion is done using the source distance
and a simple model of uniform nanogauss magnetic fields with coherence length of 1 Mpc. A total
of 36 000 simulated arrival directions were used. They produced the multipole moments that are the
fingerprint in Fig. 6. A simulation of an isotropic flux is also plotted in the figure for comparison. The
anisotropy is manifest, and the fingerprint characterizes it. The fingerprint defines a function on the
celestial sphere. Sampling arrival directions with that weighting function produces a scatter plot that is
fully consistent with the original.

A rich celestial pattern like this is not possible for a realistic cosmic-ray observatory. Above the
GZK energy threshold, it is possible to expect charged-particle astronomy. Particles are not deflected
much by magnetic fields, and the sources cannot be far away. The nearby sources should be identifiable
by the cosmic-ray arrival directions. Unfortunately, however, practical observatories cannot hope to
achieve the exposure needed to get thousands of super-GZK arrival directions.

The 36 000 directions of Fig. 6 would be appropriate for a 5-year combined exposure of Auger
South and Auger North at energies above 10'” eV, well below the GZK threshold. In that case, the
majority of arrival directions will be cosmic rays that were produced billions of years ago, and which
have been fully isotropized. The anisotropic foreground sources account for only about 1/60th of all
arrival directions in that case. It is therefore relevant to ask if the fingerprint of Fig. 6 could be detected
when it is diluted 59-to-1 by an isotropic distribution. As shown in Fig. 7, the answer is Yes. Any
distribution of 36 000 arrival directions can be tested against the fingerprint of Fig. 6. The method is to
compute its multipole moments (a},,) and then sum the products:

S = Y (aymay,,) -

(This is like integrating the product of the two celestial functions. If they are similar, then the integral
picks up systematically positive values rather than summing positive and negative values equally.) As
shown in Fig. 7, simulations with 1/60th of the arrival directions being sampled from the distribution of
Fig. 6 (and 59/60 isotropically) give a product sum that is distinctly non-zero. Simulations of complete
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Fig. 6: An example of an anisotropy fingerprint. The 121 a;,, coefficients for [ < 10 are plotted for a specific
simple model of cosmic rays coming from nearby infrared sources. These are plotted with + signs. Also shown
with e marks are results for an isotropic simulation with the same number of arrival directions (36 000). The set of
a;m values in the anisotropic case constitute a fingerprint of the anisotropy.

isotropy do not have a systematic offset from zero. The two distributions are almost disjoint, indicating
that the foreground sources in this artificial model can be identified by their known fingerprint even in
the presence of the dominant isotropic background.

Multipoles are not defined for a function on just part of a sphere. Without full-sky coverage, a
cosmic-ray observatory cannot determine any of the a;,, coefficients. The powerful fingerprinting via
multipole moments requires a full-sky observatory.

9 Summary

Properties of high-energy cosmic rays are inferred from measurements of their air showers. The cosmic-
ray arrival direction, energy, and mass are determined indirectly. Combining different air-shower mea-
surement techniques is important since each technique by itself is susceptible to systematic error as well
as shower-by-shower uncertainties that result from shower development fluctuations and also fluctuations
in the detector samplings.
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Fig. 7: Distinguishing the diluted anisotropy pattern. The left histogram (centred on zero) is derived from isotropic
simulations, whereas, for the right histogram, each simulation has 1/60th of the arrival directions sampled from the
PSCz anisotropy pattern used in Fig. 6. In each case, the variable represented in the histogram is the sum (over [
and m) of the products of a;,, from the simulation times the a;,, of the PSCz anisotropy represented in Fig. 6.

The Auger Observatory, for example, combines a surface array of water Cherenkov detectors
with telescopes that record air fluorescence produced by the secondary shower particles as they descend
through the atmosphere. The hybrid air-shower measurements are crucial. They provide precision angu-
lar reconstructions for detector resolution studies and point source searches. They provide precision core
locations for the study of SD-only geometric reconstructions. They determine the relationship of s1gg0
to electromagnetic energy at different zenith angles and energies. They provide X .x and the electro-
magnetic energy together with shower front curvature, lateral distribution steepness, and SD rise times
for use in composition studies.

The surface detector operates on its own 90% of the time. It provides the high statistics needed for
the high-energy end of the spectrum. It will measure the minuscule super-GZK flux. It has good sensi-
tivity to EeV neutrinos. Its exposure is nearly uniform in right ascension due to the Earth’s rotation. The
declination dependence is easily calculated from the zenith angle acceptance. So the celestial exposure
has a simple form which is easily calculated. Together with the high SD statistics, this results in sensitive
anisotropy measurements.
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Anisotropy analyses using data from only the southern site will be handicapped by a steep expo-
sure gradient over half of the sky and a total blind spot in the quarter of the sky that is richest in nearby
matter concentrations. The combination of Auger South with Auger North is needed for truly sensi-
tive full-sky anisotropy analyses. A multipole moment ‘fingerprint’ could then characterize the celestial
anisotropy in a small table of numbers.
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The Pierre Auger Observatory — why and how

A.A. Watson
School of Physics and Astronomy, University of Leeds, UK

1 Some historical background

Cosmic rays were discovered by an intrepid Austrian balloonist, Victor Hess, in 1912. In a remarkable
series of balloon flights, one of which took him above 5000 m, he showed that the rate of formation of
ions in a closed chamber increased with altitude. He concluded that the Earth was being bombarded by
radiation from outer space which was given the name ‘cosmic radiation (or cosmic rays)’ by R.A. Mil-
likan in 1926. He thought that v rays, then the most penetrating radiation known, caused the enhanced
ion production observed by Hess.

We now know that only about 10~ of the incoming radiation is in the form of ~ rays. Most of
the radiations are atomic nuclei with about 1% primary electrons. The energy range extends from about
1 GeV (where the solar magnetic field can deflect the particles) to at least 102° eV. Because the particles
are charged, and interstellar and intergalactic space are threaded with magnetic fields, it has not been pos-
sible to trace the particles back to their point of production. Above about 104 eV the flux of cosmic rays
is so low that it is barely practical to detect them directly using instruments carried on balloons or space-
craft and instead one must rely on the extensive air showers (EAS) that the particles create when they hit
the Earth’s atmosphere. Above 10'4 eV, where the maximum number of ~ 10° particles is reached at ~
6 km above sea-level, some particles survive so that remnants of the primary are detectable. Because of
scattering, electrons and photons can be found at large distances from the axis of such showers although
about 50% lie within the Moliere radius which is about 70 m at sea-level. The discovery of extensive
air showers is usually credited to Pierre Auger [1] who, in 1938, observed an unexpectedly high rate of
coincidences between counters separated by a few metres. Further investigations by his team showed that
even when the counters were as far as 300 m apart, the rate of coincidence was significantly in excess
of the chance expectation. Speculating that the primaries were photons, and using the newly developed
ideas of quantum electrodynamics, Auger demonstrated that the incoming entities had energies as high
as 10%° eV. Earlier Rossi [2] had reported experimental evidence for extensive groups of particles (“sci-
ami molto estesi di corpscoli”’) which produced coincidences between counters rather distant from each
other. Kolhorster and colleagues [3] made very similar observations to those of Auger and his group with
counter separations out to 75 m. It was Auger, however, who was in a position to follow up the discovery
of this new phenomenon and through his inferences about the primaries extend the range of energies then
known by nearly 6 orders of magnitude. Cosmic rays remain the most extreme example of the departure
of matter from thermal equilibrium.

One of the early motivations for studying cosmic rays using extensive air showers was the expec-
tation that anisotropies would be discovered as the technique allowed the exploration of an energy regime
where deflections by a galactic magnetic field might be small enough to permit the observation of point
sources. This led to the construction of larger and larger shower arrays where ‘large’ eventually meant
an area of a few square kilometres. Such detectors were developed at Volcano Ranch, USA (8 km?,
with scintillators), Haverah Park, UK (12 km?, with water-Cherenkov detectors), SUGAR, Australia (~
100 km?2, with buried scintillators) and Yakutsk, Siberia (25 km?2, with scintillators, muon detectors, and
air-Cherenkov detectors). In 1963 Linsley reported the detection of an event of 10%° eV (or 100 EeV)
with the Volcano Ranch array [4]. The significance of this energy was not immediately appreciated but
soon after the discovery of the 2.7 K cosmic microwave radiation in 1966, Greisen and Zatsepin and
Kuz’min [5] pointed out that if the highest energy particles were protons and if their sources were uni-
formly distributed throughout the Universe, then there would be interactions between the cosmic rays
and the microwave background that would modulate the spectrum of the highest energy particles.
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A particularly important reaction is the following:
p+y27k — AT(1232) - p+ 7’ or n+at. (1)

In the rest frame of the proton (the cosmic ray), the microwave background photon will look like a very-
high-energy y ray. When the Lorentz factor I" of the proton is ~10'!, the A resonance will be excited.
In each reaction (1) the proton loses about 15% of its energy. Over cosmological distances, sufficient
reactions take place for the observed spectrum to become significantly depleted of ultra-high-energy
cosmic rays (UHECRs) compared with what might have been present at the time of acceleration. It
follows that if protons of ~10?° eV are observed, they must have originated from nearby. For example, a
cosmic ray of 50 EeV has a 50% chance of having come from beyond 100 Mpc. This opens the prospect
of seeing point sources of cosmic rays at the very highest energies as the intergalactic magnetic fields are
not expected to bend the trajectories of the particles by too large an amount.

If high-energy particles can escape from the acceleration region as nuclei, then the CMB radiation,
supplemented by the diffuse infrared radiation field, are important factors. The key resonance is now the
giant dipole resonance (typical energy ~ 10 MeV), and the mixture of species that arrives at the Earth can
be very complex depending upon the paths travelled through the radiation fields. Both protons and nuclei
also lose energy by pair production, the threshold here corresponding to I' ~ 10%. The energy losses are
small but nearly continuous and may be important if protons of energies 1-10 EeV are of extragalactic
origin. The reactions of Eq. (1) are also important in the context of v and v astronomy while the neutrons
from photodisintegration are also a source of neutrinos.

2 Detectors and measurements from the pre-Auger era

In Fig. 1 a representation of the cosmic-ray energy spectrum due to Gaisser [6] is displayed. Nearly all
of the data shown above 104 eV are from air-shower measurements. It is relevant in the context of the
CERN-CLAF School to point out the position of the Tevatron and the LHC on the energy axis. The
arrows indicate the energies that a cosmic ray hitting a stationary nucleon must have for the centre-of-
mass energy to be the same as achieved in a Tevatron or LHC collision.

Thus it is evident that knowledge of the particle physics interactions, even from the LHC, will
not cover the energy range of relevance to cosmic rays of the highest energy. Furthermore, the region
of rapidity space that will be observed at the LHC (Fig. 2) excludes the diffractive region that is of
great importance in the development of an air shower. In a shower, the energy carried by the leading
particle from each collision, which may be ~ 0.5 of the incoming energy, is crucial for the development
of the shower, just as the multiplicity of the charged meson component radiating from the collision is
crucial to the development of the muon signal. Neutral pions play a key role in the development of the
electromagnetic cascade.

