
EPTCS 395

Proceedings of the

Fifth International Workshop on

Formal Methods for Autonomous Systems

Leiden, The Netherlands, 15th and 16th of November 2023

Edited by: Marie Farrell, Matt Luckcuck, Mario Gleirscher and Maike

Schwammberger

Published: 15th November 2023

DOI: 10.4204/EPTCS.395

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . iii

Matt Luckcuck, Marie Farrell, Mario Gleirscher and Maike Schwammberger

Invited Presentation: Formal Methods within the TAS Governance Node . vi

Alice Miller

Invited Presentation: SMT: Something you Must Try . vii

Erika Ábrahám

What to tell when? – Information Provision as a Game . 1

Astrid Rakow, Mehrnoush Hajnorouzi and Akhila Bairy

Trust Modelling and Verification Using Event-B. 10

Asieh Salehi Fathabadi and Vahid Yazdanpanah

Comparing Differentiable Logics for Learning Systems: A Research Preview . 17

Thomas Flinkow, Barak A. Pearlmutter and Rosemary Monahan

Extending Neural Network Verification to a Larger Family of Piece-wise Linear Activation

Functions . 30

László Antal, Hana Masara and Erika Ábrahám

Certified Control for Train Sign Classification . 69

Jan Roßbach and Michael Leuschel

Model Checking for Closed-Loop Robot Reactive Planning . 77

Christopher Chandler, Bernd Porr, Alice Miller and Giulia Lafratta

Online Reachability Analysis and Space Convexification for Autonomous Racing 95

Sergiy Bogomolov, Taylor T. Johnson, Diego Manzanas Lopez, Patrick Musau and
Paulius Stankaitis

Automatic Generation of Scenarios for System-level Simulation-based Verification of Autonomous

Driving Systems . 113

Srajan Goyal, Alberto Griggio, Jacob Kimblad and Stefano Tonetta

Enforcing Timing Properties in Motorway Traffic . 130

Christopher Bischopink

Correct-by-Construction Control for Stochastic and Uncertain Dynamical Models via Formal

Abstractions . 144

Thom Badings, Nils Jansen, Licio Romao and Alessandro Abate

ii

Towards Formal Fault Injection for Safety Assessment of Automated Systems . 153

Ashfaq Farooqui and Behrooz Sangchoolie

Formal Verification of Long Short-Term Memory based Audio Classifiers: A Star based Approach . 162

Neelanjana Pal and Taylor T Johnson

3vLTL: A Tool to Generate Automata for Three-valued LTL . 180

Francesco Belardinelli, Angelo Ferrando and Vadim Malvone

Towards Proved Formal Specification and Verification of STL Operators as Synchronous Observers 188

Céline Bellanger, Pierre-Loïc Garoche, Matthieu Martel and Célia Picard

Runtime Verification of Learning Properties for Reinforcement Learning Algorithms 205

Tommaso Mannucci and Julio de Oliveira Filho

iii

Preface

This EPTCS volume contains the papers presented at the Fifth International Workshop on Formal Meth-
ods for Autonomous Systems (FMAS 2023), which was held on the 15th and 16th of November 2023.
FMAS 2023 was co-located with 18th International Conference on integrated Formal Methods (iFM’23),
organised by Leiden Institute of Advanced Computer Science of Leiden University. The workshop itself
was held at Scheltema Leiden, a renovated 19th Century blanket factory alongside the canal.

The goal of the FMAS workshop series is to bring together leading researchers who are using formal
methods to tackle the unique challenges that autonomous systems present, so that they can publish and
discuss their work with a growing community of researchers. Autonomous systems are highly complex
and present unique challenges for the application of formal methods. Autonomous systems act without
human intervention, and are often embedded in a robotic system, so that they can interact with the
real world. As such, they exhibit the properties of safety-critical, cyber-physical, hybrid, and real-time
systems. We are interested in work that uses formal methods to specify, model, or verify autonomous
and/or robotic systems; in whole or in part. We are also interested in successful industrial applications
and potential directions for this emerging application of formal methods.

We continued to hold FMAS as a hybrid event this year. The workshops in 2020 and 2021 have been
fully online events because of the restrictions required to deal with the COVID-19 pandemic, and FMAS
2022 continued to facilitate online participation. We feel that a hybrid event, while often challenging
to organise, provides accessibility to people not able to travel for the workshop. FMAS 2023 had both
presentations and attendees who were remote, and we hope that it was a useful option for those people
who made use of it.

FMAS 2023 continued to use the submission categories introduced last year: vision papers and re-
search previews, both of which were types of short paper; and experience reports and regular papers,
both of which were types of long paper. In total, FMAS 2023 received 25 submissions. We received
11 regular papers, 3 experience reports, 6 research previews, and 5 vision papers. The researchers who
submitted papers to FMAS 2023 were from institutions in: Australia, Canada, Colombia, France, Ger-
many, Ireland, Italy, the Netherlands, Sweden, the United Kingdom, and the United States of America.
Increasing our number of submissions for the third year in a row is an encouraging sign that FMAS has
established itself as a reputable publication venue for research on the formal modelling and verification
of autonomous systems. After each paper was reviewed by three members of our Programme Committee,
we accepted a total of 15 papers: 8 long papers and 7 short papers.

FMAS 2023 hosted two invited speakers. Prof. Alice Miller, from the University of Glasgow (UK),
gave a talk titled ”Formal Methods within the TAS Governance Node”; which focussed on several strands
of work using formal methods within the Trustworthy Autonomous Systems Hub’s Governance Node.
Prof. Erika Ábrahám, from RWTH Aachen University (Germany), gave a talk titled ”SMT: Something
you Must Try”; which discussed using Satisfiability Modulo Theories (SMT) to solve real-world prob-
lems. Prof. Ábrahám’s talk was held in a joint session with iFM.

This is the fifth year that we have held an FMAS workshop; five years seems like a number that is
round enough to feel significant and warrant some reflection. The idea for FMAS came from conversa-
tions between two of the current organisers, Drs Marie Farrell and Matt Luckcuck, and Prof. Michael
Fisher during a research project on using robotics and AI in the UK nuclear industry. FMAS 2019 was
held as a satellite workshop at FM 2019 in Porto, Portgual. We were unsure if this would be a one-
off event or an ongoing series, and there were only five papers presented at that first workshop. After
the uncertainty of running workshops during the pandemic, FMAS has rebounded strongly with several
years of increasing numbers of submissions. This year, FMAS received five more submissions than last

iv

year, giving us our highest-ever number number of submissions. This is a very pleasing pay-off to five
years of hard work, and reflects the progress of this burgeoning community in tackling the challenges
that autonomous systems pose for formal modelling and verification techniques.

For four years, FMAS has been organised almost entirely by Drs Matt Luckcuck and Marie Farrell in
equal partnership, but it was becoming clear that this would be unsustainable as the workshop grows big-
ger. To help spread the workload, and to inject some fresh perspective, two colleagues joined the FMAS
organising committee this year. Matt and Marie were joined by Jun.-Prof. Dr Maike Schwammberger
and Dr Mario Gleirscher, who have been supporting FMAS 2023 in preparation for a bigger restructuring
from next year’s workshop onward. We are already planning for what FMAS will look like for the next
five years and we hope that the improvements that are coming will make FMAS an event that is even
more useful and enjoyable for our community.

We would like to thank our brilliant Programme Committee and sub-reviewers for their helpful re-
views and discussions behind the scenes. Many of the reviewers for FMAS 2023 have been part of our
Programme Committee since the first FMAS workshop, we are pleased to have their continuing support.
Whether this is their first time or their fifth, we are proud to have a community of reviewers who are so
enthusiastic and supportive of our workshop and the work it receives. We thank them for volunteering
their time and effort because without them we could not produce our programme of presentations. We
also thank our invited speakers, Prof. Alice Miller and Prof. Erika Ábrahám, for their time; the authors
who submitted papers; our EPTCS editor, Martin Wirsing, for overseeing the preparation of the proceed-
ings; the organisers of iFM – Marcello M. Bonsangue, Paula Herber, and Anton Wijs – for supporting
our workshop; FME for its sponsorship of our student travel grants; and all of the attendees (both virtual
and in-person) of FMAS 2023. We hope to see you all at FMAS 2024.

Matt Luckcuck, Marie Farrell, Mario Gleirscher, and Maike Schwammberger

November 2023

v

Program Committee

Oana Andrei University of Glasgow (UK)
Akhila Bairy Carl von Ossietzky University of Oldenburg (Germany)
Christopher Bischopink Carl von Ossietzky University of Oldenburg (Germany)
Rafael C. Cardoso University of Aberdeen (UK)
Louise A. Dennis University of Manchester (UK)
Marie Farrell University of Manchester (UK)
Fatma Faruq ETAS – Empowering Tomorrow’s Automotive Software (UK)
Angelo Ferrando University of Genova (Italy)
Michael Fisher University of Manchester (UK)
Mario Gleirscher University of Bremen (Germany)
Mallory S. Graydon NASA Langley Research Center (USA)
Ichiro Hasuo National Institute of Informatics (Japan)
Taylor T. Johnson Vanderbilt University (USA)
Verena Klös Technical University of Dresden (Germany)
Matt Luckcuck University of Nottingham (UK)
Raluca Lefticaru University of Bradford (UK)
Lina Marsso University of Toronto (Canada)
Anastasia Mavridou NASA Ames Research Center (USA)
Claudio Menghi University of Bergamo (Italy)
Alice Miller University of Glasgow (UK)
Alvaro Miyazawa University of York (UK)
Rosemary Monahan Maynooth University (Ireland)
Yvonne Murray University of Agder (Norway)
Dominique Méry Université de Lorraine (France)
Natasha Neogi NASA Langley Research Center (USA)
Colin Paterson University of York (UK)
Baptiste Pelletier ONERA – The French Aerospace Lab (France)
Andrea Pferscher Graz University of Technology (Austria)
Maike Schwammberger Karlsruhe Institute of Technology (Germany)
James Stovold Lancaster University Leipzig (Germany)
Silvia Lizeth Tapia Tarifa University of Oslo (Norway)
Elena Troubitsyna KTH Royal Institute of Technology (Sweden)
Gricel Vázquez University of York (UK)
Hao Wu Maynooth University (Ireland)
Mengwei Xu University of Newcastle (UK)

Subreviewers

Qais Hamarneh Karlsruhe Institute of Technology (Germany)
Thomas Flinkow Maynooth University (Ireland)

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. vi–vi, doi:10.4204/EPTCS.395.0.1

Invited Talk: Formal Methods within the TAS Governance
Node

Alice Miller
University of Glasgow, Glasgow, UK

The TAS Governance Node part of the £33M Trustworthy Autonomous Systems Programme funded
by the UKRI Strategic Priorities Fund. The aim of the node is to explore how to make autonomous
systems aware of — and responsive to — changing regulations. Led by the University of Edinburgh,
it brings together researchers from the universities of Edinburgh, Glasgow, Nottingham, Heriot-Watt,
Sussex, and Kings College London; as well as multiple industrial partners. In this talk I will highlight
some of the activities within the node, focussing on those that use Formal Methods. These include:

• an automatic theory repair system for a legal responsibility framework for autonomous vehicles,

• accident anticipation through reasoned simulation,

• robot planning using in-situ model checking; and,

• (formal aspects of) a node-wide automotive case study investigation.

http://dx.doi.org/10.4204/EPTCS.395.0.1

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. vii–vii, doi:10.4204/EPTCS.395.0.2

Invited Talk: SMT: Something you Must Try

Erika Ábrahám
RWTH Aachen University, Aachen, Germany

SMT (Satisfiability Modulo Theories) solving is a technology for the fully automated solution of
logical formulas. Due to their impressive efficiency, SMT solvers are nowadays frequently used in a
wide variety of applications. These tools are general purpose and as off-the-shelf solvers, their usage is
truly integrated. A typical application encodes real-world problems as logical formulas, whose solutions
can be decoded to solutions of the real-world problem. In this talk we give some insights into the
mechanisms of SMT solving, discuss some areas of application, and present a novel application from the
domain of simulation.

http://dx.doi.org/10.4204/EPTCS.395.0.2

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 1–9, doi:10.4204/EPTCS.395.1

© A. Rakow, A. Bairy, M. Hajnorouzi
This work is licensed under the
Creative Commons Attribution License.

What to tell when? – Information Provision as a Game

Astrid Rakow Mehrnoush Hajnorouzi
Inst. of Systems Engineering for Future Mobility,

German Aerospace Center (DLR) e.V.
astrid.rakow@dlr.de mehrnoush.hajnorouzi@dlr.de

Akhila Bairy
Dept. of Computing Science,
Carl von Ossietzky University

akhila.bairy@uni-oldenburg.de

Constantly informing systems (CIS), which provide us with information over a long period of time,
face a particular challenge in providing useful information: Not only does a person’s information base
change but also their mood or abilities may change. An information provision strategy should hence
take these aspects into account. In this paper, we describe our vision for supporting the design of CIS.
We envisage using psychological models of the human mind and emotions in a game of information
provision. The analysis of these games will give comparative insights into design variants.

1 Introduction

Complex technical systems are deeply integrated into our daily lives. They provide us with various
services ranging from entertainment to safety-critical services. We use many of these systems over long
periods of time and they even adapt to our needs. Such systems and their users exchange information: On
one hand, the system acquires user information to adapt. On the other hand, users often need information
from the system e.g. some explanation of the system’s behaviour. When such an interaction between
the system and its user extends over a longer period of time, an important question therefore arises:
what content should be communicated to the user and when? A few brief examples will illustrate the
challenges of this question: (1) An autonomous vehicle AV initiates emergency braking due to a deer
suddenly crossing the road. (2) The AV slows down on the way to work due to a dumpy road. (3) The AV
slows down due to a carnival procession, the user is accompanied by his excited kids. In these scenarios,
the AV faces the challenge of determining what content helps the user in the current context. It should
factor in that the time span is very short in (1), that the driver has prior knowledge in (2), and the right
level of detail is especially important, if the driver is occupied otherwise as in (3).

In this paper, we argue that the design of a constantly informing system (CIS)1can profit from a holis-
tic game theoretic analysis that places a strong emphasis on the human aspect. We propose to analyze
the challenge of information provision (What content should be communicated to the user when?) by
methods of economics to determine which game is to be played (Sect. 2). In the resulting game, we
consider the human as a system of limited cognitive resources (Sect. 4). In order to do so, we propose
to use models of the human mind and emotions from psychology, which we briefly survey in Sect. 3.
We outline how we envision integrating these models into games between a CIS and its user (cf. Fig. 1).
Their analysis results will allow designers comparing variants of a CIS under development.

CIS HM Env
infos

percepts percepts

actions

env(HM)
env(CIS)

Figure 1: CIS observes its environment and provides in-
formation to a human model (HM). HM perceives this in-
formation and observes its surrounding Env to choose its
actions. The goal of CIS is to enable HM achieve its goals.

1Self-explaining systems are also CIS. A CIS is not necessarily self-explaining.

http://dx.doi.org/10.4204/EPTCS.395.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Information Provision as a Game

2 The Challenge of Information Provision Seen as a Game

Game theory, developed by von Neumann and Morgenstern [21] in the mid-20th century, studies inter-
active decision-making where the outcome for each player depends on the actions of the other players
[20]. It has been used in various domains such as economics, political science or computer science. In
the following, we discuss how the challenge of information provision can be considered a game. By rein-
terpreting the economic analysis method PARTS [6] for information provision, we outline the broader
scale of this challenge and then narrow the focus down to the next steps of our research.

PARTS defines a list of guiding questions to analyze a situation as a game: the players (who is
active? who has goals?), added value (what does player X gain by Y’s participation?), rules (what rules
do constrain the players? who can change the rules?), tactics (how can the players’ perception of the
game be changed?) and scope (what are the boundaries of the game?). PARTS is only a first step towards
the definition of a game. The concrete game depends on the characteristics of the application domain,
the information available to build a model of the application domain, and the goal of the analysis.

We want to analyze how the “usefulness of a CIS ” can be optimized. Useful information is relevant
information2 that the customer can process and use to accomplish their goals, i.e. the right content at the
right time. It is part of our future work to concretize this notion. Table 1 summarizes how we interpret
the players’ roles in an information provision setting. While the added values that the players will bring
to the game vary depending on the system considered, we can identify two main types of rules as shown
in Table 2. Tactics refer to actions that a player can take to change how other players perceive the game,
i.e. to change their belief in who the players are, what their added values and what the rules are. The
scope of our game is a CIS that is a subsystem of an AV and serves a single human (the driver) who is
captured via a human model HM. For a start, we use a game of this very limited scope to investigate how
to formally include human capabilities in the design of a CIS.

Customers all recipients of information (humans or technical systems)
Suppliers suppliers of information (sensors and other CIS)

suppliers of computing services (hardware resources)
Competitors systems that render the CIS’s information redundant (other CIS, human perception)

processes that use the same computing services or human resources (e.g. music system)
Complementors other CIS whose information enhances the CIS’ information (e.g. traffic warnings plus de-

tour)

Table 1: Interpretation of player roles in the “information provision” game

guiding rules a player is obliged to follow these rules, but can break them at will (e.g. ethical, legal rules)
constraint rules a player cannot break these rules; the rules can only be changed by a third party (resulting

from the technical implementation)

Table 2: Types of rules in the “information provision” game

As the above exposé shows, information provision is an interdisciplinary challenge where humans
and technical systems interact – many CIS are embedded into a human cyber-physical system of systems.
Legal and ethical aspects, as well as human capabilities, influence what a CIS should provide as useful
information. Whether information is useful strongly depends on whether the information is relevant and
on whether humans can make use of it.

2Here, relevant information for the CIS’s customer is the minimal information that they need to accomplish their goal [26].

A. Rakow, A. Bairy, M. Hajnorouzi 3

While the above was concerned with analyzing the application domain, we will now discuss what
game G in the “catalog” of well-studied games and respective analysis methods is appropriate for our
analysis goal. We will take a closer look at the characteristics of the application domain and the goal of
the analysis – keeping in mind what aspects are most important and which aspects might be omitted.

In a nutshell, the goal of G’s analysis is to determine which content our CIS should provide to a HM
in what context. This analysis is meant to be done at design time in order to derive requirements on the
information provision and to compare different design alternatives. Our CIS controls what information
content it provides when to HM. We discuss what kinds of games are appropriate using the following
guiding questions based on the taxonomy of games as developed in [19]: Is CIS acting strategically?
What is the relation between HM and CIS? Who knows what?

Is CIS acting strategically? We will study a CIS, that chooses rationally the content that seems the
most useful. We hence will develop a classical game rather than an evolutionary game.

What is the relation between HM and CIS? Should we use cooperative or non-cooperative game
theory? In cooperative game theory (CGT), the players cooperate with each other and form coalitions to
obtain maximum reward/payoff.

In non-cooperative game theory (NCGT), the players make decisions independently and each player
aims to maximise their own payoff. We assume that HM has a prioritized list of goals. CIS has only the
goal to be helpful within its constraints thus acting subordinately 3.

In such a subordinate-dominant relationship, both CGT as well as NCGT could be a fit. In order to
apply NCGT we envision to model HM as always greedily accepting all information that it can in its
current mode; E.g. if HM is tired, less information per time is accepted. We thereby encode a kind of
cooperation into HM’s modes, so that it is not playing against CIS by maliciously rejecting all offered
information. To derive these modes and the dynamics of mode changes we plan to use psychological
models of the human mind and emotions. We will give a brief overview of these in Sect. 3. In Sect. 4
we will give technical details on how we envision using such psychological models to derive the HM for
our game.

Who knows what? Both CIS and HM receive information from the environment. In particular, HM
receives information from our CIS within its car but also via its five senses that are competing with
CIS. CIS also does not exactly know how HM reacts, as it has no precise means to derive the state and
reactions of HM. From CIS’s point of view HM’s reactions expose some degree of randomness. HM is a
system of bounded resources and will usually not (have the resources to) think much about the beliefs of
any support systems in its car. We hence will define an epistemic game, where CIS has a belief on HM’s
belief but HM does not build beliefs on CIS beliefs.

CIS knows what the possible inputs of HM are, but assumes that these channels are unreliable. That
is, we assume that CIS can roughly predict what information HM is able to receive via its senses. CIS
moreover knows what actions HM can choose (what a driver can do).

To us, the central challenge in the information provision game is capturing the human factors. We
envision to derive instantiations of HM from models of the human mind and emotions. These instantia-
tions are then “plugged” into our game. We then check whether our CIS can inform HM, i.e. whether a
strategy exists, such that HM achieves its goals.

3It is out of this paper’s scope to discuss the case when goals of HM contradict the constraints of CIS.

4 Information Provision as a Game

3 Models of Human Mind

For an automated system to provide useful information, it needs a human behaviour model to determine
the impact of the content and the optimal time for providing the content. Well-crafted explanations can
reassure users and increase alertness [12]. The impact of percepts and its timing –or more generally
the dynamics of the human mind– is captured by cognitive architectures. These are well-established
frameworks developed in the field of cognitive psychology [22, 2]. They simulate how knowledge is
processed, stored, and utilized in response to external stimuli, perception, and knowledge [25]. There are
many cognitive architectures with different foci, like ICON FLUX[23], CASCaS [32], PRIM[28], but
none of them captures the human holistically.

In addition to modelling core cognitive functions (such as perception, learning, memory, etc.), a few
cognitive architectures can also capture the interplay of emotions and behaviour. These architectures
generally adopt two primary approaches to model emotion-induced behaviours: altering architecture
structures (e.g. modifying memory modules), or modifying the processing parameters (e.g. adjusting
retrieval delay). Emotions act as conduits to human behaviour, significantly impacting decisions and
influencing the daily choices of individuals [4]. A change in the person-environment relationship [15]
may trigger emotional shifts, which may change this relationship in future.

Over time, different theories of emotion have evolved to explain the functioning of human emotions
[24, 14, 11]. The cognitive appraisal theory is one such theory. According to this theory, emotions
are influenced by individuals’ cognitive evaluations and interpretations of situations rather than by the
situations themselves. Many computational models are built on this theory [17, 5, 16]. Implementation
of the appraisal process within the context of cognitive architectures is an ongoing effort. MAMID [10]
is one example. It processes incoming stimuli through various modules. The affect appraiser module
derives emotional states. The resulting affective state influences the cognition processes by adjusting the
rules related to goal selection, action determination, module speed and capacity, and mental construct
prioritization.

The appraisal process provides an assessment of the current situation, influenced by various parame-
ters, such as individual history, personality, and current affective state. These parameters can be described
by modelling the effects of transient states (emotions) and personality traits (characteristics).

To depict how the current situation affects human behavior, [33] incorporated a situation assessor
module into their proposed SAMPLE4 pilot model architecture. This module translates situation de-
scriptions into types that trigger specific responses. The module employs belief nets to hold required
knowledge, with nodes denoting particular features and events, and links illustrating causal and correla-
tional connections between them. Furthermore, weighted links denote transition probabilities.

Appraisal theory is also utilised in the field of affective computing to enhance systems’ abilities to
perceive and generate human emotions. Affective computing seeks to make computers more human-like
by enabling them to recognise, interpret, predict, and respond to human emotions. While few models
effectively integrate emotion generation and its impact on cognitive processes, EmoCog [16] stands out.
This work adeptly fuses diverse models of computational emotions and cognitive architectures into a
unified model. In cognitive architectures, emotions can be divided into two parts: emotion effects and
emotion generation [16]. Emotion effects consider how emotions might influence cognitive process-
ing, while emotion generation explores how cognitive processes contribute to the generation of emotion.
EmoCog, developed by Lin et al., also has primary and secondary appraisals similar to WASABI, devel-
oped by Becker-Asano and Wachsmuth [5]. However, EmoCog’s secondary appraisal is more versatile,

4Situation Awareness Model for Pilot-in-the-Loop Evaluation

A. Rakow, A. Bairy, M. Hajnorouzi 5

explaining a broader range of emotions than WASABI. The model includes an appraisal module that
adjusts arousal and valence values in short-term memory nodes.

A psychological model of a human can also be achieved by their attention assessment. Wickens et
al. developed SEEV 5 model to quantify and predict a person’s attention level across various areas of
interest in a given situation [30]. Initially intended for pilots’ attention prediction, [9] and [31] later
adapted SEEV to gauge driver attention in road traffic. Leveraging SEEV, Bairy and Fränzle crafted a
model that predicts the optimal time to deliver explanations to drivers based on their attention level [3].

4 Psychological Models in A Game

In a nutshell, we want to define a light-weight game as sketched in Fig. 1. CIS plays against its environ-
ment env(CIS), which contains the human captured via HM. As discussed in Sect. 2 we encode into HM
how a human reacts so that we do not need to consider the human as a separate player. CIS’s actions are
providing information to HM. The CIS model can reflect that information can only be provided if CIS
has the information in its information base and if it has the required computing resources and time to
retrieve it. Strategy synthesis will then tell a designer whether CIS can provide information such that HM
achieves its goals 6. A designer can plug in different variants of CIS and compare how well they perform
in terms of the goals that can be achieved.

We aim for a HM model that encodes how a human reacts to the provided information or other envi-
ronmental perceptions. We assume that HM reacts internally, i.e. emotionally, by consuming cognitive
resources or by changing its information base. This internal change might cause a mode change of HM.
In the new mode HM chooses a different strategy to reach its goals. We thus think of HM as sketched
in Fig. 2. We want to apply strategy synthesis to examine the information provision game of CIS (cf.
Fig. 1) that uses such a HM as part of its environment model. There, a dominant strategy would be the
best strategy of CIS to provide the HM with the necessary information for HM to achieves its goals.

environment(HM)

perceptions
action
choices

having modes based on
information base,
emotions and resources

HM Figure 2: HM perceives its environment and chooses
actions. During a scenario HM changes its mode,
reflecting a change in its cognitive resources, emo-
tions, and information.

A central idea of our approach is to consider HM as a resource-bounded system that reacts mode-
specifically to the provided information content. How HM reacts will be derived from psychological
models that are instantiated for the considered scenario. We consider the central challenges of mak-
ing these models usable in our game to be: attaining a formal representation of psychological models,
reducing their complexity, combining different psychological theories, and interpreting the results.

As outlined in Sect. 3, there is a broad foundation of psychological theories that are shedding light
on different aspects of how humans react to provided information. The level of precision of these theo-
ries varies heavily as well as their level of formalization, ranging from informal over computational to
formal. As Reisenzein puts it “Theoretical fragmentation and a comparative lack of precision are [. . .]
characteristic of psychology in general” [27, p.248].

We focus on executable cognitive architectures as a starting point for our work, as they have an
appropriate level of precision. But to use such architectures within a formal game, we need a formal

5Salience, Effort, Expectancy, and Value
6This list of goals varies with the considered scenario but we assume that the goal of being safe has highest priority while

the goal of feeling well has less priority.

6 Information Provision as a Game

representation of them. The approach of Langenfeld et al. [13] for deriving timed automata for an
ACT-R instance promises a detailed study of the human reactions as captured in ACT-R. Since our
precursor work [3, 8] showed that the resulting models easily get too complex for our needs, we want to
derive simplified human models HMi from cognitive architectures by automata learning techniques [1].
Automata learning techniques have been applied in many areas, such as speech recognition, software
development, and computational biology [29]. In passive learning, the learning algorithm observes the
inputs and the corresponding outputs of the system that is to be learned. Active learning, on the other
hand, adopts an interactive approach where the learner also actively asks strategic queries and observes
the response. We want to use modes as a means for guiding how the human models get simplified. Our
idea is that a mode roughly specifies how HM reacts, i.e. what kind of strategy HM will apply. We think
this might be done in a similar way to [7]. There Gosh and Verbrugge captured the kinds of reasoning
strategies of player in a marble drop game as logical formulas, translated them into cognitive models and
executed them in the PRIMs architecture [28]. Instead of player types as in [7] we think of player modes
along the line “A tired driver reacts slowly. A driver gets tired when they are bored over a period of time.”
or “A driver that already has to keep seven facts in mind, will not easily remember five more facts.”[18]
We then want to apply automata learning to the cognitive architecture to derive a simplified model HM.
There the choice of observable propositions will be an important influence on whether meaningful modes
can be derived. Since the different architectures have different foci, we plan to use several architectures.

Given we would have n appropriately light-weight models HMi –derived from different cognitive
architectures or manually designed–, we build n games Gi, 1 ≤ i ≤ n (cf. Fig. 3). The performance

CASCaS driver model

Simulation of
driving scenarios

Observation
traces

Learning of
HM model

Game Analysis
of CIS & HM

Valuation of CIS :=
"What goals did
 HM achieve?"

CIS model n
CIS model 1

ACT-R driver model
for country roads

Figure 3: From cognitive architectures to a comparison of CIS variants.

scores of the same CIS C j in the different games Gi –measured e.g. in terms of HM reaching its goals–
will lead to a n-tuple t j of scores for C j. The comparison of two CIS variations, C j with performance
t j and Ck with performance tk, will help the designer to get early on insight into how well the CIS is
tailored to human needs. But the comparison of C j and Ck has to be done with care, as the meaning of
the HMi models has to be taken into account. This comparison gets especially difficult if the scores relate
to interdependent aspects. What if HMh suffers from a high workload while HMi is in a good mood?
Due to the coarse granularity of models that we want to consider, we expect that such cases will often
occur, so that plausibility checks and if necessary refining analysis has to be done. To this end, we think
of spotlight approaches where the learner gets more fine-grained observations where necessary. So, if
this approach is in use, a collection of appropriate HMi models could be evolved over time.

5 Conclusion

In this paper, we outlined our vision of how game theory can be used to support the development of
constantly informing systems (CIS), taking into account the human factor. Our vision is to use models
of the human mind and emotions from psychology to derive coarse formal human models, HMi that can
be used in a game between the CIS and the human captured by HMi. The main challenges of our vision
are attaining a formal representation of psychological models, reducing their complexity, combining
different psychological theories, and interpreting the results. Nevertheless, we hope to obtain at least
comparative results that can guide the early design of CIS in tailoring to the human needs.

A. Rakow, A. Bairy, M. Hajnorouzi 7

A Acknowledgements

This research has been supported by the German Research Council (DFG) in the PIRE Projects SD-
SSCPS and ISCE-ACPS under grant no. DA 206/11-1, by RTG SEAS, and by the German Federal
Ministry of Education and Research (BMBF) within the project "ASIMOV-D" under grant agreement
No. 01IS21022G, based on a decision of the German Bundestag.

B Abbreviations
AV Autonomous Vehicle
CIS Constantly Informing System
CGT Cooperative Game Theory
G Game
HM Human Model
NCGT Non-Cooperative Game Theory

References

[1] Bernhard K. Aichernig, Wojciech Mostowski, Mohammad Reza Mousavi, Martin Tappler & Masoumeh
Taromirad (2018): Model Learning and Model-Based Testing, pp. 74–100. Springer International Publishing,
Cham, doi:10.1007/978-3-319-96562-8_3.

[2] John R. Anderson & Christian Lebiere (1998): The Atomic Components of Thought. Lawrence Erlbaum
associates, doi:10.4324/9781315805696.

[3] Akhila Bairy & Martin Fränzle (2023): Optimal Explanation Generation Using Attention Distribution Model.
Human Interaction and Emerging Technologies (IHIET-AI 2023): Artificial Intelligence and Future Applica-
tions 70(70), doi:10.54941/ahfe1002928.

[4] Antoine Bechara, Hannah Damasio & Antonio Damasio (2000): Emotion, Decision Making and the Or-
bitofrontal Cortex. Cerebral cortex (New York, N.Y. : 1991) 10, pp. 295–307, doi:10.1093/cercor/10.3.295.

[5] Christian Becker-Asano & Ipke Wachsmuth (2010): Affective computing with primary and secondary emo-
tions in a virtual human. Autonomous Agents and Multi-Agent Systems 20, pp. 32–49, doi:10.1007/s10458-
009-9094-9.

[6] Adam M. Brandenburger & Barry J. Nalebuff (1995): The Right Game: Use Game Theory to Shape Strategy.
(Cover story). Harvard Business Review 73(4), pp. 57 – 71.

[7] Sujata Ghosh & Rineke Verbrugge (2018): Studying strategies and types of players: experiments, logics and
cognitive models. Synthese 195(10), pp. 4265–4307, doi:10.1007/s11229-017-1338-7.

[8] Mehrnoush Hajnorouzi & Martin Fränzle: Model-based Control for Human-Centered Systems. Unpublished.

[9] William J Horrey, Christopher D Wickens & Kyle P Consalus (2006): Modeling Drivers’ Visual Attention
Allocation While Interacting With In-Vehicle Technologies. Journal of experimental psychology. Applied
12(2), pp. 67–78, doi:10.1037/1076-898X.12.2.67.

[10] Eva Hudlicka (2002): This Time with Feeling: Integrated Model of Trait and State Effects on Cognition and
Behavior. Applied Artificial Intelligence 16, pp. 1–31, doi:10.1080/08339510290030417.

[11] Carroll E Izard (1992): Basic emotions, relations among emotions, and emotion-cognition relations.
doi:10.1037/0033-295x.99.3.561.

[12] Jeamin Koo, Dongjun Shin, Martin Steinert & Larry Leifer (2016): Understanding driver responses
to voice alerts of autonomous car operations. International Journal of Vehicle Design 70, p. 377,
doi:10.1504/IJVD.2016.076740.

https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.4324/9781315805696
https://doi.org/10.54941/ahfe1002928
https://doi.org/10.1093/cercor/10.3.295
https://doi.org/10.1007/s10458-009-9094-9
https://doi.org/10.1007/s10458-009-9094-9
https://doi.org/10.1007/s11229-017-1338-7
https://doi.org/10.1037/1076-898X.12.2.67
https://doi.org/10.1080/08339510290030417
https://doi.org/10.1037/0033-295x.99.3.561
https://doi.org/10.1504/IJVD.2016.076740

8 Information Provision as a Game

[13] Vincent Langenfeld, Bernd Westphal & Andreas Podelski (2019): On Formal Verification of ACT-R Archi-
tectures and Models. In: CogSci, pp. 618–624.

[14] Richard S Lazarus (1982): Thoughts on the relations between emotion and cognition. American psychologist
37(9), p. 1019, doi:10.1037/0003-066X.37.9.1019.

[15] Richard S Lazarus (1991): Emotion and adaptation. Oxford University Press. Available at https://books.
google.de/books?id=tTdIlwpxtWsC.

[16] Jerry Lin, Marc Spraragen, Jim Blythe & Michael Zyda (2011): EmoCog: Computational Integration of
Emotion and Cognitive Architecture. In: The Florida AI Research Society. Available at http://aaai.org/
ocs/index.php/FLAIRS/FLAIRS11/paper/view/2625.

[17] Stacy Marsella & Jonathan Gratch (2009): EMA: A process model of appraisal dynamics. Cognitive Systems
Research 10, pp. 70–90, doi:10.1016/j.cogsys.2008.03.005.

[18] George A Miller (1956): The magical number seven, plus or minus two: Some limits on our capacity for
processing information. Psychological review 63(2), p. 81, doi:10.1037/h0043158.

[19] J.A. Moura & D.H. Hutchison (2019): Game Theory for Multi-Access Edge Computing: Survey,
Use Cases, and Future Trends. IEEE Communications Surveys and Tutorials 21(1), pp. 260–288,
doi:10.1109/COMST.2018.2863030.

[20] Roger B. Myerson (1991): Game Theory: Analysis of Conflict. Harvard University Press. Available at
http://www.jstor.org/stable/j.ctvjsf522.

[21] John von Neumann & Oskar Morgenstern (2007): Theory of Games and Economic Behavior (60th-
Anniversary Edition). Princeton University Press, doi:10.1515/9781400829460. Available at http://www.
jstor.org/stable/j.ctt1r2gkx.

[22] Allen Newell (1990): Unified Theories of Cognition. Harvard University Press, USA.

[23] Eric Nivel (2007): Ikon flux 2.0. Available at https://api.semanticscholar.org/CorpusID:

60599731.

[24] Keith Oatley & P. N. Johnson-laird (1987): Towards a Cognitive Theory of Emotions. Cognition and Emotion
1(1), pp. 29–50, doi:10.1080/02699938708408362.

[25] David Peebles & Adrian Banks (2010): Modelling Dynamic Decision Making with the ACT-R Cognitive
Architecture. Journal of Artificial General Intelligence 2, pp. 52–68, doi:10.2478/v10229-011-0009-1.

[26] Astrid Rakow (2023): Framing Relevance for Safety-Critical Autonomous Systems,
doi:10.48550/arXiv.2307.14355. arXiv:2307.14355. Technical Report.

[27] Rainer Reisenzein, Eva Hudlicka, Mehdi Dastani, Jonathan Gratch, Koen Hindriks, Emiliano Lorini & John-
Jules Meyer (2013): Computational Modeling of Emotion: Toward Improving the Inter- and Intradisciplinary
Exchange. IEEE Trans. Affect. Comput. 4(3), p. 246–266, doi:10.1109/T-AFFC.2013.14.

[28] Niels Taatgen (2013): The Nature and Transfer of Cognitive Skills. Psychological review 120, pp. 439–471,
doi:10.1037/a0033138.

[29] Frits Vaandrager, Bharat Garhewal, Jurriaan Rot & Thorsten Wißmann (2022): A New Approach for Active
Automata Learning Based on Apartness. In: Tools and Algorithms for the Construction and Analysis of
Systems, Springer International Publishing, pp. 223–243, doi:10.48550/arXiv.2107.05419.

[30] Christopher Wickens, John Helleberg, Juliana Goh, Xidong Xu & William Horrey (2001): Pilot Task Man-
agement: Testing an Attentional Expected Value Model of Visual Scanning. Savoy, IL, UIUC Institute of
Aviation Technical Report.

[31] Bertram Wortelen (2014): Das Adaptive-Information-Expectancy-Modell zur Aufmerksamkeitssimulation
eines kognitiven Fahrermodells. Ph.D. thesis, Carl von Ossietzky Universität, Oldenburg, Germany. Available
at https://oops.uni-oldenburg.de/id/eprint/1970.

[32] Bertram Wortelen, Andreas Lüdtke & Martin Baumann (2013): Integrated Simulation of Attention Distribu-
tion and Driving Behavior.

https://doi.org/10.1037/0003-066X.37.9.1019
https://books.google.de/books?id=tTdIlwpxtWsC
https://books.google.de/books?id=tTdIlwpxtWsC
http://aaai.org/ocs/index.php/FLAIRS/FLAIRS11/paper/view/2625
http://aaai.org/ocs/index.php/FLAIRS/FLAIRS11/paper/view/2625
https://doi.org/10.1016/j.cogsys.2008.03.005
https://doi.org/10.1037/h0043158
https://doi.org/10.1109/COMST.2018.2863030
http://www.jstor.org/stable/j.ctvjsf522
https://doi.org/10.1515/9781400829460
http://www.jstor.org/stable/j.ctt1r2gkx
http://www.jstor.org/stable/j.ctt1r2gkx
https://api.semanticscholar.org/CorpusID:60599731
https://api.semanticscholar.org/CorpusID:60599731
https://doi.org/10.1080/02699938708408362
https://doi.org/10.2478/v10229-011-0009-1
https://doi.org/10.48550/arXiv.2307.14355
https://arxiv.org/abs/2307.14355
https://doi.org/10.1109/T-AFFC.2013.14
https://doi.org/10.1037/a0033138
https://doi.org/10.48550/arXiv.2107.05419
https://oops.uni-oldenburg.de/id/eprint/1970

A. Rakow, A. Bairy, M. Hajnorouzi 9

[33] Greg L Zacharias, Adam X Miao, Christine Illgen, Jake M Yara & GM Siouris (1996): SAMPLE: Situation
awareness model for pilot in-the-loop evaluation. In: Proceedings of the 1st Annual Conference on Situation
Awareness in the Tactical Air Environment, Citeseer.

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 10–16, doi:10.4204/EPTCS.395.2

© A. Salehi and V. Yazdanpanah
This work is licensed under the
Creative Commons Attribution License.

Trust Modelling and Verification Using Event-B

Asieh Salehi Fathabadi
University of Southampton, United Kingdom

a-salehi-fathabadi@soton.ac.uk

Vahid Yazdanpanah
University of Southampton, United Kingdom

v.yazdanpanah@soton.ac.uk

Trust is a crucial component in collaborative multiagent systems (MAS) involving humans and au-
tonomous AI agents. Rather than assuming trust based on past system behaviours, it is important to
formally verify trust by modelling the current state and capabilities of agents. We argue for verify-
ing actual trust relations based on agents’ abilities to deliver intended outcomes in specific contexts.
To enable reasoning about different notions of trust, we propose using the refinement-based formal
method Event-B. Refinement allows progressively introducing new aspects of trust - from abstract to
concrete models incorporating knowledge and runtime states. We demonstrate modelling three trust
concepts and verifying associated trust properties in MAS. The formal, correctness-by-construction
approach allows to deduce guarantees about trustworthy autonomy in human-AI partnerships. Over-
all, our contribution facilitates rigorous verification of trust in multiagent systems.

1 Introduction

Trust is a crucial contextual concept in multiagent systems (MAS), representing the cognitive state of a
trustor towards a trustee [3]. While there are various accounts of trust, in this work, we focus on trust
with respect to accomplishing tasks. While trust modelling in MAS has historically relied on reasoning
about past behaviours[9], recent work emphasises integrating current context rather than fully depending
on history. This involves verifying what agents can actually deliver based on their present capabilities,
beyond reputations. We argue for complementing offline safety assurances with online trust verification
for autonomous systems. Consider an autonomous delivery vehicle (ADV) tasked with transporting
goods. Offline verification during design suffices for basic safety and whether the ADV is reliable in
general (regardless of their current state and how they can perform in the context). However, assessing
trust online for a particular delivery also requires checking the ADV’s abilities given its current battery,
payload etc. against user requirements.

Trust modelling in MAS, and what we introduce as “actual trust”, entails representing different as-
pects like agents’ abilities, knowledge and commitments. To model such a multidimensional notion,
refinement techniques like Event-B [1] allow correct-by-construction modelling [7, 5]. Our key con-
tribution is a refinement-based approach that supports formally verifying various trust concepts. We
demonstrate formally modelling three trust notions relating to agent abilities, knowledge and commit-
ments. The automated consistency guarantees complement offline assurance for trustworthy autonomy
and human-AI partnerships [10, 11]. This work is an initial step on modelling trust using Event-B’s
refinement strategy that practically enables step-wise verification of actual trust between agents in au-
tonomous systems.

2 Actual Trust: Power, Knowledge, and Commitments

In modelling and reasoning about trust, it is key to distinguish what an agent may rely on due to past
behaviour of another agent and their typical behaviour from what in a given situation agents are actually

http://dx.doi.org/10.4204/EPTCS.395.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

A. Salehi and V. Yazdanpanah 11

able to deliver. While the former category of trusting has a retrospective view, and uses history to reason
about trust [9], the latter form of trust is to reason about what the other agent can actually deliver and
has basis in what is known in the theory of causality as actual causality [6]. In this work, we focus on
the latter notion, refer to it as actual trust and understand it as a relational notion between two agents or
agent groups i (as the trustor) and j (as the trustee) and say in a particular multiagent system M, i trusts
j with respect to task t only if i is able to verify that j is able and committed to deliver t. To model and
verify our notion of actual trust, as knowledge of another agents’ ability and commitment to ensure a
particular task, it is important to highlight how it relates to its key components conceptually.

Trusting for ability to materialise eventualities: In contrast to purely history-oriented perspectives
to trust, that look at the history and trust an agent to behave similar to its past behaviour, we deem
that trusting needs to be fine-tuned based on the current state of the system and actions agents are able
to execute and what agents intend to deliver. For instance, even if an ADV was successful in former
deliveries, it may be suffering from a low battery now and unable to deliver tasks. So, one should fine
tune trust in the agent’s power to deliver based on the current situation.

Trust as an epistemic state: We understand actual trust as an epistemic notion meaning that it is
essentially about knowledge of the trustor on how another agent relates to a particular event. Recalling
the running example, the user needs to reason about abilities of an ADV, consider its publicly announced
intentions, and verify if the ADV can be trusted for a particular delivery. This form of trust allows
specification of trust in different contexts and for different types requirements and knowledge levels. For
instance, a given ADV j may be seen as “trusted for delivering 5kg of groceries” but this trust may not
extend when it comes to passenger pickup..

Public commitments as a proxy to intentions: When we are dealing with autonomous AI agents,
we need to consider that being able to deliver a task fundamentally differs from delivering the task.
Imagine that an ADV v with a full battery and ability to deliver some goods is located relatively close to
an agent i with a delivery task t. In this case, i can’t simply assume that v can be trusted for delivering t as
it may be already committed to deliver tasks other than t or is in the middle of other plan executions. To
handle this, we use notion of publicly-announced commitments as a proxy to model what agents intend
to bring about.1

3 Refinement-Based Trust Formal Modelling and Verification

Background knowledge: Event-B [1] is a refinement-based formal method for system develop-
ment. The mathematical language of Event-B is based on set theory and first order logica. An
Event-B model consists of two parts: contexts for static data and machines for dynamic behaviour.
An Event-B model is constructed by making progressive refinements starting from an initial ab-
stract model which may have more general behaviours and gradually introducing more detail that
constrains the behaviour towards the desired system. Each refinement step is verified to be a valid
refinement of the previous step.

aPlease refer to Event-B Language user manual https://wiki.event-b.org/index.php/Event-B_Language
for extra support to understand the presented model.

Benefiting from refinement technique in building Event-B formal model, instead of one single-layer
complex design model of system, we propose to gradually introduce different concepts of actual trust

1Note that assuming full access to agents’ intentions is against separation of concerns, privacy, and encapsulation as key
design principles in safe and responsible AI and software development.

https://wiki.event-b.org/index.php/Event-B_Language

12 Trust Verification using Event-B

through refinement steps. Figure 1 presents our vision idea of applying refinement-based development
to model actual trust in autonomous systems 2. Left side illustrates the trust relationship between trustor
and trustee, while right side presents the structure of our proposed Event-B formal model, including three
levels of refinements: machines (M0, M1 and M2) and associated contexts (cntx0, cntx1 and cntx2).

M0_abs

M1_knwl

M2_int

refines

refines

Abstract model: trust and power (strategic trust)

1st Refinement: trust and trustor knowledge (epistemic trust)

2nd Refinement: trust and trustee intention (commitment trust)

cntx0

cntx2

extends

sees

sees

cntx1

extends

trustor trustee

actual trust

trustor trustee

actual trust

trustor knowledge

trustor trustee

actual trust

trustor knowledge trustee intention

sees

Figure 1: Trust Modelling and the Refinement Strategy

In line with trust key components and first-order building blocks presented in Section 2, starting
from the top level, trust is first modelled as an abstract relationship between two agents, trustor and
trustee, M0_abs; followed by first refinement level where trustor knowledge is introduced, M1_knwl.
Then trustee intention is introduced in a further refinement level, M2_int.

3.1 Modelling trust in Event-B

Agents and tasks are defined as a set in the context cntx0, which is partitioned to two sub-sets: trustors
and trustees:

Background knowledge: An Event-B context contains carrier sets s, constants c, and axioms A(c)
that constrain the carrier sets and constants.

CONTEXT cntx0

SETS AGENTS TASKS CONSTANTS trustors trustees

AXIOMS axm1 : trustors⊆ AGENTS // Definition: Subset⊆
axm2 : trustees⊆ AGENTS

axm3 : partition (AGENTS, trustors, trustees)

Definition 1. Abstract (strategic) trust: agent i weakly (abstraction) trusts j regarding task t if j has an
action or a sequence of actions available to it to ensure e. We are operating in a cooperative setting,
hence assuming that agents share information and have perfect knowledge of themselves as well as other
agents’ abilities. We define trust in terms of the ability to deliver t.

Trust is modelled as a three-dimension relation variable between a trustor, a set of trustees and a task,
in the abstract machine. In M0_abs, an invariant, inv1, is specifying the agent_task variable as a function
between a subset of trustees and a single task, indicating the task that can be delivered by a subset of

2Note that because of space limitation, the Event-B model of trust is not fully presented here. And for simplicity, in purpose
of demonstrating the vision idea, we model trust in its simplest definition.

A. Salehi and V. Yazdanpanah 13

trustee agents. And inv2 is specifying the trustor_trustee_task variable indicating the relation between a
trustor and a pair of agent_task.

Background knowledge: An Event-B machine contains variables v, invariant predicates I(v) that
constrain the variables, and events. In Event-B, a machine corresponds to a transition system where
variables represent the states and events specify the transitions.

@inv1: agent_task ∈ P(trustees) 7→ tasks // specifies which agents are able to deliver which task
// Definition: Powerset: P(S) = {s | s⊆ S}
// Definition: A function (agent_task) is a relation with the restriction that each element of the

domain (P(trustees)) is related to a unique element in the range (tasks); a many to one mapping
// Definition: Set membership∈
@inv2: trustor_trustee_task ∈ trustors 7→ agent_task // specifies set of triples i 7→ (j 7→ t), when

agent i can trust a set of agents j to deliver task t

The event trust is adding a new triple to the trustor_trustee_task variable, act1. While grd1− 3 is
checking the type of the event parameters, grd4 is indicating the above definition, ensuring j is able to
deliver task t; guards grd5−8 are described later.

Background knowledge: An event in a machine, comprises a guard denoting its enabling-condition
and an action describing how the variables are modified when the event is executed. In general, an
event e has the following form, where t are the event parameters, G(t, v) is the guard of the event,
and v := E(t, v) is the action of the event: e== any twhere G(t,v) then v := E(t,v) end

event trust any i j t

where @grd1 : i ∈ trustors
@grd2 : j ∈ P(trustees)
@grd3 : t ∈ tasks
@grd4 : t ∈ agent_task[{j}] // j is able to deliver task t
// Definition: relational image: r[S] = {y | ∃x·x∈ S∧ x 7→ y ∈ r} where S is a set
@grd5 : i /∈ j // to preserve inv3
// Definition: Set non−membership /∈
@grd6 : j 6=∅ // abstract guard to preserve inv4

@grd7 : j⊆ knowledge[{i}] // refining guard to preserve inv4
@grd8 : commitments[i 7→ (j 7→ t)]= {TRUE} // refining guard to preserve inv4

then @act1: trustor_trustee_task := trustor_trustee_task ∪ {i 7→ (j 7→ t)}

// Definition: Union ∪

Running example: For instance, for an agent i and an ADV j and task of “delivering 5kg of groceries”,
i can trust j only if “delivering 5kg of groceries” is within the allocated tasks to j: grd3. Then, act1 will
add a new triple of (i, j, t) to the variable set trustor_trustee_task.

3.2 Modelling verifiable trust properties

To propose the idea of formal verification of properties of trust in autonomous systems, here we present
two invariants, specifying two fundamental trust properties. inv3 is specifying that an agent i would not
trust itself to deliver a specific task t. And inv4 is specifying avoiding trust deadlock, that for each trustor
i and task t, there is always a non-empty subset of trustees j that can deliver t.

14 Trust Verification using Event-B

@inv3: ∀ i , j· i ∈ trustors ∧ j ∈ P(trustees) ∧ i ∈ dom(trustor_trustee_task)⇒ i /∈ j
// Definition: Conjunction∧ , Universal quantification ∀ , Implication⇒
// Definition: Domain: dom(r) ∀r·r∈ S↔ T⇒ dom(r) = {x·(∃y·x 7→ y∈ r)} where S and T are sets
@inv4: ∀ i , t · i ∈ trustors ∧ t ∈ tasks⇒ (∃ j · j ∈ P(trustees) ∧ j 6=∅)

// Definition: Existential quantification ∃

3.3 Verifying trust properties

Background knowledge: Event-B is supported by the Rodin tool set [2], an extensible open source
toolkit which includes facilities for modelling, verifying the consistency of models using theorem
proving and model checking techniques, and validating models with simulation-based approaches.

One of the generated proof obligations (PO) for an Event-B model, is ”invariant preservation”:
e / v / INV (where e is the event name, and v is the invariant name)
INV PO ensures that the property specified in the invariant INV is preserved by event e. To preserve

the trust properties defined in inv3 and inv4, the event trust is guarded by grd5 and grd6, see above. Two
POs trust/inv3/INV and trust/inv4/INV are generated and automatically discharged by Rodin tool.

3.4 Refining trust

Next, we introduce the refined notion of epistemic trust in which agents’ knowledge is integrated.
Definition 2. Refined (epistemic) trust: for a stronger notion of trust we require a variable of knowledge
specifying the knowledge relationship between two agents i, j, indicating whether i is fully aware of j’s
abilities.

Refining model M1_knwl introduces the knowledge variable to model the knowledge of trustors
about trustees:

@inv1: knowledge ∈ trustors↔ trustees

// Definition: A relation (knowledge) is a set of ordered pairs; a many to many mapping.

Running example: For instance, a given ADV j may be seen as “trusted for delivering 5kg of gro-
ceries” by an agent i who is fully aware of j’s abilities but not by agent v who is not aware of j and that
j has the capacity to ensure t.
Definition 3. Refined (commitment) trust: for a stronger notion of trust we require a variable of commitments
specifying a function that takes a trust triple (i, j, t) and determines whether agent j is committed to de-
liver task t for agent i. We refine the trust model, not only in terms of the ability, but also the commitment
to deliver t.

And refining model M2_int introduces the commitment variable to model the intention of trustees to
deliver the associate task (for simplicity in this paper, we model commitment as a Boolean indicating
whether an agent(s) as trustee intends to deliver the associated task or not):

@inv1: commitments ∈ trustor_trustee_task→ BOOL

inv4 is refined to include the knowledge property in M1_knwl and commitment specification in M2_-
int:

@inv4: ∀ i , t · i ∈ trustors ∧ t ∈ tasks⇒
(∃ j · j ∈ P(trustees) ∧ j 6=∅ ∧ (j 7→ t) ∈ agent_task ∧
j⊆ knowledge[{i}] ∧ commitments[i 7→ (j 7→ t)]= {TRUE} ∧
i 7→ (j 7→ t) ∈ trustor_trustee_task)

A. Salehi and V. Yazdanpanah 15

And refining event trust includes extra guards grd7 and grd8 to preserve inv4, see above. Not
providing these guards results in failed generated INV POs.

Running example: For instance, for an agent i and an ADV j and task of “delivering 5kg of groceries”,
i can trust j only if “delivering 5kg of groceries” is within the allocated tasks to j: grd3 (verified in the
abstract machine), and i is fully aware of j’s abilities: grd7 (verified in the machine M1_knwl) and j is
committed to deliver 5kg of groceries to i: grd8 (verified in the machine M2_int).

Model checking trust properties: The presented Event-B model can be model checked by instanti-
ating the context elements, for example for the ADV system. Also the scenario checker integrated in
Rodin can demonstrate difference scenarios of the desire system. Due to the concise nature of this work
and space limitation, we are unable to include the model checking experience.

4 Concluding Remarks and Future Directions

The step-wise refinement approach presented in this paper, demonstrates three notions of actual trust,
and two verifiable trust properties. The model can simply refined to include more notions and properties.
This paper elaborates on how the autonomous system research can benefit from refinement-based formal
methods in terms of modelling trust. The abstraction technique aids the modelling and verification
process in step-wise manner, where instead of a single complex model, the formal model is gradually
built through refinement levels, hence easier to be understood and proved. Also the Event-B formal
method provides the verification techniques (theorem proving and ProB model checking [8]) in each
refinement level, to ensure the trustworthiness of autonomous systems.

Contributions to Autonomous Systems (AS): In AS, replacing human decision-making with ma-
chine decision-making results in challenges associated with stakeholders’ trust. Trustworthiness of an
AS is key to its wide-spread adoption by society. To develop a trusted AS, it is important to understand
how different stakeholders perceive an AS as trusted, and how the context of application affects their per-
ceptions. The translation of trust issues into formalised solutions is challenging due to trust dynamics.
In this work, we try to advance in this direction by utilising the ability of Event-B as a refinement-based
formal method to manage the lack of information when modelling trust in multi-agent systems. High-
level model aids to abstract away the uncertain/unknown trust specifications. We introduced the notion
of actual trust versus statistical trust, toward trusting to an AS due to its safety checks, like, inherent
uncertainties in the environment, diversity in the requirements and needs of different users and contexts
of application. We formalised the notion of actual trust using Event-B formal modelling followed by
verifying the safety properties of it. The actual trust notions is modelled and verified in three levels:
strategic trust, epistemic trust and commitment trust.

Future directions: This formal modelling and verification approach for trust in autonomous systems
can be extended in several directions. One avenue is via integrating Event-B models with Alternating-
Time Temporal Logic [13] to allow more expressive temporal specifications and model checking of trust
properties, e.g., in the context of connected mobility systems. Further research can also investigate grada-
tion of trust (as a quantifiable notion) and formally relating trust and neighbouring notions in multiagent
settings such as responsibility [12]. Quantifying trust based on strategy lengths and information-theoretic
notions may also complement the approach pursued here. Overall, rigorous formal methods can provide
significant assurances about trustworthy autonomy and human-AI partnerships, especially for safety-
critical applications.

16 Trust Verification using Event-B

Acknowledgements: This work was supported by the UK Engineering and Physical Sciences Re-
search Council (EPSRC) through a Turing AI Fellowship (EP/V022067/1) on Citizen-Centric AI Sys-
tems (https://ccais.ac.uk/) and the UKRI Trustworthy Autonomous Systems Hub (EP/V00784X/1).

References
[1] J-R. Abrial (2010): Modeling in Event-B: System and Software Engineering. Cambridge University Press,

doi:10.1017/S0956796812000081.
[2] J-R Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta & L. Voisin (2010): Rodin: An Open Toolset

for Modelling and Reasoning in Event-B. Software Tools for Technology Transfer 12(6), pp. 447–466,
doi:10.1007/s10009-010-0145-y.

[3] Cristiano Castelfranchi & Rino Falcone (2020): Trust: Perspectives in cognitive science. The Routledge
Handbook of Trust and Philosophy, pp. 214–228, doi:10.4324/9781315542294-17.

[4] Mehdi Dastani & Vahid Yazdanpanah (2023): Responsibility of AI systems. Ai & Society 38(2), pp. 843–852,
doi:10.1007/s00146-022-01481-4.

[5] Hang-Jiang Gao, Zheng Qin, Lei Lu, Li-Ping Shao & Xing-Chen Heng (2007): Formal specification and
proof of multi-agent applications using event b. Information Technology Journal 6(7), pp. 1181–1189,
doi:10.3923/itj.2007.1181.1189.

[6] Joseph Y Halpern (2016): Actual causality. MiT Press, doi:10.7551/mitpress/10809.001.0001.
[7] Arnaud Lanoix (2008): Event-B Specification of a Situated Multi-Agent System: Study of a Platoon of Vehi-

cles. In: Second IEEE/IFIP International Symposium on Theoretical Aspects of Software Engineering, TASE
2008, June 17-19, 2008, Nanjing, China, IEEE Computer Society, pp. 297–304, doi:10.1109/TASE.2008.39.

[8] Michael Leuschel & Michael Butler (2008): ProB: An Automated Analysis Toolset for the B Method. Soft-
ware Tools for Technology Transfer (STTT) 10(2), pp. 185–203, doi:10.1007/s10009-007-0063-9.

[9] Sarvapali D Ramchurn, Dong Huynh & Nicholas R Jennings (2004): Trust in multi-agent systems. The
knowledge engineering review 19(1), pp. 1–25, doi:10.1017/S0269888904000116.

[10] Sarvapali D Ramchurn, Sebastian Stein & Nicholas R Jennings (2021): Trustworthy human-AI partnerships.
Iscience 24(8), p. 102891, doi:10.1016/j.isci.2021.102891.

[11] Sebastian Stein & Vahid Yazdanpanah (2023): Citizen-Centric Multiagent Systems. In: Proceedings of the
2023 International Conference on Autonomous Agents and Multiagent Systems, pp. 1802–1807. Available
at https://dl.acm.org/doi/10.5555/3545946.3598843.

[12] Vahid Yazdanpanah & Mehdi Dastani (2016): Quantified degrees of group responsibility. In: Coordination,
Organizations, Institutions, and Norms in Agent Systems, Springer, pp. 418–436, doi:10.1007/978-3-319-
42691-4_23.

[13] Chenyang Zhu, Michael Butler, Corina Cirstea & Thai Son Hoang (2023): A fairness-based refinement
strategy to transform liveness properties in Event-B models. Science of Computer Programming 225, p.
102907, doi:10.1016/j.scico.2022.102907.

https://ccais.ac.uk/
https://doi.org/10.1017/S0956796812000081
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.4324/9781315542294-17
https://doi.org/10.1007/s00146-022-01481-4
https://doi.org/10.3923/itj.2007.1181.1189
https://doi.org/10.7551/mitpress/10809.001.0001
https://doi.org/10.1109/TASE.2008.39
https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1017/S0269888904000116
https://doi.org/10.1016/j.isci.2021.102891
https://dl.acm.org/doi/10.5555/3545946.3598843
https://doi.org/10.1007/978-3-319-42691-4_23
https://doi.org/10.1007/978-3-319-42691-4_23
https://doi.org/10.1016/j.scico.2022.102907

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 17–29, doi:10.4204/EPTCS.395.3

© T. Flinkow, R. Monahan & B. A. Pearlmutter

Comparing Differentiable Logics for Learning Systems:
A Research Preview*

Thomas Flinkow
Department of Computer Science

Maynooth University
Maynooth, Ireland

thomas.flinkow@mu.ie

Barak A. Pearlmutter Rosemary Monahan
Department of Computer Science and Hamilton Institute

Maynooth University
Maynooth, Ireland

barak@pearlmutter.net rosemary.monahan@mu.ie

Extensive research on formal verification of machine learning (ML) systems indicates that learning
from data alone often fails to capture underlying background knowledge. A variety of verifiers have
been developed to ensure that a machine-learnt model satisfies correctness and safety properties, how-
ever, these verifiers typically assume a trained network with fixed weights. ML-enabled autonomous
systems are required to not only detect incorrect predictions, but should also possess the ability to
self-correct, continuously improving and adapting. A promising approach for creating ML models
that inherently satisfy constraints is to encode background knowledge as logical constraints that guide
the learning process via so-called differentiable logics. In this research preview, we compare and
evaluate various logics from the literature in weakly-supervised contexts, presenting our findings and
highlighting open problems for future work. Our experimental results are broadly consistent with
results reported previously in literature; however, learning with differentiable logics introduces a new
hyperparameter that is difficult to tune and has significant influence on the effectiveness of the logics.

1 Introduction

Advancements in machine learning (ML) in the past few years indicate great potential for applying ML
to various domains. Autonomous systems are one such application domain, but using ML components
in such a safety-critical domain presents unique new challenges for formal verification. These include
(1) ML failing to learn background knowledge from data alone [16], (2) neural networks being susceptible
to adversarial inputs, and (3) a lack of specifications, generally and especially when continuous learning
is permitted [3]. Addressing these challenges is even more important and more difficult when the ML-
enabled autonomous system is permitted to continue to learn after deployment, either to adapt to changing
environments or to correct and improve itself when errors are detected [2].

A multitude of neural network verifiers (c.f. [10]) have been presented in the past few years; prominent
examples include Reluplex [6], NNV [12], and MN-BaB [4]. These solvers use techniques such as
satisfiability and reachability analysis, and can verify a variety of properties. However, these verifiers
typically assume trained networks with fixed weights and do not target the learning process itself [7]. One
step in the direction of correct-by-construction neural networks are so-called differentiable logics, which
transform a logical constraint φ into an additional logical loss term LL(φ) to minimise when learning,
where the logical loss of a constraint φ is combined with standard cross-entropy loss as L=LCE+λLL(φ).
In order to translate logical constraints into loss terms, a mapping must be defined that allows for real-
valued truth values, and that is differentiable almost everywhere for use with standard gradient-based
methods. In the following, we give a brief overview of two of these mappings (so-called differentiable
logics) from popular literature, namely DL2 and fuzzy logics.

*This publication has emanated from research conducted with the financial support of Science Foundation Ireland under
Grant number 20/FFP-P/8853.

http://dx.doi.org/10.4204/EPTCS.395.3

18 Comparing Differentiable Logics for Learning Systems: A Research Preview

Table 1: The t-norms, t-conorms and implications used in our experiments.

Name T-norm (Conjunction) T-conorm (Disjunction) Implication

Gödel TG(x,y) = min(x,y) SG(x,y) = max(x,y)
IG(x,y) =

{
1, if x < y
y

IKD(x,y) = max(x,y)

Łukasiewicz TŁK(x,y) = max(0,x+ y−1) SŁK(x,y) = min(1,x+ y) IŁK(x,y) = min(x+ y,1)

Yager TYG(x,y) = max(0,x p y) SYG(x,y) = min(1,x p y) IYG(x,y) =

{
1, if x = y = 0
yx

Product TP(x,y) = xy SPS(x,y) = x+ y− xy
IGG(x,y) =

{
1, if x < y
y/x

IRC(x,y) = x+ xy

where u p v := p
√
|u|p + |v|p is the p-norm Pythagorean sum, p≥ 1, and u := 1−u

1.1 DL2

DL2 (“Deep Learning with Differentiable Logics”) [5] is a system for querying and training neural
networks with logic. It maps absolute truth to 0 and other degrees of truth to positive values up to ∞ based
on the following elementary translation rules:

LDL2(x≤ y) := max(x−y,0), LDL2(x∧y) :=LDL2(x)+LDL2(y), LDL2(x∨y) :=LDL2(x) ·LDL2(y).
(1)

Additionally, there is LDL2(x 6= y) := ξ [x = y], where ξ > 0 denotes a constant that was found to not have
significant influence [5], and [·] being the indicator (in Knuth’s notation). From these, other rules such as
LDL2(x < y) :=LDL2(x≤ y∧x 6= y) can be derived. Negation is handled by pushing the negation inwards
to the level of comparison, e.g. LDL2(¬(x≤ y)) :=LDL2(y < x). DL2 does not have a separate translation
for implication, instead translating implication as LDL2(x→ y) := LDL2(¬x∨ y).

1.2 Fuzzy Logics

Whereas DL2 was designed specifically for deep learning contexts, fuzzy logics are logical systems
that have been studied extensively and happen to be suitable for use as differentiable logics due to their
many-valued nature, with operators that are often differentiable almost everywhere. Fuzzy logics express
degrees of truth in the unit interval [0,1], with absolute truth mapped to 1. We use LL(φ) := 1.0−LFL(φ)
for the fuzzy logic loss in our implementation to address the inverse notion of truth.

Fuzzy logics are based on functions T : [0,1]2→ [0,1] that are commutative, associative, monotonic,
and satisfy T (1,y) = y. These are called triangular norms (abbreviated as t-norms) and generalise
conjunction. A t-conorm (also called s-norm) generalises disjunction and can be obtained from a t-norm
using S(x,y) = 1−T (1− x,1− y). From a t-conorm S and fuzzy negation N, one obtains a so-called
(S,N)-implication (which generalises material implication) as I(x,y) := S(N(x),y)). Examples of (S,N)-
implications are the Kleene-Dienes implication IKD and Reichenbach implication IRC, both with the
standard negation N(x) = 1− x. Other implications generalise the intuitionistic implication and are called
R-implications, because they use the t-norm residuum R(x,y) = sup{t ∈ [0,1] | T (x, t) ≤ y}. Example
R-implications are the Gödel implication IG and Goguen implication IGG. The Łukasiewicz implication IŁK
is both an (S,N)-implication and an R-implication. Other implications are neither—the Yager implication

T. Flinkow, R. Monahan & B. A. Pearlmutter 19

IYG, for example, is an f -generated implication that is obtained using f (x)=− lnx in I(x,y) := f−1(x f (y))
(with the understanding that 0 ·∞ = 0).

Additionally, [14] propose sigmoidal implications in order to prove the derivatives of the original
implication, while preserving its characteristics. In Eq. (2), σ(x) := 1/(1+exp(−x)) denotes the standard
sigmoidal function and s is a parameter controlling the steepness. We use the sigmoidal implication in our
experiments with IRC and s = 9, as suggested by [14].

(I(x,y))s :=
(1+ exp(s/2))σ(sI(x,y)− s/2)−1

exp(s/2)−1
(2)

Lastly, given a fuzzy implication I and bijection φ : [0,1]2→ [0,1], [1] show that the function (I(x,y))φ :=
φ−1I(φ(x),φ(y)) is also a fuzzy implication. We use this in our experiments with the Reichenbach
implication IRC and φ(x) = x2.

Table 1 lists the definitions of the mentioned t-norms, t-conorms and implications, and Fig. 3 (Ap-
pendix A) displays plots of the implications.

Mapping atomic terms DL2 is designed for atomic terms that are inequalities or comparisons. As seen
in Eq. (1), it provides the loss translation LDL2(x≤ y) := max(x− y,0) for comparison.

Fuzzy logics typically do not define fuzzy comparison operators. However, [11] introduce a mapping
LFL(x ≤ y) := 1−max

(
x−y
x+y ,0

)
for fuzzy logics. Fuzzy logics requires the truth values of the atomic

terms x,y to be mapped into [0,1] by some oracle. Because the atomic terms in our constraints are
comparisons, we change this mapping from LFL(x ≤ y) : [0,1]2 → [0,1] to LFL(x ≤ y) : R2 → [0,1],
allowing us to forgo the need for an external oracle. The mapping is shown in Eq. (3) below, where we
use ε = 0.05.

LFL(x≤ y) := 1− max(x− y,0)
|x|+ |y|+ ε

(3)

Note that the fuzzy logic mapping LFL(x ≤ y) has a property we intuitively might wish to hold: for
example, we might want 21≤ 20 to be as much of a violation as 21000≤ 20000. This cannot be achieved
in DL2, where the violation depends only on the absolute difference.

2 Comparing Differentiable Logics: Experimental Setup

Our comparison experiment1 is implemented in PyTorch and based on the original experiment in [5].
We train on the Fashion-MNIST, CIFAR-10, and GTSRB data sets with various constraints. In order
to create meaningful scenarios where learning with logical constraints surpasses the baseline (learning
from data alone), we train with a fraction of the data sets, namely 10 % for Fashion-MNIST, 50 % for
CIFAR-10, and 90 % for GTSRB (as it consists of more classes, with more imperfect data). Additionally,
we introduce 10 % label noise (training with incorrect labels) for all data sets, and apply various image
manipulation techniques, such as random cropping, flipping, and colour changes. A batch size of 256 was
used for all datasets.

The goal of our experiment is to compare various differentiable logics, including DL2 and popular
fuzzy logics, and investigate which logic performs most favourable, focusing specifically on implication
and conjunction, as these have noticeable consequences for the learning process: As pointed out by [14],

1 Available on https://github.com/tflinkow/dl-comparison.

https://github.com/tflinkow/dl-comparison

20 Comparing Differentiable Logics for Learning Systems: A Research Preview

background knowledge and constraints are most often of the form “if A, then B”. Choosing a suitable
implication that performs well is thus an important task to guarantee best learning.
In [15], the authors introduce the shadow-lifting property for a conjunction, which requires the truth value
of a conjunction to increase when the truth value of a conjunct increases. This property seems highly
desirable for learning, as it allows for gradual improvement. For example, the formula 0.1∧1.0 should
be more true than 0.1∧0.2, but the Gödel t-norm TG(x,y) = min(x,y) would yield the same truth value
in both cases. DL2 uses addition for conjunction, trivially satisfying shadow-lifting. The only t-norm
to satisfy the shadow-lifting property is the product t-norm TP(x,y) = xy. However, as noted by [14], its
derivative will be low if x and y are both low, making it hard for the learning process to make progress.

2.1 Constraints

Universal quantification In [5], the authors categorise constraints into two distinct schemes: training
set constraints, which relate sampled inputs xxx and xxx′ from the training set, and global constraints, which
concern inputs in the ε-ball around a particular input. They use a PGD-based approach for universally
quantified constraints and are thus limited to robustness properties, as noted by [11]. In [14], the authors
relax infinite quantifiers by assuming minibatches to be subsets of an independent distribution and using
finite conjunction for universal quantifiers for the minibatch, thus losing soundness. [11] provide a
semantics for quantifiers, independent of the concrete differentiable logic and going beyond robustness
via expectation minimisation of a probability distribution.

We do not consider global constraints in our experiment and only utilise finite universal quantifi-
cation via repeated application of conjunction. This is permitted due to t-norms being associative and
commutative by definition, and DL2’s use of addition for conjunction.

Investigating implication Limited to only training set constraints, the original DL2 experiment has
shown some constraints to already be satisfied in the baseline experiments, where learning with logics
would only provide minor improvements. Their robustness constraint, for example, was already 94.5%
satisfied on Fashion-MNIST for the baseline, compared to 98.36% with DL2.2

They also use a class-similarity constraint for the CIFAR-10 network to encode domain knowledge
such as “a car is more similar to a truck than to a dog”. In their fully-supervised experiment, even the
baseline experiment satisfied this constraint quite well, and DL2 was able to only improve constraint
accuracy from 93.67% to 99.68%. As all fuzzy implications I(x,y) by definition behave the same for
x = 0 or x = 1, the original constraint3 is not suitable to compare different implications. Our modified
constraint is shown in Eq. (4)4 and replaces the binary decision by a soft one, checking whether the
network output for label l is greater than or equal to 1/#classes.

CSim(N,xxx,Labels) :=
∧

(l1,l2,l3)∈Labels

(
(N(xxx)l1 ≥ 1/10)−→ (N(xxx)l2 ≥N(xxx)l3)

)
. (4)

As explained above, we translate the conjunction using repeated application of the product t-norm for all
fuzzy logics in order to only investigate the different mappings for implication.
2 The only training set constraint where DL2 could significantly improve constraint accuracy in the original experiments (from

5.62% to 99.78% in Fashion-MNIST) is the Lipschitz constraint Lipschitz(N,xxx,xxx′,L) := ‖N(xxx)−N(xxx′)‖2 ≤ L‖xxx− xxx′‖2.
We do not include this constraint in our experiments as it does not use conjunction nor implication.

3

CSim(N,xxx,Labels) :=
∧

(l1,l2,l3)∈Labels

(
(argmaxN(xxx) = l1)−→ (N(xxx)l2 ≥N(xxx)l3)

)
.

4 The definition of Labels is shown in Eq. (6) for Fashion-MNIST, and in Eq. (7) for CIFAR-10, both in Appendix A.

T. Flinkow, R. Monahan & B. A. Pearlmutter 21

Investigating conjunction For investigating the shadow-lifting effect, we utilise the German traffic sign
recognition benchmark (GTSRB) dataset and use a property that forces the network to make confident,
strong decisions by requiring all elements of a group of classes to be either very likely or very unlikely.
Groups consist of classes of a similar type (e.g. speed limit signs)5.

Group(N,xxx,ε,Groups) :=
∧

{gi}∈Groups

(
∑

i
N(xxx)gi ≤ ε ∨ ∑

i
N(xxx)gi ≥ 1− ε

)
. (5)

We use the probabilistic sum t-conorm SPS for fuzzy disjunctions in order to only focus on the conjunction.

3 Results

Table 2a shows the results obtained from running the class-similarity constraint experiment on the
Fashion-MNIST and CIFAR-10 networks, and Table 2b shows the results obtained from running the group
constraint on GTSRB. For each of these, the displayed prediction and constraint accuracy are obtained
by taking the largest of their products from the last 10 epochs. Additionally, Figs. 1 and 2 (Appendix A)
show how prediction and constraint accuracy change over time.

What immediately stands out is that when training with any logic, constraint accuracy is significantly
improved, while prediction accuracy is always slightly reduced, compared to the baseline experiment.
This could be because our constraints fail to capture useful background knowledge that would help with
predictions, or, as [5] note, we might observe a similar phenomenon as reported in [13], where adversarial
robustness conflicts with standard generalisation.

Our observed results are broadly consistent with trends previously reported in literature. The Gödel
and Goguen implications perform badly as we expect many wrong inferences (due to the non-existing
derivative of IG with respect to x, and due to the Goguen implication’s singularity as x→ 0), which
manifest in the table as reduced prediction and constraint accuracy.

Comparing DL2 and fuzzy logics, our results indicate that for implication, fuzzy logics are the better
choice — for CIFAR-10, even IKD performs better than DL2, although both are rewriting x→ y to ¬x∨ y.
This difference could be due to a multitude of reasons; the mappings L(x ≤ y) and L(x∧ y) are very
different for DL2 and fuzzy logics, as is their range. Albeit the most likely reason is a sub-optimal choice
of hyperparameter λ , explained in more detail in the next paragraph. For the group constraint, DL2
performs slightly better than any of the fuzzy logics, although the differences between the logics are
overall not as noticeable compared to the class-similarity constraint.

Hyperparameter λ Learning with logical loss introduces the hyperparameter λ , which is the logical
weight for the total loss calculation. Finding a suitable logical weight λ is crucial for achieving good results,
as choosing a sub-optimal value can potentially result in operators that are supposed to perform badly
(such as the Gödel implication) performing even better than logics that are supposed to perform best. Our
strategy to approximate good values of λ was to run the same experiment (data set, constraint, logic) for
the same number of epochs for each logical weight value λ ∈ {0,0.2,0.4,0.6,0.8,1,2,3,4,5,6,7,8,9,10}.
We then selected the value that yielded the highest combined prediction and constraint accuracy. Tables 2a
and 2b show the value of λ we chose for each run, and Figs. 4 to 6 (Appendix A) show the prediction and
constraint accuracies for each value of λ .

This approach is very expensive and not feasible for real-world application. Unfortunately, extrapolat-
ing from running experiments at a smaller number of epochs does not necessarily transfer over to running
5 The definition of the set of sets Groups is shown in Eq. (8) (Appendix A).

22 Comparing Differentiable Logics for Learning Systems: A Research Preview

Table 2: Results. P/C is prediction / constraint accuracy in %.

(a) Class-Similarity constraint.

Fashion-MNIST CIFAR-10

P C λ P C λ

Baseline 77.55 84.31 – 79.06 48.65 –
DL2 77.88 89.15 0.6 78.55 52.21 0.4
IG 63.46 91.30 3.0 77.65 81.56 1.2
IKD 75.39 80.59 0.8 78.82 72.94 0.6
IŁK 64.64 97.28 4.0 76.06 87.75 6.0
IGG 67.25 95.54 3.0 74.83 88.67 10.0
IRC 76.79 92.56 0.8 79.14 80.51 0.8
(IRC)s=9 77.06 93.63 0.8 78.30 80.87 0.8
(IRC)φ=x2 76.88 95.94 1.0 78.31 90.74 1.6
IYG 74.14 80.15 1.0 77.81 73.19 0.8

(b) Group constraint.

GTSRB

P C λ

Baseline 89.93 49.97 –
DL2 88.16 77.25 7.0
TG 88.38 74.20 5.0
TŁK 85.26 78.43 5.0
TRC 86.52 77.56 5.0
TYG 87.47 76.47 5.0

the experiment at the desired number of epochs. Further, as can be seen in Figs. 4 to 6 (Appendix A), the
resulting graphs are non-monotonic, making it difficult to predict the prediction and constraint accuracy
one would obtain with other values of λ .

4 Future Work

Our experiments have shown that learning with differentiable logics can generally improve how much
a ML model satisfies a constraint. Imposing logical constraints on the training process in this manner
could be a step in the direction of verified ML, allowing the use of continuous-learning in self-improving
ML-enabled autonomous systems. It has to be noted that in contrast to formal verifiers, training with
logical loss does not formally guarantee properties to hold in all possible cases.

We highlight a few more areas for future work in the following.

Reusing logical constraints during inference Because of the differentiable logics acting as a regulariser
during training, any logical constraints imposed on the learning process are unavailable during inference.
The trained model can therefore not make use of the logical constraints to check its predictions, for
example to attach confidence scores to its predictions.

Probabilistic logics Despite expressing satisfaction of formulas on [0,1], fuzzy logics are inherently
not probabilistic, having been designed instead for reasoning in the presence of vagueness. We point to
DeepProbLog [9] as one example for a probabilistic logic for use with deep learning. In the context of
neural networks, which often output probabilities, it could be more natural to reason about probabilities
instead of vagueness, especially for constraints that include probabilities [3].

Properties A common problem with verifying ML is the lack of specifications, as noted by [8, 3]. Most
properties in the literature are limited to robustness against slight perturbations, although differentiable
logics can not only relate network inputs and outputs, but could also refer to the inner workings of the
neural network, such as weights and activation states. A related area is to investigate whether learning
with logical loss can be used to show that desired properties continue to hold when retraining the network.

T. Flinkow, R. Monahan & B. A. Pearlmutter 23

References

[1] Michał Baczyński & Balasubramaniam Jayaram (2008): Fuzzy Implications. Studies in Fuzziness and Soft
Computing v. 231, Springer Verlag, Berlin, doi:10.1007/978-3-540-69082-5.

[2] Chih-Hong Cheng & Rongjie Yan (2021): Continuous Safety Verification of Neural Networks. In:
2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1478–1483,
doi:10.23919/DATE51398.2021.9473994.

[3] Marie Farrell, Anastasia Mavridou & Johann Schumann (2023): Exploring Requirements for Software that
Learns: A Research Preview. In Alessio Ferrari & Birgit Penzenstadler, editors: Requirements Engineer-
ing: Foundation for Software Quality - 29th International Working Conference, REFSQ 2023, Barcelona,
Spain, April 17-20, 2023, Proceedings, Lecture Notes in Computer Science 13975, Springer, pp. 179–188,
doi:10.1007/978-3-031-29786-1_12.

[4] Claudio Ferrari, Mark Niklas Muller, Nikola Jovanovic & Martin Vechev (2022): Complete Verification via
Multi-Neuron Relaxation Guided Branch-and-Bound, doi:10.48550/arXiv.2205.00263.

[5] Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang & Martin Vechev (2019):
DL2: Training and Querying Neural Networks with Logic. In: Proceedings of the 36th International Conference
on Machine Learning, PMLR, pp. 1931–1941.

[6] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian & Mykel J. Kochenderfer (2017): Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks. In Rupak Majumdar & Viktor Kunčak, editors: Computer
Aided Verification, Lecture Notes in Computer Science, Springer International Publishing, Cham, pp. 97–117,
doi:10.1007/978-3-319-63387-9_5.

[7] M.Z. Kwiatkowska (2019): Safety Verification for Deep Neural Networks with Provable Guarantees. In:
Leibniz International Proceedings in Informatics, LIPIcs, 140, doi:10.4230/lipics.concur.2019.1.

[8] Martin Leucker (2020): Formal Verification of Neural Networks? In Gustavo Carvalho & Volker Stolz, editors:
Formal Methods: Foundations and Applications, Lecture Notes in Computer Science, Springer International
Publishing, Cham, pp. 3–7, doi:10.1007/978-3-030-63882-5_1.

[9] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester & Luc De Raedt (2018):
DeepProbLog: Neural Probabilistic Logic Programming. In: Advances in Neural Information Processing
Systems, 31, Curran Associates, Inc.

