Tropical Rainforest: Structure & Diversity

WHAT'S A RAINFOREST?

- Low elevation
- Evergreen
- Mean daily temperature 18°-24°C
- >2000 mm of rain/yr
- Precip >100mm at least 9 mos of year
- Annual Pc:PET >1

CHARACTERISTICS

- canopy ~45 m tall
- structurally complex
- >50% of all species
- high net primary productivity
 - NPP ≈ 2,500 kg C/ha/yr

Bromeliads adorn the thick branches of *Ceiba pentandra*, emerging from the canopy in Yasuní National Park in Ecuador. (photo by C. Woodward)

WHERE ARE RAINFORESTS FOUND?

3 MAIN BIOGEOGRAPHIC REGIONS:

Americas, Africa, Australasia

7% of land area, 50% of species

RAINFOREST DIVERSITY

<7% land area, >50% of species

American tropics > Asian tropics > African tropics

Figure 1.2 Box-and-whisker plot of species richness for trees greater than 10 cm dbh of rain-forest sites for the major tropical regions (Asia-Pacific, America and Africa). The line inside the box represents the mean value of the average number of species per hectare. The box extends for the range of 50% of the values above and below the mean. The whisker covers the complete range of the recorded values. Data from compilations by Phillips et al. (1994) and Turner (2001).

Location	# tree spp. in 1 ha plot
Tiputini Biodiversity Station, Ecuador	655
Pasoh Forest Reserve, Malaysia	328
La Selva Biological Station, Costa Rica	118
Davis Creek, Queensland Australia	121
Korup Forest Reserve, Cameroon	75
Igapó swamp forest, Brazil	60

"RARE IS COMMON & COMMON IS RARE"

- most rainforest trees are rare
- dispersal and densitydependent mortality determines spacing of trees

Distance

DENSITY-DEPENDENT MORTALITY AND DIVERSITY

(Janzen-Connell Hypothesis)

HORIZONTAL COMPLEXITY due to:

Flooding

- Terra Firme = never flooded
- *Várzea* = seasonally floods with whitewater
- *Igapó* = seasonally floods with blackwater

Differ in:

- species composition
- canopy height
- O.M. accumulation
- moisture content
- soil & water pH
- 2° compounds

HETEROGENEITY WITHIN TERRA FIRME

- topographic complexity
 - hill tops vs. valley bottoms

- phasic complexity
 - gaps, early + late successional growth

VERTICAL COMPLEXITY

Vegetation "layers"

- emergent
- canopy layer
- subcanopy layer
- understory layer

VERTICAL STRATIFICATION

L.A.I. = Leaf Area Index $(4-8 \text{ cm}^2/\text{cm}^2)$

P.A.R. = Photosynthetically Active Radiation

blue and red wavelengths most active

Canopy

Forest Floor

decreasing P.A.R.
decreasing red : far red light
increasing humidity
decreasing wind
less temperature fluctuation

Forest floor: low light, enriched with far red light

Absorption spectra of plant pigments

The Light Environment

Photosynthetic capacity (µmole CO₂/m²/s) sun plants > shade plants

UNDERSTORY / FOREST FLOOR

EMERGENTS

- >60 m tall
- < 1 per hectare
- e.g., Ceiba, Parkia

LEGUMES

- bean & pea family (Fabaceae)
- most numerous canopy trees in the rain forest
- N-fixing

PALMS

Family Palmae

FIGS (Ficus sp.)

keystone species!

Mahogany

WOOD & BARK

- hard wood
- no growth rings (terra firme)
- thin smooth bark
- prized for timber

TRUNKS

- Columnar
- Intense light competition
- No lower branches
- Climbers & structural parasites

ROOTS

- Surface root mat
- Buttresses
- Prop roots
- Tap roots uncommon

LEAVES

- tend to be large, simple, entire, lanceolate
- smooth and shiny (waxy cuticle)
- drip tips
- red pigments (anthocyanins)
- many secondary compounds

LIANAS & VINES

- Lianas = large woody vines
- rapid growth
- climbing adaptations
- negative phototaxy
- anomalous 2° growth
 - efficient water transport
 - elasticity

STRUCTURAL COMPLEXITY

Leaf and root biomass in temperate vs. tropical forests

Fig. 3.1 The spatial distribution of rhizosphere and phyllosphere in *left* – a temperate beech forest; and *right* a tropical rain forest.