It follows that significant extrapolation is required to infer what has initiated an air shower from
what is observed at ground-level. Ideally, knowledge of the mass and of the hadronic physics is required
at the energies of interest, where the hadronic physics must cover details of pion—nucleus collisions and
nucleus—nucleus collisions at extreme energies.

In the 1970s an alternative technique to that of deploying particle detectors over greater and greater
areas emerged. This relies on the excitation of atmospheric nitrogen by the electrons of the shower as it
traverses the atmosphere. The nitrogen emits fluorescence radiation isotropically, predominantly in the
300—400 nm band, and this can be observed at distances of ~ 20 km with arrays of photomultipliers
on dark, clear nights. The technique was pioneered by a group from the University of Utah. With their
original Fly’s Eye detector they recorded an event of 300 EeV, still the highest cosmic-ray energy ever
claimed. This event is shown in Fig. 3(a) together with a schematic of a photomultiplier array [Fig. 3(b)]
in which each tube is orientated in a different direction. The magnitudes of the signals in the tubes are
used to estimate the number of particles along the track of the shower while the positions of the tubes
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Fig. 1: Data summary made by Gaisser [6]. Below about 10!4eV it is possible to make observations
directly in spacecraft or, after correcting for the atmospheric overburden, from balloons. Above this
energy the data are deduced almost exclusively from studies of extensive air showers. The spectrum is
rather featureless: the marked bend at around 1 GeV is caused by the solar magnetic field; there is a
small steepening in the spectrum at about 3 x 10'® eV (known as the knee) and around 3 x 10'® eV
the spectrum flattens again at the ‘ankle’. What the details are above 10'° eV (or 10 EeV) remains to be
resolved.
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define a plane in which the axis of the shower lies (the shower detector plane). The primary energy
is then derived by integrating under the longitudinal development curve (the track length integral) and
multiplying the result by the appropriate (-dE/dx). This gives a calorimetric estimate of the total energy
deposited in the atmosphere.
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Fig. 3: (a) The longitudinal development of a shower created by a primary cosmic ray of 300 EeV as
recorded by the Fly’s Eye detector [8]; (b) A schematic diagram illustrating a shower crossing the array
of photomultiplier tubes in the Fly’s Eye detector.

To find the energy of the primary particle, this estimate of the ionization energy loss must be
augmented by about 7-10% to allow for energy carried by high-energy muons and neutrinos into the
ground. This correction is slightly dependent on the mass and hadronic interaction model assumed but
has a much smaller systematic uncertainty than has the conversion to primary energy from observations
with a surface detector alone.

Neither the early large surface detector arrays at Volcano Ranch, Haverah Park, SUGAR or Yakutsk,
nor the Fly’s Eye detector proved big enough to establish the shape of the cosmic-ray spectrum above
10 EeV. Accordingly, second-generation detectors were constructed by the Fly’s Eye group (the HiRes
instrument) and by a Japanese team who built a detector of 100 km?. This array, known as AGASA,
comprised 111 scintillation detectors each of 2.2 m? spaced on a grid of about 1 km spacing. The scin-
tillators were 5 cm thick and so respond mainly to electrons and muons. The detectors were connected
and controlled through a sophisticated optical fibre network. The largest events detected have energies
of 2 and 3 x10?° eV and one of these is shown in Fig. 4 [9]. The AGASA array was closed down in
January 2004.

Since mid-1998 the HiRes [10] instrument has been taking data at a site in the Dugway desert,
near Salt Lake City. This instrument is a stereo system which is used to measure the depth of shower
maximum to within 30 g cm~2 on an event-by-event basis. This precision was designed to be usefully
smaller than the expected difference in the mean depth of maxima for proton or Fe initiated showers. The
two locations for the detectors are separated by 12.5 km. The increase in aperture and in X,x resolution
over Fly’s Eye comes from the reduction in the aperture of each photomultiplier from 5 x 5to 1 x 1 and
the increase in the diameter of the mirrors from 1.5 to 2 m. Each mirror is viewed by 256 close-packed
photomultipliers: there are 42 mirrors at one site and 22 at the other. The HiRes instrument will cease
operation in March 2006.

The energy spectra reported by AGASA [11] (essentially the final version) and by the HiRes
group [12] are compared in Fig. 5. It is clear that while the general shape is the same between about 3
and 70 EeV, there are significant differences in intensity at the lower and upper ends of the energy range.
In particular, the difference in the number of events claimed above 100 EeV is marked with 11 reported
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Fig. 4: Map of the detectors struck by the largest event recorded at AGASA. The radius of each circle
represent the logarithm of the density recorded at that location. The cross shows the estimated position
of the shower core.

Fig. 5: A comparison of the energy spectra reported by the AGASA and HiRes groups
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by AGASA compared with only 2 by HiRes in an exposure that is about three times as great. The reason
for these differences is not understood but it is clear that the statistical sample is simply too small.

This problem of low statistics was recognized in the 1980s, even before the AGASA and HiRes
detectors had completed construction, and led to the idea that 1000 km? of instrumented area was needed
if progress was to be made [13]. Jim Cronin argued that 1000 km? was insufficiently ambitious and in
the summer of 1991 he and Alan Watson decided to try to form a collaboration to build a detector of
5000 km?, initially without any fluorescence devices. An international workshop [14], organized in Paris
by Murat Boratav in 1992, led to a number of focused studies that culminated in a 6-month Design Study
during 1995 hosted at the Fermi National Accelerator Laboratory by the then Director, John Peoples.

3 The design of the Auger detector and formation of the collaboration

The philosophy that guided the early phases of the Auger Design Study was to ‘let a thousand flow-
ers bloom’. While there was little choice in the form of fluorescence detector that could be used, the
possibility of resistive plate counters, scintillators, radio detectors and water-Cherenkov detectors as the
devices for the surface array were all discussed and evaluated intensively during the first three months
of the workshop. Eventually the choice of water-Cherenkov detectors was made with the intention of
having the surface detector (SD) array overlooked by a set of fluorescence detectors (Fig. 6). The water
tanks have a significant advantage over scintillators in that their depth (1.2 m of water in the Auger and
Haverah Park designs) means that the SD responds to showers coming from a very wide range of zenith
angles with relatively high efficiency. Not only does this increase the aperture in a very useful way, but
it also opens the possibility of the detection of very high energy neutrinos.

The beauty and power of the Auger Observatory lies in its hybrid nature. The potential of the
combination of a SD array and a set of fluorescence detectors (FDs) is still being discovered as it clearly
extends the ideas of 1995, but the initial concept of being able to calibrate the ‘shower size’ recorded with
the SD using the 10% or so of events that fall during clear moonless nights has already proved its worth.
In addition, the improved geometrical reconstruction available if there is a signal in even one of the 10 m?
water tanks is very powerful and extends the energy reach of the array to well below 1 EeV. During the
Design Study, many aspects of the design and of the projected physics output were explored using an
extensive set of Monte Carlo calculations. Detailed simulations of the performance of the ground array
for energy and direction measurement were made. At 40 EeV the energy resolution, with the ground
array of particle detectors alone, was predicted to be ~10% and the angular resolution ~1.5: on average
about 11 detectors were predicted to be struck. The energy resolution and angular accuracy improve as
the energy increases. All of these numbers have now been confirmed with real data.

At the design stage the area to be covered at a single site was reduced to 3000 km? while it was
recognized that with the water-Cherenkov detectors it was possible to envisage all-sky coverage with
only two such detectors.

It is one thing to make a design and quite another to find places that might host such large devices.
Site surveys were carried out contemporaneously with the Design Study, by Ken Gibbs and Antoine
Letessier-Selvon who visited many countries around the world, in both hemispheres. Their brief was
to locate places between 1000 and 200 m above sea-level, at a latitude between 30° and 45° north and
south of the equator, of 3500 km? area and relatively flat with low cloud cover, good visibility, and few
local light sources. In addition, access to radio licences, and suitable infrastructure support from national
scientists were deemed essential. Argentina was able to offer several potential sites and in November
1995 the decision was made to go there rather than to possible sites in South Africa and Australia. About
a year later Millard County in Utah, USA was chosen for the northern site, though the northern location
was changed to South Eastern Colorado in 2005.

From the earliest days, a major problem with developing the project was lack of money. Here
the influence of Jim Cronin was of immense importance as he was able to get access to people (and
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Fig. 6: The conceptual design of the Pierre Auger Observatory. A fluorescence detector overlooks
an array of water-Cherenkov detectors. This instructive diagram is due to Enrique Zas (Santiago de

Compostela).

extract money from them) when for most of us it would have been difficult to knock on the right door!
In particular, money was obtained from the Director-General of UNESCO (although the USA was not a
member) and from private individuals whom Jim Cronin knew. The UNESCO money allowed scientists
from countries such as Russia, China, and Vietnam to be involved in the design phase. Money for
research and development was found from local sources within the laboratories that showed an early
interest in the project. For example, at the University of Leeds, lead that had been used for muon
shielding and the aluminium lids of the Haverah Park water tanks were sold to help the development
of the GPS method that is used to make the relative timing measurements at the detectors [15].
A further problem was the need to fight to have the project recognized as one worthy of attention.
Now astroparticle physics is almost an established discipline but this was not so a decade ago and many
talks had to be given to raise the awareness of top-class scientists who might be persuaded to join the
project and others who might be part of the financial decision-making process. The capital cost was
estimated as $100 M for the twosites and forming from scratch the critical mass of competent people that
could command this sort of support for a cosmic-ray project was not easy. A particular vulnerability, as
with high-energy neutrino astronomy and, to a lesser extent, ground-based gamma-ray astronomy, is that

197



A.A. WATSON

there are no hard theoretical numbers demanding the construction of an instrument of a certain size. This
is quite different from the situation with the search for the W and Z, or for the Higgs particle.

Additionally there was the issue of how the project was to be assessed. In particle physics or
astrophysics one has become accustomed to umbrella organizations such as CERN, FNAL, ESO and
ESA that have developed well-trusted mechanisms over the years for evaluating proposals—no matter
how crazy they may seem. We had no such umbrella, so Jim Cronin had the idea of forming our own
evaluation panel of scientists of the highest reputation. It was chaired by Professor Ian Axford (a well-
known cosmic-ray physicist and then the Director of the Max Planck Institute at Lindau) and included J.
Steinberger and M. Koshiba in the committee of six. An extremely favourable report was delivered that
was useful in dealing with some agencies, although one agency remarked “of course it was favourable:
you chose the panel”!