[10] Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu & Taylor T. Johnson (2022): The Third
International Verification of Neural Networks Competition (VNN-COMP 2022): Summary and Results,
doi:10.48550/arXiv.2212.10376.

[11] Natalia Ślusarz, Ekaterina Komendantskaya, Matthew Daggitt, Robert Stewart & Kathrin Stark (2023): Logic
of Differentiable Logics: Towards a Uniform Semantics of DL. In: EPiC Series in Computing, 94, EasyChair,
pp. 473–493, doi:10.29007/c1nt.

[12] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen, Weiming
Xiang, Stanley Bak & Taylor T. Johnson (2020): NNV: The Neural Network Verification Tool for Deep Neural
Networks and Learning-Enabled Cyber-Physical Systems. In Shuvendu K. Lahiri & Chao Wang, editors:
Computer Aided Verification, Lecture Notes in Computer Science, Springer International Publishing, Cham,
pp. 3–17, doi:10.1007/978-3-030-53288-8_1.

[13] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner & Aleksander Madry (2018): Robust-
ness May Be at Odds with Accuracy. In: International Conference on Learning Representations.

[14] Emile van Krieken, Erman Acar & Frank van Harmelen (2022): Analyzing Differentiable Fuzzy Logic
Operators. Artificial Intelligence 302, p. 103602, doi:10.1016/j.artint.2021.103602. arXiv:2002.06100.

[15] Peter Varnai & Dimos V. Dimarogonas (2020): On Robustness Metrics for Learning STL Tasks. In: 2020
American Control Conference (ACC), pp. 5394–5399, doi:10.23919/ACC45564.2020.9147692.

https://doi.org/10.1007/978-3-540-69082-5
https://doi.org/10.23919/DATE51398.2021.9473994
https://doi.org/10.1007/978-3-031-29786-1_12
https://doi.org/10.48550/arXiv.2205.00263
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.4230/lipics.concur.2019.1
https://doi.org/10.1007/978-3-030-63882-5_1
https://doi.org/10.48550/arXiv.2212.10376
https://doi.org/10.29007/c1nt
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1016/j.artint.2021.103602
https://arxiv.org/abs/2002.06100
https://doi.org/10.23919/ACC45564.2020.9147692

24 Comparing Differentiable Logics for Learning Systems: A Research Preview

[16] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang & Suman Jana (2018): Efficient Formal Safety
Analysis of Neural Networks. In: Advances in Neural Information Processing Systems, 31, Curran Associates,
Inc.

A Appendix

A.1 Constraints

The full set of labels used in the class-similarity constraint for Fashion-MNIST is shown in Eq. (6), the
set of labels for CIFAR-10 is shown in Eq. (7). Note that we have a conjunct for each class so as to rule
out cases where the implication would vacuously be true, which does not necessarily reflect real world
constraints.

LabelsFashion-MNIST :=

(T-shirt/top,Shirt,Ankle boot),
(Trouser,Dress,Bag),

(Pullover,Shirt,Sandal),
(Dress,Coat,Bag),

(Coat,Pullover,Shirt),
(Sandal,Sneaker,Dress),

(Shirt,Pullover,Sneaker),
(Sneaker,Sandal,Trouser),

(Bag,Sandal,Dress),
(Ankle boot,Sneaker,T-shirt/top)

(6)

LabelsCIFAR-10 :=

(airplane,ship,dog),
(automobile,truck,cat),
(bird,airplane,dog),

(cat,dog,frog),
(deer,horse,truck),

(dog,cat,bird),
(frog,ship,truck),

(horse,deer,airplane),
(ship,airplane,deer),

(truck,automobile,airplane)

(7)

The definitions of the groups used in the group constraint Eq. (5) for GTSRB are given in Eq. (8).

GroupSpeed Limits :=

limit 20km/h,
limit 30km/h,
limit 50km/h,
limit 60km/h,
limit 70km/h,
limit 80km/h,

end of limit 80km/h,
limit 100km/h,
limit 120km/h

, GroupMandatory Actions :=

turn right ahead,
turn left ahead,

ahead only,
go straight or right,
go straight or left,

keep right,
keep left,
roundabout

GroupProhibitions :=

no passing,

no passing for trucks,
no way,

no way one-way,
end of no passing,

end of no passing for trucks

 , GroupWarnings :=

caution general,
caution curve left,
caution curve right,

caution curvy,
caution bumps,

caution slippery,
caution narrow road,

road work,
pedestrians,

children crossing,
wild animals crossing

GroupsGTSRB := {GroupSpeed Limits,GroupProhibitions,GroupMandatory Actions,GroupWarnings} (8)

T. Flinkow, R. Monahan & B. A. Pearlmutter 25

A.2 Plots of Prediction and Constraint Accuracy Over Time

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Prediction

0

0.2

0.4

0.6

0.8

1

Constraint

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Epoch

A
cc

ur
ac

y

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Epoch

Baseline DL2 IG IKD IŁK

IGG IRC (IRC)s=9 (IRC)φ(x)=x2 IYG

Figure 1: The figure shows how prediction accuracy (left column) and constraint accuracy (right column)
change over time when training with the class-similarity constraint for 200 epochs with different logics on
Fashion-MNIST (top row) and CIFAR-10 (bottom row).

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Epoch

A
cc

ur
ac

y

Prediction

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Epoch

Constraint

Baseline DL2 TG TŁK TRC TYG

Figure 2: The figure shows how prediction accuracy (left column) and constraint accuracy (right column)
change over time when training with the group constraint for 200 epochs with different logics on GTSRB.

26 Comparing Differentiable Logics for Learning Systems: A Research Preview

A.3 Runtime Overhead

Table 3: Average epoch train times in seconds.

(a) Class-Similarity constraint.

Fashion-MNIST CIFAR-10

Baseline 0.6 s 3.4 s
DL2 0.6 s 3.4 s
IG 0.6 s 3.8 s
IKD 0.7 s 4.0 s
IŁK 0.7 s 4.0 s
IGG 0.7 s 4.0 s
IRC 0.7 s 4.0 s
(IRC)s=9 0.7 s 4.1 s
(IRC)φ=x2 0.7 s 4.1 s
IYG 0.7 s 4.1 s

(b) Group constraint.

GTSRB

Baseline 1.1 s
DL2 1.1 s
TG 1.1 s
TŁK 1.1 s
TRC 1.1 s
TYG 1.2 s

The experiments were conducted on a system with a 4.5 GHz AMD Ryzen 9 77950X and a GeForce
RTX 4090. The average epoch training times are shown in Table 3. In contrast to the original DL2
experiments [5], we did not observe significant overhead in our experiment. We note that this is due to
our reuse of the model output from the cross-entropy loss calculation in the forward pass for our logical
loss calculation. If our constraints required a separate forward pass, we would most likely see the same
overhead as observed in the DL2 experiments.

A.4 Plots of the Fuzzy Logic Implications

0
1 0

10

1

x y

IG

0
1 0

10

1

x y

IKD

0
1 0

10

1

x y

IŁK

0
1 0

10

1

x y

IYG

0
1 0

10

1

x y

IGG

0
1 0

10

1

x y

IRC

0
1 0

10

1

x y

(IRC)φ=x2

0
1 0

10

1

x y

(IRC)s=9

Figure 3: The fuzzy logic implications I(x,y) used in our experiments to map the logical statement x→ y
into real-valued loss. Formal definitions are collected in Table 1.

T. Flinkow, R. Monahan & B. A. Pearlmutter 27

A.5 Plots of Prediction and Constraint Accuracy for Different Values of λ

0.2 0.4 0.6 0.8

0.6

0.7

0.8

0.9

Baseline

0.2

0.4
0.60.8

1.0

1.2
1.4

1.61.8
2.0

3.0
4.05.0

6.0
7.0

8.0

9.0

10.0

C
on

st
ra

in
tA

cc
ur

ac
y

IDL2

0.75 0.8 0.85

0.7

0.8

0.9

1

Baseline

0.2

0.40.6

0.81.01.2
1.4

1.6
1.8

2.0
3.04.05.0

6.07.08.09.010.0

IG

0.2 0.4 0.6 0.8

0.7

0.8

0.9

1

Baseline

0.2

0.4
0.6

0.8

1.0
1.2

1.4
1.61.8

2.0

3.0

4.0

5.0

6.07.0

8.09.010.0

IKD

0.8 0.82 0.84 0.86

0.7

0.8

0.9

1

Baseline

0.2
0.4

0.6
0.8

1.01.2
1.4

1.61.82.0

3.0
4.05.06.07.08.09.010.0

C
on

st
ra

in
tA

cc
ur

ac
y

IŁK

0.8 0.82 0.84 0.86

0.7

0.8

0.9

1

Baseline

0.2

0.4

0.60.8

1.0

1.21.4
1.61.8
2.0

3.04.05.06.07.08.09.010.0

IGG

0.2 0.4 0.6 0.8

0.7

0.8

0.9

1

Baseline

0.2
0.4

0.6
0.8
1.0

1.2

1.4

1.6

1.8
2.03.0

4.0
5.06.0

7.0

8.0

9.0

10.0

IRC

0.75 0.8 0.85

0.6

0.7

0.8

Baseline

0.2

0.40.60.8

1.01.21.4

1.61.82.0

3.0

4.0

5.0
6.07.0

8.0
9.0

10.0

Prediction Accuracy

C
on

st
ra

in
tA

cc
ur

ac
y

(IRC)s=9

0.4 0.6 0.8

0.7

0.8

0.9

1

Baseline

0.2

0.40.6
0.8
1.01.2
1.41.61.82.0

3.0

4.0

5.0

6.07.0
8.09.010.0

Prediction Accuracy

(IRC)φ=x2

0.2 0.4 0.6 0.8

0.7

0.8

0.9

1

Baseline

0.2

0.40.60.8
1.0

1.2
1.4

1.6
1.8

2.0
3.0

4.0
5.06.0

7.0

8.09.010.0

Prediction Accuracy

IYG

Figure 4: The figure displays prediction and constraint accuracy obtained when training with varying
values of λ with the class-similarity constraint on Fashion-MNIST for 200 epochs.

28 Comparing Differentiable Logics for Learning Systems: A Research Preview

0.4 0.6 0.8

0.3

0.4

0.5

Baseline

0.2
0.4

0.60.8
1.01.2

1.4

1.6

1.8

2.0
3.0

4.0

5.0

6.0

7.0

8.0

9.0
10.0

C
on

st
ra

in
tA

cc
ur

ac
y

IDL2

0.7 0.75 0.8

0.6

0.8

Baseline

0.2

0.4

0.6

0.8

1.0

1.2
1.41.6

1.82.0
3.0

4.05.06.07.08.09.0
10.0

IG

0.4 0.6 0.8

0.4

0.6

Baseline

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.82.0
3.04.05.06.07.08.0

9.010.0

IKD

0.74 0.76 0.78

0.6

0.8

Baseline

0.2

0.4
0.6

0.81.01.2
1.41.61.82.0

3.0
4.0 5.06.07.08.09.010.0

C
on

st
ra

in
tA

cc
ur

ac
y

IŁK

0.76 0.78

0.6

0.8

Baseline

0.20.4

0.6
0.8

1.0

1.21.4
1.6

1.8
2.0 3.0
4.05.06.07.08.09.010.0

IGG

0.4 0.6 0.8

0.4

0.6

0.8

Baseline

0.2

0.4

0.6
0.81.0

1.2
1.4

1.6
1.8

2.0

3.0

4.05.0
6.07.08.0

9.0

10.0

IRC

0.4 0.6 0.8

0.4

0.6

0.8

Baseline

0.2

0.4

0.6
0.8
1.0

1.2

1.4

1.61.82.0

3.0

4.05.0
6.0

7.0

8.0

9.010.0

Prediction Accuracy

C
on

st
ra

in
tA

cc
ur

ac
y

(IRC)s=9

0.4 0.6 0.8

0.4

0.6

0.8

Baseline

0.2

0.4
0.6
0.8
1.01.21.41.61.8
2.03.0

4.0

5.0

6.0
7.0

8.0
9.0
10.0

Prediction Accuracy

(IRC)φ=x2

0.4 0.6 0.8

0.4

0.5

0.6

0.7

Baseline

0.2

0.4

0.6
0.8

1.0

1.2

1.4

1.6
1.8

2.0

3.0
4.0

5.0

6.0

7.0

8.0

9.0
10.0

Prediction Accuracy

IYG

Figure 5: The figure displays prediction and constraint accuracy obtained when training with varying
values of λ with the class-similarity constraint on CIFAR-10 for 200 epochs.

T. Flinkow, R. Monahan & B. A. Pearlmutter 29

0.86 0.88 0.9

0.5

0.6

0.7

0.8

Baseline

1.0

2.0

3.0

4.0
5.0

6.07.08.09.0
10.0

C
on

st
ra

in
tA

cc
ur

ac
y

IDL2

0.8 0.85 0.9

0.5

0.6

0.7

Baseline

1.0

2.0

3.0
4.0

5.06.0
7.08.09.010.0

IG

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Baseline

1.0

2.0
3.04.05.06.0

7.0

8.0
9.0

10.0

IŁK

0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

Baseline

1.0

2.0

3.0
4.0

5.0
6.0

7.0
8.0

9.0
10.0

Prediction Accuracy

C
on

st
ra

in
tA

cc
ur

ac
y

IRC

0.7 0.8 0.9

0.5

0.6

0.7

Baseline

1.0

2.0

3.0
4.0

5.06.07.08.0
9.0

10.0

Prediction Accuracy

IYG

Figure 6: The figure displays prediction and constraint accuracy obtained when training with varying
values of λ with the group constraint on GTSRB for 200 epochs.

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 30–68, doi:10.4204/EPTCS.395.4

© L. Antal, H. Masara & E. Ábrahám
This work is licensed under the
Creative Commons Attribution License.

Extending Neural Network Verification to a Larger Family of
Piece-wise Linear Activation Functions

László Antal
RWTH Aachen University

Aachen, Germany
antal@cs.rwth-aachen.de

Hana Masara
RWTH Aachen University

Aachen, Germany
hana.masara@rwth-aachen.de

Erika Ábrahám
RWTH Aachen University

Aachen, Germany
abraham@cs.rwth-aachen.de

In this paper, we extend an available neural network verification technique to support a wider class
of piece-wise linear activation functions. Furthermore, we extend the algorithms, which provide in
their original form exact respectively over-approximative results for bounded input sets represented
as star sets, to allow also unbounded input sets. We implemented our algorithms and demonstrated
their effectiveness in some case studies.

1 Introduction

In the area of artificial intelligence, feed-forward neural networks (FNNs) [32] enjoy increasing popular-
ity. FNNs can be trained to learn a function f : Rn→Rm from a set of input-output samples, and predict
outputs also for previously unseen inputs. This way, FNNs can tackle problems that would otherwise
require very complex solutions [45].

Nowadays, a wide range of applications use FNNs, such as autonomous vehicles [31], speech- and
object-recognition systems [22, 13] or robot vision [33], just to mention a few. While FNNs are im-
pressively effective, their reliability in safety-critical situations is still questionable [9, 16, 24]. Hence,
verification methods play an important role in providing guarantees about their behavior. In this work,
we focus on the reachability problem for FNNs, which is the problem of determining which output values
(reachable set) an FNN computes for inputs from a given set.

Related work. The application of formal methods [61, 7, 20, 60] to verify the safety of neural networks
began with [41]. Since then, the verification of neural networks has gained significant attention from the
formal methods research community [55, 64, 12, 6, 59, 34, 14, 56, 4, 19, 28, 50].

Some of the available approaches encode the verification problems as logical formulae and use SMT-
solvers for their solution [27, 63, 28, 12, 59]. Another common technique is reachable set calculation
[23, 44, 36, 55, 64, 56] using an abstract representation like star sets [57] or symbolic intervals [29].

This paper builds on previous work [3, 54, 57], which solves the reachability problem using star sets
to represent subsets of Rk for any k ∈ N with k > 0, like sets of input and output values. The authors
present two methods, one with exact computations and one which over-approximates the reachable set.

Contributions. Our contributions in this paper are the following:

1. We extend the set of activation functions supported by [57, 54] to cover the piece-wise linear func-
tions leaky ReLU, hard tanh, hard sigmoid and the unit step; while some of these functions have
already been included in the respective algorithms, no complete formalizations were available,
which we provide in this paper. Furthermore, we support more general, parameterized versions

http://dx.doi.org/10.4204/EPTCS.395.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

L. Antal, H. Masara & E. Ábrahám 31

1

2

x1

x2

input layer l1

3

4

hidden layer l2

w31

w
41

w 32

w42

b3,act3

b4,act4

5

6

w53

w
63

w 54

w64

b5,act5

b6,act6
output layer l3

y1

y2

Figure 1: Illustration of a
feed-forward fully-connected
neural network, consisting of
one input layer (green), one
hidden layer (blue), and one
output layer (red).

of the aforementioned activation functions. For each of the above, we present the reachability
analysis algorithm using both the exact and the over-approximative methods.

2. While previous work was restricted to bounded input sets, we provide extensions to allow also
unbounded input sets.

3. Using the open-source library HyPro1 [47] for the star-set representation, we developed a C++
implementation of both the exact and the over-approximative analysis methods, covering all the
above activation functions. This includes also an extension of HyPro with an NNET parser to input
FNN models in NNET file format.

4. We propose some novel benchmarks (thermostat and sonar classifier) with the aim of supporting
the formal methods community. Using our implementation, we provide experimental evaluation
on the two proposed benchmarks and two other existing benchmarks discussing the results.

Outline. The rest of this paper is structured as follows. We present in Section 2 the fundamentals of
this work, including feedforward neural networks (FNN), star sets, and reachability analysis of FNN
with the rectified linear unit (ReLU) activation function. Then, in Section 3, we propose an exact and
over-approximate analysis method for several other activation functions, considering both bounded and
unbounded input sets. Afterwards, in Section 4, we present and evaluate experimental results on four
different benchmarks. Finally, in Section 5 we conclude the paper and discuss future work.

2 Preliminaries

We use N to denote the set of all natural numbers including 0 and R for the reals, and consider elements
from Rn (for any n ∈ N) to be column vectors.

2.1 Feedforward Neural Networks

A feedforward neural network (FNN) [30, 51] is a directed weighted graph annotated with some data. It
has a finite set of nodes called neurons, which are grouped into k ∈ N≥2 disjoint non-empty ordered sets
l1, . . . , lk called layers. We call l1 the input layer, lk the output layer, while the others are hidden layers.
Let 〈i〉 denote the size |li| of layer i = 1, . . . ,k. There is a directed edge from each neuron n in each

1Implementation available online at https://github.com/hypro/hypro. For reproducing the experimental results,
please check the Case Studies/Neural Network Verification subsection of HyPro’s GitHub page: see the README.md file.

https://github.com/hypro/hypro

32 Extending Neural Network Verification to Piece-wise Linear Activations

non-output layer li−1 to each neuron n′ in the next layer li, weighted by wn′,n ∈ R; let Wi ∈ R〈i〉×〈i−1〉

be the matrix whose entry in row r and column c is the weight of the edge from the cth neuron in
layer i− 1 to the rth neuron in layer i. In addition, each neuron n in each non-input layer is annotated
with a bias bn ∈ R and an activation function actn : R→ R; for layer i with neurons li = {n1, . . . ,n〈i〉},
let bi = (bn1 , . . . ,bn〈i〉)

T and acti : R〈i〉→ R〈i〉 with acti(y) = (actn1(y1), . . . ,actn〈i〉(y〈i〉))
T for any input

y = (y1, . . . ,y〈i〉)T ∈ R〈i〉. A frequently used activation function is the Rectified Linear Unit (ReLU),
defined as ReLU(x) = max(0,x) for x ∈ R. An example FNN is shown in Figure 1.

For an input x1 = (x1, . . . ,x〈1〉) ∈R〈1〉, the state xi of each non-input layer li is defined recursively as

xi = acti(Wi xi−1 +bi) . (1)

Thus an FNN can be seen as a function f : R〈1〉→ R〈k〉, assigning to each input the output layer’s state,
which we call the output. For a given FNN and a set R1 of possible inputs, the FNN reachability problem
is the problem to compute all possible states for each of the layers 1 < i≤ k [54]:

Ri = {acti(Wixi−1 +bi) | xi−1 ∈Ri−1 } . (2)

Solving the FNN reachability problem allows us to check properties of interest, e.g. safety properties
(whether the output set is disjoint from a set of unsafe outputs) or stability (whether the distance between
possible outputs is below a threshold for a given input set).

In this work, as input set we consider convex polyhedra R1 = {x ∈R〈1〉 |Ax≤ c} for some m∈N≥1,
A ∈ Rm×〈1〉 and column vector c ∈ Rm.

2.2 Stars

To compute Ri via Equation 2, the two main operations that need to be applied on state sets are the
activation function acti and affine transformations using the weights Wi and biases bi of the layer i. For
implementing these calculations efficiently, different state set representations have been proposed [48].
Under these, star sets (or short stars) turned out to be exceptionally good candidates, for their efficient
handling of affine transformations and half-space intersections (see Propositions 2.2, 2.3 and 2.4).

For any n,m ∈ N, an (n,m)-dimensional star is a tuple θ = 〈c,V,P〉 of (i) a center c ∈ Rn, (ii) a
generator matrix V ∈Rn×m whose columns v(1), . . . ,v(m) ∈Rn are called the basis vectors or generators
and (iii) a predicate P⊆Rm. The star θ represents the set [θ] = {c+∑

m
j=1 (α jv(j)) | (α1, . . . ,αm)

T ∈ P}.
As in [54], we restrict P to be a convex polyhedron P = {α ∈ Rm | Cα ≤ d} for some p ∈ N,

C ∈ Rp×m and d ∈ Rp. The following star properties, whose proofs are included in Appendix A.1, will
be used to solve the FNN reachability problem.
Proposition 2.1 (Convex polyhedra). For any m, p ∈ N, C ∈ Rp×m and d ∈ Rp, the convex polyhedron
P = {x ∈ Rm | Cx ≤ d} can be represented by a star.
Proposition 2.2 (Affine transformation). Assume an (n,m)-dimensional star θ = 〈c,V,P〉 and let W ∈
Rk×n and b ∈Rk. Then the affine transformation {Wx+b | x ∈ [θ]} of [θ] is represented by θ̄ = 〈c̄, V̄,P〉
with c̄ = Wc+b and V̄ ∈ Rk×m with columns Wv(1), . . . ,Wv(m).
Proposition 2.3 (Intersection with halfspace). Assume an (n,m)-dimensional star θ = 〈c,V,P〉 and a
half-space H = {x ∈ Rn | hT x ≤ g} with some h ∈ Rn and g ∈ R. Then the intersection [θ]∩H is
represented by the star θ̄ = 〈c,V,P∩P′〉 with P′ = {α ∈ Rm |(hT V)α ≤ g−hT c}.
Proposition 2.4 (Emptiness check). A star θ = 〈c,V,P〉 is empty if and only if P is empty.
Proposition 2.5 (Bounding box). Assume an (n,m)-dimensional star θ = 〈c,V,P〉with c =(c1, . . . ,cn)

T ,
and let V(i) be the ith row of V. Let furthermore B = {(x1, . . . ,xn)

T ∈ Rn |
∧n

i=1 lbi ≤ xi ≤ ubi} with
lbi = ci +min

α∈P
V(i)α and ubi = ci +max

α∈P
V(i)α for i = 1, . . . ,n. Then [θ]⊆ B.

L. Antal, H. Masara & E. Ábrahám 33

2.3 Reachability Analysis for FNNs with ReLUs

Next, we present two algorithms proposed in [54] to solve the reachability problem for FNNs with the
ReLU activation function for bounded polyhedral input sets. The first algorithm is exact and thus com-
plete, whereas the second algorithm over-approximates reachability. We note that alongside ReLU, [57]
includes some other activation functions but no complete formalizations were available. In Section 3, we
will extend these algorithms to support further and more general piece-wise linear activation functions
and unbounded input sets.

Exact Analysis

The exact algorithm first constructs a star from the input set which is required to be a polyhedron (see
Proposition 2.1). Then, correspondingly to Equation 2 it propagates the star through the network, layer-
by-layer, until we get the output set Rk. This propagation involves two main operations.
(1) For each non-input layer i and each star representing possible states of the previous layer, to compute
the reachable states of layer i, we first apply an affine transformation on the star, using the weight matrix
Wi and the bias vector bi. Thus, from a star θ = 〈c,V,P〉 we obtain a new star θ ′ = 〈c′,V′,P〉 with c′ =
Wic +bi and V′ = WiV (see Proposition 2.2). Note that during the affine transformation the predicate
does not change.
(2) Then the non-linear activation function is applied on the intermediate star θ ′ dimension-wise to
represent Ri = actn〈i〉(. . . actn1

([θ ′]) . . .), where, n1, . . . ,n〈i〉 are the neurons in layer i. Since we consider
the ReLU activation function, the actn j

(·) operation at neuron n j is defined as ReLU(x j) = max(0,x j);
instead of actn j

(·) we also write actR
j (·) to denote that the ReLU function is applied in dimension j (i.e.

at the jth neuron of a layer). To compute actR
j (θ) for a star θ = 〈c,V,P〉, the star θ is decomposed

into two stars θ1 = 〈c,V,P1〉 and θ2 = 〈c,V,P2〉 such that [θ1] = [θ]∩{(x1, . . . ,xn) ∈ Rn |x j < 0} and
[θ2] = [θ]∩{(x1, . . . ,xn) ∈ Rn |x j ≥ 0} (see Proposition 2.3). On the negative branch, i.e., when x j < 0,
the ReLU function sets the corresponding values to zero. Thus all the resulting elements of the star θ1
should have the value zero in dimension j. It affects the star as a projection to 0 in dimension j. We
can obtain this result by applying the mapping matrix M = [e1,e2, . . . ,e j−1,0,e j+1, . . .en] on θ1, where
ei ∈Rn is the ith n-dimensional unit vector (with 1 at position i and 0s otherwise). On the positive branch
x j ≥ 0, the ReLU function does not change the set elements of θ2. Thus, the application of ReLU results
in the union of two stars actR

j (θ) = 〈Mc,MV,P1〉∪ 〈c,V,P2〉. Note that if the values in [θ] in the given
dimension j are purely positive or purely negative, then the result of actR

j (θ) is just a single star.

Over-approximate Analysis

While the exact algorithm is complete, it suffers from scalability issues since the number of stars grows
during the analysis exponentially with the number of neurons. To tackle this problem, one solution is
to side-step to over-approximative computations, which makes the analysis more scalable, however, it
sacrifices the completeness of the method.

The over-approximate method from [54] also builds on Equation 2, but the application of the acti-
vation functions is different: the original actR

j (·) operation is replaced by an over-approximating actR
j (·)

which produces only a single star as output as follows. A new variable αm+1 and three more constraints
are added to the predicate P of the star, with the purpose of capturing the over-approximation of the
ReLU function at neuron n j (see Figure 2).

34 Extending Neural Network Verification to Piece-wise Linear Activations

x j

ReLU(x j)

y j ≥ 0

y j
≥

x j

y j≤
λ · x j+

µ

ul

Figure 2: Relaxation of the ReLU function
with λ = u

u−l and µ = − lu
u−l [49]. Dark lines

represent the exact set, the light area shows the
approximate set.

The three new constraints are: αm+1 ≥ 0, αm+1 ≥ x j,
and αm+1 ≤

u(x j−l)
u−l , where l and u are the lower and

upper bounds, respectively, for variable x j in [θ] (see
Proposition 2.5). Finally, since we want the variable
αm+1 to hold the over-approximation of x j, after intro-
ducing the new variable and constraints to the predi-
cate, we need to update the center c and basis V of
the star θ correspondingly. First, the old values of
x j are projected out using the mapping matrix M =
[e1,e2, . . . ,e j−1,0,e j+1, . . .en]. Then, a new generator
vector e j is added to the basis, to link x j to αm+1.

Formally, for an (n,m)-dimensional star θ =

〈c,V,P〉 we define actR
j (θ) = 〈c̄, V̄, P̄〉, where c̄ = Mc,

V̄ = [Mv(1),Mv(2), . . . ,Mv(m),e j] and P̄ = {(α1, . . . ,αm+1) ∈ Rm+1 |(α1, . . . ,αm) ∈ P ∧ αm+1 ≥ 0 ∧
αm+1 ≥ x j ∧αm+1 ≤

u(x j−l)
u−l }.

In case l ≥ 0 or u ≤ 0, the introduction of a new variable is not necessary and we can proceed in a
similar way as in the exact case, i.e., for positive domain we keep the set as it is, for negative domain we
project out the variable x j. Note that this over-approximation method is the least conservative that we
can achieve using convex, linear constraints.

3 FNN Reachability Analysis for Piece-wise Linear Activation Functions

Neural networks offer flexibility in choosing different activation functions. In this work, we present the
extension of the reachability analysis algorithm to implement the leaky rectified linear unit (leaky ReLU),
hard hyperbolic tangent (HardTanh), hard sigmoid (HardSigmoid), and unit step activation functions.
Below we define each of these functions and their application to a given star θ = 〈c,V,P〉.

3.1 Unbounded Input Sets

During the analysis of an FNN, it may happen that one or more variables x j of a star θ become un-
bounded. That is, it has no lower bound (i.e., l = −∞) or it has no upper bound (i.e., u = ∞). In the
following, we present how to handle unbounded input sets as well.

Essentially, the exact reachability analysis of any piece-wise linear activation function presented in
this paper does not change in case of unbounded input sets. The same steps are applied as per the exact
analysis of bounded sets, i.e., (1) splitting the input set into multiple subsets based on the cases of the
activation function, and (2) applying the corresponding transformations for each subset.

Conversely, in case of unbounded input, the over-approximate analysis does work differently, since
the convex relaxations presented for bounded input need to be changed. In the rest of this paper, for
each activation function, we show how the convex relaxations can be adjusted to achieve the tightest
possible relaxation in case of unbounded inputs. Note that we distinguish for each function three cases
of unboundedness of a variable x j, either it has no lower bound (l = −∞ and u ∈ R), it has no upper
bound (l ∈ R and u = ∞), or it has neither of the bounds (l =−∞ and u = ∞).

Our implementation currently does not support unbounded input sets, so the presented methods for
unbounded inputs are only theoretical results. Furthermore, the evaluated benchmarks also do not utilize
unbounded sets.

L. Antal, H. Masara & E. Ábrahám 35

3.2 Leaky ReLU Layer

Due to the dead neuron problem [10, 42] caused by the ReLU function, its alternative, the leaky ReLU
function proposed by Mass et al.[37], is used in many applications.

Definition 3.1 (Leaky ReLU [65]). The leaky ReLU activation function with scaling parameter γ ∈
(0,1)⊂ R is defined for each x ∈ R as

LeakyReLU(x) = max(γ · x,x) =

{
x if x > 0
γ · x otherwise .

(3)

Exact Analysis

The application of the leaky ReLU activation function is similar to the previously presented algorithm for
the ReLU activation function, but they handle the negative inputs differently: While the ReLU function
completely projects the input to zero, the leaky ReLU just scales the input down by γ ∈ (0,1). Thus,
the application actL

j (θ) of leaky ReLU on a star θ can be computed as follows. First we split the
star θ = 〈c,V,P〉 into two subsets θ1 = 〈c,V,P1〉 and θ2 = 〈c,V,P2〉 with negative resp. non-negative
x j-values. Then we apply the corresponding transformations for both subsets. As previously, in the
case of the positive subset θ2, no transformation is needed, since the leaky ReLU acts as an identity
function for positive inputs. However, in case of the negative subset θ1, we apply the scaling matrix
M = [e1,e2, . . . ,γe j, . . .en−1,en]. Thus, the final result of the actL

j (·) operation at neuron n j is the union
of two stars: actL

j (θ) = 〈Mc,MV,P1〉∪ 〈c,V,P2〉. The same observations apply here, that if the domain
of a variable x j is only negative (i.e., u ≤ 0) or only positive (i.e., l ≥ 0), the final result of the actL

j (·)
operation is a single star: either θ1 = 〈Mc,MV,P1〉 or θ2 = 〈c,V,P2〉.

Over-approximate Analysis

x j

LeakyReLU(x j)

y j ≥ γ · x j

y j
≥

x j

y j≤
λ
· x j+

µ

u
l

Figure 3: Relaxation for the leaky ReLU
function. The dark line shows the exact set
and the light area the approximate set. In the
figure, λ = u−γ·l

u−l and µ = u·l·(γ−1)
u−l .

The over-approximate analysis of the leaky ReLU is also
similar to the one for ReLU. For bounded inputs, corre-
spondingly to the Planet relaxation [49], we also try to
find an enclosing triangle, which is the tightest convex,
linear relaxation that we can achieve for leaky ReLUs
(see Figure 3). The three constraints on the freshly intro-
duced variable αm+1 are the following: (1) αm+1 ≥ γ ·x j,
(2) αm+1 ≥ x j, and (3) αm+1 ≤ u−γ·l

u−l x j +
u·l·(γ−1)

u−l . At this

point, the result of the actL
j (·) operation is a single star

set with one more variable and three more constraints
than the original input star. It is important to note: if the
domain of variable x j is fully positive (i.e., l ≥ 0) or fully
negative (i.e., u ≤ 0), then the resulting star is the same
as described for the exact approach. On the other hand,
when there is an unbounded input set θ , three cases are
distinguished: (1) x j ∈ (−∞,u), (2) x j ∈ (l,∞), and (3) x j ∈ (−∞,∞). The analysis for unbounded input
is similar to the bounded case but the introduced constraints change, as visualized in Figure 4. Note that
these are the tightest linear, convex relaxations that can be achieved.

36 Extending Neural Network Verification to Piece-wise Linear Activations

x j

LeakyReLU(x j)

y j ≥ x j · γ
y j
≥

x j

y j
≤

x j+
l ·
(γ
−1)

l

(a) x j ∈ (l,∞)

x j

LeakyReLU(x j)

y j ≥ x j · γ
y j
≥

x j
y j ≤ γ · x j+u · (1− γ)

u

(b) x j ∈ (−∞,u)

x j

LeakyReLU(x j)

y j ≥ x j · γ

y j
≥

x j

(c) x j ∈ (−∞,∞)

Figure 4: Convex relaxations of the leaky ReLU function with three cases of an unbounded input set.

3.3 Hard Tanh Layer

The hard hyperbolic tangent function, commonly known as the hard tanh function, is a linearized variant
of the hyperbolic tangent activation function. In our work, we have generalized this function by introduc-
ing the parameters Vmin and Vmax, which replace the original values of −1 and 1, respectively [8]. This
modification allows us to flexibly adapt the function according to our specific needs and requirements.

Definition 3.2 (Hard Hyperbolic Tangent). The hard hyperbolic tangent (HardTanh) activation function
with parameters Vmin ∈ R and Vmax ∈ R≥Vmin is defined for each x ∈ R by

HardTanh(x) =

Vmin if x <Vmin

x if Vmin ≤ x≤Vmax

Vmax if x >Vmax .

(4)

Exact Analysis

For the analysis of FNNs with the hard tanh activation function at neuron n j, which we denote as actH
j (·),

we split the result of the affine transformation θ = 〈c,V,P〉 into three subsets: θ1 = 〈c,V,P1〉 is the
intersection of θ with the hyperplanes Vmin ≤ x j ≤Vmax, θ2 = 〈c,V,P2〉with x j <Vmin and θ3 = 〈c,V,P3〉
with x j >Vmax (see Proposition 2.3).

According to Equation 4, actH
j (·) leaves the elements of θ1 unchanged since x j is in the range between

Vmin and Vmax. For θ2, all of its elements get the value Vmin in dimension j since x j < Vmin, hence,
we project the star onto Vmin in the dimension j. To achieve this result, we apply the mapping matrix
M= [e1,e2, . . . ,e j−1,0,e j+1, . . .en]. Additionally, we set the jth dimension of the center to Vmin by adding
the shifting vector smin = [0, . . . ,Vmin, . . . ,0]ᵀ to the center. For θ3, we do the same by mapping the set
with the mapping matrix, but instead, we set the center to Vmax by adding the shifting vector smax =
[0, . . . ,Vmax, . . . ,0]ᵀ to it. Thus, we project the star onto Vmax in the dimension j. Accordingly, the actH

j (θ)

operation at neuron j results in the union of three star sets: actH
j (·) = 〈c,V,P1〉∪ 〈Mc+ smin,MV,P2〉∪

〈Mc+ smax,MV,P3〉.
Note that some of the intersections of the input star θ with the halfspaces Vmin ≤ x j ≤Vmax, x j <Vmin,

and x j > Vmax may be empty (see Proposition 2.4). In that case, we can spare the computation for the
empty subsets, and continue the reachability analysis only with the non-empty resulting stars.

L. Antal, H. Masara & E. Ábrahám 37

Over-approximate Analysis

In the over-approximate analysis, the actH
j (θ) operation should yield a single star set. Thus we aim to

find an enclosing triangle or trapezoid, which is the tightest convex, linear relaxation that we can achieve
for hard tanh. For bounded inputs, we make a case distinction. If the lower bound (in the bounding box

x j

HardTanh(x j)

ul

(a) l <Vmin∧u ∈ [Vmin,Vmax]

x j

HardTanh(x j)

ul

(b) l ∈ [Vmin,Vmax]∧u >Vmax

x j

HardTanh(x j)

ul

(c) l <Vmin∧u >Vmax

Figure 5: Relaxation for the hard tanh function. The dark line shows the exact set (non-convex) and the
light area the approximate set (convex and linear).

of θ in dimension j, see Proposition 2.5) is less than Vmin, and the upper bound is between Vmin and
Vmax, the three constraints on the newly introduced variable αm+1 are the following: (1) αm+1 ≥ x j, (2)
αm+1≥Vmin and (3) αm+1≤

u j−Vmin
u j−l j

·x j−
u j·(l j−Vmin)

u j−l j
. For the opposite case, we introduce the new variable

αm+1 and three constraints: (1) αm+1 ≤ Vmax, (2) αm+1 ≤ x j and (3) αm+1 ≥ −
l j−Vmax
u j−l j

· x j−
l j·(Vmax−u j)

u j−l j
.

When the star is over Vmin and Vmax (i.e., l < Vmin∧u > Vmax), we introduce the new variable αm+1 and
four additional constraints: (1) αm+1 ≥ Vmin, (2) αm+1 ≤ Vmax, (3) αm+1 ≤ Vmax−Vmin

Vmax−l j
· x j−

Vmax·(l j−Vmin)
Vmax−l j

and (4) αm+1 ≥ Vmin−Vmax
Vmin−u j

· x j−
Vmin·(Vmax−u j)

Vmin−u j
.

It is important to highlight that when the domain of variable x j is between Vmin and Vmax, less than
Vmin (i.e., u <Vmin) or greater than Vmax (i.e., l >Vmax), the result is again a single star and is computed
the same way as described in the exact approach.

Furthermore, when dealing with an unbounded input set θ we distinguish three cases, as mentioned
earlier. These cases are as follows: (1) x j ∈ (−∞,u), (2) x j ∈ (l,∞), and (3) x j ∈ (−∞,∞). The cases (1)
and (2) are again divided into two sub-cases, hence we obtain five different cases, each one presented in
Table 1, coupled with the corresponding constraints and illustrations.

3.4 Hard Sigmoid Layer

The hard sigmoid activation function is a linearized variant of the sigmoid function. Since the hard
sigmoid function has different variants in use [52, 2, 40], we generalize it by adding parameters.

Definition 3.3 (Hard Sigmoid Function). The hard sigmoid (HardSigmoid) function with parameters
Vmin ∈ R and Vmax ∈ R≥Vmin is defined for each x ∈ R by

HardSigmoid(x) =

0 if x≤Vmin

1
Vmax−Vmin

· x+ Vmin
Vmin−Vmax

if Vmin < x <Vmax

1 if x≥Vmax .

(5)

38 Extending Neural Network Verification to Piece-wise Linear Activations

Domain of x j Introduced constraints Graphical illustration

l =−∞∧u ∈ [Vmin,Vmax]

αm+1 ≥Vmin
αm+1 ≥ x j

αm+1 ≤ u j
x j

y j

u

l =−∞∧u >Vmax

αm+1 ≥Vmin
αm+1 ≤Vmax

αm+1 ≥ Vmin−Vmax
Vmin−u j

· x j−
Vmin·(Vmax−u j)

Vmin−u j

x j

y j

u

l ∈ [Vmin,Vmax]∧u = ∞

αm+1 ≤Vmax
αm+1 ≤ x j

αm+1 ≥ l j
x j

y j

l

l <Vmin∧u = ∞

αm+1 ≤Vmax
αm+1 ≥Vmin

αm+1 ≤ Vmax−Vmin
Vmax−l j

· x j−
Vmax·(l j−Vmin)

Vmax−l j

x j

y j

l

l =−∞∧u = ∞
αm+1 ≥Vmin
αm+1 ≤Vmax x j

y j

Table 1: Approximation rules for the hard tanh function, when the input is unbounded. We distinguish
five cases in total, for each we show the case itself, the introduced constraints and a graphical illustration.

Exact Analysis

The analysis of the hard sigmoid works similarly to the one of the hard tanh function. The difference
is that instead of the star remaining the same in the range between Vmin and Vmax, we scale the star
according to Equation 5. To compute actS

j (θ), the star θ = 〈c,V,P〉 is partitioned into three subsets
θ1, θ2 and θ3, covering the partitions with Vmin < x j < Vmax, x j ≤ Vmin respectively x j ≥ Vmax. We
scale θ1 by applying the scaling matrix Msc = [e1,e2, . . . ,

1
Vmax−Vmin

e j, . . .en−1,en] and shift the center
with the translation vector ssc = [0, . . . , Vmin

Vmin−Vmax
, . . . ,0]ᵀ. Furthermore, the elements of θ2 are set to

zero in dimension j by applying the mapping matrix M = [e1,e2, . . . ,e j−1,0,e j+1, . . .en]. Finally, the
elements of θ3 are set to one by using the same projection M, plus setting the center to one by the
shifting vector sone = [0, . . . ,1, . . . ,0]ᵀ. Consequently, the result is the union of three stars: actS

j (θ) =
〈Mscc+ ssc, MscV, P1〉∪ 〈Mc, MV, P2〉∪ 〈Mc+ sone, MV, P3〉.

Again, when intersecting the star θ with Vmin < x j <Vmax, x j ≤Vmin respectively x j ≥Vmax, certain
resulting subsets may become empty (see 2.4) and thus their further processing can be omitted.

L. Antal, H. Masara & E. Ábrahám 39

x j

HardSigmoid(x j)

uili

(a) l ≤Vmin∧u ∈ (Vmin,Vmax)

x j

HardSigmoid(x j)

ul

(b) l ∈ (Vmin,Vmax)∧u≥Vmax

x j

HardSigmoid(x j)

ul

(c) l ≤Vmin∧u≥Vmax

Figure 6: Relaxation for the hard tanh function. The dark line shows the exact set (non-convex) and the
light area the approximate set (convex and linear).

Over-approximate Analysis

Using the over-approximate analysis of hard sigmoid, we consider cases where a convex triangle or trape-
zoid is applicable based on the input. The actS

j (θ) operation introduces a new variable αm+1 regardless
of which case occurs.

If the lower bound is less than Vmin and the upper bound is between Vmin and Vmax, then three new
constraints are introduced: (1) αm+1 ≥ 0, (2) αm+1 ≥ 1

Vmax−Vmin
·x j +

Vmin
Vmax−Vmin

, and (3) αm+1 ≤
u·(x j−l)

u−l . In
the dual scenario when the lower bound is between Vmin and Vmax while the upper bound exceeds Vmax,
we encounter the constraints: (1) αm+1 ≤ 1, (2) αm+1 ≤ 1

Vmax−Vmin
·xi− Vmin

Vmax−Vmin
, and (3) αm+1 ≥ l−1

l−u ·x j+
l·(1−u)

l−u . Lastly, when in dimension j the star is between Vmin and Vmax, then we introduce four constraints:
(1) αm+1 ≤ 1, (2) αm+1 ≥ 0, (3) αm+1 ≤ 1

Vmax−l · x j − l
Vmax−l , and (4) αm+1 ≥ 1

Vmin−u · x j − Vmin
u−Vmin

. It is
important to highlight that when the domain of variable x j is between Vmin and Vmax, less than Vmin (i.e.,
u≤Vmin) or greater than Vmax (i.e., l ≥Vmax), the resulting stars remain the same as described in the exact
approach.

Furthermore, when dealing with an unbounded input set θ we distinguish three cases, as mentioned
earlier. These cases are as follows: (1) x j ∈ (−∞,u), (2) x j ∈ (l,∞), and (3) x j ∈ (−∞,∞). The cases (1)
and (2) are again divided into two sub-cases, hence we obtain five different cases, each one presented in
Table 2, coupled with the corresponding constraints and illustrations.

3.5 Unit Step Function Layer

The unit step activation function (also called the heaviside function) is widely used in neural networks.
In this work, we generalize the unit step function, by introducing three parameters with commonly used
values val = 0, Rmin = 0, and Rmax = 1.

Definition 3.4 (Unit Step [15]). The unit step function with separator val ∈R, lower limit Rmin ∈R and
upper limit Rmax ∈ R≥Rmin is defined for each x ∈ R by

UnitStep(x) =

{
Rmin if x < val
Rmax if x≥ val .

(6)

Exact Analysis

The result actU
j (θ) of applying unit step on a star θ = 〈c,V,P〉 in dimension j is obtained as follows.

First, θ is decomposed into two parts θ1 and θ2 that result from the intersection of θ with x j < val resp.
x j ≥ val. Then, the values in the jth dimension are set to Rmin and Rmax, respectively in the stars θ1 and θ2.

40 Extending Neural Network Verification to Piece-wise Linear Activations

Domain of x j Introduced constraints Graphical illustration

l =−∞∧u ∈ [Vmin,Vmax]

αm+1 ≥Vmin
αm+1 ≥ x j

αm+1 ≤ u j
x j

y j

u

l =−∞∧u >Vmax

αm+1 ≥Vmin
αm+1 ≤Vmax

αm+1 ≥ Vmin−Vmax
Vmin−u j

· x j−
Vmin·(Vmax−u j)

Vmin−u j

x j

y j

u

l ∈ [Vmin,Vmax]∧u = ∞

αm+1 ≤Vmax
αm+1 ≤ x j

αm+1 ≥ l j
x j

y j

l

l <Vmin∧u = ∞

αm+1 ≤Vmax
αm+1 ≥Vmin

αm+1 ≤ Vmax−Vmin
Vmax−l j

· x j−
Vmax·(l j−Vmin)

Vmax−l j

x j

y j

l

l =−∞∧u = ∞
αm+1 ≥Vmin
αm+1 ≤Vmax x j

y j

Table 2: Approximation rules for hard sigmoid, when the input is unbounded. In total, we distinguish
five cases, for each we show the case itself, the introduced constraints and a graphical illustration.

We achieve this by using the projection matrix M= [e1,e2, . . . ,e j−1,0,e j+1, . . .en] and translation vectors
smin = [0, . . . ,Rmin, . . . ,0]ᵀ and smax = [0, . . . ,Rmin, . . . ,0]ᵀ. The resulting stars are 〈Mc+ smin, MV, P1〉
and 〈Mc+ smax, MV, P2〉. Note that if the domain (l,u) of x j does not contain the value val, then the case
splitting is not necessary and only one of the stars is the final result, correspondingly to the non-empty
intersection with one of the halfspaces.

Over-approximate Analysis

x j

UnitStep(x j)

y j ≥ Rmin

y j ≤ Rmax

y j≤
g1(x

j)

y j ≥ g2(x j)

ul

Figure 7: Relaxation for the unit step func-
tion. The dark line shows the exact set and
the light area the approximate set. The con-
straints y j ≤ g1(x j) and y j ≥ g2(x j) corre-
spond to relaxations (3) and (4).

The over-approximate computation of the unit step func-
tion uses a linear, convex trapezoid as shown in Figure
7, which is again the tightest over-approximation that
we can achieve. The actU

j (θ) operation also introduces
a new variable αm+1 and, in this case, four new con-
straints, which define the trapezoid. The four constraints
are as follows: (1) αm+1 ≥ Rmin, (2) αm+1 ≤ Rmax, (3)
αm+1 ≤ Rmax−Rmin

val−l · x j +
val·Rmin−l·Rmax

val−l , and (4) αm+1 ≥
Rmax−Rmin

u−val · x j +
u·Rmin−val·Rmax

u−val . As previously, the result

of actU
j (θ) is a single star which over-approximates the

exact resulting star(s). In case the domain of θ in di-
mension j lies completely in either (−∞,val] or [val,∞),
then the resulting star is either θ1 = 〈smin +Mc,MV,P〉

L. Antal, H. Masara & E. Ábrahám 41

x j

UnitStep(x j)

l

(a) x j ∈ (l,∞)

x j

UnitStep(x j)

u

(b) x j ∈ (−∞,u)

x j

UnitStep(x j)

(c) x j ∈ (−∞,∞)

Figure 8: Convex relaxations of the unit stepfunction with three cases of an unbounded input set.

or θ2 = 〈smax +Mc,MV,P〉, respectively.
Finally, in case there is an unbounded input star θ , again three cases are distinguished, as in case of

LeakyReLU. The three cases are as follows: (1) x j ∈ (−∞,u), (2) x j ∈ (l,∞), and (3) x j ∈ (−∞,∞). The
analysis for unbounded input is the same; the only aspect that changes is the introduced constraints. See
the corresponding constraints for each case visualized in Figure 8.

4 Experimental Evaluation

We implemented our proposed algorithms using the open-source C++ tool HyPro [46] and evaluated
them on four different benchmark families. The ACAS Xu and drone hovering benchmarks contain only
ReLU activations while the thermostat and sonar classifier benchmarks use the unit step and hard sigmoid
activation functions besides ReLU. Both the exact and the over-approximation approaches are evaluated.
The evaluations were performed on RWTH Aachen University’s HPC Cluster [58] using Rocky Linux 8
as the operating system. Each execution ran on an individual node equipped with 16GB RAM and two
Intel Xeon Platinum 8160 "SkyLake" processors with a total of 16 cores. A 48-hour timeout was set for
each experiment.

4.1 ACAS Xu

Figure 9: Vertical view of the inputs of
ACAS Xu networks. [27]

The Airborne Collision Avoidance System Xu (ACAS Xu) is
a mid-air collision avoidance system focusing on unmanned
aircrafts. The ACAS Xu networks (ACAS Xu DNNs) pro-
vide advisories for horizontal maneuvers to avoid collisions
while minimizing unnecessary alerts. The ACAS Xu bench-
mark consists of a set of 45 feedforward neural networks,
each with seven fully connected layers, comprising a com-
bined count of 300 neurons. Each network possesses five
inputs (see Figure 9) and five outputs. For further informa-
tion about the ACAS Xu benchmark see [26, 27].

For our evaluation, we first compute the reachable set of
the networks. Afterward, we check whether the reachable
set is fully included in the safe zone. If yes then the FNN
is safe, otherwise we can conclude unsafety only for the ex-
act analysis. We check the safety verification time (VT) in
seconds, using the ten safety properties φ1,φ2, . . . ,φ10 from [27].

42 Extending Neural Network Verification to Piece-wise Linear Activations

prop.
Exact Overapprox.

AVG VT(s) AVG VT(s)

φ1 35244.9 2293.4
φ2 44715.5 2316.2
φ3 279.4 12.4
φ4 98.0 11.4

Table 3: Average Verification results for
properties φ1,φ2,φ3,φ4 in seconds.

According to the condensed results, which are shown in
Table 3, we can conclude that the star set approach is able to
correctly verify the safety properties. We marked with bold-
face numbers, where the given property could be verified on
all the relevant networks. In case of exact analysis of φ2, the
verification results were correct, but in case of 3 networks,
timeout occurred. The over-approximate analysis could ver-
ify correctly only a subset of the networks. We refer to the
Appendix A.2 of this paper for the detailed results, where
we show the reachability result and safety verification times
of each property and network combinations. Regarding the
running time of the reachability analysis: a meaningful comparison could have been made with the
implementation provided in [57]; however, it is in Matlab and currently, we do not own a Matlab license.

4.2 Drone Hovering

ACxy
Exact Overapprox.

RT(s) RES CT(s) RT(s) RES CT(s)

AC11 61.4 True 4.9 0.2 False 0.0
AC12 0.5 True 0.0 0.1 False 0.0
AC21 462.4 True 17.7 0.5 False 0.0
AC22 0.1 True 0.0 0.1 False 0.0
AC31 - - - 2.9 False 0.4
AC32 5.1 True 0.1 0.2 False 0.0
AC41 - - - 8.7 False 1.5
AC42 103.0 True 5.5 0.7 False 0.0
AC51 304.8 True 26.1 0.4 False 0.1
AC52 0.1 False 0.0 0.1 False 0.0
AC61 2631.7 True 84.4 0.7 False 0.1
AC62 0.1 False 0.0 0.1 False 0.0
AC71 - - - 2.5 False 0.1
AC72 4.1 True 0.1 0.3 False 0.0
AC81 - - - 65.9 False 19.8
AC82 0.8 False 0.0 0.6 False 0.0

Table 4: Evaluation results of the
drones benchmark. The network is
identified as ACx, the lower-right
index y shows the tested property.
RT is the reachable set computation
time, and CT is the safety checking
time, both in seconds. RES is the
safety verification result. True indi-
cates that the given neural network
was verified to be safe, with respect
to the property. Conversely, False
means that the network could not
be verified as safe (either because
of over-approximation error or due
to the network being inherently un-
safe). Cells with (-) indicate cases
where timeout occurs.

Autonomous drone control revolves around launching a drone into the air and enabling it to hover
at a desired altitude [18, 17]. This benchmark consists of eight neural networks. The first four consist
of two, and the other four networks consist of three hidden layers, each followed by a ReLU activation
function. For further info about the benchmark we refer to [38]. We compute the reachability set of the
networks as well as the safety verification using our algorithm and measure the reachable set computation
time and safety checking time in seconds. The networks are verified both with the exact and the over-
approximation method. For each neural network we test two properties. The presented results in Table
4 show, as we would expect, that the over-approximative method is much faster compared to the exact
algorithm. However, the exact method verifies almost every property while the over-approximate ap-
proach fails in all cases (though some were inherently unsafe). This confirms that the over-approximate

L. Antal, H. Masara & E. Ábrahám 43

δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001
RT RES RT RES RT RES RT RES

Set 1 4359 False 783 True 263 True 102 True
Set 2 206243 False 1284 True 245 True 100 True
Set 3 33945 True 3768 True 401 True 308 True
Set 4 7974 True 359 True 103 True 102 True

Table 5: Local adversarial robustness tests of the exact approach. RT is the reachable set computation
time in milliseconds. RES is the safety verification result. True indicates that the neural network correctly
classifies the input set, while False means that the network was unable to correctly classify the input set.

analysis is more scalable and has a smaller computational cost; however, it sacrifices the completeness
of the method.

4.3 Thermostat Controller

This benchmark mentioned in the Master’s thesis [25] maintains the room temperature x between 17°C
and 23°C using a thermostat. It achieves this by activating (mode on) and deactivating (mode off) the
heater based on the sensed temperature. The neural network representing the thermostat’s controller
is a feedforward neural network with four layers. The input consists of two neurons that express the
temperature x ∈ R and the current mode (on or off) as m ∈ {0,1}. Furthermore, two hidden layers
follow, each with ten neurons. Lastly, using the unit step activation function, the output layer predicts
whether the heater should turn on or off, producing the control input Kh = 15 or Kh = 0, respectively.
We compute the reachable sets to verify the safety of the described NN using our reachability method.

We tested one safety property of the thermostat controller, the input temperature being between 22°
and 23°, and the thermostat being turned on, i.e., m = 1, the expected control output should be the turn
off signal. However, the reachability analysis shows two resulting star sets representing the value 15,
meaning that the neural network violates its safety specification. Therefore, we take those star sets and
construct the complete counter input set to falsify the neural network, i.e., prove that it is unsafe. The
construction of the complete counter input set works as explained in Theorem 2 of [54].

4.4 Sonar Binary Classifier

In this section, we evaluate the robustness of a neural network used for binary classification of a sonar
dataset. This dataset describes sonar chirp returns bouncing off from different objects [5]. It contains 60
input variables representing the returned beams’ strength at different angles. The verified neural network
should be capable of robust binary classification, distinguishing between rocks and metal cylinders.
The neural network consists of one hidden layer with 60 neurons, followed by a ReLU activation and an
output layer with a single neuron, followed by the composition of a hard sigmoid and a unit step activation
function. The property we want to verify is the local robustness of the neural network. A neural network
is δ -locally-robust at input x, if for every x′ such that ‖x− x′‖

∞
≤ δ , the network assigns the same output

label to x and x′. Our focus lies in determining the robustness threshold that our verification method can
provide for the network (i.e., finding the largest δ for which the robustness property still holds).

We examine this problem on four inputs of the dataset and four δ values. The first two inputs
should output 1, which means a rock, and the next two 0, which means a metal cylinder. The True

44 Extending Neural Network Verification to Piece-wise Linear Activations

δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001
RT RES RT RES RT RES RT RES

Set 1 234 Inconclusive 205 True 163 True 103 True
Set 2 396 Inconclusive 279 True 157 True 103 True
Set 3 407 Inconclusive 367 True 177 True 174 True
Set 4 339 True 167 True 104 True 101 True

Table 6: Local adversarial robustness tests of the over-approximate approach. RT is the reachable set
computation time in milliseconds. RES is the safety verification result. True indicates that the neural
network correctly classifies the input set, while False means that the network was unable to correctly
classify the input set. Additionally, Inconclusive is assigned when the reachability analysis algorithm
cannot provide a conclusive answer due to the over-approximation errors.

results indicate correct classifications within the robustness threshold (∀x′ being correctly classified),
False denotes incorrect predictions. Moreover, in the case of over-approximate analysis, Inconclusive
means that the verification result is ambiguous due to over-approximation error. A comparison between
the exact and over-approximative algorithms reveals that the exact algorithm proves network robustness
in more cases. Furthermore, different input sets (meaning a single input and its δ neighborhood) exhibit
varying local robustness. For example, in Table 5, for Set 2, the optimal δ value is between 0.01 and
0.001. Tables 5 and 6 are condensed versions of our experiments, to see the complete results, please
check the Appendix A.3 of this paper.

5 Conclusion

In this paper, we proposed algorithms for star-based reachability analysis of various activation functions
used in feed-forward neural networks. To ensure generality, we implemented the activation functions
with flexibility for adaptation to specific use cases. We implemented an NNET parser in Hypro to sim-
plify the incorporation of additional benchmarks. The presented evaluation results offer valuable insights
into network behavior and safety.

As future work, we plan to integrate further layer types. Consequently, we are planning to integrate
a more widely-used standard such as ONNX, for storing and parsing neural network inputs. Moreover,
comprehensive experiments and evaluations will offer deeper insights into the performance, accuracy,
and limitations of this analysis method when applied to neural networks with other activation functions
and layer types, hence, exploring its effectiveness on a more realistic and diverse scale of benchmarks.

We also plan to integrate backpropagation methods using star-sets. Backpropagation is a widely
used algorithm for training artificial neural networks, offering numerous advantages in efficient training,
scalability, flexibility, and generalization capabilities [62]. Investigating the compatibility and benefits of
incorporating backpropagation with star sets can significantly contribute to the advancement of safe and
reliable neural networks.

Finally, we are planning to adapt abstraction refinement techniques (such as CEGAR), to reduce the
over-approximation error during the reachable set analysis.

Acknowledgements. We are grateful to Dario Guidotti, Stefano Demarchi, and Armando Tacchella for
generously sharing with us their drone hovering benchmark. This project has received funding from the
European Union’s Horizon 2020 programme under the Skłodowska-Curie grant agreement No. 956200.

L. Antal, H. Masara & E. Ábrahám 45

References

[1] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria Dada, Abubakar Malah
Umar, Okafor Uchenwa Linus, Humaira Arshad, Abdullahi Aminu Kazaure, Usman Gana & Muham-
mad Ubale Kiru (2019): Comprehensive review of artificial neural network applications to pattern recog-
nition. IEEE Access 7, pp. 158820–158846, doi:10.1109/ACCESS.2019.2945545.

[2] Sushma Priya Anthadupula & Manasi Gyanchandani (2021): A Review and Performance Analysis of
Non-Linear Activation Functions in Deep Neural Networks. Int. Res. J. Mod. Eng. Technol. Sci,
doi:10.1109/iscid.2009.214.

[3] Stanley Bak & Parasara Sridhar Duggirala (2017): Simulation-Equivalent Reachability of Large Linear Sys-
tems with Inputs. In Rupak Majumdar & Viktor Kunčak, editors: Computer Aided Verification, pp. 401–420,
doi:10.1007/978-3-319-63387-9_20.

[4] Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu & Luca Daniel (2019): CNN-Cert: An Efficient
Framework for Certifying Robustness of Convolutional Neural Networks. Proceedings of the AAAI Con-
ference on Artificial Intelligence 33(01), pp. 3240–3247, doi:10.1609/aaai.v33i01.33013240. Available at
https://ojs.aaai.org/index.php/AAAI/article/view/4193.

[5] Jason Brownlee (2022): Binary Classification Tutorial with the Keras
Deep Learning Library. https://machinelearningmastery.com/

binary-classification-tutorial-with-the-keras-deep-learning-library/. [Accessed :
June 1, 2023].

[6] Chih-Hong Cheng, Georg Nührenberg & Harald Ruess (2017): Maximum resilience of artificial neural net-
works. In: Automated Technology for Verification and Analysis: 15th International Symposium, ATVA 2017,
Pune, India, October 3–6, 2017, Proceedings 15, Springer, pp. 251–268, doi:10.1007/978-3-319-68167-2_18.

[7] Edmund M Clarke & Jeannette M Wing (1996): Formal methods: State of the art and future directions. ACM
Computing Surveys (CSUR) 28(4), pp. 626–643, doi:10.1145/242223.242257.

[8] Ronan Collobert (2004): Large scale machine learning. Technical Report, Université de Paris VI.

[9] Ekin Cubuk, Barret Zoph, Samuel Schoenholz & Quoc Le (2017): Intriguing Properties of Adversarial
Examples.

[10] Leonid Datta (2020): A Survey on Activation Functions and their relation with Xavier and He Normal Ini-
tialization.

[11] Educative (2023): What is the vanishing gradient problem? https://www.educative.io/answers/

what-is-the-vanishing-gradient-problem. [Accessed: May 12, 2023].

[12] Ruediger Ehlers (2017): Formal verification of piece-wise linear feed-forward neural networks. In: Auto-
mated Technology for Verification and Analysis: 15th International Symposium, ATVA 2017, Pune, India,
October 3–6, 2017, Proceedings 15, Springer, pp. 269–286, doi:10.1007/978-3-319-68167-2_19.

[13] Dumitru Erhan, Christian Szegedy, Alexander Toshev & Dragomir Anguelov (2014): Scalable Object Detec-
tion Using Deep Neural Networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2155–2162, doi:10.1109/CVPR.2014.276.

[14] Aymeric Fromherz, Klas Leino, Matt Fredrikson, Bryan Parno & Corina Pasareanu (2021): Fast Geometric
Projections for Local Robustness Certification. In: International Conference on Learning Representations.
Available at https://openreview.net/forum?id=zWy1uxjDdZJ.

[15] Osvaldo Gervasi, Beniamino Murgante, Antonio Laganà, David Taniar, Youngsong Mun & Marina L.
Gavrilova, editors (2008): Computational Science and Its Applications - ICCSA 2008, International Con-
ference, Perugia, Italy, June 30 - July 3, 2008, Proceedings, Part I. Lecture Notes in Computer Science 5072,
Springer, doi:10.1007/978-3-540-69839-5.

[16] Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy (2014): Explaining and Harnessing Adversarial Ex-
amples. CoRR abs/1412.6572. Available at https://api.semanticscholar.org/CorpusID:6706414.

https://doi.org/10.1109/ACCESS.2019.2945545
https://doi.org/10.1109/iscid.2009.214.
https://doi.org/10.1007/978-3-319-63387-9_20
https://doi.org/10.1609/aaai.v33i01.33013240
https://ojs.aaai.org/index.php/AAAI/article/view/4193
https://machinelearningmastery.com/binary-classification-tutorial-with-the-keras-deep-learning-library/
https://machinelearningmastery.com/binary-classification-tutorial-with-the-keras-deep-learning-library/
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1145/242223.242257
https://www.educative.io/answers/what-is-the-vanishing-gradient-problem
https://www.educative.io/answers/what-is-the-vanishing-gradient-problem
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1109/CVPR.2014.276
https://openreview.net/forum?id=zWy1uxjDdZJ
https://doi.org/10.1007/978-3-540-69839-5
https://api.semanticscholar.org/CorpusID:6706414

46 Extending Neural Network Verification to Piece-wise Linear Activations

[17] Dario Guidotti (2022): Verification of Neural Networks for Safety and Security-critical Domains. ISSN
1613-0073 CEUR Workshop Proceedings. Available at https://ceur-ws.org/Vol-3345/paper10_
RiCeRCa3.pdf.

[18] Dario Guidotti, Stefano Demarchi, Luca Pulina & Armando Tacchella (2022): Evaluating Reachability Al-
gorithms for Neural Networks on NeVer2.

[19] Patrick Henriksen & Alessio Lomuscio (2021): DEEPSPLIT: An Efficient Splitting Method for Neural Net-
work Verification via Indirect Effect Analysis. In: IJCAI, pp. 2549–2555, doi:10.24963/ijcai.2021/351.

[20] Michael Hinchey, Jonathan Bowen & Christopher Rouff (2006): Introduction to Formal Methods. Springer,
doi:10.1007/1-84628-271-3_2.

[21] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath & Brian Kingsbury (2012): Deep Neural Net-
works for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE
Signal Processing Magazine 29(6), pp. 82–97, doi:10.1109/MSP.2012.2205597.

[22] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath et al. (2012): Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine
29(6), pp. 82–97, doi:10.1109/MSP.2012.2205597.

[23] Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen & Qi Zhu (2019): Reachnn: Reachability analysis of
neural-network controlled systems. ACM Transactions on Embedded Computing Systems (TECS) 18(5s),
pp. 1–22, doi:10.1145/3358228.

[24] Xiaowei Huang, Marta Kwiatkowska, Sen Wang & Min Wu (2017): Safety verification of deep neural net-
works. In: International conference on computer aided verification, Springer, pp. 3–29, doi:10.1007/978-3-
319-63387-9_1.

[25] Ruoran Gabriela Jiang (2023): Verifying ai-controlled hybrid systems. Master’s thesis, RWTH Aachen Uni-
versity, Aachen, Germany. Available at https://ths.rwth-aachen.de/wp-content/uploads/sites/
4/master_thesis_jiang.pdf.

[26] Kyle D. Julian, Mykel J. Kochenderfer & Michael P. Owen (2019): Deep Neural Network Compression for
Aircraft Collision Avoidance Systems. Journal of Guidance, Control, and Dynamics 42(3), pp. 598–608,
doi:10.2514/1.g003724. Available at https://doi.org/10.2514%2F1.g003724.

[27] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian & Mykel J. Kochenderfer (2017): Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks. In Rupak Majumdar & Viktor Kunčak, editors: Computer
Aided Verification, Springer International Publishing, Cham, pp. 97–117, doi:10.1007/978-3-319-63387-9_-
5.

[28] Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah,
Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić et al. (2019): The marabou framework for verification and
analysis of deep neural networks. In: International Conference on Computer Aided Verification, Springer,
pp. 443–452, doi:10.1007/978-3-030-25540-4_26.

[29] Philipp Kern, Marko Kleine Büning & Carsten Sinz (2022): Optimized Symbolic Interval Propagation for
Neural Network Verification. In: 1st Workshop on Formal Verification of Machine Learning (WFVML 2022)
colocated with ICML 2022: International Conference on Machine Learning.

[30] Kumar, Niranjan (2019): Deep Learning: Feedforward Neural Networks Explained. https://medium.

com/hackernoon/deep-learning-feedforward-neural-networks-explained-\c34ae3f084f1.
[Accessed: May 03, 2023].

[31] Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber & Saber Fallah (2021): A Survey of Deep Learning
Applications to Autonomous Vehicle Control. IEEE Transactions on Intelligent Transportation Systems 22(2),
pp. 712–733, doi:10.1109/TITS.2019.2962338.

[32] Yann LeCun, Yoshua Bengio & Geoffrey Hinton (2015): Deep learning. nature 521(7553), pp. 436–444,
doi:10.1038/nature14539.

https://ceur-ws.org/Vol-3345/paper10_RiCeRCa3.pdf
https://ceur-ws.org/Vol-3345/paper10_RiCeRCa3.pdf
https://doi.org/10.24963/ijcai.2021/351
https://doi.org/10.1007/1-84628-271-3_2
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1145/3358228
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/master_thesis_jiang.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/master_thesis_jiang.pdf
https://doi.org/10.2514/1.g003724
https://doi.org/10.2514%2F1.g003724
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://medium.com/hackernoon/deep-learning-feedforward-neural-networks-explained-\ c3 4ae3f084f1
https://medium.com/hackernoon/deep-learning-feedforward-neural-networks-explained-\ c3 4ae3f084f1
https://doi.org/10.1109/TITS.2019.2962338
https://doi.org/10.1038/nature14539

L. Antal, H. Masara & E. Ábrahám 47

[33] Andy Lee (2015): Comparing deep neural networks and traditional vision algorithms in mobile robotics.
Swarthmore University. Available at https://api.semanticscholar.org/CorpusID:10011895.

[34] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett & Mykel J. Kochender-
fer (2021): Algorithms for Verifying Deep Neural Networks. Foundations and Trends in Optimization 4(3-4),
pp. 244–404, doi:10.1561/2400000035. Available at http://theory.stanford.edu/~barrett/pubs/
LAL+21.pdf.

[35] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu & Fuad E. Alsaadi (2017): A
survey of deep neural network architectures and their applications. Neurocomputing 234, pp. 11–
26, doi:10.1016/j.neucom.2016.12.038. Available at https://www.sciencedirect.com/science/

article/pii/S0925231216315533.
[36] Alessio Lomuscio & Lalit Maganti (2017): An approach to reachability analysis for feed-forward ReLU

neural networks.
[37] Andrew L. Maas (2013): Rectifier Nonlinearities Improve Neural Network Acoustic Models. In: Pro-

ceedings of the International Conference on Machine Learning, pp. 1–6. Available at https://www.

semanticscholar.org/paper/Rectifier-Nonlinearities-Improve-Neural-Network-Maas/

367f2c63a6f6a10b3b64b8729d601e69337ee3cc.
[38] Hana Masara (2023): Star Set-based Reachability Analysis of Neural Networks with Differing Layers and

Activation Functions. Bachelor’s thesis, RWTH Aachen University, Aachen, Germany. Available at https:
//ths.rwth-aachen.de/wp-content/uploads/sites/4/Thesis-Hana-Masara.pdf.

[39] ONNX. https://onnx.ai/. [Accessed: May 30, 2023].
[40] (2021): PyTorch: torch.nn.Hardsigmoid. https://pytorch.org/docs/stable/generated/torch.nn.

Hardsigmoid.html. Accessed : May 16, 2023.
[41] Luca Pulina & Armando Tacchella (2010): An Abstraction-Refinement Approach to Verification of Artificial

Neural Networks. In Tayssir Touili, Byron Cook & Paul Jackson, editors: Computer Aided Verification,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 243–257, doi:10.1007/978-3-642-14295-6_24.

[42] Luthfi Ramadhan (2021): Neural Network: The Dead Neuron. https://towardsdatascience.com/

neural-network-the-dead-neuron-eaa92e575748. [Accessed: May 14, 2023].
[43] Waseem Rawat & Zenghui Wang (2017): Deep convolutional neural networks for image classification: A

comprehensive review. Neural computation 29(9), pp. 2352–2449, doi:10.1162/neco_a_00990.
[44] Wenjie Ruan, Xiaowei Huang & Marta Kwiatkowska (2018): Reachability Analysis of Deep Neural Net-

works with Provable Guarantees. In: Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI-18, International Joint Conferences on Artificial Intelligence Organization, pp.
2651–2659, doi:10.24963/ijcai.2018/368. Available at https://doi.org/10.24963/ijcai.2018/368.

[45] Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher J Anders & Klaus-Robert Müller
(2021): Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of
the IEEE 109(3), pp. 247–278, doi:10.1109/JPROC.2021.3060483.

[46] Stefan Schupp, Erika Ábrahám, Ibtissem Makhlouf & Stefan Kowalewski (2017): HyPro: A C++ Library
of State Set Representations for Hybrid Systems Reachability Analysis. In Clark Barrett, Misty Davies &
Temesghen Kahsai, editors: NASA Formal Methods, pp. 288–294, doi:10.1007/978-3-319-57288-8_20.

[47] Stefan Schupp, Erika Ábrahám, Ibtissem Ben Makhlouf & Stefan Kowalewski (2017): H y P ro: A C++
library of state set representations for hybrid systems reachability analysis. In: NASA Formal Methods
Symposium, Springer, pp. 288–294, doi:10.1007/978-3-319-57288-8_20.

[48] Stefan Schupp, Goran Frehse & Erika Ábrahám (2019): State set representations and their usage in the
reachability analysis of hybrid systems. Ph.D. thesis, RWTH Aachen University, doi:10.18154/RWTH-2019-
08875. Available at https://publications.rwth-aachen.de/record/767529/files/767529.pdf.

[49] Gagandeep Singh, Timon Gehr, Markus Püschel & Martin T. Vechev (2019): An abstract domain for certify-
ing neural networks. Proc. ACM Program. Lang. 3(POPL), pp. 41:1–41:30, doi:10.1145/3290354. Available
at https://doi.org/10.1145/3290354.

https://api.semanticscholar.org/CorpusID:10011895
https://doi.org/10.1561/2400000035
http://theory.stanford.edu/~barrett/pubs/LAL+21.pdf
http://theory.stanford.edu/~barrett/pubs/LAL+21.pdf
https://doi.org/10.1016/j.neucom.2016.12.038
https://www.sciencedirect.com/science/article/pii/S0925231216315533
https://www.sciencedirect.com/science/article/pii/S0925231216315533
https://www.semanticscholar.org/paper/Rectifier-Nonlinearities-Improve-Neural-Network-Maas/367f2c63a6f6a10b3b64b8729d601e69337ee3cc
https://www.semanticscholar.org/paper/Rectifier-Nonlinearities-Improve-Neural-Network-Maas/367f2c63a6f6a10b3b64b8729d601e69337ee3cc
https://www.semanticscholar.org/paper/Rectifier-Nonlinearities-Improve-Neural-Network-Maas/367f2c63a6f6a10b3b64b8729d601e69337ee3cc
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/Thesis-Hana-Masara.pdf
https://ths.rwth-aachen.de/wp-content/uploads/sites/4/Thesis-Hana-Masara.pdf
https://onnx.ai/
https://pytorch.org/docs/stable/generated/torch.nn.Hardsigmoid.html
https://pytorch.org/docs/stable/generated/torch.nn.Hardsigmoid.html
https://doi.org/10.1007/978-3-642-14295-6_24
https://towardsdatascience.com/neural-network-the-dead-neuron-eaa92e575748
https://towardsdatascience.com/neural-network-the-dead-neuron-eaa92e575748
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.24963/ijcai.2018/368
https://doi.org/10.24963/ijcai.2018/368
https://doi.org/10.1109/JPROC.2021.3060483
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.18154/RWTH-2019-08875
https://doi.org/10.18154/RWTH-2019-08875
https://publications.rwth-aachen.de/record/767529/files/767529.pdf
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354

48 Extending Neural Network Verification to Piece-wise Linear Activations

[50] Bing Sun, Jun Sun, Ting Dai & Lijun Zhang (2021): Probabilistic Verification of Neural Networks Against
Group Fairness. In: Formal Methods: 24th International Symposium, FM 2021, Virtual Event, November
20-26, 2021, Proceedings, Springer-Verlag, Berlin, Heidelberg, pp. 83–102, doi:10.1007/978-3-030-90870-
6_5. Available at https://doi.org/10.1007/978-3-030-90870-6_5.

[51] Daniel Svozil, Vladimir Kvasnicka & Jiri Pospichal (1997): Introduction to multi-layer feed-forward neu-
ral networks. Chemometrics and Intelligent Laboratory Systems 39(1), pp. 43–62, doi:10.1016/S0169-
7439(97)00061-0.

[52] (2023): TensorFlow Documentation. https://www.tensorflow.org/api_docs/python/tf/keras/

activations/hard_sigmoid. Accessed : May 16, 2023.

[53] Dung Tran (2020): Verification of Learning-enabled Cyber-Physical Systems. Ph.D. thesis, Vanderbilt Uni-
versity Graduate School. Available at http://hdl.handle.net/1803/15957.

[54] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen, Weiming
Xiang & Taylor T. Johnson (2019): Star-Based Reachability Analysis of Deep Neural Networks. In Mau-
rice H. ter Beek, Annabelle McIver & José N. Oliveira, editors: Formal Methods – The Next 30 Years,
Springer International Publishing, Cham, pp. 670–686, doi:10.1007/978-3-030-30942-8_39.

[55] Hoang-Dung Tran, Patrick Musau, Diego Manzanas Lopez, Xiaodong Yang, Luan Viet Nguyen, Weiming
Xiang & Taylor T Johnson (2019): Parallelizable reachability analysis algorithms for feed-forward neural
networks. In: 2019 IEEE/ACM 7th International Conference on Formal Methods in Software Engineering
(FormaliSE), IEEE, pp. 51–60, doi:10.1109/FormaliSE.2019.00012.

[56] Hoang-Dung Tran, Neelanjana Pal, Diego Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet
Nguyen, Weiming Xiang, Stanley Bak & Taylor T Johnson (2021): Verification of piecewise deep neural
networks: a star set approach with zonotope pre-filter. Formal Aspects of Computing 33, pp. 519–545,
doi:10.1007/s00165-021-00553-4.

[57] Hoang-Dung Tran, Neelanjana Pal, Diego Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet
Nguyen, Weiming Xiang, Stanley Bak & Taylor T. Johnson (2021): Verification of piecewise deep neural
networks: a star set approach with zonotope pre-filter. Formal Aspects of Computing 33(4), pp. 519–545,
doi:10.1007/s00165-021-00553-4. Available at https://doi.org/10.1007/s00165-021-00553-4.

[58] RWTH University (2023): RWTH High Performance Computing (Linux). https://help.itc.

rwth-aachen.de/service/rhr4fjjutttf/. [Accessed : July 24, 2023].

[59] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang & Suman Jana (2018): Efficient Formal Safety
Analysis of Neural Networks. In: Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, Curran Associates Inc., Red Hook, NY, USA, pp. 6369–6379.

[60] Jeannette M Wing (1990): A specifier’s introduction to formal methods. Computer 23(9), pp. 8–22,
doi:10.1109/2.58215.

[61] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui & John Fitzgerald (2009): Formal methods: Practice
and experience. ACM computing surveys (CSUR) 41(4), pp. 1–36, doi:10.1145/1592434.1592436.

[62] Logan G. Wright, Tatsuhiro Onodera, Martin M. Stein, Tianyu Wang, Darren T. Schachter, Zoey Hu
& Peter L. McMahon (2022): Deep physical neural networks trained with backpropagation. Nature
601(7894), pp. 549–555, doi:10.1038/s41586-021-04223-6. Available at https://doi.org/10.1038/
s41586-021-04223-6.

[63] Haoze Wu, Aleksandar Zeljić, Guy Katz & Clark Barrett (2022): Efficient Neural Network Analysis with
Sum-of-Infeasibilities. In Dana Fisman & Grigore Rosu, editors: Tools and Algorithms for the Construction
and Analysis of Systems, Springer International Publishing, Cham, pp. 143–163, doi:10.1007/978-3-030-
99524-9_8.

[64] Weiming Xiang, Hoang-Dung Tran & Taylor T. Johnson (2018): Output Reachable Set Estimation and Ver-
ification for Multilayer Neural Networks. IEEE Transactions on Neural Networks and Learning Systems
29(11), pp. 5777–5783, doi:10.1109/TNNLS.2018.2808470.

https://doi.org/10.1007/978-3-030-90870-6_5
https://doi.org/10.1007/978-3-030-90870-6_5
https://doi.org/10.1007/978-3-030-90870-6_5
https://doi.org/10.1016/S0169-7439(97)00061-0
https://doi.org/10.1016/S0169-7439(97)00061-0
https://www.tensorflow.org/api_docs/python/tf/keras/activations/hard_sigmoid
https://www.tensorflow.org/api_docs/python/tf/keras/activations/hard_sigmoid
http://hdl.handle.net/1803/15957
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1109/FormaliSE.2019.00012
https://doi.org/10.1007/s00165-021-00553-4
https://doi.org/10.1007/s00165-021-00553-4
https://doi.org/10.1007/s00165-021-00553-4
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/
https://doi.org/10.1109/2.58215
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1007/978-3-030-99524-9_8
https://doi.org/10.1007/978-3-030-99524-9_8
https://doi.org/10.1109/TNNLS.2018.2808470

L. Antal, H. Masara & E. Ábrahám 49

[65] Jin Xu, Zishan Li, Bowen Du, Miaomiao Zhang & Jing Liu (2020): Reluplex made more practi-
cal: Leaky ReLU. In: 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1–7,
doi:10.1109/ISCC50000.2020.9219587.

https://doi.org/10.1109/ISCC50000.2020.9219587

50 Extending Neural Network Verification to Piece-wise Linear Activations

A Supplementary Material

A.1 Formal proofs

Proposition A.1 (Convex polytopes as stars). For any m, p ∈ N, C ∈ Rp×m and d ∈ Rp, the convex
polyhedron P = {x ∈ Rm | Cx ≤ d} can be represented by a star.

Proof. It is straightforward to obtain an equivalent starset θ of the polytope P , using the null vector
as center, i.e., c = [0,0, . . . ,0]ᵀ, the set of n unit vectors ei for the basis, i.e. V = {e1, . . . ,en} (i.e., the
generator matrix V = In), and the predicate P in the form of α ∈ P≡ Cα ≤ d.

Proposition A.2 (Affine transformation). Assume an (n,m)-dimensional star θ = 〈c,V,P〉 and let W ∈
Rk×n and b ∈Rk. Then the affine transformation {Wx+b | x ∈ [θ]} of [θ] is represented by θ̄ = 〈c̄, V̄,P〉
with c̄ = Wc+b and V̄ ∈ Rk×m with columns Wv(1), . . . ,Wv(m).

Proof. Using the definition of the resulting star set after applying the affine transformation, we have
θ̄ = {y | y = W(c+∑

m
j=1 (α jv(j)))+b such that α ∈ P}. That means, θ̄ is another star, having the center

c̄ = Wc + b and generator vectors V = {Wv(1),Wv(2), . . . ,Wv(2)}. Note that the predicate does not
change during the computation of the affine mapping of a star.