A major hurdle to overcome was funding from the US. Although no country supplies a majority
of the funding, several agencies saw the outcome of debates within the SAGENAP Committee of NSF
and DoE as being important input to their own decision making. In the end, in the spring of 1998, the
SAGENAP Committee awarded the US groups funding but for only one site and stated that construction
should be carried out first in Argentina. By mid-March 1999, a sufficiently strong collaboration from
12 countries (Argentina, Australia, Brazil, Czech Republic, France, Germany, Italy, Mexico, Poland,
Slovenia, United Kingdom and the United States) and with sufficient funding to take the first steps had
been created: a ground-breaking ceremony took place. Spain joined the Collaboration in 2001 and the
Netherlands in 2005. From the beginning, Bolivia and Vietnam were associate members that contribute
no funds but students from these countries have the opportunity of training within member countries,
thus continuing the spirit behind the early UNESCO support.

The Argentinian site chosen is close to the town of Malargiie (Fig. 7), about five hours by road,
south of the city of Mendoza, capital of Mendoza province in western Argentina. The town is well-
equipped with hotels and restaurants and a campus site on the edge of the town was made available. It
houses an assembly building and office block, designed and built for the project.
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Fig. 7: The planned layout of the Pierre Auger Observatory with 1600 water tanks overlooked by four
fluorescence detectors. The water-tank spacing is 1.5 km. As of 31 December 2005 over 1000 surface
detectors were taking data, with three of the four fluorescence detectors fully operational. A laser facility,
near the centre of the array, is discussed in the text.
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4 [Early phases of construction and preliminary results
4.1 Characteristics of the detector

The project has associated with it a Finance Board, set up by, and with membership from, the various
funding agencies. The Board required that the Collaboration should first construct an engineering array
of 40 water tanks and a section of a fluorescence detector. This work was completed in September
2001 and favourably reviewed by an international panel. All of the sub-systems of the Observatory were
demonstrated to have achieved or exceeded their specifications. The first ‘hybrid’ events were recorded
in December 2001 when construction of the full instrument commenced.

Fluorescence detectors and water-Cherenkov detectors had been operated before, though not at
quite such difficult locations. A new challenge, however, was how to monitor and trigger with 1600
water tanks, distributed over 3000 km? (Fig. 7) and each filled with 12 tonnes of water and viewed by
three 9" photomultiplier tubes. It is impractical, for reasons of cost and logistics, to connect such an array
by cables or optical fibres. Instead each detector was conceived as an autonomous device, as had been
done at the SUGAR array [16], but taking advantage of more than 30 years of technological development.
The time of each local tank trigger is determined using the GPS technique [15], power is acquired with
solar panels and cellular phone technology is used to bring the autonomous signals to the office building
where a computer is used to search for trigger signals that are spatially and temporally clustered. When
this happens at the level of three stations (currently about 1000 times per day) all of the data associated
with the trigger cluster is acquired. The fluorescence detectors use a conventional source of power and
their signals are sent to the centre over commercial microwave links. Details of the Engineering Array
have been described [17]: the performance of the production instruments does not differ in significant
detail.

The high level of understanding that is derived from being able to make simultaneous observations
of the fluorescence signals and the tank signals is well-illustrated by results from the detection of the
scattered light from the Central Laser Facility [18]. This facility, located close to the centre of the array,
hosts a 355 nm frequency-tripled YAG laser that generates pulses of up to ~7 mJ. Like the fluorescence
detectors, this device is operated remotely from the office building in Malargiie. The scattered light seen
at a fluorescence detector from such a pulse is comparable to what is expected from a shower initiated
by a primary of 100 EeV. The laser can be pointed in any direction. Some of the light from it is fed into
an adjacent tank via an optical fibre so that correlated timing signals can be registered. In this way it
has been established that the angular resolution of the surface detectors is ~ 1.7° for 3 < E < 10 EeV
and ~ 0.6 for hybrid events. It has been shown [19] that the accuracy of reconstruction of the position
of the laser, using the hybrid technique, is < 60 m. The corresponding figure for the root-mean-square
spread, if a monocular reconstruction, is made is ~ 570 m. As there is always at least one tank response
in coincidence with each detection at a fluorescence station, these data give a preliminary indication of
the geometrical power of the technique. Some results are shown in Fig. 8.

Some idea of the timing accuracy achievable at an individual detector is acquired experimentally
from two tanks placed 11 m apart. The data for the twin pair (Carmen and Miranda) of the Engineering
Array is shown in Fig. 9. The r.m.s. spread of 23 ns includes the measurement at each detector and the
spread in the angles of incidence. After deconvolution, the accuracy is estimated as ~ 12 ns.

The Carmen—Miranda pair is shown in Fig. 10 and in the distant background a fluorescence detec-
tor site, Los Leones, is just visible.

In Fig. 11 the 3.5 m x 3.5 m spherical mirror, filter window, and the camera in one of the bays at
Los Leones can be seen. Each fluorescence site has six bays. The camera accommodates the 30° azimuth
x 28.6° elevation field of view. Each pixel has a field of view of 1.5°.

The data from the surface detectors are displayed on a computer screen at the central office building
very shortly after they occur. In Fig. 12 the display for one event is shown. The left-hand part of the top
left-hand panel shows the sequence of event triggers with the time and the number of stations triggered
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Fig. 8: (a) Comparison of the angular accuracy achieved by fluorescence detector with and without the
benefit of a signal in one water tank; (b) As for Fig. 8(a) but for the distance from the central laser facility.
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Fig. 9: The timing resolution as deduced from a pair of detectors 11 m apart. The r.m.s. spread of 23 ns
includes the measurement at each detector and the spread in the angles of incidence. After deconvolution,
the accuracy is estimated as ~ 12 ns.

indicated. Details of the highlighted event are shown in the other panels, including the trigger time and
signals at each of the stations (e.g., station 203 had a signal of 625 VEM 3916 ns after the trigger of
tank 205). The signal size is measured in units of the signal produced by a ‘vertical muon’ (VEM). In
the event shown fourteen stations have the temporal and spatial characteristics expected and these are
displayed in the lower left-hand panel. In the upper-right-hand panel, the fall-off of the signals with
distance can be seen. The results of a preliminary analysis are in the lower-right-hand panel.

4.2 Some typical events

In Fig. 13 the signal pattern of a very inclined event (zenith angle = 72°) is shown. The struck detectors
are spread out in the azimuthal direction of arrival of the event. The event is about 15 km long and
about 5 km wide. Estimating the primary energy of the particles that initiated events such as this is not
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Fig. 10: The detector pair of the Engineering Array, Carmen and Miranda, used for estimating the timing
accuracy with which signals are recorded at the detectors. Signal size accuracy is also determined from
such pairs, of which there are two on the production array. The Los Leones fluorescence site is visible in
the distance between the detectors.

(a) (b)

Fig. 11: (a) A view of the 3.5 m x 3.5 m spherical mirror (left) and the aperture/filter through which
light is received; (b) One of the 24 cameras used to photograph the fluorescence light. The camera mount
can be seen in Fig. 11(a). There are 440 photomultipliers in each camera.

201



Event Display | Help |

i~ Control

File Configure  Experts only Muliple selectian |

~Display

Lateral distri

Heconstruel]  previous Next | et Update][s | p—
#00617043, 6 stafions, 3C264C4 [=][0z05 (@ ns, 12.3 VEM) = )
#00517100, 9 stations, 3C284C4 0206 {1548 ns, 71.0 VEM) 10
#00817161, 8 stations, 3C284C4 0203 (1799 ns, 624.6 VEM) E s
#00617448, 3 stations, FD 0118 {2584 ns, 16.5 VEM) E '
#00617476, 10 stations, FD 0213 (3837 ns, 14.3 VEM) r
#00817563, 10 stations, FD D VEM)
#00817638, 3 stations, FD 0116 (4432 ns, VEM) 107 ke
#00817662, 11 stations, FD 0110 {5339 ns, 6.7 VEM) E L
#00817728, & stations, FD 0215 (5881 ns, 24.1 VEM) £
#00817730, 8 stations, FD 0114 {8679 ns, 106.5 VEM) [ .
#00817738, 17 stations, 3C264C4 0117 (7579 ns, 13.1 VEM) %ﬁ
#00517739, 11 stations, 3026404 0212 (3436 ns, 5.4 VEM) 10 ¥
#0 0,1 4 0217 (3603 ns, 5.3 VEM) E
#00517343, 8 stations, 3C264C4 {0107 (3930 ns, 5.4 vEM) E

El171 tation detstet | r

1

Aty

@® s = 5
® L B
oOOOOooaa

" s 0 @@ B o oo

P S I

s a8 s o s & s 8 8 s

5 s+ s @ & B 8 ¢ B 8 B 8

fon function fit |

1000 1500 2000 2500 3000 3500

Mon Dec 29 09:23:45 2003
Easting= 470347 + 7m
Northing= 6095443 + Ilm
dr=114.0ns

Theta=34.4 £ 0.3 deg
Phi=140.2 £ 0.3/sin(theta) deg

R=125+0.8 kin

A.A. WATSON

s 4 s 8 8 s s b B8 &

4 4 % & s & B 8 b B 4 B 8 b B

Preliminary Xmax= 1040 + 66 g/em "2

I~ Status

S(1000)= 365.51 + 20.78 VEM

Date of this event: Mon Dec 20 09:23:45 2003 (6PS TSE725038) E=74.81 EeV£6%

100%

Fig. 12: An example of an event with energy above 10 EeV at 34° from the zenith. Fourteen stations
have been struck (see bottom left) and the fall-off of the signal size with distance (the lateral distribution
function) shown in the upper-right-hand corner is consistent with expectation. The shower data in the
bottom-right-hand panel are taken from the real-time analysis facility and are very preliminary.

straightforward as the shower loses the near-circular symmetry of smaller angles because of bending of
the muons (the dominant surviving particles) by the geomagnetic field.

There is great interest in studying inclined events as they may offer a route to the detection of very
high energy neutrinos. This idea, first proposed by Berezinsky and Smirnov [20], was re-examined in the
context of the Auger Observatory by Capelle et al. [21]. The trick is to study the properties of showers
that arise at very large angles (>70°) from the vertical (see Fig. 14). A neutrino can interact anywhere
in the atmosphere with equal probability. However, if one restricts a search to large zenith angles then
it should be possible to identify occasions when the neutrino has interacted deep in the atmosphere.
The mode of identification depends on the detection technique. A neutrino-induced shower arriving at
a large zenith angle has distinctive characteristics that make it possible to envisage detecting it with a
conventional, ground-based, air shower array. Most showers detected at large zenith angles will have
been produced by nucleonic primaries. The vast majority of the particles detected in such events will
be high-energy muons as at >70° the large atmospheric thickness of more than ~ 2500 gcm™? (at the
depth of the Auger Observatory) filters out the electromagnetic radiation that arises from neutral pion
decay. The muons are accompanied by a small fraction of electromagnetic component (around 20%)
that is in time and spatial equilibrium with the muons. This electromagnetic component has its origin in
muon bremsstrahlung, pair production, knock-on electrons, and muon decay. These showers have large
radii of curvature as the source of the muons is far from the shower detector. The particles in the shower
disc arrive tightly bunched in time and the distribution of the signal size is rather flat across the array.
By contrast, a shower produced by a neutrino, if it interacts in the volume of air over the detector, will
have a curved shower front, a steep fall-off of particle signal with distance from the shower core and a
distinctively broad time spread of the particles at the detectors.

The only instrument which is currently large enough to have any prospect of detecting neutrinos,
and with the ability to exploit these characteristics, is the Pierre Auger Observatory.
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Fig. 13: The density pattern in an inclined event at 72° from the vertical. Thirty-three detectors have
been triggered. Those marked with a cross are chance coincidences within the trigger window and are
not part of the event. Estimates of the energy of events such as this is made complicated because of the
deflections of the constituent muons in the geomagnetic field.
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Fig. 14: (a) The FADC signals from a nearly vertical air-shower. It is evident that the signals become
broader as the distance from the shower axis (shown in each panel) increases. The gradient in signal size
is also evident (compare the detail in the top right-hand panel in Fig. 12). (b) The FADC signals in an
inclined shower. By contrast with Fig. 14(a), the time spread is very small and nearly independent of
axial distance. A shower with the characteristics of Fig. 14(a) but at a zenith angle above 70° might well
be produced by a neutrino.

An example of a hybrid event is shown in Fig. 15. Figure 15(a) serves also as an example of the
type of data that comes from a fluorescence detector. The signals are clearly visible above the night sky
background.

Figure 15(b) shows the event display for the surface detectors (compare Fig. 12).

The improvement in the geometrical reconstruction in a hybrid event is shown in Fig. 15(c) (com-
pare Fig. 8 where data from the central laser facility were used).
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(b) The event display for the SD signals in event 673411 for which the FD signals are shown in Fig. 15(a). The dotted lines in
the lower left-hand panel indicate the shower planes derived from the FD signals.

Fig. 15: The hybrid event 673411

4.3 The primary energy spectrum

The Auger Collaboration has reported [22] the first precision measurement of the high-energy cosmic
ray spectrum made from the Southern Hemisphere.

For this analysis attention was restricted to events with zenith angle § < 60°. The strategy was to
reconstruct the arrival direction for each event recorded by the SD and to estimate the magnitude of the
signal at 1 km from the shower axis, S(1000), as a measure of the size of the shower in units defined by the
signal from a muon that traverses the tank vertically. The shower axis S(1000) is chosen as the ground-
parameter as it can be measured to better than 10%. In addition, as shown in the pioneering studies of
Hillas [23], the size of this ground-parameter is ~ 3 times less susceptible to stochastic fluctuations and
variations in primary mass than are measurements made close to the shower axis.
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(d) The longitudinal development curve deduced from the fluorescence data. Estimates of the primary energy can be obtained
from the number of particles at shower maximum and by integrating under the curve.

Fig. 15: The hybrid event 673411 (cont.)

Two cosmic rays of the same energy, but incident at different zenith angles, will yield different
values of S(1000). Thus a necessary step is to find the relation between the ground-parameter measured at
one zenith angle and that measured at another. The approach adopted here is to use the well-established
technique of the constant intensity cut (CIC) method which has been recently reappraised [24]. The
principle of this method is that the high level of isotropy of cosmic rays leads to the proposition that
showers created by primaries of the same mass and energy will be detected at the observation level at
the same rate. Here the rate of events above different S(1000) is found for different zenith angles and
all azimuth angles so that events come from a broad band of sky. This method is used to establish the
relationship between S(1000)3go and S(1000)g, where the subscripts refer to a reference angle, chosen
as 38°, and 6 is the angle of incidence. The average thickness of the atmosphere above the Auger
Observatory is 875.5 gcm ™2,
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Fig. 16: A comparison of the energy estimated from the fluorescence detectors with the signal size
(normalized to 38°) observed at 1000 m from the axis of the shower. The FD energy has been corrected
by ~10% for the missing energy carried into the ground by high-energy muons and neutrinos.

The link between S(1000)3go and the primary energy is established using data from the fluores-
cence detectors rather than through model calculations. On clear, moonless nights, it is possible to
observe fluorescence signals simultaneously with the SD events: this ‘hybrid’ approach, a key charac-
teristic of the Auger Observatory, offers several advantages. For every FD event for which the shower
core falls within the instrumented SD area, at least one tank is struck so that the time at which the tank
was triggered can be used to enhance the reconstruction of the FD geometry. Further, as the FD instru-
ments are used primarily as calibration devices in this application, the selection of events can be made
in a highly selective manner. This was done in Ref. [22], where the FD tracks had to be longer than
350 gecm™2, the contribution of the Cherenkov light to the signals collected less than 10%, and there
were contemporaneous measurements of the aerosol content of the atmosphere, as was possible in the
latter part of the data run. There are significant systematic uncertainties currently present in the Auger
spectrum arising largely from the lack of knowledge of the fluorescence yield of atmospheric nitrogen
and from the low statistics available for the S(1000)3go energy calibration. At 3 EeV the systematic
uncertainty is about 30% growing to 50% at 100 EeV.

When estimating the energy of an event from the fluorescence yield (Fig. 16), a correction must
be made for ‘missing energy’ carried by high-energy muons and neutrinos. A study of this conversion
factor has recently been made for nucleonic primaries with a variety of hadronic interaction models. At
10 EeV the correction for missing energy is ~10% with a systematic uncertainty, due to our lack of
knowledge of the nuclear mass and the hadronic interactions, estimated as ~7% [25]. The corrections
and the associated systematic uncertainties may have to be revised when LHC data are available.
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(a) The differential spectra from Auger, AGASA, HiResl and
Yakutsk are compared on a plot of log J vs. log E. The num-
bers shown in the legend correspond to the events reported
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last bin of each data set in which > 0 events were recorded.

(b) The ratio of the values of each point with respect to a fit
of E~3 to the first point of the Auger spectrum at 3.55 EeV
which contains 1216 events. The purpose of the plot is to
illustrate the differences between the different measurements
in a straightforward manner. Yakutsk data are not included in
this plot as they are so discordant.

Fig. 17: Experimental spectra obtained by different groups

A comparison of the spectra reported by the different groups is made in Fig. 17. The agreement is
poor, even at 10 EeV where there may still be differences of ~ 2 between the fluxes from the different
instruments.

There is clearly scope for much further work on analysis and on understanding hadronic interac-
tions and perhaps some of this will appeal to students of the School.
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Abstract

The first part of this summary contains a description of the passage of parti-
cles through matter. The basic physics processes for charged particles, pho-
tons, neutrons and neutrinos are mostly electromagnetic (collision losses de-
scribed by Bethe—Bloch, bremsstrahlung, photo-electric effect, Compton scat-
tering and pair production) for charged particles and photons; additional strong
interactions for hadrons; neutrinos interacting weakly with matter. Concepts
like radiation length, electromagnetic showers, nuclear interaction/absorption
length and showers are covered. Important processes like multiple scattering,
Cherenkov radiation, transition radiation, and dF/dx for particle identifica-
tion are described next. This is followed by a short discussion of momentum
measurement in magnetic fields. The last part of the summary covers particle
detection by means of ionization detectors, scintillation detectors and semi-
conductor detectors. Signal processing is briefly discussed at the end.

1 Introduction

Experimental particle physics is based on many advanced instruments and methods. The main instru-
ments are accelerators, with key parameters such as luminosity, energy and particle type. Next follow
the detectors, whose key parameters are efficiency, speed, granularity and resolution. The online data-
processing and the trigger/DAQ have to operate with high efficiency, large compression factors and
throughput, and be optimized for a number of physics channels. The offline analysis aims to extract
and understand signal and background and ultimately improve our physics models and understanding.
In this chain we should keep in mind that the primary factors for a successful physics measurement are
the accelerator and detector/trigger systems and that losses there are not recoverable. New and improved
detectors are therefore extremely important for our field.

2 Energy loss in matter

We shall first concentrate on electromagnetic forces since a combination of their strength and range make
them the primary cause of energy loss in matter. For neutrons, hadrons generally and neutrinos, strong
and weak interactions also have an effect.

A unified approach to the energy loss of a charged particle in matter due to electromagnetic forces
can be found in Ref. [1] and its references. By considering the electromagnetic interaction between a
charged particle with a certain mass and velocity, and a material with a given refractive index and di-
electric constant, a photon with a certain energy can be created. At photon energies below the excitation
energy of the material, Cherenkov light is created if the velocity of the particle in the material is greater
than the velocity of light in the medium. At slightly higher photon energies, virtual photons are ex-
changed between the incoming particle and the atoms, resulting in excitations and ionizations. Finally,
X-ray photons (transition radiation) can be emitted if there are discontinuities in the material traversed
by the particle. In the following, these three effects are discussed separately.

2.1 Heavy charged particles

Heavy charged particles transfer energy mostly to the atomic electrons causing ionization and excitation.
We shall come back later to light charged particles, in particular electrons and positrons. Usually the
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Bethe—Bloch formula is used to describe the energy loss of heavy charged particles. Most of the features
of the formula can be understood from a very simple model.

1. Consider the energy transfer to a single electron from a heavy charged particle passing at a dis-
tance b.

2. Multiply by the number of electrons passed.
3. Integrate over all reasonable distances b.

The impulse transferred to the electron will be

2
I:/th:e/ELd—xZZZe :
1% bv

The integral is solved by using Gauss’s law over an infinite cylinder centred along the particle track. The
energy transfer is therefore

12
AE(b) =5 —.

The energy transfer to a volume dV', where the electron density is V., can now be calculated:
—dE(b) = AE(b) NodV,; dV =2nbdbdx.
The energy loss per unit length is hence given by
dE  4nz2et .
_dE _Amzen oy D
dx mer? bimin

The distance b, is not zero but can be determined by the maximum energy transferred in a head-on
collision. The distance by, is given by the requirement that the perturbation be short relative to the
period (1/v) of the electron.

We end up with the following:

3

_dE _ 422t N In Vmev
dx mev? € ze2v

which should be compared to the Bethe—Bloch formula below. (Note: dz in Bethe-Bloch includes
density, so the unit is g cm™2.)

dE

(4E, o o Z 1 [1. 2m.c?~*3?
dx

= —47rNA7“§mec z Z@ 3 HTTmax —ﬁQ _ g _
Bethe—Bloch parametrizes over momentum transfers using I (the ionization potential) and T'yax (the
maximum transferred in a single collision). The correction § describes the effect that the electric field
of the particle tends to polarize the atoms along its path, hence protecting electrons far away (this leads
to a reduction/plateau at high energies). The curve has a minimum at 5 = 0.96 (3 = 3.5) and increases
slightly for higher energies; for most practical purposes, one can say that the curve depends only on (3 (in
a given material). Below the minimum ionizing point, the curve follows 5~°/3. At low energies, other
models are useful (as shown in Fig. 1).