Proposition A.3 (Intersection with halfspace). Assume an (n,m)-dimensional star θ = 〈c,V,P〉 and a
half-space H = {x ∈ Rn | hT x ≤ g} with some h ∈ Rn and g ∈ R. Then the intersetion [θ]∩H is
represented by the star θ̄ = 〈c,V,P∩P′〉 with P′ = {α ∈ Rm |(hT V)α ≤ g−hT c}.

Proof. The resulting star is θ̄ = {x | x = c +∑
m
j=1 (α jv(j)) s. t. (α1, . . . ,αm)

T ∈ P∧ hT x ≤ g}. Since
x = c +∑

m
j=1 (α jv(j)), the new constraint can be written as hT (c +Vα) ≤ g, where α = [α1, . . . ,αm]

ᵀ.
Consequently, the new predicate is P∩P′, P′(α) = (hT V)α ≤ g−hT c.

Proposition A.4 (Emptiness checking). A star θ = 〈c,V,P〉 is empty if and only if P is empty.

Proof. It is straightforward to see that only the predicate restricts the elements of a star. In other words,
if the predicte does not allow any solution (i.e., it’s empty), then the star set is empty as well.

Proposition A.5 (Bounding box). Assume an (n,m)-dimensional star θ = 〈c,V,P〉with c =(c1, . . . ,cn)
T ,

and let V(i) be the ith row of V. Let furthermore B = {(x1, . . . ,xn)
T ∈ Rn |

∧n
i=1 lbi ≤ xi ≤ ubi} with

lbi = ci +min
α∈P

V(i)α and ubi = ci +max
α∈P

V(i)α for i = 1, . . . ,n. Then [θ]⊆ B.

Proof. According to the star set’s definition xi = ci +∑
m
j=1 α jv

(j)
i . That is, if we want to find the lower

(or upper) bound of xi, we have to find the solution of minimizex∈θ xi (or maximizex∈θ xi, respecitvely).
Using the definition of the star set, we get ci+minimizeα∈P=> V(i)α (or ci+maximizeα∈P=> V(i)α).

L. Antal, H. Masara & E. Ábrahám 51

52 Extending Neural Network Verification to Piece-wise Linear Activations

A.2 ACAS Xu Detailed Results

Nx,y
Exact Overapproximation

RT(s) RES CT(s) OSS RT(s) RES CT(s) OSS

N2,1 15837.45 False 325.53 193197 1338.12 False 43.21 1
N2,2 36112.55 False 1174.41 472257 1005.57 False 68.81 1
N2,3 18532.01 False 303.91 194275 962.63 False 74.02 1
N2,4 8254.17 False 299.08 114155 1391.11 False 73.80 1
N2,5 56241.64 False 2275.48 677510 1790.96 False 111.03 1
N2,6 25991.47 False 650.43 309631 2044.11 False 45.39 1
N2,7 65508.57 False 1544.92 679523 3366.64 False 161.01 1
N2,8 53195.81 False 1260.82 585647 3677.42 False 135.44 1
N2,9 - - - - 1855.61 False 64.66 1
N3,1 15559.97 False 727.35 252793 939.06 False 54.55 1
N3,2 12911.84 False 295.19 181433 2362.05 False 72.16 1
N3,3 24675.76 True 508.77 341669 900.05 False 33.53 1
N3,4 7393.05 False 205.80 133782 1500.14 False 95.91 1
N3,5 23852.32 False 795.67 365066 1723.58 False 67.01 1
N3,6 70608.24 False 2823.21 1003886 2694.87 False 120.82 1
N3,7 41256.50 False 1233.86 475299 4753.87 False 150.12 1
N3,8 37253.31 False 754.01 472562 1304.76 False 38.45 1
N3,9 48309.81 False 1152.44 379221 2498.83 False 54.83 1
N4,1 66720.59 False 854.57 402853 973.59 False 74.23 1
N4,2 85507.29 True 1130.23 484555 1139.11 False 74.50 1
N4,3 10627.68 False 303.07 138170 1096.26 False 38.32 1
N4,4 12923.14 False 357.63 143424 1257.89 False 77.31 1
N4,5 75982.74 False 1223.96 457447 3312.96 False 93.14 1
N4,6 - - - - 1802.32 False 68.50 1
N4,7 107331.18 False 2132.42 652417 781.43 False 32.85 1
N4,8 67596.46 False 1893.68 515113 2661.60 False 186.54 1
N4,9 - - - - 13969.59 False 29.64 1
N5,1 30332.56 False 407.09 201773 1291.09 False 60.81 1
N5,2 43636.56 False 486.83 261011 1173.13 False 36.83 1
N5,3 10740.98 False 191.73 125860 1072.01 False 56.17 1
N5,4 6221.00 False 138.55 81364 1415.43 False 109.63 1
N5,5 31217.25 False 386.70 213059 1275.20 False 61.52 1
N5,6 97829.27 False 1149.06 622084 2196.38 False 94.40 1
N5,7 57210.41 False 918.01 355919 2347.15 False 92.50 1
N5,8 101123.47 False 1521.47 544813 3443.00 False 106.33 1
N5,9 78557.70 False 1164.09 619284 3216.64 False 92.62 1

Table 7: Verification results for property P2 on 36 ACAS Xu networks. (RT) is the reachable set compu-
tation time, and (CT) is the safety checking time, both in seconds. (RES) is the safety verification result.
(OSS) describes the number of the output star sets. The cells with (-) correspond to networks in which
our algorithm was not able to compute the reachability set successfully in less than 48 hours.

L. Antal, H. Masara & E. Ábrahám 53

Nx,y
Exact Overapproximation

RT(s) RES CT(s) OSS RT(s) RES CT(s) OSS

N1,1 3013.64 True 45.71 39835 823.72 False 7.97 1
N1,2 3575.72 True 53.74 45648 2214.74 False 15.48 1
N1,3 11037.81 True 200.90 114287 3211.44 False 16.37 1
N1,4 13111.44 True 267.78 154529 2915.33 False 21.64 1
N1,5 9756.54 True 196.13 122297 1618.80 False 9.97 1
N1,6 35718.94 True 823.34 376647 1385.90 False 13.06 1
N1,7 4712.34 True 85.86 66416 1228.45 False 13.30 1
N1,8 8279.50 True 174.76 110139 2226.28 False 38.84 1
N1,9 9136.22 True 189.03 135645 2999.83 False 24.42 1
N2,1 15355.00 True 325.53 193197 1538.98 False 11.57 1
N2,2 34071.21 True 617.56 472257 1147.34 False 19.50 1
N2,3 13319.28 True 253.42 194275 956.66 False 18.24 1
N2,4 8124.85 True 167.98 114155 1141.23 False 21.41 1
N2,5 53191.97 True 1103.15 677510 1489.67 False 22.42 1
N2,6 23772.93 True 417.89 309631 1972.41 False 10.89 1
N2,7 53504.01 True 1016.92 679523 3330.97 False 39.63 1
N2,8 48084.68 True 777.85 585647 4132.09 False 38.59 1
N2,9 86837.06 True 1395.51 910575 2225.92 False 19.55 1
N3,1 14553.80 True 497.52 252793 1130.78 False 22.86 1
N3,2 16570.78 True 359.74 181433 2678.57 False 19.91 1
N3,3 28386.63 True 649.15 341669 994.11 False 8.74 1
N3,4 8765.59 True 154.49 133782 1662.63 False 23.46 1
N3,5 28583.49 True 641.96 365066 1884.56 False 15.86 1
N3,6 65843.71 True 1595.55 1003886 2494.56 False 28.20 1
N3,7 47664.54 True 1094.01 475299 4453.61 False 36.35 1
N3,8 38414.57 True 652.14 472562 1501.02 False 11.65 1
N3,9 33949.16 True 746.01 379221 3221.20 False 17.70 1
N4,1 35166.18 True 603.51 402853 1007.71 False 19.63 1
N4,2 41913.56 True 748.73 484555 1322.22 False 21.65 1
N4,3 9966.29 True 164.86 138170 1256.42 False 10.84 1
N4,4 12343.79 True 213.54 143424 1295.82 False 20.12 1
N4,5 39853.04 True 861.19 457447 3795.18 False 28.86 1
N4,6 134265.70 True 2703.07 1296311 1816.04 False 18.24 1
N4,7 61325.43 True 942.40 652417 999.71 False 10.53 1
N4,8 32988.07 True 775.16 515113 2781.59 False 49.10 1
N4,9 87048.69 True 1456.81 984701 14379.08 False 7.58 1
N5,1 13215.58 True 262.90 201773 1284.01 False 14.30 1
N5,2 17025.91 True 347.06 261011 1025.24 False 7.94 1
N5,3 10237.07 True 219.97 125860 1089.35 False 13.62 1
N5,4 5989.44 True 106.26 81364 1228.81 False 22.77 1
N5,5 14346.32 True 239.07 213059 1361.83 False 17.98 1
N5,6 102872.82 True 1120.75 622084 2093.55 False 22.16 1
N5,7 31414.81 True 595.66 355919 2211.67 False 21.59 1
N5,8 95265.60 True 886.15 544813 3226.16 False 24.57 1
N5,9 95694.38 True 1002.30 619284 3546.82 False 24.30 1

Table 8: Verification results for property P1 on 45 ACAS Xu networks. RT is the reachable set computa-
tion time, and CT is the safety checking time, both in seconds. RES is the safety verification result. OSS
describes the number of the output star sets.

54 Extending Neural Network Verification to Piece-wise Linear Activations

Nx,y
Exact Overapproximation

RT(s) RES CT(s) OSS RT(s) RES CT(s) OSS

N1,1 1768.51 True 206.94 71930 33.88 False 1.45 1
N1,2 1647.32 True 115.58 40273 34.65 False 4.28 1
N1,3 442.65 True 29.13 12444 28.54 False 1.87 1
N1,4 224.24 True 3.64 4346 12.95 True 0.09 1
N1,5 246.37 True 4.09 4820 12.65 True 0.11 1
N1,6 65.95 True 0.91 1281 3.79 True 0.03 1
N2,1 485.40 True 17.82 16382 23.79 False 1.84 1
N2,2 178.63 True 6.48 6924 10.60 False 1.04 1
N2,3 316.67 True 10.55 10694 22.85 False 1.21 1
N2,4 20.16 True 0.21 351 1.84 True 0.07 1
N2,5 111.27 True 2.09 2466 8.17 True 0.11 1
N2,6 13.62 True 0.12 255 3.79 True 0.03 1
N2,7 60.04 True 0.91 1229 5.07 True 0.15 1
N2,8 17.78 True 0.17 329 3.84 True 0.01 1
N2,9 9.46 True 0.09 189 0.81 True 0.00 1
N3,1 153.28 True 8.77 5999 5.19 True 0.73 1
N3,2 2018.12 True 88.51 37541 27.15 False 1.97 1
N3,3 390.10 True 12.46 7935 23.19 True 1.89 1
N3,4 76.08 True 1.53 2100 29.34 False 2.27 1
N3,5 44.62 True 1.19 1042 6.18 True 0.30 1
N3,6 99.32 True 1.46 1868 15.38 False 1.73 1
N3,7 4.20 True 0.04 107 1.39 True 0.01 1
N3,8 33.03 True 0.55 669 5.84 True 0.28 1
N3,9 42.36 True 0.82 1223 3.04 True 0.12 1
N4,1 50.28 True 1.66 2298 4.80 False 0.90 1
N4,2 627.65 True 19.89 18088 16.52 False 1.07 1
N4,3 976.11 True 25.53 21237 19.26 False 1.15 1
N4,4 34.30 True 0.39 560 2.86 True 0.06 1
N4,5 9.23 True 0.23 361 2.41 True 0.03 1
N4,6 107.72 True 1.86 2533 39.84 True 0.64 1
N4,7 51.25 True 0.61 948 4.47 True 0.08 1
N4,8 35.98 True 0.38 576 3.01 True 0.02 1
N4,9 36.69 True 0.38 616 7.89 True 0.14 1
N5,1 328.52 True 11.35 9556 12.10 False 0.66 1
N5,2 61.58 True 2.10 2126 5.45 True 0.88 1
N5,3 72.33 True 4.63 2906 10.64 True 3.13 1
N5,4 33.32 True 0.86 765 4.98 True 0.09 1
N5,5 44.61 True 1.02 1310 7.65 True 0.54 1
N5,6 63.87 True 0.71 1166 10.97 True 0.56 1
N5,7 4.93 True 0.04 88 0.81 True 0.01 1
N5,8 134.31 True 2.11 2406 9.51 True 0.15 1
N5,9 4.04 True 0.05 111 1.86 True 0.01 1

Table 9: Verification results for property P3 on 45 ACAS Xu networks. RT is the reachable set computa-
tion time, and CT is the safety checking time, both in seconds. RES is the safety verification result. OSS
describes the number of the output star sets.

L. Antal, H. Masara & E. Ábrahám 55

Nx,y
Exact Overapproximation

RT(s) RES CT(s) OSS RT(s) RES CT(s) OSS

N1,1 424.83 True 29.77 19142 12.57 False 4.78 1
N1,2 366.72 True 23.35 13143 18.92 False 4.37 1
N1,3 277.95 True 13.40 9837 22.69 False 1.40 1
N1,4 24.99 True 1.42 1184 5.78 False 0.67 1
N1,5 208.17 True 6.32 6608 6.67 False 0.39 1
N1,6 117.16 True 3.32 4443 9.87 True 0.92 1
N2,1 123.79 True 5.38 5066 12.60 False 2.10 1
N2,2 149.75 True 6.18 4500 14.89 False 2.42 1
N2,3 27.12 True 0.99 1087 3.62 True 0.72 1
N2,4 22.95 True 0.51 913 8.44 True 0.06 1
N2,5 88.98 True 2.45 3419 11.61 True 0.45 1
N2,6 46.37 True 0.97 1462 15.22 True 0.46 1
N2,7 18.88 True 0.29 555 5.68 True 0.08 1
N2,8 126.04 True 1.03 1805 51.33 False 1.45 1
N2,9 8.05 True 0.06 157 1.85 True 0.01 1
N3,1 160.56 True 5.17 4281 9.46 True 1.15 1
N3,2 231.23 True 14.38 8708 4.15 True 1.19 1
N3,3 25.16 True 1.25 1201 2.44 True 0.16 1
N3,4 31.60 True 1.22 1214 4.10 True 0.27 1
N3,5 122.59 True 5.01 3630 26.23 True 1.13 1
N3,6 62.39 True 1.21 1495 14.23 True 0.85 1
N3,7 55.24 True 0.48 862 5.02 True 0.12 1
N3,8 20.56 True 0.56 542 8.46 False 0.35 1
N3,9 148.09 True 1.57 2684 15.36 True 0.95 1
N4,1 19.95 True 0.87 848 1.34 True 0.35 1
N4,2 38.94 True 1.41 1348 9.42 True 2.55 1
N4,3 78.86 True 3.72 3725 12.85 True 4.57 1
N4,4 58.67 True 0.82 1253 19.74 False 1.14 1
N4,5 45.51 True 0.71 1255 8.60 True 0.23 1
N4,6 87.67 True 1.65 2366 11.26 True 0.56 1
N4,7 6.78 True 0.10 216 3.65 True 0.08 1
N4,8 79.35 True 1.01 1591 9.29 True 0.09 1
N4,9 139.12 True 1.75 2566 9.37 True 0.20 1
N5,1 166.59 True 9.26 6932 9.45 True 0.63 1
N5,2 117.59 True 6.30 4361 4.22 True 0.56 1
N5,3 42.58 True 2.18 1662 7.46 True 0.71 1
N5,4 40.08 True 1.24 1088 5.68 True 0.16 1
N5,5 52.80 True 0.89 1549 7.65 True 0.24 1
N5,6 27.96 True 0.50 677 6.74 True 0.47 1
N5,7 6.08 True 0.06 157 2.63 True 0.04 1
N5,8 24.29 True 0.28 502 12.76 True 0.73 1
N5,9 34.99 True 0.55 992 5.26 True 0.15 1

Table 10: Verification results for property P4 on 42 ACAS Xu networks. RT is the reachable set com-
putation time, and CT is the safety checking time, both in seconds. RES is the safety verification result.
OSS describes the number of the output star sets.

56 Extending Neural Network Verification to Piece-wise Linear Activations

Nx,y
Exact Overapproximation

RT(s) RES CT(s) OSS RT(s) RES CT(s) OSS

N1,1 2933.99 True 352.76 59734 461.70 False 8.63 1

Table 11: Verification results for property P5 on 1 ACAS Xu network. RT is the reachable set computation
time, and CT is the safety checking time, both in seconds. RES is the safety verification result. OSS
describes the number of the output star sets.

Nx,y
Exact Overapproximation

RT(s) RES CT(s) OSS RT(s) RES CT(s) OSS

N1,1 44026.93 True 1159.88 187775 1083.38 False 17.91 1

Table 12: Verification results for property P6 on 1 ACAS Xu network. RT is the reachable set computation
time, and CT is the safety checking time, both in seconds. RES is the safety verification result. OSS
describes the number of the output star sets.

Nx,y
Exact Overapproximation

RT(s) RES CT(s) OSS RT(s) RES CT(s) OSS

N11 - - - - 1520.91 False 147.38 1

Table 13: Verification results for property P7 on 1 ACAS Xu network. RT is the reachable set computation
time, and CT is the safety checking time, both in seconds. RES is the safety verification result. OSS
describes the number of the output star sets. The cells with (-) correspond to networks in which our
algorithm was not able to compute the reachability set successfully in less than 48 hours

Nx,y
Exact Overapproximation

RT(s) RES CT(s) OSS RT(s) RES CT(s) OSS

N2,9 - - - - 1560.52 False 46.37 1

Table 14: Verification results for property P8 on 1 ACAS Xu network. RT is the reachable set computation
time, and CT is the safety checking time, both in seconds. RES is the safety verification result. OSS
describes the number of the output star sets. The cells with (-) correspond to networks in which our
algorithm was not able to compute the reachability set successfully in less than 48 hours.

L. Antal, H. Masara & E. Ábrahám 57

Nx,y
Exact Overapproximation

RT(s) RES CT(s) OSS RT(s) RES CT(s) OSS

N3,3 33727.84 False 458.09 338600 541.62 False 7.83 1

Table 15: Verification results for property P9 on 1 ACAS Xu network. RT is the reachable set computation
time, and CT is the safety checking time, both in seconds. RES is the safety verification result. OSS
describes the number of the output star sets.

Nx,y
Exact Overapproximation

RT(s) RES CT(s) OSS RT(s) RES CT(s) OSS

N4,5 3281.44 True 181.59 41088 1087.41 False 17.68 1

Table 16: Verification results for property P10 on 1 ACAS Xu network. RT is the reachable set computa-
tion time, and CT is the safety checking time, both in seconds. RES is the safety verification result. OSS
describes the number of the output star sets.

A.3 Sonar Binary Classifier Detailed Results

δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001
RT RES RT RES RT RES RT RES

1 4359 False 783 True 263 True 102 True
2 1848 False 100 True 101 True 101 True
3 206243 False 1284 True 245 True 100 True
4 49216 False 220 False 98 True 102 True
5 253978 False 1248 True 99 True 123 True
6 6452 False 622 True 276 True 101 True
7 25640 False 98 False 99 False 103 False
8 646937 False 18313 False 448 True 101 True
9 5149 False 100 False 101 False 103 False
10 6860 False 1757 False 240 True 107 True
11 10646 False 317 True 104 True 102 True
12 2542 False 281 True 100 True 100 True
13 125001 False 418 False 101 True 101 True
14 2022 False 122 False 99 False 101 False
15 14478 False 240 False 99 False 102 False
16 17343 False 263 True 99 True 102 True
17 21727 False 250 False 97 True 101 True
18 289475 False 1066 False 98 True 101 True
19 6654 True 102 True 99 True 100 True
20 - - 46162 False 99 True 101 True
21 53343 False 99 True 100 True 101 True
22 26779 False 192 True 100 True 104 True

Continued on next page

58 Extending Neural Network Verification to Piece-wise Linear Activations

Table 17 – continued from previous page
δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001

RT RES RT RES RT RES RT RES

23 14711 False 444 True 98 True 101 True
24 11783 True 309 True 100 True 101 True
25 3145 True 255 True 100 True 102 True
26 3529 False 99 True 104 True 101 True
27 966607 False 16329 False 476 True 194 True
28 6241 False 119 False 100 True 107 True
29 180773 False 103 True 101 True 101 True
30 96317 False 459 True 251 True 102 True
31 6667 False 111 True 100 True 103 True
32 18427 False 253 True 100 True 102 True
33 132122 True 307 True 100 True 101 True
34 478050 False 6562 False 395 True 101 True
35 35769 False 223 True 101 True 101 True
36 34491 False 1266 False 282 True 101 True
37 47224 False 101 True 106 True 102 True
38 1127 False 102 True 101 True 101 True
39 10811 False 103 True 101 True 102 True
40 15289 True 140 True 101 True 102 True
41 3926 False 690 True 103 True 101 True
42 82744 True 444 True 100 True 102 True
43 15145 True 166 True 100 True 103 True
44 2509 True 100 True 105 True 100 True
45 30090 False 117 True 99 True 100 True
46 754722 False 789 False 100 True 104 True
47 105796 False 1501 False 101 True 101 True
48 5791 False 99 False 100 False 104 False
49 19318 False 103 False 100 True 100 True
50 24453 False 217 False 101 True 100 True
51 12330 False 436 True 99 True 101 True
52 337889 True 100 True 101 True 103 True
53 4480 False 112 True 116 True 101 True
54 8742 False 100 True 102 True 101 True
55 2912 False 257 False 100 True 100 True
56 9405 False 104 False 102 True 102 True
57 15708 False 118 False 100 True 101 True
58 8188 False 163 True 100 True 104 True
59 2663 False 102 True 103 True 101 True
60 14901 False 102 True 101 True 101 True
61 1608 False 221 True 100 True 101 True
62 2251 False 179 True 104 True 101 True
63 2915 False 103 True 101 True 102 True

Continued on next page

L. Antal, H. Masara & E. Ábrahám 59

Table 17 – continued from previous page
δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001

RT RES RT RES RT RES RT RES

64 177838 True 259 True 267 True 103 True
65 3152 True 114 True 103 True 103 True
66 11178 True 102 True 103 True 102 True
67 54060 True 585 True 161 True 115 True
68 6936 False 276 True 100 True 101 True
69 6557 False 389 True 103 True 101 True
70 16761 False 306 True 183 True 188 True
71 40704 False 275 True 100 True 99 True
72 7142 False 384 True 105 True 100 True
73 97419 False 1020 False 101 True 101 True
74 8259 False 1175 False 101 True 102 True
75 118488 True 100 True 102 True 101 True
76 38638 False 246 True 100 True 100 True
77 24556 False 101 True 100 True 101 True
78 88296 False 399 False 102 True 101 True
79 67012 False 244 True 101 True 116 True
80 35943 False 388 False 161 True 100 True
81 40865 False 103 True 103 True 102 True
82 - - 401 True 100 True 101 True
83 1435255 False 943 True 100 True 101 True
84 879783 False 2954 False 104 True 101 True
85 - - 466010 False 286 True 101 True
86 59286 False 210 True 100 True 100 True
87 181884 False 1866 True 100 True 101 True
88 30037 False 573 True 285 True 276 True
89 79237 False 449 True 103 True 101 True
90 15188 False 193 False 100 True 100 True
91 3272 True 131 True 100 True 101 True
92 13264 False 246 False 100 True 102 True
93 30169 False 283 False 103 False 101 False
94 3518 False 1950 False 255 True 251 True
95 2507 False 99 True 100 True 102 True
96 28120 True 174 True 111 True 102 True
97 167384 True 414 True 209 True 125 True
98 33945 True 3768 True 401 True 308 True
99 7974 True 359 True 103 True 102 True
100 12175 True 4981 True 233 True 102 True
101 1486 True 100 True 101 True 102 True
102 254 True 102 True 101 True 101 True
103 1281 True 208 True 115 True 102 True
104 4265 True 167 True 101 True 102 True

Continued on next page

60 Extending Neural Network Verification to Piece-wise Linear Activations

Table 17 – continued from previous page
δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001

RT RES RT RES RT RES RT RES

105 1894 True 99 True 107 True 101 True
106 18441 True 101 True 100 True 101 True
107 50497 False 341 True 104 True 101 True
108 4747 True 1125 True 101 True 101 True
109 74918 True 101 True 100 True 102 True
110 4394 True 763 True 268 True 101 True
111 11408 True 103 True 101 True 100 True
112 9260 True 163 True 99 True 101 True
113 2292 True 99 True 100 True 99 True
114 15426 True 544 True 101 True 101 True
115 13498 True 99 True 101 True 101 True
116 28109 True 100 True 103 True 101 True
117 9277 False 219 True 102 True 101 True
118 15982 True 148 True 100 True 101 True
119 1954 True 285 True 100 True 101 True
120 1786 True 283 True 102 True 102 True
121 3574 True 505 True 286 True 102 True
122 20352 True 100 True 100 True 101 True
123 4438 True 177 True 121 True 100 True
124 6523 True 101 True 119 True 101 True
125 4662 True 286 True 101 True 100 True
126 1024 True 170 True 171 True 100 True
127 61120 True 139 True 100 True 101 True
128 2719 True 278 True 100 True 100 True
129 11209 True 150 True 101 True 100 True
130 4386 True 100 True 107 True 100 True
131 2130 True 162 True 99 True 101 True
132 10842 True 179 True 100 True 100 True
133 8829 True 100 True 101 True 101 True
134 1257 True 340 True 101 True 101 True
135 13869 True 171 True 103 True 99 True
136 1025 True 131 True 100 True 101 True
137 1991 True 235 True 99 True 101 True
138 1061 True 99 True 102 True 104 True
139 5666 True 99 True 100 True 100 True
140 1339 True 490 True 99 True 103 True
141 1115 True 98 True 99 True 100 True
142 7571 True 159 True 100 True 101 True
143 463 True 99 True 102 True 104 True
144 1871 True 262 True 100 True 100 True
145 21578 True 341 True 100 True 101 True

Continued on next page

L. Antal, H. Masara & E. Ábrahám 61

Table 17 – continued from previous page
δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001

RT RES RT RES RT RES RT RES

146 21035 True 475 True 193 True 104 True
147 572 True 98 True 99 True 100 True
148 563 True 98 True 102 True 99 True
149 36945 True 99 True 130 True 101 True
150 6400 True 100 True 109 True 100 True
151 68362 True 102 True 101 True 100 True
152 5669 True 151 True 106 True 140 True
153 17600 True 156 True 100 True 101 True
154 11486 True 103 True 102 True 99 True
155 2891 True 237 True 100 True 101 True
156 68190 True 580 True 101 True 101 True
157 10525 True 99 True 100 True 102 True
158 1928 True 98 True 99 True 101 True
159 2401 True 272 True 102 True 100 True
160 6601 True 99 True 101 True 101 True
161 1920 True 223 True 100 True 100 True
162 1038 True 273 True 115 True 101 True
163 3557 True 99 True 101 True 101 True
164 25147 True 397 True 100 True 100 True
165 11193 True 98 True 100 True 105 True
166 1910 True 99 True 101 True 100 True
167 3131 True 320 True 116 True 114 True
168 1138 True 240 True 101 True 110 True
169 1829 True 164 True 105 True 100 True
170 1653 True 170 True 101 True 100 True
171 1018 True 169 True 163 True 107 True
172 736 True 99 True 106 True 100 True
173 4313 True 99 True 105 True 101 True
174 37584 True 99 True 102 True 102 True
175 538 True 192 True 197 True 101 True
176 10231 True 343 True 157 True 153 True
177 4989 True 111 True 100 True 106 True
178 2044 True 101 True 101 True 108 True
179 649 True 101 True 105 True 101 True
180 592 True 101 True 101 True 101 True
181 332 True 100 True 99 True 101 True
182 166 True 99 True 99 True 100 True
183 382 True 99 True 100 True 101 True
184 368 True 100 True 100 True 100 True
185 515 True 191 True 100 True 100 True
186 461 True 99 True 101 True 101 True

Continued on next page

62 Extending Neural Network Verification to Piece-wise Linear Activations

Table 17 – continued from previous page
δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001

RT RES RT RES RT RES RT RES

187 808 True 164 True 99 True 100 True
188 2518 True 98 True 109 True 102 True
189 608 True 100 True 100 True 101 True
190 1162 True 99 True 99 True 100 True
191 1297 True 100 True 100 True 101 True
192 2890 True 100 True 100 True 102 True
193 2765 True 99 True 100 True 102 True
194 2336 True 164 True 102 True 102 True
195 624 True 100 True 100 True 102 True
196 1340 True 102 True 99 True 100 True
197 5056 True 258 True 100 True 101 True
198 3146 True 261 True 101 True 102 True
199 1367 True 261 True 102 True 100 True
200 2288 True 235 True 102 True 101 True
201 2449 True 201 True 101 True 102 True
202 3083 True 99 True 100 True 101 True
203 2729 True 100 True 99 True 101 True
204 2680 True 288 True 285 True 101 True
205 864 True 100 True 99 True 100 True
206 1089 True 99 True 101 True 101 True
207 866 True 101 True 99 True 103 True
208 3258 True 168 True 99 True 101 True

Table 17: Local adversarial robustness tests of the exact approach. RT is the reachable set computation
time in milliseconds. RES is the safety verification result. True indicates that the neural network correctly
classifies the input set as expected, while False means that the neural network was unable to correctly
classify the input set. Cells with (-) indicate cases where timeout occurs.

δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001
RT RES RT RES RT RES RT RES

1 234 Inconclusive 205 True 163 True 103 True
2 278 True 103 True 102 True 103 True
3 396 Inconclusive 279 True 157 True 103 True
4 480 Inconclusive 128 True 101 True 104 True
5 391 Inconclusive 260 True 101 True 104 True
6 341 True 203 True 157 True 103 True
7 437 Inconclusive 104 False 101 False 104 False
8 403 Inconclusive 371 False 181 True 106 True
9 364 Inconclusive 102 False 101 False 103 False

Continued on next page

L. Antal, H. Masara & E. Ábrahám 63

Table 18 – continued from previous page
δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001

RT RES RT RES RT RES RT RES

10 351 Inconclusive 268 False 144 True 107 True
11 352 False 176 True 103 True 145 True
12 320 True 166 True 102 True 102 True
13 394 Inconclusive 137 False 102 True 104 True
14 289 Inconclusive 114 False 101 False 108 False
15 438 Inconclusive 214 False 101 False 102 False
16 362 False 134 True 101 True 103 True
17 321 Inconclusive 140 True 100 True 110 True
18 420 Inconclusive 193 False 100 True 104 True
19 299 True 107 True 100 True 102 True
20 454 Inconclusive 390 True 100 True 106 True
21 459 Inconclusive 105 True 101 True 103 True
22 498 True 143 True 101 True 103 True
23 369 Inconclusive 204 True 101 True 107 True
24 385 True 160 True 101 True 103 True
25 342 True 154 True 103 True 104 True
26 310 Inconclusive 101 True 103 True 105 True
27 554 Inconclusive 384 True 172 True 137 True
28 338 Inconclusive 112 True 102 True 103 True
29 564 Inconclusive 106 True 106 True 106 True
30 494 Inconclusive 167 True 158 True 104 True
31 296 Inconclusive 106 True 101 True 103 True
32 336 Inconclusive 164 True 106 True 107 True
33 512 True 156 True 102 True 104 True
34 474 Inconclusive 292 False 199 True 103 True
35 377 Inconclusive 140 True 102 True 104 True
36 436 Inconclusive 246 True 180 True 103 True
37 380 True 102 True 103 True 107 True
38 211 Inconclusive 104 True 103 True 106 True
39 436 True 101 True 111 True 104 True
40 345 True 105 True 103 True 104 True
41 321 Inconclusive 175 True 102 True 105 True
42 424 True 191 True 106 True 104 True
43 374 True 118 True 102 True 103 True
44 247 True 103 True 102 True 106 True
45 504 Inconclusive 108 True 108 True 113 True
46 574 Inconclusive 186 True 102 True 104 True
47 410 Inconclusive 253 False 102 True 106 True
48 379 Inconclusive 105 False 105 False 102 False
49 411 Inconclusive 105 False 103 True 104 True
50 396 Inconclusive 140 True 101 True 106 True

Continued on next page

64 Extending Neural Network Verification to Piece-wise Linear Activations

Table 18 – continued from previous page
δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001

RT RES RT RES RT RES RT RES

51 415 True 198 True 104 True 102 True
52 497 True 106 True 103 True 103 True
53 346 Inconclusive 111 True 106 True 111 True
54 339 Inconclusive 107 True 103 True 103 True
55 350 Inconclusive 145 False 102 True 104 True
56 321 Inconclusive 102 False 103 True 107 True
57 361 Inconclusive 105 True 107 True 103 True
58 323 True 120 True 102 True 103 True
59 329 False 102 True 103 True 106 True
60 443 True 102 True 104 True 103 True
61 298 False 143 True 102 True 103 True
62 431 False 128 True 104 True 107 True
63 442 False 103 True 110 True 104 True
64 434 True 153 True 156 True 104 True
65 337 True 107 True 104 True 105 True
66 402 True 103 True 103 True 119 True
67 441 True 207 True 131 True 104 True
68 425 False 157 True 109 True 102 True
69 378 False 181 True 102 True 126 True
70 426 Inconclusive 155 True 133 True 147 True
71 418 Inconclusive 164 True 105 True 103 True
72 416 Inconclusive 180 True 104 True 103 True
73 447 Inconclusive 203 False 104 True 105 True
74 298 Inconclusive 218 False 103 True 104 True
75 507 True 103 True 104 True 103 True
76 479 Inconclusive 145 True 105 True 103 True
77 502 Inconclusive 105 True 104 True 104 True
78 476 Inconclusive 176 True 105 True 102 True
79 505 Inconclusive 144 True 107 True 102 True
80 389 Inconclusive 186 True 128 True 103 True
81 495 Inconclusive 103 True 102 True 103 True
82 569 Inconclusive 176 True 102 True 104 True
83 541 Inconclusive 251 True 104 True 103 True
84 515 Inconclusive 337 True 104 True 104 True
85 578 Inconclusive 413 False 158 True 103 True
86 349 Inconclusive 130 True 103 True 103 True
87 414 False 251 True 104 True 103 True
88 367 Inconclusive 202 True 158 True 171 True
89 427 Inconclusive 161 True 102 True 102 True
90 326 Inconclusive 126 False 102 True 104 True
91 259 True 110 True 105 True 103 True

Continued on next page

L. Antal, H. Masara & E. Ábrahám 65

Table 18 – continued from previous page
δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001

RT RES RT RES RT RES RT RES

92 436 Inconclusive 150 True 103 True 104 True
93 410 Inconclusive 152 True 103 False 104 False
94 293 Inconclusive 208 True 147 True 146 True
95 286 Inconclusive 103 True 103 True 102 True
96 411 True 126 True 114 True 105 True
97 586 True 139 True 128 True 112 True
98 407 Inconclusive 367 True 177 True 174 True
99 339 True 167 True 104 True 101 True
100 405 Inconclusive 301 True 145 True 104 True
101 259 True 103 True 110 True 104 True
102 141 Inconclusive 106 True 107 True 103 True
103 359 True 142 True 101 True 103 True
104 317 True 127 True 104 True 105 True
105 313 True 101 True 108 True 103 True
106 329 Inconclusive 101 True 103 True 102 True
107 503 Inconclusive 151 True 101 True 104 True
108 342 Inconclusive 229 True 108 True 103 True
109 401 Inconclusive 102 True 102 True 103 True
110 383 Inconclusive 225 True 156 True 103 True
111 366 Inconclusive 102 True 141 True 102 True
112 299 True 119 True 129 True 102 True
113 305 Inconclusive 102 True 103 True 103 True
114 379 Inconclusive 190 True 104 True 105 True
115 378 Inconclusive 101 True 103 True 103 True
116 413 Inconclusive 102 True 103 True 104 True
117 377 Inconclusive 136 True 107 True 103 True
118 361 True 116 True 103 True 103 True
119 293 Inconclusive 159 True 103 True 105 True
120 260 True 149 True 109 True 103 True
121 320 Inconclusive 218 True 185 True 104 True
122 398 True 101 True 105 True 103 True
123 328 True 127 True 103 True 103 True
124 360 Inconclusive 102 True 102 True 103 True
125 328 True 165 True 103 True 103 True
126 251 Inconclusive 125 True 131 True 103 True
127 354 True 113 True 104 True 103 True
128 331 Inconclusive 150 True 108 True 104 True
129 264 True 120 True 103 True 102 True
130 314 True 102 True 102 True 102 True
131 233 True 126 True 138 True 103 True
132 285 True 123 True 101 True 103 True

Continued on next page

66 Extending Neural Network Verification to Piece-wise Linear Activations

Table 18 – continued from previous page
δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001

RT RES RT RES RT RES RT RES

133 359 True 103 True 106 True 104 True
134 185 True 157 True 105 True 103 True
135 403 True 126 True 105 True 102 True
136 260 True 112 True 103 True 102 True
137 232 True 144 True 103 True 105 True
138 226 True 102 True 102 True 103 True
139 380 True 101 True 104 True 102 True
140 256 True 232 True 102 True 103 True
141 293 True 101 True 107 True 105 True
142 352 True 118 True 101 True 102 True
143 197 True 101 True 104 True 104 True
144 296 True 158 True 104 True 102 True
145 359 True 149 True 103 True 102 True
146 374 True 182 True 145 True 103 True
147 195 True 100 True 103 True 106 True
148 192 True 101 True 104 True 101 True
149 484 True 102 True 134 True 102 True
150 376 True 102 True 109 True 105 True
151 564 Inconclusive 102 True 103 True 103 True
152 375 Inconclusive 116 True 103 True 138 True
153 407 Inconclusive 120 True 110 True 122 True
154 369 Inconclusive 101 True 104 True 102 True
155 303 Inconclusive 149 True 107 True 111 True
156 528 Inconclusive 196 True 103 True 104 True
157 355 True 100 True 103 True 102 True
158 315 True 102 True 102 True 104 True
159 302 True 141 True 103 True 104 True
160 304 Inconclusive 101 True 105 True 104 True
161 353 True 136 True 103 True 102 True
162 224 True 151 True 104 True 101 True
163 351 True 101 True 137 True 103 True
164 446 Inconclusive 155 True 102 True 103 True
165 401 True 100 True 105 True 103 True
166 276 Inconclusive 101 True 103 True 104 True
167 336 True 175 True 110 True 108 True
168 253 Inconclusive 159 True 104 True 102 True
169 281 Inconclusive 120 True 102 True 110 True
170 282 True 123 True 109 True 102 True
171 227 Inconclusive 125 True 122 True 102 True
172 224 True 101 True 101 True 106 True
173 323 True 101 True 116 True 103 True

Continued on next page

L. Antal, H. Masara & E. Ábrahám 67

Table 18 – continued from previous page
δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001

RT RES RT RES RT RES RT RES

174 385 True 102 True 109 True 102 True
175 213 True 138 True 137 True 104 True
176 278 True 156 True 118 True 120 True
177 324 True 105 True 101 True 103 True
178 284 Inconclusive 101 True 104 True 103 True
179 193 Inconclusive 103 True 104 True 105 True
180 227 True 101 True 102 True 103 True
181 189 True 102 True 102 True 104 True
182 124 True 100 True 102 True 102 True
183 171 True 101 True 102 True 102 True
184 170 True 102 True 102 True 103 True
185 190 True 130 True 103 True 102 True
186 194 True 101 True 105 True 102 True
187 248 True 127 True 102 True 105 True
188 348 True 101 True 101 True 104 True
189 221 True 102 True 103 True 103 True
190 240 Inconclusive 102 True 102 True 103 True
191 246 True 102 True 102 True 103 True
192 293 Inconclusive 104 True 105 True 104 True
193 357 True 102 True 103 True 105 True
194 261 Inconclusive 121 True 103 True 103 True
195 208 Inconclusive 101 True 104 True 103 True
196 248 True 103 True 102 True 102 True
197 351 True 175 True 103 True 103 True
198 297 True 142 True 105 True 102 True
199 245 True 149 True 105 True 104 True
200 283 True 154 True 104 True 103 True
201 275 True 144 True 108 True 102 True
202 280 True 102 True 102 True 106 True
203 323 True 102 True 102 True 102 True
204 274 True 165 True 177 True 103 True
205 247 True 101 True 102 True 105 True
206 250 True 102 True 103 True 103 True
207 236 True 101 True 101 True 104 True
208 302 Inconclusive 129 True 101 True 102 True

Table 18: Local adversarial robustness tests of the over-approximate approach. RT is the reachable set
computation time in milliseconds. RES is the safety verification result. True indicates that the neural
network correctly classifies the input set as expected, while False means that the neural network was
unable to correctly classify the input set. Additionally, Inconclusive is assigned when the reachability
analysis algorithm cannot provide a conclusive answer due to the over-approximation errors.

68 Extending Neural Network Verification to Piece-wise Linear Activations

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 69–76, doi:10.4204/EPTCS.395.5

© Jan Roßbach, Michael Leuschel
This work is licensed under the
Creative Commons Attribution License.

Certified Control for Train Sign Classification*

Jan Roßbach
Heinrich-Heine-Universität Düsseldorf

Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

jan.rossbach@uni-duesseldorf.de

Michael Leuschel
Heinrich-Heine-Universität Düsseldorf

Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

leuschel@uni-duesseldorf.de

There is considerable industrial interest in integrating AI techniques into railway systems, notably for
fully autonomous train systems. The KI-LOK research project is involved in developing new methods
for certifying such AI-based systems. Here we explore the utility of a certified control architecture
for a runtime monitor that prevents false positive detection of traffic signs in an AI-based perception
system. The monitor uses classical computer vision algorithms to check if the signs – detected by an
AI object detection model – fit predefined specifications. We provide such specifications for some
critical signs and integrate a Python prototype of the monitor with a popular object detection model to
measure relevant performance metrics on generated data. Our initial results are promising, achieving
considerable precision gains with only minor recall reduction; however, further investigation into
generalization possibilities will be necessary.

1 Introduction and Motivation

Artificial intelligence has been increasingly used in various sectors, including transportation [16]. One par-
ticular area where artificial intelligence (AI) has gained attention is the development of autonomous driving
systems for railways [12]. The results already achieved in other transport sectors, mainly automotive,
have encouraged the development of AI in the railway industry [19].

While this technology holds high economic interest, reliable certification methods are necessary to
ensure safe and regulated access to these innovations [12]. Traditional verification approaches such as
formal methods have faced difficulties in this area due to the opaque nature of AI, particularly in computer
vision where class definitions for classification tasks based on raw pixel values have been considered
challenging.

The KI-LOK 1 research project addresses these challenges by developing certification methodologies
for autonomous AI-based railway systems. As part of this, a case study [5] on train movements during
shunting movements is being analyzed. A formal B [1] model has been developed [5] to analyze the
environment and ensure the safety of the deterministic steering system through model checking with the
PROB [11] model checker. The safety of the system was found to be conditional on correct results from
the AI-based perception system. In this work, we attempt to move towards verification of part of this
perception system using a runtime monitor with a certified control [8] architecture. This architecture
reduces the part of the system requiring formal verification compared to traditional monitor architectures
putting a more formal analysis back into reach. In particular, we focus on a subset of the train sign
classification component. It is responsible for detecting and classifying signs in the shunting yard to
ensure safe train movements. False recognition of a ’track-free’ (Sh1) signal has been determined to have

*This research is part of the KI-LOK project funded by the “Bundesministerium für Wirtschaft und Energie”; grant #
19/21007E.

1https://ki-lok.itpower.de

http://dx.doi.org/10.4204/EPTCS.395.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0005-7725-9832
https://orcid.org/0000-0002-4595-1518
https://ki-lok.itpower.de

70 Certified Control for Train Sign Classification

safety implications. We aim to significantly reduce or eliminate such false positives for some of the most
critical classes by defining a sign-specific ontology and checking it at runtime. For this we introduce such
a specification and show the potential performance gains by evaluating a prototype implementation in
Python on a custom dataset.

2 Background and Related Work

The case study[5] being considered has been developed by Thales (now Ground Transportation Systems)
and focuses on a train during shunting movements. The system includes an AI-based perception system
and a deterministic steering system. The role of the perception system is to detect and classify obstacles
(persons, animals, vehicles, ...) and railway infrastructure elements. The steering system then makes
appropriate decisions about moving the locomotive based on that information.

There was a set of requirements provided with the case study, including the correct detection of
several shunting train signs. In order to increase confidence in the perception system we aim to check the
recognized signs with a runtime monitor. This will give strong confidence that detected signs are correct.
In order to safeguard against unrecognized signs we will need to lean on other measures taken by the
project, like a thorough environment ontology and systematic test case generation [4].

2.1 Certified Control

Certified Control[8] is an architectural framework for the real-time validation of autonomous systems. It
distinguishes itself from conventional monitoring components by omitting its reliance on independent per-
ception and instead counting on the controller to provide a certificate containing all essential information.
This certificate serves as input for the runtime monitor, which assesses the accuracy of system behavior
against specified criteria. By adopting this approach, the architecture establishes a trusted foundation that
can potentially be subjected to a rigorous formal verification process.

The controller, which is not included in the trusted base, can utilize sophisticated algorithms such
as neural networks without needing explicit formal verification. By separating the tasks of generating
visual insights and ensuring safety, established verification methods can continue to be used with minimal
adjustments. To accomplish this, a formal acceptance specification for the certificate is necessary to ensure
compliance with safety requirements like the detected lane lines are parallel or there are no objects on
the track for 100m. This reduces the amount of code needing verification and allows the AI components
to go unverified.

While the effectiveness of this architecture in lane line detection for regular vehicles is promising [8],
its applicability to other autonomous perception tasks such as sign classification and object detection
remains uncertain. Therefore, we aim to investigate the applicability and effectiveness of such a certified
control architecture in the context of the case studies train control perception system.

2.2 Related Work

Other attempts at verifying an autonomous train perception systems notably include [12]. The authors
propose a multi-sensor pipeline relying on the statistical independence of the different perception mecha-
nisms to control hazards and ensure suitable model performance. The goal is to show possible ways of
certifying according to the ANSI/UL 4600 [6] standard, which provides a framework for integrating AI
into fully autonomous systems. The standard gives practical guidelines and advice for a possible safety
case, notably including the entire autonomy pipeline and AI algorithms. We also hope to provide methods

Jan Roßbach, Michael Leuschel 71

to aid with a verification according to this standard, while a full certification is currently out of reach.
Other approaches to formal runtime monitor verification of AI systems have been done in the field of
reinforcement learning using safety shields [10]. But these approaches focus on training agents to choose
optimal policies depending on given environmental factors, which is similar to the traditional steering
system in our model. There have also been proposals for formalizing image specification, including spatial
model checking [2] and attempts to formalize vision ontology [13, 14].

3 Specification and Ontology

The selected sign classes for verification are Sh0, Sh1, and Wn7 as depicted in Figure 1. While these
look similar, the semantic content is different. Sh0 means stop and the others signal safe passage. This
makes properly distinguishing them a safety-critical issue. To ensure that the train comes to a stop when
encountering a Sh0 sign on the current track, it is crucial to accurately detect and locate it. To achieve
this, we employ an AI object detection system in the controller. Subsequently, the monitor verifies if
the bounding box image aligns with the expected ontology. This provides additional confidence in the
accuracy of the result.

(a) Sh0 (b) Sh1 (c) Wn7

Figure 1: Train Control Shunting Signs

It is often challenging to provide a precise formal definition of an image class based solely on its
features. Instead, we focus directly on detectable image characteristics. In this context, we can observe that
the images include two semi-circles with only orientation as the distinguishing feature. This characteristic
feature allows us to define the sign using the contours and orientation angles of the feature.

For a given image tensor I with height h and width w, consider the set of contours (sets of points)
denoted as C(I), which are identified by a contour detection algorithm. Let S0 be the set of images
belonging to the Sh0 class. Also define A : C(I)→ R+ as the area function, which calculates the area
of a given contour. Similarly, let σ : C(I)→ Z+ be an orientation function that determines the angle
between the contour and the horizontal axis. We can then express membership of an image to one of the
classes by considering an image a member of the set S0 if it contains a pair (c1,c2) ∈C(I)×C(I), which
fullfills all the following conditions, given some pre-determined error tolerances δi, i ∈ {1,2,3,4,5}2 and
an expected angle a that depends on the class in question.

1. A(c1)(1−δ1)≤ A(c2)≤ (1+δ1)A(c1)

2. (1−δ2)σ(c1)≤ σ(c2)≤ (1+δ2)σ(c1)

3. δ3h≤ A(ci)≤ δ4h, i ∈ 1,2

2In the prototype implementation the tolerance values used were δ1,2,5 = 0.2, δ3 = 0.1 and δ4 = 0.3

72 Certified Control for Train Sign Classification

4. δ3w≤ A(ci)≤ δ4w, i ∈ 1,2

5. c1∩ c2 =∅

6. |σ(ci)−a| ≤ 90δ5,a = 0

For the remaining two classes, the expected angle a in the final condition varies to 45 for Sh1 and
90 for Wn7. Otherwise, the definitions are identical. The conditions one to six define an Sh0 sign as an
image with two contours that have similar angles and orientations. The orientation should be within a
certain error threshold. Also, the definition expects, that the areas do not overlap. While ideally, we expect
an orientation of zero, variations can occur due to different photo angles. Thus, the inclusion of an error
term accounts for this discrepancy in measurement accuracy.

This definition is not flawless and permits the possibility of false positives. This implies that there
may be instances where images that do not depict the intended sign could potentially be accepted (see
Figure 2a). However, incorporating this check reduces the likelihood of such occurrences compared to
those without it. The stringency of the monitoring process needs to be weighed against the decrease in
true positives to strike a suitable balance. Adjustments can be made by selecting appropriate δ values
within certain limits. Now we can define a requirement for a correct implementation.

REC: The implementation accurately verifies whether an image meets the ontology requirements of a
specific class.

4 Implementation and Experiments

While the following implementation is not yet verified in terms of REC, we aim to do so in future work.
Here we provide a prototype, which is developed enough to indicate the potential usefulness of such an
implementation. Given an image and an expected class, it either validates or rejects the image. We then
integrated it with a YOLOv8 object detection model and measured the influence on common performance
metrics (see. Table 2b). In the following sections, we present details on the implementation and the
performed experiments.

4.1 Implementation

The controller component is a simple wrapper for the YOLOv83 implementation of an object detection
model known as YOLO [15]. The outcomes obtained from this model are packaged into a certificate
and transmitted to the monitor. To have the model detect the signs in question, we created and labeled a
custom sign-detection dataset [9], on which we trained three model variants. These were the nano, small
and medium versions of the model with 3.2M, 11.2M and 25.9M parameters respectively. The training
was done for 200 epochs with a batch size of 16. They achieved mAP50 values of 0.827, 0.90 and 0.93 on
the test set.

From the model results the controller generates a certificate – in the sense of certified control (see
Section 2) – consisting of the following components:

1. The original image.

2. The assigned class result.

3. The bounding box, represented as a tuple in the format (x,y,w,h), with values normalized to fit the
dimensions of the image.

3https://github.com/ultralytics/ultralytics

https://github.com/ultralytics/ultralytics

Jan Roßbach, Michael Leuschel 73

This Python object is then given to the monitor. In a production implementation, it would be preferable to
serialize and send this data to a statically typed version of the monitor for optimal security.

The monitor implementation utilizes Python’s OpenCV [7] library to apply simple and well-tested
computer vision algorithms to the given images. To begin, the bounding box image is resized to 206x206
and converted to grayscale to facilitate contour detection. Subsequently, a filtering process is applied to
the contours to ensure their area falls within the specified size boundaries (refer to Section 3). We then
need to calculate the area and orientation of the detected contours to determine if some of them fit the
requirements for the ontology. The area of each contour is extracted using an available function within
OpenCV. In addition, we utilize OpenCV once again by fitting a line through each contour as a means of
determining its orientation. With that, we can calculate the orientation using the following equation.

σ(c) =
180arccos(~e1 ·~v)

π|~v|

Next, we evaluate the remaining contours in pairs to determine if they satisfy the similarity conditions for
area and orientation (refer to Section 3 for details). If a pair is found that meets these conditions, we then
verify if its orientation aligns with the expected orientation for the corresponding class. If it does, the
monitoring system considers this as a valid certificate. However, if any of these criteria are not met, the
certificate will be rejected.

(a) FP Sh0 accepted (b) FP Sh0 rejected (c) TP Sh0 accepted (d) TP Sh0 rejected

Figure 2: Visual Examples of Successful and Failing Monitor Checks

4.2 Experiments

In contrast to the automotive field, which benefits from large-scale image datasets like KITTI [3] for
efficient object detection model evolution using road scene images, the railway industry faces limitations
in terms of relevant datasets. Recently, interesting multi-sensor benchmark datasets [20] have started to
emerge, but do not fit our particular use case. This lack of labeled, high-quality data poses a challenge
when it comes to training and validating AI-based systems for this particular case. When evaluating the
performance of the prototype, we have to confront this lack of data in the field. Since the relevant publicly
available datasets do not cover the classes in question, we resort to custom labeling for training and a data
generation approach for the evaluation of the system. For the generation, we chose a small number of
base images of the signs in question, which are put through different random perturbation combinations
and then pasted in random amounts – one to four – onto images from train footplate rides, gathered from
the web. By this method we generated 28283 unique images containing 43638 signs. There are up to four
signal per picture, which is typical of a shunting yard. For this work we ignore the selection of relevant
signals and only focus on detection. The following perturbations were applied:

1. Horizontal Flip

74 Certified Control for Train Sign Classification

Model Detected TP FP
n 30111 25514 4597
s 30335 26790 3545
m 28672 22728 5944

(a) Results without Monitor

Model Detected TP FP
n 21716 21714 2
s 22834 22831 3
m 20460 20460 0

(b) Results with Monitor

Table 1: Raw numbers for Models on Generated Data

Model Precision Recall F1 score
n 0.85 0.58 0.69
s 0.88 0.61 0.72
m 0.79 0.52 0.63

(a) Results without Monitor

Model Precision Recall F1 score
n 1.00 0.50 0.67
s 1.00 0.52 0.68
m 1.00 0.47 0.64

(b) Results with Monitor

Table 2: Model Metrics on Generated Data (values rounded to two decimal places)

2. Gaussian Noise (Salt and Pepper with Levels of 0.05 and 0.075)

3. Scaling (Up and back down to square images of 50,100,213,416 and 832 px)

4. Blur (normalized box filter with kernel sizes 3, 5, 7)

5. Brightness change (levels 0.5,1.5)

In Figure 2 we see examples of these images with monitor visualizations applied. It shows cut YOLO
bounding boxes with the contours, lines and corresponding orientations detected by the monitor. Figure 2a
shows one of the few remaining false positives. The image fits all the defined criteria of the S0 ontology
for these δ values but is not actually of that class. Given stricter tolerances (e.g. 90δ5 < 8) this mistake
would not occur. Overall the results seen in Table 2b show a slight reduction in model performance in
terms of recall and an evenly weighted F-score compared to the prior results in Table 2a. The concrete
detection numbers can be found in Table 1. The drop in recall and F-score is expected due to the reduction
in true positives. However, almost all false positives have been recognized and can thus be prevented.
The tolerances can be adjusted to further reduce false positives, at the cost of more recall and F-score,
or to allow more leeway to the perception system. In terms of runtime performance, the monitor checks
a certificate in approximately 0.7 ms on an Intel i5-12600K processor. In comparison, the inference of
the YOLOv8 model will range from 2 ms – for the nano model variant – to 8 ms for the m version. This
means that the performance overhead is likely not a major concern in a production environment.

5 Conclusion and Future Work

In conclusion, this study demonstrates the potential utility of certified control runtime monitoring for
object detection of formally definable and safety critical classes. The resulting trade-off in our tests is
promising enough to warrant further investigation into different application possibilities. However, further
research is necessary to fully validate its implementation in a type-safe language following the REC
guidelines. The obtained results should be verified in appropriate field test for any real world application.
Additionally, it should be noted that a significant portion of the perception system remains unverified.
Moving forward, our future work will involve evaluating the applicability of a similar architecture for other
components of the perception system such as obstacle detection. This evaluation will include examining
different sensor types such as LIDAR and radar on benchmark datasets.

Jan Roßbach, Michael Leuschel 75

References

[1] J.R. Abrial & A. Hoare (2005): The B-Book: Assigning Programs to Meanings. Cambridge University Press,
doi:10.1017/CBO9780511624162.

[2] Vincenzo Ciancia, Diego Latella, Michele Loreti & Mieke Massink (2016): Model Checking Spatial Logics
for Closure Spaces. Log. Methods Comput. Sci. 12(4), doi:10.2168/LMCS-12(4:2)2016.

[3] Andreas Geiger, Philip Lenz & Raquel Urtasun (2012): Are we ready for autonomous driving? The KITTI
vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.
3354–3361, doi:10.1109/CVPR.2012.6248074.

[4] Jürgen Grossmann, Nicolas Grube, Sami Kharma, Dorian Knoblauch, Roman Krajewski, Mariia Kucheiko &
Hans-Werner Wiesbrock (2023): Test and Training Data Generation for Object Recognition in the Railway
Domain. In Paolo Masci, Cinzia Bernardeschi, Pierluigi Graziani, Mario Koddenbrock & Maurizio Palmieri,
editors: Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops, Springer International
Publishing, Cham, pp. 5–16, doi:10.1007/978-3-031-26236-4_1.

[5] Jan Gruteser, David Geleßus, Michael Leuschel, Jan Roßbach & Fabian Vu (2023): A Formal Model of Train
Control with AI-based Obstacle Detection. In Birgit Milius, Simon Collart-Dutilleul & Thierry Lecomte, edi-
tors: Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification,
Springer Nature Switzerland, pp. 128–145, doi:10.1007/978-3-031-43366-5_8.

[6] Underwriters Laboratories Inc (2020): 4600 Standard for Evaluation of Autonomous Products. Technical
Report, Underwriters Laboratories Inc.

[7] Itseez (2015): Open Source Computer Vision Library. https://github.com/itseez/opencv.

[8] Daniel Jackson, Valerie Richmond, Mike Wang, Jeff Chow, Uriel Guajardo, Soonho Kong, Sergio Campos,
Geoffrey Litt & Nikos Aréchiga (2021): Certified Control: An Architecture for Verifiable Safety of Autonomous
Vehicles. CoRR abs/2104.06178, doi:10.48550/arXiv.2104.06178. arXiv:2104.06178.

[9] KILOK (2023): Sign Detection Dataset. https://universe.roboflow.com/kilok/sign-detection
-4oqe4. Visited on 2023-08-09.

[10] Bettina Könighofer, Florian Lorber, Nils Jansen & Roderick Bloem (2020): Shield Synthesis for Reinforcement
Learning. In Tiziana Margaria & Bernhard Steffen, editors: Leveraging Applications of Formal Methods,
Verification and Validation: Verification Principles, Springer International Publishing, Cham, pp. 290–306,
doi:10.1007/978-3-030-61362-4_16.

[11] Michael Leuschel & Michael Butler (2003): ProB: A Model Checker for B. In: Proceedings FME, LNCS
2805, pp. 855–874, doi:10.1007/978-3-540-45236-2_46.

[12] Jan Peleska, Anne E. Haxthausen & Thierry Lecomte (2022): Standardisation Considerations for Autonomous
Train Control. In Tiziana Margaria & Bernhard Steffen, editors: Leveraging Applications of Formal Methods,
Verification and Validation. Practice, Springer Nature Switzerland, pp. 286–307, doi:10.1007/978-3-031-
19762-8_22.

[13] Daniele Porello, Marco Cristani & Roberta Ferrario (2013): Integrating ontologies and computer vision for
classification of objects in images. In: Proceedings of the Workshop on Neural-Cognitive Integration in
German Conference on Artificial Intelligence, pp. 1–15.

[14] " K. K. Thyagharajan R. I. Minu" (2014): Semantic Rule Based Image Visual Feature Ontology Creation.
International Journal of Automation and Computing 11(20140504), doi:10.1007/s11633-014-0832-3.

[15] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick & Ali Farhadi (2016): You Only Look Once:
Unified, Real-Time Object Detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), IEEE Computer Society, Los Alamitos, CA, USA, pp. 779–788, doi:10.1109/CVPR.2016.91.

[16] Danijela Ristić-Durrant, Marten Franke & Kai Michels (2021): A Review of Vision-Based On-Board Obstacle
Detection and Distance Estimation in Railways. Sensors (Basel, Switzerland), doi:10.3390/s21103452.

https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.2168/LMCS-12(4:2)2016
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1007/978-3-031-26236-4_1
https://doi.org/10.1007/978-3-031-43366-5_8
https://doi.org/10.48550/arXiv.2104.06178
https://arxiv.org/abs/2104.06178
 https://universe.roboflow.com/kilok/sign-detection-4oqe4
 https://universe.roboflow.com/kilok/sign-detection-4oqe4
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-031-19762-8_22
https://doi.org/10.1007/978-3-031-19762-8_22
https://doi.org/10.1007/s11633-014-0832-3
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.3390/s21103452

76 Certified Control for Train Sign Classification

[17] Claudio Filipi Gonçalves dos Santos & João Paulo Papa (2022): Avoiding Overfitting: A Survey on Reg-
ularization Methods for Convolutional Neural Networks. CoRR abs/2201.03299, doi:10.1145/3510413.
arXiv:2201.03299.

[18] Satoshi Suzuki & KeiichiA be (1985): Topological structural analysis of digitized binary images by bor-
der following. Computer Vision, Graphics, and Image Processing 30(1), pp. 32–46, doi:10.1016/0734-
189X(85)90016-7.

[19] Ruifan Tang, Lorenzo De Donato, Nikola Besinovic, Francesco Flammini, Rob M.P. Goverde, Zhiyuan
Lin, Ronghui Liu, Tianli Tang, Valeria Vittorini & Ziyulong Wang (2022): A literature review of Artificial
Intelligence applications in railway systems. Transportation Research Part C: Emerging Technologies 140, p.
103679, doi:10.1016/j.trc.2022.103679.

[20] Roman Tilly, Philipp Neumaier, Karsten Schwalbe, Pavel Klasek, Rustam Tagiew, Patrick Den-
zler, Tobias Klockau, Martin Boekhoff & Martin Köppel (2023): Open Sensor Data for Rail 2023,
doi:10.57806/9MV146R0.

https://doi.org/10.1145/3510413
https://arxiv.org/abs/2201.03299
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1016/j.trc.2022.103679
https://doi.org/10.57806/9MV146R0

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 77–94, doi:10.4204/EPTCS.395.6

© C. Chandler, B. Porr, A. Miller, and G. Lafratta
This work is licensed under the
Creative Commons Attribution License.

Model Checking for Closed-Loop Robot Reactive Planning

Christopher Chandler
School of Computing Science

University of Glasgow
christopher.chandler@glasgow.ac.uk

Bernd Porr
School of Biomedical Engineering

University of Glasgow
bernd.porr@glasgow.ac.uk

Alice Miller
School of Computing Science

University of Glasgow
alice.miller@glasgow.ac.uk

Giulia Lafratta
School of Engineering
University of Glasgow

giulia.lafratta@glasgow.ac.uk

In this paper, we show how model checking can be used to create multi-step plans for a differential
drive wheeled robot so that it can avoid immediate danger. Using a small, purpose built model
checking algorithm in situ we generate plans in real-time in a way that reflects the egocentric reactive
response of simple biological agents. Our approach is based on chaining temporary control systems
which are spawned to eliminate disturbances in the local environment that disrupt an autonomous
agent from its preferred action (or resting state). The method involves a novel discretization of 2D
LiDAR data which is sensitive to bounded stochastic variations in the immediate environment. We
operationalise multi-step planning using invariant checking by forward depth-first search, using a cul-
de-sac scenario as a first test case. Our results demonstrate that model checking can be used to plan
efficient trajectories for local obstacle avoidance, improving on the performance of a reactive agent
which can only plan one step. We achieve this in near real-time using no pre-computed data. While
our method has limitations, we believe our approach shows promise as an avenue for the development
of safe, reliable and transparent trajectory planning in the context of autonomous vehicles.

1 Introduction

Simple biological systems (or agents) can safely navigate through a previously unseen environment by
responding in real-time to sensory inputs. On sensing an unexpected input (e.g., an obstacle) the agent
responds by performing an action to change its state. This action takes the form of a motor output which
results in a change to the environment, which is in turn sensed by the agent and the loop repeats [4]. The
behaviour is egocentric and reactive—the agent is only concerned with its immediate environment and
only deviates from its course (or resting state) when necessary. Naturally, complex agents are capable of
more sophisticated behaviours, such as the prediction of disturbances and the generation of plans to coun-
teract them. This requires distal sensor information and spatial understanding of the wider environment.
Indeed, there is evidence that in biological systems an innate “core” understanding of world physics and
causality allow organisms to organise their behaviours in accordance with predicted outcomes [29, 19].

Model checking [1] is a widely used technique for automatically verifying reactive systems. It is
based on a precise mathematical and unambiguous model of the possible system behaviour. To verify that
the model meets specified requirements (usually expressed in temporal logic), all possible executions are
checked systematically. If an execution failing the specification is found, the execution path which caused
the violation is returned. Model checking has previously been successfully used in a variety of different
systems. It helped to ensure the safety and reliability of safety-critical systems like flight control [31],
space-craft controllers [13] and satellite positioning systems [24]. It has also been successfully applied
to many aspects of software verification, e.g., for industrial systems and operating systems [2, 30].

http://dx.doi.org/10.4204/EPTCS.395.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

78 Model Checking for Closed-Loop Robot Reactive Planning

In autonomous robotic systems, model checking has been used for static and runtime verification [23,
10, 5, 33] and has been proposed for strategy synthesis [11, 17]. It has been used in many contexts, for
example: to generate real-time action plans with formal guarantees for steerable needles [21]); industrial
robots [32]; and for assistive-care robots which dynamically re-calibrate their path in real-time [12].

In recent work [26], we combined the Spin [14] model checker’s ability to identify paths violating
temporal properties with sensor information from a 3D Unity simulation of an autonomous vehicle,
to plan and perform consecutive overtaking manoeuvres on a traffic-heavy road. The model checker
received information from the (simulated) autonomous vehicle, updated its current model, derived a safe
path, then communicated the path back to the autonomous vehicle. Although a useful proof-of-concept,
the time delay due to model compilation (approx. 3 secs—even though verification of the model itself
only took around 20 ms) and the communication between the model checker and game engine was
unacceptable. In addition, the requirement to divide the underlying action space into discrete sections
made the approach feasible only for less congested environments, such as rural roads.

In this paper we investigate adapting the approach of [26] to a real autonomous agent. Our main
objective is to demonstrate the effectiveness of two measures which should address the time lag and
accuracy problems described above: (i) a simplified model checking algorithm with faster compilation
time, and (ii) the use of model checking situated on board the autonomous agent.

In Section 2 we give an overview of our method. Specifically we show how a robot uses multi-
step plans derived using model checking to move through a domain, avoiding immediate danger. We
present the underlying formal model and describe both how it is used to generate solution paths to
eliminate disturbances and how the model is updated in real-time. In Sections 3 and 4 we describe our
implementation and present results. In Section 5 we discuss the implications of our approach—how it
compares with previous work, an alternative physics modelling approach, and its current limitations.

2 Method

A typical scenario in which a wheeled robot is driving in an environment avoiding walls and obstacles
is shown in Figure1 A. The robot agent is initially in a resting state executing a preferred task T0 which
makes the robot drive in a straight line. However, from sensory input, the robot can infer that if it
continues to follow this path, it will crash into a wall, an unwanted and unexpected event. The robot
can predict what is going to happen as it knows its own direction and velocity and can reason about
possible courses of action. For example, it can switch to task TR (turn right) which is executed until the
disturbance D1 has been avoided. The task TR can be viewed as a temporary control system (see Figure
1B) with the goal of counteracting the disturbance until it has been avoided, turning states (i.e., sensor
data) into actions. Once the disturbance is eliminated, TR is not needed and the robot returns to task T0.

While the robot has turned right in Figure 1A, the control goal of counteracting the disturbance D1
could have equally been achieved by turning left, executing task TL. However, as shown in Figure 1C,
the robot would have soon encountered a second disturbance D2, a situation which cannot be solved by
the temporary control system in Figure 1B as it can only reason one step ahead. In Figure 1C, if the robot
turns left, it can go straight for a while but then has to turn left or right again. Furthermore, if the robot
then turns right, it is possible that it might get trapped in a corner, which is undesirable behaviour. To
overcome this limitation, the robot needs some ability to reason about the outcome of chained sequences
of tasks for a given number of steps we call the horizon. This reasoning process translates into the tree
structure of tasks and sensory inputs shown in Figure 1D which forms the foundation of our method.

Our basic approach is illustrated in Figure 2. In Figure 2A, a wheeled robot drives towards the far

C. Chandler, B. Porr, A. Miller, and G. Lafratta 79

T0

T0

TR

TL/R

D1

D1

D2

A

B

C D

Robot

Environment
D

is
tu

rb
a

n
c
e

 D

actionsstates

TL

TR

TL

TR

D1

Temporary control system

Preferred control task

Key

TR
T0

T0

TL T0

TL

TR

T0

D1

D2

T0

Figure 1: Overview of the general concept. In A the robot is executing its preferred task T0 which makes
the robot drive in a straight line. The robot approaches a wall and senses a disturbance D1 which disrupts
the robot agent from its preferred course. The robot spawns a control task TR (turn right) to counteract
D1 which can be viewed as the temporary control system shown in B. The task TR only exists until the
disturbance is has been counteracted. However, the disturbance D1 could have been eliminated by turning
left TL. C shows that this would have immediately put the robot in a complex situation which cannot be
solved in a stimulus-response fashion by spawning a control task. In D a reasoning tree is shown for
chaining the spawning of temporary control tasks in response to disturbances in the environment.

wall of a cul-de-sac in its preferred task T0 and senses a disturbance D, operationalised in our case as the
nearest sensed point within a distance d = vtlook where v is the robot velocity and tlook is a set lookahead
time. The width of the visual field is determined by the width of the robot plus some tolerance and a
check is made for disturbances each iteration of the control loop (approx. every 200 ms). In this scenario,
if the robot turns left or right to avoid the disturbance D, the robot will immediately encounter another
disturbance. Furthermore, in either case the robot could get trapped in a corner which is undesirable.

To address this problem, our model is first updated with state information from the environment using
a lightweight procedure explained in Section 2.2. In essence, the procedure involves checking whether
a proper subset of the robot workspace is empty (i.e., free of obstacles) based on a novel abstraction of
the point cloud data. We utilise symmetry on the axes of a 2D vector space and perform simple filtering
to determine whether a given subset is disturbance free in which case the corresponding horizon state is
determined safe. Figure 2B shows a graphical representation of the procedure outcome, which in this
case has updated the model to reflect that turning left twice then returning to T0 is the safe option.

A valid path for the model is generated utilising a bespoke implementation of model checking (see
Figure 2C). We extract transitions from the path to recover the trajectory, which in our case forms a
sequence of control tasks from the set Act = {T0,TL,TR}. T0 denotes the preferred task of driving in a
straight line, and both TL and TR are temporary control systems (see Figure 1B) which rotate the robot
left or right by 90 degrees to eliminate a disturbance. Real execution is never exact, however error is
permissible so long as the control goal of eliminating the disturbance D is achieved. The resulting plan
is executed when the disturbance is some distance d < dsafe from the robot. Once the plan has been
executed, the robot returns to T0 until it encounters another unwanted disturbance in the environment.

80 Model Checking for Closed-Loop Robot Reactive Planning

d = vt
look

2d
safe

2d
safe

D
1

D

D
1

D

D
1

D D
1

D

D
1

D

D
1

D D
1

D

A B C

Figure 2: Representation of planning sequence for a cul-de-sac. In A the robot detects a disturbance
D (indicated by yellow star), the nearest detectable point associated with the far wall. A distance dsafe

defines a safe zone so the robot can rotate and acts as a threshold for the robot to start executing plans.
d = vtlook is the sensing range derived from the velocity and a lookahead time tlook. B shows a graphical
representation of the model update procedure. The robot cannot turn right/left then straight nor can it
plan an extra step, the only empty set is the one behind. In C a path is generated using in situ model
checking. Transitions are extracted and the resulting sequence of tasks (i.e., plan) is executed by control.

2.1 Preliminary model checking

2.1.1 Trajectory specification in LTL

We define trajectory specification as the desired sequence of discrete control tasks for an obstacle avoid-
ance scenario, limited in this initial case to static environments. The planning problem normally consists
of two conditions: (i) do not hit any obstacles and (ii) make progress towards a goal [27]. We address
(i) by model checking of a regular safety property. Usually when model checking, counterexamples
constitute violation of the property under scrutiny. We however denote any violation a solution path.

In this paper we focus on trajectory specification given as a Linear Temporal Logic (LTL) formula
due to its power for discrete sequential planning. LTL formulae are built from a finite set of atomic
propositions AP, Boolean connectors such as conjunction ∧ and negation ¬, and two temporal modalities
, (“next”) and ∪ (“until”) [1]. The atomic proposition a ∈ AP stands for the state label a in a transition
system. For example, in this initial work AP = {safe,horizon} where horizon ∈ AP is true in states of
the transition system defined as valid planning steps and safe ∈ AP is true in states that can be reached
without encountering a disturbance. The states where horizon is true are known a priori and therefore
fixed for our transition system while the states where safe is true is decided at runtime. A complete
description of our transition system is provided in Section 2.1.2.

LTL formulae over the set AP of atomic propositions are formed according to the following grammar
[1]: ϕ ::= true | a | ϕ1∧ϕ2 | ¬ϕ | , ϕ | ϕ1∪ϕ2 where a ϕ with an index denotes some arbitrary but
distinct formula in LTL. Hence in our case, the atomic propositions ϕ1 = safe and ϕ2 = horizon are both
LTL formulae, so by the grammar the conjunction ϕ1∧ϕ2 is also a formula as is its negation ¬(ϕ1∧ϕ2).
From this basic grammar, other operators can be derived, such as � (“always”) and ♦ (“eventually”),
however the derivation is omitted here for brevity (see [1] for a detailed discussion).

C. Chandler, B. Porr, A. Miller, and G. Lafratta 81

Our approach utilises a single regular safety property �ϕ where

ϕ = ¬(safe∧horizon) (1)

is an invariant expected to hold in each state of the system. Intuitively, the property �ϕ says that for any
state s in the transition system at least one a ∈ AP is always false. As our interest is in solution paths
not error paths, the invariant ϕ negates the desired outcome, so that what would normally be the set of
counterexamples for an infinite run of the system, becomes a set of solutions. Consequently, the set of
solutions paths for our model is the set of paths with a state satisfying the negation of the invariant:

¬ϕ = safe∧horizon (2)

The set of counterexamples of a regular safety property constitute a language of finite words which
can be recognised by a nondeterministic finite automaton (NFA) [1]. We therefore construct the NFA
A�ϕ = (Q,Σ,δ ,Q0,F) where Q is a finite set of states, Σ = 2AP is a finite alphabet defined as the power
set of the AP, δ : Q→ 2Q is a transition relation, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of
accept states [1]. In fact, for any invariant ϕ , the language of all counterexamples (i.e., solutions) can be
represented by an NFA with two states. In our specific case, the NFA A�ϕ progresses to the accepting
state and terminates if and only if for some state in the transition system the conjunction in (2) is true.

2.1.2 Task-driven transition system

A finite transition system is used as a model to describe the behaviour of the robot and provides semantics
for trajectory specification in LTL. The discretized workspace consists of n states S = {s0,s1, ...,sn} and
control tasks are interpreted as labelled state transitions to reflect the reasoning tree in Figure 1D.

Definition 2.1 (Finite transition system). A finite transition system T S is a tuple
(S,Act,→, I,AP,L) where

• S is a finite set of states,

• Act is a finite set of actions,

• →⊆ S×Act×S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a finite set of atomic propositions, and

• L : S→ 2AP is a labelling function.

The labelling function L relates a set L(s)∈ 2AP of atomic propositions to a state s, where 2AP denotes the
powerset of AP (i.e., the set of all AP subsets including itself and the empty set) [1]. Hence the labelling
function L assigns truth-values, determining which atomic propositions are satisfied for some state s.

The intuitive behaviour of a finite transition system is as follows. The finite transition system T S
starts in some initial state s0 ∈ I and evolves according to the transition relation →. For convenience,
we represent a transition between states with s α−→ s′ instead of (s,α,s′) ∈→. If s is the current state,
then a transition s α−→ s′ originating from s is selected and executed, i.e., the action α associated with the
transition is performed, evolving the transition system from state s to s′. In cases where the current state
s has more than one outgoing transition, the action α is chosen in a nondeterministic fashion.

82 Model Checking for Closed-Loop Robot Reactive Planning

y

x

dmin

dsafe

L + tol
''

''

''

''

''

dsafe

dmin

dmax

dmax

D

D

A B
y

x

Figure 3: Depiction of point cloud abstraction and states. Here A shows the structure of the abstraction
where dmax, dmin and dsafe are tunable parameters constrained by the dimensions of the robot. L+ tol
represents the wheelbase of the robot plus some tolerance, which does not need to be as wide as the main
driving corridor because the robot can only go straight. The states (black dots) represent a fixed point
distance dsafe in front of the robot for future robot configurations as it navigates the abstraction, facing
towards positive x by convention with the initial state s0 directly in front. In B an example scenario shows
five states in the positive lateral direction adjusting within the tolerance dmax−dmin to the location of the
nearest disturbance. Hence lateral states adapt to bounded stochastic variations in the local environment.

Our concrete model of robot behaviour is based upon abstraction of point cloud data from a 2D
LiDAR with 360 degrees field of view (see Figure 3A for an illustration). States S = {s0,s1, ...,s14}
represent points on a 2D vector space distance dsafe in front of possible future robot configurations; the
robot faces towards positive x by convention when entering the initial state s0 to generate a plan. Hence
path generation can be seen as the robot reasoning about where it will end up after executing a given
sequence of tasks whilst respecting the robot safe zone. As shown in Figure 3A, the four states on the
edge of the safe zone (grey box) represent a fixed point distance dsafe from the origin, defined to ensure
the robot always has adequate clearance for rotational movements when initiating a plan. In addition,
the furthermost state behind the robot on the x-axis is also a fixed distance from the origin; this state
provides the robot with an option to turn around and go back the way it came if relevant for the scenario.
The y-coordinate of states on the lateral extremes of our discretization is variable, however, determined
at runtime by the location of disturbances in the positive and negative lateral directions (see Figure 3B
for an illustration of the abstraction adjusting to a disturbance in the positive lateral direction).

As mentioned above, control tasks are interpreted as labelled transitions between states to reflect the
desired reasoning tree in Figure 1D. Hence we call our model a task-driven finite transition system where

C. Chandler, B. Porr, A. Miller, and G. Lafratta 83

s
0

T
0

s
1

s
2

s
13

s
3

s
14

s
4

s
9

s
5

s
6

s
10

s
11

s
7

s
8

s
12

T
L T

R

T
L T

R

T
0

T
0

T
0

T
L T

R
T

L T
R

T
0

T
0

T
0

T
0

Figure 4: Task-driven finite transition system. Grey states indicate that horizon is true. These states
are known a priori and fixed for the model. Sle f t = {s3,s5,s7,s9,s11} and Sright = {s4,s6,s8,s10,s12} are
determined by the locations of disturbances in the lateral direction. The remaining states represent fixed
points. Transitions reflect the reasoning tree shown in Figure 1D for the spawning of control tasks.

• S = {s0,s1, ...,s14} is a set of states representing a point distance dsafe in front of the robot for
possible future configurations as it navigates the abstraction shown in Figure 3,

• Act = {T0,TL,TR} is the set of discrete control tasks defined in Section 2,

• →⊆ S×Act × S is a transition relation where s→ s′ is admissible if and only if there exists a
control task which can evolve the model from state s to s′,

• I = {s0} is the initial state distance dsafe in front of the robot,

• AP = {safe,horizon} is the set of atomic propositions defined in Section 2.1.1, and

• L : S→ 2AP is a labelling function such that L(s) determines if property (2) is true at state s.

Figure 4 shows the structure of our transition system. In our model, the states where horizon is true
are known a priori and therefore fixed, indicated in Figure 4 by grey states. This is a modelling choice
to reflect the final step of any plan, which is to return the robot to its resting state, the preferred task
T0. The transitions to horizon states provide some assurance that the robot has time to replan if another
disturbance is encountered soon after plan execution, e.g., due to an error in the real task execution.

Our model generates a plan of one, two or three steps, as any transition to a safe horizon state (i.e.,
a state where the property in (2) is true) represents a return to the preferred task T0 and is thus excluded.
One step plans reflect scenarios where the robot can spawn a single temporary control system TL/R to
counteract a disturbance then return immediately to the preferred task T0; two step plans are reserved for
scenarios where the robot is boxed in and needs to spawn a sequence of two TL/R to about turn and evade
the situation; and three step plans add an extra TL/R to counteract disturbances in the lateral direction.

84 Model Checking for Closed-Loop Robot Reactive Planning

2.1.3 Product transition system and NFA

In model checking, we are normally interested in establishing whether �ϕ is true for all possible runs
of a system. This is equivalent to checking if Tracesfin(T S)∩A�ϕ = /0 where Tracesfin(T S) is the set
of finite traces for the transition system [1]. To check this, we first construct the product transition
system T S⊗A�ϕ , then derive an invariant ϕ for the product from the accept states of A�ϕ such that
Tracesfin(T S)∩A�ϕ = /0 if and only if T S⊗A�ϕ |=�ϕ (i.e., the property �ϕ is satisfied in the product
transition system). Verification of a regular safety property can therefore be reduced to invariant checking
on the product. However, as we are interested in counterexamples of the property as solution paths, our
focus is instead on generating paths in the system for states where the property �ϕ is false.

Definition 2.2 (Product transition system). The product transition system T S⊗A�ϕ is a tuple
(S′,Act ′,→′, I′,AP′,L′) where

• S′ = S×Q. s′ = 〈s,q〉 ∈ S′, ∀s ∈ S and ∀q ∈ Q,

• →′ is the smallest relation defined by the rule si
α−→s j∧p

L(s j)−−−→q

〈si,p〉
α−→′
〈s j,q〉

,

• I′ = {〈s0,q〉 | s0 ∈ I∧∃q0 ∈ Q0. q0
L(s0)−−−→ q}.

• AP′ = Q, and

• L′ : S×Q→ 2Q is given by L′(〈s,q〉) = {q}.

It suffices to perform a reachability analysis on T S⊗A�ϕ to check the invariant ϕ . In this paper,
we implement and perform invariant checking by forward depth-first-search (f-DFS) (see Algorithm 4
in [1] for details). Our model is updated with state information from sensors at runtime to determine
which horizon states are safe and generate a sequence of states from which the associated control tasks
can be extracted. If �ϕ is false for some state, then the execution path in which the state is reached
(normally referred to as a counterexample) is called a solution path for the task-driven finite transition
system, which in our case reflects a sequence of discrete robot configurations in the workspace. We then
extract the tasks associated with each transition to recover the trajectory for the control layer to execute.