The radiative losses seen in Fig. 1 at high energy will be discussed later (in connection with
electrons where they are much more significant at lower energies).

Since particles with different masses have different momentum for the same (3, the dE/dx curves
for protons, pions, kaons, etc. are shifted with respect to each other along the z-axis when dE/dz is
plotted as a function of momentum. This can be used for particle identification at relatively low energies
in tracking chambers (see Section 3.3).
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Fig. 2: Distribution of energy loss in absorbers of varying thickness. From Refs. [2,3].

While Bethe—Bloch describes the average energy deposition, the probability distribution in thin
absorbers is described by a Landau distribution. Other functions are often used: Vavilov for slightly
thicker absorbers, Bischel, etc. [2, 3].

In general, these are skewed distributions (Fig. 2) tending towards a Gaussian when the energy
loss becomes large (in thick absorbers). One can use the ratio between energy loss in the absorber under
study and T1,,x from Bethe-Bloch to characterize the absorber thickness.

2.2 Light charged particles: electrons and positrons

For electrons and positrons the Bethe-Bloch formula has to be modified to take into account that the
incoming particle has the same mass as the atomic electrons. In addition, a significant amount of energy
is carried away by bremsstrahlung photons. The cross-section for this process goes as 1/m? and is
therefore very significant for electrons and positrons even though it also plays a role at higher energy for
muons, as seen in Fig. 1. The differential cross-section for bremsstrahlung (v is the photon frequency)
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Fig. 3: Energy loss of electrons in copper and lead as a function of electron energy. The critical energy Ec¢ is
defined as the point where the ionization loss is equal to the bremsstrahlung loss.

in the electric field of a nucleus with atomic number Z is given approximately by

daocZQd—V.
v

The bremsstrahlung loss is therefore

dE v=Eo/h o
—-(=)=N hv—dv =N Ey®(Z?
<dx) / v 4y = N B 2(22).

where the linear dependence on energy is apparent. The ¢ function depends mostly on the material; for
example, on the square of the atomic number as shown. Here NV is the atom density of the material.
Bremsstrahlung in the field of the atomic electrons must be added (giving Z?2 + Z). The above equation
can be rewritten as

dE
_ <f> = N ®&dx, giving E = Ejexp <

.
1/N® ) -

Radiation length, usually called X, is defined as the thickness of material where an electron will
reduce its energy by a factor 1/e by bremsstrahlung losses. This corresponds to 1/N® in the formula

shown above. Radiation length is often parametrized in terms of well-known material properties. A
formula which is good to 2.5% (except for helium) is

716.4gcm™2 A
Z(Z +1)In(287/VZ)

0=

Multiplying by the density for the various materials we obtain the following: air = 300 m, plastic
scintillators = 40 cm, Si = 9 cm, Pb =0.56 cm, Fe = 1.76 cm.

2.3 Photons

Photons are important for many reasons. They appear in detector systems as primary photons; they are
created in bremsstrahlung and de-excitations; and they are used for medical applications, both imaging
and radiation treatment.

They react in matter by transferring all (or most) of their energy to electrons, which then lose
energy as described above. A beam of photons therefore does not lose energy gradually; it is attenuated
in intensity (only partly true because of Compton scattering). Three processes dominate the photon

212



INSTRUMENTATION FOR HIGH-ENERGY PHYSICS

1kb [

Cross section (barns/atom)

Cross section (barns/atom)

k- N
(a) Carbon (Z = 6) TR ey (b) Lead (Z = 82)
1 MbL 2 o — experimental Gy - % o —experimental Gy
% 1Mb- %,
= | —
%

Seoherent

7 1kb |
Gcoherem ] [
[ B — incoh ,-”
1bi- ] b/
L Ky _|
,’/Gincoh ({‘1}%9:'\‘:_ TR i [ ////
0mb- /| WA ! n 10 mb roo|
10eV 1keV 1 MeV 1 GeV 100 GeV 10eV 1keV 1 MeV 1 GeV 100 GeV
Photon Energy Photon Energy

Fig. 4: Dominant processes in photon energy loss

energy loss: 1) Photoelectric effect (goes roughly as Z°): absorption of a photon by an atom ejecting
an electron. The cross-section shows the typical shell structures in an atom. 2) Compton scattering (Z£):
scattering of an electron against a free electron (Klein NishinaSs formula). This process has well-defined
kinematic constraints (giving the ‘Compton Edge’ for the maximum energy transfer to the electron)
and for energies above a few MeV 90% of the energy is transferred. 3) Pair production (Z2 + Z):
essentially the bremsstrahlung process again with the same machinery as used earlier, with a threshold
at 2m. = 1.022 MeV. As with bremsstrahlung for electrons, this process dominates at high energies. The
most significant processes are shown in Fig. 4 (from Ref. [3]).

Considering only the dominating effect at high energy, the pair-production cross-section, we can
calculate the mean free path of a photon based on this process alone:

)\photon _ fﬂfexp(—NO'pairSC)dl‘ ~ gX
Jexp(=Nopairz)de 7 0

This shows that around one radiation length is a typical thickness for both bremsstrahlung losses
(by 1/e) and pair-production processes.

2.4 Electromagnetic calorimeters

By considering only bremsstrahlung and pair production, dominating at energies above a few tens of
MeV, with one splitting per radiation length (either bremsstrahlung or pair production), we can extract
a good model for electromagnetic (EM) showers. In such a model the number of tracks increases with
the number of radiation lengths ¢ as N(t) = 2!. The energy carried by each particle decreases as
E(t) = Ep/2'. This process stops as the energy reduces to the critical energy Ec. After this point the
dominating processes are ionization losses, Compton scattering, and photon absorption. From this, the
following simple relations can be extracted: the maximum number of tracks, i.e., the shower maximum,
is reached at tyna = In(Ey/Ec)/In2. The total number of tracks 7" is 2(tm=t1) — 1 ~ 2F;/FEc. The
total track length is given by EyXy/FEc. The intrinsic relative resolution of a calorimeter is therefore
improving with energy:

o(E) o(T) 1 1

— X — X —F= X —.
E ST T VR

Furthermore, the depth needed to contain the shower increases only logarithmically.
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Fig. 5: Energy loss profile, measured and simulated, of electrons and photons (from Ref. [3])

In reality calorimeter resolutions are parametrized also with additional terms to take into account
effects of inhomogeneities, cell intercalibrations, non-linearity, and electronics noise and pile-up (a con-
stant term and a 1/F term).

The typical EM shower is 95% contained in a transverse cylinder with radius 2R, = 21 MeV
Xo/Ec; which should be compared to full longitudinal containment which requires around 25X .

The best performance of EM calorimeters is traditionally achieved with homogeneous crystal
calorimeters; typical examples are BGO, Csl, Nal and PWO. The radiation lengths of these materials
are 1-2 cm. Drawbacks are cost, radiation effects, and temperature dependence. Sampling calorimeters
are often used in large calorimeter systems, where a fraction of the total energy is sampled and the func-
tions of particle absorption (often Pb) and shower sampling (scintillators, ionization detectors, silicon)
are separated.

2.5 Neutrons, hadronic absorption/interaction length and hadronic showers

Neutrons have no charge and interact with matter through the strong nuclear force. They transfer energy
to charged particles by elastic scattering against protons (below 1 GeV), and are absorbed/captured in
materials below 20 MeV (see Fig. 6). Above 1 GeV hadronic cascades are created. We can define
hadronic absorption and interaction lengths by the mean free path of hadrons, using the inelastic or total
cross-section for high-energy hadrons (above 1 GeV the cross-sections vary little for different hadrons
or energy). This is in analogy to the relation between the radiation length and the mean free path of a
high-energy photon. In Table 1 (extracted from Ref. [3]) radiation lengths and interaction lengths for
various materials are listed.

Hadronic calorimeters usually have a thickness of around 7-8 hadronic interaction lengths (Fig. 7).
Their resolution is worse than that of electromagnetic calorimeters for a variety of reasons: there are sig-
nificant fluctuations between the electromagnetic (79 — 27) and hadronic parts (mostly charged pions)
of the showers which have to be dealt with, a significant amount of the hadronic energy is lost in break-
up of nuclear bindings, muons and neutrinos are created in the shower escaping partly or fully, etc. The
key element for good hadronic calorimeters is therefore to understand and minimize the differences be-
tween neutral-pion (i.e. photons) and charged-pion response. Several methods are used: compensation,
use of tracking information, and use of longitudinal sampling information. Good coverage, uniform
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Fig. 6: Cross-sections for various neutron processes. The reference is shown in figure.

Table 1: Radiation and interaction lengths for various materials

Material Z A p (glem3)  Xj (g/em?) A (g/lem?)
Hydrogen (gas) 1 1.01  0.0899 (g/1) 6.3 50.8
Beryllium 4 9.01 1.848 65.2 75.2
Silicon 14 28.09 2.33 22 106.4
Iron 26 55.85 7.87 13.9 131.9
Lead 82 207.19 11.35 6.4 194.0

response and adequate granularity in depth and in angular coverage are other important parameters for
hadronic calorimetry.

2.6 Neutrinos

Neutrinos react very weakly with matter. For example, the cross-section for v. + n — e~ + p above
a few MeV is around 1043 ¢cm~2 which means that in 1 m of iron the reaction probability is 10717,
Neutrino experiments are therefore very massive and require high fluxes.

In collider experiments, fully hermetic detectors allow neutrinos to be detected indirectly. The
recipe is as follows:

— Sum up all visible energy and momentum in the detector.
— Attribute missing energy and momentum to the escaping neutrino.

The most typical example is the UA1 and UA2 discoveries of W — er where this method was used.

3 Particle identification, magnetic fields and combined detector configurations

Section 2 summarized how most ‘stable’ particles react with matter. We are interested in all important
parameters of the particles produced in an experiment: momentum, energy, velocity, charge, lifetime and
particle type.
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Fig. 7: Hadronic shower profiles for hadrons in various materials. The reference is shown in figure.

In the current section we shall look at some specific measurements where ‘special effects’ or
optimized detector configurations are used. Cherenkov and transition radiation are important in detector
systems since these effects can be used for particle identification and tracking, even though the energy
loss is small. This naturally leads to particle identification with various methods: dE/dz, Cherenkov,
transition radiation tracker, electromagnetic and hadronic (EM/HAD), p/E. Secondary vertices/lifetime
measurements and combinatorial analysis provide information about c, b-quark systems, taus, converted
photons, neutrinos, etc. Finally we shall look at magnetic systems and multiple scattering.

3.1 Cherenkov radiation

A particle with velocity # = v/c in a medium with refractive index n may emit light along a conical
wave front if the speed is greater than the speed of light in this medium: ¢/n. The angle of emission
(see Fig. 8) is given by

t 1
cosH:C/n = —

Bct On

and the number of photons by

1
A2(A) A (A)

N[\ — Ag] = 4.6-10° [ ] L(cm) sin?6.

In many cases, a Cherenkov threshold detector is used to identify particles of a special type,
typically electrons in a beamline. The Cherenkov angle will vary from slightly above 1 degree in the case
of air to above 45 degrees for quartz. Generally, by measuring this angle the speed of the particle can be
measured. When combined with momentum information, this provides a powerful particle identification
tool. The number of photons is small and furthermore one has to take into account detection efficiency
of the photons. The goal is to reconstruct a ring in order to provide a measurement of the emission angle
and hence the  of the particle.

An example of the DELPHI ring imaging Cherenkov system is shown in Fig. 9. This is a very
sophisticated detector which combines a liquid (CgF14) and a gas radiator (C5F12/C4F19), together with
a photon detector (TMAE).
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Fig. 9: Principle of ring imaging Cherenkov detector (DELPHI) from Ref. [4], showing the geometrical set-up that
allows measurement of the Cherenkov angle. The photon detector must have a high efficiency and be built out of
light materials, and hence it is a significant challenge in itself.
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Fig. 10: Cherenkov angle in radians as a function of momentum (GeV) for the DELPHI ring imaging Cherenkov
detector. The data in blue are p from A, in green K from ®D*, in red p from K.
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Fig. 11: Simulated spectrum from transition radiation in a stack of CH, foils (from Ref. [2]).

3.2 Transition radiation

Electromagnetic radiation is emitted when a charged particle traverses a medium with discontinuous
refractive index, as the boundary between vacuum and a dielectric layer. More details can be found
in Ref. [5].

The number of photons is small, so many transitions are needed. Hence a stack of radiation layers
is interleaved with active detector parts. The emission is proportional to -y, so only high-energy electrons
and positrons will emit transition radiation. The energy per boundary is given by

1
W = 3 ahwyy
and the plasma frequency for a plastic radiator:
N.e2
Fuwy = iy | ~~— ~ 20 eV .
EoMe

The keV range photons (% Tw,yy, see Fig. 11) are emitted at a small angle: 6 o« 1/v. The number of
photons can be estimated as W/hw,y o a. The radiation stack has to be transparent to these photons
(low Z), hence hydrocarbon foams and fibre materials are used. The detectors have to be sensitive to
the photons [high Z, for example Xe (Z = 54)] and at the same time be able to measure dE/dx of the
‘normal’ particles which have significantly lower energy deposition.

3.3 Particle identification with dE/dx

Going back to the Bethe-Bloch plot in Fig. 1, one can see that particles with different masses will in a
certain momentum range have different average energy-loss. This is exploited to identify particles. The
dE /dx measurements are used to identify particles at relatively low momentum. Figure 12 shows data
from the PEP4 time projection chamber with 185 samples (many samples required to handle statistical
fluctuations). It can be seen that this method provides efficient particle identification in this momentum
range.

3.4 Momentum measurements in a magnetic field and multiple scattering

Consider a particle with charge ¢ and transverse momentum pt moving in a uniform magnetic field B
going into the transverse plane, over a length L. The relation between the transverse momentum pt and
the radius of curvature p is given by pr = ¢Bp. Expressing momentum in GeV/c and the magnetic field
in tesla (T), and considering ¢ equal to the elementary charge, this gives pr (GeV/c) = 0.3 Bp (T m).
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Fig. 12: The dE/dx measured in the PEP4 time projection chamber (Ref. [3]).
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Fig. 13: Bending of a charged particle in magnetic field B

3.4.1 Measuring the momentum

Since p is much larger than L, as can be seen from the formula above for particles in the GeV range, we
can (see Fig. 13) extract the following relations between the sagitta s and the transverse momentum pr:
L .60 40
— = sin-~ -,
2p 2 2
9) 6> 0.3 L?B

s = p<1—cos§ ngz 3 pr

By measuring the sagitta s = x9 — (z1 + x3)/2, where x is measured at the entrance, middle,
and exit of the field region in Fig. 13, we can therefore measure the pr of the particle. Furthermore, the
measurement precision is given by

o(pr)  o(s) 50(z) B \/%U(m)SPT
pr s s ~ 0.3BL?2

The measurement uncertainty increases linearly with pt. If NV equidistant measurements are used,
the expression becomes (Ref. [6])

U(PT) o(x) pr
= 20/(N + 4 f N >10.
03BL2 V720/(N +4), or > 10

pr
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Fig. 14: Gaussian approximation of a multiple scattering distribution, indicating also that the initial Rutherford
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3.4.2 Multiple scattering processes

These processes will influence the measurement. The cross-section for the scattering between an incom-
ing particle with charge z and a target of nuclear charge Z is given by Rutherford’s formula:

d—a—élzZr2 mec)’ !
aQ c\ Bp sintg/2"

For sufficiently thick materials the particle will undergo multiple scattering; usually a Gaussian approx-
imation (Ref. [3]) for the scattering angle distribution is used (see Fig. 14) with a width expressed in
terms of radiation length (good to 11% or better):

13.6 MeV
[0 —
Bep

zv/x/Xo [1+0.038 In(z/Xo)] .

The multiple scattering over the distance L mentioned above will influence the momentum as
follows:

L
ApMS = p sin ) ~ 0.0136 \/— .
Xo

This should be compared to the change in momentum over the same distance L due to the effect of the
magnetic field, see Fig. 13: 0.3 BL.

0.0136 /<=
o(pr) MS  ApMS V Xo 1 .
— — —0.045 — — dependent of p.
e 03BL __ 03BL BVLX, oopendemony

The resulting total momentum resolution, adding the two contributions in quadrature, is shown in Fig. 15
(from Ref. [4]).

3.5 Vertexing and secondary vertices

Several important measurements in particle physics depend on the ability to tag and reconstruct particles
coming from secondary vertices hundreds of microns from the primary (giving track impact parameters
in the tens of micron range), in order to identify systems containing b, ¢, T, etc., i.e., generally systems
with these types of decay lengths.
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Fig. 15: Total momentum resolution: The measurement uncertainty introduces a linear term in the momentum
resolution while multiple scattering introduces a constant term.

This is naturally done with precise vertex detectors where three features are important:

— robust tracking close to vertex area;

— innermost layer as close as possible to the collision point;

— minimum material before first measurement in particular to minimize the multiple scattering
(beam pipe most critical).

The vertex resolution is usually parametrized with a term taking into account the geometrical layout of
the detector and a term depending on multiple scattering effects, the latter decreasing in importance as
the momentum is increased.

3.6 Particle identification combining information from a detector system

In addition to the methods mentioned above, we must keep in mind that combining information from
various parts of the detector provides powerful particle identification.

EM/HAD energy deposition information provides particle ID; EM response without a track indi-
cates a photon; matching of p (momentum) and EM energy the same (electron ID); isolation cuts help
to identify leptons; vertexing helps us to tag b, ¢ or 7; missing transverse energy indicates a neutrino;
muon chamber hits indicate a muon; etc. So, ultimately, a number of combinatorial methods are used in
experiments.

4 Active detector elements in particle physics

In Sections 2 and 3 we described how most particles —i.e., all particles that live long enough to reach the
detector (electrons, muons, protons, pions, kaons, neutrons, photons, neutrinos, etc.)—react with matter
and how they are measured (p, E, v, lifetimes, charge, etc.) and identified in a modern detector system.
One essential step in the process was omitted: How are reactions of the various particles with detector
elements turned into electrical signals? We want position and energy deposition information, channel by
channel, from our detector system.

Three detector types are usually used: ionization detectors, scintillation detectors, and semicon-
ductor detectors. These active elements are used for tracking, energy measurements, or in photon detec-
tors for Cherenkov or TRT. The three types have different applications, advantages and disadvantages,
but virtually all active elements in a complex detector system rely on these three principles.

At the end of Section 4 we shall have a quick look at how electrical signals are amplified in front-
end electronics, and at the main parameters determining the performance of readout electronics.
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Fig. 16: A typical detector cross-section showing a tracker, particle identification, calorimeters and a muon system,
together with the magnets (from Ref. [4])

4.1 Ionization detectors

A charged particle passing through matter will transfer energy to the atomic electrons causing ionization
and excitation. In an ionization detector, the electrons and ions created when the particle traverses or is
absorbed in a medium, usually gas, are used to generate a measurable signal. The ionization potential
for various gases is shown in Fig. 17. Typical numbers of primary encounters in various gases are
summarized in Table 2. Since many of these encounters lead to secondary and tertiary ionizations, the
number of free electrons created is larger by a factor 3—4; nevertheless, the signal is very small and an
amplification step is needed to increase the noise margins.

In the following section the amplification processes and drift in an electrical field are briefly dis-
cussed, as they provide the basis for the operation of a proportional chamber. Ionization detectors are
generally operated in proportional mode where an amplification of 10* to 106 is used. The response of a
proportional chamber (Fig. 21) is shown in Fig. 18 as a function of voltage. There are several distinctive
regions of the response curve:

1. Recombination before charge collection.

2. Ionization chamber region: all primary charge is collected (no multiplication), giving a flat re-
sponse.

3. Proportional counter (gain up to 10%), where the electric field is large enough to begin multiplica-
tion; secondary avalanches need to be quenched. At the end of this region limited proportionality
is observed (secondary avalanches distort the field, more quenching is needed) and the same signal
is detected independently of the original ionizing event.

4. Geiger—Miiller mode, where strong photon emission propagates avalanches all over the wire.

The amplification process can be characterized as follows.
Let o~ ! be the mean free path (also called the first Townsend coefficient) between each ionization. The
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Fig. 17: Ionization potential for various elements

Table 2: Primary and total number of ions/electrons created per centimetre in several gases (at SPT) used in
proportional counters

Gas Primary electrons Total electrons
(1/cm) (1/cm)
He 5 16
Ne 12 42
Ar 25 103
Xe 46 340
CH4 27 62
CO, 35 107
CoHg 43 113
DME 55 160
i-C4Hyg 84 195

increase in the number of produced electrons after a path dx will be dn = nadz, where n is the number
of initial electrons. By integration, n = nge®*, therefore the gas amplification M = n/ng is given by

M= effl a(z)dx ‘

The amplification curve in a standard gas mixture such as Ar—COq [80%—-20%] is shown in Fig. 19.

Another important aspect of the ionization chamber is the drift velocity. In a simple formulation,
the drift velocity vp in an electric field E can be written as:

e
vwp=—FT1,
m

where 7 is the mean free time between collisions (in general a function of the electric field), m the
mass and e the charge. Figure 20 shows the drift of electrons under the action of the electric field
(superimposed on the normal thermal movements of the gas molecules).
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Fig. 19: Gas amplification as a function of voltage in Ar—CO5 [80%—-20%]

Different requirements apply to different chambers. If the chamber is to operate at high counting
rates, the drift velocity should be high to avoid losses due to dead time. For better spatial resolution, drift
velocities should be lower to minimize the influence of timing errors on position resolution.