2.2 Model update procedure

As mentioned above, states where horizon is true are known a priori (see Figure 4 for details), so for
a solution path to be generated it remains for us to decide which of these states is also safe. We utilise
longitudinal and lateral offsets of the point cloud to simulate respective displacements and take advantage
of symmetry on the axes of a 2D vector space to determine if a subset of our abstraction, specified to
represent a practical over-approximation of the task execution workspace, contains no disturbance. If a
given subset is empty, the corresponding state is reachable and determined safe, indicated in Figure 5.

Our abstraction in Figure 3 assumes the robot is at the origin of an underlying 2D vector space used
as a model for the point cloud data. The robot is facing towards positive x by convention with the initial
state s0 distance dsafe directly in front of the robot on the x-axis. In Figure 5, subset o1 is a reflection of
o2 with the x-axis forming a line of symmetry (grey box indicates the robot safe zone, however both sets
extend to the x-axis). For each of these subsets, the y-axis also forms a line of symmetry which splits
each subset in half, such that each half is a reflection of the other. Symmetry on the x-axis means we can
use a simple inequality to decide whether an observation has a qualifying y-coordinate (within the lateral
bounds of the abstraction, positive for set o1 and negative for set o2). Symmetry on the y-axis means we

C. Chandler, B. Porr, A. Miller, and G. Lafratta 85

x

O
o1

y

dmin

dmin

o2

o4o6

o7

o5 o3

s3

s7
s11

s14

s12

s4

s8

Figure 5: The set of point cloud observations O and the disjoint subsets o1,o2, ...,o7 which form the
abstraction. If some oi = /0, the atomic proposition safe is true for the horizon state on the edge of the
set (indicated with red circles), otherwise the proposition is false. In addition, if the robot cannot travel a
lateral distance dmin in either direction, then it is assumed o7 = /0 to address trap situations, e.g., getting
stuck in a corner. In static environments this is valid as the direction the robot came from should be safe.

can use absolute values to ignore the sign and ensure that any included observation has an x-coordinate
which does not exceed some maximum distance from the y-axis. For sets o1 and o2, this distance is dsafe,
hence the longitudinal dimension of these sets respects the robot safe zone.

When a disturbance D is sensed, the procedure is initiated. First a longitudinal offset is calculated by
subtracting dsafe from the x-coordinate so we can forward simulate our abstraction to its location:

4x = Dx−dsafe (3)

However, if Dx ≤ dsafe then 4x = 0, as the abstraction is already at the desired displacement from the
disturbance in the longitudinal direction, so no forward simulation is necessary for reasoning.

We then iterate the observations O, forward simulate each observation by subtracting 4x from the
x-coordinate, and use symmetry on the axes of the vector space to sort observations into relevant subsets:

o1 = {o ∈ O | 0 < oy < dmax +dsafe∧|ox| ≤ dsafe} (4)

o2 = {o ∈ O | − (dmax +dsafe)< oy < 0∧|ox| ≤ dsafe} (5)

where 0 is a constant to distinguish between positive and negative y-coordinates, the expression dmax +
dsafe represents the absolute distance to lateral extremes of our abstraction, and |ox| ≤ dsafe ensures the

86 Model Checking for Closed-Loop Robot Reactive Planning

width of the subset respects the robot safe zone. Subsequent reasoning can be seen as the robot predicting
what will happen if it executes a one step plan to avoid the disturbance and return to its resting state.

If o1 = /0 and o2 = /0, then in either case we can infer that the subset is free of disturbances, meaning
that the robot can execute TL or TR then return to the preferred task T0 at least for distance dmax (a set
parameter for the furthermost possible lateral configuration of the robot from the origin of the vector
space, as per the point cloud abstraction shown in Figure 3A). From the robot agent perspective, this
means that both states s3 and s4 can be reached without encountering a disturbance (insofar as it knows)
and a path is generated nondeterministically. If o1 = /0 and o2 6= /0, then the robot can only execute TL

before returning to T0, so a path is generated for s3 not s4. If o1 6= /0 and o2 = /0, then the robot can only
execute TR before returning to T0, so a path is generated for s4 not s3. Where any of these conditions
hold, a one step plan is generated without progressing the procedure, as the robot would like to return to
its resting state as soon as possible. However, if both o1 and o2 are not empty, we can conclude that the
robot will soon encounter another disturbance once it returns to T0, so a one step plan is not possible.

Next a two step plan is considered, i.e., whether the robot is boxed in and should turn 90 degrees
twice to go back the way it came, or has enough room in the lateral directions to execute a three step plan.
The nearest positive lateral disturbance D+ = min |oy| for o ∈ o1 and nearest negative lateral disturbance
D− = min |oy| for o ∈ o2 is acquired. As long as |D+

y | or |D−y | is greater than dmin, it is concluded that the
robot can travel at least distance dmin−dsa f e in the associated lateral direction. It is therefore considered
a safe initial direction and a valid three step plan exists for the scenario. Otherwise, the robot infers that
it is boxed in, so the only empty set is o7 (immediately behind the robot), leading to the generation of a
two step plan in which the robot turns around to go back the way it came (assumed to be safe). In this
case, a two step plan is generated and the procedure terminates, as further reasoning is unnecessary.

However, if at least one direction is determined initially safe for a three step plan, positive and
negative lateral offsets are calculated so that we can reason about counteracting any lateral disturbances:

4+
y = D+

y −dsafe (6)

4−y = D−y +dsafe (7)

where 4+
y estimates the maximum lateral displacement of the robot in the positive direction while re-

specting the robot safe zone, and4−y represents the same for the negative direction. At this point in the
procedure, we have no more use for sets o1 and o2 so they do not participate in any further reasoning.
Instead we build sets {o3,o5,o4,o6} to reason about counteracting any lateral disturbances. Progressing
this far means that we have already reasoned about the initial two steps the robot can execute.

Lateral offsets translate the point cloud data, such that the robot remains at the origin and the axes of
the vector space again form lines of symmetry on the relevant subsets. For example, when4+

y is applied,
the robot is at the origin distance dsafe from the nearest disturbance on the left of the robot, representing
an egocentric perspective of its future location if it first executed the sequence 〈TL,T0〉 (the orientation of
the robot is of course different, however for our purposes this can be ignored). As a result, states s11 and
s7, which are by design a fixed lateral distance dsafe from any sensed lateral disturbances, sit on the x-axis,
such that s11 is directly behind the robot and s7 is directly in front. The states are a midpoint in the lateral
dimension for the associated subsets, hence o5 is behind the robot, o3 is in front, and the x-axis forms a
line of symmetry which splits each subset in half. This means we can use absolute values to ignore the
sign and ensure that any included observation has a y-coordinate that does not exceed some maximum
distance from the x-axis. Symmetry on the y-axis means we can use a simple bounded inequality to
decide whether an observation has a qualifying x-coordinate (whilst excluding any of subsets o1 and o2).

C. Chandler, B. Porr, A. Miller, and G. Lafratta 87

We therefore iterate O, forward simulating each observation subtracting4x from the x-coordinate as
before, but adjusting for the lateral displacement by subtracting 4+

y or 4−y from the y-coordinate. O is
iterated once for each direction. In either case, the lateral offset places the relevant three step horizon
states on the x-axis so we can use symmetry on axes of the vector space for specifying relevant subsets:

o3,o4 = {o ∈ O | dsafe < ox ≤ βdsafe∧|oy| ≤
1
2
(L+ tol)} (8)

o5,o6 = {o ∈ O | −βdsafe ≤ ox <−dsafe∧|oy| ≤
1
2
(L+ tol)} (9)

where dsafe is a constant to distinguish between positive and negative x-coordinates (while excluding
subsets o1 and o2), β is a coefficient for tuning the length of the subsets and 1

2(L+ tol) defines the width
(see Figure 3A for an illustration). From a cognition perspective, subsequent reasoning can be seen as the
robot predicting what will happen if it returns to its resting state after eliminating a second disturbance.

Suppose the positive and negative lateral directions have both been calculated as safe for a three
step plan, i.e., both |D+

y | and |D−y | are greater than dmin. If subsets {o3,o5,o4,o6} are empty, then states
{s7,s11,s8,s12} are deemed safe and a path is generated for one of the states in a nondeterministic way.
However, if any of the subsets are non-empty, the corresponding state is unsafe and excluded from path
generation via model checking. If |D+

y | ≤ dmin, then states s7 and s11 are automatically considered unsafe
(i.e., the positive lateral direction is invalid for a three step plan). If |D−y | ≤ dmin, then states s8 and s12
are automatically considered unsafe (i.e., the negative lateral direction is invalid for a three step plan).
As mentioned above, prior to generating a three step plan, if |D+

y | and |D−y | are less than or equal to dmin,
neither direction is considered safe, so a two step plan to turn around and evade the situation is generated.

3 Implementation

As a case study, we implemented our method on a differential drive robot shown in Figure 6A. Our robot
was adapted from a widely available mobile robot development platform, AlphaBot by Waveshare1. For
sensing the environment, we equipped the robot with a low cost 360 degree 2D laser scanner, RPLiDAR
A1M8 by Slamtec2, and for actuation we used two continuous rotation servos by Parallax3. The hard-
ware programming interface for the robot was a Raspberry Pi 3 Model B4 included with the AlphaBot
development kit running a Quad Core 1.2GHz Broadcom 64bit CPU with 1GB RAM and wireless LAN.

Our method was implemented5 in C++ using the closed-loop agent architecture shown in Figure 6B.
At runtime, LiDAR scans generate a callback from a dedicated thread which passes observations to the
agent event handler (approx. every 200 ms). The agent then initiates the task execution step which sends
a control signal to the actuator thread. If the robot is in the preferred task T0 after the control signal is sent
to the servos, a check is made for new disturbances in the environment. If a temporary control system
TL/R is the current task, the progress of counteracting the disturbance is checked. In either case, a task
result is returned to the agent indicating whether the task has been a success or has failed. When in the
preferred task T0, if there is no plan available, a new disturbance initiates the model update procedure
described in the previous section and generates a plan using invariant checking by f-DFS. The plan is

1https://www.waveshare.com/alphabot-robot.htm
2https://www.slamtec.com/en/LiDAR/A1/
3https://www.parallax.com/product/parallax-continuous-rotation-servo/
4https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
5https://github.com/possibilia/mc-avoid

https://www.waveshare.com/alphabot-robot.htm
https://www.slamtec.com/en/LiDAR/A1/
https://www.parallax.com/product/parallax-continuous-rotation-servo/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://github.com/possibilia/mc-avoid

88 Model Checking for Closed-Loop Robot Reactive Planning

Sensors Actuators

Environment

Task controller

Task Result

Model checking

Running /
disturbance

counteracted

Disturbance
sensed

New plan

A B

Figure 6: A our robot. B the agent architecture.

executed when the disturbance is distance d < dsafe from the origin of the point cloud data. Once the
plan has been executed, the robot defaults to the preferred task T0 until a disturbance repeats the process.

4 Results

Our goal was to develop an egocentric method for chaining temporary control systems in response to dis-
turbances in the environment using in situ model checking. Specifically, we were interested in improving
on the case where an agent can only spawn a single control task in response to disturbances (see Section
2 for details). In this paper, we restricted our attention to static environments and local tactical planning
for avoiding obstacles, focusing on a cul-de-sac scenario as an initial test case for our method. Our re-
sults show an improvement on one step planning yielding efficient trajectories for avoiding a cul-de-sac.
In addition, for both comparisons our model checking procedure was executed in less than 11 ms.

Trajectories for the the first comparison are shown in Figure 7. Using our method, the robot ap-
proaches the cul-de-sac in Figure 7A and upon sensing a disturbance in the environment (i.e., a point
on the wall on the left) generates the three step plan 〈TR,T0,TR〉 in Figure 7B. Here the model update
procedure determines that sets o1 and o2 (see Figure 5 above) are non-empty and that it can drive at least
dmin = 0.5m in either direction. However, as sets o3 and o5 are also non-empty, it infers that it will meet
a disturbance if it turns either left or right after initially going in the left direction. In this particular case,
both sets o4 and o6 are empty and so the corresponding horizon states s8 and s12 are determined safe.
A path to one of the states is chosen nondeterministically, in this case s12. Execution time for the com-
bined model update procedure and path generation using in situ model checking was 9.22 ms. Figure 7C
shows the one step comparison, which in this case manages to navigate out of the cul-de-sac by chance,
however not without entering it first, making the trajectory less efficient.

The second comparison is shown in Figure 8. In this case, the robot approaches the bottom right
corner of the cul-de-sac in Figure 8A and infers that it is boxed in using our method. Consequently, it
generates the two step plan 〈TL,TL〉 in Figure 8B then returns to the preferred task T0. As in the previous
comparison, the model update procedure has determined that sets o1 and o2 are non-empty, however in
this case the robot cannot travel at least dmin = 0.5m in any direction, so a three step plan is invalid; it is

C. Chandler, B. Porr, A. Miller, and G. Lafratta 89

A B

C

s
0

T
0

s
1

s
2

s
13

s
3

s
14

s
4

s
9

s
5

s
6

s
10

s
11

s
7

s
8

s
12

T
0

T
0

T
0

T
0

T
0

T
0

T
0

Figure 7: Comparison 1. In A the robot recognises that it would get boxed in turning left so it makes a
three step plan for the right direction (last step cropped). In B the path and transitions in the model which
generated the behaviour are shown. C shows trajectory followed by agent which can only plan one step.

s
0

T
0

s
1

s
2

s
13

s
3

s
14

s
4

s
9

s
5

s
6

s
10

s
11

s
7

s
8

s
12

T
0

T
0

T
0

T
0

T
0

T
0

T
0

A B

C

Collision

Figure 8: Comparison 2. In A the robot approaches the bottom right corner of the cul-de-sac and infers
that it is boxed in so generates the two step plan shown in B to evade the situation. C shows that the robot
gets trapped between two walls for the one step planning case, eventually colliding with a wall.

90 Model Checking for Closed-Loop Robot Reactive Planning

therefore assumed that only set o7 is empty and the corresponding horizon state s14 is safe. As there is
only one safe horizon state in this situation, nondeterminism is resolved in the algorithm so the path is
fully determined. Similar to the previous comparison, execution time for the combined update procedure
and path generation was 10.87 ms. In contrast, the one step planning trial causes the robot to get trapped
between two walls for a significant period of time before eventually colliding with one of them, as shown
in Figure 8C. Hence our method generates a more efficient trajectory and can avoid a trap situation.

5 Discussion

In this paper, we have shown that it is possible to use live model checking to plan a safe sequence
of discrete control tasks for a planning horizon of more than one step. In previous work [26], it was
demonstrated that model checking could be used to plan overtaking manoeuvres for an autonomous
vehicle (AV) as a proof of concept. As mentioned in the introduction, however, one of the main issues
was compilation time in Spin [14] (approx. 3 secs), making the real-world application of model checking
for trajectory planning impractical, even though verification of the model itself only took around 20 ms.
We have overcome the compilation time problem by creating a stripped down model checking algorithm
situated on board an autonomous agent. While our results are preliminary, we consider this work a
successful first step towards real-time model checking for reliable and safe AV trajectory planning.

As finite state model checking relies on a discrete action space, another limitation in [26] was division
of the underlying continuous system into 21 meter long segments, which is sufficient to represent rural
roads or empty motorways but not congested urban environments. While using a fine-grained discretiza-
tion would allow for more accurate modelling of the environment and vehicle speed, the state-space ex-
plosion problem imposes hard practical limits. If the state-space is too large, the additional computation
would make real-time application of model checking infeasible, especially in high speed environments
such as autonomous driving. In [22] it was argued that even a lag of 100 ms is unacceptable.

We have therefore introduced a novel discretization which moves away from static grids commonly
applied in model checking, using abstraction to represent bounded stochastic variations in the continuous
system. This has the benefit of keeping the state-space small but the model sensitive to fine-grained
variations in the local environment. In this initial work, the upshot of our discretization is not obvious,
however we believe that for any real-world application of model checking for AV trajectory planning, a
discrete representation of the environment with adaptive characteristics will be necessary.

One limitation, however, is that our discretization of the LiDAR data models points on a 2D vector
space. While sufficient for initial research, realistic driving scenarios will require richer information
about the geometry of the local environment for reliable decision-making. If the dimensionality of ob-
jects in the environment is not known, then sophisticated manoeuvres will be impossible. For example,
overtaking can be broken down into three distinct sub-manoeuvres [8]: (i) lane change to overtaking
lane, (ii) pass leading vehicle(s), and (iii) lane change back to original lane, so for a successful over-
take, the AV needs to know the necessary lateral and longitudinal displacements relative to the leading
vehicle(s). Points on a plane have no dimensionality, so it is expected that some LiDAR preprocessing
yielding richer geometry information about objects will be required for performant AV decision-making.

In a real-world driving scenario, AVs will need to cope with unpredictable traffic and changing
weather conditions, so trajectory planning should in addition be sensitive to uncertainty in the driving
environment. For this initial work we have chosen to keep the complexity of the model low to simplify
the problem; one benefit is that the restricted modelling palette forces basic assumptions to be questioned
in pursuit of a solution, as opposed to relying on the modelling apparatus alone. In our case, we have at-

C. Chandler, B. Porr, A. Miller, and G. Lafratta 91

tempted to stretch assumptions about relevant discretizations, moving away from typical fixed structures.
In future work, however, a probabilistic model checker such as PRISM [16] could be stripped down and
implemented on an autonomous agent to handle uncertainty in the local environment.

The main limitation of our approach is that it is not goal-directed. While our method is capable of
local tactical planning for obstacle avoidance, any realistic scenario involving AVs (e.g., overtaking) re-
quires the ability to make progress towards a goal relevant to the task. For example, in our previous work
[26] a simulated LiDAR array provided sensory input sufficient for determining whether an overtake was
possible. Subsequent research will seek to improve on our solution by adding goal-directed behaviour to
the autonomous agent as a next step towards transparent and ecologically valid trajectory planning.

The major benefit of our approach is that it is tailored for individual scenarios and takes place in
real-time using no pre-computed data [26]. Furthermore, it makes hard decisions which are in principle
transparent. Popular machine learning approaches for trajectory planning, such as deep reinforcement
learning [15], are either trained offline on datasets irrelevant to the immediate context, or trained online
within a simulated environment. While predictions are fast in offline methods, they can result in unex-
pected or risky behaviour for unseen cases, which in autonomous driving can be dangerous, as evidenced
in recent high profile accidents like the Tesla crash while in autopilot mode [20] and the Uber autonomous
taxi crash [7], both of which were fatal. Online training of reinforcement learning in a simulated envi-
ronment might be able to generate a larger variability of situations for training (and a much larger dataset
than any real world data), but it would ultimately generate a rigid black box system which would not
be transparent or guaranteed to react safely in all situations. Our solution relies on data from the local
environment and generates explainable trajectories in real-time. Unlike machine learning methods, our
basic approach makes clear decisions which are transparent by design.

Safety is ensured by our abstraction through over-approximation of the robot workspace and strict
adherence to the robot safe zone. Similar concepts restricting the local behaviour of robots have been
used elsewhere. In [18], for example, the notion of a safe maneuvering zone (SMZ) was used with
a kinematic model for obstacle avoidance. The SMZ defines a circular boundary around the closest
detected obstacle, creating a temporary sub-goal which minimally deforms the original robot path. The
contour of any encountered obstacle is navigated until the robot can return to its original path. However,
as the SMZ places safety bounds on obstacles, efficient strategies for obstacle avoidance may be ignored.
Our safe zone is egocentric, so paths are not constrained by the contours of obstacles in the environment.

Previous work [3] combining lattice-based planning with optimal control has informed the develop-
ment of our method. Here optimal path planning algorithms were used to generate motion primitives
which can then be chained, producing locally optimal solutions to the path planning problem. However,
it is a non-trivial task for a robot to precisely determine its position and follow a trajectory, often the
approach favoured by safe navigation methods in the literature, such as control barrier functions [28].
Instead we focus attention on possible collisions which are tracked until out of reach whilst respecting
the robot safe zone. Hence the trajectories produced by sequences of motion primitives (i.e., control
tasks) are flexible in our method, as long as the control goal of eliminating disturbances is achieved.

5.1 Comparison with physics modelling

In a similar vein to model checking, we have approached closed-loop navigation from a lower level of
abstraction; in brief, this consists of representing the robot, its behaviour and the external environment
in the physics engine Box2D [6] (unpublished data). In this framework, we replace the model checking
step by simulation of the execution of a task (or sequence of tasks) in the physics engine. The outcome of
simulation can then be used to determine a sequence that best satisfies a goal. Modelling through a widely

92 Model Checking for Closed-Loop Robot Reactive Planning

utilised and validated physics library allows for accurate simulation of complex, dynamic environments.
On the other hand, the speed of this method is strongly correlated with the number of bodies used
in the simulation. In simple scenarios, optimal path selection is possible within the LiDAR sampling
rate. However, cluttered environments and/or the creation of large task trees result in highly variable
performance to a point where it no longer suits real-world applications in robots with low CPU clock
speed (our data was collected on a 1.4GHz CPU). This limitation is not in the model checking approach,
making it more robust, reliable and suited to a wider range of scenarios.

Acknowledgements

This work was supported by a grant from the UKRI Strategic Priorities Fund to the UKRI Research
Node on Trustworthy Autonomous Systems Governance and Regulation [EP/V026607/1, 2020-2024];
the UKRI Centre for Doctoral Training in Socially Intelligent Artificial Agents [EP/S02266X/1]; and
the UKRI Engineering and Physical Sciences Research Council Doctoral Training Partnership award
[EP/T517896/1-312561-05].

C. Chandler, B. Porr, A. Miller, and G. Lafratta 93

References

[1] Christel Baier & Joost-Pieter Katoen (2008): Principles Of Model Checking. 950, The MIT Press, Cam-
bridge, Mass, doi:10.1093/comjnl/bxp025.
Publication Title: MIT Press ISSN: 00155713.

[2] Davide Basile, Alessandro Fantechi & Irene Rosadi (2021): Formal Analysis of the UNISIG Safety Applica-
tion Intermediate Sub-layer. In Alberto Lluch Lafuente & Anastasia Mavridou, editors: Formal Methods for
Industrial Critical Systems, Springer International Publishing, Cham, pp. 174–190, doi:10.1007/978-3-030-
85248-1 11.

[3] Kristoffer Bergman, Oskar Ljungqvist & Daniel Axehill (2021): Improved Path Planning by Tightly Com-
bining Lattice-Based Path Planning and Optimal Control. IEEE Transactions on Intelligent Vehicles 6(1),
pp. 57–66, doi:10.1109/TIV.2020.2991951.

[4] V. Braitenberg (1986): Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge, Massachus-
sets. Available at https://books.google.co.uk/books/about/Vehicles.html?id=7KkUAT_q_sQC&
redir_esc=y.

[5] R. C. Cardoso, G. Kourtis, L. A. Dennis, C. Dixon, M. Farrell, M. Fisher & M. Webster (2021): A Review of
Verification and Validation for Space Autonomous Systems. Current Robotics Reports 2(3), pp. 273—-283,
doi:10.1007/s43154-021-00058-1.

[6] E. Catto: erincatto/box2d: Box2D is a 2D physics engine for games. Available at https://github.com/
erincatto/box2d.

[7] K. Conger (2020): Driver Charged in Uber’s Fatal 2018 Autonomous Car Crash. The
New York Times. Available at https://www.nytimes.com/2020/09/15/technology/

uber-autonomous-crash-driver-charged.html

[8] Shilp Dixit, Saber Fallah, Umberto Montanaro, Mehrdad Dianati, Alan Stevens, Francis Mccullough &
Alexandros Mouzakitis (2018): Trajectory planning and tracking for autonomous overtaking: State-of-the-
art and future prospects. Annual Reviews in Control 45, pp. 76–86, doi:10.1016/j.arcontrol.2018.02.001.

[9] Marie Farrell & Matt Luckcuck, editors (2021): Proceedings of the Third Workshop on Formal Methods for
Autonomous Systems. 348, Open Publishing Association, doi:10.4204/eptcs.348.

[10] Angelo Ferrando, Louise A. Dennis, Davide Ancona, Michael Fisher & Viviana Mascardi (2018): Veri-
fying and Validating Autonomous Systems: Towards an Integrated Approach. In Christian Colombo &
Martin Leucker, editors: Runtime Verification, Springer International Publishing, Cham, pp. 263–281.
doi:10.1007/978-3-030-03769-7 15

[11] D. Fraser, R. Giaquinta, Hoffmann, M. Ireland, A. Miller & G. Norman (2020): Collaborative mod-
els for autonomous systems controller synthesis. Form Aspects of Computing 32, pp. 157—-186,
doi:10.1109/TCST.2006.872519.

[12] J. Hamilton, I. Stefanakos, R. Calinescu & J. Cámara (2022): Towards Adaptive Planning of Assistive-care
Robot Tasks. In Luckcuck & Farrell [25], pp. 175–183, doi:10.4204/eptcs.371.

[13] K. Havelund, M. Lowry & J. Penix (2001): Formal Analysis of a Space-Craft Controller Using SPIN. Soft-
ware Engineering, IEEE Transactions on 27, pp. 749–765, doi:10.1109/32.940728.

[14] G. Holzmann (2011): The SPIN Model Checker: Primer and Reference Manual, 1st edition. Addison-Wesley
Professional.

[15] S. Josef & A. Degani (2020): Deep Reinforcement Learning for Safe Local Planning of a Ground
Vehicle in Unknown Rough Terrain. IEEE Robotics and Automation Letters 5(4), pp. 6748–6755,
doi:10.1109/LRA.2020.3011912.

[16] M. Kwiatkowska, G. Norman & D. Parker (2011): PRISM 4.0: Verification of Probabilistic Real-Time Sys-
tems. In Ganesh Gopalakrishnan & Shaz Qadeer, editors: Computer Aided Verification, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 585–591, doi:10.1007/978-3-642-22110-1 47.

https://doi.org/10.1093/comjnl/bxp025
https://doi.org/10.1007/978-3-030-85248-1_11
https://doi.org/10.1007/978-3-030-85248-1_11
https://doi.org/10.1109/TIV.2020.2991951
https://books.google.co.uk/books/about/Vehicles.html?id=7KkUAT_q_sQC&redir_esc=y
https://books.google.co.uk/books/about/Vehicles.html?id=7KkUAT_q_sQC&redir_esc=y
https://doi.org/10.1007/s43154-021-00058-1
https://github.com/erincatto/box2d
https://github.com/erincatto/box2d
https://www.nytimes.com/2020/09/15/technology/uber-autonomous-crash-driver-charged.html
https://www.nytimes.com/2020/09/15/technology/uber-autonomous-crash-driver-charged.html
https://doi.org/10.1016/j.arcontrol.2018.02.001
https://doi.org/10.4204/eptcs.348
https://doi.org/10.1007/978-3-030-03769-7_15
https://doi.org/10.1109/TCST.2006.872519
https://doi.org/10.4204/eptcs.371
https://doi.org/10.1109/32.940728
https://doi.org/10.1109/LRA.2020.3011912
https://doi.org/10.1007/978-3-642-22110-1_47

94 Model Checking for Closed-Loop Robot Reactive Planning

[17] M. Kwiatkowska, G. Norman & D. Parker (2022): Probabilistic Model checking and autonomy. Annual re-
view of control, robotics, and autonomous systems 5(1), pp. 385–410. doi:10.1146/annurev-control-042820-
010947

[18] Lionel Lapierre & Rene Zapata (2012): A guaranteed obstacle avoidance guidance system: The safe maneu-
vering zone. Autonomous Robots 32(3), pp. 177–187, doi:10.1007/s10514-011-9269-5.

[19] Yann LeCun (2022): A Path Towards Autonomous Machine Intelligence — OpenReview. Available at https:
//openreview.net/forum?id=BZ5a1r-kVsf.

[20] David Lee (2016): US opens investigation into Tesla after fatal crash. Available at https://www.bbc.co.
uk/news/technology-36680043.

[21] S. Lehmann, A. Rogalla, M. Neidhardt, A. Schlaefer & S. Schupp (2021): Online Strategy Synthe-
sis for Safe and Optimized Control of Steerable Needles. In Farrell & Luckcuck [9], pp. 128–135,
doi:10.4204/EPTCS.348.9.

[22] X. Li, Z. Sun, D. Cao, Z. He & Q. Zhu (2016): Real-time trajectory planning for autonomous urban driving:
Framework, algorithms, and verifications. IEEE/ASME Transactions on Mechatronics 21(2), pp. 740–753,
doi:10.1109/TMECH.2015.2493980.

[23] Dennis Louise, Michael Fisher, Nicholas Lincoln, Alexei Lisitsa & Sandor Veres (2016): Practical verifi-
cation of decision-making in agent-based autonomous systems. Automated Software Engineering 23(3), pp.
305–359, doi:10.1007/s10515-014-0168-9.

[24] Y. Lu, A. Miller, C. Johnson, Z. Peng & T. Zhao (2014): Availability analysis of satellite positioning sys-
tems for avaiation using the Prism model checker. In: Proceedings of the 17th International Conference on
Computational Science and Engineering (CSE 2014), pp. 704–713, doi:10.1109/CSE.2014.148.

[25] Matt Luckcuck & Marie Farrell, editors (2022): Proceedings of the Fourth International Workshop on Formal
Methods for Autonomous Systems (FMAS) and Fourth International Workshop on Automated and verifiable
Software sYstem DEvelopment (ASYDE). 371, Open Publishing Association, doi:10.4204/eptcs.371.

[26] Daumantas Pagojus, Alice Miller, Bernd Porr & Ivaylo Valkov (2021): Simulation and Model Checking for
Close to Realtime Overtaking Planning. In Farrell & Luckcuck [9], pp. 20–37, doi:10.4204/EPTCS.348.2.

[27] Bruno Siciliano & Oussama Khatib, editors (2016): Springer Handbook of Robotics. Springer International
Publishing, Cham, doi:10.1007/978-3-319-32552-1.

[28] Andrew Singletary, Karl Klingebiel, Joseph Bourne, Andrew Browning, Phil Tokumaru & Aaron Ames
(2020): Comparative Analysis of Control Barrier Functions and Artificial Potential Fields for Obstacle
Avoidance. Available at http://arxiv.org/abs/2010.09819. ArXiv:2010.09819 [cs, eess].

[29] Elizabeth S. Spelke & Katherine D. Kinzler (2007): Core knowledge. Developmental Science 10(1), pp.
89–96, doi:10.1111/J.1467-7687.2007.00569.X.

[30] Güliz Tuncay, Soteris Demetriou, Karan Ganju & Carl A. Gunter (2018): Resolving the Predicament
of Android Custom Permissions. In: Network and Distributed System Security Symposium, pp. 1–15,
doi:10.14722/ndss.2018.23221.

[31] L. Wang & F. Cai (2017): Reliability analysis for flight control systems using probabilistic model checking.
Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS
2017-Novem, pp. 161–164, doi:10.1109/RAM.2017.7889773.

[32] M. Weißmann, S. Bedenk, C. Buckl & A. Knoll (2011): Model Checking Industrial Robot Systems. In:
Model checking software (SPIN 2011), 6823, Springer Berlin Heidelberg, pp. 161–176, doi:10.1007/978-3-
642-22306-8 11.

[33] Yi Yang & Tom Holvoet (2022): Generating Safe Autonomous Decision-Making in ROS. In Luckcuck &
Farrell [25], pp. 184–192, doi:10.4204/eptcs.371.13.

https://doi.org/10.1146/annurev-control-042820-010947
https://doi.org/10.1146/annurev-control-042820-010947
https://doi.org/10.1007/s10514-011-9269-5
https://openreview.net/forum?id=BZ5a1r-kVsf
https://openreview.net/forum?id=BZ5a1r-kVsf
https://www.bbc.co.uk/news/technology-36680043
https://www.bbc.co.uk/news/technology-36680043
https://doi.org/10.4204/EPTCS.348.9
https://doi.org/10.1109/TMECH.2015.2493980
https://doi.org/10.1007/s10515-014-0168-9
https://doi.org/10.1109/CSE.2014.148
https://doi.org/10.4204/eptcs.371
https://doi.org/10.4204/EPTCS.348.2
https://doi.org/10.1007/978-3-319-32552-1
http://arxiv.org/abs/2010.09819
https://doi.org/10.1111/J.1467-7687.2007.00569.X
https://doi.org/10.14722/ndss.2018.23221
https://doi.org/10.1109/RAM.2017.7889773
https://doi.org/10.1007/978-3-642-22306-8_11
https://doi.org/10.1007/978-3-642-22306-8_11
https://doi.org/10.4204/eptcs.371.13

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 95–112, doi:10.4204/EPTCS.395.7

© Bogomolov et al.
This work is licensed under the
Creative Commons Attribution License.

Online Reachability Analysis and Space Convexification for
Autonomous Racing

Sergiy Bogomolov
Newcastle University,

Newcastle upon Tyne, United Kingdom
sergiy.bogomolov@ncl.ac.uk

Taylor T. Johnson
Vanderbilt University,

Nashville, USA
taylor.johnson@vanderbilt.edu

Diego Manzanas Lopez
Vanderbilt University,

Nashville, USA
diego.manzanas.lopez@vanderbilt.edu

Patrick Musau
Vanderbilt University,

Nashville, USA
patrick.musau@vanderbilt.edu

Paulius Stankaitis
Newcastle University,

Newcastle upon Tyne, United Kingdom
paulius.stankaitis@ncl.ac.uk

This paper presents an optimisation-based approach for an obstacle avoidance problem within an
autonomous vehicle racing context. Our control regime leverages online reachability analysis and
sensor data to compute the maximal safe traversable region that an agent can traverse within the
environment. The idea is to first compute a non-convex safe region, which then can be convexified
via a novel coupled separating hyperplane algorithm. This derived safe area is then used to for-
mulate a nonlinear model-predictive control problem that seeks to find an optimal and safe driving
trajectory. We evaluate the proposed approach through a series of diverse experiments and assess the
runtime requirements of our proposed approach through an analysis of the effects of a set of varying
optimisation objectives for generating these coupled hyperplanes.

1 Introduction

Over the last several years, autonomous racing has actively been pursued as a strategy to explore edge-
case scenarios in autonomous driving [16]. Racing scenarios present unique challenges with respect to
navigating high speeds and multi-agent interactions. In these contexts, vehicles must be able to operate
at the edge of their operating envelopes in close proximity to static and dynamic obstacles. Several
competitions have emerged over the last couple of years, such as the Indy Autonomous Challenge (IAC)
[16], and the F1TENTH International Autonomous racing competition [34]. Although numerous racing
strategies have been proposed over the last several years, head-to-head racing at high speeds remains a
challenge. Unlike the time trials that are frequently used as qualification rounds in these competitions
[33], head-to-head racing requires designing a regime to be able to predict the future trajectories that
reflect the intentions of the other opponents and drive through the track as quickly as possible.

Within the autonomous racing space, one of the most popular frameworks for tackling the racing
problem has been formulating and solving an optimisation problem that balances obstacle avoidance
and travelling at high velocities [40, 20]. Specifically, the model-predictive control framework (MPC),
which finds optimal control commands based on a model of the underlying system, while satisfying a set
of constraints is the most widely used approach [18]. Although MPC approaches have enjoyed success

http://dx.doi.org/10.4204/EPTCS.395.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

96 Online Reachability Analysis and Space Convexification for Autonomous Racing

in these settings [40], one of the main limitations exhibited by many approaches is a lack of robust online
risk assessment in often dynamic and uncertain environments, particularly around vehicle-to-vehicle
interactions. While a lot of progress has been made in this area, collisions still occur due to misplaced
estimations of the set of all possible trajectories that the vehicle could pursue [20]. Furthermore, as
Katrakazas et al. note “exhaustively calculating and predicting the trajectories of other traffic participants
at each epoch incurs a huge computational cost”. Currently, many existing approaches treat the vehicle
as an isolated entity, and the behavioural models of other participants within the environment have not
yet been widely incorporated into the MPC regime [20].

One of the ways that this challenge has been addressed has been through the use of reachability anal-
ysis approaches [1]. The idea is to compute the set of states that the other racing agents could occupy
in the future, for a fixed time horizon, and plan trajectories for the ego vehicle that avoids this unsafe
set [23, 26, 29]. This unsafe set allows for modelling the inherent uncertainty in the behaviour of other
agents and for the synthesis of safe racing trajectories [1]. There are two main challenges that arise in
these contexts. The first is that over long time horizons, reachability approaches will result in overly
conservative behaviours as the set of avoidable states grows. The second is that reachability approaches
are typically computationally challenging endeavours, thus leveraging them online is quite challenging.
In light of these challenges, the following paper presents a model-predictive control framework lever-
aging real-time reachability for a 1/10 scale autonomous vehicle test-bed in a multi-agent racing setting
modelled after the F1TENTH International Autonomous Racing Competition.

Finally, obtaining a solution to the MPC problem generally entails solving a convex optimisation
problem, which guarantees convergence to a globally optimum solution. However, due to the presence
of static and dynamic obstacles, the optimal control problem of obstacle avoidance is inherently a non-
convex problem. Therefore, to solve this problem efficiently many approaches leverage state-space con-
vexification. In the past, several state-space convexification approaches have been proposed, including
region partitioning [28], computing separating hyperplanes [25, 31], and constructing approximations
using stored data points [38] (further discussed in Section 2). In our framework, we propose a novel
optimisation-based approach for convexifying non-convex state spaces by computing coupled separating
hyperplanes. The coupling of separating hyperplanes makes it possible to compute optimal safe and
convex regions. However, it comes at the cost of increased computation time. Therefore, in this paper,
we investigate the feasibility (e.g., timing constraints) of computing coupled separating hyperplanes in a
real-time autonomous racing scenario.

In summary, the contributions of this paper are: (1) we introduce a novel closed-loop model-predictive
obstacle avoidance controller that integrates online reachability analysis and an optimisation-based state-
space convexification approach, (2) we evaluate this approach across a diverse set of simulation exper-
iments using the F1TENTH simulation platform. These experiments include varying the number of
dynamic agents, the number of static and dynamic obstacles, and the racing environment. (3) We present
a timing analysis of the state-space convexification approach. (4) Finally, we evaluate our approach
against the well-known model-predictive contouring control approach, which has shown great success in
obstacle avoidance tasks.

2 Related Work

Researchers have approached the obstacle avoidance problem from two major perspectives. The first
strategy involved formulating and solving an optimisation problem. The second regime has typically
involved a hierarchical decomposition of path planning and reference tracking. A variety of algorithms

Bogomolov et al. 97

such as artificial potential fields [47], genetic algorithms [45], rapidly-exploring random trees (RRT) [19],
fuzzy logic algorithms [32], elastic band theory [12], and rolling window methods [46] have demon-
strated success in numerous arenas. A key limitation of many path planning approaches is that they
are incapable of respecting kinodynamic constraints, such as bounds on the acceleration, and often the
trajectories must be passed to a low-level controller that utilises a higher fidelity dynamics model and
respects control constraints [40]. Furthermore, in highly dynamic and uncertain environments, planners
must be able to replan sufficiently fast to react appropriately to split-second environmental threats [19].
However, most planners typically do not replan sufficiently rapidly to ensure split-second reactivity to
threats [23].

As mentioned previously, MPC approaches have demonstrated great success in generating opti-
mal trajectories that respect kinodynamic constraints and recently researchers have combined these ap-
proaches with reachability analysis to generate provably collision-free paths [1, 5, 23, 35, 23]. Within
this regime, [1, 35, 26] utilise forward reachability methods in order to eliminate areas of the state space
that would result in collisions. While these methods are extremely effective, these approaches must be
implemented carefully in order to ensure that the resulting trajectories do not result in overly conserva-
tive behaviours [23]. The alternative to these approaches is backward reachability approaches [5, 23]
which utilise a target set representing a set of undesirable states, in order to design controllers that can
guarantee dynamic and static obstacle avoidance with minimal intervention. However, these approaches
are computationally demanding and typically the safety-ensuring control constraints, derived from these
methods, are computed and cached offline before being incorporated into an MPC problem [23].

Beyond reachability methods, over the last several years, several space convexification approaches
for the obstacle avoidance problem have been proposed. In [39] a feasible convex set for model-predictive
control is obtained by computing two parallel time-varying hyperplanes on racetrack borders. How-
ever, the resulting hyperplanes do not consider static obstacles or dynamic agents. The works of Mercy
et al. [31, 30] and Scholte et al. [41] utilise the concept of separating hyperplanes to compute hyper-
planes which separate autonomous systems from convex obstacles. The paper [22] combines the model-
predictive control and dynamic agent reachability analysis, and uses IRIS (Iterative Regional Inflation
by Semi-definite programming) [11] for a state-space convexification. A similar approach has been
introduced in [27] for motion planning. Finally, in [28] two (polar and convex) different types of con-
vexification methods based on region partitioning for obstacle avoidance were proposed. Their convex
partitioning regime utilises a convex partitioning algorithm [21] to compute the minimum number of
convex regions that are needed to capture non-convex obstacles, whereas the polar partitioning approach
derives a safe set by using a minimum number of triangles.

The state-space convexification approaches described above have two main limitations for the racing
scenario: they generally aim to compute the largest convex region in the non-convex space (e.g., not
necessarily in the travelling direction of the ego vehicle) or are not able to handle non-convex obstacles.
In our approach, we also express the problem of computing separating hyperplanes as an optimisation
problem, but we are interested in computing a correct set of separating hyperplanes that provide the
largest safe convex region in the direction of the ego vehicle. Furthermore, our proposed approach is
able to handle non-convex obstacles.

98 Online Reachability Analysis and Space Convexification for Autonomous Racing

3 Preliminaries

3.1 Model-Predictive Control

Let us suppose we have the following (1) discrete-time system where x∈ X ⊆Rn, u∈U ⊆Rm and t ∈N.

xt+1 = f (xt ,ut) (1)

The MPC problem can then be expressed as a finite horizon optimisation problem (1) where a cost
function J is being minimised over a finite time horizon N subject to constraints (2.1 - 2.4).

Jt→t+N(xt) = min
u0,...,uN−1

p(xt+N)+
t+N−1

∑
k=t

q(xk,uk) (2)

xk+1 = f (xk,uk), ∀k ∈ {t, ..., t +N−1} (2.1)

x0 = xs (2.2)

xk ∈ X , ∀k ∈ {t, ..., t +N−1} (2.3)

uk ∈U, ∀k ∈ {t, ..., t +N−1} (2.4)

The cost function J is made up of a stage cost function q and a terminal cost function p which
determine the cost of being at the interim state xk after applying an input uk, and the cost of being at the
final state xt+N . The constraints (2.1 - 2.4) assert that the optimisation problem, given by equation (1),
begins from an initial state xs and that the interim state and control inputs must respect the constraint sets
X and U .

If the dynamics and constraints can be formulated as linear expressions, then the MPC problem can be
solved efficiently using standard convex optimisation techniques. However, if the dynamics or constraints
are nonlinear, then the problem becomes a nonlinear optimisation problem that is much more computa-
tionally challenging to solve. On the other hand, allowing for nonlinear dynamics and constraints may
permit one to track complex systems with a higher level of fidelity than using linear expressions. Thus,
the computational cost must be evaluated against overall system performance [42].

3.2 Reachability Analysis

Reachability analysis is a technique for computing the set of all reachable states of a dynamical system
from a set of initial states. The reachable set of Rt+1 can be defined formally as:

Rt+1(X0) = f (X0,U) (3)

where X0 ⊆ Rn represents the set of initial states, U ⊆ Rm represents the input set. More generally,
reachability analysis methods aim to construct a conservative flowpipe (4) which encompasses all the
possible reachable sets of a dynamical system over a time-horizon [0,T]. This can be formalised as
follows (in practice the union is computed over a discretised interval):

R[0,T](X0) =
⋃

t∈[0,T]
Rt(X0) (4)

Reachability analysis has been widely used in applications that range from the formal verification of
systems to problems relating to the safe synthesis of complex systems [2]. The majority of reachability

Bogomolov et al. 99

Figure 1: Visualisation of the autonomous racing problem with track boundaries, {δW0,δW1}, a dynamic
opponent described by its reachable set Rζi,[0,T](x0) and static obstacles {O0,O1,O2}. In this figure,
the blue rectangle corresponds to the ego vehicle, and the white rectangle corresponds to a dynamic
opponent. The main sub-problem is computing an n-number of separating hyperplanes (H0...H4) which
jointly create a polyhedron Xsafe. The computed Xsafe must contain an ego vehicle and its target location
lζ as well as not overlap with observable obstacles.

analysis approaches leverage a combination of numerical analysis techniques, graph algorithms, and
computational geometry [4, 3], and while in some cases it is possible to derive the exact reachable set of
states, for many classes of systems computing the exact reachable set is infeasible. Thus, deriving the
reachable set for these classes of systems involves obtaining a sound approximation (i.e., guarantee to
contain a complete reachable set) of this set using a variety of set representations. Consequently, there is
an inherent trade-off between the accuracy of the approximation and the time it takes to construct this set.
We refer interested readers to the following papers [4, 3] for an in-depth discussion of these techniques.

4 Problem Statement and Space Convexification

4.1 Problem Formulation

In this paper, we consider the general autonomous racing problem (5) where a model predictive controller
(2) is tasked with generating a sequence of control inputs u0...T that control a vehicle (1) such that it
reaches the terminal state xT ∈ X f starting from an initial state xs and steering through safe states, where
Xsa f e and X f are the safe states and terminal sets respectively. The goal is to steer the vehicle into the
terminal set with the shortest time horizon T .

min
T,u0,u1,..uT−1

p(xT) +
T

∑
k=0

q(xk,uk) s.t.

xt+1 = f (xt ,ut), x0 = xs

xt ∈ Xsa f e, ut ∈U, xT ∈ XF

(5)

In our formulation, the autonomous vehicle operates within a two-dimensional environment W ⊂R2

enclosed by boundaries {δW0,δW1, . . .δWi} as δW ⊂W , among a set of dynamic agents ζ = {ζ0, . . . ,ζi}
(ζ could be either ego ζe or opponent vehicle ζo) and static obstacles {O0,O1, . . . ,Oi} with O⊂W . The

100 Online Reachability Analysis and Space Convexification for Autonomous Racing

region of space occupied by a dynamic agent ζi(xt) ∈W in the environment over a time interval [t, t ′]
from its current state xt is given by its reachable set Rζi,[t,t ′](xt) ⊂W . Our assumption is that the static
and dynamic obstacles are contained within the two-dimensional environment. Furthermore, we refer
to opponent vehicles within the racing environment as dynamic agents and refer to all other dynamic
entities as dynamic obstacles.

To obtain a globally optimal solution to problem (5), as opposed to a locally optimal solution, the
model-predictive control problem requires the state-space X to be convex. However, because of environ-
ment borders, static obstacles and dynamic agents, X is generally a non-convex entity. Therefore, the
main sub-problem we are addressing in this paper is the computation of the safe, convex and optimal
state-space Xsafe in which a safe trajectory starting from x0 to a target location lζ ∈ Xsafe could be gener-
ated using an optimisation-based controller for the autonomous system (see Figure 1). The safe region
of the state-space Xsafe can be defined as follows:

Xsafe = {x | x 6∈ (δW ∪O∪
N−1⋃
i=0

Rζi,[0,T](x0))} (6)

where N is the number of observable dynamic agents. The computation of Xsa f e requires considering
only observable obstacles, agents and borders. To define observable points we first introduce a notion
of the LiDAR sensor which is mounted on the autonomous system and makes it possible to determine
the distance to obstacles. The sensor sends M light pulses in an anti-clockwise direction around the au-
tonomous system defined by δθ increments and returns a set of observational points {r0(xt), ...,rM(xt)}
where a LiDAR observational point ri(xt)∈R in the direction θi can be formally defined in the following
way (7):

ri(xt) = min
Oi∈O

min
z∈Oi
||z−ζ (xt)||2 s.t. atan2(z−ζ (xt)) = θi (7)

Ranges of the observable LiDAR signals ri(xt) can be converted into a two-dimensional point cloud
of the W where a single point pi(xt) of an agent ζ (xt) can be defined as a tuple (8):

pi(xt) = (ζ (xt)+ ri(xt)cosθi, ζ (xt)+ ri(xt)sinθi) (8)

Now, we can define observable static obstacles of ζ (xt) as a set Qob of LiDAR points within a
constant radius distance d from the agent’s state ζ (xt):

Qob = {q | q ∈ {p0, ..., pM−1}∧ ||q−ζ (xt)||2 ≤ d}
d ∈ R, 0 < d ≤max(r0(xt), ...,rM−1(xt))

(9)

Furthermore, the observable unsafe space Qob should include reachable sets of other dynamic agents
{ζ0, . . . ,ζi}. However, we are only interested in other dynamic agents which are within some distance
d ∈ R+ and so we update our definition Qob to include reachable regions of other close dynamic agents
(10):

Q+
ob = Qob∪{q | q ∈

N−1⋃
i=0

Rζi,[t,t ′](xt) ∧ ||q−ζe(xt)||2 ≤ d} (10)

Bogomolov et al. 101

4.2 Space Convexification via Separating Hyperplanes

This paper proposes a solution for the computation of Xsafe which is based on the convexification of
non-convex state space via separating coupled hyperplanes. A hyperplane H = {x | a>x = b}, where
a ∈ Rn,b ∈ R,a 6= 0, is a set which splits set Rn into two halfspaces. Let us also denote H∗ (11) as one
of the halfspaces of the hyperplane H. A separating hyperplane H is then said to separate two disjoint
convex sets A,B such that A⊆ H+ and B⊆ H− [7].

H∗ ∈ {H+,H−} H+∩H− = H

H+ = {x | a>x≥ b} H− = {x | a>x≤ b}
(11)

An intersection of finite halfspaces is a polyhedron P (12):

PH = {x | x ∈
N−1⋂
i=0

H∗i } (12)

The idea behind a space convexification via separating coupled hyperplanes is to compute a set
of hyperplanes HS = {H0, ...,Hn} such that together they create a polyhedron PHS which (1) does not
intersect with the set observable obstacles of the ego vehicle and (2) the ego vehicle ζe(xt) with its target
location lζ are within the polyhedron at the time t (13):

Xsafe = {x | x ∈ PHS ∧ PHS ∩ Q+
ob = /0 ∧ ζe(xt) ∈ PHS ∧ lζ (xt) ∈ PHS} (13)

The problem of generating a set of separating coupled-hyperplanes HS can be defined as an optimi-
sation or satisfiability problem (14) in which n number of hyperplanes are computed such that: 1) each
hyperplane separates a part of observable obstacles from the ego vehicle and its target location and 2) all
observable obstacles are separated by separating coupled hyperplanes

compute HS = {H0, ...,Hi} s.t.

∀qob+
i ∈ Q+

ob⇒∃Hi ∈ HS ∧ qob+
i ∈ H∗i ∧ ζ (xt), lζ (xt) ∈ Rn \H∗i

(14)

The convex and safe polyhedron Xsafe is the intersection of halfspaces H∗i of each hyperplane Hi ∈HS
for which ζe(xt) ∈ H∗i and lζ (xt) ∈ H∗i hold. The problem (14) can be expressed as an optimisation
problem on the set of hyperplanes HS or polyhedron PHS. One possible performance metric could be
finding the largest PHS [13, 8].

5 Autonomous Vehicle Control System

5.1 Overview of the Closed-Loop Control System

The closed-loop control system for obstacle avoidance which we propose in this paper combines online
reachability analysis and non-linear model-predictive control (visualised in Fig. 2). The control cycle
can be divided into four main procedures: sensing, environment data processing and local planning,
state-space convexification and solving an optimal control problem.

The control system relies on the LiDAR sensor to obtain and identify the set of observable obstacles
and safe regions. We then leverage the Ramer-Douglas-Peucker algorithm [14] to simplify the observed

102 Online Reachability Analysis and Space Convexification for Autonomous Racing

(Local) Planner

Xsafe MPC

V
eh

ic
le

Pl
an

t

Vehicle States

Reachability

LiDAR

≈LiDAR

Sensors

Odometry

State Estimator

Environment

Figure 2: The architecture of the closed-loop control system for obstacle avoidance

LiDAR data and reduce the noisiness of its measurements. Doing so allows us to reduce the computation
time needed to produce a set of coupled separating hyperplanes. The other sensors, namely, odometry
measurements and the results of state-estimators, are used to determine the state of the ego vehicle and
other agents respectively. In this work, we assume that the state of the ego vehicle and opponent agents
are estimated perfectly. Therefore, we use the ground truth data provided by the simulator. This data
is then passed to a (local) planner (e.g., Follow-the-Gap [43]) to select a target position. We then use
reachability analysis to compute the set of reachable states for all agents within the environment.

The computation of separating coupled hyperplanes, which produces a safe and convex Xsafe, involves
using sensor information, the target location obtained from the local planner, and the set of reachable
states of the dynamic agents within the environment. The hyperplanes are then passed to the model-
predictive controller, together with the target location and odometry data, which solves an online optimal
control problem (5) to determine the optimal inputs for the vehicle.

5.2 Computing Separating Coupled-Hyperplanes

The problem of computing separating coupled hyperplanes, which establishes a convex and safe Xsafe,
can be formulated as an optimisation (or satisfiability) problem. Thus, we present an optimisation-based
method for solving (14) in order to separate the observable obstacle set Q+

ob from the autonomous system
ζe(xt) and its target location lζe(xt) at the state xt .

In Algorithm 1, we describe the computation of our separating coupled-hyperplanes H0..n. First, the
set of unsafe states is included in the set Qob. The set of unsafe states consists of the set of observable
obstacles from the LiDAR sensor and the reachable states of the dynamic agents. Using this set, we then
make use of the state of the ego vehicle, the target location obtained from the local planner, and in the
case case of the constrained optimisation method a predefined number of hyper-planes to formulate an
optimisation problem. Furthermore, only obstacles (Algorithm 1 ln. 6) and reachable sets (Algorithm 1
ln. 7-8) within a distance d from the ego vehicle ζe(xt) are considered in the hyperplane computation.
Constrained Optimisation Method The first approach uses a derivative-free constrained optimisation
formulation which utilises a linear approximation of the objective function and optimisation constraints
to solve the aforementioned optimisation problem [37]. In the optimisation problem, an individual sep-
arating hyperplane Hn ∈ {H0, ..,Hn} is only responsible for separating a subset of Q+

ob from ζe(xt) and
l(xt), while the set of all hyperplanes considered should separate the vehicle from Q+

ob as a whole.
For each qob ∈ Q+

ob a separate constraint in the optimisation problem is defined which checks if qob
is separated from the target location and autonomous system ζe(xt) with some hyperplane Hn. The con-
strained optimisation method can use different objective functions which characterise how the set of

Bogomolov et al. 103

ALGORITHM 1 The overall algorithm for the computation of separating coupled hyperplanes

1: Inputs: observable radius distance d ∈ R+

2: Inputs: states of the ego vehicle ζe(xt) = {xe,ye} and other dynamic agents {ζ0, . . . ,ζN}
3: Inputs: static obstacle data P = {p0, ..., pN−1} from the LiDAR (ranges Equation (7))
4: Compute target states of the ego vehicle with the local planner l(xt) = {xt ,yt}
5: Compute reachable states R =

⋃N
i=0 Ri of observable dynamic agents {ζ0, . . . ,ζN}

6: Compute Qob(xt) by using static obstacle LiDAR data {q |q ∈ P∧‖q−ζe(xt)‖2 ≤ d}
7: Compute Q+

ob(xt) by combining static and dynamic obstacles Qob(xt)∪R
8: Encode q∈Q+

ob, x∈ ζe(xt), x∈ l(xt) as constraints of the optimisation problem and solve by using
the constrained or bi-level optimisation method

9: Output: {H0, . . . ,Hn}

hyperplanes is derived. For example, the optimisation problem could try minimising the distance be-
tween each Hn and its associated set of qob, or simply be expressed as a satisfiability problem with a
constant objective function. We present an analysis of different optimisation objective functions for this
purpose in the evaluation section.

Bi-level Optimisation Method The problem defined in (14) can also be encoded as a bi-level optimi-
sation problem in (15). The problem is similar to one solved by Deits and Tedrake [11] except we are
interested in computing a polygon defined by a minimum number of hyperplanes which contains the
largest ellipsoids in the direction of the target location. The [11] maximises ellipsoid in any possible
direction, which is not suitable for the racing context, as the most optimal trajectories produced by the
MPC will most likely be along the ego vehicle to the target corridor.

The outer part of the problem computes the minimum set of separating hyperplanes (the size of the
A matrix’s diagonal) that separate obstacle points Q+

ob from the ego vehicle and its target location. The
inner part of the bi-level optimisation solves the Chebyshev centre [7] problem1 by finding the centre q
of the largest inscribable ellipsoid with radius R.

argmin
A,b
||diag(A)|| s.t.

Aq≥ b, ∀q ∈ Q+
ob

Ax≤ b, ∀x ∈ ζe(xt)∪ l(xt)

argmax
q,R

R s.t.

a jq+ ||A||R≤ b j

R≥ 0

(15)

5.3 Reachability Analysis of Dynamic Obstacles

To perform reachability analysis, we first identify a dynamical model of the vehicle and assume models
for the dynamic obstacles within its environment.

1The reason for maximising the largest inscribable ellipsoid in contrast to directly maximising the area of the safe polyhe-
dron Xsafe is efficiency. There are no efficient methods for computing the area of irregular polyhedrons, while the Chebyshev
centre problem can be solved sufficiently fast.

104 Online Reachability Analysis and Space Convexification for Autonomous Racing

5.3.1 Dynamic Obstacle Model

The obstacle-tracking problem is a well-studied and challenging topic within the autonomous vehicle,
computer vision, and robotics literature [44]. Typically, some assumptions are required in order to con-
strain the tracking problem to suit the context of the application. In our framework, we assume that the
dynamic obstacles are described by a two-dimensional kinematic model and a corresponding bounding
box. The equations describing the kinematic model are given as follows:

ẋ = vx, ẏ = vy

where vx and vy are the velocities in the x and y direction, respectively. Additionally, we make the
assumption that we have access to the position and velocity of the other race participants.

While it is possible to use more sophisticated models to describe the behaviour of the dynamic ob-
stacles within the vehicle’s environment, for simplicity we selected a two-dimensional kinematic model.
However, it is worth noting that there has been a growth in approaches that perform online parameter
estimation for dynamic obstacles within a robot’s environment through online system identification [15].

5.3.2 Online Reachability Computation

Using the dynamics models obtained in the previous sections, the crux of the real-time reachability
algorithm is computing the set of reachable states R[0,T](X0) over a finite time horizon. The algorithm
utilised within this work is based on mixed face-lifting, which is part of a class of methods that deal
with flow-pipe construction or reachtube computation [17]. This is done using snapshots of the set of
reachable states that are enumerated at successive points in time, as outlined in Equation (3).

In general, it is not possible to obtain the exact reachable set R[0,T](X0), so we compute an over-
approximation such that the actual system behaviour is contained within the over-approximation [24].
The algorithm utilised in this work utilises n-dimensional hyper-rectangles (“boxes”) as the set represen-
tation to generate reachtubes [17]. Over long reach-times, the over-approximation error resulting from
the use of this representation can be problematic. However, for short reach-times it is ideal in terms of
its simplicity and speed [6].

Traditionally, reachability approaches have been executed offline because they are computationally
intensive endeavours. However, in [6, 17], Bak et al. and Johnson et al. presented a reachability al-
gorithm, based on the seminal mixed face-lifting algorithm [10], capable of running in real-time on
embedded processors. The algorithm is implemented as a standalone C-package that does not rely on so-
phisticated (non-portable) libraries, recursion, or dynamic data structures and is amenable to the anytime
computation model in the real-time scheduling literature. In this regime, each task produces a partial
result that is improved upon as more computation time is available, known as an anytime algorithm [17].
We refer readers to the following papers for an in-depth treatment of these procedures [10, 6, 17].

6 Evaluation

In this section, we present a runtime analysis of proposed algorithms for computing separating coupled
hyperplanes and an evaluation of the overall control system by using the F1TENTH simulation platform.
In the following section, we first describe an optimisation-free method (MPCC) for computing separating
hyperplanes, which will be used to compare against our proposed approaches.

Bogomolov et al. 105

(a) Constrained Optimisation Method (b) MPCC approach

Figure 3: A snapshot of the artificial overtaking scenario with two opponents represented: combined
observable static and dynamic obstacles Q+

ob (green points), corners of the ego vehicle (orange points),
target point (red point), computed hyperplanes (black) and the boundaries of the racetrack (blue).

6.1 MPCC Optimisation-free Hyperplane Approach

In [25] Liniger et al. tackled the autonomous racing problem via a nonlinear MPC problem that encoded
the obstacle avoidance problem by means of a high-level corridor planner based on dynamic program-
ming. The safe corridor that their framework utilised was constructed by projecting the points along
the centre line of the track onto the racetrack borders (one for the left border, and one for the right bor-
der). Their regime demonstrated success in controlling 1/43 scale race cars, driven at speeds of more
than 3 m/s using controllers executing at 50 Hz sampling rate on embedded computing platforms [25].
While their evaluation was limited to environments with static obstacles, we experimented with using
such a scheme to obtain the separating hyperplanes framing our MPC problem. We refer readers to the
following paper for an in-depth discussion of their approach [25].

6.2 Offline Analysis of Convexification Algorithms

Deploying optimisation-based methods into real-time autonomous control systems requires careful con-
sideration of timing constraints issued by the optimisation method. The computation time of the pro-
posed methods can be affected by the number of obstacle points being considered or in the case of the
constrained optimisation method by the selected optimisation cost function. In these experiments, we
aim to evaluate the quality of separating hyperplanes generated by different approaches and the com-
putation time. The former is assessed by inscribing the largest circle with radius R between generated
hyperplanes (the centre of the circle must be between the ego vehicle and its target location) and gives
a reasonable size approximation of the Xsa f e in the travelling direction of ego vehicle. In the first set of
experiments, we traversed the ego vehicle along a predefined path on one of the two racetracks: Porto
(see Figure 5) and Walker without other dynamic agents, and then considered an artificially created over-
taking scenario with one and two opponents (visualised in Figure 3). The results of this experiment are
summarised in Table 1. The MPCC approach is clearly more time efficient compared to our proposed
approaches as it is not an optimisation-based approach. However, it produces a smaller average inscribed
circle radius (i.e., smaller Xsa f e), particularly, in the overtaking scenarios with up to 16 per cent smaller R

106 Online Reachability Analysis and Space Convexification for Autonomous Racing

in comparison to the largest averaged R. The bi-level optimisation approach is around tenfold faster than
the constrained optimisation approach, as its outer problem is a linear programming problem, which can
be efficiently solved even with a larger number of obstacles (problem constraints). However, our experi-
ments show that the bi-level optimisation method does not always produce the largest Xsa f e and in some
cases generates more than two hyperplanes, which would negatively affect solving the MPC problem.

In the second experiment, we increased the number of generated (randomly positioned) obstacle
points around an ego vehicle to evaluate our method’s scalability with respect to a larger number of
obstacles. For the constrained optimisation method we considered three types of objective functions:
Hausdorff, Euclidean distances and a satisfiability problem which only requires satisfying optimisation
constraints. For each objective function and bi-level optimisation, the number of obstacle points varied
from 10 to 2000. The evaluation results are visually shown in Figure 4.

Experiment Scenario Approach H Time (s) R
Porto (w/o obstacles) MPCC 2 6.46 ×10−5 1.29
Porto (w/o obstacles) Constrained Optimisation 2 0.132 1.30
Porto (w/o obstacles) Bi-level Optimisation 2.16 0.019 1.072

Walker (w/o obstacles) MPCC 2 7.65×10−5 0.702
Walker (w/o obstacles) Constrained Optimisation 2 0.12 0.675
Walker (w/o obstacles) Bi-level Optimisation 2.26 0.019 0.715

Overtaking (1 opponent) MPCC 2 8.679×10−5 0.627
Overtaking (1 opponent) Constrained Optimisation 2 0.18 0.661
Overtaking (1 opponent) Bi-level Optimisation 2.13 0.022 0.755
Overtaking (2 opponents) MPCC 2 9.79 × 10−5 0.465
Overtaking (2 opponents) Constrained Optimisation 2 0.265 0.488
Overtaking (2 opponents) Bi-level Optimisation 2.59 0.026 0.473

Table 1: Offline evaluation of different methods for computing separating hyperplanes with average
computation time, an average inscribed radius R and an average number of hyperplanes H.

6.3 Real-Time Control System Evaluation

Our real-time evaluation of the overall control system (MPC Hype) includes a diverse set of experiments
that include changing the number of racing agents present within the racetrack, including additional dy-
namic obstacles within the racetrack, adding static obstacles onto the racetrack, and changing the racing
environment. We compare the performance of our approach against a set of controllers typically utilized
within the F1TENTH racing competitions with respect to two metrics that we refer to as efficiency, and
safety. Efficiency is the total distance that the F1TENTH vehicle traverses around the track divided by
the amount of time it took to do so.2 Safety corresponds to the controller’s ability to avoid collisions over
a set of experimental runs (i.e., 10 collisions in 20 experiments corresponds to a safety score of 50%).
The following controllers were utilised as a local planning mechanism for selecting the target point used
in our MPC regime. Additionally, we utilised them as a baseline comparison for our approach.

Pure Pursuit The Pure Pursuit algorithm is a widely used path-tracking algorithm that was originally
designed to calculate the arc needed to get a robot back onto a path [9]. It has shown great success in

2This is equivalent to the average speed attained during the experiment.

Bogomolov et al. 107

Figure 4: Offline evaluation of separating coupled hyperplane computation time against different num-
bers of obstacle points (optimisation constraints), different objective functions (method 1 - constrained
optimisation approach, method 2 - bi-level optimisation).

being used in numerous contexts, and in this work, we utilise it to design a controller that allows the
F1TENTH vehicle to follow a path along the centre of the racetrack.

Gap Following Obstacle avoidance is an essential component of a successful autonomous racing strat-
egy. Gap following approaches have shown great promise in dealing with dynamic and static obstacles.
They are based on the construction of a gap array around the vehicle used for calculating the best head-
ing angle needed to move the vehicle into the centre of the maximum gap [34]. In this work, we utilise
a gap following controller called the “disparity extender” by Otterness et al. that won the F1TENTH
competition in April of 2019 [36].

Our evaluation included a sizeable diversity of experiments with respect to the number of vehicles
present in the racing environment, the presence of static and dynamic obstacles, the racetrack used for
the autonomous race, the local planner chosen to select goal points, and the method selected to obtain
the separating hyperplanes. Each configuration was evaluated over 30 experimental runs of 60 seconds.
Table 2 displays the results of experiments with two and three cars respectively (separated by horizontal
line) on a single track without static obstacles (a screenshot of the two agent experiment is shown in
Figure 5). In the table that follows, DE corresponds to the disparity extender, PP corresponds to pure
pursuit, MPCC corresponds to the approach presented by Liniger et al. [25], and MPC Hype corresponds
to the optimisation-based approach presented in this document. Finally, Race Duration corresponds to

108 Online Reachability Analysis and Space Convexification for Autonomous Racing

Figure 5: An example of a two-agent racing scenario. The bright green rectangle, represents the reachable
set (convex hull) of the opponent vehicle over a t = 0.5 second time horizon, while the faded green
vehicle represents the ego vehicle. The purple dot corresponds to the target location obtained from the
local planner. The red lines are the two parallel half spaces that approximate the traversable region within
the racetrack.

Table 2: Performance summary of two-car experiments (without static obstacles): DE (Disparity Exten-
der), PP (Pure Pursuit), MPCC (Model-Predictive Control with Contouring) and MPC Hype (our control
system with the constrained optimisation hyperplane computation)

Track Approach Local Planner Ego Efficiency (m/s) Opponent Efficiency (m/s) Race Duration (s) Safety (%)
Porto DE DE 5.29 4.65 51.57 38.33
Porto MPC Hype DE 0.00 5.27 5.53 0.00
Porto MPC Hype PP 3.06 5.18 25.74 13.33
Porto MPCC DE 3.00 4.97 7.12 20.00
Porto MPCC PP 3.00 5.34 55.14 46.67
Porto PP PP 4.70 5.33 60.0 100.00
Porto DE DE 5.38 4.10 33.78 28.33
Porto MPC Hype DE 1.19 4.50 5.40 0.00
Porto MPC Hype PP 2.75 2.96 43.26 30.00
Porto MPCC DE 1.66 4.23 5.39 3.33
Porto MPCC PP 1.83 4.00 5.37 16.67
Porto PP PP 4.70 3.73 57.30 70.00

the amount of time the agents were able to race before a collision occurred.
The results from the experiments suggest that our proposed control system (MPC Hype) can increase

autonomous vehicle safety without loss of efficiency (compared to MPCC), especially when the num-
ber of opponent vehicles is increased. However, results also suggest that the performance of our MPC
implementation could be further improved, for example, by improving the MPC cost function to gener-
ate better speed profiles in corners. This would also provide us with more evidence of the hyperplane
approach when ego velocity is increased. Furthermore, our experimentation setup did not differentiate

Bogomolov et al. 109

between different types of collisions, for example, collisions, where the opponent vehicle collided with
the back of the ego vehicle and the reverse situation, were treated equally (i.e., counted the same in the
safety metric). A more nuanced safety metric with a blame factor would provide a better understanding
of our control system performance.

7 Conclusions and Future Work

This paper presented an optimisation-based approach for static and dynamic obstacle avoidance problems
within an autonomous vehicle racing context. Our control regime leveraged online reachability analysis
and sensor data to compute the maximal safe traversable region that an agent can traverse within the en-
vironment. We described a technique for computing a convex safe region via a novel coupled separating
hyperplane algorithm. This derived safe area was then used to formulate a nonlinear model-predictive
control problem that sought to find an optimal and safe driving trajectory with varying degrees of effi-
cacy. Our experimental evaluation demonstrated that our approach was feasible as an obstacle avoidance
strategy. Finally, we assessed the runtime requirements of our proposed approach by analysing the effects
of a set of varying optimisation objectives for generating these coupled hyperplanes.

There are a number of future work directions we would like to explore. Firstly, our study did not con-
sider uncertainty in sensors, our future work will seek to include uncertainties arising from the state esti-
mation of opponent vehicles in their reachable set computation. Secondly, future studies would include
an analysis against hierarchical control architectures that decompose the obstacle avoidance problem into
planning and trajectory tracking. Lastly, we would like to evaluate the proposed approach on the physical
F1TENTH platform in order to validate further that our approach admits low resource requirements.

References
[1] M. Althoff & J. M. Dolan (2014): Online Verification of Automated Road Vehicles Using Reachability Anal-

ysis. IEEE Transactions on Robotics 30(4), pp. 903–918, doi:10.1109/TRO.2014.2312453.

[2] Matthias Althoff, Goran Frehse & Antoine Girard (2021): Set Propagation Techniques for Reacha-
bility Analysis. Annual Review of Control, Robotics, and Autonomous Systems 4(1), pp. 369–395,
doi:10.1146/annurev-control-071420-081941.

[3] Eugene Asarin, Thao Dang, Goran Frehse, Antoine Girard, Colas Le Guernic & Oded Maler (2007): Re-
cent progress in continuous and hybrid reachability analysis. Proceedings of the 2006 IEEE Confer-
ence on Computer Aided Control Systems Design, CACSD, pp. 1582–1587, doi:10.1109/CACSD-CCA-
ISIC.2006.4776877.

[4] Eugene Asarin, Thao Dang & Antoine Girard (2003): Reachability Analysis of Nonlinear Systems Using
Conservative Approximation. In Oded Maler & Amir Pnueli, editors: Hybrid Systems: Computation and
Control, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 20–35, doi:10.1007/3-540-36580-X_5.

[5] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani & C. J. Tomlin (2019): An Efficient Reachability-Based Frame-
work for Provably Safe Autonomous Navigation in Unknown Environments. In: 2019 IEEE 58th Conference
on Decision and Control (CDC), pp. 1758–1765, doi:10.1109/CDC40024.2019.9030133.

[6] S. Bak, T. T. Johnson, M. Caccamo & L. Sha (2014): Real-Time Reachability for Verified Simplex Design.
In: 2014 IEEE Real-Time Systems Symposium, pp. 138–148, doi:10.1109/RTSS.2014.21.

[7] Stephen Boyd & Lieven Vandenberghe (2004): Convex Optimization. Cambridge University Press,
doi:10.1017/CBO9780511804441.

[8] J. S. Chang & C. K. Yap (1986): A Polynomial Solution for the Potato-Peeling Problem. Discrete Comput.
Geom. 1(2), p. 155–182, doi:10.1007/BF02187692.

https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776877
https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776877
https://doi.org/10.1007/3-540-36580-X_5
https://doi.org/10.1109/CDC40024.2019.9030133
https://doi.org/10.1109/RTSS.2014.21
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1007/BF02187692

110 Online Reachability Analysis and Space Convexification for Autonomous Racing

[9] R. Craig Coulter (1992): Implementation of the Pure Pursuit Path Tracking Algorithm. Technical Report
CMU-RI-TR-92-01, Carnegie Mellon University, Pittsburgh, PA.

[10] Thi Xuan Thao Dang (2000): Verification and Synthesis of Hybrid Systems. Theses, Institut National Poly-
technique de Grenoble - INPG.

[11] Robin Deits & Russ Tedrake (2015): Computing Large Convex Regions of Obstacle-Free Space Through
Semidefinite Programming, pp. 109–124. Springer International Publishing, Cham, doi:10.1007/978-3-319-
16595-0_7.

[12] Huixu Dong, Ching-Yen Weng, Chuangqiang Guo, Haoyong Yu & I-Ming Chen (2021): Real-
Time Avoidance Strategy of Dynamic Obstacles via Half Model-Free Detection and Tracking With
2D Lidar for Mobile Robots. IEEE/ASME Transactions on Mechatronics 26(4), pp. 2215–2225,
doi:10.1109/TMECH.2020.3034982.

[13] Reza Dorrigiv, Stephane Durocher, Arash Farzan, Robert Fraser, Alejandro López-Ortiz, J. Ian Munro, Ale-
jandro Salinger & Matthew Skala (2009): Finding a Hausdorff Core of a Polygon: On Convex Polygon
Containment with Bounded Hausdorff Distance. In Frank Dehne, Marina Gavrilova, Jörg-Rüdiger Sack &
Csaba D. Tóth, editors: Algorithms and Data Structures, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
218–229, doi:10.1007/978-3-642-03367-4_20.

[14] David H Douglas & Thomas K Peucker (1973): Algorithms for the Reduction of the Number of Points
Required to Represent a Digitized Line or its Caricature. Cartographica: The International Journal for
Geographic Information and Geovisualization 10(2), pp. 112–122, doi:10.3138/FM57-6770-U75U-7727.

[15] Gowtham Garimella, Matthew Sheckells & Marin Kobilarov (2017): Robust obstacle avoidance for aerial
platforms using adaptive model predictive control. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5876–5882, doi:10.1109/ICRA.2017.7989692.

[16] Gabriel Hartmann, Zvi Shiller & Amos Azaria (2021): Autonomous Head-to-Head Racing in the Indy Au-
tonomous Challenge Simulation Race. CoRR abs/2109.05455. arXiv:2109.05455.

[17] Taylor T. Johnson, Stanley Bak, Marco Caccamo & Lui Sha (2016): Real-Time Reachability for Verified
Simplex Design. ACM Trans. Embed. Comput. Syst. 15(2), doi:10.1109/RTSS.2014.21.

[18] Chanyoung Jung, Seungwook Lee, Hyunki Seong, Andrea Finazzi & David Hyunchul Shim (2021): Game-
Theoretic Model Predictive Control with Data-Driven Identification of Vehicle Model for Head-to-Head Au-
tonomous Racing. CoRR abs/2106.04094, doi:10.48550/arXiv.2106.04094.

[19] Sertac Karaman, Matthew R. Walter, Alejandro Perez, Emilio Frazzoli & Seth Teller (2011): Anytime Motion
Planning using the RRT*. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1478–
1483, doi:10.1109/ICRA.2011.5980479.

[20] Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen & Lipika Deka (2015): Real-time motion planning
methods for autonomous on-road driving: State-of-the-art and future research directions. Transportation
Research Part C: Emerging Technologies 60, pp. 416–442, doi:10.1016/j.trc.2015.09.011.

[21] Mark Keil & Jack Snoeyink (2002): On The Time Bound For Convex Decomposition Of Simple
Polygons. International Journal of Computational Geometry & Applications 12(03), pp. 181–192,
doi:10.1142/S0218195902000803.

[22] Shivesh Khaitan, Qin Lin & John M. Dolan (2021): Safe Planning and Control Under Un-
certainty for Self-Driving. IEEE Transactions on Vehicular Technology 70(10), pp. 9826–9837,
doi:10.1109/TVT.2021.3108525.

[23] Karen Leung, Edward Schmerling, Mengxuan Zhang, Mo Chen, John Talbot, J Christian Gerdes & Marco
Pavone (2020): On Infusing Reachability-Based Safety Assurance within Probabilistic Planning Frameworks
for Human-Robot Vehicle Interactions. The International Journal of Robotics Research 39(10-11), pp. 1326–
1345, doi:10.1177/0278364920950795.

[24] Qin Lin, Xin Chen, Aman Khurana & John Dolan (2020): ReachFlow: An Online Safety Assurance Frame-
work for Waypoint-Following of Self-driving Cars. In: International Conference on Intelligent Robots and
systems (IROS), IROS’2020, IEEE, doi:10.1109/IROS45743.2020.9341122.

https://doi.org/10.1007/978-3-319-16595-0_7
https://doi.org/10.1007/978-3-319-16595-0_7
https://doi.org/10.1109/TMECH.2020.3034982
https://doi.org/10.1007/978-3-642-03367-4_20
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1109/ICRA.2017.7989692
https://arxiv.org/abs/2109.05455
https://doi.org/10.1109/RTSS.2014.21
https://doi.org/10.48550/arXiv.2106.04094
https://doi.org/10.1109/ICRA.2011.5980479
https://doi.org/10.1016/j.trc.2015.09.011
https://doi.org/10.1142/S0218195902000803
https://doi.org/10.1109/TVT.2021.3108525
https://doi.org/10.1177/0278364920950795
https://doi.org/10.1109/IROS45743.2020.9341122

Bogomolov et al. 111

[25] Alexander Liniger, Alexander Domahidi & Manfred Morari (2014): Optimization-based autonomous racing
of 1:43 scale RC cars. Optimal Control Applications and Methods 36(5), p. 628–647, doi:10.1002/oca.2123.

[26] Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark W. Barrett & Mykel J. Kochenderfer (2019): Al-
gorithms for Verifying Deep Neural Networks. CoRR abs/1903.06758, doi:10.48550/arXiv.1903.06758.
arXiv:1903.06758.

[27] Changliu Liu, Chung-Yen Lin & Masayoshi Tomizuka (2017): The Convex Feasible Set Algorithm for Real
Time Optimization in Motion Planning, doi:10.48550/ARXIV.1709.00627. Available at https://arxiv.
org/abs/1709.00627.

[28] Jiechao Liu, Paramsothy Jayakumar, Jeffrey L. Stein & Tulga Ersal (2018): A nonlinear model predictive
control formulation for obstacle avoidance in high-speed autonomous ground vehicles in unstructured envi-
ronments. Vehicle System Dynamics 56(6), pp. 853–882, doi:10.1080/00423114.2017.1399209.

[29] Joseph Lorenzetti, Mo Chen, Benoit Landry & Marco Pavone (2018): Reach-Avoid Games Via Mixed-Integer
Second-Order Cone Programming. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 4409–
4416, doi:10.1109/CDC.2018.8619382.

[30] Tim Mercy, Wannes Van Loock & Goele Pipeleers (2016): Real-time motion planning in the
presence of moving obstacles. In: 2016 European Control Conference (ECC), pp. 1586–1591,
doi:10.1109/ECC.2016.7810517.

[31] Tim Mercy, Ruben Van Parys & Goele Pipeleers (2018): Spline-Based Motion Planning for Autonomous
Guided Vehicles in a Dynamic Environment. IEEE Transactions on Control Systems Technology 26(6), pp.
2182–2189, doi:10.1109/TCST.2017.2739706.

[32] Siti Hajar Ashikin Mohammad, Muhammad Akmal Jeffril & Nohaidda Sariff (2013): Mobile robot obstacle
avoidance by using Fuzzy Logic technique. In: 2013 IEEE 3rd International Conference on System Engi-
neering and Technology, pp. 331–335, doi:10.1109/ICSEngT.2013.6650194.

[33] Matthew O’Kelly, Varundev Sukhil, Houssam Abbas, Jack Harkins, Chris Kao, Yash Vardhan Pant, Rahul
Mangharam, Dipshil Agarwal, Madhur Behl, Paolo Burgio & Marko Bertogna (2019): F1/10: An Open-
Source Autonomous Cyber-Physical Platform. CoRR abs/1901.08567, doi:10.48550/arXiv.1901.08567.
arXiv:1901.08567.

[34] Matthew O’Kelly, Hongrui Zheng, Dhurv Karthik & Rahul Mangharam (2020): F1TENTH: An Open-source
Evaluation Environment for Continuous Control and Reinforcement Learning. In Hugo Jair Escalante & Raia
Hadsell, editors: Post Proceedings of the NeurIPS 2019 Demonstration and Competition Track, Proceedings
of Machine Learning Research, PMLR.

[35] Michael Otte & Emilio Frazzoli (2016): RRTX: Asymptotically optimal single-query sampling-based mo-
tion planning with quick replanning. The International Journal of Robotics Research 35(7), pp. 797–822,
doi:10.1177/0278364915594679.

[36] Nathan Otterness (2019): The "Disparity Extender" Algorithm, and F1/Tenth. Available at https://www.
nathanotterness.com/2019/04/the-disparity-extender-algorithm-and.html.

[37] M. J. D. Powell (2007): A View of Algorithms for Optimization without Derivatives. Technical Report
DAMTP 2007/NA03, University of Cambridge.

[38] Ugo Rosolia & Francesco Borrelli (2019): Learning How to Autonomously Race a Car: a Predictive Control
Approach. arXiv:1901.08184.

[39] Ugo Rosolia, Stijn De Bruyne & Andrew G. Alleyne (2017): Autonomous Vehicle Control: A Nonconvex
Approach for Obstacle Avoidance. IEEE Transactions on Control Systems Technology 25(2), pp. 469–484,
doi:10.1109/TCST.2016.2569468.