In the presence of a magnetic field, the drift velocity is generally reduced, and the drift direction is
no longer along the electric field. This has to be taken into account when operating chambers close to or
inside strong magnetic fields. The general operational principle of a gas detector can be understood by
studying more closely a simple proportional chamber. The cross-section of such a chamber of cylindrical
geometry is shown in Fig. 21.

The cathode is a metallic cylinder of radius b. Let us consider a typical example where the anode
is a gold-plated tungsten wire of radius a; a = 107> m and b/a = 1000.
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Fig. 20: Drift velocity, upper curve, as a function of electric field for electrons. The drift velocity of the positive
ions under the action of the electric field is linear with the reduced electric field (E/pressure) up to very high fields
and several orders of magnitude lower than the electron velocity.

Fig. 21: Cross-section of a proportional chamber

The electric field at a distance r from the centre can be written as

oA

r 2megy

where C'is the capacitance per unit length. Given the 1/ dependence, the electric field close to the anode
is large and multiplication can start; therefore the development of the signal begins at a few wire radii.

The formation of signal can be understood as follows. The electrostatic energy of the configuration
isW = %ZC’ ViZ, where C'is the capacitance per unit length, Vj the overall potential difference, and [ the
length of the counter. The potential energy of a charged particle at radius r is given by the charge times

the potential:
CVy T
In—.

W =-—
q27T€0 a

Considering this as an isolated system, we can set up an equation for how the voltage (signal) changes
when the particle moves in the electric field:

do(r)

CV;
AW =1CVodV === dr,  where (r) = 01 L

— In—.
2me a
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Fig. 22: Typical signal induced in a proportional chamber. T’ is the total drift time of positive ions from anode to
cathode. The pulse shape obtained with several differentiation time constants is also shown. Electronics differen-
tiation is used to limit dead time. Note that one can speed up the response but at the cost of collecting only a very
limited part of the signal. The initial drift time and ultimate time response can be understood from the electron
drift in the electrical field and gas mixture used.

The signal is induced mainly by the positive ions created near the anode. This can be seen if we assume
that all charges () are created within a distance A from the anode. A is of the order of a few tens of
micrometres; hence Vijectron = Vion/100, which can be seen from the equations below setting in the
correct values for a and b:

v L Q a+A d_Vd - Q a+\
cecvon = Ioyy S @ T T ol a0
Q [° av Q b
Vin = = .
0 ICVo Jorr dr "~ “2mel T a+ A

The time development of the signal can be computed by neglecting the electron contribution and assum-
ing that all ions leave from the wire surface:

7(t)
@ v dr = Q In @ .

t) = Vion = - = -
Vi) =V ICVo Jr) dr 2mel a

The final result for V'(¢) is shown in Fig. 22. A more general method to look at signal formation is
discussed in Section 4.3 (using the Shockley—Ramo theorem).

From the basic proportional chamber, we can now study the following.

— Multiwire proportional chambers (MWPC). An MWPC consists of a set of thin, parallel an-
ode wires between two cathode planes. The cathodes are at negative voltage and the wires are
grounded. This creates a homogeneous electric field in most regions, with all field lines leading
from the cathode to the anode wires (Figs. 23 and 24). Multiple planes with different angles of
inclination for the wires allow reconstruction of trajectories in space.

Limited both by electrostatic forces and construction technology, the minimum distance in a
MWPC is ~ 1 mm, restricting spatial resolution and rate capability. The binary readout reso-
lution (the r.m.s. of a square probability distribution) is given by pitch/+/12. Therefore, for a
conventional MWPC built with wires spaced by 1 mm, spatial resolution is limited to 300 pm.
Analog readout and charge sharing, as shown in Fig. 23 with segmented cathode plane readout,
can improve this significantly when the left/right signal size provides detailed information about
the hit position. In this case the resolution is limited mainly by the charge sharing mechanisms
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Fig. 23: The basic structure of a two-dimensional MWPC. The avalanche occurring on the anode induces signals
of opposite polarity upon the two orthogonal cathode planes. These signals are then used to produce an X and
Y position of the incident particle. In general, two-dimensional readout can be obtained by charge division with
resistive wires, measurement of timing differences or segmented cathode planes with analog readout as shown
here. From Ref. [4].
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Fig. 24: Electric field equipotentials and field lines in a classic MWPC, from Ref. [4]. Typical parameters: gap
between anode and cathode planes, 5 mm; wire spacing, 1-4 mm; anode wire diameter, 20 pm.

and the analog readout resolution. These considerations apply equally well to the silicon detectors
discussed in Section 4.3.

— Straw tubes. The proportional chamber described above, if of small diameter, typically < 10 mm,
is a perfect straw-detector unit. Among other advantages, some virtues of a straw system are
the possibility of building large self-supporting structures, isolation of broken wires from their
neighbours, and minimum cross-talk between neighbouring detector elements.

— Drift chambers function in the same way as proportional tubes, with measurement of drift time
added (time that electrons take to arrive at a sense wire, with respect to a measurement) to deter-
mine one coordinate. The space resolution is therefore not limited to cell size, allowing significant
reduction of the number of readout channels. The distance between wires is typically 5-10 cm,
giving around 1-2 ms drift time. A resolution of 50-100 pm can be achieved, limited by field
uniformity and diffusion. There are, however, more problems with occupancy. Drift information
is also often used in straw-tube detectors to improve the resolution.

— Time projection chambers (TPCs) are optimal chambers including all the features above. They
permit full three-dimensional track reconstruction, dE/dz and momentum measurements when
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Fig. 25: A typical TPC, centred around the collision point of a collider experiment (from Ref. [2])

used in magnetic fields (see Fig. 25). Their operation is based on the following.

— X and Y coordinates are given by signal readout at the end plate traditionally with conven-
tional MWPC structures.

Drift-time measurements provide the Z coordinate.

— Analog readout gives dE/dx.

Magnetic field provides p (and reduces transverse diffusion during drift).

The long drift time and the difficulty of shaping the field are drawbacks: space charge builds up,
and inhomogeneities in the field can cause serious degradation of the precision. Introduction of
ion-stopping grids (gates), careful tuning of the drift field (sometimes by an additional potential
wire plane), and gas purity are of vital importance to the resolution achieved in these chambers.

— Newer chambers and developments such as Micro Strip Gas Chambers (MSGC), detectors based
on the Gas Electron Multiplier (GEM) and the MICRO MEsh GASeous detector (MICROMEGAS)
concept.

In recent years there have been several developments directed towards making gas detectors more
suitable for high-rate applications, for example as inner-detector components for LHC experiments. MS-
GCs have been proposed (Ref. [7]) and developed. MSGCs basically reproduce the field structure of
MWPCs with a significant scale reduction. They are made of a sequence of alternating thin metallic
anode and cathode strips (typical pitch is about 100-200 xxm) on an insulating support; a drift electrode
on a plane above defines a region of charge collection, and application of appropriate potentials on the
strip electrodes creates a proportional gas multiplication field. The intrinsic spatial resolution is about
30 um r.m.s. using the method of centre of gravity of the amplitude pulses. The multi-track resolution is
about 250 pm.

The GEM consists of a thin, metal-clad polymer foil, chemically pierced by a high density of holes
(Fig. 26). By applying a potential difference between the two electrodes, electrons released by radiation
in the gas on one side of the structure drift into the holes, multiply and transfer to a collection region.
The multiplier can be used as a detector on its own, or as a preamplifier in a multiple structure. GEM
detectors are used successfully in COMPASS (Ref. [8]). Typical spatial resolution is about 45 pm and
time resolution of the order of 12 ns, though lower values can be achieved with suitable gases. Detailed
studies of gain and discharge point at high rate, and in the presence of heavily ionizing tracks, have
successfully demonstrated the performance of multiple GEM structures in a high-rate environment.
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Fig. 26: On the left, SEM picture of a GEM foil. On the right, schematics of a single-GEM detector with two-
dimensional readout. The GEM foil separates a drift zone and an induction zone, leading to the readout pad or
strip layer. Several GEM foils are used in cascade in some cases.
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Fig. 27: The MICROMEGAS operation principle

The operational advantages of these developments are based on short drift times and use of PCB
and Flex-processing techniques to create the appropriate anode/cathode configurations. A GEM readout
for TPCs is also being considered. A GEM-TPC readout end-cap may consist of several cascaded GEMs
to obtain the needed amplification, and a patterned readout plane, collecting the (negative) charge.

The MICROMEGAS [9] is a very thin metallic mesh (3—5 pum, Ni or Cu), with a pitch of 20—
100 pm located a very small distance from the anode plane (50-100 pm). The very high electric
field applied (40-80 kV/cm) creates by avalanche the multiplication of electrons coming from the drift
space. These detectors are being used now in several experiments (see, for example, Ref. [10]), and MI-
CROMEGAS readout of TPCs is also being studied. The detectors have excellent two-track separation
and spatial resolution, are fast, and operate at high gain. The fabrication technique is also cheap and
robust. The concept of the MICROMEGAS is shown in Fig. 27.
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For all gaseous detectors the choice of gas is a delicate matter. Gas is selected depending on the
desired mode of operation and expected conditions of use. Most chambers run with a mixture of noble
gas and a smaller fraction of a polyatomic molecule. The first allows multiplication at low electric fields;
the second is chosen because it absorbs photons in a wide energy range, emitted by excited atoms in the
avalanche when they return to the ground state, and suppresses secondary emission allowing high gas
gains before discharge. A classical gas mixture for low-rate proportional chambers is Ar—CHy4 [90%—
10%]. For high-rate, fast detectors, gases with high drift velocity are used to minimize losses due to dead
time and occupancy. Better spatial resolution is obtained with low drift velocity gases that minimize
timing errors (CO2 or DME). Microstructures such as MSGCs, GEMs or MICROMEGAS are typically
used with gases with high primary ionization statistics to reach full efficiency in thin gas gaps. Finally,
radiation damage or ageing of gaseous detectors is a field of continuous study. Experimentally, the
progressive loss of detection efficiency or the increase of leakage current in the operating chamber will
be interpreted as a clear sign of ageing. These effects depend on many parameters, including gas choice,
gas purity and cleanliness, additives and level of impurities, flow rate, gas gain, and detector geometry.
Therefore, intensive R&D is needed to set the conditions needed to secure stable operation of gaseous
detectors, especially in high-luminosity experiments.

4.2 Scintillators

In scintillating materials, the energy loss of a particle leads to an excitation, quickly followed by a de-
excitation providing detectable light. Light detection/readout is therefore an important aspect of the
readout of scintillators.

Scintillators are used in many physics applications. They are frequently used in calorimetry (rela-
tively cheap and with good energy resolution), for tracking (fibres), in trigger counters, for time-of-flight
measurements, and in veto counters.