[40] Tobias Schoels, Luigi Palmieri, Kai Oliver Arras & Moritz Diehl (2019): An NMPC Approach using
Convex Inner Approximations for Online Motion Planning with Guaranteed Collision Freedom. CoRR
abs/1909.08267, doi:10.48550/arXiv.1909.08267.

https://doi.org/10.1002/oca.2123
https://doi.org/10.48550/arXiv.1903.06758
https://arxiv.org/abs/1903.06758
https://doi.org/10.48550/ARXIV.1709.00627
https://arxiv.org/abs/1709.00627
https://arxiv.org/abs/1709.00627
https://doi.org/10.1080/00423114.2017.1399209
https://doi.org/10.1109/CDC.2018.8619382
https://doi.org/10.1109/ECC.2016.7810517
https://doi.org/10.1109/TCST.2017.2739706
https://doi.org/10.1109/ICSEngT.2013.6650194
https://doi.org/10.48550/arXiv.1901.08567
https://arxiv.org/abs/1901.08567
https://doi.org/10.1177/0278364915594679
https://www.nathanotterness.com/2019/04/the-disparity-extender-algorithm-and.html
https://www.nathanotterness.com/2019/04/the-disparity-extender-algorithm-and.html
https://arxiv.org/abs/1901.08184
https://doi.org/10.1109/TCST.2016.2569468
https://doi.org/10.48550/arXiv.1909.08267

112 Online Reachability Analysis and Space Convexification for Autonomous Racing

[41] Eelco Scholte & Mark E. Campbell (2008): Robust Nonlinear Model Predictive Control With Par-
tial State Information. IEEE Transactions on Control Systems Technology 16(4), pp. 636–651,
doi:10.1109/TCST.2007.912120.

[42] Hiroya Seki, Satoshi Ooyama & Morimasa Ogawa (2002): Nonlinear Model Predictive Control Using Suc-
cessive Linearization. Transactions of the Society of Instrument and Control Engineers 38, pp. 61–66,
doi:10.1109/AIM.2017.8014275.

[43] Volkan Sezer & Metin Gokasan (2012): A novel obstacle avoidance algorithm: “Follow the Gap Method”.
Robotics and Autonomous Systems 60(9), pp. 1123–1134, doi:10.1016/j.robot.2012.05.021.

[44] Alper Yilmaz, Omar Javed & Mubarak Shah (2006): Object Tracking: A Survey. ACM Comput. Surv. 38(4),
p. 13–es, doi:10.1145/1177352.1177355.

[45] Yang Zeqing, Liu Libing, Tan Zhihong & Liu Weiling (2008): Application of Adaptive Genetic Al-
gorithm in flexible inspection path planning. In: 2008 27th Chinese Control Conference, pp. 75–80,
doi:10.1109/CHICC.2008.4605656.

[46] Yalong Zhang, Zhenghua Liu & Le Chang (2017): A new adaptive artificial potential field and rolling window
method for mobile robot path planning. In: 2017 29th Chinese Control And Decision Conference (CCDC),
pp. 7144–7148, doi:10.1109/CCDC.2017.7978472.

[47] Liu Zhiyang & Jiang Tao (2017): Route planning based on improved artificial potential field
method. In: 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 196–199,
doi:10.1109/CCDC52312.2021.9602174.

https://doi.org/10.1109/TCST.2007.912120
https://doi.org/10.1109/AIM.2017.8014275
https://doi.org/10.1016/j.robot.2012.05.021
https://doi.org/10.1145/1177352.1177355
https://doi.org/10.1109/CHICC.2008.4605656
https://doi.org/10.1109/CCDC.2017.7978472
https://doi.org/10.1109/CCDC52312.2021.9602174

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 113–129, doi:10.4204/EPTCS.395.8

© Goyal, Griggio, Kimblad, and Tonetta
This work is licensed under the
Creative Commons Attribution License.

Automatic Generation of Scenarios for System-level
Simulation-based Verification of Autonomous Driving

Systems*

Srajan Goyal
Fondazione Bruno Kessler

University of Trento
Trento, Italy

sgoyal@fbk.eu

Alberto Griggio
Fondazione Bruno Kessler

Trento, Italy
griggio@fbk.eu

Jacob Kimblad
Fondazione Bruno Kessler

Trento, Italy
jkimblad@fbk.eu

Stefano Tonetta
Fondazione Bruno Kessler

Trento, Italy
tonettas@fbk.eu

With increasing complexity of Automated Driving Systems (ADS), ensuring their safety and reli-
ability has become a critical challenge. The Verification and Validation (V&V) of these systems
are particularly demanding when AI components are employed to implement perception and/or con-
trol functions. In ESA-funded project VIVAS, we developed a generic framework for system-level
simulation-based V&V of autonomous systems. The approach is based on a simulation model of the
system, an abstract model that describes symbolically the system behavior, and formal methods to
generate scenarios and verify the simulation executions. Various coverage criteria can be defined to
guide the automated generation of the scenarios.

In this paper, we describe the instantiation of the VIVAS framework for an ADS case study.
This is based on the integration of CARLA, a widely-used driving simulator, and its ScenarioRunner
tool, which enables the creation of diverse and complex driving scenarios. This is also used in the
CARLA Autonomous Driving Challenge to validate different ADS agents for perception and control
based on AI, shared by the CARLA community. We describe the development of an abstract ADS
model and the formulation of a coverage criterion that focuses on the behaviors of vehicles relative
to the vehicle with ADS under verification. Leveraging the VIVAS framework, we generate and
execute various driving scenarios, thus testing the capabilities of the AI components. The results
show the effectiveness of VIVAS in automatically generating scenarios for system-level simulation-
based V&V of an automated driving system using CARLA and ScenarioRunner. Therefore, they
highlight the potential of the approach as a powerful tool in the future of ADS V&V methodologies.

1 Introduction

In the rapid evolution of Autonomous Driving Systems (ADS), the problem of ensuring their safety and
reliability has become a paramount concern. The Verification and Validation (V&V) of these systems
necessitate the assessment of their correctness in a multitude of dynamic and complex real-world sce-
narios. To address this challenge, the integration of powerful simulation tools with advanced verification
methodologies has gained considerable attention [10, 18].

*This work has been supported by: the “AI@TN” project funded by the Autonomous Province of Trento; the PNRR project
FAIR - Future AI Research (PE00000013), under the NRRP MUR program funded by the NextGenerationEU; and the PNRR
MUR project VITALITY (ECS00000041), Spoke 2 ASTRA - Advanced Space Technologies and Research Alliance.

http://dx.doi.org/10.4204/EPTCS.395.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

114 Automatic Generation of Scenarios for ADS

Under the support of ESA funding, the VIVAS project [12] was dedicated to developing a generic
framework tailored for system-level simulation-based V&V of autonomous systems. The approach is
based on a simulation model of the system, an abstract model that describes symbolically the system
behavior, and formal methods to generate scenarios and verify the simulation executions. It permits
the specification of diverse coverage criteria, thereby directing the automated creation of scenarios, and
formal properties to be verified on the simulation runs. The framework has been created for space
applications and applied to two use cases employing AI for resource prediction and opportunistic science.
The system under test is based on the robotic digital twin developed in ROBDT [2].

In the automotive context, the CARLA simulator [9] has established itself as a widely used plat-
form for simulating intricate driving scenarios in a controlled virtual environment. Its ScenarioRunner
tool [25] further enhances its capabilities by enabling the specification of diverse and complex scenar-
ios based on the reuse of various predefined car behaviors. Various works proposed AI-based solutions
(e.g., [4, 22, 29]) for the perception and control components of cars that are integrated with the CARLA
simulator for their validation. The CARLA community also organized a competition to compare and
rank such solutions [24]. These autonomous driving agents, grounded in AI methodologies, serve as
crucial components in achieving the autonomy of cars. Their integration in CARLA allows evaluating
the ADS behavior across different scenarios. However, such validation is so far based on a few manually
crafted scenarios.

This paper explores the application of the VIVAS framework to automatically generate scenarios for
a system-level simulation-based verification of autonomous driving systems. This integration facilitates
a comprehensive assessment of ADS correctness under various conditions, contributing to the enhance-
ment of their safety and reliability. The paper describes the abstract ADS model in the extended SMV
language handled by the nuXmv [3] symbolic model checker, capturing essential aspects of its function-
ality and behavior in a simple highway traffic situation. It then details the formulation of a coverage
criterion based on such an abstract model, focusing on the interactions between other vehicles and the
vehicle of the ADS under verification (hereafter called ego). The VIVAS integration finally consists of a
translation of the abstract traces generated from the abstract model to the ScenarioRunner specification
and a mapping back of the simulation runs to abstract traces for runtime verification of formal proper-
ties. The experimental evaluation shows how VIVAS is able to generate interesting scenarios effectively
evaluating the behavior of the AI-based agents.

The rest of the paper is organized as follows: in Section 2, we summarize the related works and
compare them with our approach; Section 3 describes in more detail the VIVAS framework and its
components; in Section 4, we detail the instantiation to the ADS application; Section 5 shows the results
while Section 6 draws conclusions and some directions for future work.

2 Related Work

Over the last decade, we have witnessed significant efforts in the verification of AI-based autonomous
systems using formal methods. Many works focus on formal verification of neural networks, for example
encoding them into constraint solving (e.g., [14–16]) or using abstraction (e.g., [19, 23]), just to name a
few approaches. Our approach instead is rooted in the line of research (e.g., [10, 26, 28]) that tackles the
verification at the system level using a simulator. This integrates the AI components, potentially using
machine learning (ML) models, for perception or control, in the context of a closed-loop cyber-physical
system. As in VerifAI [10], the simulation traces are then formally analyzed with monitoring and runtime
verification techniques.

Goyal, Griggio, Kimblad, and Tonetta 115

Differently from the mentioned approaches, we exploit an abstract symbolic model to generate au-
tomatically the scenarios and define a coverage criterion for the generated test cases. While previous
approaches focus on the automated synthesis of the simulation parameters for a specific scenario (e.g.,
different car movements to change lanes in front of the ego car), we concentrate on the generation of
different functional scenarios (e.g., sequences of scenes with different change lanes of non-ego cars).
Moreover, in this paper, we map such abstract symbolic scenarios to the scenario specification language
of CARLA to verify ADS with different available AI solutions. So, the case study is based on available
benchmarks for AI-based ADS taken as is.

There are in fact a variety of scenario specification languages that can be used in this context. VerifAI
uses the Scenic language [13, 27] to model the abstract feature space defining the scenarios, which can
be instantiated to test cases. Scenic is a probabilistic programming language for scenario generation
specifically designed to test the robustness of systems containing AI and ML components by allowing the
generation of rare events. It allows the specification of spatial and temporal relationships between objects
of a scenario as well as composing several scenarios into more complex ones. By the use of distributions
for encoding interesting parameters, Scenic will perform automatic test case generation through the use
of sampling. Similarly, the Paracosm [18] framework is a programmatic interface that can be used to
create various automotive driving simulation scenarios through the design of parameterized environments
and test cases. The parameters control the environment in the scenario including the behavior of the
actors and can include things such as pedestrians, lanes, and light conditions. Parameters are specified
using either discrete or continuous domains and test cases are instantiated from the domain using random
sampling and Halton sampling respectively. A coverage criterion is then defined over the coverage of
the domains, where k-wise combinatorial coverage is used for the discrete domains and dispersion is
used for continuous domains. Although Paracosm can provide output using the OpenDRIVE format, it
is primarily coupled to be used with the Unity game engine, and as such scenarios are modeled using the
C# programming language. The Measurable Scenario Description Language (M-SDL) [11] is another
scenario description language similar to Scenic. In M-SDL, one captures the behavior of identified actors
in scenarios. M-SDL makes use of pre-defined basic building blocks such as actors (including the AV)
along with some pre-defined behaviors, sets of possible routes, and environmental conditions. Libraries
then use the basic building blocks to implement more complex behaviors such as cars overtaking, running
red lights, driving on a highway, etc. Since M-SDL scenarios are abstract and parameterized, a single
scenario can map onto many concrete ones through the use of sampling. ScenarioRunner [25] is a module
of CARLA that allows traffic scenario definition and execution for the CARLA simulator. The scenarios
can be defined through a Python interface or using the OpenSCENARIO standard [1]. ScenarioRunner
is used to validate AI solutions for ADS. These results can be validated and shared in the CARLA
Autonomous Driving Leaderboard [24], an open platform for the community to fairly compare their
progress, evaluating agents in realistic traffic situations.

For all the above languages, the scenario must be specified manually, to then derive the test cases
automatically. VIVAS instead provides a model-based approach to generate the scenarios automatically
based on a coverage criterion that defines the interesting combinations of situations. In this paper, we
focus on the integration with CARLA, because it allows the verification of the solutions shared by the
CARLA community. However, the approach can also work with different specification languages, and we
have, for example, a prototype integration with Scenic interfaced with CARLA. We have not presented
the results of this integration in this paper since the ego model is based on Newtonian physics, with no
AI models involved in the autonomous driving pipeline.

Although not specifically focused on AI-based systems, another very relevant work is described
in [17], which proposes an optimization-based approach to synthesize ADS scenarios from formal spec-

116 Automatic Generation of Scenarios for ADS

ifications and a given map. Their formal specification of scenarios corresponds to our abstract scenario
and is also synthesized from a symbolic model. However, test case generation does not follow any cover-
age criteria but enumerates specifications starting from an initial scene. In principle, our coverage-driven
generation of scenarios can be combined with various techniques to concretize the scenario with different
trajectories and sampling of the different environment parameters.

TAF [20] is another tool for automated test case generation of autonomous systems. Their abstract
model is defined in an XML-based domain-specific language. It includes semantic constraints on the
initial conditions of the environment and its agents (unlike the additional state transition systems in
our work), which are solved using SMT solvers to generate abstract test cases. Random sampling is
combined with these solvers to diversify the test cases, with an expert given coverage of data values.
Their coverage criteria is based on covering parameter values to instantiate the scenarios. Although
constraints on time can be expressed, more generic temporal specification on the sequences of actions
and the related coverage criteria are not supported as in our approach. On the other side, our framework
can be extended to constraints with quantifiers and complex data structure as in [21], which are currently
not supported in VIVAS.

3 The VIVAS Framework

VIVAS is a V&V framework for generating test cases for autonomous systems (possibly using AI/ML
components) via a combination of system-level simulation and symbolic model checking. VIVAS makes
use of formal, symbolic models of the environment and system components to generate abstract test
scenarios for the autonomous system of interest using model checking techniques. The abstract test sce-
narios are then instantiated by the concretization of the abstract parameters to provide concrete scenarios
to be executed on a system-level simulator encompassing AI/ML models, to obtain execution traces that
are in turn analyzed by an automatically-generated monitor. The output of the framework is a V&V result
consisting of coverage statistics of the executed traces with respect to the symbolic models and quanti-
tative and qualitative information for each use case. The overview of the architecture can be seen in Fig.
1, which depicts the main parts of the VIVAS framework. These are the abstract scenario generator, the
concrete scenario generator, the simulator, and the executor monitor.

Abstract Scenario Generation. Scenario generation is the first step of the approach. The starting point
is a formal, symbolic model of the system, which provides an abstract view of both the environment and
the components under test (including AI/ML parts). ML components are defined in a declarative manner,
approximated in terms of input-output mapping. Abstract test scenarios are generated from the formal
system model using symbolic model checking techniques by the abstract scenario generator. Abstract
scenarios are defined as combinations of values of predicates describing interesting behaviors of the
abstract system. From the technical point of view, each abstract scenario is encoded as a formal property
that is expected to be violated by the system (i.e. a property specifying that “the scenario cannot occur
in the abstract system”). For each such property defined by the abstract scenario generator, a model
checker will be executed on the system model, with the goal of finding a counterexample to the property.
By construction, each such counterexample corresponds to an execution trace witnessing the realization
of the abstract scenario of interest.

Concrete Scenario Generation. Each of the traces produced by the model checker is then refined
into a (set of) concrete scenarios that can be used to drive the system-level (concrete) simulator. Due

Goyal, Griggio, Kimblad, and Tonetta 117

Figure 1: Top-level architecture of VIVAS framework. Blue boxes: artifacts, Orange boxes: code.

to uncertainties and abstractions in the abstract scenarios, a one-to-many mapping is defined where a
single abstract scenario can be instantiated to many, possibly infinite, concrete scenarios. This is done
by defining a mapping between the abstract values and the set of concrete values that they represent and
then appropriately sampling from the sets. An example is that the abstract model might discretize the
time of day into dusk, dawn, midnight, and midday. The concretizer then has to sample the actual time
for the simulation.

Simulation. The task of the system-level simulator is to run a simulation of the target asset under
the requested conditions, by configuring the system, its environment, and its inputs as specified in the
concrete scenario produced by VIVAS. Upon completion, the simulator provides the corresponding exe-
cution trace of the system, containing all the necessary details to evaluate the properties of interest.

Execution Monitor. Each concrete scenario produced is executed by the simulator, which generates a
corresponding concrete execution trace. This trace is then used to determine whether:

1. the concrete execution of the system satisfies the property of interest, and

2. the concrete execution of the system complies with the input abstract scenario (which defines the
situation of interest for the current test).

This is done by formally evaluating the trace with a runtime monitor that is automatically generated from
the formal specification of the property and the abstract system model. The trace evaluation can have
four possible outcomes:

1. The trace complies with the abstract scenario (defining the situation under test), and it also satisfies
the property: the test execution is relevant and the test passes.

2. The trace complies with the abstract scenario, but it does not satisfy the property: this corresponds
to a test failure on a relevant scenario, and it should be reported to the user.

118 Automatic Generation of Scenarios for ADS

3. The trace satisfies the property, but it does not comply with the abstract scenario: this corresponds
to a (good) execution in an unexpected situation, in which some of the assumptions defining the
scenario might be violated. This might be due to imprecisions/abstractions in the symbolic model
and in the concretizer, which might prevent the realization of the abstract scenario under analysis.
This situation might be reported to the user, as it might suggest that a revision/refinement of the
symbolic model might be needed.

4. The trace violates the property and it does not comply with the abstract scenario: this corresponds
to a test failure in an unexpected situation. Similarly to the above, it might be a warning that the
symbolic model of the system is not precise enough to capture the situations of interest defined by
the abstract scenario.

Abstract and concrete coverage. Ensuring an adequate level of coverage is one of the primary goals
of a good set of tests. In VIVAS, coverage is defined with respect to a domain-specific notion of “inter-
esting situations”, which are those that are (implicitly) defined by the possible combinations of values of
predicates that are used by the abstract scenario generator to produce abstract traces. By construction,
therefore, VIVAS tries to enumerate abstract scenarios that ensure a 100% degree of coverage of the ab-
stract situations of interest1. Each abstract scenario is then refined into one or more concrete simulation
inputs, leading to corresponding concrete simulation traces. In order to determine the concrete coverage
(i.e., the degree of coverage of interesting situations at the concrete level), the VIVAS monitor analyzes
the execution traces. It checks for compliance with the property of interest and the corresponding abstract
scenario’s specification (i.e., the “interesting situation”) from which the concrete executions originate.

Only executions that satisfy the abstract scenario specification contribute to the coverage at the con-
crete level: if an execution does not comply with its abstract specification, it represents an unexpected
situation from which no coverage information can be drawn2.

4 Autonomous Driving Application

In order to apply the VIVAS methodology to ADS application, we instantiate various components of the
VIVAS framework. We choose CARLA simulator as it is widely used in the automotive domain and it
has a large community that provides various AI-based solutions for perception and control. We define
an abstract model that focuses on highway scenarios where the ego is surrounded by other vehicles in
various dynamic situations. In the following, we provide details about the different components.

4.1 CARLA Simulation Model and AI Components

CARLA [9] is a high-fidelity open-source simulator that provides a dynamic environment for the devel-
opment, testing, and validation of AD systems. It is written in C++ as a plugin for Unreal Engine. As
a standalone package, it provides pre-defined maps with 3D meshes ranging from city roads with inter-
sections to highways, to mimic real-world landscapes for the agents to drive in. Various sensor models

1Note that a 100% degree of coverage might not be reached, either because some situations are not feasible already at the
abstract level, or because the model checker cannot find a witness trace for the scenario specification within the given resource
budget (time and/or memory).

2Note that in principle such a situation might still provide some information (e.g. it might still cover a different but still
interesting situation); therefore, the test result is still reported to the user. However, determining this might not be obvious in
general, and therefore we opted for the conservative choice of excluding the test from the computation of the degree of coverage
in such cases.

Goyal, Griggio, Kimblad, and Tonetta 119

(cameras, Lidar, radar, GPS, IMU) are provided to gather the data from the environment. The simulator
includes many vehicle models, from small cars to large trucks, with different properties like mass, dy-
namics, and controls. A simulation is composed of (i) the CARLA Simulator that computes the physics
and renders the scene and all actor properties, (ii) client scripts written using a Python API, that allows
control of the actors, sensors, and environmental conditions.

AI-based components. The CARLA community through its leaderboard competition [24] provides
various state-of-the-art AI solutions for end-to-end autonomous driving. However, only a few of them
provide the necessary code and well-trained models for their methodologies to be evaluated and built
upon. We specifically tested Interfuser [22], TCP [29], and LAV [4], all three currently in the top 5 of the
leaderboard. Within a few test runs of the AI agent provided with TCP, we noticed that the ego vehicle
brakes to a standstill as soon as any other vehicle arrives next to it in its adjacent lane. We consider it
too conservative of an autonomous behavior to test our verification methodology. The LAV agent on
the other hand behaved well autonomously (in accordance with its overall score on the leaderboard) in
terms of route completion and collision avoidance. However, it had an erratic behavior of changing lanes
non-deterministically at scenario instantiation. It would require us to make ad-hoc changes to relative
positions of the non-egos with respect to ego in every concrete scenario we generate.

We therefore chose the Interfuser agent as the AI system under test for our V&V methodology. It is
currently ranked 2 on the leaderboard (rank 1 among the open-source solutions). This solution primarily
focuses on the safety of AD systems by generating interpretable semantic features of the environment
through multi-model sensor fusion, for constraining the agent’s low-level control actions in real-time
within safe sets. The perception system processes the data gathered by 3 RGB cameras and one Lidar
sensor.

All three AI agents mentioned above share the following main characteristics:

• The maximum driving speed is limited to 5 m/s, which is quite conservative for highway driving;

• The ego always travels in its own lane: an external route for the ego to follow needs to be provided.
It may change lanes only based on the waypoints of this route on the map. Hence, it never overtakes
slow-moving cars in front of it in the same lane. Ego just follows them while maintaining a safe
distance, or keeping a stand-still.

• Standard rules of the road for overtaking only on the left (or the right) are not applied.

Note that our V&V methodology is agnostic to the AI solution chosen for the simulator. Since the
abstract test scenarios are generated from the symbolic model of the system, abstract coverage would be
the same for different AI solutions, although the concrete coverage may vary. In future work, we will
use our methodology to benchmark other AI solutions as well.

4.2 Abstract Model and Coverage Criterion

We specify our abstract model as a synchronous symbolic transition system written in the language of the
nuXmv [3] model checker. The model consists of 3 vehicles (one “ego” car, representing the autonomous
system under test, and two other cars) moving on a highway with 3 lanes. The vehicles all drive in the
same direction. The ego is constrained to stay in the middle lane and tries to maintain a given cruise
speed, braking when necessary to avoid collisions with other cars, and possibly accelerating to reach the
target speed. The other two “non-ego” cars can move freely on the highway, with arbitrary accelerations,
braking, and lane change maneuvers (subject to physical constraints about min/max acceleration rates

120 Automatic Generation of Scenarios for ADS

MODULE Car(id)

IVAR acceleration : real;

VAR pos : real;

lane : 0 .. MAX_LANE;

speed : real;

DEFINE changing_lane := next(lane) != lane;

TRANS

changing_lane -> (speed <= max_lane_change_speed &

next(speed) <= max_lane_change_speed);

TRANS

changing_lane -> (acceleration <= max_lane_change_acceleration &

acceleration >= (- max_lane_change_braking));

TRANS

next(speed) = max(speed + acceleration * TIME_STEP , 0);

TRANS

changing_lane ?

(next(pos) = pos + (speed + next(speed)) / 2 * TIME_STEP * 0.95) :

(next(pos) = pos + (speed + next(speed)) / 2 * TIME_STEP);

TRANS

(next(lane) = lane) | (next(lane) = lane + 1) | (next(lane) = lane - 1);

MODULE Ego(car1 , car2)

-- VAR declarations ...

DEFINE

time_to_stop := speed / (-MAX_BRAKING);

collision_next := (car1.lane = lane & car1.pos >= pos & speed > 0 &

(car1.pos - pos) / speed <= time_to_stop) |

(car2.lane = lane & car2.pos >= pos & speed > 0 &

(car2.pos - pos) / speed <= time_to_stop);

TRANS

collision_next ?

(acceleration = MAX_BRAKING & target_speed = 0) :

(target_speed = EGO_CRUISE_SPEED &

((speed < target_speed) ->

(next(speed) = min(target_speed ,

speed + MAX_ACCELERATION * TIME_STEP))));

INVAR -- the cars do not crash into each other on purpose

((abs(pos - car1.pos) > SAFE_DISTANCE) | (lane != car1.lane)) &

((abs(pos - car2.pos) > SAFE_DISTANCE) | (lane != car2.lane)) &

((abs(car1.pos - car2.pos) > SAFE_DISTANCE) | (car1.lane != car2.lane));

Figure 2: Excerpt of the nuXmv code for the abstract model.

and speed limits, taken from publicly available online car databases), but are not allowed to crash into
each other or the ego. We use a discrete model of time, in which each transition of the system corresponds
to a time-lapse of 1 second. We use the theory of real arithmetic to encode the transition relation of the
system, using mostly linear constraints to compute the updates to the speed and locations of the vehicles
(thanks to the discretization of time). An excerpt of the symbolic model is shown in Fig. 2. The module
Car is shared by different non-ego vehicles. Different transition relations on speed, acceleration, and
position need to hold when a non-ego changes lane (with changing_lane). For the Ego module, we
define the collision condition (collision_next) with non-ego vehicles (car1 & car2, in this case). If
True, the ego brakes with the max_braking until it stops; else it continues with (or reach towards) its
target_speed.

In order to enumerate abstract scenarios encoding potentially-interesting traffic situations, we define
for each non-ego car a set of predicates specifying its position relative to the ego, in terms of occupation

Goyal, Griggio, Kimblad, and Tonetta 121

Figure 3: Example traffic situations for constructing abstract scenarios, specifying positions of non-ego
cars (in red) in terms of the occupation of cells of an abstract 3x3 grid centered on the ego car (in blue).

of cells of an abstract 3x3 “grid” centered on the ego. Examples of the possible configurations that can
be expressed in this way are shown in Fig. 3. We then define an abstract scenario as a combination of
constraints about the different positions of the non-ego cars on the grid at different points in time. More
specifically, each abstract scenario is specified as an LTL property of the following form:

¬F(car1_grid_pos = CELL_A1∧ car2_grid_pos = CELL_A2∧
X(F(car1_grid_pos = CELL_B1∧ car2_grid_pos = CELL_B2))),

(1)

(where cari_grid_pos encodes the position of the i-th non-ego car in the grid and CELL_∗ represent
possible target positions for the cars.) By asking the model checker to find a counterexample to Eq. 1,
we generate traces in which the non-ego cars first reach the configuration with car1 in position A1 and
car2 in position A2, and then subsequently move to the configuration with car1 in position B1 and
car2 in position B2, performing the necessary maneuvers while avoiding collisions with each other or
with the ego.

The space of scenarios that is being explored therefore consists of all the possible combinations of
transitions from configurations of the non-ego cars in terms of their position in the grid defined above.
Enumerating all of them would give 4096 scenarios. We define our coverage criterion by selecting a
subset of abstract scenarios of interest, consisting of various combinations of the traffic situations that
can be modeled by positioning the non-ego cars in the grid around the ego. In total, for the experiments,
we defined 144 such interesting scenarios.

4.3 VIVAS Interface with CARLA

In order to generate a scenario for the CARLA simulator, the abstract counterexample trace generated by
the model checker is parsed for relevant information to be fed as input to the simulator. As an interface to
the simulator, we used the CARLA module ScenarioRunner. This provides a Python interface to specify
the routes for the ego as well as complex traffic scenarios by defining the behavior of the non-ego agent(s).
ScenarioRunner also allows for running CARLA on a specified map at a particular location, while the
user is allowed to implement their own AI-based ego agent. Every state of the abstract scenario trace is
concretized into the corresponding behavior of every non-ego agent. Each behavior is then specified in

122 Automatic Generation of Scenarios for ADS

Figure 4: Excerpt of automatically generated Scenario runner code (in Python3) for a non-ego (car1)
behavior. Comments (in green) explain the behavior tree.

Python to generate a behavior tree for each corresponding non-ego vehicle. The behavior trees of all the
non-egos present in the environment are then run in parallel during the simulation.

We first parse the initial coordinates and lanes of all the non-egos relative to the ego to instantiate
them on the map. In each behavior of a behavior tree, the corresponding non-ego has to drive at a certain
speed for a certain distance, following the waypoints given by the map on the same lane it is instantiated
on. Although the duration of each state transition in the abstract trace is 1 second, the non-egos may take
longer to drive that particular distance in the CARLA simulator, due to potential mismatches between
the symbolic model and the simulator models. In case the vehicle stands still for n states in the abstract
trace, it stands still for n seconds in the concrete scenario once it comes to a halt.

In the symbolic model, lane changes occur in one time step, with zero lateral distance traveled (since
lanes have no width in the symbolic world). However, we constrain the successive lane changes of
the same car to be N steps apart3 to model the fact that a lane change is not instantaneous overall.
To concretize this particular state transition, the non-ego transverses 9m while changing lanes, with
this behavior terminating after traveling a total distance of 12m for the next behavior in the tree to be
instantiated. Below these values, lane changes were not possible in CARLA at the speed ranges the
vehicles drive in our scenario. Note that similar to the symbolic model, a non-ego can change only one
lane at a time, with inputs {left, right} meaning change lane to the left or to the right.

We leverage the behavior library of ScenarioRunner to write these atomic behaviors and trigger
conditions. An example behavior tree for one non-ego (car1) with all the above explained three behaviors
is shown in Fig. 4. Here, lines 6-11: drive straight forward for 2.6 m, with a speed of 3 m/s; lines 14-20:
perform a lane change to the left, with a speed of 2 m/s, driving a total of 12 m within which 9 m is
the distance traveled while changing lanes; lines 23-37: stand still for 1 second. We do not need to

3We used N = 6 in our experiments.

Goyal, Griggio, Kimblad, and Tonetta 123

extract ego’s behavior from the abstract trace, since it is expected to make decisions autonomously in
the simulator. Only initial spawn position and destination need to be extracted for the AI-based agent to
follow the route.

The concrete simulation traces are then mapped back to the abstract trace to measure coverage, to
check if the same sequence of scenes was encountered in the concrete scenarios or not. In particular, a
predicate map is defined to map the absolute positions of the non-egos in the concrete simulation trace
to the abstract 3x3 grid shown in Fig. 3. Here, we show examples of mapping the positions of non-egos
to the cell locations 1,4 and 8 of the abstract grid:

CELL_1 : (car_i.lane < ego.lane)∧ (4≤ |car_i.pos - ego.pos| ≤ 24)∧ (car_i.pos > ego.pos)

CELL_4 : (car_i.lane < ego.lane)∧ (|car_i.pos− ego.pos| ≤ 10)

CELL_8 : (car_i.lane > ego.lane)∧ (4≤ |car_i.pos− ego.pos| ≤ 24)∧ (car_i.pos < ego.pos),

(2)

where car_i.pos is the longitudinal position (in meters) of the i-th car in the simulation trace (and similarly
for ego.pos). In this way, we define the boundaries of the cells on the abstract grid.

4.4 Monitoring of Properties

As described above, the monitor component of VIVAS is used to determine whether the concrete system
(simulator) satisfies the system-level formal specification. For the automotive application, the simulation
output traces include sequences of all states and actions executed by the ego vehicle, along with the time
evolution of other observable parameters, which must be checked for property satisfaction/violation.
In this study, we primarily need to check whether the ego vehicle crashes with another vehicle in the
environment. Since the ego always travels in its own lane, we limit the check for the case when the
ego crashes with any non-ego in front of it in its own lane. We do this by leveraging the continuous data
stream from the collision sensor mounted on the ego. The monitor is currently hard-coded for monitoring
specifically the output of this sensor, i.e., it checks whether the ego crashes or not at any time step in
the simulation trace. Along with the satisfaction/violation of this property, the positions of non-egos in
the simulation trace are mapped back to the abstract grid, to measure the degree of concrete coverage as
described in §3.

In the future, we plan to use a runtime monitor based on NuRV [7,8], to check standard LTL proper-
ties on ego behavior, e.g., if ego brakes within n time-steps as soon as any non-ego comes in front within
its safe driving distance, or if the lane change of another vehicle is detected by the perception component
of the ego within m time steps.

5 Results

In this section, we report on our experimental evaluation of our instantiation of VIVAS for the ADS
application using the CARLA simulator. We first describe the experimental setup in §5.1, including
the choice of parameters for the vehicles and environment in the symbolic model and in the CARLA
simulator, necessary to generate meaningful scenarios. We then present the results of the evaluation in
§5.2 and discuss them in §5.3.

We ran the experiments on an Intel i7 with NVIDIA GeForce RTX 2080 8GB GPU. These are the
minimum hardware requirements to run the simulations on the CARLA simulator with AI models. All
the experiments take roughly 22 hours to complete. We used a timeout of 200 seconds for each abstract
scenario generation. This timeout was never reached by the model checker during our experiments: on

124 Automatic Generation of Scenarios for ADS

average, model checking took less than 10 seconds for each instance. Rather, the performance bottleneck
turned out to be the time to instantiate a scenario in CARLA and perform the simulations, which took 3
minutes on average.

The code and data necessary for reproducing our experiments are available at https://es-static.
fbk.eu/people/sgoyal/fmas23.

5.1 Experimental setup

At the level of the symbolic model, we define here some fixed parameters for simple, but meaningful
scenario generation:

ego_cruise_speed = 5 (m/s)

non_ego_speed = [0, 12] (m/s)

max_acceleration = 5.6 (m/s2)

max_braking = −4.6 (m/s2)

safe_distance = 7 (m)

lanes = {left, center, right}

(3)

All the scenarios that we generate consist of 2 non-ego agents and one ego agent, all of which start
from the same longitudinal position x = 0, with ego in the center lane and 2 non-egos on each side of
it. Note that fixing the initial positions would not make a difference to the abstract scenario generation
since the acceleration, braking, and speed for the non-egos are picked non-deterministically by the model
checker for every time step, while respecting the above bounds. Since the AI-based agent we use in
CARLA can only drive at around 5 m/s, we limit the ego agent cruising speed to the same. All the
agents start from 0 m/s, with ego reaching its cruising speed with max_acceleration. To avoid collisions,
it brakes with max_braking to maintain at minimum the safe_distance with all the non-egos.

To improve the robustness of abstract scenario generation, we reduce the size of each cell in the
abstract 3x3 grid in the symbolic model (see Fig. 3) by 3m in each direction, compared to the grid we
use for evaluation of the coverage on the simulator. The lower values of the relative distances here are
chosen to specifically create situations where non-egos stay close to ego and challenge its perception and
control system with their braking and lane-changing maneuvers.

To mimic the symbolic environment model, we instantiate the CARLA simulator on a section of a
highway of Town06, with 5 straight lanes, with ego positioned on the center lane and two non-egos on
each lane next to it, corresponding to the symbolic model. Left-most and right-most lanes are not used.
To compensate for the mismatch between the vehicle dynamics in the symbolic model and CARLA
simulator, we concretize the initial positions of the non-egos at:

x = {−3.5,0,3.5} m (4)

i.e., the non-egos start at 3.5 m behind, same level, and 3.5 m ahead of the ego in their respective
lanes in different simulation runs. All the vehicles start from 0 m/s, as parsed from the abstract trace. In
future work, we could also concretize further for the simulations with one non-ego ahead and the other
one behind the ego, to check if it extends the coverage results.

CARLA provides the possibility to change weather conditions (e.g., rainy, cloudy, night, etc.) at
the beginning of simulation runs. We perform all the simulations in "clear noon" setting, for the ego’s
perception components to operate in the least challenging conditions. In future work, we will evaluate
the AI solution in different weather conditions.

https://es-static.fbk.eu/people/sgoyal/fmas23
https://es-static.fbk.eu/people/sgoyal/fmas23

Goyal, Griggio, Kimblad, and Tonetta 125

Table 1: Coverage Results.

Non-ego position Total Scenarios Coverage OK Property FAIL Coverage OK ∩ Property FAIL

3.5 m 144 68 3 2
0 144 73 17 4

- 3.5 m 144 45 54 19
Set Union 81 61 25

5.2 Evaluation

The model checker produces a total of 144 abstract scenarios based on the coverage criteria given in §4.2.
Each abstract scenario is concretized into three concrete scenarios, by varying the initial positions of the
non-egos according to Eq. 4, which gives us 144∗3 = 432 concrete scenario outputs from the simulator.
The evaluation results are shown in Table 1. The columns have the following meanings:

Coverage OK: Each point of the grid of coverage criteria represents a scenario with a fixed order of
scenes. The concrete simulation run passes ("OK") if the abstract scenario generated by the model
checker could indeed be generated on the simulator as well.

Property FAIL: The system-level property fails if the autonomous ego agent collides with at least one
non-ego in front. We do not take into account the situations where non-egos crash into each other
or hit the ego from behind.

Coverage OK ∩ Property FAIL: the intersection of the above two conditions. These are the set of
"interesting" cases (along with the other cases where property failed), where the coverage criteria
passed, but the ego crashed with a non-ego in front.

Set Union: Combines the results for all concrete scenarios with respect to the abstract scenarios.

5.3 Analysis

All intended 144 abstract counterexamples could be generated by the model checker, meaning that the
configurations we defined for the coverage did not violate any constraints in the symbolic model. As
we see from the obtained results, not all the abstract scenarios generated by the model checker could be
covered in the simulator. We could cover a total of only 81 out of 144 scenarios. This is primarily due
to the mismatch in (a) behavior models and (b) vehicle dynamics, between the symbolic model and the
simulator.

Behavior model mismatch. Since the ego is based on AI models, its non-deterministic behavior is not
fully represented in the symbolic model. Ego speed is always varying within +-1 m/s compared to the
constant cruising speed in the symbolic model. The bounds of cells in the predicate map are defined for
the relative position of the non-egos with respect to ego, as specified in Eq. 2. Hence, in some cases,
the non-egos can not reach the required region within these bounds during the scenario, since the ego is
traveling too fast or slow. In principle, we could overcome this by conditioning the non-egos’ behavior
to the ego’s in terms of the distance traveled relative to the ego instead of the absolute distance on the
lane, while translating the abstract scenario to the concrete one. However, no such atomic behaviors or
conditions yet exist in ScenarioRunner. This could be included in one of the future works.

126 Automatic Generation of Scenarios for ADS

Figure 5: Scenario defined in Eq. 5, with Coverage OK ∩ Property FAIL. Ego crashing with a non-ego
in front (scene 5).

Vehicle dynamics mismatch. The vehicle dynamics models are based on OEM data, hard-coded in
the simulator. The physical constraints for maximum acceleration and braking in the symbolic model are
instead generic. However, we found a big mismatch during the simulations, with maximum acceleration
values of vehicle models in CARLA reaching as high as 12 m/s2, and maximum braking below -15
m/s2. Since these parameter values also vary from vehicle to vehicle in CARLA, we even came across
situations where non-egos crashed into each other while changing lanes.

Interesting scenarios. Even though we could not cover all the abstract scenarios in the concrete sim-
ulator, there were 61 scenarios where AI-based ego collided with a non-ego agent in front. In particular,
we obtained 25 interesting scenarios that met their abstract specification, but with ego crashing into a
non-ego in front. Fig. 5 shows 6 scenes (in temporal order of 1-6) extracted from one such scenario.
This corresponds to the LTL property specified below in Eq. 5 (with reference to Eq. 1):

¬F(car1_grid_pos = 2∧ car2_grid_pos = 2∧X(F(car1_grid_pos = 6∧ car2_grid_pos = 4))) (5)

Here, the grid positions correspond to the cell numbers mentioned in Fig. 3 for the abstract grid space.
We now describe the scenario in Fig. 5.

• All the agents are initialized at 0 m/s, with car1 on the left of ego, and car2 to its right, with both
cars starting 3.5 m ahead of ego (scene 1). Here, “car1_grid_pos = 4∧ car2_grid_pos = 5” on the
abstract grid.

• The non-egos travel faster than the ego to change lanes in front of it (scene 2), and end up in
the configuration (scene 3) where the first predicate, “car1_grid_pos = 2∧ car2_grid_pos = 2” is
satisfied.

Goyal, Griggio, Kimblad, and Tonetta 127

Figure 6: Ego collision; (left): Different camera views of AI-based ego, with the perception component’s
output; (right): Plot showing ego’s throttle and braking values during the collision (in blue).

• The non-egos then change lanes to the left slowly (scene 4), when the ego crashes with car1 (scene
5), even when the car1 has still not completed the lane change.
Fig. 6 (left) shows the front view of the AI agent at the instant of crashing with non-ego. The
real-time telemetry shows that ego’s brake = 0 and throttle = 0.75. The perception component here
seems to mis-detect the actual position of car1. The corresponding output from the simulation
trace is shown in the right plot, with ego’s throttle = True (and brake = False) for more than 2
seconds leading to the collision.

• The ego keeps driving forward when the second predicate, “car1_grid_pos = 6∧car2_grid_pos = 4”
is satisfied (scene 6).

6 Conclusions

This paper showed the application of system-level simulation-based verification of ADS using formal
methods to generate abstract scenarios. The verification toolchain includes nuXmv for model checking
and generating abstract scenarios, CARLA for simulating the ego behaviors in concrete scenarios, and
mappings from abstract to concrete scenarios and back. We presented an abstract model of the system
and a coverage criterion that allows the automated generation of abstract scenarios with model checking.
The generated abstract scenarios cover different sequences of traffic scenes that are relevant to test the
reaction of the ego’s behavior to see if it avoids crashing into other cars. The simulation with CARLA
of the corresponding concrete scenarios showed various crashes caused by the ego, although not all
simulations reproduce the expected abstract scenario. Inspecting some of the simulations reporting a
crash in a covered abstract scenario confirms that the ego behavior is indeed buggy and this is probably
due to the AI-based perception component.

During this study, we gained many insights that may lead to some interesting future research direc-
tions. These include more efficient techniques to generate abstract scenarios for minimizing the number
of model checking runs needed to achieve a certain coverage level; the integration of effective sampling
techniques that synthesize various simulation parameters for the same abstract scenario; extending the
abstract model by incorporating uncertainty in the ego behavior or a more precise representation of the
continuous-time behavior with timed or hybrid version of SMV [5, 6]; finally, enhancing the concrete
scenario specification with conditional behaviors of non-ego vehicles that react to the choices of the ego.

128 Automatic Generation of Scenarios for ADS

References

[1] Associaiton for Standardization of Automation & Measuring Sytems (ASAM): OpenSCENARIO. https:

//www.asam.net/standards/detail/openscenario/. Accessed: 2023-08-30.

[2] Marco Bozzano, Riccardo Bussola, Marco Cristoforetti, Srajan Goyal, Martin Jonáš, Konstantinos Kapellos,
Andrea Micheli, Davide Soldà, Stefano Tonetta, Christos Tranoris & Alessandro Valentini (2023): RobDT:
AI-enhanced Digital Twin for Space Exploration Robotic Assets. In: The Use of Artificial Intelligence for
Space Applications, Springer Nature Switzerland, pp. 183–198, doi:10.1007/978-3-031-25755-1_12.

[3] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea
Micheli, Sergio Mover, Marco Roveri & Stefano Tonetta (2014): The nuXmv Symbolic Model Checker. In:
CAV, Lecture Notes in Computer Science 8559, Springer, pp. 334–342, doi:10.1007/978-3-319-08867-9_22.

[4] D. Chen & P. Krahenbuhl (2022): Learning from All Vehicles. In: 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE Computer Society, Los Alamitos, CA, USA, pp. 17201–
17210, doi:10.1109/CVPR52688.2022.01671.

[5] Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri & Stefano Tonetta (2019): Extending
nuXmv with Timed Transition Systems and Timed Temporal Properties. In Isil Dillig & Serdar Tasiran, editors:
Computer Aided Verification, Springer International Publishing, Cham, pp. 376–386, doi:10.1007/978-3-
030-25540-4_21.

[6] Alessandro Cimatti, Alberto Griggio, Sergio Mover & Stefano Tonetta (2015): HyComp: An SMT-Based
Model Checker for Hybrid Systems. In: TACAS, Lecture Notes in Computer Science 9035, Springer, pp.
52–67, doi:10.1007/978-3-662-46681-0_4.

[7] Alessandro Cimatti, Chun Tian & Stefano Tonetta (2019): Assumption-Based Runtime Verification with Par-
tial Observability and Resets. In: RV, Lecture Notes in Computer Science 11757, Springer, pp. 165–184,
doi:10.1007/978-3-030-32079-9_10.

[8] Alessandro Cimatti, Chun Tian & Stefano Tonetta (2019): NuRV: A nuXmv Extension for Runtime Veri-
fication. In Bernd Finkbeiner & Leonardo Mariani, editors: Runtime Verification, Springer International
Publishing, Cham, pp. 382–392, doi:10.1007/978-3-030-32079-9_23.

[9] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez & Vladlen Koltun (2017): CARLA: An
Open Urban Driving Simulator. In Sergey Levine, Vincent Vanhoucke & Ken Goldberg, editors: Proceedings
of the 1st Annual Conference on Robot Learning, Proceedings of Machine Learning Research 78, PMLR,
pp. 1–16, doi:10.48550/arXiv.1711.03938.

[10] Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravanbakhsh, Marcell Vazquez-
Chanlatte & Sanjit A. Seshia (2019): VerifAI: A Toolkit for the Formal Design and Analysis of Artificial
Intelligence-Based Systems. In Isil Dillig & Serdar Tasiran, editors: Computer Aided Verification, Springer
International Publishing, Cham, pp. 432–442, doi:10.1007/978-3-030-25540-4_25.

[11] O. foretellix: Open M-SDL. https://releases.asam.net/OpenSCENARIO/2.0-concepts/M-SDL_

LRM_OS.pdf. Accessed: 2023-08-07.

[12] Simone Fratini, Patrick Fleith, Nicola Policella, Alberto Griggio, Stefano Tonetta, Srajan Goyal, Thi
Thieu Hoa Le, Jacob Kimblad, Chun Tian, Konstantinos Kapellos, Christos Tranoris & Quirien Wijnands
(2023): Verification and Validation of Autonomous Systems with Embedded AI: The VIVAS Approach.
In: ASTRA, p. To appear. Available at https://az659834.vo.msecnd.net/eventsairwesteuprod/
production-atpi-public/070740b67e5b4a32a9be94228c9ac40d.

[13] Daniel J. Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-
Vincentelli & Sanjit A. Seshia (2022): Scenic: a language for scenario specification and data generation.
Machine Learning, doi:10.1007/s10994-021-06120-5.

[14] Xiaowei Huang, Marta Kwiatkowska, Sen Wang & Min Wu (2017): Safety Verification of Deep Neural Net-
works. In Rupak Majumdar & Viktor Kunčak, editors: Computer Aided Verification, Springer International
Publishing, Cham, pp. 3–29, doi:10.1007/978-3-319-63387-9_1.

https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/
https://doi.org/10.1007/978-3-031-25755-1_12
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1109/CVPR52688.2022.01671
https://doi.org/10.1007/978-3-030-25540-4_21
https://doi.org/10.1007/978-3-030-25540-4_21
https://doi.org/10.1007/978-3-662-46681-0_4
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-32079-9_23
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.1007/978-3-030-25540-4_25
https://releases.asam.net/OpenSCENARIO/2.0-concepts/M-SDL_LRM_OS.pdf
https://releases.asam.net/OpenSCENARIO/2.0-concepts/M-SDL_LRM_OS.pdf
https://az659834.vo.msecnd.net/eventsairwesteuprod/production-atpi-public/070740b67e5b4a32a9be94228c9ac40d
https://az659834.vo.msecnd.net/eventsairwesteuprod/production-atpi-public/070740b67e5b4a32a9be94228c9ac40d
https://doi.org/10.1007/s10994-021-06120-5
https://doi.org/10.1007/978-3-319-63387-9_1

Goyal, Griggio, Kimblad, and Tonetta 129

[15] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian & Mykel J. Kochenderfer (2017): Reluplex: An
Efficient SMT Solver for Verifying Deep Neural Networks. In: CAV (1), Lecture Notes in Computer Science
10426, Springer, pp. 97–117, doi:10.1007/978-3-319-63387-9_5.

[16] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah,
Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill, Mykel J. Kochenderfer & Clark W. Barrett
(2019): The Marabou Framework for Verification and Analysis of Deep Neural Networks. In: CAV (1),
Lecture Notes in Computer Science 11561, Springer, pp. 443–452, doi:10.1007/978-3-030-25540-4_26.

[17] Moritz Klischat & Matthias Althoff (2020): Synthesizing Traffic Scenarios from Formal Specifications for
Testing Automated Vehicles. In: IV, IEEE, pp. 2065–2072, doi:10.1109/IV47402.2020.9304617.

[18] Rupak Majumdar, Aman Mathur, Marcus Pirron, Laura Stegner & Damien Zufferey (2021): Paracosm:
A Test Framework for Autonomous Driving Simulations. In Esther Guerra & Mariëlle Stoelinga, editors:
Fundamental Approaches to Software Engineering, Springer International Publishing, Cham, pp. 172–195,
doi:10.1007/978-3-030-71500-7_9.

[19] Corina S. Păsăreanu, Ravi Mangal, Divya Gopinath, Sinem Getir Yaman, Calum Imrie, Radu Calinescu
& Huafeng Yu (2023): Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case Study. In
Constantin Enea & Akash Lal, editors: Computer Aided Verification, Springer Nature Switzerland, Cham,
pp. 289–303, doi:10.1007/978-3-031-37706-8_15.

[20] Clément Robert, Jérémie Guiochet, Héléne Waeselynck & Luca Vittorio Sartori (2021): TAF: a Tool for
Diverse and Constrained Test Case Generation. In: 2021 IEEE 21st International Conference on Software
Quality, Reliability and Security (QRS), pp. 311–321, doi:10.1109/QRS54544.2021.00042.

[21] Luca Vittorio Sartori, Hélène Waeselynck & Jérémie Guiochet (2023): Pairwise Testing Revisited for Struc-
tured Data With Constraints. In: ICST, IEEE, pp. 199–209, doi:10.1109/ICST57152.2023.00027.

[22] Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li & Yu Liu (2023): Safety-Enhanced Autonomous
Driving Using Interpretable Sensor Fusion Transformer. In Karen Liu, Dana Kulic & Jeff Ichnowski, editors:
Proceedings of The 6th Conference on Robot Learning, Proceedings of Machine Learning Research 205,
PMLR, pp. 726–737, doi:10.48550/arXiv.2207.14024.

[23] Gagandeep Singh, Timon Gehr, Markus Püschel & Martin Vechev (2019): An Abstract Domain for Certifying
Neural Networks. Proc. ACM Program. Lang. 3(POPL), doi:10.1145/3290354.

[24] CARLA Team: CARLA Autonomous Driving Leaderboard. https://leaderboard.carla.org/

leaderboard/. Accessed: 2023-08-30.
[25] CARLA Team: CARLA ScenarioRunner. https://carla-scenariorunner.readthedocs.io. Ac-

cessed: 2023-08-30.
[26] Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito & James Kapinski (2018): Sim-ATAV: Simulation-

Based Adversarial Testing Framework for Autonomous Vehicles. In: Proceedings of the 21st International
Conference on Hybrid Systems: Computation and Control (Part of CPS Week), HSCC ’18, Association for
Computing Machinery, New York, NY, USA, p. 283–284, doi:10.1145/3178126.3187004.

[27] Eric Vin, Shun Kashiwa, Matthew Rhea, Daniel J. Fremont, Edward Kim, Tommaso Dreossi, Shromona
Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-Vincentelli & Sanjit A. Seshia (2023): 3D Environment Mod-
eling for Falsification and Beyond with Scenic 3.0. In Constantin Enea & Akash Lal, editors: Computer
Aided Verification, Springer Nature Switzerland, Cham, pp. 253–265, doi:10.1007/978-3-031-37706-8_13.

[28] Hermann Winner, Karsten Lemmer, Thomas Form & Jens Mazzega (2019): PEGASUS—First Steps for the
Safe Introduction of Automated Driving. In Gereon Meyer & Sven Beiker, editors: Road Vehicle Automation
5, Springer International Publishing, Cham, pp. 185–195, doi:10.1007/978-3-319-94896-6_16.

[29] Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang Li & Yu Qiao (2022): Trajectory-guided Control
Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho & A. Oh, editors: Advances in Neural Information Processing Systems,
35, Curran Associates, Inc., pp. 6119–6132, doi:10.48550/arXiv.2206.08129.

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1109/IV47402.2020.9304617
https://doi.org/10.1007/978-3-030-71500-7_9
https://doi.org/10.1007/978-3-031-37706-8_15
https://doi.org/10.1109/QRS54544.2021.00042
https://doi.org/10.1109/ICST57152.2023.00027
https://doi.org/10.48550/arXiv.2207.14024
https://doi.org/10.1145/3290354
https://leaderboard.carla.org/leaderboard/
https://leaderboard.carla.org/leaderboard/
https://carla-scenariorunner.readthedocs.io
https://doi.org/10.1145/3178126.3187004
https://doi.org/10.1007/978-3-031-37706-8_13
https://doi.org/10.1007/978-3-319-94896-6_16
https://doi.org/10.48550/arXiv.2206.08129

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 130–143, doi:10.4204/EPTCS.395.9

© C. Bischopink
This work is licensed under the
Creative Commons Attribution License.

Enforcing Timing Properties in Motorway Traffic

Christopher Bischopink
Carl von Ossietzky University Oldenburg, Oldenburg

bischopink@informatik.uni-oldenburg.de

In previous work [4], we proposed a Runtime Enforcement Approach to deal with timing properties
in motorway traffic, which are present in form of Timed Multi-Lane Spatial Logic (TMLSL) formulae,
a logic tailored to express both spatial and timing properties. Employing communication between
the cars, we utilised a nondeterministic controller “guessing” which actions to execute next for each
car, before asking the local monitors of the cars for permission to execute the announced actions.
In this contribution, we consider a more reasonable controller that only considers sequences that
satisfy its own properties. This is done utilising region automata that one can generate from the cars’
specifications. In the approach, we also came along a minor decidability result for TMLSL.

1 Introduction

With the number of (at least partially) autonomous cars increasing on the roads around the globe, chal-
lenges and advantages in the specification and verification of their behaviour occur. If one assumes
that the cars are able to communicate with each other, a more detailed interplay between them is possible
than with human drivers and allows finding solutions for complicated traffic situations that human drivers
could easily miss.

The roads we consider here are motorways, formalised as traffic snapshots [9] with a logic to reason
about them called Multi-Lane Spatial Logic (MLSL) [9]. We extended this spatial logic towards Timed
Multi-Lane Spatial Logic (TMLSL) to also cover the timing aspect of a car’s specification in [3]. Based on
TMLSL, we proposed a runtime-enforcement approach in [4], employing a nondeterministic controller
that asked for the permission of other cars for the actions it wants to execute. Due to the nondeterminism,
completely unreasonable sequences that even violate the own car’s specification could be announced. In
the lack of a result that allow announcing/checking only reasonable sequences, the nondeterministic
controller still allowed us to show that the approach is complete.

In this work, we propose a more reasonable approach, utilising the region automaton of the cars’
specifications. Still, all cars announce sequences they want to achieve, but this time all announced
sequences would yield satisfying runs at least for the car that announces them. The announced sequences
are then checked by a central entity, e.g. a road-side unit, for a run that is satisfying for all cars and
informs the cars accordingly. We furthermore present a minor decidability result, eliminating one of the
causes for the semi-decidability of TMLSL [3].

Related Work In the context of MLSL, different topologies have been explored in addition to mo-
torway traffic, namely country roads [8] and urban traffic [17], as well as their satisfaction problems
[13][6] and controllers for cars in these topologies with different desirable properties such as liveness
and fairness [5, 18]. Other approaches in the context of autonomous or automated driving systems use
e.g. differential dynamic logic [12] or a specification with extended types of timed automata [10]. These
approaches mostly concentrate on a top-level view of the system under control. A more technical view
of the evolution of a cars dynamics in an adaptive cruise control setting is e.g. given in [1]. Runtime

http://dx.doi.org/10.4204/EPTCS.395.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

C. Bischopink 131

Enforcement [16] and runtime verification [7] are also well studied topics. To the best of our knowledge,
runtime enforcement approaches however are more intensively considered in more restricted settings
than motorway traffic, where the system evolves quiet dynamically to the input given. Another feature is
that in our case, the input and output of the system under control are different from each other.

2 Preliminaries

In this Section, we introduce the formal concepts our approach is build on. We start with the model of
motorway traffic, its logic and evolution in Sect. 2.1 and continue with the timing model used, Sect.2.2.
The combination of them is called TMLSL and covered in Sect. 2.3.

2.1 Spatial Model of and Logic for Motorway Traffic

Model The spatial model we use in the setting of motorway traffic was introduced in [9]. It allows
only traffic in one direction on a fixed set of lanes L = {1, . . . ,N} with an infinite extension each. On
these lanes, cars from the set of car identifiers I = {A,B, . . .} drive, each car C of them with a certain
speed spd(C), acceleration acc(C) and position on the lane, pos(C). There are two different types of
occupation a car can have on lanes, either a reservation res ∶ I→ P(L), the space it physically occupies
(multiple lanes if it is changing lanes at this moment) or a claim clm ∶ I→P(L), the lane a car wishes to
change to, which is the equivalent of setting a turn signal. Altogether, this information is represented as
a traffic snapshot TS = (res,clm,pos,spd,acc).

In a traffic snapshot, there is no information present what the sizes of the cars and their braking
distances are, as pos only stores the rear end of each vehicle. We neglect the concept of a Sensor Function
here that makes this information available to us and simply assume that size and braking distance of each
car is known. Also omitted is the View that allows to only consider a finite extension of the infinite
extension of a traffic snapshot when evaluating formulae. A graphical representation of three traffic
snapshots is depicted in Fig. 1, where we also omitted showing concrete values for the position, speed
and acceleration of the cars.

As already hinted at, a traffic snapshot describes the situation on the road at one point in time only.
A situation on the road may evolve, which is handled in the model via transitions.

Transitions We divide the set of transitions usable in a traffic snapshot into transitions regarding the
discrete behaviour between lanes and transitions regarding the continuous behaviour along the lanes.
The first set consists of car C claiming a lane n resp. withdrawing all claims (c(C,n)/wd c(C)) and car
C reserving a lane resp. withdrawing all reservations except the one on lane n (r(C)/wd r(C,n)). The
second set is the one we focus more on, as it is considered more intensively in what follows, they handle
the change of a car’s acceleration to some value a (acc(C,a)) as well as the passing of t time units (t). In

132 Enforcing Timing Properties

1

2

A B 1

2

A B 1

2 A

A B

3 r(A)

Figure 1: A transition sequence with three traffic snapshots and two actions, taking place with two cars
on two lanes. Car A is faster than car B, so it comes closer when t = 3 time units pass. Afterwards, it
reserves its formerly claimed space (dashed copy of it on the neighbouring lane), one step further in an
attempt to overtake car B.

the following definition, ⊕ is the overriding operator of Z [19]:

T S tÐ→ T S ′ ⇔ T S ′ = (res,clm,pos′,spd′,acc)

∧∀C ∈ I ∶ pos′(C) = pos(C)+ spd(C) ⋅ t + 1
2

acc(C) ⋅ t2

∧∀C ∈ I ∶ spd′(C) = spd(C)+acc(C) ⋅ t

T S
acc(C,a)
ÐÐÐÐ→ T S ′ ⇔ T S ′ = (res,clm,pos,spd,acc′)

∧acc′ = acc⊕{C↦ a},

Over the set of actions, which are the transitions without the one where only time passes, we define
timed words of actions ω = ⟨(α0,t0), . . . ,(αn,tn)⟩, with αi an action and ⟨t0, . . . ,tn⟩ a real-time sequence.
For a formal account, we refer to [14].

A graphical representation of a transition sequence including two transitions (one discrete and one
continuous) is shown in Fig. 1. It can be interpreted as the timed word ω1 = ⟨(r(A),3)⟩.
Remark 1 (Dynamic behaviour of the cars). The model used for describing the dynamics of the cars
is a quiet simple one, ignoring many difficulties that one would encounter in the real world, such as
friction or variable acceleration capabilities based on the current speed. Still, we believe that it is a
good abstraction of the real world’s dynamics. Especially if one considers that the positions (plus size
and braking distance) could be over-approximations, this allows some degree of freedom in achieving a
behaviour to match the correct positions.

Logic To reason about the traffic situations formalised as traffic snapshots, the logic MLSL [9] was
introduced . Here, we consider a variant of MLSL called MLSLS (MLSL with scopes) [6], limiting the
range of cars over which car variables are evaluated to a finite range. Formulae of MLSLS are constructed
according to the grammar

ϕ ∶∶= γ = γ
′ ∣ free ∣ re(γ) ∣ cl(γ) ∣ l = k ∣ ∃c.ϕ ∣ ϕ1⌢ϕ2 ∣ ϕ1

ϕ2
∣ cs ∶ ϕ,

and standard Boolean combinations of such formulae, where γ and γ
′ are car variables, k ∈R and cs is a

(sub-)set of car variables.
The atoms that formulae are constructed from are the comparison of two car variables γ = γ

′, free
denotes a segment with free space that is not occupied by others, the reservation re(γ) of a car γ , the

C. Bischopink 133

claim cl(γ) of a car γ and the comparison l = k of the length l of the considered segment against some
value k. With ∃c.ϕ one asks for the existence of a car c that satisfies ϕ . The horizontal chop operator
(ϕ1⌢ϕ2) is used to determine if it is possible to divide the current segment into two parts along the lanes
s.t. in the first part ϕ1 and in the part directly ahead of it ϕ2 holds. The same can be specified with the

vertical chop operator (ϕ1
ϕ2

), but the point to divide is in between two lanes this time. cs ∶ ϕ limits the

scope over which ϕ is evaluated to the finite domain cs and effects only formulae that use quantification
over the cars in their semantics and thus only ∃c.ϕ and free. In Sect. 3, we focus on length comparisons
l = k and simply abbreviate them as θ , as there can be multiple of them regarding the same segment.

A common abbreviation used is the somewhere modality ⟨ϕ⟩, expressing that there is a partition on
the road along and in between the lanes s.t. ϕ holds in some point of the partition.

For a formal definition, especially about the exact semantics of MLSLS formulae, we refer the reader
to [6], but would like to point out that MLSLS is, in contrast to pure MLSL, decidable.

2.2 Model and Logic of Time

The logic we consider here for the timing aspects is called State-Clock Logic (SCL) [15]. Formulae from
this logic are constructed over an alphabet of propositions Σ according to the grammar

ψ ∶∶= p ∣ ψ1∨ψ2 ∣ ¬ψ ∣ ψ1Uψ2 ∣ ψ1Sψ2 ∣ ⊳∼c ψ ∣ ⊲∼c ψ,

with ∼ ∈ {<,≤,=,≥,>} and p ∈ Σ.
Apart from well-known Boolean combinations of formulae and the usual until- and since operators

(U resp. S), SCL allows to measure the time since (⊲)/ until (⊳) a formula ψ held/holds for the last/next
time and compare this difference with ∼ c.

The semantics of SCL formulae is evaluated on (usually infinite) timed sequences of states m =
⟨(s0,I0,),(s1,I1), . . .⟩ with si ⊆ Σ and ⟨I0,I1, . . .⟩ a monotonically increasing sequence of adjacent inter-
vals. Intuitively, the formula ⊳∼ c ψ holds at time point t in the ith state of m, written (m, i,t) ⊧⊳∼ c ψ iff
there is some state (s j,I j) at position j > i where ψ holds, all states in between i and j do not satisfy ψ

and the difference between the left border of the jth interval I j and t satisfies ∼ c . The analogous applies
for the operator ⊲∼ c ψ , the semantics of the remaining operators is as expected. Example for both syntax
and semantics are given in the next section, for a more formal account on the topic we refer the reader to
[15].

The decidability problem of SCL is known to be decidable. Given a SCL formula ψ , one can con-
struct a State-Clock (SC) Automaton Aψ = (P,CP ,L,L0,E,L,∆,F), with P the set of propositions used,
CP the set of clocks, L and L0 the (initial) locations of Aψ , a transition relation E ⊆ L×L, a labelling func-
tion L assigning the propositions valid in it to every location of L, another labelling function ∆ assigning
constraints over CP to every location of L and a family of Büchi acceptance sets F . From there on a
Region-AutomatonR(Aψ) [15][2] can be constructed. Having operators to compare the time to for both
the future and the past, SC automata have a history clock xp and a prophecy clock yp for each proposition
p ∈P in CP . Both types of clocks need to be respected when constructing the region automaton. A region
[ν] describes a class of clock valuations ν that cannot be distinguished by any SC automaton and can
be represented as a set of (in-)equalities over the set of clock variables xy, yp and the natural numbers
N. Iff the language ofR(Aψ) is not empty, the formula ψ is satisfiable. In [4], we extended State-Clock
automata with broadcast communication like the timed automata of UPPAAL [11]. For a formal account
on the broadcast communication used we refer to [17] and only point out that sending some data d over
a channel c is denoted as c!⟨d⟩ and receiving this data on the same channel is denoted as c?⟨d⟩. We

134 Enforcing Timing Properties

also allowed simple functions dealing with data structures and simple computations on the transitions of
communicating SC automata.

2.3 TMLSL

To express and reason about both spatial and timing properties in motorway traffic, we introduced TMLSL
[3]. The idea of this logic is to use MLSLS-formulae as the propositions that SCL formulae are build
from. The intuitive idea for the semantics is that a traffic snapshot TS with a timed word of actions ω is a
model for a formula ϕ , TS0,ω ⊧ϕ iff there is a timed sequence of states m(TS0,ω) that is propositionally
consistent and complete in the subformulae of ϕ , describes the evolution of TS along ω and is a model
of ϕ in the SCL-semantics, m(TS,ω) ⊧SCL ϕ . We now give an example for a TMLSL formula as well as
their satisfaction. For simplicity, we use car identifiers instead of car variables in the MLSLS propositions
in the formula.

Example 1 (TMLSL). Consider the TMLSL formula

ϕ1 = ⟨re(A)⌢ free∧ l = 21⌢re(B)⟩ Ô⇒ ⊳=5 ⟨re(A)⌢ free∧ l = 15⌢re(B)⟩

that specifies that when the distance between the reservations of the two cars A and B is equal to 21
distance units somewhere in the traffic snapshot, it needs to be equal to 15 distance units within exactly
5 time units. A satisfying sequence of states is

m = ⟨(⟨re(A)⌢ free∧ l = 21⌢re(B)⟩ ,[0,0]),(⟨re(A)⌢ free∧ l ≤ 21∧ l > 15⌢re(B)⟩ ,(0,5)),
(⟨re(A)⌢ free∧ l = 15⌢re(B)⟩ ,[5,7))⟩,

one that is not is

m′ = ⟨(⟨re(A)⌢ free∧ l = 21⌢re(B)⟩ ,[0,0]),(⟨re(A)⌢ free∧ l ≤ 21∧ l > 15⌢re(B)⟩ ,(0,5]),
(⟨re(A)⌢ free∧ l = 15⌢re(B)⟩ ,(5,7))⟩,

as the distance between the two cars reached the value 15 too late. The only difference between m and
m′ are the shapes of the second and third interval. Please note that we omitted some subformulae of ϕ1
in the sequences in an attempt to keep them readable.

Ex. 2 gives values for the positions, speeds and accelerations of the cars in the first traffic snapshot
TS of Fig. 1 and a timed word of actions ω s.t. applying ω to TS results in the timed sequence of states
m(TS0,ω) that satisfies ϕ1 written TS,ω ⊧ ϕ1, resp. m(TS0,ω) ⊧SCL ϕ1.

Remark 2. Using MLSLS formulae as the propositions of SCL rather than MLSL actions imposes some
difficulties, still some situations on the road can only be described using formulae rather than action.
Additionally, actions take zero time in the model, so one could argue that they are not observable from
the outside. So for the cars on the motorway that we want to control, we have MLSL actions as the input
to them, but the system produces evolutions of traffic snapshots as an output, which we observe through
MLSLS formulae.

Finite Semantics In [4], we introduced a finite semantics for TMLSL, suited for the finite sequences
that are usually available in runtime monitoring/enforcement and the reality on motorways. Intuitively,
a finite word of actions ω satisfies a formula ϕ in the finite semantics up to time t, TS,ω ⊧t ϕ iff there
exists at least one suffix m′ s.t. m(TS,ω).m′ ⊧SCL ϕ in the infinite semantics.

C. Bischopink 135

3 Decidability Results

Regarding the decidability of TMLSL, we point out that the logic is at least semi-decidable [3]. In
answering this question, we considered maximum values on the acceleration of the cars (from accmin to
accmax) and the speed (from 0 to spdmax), as in the real world there are (at least) physical bounds, too. We
do the same here. The decidability results of SCL and MLSLS do not directly transfer to TMLSL, as we
need to interpret the SCL-propositions, which are MLSLS-formulae, and the cars in the traffic snapshot
may not be able to behave as specified in TMLSL. One cause for only semi-decidability are the actions
regarding the dynamic behaviour along the lanes, the change of a car’s acceleration and the passing of
time. While it is easy to see what discrete actions need to be executed and when, given a timed sequence
of states m, it was unknown how many acceleration changes are needed to achieve cars behaving correct
with respect to the lengths constraints specified in m. In this paper, we give an algorithm that decides
this question. Before doing so, however, we start with an example (adjusted example of [3]):

Example 2. Consider a traffic snapshot with one lane and two cars A and B, B driving ahead of A, where
the distance between the two cars is equal to 21 and both of them have a speed of 4. For simplicity, we
furthermore assume that car B cannot change its acceleration, it is fixed at 0, the initial acceleration of
A does not matter. For this traffic situation, we have a specification expressing that the distance between
the two cars needs to be equal to 15 within 5 time units, formalised as the formula ϕ1 from Ex. 1.
Furthermore, assume that we have accmin = −10, accmax = 5 and spdmax = 13 as bounds on the dynamic
behaviour. In this example, there is no timed word of actions that allows the traffic snapshot to behave as
specified, if we only allow acceleration changes at one point in time, as we either obtain a speed to fast
or need to accelerate stronger than the specified bounds allow. If we allow acceleration changes at two
points, there is a solution: ω = ⟨(acc(A,0.75),0),(acc(A,−6),4)⟩. Letting one further time unit pass
results in a distance exactly 15.

As described in Sect. 2.1, the dynamics of each car C evolves according to the simple mechanical
equation pos′(C) = pos(C)+ spd(C) ⋅ t + 1

2 ⋅acc(C) ⋅ t2, with t being the time that elapses and pos′(C) the
new position of C. The speed evolves according to spd′(C) = spd(C)+ t ⋅acc(C).

For a finite timed sequence of states m = ⟨(s0,I0), . . . ,(sm,Im)⟩ and a number n of points in which we
can split the interval I = [0,t] = ⟨I0, . . . ,Im⟩, we define DYN(m,n,I) as the set of equations that describe
the solution space of m on the (timing) interval I for these n splitting points. In the equations listed
below, we only consider the length measurements/constraints that we need to satisfy in si, as the question
which discrete actions one need to execute between two phases is easy to answer. We summarise these
constraints as θm(t) for the length constraints that occur in the phase (si,Ii) of m with t ∈ Ii. Iff the
difference in the position of any two cars affected by it satisfies θm(t) at point t, we denote this as
∆pos(t) ⊧ θm(t). Please note that θm(t) can consist of an arbitrary number of constraint, e.g. when we
require that the distance between two cars is smaller than some value and greater than some other value,
for example when we want to exclude (potential) collisions while being quite close to the car in front.
Additionally, θm(t) can constrain the distance between more than two cars.

136 Enforcing Timing Properties

DYN(m,n,I) =
pos0(C) and spd0(C) are as in TS0, (1)

posn(C) = posn−1(C)+ spdn−1(C) ⋅ tn−1 ⋅
1
2
⋅accn−1(C) ⋅ t2

n−1, (2)

spdn(C) = spdn−1(C)+accn−1(C) ⋅ tn−1, (3)

∀t′ ∈ I ∶ ∆pos(t) ⊧ θm(t) and (4)

∀t′ ∈ I, ∀C ∈ cs ∶ spdt′(C) and acct′(C) remain in the specified bounds. (5)

An illustration of the solution space and a solution we are searching for for two cars is depicted in
Fig. 2. As one can see, we want to find out how many splitting points there need to be such that the
difference in the position of the cars satisfies the spatial constrains θi of each phase (si,Ii) of m as well as
the constraints on the speeds of the cars. The possible curves for the relative position that the evolution
yields are furthermore constrained by the maximal and minimal acceleration forces possible. Initial
values for the relative position and the speeds are fixed, as they are determined by the traffic snapshot
from which on we ask for a satisfying sequence of actions. In the figure, we have both a maximum and
a minimum spatial constraint on the distance between the cars in each of the phases. Please note that
also a single constraint (distance is e.g. greater than some value) or even no constraint (the distance
between the cars is not important in this phase) is possible. Despite being possible, the later one should
usually not occur because requiring collision freedom should always be included in a specification, which
immediately imposes length constraints.

If DYN(m,n,I) is satisfied, n splitting points are sufficient to obtain a satisfying sequence of actions
that satisfies the behaviour specified by m. We furthermore need a relaxed version DYN′(m,n,I), which
is equivalent to DYN, except that we alter equation (4) and remove the length constraint on the last phase
of m not reached. Please note that we can rewrite the equations (4) and (5) in an equivalent form that
does not use quantifiers, so we gain an easy to solve equation system not dealing with quantifiers over
infinite domains.

Later, we are interested how DYN′ behaves when answering the question whether or not there is
a solution to DYN. For this purpose, we denote with max_extension(DYN′) the maximal value x s.t.
DYN′(m,n,[0,x]) has a solution. Similarly, we denote with max_outcome_pos(DYN′) the largest inter-
val [y,y′] s.t. DYN′(m′,n,I) has a solution, where m′ is identical to m except that in the last phase, the
length constraints are replaced with [y,y′]. max_outcome_spd(DYN′) is the largest interval [z,z′] for the
speed that a car can have when exceeding I while DYN′(m,n,I) still has a solution.

Despite not focusing on that topic, we would like to mention that both max_outcome_pos(DYN′) and
max_outcome_spd(DYN′) are vectors, the first one over the differences in positions that are compared
in the phases and the second one over the cars.

Utilising the aforementioned equations, we now can give an answer to the question whether or not
there is a satisfying sequence of actions s.t. the cars behave as specified:

Theorem 1 (Number of Accelerations). Given a traffic snapshot TS and timed sequence of states m =
⟨(s0,I0), . . . ,(sn,In)⟩ with adjacent intervals Ii and sets si of lengths constraints θ between the cars to
achieve, one can decide after finitely many steps whether or not there is a sequence of acceleration
changes ω = ⟨(α0,t0), . . . ,(αn′ ,tn′)⟩ s.t. m(TS0,ω) =m.

We can decide this question using Alg. 1.

C. Bischopink 137

Time

pos0

0

∆pos

θmax
0

θmin
0

t

θmax
1

θmin
1

t′

Time

spdA
0

spdB
0
0

spd spdmax

tt′

0 Time

acc accmax

accmin

tt′

accB0

accA0 accB0

accA0

Figure 2: Dynamic Evolution of two cars on a timing interval with one additional acceleration change
for each car in between. For a sequence of actions that satisfies the specification, all values need to
stay inside the specified intervals. For the relaxed version DYN′, this does not apply for the last length
constraint (θ1 here).

138 Enforcing Timing Properties

Algorithm 1 Deciding Acceleration
Require: Input: sequence of states m = ⟨p1, . . . , pm⟩, Interval I = [0,t]

1: n← 0; i← 1;
2: while i ≤m do
3: m′← ⟨p1, . . . , pi⟩;
4: while max_extension(DYN′(m′,I,n)) ≠max_extension(DYN′(m′,I,n+1))
5: ∨max_outcome_pos(DYN′(m′,I,n)) ≠max_outcome_pos(DYN′(m′,I,n+1))
6: ∨max_outcome_spd(DYN′(m′,I,n)) ≠max_outcome_spd(DYN′(m′,I,n+1)) do
7: n← n+1;
8: end while
9: i← i+1;

10: end while
11: if DYN(m,I,n) has a solution then
12: return ⟨(acc0(C),t0), . . . ,(accn(C),tn)⟩ of DYN(m,I,n) (for each car C)
13: else
14: return no Solution existent.
15: end if

Lemma 1 (Termination and Correctness). Algorithm 1 terminates iff a solution is found and returns it or
there is no solution at all.

Proof. (sketched) Alg. 1 subsequently maximises the outcome that the dynamics (position and speed)
may have after each phase of m, iterating through prefixes m′ of m, solving DYN′ for this prefix. The first
line of the second while-condition (line 4) ensures that we have sufficiently many splitting points such
that we reach the right (time) border of the phase. Line 5 ensures that we maximise the difference in the
position between two cars at the end of the current phase pi, where line 6 maximises the differences in
their speeds. If none of these values increases any further within one iteration, no further iteration will.
Aborting then is possible because the outcome of the dynamics is strictly monotone in the number of
splitting points and thus has converged against a solution that is maximal for the phase.

This result is needed in the next section:

4 Enforcement

We now present our – in comparison to [4]– enhanced runtime enforcement approach, utilising the results
from the previous section.

In this section, we show how cars can find actions to execute in a distributed manner s.t. the overall
evolution of the traffic snapshot satisfies the specified properties up to some time bound. In distinction
to previous work [4], where the cars non-deterministically guessed actions to execute, they now only
propose timed sequences of states that are valid at least for their own properties. The proposed sequences
ΠC are afterwards – either by one of the cars or by another central entity – combined into a set of timed
sequences of states Π, where each sequence represents a combined behaviour of all cars. It is then
checked for the existence of a satisfying sequence of actions ω . If existent, the participating cars get
informed over the timed actions ωc they themself must execute to comply to ω .

C. Bischopink 139

As the sequences Π are in the end checked by a single entity, one could argue that it would be
easier to refrain from having the specification distributed over all cars. There are, however, several
benefits that one gains when using the more distributed approach. First of all, the whole specification
does not need to be known beforehand, neither to the other cars nor to the entity that checks if there
is a satisfying sequence of actions. Being able to handle such cases is one big strength of runtime
enforcement approaches. Additionally, only the specification up to some time bound needs to be known,
not the behaviour beyond that timed horizon, which might not be of interest to the others. Therefore,
each car knows its whole specification completely and the central entity/other cars just enough to fulfil
its/their task(s). While this argument mostly aimed at privacy concerns, we can also consider it in the
light of complexity: The size of the region automaton is exponential in the size of the corresponding SC
automaton, which itself is exponential in the size of the specification in SCL. When we considers that
only the behaviour up to some time bound is of interest to us, a central SC automaton or even worse,
region automaton, would be unnecessary large.

We now focus on the question wherefrom the cars know which timed sequences of states to announce.
This includes getting sequences of regions first (Lemma. 2) and computing a satisfying timed sequence
of states from them (Lemma. 3).

Before doing so, we would like to mention some results from [4]: Given an region automatonR(Aψ)
for a specification ψ in SCL, one can label some of the states as bad, these are the once that, if reached,
do not allow the run of the region automaton to be extended in a way that allow ψ to get satisfied. Vice
versa, if a sequence ends in a state that is not bad, one can extend it in a way s.t. ψ is satisfied.

The second case, however, does not hold if we consider specifications ϕ in TMLSL rather than SCL:
Here, it can be the case that the region automaton claims that there is an extension s.t. ϕ is satisfied, but
the cars are not able to behave in a way that conforms to this extension. Thus, the sequences of regions
that the region automaton suggests as satisfiable might actually not be satisfiable (but are candidates):
Lemma 2 (Sequences of regions as potential solutions). In every traffic snapshot TS, one can compute
the set Π of sequences of regions π = ⟨[νi], . . . ,[ν j]⟩ that start with the region [νi] reached in the region
automaton R(Aϕ) in the evolution towards TS and are candidates for satisfying runs of the region
automaton. Moreover, there is no sequence π

′ not in Π but with m(π
′) ⊧t ϕ .

Proof. Using Def. 3 of [4], we can compute the set of locations {l0, . . . , ln} that the SC automaton Aϕ

reaches along the evolution towards TS. Each location l ∈ {l0, . . . , ln} corresponds to a set of regions
{[ν1], . . . ,[νm]}, with [νi] ⊧ ∆x(l) that is, the region [νi] satisfies the clock constraints over the history
clocks of the location l and especially p ∈ L(li) iff [νi](p) = 0 for every proposition p. We ignore
constraints over the prophecy clocks here, because the future is (at least at the end of the sequence)
unknown and the history clocks are sufficient for determining the intervals.

Given a sequence of regions, we can compute a timed sequence of states that satisfies the sequence
of regions:
Lemma 3 (From regions to timed sequences of states). For every sequence of regions π = ⟨[ν0], . . . ,[νn]⟩
one can construct a timed sequence of state m(π) = ⟨(s0,I0), . . . ,(sm,Im)⟩ s.t. m ⊧ π .

Proof. For simplicity, we assume that there is a global clock that is not reset, counting the time from the
beginning of the sequence. Starting with [ν0] and subsequently going trough all [νi], we determine for
each point in time t which propositions p are valid in it, which is achieved by looking at formulae of the
form xp = 0. To determine the shape of the intervals ([],(),[) or (]), we consider the (in-)equalities in
the regions: If some p is valid in the next point in time, yp = 1 leads to a closed interval border (“]”),
yp < 1 leads to an open one (“)”). We do the same for the history clocks xp.

140 Enforcing Timing Properties

As all cars announce timed sequences of states, we need to combine them into a single sequence that
the central entity can check:

Lemma 4 (Combining Sequences of states). Given two finite timed sequences of states m1 and m2, one
can construct a timed sequence m s.t. for every ϕ ∶ m1 ⊧ ϕ ∨m2 ⊧ ϕ Ô⇒ m ⊧ ϕ .

Proof. We start with an “empty” sequence m = ⟨(_,[0,0]),(_(0,1)),(_,[1,1]),(_,(1,2)), . . .(_,In)⟩.
Going through each state (_,Ii) of m, we look in both m1 and m2 and insert the propositions from
the states (s j,I j), where I j contains Ii. If it happens that for some two neighbouring states (si,Ii) and
(si+1,Ii+1), si = si+1 holds, we can fuse the two into a single state (si,Ii+ Ii+1). As a last step, we check
if the resulting sequence is consistent. If it happens that there is a contradiction in one of the states,
say cl(A) and ¬cl(A) need to hold in the same (time) interval, the timed sequence of states cannot be
satisfied at all and is thus invalid.