Inorganic scintillators are often used in calorimeters because of their high density and Z. They are
relatively slow but have high light output and hence good resolution. Organic scintillators are faster but
have lower light output. In the following section, both types are discussed further. To convert the light
into an electrical signal, a chain of wavelength shifters and photon detectors is used. In this field there
are constantly new developments in order to increase granularity, reduce noise and increase sensitivity.

4.2.1 Inorganic crystalline scintillators

The most common inorganic scintillator is sodium iodide (Nal) activated with a trace amount of thallium
[NaI(TD]. Nal has a light output of typically 40 000 photons per MeV energy loss. The light collection,
and the quantum efficiency of the photodetector will reduce the signal further. The detector response is
fairly linear. Table 3 lists some commonly used scintillators.

4.2.2 Organic scintillators

These scintillators are fast and with typical light output around half that of Nal. Practical organic scin-
tillators use solvents; typically organic solvents which release a few per cent of the excited molecules
as photons (polystyrene in plastic for example, xylene in liquids) + large concentration of primary fluor
which transfers to wavelengths where the scintillator is more transparent and changes the time constant
+ smaller concentration of secondary fluor for further adjustment + ... (see Fig. 29).

4.2.3 Light collection and readout

External wavelength shifters and light guides are used to aid light collection in complicated geometries
(Fig. 30). These must be insensitive to ionizing radiation and Cherenkov light.
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Fig. 28: The light output for Nal and CsI (Ref. [11])

Table 3: A list of the most significant parameters for commonly used scintillators (from Ref. [2])

Crystal P Xo rMoliere dE/dx Al Tdecay Amax np Rel.  Hygro

( g/cmg) (cm) (cm) (MeV/cm) (cm)  (ns) output*

Nal(TI) 367 259 45 4.8 414 250 410 1.85 1.00 very

BGO 713  1.12 24 9.2 22.0 300 410 220 0.15 no

BaF, 489 205 34 6.6 299 0.7 220 1.56  0.05 slightly

620 310 0.20

CsI(TD) 453 185 3.8 5.6 36.5 1000 565 1.80  0.40 some

Csl(pure) 4.53 1.85 3.8 5.6 36.5 10.36 305 1.80 0.10 some
36,620 ~ 480 0.20

PbWO, 828 089 22 13.0 224 5-15 420440 23 0.01 no

CeF3 6.16 168 2.6 7.9 259 1030 310-340 1.68 0.10 no

* The light output values are normalized to Nal.

The most critical readout parameters for photodetectors are granularity, noise, and sensitivity.
Compared to the typical single-channel photomultipliers (PMs), diodes and triodes, there are several
new developments. One example, the multi-anode PM, is shown in Fig. 31. Recently, hybrid photo
diodes [12] have been developed where the dynode structure is replaced by a voltage gap and a granular
silicon detector (see Fig. 31). This has the potential of removing the primary source of noise, fluctuations
in the first dynode, and provides good granularity.

4.3 Solid-state detectors

Solid-state detectors have been used for energy measurements for a long time (silicon, germanium). It
takes a few electronvolts to create an electron—hole (e-h) pair and as a result these detector materials
have excellent energy resolution. Nowadays silicon detectors are mostly used for tracking and virtually
every major particle physics experiment uses this technology for tracking close to the interaction point.
We shall concentrate on silicon in the following.
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Fig. 29: Illustration of the de-excitation process, including wavelength-shifting fluors, of an organic scintillator
(from Ref. [3])
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Fig. 30: In the two figures on the right a typical readout configuration is shown, with light guides, wavelength
shifter and photodetectors. The ATLAS hadronic calorimeter (left) is a typical example of a modern sampling
calorimeter fully based on scintillators as active medium.

The key parameters for silicon detectors are as follows: band gap 1.1 eV, whereas the average
energy to create an (e-h) pair is 3.6 eV (compared to 3040 eV for ionization detectors); high density
such that the energy loss in silicon, from Bethe-Bloch, is 108 (e-h)/um. The mobility for electrons
and holes is high, and the structures are self-supporting. More generally, the successful development of
modern silicon detectors relies on the progress in the semiconductor industry in recent decades. This
concerns key parameters such as reliability, yield, cost, feature sizes, and connectivity.

Contrary to the ionization detectors there is no amplification mechanism, however signal/noise
levels of 10-50 are common, mostly depending on the electronics noise, again depending on detector
geometry (capacitive load seen by readout amplifier).

Intrinsic silicon will have electron density = hole density: 1.45 - 10! cm™3 at room temperature
(from basic semiconductor theory). In the volume shown in Fig. 32 this would correspond to 4.5 - 108
free charge carriers, compared to around 3.2 - 10* produced by a minimum-ionizing particle passing it
(corresponding to the Bethe-Bloch energy loss in 300 pum Si divided by 3.6 eV). As a result there is
a need to decrease the number of free carriers. This is done by using the depletion zone between two
oppositely doped parts of a silicon wafer.
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Fig. 31: Examples of new readout developments for photons aimed at increasing granularity and resolution
(from Ref. [3])
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Fig. 32: Sketch of a silicon detector volume

The zone between the N- and P-type doping is free of charge carriers, has an electric field, and is
well suited as detector volume. This zone is increased by applying reverse biasing.

One can quickly establish the most critical parameters for a silicon detector by looking at the p,n
junction in Fig. 33. We use Poisson’s equation:

&PV p(x)

dz? e’
with charge density from —x, to 0 and from O to z, defined by p(x) = £e Npsa. Np and Ny are the
doping concentrations (donor, acceptor): Npz, = Nax,. The depletion zone is defined as: d = z, + .

By integrating once, E(x) can be determined, by integrating twice, the following two important
relations are found:

V x d?,
A
Cc = EEOCV71/2.

By increasing the voltage the depletion zone is expanded and the capacitance C decreased, giving
decreased electronics noise.

233



S. STAPNES

S Accepror ion THE PN JUNCTION

BDonor ion

< oo WI’_@ O |
e 8. @ 2| giffusion of & into p-
|

zone, h® into n-zone
— potential difference
stopping diffusion

)

) thin depletion zone

no free charge carriers
in depletion zone

Electrie +——
€) field
LY x
A, Paisert, Instrumentation In High Eneagy
[ dich
B Bleciri [ Physlcs, World Sclentific)
— 7 A

Fig. 33: A silicon p,n junction, see references in figure

Let us have a look at the signal formation using the same simple model of the detector as two
parallel electrodes separated by d. Maintaining a constant voltage across the detector with an external
bias circuit, an electric charge e moving a distance dx will induce a signal d@) on the readout electrode:
dQ d = edx.

As in the case of the proportional chamber, we use

dx

=uk
5 =~ HE@),
giving (the charge is created at )
t
x(t) =z exp <,ue ) ,
KUnT

where 7 = £/eNy up,. The time-dependent signal is then

Q=5 [ G

However, there are many caveats. In reality one has to start from the real (e-h) distribution from a
particle. Equally important is to use a real description of E(z) taking into account strips, other implants,
and over-depletion, to mention only a few key features. Traps and changes in mobility will also enter.

A more general approach can be used for signal formation. This method applies both to ionization
detectors, where we used energy balance to look at how a voltage signal was created due to charge
drifting in the device, and to semiconductors as discussed above. More generally we should use the
Shockley—Ramo theorem for induced charge:

Z‘:qv-ﬁo
or
Q = qAypo

where E)o is the weighting field and Ay the potential difference from the beginning to the end of the
path. The weighting potential is found by solving the Laplace equation with some artificial boundary
conditions [for the electrode under study (= unity) and for all other electrodes (= 0)] [13].
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Fig. 34: The final result showing (when entering real numbers and using a more complete model) time-scales of
10-25 ns for electron—hole collection. From Ref. [2].

The main message is that the signal is induced by the motion of charge after incident radiation
(not when the charge reaches the electrodes). For ionization chambers it can be used to study not only
the signal on the primary anode but also for the neighbours, or the cathode strips (if these are read out).
For silicon detectors, it can be used to study charge sharing between strips or pixels.

At the moment silicon detectors are used close to the interaction region in most collider experi-
ments and are exposed to severe radiation conditions (damage).

The damage depends on fluence as well as on particle type (proton, v, e, neutrons, etc.) and energy
spectrum, and influences both sensors and electronics. The effects are due to both bulk damage (lattice
changes) and surface effects (trapped charges).

Three main consequences are seen for silicon detectors (figures from Refs. [4, 14]).

— Increase of leakage current with consequences for cooling and electronics. This is illustrated
in Fig. 37 on the right.

— Change in depletion voltage, increasing significantly at the end of the detector lifetime; combined
with increased leakage currents this leads to cooling problems again (see Fig. 37).

— Decrease of charge collection efficiency.

The future developments for semiconductor systems address four points in particular (Refs. [14—
16]).

1. Radiation hardness, cost and power consumption. Examples are the following.
— Defect engineering: Introduce specific impurities in silicon to influence defect formation.
— Cooling detectors to cryogenic temperatures.
2. New materials such as diamond and amorphous silicon, the latter opening for deposition directly
on readout chips.
3. Integrate the detector and readout on the same wafer.

4. New detector concept as horizontal biasing for faster charge collection and lower biasing voltage.
This will also allow the building of detectors which are active very close to the physical edge of
the wafers.

4.4 Front-end electronics

A concise description of front-end electronics can be found in Ref. [11]. Here we provide a very short
and superficial summary of some of the main concepts and constraints.
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Fig. 35: The detectors used in particle physics are usually strip detectors with strip distance 50-100 pm, single or
double sided. One example is shown (top). A more integrated approach is a PIXEL detector (bottom), where the
interconnectivity to the readout electronics is made with bump-bonding.
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Fig. 36: The microstrip system at LEP was heavily used for B-physics and an example of reconstruction is shown
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Fig. 37: Change of leakage current and biasing voltage as a function of fluence

Most detectors rely critically on low-noise electronics; optimal detector performance requires op-
timized electronics solutions.

Figure 38 shows a typical front-end electronics. The detector is represented by the capacitance
Cy, bias voltage is applied through Ry, and the signal is coupled to the amplifier through a capacitance
C.. The resistance Ry represents all the resistances in the input path. The preamplifier provides gain and
feeds a shaper which takes care of the frequency response and limits the duration of the signal.

DETECTOR BIAS
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Fig. 38: A typical front-end electronics (Ref. [3])
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Fig. 39: Front-end electronics for noise analysis. The diagram shows the noise sources and their representation in
the noise analysis.

The equivalent circuit for noise analysis (Fig. 39) includes both current and voltage noise sources
labelled ¢, and ey, respectively. Two important noise sources are the detector leakage current (fluctu-
ating — sometimes called shot noise) and the electronic noise of the amplifier, both unavoidable and
therefore important to control and reduce.

While shot noise and thermal noise have a white frequency spectrum (dP,/df constant), trap-
ping/detrapping in various components will introduce a 1/f noise. Since the detectors usually turn the
signal into charge one can express the noise as equivalent noise charge, which is equivalent to the detector
signal th