Please note that the other direction not necessarily holds, as e.g. p1∧ p2 could hold in [1,1] of m,
but in m1 only p1 and in m2 only p2 holds in the respective interval.

We utilise the aforementioned results in the controllers of the cars and the central entity that deter-
mines whether a solution exists. The controller is depicted in Fig. 3 and the central entity RSU (Road-
Side Unit) in Fig. 4.

q0 q1 q2 q3

com?⟨(α,t)⟩
R.update(α,t)

send!⟨ΠC⟩ receive?ω = ⟨(α0,t0), . . . ,(αn,tn)⟩

execute_and_remove first(ω)

is_empty(ω)

Figure 3: Controller for each car C, each is equipped with an instance of it. The controller keeps track
of the traffic situation in q0 and updates the sequences it could announce accordingly. When announcing
the sequences ΠC, it proceeds to q1 and waits for a positive response from the central entity and executes
the sequence of actions ω that it received from there, until there are not further actions to execute. Please
note that we omitted clock constraints to actually force the controller to leave a state.

Both of them use several functions on their transitions. In the controller, R.update(α,t) is used
so that the internal region automaton keeps track about the behaviour on the road and thus is in the
correct state(s), before the enforcement mechanism is triggered. In this location, we may already have an
evolution that leads to a state s.t. all further extensions are unsatisfiable. If such a behaviour is undesired,
constraints should be added s.t. one does not stay in this location. execute_and_remove_first(ω) takes
the first time stamped action (α1,t1) from the action sequence ω = ⟨(α1,t1), . . . ,(αn,tn)⟩, waits until the
clock reaches t1 and executes α1. Afterwards, this element is removed from ω , so that the next action is
ready to be executed. is_empty(ω) is true for the empty sequence ⟨⟩.

In RSU, the function D.push(ΠC) is used to internally store the announced sets of timed sequences
of states ΠC for each car C in some data structure D. The set of sequences representing all possible
satisfying sequences for all cars is constructed using combine(C1, . . . ,Cn) and stored in Π. Using Alg. 1,
it can then decide whether or not one of the sequences in Π is one for which there is a satisfying sequence
of actions. If so, the solution ω is computed and afterwards split into single solutions ωc for each car
c, so that every car only gets informed of the actions it itself has to execute. After informing a car, it is
removed from the data structure D.

C. Bischopink 141

p0 p1

p2

p3

p4
send?⟨ΠC⟩

D.push(ΠC)

Π ∶= combine(ΠC1 , . . . ,ΠCn)

Π is sat.
with solution

ω

Π not sat.

inform(ωc)
C.remove(c)

is_empty(C)

Figure 4: Central Entity RSU. RSU waits in p0 for announced sequences ΠCi from the cars and combines
them into a single set of sequences Π, which it than can check for a satisfying run. If positively answered,
it sends the sequence to execute to each car.

The communication takes place over the channels com, over which the cars announce action they
execute before the enforcement mechanism is triggered. Channel send is used to inform RSU about the
possible plans Πc of each car. receive is used for the opposite direction, informing the cars which actions
to execute.

Theorem 2 (Correct- and Soundness). If the controller from Fig. 3 proceeds to location q3, the specifi-
cation of all cars is satisfied up to the given time bound t. If it cannot proceed to location q3, then there
is no sequence of actions for the cars to take that respects the specification of all cars.

Proof. Due to Lemma 2, we get all possible satisfying sequences of regions of cars. Due to Lemma 3,
we can compute equivalent timed sequences of states from them. Lemma 4 lets us combine them towards
some Π on the transition from p0 to p1 in RSU s.t. all possible combinations of solutions for all cars are
considered. Each of them is checked using Alg. 1, so the due to Lemma 1, the solution found is a correct
one.

If RSU reaches location p3, the specification is unsatisfiable, so there is no sequence of actions for
the cars to execute. In this case collision freedom can still be guaranteed (assuming that there were no
collisions yet), as the reservations of the cars occupy a space big enough to come to a standstill within
that space.

Remark 3 (Number of sequences to consider). If all cars announce all timed sequences of states that
satisfy their specification, the central entity/road-side unit needs to check all combinations of these se-
quences (with exactly one sequence in the combination for each car), resulting in a lot of computation.
However, these computations do not depend on each other and can thus be parallelised. If we consider
that the cars themself compute this, rather than some road cite unit, one can think of a more advanced
protocol than the one proposed here, where the cars distribute the sequences to check and thus the com-
putational effort between each other.

Remark 4 (Discrete Actions). Through both Sect. 3 and Sect. 4, we only considered how the cars can
change their accelerations to ensure that they satisfy the length measurements in the specification, ig-
noring the discrete actions completely. As said, given a timed sequence of states, it is easy to see what

142 Enforcing Timing Properties

discrete actions are to execute when, as they directly change the formulae valid and thus the phase.
Some of them, however, need to be respected when constructing the length comparisons θi that we check
in DYN.

5 Conclusion

Contribution In this paper, we proposed a runtime enforcement approach for autonomous car in mo-
torway traffic, employing communication between the cars, where the knowledge about the satisfaction
of a property is represented using a region automaton. In answering the question whether or not a spec-
ification (now in the form of a timed sequence of states) is satisfiable, we were able to eliminate one of
the roots for the semi-decidability of the satisfiability problem of TMLSL.

Future Work Future work on the topic includes studying the satisfiability problem of TMLSL again,
in an effort to show that the logic is indeed decidable over infinite runs. Further topics also include the
extension of the logic and the proposed runtime enforcement approach towards the aforementioned more
complex road topologies. Both of them offer some challenges in the semantics and runtime enforcement,
as their models are more complicated that the ones for motorway traffic. For urban traffic, the assump-
tion that there is a central entity that all cars can communicate with is not too far from reality, as on
almost all intersections traffic lights are present, some of which already communicate with the buses that
cross/approach them.

Steps towards an implementation for solving the decidability problem of T MLSL were made and
could be adjusted to be used in the runtime enforcement setting. With an implementation, we could also
examine if the proposed approach is suited for real-time applications like car control on motorways, e.g.
the computation happens fast enough.

Acknowledgements. We thank the anonymous reviewers for their helpful comments.

References
[1] Matthias Althoff, Sebastian Maierhofer & Christian Pek (2021): Provably-Correct and Comfortable Adaptive

Cruise Control. IEEE Trans. Intell. Veh. 6(1), pp. 159–174, doi:10.1109/TIV.2020.2991953.
[2] Rajeev Alur & David L. Dill (1994): A Theory of Timed Automata. Theor. Comput. Sci. 126(2), pp. 183–235,

doi:10.1016/0304-3975(94)90010-8.
[3] Christopher Bischopink & Ernst-Rüdiger Olderog (2022): Spatial and Timing Properties in Highway Traffic.

In Helmut Seidl, Zhiming Liu & Corina S. Pasareanu, editors: Theoretical Aspects of Computing - ICTAC
2022 - 19th International Colloquium, Tbilisi, Georgia, September 27-29, 2022, Proceedings, Lecture Notes
in Computer Science 13572, Springer, pp. 114–131, doi:10.1007/978-3-031-17715-6_9.

[4] Christopher Bischopink & Ernst-Rüdiger Olderog (2023): Time for Traffic Manoeuvres, pp. 163–179.
Springer Nature Switzerland, Cham, doi:10.1007/978-3-031-40132-9_11.

[5] Christopher Bischopink & Maike Schwammberger (2019): Verification of Fair Controllers for Urban Traf-
fic Manoeuvres at Intersections. In Emil Sekerinski, Nelma Moreira, José N. Oliveira, Daniel Ratiu, Ric-
cardo Guidotti, Marie Farrell, Matt Luckcuck, Diego Marmsoler, José Creissac Campos, Troy Astarte, Laure
Gonnord, Antonio Cerone, Luis Couto, Brijesh Dongol, Martin Kutrib, Pedro Monteiro & David Delmas,
editors: Formal Methods. FM 2019 International Workshops - Porto, Portugal, October 7-11, 2019, Revised
Selected Papers, Part I, Lecture Notes in Computer Science 12232, Springer, pp. 249–264, doi:10.1007/978-
3-030-54994-7_18.

https://doi.org/10.1109/TIV.2020.2991953
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-031-17715-6_9
https://doi.org/10.1007/978-3-031-40132-9_11
https://doi.org/10.1007/978-3-030-54994-7_18
https://doi.org/10.1007/978-3-030-54994-7_18

C. Bischopink 143

[6] Martin Fränzle, Michael R. Hansen & Heinrich Ody (2015): No Need Knowing Numerous Neighbours -
Towards a Realizable Interpretation of MLSL. In Roland Meyer, André Platzer & Heike Wehrheim, editors:
Correct System Design, Lecture Notes in Computer Science 9360, Springer, pp. 152–171, doi:10.1007/978-
3-319-23506-6_11.

[7] Klaus Havelund & Allen Goldberg (2008): Verify Your Runs, pp. 374–383. Springer Berlin Heidelberg,
Berlin, Heidelberg, doi:10.1007/978-3-540-69149-5_40.

[8] Martin Hilscher, Sven Linker & Ernst-Rüdiger Olderog (2013): Proving Safety of Traffic Manoeuvres on
Country Roads. In Zhiming Liu, Jim Woodcock & Huibiao Zhu, editors: Theories of Programming and
Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday, Lecture Notes in
Computer Science 8051, Springer, pp. 196–212, doi:10.1007/978-3-642-39698-4_12.

[9] Martin Hilscher, Sven Linker, Ernst-Rüdiger Olderog & Anders P. Ravn (2011): An Abstract Model for Prov-
ing Safety of Multi-lane Traffic Manoeuvres. In Shengchao Qin & Zongyan Qiu, editors: Formal Methods
and Software Engineering - 13th International Conference on Formal Engineering Methods, ICFEM 2011,
Durham, UK, October 26-28, 2011. Proceedings, Lecture Notes in Computer Science 6991, Springer, pp.
404–419, doi:10.1007/978-3-642-24559-6_28.

[10] Kim Guldstrand Larsen, Marius Mikucionis & Jakob Haahr Taankvist (2015): Safe and Optimal Adap-
tive Cruise Control. In Roland Meyer, André Platzer & Heike Wehrheim, editors: Correct System De-
sign, September 8-9, 2015. Proceedings, Lecture Notes in Computer Science 9360, Springer, pp. 260–277,
doi:10.1007/978-3-319-23506-6_17.

[11] Kim Guldstrand Larsen, Paul Pettersson & Wang Yi (1997): UPPAAL in a Nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1-2), pp. 134–152, doi:10.1007/s100090050010.

[12] Sarah M. Loos, André Platzer & Ligia Nistor (2011): Adaptive Cruise Control: Hybrid, Distributed, and
Now Formally Verified. In Michael J. Butler & Wolfram Schulte, editors: FM 2011: Formal Methods - 17th
International Symposium on Formal Methods, Limerick, Ireland, 4, 2011. Proceedings, Lecture Notes in
Computer Science 6664, Springer, pp. 42–56, doi:10.1007/978-3-642-21437-0_6.

[13] Heinrich Ody (2015): Undecidability Results for Multi-Lane Spatial Logic. In Martin Leucker, Camilo
Rueda & Frank D. Valencia, editors: Theoretical Aspects of Computing - ICTAC, Lecture Notes in Computer
Science 9399, Springer, pp. 404–421, doi:10.1007/978-3-319-25150-9_24.

[14] Heinrich Ody (2020): Monitoring of traffic manoeuvres with imprecise information. Ph.D. thesis, University
of Oldenburg, Germany. Available at https://oops.uni-oldenburg.de/4730.

[15] Jean-François Raskin & Pierre-Yves Schobbens (1997): State Clock Logic: A Decidable Real-Time Logic.
In Oded Maler, editor: Hybrid and Real-Time Systems, International Workshop. HART’97, Grenoble,
France, March 26-28, 1997, Proceedings, Lecture Notes in Computer Science 1201, Springer, pp. 33–47,
doi:10.1007/BFb0014711.

[16] Fred B. Schneider (2000): Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), pp. 30–50,
doi:10.1145/353323.353382.

[17] Maike Schwammberger (2018): An abstract model for proving safety of autonomous urban traffic. Theor.
Comput. Sci. 744, pp. 143–169, doi:10.1016/j.tcs.2018.05.028.

[18] Maike Schwammberger (2018): Introducing Liveness into Multi-lane Spatial Logic lane change controllers
using UPPAAL. In Mario Gleirscher, Stefan Kugele & Sven Linker, editors: Proceedings 2nd International
Workshop on Safe Control of Autonomous Vehicles, SCAV@CPSWeek 2018, Porto, Portugal, 10th April
2018, EPTCS 269, pp. 17–31, doi:10.4204/EPTCS.269.3.

[19] J. C. P. Woodcock & Jim Davies (1996): Using Z - specification, refinement, and proof. Prentice Hall
international series in computer science, Prentice Hall.

https://doi.org/10.1007/978-3-319-23506-6_11
https://doi.org/10.1007/978-3-319-23506-6_11
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-642-39698-4_12
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-319-25150-9_24
https://oops.uni-oldenburg.de/4730
https://doi.org/10.1007/BFb0014711
https://doi.org/10.1145/353323.353382
https://doi.org/10.1016/j.tcs.2018.05.028
https://doi.org/10.4204/EPTCS.269.3

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 144–152, doi:10.4204/EPTCS.395.10

© T. Badings, L. Romao, A. Abate, N. Jansen
This work is licensed under the
Creative Commons Attribution License.

Correct-by-Construction Control for Stochastic and
Uncertain Dynamical Models via Formal Abstractions

Thom Badings Nils Jansen
Radboud University

Nijmegen, the Netherlands
thom.badings@ru.nl

Licio Romao Alessandro Abate
University of Oxford

Oxford, United Kingdom

Automated synthesis of correct-by-construction controllers for autonomous systems is crucial for their
deployment in safety-critical scenarios. Such autonomous systems are naturally modeled as stochastic
dynamical models. The general problem is to compute a controller that provably satisfies a given
task, represented as a probabilistic temporal logic specification. However, factors such as stochastic
uncertainty, imprecisely known parameters, and hybrid features make this problem challenging.
We have developed an abstraction framework that can be used to solve this problem under various
modeling assumptions. Our approach is based on a robust finite-state abstraction of the stochastic
dynamical model in the form of a Markov decision process with intervals of probabilities (iMDP). We
use state-of-the-art verification techniques to compute an optimal policy on the iMDP with guarantees
for satisfying the given specification. We then show that, by construction, we can refine this policy
into a feedback controller for which these guarantees carry over to the dynamical model. In this short
paper, we survey our recent research in this area and highlight two challenges (related to scalability
and dealing with nonlinear dynamics) that we aim to address with our ongoing research.

1 Introduction

Controlled autonomous systems are increasingly deployed in safety-critical settings [30]. When the
transitions between states are specified by probabilities, autonomous systems can often be naturally
modeled as stochastic dynamical models [26]. For deployment in safety-critical settings, controllers for
stochastic models must act safely and reliably with respect to desired specifications. Traditional control
design methods use, e.g., Lyapunov functions and optimization to provide guarantees for simple tasks such
as stability, convergence, and invariance [11]. However, alternative methods are needed to give formal
guarantees about richer temporal specifications relevant to, for example, safety-critical applications [20].

Formal controller synthesis Temporal logic is a rich language for specifying the desired behavior
of autonomous systems [32]. In particular, probabilistic computation tree logic (PCTL, [25]) is widely
used to define temporal requirements on the behavior of probabilistic systems. For example, in a motion
control problem for an unmanned aerial vehicle (UAV), a PCTL formula can specify that, with at least
90% probability, the UAV must safely fly to a target location within 2 minutes without crashing into
obstacles (commonly known as a reach-avoid specification [21]). Leveraging tools from probabilistic
verification [9], the problem is to synthesize a controller that ensures the satisfaction of such a PCTL
formula for the model under study [24]. Finite abstractions can make continuous models amenable to
techniques and tools from formal verification: by discretizing their state and action spaces, abstractions
result in, e.g., finite Markov decision processes (MDPs) that soundly capture the continuous dynamics [2].
Verification guarantees on the finite abstraction can thus carry over to the continuous model.

http://dx.doi.org/10.4204/EPTCS.395.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

T. Badings, L. Romao, A. Abate, N. Jansen 145

Stochastic
dynamical modelAbstract iMDP

Optimal policy
on abstract iMDP

Certifiably correct
feedback controller

State space

partition

Speci�cation

Create

abstraction

Planning

on iMDP

UNSAT? m
Improve abstraction

SAT? ¢

Extract

policy

State xk
Control

input uk

Offline planning Online control

Figure 1: Our overall approach integrated into a safe model-based learning framework.

Problem statement In this research, we adopt such an abstraction-based approach to controller synthesis
for autonomous systems. Our goal is to compute feedback controllers that provably satisfy a given temporal
logic specification. In this short paper, we focus on reach-avoid specifications, but most of our approaches
can readily be extended to general PCTL properties [35]. We consider the following general problem:

Given (1) a discrete-time stochastic dynamical model and (2) a reach-avoid specification, compute
a feedback controller together with a certificate in the form of a probability threshold, such that the
induced closed-loop system satisfies this specification with at least this certified probability.

In this paper, we survey our recent work in which we have considered this general problem under various
modeling assumptions. First, we provide a general introduction to our abstraction framework. Thereafter,
we summarize our main results from several recent papers [7, 5, 8, 35]. Finally, we highlight two key
challenges that remain open, and we describe our current research plans that aim to address these changes.

Our abstraction framework Our general abstraction framework is shown in Fig. 1. First, we compute
a finite-state abstraction of the stochastic dynamical model [38], which we obtain from a partition of
its continuous state space into a set of disjoint convex regions. Actions in this abstraction correspond
to continuous control inputs that yield transitions between these regions. Due to the stochastic noise
in the dynamical model, the outcome of an action is stochastic, rendering transitions probabilistic. We
capture these probabilities in a Markov decision process (MDP) [34]. A defining characteristic of our
approach is that we leverage backward reachability computations on the dynamical model to determine
which actions are enabled at each discrete region. By contrast, most other abstraction methods rely on
forward reachability computations, which are associated with errors that grow with the time horizon of
the property (see related work for details). Our backward scheme avoids such abstraction errors, at the
cost of requiring slightly more restrictive assumptions on the model dynamics (see, e.g., [8] for details).

Interval MDPs Computing the transition probabilities of the abstraction is subject to estimation errors.
To be robust against estimation errors in these probabilities, we use data-driven techniques [13, 36] to
compute upper and lower bounds on the transition probabilities with a predefined confidence level. We
formalize our abstractions with the probably approximately correct (PAC) probability intervals using
so-called iMDPs, which are an extension of MDPs with intervals of probabilities [22]. Policies for iMDPs
have to robustly account for all possible probabilities within the intervals [33, 39]. In our implementation,
we compute robust policies using robust value iteration within the probabilistic model checker PRISM [27].
We show that any policy on the iMDP can be refined into a piecewise linear feedback controller for the
dynamical model. Crucially, the probability of satisfying the reach-avoid property on the iMDP is a lower
bound on the satisfaction probability for the dynamical model, thus solving the problem above.

146 Correct-by-Construction Control for Stochastic and Uncertain Dynamical Models

Figure 2: UAV reach-avoid problem (goal in green;
obstacles in red), plus simulations with the opti-
mal iMDP-based controller from initial state x0 =
[−14,0,6,0,−6,0]>, under high/low turbulence.

2
5

2
5
0

2
,5
0
0

0

0.25

0.5

0.75

1

Number of samples (N)

R
ea

ch
ab

ili
ty

pr
ob

ab
ili

ty

Guarantees iMDP
Empirical iMDP
Guarantees MDP
Empirical MDP

Figure 3: Reach-avoid guarantees on the iMDPs
(blue) and MDPs (orange) for their respective poli-
cies, versus the resulting empirical (simulated)
performance (dashed lines) on the dynamical sys-
tem. The empirical performance obtained from the
MDPs violates the guarantees, whereas that from
the iMDPs does not.

Related work Abstractions of stochastic models are well-studied [2, 3], with applications to stochas-
tic hybrid [16, 29], switched [28], and partially observable systems [6, 23]. Various tools exist, e.g.,
StocHy [15] and ProbReach [37]. A distinguishing feature of our abstraction scheme is that we use
backward reachability computations on the model dynamics to determine the subset of actions enabled
in each abstract state. By contrast, standard abstraction methods typically rely on forward reachability
computations based on discretizing the control input space. In particular, such forward methods propagate
sets of states X̂ ⊂ Rn forward through the model dynamics under discretized input ûuuk (see the notation
from Eq. (1)). Since the noise ηk is stochastic, this yields a set of distributions over successor states,
which can be difficult to reason over. By contrast, with our backward computations, each abstract action
yields a single distribution, which is independent of where this action was chosen. However, this requires
a higher degree of system controllability, as discussed in more detail in [8, Assumption 2].

2 Correct-by-Construction Control via Formal Abstractions

In general, we consider discrete-time, continuous-state dynamical models, where the progression of the
state x ∈ Rn depends linearly on the current state, on a control input, and on a process noise term. Given a
state xk at discrete time k ∈ N, the successor state xk+1 at time k+1 is computed as

xk+1 = Axk +Buk +qk +ηk, (1)

with matrices A and B, and a continuous control input uk ∈U ⊆ Rp (i.e., action). The term ηk ∈ ∆⊂ Rn

is an arbitrary additive process noise term, which is an i.i.d. random variable defined on a probability
space (∆,D ,P), with σ -algebra D and probability measure P defined over D . A controller (i.e., control
policy) c : Rn×N→U chooses a control input based on the current state x ∈ Rn and time k ∈ N.

We now highlight some of the variants of the problem stated in Sect. 1 we have considered thus far.

T. Badings, L. Romao, A. Abate, N. Jansen 147

2.1 Stochastic noise of unknown distribution

It is commonly assumed that the distribution of the process noise ηk is known and/or Gaussian [31].
However, in many realistic problems, this assumption yields a poor approximation of the uncertainty [12].
Distributions may even be unknown, meaning that one cannot derive a set-bounded or a precise proba-
bilistic representation of the noise. In this case, it is generally hard or even impossible to derive hard
guarantees on the probability that a given controller ensures the satisfaction of a reach-avoid property.

In papers [5, 8], we thus consider a variant of the controller synthesis problem from Sect. 1 for
dynamical systems with additive process noise of an unknown distribution. Specifically, the probability
measure P of the noise ηk ∈ ∆⊂ Rn is unknown but time-invariant. To deal with this lack of knowledge,
we adapt tools from the scenario approach [14, 13] to compute PAC interval estimates for the transition
probabilities of the abstract model based on a finite set of samples of the noise. We capture these bounds
in the transition probability intervals of a so-called interval Markov decision process (iMDP). This iMDP
is, with a user-specified confidence probability, robust against uncertainty in the transition probabilities,
and the tightness of the probability intervals can be controlled through the number of samples.

In [8], we use this method to solve a reach-avoid problem for a UAV operating under turbulence
(we compare scenarios with different turbulence levels), represented by stochastic noise of unknown
distribution. The UAV is modeled by a 6D dynamical model (we refer to [8] for the explicit model). In
Fig. 2, we show simulations under the optimal controller for two turbulence levels. Under low noise, the
controller prefers the short but narrow path. On the other hand, under high noise, the longer but safer path
is preferred. Thus, accounting for process noise is important to obtain controllers that are safe.

We also compared our robust iMDP approach against a naive MDP abstraction. This MDP has
the same states and actions as the iMDP, but uses precise (frequentist) probabilities. The maximum
reachability probabilities (guarantees) for both methods are shown in Fig. 3. For every value of N, we
apply the resulting controllers to the dynamical system in Monte Carlo simulations with 10,000 iterations
to determine the empirical reachability probability. Fig. 3 shows that the non-robust MDPs yield poor
and unsafe performance guarantees: the actual reachability of the controller is much lower than the
reachability guarantees obtained from PRISM. By contrast, our robust iMDP-based approach consistently
yields safe lower bound guarantees on the actual performance of controllers.

2.2 Set-bounded parameter uncertainty

The approach described in Sect. 2.1 requires precise knowledge of the model parameters (namely, the
matrices A and B). However, in many realistic cases, there is epistemic uncertainty about the precise values
of these parameters. For example, consider again the UAV from Sect. 2.1. As shown in Fig. 4, the drone’s
dynamics depend on uncertain factors, such as the wind and the drone’s mass. We assumed that the wind
is adequately described by a probabilistic model, reflected in the process noise ηk. Now, let us assume we
know that the drone’s mass lies between 0.75–1.25kg, but we do not have information about the likelihood
of each value, so employing a probabilistic model is unrealistic. Thus, we treat epistemic uncertainty in
such imprecisely known parameters (in this case, the mass) using a nondeterministic framework instead.

We have recently extended our abstraction framework in [7] to capture both stochastic noise and
set-bounded uncertain parameters. Specifically, we synthesize a controller that (1) is robust against
nondeterminism due to parameter uncertainty and (2) reasons over probabilities derived from stochastic
noise. In other words, the controller must satisfy a given specification under any possible outcome of
the nondeterminism (robustness) and with at least a certain probability regarding the stochastic noise
(reasoning over probabilities). As before, we wish to synthesize a controller with a PAC-style guarantee:

148 Correct-by-Construction Control for Stochastic and Uncertain Dynamical Models

System

s
Controller

Control
input

Ù
−

Ù
+Ù

−

Ù
+

P
{
Ü = high

}

P{ Ü = low }

Figure 4: Stochastic uncertainty in the wind (Ö) causes probability distributions over outcomes of controls,
while set-bounded uncertainty in the mass (Ó) of the drone causes state transitions to be nondeterministic.

we wish to find a controller that satisfies a reach-avoid specification with at least a desired lower bound
threshold probability, and (because our algorithm involves random sampling) that claim should hold with
at least a predefined confidence level.

Our experiments in [7] show that we can synthesize controllers that are robust against uncertainty and,
in particular, against deviations in the model parameters. Moreover, we show that our method can be used
to faithfully capture any uncertainty or error term in the dynamical model that is represented by a bounded
set, thus opening the door for the abstraction of nonlinear systems.

2.3 Markov jump linear systems

Our approaches described so far are limited to systems with purely continuous dynamics. Thus, these
approaches are incompatible with cyber-physical systems, which are characterized by the coupling of
digital (discrete) with physical (continuous) components. This results in a hybrid system that can jump
between discrete modes of operation, each of which is characterized by its own continuous dynamics [29].

To alleviate this restriction, we have extended our abstraction framework in [35] to Markov jump
linear systems (MJLSs), which are a well-known class of stochastic, hybrid models suitable for capturing
the behavior of cyber-physical systems [19]. An MJLS consists of a finite set of linear dynamics defined
by Eq. (1) (also called operational modes), where jumps between these modes are governed by a Markov
chain (MC). If mode jumping can be controlled, the jumps are governed by an MDP. Due to the jumping
between modes, the overall dynamics of an MJLS are nonlinear, making controller synthesis challenging.
For brevity, we refer to [35] for further results in this problem setting.

3 Current research directions

As discussed above, we have considered the general problem in Sect. 1 under various model assumptions.
At the same time, each of those settings suffers from its limitations and necessary assumptions, so the
general problem of optimal control under uncertainty is far from solved. In this section, we discuss two
key limitations of our current framework, which are related to scalability and to linearity of the dynamics.
Moreover, we describe how we try to address both of these challenges with our ongoing research.

3.1 Neural-guided abstraction of nonlinear systems

Thus far, our research has focused on dynamical models with linear dynamics. Extensions to nonlinear
dynamical systems are non-trivial and may require more involved reachability computations [10, 17].
Specifically, the challenge is that the backward reachability computations involved in our approach may
become non-convex under nonlinear dynamics.

T. Badings, L. Romao, A. Abate, N. Jansen 149

Neural network partitioning A recent paper [1] has proposed to use feedforward neural networks
to learn state space partitions for nonlinear dynamical models into polyhedral regions. Inspired by this
approach, we are developing an abstraction procedure for nonlinear stochastic dynamical models, which
(1) learns a polyhedral state space partition using a neural network, and (2) constructs a piecewise linear
approximation of the nonlinear dynamics based on this partition. By defining the loss function for the
neural network such that it minimizes the linearization error across the partition, we hope to find smarter
partitions (into fewer elements and of better geometry) than the rectangular ones we employed thus far.

Abstraction of linearized dynamics To account for the error caused by the linearization, we add a
set-bounded nondeterministic disturbance to the linearized dynamics. As we have shown in [7], we
can robustly capture this set-bounded disturbance in an iMDP abstraction. However, the quality of the
abstraction largely depends on the size of the disturbance representing the linearization error. Thus, the
main challenge with this approach is to obtain a tight, set-bounded representation of the linearization error.

3.2 Abstractions of polyhedral Lyapunov functions

Discrete abstractions are computationally expensive in general due to the discretization of the state
space. For example, the number of abstract states scales exponentially with the dimension of the state
space, commonly called the curse of dimensionality. Moreover, adding robustness to multiple sources of
uncertainty (as we have done in [7] further increases the number of transitions modeled in the abstract
model). Thus, finding ways to reduce the complexity of abstraction while keeping their expressivity is a
challenging direction for further research.

Abstraction of Lyapunov functions Inspired by [18] and the large body of literature on Lyapunov and
Barrier functions [4], we are developing a method for abstracting stochastic dynamical systems using
Lyapunov functions. Specifically, we wish to generate an abstract model whose states represent annuli of
the sublevel sets of a Lyapunov function. A similar approach was used by [18]. However, the approach
by [18] relies on a strict decrease condition on the Lyapunov function and is therefore restricted to
nonstochastic linear systems only. Instead, we believe that our abstraction procedure based on backward
reachability analysis can be used to construct sound abstractions of sublevel sets of Lyapunov functions.

Complexity is independent of state dimension This envisioned abstraction of Lyapunov sublevel
sets avoids the need for an exhaustive partitioning of the state space. Notably, the number of states in
the envisioned abstraction is independent of the dimension of the state space. Thus, we believe that this
approach may significantly reduce the computational complexity of the abstraction.

4 Conclusions and Future Work

In this short paper, we have surveyed our recent research on abstraction-based controller synthesis for
stochastic and uncertain dynamical models. Based on a robust finite-state abstraction in the form of an
iMDP, we are able to synthesize controllers for dynamical models that provably satisfy given temporal
logic specifications, such as reach-avoid tasks. We have considered this general problem under various
modeling assumptions, including unknown noise distributions, imprecisely known model parameters, and
hybrid features. Moreover, we have highlighted two key challenges that are related to scalability and
extensions to nonlinear systems. With our ongoing research, we aim to address these challenges.

150 Correct-by-Construction Control for Stochastic and Uncertain Dynamical Models

Acknowledgements This research has been partially funded by NWO grant NWA.1160.18.238 (Pri-
maVera), by EPSRC IAA Award EP/X525777/1, and by the ERC Starting Grant 101077178 (DEUCE).

References
[1] Alessandro Abate, Alec Edwards & Mirco Giacobbe (2022): Neural Abstractions. In: NeurIPS.
[2] Alessandro Abate, Maria Prandini, John Lygeros & Shankar Sastry (2008): Probabilistic reachability

and safety for controlled discrete time stochastic hybrid systems. Automatica 44(11), pp. 2724 – 2734,
doi:10.1016/j.automatica.2008.03.027.

[3] Rajeev Alur, Thomas A. Henzinger, Gerardo Lafferriere & George J. Pappas (2000): Discrete abstractions of
hybrid systems. Proc. IEEE 88(7), pp. 971–984, doi:10.1109/5.871304.

[4] Aaron D. Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath & Paulo
Tabuada (2019): Control Barrier Functions: Theory and Applications. In: ECC, IEEE, pp. 3420–3431,
doi:10.23919/ECC.2019.8796030.

[5] Thom S. Badings, Alessandro Abate, Nils Jansen, David Parker, Hasan A. Poonawala & Mariëlle Stoelinga
(2022): Sampling-Based Robust Control of Autonomous Systems with Non-Gaussian Noise. In: AAAI, AAAI
Press, pp. 9669–9678, doi:10.1609/aaai.v36i9.21201.

[6] Thom S. Badings, Nils Jansen, Hasan A. Poonawala & Mariëlle Stoelinga (2023): Correct-by-
construction reach-avoid control of partially observable linear stochastic systems. CoRR abs/2103.02398,
doi:10.48550/arXiv.2103.02398.

[7] Thom S. Badings, Licio Romao, Alessandro Abate & Nils Jansen (2023): Probabilities Are Not Enough:
Formal Controller Synthesis for Stochastic Dynamical Models with Epistemic Uncertainty. In: AAAI, AAAI
Press, pp. 14701–14710, doi:10.1609/aaai.v37i12.26718.

[8] Thom S. Badings, Licio Romao, Alessandro Abate, David Parker, Hasan A. Poonawala, Mariëlle Stoelinga &
Nils Jansen (2022): Robust Control for Dynamical Systems with Non-Gaussian Noise via Formal Abstractions.
J. Artif. Intell. Res., doi:10.1613/jair.1.14253.

[9] Christel Baier & Joost-Pieter Katoen (2008): Principles of model checking. MIT Press.
[10] Somil Bansal, Mo Chen, Sylvia L. Herbert & Claire J. Tomlin (2017): Hamilton-Jacobi reachability: A brief

overview and recent advances. In: CDC, IEEE, pp. 2242–2253, doi:10.1109/CDC.2017.8263977.
[11] Calin Belta, Boyan Yordanov & Ebru Aydin Gol (2017): Formal Methods for Discrete-Time Dynamical

Systems. Springer International Publishing, doi:10.1007/978-3-319-50763-7.
[12] Lars Blackmore, Masahiro Ono, Askar Bektassov & Brian C. Williams (2010): A Probabilistic Particle-

Control Approximation of Chance-Constrained Stochastic Predictive Control. IEEE Trans. Robotics 26(3), pp.
502–517, doi:10.1109/TRO.2010.2044948.

[13] Marco C. Campi, Algo Carè & Simone Garatti (2021): The scenario approach: A tool at the service of
data-driven decision making. Annu. Rev. Control. 52, pp. 1–17, doi:10.1016/j.arcontrol.2021.10.004.

[14] Marco C. Campi & Simone Garatti (2008): The Exact Feasibility of Randomized Solutions of Uncertain
Convex Programs. SIAM J. Optim. 19(3), pp. 1211–1230, doi:10.1137/07069821X.

[15] Nathalie Cauchi & Alessandro Abate (2019): StocHy: Automated Verification and Synthesis of Stochastic
Processes. In: TACAS (2), Lecture Notes in Computer Science 11428, Springer, pp. 247–264, doi:10.1007/978-
3-030-17465-1_14.

[16] Nathalie Cauchi, Luca Laurenti, Morteza Lahijanian, Alessandro Abate, Marta Kwiatkowska & Luca Cardelli
(2019): Efficiency through uncertainty: scalable formal synthesis for stochastic hybrid systems. In: HSCC,
ACM, pp. 240–251, doi:10.1145/3302504.3311805.

[17] Xin Chen, Erika Ábrahám & Sriram Sankaranarayanan (2013): Flow*: An Analyzer for Non-linear Hybrid
Systems. In: CAV, Lecture Notes in Computer Science 8044, Springer, pp. 258–263, doi:10.1007/978-3-642-
39799-818.

https://doi.org/10.1016/j.automatica.2008.03.027
https://doi.org/10.1109/5.871304
https://doi.org/10.23919/ECC.2019.8796030
https://doi.org/10.1609/aaai.v36i9.21201
https://doi.org/10.48550/arXiv.2103.02398
https://doi.org/10.1609/aaai.v37i12.26718
https://doi.org/10.1613/jair.1.14253
https://doi.org/10.1109/CDC.2017.8263977
https://doi.org/10.1007/978-3-319-50763-7
https://doi.org/10.1109/TRO.2010.2044948
https://doi.org/10.1016/j.arcontrol.2021.10.004
https://doi.org/10.1137/07069821X
https://doi.org/10.1007/978-3-030-17465-1_14
https://doi.org/10.1007/978-3-030-17465-1_14
https://doi.org/10.1145/3302504.3311805
https://doi.org/10.1007/978-3-642-39799-818
https://doi.org/10.1007/978-3-642-39799-818

T. Badings, L. Romao, A. Abate, N. Jansen 151

[18] Xu Chu Ding, Mircea Lazar & Calin Belta (2012): Formal Abstraction of Linear Systems via Polyhedral
Lyapunov Functions. In: ADHS, IFAC Proceedings Volumes 45, Elsevier, pp. 88–93, doi:10.3182/20120606-
3-NL-3011.00096.

[19] Oswaldo Luiz Valle Do Costa, Ricardo Paulino Marques & Marcelo Dutra Fragoso (2005): Discrete-Time
Markov Jump Linear Systems. Springer, doi:10.1007/b138575.

[20] Chuchu Fan, Zengyi Qin, Umang Mathur, Qiang Ning, Sayan Mitra & Mahesh Viswanathan (2022): Controller
Synthesis for Linear System With Reach-Avoid Specifications. IEEE Trans. Autom. Control. 67(4), pp. 1713–
1727, doi:10.1109/TAC.2021.3069723.

[21] Jaime F. Fisac, Mo Chen, Claire J. Tomlin & S. Shankar Sastry (2015): Reach-avoid problems with time-
varying dynamics, targets and constraints. In: HSCC, ACM, pp. 11–20, doi:10.1145/2728606.2728612.

[22] Robert Givan, Sonia M. Leach & Thomas L. Dean (2000): Bounded-parameter Markov decision processes.
Artif. Intell. 122(1-2), pp. 71–109, doi:10.1016/S0004-3702(00)00047-3.

[23] Sofie Haesaert, Petter Nilsson, Cristian Ioan Vasile, Rohan Thakker, Ali-akbar Agha-mohammadi, Aaron D.
Ames & Richard M. Murray (2018): Temporal Logic Control of POMDPs via Label-based Stochastic Simula-
tion Relations. In: ADHS, IFAC-PapersOnLine 51, Elsevier, pp. 271–276, doi:10.1016/j.ifacol.2018.08.046.

[24] Ernst Moritz Hahn, Tingting Han & Lijun Zhang (2011): Synthesis for PCTL in Parametric Markov Decision
Processes. In: NASA Formal Methods, Lecture Notes in Computer Science 6617, Springer, pp. 146–161,
doi:10.1007/978-3-642-20398-5_12.

[25] Hans Hansson & Bengt Jonsson (1994): A Logic for Reasoning about Time and Reliability. Formal Aspects
Comput. 6(5), pp. 512–535, doi:10.1007/BF01211866.

[26] Panqanamala Ramana Kumar & Pravin Varaiya (2015): Stochastic systems: Estimation, identification, and
adaptive control. SIAM, doi:10.1137/1.9781611974263.

[27] Marta Z. Kwiatkowska, Gethin Norman & David Parker (2011): PRISM 4.0: Verification of Probabilistic Real-
Time Systems. In: CAV, Lecture Notes in Computer Science 6806, Springer, pp. 585–591, doi:10.1007/978-3-
642-22110-147.

[28] Morteza Lahijanian, Sean B. Andersson & Calin Belta (2015): Formal Verification and Synthesis for Discrete-
Time Stochastic Systems. IEEE Trans. Autom. Control. 60(8), pp. 2031–2045, doi:10.1109/TAC.2015.2398883.

[29] Abolfazl Lavaei, Sadegh Soudjani, Alessandro Abate & Majid Zamani (2022): Automated ver-
ification and synthesis of stochastic hybrid systems: A survey. Automatica 146, p. 110617,
doi:10.1016/j.automatica.2022.110617.

[30] Brian Paden, Michal Cáp, Sze Zheng Yong, Dmitry S. Yershov & Emilio Frazzoli (2016): A Survey of Motion
Planning and Control Techniques for Self-Driving Urban Vehicles. IEEE Trans. Intell. Veh. 1(1), pp. 33–55,
doi:10.1109/TIV.2016.2578706.

[31] Sangwoo Park, Erchin Serpedin & Khalid A. Qaraqe (2013): Gaussian Assumption: The Least
Favorable but the Most Useful [Lecture Notes]. IEEE Signal Process. Mag. 30(3), pp. 183–186,
doi:10.1109/MSP.2013.2238691.

[32] André Platzer (2012): Logics of Dynamical Systems. In: LICS, IEEE Computer Society, pp. 13–24,
doi:10.1109/LICS.2012.13.

[33] Alberto Puggelli, Wenchao Li, Alberto L. Sangiovanni-Vincentelli & Sanjit A. Seshia (2013): Polynomial-Time
Verification of PCTL Properties of MDPs with Convex Uncertainties. In: CAV, Lecture Notes in Computer
Science 8044, Springer, pp. 527–542, doi:10.1007/978-3-642-39799-835.

[34] Martin L. Puterman (1994): Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley
Series in Probability and Statistics, Wiley, doi:10.1002/9780470316887.

[35] Luke Rickard, Thom S. Badings, Licio Romao, Nils Jansen & Alessandro Abate (2022): Formal Con-
troller Synthesis for Markov Jump Linear Systems with Uncertain Dynamics. CoRR abs/2212.00679,
doi:10.48550/arXiv.2212.00679.

https://doi.org/10.3182/20120606-3-NL-3011.00096
https://doi.org/10.3182/20120606-3-NL-3011.00096
https://doi.org/10.1007/b138575
https://doi.org/10.1109/TAC.2021.3069723
https://doi.org/10.1145/2728606.2728612
https://doi.org/10.1016/S0004-3702(00)00047-3
https://doi.org/10.1016/j.ifacol.2018.08.046
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/BF01211866
https://doi.org/10.1137/1.9781611974263
https://doi.org/10.1007/978-3-642-22110-147
https://doi.org/10.1007/978-3-642-22110-147
https://doi.org/10.1109/TAC.2015.2398883
https://doi.org/10.1016/j.automatica.2022.110617
https://doi.org/10.1109/TIV.2016.2578706
https://doi.org/10.1109/MSP.2013.2238691
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1007/978-3-642-39799-835
https://doi.org/10.1002/9780470316887
https://doi.org/10.48550/arXiv.2212.00679

152 Correct-by-Construction Control for Stochastic and Uncertain Dynamical Models

[36] Licio Romao, Antonis Papachristodoulou & Kostas Margellos (2023): On the Exact Feasibility of Con-
vex Scenario Programs With Discarded Constraints. IEEE Trans. Autom. Control. 68(4), pp. 1986–2001,
doi:10.1109/TAC.2022.3165320.

[37] Fedor Shmarov & Paolo Zuliani (2015): ProbReach: verified probabilistic delta-reachability for stochastic
hybrid systems. In: HSCC, ACM, pp. 134–139, doi:10.1145/2728606.2728625.

[38] Sadegh Esmaeil Zadeh Soudjani & Alessandro Abate (2013): Adaptive and Sequential Gridding Procedures
for the Abstraction and Verification of Stochastic Processes. SIAM J. Appl. Dyn. Syst. 12(2), pp. 921–956,
doi:10.1137/120871456.

[39] Eric M. Wolff, Ufuk Topcu & Richard M. Murray (2012): Robust control of uncertain Markov Decision Pro-
cesses with temporal logic specifications. In: CDC, IEEE, pp. 3372–3379, doi:10.1109/CDC.2012.6426174.

https://doi.org/10.1109/TAC.2022.3165320
https://doi.org/10.1145/2728606.2728625
https://doi.org/10.1137/120871456
https://doi.org/10.1109/CDC.2012.6426174

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 153–161, doi:10.4204/EPTCS.395.11

Towards Formal Fault Injection for Safety Assessment of
Automated Systems *

Ashfaq Farooqui, Behrooz Sangchoolie
Dependable Transport Systems, RISE Research Institutes of Sweden, Borås, Sweden

{ashfaq.farooqui, behrooz.sangchoolie}@ri.se

Reasoning about safety, security, and other dependability attributes of autonomous systems is a chal-
lenge that needs to be addressed before the adoption of such systems in day-to-day life. Formal
methods is a class of methods that mathematically reason about a system’s behavior. Thus, a correct-
ness proof is sufficient to conclude the system’s dependability. However, these methods are usually
applied to abstract models of the system, which might not fully represent the actual system. Fault
injection, on the other hand, is a testing method to evaluate the dependability of systems. However,
the amount of testing required to evaluate the system is rather large and often a problem. This vision
paper introduces formal fault injection, a fusion of these two techniques throughout the development
lifecycle to enhance the dependability of autonomous systems. We advocate for a more cohesive
approach by identifying five areas of mutual support between formal methods and fault injection. By
forging stronger ties between the two fields, we pave the way for developing safe and dependable
autonomous systems. This paper delves into the integration’s potential and outlines future research
avenues, addressing open challenges along the way.

1 Introduction

Safety- and security-critical systems continue to be integrated into our daily lives. Ensuring the safety and
security is a multi-disciplinary challenge, where design, development, and evaluation play a crucial role.
Thus a strong emphasis on updating current engineering practices to create an end-to-end verification
and validation process that integrates all safety and security concerns into a unified approach is key to
adopt these systems [23]. Already, formal methods and fault injection are used in different parts of the
development lifecycle to ensure the system is safe and dependable.

Formal methods refers to mathematically rigorous techniques for specifying and verifying software
and hardware systems. To many researchers, the necessity of formal methods is now a given [41].
However, this has yet to be the case from an industrial perspective. Several reasons have been sug-
gested for this situation, including a lack of accessible tools, high costs, incompatibility with existing
development techniques, and the fact that these methods require a certain level of mathematical sophis-
tication [21, 22, 7].

Fault injection(FI), on the other hand, is an established method used for the measurement, test, and
assessment of dependable computer systems in extreme stress or faulty conditions. Functional safety
standards such as IEC 61508 [9] and ISO 26262 [38] recommend the use of FI to prove that malfunctions
in electrical and/or electronic systems will not lead to violations of safety requirements. In comparison to

*This work was partly supported by the VALU3S project, which has received funding from the ECSEL Joint Undertaking
(JU) under grant agreement No 876852. The JU receives support from the European Union’s Horizon 2020 research and
innovation programme and Austria, Czech Republic, Germany, Ireland, Italy, Portugal, Spain, Sweden, Turkey. This work has
also been partly financed by the CyReV project, which is funded by the VINNOVA FFI program – the Swedish Governmental
Agency for Innovation Systems (Diary number: 2019-03071).

http://dx.doi.org/10.4204/EPTCS.395.11

154 Towards Formal Fault Injection

formal methods, FI could be done after the complete system is built. This way, FI could be used to study
the impact of a fault in one system and its propagation and impact in the complete end to end system. FI
is also used to evaluate security properties of computer systems by means of attack injection. Avizienis
et al. [4], consider an attack to be a special type of fault which is human made, deliberate and malicious,
affecting hardware or software from external system boundaries and occurring during the operational
phase.

Formal methods for safety analysis and fault injection are complementary techniques, and the choice
of approach depends on the specific system being evaluated and the goals of the evaluation. Each of
these methods has its benefits and shortcomings. While formal methods are commonly employed in the
early design phase, fault injection testing is performed towards the later stages of development, where
the system or its simulation exists. Unfortunately, the knowledge gained from the formal methods at the
design phase is rarely reused in other development lifecycle phases when conducting fault injection ex-
periments. Conversely, feedback from fault injection analysis is rarely used to improve the formal design
of the system. The underlying problem is the need for common semantics and knowledge sharing across
the different communities. It is clear that to deal with modern autonomous systems, formal methods and
fault injection will have to be integrated in a smart way to be able to specify, verify, and validate systems,
and be understandable by people without a background in formal methods. This last point is essential
for autonomous systems, where they must be certified before they can be used.

By looking at the current state of applied research within both fields this paper introduces formal
fault injection to help develop dependable autonomous systems.

2 Integrating Formal Methods and Fault Injection

The following section highlights the different research directions leveraging the existing state-of-the-art.
Additionally, we highlight the new possibilities that will open up as a consequence of this integration
and our research plans.

1. Design level fault analysis: Some studies focus on analyzing fault impacts during the design
phase, using formal methods. Automating Failure Mode and Effects Analysis (FMEA) and Fault
Tree Analysis (FTA) for system safety analysis [6, 37, 30], are well-established for within the
formal community. Other studies concentrate on developing control strategies to safeguard sys-
tems against cyber-security attacks [39, 17, 27]. These approaches primarily target system design
and are implemented during early development phases. Despite the industry standards of FMEA
and FTA techniques, integrating formal methods into the development cycle has encountered lim-
ited adoption, mainly due to the scarcity of practical tools. Furthermore, these methods often face
computational challenges, restricting their applicability to only a small portion of the system. Con-
sequently, they typically address a fixed set of faults. It is valuable to explore how insights from
the fault injection phase could be incorporated at a more generic abstraction level to streamline
analysis process early in the design phase.

2. Learning the behavior of the faulty system via model learning/learning-based testing:
Model learning [13, 42, 26] seeks to devise techniques for acquiring discrete formal models of
systems by observing or interacting with them. These techniques engage in iterative testing of the
system, or its simulation, to progressively learn the behavior. Model learning techniques are often
applied in combination with other tools and methodologies: model checking [8] for model verifi-
cation, testing methods [26] to rigorously assess system behavior, and supervisory synthesis [13]
to derive supervisory controllers for system control.

A. Farooqui & B. Sangchoolie 155

we envision integrating fault analysis into the model learning phase. This analysis approach offers
insights into a system’s fault-handling capabilities. The resultant model encompasses both nominal
and faulty behaviors, enabling offline safety analysis. Moreover, these models hold the potential
to serve as authoritative proof of system safety, offering a resource for regulatory authorities.

Existing model learning tools, already applied in select industrial contexts [14, 19], provide inter-
faces external systems. However, an investigation is warranted to devise methods for introducing
fault models into these tools and subsequently evaluating their utility. An overarching challenge
lies in the scale of the resulting models. Nominal models themselves often attain considerable
complexity, leading to challenges associated with state-space explosion. Augmenting these mod-
els with fault scenarios is sure to encounter state-space limitations, even for relatively modest
systems.

3. Using formal models for reducing the fault space: Executing exhaustive fault injection cam-
paigns is not practical. In most cases, such an approach would result in executions that do not
contribute significantly to safety analysis. The challenge lies in identifying the optimal set of
test instances that effectively analyze a system’s dependability. Numerous testing methods have
been proposed to address this challenge, including probabilistic approaches [20], coverage-based
techniques [10], and heuristic as well as machine learning-based methods [29, 28, 35, 36]. How-
ever, most of these methods rely on some level of prior knowledge about the target system. The
availability of such knowledge poses limitations in practical applications [28, 20].

Yet, when formal specifications exist for a specific system, they inherently contain valuable in-
formation that can be leveraged. These specifications offer insights into critical faults and their
configurations, which are most likely to lead to system failures. This knowledge about fault con-
figurations proves invaluable when designing fault campaigns. Unfortunately, such utilization is
often overlooked.

To address this gap, we propose an investigation into the development of common semantics that
can harmonize formal specifications and fault injection techniques. Additionally, we recommend
the creation of tools to facilitate the seamless integration of results from both methods. This
integration holds the potential to enhance the effectiveness of fault analysis while leveraging the
rich information contained within formal specifications.

4. Falsification for fault analysis: Falsification methods typically come into play once the system
has been implemented, typically in the later stages of the development lifecycle. Since falsification
and fault injection share similar approaches and setups, integrating both these methods represents
one of the most straightforward way towards a formal fault injection analysis. Both these methods
operate with limited knowledge of the system under test. Falsification primarily focuses on testing
the input space, while fault injection adopts a broader perspective by also assuming the presence
of fault(s) within the system.

Several generalized methods and tools have proven effective in the formal community for these
purposes. For instance, tools like Scenic and VerifyAI [15, 12] take a probabilistic approach
to generate scenarios intelligently and test the system. Tools like Breach [11] and HyConf [1]
interface with MATLAB/Simulink models for falsification. In the realm of fault injection, AV-
fuzzer [24] aligns closely with falsification approaches.

While most falsification approaches aim to find input values that lead to violations of the system’s
specifications, they typically do not distinguish between valid and faulty inputs. To assess a sys-
tem’s safety, falsification engines can be employed to identify boundaries within the state-space.

156 Towards Formal Fault Injection

Subsequently, fault injection analysis focuses on these boundary values and faulty inputs to ana-
lyze the impact of faults. In this context, exploring techniques to augment the falsification engine
with both nominal and faulty behavior represents a promising avenue for further investigation.

5. A formal specification language for fault injection: To bridge the envisioned integration of
formal methods and fault injection into practical application, a critical missing element is a well-
defined formal specification language that can act as an interface between the two domains. There-
fore, it becomes imperative to delve into the realm of formal specification languages from both
theoretical and practical standpoints. A precedent is set by Bessayah et al. [5], who successfully
demonstrated the use of Hoare Logic [18] as a specification language for implementing fault injec-
tion in communication systems. However, there have been limited efforts to evaluate the suitability
of such a language for autonomous systems. Hence, we propose a comprehensive exploration of
available formal specification languages to assess their compatibility with fault injection method-
ologies and to pinpoint areas of research inquiry apart from studies to develop such a language.

3 Formal Fault Injection

In the past few years, a paradigm called “shift-to-left” has inspired researchers to go towards simulation-
based and model-based verification and validation of automated systems. The rise of simulation-based
development is a key reason we believe this to be the right time to start investigating the integration of
formal methods and fault injection-based testing. Notably, simulation-based methodologies have firmly
established themselves in both the formal methods and fault injection communities. This shared founda-
tion provides a common ground for the implementation of the proposed integration methods.

Formal
Speci-
fication

Language

Design
level
fault

analysis

Con-
tinuous
model

learning

Falsifi-
cation
based

traditional
FI

Figure 1: Conceptual overview of the pro-
posed methodology.

Design Imple-
ment

Test

Figure 2: Generalized overview of the de-
velopment lifecycle.

Figure 1 provides a birds-eye view of the proposed integration. Several methodologies exist in lit-
erature and practice that define the development lifecycle, such as V-method [16], Waterfall [33], and
Agile [32], to name a few. Most of these methodologies include the three phases: design, implementa-
tion, and testing phases, in an iterative manner and are depicted in Figure 2. This cycle of development
is valid at various abstraction levels of the product lifecycle from the initial conceptual design, feature
development, simulation and the final product development. During each phase, a particular set of meth-
ods as discussed in Section 2 can be mapped to the phases and are depicted using the similarly colored
bubbles in Figure 1. These different phases are never isolated and are continuously updated with feed-
back from one another. The formal specification language makes it possible for this feedback to be easily
translatable between the different phases.

It is crucial to recognize that there is no universal solution applicable to all scenarios. Therefore,
the proposal does not revolve around creating a singular specification language and its corresponding

A. Farooqui & B. Sangchoolie 157

toolkit. Instead, it presents a high-level methodology for evaluating and constructing dependable sys-
tems. It acknowledges that specific system characteristics may demand different formalisms. Hence,
the idea is to establish a collection of formal specification languages, each supported by its toolset, to
facilitate this methodology. Furthermore, these languages, tools, and application approaches can vary
across industries, necessitating a multifaceted strategy to address existing limitations and explore new
possibilities. Above all, the aim is to establish a consistent and reproducible framework for assessing
system dependability.

The assertion of a system’s dependability must always be substantiated by the possibility of repro-
ducing the results of all conducted tests. By formally specifying the entire injection methodology, it
becomes possible to perform analysis, and potential replication or extension of the results by interested
parties. The overarching vision of this work is to enable a standardized interface for all stakeholders
involved in ensuring system safety. For instance, developers and companies can employ formal proofs to
demonstrate a product’s dependability, governmental certification agencies can utilize available data to
enhance certification processes, and third-party auditors can scrutinize systems from security and safety
perspectives using existing information. Aligning different phases of the development lifecycle with a
common language paves the way for formalizing safety evaluations.

Furthermore, ongoing national and international efforts within the autonomous driving domain aim
to define and develop a safety assurance framework [40, 31, 34] for verification and validation of au-
tonomous systems. These methods aim to develop a database of testing scenarios to validate a system.
Therefore, in addition to developing tools and techniques, we propose investigating the feasibility of rec-
ommending formal fault injection as a best practice through responsible standardization organizations.

4 Insights from early experiments

In this section we share our initial experiences and insights from applying formal techniques in simulation
based fault injection. Although these experiences are common within the formal community, we believe
they offer valuable insights to those interested in bridging the formal and fault injection domains.

4.1 The case study

Maleki and Sangchoolie [25] investigated the effects of faults on Advanced Driver Assistance Systems
using the Simulation of Urban Mobility (SUMO) [2]. We use this work as a basis to study the integration
of formal techniques and fault injection. The scenario used in that work [25] revolves around a three-lane
road, spanning 750 meters. Two vehicles, a leader and a follower, navigate this road. The overarching
requirements mandate that these vehicles not collide, successfully traverse the road, and maintain a speed
not exceeding 36 m/s–the maximum permissible speed. Furthermore, these requirements should endure
even when additional vehicles are introduced to the scenario, thus preserving safety and functionality
amidst traffic.

To enhance the above with formal methods, we explore the following approaches.

• Utilizing SAT Techniques for Vehicle Controller Modeling: This approach involves modeling the
vehicle models from SUMO into a SAT solver. By doing so, we enable the solver to identify poten-
tial (faulty) parameters that could lead to the violation of requirements. This approach effectively
narrows down the fault space that needs to be tested. Subsequently, these identified inputs can be
verified within SUMO to assess their impact on the system’s behavior.

158 Towards Formal Fault Injection

• Applying Model Learning for Faulty Model Generation: Here, we connect SUMO to a model
learning tool controlled over TCP/IP and allow the system to learn an abstracted model that closely
describes the behavior of the simulation.

4.2 Insights

Below we provide some of our insights from early experiments on the previously mentioned case study.

1. Finding suitable abstractions: One of the most significant takeaways from our study was the
challenge of achieving a suitable abstraction level that aligns with the use case. As the system
was implemented within the SUMO framework, we encountered limitations in deriving valuable
insights from higher levels of abstraction. Operating at elevated levels of abstraction led to limited
applicability of formal analysis to the fault injection process. Specifically, our attempts at model
learning within the SUMO context resulted in excessively intricate models, often never terminat-
ing.

For instance, to learn a faulty model, employing a model learning approach akin to Angluin’s
L∗ algorithm [3] necessitated the establishment of a system alphabet. In this context, the alphabet
signifies the set of symbols providing context to the system states and transitions. Ensuring that this
alphabet adeptly captures both faulty and non-faulty state transitions demanded creative thinking
and held a pivotal role in shaping the effectiveness of the acquired model.

2. The state-space explosion problem: Both the SAT-based and model learning approaches encoun-
tered state space explosion. This challenge emerged due to the logical abstraction and simulation
granularity, both significantly influencing the efficiency and effectiveness of the formal analysis.
A key disparity between fault injection analysis and formal analysis became evident. While fault
injection focuses solely on inputs and their corresponding outputs, formal models encompass all
inputs and potential outputs, unveiling the system’s comprehensive behavior. Consequently, what
initially appears as the challenge of examining a finite set of input parameters in fault injection
transforms into the state space issue within formal methods. Striking a balance between these two
extremes emerges as the sought-after equilibrium.

3. Non-deterministic behavior: SUMO is a deterministic simulator. While constructing the for-
mal model, however, this determinism is lost when augmented with faulty parameters. Addition-
ally, the fault injection community employs randomness within faulty inputs to assess system de-
pendability. This introduces complexity in constructing models that can effectively accommodate
such randomness, necessitating techniques like abstraction or alternative formalisms. The non-
deterministic aspect might not be immediately evident, potentially yielding unfavorable outcomes
if appropriate analysis methods are not selected.

5 Conclusions

In summary, this paper introduces the concept of formal fault injection, an approach that synergizes for-
mal methods and fault injection techniques to enhance the dependability and safety of autonomous sys-
tems. By harmonizing development and evaluation phases, this approach facilitates cross-phase knowl-
edge sharing, fostering a unified approach to ensuring dependability attributes. This alignment not only
benefits certification bodies and developers but also strengthens the foundation for proving system relia-
bility.

A. Farooqui & B. Sangchoolie 159

References

[1] Arend Aerts, Mohammad Reza Mousavi & Michel Reniers (2015): A Tool Prototype for Model-Based Testing
of Cyber-Physical Systems. In Martin Leucker, Camilo Rueda & Frank D. Valencia, editors: Theoretical
Aspects of Computing - ICTAC 2015, Lecture Notes in Computer Science, Springer International Publishing,
Cham, p. 563–572, doi:10.1007/978-3-319-25150-9_32.

[2] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flötteröd, Robert
Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner & Evamarie Wiessner: Microscopic Traffic
Simulation using SUMO. doi:10.1109/ITSC.2018.8569938.

[3] Dana Angluin (1987): Learning regular sets from queries and counterexamples. Information and Computa-
tion 75(2), pp. 87 – 106, doi:10.1016/0890-5401(87)90052-6.

[4] A. Avizienis, J.-C. Laprie, B. Randell & C. Landwehr (2004): Basic concepts and taxonomy of depend-
able and secure computing. IEEE Transactions on Dependable and Secure Computing 1(1), pp. 11–33,
doi:10.1109/TDSC.2004.2.

[5] Fayçal Bessayah, Ana Cavalli & Eliane Martins (2009): A formal approach for specification and verification
of fault injection process. In: Proceedings of the 2nd International Conference on Interaction Sciences:
Information Technology, Culture and Human, ICIS ’09, Association for Computing Machinery, New York,
NY, USA, p. 883–890. Available at https://doi.org/10.1145/1655925.1656086.

[6] Marco Bozzano, Alessandro Cimatti, Cristian Mattarei & Stefano Tonetta (2014): Formal Safety Assessment
via Contract-Based Design. In Franck Cassez & Jean-François Raskin, editors: Automated Technology for
Verification and Analysis, Lecture Notes in Computer Science, Springer International Publishing, Cham, p.
81–97, doi:10.1007/978-3-319-11936-6_7.

[7] Holloway C. Michael (1997): Why Engineers Should Consider Formal Methods. Technical Report, NASA
Langley Technical Report Server, doi:10.1109/DASC.1997.635021.

[8] Sofia Cassel, Falk Howar, Bengt Jonsson & Bernhard Steffen (2016): Active learning for extended finite state
machines. Formal Aspects of Computing 28(2), pp. 233–263, doi:10.1007/s00165-016-0355-5.

[9] International Electrotechnical Commission (2010): IEC 61508: Functional safety of electrical/elec-
tronic/programmable electronic safety-related systems. Available at https://webstore.iec.ch/

publication/5515.

[10] M. Cukier, D. Powell & J. Ariat (1999): Coverage estimation methods for stratified fault-injection. IEEE
Transactions on Computers 48(7), p. 707–723, doi:10.1109/12.780878.

[11] Alexandre Donzé (2010): Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid Systems.
In Tayssir Touili, Byron Cook & Paul Jackson, editors: Computer Aided Verification, Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, p. 167–170, doi:10.1007/978-3-642-14295-6_17.

[12] Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravanbakhsh, Marcell Vazquez-
Chanlatte & Sanjit A. Seshia (2019): VerifAI: A Toolkit for the Formal Design and Analysis of Artificial
Intelligence-Based Systems, p. 432–442. Lecture Notes in Computer Science 11561, Springer International
Publishing, Cham, doi:10.1007/978-3-030-25540-4_25. Available at http://link.springer.com/10.
1007/978-3-030-25540-4_25.

[13] Ashfaq Farooqui (2021): On supervisor synthesis via active automata learning. Chalmers Tekniska Hogskola
(Sweden). Available at https://research.chalmers.se/en/publication/523934.

[14] Ashfaq Farooqui, Fredrik Hagebring & Martin Fabian (2021): MIDES: A Tool for Supervisor Synthesis via
Active Learning. In: 2021 IEEE 17th International Conference on Automation Science and Engineering
(CASE), pp. 792–797, doi:10.1109/CASE49439.2021.9551435.

[15] Daniel J. Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-
Vincentelli & Sanjit A. Seshia (2020): Scenic: A Language for Scenario Specification and Data Generation
(arXiv:2010.06580). doi:10.48550/arXiv.2010.06580. Available at http://arxiv.org/abs/2010.06580.
ArXiv:2010.06580 [cs].

https://doi.org/10.1007/978-3-319-25150-9_32
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1145/1655925.1656086
https://doi.org/10.1007/978-3-319-11936-6_7
https://doi.org/10.1109/DASC.1997.635021
https://doi.org/10.1007/s00165-016-0355-5
https://webstore.iec.ch/publication/5515
https://webstore.iec.ch/publication/5515
https://doi.org/10.1109/12.780878
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-030-25540-4_25
http://link.springer.com/10.1007/978-3-030-25540-4_25
http://link.springer.com/10.1007/978-3-030-25540-4_25
https://research.chalmers.se/en/publication/523934
https://doi.org/10.1109/CASE49439.2021.9551435
https://doi.org/10.48550/arXiv.2010.06580
http://arxiv.org/abs/2010.06580

160 Towards Formal Fault Injection

[16] Iris Graessler & Julian Hentze (2020): The new V-Model of VDI 2206 and its validation. at - Automa-
tisierungstechnik 68(5), p. 312–324, doi:10.1515/auto-2020-0015. Available at https://www.degruyter.
com/document/doi/10.1515/auto-2020-0015/html.

[17] Christoforos N. Hadjicostis, Stéphane Lafortune, Feng Lin & Rong Su (2022): Cybersecurity and Supervi-
sory Control: A Tutorial on Robust State Estimation, Attack Synthesis, and Resilient Control. In: 2022 IEEE
61st Conference on Decision and Control (CDC), p. 3020–3040, doi:10.1109/CDC51059.2022.9992966.

[18] C A R Hoare (1969): An axiomatic basis for computer programming 12(10). doi:10.1145/363235.363259.

[19] Malte Isberner, Falk Howar & Bernhard Steffen (2015): The open-source LearnLib: A Framework for Active
Automata Learning. In: International Conference on Computer Aided Verification, Springer International
Publishing, Cham, pp. 487–495, doi:10.1007/978-3-319-21690-4_32.

[20] Saurabh Jha, Subho Banerjee, Timothy Tsai, Siva K. S. Hari, Michael B. Sullivan, Zbigniew T. Kalbarczyk,
Stephen W. Keckler & Ravishankar K. Iyer (2019): ML-Based Fault Injection for Autonomous Vehicles: A
Case for Bayesian Fault Injection. In: 2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), p. 112–124, doi:10.1109/DSN.2019.00025.

[21] John C. Knight (1998): Challenges in the Utilization of Formal Methods. In Anders P. Ravn & Hans Rischel,
editors: Formal Techniques in Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, pp. 1–17, doi:10.1007/BFb0055331.

[22] John C. Knight, Colleen L. DeJong, Matthew S. Gibble & Luís G. Nakano (1997): Why Are Formal Methods
Not Used More Widely? In: Fourth NASA Formal Methods Workshop, pp. 1–12.

[23] Philip Koopman & Michael Wagner (2017): Autonomous vehicle safety: An interdisciplinary challenge.
IEEE Intelligent Transportation Systems Magazine 9(1), pp. 90–96, doi:10.1109/MITS.2016.2583491.

[24] Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael Sullivan, Siva Kumar Sastry Hari, Zbigniew
Kalbarczyk & Ravishankar Iyer (2020): AV-FUZZER: Finding Safety Violations in Autonomous Driving
Systems. In: 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE), IEEE,
Coimbra, Portugal, p. 25–36, doi:10.1109/ISSRE5003.2020.00012. Available at https://ieeexplore.
ieee.org/document/9251068/.

[25] Mehdi Maleki & Behrooz Sangchoolie (2021): SUFI: A Simulation-based Fault Injection Tool for Safety
Evaluation of Advanced Driver Assistance Systems Modelled in SUMO. In: 2021 17th European Dependable
Computing Conference (EDCC), pp. 45–52, doi:10.1109/EDCC53658.2021.00014.

[26] Karl Meinke & Muddassar A Sindhu (2013): LBTest: a learning-based testing tool for reactive systems.
In: 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation, IEEE, pp.
447–454, doi:10.1109/ICST.2013.62.

[27] Rômulo Meira-Goes, Eunsuk Kang, Raymond H. Kwong & Stéphane Lafortune (2020): Synthesis of sen-
sor deception attacks at the supervisory layer of Cyber–Physical Systems. Automatica 121, p. 109172,
doi:10.1016/j.automatica.2020.109172. Available at https://linkinghub.elsevier.com/retrieve/
pii/S0005109820303708.

[28] Mehrdad Moradi, Bentley Oakes & Joachim Denil: Machine Learning-assisted Fault Injection. Available at
https://hal.laas.fr/hal-02931709v1.

[29] Mehrdad Moradi, Bentley James Oakes, Mustafa Saraoglu, Andrey Morozov, Klaus Janschek & Joachim
Denil (2020): Exploring Fault Parameter Space Using Reinforcement Learning-based Fault Injection. In:
2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops
(DSN-W), p. 102–109, doi:10.1109/DSN-W50199.2020.00028.

[30] Frank Ortmeier & Gerhard Schellhorn (2007): Formal Fault Tree Analysis - Practical Experiences. Electronic
Notes in Theoretical Computer Science 185, pp. 139–151, doi:10.1016/j.entcs.2007.05.034. Available at
https://www.sciencedirect.com/science/article/pii/S1571066107004549. Proceedings of the
6th International Workshop on Automated Verification of Critical Systems (AVoCS 2006).

[31] PEGASUS: PEGASUS project. Available at https://www.pegasusprojekt.de/en/home.

https://doi.org/10.1515/auto-2020-0015
https://www.degruyter.com/document/doi/10.1515/auto-2020-0015/html
https://www.degruyter.com/document/doi/10.1515/auto-2020-0015/html
https://doi.org/10.1109/CDC51059.2022.9992966
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1109/DSN.2019.00025
https://doi.org/10.1007/BFb0055331
https://doi.org/10.1109/MITS.2016.2583491
https://doi.org/10.1109/ISSRE5003.2020.00012
https://ieeexplore.ieee.org/document/9251068/
https://ieeexplore.ieee.org/document/9251068/
https://doi.org/10.1109/EDCC53658.2021.00014
https://doi.org/10.1109/ICST.2013.62
https://doi.org/10.1016/j.automatica.2020.109172
https://linkinghub.elsevier.com/retrieve/pii/S0005109820303708
https://linkinghub.elsevier.com/retrieve/pii/S0005109820303708
https://hal.laas.fr/hal-02931709v1
https://doi.org/10.1109/DSN-W50199.2020.00028
https://doi.org/10.1016/j.entcs.2007.05.034
https://www.sciencedirect.com/science/article/pii/S1571066107004549
https://www.pegasusprojekt.de/en/home

A. Farooqui & B. Sangchoolie 161

[32] D.J. Reifer (2002): How good are agile methods? IEEE Software 19(4), p. 16–18,
doi:10.1109/MS.2002.1020280.

[33] Dr Winston W Rovce: MANAGING THE DEVELOPMENT OF LARGE SOFTWARE SYSTEMS. Available
at https://dl.acm.org/doi/10.5555/41765.41801.

[34] SAKURA: SAKURA project. Available at https://www.sakura-prj.go.jp/project_info/.
[35] Behrooz Sangchoolie, Karthik Pattabiraman & Johan Karlsson (2022): An Empirical Study of the Impact of

Single and Multiple Bit-Flip Errors in Programs. IEEE Transactions on Dependable and Secure Computing
19(3), pp. 1988–2006, doi:10.1109/TDSC.2020.3043023.

[36] Ali Sedaghatbaf, Mehrdad Moradi, Jaafar Almasizadeh, Behrooz Sangchoolie, Bert Van Acker & Joachim
Denil (2022): DELFASE: A Deep Learning Method for Fault Space Exploration. In: 2022 18th European
Dependable Computing Conference (EDCC), pp. 57–64, doi:10.1109/EDCC57035.2022.00020.

[37] Yuvaraj Selvaraj, Zhennan Fei & Martin Fabian (2020): Supervisory Control Theory in System Safety Anal-
ysis. In António Casimiro, Frank Ortmeier, Erwin Schoitsch, Friedemann Bitsch & Pedro Ferreira, editors:
Computer Safety, Reliability, and Security. SAFECOMP 2020 Workshops, Lecture Notes in Computer Sci-
ence, Springer International Publishing, Cham, p. 9–22, doi:10.1007/978-3-030-55583-2_1.

[38] International Organization for Standardization (2018): ISO 26262: Road vehicles — Functional safety. Avail-
able at https://www.iso.org/standard/68383.html.

[39] Rong Su (2018): Supervisor synthesis to thwart cyber attack with bounded sensor reading alterations. Auto-
matica 94, p. 35–44, doi:10.1016/j.automatica.2018.04.006. Available at https://www.sciencedirect.
com/science/article/pii/S0005109818301912.

[40] SUNRISE: SUNRISE project. Available at https://sunrise-europe.eu/.
[41] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui & John Fitzgerald (2009): Formal methods: Practice

and experience. ACM Computing Surveys 41(4), p. 1–36, doi:10.1145/1592434.1592436. Available at
https://dl.acm.org/doi/10.1145/1592434.1592436.

[42] H. Zhang, L. Feng & Z. Li (2018): A Learning-Based Synthesis Approach to the Supremal Nonblock-
ing Supervisor of Discrete-Event Systems. IEEE Trans. on Automatic Control 63(10), pp. 3345–3360,
doi:10.1109/TAC.2018.2793662.

https://doi.org/10.1109/MS.2002.1020280
https://dl.acm.org/doi/10.5555/41765.41801
https://www.sakura-prj.go.jp/project_info/
https://doi.org/10.1109/TDSC.2020.3043023
https://doi.org/10.1109/EDCC57035.2022.00020
https://doi.org/10.1007/978-3-030-55583-2_1
https://www.iso.org/standard/68383.html
https://doi.org/10.1016/j.automatica.2018.04.006
https://www.sciencedirect.com/science/article/pii/S0005109818301912
https://www.sciencedirect.com/science/article/pii/S0005109818301912
https://sunrise-europe.eu/
https://doi.org/10.1145/1592434.1592436
https://dl.acm.org/doi/10.1145/1592434.1592436
https://doi.org/10.1109/TAC.2018.2793662

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 162–179, doi:10.4204/EPTCS.395.12

© N. Pal et al.
This work is licensed under the
Creative Commons Attribution License.

Formal Verification of Long Short-Term Memory based
Audio Classifiers: A Star based Approach

Neelanjana Pal
Institute for Software Integrated Systems

Vanderbilt University
Nashville, USA

neelanjana.pal@vanderbilt.edu

Taylor T Johnson
Institute for Software Integrated Systems

Vanderbilt University
Nashville, USA

taylor.johnson@vanderbilt.edu

Formally verifying audio classification systems is essential to ensure accurate signal classification
across real-world applications like surveillance, automotive voice commands, and multimedia con-
tent management, preventing potential errors with serious consequences. Drawing from recent re-
search, this study advances the utilization of star-set-based formal verification, extended through
reachability analysis, tailored explicitly for Long Short-Term Memory architectures and their Con-
volutional variations within the audio classification domain. By conceptualizing the classification
process as a sequence of set operations, the star set-based reachability approach streamlines the
exploration of potential operational states attainable by the system. The paper serves as an encom-
passing case study, validating and verifying sequence audio classification analytics within real-world
contexts. It accentuates the necessity for robustness verification to ensure precise and dependable
predictions, particularly in light of the impact of noise on the accuracy of output classifications.

1 Introduction

Deep Neural Networks (DNNs) have demonstrated remarkable capabilities in addressing intricate tasks
like image classification, object detection, speech recognition, natural language processing, and docu-
ment analysis, at times even surpassing human performance [21,23,24]. This success has ignited a surge
in exploring the viability of DNNs across diverse real-world domains, including biometric authentica-
tion, mobile facial recognition for security, and malware detection. However, given the sensitive nature
of the data in these critical applications, incorporating safety, security, and robust verification into their
design has become paramount.

However, studies have revealed that even slight modifications in input data can effectively mislead
cutting-edge, well-trained networks, causing inaccuracies in their predictions [12, 32, 40]. The arena
of network verification has primarily concentrated on image inputs, particularly emphasizing the as-
surance of safety and robustness in various classification neural networks [2, 7, 19, 31, 43, 44]. Previ-
ous investigations have scrutinized a range of network architectures, encompassing feed-forward neural
networks (FFNNs [42]), convolutional neural networks (CNNs [44]), semantic segmentation networks
(SSNs [43]), and a few using Recurrent Neural Networks (RNNs [41]) employing diverse set-based
reachability tools such as Neural Network Verification (NNV [26,45]) and JuliaReach [6], among others.

Models utilizing NNs for audio classification have found application in diverse tasks, ranging from
Music Genre Classification [8,10,11] and Environmental Sound Classification [4,9,13] to Audio Gener-
ation [33,36]. Therefore, formal verification of audio classification systems holds paramount importance
in ensuring their reliability and safety, particularly in safety-critical applications such as autonomous
vehicles [35, 46], medical diagnosis [15, 30], and industrial monitoring [47].

This study introduces an extension, building upon the foundations laid by two recent studies [34,41]
in the domain of formal verification. The objective is to leverage set-based reachability techniques to

http://dx.doi.org/10.4204/EPTCS.395.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

N. Pal et al. 163

verify audio classification models based on the Long Short Term Memory (LSTM) and CNN-LSTM
architectures. Drawing inspiration from [41], which highlights the star-based verification of basic vanilla
RNNs, and from [34], which demonstrates the formal verification of convolutional neural networks oper-
ating on time series data, work shown in this paper amalgamates both concepts. Specifically, it employs
two LSTM models and one CNN-LSTM model for these classifications, following the ones depicted
in [27–29].

Contributions.

1. This paper presents a thorough case study on the formal verification of audio classification models
using the LSTM and CNN-LSTM architectures with two different datasets. Our focus is to rig-
orously assess the robustness verification of these models within a formal verification framework,
analyzing their behavior and performance against input noises. We develop our work as an exten-
sion of the NNV tool1 to formally analyze and explore CNN-LSTM architecture verification for
audio data using sound and deterministic reachability methods.

2. Building on insights from existing research [34,41], this paper extends formal verification to more
complex RNN architectures. This involves addressing the challenges of the complex structure of
the LSTM layers, comprehensively evaluating their behavior, and ensuring robustness compliance
through formal verification. This study pushes formal verification’s boundaries, embracing design
complexities for heightened assurance and reliability.

3. In this assessment, we conduct a thorough and comprehensive evaluation of three distinct network
architectures across diverse audio classification scenarios.

4. Finally, we develop insights on evaluating the reachability analysis on those networks and possible
future direction.

Outline. The paper is organized as follows: Section 2 mentions the works already done in the literature
and the inspiration works for this paper; Section 3 provides the necessary context for the background,
and defines the verification properties for this work; Section 4 explains the reachability calculations for
the LSTM layer; and Section 5 describes the methodology, including dataset, network models, and input
perturbations. Section 6 presents the experimental results, evaluation metrics, and their implications.
Finally, Section 7 summarizes the main findings and suggests future research directions.

2 Related Work

In recent times, an upsurge of methodologies and tools have arisen to confront the verification com-
plexities inherent in intricate systems like Deep Neural Networks (DNNs), as evident from the litera-
ture [14, 17, 25, 44]. Correspondingly, tools have emerged to tackle the robustness challenges of Convo-
lutional Neural Networks (CNNs) [2, 19, 20, 37–39]. Earlier undertakings in the verification of Recur-
rent Neural Networks (RNNs) are showcased through projects like RnnVerify [18] and RNSVerify [1].
RNSVerify employs an unrolling technique to translate RNNs into extensive Feedforward Neural Net-
works (FFNNs), simplifying verification through Mixed-Integer Linear Program (MILP) approaches [1].
However, this unrolling method faces scalability constraints, particularly with bounded n-step RNNs, as

1The code for this paper is available at https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/
FMAS2023

https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/FMAS2023
https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/FMAS2023

164 Formal Verification of Long Short-Term Memory based Audio Classifiers

the verification complexity scales dramatically. Conversely, RnnVerify [18] employs invariant inference
for RNN verification, bypassing unrolling. Their strategy involves crafting an FFNN with matching di-
mensions to over-approximate the RNN, followed by verifying RNN properties over this approximation
using SMT-based methodologies. Our work gets inspiration from [41], where authors introduce a pio-
neering approach founded on star reachability for RNN verification, aiming to amplify the dependability
and safety of RNNs and show the results based on some vanilla RNN models.

Distinction from the previous works [34,41]. While both papers share the common goal of validating
the robustness of RNNs, the preceding study can be perceived as an initial step in that research trajectory.
In contrast, this paper represents a more comprehensive evolution of the concepts initially introduced.

1. The work in [41] focused on the Vanilla RNN, while this paper delves into models of significantly
greater intricacy, such as the LSTM and CNN-LSTM architectures. Vanilla RNNs and LSTMs
are both types of recurrent neural networks. However, Vanilla RNNs are simpler in terms of
architecture and have fewer parameters, whereas LSTMs are more complex due to their gated
units and larger parameters.

(a) Vanilla RNNs handle input sequences in a sequential manner, updating a hidden state at each
step. In contrast, LSTMs also maintain a hidden state, but their structure is more complex,
featuring multiple gates (input, forget, and output gates) that regulate the information flow.

(b) Vanilla RNNs face challenges capturing long-term dependencies within sequences due to the
vanishing gradient problem. This problem limits their ability to learn connections between
distant time steps. LSTMs, on the other hand, were specifically designed to tackle the vanish-
ing gradient problem and excel at capturing long-term dependencies, rendering them better
suited for tasks involving intricate temporal relationships.

(c) Vanilla RNNs possess a constrained memory capacity, often rapidly discarding information
from earlier time steps. This limitation can hinder their performance in tasks with extended
sequences. In contrast, LSTMs feature an improved memory mechanism that allows them to
retain or discard information from prior time steps selectively. This capability equips them
to handle longer sequences and capture complex patterns effectively.

2. The study conducted in [34] focused on examining time-series regression models in the Prognos-
tics and Health Management domain. Drawing inspiration from this work, our study extends the
investigation to encompass the time domain’s influence, specifically concerning sequential audio
noise and Japanese vowel audio samples. This basic experiment provides a foundation for under-
standing the robustness and reliability of audio classification systems. They offer insights that can
be directly applied to real-world scenarios, making them valuable for a broad audience in the field
of audio classification.

(a) Utilizing real-world datasets, this experiment can yield practical insights into audio classifi-
cation system performance, benefiting fields such as speech recognition, audio surveillance,
and multimedia content management by offering real-world applicability.

(b) This experiment can provide valuable insights into the robustness of audio classifiers when
exposed to different noise levels and perturbations, offering crucial implications for applica-
tions where audio data is frequently affected by a noise like voice commands in automobiles
or audio analysis in noisy settings.

(c) While this work concentrates on two particular datasets, the verification methodologies show-
cased can be extended to diverse audio classification endeavors, allowing readers engaged in

N. Pal et al. 165

various audio classification challenges to customize and apply the methodologies to their
specific contexts.

(d) The metrics used in this paper can be potential for real-world applications to evaluate and
enhance the reliability and efficiency of audio classification systems.

3 Preliminaries

This section introduces some basic definitions and descriptions necessary to understand the progression
of this paper and the necessary evaluations on audio classification models.

3.1 Neural Network Verification Tool and Star Sets

The Neural Network Verification (NNV) tool constitutes a framework designed to verify the safety and
robustness of neural networks [26,45]. This tool meticulously scrutinizes neural network behavior across
diverse input conditions, warranting secure and accurate functionality across all scenarios. NNV employs
reachability algorithms, including the exact and over-approximate star set methodologies [42, 44], to
compute reachable sets for each neural network layer. These sets encapsulate all feasible network states
for a given input, thereby facilitating the verification of specific safety properties.

NNV holds particular significance in safety-critical domains like autonomous vehicles and medical
devices, where the trustworthiness and reliability of neural networks are paramount. NNV bolsters public
confidence in these applications by ensuring consistent performance across all conditions. In this paper,
we extend the capabilities of the NNV tool to implement our work, utilizing the star-based reachability
analysis to ascertain the reachable sets of neural networks at their outputs.

Figure 1: Star for a sequence input data with four Feature Values (rows) with four time-steps (columns)

Definition 3.1 A generalized star set (or simply star) Θ is a tuple 〈c,V,P〉 where c ∈ Rn is the center,
V = {v1,v2, · · · ,vm} is a set of m vectors in Rn called basis vectors, and P : Rm→{>,⊥} is a predicate.
The basis vectors are arranged to form the star’s n×m basis matrix. The set of states represented by the
star is given as:

JΘK = {x | x = c+Σ
m
i=1(αivi) and P(α1, · · · ,αm) =>}. (1)

In this work, we restrict the predicates to be a conjunction of linear constraints, P(α),Cα ≤ d where,
for p linear constraints, C ∈Rp×m, α is the vector of m-variables, i.e., α = [α1, · · · ,αm]

T , and d ∈Rp×1.

166 Formal Verification of Long Short-Term Memory based Audio Classifiers

3.2 Network Architecture Specifics

3.2.1 Long Short Term Memory (LSTM) Layer

An LSTM layer, a subtype of the Recurrent Neural Network (RNN) layer, excels at capturing long-term
dependencies in time series and sequential data [16]. It comprises two critical elements: the hidden state
(ht , also called the output state) and the cell state (ct). At each time step ‘t,’ the hidden state captures the
layer’s output for that instance, while the cell state accumulates insights from preceding time steps.

f g i o

ct-1

ht-1

ct

ht

xt

Forget Update Output

Figure 2: The flow of data at time step t in an LSTM layer

ct = ft � ct−1 + it �gt

ht = ot �σc(ct)
(2)

During each time step, the layer refines the cell state by incorporating or omitting information. This
process is steered by distinct gates that control these adjustments, as shown in Fig. 2.

it = σg(Wixt +Riht−1 +bi)

ft = σg(Wf xt +R f ht−1 +b f)

gt = σc(Wgxt +Rght−1 +bg)

ot = σg(Woxt +Roht−1 +bo)

(3)

In these equations, � represents the Hadamard product (element-wise multiplication), σc denotes the
activation function applied element-wise to the cell state ct and to the cell state gate gt ; σg denotes the
activation function applied element-wise to the hidden state gates. Here, W , R, and b are, respectively,
hidden state weights, recurrent weights, and biases for each of the gates.

3.2.2 Convolutional Neural Network + Long Short Term Memory (CNN+LSTM) Architecture

When processing sequences, a CNN uses sliding convolutional filters over the input, extracting infor-
mation from spatial and temporal dimensions. Conversely, an LSTM network progresses through time
steps, capturing lasting connections between them. The synergy of CNN and LSTM layers, as seen
in CNN+LSTM architectures [49], harnesses the strengths of both convolutional and LSTM units for
insightful data analysis.

The convolutional component forms the foundation for acquiring local feature modules that grasp
both local and hierarchical correlations. This fusion enables the identification of intricate data rela-
tionships. Additionally, the inclusion of an LSTM layer enhances the network’s capacity to capture
prolonged dependencies by leveraging information from these localized features.

N. Pal et al. 167

Input

Conv 1 Conv 2

Pooling
LSTM

Dense

Output

Convolutional Part (CNN) LSTM Part (LSTM)

Figure 3: Layers of a demo CNN+LSTM Architecture model

3.3 Reachability Analysis Computation

This section describes how the reachability of an NN layer and the NN as a whole is computed for this
study.

In this context, we adopt an alternative technique for defining a Star set. This method involves
utilizing the input’s upper and lower bounds with noise, subsequently aligning them around the original
input. We establish a comprehensive array of constraints by incorporating these bounds for each input
parameter alongside predicates. These constraints are then presented to the optimizer for a solution,
ultimately yielding the initial set of states.

Definition 3.2 A layer L of a NN is a function h : u ∈ R j→ v ∈ Rp, defined as follows

v = h(u) (4)

where the function h is determined by parameters θ , typically defined as a tuple θ = 〈σ ,W,b〉 for fully-
connected and convolutional layers, where W is the weight matrix, b is the bias vector, and activation
function is σ . For CNN layers, θ may include parameters like the filter size, padding, or dilation factor.

Definition 3.3 Let h : u ∈ R j → v ∈ Rp, be an NN layer as described in Eq. 4. The reachable set Rh,
with input, I ∈ Rn is defined as

Rh , {v | v = h(u), u ∈I } (5)

Reachability analysis (or, shortly, reach) of an NN f on Star input set I is similar to the reachable set
calculations for CNN [44] or FFNN [42].

Reach(f ,I) : I →Rts (6)

We call Rts(I) the output reachable set of the NN corresponding to the input set I .
For an NN, the output reachable set can be calculated as a step-by-step process of constructing the

reachable sets for each network layer.

RL1 , {v1 | v1 = h1(x), x ∈I },
RL2 , {v2 | v2 = h2(v1), v1 ∈RL1},

...

Rts = RLk , {vk | vk = hk(vk−1), vk−1 ∈RLk−1},

(7)

168 Formal Verification of Long Short-Term Memory based Audio Classifiers

where hk is the function represented by the kth layer Lk. The reachable set RLk contains all outputs of the
neural network corresponding to all input vectors x in the input set I .

3.4 Adversarial Perturbation

An audio classification system may face real-world scenarios involving elements like background noise,
interference, or distortions. While potentially perceptible, these factors remain within the scope of chal-
lenges that practical systems are designed to address. However, this paper exclusively used l-infinity
perturbations, focusing on assessing how audio classification models respond to variations within spe-
cific constraints.

Considering an input sequence characterized by ts time instances and n f features, various pertur-
bation types (l∞ norm) [34] arise based on their distribution across the sequence. These adversarial
perturbation categories can be delineated as follows:

1. Single Feature Single-instance (SFSI): This entails perturbing the value of a specific feature
solely at a particular instance (t), deviating by a certain percentage from the actual value:

sperturb = gε,sperturb(s) = s+ εt · sperturb
t (8)

2. Single Feature All-instances (SFAI): In this scenario, a particular feature across all time instances
undergoes perturbation by a certain percentage relative to its original values:

sperturb = gε,sperturb(s) = s+
n

∑
i=1

εi · sperturb
i (9)

3. Multifeature Single-instance (MFSI): All feature values experience perturbation, but solely at a
specific instance (t), following the principle outlined in Eq. 8 for each feature.

4. Multifeature All-instance (MFAI): Perturbation affects all feature values across all instances,
aligning with the approach delineated in Eq. 9 for every feature.

3.5 Robustness Verification Properties

Robustness. Robustness pertains to the capacity of a system or model to sustain its performance and
functionality amid diverse challenging conditions, uncertainties, or perturbations. This highly desirable
trait ensures the system’s dependability, resilience, and adaptability in the presence of altering or un-
favorable circumstances. To formally articulate the concept of robustness for quantifying the desired
classification task, the following formulation can be employed:

||x′− x||∞ < δ =⇒ f (x′) == f (x) (10)

Here, x signifies the original input from the input space Rn f×ts , x′ represents the perturbed input, f (x′)
and f (x) correspond to the classifiers’ outputs for x′ and x, respectively. δ stands for the maximum
magnitude of the introduced perturbation (δ ∈ R > 0). By disregarding the softmax and classification
layers within the models and focusing on the output of the layer immediately preceding the softmax, the
formulation for robustness simplifies as follows:

||x′− x||∞ < δ =⇒ maxID(g(x′)) == maxID(g(x)) (11)

In this context, the function g symbolizes the operation performed by the neural network classifier model
until the softmax layer, and maxID denotes the function responsible for identifying the class with the
highest value in the output.

N. Pal et al. 169

Verification Properties. Verification properties can be broadly classified into two distinct categories:
local and global. A local property must be valid for specific predefined inputs, while a global property
[48] is established across the entire input space Rn f×ts of the network model, holding true for all inputs
without exceptions.

Local Robustness. Given a sequence classifier f and an input sequence S, the network is called locally
robust to any perturbation A if and only if: reachable bounds of the desired class will be max compared
to the bounds of the other classes, even in the presence of any perturbation.

Robustness Value (RV) of a sequence S is a binary variable, which indicates the local robustness of
the system. RV is 1 when the reachable output range of the desired class is greater than the reachable
bounds of other classes, making it locally robust; otherwise, RV is 0.

RV = 1 ⇐⇒ LBdesired ≥UBother else, RV = 0
where LBdesired and UBother are the lower reachable bound of the desired class and UBother are the

upper bounds of all other classes.

Percentage Robustness (PR). We apply the concept of Percentage Robustness (PR), previously uti-
lized in image-based classification or segmentation neural networks [43], to the context of sequence
audio inputs. The PR for a sequence classifier, corresponding to any adversarial perturbation, is defined
as:

PR =
Nrobust

Ntotal
×100 (12)

where Nrobust represents the total number of robust sequences, and Ntotal is the overall count of sequences
in the test dataset. Percentage robustness can be used as an indicator of global robustness [48] with
respect to various types of perturbations.

4 Reachability of a Long Short Term Memory Layer

To compute the reachability of an LSTM layer in relation to a star input set St , a series of stepwise
reachability computations are necessary to ultimately determine the reachable set of the LSTM layer’s
output, as depicted in Eq. 2-3. Ensuring accurate results relies on verifying the validity of specific
conditions, which are crucial for this process to be sound and accurate:

1. Affine Mapping Validity. The transformation of a star set through an affine mapping using a
given weight and bias must result in another valid star set [42].

2. Star Set Summation. Combining two star sets through Minkowski summation should lead to the
formation of yet another valid star set [5].

3. Activation Function Application. Upon applying the activation function to a star set, the output
should also result in a star set(s). The outcome could manifest as a single star set or a composi-
tion of multiple star sets, contingent on factors such as the activation functions employed and the
specific reachability technique utilized [42–45].

4. Hadamard Product Validity. The Hadamard Product of two star sets should yield another valid
star set.

While the validity of the first three conditions for star sets has been established in prior research, this
current study aims to extend that validation to include the fourth condition as well.

170 Formal Verification of Long Short-Term Memory based Audio Classifiers

Definition 4.1 (Hadamard product of two star sets) Given two star-sets Θ1 = 〈c1,V1,P1〉 and Θ2 =
〈c2,V2,P2〉, the Hadamard product of them Θ̄ = Θ1�Θ2 = {y | y = x1�x2, x1 ∈Θ1, x2 ∈Θ2} is another
star with the following characteristics.

Θ̄ = 〈c̄,V̄ , P̄〉, c̄ = c1� c2, V̄ =

[
V1 0
0 V2

]
, P̄≡

[
P1 0
0 P2

]
Therefore we can conclude that for a given input set St and an LSTM layer, the output is also a star

set.

5 Experimental Setup

5.1 Hardware Used:

The actual experimental results shown in this paper are conducted in a Windows-10 computer with the
64-bit operating system, Intel(R) Core(TM) i7-8850H processor, and 16 GB RAM.

5.2 Dataset Description

For evaluation, we consider two different audio datasets for noise classification and Japanese vowel
classification.

Audio Noise Data: To curate this dataset, we generated a collection of 1000 white noise signals, 1000
brown noise signals, and 1000 pink noise signals using MATLAB. Each signal corresponds to a 0.5-
second duration and adheres to a 44.1 kHz sample rate. From this pool of 1000 signals, a training set
is fashioned, comprising 800 white noise signals, 800 brown noise signals, and 800 pink noise signals.
Given the multidimensionality inherent in audio data, often containing redundant information, a dimen-
sionality reduction strategy is employed. We begin by extracting features and subsequently training the
model using only two extracted features. These features are generated from the centroid and slope of the
mel spectrum over time.

Japanese Vowel [3, 22]: This dataset is collected from [3] from the University of Irvine Machine
Learning Repository. Two Japanese vowels were sequentially pronounced by nine male speakers. A 12-
degree linear prediction analysis was subjected to each instance of utterances. Each speaker’s utterance
constitutes a time series ranging from 7 to 29 points in length, with each point featuring 12 coefficients.
For 9 classes (i.e., vowels), the dataset has a total of 640 time series. Among these, 270 time series were
designated for training purposes, while the remaining 370 were allocated for testing.

5.3 Network Description

Audio Noise Data: The network architecture used for training the audio noise dataset, partially adopted
from [27], is an LSTM network. The network has two input features which correspond to one noise type
at the output. Following 11, the network for this dataset can be represented as:

f : x ∈ R2×ls → y ∈ R3

ˆnoiseClass = maxID(g(x))
(13)

N. Pal et al. 171

Japanese Vowel: Here we have trained two different classifiers for the Japanese Vowel dataset. The
LSTM architecture is partially adopted from [28] and the CNN+LSTM is partially adopted from [29].
Both the networks have twelve input features which correspond to one vowel at the output. Therefore,
the networks for this dataset can be represented as:

f : x ∈ R12×ls → y ∈ R9

ˆvowelClass = maxID(g(x))
(14)

Here ls is the audio sequence length and the function maxID provides the class with the maximum
value.

Table 1: Performances of different networks used in this paper

Networks Accuracy(%)

audio_noise_lstm 100
japanese_vowel_lstm 93.51

japanese_vowel_cnnlstm 96.49

6 Evaluation

6.1 Robustness Verification of Audio Noise Classifier

To conduct robustness verification on the audio noise dataset, we encompass all four categories of per-
turbations, following [34]. First, we curate 100 sequences each of white, brown, and pink noise as test
datasets. Then, we generate adversarial sequences centered around the original ones by applying l∞
norms. This involves utilizing 5 distinct percentage values for perturbation (ε), specifically 50%, 60%,
70%, 80%, and 90% of the mean (µ) value. These newly created adversarial inputs are subjected to as-
sessment through the exact-star reachability analysis [Sec. 4] to determine their robustness. Notably, in
the case of Single Feature Single-instance Noise (SFSI) and Single Feature All-instances Noise (SFAI),
we opt for random selection of feature 1 for input perturbation.

Table 2: Global Robustness: percentage robustness (PR) and total verification runtime (sumRT in sec-
onds) for 100 test audio noise sequences

noise PRSFSI PRSFAI PRMFSI PRMFAI sumRTSFSI sumRTSFAI sumRTMFSI sumRTMFAI

50 98 80.33 98 80.33 0.3071 0.2626 0.3018 0.2625
60 96 71.67 96 71.67 0.3034 0.2571 0.3018 0.2578
70 94 25.67 94 25.67 0.3039 0.2637 0.3070 0.2663
80 85.33 12.33 85.33 12.33 0.3073 0.2559 0.3111 0.2556
90 63.33 8.33 63.33 8.33 0.3060 0.2504 0.3093 0.2537

Observations and Analysis. Table 2 and Fig. 4 present the network’s overall performance, i.e., the
percentage robustness measures, PR [Sec. 3.5], and total verification runtime (sumRT) in seconds, with
respect to each adversarial perturbation. The observations derived from both the table and the figure
provide the following insights:

172 Formal Verification of Long Short-Term Memory based Audio Classifiers

50 60 70 80 90 100
Adversarial Perturbation (%)

0

20

40

60

80

100

P
er

ce
n

ta
g

e
R

o
b

u
st

n
es

s
(%

)

50 60 70 80 90 100
Adversarial Perturbation (%)

20

22

24

26

28

30

32

T
o

ta
l R

u
n

ti
m

e
(s

ec
)

MFAI

MFSI

SFAI

SFSI

Figure 4: Percentage Robustness and Runtime plots w.r.t increasing perturbations

1. Trend of Percentage Robustness (PR). As the adversary level increases from 50 to 90, we observe
a consistent decrease in PR values for all perturbation scenarios (SFSI, SFAI, MFSI, MFAI), which
aligns with the concept of the robustness verification property. This decrease in PR signifies a
reduction in the system’s ability to maintain its classification accuracy in the presence of higher
adversary levels.

2. Comparative Analysis of Perturbation Scenarios. Within each noise level, comparing PR values
across different perturbation scenarios (SFSI, SFAI, MFSI, MFAI), it’s evident that PR values for
SFSI and MFSI are generally higher than those for SFAI and MFAI. This finding indicates that
perturbing features at a single instance or all features at a single instance generally leads to better
robustness against varying noise levels.

3. Similar PR Values for Different Perturbation Scenarios. Another notable observation is the
similarity in robustness matrices between SFSI and MFSI scenarios, accompanied by closely com-
parable computation times for their respective verification processes. This parallelism is also ev-
ident for SFAI and MFAI perturbations as well. This pattern could be ascribed to the dataset’s
limited feature set of only two dimensions, where the foremost feature likely holds paramount
importance in influencing the class determination in the presence of noise. Consequently, when
single-instance perturbations target the first feature, perturbing both features results in an effect
akin to perturbing the first feature alone. This interpretation is applicable to both MFAI and SFAI
scenarios as well.

6.2 Robustness Verification of Japanese Vowel Classifiers

To verify the robustness of both the LSTM and the CNN+LSTM models in the context of the Japanese
vowel classifier, we extend the evaluation to encompass all four perturbation categories, mirroring the
approach undertaken for the audio noise classifier. During this procedure, we focus on the complete
set of correctly classified test sequences. Subsequently, we create adversarial inputs centered around
the original sequences by applying l∞ norms to evaluate their robustness. This perturbation process
involves applying 5 distinct percentage values (ε) for perturbation: specifically, 50%, 60%, 70%, 80%,

N. Pal et al. 173

and 90% of the mean (µ) value. The resulting set of adversarial inputs is then assessed using the exact-
star reachability analysis for both the classifiers to ascertain their robustness. Like the earlier scenario,
for SFSI and SFAI, feature 1 is chosen for perturbation.

Table 3: Global Robustness: percentage robustness (PR) and total verification runtime (sumRT in sec-
onds) for all test Japanese Vowel audio sequences

noise PRSFSI PRSFAI PRMFSI PRMFAI sumRTSFSI sumRTSFAI sumRTMFSI sumRTMFAI

50 100 68.21 100 74.86 1.1502 1.0398 1.0392 1.0442
60 100 60.40 100 50.29 0.9989 0.9992 0.9970 0.9966
70 100 50.29 100 27.17 0.9981 0.9968 0.9965 0.9952
80 100 43.93 100 13.01 0.9920 0.9930 0.9978 0.9882
90 100 39.02 100 8.38 1.0044 1.0083 1.004 0.9985

50 60 70 80 90 100
Adversarial Perturbation (%)

0

20

40

60

80

100

110

P
er

ce
n

ta
g

e
R

o
b

u
st

n
es

s
(%

)

50 60 70 80 90 100
Adversarial Perturbation (%)

100

105

110

115
T

o
ta

l R
u

n
ti

m
e

(s
ec

)
MFAI
MFSI
SFAI
SFSI

Figure 5: Percentage Robustness and Runtime plots w.r.t increasing perturbations, for LSTM architecture

Observations and Analysis: LSTM Model Table 3 and Fig. 5 present the LSTM network’s over-
all performance, i.e., the percentage robustness measures, PR [Sec. 3.5], and total verification runtime
(sumRT), with respect to each adversarial perturbation. The notable findings are outlined as follows

1. Trend of Percentage Robustness (PR). Similar to the audio noise classifier, the trends in PR
values here also suggest that as noise levels increase, the percentage robustness tends to decrease
across all scenarios. This aligns with the intuitive expectation that higher adversary levels lead to
increased challenges in maintaining robustness.
The PRSFSI and PRMFSI values remain consistently at 100% across all noise levels, indicating that
perturbing either a single feature or all features at a specific instance does not significantly affect
the robustness of the audio sequences. On the other hand, PRSFAI and PRMFAI show distinct trends.
As adversary levels increase, PRSFAI gradually decreases, suggesting that perturbing all instances
but only a single feature starts impacting the robustness. Similarly, PRMFAI also experiences a
decline with increasing noise levels, reflecting that perturbing all instances and features has an
impact on the sequences’ robustness.

174 Formal Verification of Long Short-Term Memory based Audio Classifiers

2. Comparative Analysis of Perturbation Scenarios. The comparison between single-instance per-
turbation scenarios (SFSI and SFAI) and multifeature perturbation scenarios (MFSI and MFAI)
reveals a pattern. The former scenarios (single-instance) generally maintain higher robustness
compared to the latter (multifeature) scenarios. This suggests that perturbing all features has a
larger impact on robustness than perturbing just a single feature.
The interrelation between PRSFSI and PRMFSI is also notable. Both scenarios exhibit identical
trends, regardless of the noise level. Similarly, PRSFAI and PRMFAI also demonstrate similar be-
haviors, with both scenarios showing a decline in robustness as noise increases.

Observations and Analysis: CNN+LSTM Model Table 4 and Fig. 6 present the CNN+LSTM net-
work’s overall performance.

Table 4: Global Robustness: percentage robustness (PR) and total verification runtime (sumRT in sec-
onds) for all correctly-classified test Japanese Vowel audio sequences

noise PRSFSI PRSFAI PRMFSI PRMFAI sumRTSFSI sumRTSFAI sumRTMFSI sumRTMFAI

50 96.82 49.13 97.39 65.89 5.5019 4.2007 4.2197 4.1148
60 96.82 40.75 97.39 43.64 4.5148 3.9238 3.9123 3.9200
70 96.82 34.68 97.10 18.78 4.6223 4.0966 4.0778 4.0626
80 96.82 30.63 97.10 3.17 4.5658 4.0998 4.0550 4.0714
90 96.82 26.58 97.10 0 4.5773 4.0785 4.0715 4.0605

50 60 70 80 90 100
Adversarial Perturbation (%)

0

20

40

60

80

100

P
er

ce
n

ta
g

e
R

o
b

u
st

n
es

s
(%

)

50 60 70 80 90 100
Adversarial Perturbation (%)

400

450

500

550

T
o

ta
l R

u
n

ti
m

e
(s

ec
)

MFAI
MFSI
SFAI
SFSI

Figure 6: Percentage Robustness and Runtime plots w.r.t increasing perturbations, for LSTM architecture

Key insights gleaned from both the table and the plot include:

1. Trend of Percentage Robustness (PR). Across all perturbation levels, the PRSFSI remain con-
sistently at around 96% and the PRMFSI at around 97%, indicating that the perturbations applied
in these scenarios do not significantly affect the robustness of the audio sequences. For SFAI and
MFAI perturbations, PR also decreases with rising noise levels, although the decline is more pro-
nounced. PR values for SFSI and MFSI perturbations are significantly higher compared to SFAI

N. Pal et al. 175

and MFAI perturbations at all noise levels, indicating that sequences with perturbations at a single
instance are more robust to noise.

2. Trend of Verification Runtimes (sumRT). Verification runtimes tend to rise with elevated noise
levels across all perturbation scenarios. However, in the case of the Japanese Vowel dataset, an
initial decrease is observed in the runtime trend, followed by an increase at perturbation level 70%
and then again decreases at 80%, followed by another increase at 90%. It’s also worth noting
that contrary to the expected trend, sumRTSFSI exhibits a higher runtime value in comparison to
sumRTSFAI and sumRTMFAI .

Overall, the above tables demonstrate how different perturbation scenarios and adversary levels impact
the percentage robustness of the audio noise and Japanese Vowel audio classifiers. The trends and inter-
relations provide insights into the varying effects of perturbations on different scenarios and noise levels,
helping to understand the robustness behavior of the neural network models under different conditions.

7 Conclusion and Future Directions

This study delves into formal method-based reachability analysis for various LSTM-based neural net-
works (NNs) using exact and approximate Star methods, specifically in the context of audio sequence
classification – a critical aspect for safety-critical applications. The investigation encompasses four dis-
tinct adversarial perturbation types, as introduced in the existing literature. The evaluation occurs across
two audio sequence datasets: audio noise sequences and Japanese vowel audio sequences. The unified
reachability analysis accommodates shifting features within time sequences while scrutinizing the output
against the desired audio class. Robustness properties are verified for both datasets. Although real-world
datasets are employed, further research is essential to strengthen the connection between practical issues
and performance metrics. The evaluation can also be conducted with multiple repetitions to ensure that
the reported results are not dependent on specific instances or random fluctuations, thus enhancing the
overall validity and reliability of the findings. Exploring real-world scenarios encompassing a wider ar-
ray of perturbation types and magnitudes will also be fascinating, potentially yielding diverse effects on
system behavior. The study paves the way for exploring the impact of perturbations on the output and
expanding reachability analysis to three-dimensional sequence data like videos. An intriguing direction
for exploration can involve analyzing the peculiar runtime patterns observed in the plots for the Japanese
Vowel audio dataset. Potential future applications can also encompass medical video analysis. Notably,
this work concentrates on offline data analysis, omitting considerations for real-time stream processing
and memory limitations, which offers intriguing prospects for future investigation.

Acknowledgements. The material presented in this paper is based upon work supported by the Na-
tional Science Foundation (NSF) through grant numbers 1910017, 2028001, 2220426, and 2220401,
and the Defense Advanced Research Projects Agency (DARPA) under contract number FA8750-18-C-
0089 and FA8750-23-C-0518, and the Air Force Office of Scientific Research (AFOSR) under contract
number FA9550-22-1-0019 and FA9550-23-1-0135. Any opinions, findings, conclusions, or recom-
mendations expressed in this paper are those of the authors and do not necessarily reflect the views of
AFOSR, DARPA, or NSF.

176 Formal Verification of Long Short-Term Memory based Audio Classifiers

References

[1] Michael E Akintunde, Andreea Kevorchian, Alessio Lomuscio & Edoardo Pirovano (2019): Verification
of RNN-Based Neural Agent-Environment Systems. In: Proceedings of the AAAI Conference on Artificial
Intelligence, 33, pp. 6006–6013, doi:10.1609/aaai.v33i01.33016006.

[2] Greg Anderson, Shankara Pailoor, Isil Dillig & Swarat Chaudhuri (2019): Optimization and abstrac-
tion: a synergistic approach for analyzing neural network robustness. In: Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 731–744,
doi:10.1145/3314221.3314614.

[3] Arthur Asuncion & David Newman (2007): UCI machine learning repository.

[4] Yusuf Aytar, Carl Vondrick & Antonio Torralba (2016): Soundnet: Learning sound representations from
unlabeled video. Advances in Neural Information Processing Systems 29: December 5-10, 2016, Barcelona,
Spain.

[5] Stanley Bak & Parasara Sridhar Duggirala (2017): Simulation-equivalent reachability of large linear sys-
tems with inputs. In: International Conference on Computer Aided Verification, Springer, pp. 401–420,
doi:10.1007/978-3-319-63387-9_20.

[6] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin & Christian Schilling (2019): Ju-
liaReach: a toolbox for set-based reachability. In: Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pp. 39–44, doi:10.1145/3302504.3311804.

[7] Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio & Ruth Misener (2020): Efficient
verification of relu-based neural networks via dependency analysis. In: Proceedings of the AAAI Conference
on Artificial Intelligence, 34, pp. 3291–3299, doi:10.1609/aaai.v34i04.5729.

[8] Keunwoo Choi, György Fazekas, Mark Sandler & Kyunghyun Cho (2017): Convolutional recurrent neural
networks for music classification. In: 2017 IEEE International conference on acoustics, speech and signal
processing (ICASSP), IEEE, pp. 2392–2396, doi:10.1109/ICASSP.2017.7952585.

[9] Fatih Demir, Daban Abdulsalam Abdullah & Abdulkadir Sengur (2020): A new deep CNN model for envi-
ronmental sound classification. IEEE Access 8, pp. 66529–66537, doi:10.1109/ACCESS.2020.2984903.

[10] Mingwen Dong (2018): Convolutional neural network achieves human-level accuracy in music genre clas-
sification. arXiv preprint arXiv:1802.09697.

[11] Peace Busola Falola, Emmanuel Oluwadunsin Alabi, Folashade Titilope Ogunajo & Oluwakemi Dunsin
Fasae (2022): Music genre classification using machine and deep learning techniques: a review. ResearchJet
J Anal Invent 3(03), pp. 35–50.

[12] Ian J Goodfellow, Jonathon Shlens & Christian Szegedy (2015): Explaining and harnessing adversarial
examples. 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings.

[13] Andrey Guzhov, Federico Raue, Jörn Hees & Andreas Dengel (2021): Esresnet: Environmental sound clas-
sification based on visual domain models. In: 2020 25th International Conference on Pattern Recognition
(ICPR), IEEE, pp. 4933–4940, doi:10.1109/ICPR48806.2021.9413035.

[14] Navid Hashemi, Bardh Hoxha, Tomoya Yamaguchi, Danil Prokhorov, Georgios Fainekos & Jyotirmoy Desh-
mukh (2023): A Neurosymbolic Approach to the Verification of Temporal Logic Properties of Learning-
enabled Control Systems. In: Proceedings of the ACM/IEEE 14th International Conference on Cyber-
Physical Systems (with CPS-IoT Week 2023), pp. 98–109, doi:10.1145/3576841.3585928.

[15] Ezz El-Din Hemdan, Walid El-Shafai & Amged Sayed (2023): CR19: A framework for preliminary detec-
tion of COVID-19 in cough audio signals using machine learning algorithms for automated medical diag-
nosis applications. Journal of Ambient Intelligence and Humanized Computing 14(9), pp. 11715–11727,
doi:10.1007/s12652-022-03732-0.

[16] Sepp Hochreiter & Jürgen Schmidhuber (1997): Long short-term memory. Neural computation 9(8), pp.
1735–1780, doi:10.1162/neco.1997.9.8.1735.

https://doi.org/10.1609/aaai.v33i01.33016006
https://doi.org/10.1145/3314221.3314614
https://doi.org/10.1007/978-3-319-63387-9_20
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1609/aaai.v34i04.5729
https://doi.org/10.1109/ICASSP.2017.7952585
https://doi.org/10.1109/ACCESS.2020.2984903
https://doi.org/10.1109/ICPR48806.2021.9413035
https://doi.org/10.1145/3576841.3585928
https://doi.org/10.1007/s12652-022-03732-0
https://doi.org/10.1162/neco.1997.9.8.1735

N. Pal et al. 177

[17] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min Wu
& Xinping Yi (2020): A survey of safety and trustworthiness of deep neural networks: Verification,
testing, adversarial attack and defence, and interpretability. Computer Science Review 37, p. 100270,
doi:10.1016/j.cosrev.2020.100270.

[18] Yuval Jacoby, Clark Barrett & Guy Katz (2020): Verifying recurrent neural networks using invariant infer-
ence. In: Automated Technology for Verification and Analysis: 18th International Symposium, ATVA 2020,
Hanoi, Vietnam, October 19–23, 2020, Proceedings 18, Springer, pp. 57–74, doi:10.1007/978-3-030-59152-
6_3.

[19] Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah,
Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić et al. (2019): The marabou framework for verification and
analysis of deep neural networks. In: International Conference on Computer Aided Verification, Springer,
pp. 443–452, doi:10.1007/978-3-030-25540-4_26.

[20] Panagiotis Kouvaros & Alessio Lomuscio (2018): Formal verification of cnn-based perception systems. arXiv
preprint arXiv:1811.11373.

[21] Alex Krizhevsky, Ilya Sutskever & Geoffrey E Hinton (2012): Imagenet classification with deep convolu-
tional neural networks. Advances in Neural Information Processing Systems 25: December 3-6, 2012, Lake
Tahoe, Nevada, United States, pp. 1106–1114.

[22] Mineichi Kudo, Jun Toyama & Masaru Shimbo (1999): Multidimensional curve classification using passing-
through regions. Pattern Recognition Letters 20(11-13), pp. 1103–1111, doi:10.1016/S0167-8655(99)00077-
X.

[23] Steve Lawrence, C Lee Giles, Ah Chung Tsoi & Andrew D Back (1997): Face recognition: A convolutional
neural-network approach. IEEE transactions on neural networks 8(1), pp. 98–113, doi:10.1109/72.554195.

[24] Yann LeCun, Léon Bottou, Yoshua Bengio & Patrick Haffner (1998): Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), pp. 2278–2324, doi:10.1109/5.726791.

[25] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, Mykel J Kochenderfer
et al. (2021): Algorithms for verifying deep neural networks. Foundations and Trends® in Optimization
4(3-4), pp. 244–404, doi:10.1561/2400000035.

[26] Diego Manzanas Lopez, Sung Woo Choi, Hoang-Dung Tran & Taylor T Johnson (2023): NNV 2.0: the
neural network verification tool. In: International Conference on Computer Aided Verification, Springer, pp.
397–412, doi:10.1007/978-3-031-37703-7_19.

[27] Classify Sound Using Deep Learning - MATLAB & Simulink — mathworks.com. https://www.mathworks.
com/help/audio/gs/classify-sound-using-deep-learning.html.

[28] Sequence Classification Using Deep Learning - MATLAB &; Simulink — mathworks.com. https://www.
mathworks.com/help/deeplearning/ug/classify-sequence-data-using-lstm-networks.html.

[29] Sequence Classification Using 1-D Convolutions - MATLAB &; Simulink — mathworks.com. https://www.
mathworks.com/help/deeplearning/ug/sequence-classification-using-1-d-convolutions.html.

[30] Toshio Modegi & Shun-ichi Iisaku (1997): Application of MIDI technique for medical audio signal cod-
ing. In: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society.’Magnificent Milestones and Emerging Opportunities in Medical Engineering’(Cat. No.
97CH36136), 4, IEEE, pp. 1417–1420, doi:10.1109/IEMBS.1997.756970.

[31] Jeet Mohapatra, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu & Luca Daniel (2020): Towards verifying robustness
of neural networks against a family of semantic perturbations. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 244–252, doi:10.1109/CVPR42600.2020.00032.

[32] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi & Pascal Frossard (2016): Deepfool: a simple and ac-
curate method to fool deep neural networks. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2574–2582, doi:10.1109/CVPR.2016.282.

https://doi.org/10.1016/j.cosrev.2020.100270
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1016/S0167-8655(99)00077-X
https://doi.org/10.1016/S0167-8655(99)00077-X
https://doi.org/10.1109/72.554195
https://doi.org/10.1109/5.726791
https://doi.org/10.1561/2400000035
https://doi.org/10.1007/978-3-031-37703-7_19
https://www.mathworks.com/help/audio/gs/classify-sound-using-deep-learning.html
https://www.mathworks.com/help/audio/gs/classify-sound-using-deep-learning.html
https://www.mathworks.com/help/deeplearning/ug/classify-sequence-data-using-lstm-networks.html
https://www.mathworks.com/help/deeplearning/ug/classify-sequence-data-using-lstm-networks.html
https://www.mathworks.com/help/deeplearning/ug/sequence-classification-using-1-d-convolutions.html
https://www.mathworks.com/help/deeplearning/ug/sequence-classification-using-1-d-convolutions.html
https://doi.org/10.1109/IEMBS.1997.756970
https://doi.org/10.1109/CVPR42600.2020.00032
https://doi.org/10.1109/CVPR.2016.282

178 Formal Verification of Long Short-Term Memory based Audio Classifiers

[33] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalch-
brenner, Andrew Senior & Koray Kavukcuoglu (2016): Wavenet: A generative model for raw audio. The 9th
ISCA Speech Synthesis Workshop, Sunnyvale, CA, USA, 13-15 September 2016, p. 125.

[34] Neelanjana Pal, Diego Manzanas Lopez & Taylor T Johnson (2023): Robustness verification of deep neural
networks using star-based reachability analysis with variable-length time series input. In: International
Conference on Formal Methods for Industrial Critical Systems, Springer, pp. 170–188, doi:10.1007/978-3-
031-43681-9_10.

[35] Gunasekaran Raja, Senbagapriya Senthilkumar, Sivaseelan Ganesan, Rithika Edhayachandran, Geetha Vi-
jayaraghavan & Ali Kashif Bashir (2021): AV-CPS: audio visual cognitive processing system for critical
intervention in autonomous vehicles. In: 2021 IEEE International Conference on Communications Work-
shops (ICC Workshops), IEEE, pp. 1–6, doi:10.1109/ICCWorkshops50388.2021.9473647.

[36] Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne & Douglas Eck (2018): A hierarchical latent
vector model for learning long-term structure in music. In: International conference on machine learning,
PMLR, pp. 4364–4373.

[37] Wenjie Ruan, Min Wu, Youcheng Sun, Xiaowei Huang, Daniel Kroening & Marta Kwiatkowska (2019):
Global Robustness Evaluation of Deep Neural Networks with Provable Guarantees for the L_0 Norm. Pro-
ceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, pp. 5944–5952, doi:10.24963/ijcai.2019/824.

[38] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel & Martin Vechev (2018): Fast and effec-
tive robustness certification. In: Advances in Neural Information Processing Systems, pp. 10825–10836.

[39] Gagandeep Singh, Timon Gehr, Markus Püschel & Martin Vechev (2019): An abstract domain for
certifying neural networks. Proceedings of the ACM on Programming Languages 3(POPL), p. 41,
doi:10.1145/3291645.

[40] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow & Rob
Fergus (2014): Intriguing properties of neural networks. In: 2nd International Conference on Learning
Representations, ICLR 2014.

[41] Hoang Dung Tran, Sung Woo Choi, Xiaodong Yang, Tomoya Yamaguchi, Bardh Hoxha & Danil
Prokhorov (2023): Verification of Recurrent Neural Networks with Star Reachability. In: Proceedings
of the 26th ACM International Conference on Hybrid Systems: Computation and Control, pp. 1–13,
doi:10.1145/3575870.3587128.

[42] Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen, Weiming
Xiang & Taylor T Johnson (2019): Star-based reachability analysis of deep neural networks. In: International
Symposium on Formal Methods, Springer, pp. 670–686, doi:10.1007/978-3-030-30942-8_39.

[43] Hoang-Dung Tran, Neelanjana Pal, Patrick Musau, Diego Manzanas Lopez, Nathaniel Hamilton, Xiaodong
Yang, Stanley Bak & Taylor T Johnson (2021): Robustness verification of semantic segmentation neural
networks using relaxed reachability. In: International Conference on Computer Aided Verification, Springer,
pp. 263–286, doi:10.1007/978-3-030-81685-8_12.

[44] Hoang-Dung Tran, Weiming Xiang & Taylor T Johnson (2020): Verification approaches for
learning-enabled autonomous cyber–physical systems. IEEE Design & Test 39(1), pp. 24–34,
doi:10.1109/MDAT.2020.3015712.

[45] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen, Weiming
Xiang, Stanley Bak & Taylor T Johnson (2020): NNV: The neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: International Conference on Computer Aided
Verification, Springer, pp. 3–17, doi:10.1007/978-3-030-53288-8_1.

[46] Finley Walden, Sagar Dasgupta, Mizanur Rahman & Mhafuzul Islam (2022): Improving the Environmental
Perception of Autonomous Vehicles using Deep Learning-based Audio Classification. CoRR abs/2209.04075,
doi:10.48550/arXiv.2209.04075.

https://doi.org/10.1007/978-3-031-43681-9_10
https://doi.org/10.1007/978-3-031-43681-9_10
https://doi.org/10.1109/ICCWorkshops50388.2021.9473647
https://doi.org/10.24963/ijcai.2019/824
https://doi.org/10.1145/3291645
https://doi.org/10.1145/3575870.3587128
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-81685-8_12
https://doi.org/10.1109/MDAT.2020.3015712
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.48550/arXiv.2209.04075

N. Pal et al. 179

[47] Avery Wang et al. (2003): An industrial strength audio search algorithm. In: ISMIR 2003, 4th International
Conference on Music Information Retrieval, Baltimore, Maryland, USA, October 27-30, 2003, Proceedings,
Washington, DC, pp. 7–13.

[48] Zhilu Wang, Yixuan Wang, Feisi Fu, Ruochen Jiao, Chao Huang, Wenchao Li & Qi Zhu (2022):
A Tool for Neural Network Global Robustness Certification and Training. CoRR abs/2208.07289,
doi:10.48550/arXiv.2208.07289.

[49] Jianfeng Zhao, Xia Mao & Lijiang Chen (2019): Speech emotion recognition using deep 1D & 2D CNN
LSTM networks. Biomedical signal processing and control 47, pp. 312–323, doi:10.1016/j.bspc.2018.08.035.

https://doi.org/10.48550/arXiv.2208.07289
https://doi.org/10.1016/j.bspc.2018.08.035

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 180–187, doi:10.4204/EPTCS.395.13

© F. Belardinelli, A. Ferrando & V. Malvone
This work is licensed under the
Creative Commons Attribution License.

3vLTL: A Tool to Generate Automata
for Three-valued LTL

Francesco Belardinelli
Imperial College, London, United Kingdom

francesco.belardinelli@imperial.ac.uk

Angelo Ferrando
University of Genoa, Genoa, Italy

angelo.ferrando@unige.it

Vadim Malvone
Telecom Paris, Paris, France

vadim.malvone@telecom-paris.fr

Multi-valued logics have a long tradition in the literature on system verification, including run-time
verification. However, comparatively fewer model-checking tools have been developed for multi-
valued specification languages. We present 3vLTL, a tool to generate Büchi automata from formulas
in Linear-time Temporal Logic (LTL) interpreted on a three-valued semantics. Given an LTL for-
mula, a set of atomic propositions as the alphabet for the automaton, and a truth value, our procedure
generates a Büchi automaton that accepts all the words that assign the chosen truth value to the LTL
formula. Given the particular type of the output of the tool, it can also be seamlessly processed by
third-party libraries in a natural way. That is, the Büchi automaton can then be used in the context of
formal verification to check whether an LTL formula is true, false, or undefined on a given model.

1 Introduction

Multi-valued logics have a long tradition in the literature on system verification, as demonstrated by
various references [8, 15, 3, 23, 17, 18], and they play a crucial role in run-time verification as well [4, 5].
Of particular interest are three-valued logics, including temporal extensions of Kleene’s logic [19], where
the third value, in addition to true and false, is interpreted as "unknown" or "unspecified". Such semantics
prove especially convenient when constructing smaller abstractions of complex reactive and distributed
systems. These abstractions are typically approximations of the original model, containing strictly less
information. Consequently, the challenge lies in finding the right trade-off between reducing complexity
and minimizing information loss during the abstraction process. In system verification, one of the most
widely used temporal logics for specifying requirements is Linear-time Temporal Logic (LT L) [22].
The model checking problem for LT L is typically addressed through automata-theoretic techniques [2].
Given a model M of a transition system and an LT L formula ϕ , the approach involves generating Büchi
automata for both M and the negation of ϕ . This allows us to determine whether ϕ is satisfied in M by
examining whether the language accepted by the product of these two automata is empty.

Several tools are available now to generate Büchi automata from LT L formulas. Notable examples
include [11, 13]. However, to the best of our knowledge, no tool has yet been proposed to directly
generate Büchi automata for multi-valued temporal logics.

Contribution. In this paper we present 3vLTL, a tool to generate (generalized) Büchi automata
from LT L formulas interpreted on a three-valued semantics. Specifically, given an LT L formula, a set of
atomic propositions (representing the automaton alphabet), and a truth value (true, false or undefined),
our procedure generates a Büchi automaton that accepts all the words that assign the chosen truth value
to the input LT L formula. Furthermore, 3vLTL has the functionality to process our output (i.e., the

http://dx.doi.org/10.4204/EPTCS.395.13
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

F. Belardinelli, A. Ferrando & V. Malvone 181

automaton) by third-party libraries in a natural way. The present work is motivated by the use of three-
valued logics in system verification. Indeed, our tool can be used in several works, such as [20, 16,
24, 25], to provide results for the verification of three-valued LT L formulas. Furthermore, our tool is
already used in [6]. In this work, the authors present an abstraction-refinement method to partially solve
the model checking of multi-agent systems under imperfect information and perfect recall strategies.
Note that, a three-valued semantics becomes particularly significant in situations involving imperfect
information, as the absence of information can lead to the emergence of a third value. This is particularly
evident in autonomous and distributed systems, where a component may not have access to the complete
system’s information [12].

Related Work. Concerning the three-valued automata technique for LT L employed in this work, the
most closely related approaches can be found in [21, 10, 9, 26]. Notably, in [9], there is an exploration
of a reduction from multi-valued to two-valued LT L, but it does not encompass automata-theoretic tech-
niques. Conversely, in [10], an automata-theoretic approach for general multi-valued LT L is presented,
following the tableau-based construction as outlined in [14]; however, this work is more suitable for
on-the-fly verification w.r.t. to our approach. In a different vein, [21] delves into general multi-valued
automata, defining lattices, deterministic and non-deterministic automata, as well as their extensions
with Büchi acceptance conditions. As part of their theoretical findings, they introduce an automata con-
struction for multi-valued LT L, though it lacks a clear explanation of states and transitions. With respect
to our work, in [21], the model checking is only briefly discussed, and their approach is tailored more
toward multi-valued logics in a broader sense.

To summarize, unlike [21, 10, 9], our proposed approach makes minimal modifications to the
automata-theoretic construction for two-valued LT L [2] and extends it to a three-valued interpretation.

2 Preliminaries

In this part we present a three-valued semantics for Linear-time Temporal Logic LT L and recall the
definition of generalized non-deterministic Büchi automata. To fix the notation, we assume that AP =
{q1,q2, . . .} is the set of atomic propositions, or simply atoms. We denote the length of a tuple t as |t|,
and its i-th element as ti. For i ≤ |t|, let t≥i be the suffix ti, . . . , t|t| of t starting at ti and t≤i its prefix
t1, . . . , ti. Notice that we start enumerations with index 1.

Models. We begin by giving a formal definition of Transition Model [2].

Definition 1 (Transition Model) Given a set AP of atoms, a Transition Model is a tuple M = 〈S,s0,−→
,V 〉 such that (i) S is a finite, non-empty set of states, with initial state s0 ∈ S; (ii) −→⊆ S×S is a serial
transition relation; (iii) V : S×AP→{tt, ff,uu} is the three-valued labelling function.

A path p ∈ Sω is an infinite sequence s1s2s3 . . . of states where si −→ si+1, for each i≥ 1.

Syntax. Here, we recall the syntax of LT L.

Definition 2 (LT L) Formulas in LT L are defined as follows, where q ∈ AP:

ϕ ::= q | ¬ϕ | ϕ ∧ϕ | Xϕ | (ϕUϕ)

The meaning of operators next X and until U is standard [2]. Operators release R, finally F , and
globally G can be introduced as usual: ϕRψ ≡ ¬(¬ϕU¬ψ), Fϕ ≡ ttUϕ , Gϕ ≡ ffRϕ .

182 3vLTL: A Tool to Generate Automata for Three-valued LTL

Semantics. Formally we define the three-valued semantics for LT L as follows.
Definition 3 (Satisfaction) The three-valued satisfaction relation |=3 for a Transition Model M, path
p ∈ Sω , atom q ∈ AP, v ∈ {tt, ff}, and formula ϕ is defined as follows:
((M,s) |=3 Aψ) = ff iff for some path p in M, ((M, p) |=3 ψ) = ff
((M, p) |=3 q) = v iff V (p1,q) = v
((M, p) |=3 ¬ψ) = v iff ((M, p) |=3 ψ) = ¬v
((M, p) |=3 ψ ∧ψ ′) = tt iff ((M, p) |=3 ψ) = tt and ((M, p) |=3 ψ ′) = tt
((M, p) |=3 ψ ∧ψ ′) = ff iff ((M, p) |=3 ψ) = ff or ((M, p) |=3 ψ ′) = ff
((M, p) |=3 Xψ) = v iff ((M, p≥2) |=3 ψ) = v
((M, p) |=3 ψUψ ′) = tt iff for some k ≥ 1, ((M, p≥k) |=3 ψ ′) = tt, and

for all j, 1≤ j < k⇒ ((M, p≥ j) |=3 ψ) = tt
((M, p) |=3 ψUψ ′) = ff iff for all k ≥ 1, ((M, p≥k) |=3 ψ ′) = ff, or

for some j ≥ 1, ((M, p≥ j) |=3 ψ) = ff, and
for all j′, 1≤ j′ ≤ j⇒ ((M, p≥ j′) |=3 ψ ′) = ff

In all other cases the value of ϕ is uu.

Generalized non-deterministic Büchi automaton. Now, we recall the definition of the class of au-
toma that we will use in our construction and in the tool.
Definition 4 (GNBA) A generalized non-deterministic Büchi automaton is a tuple A = 〈Q,Q0,Σ,π,F 〉
where (i) Q is a finite set of states with Q0 ⊆ Q as the set of initial states; (ii) Σ is an alphabet; (iii)
π : Q×Σ→ 2Q is the (non-deterministic) transition function; (iv) F is a (possibly empty) set of subsets
of Q, whose elements are called acceptance sets.
Given an infinite run ρ = q0q1q2 . . . ∈ Qω , let Inf(ρ) be the set of states q for which there are infinitely
many indices i with q = qi, that is, q appears infinitely often in ρ . Then, run ρ is accepting if for each
acceptance set F ∈F , Inf(ρ)∩F 6= /0, that is, there are infinitely many indices i in ρ with qi∈F. The
accepted language L(A) of automaton A consists of all infinite words w ∈ Σω for which there exists at
least one accepting run ρ = q0q1q2 . . . ∈ Qω such that for all i≥ 0, qi+1 ∈ π(qi,wi).

3 Automata Construction

In this section we provide a slightly variant of the automata-theoretic approach to the verification of the
three-valued linear-time logic LT L as proposed in [7]. In particular, in what follows we generalize the
construction in [7] for the truth values tt, ff, and uu.
Definition 5 (Closure and Elementarity) The closure cl(ψ) of an LT L formula ψ is the set consisting
of all subformulas φ of ψ and their negation ¬φ . A set B⊆ cl(ψ) is consistent w.r.t. propositional logic
iff for all ψ1∧ψ2,¬φ ∈ cl(ψ): (i) ψ1∧ψ2 ∈ B iff ψ1 ∈ B and ψ2 ∈ B; (ii) ¬(ψ1∧ψ2) ∈ B iff ¬ψ1 ∈ B or
¬ψ2 ∈ B; (iii) if φ ∈ B then ¬φ 6∈ B; (iv) ¬¬φ ∈ B iff φ ∈ B. Further, B is locally consistent w.r.t. the until
operator iff for all ψ1Uψ2 ∈ cl(ψ): (i) if ψ2 ∈ B then ψ1Uψ2 ∈ B; (ii) if ¬(ψ1Uψ2) ∈ B then ¬ψ2 ∈ B;
(iii) if ψ1Uψ2 ∈ B and ψ2 6∈ B then ψ1 ∈ B; (iv) if ¬ψ1,¬ψ2 ∈ B, then ¬(ψ1Uψ2) ∈ B.

Finally, B is elementary iff it is both consistent and locally consistent.
Note that, unlike the standard construction for two-valued LT L [2], we do not require elementary

sets to be maximal (i.e., either φ ∈ B or ¬φ ∈ B), but we do require extra conditions (ii) and (iv) on
consistency, and (ii) and (iv) on local consistency. These extra conditions can be derived in the classic,
two-valued semantics, but need to be assumed as primitive here.

Hereafter Lit = AP∪{¬q | q ∈ AP} is the set of literals.

F. Belardinelli, A. Ferrando & V. Malvone 183

B2a

B1
/0

B3¬a

B4
Xa

B5
¬Xa

B6

{a,Xa}

B7

{¬a,Xa}
B9

{¬a,¬Xa}

B8

{a,¬Xa}

{a}

{a}

{a}

/0

/0

/0

{¬a}

{¬a}

{¬a}

/0

/0

/0

/0

/0

/0

{a}

{a}

{a}

{¬a}

{¬a}

{¬a}

{¬a}

{¬a}
{¬a}

{a}

{a}

{a}

Figure 1: The automaton Aψ,uu for formula ψ = Xa. Initial states are marked in yellow.

Definition 6 (Automaton Aψ,v) Let ψ be a formula in LT L. We define the automaton Aψ,v = 〈Q,Q0,
2Lit ,π,F 〉, where v ∈ {tt, ff,uu}, as follows: Q is the set of all elementary sets B ⊆ cl(ψ). if v = tt
then Q0 = {B ∈ Q | ψ ∈ B}; else if v = ff then Q0 = {B ∈ Q | ¬ψ ∈ B}; otherwise Q0 = {B ∈ Q | ψ 6∈
B and ¬ψ 6∈ B}. The transition relation π is given by: let A ⊆ Lit. If A 6= B∩ Lit, then π(B,A) = /0;
otherwise π(B,A) is the set of all elementary sets B′ of formulas such that for every Xφ ,ψ1Uψ2 ∈ cl(ψ):
(i) Xφ ∈B iff φ ∈B′; (ii) ¬Xφ ∈B iff ¬φ ∈B′; (iii) ψ1Uψ2 ∈B iff ψ2 ∈B or, ψ1 ∈B and ψ1Uψ2 ∈B′; (iv)
¬(ψ1Uψ2) ∈ B iff ¬ψ2 ∈ B and, ¬ψ1 ∈ B or ¬(ψ1Uψ2) ∈ B′. F = {Fψ1Uψ2 | ψ1Uψ2 ∈ cl(ψ)}∪{Q},
where Fψ1Uψ2 = {B ∈ Q | ψ1Uψ2 ∈ B implies ψ2 ∈ B and ¬ψ2 ∈ B implies ¬(ψ1Uψ2) ∈ B}.

According to Def. 6, the transition relation operates as follows: when the automaton reads a set A of
literals that do not exist in the current state, the transition remains undefined. However, if these literals
are present in the state, the automaton proceeds to verify the enabled transitions based on the semantics
of the LT L operators. It is worth noting that in Def. 6, we must also specify conditions for negated
formulas. This is necessary because elementary sets may not necessarily be maximal in this context.

We present an example of automaton for the next operator and truth value undefined.

Example 1 Consider ψ = Xa. The GNBA Aψ,uu in Fig. 1 is obtained as indicated in Def. 6. Namely,
the state space Q consists of all elementary sets of formulas contained in cl(ψ) = {a,¬a,Xa,¬Xa}:
B1 = /0, B2 = {a}, B3 = {¬a}, B4 = {Xa}, B5 = {¬Xa}, B6 = {a,Xa}, B7 = {a,¬Xa}, B8 = {¬a,Xa},
B9 = {¬a,¬Xa}. The initial states of Aψ,uu are the elementary sets B ∈ Q with ψ,¬ψ 6∈ B. That is,
Q0 = {B1,B2,B3}. The transitions are depicted in Fig. 1. The set F is {Q} as ψ does not contain until
operators. Hence, every infinite run in Aψ,uu is accepting.

Now, we provide a generalization of the main theoretical result proved in [7].

Theorem 1 For every LT L formula ψ and truth value v ∈ {tt, ff,uu}, there exists a GNBA Aψ,v (given
as in Def. 6) s.t. L(Aψ,v) = Paths(ψ,v), where Paths(ψ,v) is the set of paths p ∈ (2Lit)ω such that
(p |=3 ψ) = v. Moreover, the size of Aψ,v is exponential in the size of ψ .

4 Implementation

Tool Architecture. The 3vLTL tool1 developed for this paper aims at generating highly reusable gen-
eralized non-deterministic Büchi automata (GNBA) [7]. Hence, instead of generating only a graphical

1https://github.com/AngeloFerrando/3vLTL

https://github.com/AngeloFerrando/3vLTL

184 3vLTL: A Tool to Generate Automata for Three-valued LTL

result, 3vLTL produces a machine-readable file which can be easily parsed by third-party tools and li-
braries as well. From an engineering perspective, a pure graphical representation would help the final
user to visualise the generated automaton, but it would not make it accessible for further evaluations.

LTL property
ψ

Alphabet
[p, q, . . .]

Truth valuee
tt, ff, uu

Generator .hoa

.gv

Third-party
library

. . .

user

Figure 2: Overview of the tool.

Figure 2 provides an overview of 3vLTL. The tool begins by parsing the user’s input, which consists
of three essential arguments. The first argument is the LTL property ψ of interest, serving as a guide for
generating the GNBA. The second argument represents the alphabet of ψ and informs 3vLTL about the
atomic propositions to consider when constructing the automaton. Since the automaton explicitly spec-
ifies the atomic propositions associated with its transitions, it is crucial to identify the relevant events of
interest. The third argument specifies the truth value against which the LTL formulas are verified. Fol-
lowing the approach proposed in [7], 3vLTL offers support for generating three different GNBA versions.
To elaborate further, if tt (representing satisfaction), ff (representing violation), or uu (representing nei-
ther satisfaction nor violation) is provided as the third argument, 3vLTL generates the respective GNBA,
denoted as Aψ,tt, Aψ,ff, or Aψ,uu, recognizing traces that satisfy, violate, or neither satisfy nor violate ψ .
3vLTL produces two distinct output files. The first file, primarily graphical, contains the GNBA descrip-
tion in the DOT graph description language. The choice of DOT format stems from its widespread usage
(supported by many programming languages) and its native compatibility with Graphviz2. The second
file generated by 3vLTL adheres to the HOA (Hanoi Omega-Automata) format3, a machine-readable
format. This format enjoys support from well-known automata-based libraries, including Spot [11] and
LTL3BA [1]4. This choice enhances compatibility with third-party tools, promoting the broader utility
of the GNBA generated by 3vLTL. It is important to note that while 3vLTL operates independently,
it seamlessly integrates with existing automata-based tools, ensuring a smooth transition for users and
enabling further advancements and applications of the GNBA it produces.

Technical details. We go further into the detail of the implementation. First of all, 3vLTL has been
implemented in Java (version 17). The resulting runnable jar can be directly used off-the-shelf.

3vLTL is divided into three components: input handler, automaton generator, and output handler.
Input handler. 3vLTL handles three input data: the LTL property ψ , the alphabet, and the truth value.

While the handling of the second and third arguments is straightforward, the first argument requires a bit
more of work. Specifically, a parser has been implemented to parse LTL formulas using Antlr5, which is
directly supported in Java. The resulting visitor for the LTL grammar is not only used to parse the LTL
property ψ given in input, but it is also used to extract the corresponding closure cl(ψ).

Automaton generator. After the LTL property ψ given in input has been successfully parsed, and

2https://graphviz.org/
3http://adl.github.io/hoaf/
4LTL3BA operates on two-valued automata, but its output is defined using three truth values, allowing it to effectively handle

run-time verification scenarios. For a comprehensive examination of the distinctions between "undefined" and "unknown" truth
values in the context of run-time verification, you can find more detailed information in [12].

5https://www.antlr.org

https://graphviz.org/
http://adl.github.io/hoaf/
https://www.antlr.org

F. Belardinelli, A. Ferrando & V. Malvone 185

the resulting closure cl(ψ) has been generated, the tool proceeds with the generation of the GNBA.
The corresponding Java object, instantiation of the custom Automaton class, is generated and stored in
memory. Inside such object all information about states and transitions, along with details on the initial
and accepting states, are stored. In particular, the set of initial states is determined by the last input given
to 3vLTL. If the user desires to produce a GNBA to recognise the traces which satisfy ψ , then the initial
states in the automaton are all the states containing ψ . Note that, this is possible because the elementary
subsets of cl(ψ) which determine the automaton’s states are not necessarily maximal, differently form
the standard automaton construction. Interestingly, the accepting states in all three cases are the same.

Output handler. Once the GNBA has been generated and the corresponding Java object is stored,
3vLTL moves forward to produce the resulting DOT and HOA output files. Both files are generated using
two different custom methods of the Automaton class. Such methods pass through all states/transitions,
and port these data in the wanted format.

Experiments. To show 3vLTL’s scalability, we carried out some experiments w.r.t. the size of the LTL
formula given in input. Figure 3 reports the results so obtained. As it is easy to note, the results show
3vLTL is exponential w.r.t. the size of LTL formula; where the size denotes the number of operators
in the formula (e.g., the LTL formula XF p has size 2, while Gp∧Fq has size 3). Note that, this was
expected because the transformation from LTL to GNBA is known to be exponential w.r.t. the size of the
LTL formula. So, 3vLTL extends the standard algorithm, but maintains the same complexity.

Figure 3: Experimental results.

5 Conclusions

In this paper, we have introduced a tool designed for generating automata from LTL formulas, interpreted
within a three-valued semantics framework. To implement this tool, we have closely followed the au-
tomata construction methodology outlined in [7]. Looking ahead, our future work entails extending the
capabilities of our tool to accommodate more than three truth values. This extension would enable us to
create a generator capable of handling multi-valued LTL formulas. Additionally, we envision applying
the automata construction and its associated implementation in various domains related to multi-valued
logics. One such domain is Runtime Verification, where three-valued LTL also finds relevance. How-
ever, it is worth noting that the third value in Runtime Verification serves to maintain the impartiality of
the monitor, while in our context, the third value signifies imperfect information about the system. As
a result, our approach has the potential to address scenarios involving imperfect information, similar to
the approach presented in [12]. Unfortunately, due to space constraints and the paper’s primary focus, a
comparative analysis with other tools has not been included.

186 3vLTL: A Tool to Generate Automata for Three-valued LTL

References

[1] Tomáš Babiak, Mojmír Křetínskỳ, Vojtěch Řehák & Jan Strejček (2012): LTL to Büchi automata translation:
Fast and more deterministic. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, Springer, pp. 95–109. Available at https://doi.org/10.48550/arXiv.1201.
0682.

[2] C. Baier & J. P. Katoen (2008): Principles of Model Checking. MIT Press.

[3] T. Ball & O. Kupferman (2006): An abstraction-refinement framework for multi-agent systems. In: LICS06,
IEEE, pp. 379–388, doi:10.1109/LICS.2006.10.

[4] Andreas Bauer, Martin Leucker & Christian Schallhart (2006): Monitoring of Real-Time Properties. In
S. Arun-Kumar & Naveen Garg, editors: FSTTCS 2006: Foundations of Software Technology and Theoret-
ical Computer Science, 26th International Conference, Kolkata, India, December 13-15, 2006, Proceedings,
Lecture Notes in Computer Science 4337, Springer, pp. 260–272. Available at https://doi.org/10.
1007/11944836_25.

[5] Andreas Bauer, Martin Leucker & Christian Schallhart (2007): The Good, the Bad, and the Ugly, But How
Ugly Is Ugly? In Oleg Sokolsky & Serdar Taşıran, editors: Runtime Verification, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 126–138, doi:10.1007/978-3-540-77395-5_11.

[6] Francesco Belardinelli, Angelo Ferrando & Vadim Malvone (2023): An abstraction-refinement framework for
verifying strategic properties in multi-agent systems with imperfect information. Artif. Intell. 316. Available
at https://doi.org/10.1016/j.artint.2022.103847.

[7] Francesco Belardinelli & Vadim Malvone (2020): A Three-valued Approach to Strategic Abilities under
Imperfect Information. In Diego Calvanese, Esra Erdem & Michael Thielscher, editors: Proceedings of the
17th International Conference on Principles of Knowledge Representation and Reasoning, KR 2020, Rhodes,
Greece, September 12-18, 2020, pp. 89–98. Available at https://doi.org/10.24963/kr.2020/10.

[8] G. Bruns & P. Godefroid (1999): Model Checking Partial State Spaces. In: Proceedings of the 11th Inter-
national Conference on Computer Aided Verification (CAV99), LNCS 1633, Springer-Verlag, pp. 274–287,
doi:10.1007/3-540-48683-6_25.

[9] G. Bruns & P. Godefroid (2003): Model Checking with Multi-Valued Logics. Technical Report ITD-03-
44535H, Bell Labs.

[10] Marsha Chechik, Benet Devereux & Arie Gurfinkel (2001): Model-checking in finite state-space systems with
fine-grained abstractions using SPIN. In: International SPIN Workshop on Model Checking of Software,
Springer, pp. 16–36, doi:10.1007/3-540-45139-0_3.

[11] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne Renault &
Laurent Xu (2016): Spot 2.0 - A Framework for LTL and ω-Automata Manipulation. In Cyrille Artho, Axel
Legay & Doron Peled, editors: Automated Technology for Verification and Analysis - 14th International
Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016, Proceedings, Lecture Notes in Computer
Science 9938, pp. 122–129. Available at https://doi.org/10.1007/978-3-319-46520-3_8.

[12] Angelo Ferrando & Vadim Malvone (2022): Runtime Verification with Imperfect Information Through
Indistinguishability Relations. In Bernd-Holger Schlingloff & Ming Chai, editors: Software Engineer-
ing and Formal Methods - 20th International Conference, SEFM 2022, Berlin, Germany, September 26-
30, 2022, Proceedings, Lecture Notes in Computer Science 13550, Springer, pp. 335–351. Available at
https://doi.org/10.1007/978-3-031-17108-6_21.

[13] Paul Gastin & Denis Oddoux (2001): Fast LTL to Büchi Automata Translation. In Gérard Berry, Hubert
Comon & Alain Finkel, editors: Computer Aided Verification, 13th International Conference, CAV 2001,
Paris, France, July 18-22, 2001, Proceedings, Lecture Notes in Computer Science 2102, Springer, pp. 53–65.
Available at https://doi.org/10.1007/3-540-44585-4_6.

https://doi.org/10.48550/arXiv.1201.0682
https://doi.org/10.48550/arXiv.1201.0682
https://doi.org/10.1109/LICS.2006.10
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1016/j.artint.2022.103847
https://doi.org/10.24963/kr.2020/10
https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/3-540-45139-0_3
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-031-17108-6_21
https://doi.org/10.1007/3-540-44585-4_6

F. Belardinelli, A. Ferrando & V. Malvone 187

[14] R. Gerth, D. Peled, M. Vardi & P. Wolper (1995): Simple On-the-fly Automatic Verification of Linear Tem-
poral Logic. In: Proceedings of IFIP/WG6.1 Symposium Protocol Specification, Testing and Verification
(PSTV95), Chapman & Hall, pp. 3–18, doi:10.1007/978-0-387-34892-6_1.

[15] P. Godefroid & R. Jagadeesan (2003): On the Expressiveness of 3-Valued Models. In: Proceedings of the 4th
International Conference on Verification, Model Checkig, and Abstract Interpretation (VMCAI03), LNCS
2575, Springer-Verlag, pp. 206–222, doi:10.1007/3-540-36384-X_18.

[16] Patrice Godefroid & Nir Piterman (2009): LTL generalized model checking revisited. In: International
Workshop on Verification, Model Checking, and Abstract Interpretation, Springer, pp. 89–104. Available at
https://doi.org/10.1007/s10009-010-0169-3.

[17] Michael Huth, Radha Jagadeesan & David A. Schmidt (2004): A domain equation for refinement of partial
systems. Mathematical Structures in Computer Science 14(4), pp. 469–505. Available at https://doi.
org/10.1017/S0960129504004268.

[18] Michael Huth & Shekhar Pradhan (2004): Consistent Partial Model Checking. Electronic Notes in Theoret-
ical Computer Science 73, pp. 45–85. Available at https://doi.org/10.1016/j.entcs.2004.08.003.

[19] S. C. Kleene (1952): Introduction to Metamathematics. North-Holland.
[20] Beata Konikowska (1998): A three-valued linear temporal logic for reasoning about concurrency. ICS PAC,

Warsaw, Poland, Tech. Rep.
[21] Orna Kupferman & Yoad Lustig (2007): Lattice Automata. In: Verification, Model Checking, and Abstract

Interpretation, 8th International Conference, VMCAI 2007, Nice, France, January 14-16, 2007, Proceedings,
pp. 199–213. Available at https://doi.org/10.1007/978-3-540-69738-1_14.

[22] A. Pnueli (1977): The Temporal Logic of Programs. In: FOCS’77, IEEE Computer Society, pp. 46–57,
doi:10.1109/SFCS.1977.32.

[23] S. Shoham & O. Grumberg (2004): Monotonic Abstraction-Refinement for CTL. In: TACAS04, pp. 546–560,
doi:10.1007/978-3-540-24730-2_40.

[24] Nils Timm & Stefan Gruner (2016): Parameterised three-valued model checking. Science of Computer
Programming 126, pp. 94–110, doi:10.1016/j.scico.2016.01.006.

[25] Rachel Tzoref & Orna Grumberg (2006): Automatic refinement and vacuity detection for symbolic tra-
jectory evaluation. In: International Conference on Computer Aided Verification, Springer, pp. 190–204,
doi:10.1007/11817963_20.

[26] Stefan J. J. Vijzelaar & Wan J. Fokkink (2017): Creating Büchi Automata for Multi-valued Model Checking.
In Ahmed Bouajjani & Alexandra Silva, editors: Formal Techniques for Distributed Objects, Components,
and Systems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Held as Part of the 12th Interna-
tional Federated Conference on Distributed Computing Techniques, DisCoTec 2017, Neuchâtel, Switzerland,
June 19-22, 2017, Proceedings, Lecture Notes in Computer Science 10321, Springer, pp. 210–224. Available
at https://doi.org/10.1007/978-3-319-60225-7_15.

https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/3-540-36384-X_18
https://doi.org/10.1007/s10009-010-0169-3
https://doi.org/10.1017/S0960129504004268
https://doi.org/10.1017/S0960129504004268
https://doi.org/10.1016/j.entcs.2004.08.003
https://doi.org/10.1007/978-3-540-69738-1_14
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-540-24730-2_40
https://doi.org/10.1016/j.scico.2016.01.006
https://doi.org/10.1007/11817963_20
https://doi.org/10.1007/978-3-319-60225-7_15

M. Farrell, M. Luckcuck, M. Schwammberger, and
M. Gleirscher (Eds): Fifth International Workshop on
Formal Methods for Autonomous Systems (FMAS 2023)
EPTCS 395, 2023, pp. 188–204, doi:10.4204/EPTCS.395.14

© C. Bellanger, P.-L. Garoche, M. Martel & C. Picard
This work is licensed under the
Creative Commons Attribution License.

Towards Proved Formal Specification and Verification of STL
Operators as Synchronous Observers

Céline Bellanger
ENAC, Université de Toulouse

Pierre-Loı̈c Garoche
ENAC, Université de Toulouse

Matthieu Martel
Université de Perpignan Via Domitia

Célia Picard
ENAC, Université de Toulouse

Signal Temporal Logic (STL) is a convenient formalism to express bounded horizon properties of
autonomous critical systems. STL extends LTL to real-valued signals and associates a non-singleton
bound interval to each temporal operators. In this work we provide a rigorous encoding of non-nested
discrete-time STL formulas into Lustre synchronous observers.

Our encoding provides a three-valued online semantics for the observers and therefore enables
both the verification of the property and the search of counter-examples. A key contribution of
this work is an instrumented proof of the validity of the implementation. Each node is proved correct
with respect to the original STL semantics. All the experiments are automated with the Kind2 model-
checker and the Z3 SMT solver.

1 Introduction

In the context of autonomous critical systems, an undesirable behaviour can lead to significant material
or human damage. Thus, the specification of properties and their formal verification play a paramount
role in ensuring the safety, reliability and compliance of such systems.

Dynamical systems continuously respond to environmental changes. Signal Temporal Logic (STL)
has emerged as a powerful formalism for expressing temporal properties within these systems [16].
The main particularity of STL language is the association of each temporal operator with a finite, non-
singleton time interval, during which the operator is studied. Consider the temporal ◇ (Eventually)
operator, which evaluates whether a property ϕ is satisfied or not at least once. A correct formalism for
◇ in STL is ◇[a,b]ϕ , where a and b are times such that a < b. Most of the time, STL properties are assess
offline: we execute the system from start to finish, and we observe after the end of the execution if the
system behaviour and its outputs are compliant to specified requirements.

However, the complexity of certain autonomous dynamical systems may require runtime verifica-
tion. This involves continuous assessment of the system’s compliance to its specification throughout
execution. Synchronous observers can be employed for this purpose. These specialized observers react
when a property is satisfied or violated, providing instantaneous information about the system’s state.
This approach offers advantages such as consistent real-time information transmission and the ability
to halt executions immediately upon property satisfaction or violation, without waiting for completion.
Notably, this enables quicker reactions to external events, crucial for critical systems. For instance, let
us admit that we wish to satisfy a property ϕ at least once during a time interval [a,b]. If the property
is satisfied in the interval, then there is no need to wait for time b to affirm that the property is indeed
verified.

This paper introduces preliminary works on the specification and verification of STL operators, using
synchronous observers. The rest of the document focuses on discrete times, and non nested temporal

http://dx.doi.org/10.4204/EPTCS.395.14
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

C. Bellanger, P.-L. Garoche, M. Martel & C. Picard 189

(X ,t)⊧µ ⇔ µ(t) (1)

(X ,t)⊧¬ϕ ⇔ ¬((X ,t)⊧ϕ) (2)

(X ,t)⊧ϕ1∧ϕ2 ⇔ (X ,t)⊧ϕ1∧(X ,t)⊧ϕ2 (3)

(X ,t)⊧ϕ1∨ϕ2 ⇔ (X ,t)⊧ϕ1∨(X ,t)⊧ϕ2 (4)

(X ,t)⊧ϕ1 U[a,b] ϕ2 ⇔ ∃t′ ∈ t + [a,b] ∶ (X ,t′)⊧ϕ2∧∀t′′ ∈ [t,t′] ∶ (X ,t′′)⊧ϕ1 (5)

(X ,t)⊧◇[a,b]ϕ ⇔ ∃t′ ∈ t + [a,b] ∶ (X ,t′)⊧ϕ (6)

(X ,t)⊧ ◻[a,b]ϕ ⇔ ∀t′ ∈ t + [a,b] ∶ (X ,t′)⊧ϕ (7)

Figure 1: STL offline semantics

operators. For example, STL properties like ◻[a,b](◇[c,d]ϕ) with ϕ an atomic proposition and a, b, c
and d distinct times such that a < b and c < d, are excluded due to the nested ◇ operator.

Our main contribution concerns the formal verification of the correctness of STL operators. To
this end, we provide a three-valued online STL semantics as well as the implementation of each STL
operator in the synchronous language Lustre. The soundness of the implementation is expressed as a set
of lemmas and automatically proved with the Kind2 model-checker.

Section 2 covers the preliminary concepts, including the Signal Temporal Logic, the synchronous
language Lustre, the model checker Kind2, and an introduction to three-valued logic. We formalise
an online semantics for STL operators in Section 3, and detail its Lustre implementation in Section 4.
Finally, Section 5 describes the formal correction of the operators implementation.

2 Preliminaries

2.1 Signal Temporal Logic

Let T denote a set of discrete times such that T =N and let X be a finite sets of signals. Let a,b ∈T with
a < b. Without loss of generality, we assume that all signals are defined as functions in T→R from time
to real values. To simplify notations, we denote the set of time [t +a,t +b] as t + [a,b].
Definition 1 (STL formal grammar). Let µ be an atomic predicate whose value is determined by the
sign of a function of an underlying signal x ∈X , i.e., µ(t) ≡ µ(x(t)) > 0. Let ϕ , ψ be STL formulas. STL
formula ϕ is defined inductively as:

ϕ ∶∶= µ ∣ ¬ϕ ∣ ϕ ∧ψ ∣ ϕ ∨ψ ∣ ◻[a,b]ψ ∣ ◇[a,b]ψ ∣ ϕ U[a,b] ψ

Definition 2 (STL semantics). The semantics of a formula ϕ is defined at a time t ∈ T and for a set of
signals X as (X ,t)⊧ϕ as described in the Figure 1.

µ is evaluated locally, at time t over the current values of the signals, Eq. (1). Equation (2) (Nega-
tion) is the logical negation of ϕ . Equation (3) (And) is the logical conjunction between ϕ1 and ϕ2.
Equation (4) (Or) is the logical disjunction between ϕ1 and ϕ2.

It is worth mentioning that, in STL, all temporal operators have to be associated to a bounded, non-
singleton time interval. Equation (5) (Until) describes a temporal operator that is satisfied if ϕ1 holds
from time t until ϕ2 becomes True within the time horizon t + [a,b]. Equation (6) (Eventually) describes
a temporal operator that is satisfied if ϕ is verified at least once within the time horizon t+[a,b]. Finally,

190 STL Operators as Synchronous Observers

Equation (7) (Always or Globally) describes a temporal operator that is satisfied if ϕ is always verified
within the time horizon t + [a,b]. Note that the usual definitions of ◇[a,b] and ◻[a,b] based on U[a,b] still
apply:

◇[a,b]ϕ = True U[a,b] ϕ, and (8)

◻[a,b]ϕ = ¬(◇[a,b]¬ϕ). (9)

Remark 1. While evaluation of predicates is performed at time t in (X ,t)⊧ p ⇔ µ(t), all occurrences
of time intervals [a,b] in the definitions of U[a,b], ◻[a,b] or ◇[a,b] are used to delay the current time t:
t + [a,b] = [t +a,t +b]. These times a and b are then relative times while t acts more as an absolute time.

2.2 Lustre

td ::= type bt ∣ type t = enum { Ci, ...}
bt ::= real ∣ bool ∣ int ∣ enum ident
d ::= node f (p) returns (p);

vars p let D tel
p ::= x ∶ bt; ...;x ∶ bt
D ::= pat = e;D ∣ pat = e;

pat ::= x ∣ (pat, ..., pat)
e ::= v ∣ x ∣ (e, ...,e) ∣ e→ e ∣ op(e, ...,e)

∣ if e then e else e ∣ pre e
v ::= C ∣ i

Table 1: A subset of Lustre syntax

Lustre[5] is a synchronous language
for modeling systems of synchronous
reactive components. A Lustre pro-
gram L is a finite collection of nodes
[N0,N1, . . . ,Nm]. The nodes satisfy the
grammar described in Table 1 in which
td denotes type constructors, includ-
ing enumerated types, and v either con-
stants of enumerated types C or primi-
tive constants such as integers i. Each
node is declared by the grammar con-
struct d of Table 1. A Lustre node N
transforms infinite streams of input flows to streams of output flows, with possible local variables denot-
ing internal flows. A notion of a symbolic “abstract” universal clock is used to model system progress.
At each time step k, a node reads the value of each input stream and instantaneously computes and re-
turns the value of each output stream. Note that all the equations of a node are computed at each time
step. Therefore an if-then-else statement is purely functional and both of its branches are evaluated while
only one of the computed value is returned.

Stateful constructs. Two important Lustre operators are the unary right-shift pre (for previous)
operator and the binary initialization → (for followed-by) operator. Their semantics is as follows. For
the operator Pre: at first step k = 0, pre p is undefined, while for each step k > 0 it returns the value of p
at k−1. For the operator →: At step k = 0, p → q returns the value of p at k = 0, while for k > 0 it returns
the value of q at k step.

For example, the Lustre equation y = x0→ pre(u); will be defined for each time step k by:

y(k) = { x0(0) if k = 0
u(k−1) if k > 0

2.3 Specifying and verifying assume-guarantee contracts with Kind2

The annotation language CoCoSpec [6] was proposed for Lustre models to lift the notion of Hoare
triple [12] and Assume/Guarantee statements as dataflow contracts. A contract is associated to a node
and has only access to the input/output streams of that node. The body of a contract may contain a

C. Bellanger, P.-L. Garoche, M. Martel & C. Picard 191

1 node timeab (const a,b: int) returns (time: bool);
2 (*@contract
3 var clk : int = 0 -> 1 + pre clk;
4 assume a >=0;
5 guarantee time = (clk >= a and clk <= b);
6 *)

Figure 2: Example of a Lustre contract implementation

set of assume (A) and guarantee (G) statements and mode declarations. Modes are named
and consist of require (R) and ensure (E) statements. Assumes, guarantees, requires, and ensures
are all Boolean expressions over streams. In particular, assumptions and requires are expressions over
input streams, while guarantees and ensures are expressions over input/output streams. A synchronous
observer corresponds to such a contract with only a guarantee statement. A node satisfies a contract
C = (A,G′) if it satisfies Historically(A)⇒G′, where G′ =G∪ {Ri⇒ Ei} and Historically(A) when A
is true at all time.

Contracts can also define local flows, acting as ghost variables. These potentially stateful flows can
then be used in guarantees and ensure statements.

The following is an example of function timeab in Lustre using a local contract Figure 2. timeab
is a Lustre node indicating whether the current time is inside a given time interval [a,b]. It takes as inputs
the integers a and b, and returns a boolean value time that is True if the current time is inside [a,b].
First line of the contract (line 3) defines a local variable clk as an integer, which initially takes the value
0 and is then incrementing at each time. The assume at line 4 indicates to model checker that it has to
prove the Lustre node only in the cases where the condition a ≥ 0 is satisfied. If another Lustre node
is using timeab, Kind-2 also checks that this node could not provide an input a which runs counter
to this assumption. Finally, Kind-2 must guarantee the equality, line 5, for all the inputs respecting the
previous assumption, whatever the current time is. This equality compares the time output to value of
the specification clock in a valid interval [a,b]. timeab shall calculate the same output with an internal
clock bounded at time b. So here, we verify that bounding the clock has no effect on the provided output.

The Kind-2 model-checker [7] implements various SMT-based model-checking algorithms such as
k-induction [20] or IC3/PDR [4] and allows to verify contracts with respect to nodes.

2.4 Three-valued logic

We present here the interest of three-valued logic, and introduce Kleene’s three-valued logic, which we
use in the next section to formalise an online version of STL operators.

For most tools, when performing monitoring of STL predicates, for a given value of simulation data,
the trajectory is typically finite. It is produced by a simulation engine and stored in a data file. It is then
loaded by the monitoring tool and analyzed with respect to the STL specification. In this offline setting,
the final outcome indicates whether or not the input signal satisfies the specification. It is a boolean
output.

Temporal operators are used to evaluate properties that change over time. Most of the time in these
situations, we need to wait to decide whether a temporal property is satisfied or violated. Based on this
observation, how to evaluate a property before being able to conclude, i.e. before the beginning of the
time interval of a STL operator? Should we suppose that the operator is True or False before being
able to decide?

192 STL Operators as Synchronous Observers

A and B B
F U T

A
F F F F
U F U U
T F U T

(a) AND Operation

A or B B
F U T

A
F F U T
U U U T
T T T T

(b) OR Operation

A ¬A

F T
U U
T F

(c) Negation Operation

A⇒ B B
F U T

A
F T T T
U U U T
T F U T

(d) Logical implication

Table 2: Truth Tables showing Kleene’s 3-valued strong logic operations

Let us consider a property ◻[0,10]P, a set of signals X and an initial time t0, e.g., t0 = 0. We are
interested in checking (X ,t0) ⊧ ◻[0,10]P. Let us assume that we are given with a trace for X of length
l < 10, e.g., l = 8, where the predicate P is valid along the whole trace. What is the validity of such a
predicate? On the one hand, it is always valid, but on the other hand, it has no real definition within the
time [l,10]. Indeed, P could be false at time t = 9 or t = 10 and the property would be violated.

Since STL semantics requires all temporal connectors to be associated with bounded intervals, any
STL predicate has a bounded horizon limit, after which it is always possible to determine the validity
of a formula. We can then use this limit to evaluate temporal operators from it, considering that the
values returned before may be irrelevant. But, in some case, the validity of the predicate can already be
determined. In the previous example, if P is not valid at time t = 2, we already know at this time that the
operator will not be satisfied at the end of the time interval. Existing works regarding online semantics
for STL [8] try to optimize the runtime evaluation of the predicate monitoring, detecting when one can
conclude, positively or negatively.

Rather than optimizing execution time based on binary logic, Łukasiewicz proposed a three-valued
logic [15]. This logic introduces a third truth-value, Unknown (U), describing values for which we are
not yet able to conclude if the property is satisfied or violated. Later, Kleene proposes a strong logic
of indeterminacy [14] similar to Łukasiewicz logic. The main difference lies in the returned value for
implication. Kleene’s approach states that U⇒U is Unknown while Łukasiewicz considers that U⇒U
should be True. In our use of three-valued logic, we base ourselves on Kleene strong logic.

Table 2 presents the truth tables showing the logical operations AND, OR, the logical implication, as
well as the negation for Kleene’s strong logic.

3 Online semantics for STL

To evaluate STL properties online, we rely on Kleene strong three-valued logic introduced in Table 2.
In this section, we first introduce a way to obtain a three-valued output as proposed by Kleene, from
two-valued outputs. Then, we provide an online and three-valued semantics for STL properties.

Definition 3 (Positive, negative and indeterminacy logics). Each STL temporal operator can be ex-
pressed in a three-valued form. To implement it, we define three new concepts: 1. A Positive logic T
returning True when the property is satisfied, and False when it is yet undetermined or negative. 2. A
Negative logic F that acts like an alarm to underline a negative result, which means that a statement
returns True when we are sure that the property is not satisfied, and it returns False otherwise (unde-
termined property or satisfied property situations). 3. An Indeterminacy logic U highlighting situations
where it is not yet possible to conclude about the satisfaction or violation of the property.

Definition 4. Let ϕ , ϕ1 and ϕ2 be STL properties. We denote by T t
ϕ (resp. U t

ϕ and F t
ϕ) the evaluation

of (X ,t)⊧ϕ according to the positive (resp. indeterminacy and negative) logic. We denote by Bϕ the

C. Bellanger, P.-L. Garoche, M. Martel & C. Picard 193

evaluation of ϕ according to the offline implementation introduced in Figure 1. Note that Bϕ does not
depend on time instant t.
Property 1 (Complete and pairwise distinct). At any time instant t, exactly one of the three logic returns
True for a given property.

T t
ϕ ∨U t

ϕ ∨F t
ϕ (completeness) (10)

¬((T t
ϕ ∧F t

ϕ)∨(T t
ϕ ∧U t

ϕ)∨(U t
ϕ ∧F t

ϕ)) (disjointness) (11)

Remark 2 (Deduction of the output of the third logic). According to Property 1, we only need the output
of a given property in two of these three logics to determine its output in the last one. For example, if a
property ϕ returns False in positive and negative logic, it means that ϕ is still Unknown (True in the
indeterminacy logic).
Remark 3 (Property determination). There exists an instant td from which we cannot satisfy Ut≥td

ϕ . For
a non-nested temporal operator evaluated on time interval [a,b], td corresponds at the latest to t +b.

∃td ≤ t +b ∶ ∀t′ ≥ td ,¬U t′
ϕ (12)

Property 2. From a specific time instant t f , the offline and online results are similar. Thus, the outputs
of the offline Bϕ and online T t f

ϕ versions are equivalent. In the same way, the negation of the offline
operator is equivalent to the online negative version F t f

ϕ . For a non-nested temporal operator evaluated
on time interval [a,b], this time instant corresponds at the latest to t +b:

τ ≥ t +b Ô⇒ ((Bϕ ⇐⇒ Tτ

ϕ)∧(¬Bϕ ⇐⇒ Fτ

ϕ)) (13)

Property 3 (Immutability: Positive and negative logics are final). If a property is satisfied in the positive
(resp. negative) logic, it will remain so in the future.

∃t ∈T ∶T t
ϕ Ô⇒ ∀t′ ≥ t,T t′

ϕ (14)

∃t ∈T ∶ F t
ϕ Ô⇒ ∀t′ ≥ t,F t′

ϕ (15)

From these three logics, we obtain easily a three-valued output. The property is: 1. True in three-
valued logic if it is True in positive logic; 2. False in three-valued logic if it is True in negative logic;
3. Unknown in three-valued logic if it is True in indeterminacy logic.

Let us now characterize for each construct, the sufficient and necessary conditions to determine a
positive, a negative, or a temporary indeterminate value.

In the case of a non-temporal property, the property validity can always be determined as either
satisfied or violated. Let µ be an atomic proposition, ie. non temporal, and t ∈T:

∀X ,∀t, (X ,t)⊧µ ⇐⇒ T t
µ (X ,t)⊧¬µ ⇐⇒ F t

µ Uµ = � (16)

If the property is a combination of multiple predicates based on logical operators (∧,∨,Ô⇒ ,¬ϕ, . . .),
the validity is obtained using Kleene’s three-valued strong logic presented in Table 2.

In the case of STL temporal operators as described in Figure 1, we define a three-valued semantics
describing when each operator is True, False or Unknown. For positive and negative logics, we
also provide an explicit version obtained by enumerating all the terms in the time horizon t +a and t +b.
The unknown explicit version for a property P can be obtained by combining the positive and negative
explicit versions :

Uτ

P (explicit) ⇐⇒ (¬Tτ

P (explicit))∧(¬Fτ

P (explicit)) (17)

Let us describe the positive, negative and indeterminate versions of each STL operator:

194 STL Operators as Synchronous Observers

Tτ

P τ ≥ t +a∧∃t′ ∈ [t +a,min(τ,t +b)] ∶ (X ,t′)⊧ϕ (18)

Fτ

P τ ≥ t +b∧∀t′ ∈ [t +a,t +b],(X ,t′)⊧¬ϕ (19)

Uτ

P (τ < t +a)∨(τ < t +b∧∀t′ ∈ [t +a,τ],(X ,t′)⊧¬ϕ) (20)

Tτ

P (explicit) ((X ,t +a) ⊧ ϕ)∨((X ,t +a+1) ⊧ ϕ)∨ ...∨((X ,t +b−1) ⊧ ϕ)∨((X ,t +b) ⊧ ϕ) (21)

Fτ

P (explicit) ((X ,t +a) ⊧ ¬ϕ)∧((X ,t +a+1) ⊧ ¬ϕ)∧ ...∧
((X ,t +b−1) ⊧ ¬ϕ)∧((X ,t +b) ⊧ ∧¬ϕ) (22)

Figure 3: Three-valued semantics of Eventually operator: P =◇[a,b]ϕ

Tτ

P τ ≥ t +b∧∀t′ ∈ [t +a,t +b],(X ,t′)⊧ϕ (23)

Fτ

P τ ≥ t +a∧∃t′ ∈ [t +a,min(τ,t +b)] ∶ (X ,t′)⊧¬ϕ (24)

Uτ

P (τ < t +a)∨(τ < t +b∧∀t′ ∈ [t +a,τ],(X ,t′)⊧ϕ) (25)

Tτ

P (explicit) ((X ,t +a) ⊧ ϕ)∧((X ,t +a+1) ⊧ ϕ)∧ ...∧((X ,t +b−1) ⊧ ϕ)∧((X ,t +b) ⊧ ϕ) (26)

Fτ

P (explicit) ((X ,t +a) ⊧ ¬ϕ)∨((X ,t +a+1) ⊧ ¬ϕ)∨ ...∨
((X ,t +b−1) ⊧ ¬ϕ)∨((X ,t +b) ⊧ ¬ϕ) (27)

Figure 4: Three-valued semantics of Always operator: P = ◻[a,b]ϕ

Eventually ◇[a,b]ϕ (Fig. 3) In the positive logic, Eq. (18), we need to wait for time t+a, the beginning
of the time interval, to have a chance to conclude positively if a valid condition has been observed. From
time t +b, if the condition was not yet valid, the positive eventually operator always returns False. For
the negative logic, Eq. (19), invalidity requires to wait until the end of the time interval, otherwise one
cannot conclude. Finally, the validity is unknown if we have not yet reached the end of the time interval
but have not yet observed a suitable time, Eq. (20).

The explicit positive version Equation (21) is obtained by considering each instant between t +a and
t +b. One of these instants is supposed to satisfy the property. We use the disjunction between all the
terms to check it. At the opposite, explicit negative version Equation (22) returns True if all the terms
between t +a and t +b satisfy ¬ϕ . We therefore rely on the conjunction between all the terms.

Always ◻[a,b]ϕ (Fig. 4) In the positive logic, Eq. (23), similarly to the negative case of the eventually
operator, one needs to wait until the end of the interval to claim validity. For the negative logic. Eq. (24),
we detect invalidity as soon as we observe an invalid time, within the proper time interval. Unknown
cases are either before the time interval or within it, if the property ϕ is valid, up to now, Eq. (25).

The Always explicit positive version Equation (26) returns True if each instant between t +a and
t +b satisfies ϕ . Similarly to the explicit negative version of Eventually, we use the conjunction to verify
this point. For the explicit negative version to return True, it suffices that at one instant between t +a
and t +b, the property ϕ is not satisfied. Thus, we check the disjunction of all the terms, searching if one
of them violates ϕ .

C. Bellanger, P.-L. Garoche, M. Martel & C. Picard 195

Tτ

P (τ ≥ t +a)∧(∃t1 ∈ [t +a,min(τ,t +b)] ∶ (X ,t1)⊧ϕ2∧∀t2 ∈ [t,t1],(X ,t2)⊧ϕ1) (28)

Fτ

P (∃t6 ∈ [t,min(τ,t +a)] ∶ (X ,t6)⊧¬ϕ1) ∨
(τ ≥ t +a∧τ < t +b∧∃t7 ∈ [t +a,τ] ∶ (X ,t7)⊧¬ϕ1∧
¬(∃t8 ∈ [t +a,τ] ∶ (X ,t8)⊧ϕ2∧∀t9 ∈ [t,t8],(X ,t9)⊧ϕ1)) ∨

(τ ≥ t +b∧¬(∃t10 ∈ [t +a,t +b] ∶ (X ,t10)⊧ϕ2∧∀t11 ∈ [t,t10],(X ,t11)⊧ϕ1)) (29)

Uτ

P (τ < t +a∧∀t3 ∈ [t,τ],(X ,t3)⊧ϕ1) ∨
(τ ≥ t +a∧τ < t +b∧∀t4 ∈ [t,τ],(X ,t4)⊧ϕ1 ∧∀t5 ∈ [t +a,τ],(X ,t5)⊧¬ϕ2) (30)

Tτ

P (explicit) ((
a
⋀
n=0

(X ,n)⊧ϕ1)∧((X ,t +a)⊧ϕ2))∨((
a+1
⋀
n=0

(X ,n)⊧ϕ1)∧((X ,t +a+1)⊧ϕ2))∨ ...∨

((
b−1
⋀
n=0

(X ,n)⊧ϕ1)∧((X ,t +b−1)⊧ϕ2))∨((
b
⋀
n=0

(X ,n)⊧ϕ1)∧((X ,t +b)⊧ϕ2)) (31)

Fτ

P (explicit) (
a
⋁
n=0

(X ,n)⊧¬ϕ1)∨(
b
⋁

n1=a+1
((X ,n1)⊧¬ϕ1∧(

n1

⋀
n2=a

(X ,n2−1)⊧¬ϕ2)))∨

(
b
⋀
n=a

(X ,n)⊧¬ϕ2) (32)

Figure 5: Three-valued semantics of Until operator: P = ϕ1U[a,b]ϕ2

Until ϕ1U[a,b]ϕ2 (Fig. 5) Until operator is the most complex. We conclude positively when an event
ϕ2 occurred within the proper time interval, and until this moment ϕ1 was always satisfied, Eq. (28). For
the negative logic, there are multiple conditions that can lead to a violation of the property. First before
the time interval, if ϕ1 is not satisfied. Then inside the time interval, if (X ,τ) ⊧ ¬ϕ1 before the moment
when (X ,τ) ⊧ ϕ2, or if it was false before. Finally from t + b, if ϕ2 is never reached inside the time
interval or if it was false before, Eq. (29). About indeterminacy, we cannot yet conclude on the validity
of the formula, if, for the moment the formula is neither validated nor violated. A first condition is that
ϕ1 holds from time t until now. A second is that, at the current time τ , we have not reach yet t +a or we
always have ¬ϕ2. These condition only apply before reaching the end of the time interval t +b, Eq. (30).

As the Until operator depends at the same time to the satisfaction of a property inside the time
interval, and the satisfaction of another one before and inside the time interval, the explicit versions are
less trivial to obtain than for others operators. For the explicit positive version to return True, we need to
satisfy the Until property at least once between t+a and t+b, so we proceed by disjunction. Each term of
the disjunction is satisfied only if ϕ1 is satisfied from time t until this time instant included (conjunction
between all the terms between instant t and this time instant) and ϕ2 is satisfied at this moment. Note
that time t is represented by the 0 value in the Until temporal referential, in the same way that instants
t + a or t + b correspond to time a or b inside Until. As there are several ways of violated the Until
operator, explicit false version of Until is built differently as others explicit versions. Indeed, we have a
disjunction between the three possibilities to not satisfy the Until operator, as described above. We verify
if ϕ1 is not satisfied before or at time t +a by relying on the disjunction between all the ϕ1 terms from t
until t +a. Then, inside the time interval after time t +a, the property is violated with certainty if there
exist a moment where ϕ1 is not True, and until the previous time, ϕ2 was never satisfied. Indeed, if ϕ2

196 STL Operators as Synchronous Observers

was satisfied previously, either the property is satisfied, which means that explicit negative version must
return False; either the property was already violated before, so there exist another anterior time where
ϕ1 was not satisfied before ϕ2 was satisfied. Finally, explicit negative version must return True if ϕ2 is
never satisfy inside the time interval, which is studied by examining the conjunction of all the ¬ϕ2 terms
between t +a and t +b.

4 Operators implementation strategy

Based on this online semantics, we propose an implementation of Eventually, Always and Until in
discrete time. We use the synchronous language Lustre. We recall that all the nodes are available at
https://garoche.net/publication/2023_fmas_submission/.

Useful constructs for the implementation First, we define the basic nodes needed to implement the
temporal operators. Node min returns the minimum value between two variables. Node exist(time
:bool; prop: bool) returns True as soon as a property prop has been satisfied during the time
interval represented by time. Node forall_a(time: bool ; prop: bool) returns True
if a property prop has always been True during the time interval. All these nodes can easily be
implemented in Lustre.

Regarding the implementation of the nodes detecting whether or not we are in the time slot t +[a,b],
and since we work with finite intervals, we can optimize our clock, preventing it from incrementing to
infinity. We can limit the counter until value b, ensuring the absence of overflow. We implement the node
timeab, that returns True if the current time instant is inside the time interval, based on this bounded
internal counter. As counter stops at b, end of the time interval is intercepted looking at the counter
previous value. If it was already b, we know that we exceeded the end of the time interval.

We are now able to implement our nodes for each version of each operator. In the case of the Positive
and Negative versions, we want to stay as close as possible to the definition proposed in the Section 3.
We take two liberties in order to optimise the memory management. First, for each operator, we define
a bounded internal clock as described above. The same strategy as for the counter is used to determine
the end of the time interval, comparing the previous value of the internal node counter with b. Secondly,
we want to have a bounded number of memories, not dependent on the trace-length or on the length of
the time interval. We proceed as described in the literature [9], by reusing the outputs obtained at the
previous time instant to obtain the outputs at the current one. For example, here is the implementation
of the Until False node: Figure 6. Others Positive and Negative versions are obtained based on the same
principle. Last, we deduce the Unknown version from the Positive and Negative versions, as described in
the Property 1.
Remark 4. The case where both Positive and Negative versions of the operator are True at the same
time is never supposed to happen and would result in an error. Indeed, it would mean that the property
is both satisfied and violated, which is impossible. This result comes directly from Property 1.

Note that these implementations can only represent non-nested STL operators. That is to say that we
only consider ◇[a,b]ϕ , ◻[a,b]ϕ and ϕ1U[a,b]ϕ2 with ϕ , ϕ1 and ϕ2 being non-temporal predicates.

5 Formal verification of STL operators

In this section, we demonstrate by model checking that the operators implementation described in Sec-
tion 4 corresponds to the given specification, as presented in Section 3. We first introduce the formalizing

https://garoche.net/publication/2023_fmas_submission/

C. Bellanger, P.-L. Garoche, M. Martel & C. Picard 197

1 node until_false (a,b: int ; phi1, phi2: bool)
2 returns (result_until_false: bool);
3 var until_time: int;
4 let
5 -- internal clock
6 until_time = min(0 -> pre until_time + 1, b);
7
8 -- init t=0 : until is violated if phi1 is false
9 result_until_false = not phi1 ->

10
11 -- violated if phi1 false before a
12 ((until_time <= a) and (not phi1)) or
13
14 -- violated if we are in the time interval,...
15 (until_time > a and until_time <= b and
16 exist(timeab(a,b), not phi1)
17 -- and before this moment we never had
18 and not (exist(timeab(a,b),
19 -- phi2 is true and until this moment phi1 is true.
20 ((phi2) and forall_a(timeab(0,b),phi1))))) or
21
22 -- violated if there is no instant in the time interval
23 ((until_time >= b) and not (exist(timeab(a,b),
24 -- where phi2 is true and until this moment
25 -- phi1 is true
26 ((phi2) and forall_a(timeab(0,b),phi1))))) or
27
28 -- still violated if it was violated once in the past
29 pre result_until_false;
30 tel

Figure 6: Until Lustre node for the False version of the operator

198 STL Operators as Synchronous Observers

1 node P_at_k (const k: int; clk:int; P:bool)
2 returns (ok: bool);
3 let
4 ok = if clk = k then P else (false -> pre ok);
5 tel

Figure 7: P at k Lustre node

of each STL operator proof node for positive, negative and three-valued versions. Then, we present the
use of Kind2 to concretely verify these proof nodes.

5.1 Induction on time interval size

To demonstrate the correctness of the positive and negative versions of the operators, we compare the
outputs of our implementation proposition for each operator and an explicit equivalent, as provided
in Equations (21), (22), (26), (27), (31) and (32). We remind that the explicit version is obtained by
enumerating all the terms in the time horizon t + [a,b]. This allows to check directly the value of each
term of the operator, and hence, to be sure to understand the obtained output. We have to show that
our implementation and the explicit one are equivalent for any time interval. We prove this property by
strong structural induction on the time interval size.

We proceed as follows. In a first time, we demonstrate that a statement is true for the smallest
possible STL time interval, cf. base case of Eq. (33). Then, we demonstrate that if the statement is true
for a given time interval size, it is also true when we increase the size interval by 1, cf. Eq. (35). By
verifying these two properties, we demonstrate the correctness of our operators for all intervals [a,b]
such that a,b ∈T∧a < b.

Base case: [a,a+1] Let Op be a version of a temporal operator, and Op exp its explicit representation
as described in Section 3.

∀a ∈T,Op
[a,a+1]ϕ ⇐⇒ Op exp

[a,a+1]ϕ (33)

For the base case proof, we create a new Lustre node P_at_k, cf. Fig. 7 that checks if a property
is satisfied at a specific time or was satisfied before. This allows us to implement the explicit case. Let
us take the example of the Positive version of the Eventually. For the [a,a+1] time interval, its explicit
version is Eq. (34) and its implementation corresponds to the lines 13 and 14 of the Figure 8

◇[a,a+1]ϕ ≡ ((X ,a) ⊧ ϕ)∨((X ,a+1) ⊧ ϕ) (34)

Inductive case: [a,b+1] Let Op be a version of a temporal operator and Op exp its explicit represen-
tation as described in Section 3.

(Op
[a,b]ϕ ⇐⇒ Op exp

[a,b]ϕ) Ô⇒ (Op
[a,b+1]ϕ ⇐⇒ Op exp

[a,b+1]ϕ) (35)

In our implementation, Op exp
[a,b+1] is obtained thanks to the previous value of Op

[a,b], that we
assume equivalent to Op exp

[a,b]. For example, inductive case of the explicit version of Eventually

C. Bellanger, P.-L. Garoche, M. Martel & C. Picard 199

1 returns (base_case,ind_case: bool);
2 (*@contract
3 assume a<b and a>=0;
4 guarantee base_case;
5 guarantee ind_case;
6 *)
7 var clk : int;
8 output_ev_true, output_ev_true_bp1: bool;
9 let

10 clk = 0 -> 1 + pre clk;
11 output_ev_true = eventually_true (a,b,phi);
12 output_ev_true_bp1 = eventually_true (a,b+1,phi);
13 base_case = (b=a+1) =>
14 (output_ev_true = P_at_k(a,clk,phi) or P_at_k(a+1,clk,phi));
15
16 ind_case =
17 (output_ev_true_bp1 = (output_ev_true or P_at_k(b+1,clk,phi)));
18 tel

Figure 8: Eventually True proof node

1 node always_3v(const a,b:int; phi: bool)
2 returns (output_ev_true, output_ev_false: bool);
3 (*@contract
4 assume a<b and a>=0;
5 -- their are mutually exclusive
6 guarantee not (output_ev_true and output_ev_false);
7 *)
8 let
9 output_ev_true = eventually_true(a,b,phi);

10 output_ev_false = eventually_false(a,b,phi);
11 tel

Figure 9: Three-valued Eventually node in Lustre

True operator is obtained as described in Eq. (36) and its implementation corresponds to lines 16 and 17
of Figure 8

◇[a,b+1]ϕ ≡ (◇[a,b]ϕ)∨((X ,b+1) ⊧ ϕ) (36)

To concretely check these basic and inductive cases, we use the Kind2 model checker, cf Section 2.3.
For each positive and negative version of STL operators, we express the base and inductive case as two
properties, ie. two lemmas inside a contract to guarantee basic and inductive case, cf. Figure 8.

Finally, to obtain a three-valued output, we need to encode the result on two booleans. We combine
the positive and negative outputs - previously verified - to determine the state of the operator. According
to Property 1, Unknown is obtained if Positive and Negative outputs return False at the same time. As
a complementary check, we ensure inside a contract that Positive and Negative versions are mutually
exclusive as mentioned in the Remark 4. Figure 9 summarizes the implementation of this final node in
Lustre.

200 STL Operators as Synchronous Observers

Node name # Property Method Proof time
timeab assume PDR 0.339s

assume induction 0.351s
guarantee PDR 2.618s

eventually_true - - -
proof_ev_true assume PDR 0.653s

assume 2-induction 0.713s
guarantee 2-induction 26.778s
guarantee 2-induction 29.631s

eventually_false - - -
proof_ev_false guarantee PDR 37.215s

guarantee PDR 37.215s
eventually_3v assume PDR 0.677s

assume 2-induction 0.688s
guarantee 2-induction 0.688s
guarantee 2-induction 13.216s
guarantee 2-induction 18.855s

Table 3: Experiments for operator Eventually.

5.2 Using Kind2 as a theorem prover

Each of the three temporal operators is defined in a separate file. They all rely on basic nodes mentioned
in Sect. 4, in which only timeab is fitted with a contract. The following tables summarize all con-
tract elements automatically proved by Kind2 model-checker. We recall that Kind2 relies on different
model-checking algorithms that are executed in parallel. The method that succeeds first interrupt the
proof process. In the table, PDR stands for Property-Direct-Reachability [4] while k-induction speci-
fies the number of steps of the k-induction process used to conclude. In both methods, Kind2 produces
subproblems that are solved using Z3 [18].

As mentioned above, each operator op is defined using two underlying nodes op_false and
op_true as well as a node op_3v that reconstruct the three-valued output. The nodes op_false
and op_true are not directly associated to a contract but their soundness is expressed through the

validity of another node: respectively proof_op_false and proof_op_true. These nodes are
defining the base and inductive cases and associated to the main contract (cf. Fig. 8). Last, the final node
op_3v is only fitted with an extra contract guarantying disjunctiveness of the output (cf. Fig. 9 encoding
Eq. (11)).

Experiments were run with kind2 v2.0.0-7-gdcc7f6f on a 1,2 GHz Quad-Core Intel Core i7 with 16
GB of RAM. To build the table, each node is analyzed independently, but a quicker analysis of each
file can be performed with all nodes analyzed at once. Note also results with the same execution time
such as the elements of the node eventually_3v. Typically, in this case, they denote properties that
were proved together k-inductive by the algorithm. We observe something similar with PDR for node
proof_ev_false.

As a last remark, we have to say that, because of the parallel architecture of Kind2, it is difficult
to obtain perfect reproductibility of the results. For example, one can observe that the runtime of the
validity proof of the simple node timeab_tmp varies slightly between experiments while it is the exact
same node. The difference can also appear in the number of unrolling of the k-induction engine.

C. Bellanger, P.-L. Garoche, M. Martel & C. Picard 201

Node name # Property Method Proof time
timeab assume PDR 0.432s

assume 2-induction 0.454s
guarantee PDR 2.855s

until_true - - -
proof_until_true assume PDR 0.537s

assume 2-induction 0.595s
guarantee 2-induction 6.347s
guarantee 2-induction 93.526s
guarantee 2-induction 161.614s

until_false - - -
proof_until_false assume induction 0.898s

assume induction 0.898s
assume induction 0.898s

guarantee 2-induction 606.067s
guarantee PDR 1605.403s

until_3v guarantee PDR 34.530s

Table 4: Experiments for operator Until.

Node name # Property Method Proof time
timeab assume PDR 0.400s

assume induction 0.425s
guarantee PDR 3.375s

always_true - - -
proof_alw_true guarantee 2-induction 76.633s

guarantee 2-induction 96.686s
always_false - - -
proof_alw_false guarantee 2-induction 19.407s

guarantee PDR 27.540s
always_3v guarantee PDR 12.854s

Table 5: Experiments for operator Always.

202 STL Operators as Synchronous Observers

6 Discussions and conclusion

Related Works. The use of three-valued logic has already been explored in the context of temporal
logic, particularly in LTL, with the same division used in this paper: one value indicating the certainty
of satisfaction of a property, another indicating the certainty of violation of a property, and a final value
representing indeterminacy [3, 11].

Formal verification of STL properties has also been studied. Roehm et al. [19] propose to check STL
properties on reach sequences, using hybrid model checking algorithms such as Cora [1] or SpaceEx [10].
A first step consists in the transformation of STL properties into their reachset temporal logic (RTL)
equivalent. This transformation comes close to the explicit development of each operator that we de-
scribed in Section 3, requiring potentially a large set of memories.

Moreover, several examples of algorithms and online implementation of STL properties have been
produced, using a finite number of memories, cf [17, 9]. Thus, [9] proposes an algorithm for quantitative
online STL implementation, and show on different examples the time-saving benefits of using their
online method compared to the offline one. Balsini et al. [2] propose a qualitative online implementation
of STL in Simulink, which nevertheless has some limitations. In particular, since three-valued logic is
not used in this implementation, we cannot be sure whether a property has been satisfied or violated until
the end of execution. These proposals go further than ours, allowing operators to be nested, sometime
with some limitations like [2] that can only contain one operator inside another. However the soundness
of the encoding is not formally proven.

Conclusion. In this paper, we propose an online discrete implementation of the STL semantics, in the
continuity of Balsini’s work [2]. Our contribution is twofold. First, we proposed an implementation
based on Kleene’s three-valued logic in order to be able to represent indeterminacy. Second, we formally
demonstrated the soundness of our implementation, proving the validity of each operator with respect to
its semantics.

Our approach was the following: we first defined the online STL semantics, and used it to build each
STL operator as a synchronous observer in the Lustre language. Finally, we formally demonstrated the
correctness of their implementation, using the Kind2 model-checker. We proceed by induction on the
size of temporal intervals. We succeed to demonstrate all the proof objectives for each temporal operator
implemented.

Future Work. They are mainly two directions to continue this work. A first one is to apply these
operators to models and see how model-checkers such as Kind2 can verify properties or produce counter-
examples. For example revisiting the use case of Roehm et al. [19]. The other direction is to extend the
set of STL formulas that can be encoded in our framework. While Balsini et al. [2] proposed a similar
encoding (but without proof) of nested operators with restricted form and up to two levels, we would like
to lift the restrictions and deal with more general formulas. The notion of propagation delays introduced
in Kempa et al. [13] could also lead to an efficient encoding with memories, also associated with proof
of the implementation.

7 Acknowledgment

The authors would like to thank the Institute for Cybersecurity in Occitania (ICO) for partially funding
this work.

C. Bellanger, P.-L. Garoche, M. Martel & C. Picard 203

References

[1] Matthias Althoff (2015): An Introduction to CORA 2015. In: EPiC Series in Computing, 34, EasyChair,
pp. 120–151, doi:10.29007/zbkv. Available at https://easychair.org/publications/paper/
xMm. ISSN: 2398-7340.

[2] Alessio Balsini, Marco Di Natale, Marco Celia & Vassilios Tsachouridis (2017): Generation of simulink
monitors for control applications from formal requirements. In: 2017 12th IEEE International Symposium on
Industrial Embedded Systems (SIES), IEEE, Toulouse, pp. 1–9, doi:10.1109/SIES.2017.7993389. Available
at https://ieeexplore.ieee.org/document/7993389/.

[3] Andreas Bauer, Martin Leucker & Christian Schallhart (2006): Monitoring of Real-Time Properties. In
S. Arun-Kumar & Naveen Garg, editors: FSTTCS 2006: Foundations of Software Technology and Theo-
retical Computer Science, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 260–272,
doi:10.1007/11944836 25.

[4] Aaron R. Bradley (2012): IC3 and beyond: Incremental, Inductive Verification. In P. Madhusudan & San-
jit A. Seshia, editors: Computer Aided Verification - 24th International Conference, CAV 2012, Berke-
ley, CA, USA, July 7-13, 2012 Proceedings, Lecture Notes in Computer Science 7358, Springer, p. 4,
doi:10.1007/978-3-642-31424-7 4.

[5] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs & John Plaice (1987): Lustre: A Declarative Language for
Programming Synchronous Systems. In: POPL’87, pp. 178–188, doi:10.1145/41625.41641.

[6] Adrien Champion, Arie Gurfinkel, Temesghen Kahsai & Cesare Tinelli (2016): CoCoSpec: A Mode-Aware
Contract Language for Reactive Systems. In: SEFM’16, pp. 347–366, doi:10.1007/978-3-319-41591-8 24.

[7] Adrien Champion, Alain Mebsout, Christoph Sticksel & Cesare Tinelli (2016): The Kind 2 Model Checker. In
Swarat Chaudhuri & Azadeh Farzan, editors: Computer Aided Verification - 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, Lecture Notes in Computer Science
9780, Springer, pp. 510–517, doi:10.1007/978-3-319-41540-6 29.

[8] Jyotirmoy V. Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin, Garvit Juniwal & Sanjit A.
Seshia (2017): Robust online monitoring of signal temporal logic. Formal Methods in System Design 51(1),
pp. 5–30, doi:10.1007/s10703-017-0286-7.

[9] Alexandre Donzé & Oded Maler (2010): Robust Satisfaction of Temporal Logic over Real-Valued Signals.
In Krishnendu Chatterjee & Thomas A. Henzinger, editors: Formal Modeling and Analysis of Timed Sys-
tems, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 92–106, doi:10.1007/978-3-642-
15297-9 9.

[10] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo
Ripado, Antoine Girard, Thao Dang & Oded Maler (2011): SpaceEx: Scalable Verification of Hybrid Sys-
tems. In Shaz Qadeer Ganesh Gopalakrishnan, editor: Proc. 23rd International Conference on Computer
Aided Verification (CAV), LNCS, Springer, pp. 379–395, doi:10.1007/978-3-642-22110-1 30.

[11] Hsi-Ming Ho, Joël Ouaknine & James Worrell (2014): Online Monitoring of Metric Temporal Logic. In
Borzoo Bonakdarpour & Scott A. Smolka, editors: Runtime Verification, Lecture Notes in Computer Science,
Springer International Publishing, Cham, pp. 178–192, doi:10.1007/978-3-319-11164-3 15.

[12] C. A. R. Hoare (1969): An Axiomatic Basis for Computer Programming. Commun. ACM 12(10), pp. 576–
580, doi:10.1145/363235.363259.

[13] Brian Kempa, Pei Zhang, Phillip H. Jones, Joseph Zambreno & Kristin Yvonne Rozier (2020): Embedding
Online Runtime Verification for Fault Disambiguation on Robonaut2. In Nathalie Bertrand & Nils Jansen,
editors: Formal Modeling and Analysis of Timed Systems - 18th International Conference, FORMATS 2020,
Vienna, Austria, September 1-3, 2020, Proceedings, Lecture Notes in Computer Science 12288, Springer, pp.
196–214, doi:10.1007/978-3-030-57628-8 12.

[14] Stephen Cole Kleene (1952): Introduction to Metamathematics. North-Holland, Amsterdam.

https://doi.org/10.29007/zbkv
https://easychair.org/publications/paper/xMm
https://easychair.org/publications/paper/xMm
https://doi.org/10.1109/SIES.2017.7993389
https://ieeexplore.ieee.org/document/7993389/
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/978-3-642-31424-7_4
https://doi.org/10.1145/41625.41641
https://doi.org/10.1007/978-3-319-41591-8_24
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-030-57628-8_12

204 STL Operators as Synchronous Observers

[15] J. Lukasiewicz (1970): Selected Works. Available at https://www.scribd.com/document/
359602256/J-Lukasiewicz-Selected-Works-L-Borkowski-Editor.

[16] Oded Maler & Dejan Nickovic (2004): Monitoring Temporal Properties of Continuous Signals. In Yassine
Lakhnech & Sergio Yovine, editors: Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 152–166, doi:10.1007/978-
3-540-30206-3 12.

[17] Oded Maler & Dejan Ničković (2013): Monitoring properties of analog and mixed-signal circuits. Inter-
national Journal on Software Tools for Technology Transfer 15(3), pp. 247–268, doi:10.1007/s10009-012-
0247-9.

[18] Leonardo Mendonça de Moura & Nikolaj S. Bjørner (2008): Z3: An Efficient SMT Solver. In C. R. Ra-
makrishnan & Jakob Rehof, editors: Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, Lecture Notes
in Computer Science 4963, Springer, pp. 337–340, doi:10.1007/978-3-540-78800-3 24.

[19] Hendrik Roehm, Jens Oehlerking, Thomas Heinz & Matthias Althoff (2016): STL Model Checking of Con-
tinuous and Hybrid Systems. In Cyrille Artho, Axel Legay & Doron Peled, editors: Automated Technology
for Verification and Analysis, Springer International Publishing, Cham, pp. 412–427, doi:10.1007/978-3-
319-46520-3 26.

[20] Mary Sheeran, Satnam Singh & Gunnar Stålmarck (2000): Checking Safety Properties Using Induction
and a SAT-Solver. In Warren A. Hunt Jr. & Steven D. Johnson, editors: Formal Methods in Computer-
Aided Design, Third International Conference, FMCAD 2000, Austin, Texas, USA, November 1-3, 2000,
Proceedings, Lecture Notes in Computer Science 1954, Springer, pp. 108–125, doi:10.1007/3-540-40922-
X 8.

https://www.scribd.com/document/359602256/J-Lukasiewicz-Selected-Works-L-Borkowski-Editor
https://www.scribd.com/document/359602256/J-Lukasiewicz-Selected-Works-L-Borkowski-Editor
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-46520-3_26
https://doi.org/10.1007/978-3-319-46520-3_26
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8

M. Farrell, M. Luckcuck, M. Schwammberger, and

M. Gleirscher (Eds): Fifth International Workshop on

Formal Methods for Autonomous Systems (FMAS 2023)

EPTCS 395, 2023, pp. 205–219, doi:10.4204/EPTCS.395.15

© T. Mannucci, J. de Oliveira Filho

Runtime Verification of Learning Properties for

Reinforcement Learning Algorithms

Tommaso Mannucci Julio de Oliveira Filho

Intelligent Autonomous Systems

TNO – Netherlands Organisation for Applied Scientific Research
The Hague, The Netherlands

tommaso.mannucci@tno.nl julio.deoliveirafilho@tno.nl

Reinforcement learning (RL) algorithms interact with their environment in a trial-and-error fashion.

Such interactions can be expensive, inefficient, and timely when learning on a physical system rather

than in a simulation. This work develops new runtime verification techniques to predict when the

learning phase has not met or will not meet qualitative and timely expectations. This paper presents

three verification properties concerning the quality and timeliness of learning in RL algorithms. With

each property, we propose design steps for monitoring and assessing the properties during the sys-

tem’s operation.

1 Introduction

Reinforcement learning (RL) [16] is a bio-inspired approach to machine learning which formalizes the

notion of “trial-and-error” and ”learn-by-doing”. RL enables systems to learn during operation based

on sequential interactions with the environment. During their learning phase, RL algorithms encourage

decisions that led to good results in the past while avoiding detrimental choices. This simple concept is

at the base of some stunning results in robotics automation [14], natural language processing [7], and

computerised gaming, such as the Atari [10], StarCraft [19] video games, and the ancient tabletop games

of Chess, Shogi, and Go [13].

Due to the runtime and interactive nature of RL algorithms, there has been an increasing demand

for guarantees about their learning; e.g., that it will be concluded within a certain amount of time or

interactions when done in an operational environment. It is also necessary to guarantee the agent learned

its solution space well enough during the learning phase. Offering such guarantees for RL algorithms is a

challenging task. Traditional testing is often not possible due to the difficulty of acquiring a representative

set of operating conditions [6]. Formal testing methods do not yet scale well, and many RL algorithms

use “black box” components [4], such as artificial neural networks. The underlying models for these

algorithms are uninformative and highly dimensional; and the individual effect of their many parameters

on the overall performance is not apparent nor easy to assess.

This work proposes new Runtime Verification(RV) techniques for checking properties of the learning

phase of RL algorithms. RV is an engineering discipline concerned with checking a system behaviour

during its execution [2]. Many RL algorithms’ properties require such a runtime verification approach.

Safety, timeliness, and robustness properties, for example, can become invalid when RL algorithms en-

gage in learning during operation. This happens because properties observed in the system during design

time might no longer hold as the system changes by learning from new data. Timeliness properties, such

as the duration of the learning phase, depend on the order and variety of interactions presented to the RL

agent.

The specific contributions of this paper are:

http://dx.doi.org/10.4204/EPTCS.395.15

206 Runtime verification of learning properties for reinforcement learning algorithms

• We propose formal specifications for three verification properties related to the learning phase of

RL algorithms:

Quality of learning This property measures how well has the agent learned its environment. It is

related to the variety and frequency of experiences presented to an agent during the learning

phase.

Distance to optimal policy This property assesses how far the current learned policy is from the

optimal policy.

Time to learn A property that estimates the the amount of interactions the learning process will

need to evaluate a (new) policy.

• Along with each property, we propose the design of an RV monitor able to assess the property from

observations and during the learning phase. We discuss which information should be observable

from the learning phase, how to collect it systematically, and how to use observations to assess

the properties. We propose ideas for the monitor’s implementation and how it can be efficiently

instrumented in an RL-based system.

The paper is organized as follows. Section 2 provides a short review of related and relevant work.

Section 3 introduce basic concepts of RL and RV we need to derive the verification properties. Section 4

derives formal specifications for the properties, proposes monitoring techniques and examples. Section

5 discusses our conclusions and further work.

2 Related Work

Verification of RL safety properties has received the main priority in the literature because RL algorithms

obviously need to explore in a safe way [3, 11, 22] if they are to learn in real-world setups. Pathak et

al. [11] and Zhu et al. [22] go beyond system checks and specify how the result of their verification

procedure can be used to enforce the safety constraints after a system re-design. Other specific RL

frameworks [1, 5, 9] use monitors to guide the system preventing the agent from violating the properties

specified. Safety is an important aspect and has received significant attention in research. In this work

however, we focus on other two important runtime properties of RL algorithms: learning quality and

timeliness.

Verification of properties for quality of learning has received less attention than safety properties

in research. There are guarantees of convergence for specific algorithms, such as Q-learning [20] and

SARSA [15]. But this only means that such an algorithm will eventually learn. We differ in which we

provide explicit ways to assess how much a system already learned after a set of experiences. Like us,

Van Wesel and Goodloe [18] propose off-line and online verification techniques for quality-of-learning

properties. However, their approach does not leverage from knowledge of the inner structure of the

algorithm. Xin et al. [21] introduce the concept of exploration entropy to guide the learning until the

final policy is of sufficient quality; their approach differs from proper verification in that it steers, and

thus interferes with, the learning process.

Verification of timeliness of the learning phase is even less prominent. Szepesvari [17] investigates

the rate of convergence of Q-learning, and Potapov and Ali [12] analyze the influence of learning param-

eters on the convergence speed. But none of them provide an approach to verify if an RL algorithm will

be able to learn within a desired number of interactions. This work differs from the aforementioned pre-

vious work by (1) providing formal specifications for quality and timeliness of the RL learning process

and (2) providing monitoring techniques to check such properties at runtime. The monitors we propose

do not modify the behaviour of the learning phase.

T. Mannucci, J. de Oliveira Filho 207

This work drives from the analysis of Markov decision processes in Mannor et al. [8]. We use their

approach on the calculation of estimates for the RL value function and its bias and variance estimates.

We extend many of their results to define formal verification properties. And we show how to monitor

the RL algorithm during the learning phase to check these properties on-line.

3 Fundamentals

3.1 Reinforcement learning

Reinforcement Learning is a class of machine learning (ML) algorithms that solves control and decision

problems. This work targets RL variants which can be modelled as finite Markov decision processes

(MDP) such as Q-learning [20]. We use the finite MDP problem structure to formally derive verifica-

tion properties, and later, to design the verification monitor. An MDP problem is defined by a tuple

{S,A,T,R,γ}, where S is a set possible of environment states. A is a set of actions an agent can take at

each state and T := S×A×S → [0,1] is a probabilistic state transition function. R := S×A×S → R is

a reward function attributing a payoff for each state transition and action. γ ∈ [0,1) is a discount factor

over past rewards.

During the execution of the RL algorithm, an agent operates in a sequence of distinct steps. During

the nth step, the agent observes the current state sn ∈ S, chooses and performs an action a ∈ A. The

action is chosen according to a (probabilistic) policy π := S×A → [0,1] . This causes the environment

to transition to a subsequent state sn+1 ∈ S according to T . For its action and the new state achieved, the

agent receives an instantaneous reward r according to R. Rewards obtained from state s following policy

π are accrued into the so-called value function:

V π(s) := E[
N

∑
n=0

γnR(sn,π(sn),T (sn,a))] (1)

where γn is the nth power of γ , and sn is the nth state encountered after starting in s = s0. A policy is

optimal (indicated as π∗) if it maximizes V π∗
(s) for all states. Note that the expectation operator in Eq. 1

is due to the potential stochasticity of π and T . In many cases, it is convenient to define the action value

function

Qπ(s,a) = E[R(s,a,T (s,a))+ γV π(T (s,a))] (2)

indicating the value obtainable in s by taking action a and following the policy thereafter.

Temporal difference(TD) [16] is a method to solve RL problems when functions T and R are un-

known. In this method, the value function is randomly initialized and a policy π is followed. The reward

observed at every transition is used to correct the value function, with a chosen learning rate α dictating

the speed of correction. TD learning is proven to converge to a fixed value function V π , given the agent

has had enough and representative interactions with the environment. In section 4, we will use this fact

as an intuitive notion for the quality of learning.

To define RV properties and monitors, we will use two results from Mannor et al. [8]. First, estimates

T̂ and R̂ (of transition and reward functions T and R, respectively) can be reconstructed from observing

transitions during the learning phase. As a consequence, it is also possible to produce a value function

estimate V̂ π directly via Eq. 1. Second, estimators for the bias and variance of the this value function

208 Runtime verification of learning properties for reinforcement learning algorithms

estimate can be obtained as follows. Under the assumption that all state action combinations are visited

at least once:

bias(V̂ π) = γ2XQV π + γXB+o(
1

mins,aN(s,a)
)≈ γ2XQV̂ π + γXB; (3)

cov(V̂ π) = XWXT +o(
1

mins,aN(s,a)
)≈ XWXT (4)

where X , Q, W and B are matrices computed from transitions and from T̂ and R̂. The derivation and

interpretation of these matrices is out of scope for this paper; the interested reader is referred to [8]. That

being said, this result provides the bias and variance of the value function, which reflect the uncertainty

of the agent due to lack of data. This is confirmed by the fact that bias(V̂ π) and cov(V̂ π) tend to zero by

construction [8] if mins,aN(s,a)→ ∞. Thus estimates T̂ , R̂ and V̂ π will converge to their true value with

more transitions.

The value function V π can be used to iteratively improve the agent policy via the so-called policy

improvement:

πk+1(s) = argmaxaE[R(s,a,T (s,a))+V πk(T (s,a))] = argmaxaQπk(s,a) (5)

which converges during a proper learning experience to the optimal policy π∗ yielding the optimal value

function V π∗
.

Replacing V πk with V̂ πk will yield an estimate V̂ π∗
of the optimal value function V π∗

. However,

such an estimate will be biased, as optimization will favor actions for which the expected cumulative

reward is overestimated. [8] recognizes the problem and proposes to divide the set of all transitions

into a calibration set and a validation set to mitigate this inconvenience. With this, compute calibrated

estimates T̂cal, R̂cal and V̂ πcal , and apply policy improvement to obtain π∗
cal. From the validation set, obtain

the transition and reward function estimates T̂val and R̂val. Finally, compute V̂ πcal via Eq. 1.

3.2 Runtime verification

Runtime Verification(RV) is an engineering discipline that combines (semi-)formal methods and mon-

itoring of the system operation to check if a system’s behaviour conforms to requirements. Monitors

assess the system based on carefully collected observations of the system behaviour – called traces.

Traces must conform to formally specified properties. Therefore, Bartocci et al. [2] indicate three steps

to define an RV technique:

1. First, it is necessary to describe the property under verification using an unambiguous specifica-

tion. Mathematical or logical formulations which can be assessed on system traces are the most

common.

2. Second, it is necessary to design a monitor, which is a component able to collect and to assess

traces of the system. Assessment here means any analysis steps necessary to evaluate the trace

against the specified property.

3. Third, it is necessary to instrument the system. That is, insert observation mechanisms for correctly

collecting the system traces. Good instrumentation minimally interferes with the system behaviour

and performance.

T. Mannucci, J. de Oliveira Filho 209

This work follows these three steps for each of the proposed properties. For each property, we derive

a property specification, and provide monitoring steps to observe the system and calculate the property.

The monitor can be implemented to assess all the three properties concurrently and based on the same

observed traces.

3.3 Use case: police patrol scheduling

We sketch a fictional but typical example for an RL-based learning system. In the remainder of the

paper, we will use this example to illustrate the defined properties and discuss aspects relevant to the RV

monitors and instrumentation.

A police department wants to use a new scheduling system for police night shifts in a city with

frequent crime. This system will use an RL module that learns the most effective patrol schedules

between three risk areas: the docks, the slums, and the bus station. Specifically, every hour between

00:00 am and 06:00 am, a patrol car is assigned to one of the three areas, for a total of six shifts per night.

The RL algorithm for such a system has a state set S := {(t, loc)|loc ∈ {docks,slums,station}, t ∈ [0,5]}
and an action set A := {docks,slums,station}.

For our approach, the underlying problem structure (S and A) must be known to the designer of the

RV monitor. Neither the system nor the monitor designer knows the transition function T and the reward

function R to be used. The transition function is not known because when a patrol car is sent to a location,

it may take more or less time to complete the patrol. As a consequence it may miss a shift or terminate a

shift early. The reward function cannot be estimated in advance as it is unknown which criminal activities

can be prevented and where. However, it is decided to assign a reward between 0 and 3 in proportion to

the severity of the spotted criminal activity, with 0 corresponding to no crime and 3 corresponding to a

very severe crime.

4 Runtime Verification for quality and timeliness of RL Learning

In this section, we propose formal specifications for three verification properties related to the learning

phase of RL-algorithms: quality of learning, distance to optimal policy, and time to learn.

4.1 How well has the agent learned its environment?

The first question is how to estimate if the agent has learned “enough” from its environment. Intuitively,

a TD learning agent has learned enough if the current value function V π(s) is close to its converged value

(for all states). This choice is justified by the fact that the value function is related to both environmental

stochastic functions T and R, as well as to the fact that correctly estimating V π means correctly estimating

the performance of the agent’s policy as well 1. Unfortunately, due to the stochasticity of both policy and

environment, analizing the value function error in time can lead to premature convergence assessments.

Instead, we propose using bias and covariance of the value function estimate V̂ . Since these reflect

the lack of gathered data of the agent, they can be used to assess when enough transitions have been

accumulated by the agent to learn from, even if the agent does not make direct use of the estimates T̂ and

R̂ , but relies on another method to solve the MDP problem, e.g., TD learning. The procedure, based on

Eq. 3 and Eq. 4, is as follows:

1Assuming that π and T act ergodically concerning S and A, i.e., that all state-action combinations are visited with non-zero

probability.

210 Runtime verification of learning properties for reinforcement learning algorithms

1. query the policy of the system π;

2. read traces, assumed in the form {s,a,r,s′}, i.e., the MDP transitions;

3. compute off-policy estimates T̂ and R̂ based on observed transitions, as well as on-policy estimates

T̂ π(s,s′) := T̂ (s,π(s),s′) and R̂π(s) := R̂(s,π(s), T̂ (s,π(s));

4. compute value V̂ π via Eq. 1.

5. compute matrices X , W , B and Q from T̂ and R̂;

6. compute bias and covariance, ignoring in first approximation the o(1
mins,aN(s,a)) term;

7. compute relative bias biasrel := bias(V̂ π(s))/V̂ π(s) and relative variance σrel := σ(V̂ π(s))/V̂ π(s);

8. compare relative bias and variance with predefined upper thresholds; if for all states the two are

below their respective thresholds, the property is satisfied.

The procedure is straightforward to follow and implement but presents a few limitations as well.

First, the monitor must have the memory to store past traces to be able to recompute the estimates T̂ π

and R̂π . Second, the monitor must have access to the policy of the system. This is different than observing

a signal trace in that the policy is not a signal, but a function utilized internally by the system. In case

the policy is not observable within the system, it would be recommendable to use an estimate π̂ from

the observed actions in the trace. In this case, however, some error in the estimated bias and covariance

can be expected given that the policy is an estimate in itself. Third, the procedure described here is not

incremental, i.e., it does not provide for a method to update the estimates of bias and covariance at time

k+1 given the trace at time k+1 and previous estimates of bias and covariance at time k; however, the

calculations can be repeated by storing the previous traces. Finally, the method as presented requires that

all state-action combinations are visited at least once (i.e., mins,a N(s,a) > 0). If this condition is not

verified, then the bias and covariance cannot be computed.

Example

Looking back at the example sketched in Sec.3.3, imagine the RL scheduling system has been provided

with an initial exploratory policy assumed to perform decently, so as not to waste the patrolling effort

while the RL system gathers information. How long should information be gathered with this policy? To

answer this question, a monitor is designed, following the given procedure, to verify the property

max
s

biasrel(s)< 0.05
∧

max
s

σrel(s)< 0.02 (6)

which indicates that the bias and variance are small, respectively 2% and 5% of the estimated value,

and therefore the epistemic uncertainty on the value function is low (note that these thresholds are for

illustration purposes). The monitor shall inform whether this property is violated, or unverified2, or

satisfied at each moment. Note that the monitor will not be able to predict when the property will be

satisfied, it can only say if it is so at the current time. Furthermore, the fact that the property is initially

unsatisfied does not mean that it cannot be satisfied eventually.

After a sufficient amount of traces is collected, so that mins,a N(s,a)> 0, the initial estimates of bias

and variance can be generated. However, T̂ and R̂ will initially be poor estimates of T and R, so the

2It might appear unsound that the monitor shall be able to report that the property is unverified since the inequality formu-

lation of the property can in theory be always verified. However, at the start of the exploration, the condition mins,a N(s,a)> 0

will not be verified for the applicability of the method. Therefore, the monitor will produce a “property unverified” response.

T. Mannucci, J. de Oliveira Filho 211

7 8 9 10 11 12
Trace duration [log]

−0.002

0.000

0.002

0.004

0.006

0.008
Re

la
tiv

e
bi
a

 o
f e

 t
im

at
e
[IM

P]

7 8 9 10 11 12
Trace duration [log]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Re
la
tiv

e
 t
.d
ev

ia
tio

n
of
 e
 t
im

at
e
[IM

P]

Figure 1: Evolution of relative bias and variance in the RL value function (estimates). The vertical

dashed line indicates the moment of convergence after which all biasrel and σrel are below the limits set

by the property, and the property is satisfied.

corresponding bias and variance are likely to be outside of the ranges provided by Eq. 6. Therefore, the

monitor will produce a “property violated” result. The longer the trace, however, the more T̂ and R̂ will

resemble the true matrices. Accordingly, bias and variance will reduce, until eventually Eq. 6 will be

true. The monitor will then produce a “property satisfied” response.

Figure 1 shows the relative bias and standard deviation of Eq. 6 (plotted in logarithmic scale). It can

be seen how both bias and standard deviation decay to zero, in agreement with the theory. The vertical

dashed line indicates the iteration at which the property is satisfied. It is possible to empirically verify

the correctness of the monitor response by confronting the value function obtainable from the actual

matrices T and R versus the one that can be computed from estimates T̂ and R̂ at different iterations of

the monitoring. Figure 2 shows the relative error
V (s)−V̂(s)

V̂(s)
for all 18 states. It can be seen that this error

is initially very high, indicating that T̂ and R̂ are bad estimates. However, the error reduces sensibly with

the increase in iterations. At the iteration for which the property is positively validated, it can be seen

that the absolute error at such iteration is lower than the estimated bias, confirming the indication of the

monitor that both T and R are reasonably learned.

4.2 How far from the optimum is the current policy?

If the optimal value function V π∗
was known, one could compute how well π is faring compared to π∗.

Unfortunately, the optimal value function is not available before learning is concluded. However, it is

possible to use the estimate V̂ π∗
as given in Sec. 3 in first approximation.

To simplify the exposition, assume the case of positive definite reward: R(s,a,s′) ≥ 0. In this case,

both V̂ π and V π∗
are positive by construction, so that an optimality ratio η(s) := V̂ π(s)

V π∗ (s)
can be defined:

if the ratio is sufficiently high for all states, this indicates that the policy is “almost optimal”.

Under the assumption that both value functions V̂ π and V̂ πcal ≈ V̂ π∗
are normally distributed, it is

possible to bound the optimality ratio of π . Given that the ith diagonal elements σ 2 of the covariance

212 Runtime verification of learning properties for reinforcement learning algorithms

0 2 4 6 8 10 12
Trace duration [log]

0

1

2

3

4

5

6

Re
la
tiv
e
er
ro
r

Relative error ith actual V function

8.0 8.5 9.0 9.5 10.0
Trace duration [log]

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

Detail of relative error around convergence

Figure 2: Relative error between V (s) and V̂ (s) (left); detail when the property is verified (right). This

relative error is an indicator of how well the agent has learned the transition function T and the reward

function R.

matrix cov(V̂ π) coincide with the variance of the value V̂ π(si) for the ith state si, a 95% confidence

interval in V π can be computed.

⌊V π⌋ := max(0,V̂ π −bias(V̂ π)−2σ(V̂ π)); ⌈V π⌉ := max(0,V̂ π −bias(V̂ π)+2σ(V̂ π)), (7)

and similarly for V̂ π∗
:

⌊V π∗
⌋ := max(0,V̂ π∗

−bias(V̂ π∗
)−2σ(V̂ π∗

)); ⌈V π∗
⌉ := max(0,V̂ π∗

)−bias(V̂ π∗
)+2σ(V̂ π∗

)), (8)

and thus η is bounded as η ≤ η ≤ η , with

η = ⌊V π⌋/⌈V π∗
⌉; η = min(1,⌈V π⌉/⌊V π∗

⌋), (9)

again within a 95% confidence interval. Omitting the dependency from s for legibility, the procedure is

as follows.

1. divide the trace into a calibration set and a validation set;

2. utilize the calibration set to obtain the transition and reward function estimates T̂cal and R̂cal;

3. obtain the optimal policy π∗
cal via iterated policy improvement;

4. utilize the validation set to obtain the transition and reward function estimates T̂val and R̂val;

5. compute the value function V̂ πcal , as well as the bias bias(V̂ πcal) and covariance matrix cov(V̂ πcal)
substituting T̂val and R̂val for T̂ and R̂;

6. compute upper and lower bounds ⌊V π⌋, ⌈V π⌉ and ⌊V π∗
⌋, ⌈V π∗

⌉, for all states;

7. compute upper and lower bounds on the optimality ratio η and η , again for all states;

8. compare η and η with predefined lower thresholds; if for all states the two are above their respec-

tive thresholds, the property is satisfied.

T. Mannucci, J. de Oliveira Filho 213

7 8 9 10 11 12 13
Trace duration [log]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
ity

 b
ou

nd
ar

ie
s a

t 5
%

Figure 3: Optimality boundaries η and η , including property thresholds (horizontal dashed lines) and

convergence iterations (vertical dot-dashed lines).

Example

Consider once more the recurring use case example of police patrol. Initially, the system has been

provided with a sensible exploratory policy. This is not likely to be the optimal one, but it could be close

enough to optimality to not be worth changing. Conversely, it could be so suboptimal to warrant a change

of policy. This loose intuition of “distance from optimum” is encoded in the property:

η(s)≥ 50%
∧

η(s)≥ 70%∀s (10)

which guarantees that π is not too far from the optimum (based on η) as well as indicating that π is

potentially close to the optimum (based on η). To this must be added the condition

∀smax
s

biasrel(s)< 0.05
∧

max
s

σrel(s)< 0.02, (11)

on both V π and V π∗
, to ensure that all estimates of T and R, which are necessary to compute the bounds

on η , are accurate.

To verify this property (under this condition), it is necessary to first estimate the range of the optimum

V π∗
. In this example, the monitor utilizes a random calibration set equal to 5% of the total traces to

estimate the optimum policy. The remainder of 95% of the traces are utilized to estimate the value

function V π∗
as well as the bias and variance following the procedure introduced in this section. After

that, it is possible to compute the optimality ratio boundaries η and η .

Figure 3 shows the optimality ratio boundaries computed at different times during a sample run of

the system. The optimality boundaries are indicated via vertical error bars. The dashed horizontal lines

indicate the 50% and 70% optimality thresholds of in Eq. 10. The vertical lines indicate at which iteration

the value function bias and standard deviation satisfy the property in Eq. 6 for the policy value function

V π (left) and for the optimal value function V π∗
(right) respectively. The example shows that Eq. 10 is

punctually verified after Eq. 11 is satisfied.

As can be seen from Figure 3, bounds on η shrink with the trace duration; this is due both to the

reduction in bias and variance of the estimated optimal value function, as well as due to an actual im-

214 Runtime verification of learning properties for reinforcement learning algorithms

provement of the calibrated policy πcal due to additional learning. This continuous improvement also

explains why error bars at a given iteration are not always contained within the error bars of the previous

iterations.

4.3 How long will it take to evaluate a (new) policy?

We consider three scenarios when an RL system must learn or update a policy:

1. the system attempts to introduce a new policy π ′ for the same functionality;

2. the system functionality change, so that a new unknown reward function R′ takes effect;

3. the system environment changes, so that a new unknown transition function T ′ takes effect.

Estimating how long this will take might be relevant, especially if there is a finite amount of resources

to do so. This section determines an upper bound to the required number of iterations. For all cases, we

assume that both policy and learning rate α are stationary. We also assume that the reward function R is

bounded and deterministic. To derive this property, we assume an on-policy RL algorithm is used. And

our monitor design needs an estimate of the transition function T̂ . We discuss this assumption in details

when illustrating the third case.

4.3.1 New policy

We analyze first the case when the system desires to implement a different policy, but neither the func-

tionality nor the environment is any different. Estimates T̂ and R̂ are still valid and refer to a well-learned

environment. To predict the learning time, it is necessary to predict how long V π will take to converge to

its new value. Consider first the case in which the entire value function V π or action value function Qπ

can be re-estimated in updates, with each update covering the full state space or state-action space, until

convergence. This can be done if both R and T are known. In this case, it can be demonstrated that for

an on-policy value update, such as a SARSA [16], the expected consecutive difference ∆ := Qπ
k+1 −Qπ

k

before and after an update decays by a factor γ̂ = 1−α(1− γ) at each update iteration (see Appendix for

details). Furthermore, assuming R is not stochastic, the decay bound holds at every iteration. Defining

convergence as ‖∆‖< ε , it can be seen that for an on-policy update, Q will converge in Mu updates, if

γ̂Mu‖∆‖< ε ⇒ Mu = ceil(
log(1

ε ‖∆‖)

log 1
γ̂

), (12)

where ceil(x) is the ceiling function of x, and ∆ is an upper estimate of the initial consecutive difference.

This is maximum in case V π
0 (s) = Qπ

0 (s,a) = Rmin/(1− γ) and V π
1 (s) = Qπ

1 (s,a) = Rmax/(1− γ), ∀s,a.

Therefore, a rigorous upper bound on convergence can be found when this is re-estimated via full state

or state-action updates3.

However, such updates seldom apply in practice, with state visits determined by the stochasticity

of π and T . In this case, it is necessary to reduce the above estimation in terms of Mu updates to a

different boundary Mt in terms of state transitions. During updates all states or state-action combinations

are visited equally often, which is not true for state transitions. However, one could make the rough

assumption that if Mu updates are necessary to converge then the same convergence can be reached when

3Note that, even though the derivation of Mu makes use of both T and R, we do not imply that the RL agent being monitored

will make direct use of these quantities.

T. Mannucci, J. de Oliveira Filho 215

each state is visited Mu times (whether or not this assumption is valid will be discussed in due time).

Following this first assumption, it is possible to convert the previous bound into

Mt = Mu max
s,a

τ(s,a|T,π,sinit), (13)

where τ(s,a) indicates the period, i.e., the number of transitions between two consecutive visits of state s

in which action a is selected (also known as the revisit time). It is immediate to see that in the most general

case, the revisit time is an unbounded stochastic variable; a first approximation of τ can nonetheless be

obtained from the steady-state state probabilities p of the stochastic transition matrix T . This can be

found as the solution to the following eigenvector problem:

p := {p(s0), ..., p(sN)} ⇒ p = T p,
N

∑
i=0

p(si) = 1, p(si)≥ 0. (14)

Note that to compute such steady-state probability it is necessary to know T . That being said, Eq. 13 can

be rewritten in first approximation as:

Mt = Mu max
s,a

[p(s)π(s,a)]−1 . (15)

Note that the naive assumption of Eq. 13 that Mu visits at each state-action pair are equivalent to

Mu updates does not hold in general. Indeed, updates not only guarantee an equal visit count among all

states but also an equal “mixing” of visits, so that the entire value or action value function is re-estimated

evenly. That being said, in the absence of pathological graphs induced by T (e.g., with absorbing states),

one can utilize Eq. 15 as a first upper bound estimate.

Also note that Eq. 15 yields Mt → ∞ in case either p(s)→ 0 or π(s,a)→ 0, i.e., if a state is not reach-

able or an action for a reachable state is never selected by the policy. In both cases, the limitation is more

theoretical than practical. Consider the case p(s̃) = 0 and assume for simplicity that the environment

is not in s̃ at the start of exploration: since s̃ (or (s̃,a)) cannot be reached, this never affects the value

computation in Eq. 1 except for V (s̃) (or Q(s̃,a)), and s̃ can be effectively ignored. The same considera-

tions apply for π(s,a) = 0. By extension, a state-action couple for which p(s)π(s,a) is smaller than an

arbitrarily small negligibility threshold ω ≥ 0 will also have a negligible effect on the policy evaluation

and can also be ignored. Hence, the new upper bound for convergence in terms of state transitions is

Mt = Mu max
(s,a)∈Ω

[p(s)π(s,a)]−1 , where Ω := {(s,a)|p(s)π(s,a) ≥ ω}. (16)

Finally, Eq. 16 estimates the transitions required to evaluate the new policy. Selecting a proper ω > 0

is not an immediate choice but requires some insight into the problem at hand. In the absence of this, a

conservative estimate can be made by selecting ω = 0, thus ensuring that Mt will be finite.

Summarizing, the procedure is as follows:

1. select arbitrarily small coefficients ε and ω ;

2. compute bound Mu;

3. solve eigenvalue problem of Eq. 14 given T ;

4. compute bound Mt from Mu, p and π;

5. if Mt is lower than a predefined upper threshold, the property is verified.

216 Runtime verification of learning properties for reinforcement learning algorithms

4.3.2 New reward

The case of a new reward is identical to the case of a new policy. Indeed, Eq. 16 can be directly reutilized,

with the caveat that Mu must be estimated according to the new values Rmin and Rmax if these differ from

the previous.

4.3.3 New environment

When considering a new environment, T can change from what was previously estimated by the mon-

itor. In principle, this means that the approach investigated in this section is no longer valid due to the

unknown state probability p(s). Therefore, the monitor will first need to reestimate T̂ (as per the first

property discussed). Before that, no estimation can be provided.

That being said, a very conservative, worst-case estimation can still be given if one were to provide

a positive negligibility ω on state-action visits. In that case, a worst-case estimation can be provided in

the form:

Mt = Mu

1

ω
≥ Mt . (17)

To apply the previous estimate Mt for runtime monitoring, it is important to make a few observations.

First, the convergence and negligibility constants ε and ω must be provided to the monitor (to use in

Eq. 12 and Eq. 16). Second, the monitor computes the steady-state probability p of Eq. 14 by replacing

T with T̂ . If such an estimate is missing, the monitor can either provide an immediate response using the

worst-case estimate of Eq. 17 or return an unverified response until the property in Eq. 6 is verified.

Example

Consider once more the police patrol case, and assume that informants notify police authorities of ru-

moured changes in the location and time of criminal activities. As a result, the initial policy π might

no longer be satisfactory, due to the unspecified change of the reward function R, and reestimating its

value will take time. Police officials want to know if the time it will take for the RL system to reestimate

correctly the value of π is acceptable, i.e., if the following property holds:

Mt ≤ Mmax
t , (18)

where Mmax
t can be derived from, e.g., a time constraint. A monitor is then deployed to evaluate the

property: this must have access to the estimate T̂ (since T is unchanged, the estimate is still valid); as

well as to the potentially new quantities Rmin and Rmax.

Thus, the monitor can employ Eq. 16 to estimate Mt and therefore to verify the property of Eq. 18

before each policy improvement step. As an example, consider the case in which π dictates a fixed patrol

schedule in the form

π(t, loc) =

slums if t ≤ 1

station if t = 2

docks else.

(19)

The monitor can now estimate the number of transitions necessary to evaluate this policy. Given learning

parameters α = 0.75, γ = 0.5, constants ε = 0.05 and ω = 0, and assuming Rmin and Rmax to be 0 and 3

once more, the monitor estimates 62 transitions necessary for convergence.

T. Mannucci, J. de Oliveira Filho 217

0 20 40 60 80 100 120
Number of transitions

0.0

0.5

1.0

1.5

2.0

No
rm

 o
f e

rro
r

Policy evaluation error

Figure 4: Norm of value function error ‖∆‖ for all initial states. The horizontal dotted line indicates the

convergence threshold ε , while the vertical dot-dashed line indicates the expected convergence time.

Figure 4 shows the actual amount of transitions necessary to estimate the policy value. The continu-

ous lines indicate the change in value function error ‖∆‖ for each of the 18 initial states. It can be seen

that ‖∆‖ reduces as the number of transitions increases, albeit not monotonically. It can also be seen that

approximately at 30 transitions, the error for all initial states is below the threshold of ε = 0.05, indicated

by the dashed horizontal line. Thus, the value Mt for this example was indeed a conservative estimate.

5 Conclusions

In this paper, we propose three verification properties for the learning phase of reinforcement learning

(RL) agents. The first property relates to the quality of the learning phase. It expresses whether or not

the agent has learned from sufficiently enough and sufficiently varied experiences, to have a suitable

representation of its environment. We devise a runtime verification monitoring technique to assess this

property by estimating the variance and bias of the learned value function. This property enables the

verification of the second and third properties.

The second property measures the actual learned policy relative to the ideal optimum. We extend our

monitoring techniques to derive an optimality ratio η . The verification monitor uses confidence intervals

of η to indicate upper and lower bounds on optimality. Our RV monitor can check whether the current

policy guarantees minimal satisfactory behaviour and whether the policy could potentially be close to

optimal.

The third property checks if the learning time falls within a desired number of interactions. It can be

used when a new policy is put in place, or when a known policy is applied to a new transition function T

or a new reward function R. Verification of such property is relevant to systems that require estimating

the value induced by a new policy or new environment within a limited time. In this case, the evaluation

time is a rough estimate, due to the assumption of Eq. 13 on the equivalence between updates and state

transitions. In future work, we will improve this estimate by examining the mixing properties of the

graph induced by π on the transition matrix T . For this property, we discuss the monitoring techniques

necessary to assess the property using the system’s runtime observations.

218 Runtime verification of learning properties for reinforcement learning algorithms

Our future work includes incorporating these techniques into a runtime verification tool for au-

tonomous robots. We will also expand the formulation of our properties and monitoring techniques to-

wards Deep Reinforcement Learning algorithms (DRL). DRL algorithms typically use continuous state-

and action spaces, which our approach cannot yet cover.

References

[1] Greg Anderson, Abhinav Verma, Isil Dillig & Swarat Chaudhuri (2020): Neurosymbolic Reinforce-

ment Learning with Formally Verified Exploration. In: Proceedings of the 34th International Confer-

ence on Neural Information Processing Systems, NIPS’20, Curran Associates Inc., Red Hook, NY, USA,

doi:10.48550/arXiv.2009.12612.

[2] Ezio Bartocci, Yliès Falcone, Adrian Francalanza & Giles Reger (2018): Introduction to runtime verification.

In: Lectures on Runtime Verification, Springer, pp. 1–33, doi:10.1007/978-3-319-75632-5.

[3] Davide Corsi, Enrico Marchesini & Alessandro Farinelli (2021): Formal verification of neural networks for

safety-critical tasks in deep reinforcement learning. In: Uncertainty in Artificial Intelligence, PMLR, pp.

333–343, doi:10.48448/tj1d-sk77.

[4] Rudiger Ehlers (2017): Formal verification of piece-wise linear feed-forward neural networks. In: In-

ternational Symposium on Automated Technology for Verification and Analysis, Springer, pp. 269–286,

doi:10.1007/978-3-319-68167-2 19.

[5] Nathan Hunt, Nathan Fulton, Sara Magliacane, Trong Nghia Hoang, Subhro Das & Armando Solar-Lezama

(2021): Verifiably safe exploration for end-to-end reinforcement learning. In: HSCC ’21: 24th ACM Inter-

national Conference on Hybrid Systems: Computation and Control, Nashville, Tennessee, May 19-21, 2021,

ACM, pp. 14:1–14:11, doi:10.1145/3447928.3456653.

[6] Zachary Kenton, Angelos Filos, Owain Evans & Yarin Gal (2019): Generalizing from a few environments in

safety-critical reinforcement learning. doi:10.48550/arXiv.1907.01475.

[7] Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley & Jianfeng Gao (2016): Deep Reinforce-

ment Learning for Dialogue Generation. In: Proceedings of the 2016 Conference on Empirical Methods

in Natural Language Processing, Association for Computational Linguistics, Austin, Texas, pp. 1192–1202,

doi:10.18653/v1/D16-1127. Available at https://aclanthology.org/D16-1127.

[8] Shie Mannor, Duncan Simester, Peng Sun & John N Tsitsiklis (2007): Bias and variance approximation in

value function estimates. Management Science 53(2), pp. 308–322, doi:10.1287/mnsc.1060.0614.

[9] George Mason, Radu Calinescu, Daniel Kudenko & Alec Banks (2017): Assured Reinforcement Learning

with Formally Verified Abstract Policies. In: Proceedings of the 9th International Conference on Agents

and Artificial Intelligence, ICAART 2017, Volume 2, Porto, Portugal, February 24-26, 2017, SciTePress, pp.

105–117, doi:10.5220/0006156001050117.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra &

Martin Riedmiller (2013): Playing atari with deep reinforcement learning. doi:10.48550/arXiv.1312.5602.

[11] Shashank Pathak, Luca Pulina & Armando Tacchella (2018): Verification and repair of control policies for

safe reinforcement learning. Appl. Intell. 48(4), pp. 886–908, doi:10.1007/s10489-017-0999-8.

[12] Alex Potapov & MK Ali (2003): Convergence of reinforcement learning algorithms and acceleration of

learning. Physical Review E 67(2), p. 026706, doi:10.1103/PhysRevE.67.026706.

[13] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc

Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen Simonyan & Demis

Hassabis (2017): Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm.

CoRR abs/1712.01815, doi:10.48550/arXiv.1712.01815.

[14] Bharat Singh, Rajesh Kumar & Vinay Pratap Singh (2021): Reinforcement learning in robotic applications: a

comprehensive survey. Artificial Intelligence Review 55(2), pp. 945–990, doi:10.1007/s10462-021-09997-9.

https://doi.org/10.48550/arXiv.2009.12612
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.48448/tj1d-sk77
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1145/3447928.3456653
https://doi.org/10.48550/arXiv.1907.01475
https://doi.org/10.18653/v1/D16-1127
https://aclanthology.org/D16-1127
https://doi.org/10.1287/mnsc.1060.0614
https://doi.org/10.5220/0006156001050117
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1007/s10489-017-0999-8
https://doi.org/10.1103/PhysRevE.67.026706
https://doi.org/10.48550/arXiv.1712.01815
https://doi.org/10.1007/s10462-021-09997-9

T. Mannucci, J. de Oliveira Filho 219

[15] Satinder Singh, Tommi S. Jaakkola, Michael L. Littman & Csaba Szepesvári (2000): Convergence Re-

sults for Single-Step On-Policy Reinforcement-Learning Algorithms. Mach. Learn. 38(3), pp. 287–308,

doi:10.1023/A:1007678930559.

[16] Richard S Sutton & Andrew G Barto (2018): Reinforcement learning: An introduction. MIT press,

doi:10.1109/TNN.1998.712192.

[17] Csaba Szepesvári (1997): The Asymptotic Convergence-Rate of Q-learning. In: Advances in

Neural Information Processing Systems 10, [NIPS Conference], The MIT Press, pp. 1064–1070,

doi:10.5555/3008904.3009053.

[18] Perry Van Wesel & Alwyn E Goodloe (2017): Challenges in the verification of reinforcement learning algo-

rithms. Technical Report. Available at https://ntrs.nasa.gov/citations/20170007190.

[19] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-

oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev et al. (2019): Grandmas-

ter level in StarCraft II using multi-agent reinforcement learning. Nature 575(7782), pp. 350–354,

doi:10.1038/s41586-019-1724-z.

[20] Christopher J.C.H. Watkins & Peter Dayan (1992): Machine Learning 8(3/4), pp. 279–292,

doi:10.1023/a:1022676722315.

[21] Bo Xin, Haixu Yu, You Qin, Qing Tang & Zhangqing Zhu (2020): Exploration entropy for reinforcement

learning. Mathematical Problems in Engineering 2020, doi:10.1155/2020/2672537.

[22] He Zhu, Zikang Xiong, Stephen Magill & Suresh Jagannathan (2019): An inductive synthesis framework for

verifiable reinforcement learning. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, ACM, pp. 686–

701, doi:10.1145/3314221.3314638.

Appendix

First, observe that the action value update can be rewritten as

Qπ
k+1(s,a) = (1−α)Qπ

k (s,a)+α ∑
s′∈S

T (s,a,s′)[r(s,a,s′)+ γ ∑
a′

π(s′,a′)Qπ
k (s

′,a)].

Define now the matrix Π ∈ R
|S|,|A|,|S|, whose entries are defined as:

Πi, j =

{

π(s j,ai−(j−1)|A|) if(j−1)|S||A|< i ≤ j|S||A|

0 otherwise.

Π is the matrix obtained by staking |S| copies of the vector-wise policy π ∈ R
|S|,|A|, and setting to zero

each element of the resulting jth column which does not contain the probabilities for the jth state. Denote

as Q ∈ R
|S|,|A| the column vector of values Qπ(s,a), as R ∈ R

|S|,|A| the column vector of the expected

rewards Es′∈S[r(s,a,s
′)], and as T ∈ R

|S|,|A|,|S| the matrix corresponding to the transition function T .

Then the value update can be written in matrix form as

Qk+1 = αR+[αγTΠT +(1−α)I]Qk = αR+BQk,

where I is the identity matrix. Note now that the square matrix B := [αγTΠT + (1−α)I] has norm

‖B‖ ≤ αγ +1−α = 1−α(1− γ) by construction, because α ,γ ≤ 1, and T,Π are stochastic matrices.

If we define the consecutive error vector as ∆k := Qk+1 − Qk. Then it follows that ∆k+1 = B∆k

indicates a contraction since 1−α(1− γ)≤ 1.

https://doi.org/10.1023/A:1007678930559
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.5555/3008904.3009053
https://ntrs.nasa.gov/citations/20170007190
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1023/a:1022676722315
https://doi.org/10.1155/2020/2672537
https://doi.org/10.1145/3314221.3314638

	1 Introduction
	2 The Challenge of Information Provision Seen as a Game
	3 Models of Human Mind
	4 Psychological Models in A Game
	5 Conclusion
	A Acknowledgements
	B Abbreviations
	Introduction
	Actual Trust: Power, Knowledge, and Commitments
	Refinement-Based Trust Formal Modelling and Verification
	Modelling trust in Event-B
	Modelling verifiable trust properties
	Verifying trust properties
	Refining trust

	Concluding Remarks and Future Directions
	1 Introduction
	1.1 DL2
	1.2 Fuzzy Logics

	2 Comparing Differentiable Logics: Experimental Setup
	2.1 Constraints

	3 Results
	4 Future Work
	A Appendix
	A.1 Constraints
	A.2 Plots of Prediction and Constraint Accuracy Over Time
	A.3 Runtime Overhead
	A.4 Plots of the Fuzzy Logic Implications
	A.5 Plots of Prediction and Constraint Accuracy for Different Values of

	Introduction
	Preliminaries
	Feedforward Neural Networks
	Stars
	Reachability Analysis for FNNs with ReLUs

	FNN Reachability Analysis for Piece-wise Linear Activation Functions
	Unbounded Input Sets
	Leaky ReLU Layer
	Hard Tanh Layer
	Hard Sigmoid Layer
	Unit Step Function Layer

	Experimental Evaluation
	ACAS Xu
	Drone Hovering
	Thermostat Controller
	Sonar Binary Classifier

	Conclusion
	Supplementary Material
	Formal proofs
	ACAS Xu Detailed Results
	Sonar Binary Classifier Detailed Results

	Introduction and Motivation
	Background and Related Work
	Certified Control
	Related Work

	Specification and Ontology
	Implementation and Experiments
	Implementation
	Experiments

	Conclusion and Future Work
	Introduction
	Method
	Preliminary model checking
	Trajectory specification in LTL
	Task-driven transition system
	Product transition system and NFA

	Model update procedure

	Implementation
	Results
	Discussion
	Comparison with physics modelling

	Introduction
	Related Work
	Preliminaries
	Model-Predictive Control
	Reachability Analysis

	Problem Statement and Space Convexification
	Problem Formulation
	Space Convexification via Separating Hyperplanes

	Autonomous Vehicle Control System
	Overview of the Closed-Loop Control System
	Computing Separating Coupled-Hyperplanes
	Reachability Analysis of Dynamic Obstacles
	Dynamic Obstacle Model
	Online Reachability Computation

	Evaluation
	MPCC Optimisation-free Hyperplane Approach
	Offline Analysis of Convexification Algorithms
	Real-Time Control System Evaluation

	Conclusions and Future Work
	Introduction
	Related Work
	The VIVAS Framework
	Autonomous Driving Application
	CARLA Simulation Model and AI Components
	Abstract Model and Coverage Criterion
	VIVAS Interface with CARLA
	Monitoring of Properties

	Results
	Experimental setup
	Evaluation
	Analysis

	Conclusions
	Introduction
	Preliminaries
	Spatial Model of and Logic for Motorway Traffic
	Model and Logic of Time
	TMLSL

	Decidability Results
	Enforcement
	Conclusion
	Introduction
	Correct-by-Construction Control via Formal Abstractions
	Stochastic noise of unknown distribution
	Set-bounded parameter uncertainty
	Markov jump linear systems

	Current research directions
	Neural-guided abstraction of nonlinear systems
	Abstractions of polyhedral Lyapunov functions

	Conclusions and Future Work
	Introduction
	Integrating Formal Methods and Fault Injection
	Formal Fault Injection
	Insights from early experiments
	The case study
	Insights

	Conclusions
	Introduction
	Related Work
	Preliminaries
	Neural Network Verification Tool and Star Sets
	Network Architecture Specifics
	Long Short Term Memory (LSTM) Layer
	Convolutional Neural Network + Long Short Term Memory (CNN+LSTM) Architecture

	Reachability Analysis Computation
	Adversarial Perturbation
	Robustness Verification Properties

	Reachability of a Long Short Term Memory Layer
	Experimental Setup
	Hardware Used:
	Dataset Description
	Network Description

	Evaluation
	Robustness Verification of Audio Noise Classifier
	Robustness Verification of Japanese Vowel Classifiers

	Conclusion and Future Directions
	Introduction
	Preliminaries
	Automata Construction
	Implementation
	Conclusions
	Introduction
	Preliminaries
	Signal Temporal Logic
	Lustre
	Specifying and verifying assume-guarantee contracts with Kind2
	Three-valued logic

	Online semantics for STL
	Operators implementation strategy
	Formal verification of STL operators
	Induction on time interval size
	Using Kind2 as a theorem prover

	Discussions and conclusion
	Acknowledgment
	Introduction
	Related Work
	Fundamentals
	Reinforcement learning
	Runtime verification
	Use case: police patrol scheduling

	Runtime Verification for quality and timeliness of RL Learning
	How well has the agent learned its environment?
	How far from the optimum is the current policy?
	How long will it take to evaluate a (new) policy?
	New policy
	New reward
	New environment

	Conclusions

