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ERnet: a tool for the semantic segmentation 
and quantitative analysis of endoplasmic 
reticulum topology

Meng Lu1,2, Charles N. Christensen1,3, Jana M. Weber    1,5, Tasuku Konno4, 
Nino F. Läubli    1, Katharina M. Scherer1, Edward Avezov4, Pietro Lio3, 
Alexei A. Lapkin    1, Gabriele S. Kaminski Schierle    1,2 & 
Clemens F. Kaminski    1,2 

The ability to quantify structural changes of the endoplasmic reticulum (ER) 
is crucial for understanding the structure and function of this organelle. 
However, the rapid movement and complex topology of ER networks 
make this challenging. Here, we construct a state-of-the-art semantic 
segmentation method that we call ERnet for the automatic classification of 
sheet and tubular ER domains inside individual cells. Data are skeletonized 
and represented by connectivity graphs, enabling precise and efficient 
quantification of network connectivity. ERnet generates metrics on 
topology and integrity of ER structures and quantifies structural change 
in response to genetic or metabolic manipulation. We validate ERnet 
using data obtained by various ER-imaging methods from different cell 
types as well as ground truth images of synthetic ER structures. ERnet can 
be deployed in an automatic high-throughput and unbiased fashion and 
identifies subtle changes in ER phenotypes that may inform on disease 
progression and response to therapy.

The ER is the largest membranous structure in eukaryotic cells and 
acts as a platform for protein synthesis and quality control and for 
various organelle interactions1. The ER consists of distinct domains 
including sheets and tubules and features growth tips and tubular 
connections, so-called three-way junctions. Perturbations to the 
ER structure and dynamics caused by genetic defects or metabolic  
stress have been associated with a variety of diseases2, such as  
hereditary spastic paraplegias (HSPs) and Niemann–Pick disease 
type C (NPC). Hence, to understand the role of the ER in diseases, 
it is important and necessary to characterize ER morphology  
comprehensively, which may provide powerful phenotypes to screen 
drugs against ER-associated disorders. However, given the extent of the 

ER network and its complexity, precise and quantitative measurement 
of ER topology and movement has remained challenging.

The ER network in a single cell consists of thousands of intercon-
nected tubules that undergo constant rearrangements via processes 
including continuous tubular elongation, contraction and fusion. 
Furthermore, there are rapid transitions between sheet and tubular 
domains with distinct putative functions3. Recently, capabilities have 
emerged to reveal such dynamic changes in ER topology in live cells at 
subwavelength resolution4. Structured illumination microscopy (SIM), 
for example, can be used to resolve details of ER topology and its rapid 
remodeling process5–7. However, the data have only been interpreted 
qualitatively, without attempts to quantify ER topology or its structural 
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identified to plot a topology graph via a graph theory-based module18. 
In essence, the topology graph is a representation of ER tubules and 
junctions that provides a visual cue on the degrees of ER network con-
nectivity and fragmentation (for an introductory explanation of graph 
theory concepts, see Extended Data Fig. 6).

Instead of relying on the commonly applied convolutional  
neural networks (CNNs), our model builds upon a Vision Transformer 
architecture19 that outperforms a comparable state-of-the-art CNN 
with higher classification accuracy and requires four times fewer com-
putational resources. Key to our method is that, rather than paying 
attention to the spatial position of the nodes, it focuses on the ER’s 
network features, for example, connectivity between nodes. This 
means that metrics such as number of ER fragments and clustering of 
nodes into subregions can be extracted to provide quantitative metrics 
of ER topology and health.

To reduce the computational cost associated with the large data 
volumes generated by time-sequenced imaging data, ERnet makes 
use of the backbone architecture of the Swin Transformer reported by  
Liu et al.20. Here, image frames in a temporal sequence are processed  
as 3D blocks, which permits the model to focus on key features that 
persist not only over the spatial domain but also over temporal  
domains (Fig. 1b). These attributes make the method fast to  
execute and also very responsive to changing ER phenotypes.

Quantitative segmentation and analysis of ER topology
The ER is a highly dynamic structure, and, at any instant, thousands 
of tubules move and change position, direction and network connec-
tions. To quantify these intracellular changes, we first tested the per-
formance of ERnet using SIM images of COS-7 cells. Fig. 2a shows a 
single frame of the ER (gray) from a set of sequential images captured  
from a COS-7 cell expressing mEmerald-Sec61b5. The performed seg-
mentation successfully identified the whole ER structure, differen-
tiated it from the cytosol background and further classified it into 
tubular (cyan) and sheet domains (yellow) (Fig. 2a). Next, the tubular 
ER was skeletonized from the whole structure, and nodes (tubule junc-
tions, shown in red) and edges (tubules, green) were identified as two  
key topological components to map network connectivity via the 
Python package graph-tool18.

SIM provide high spatial–temporal resolution of ER structures 
and is thus suitable for live cell imaging. A single pixel on the camera 
frame has a length scale of 42 nm in real space, almost a quarter of 
the average width of an ER tubule (~160 nm, measured as the average 
width on SIM images taken). This means that misclassification of a 
few or even just one image pixel(s) can mean the difference between 
identification of a tubule as connected or as disrupted. This leads  
to errors in classification of network features and vice versa to bias 
when quantifying network connectivity. In disease models, this could 
lead to erroneous phenotypes. Semantic segmentation of individual 
pixels from SIM images ensures the structural integrity of networks 
identified and prevents information loss, an improvement over tra-
ditional algorithms used in the past. Fig. 2a,b shows how the method 
performs. Clear segmentation of ER structure (Fig. 2b) is achieved in 
regions containing dense ER tubule networks, as can be seen from the 
enlarged region indicated by the white box in Fig. 2a. This permits the 
distinction of tubules and their junctions in confined regions, meas-
uring less than 500 nm across (highlighted by yellow dashed lines) 
with good structural detail. The segmented ER was then skeletonized 
(Fig. 2a,b, middle) and classified into edges (Fig. 2a,b, right, green 
tubules) and nodes (Fig. 2a,b, right, red spots). Finally, ERnet quanti-
fied the number of edges and nodes (Fig. 2c, top) and the percentage 
of area covered by tubules and sheets (Fig. 2c, bottom), respectively, 
across the whole ER. Here, ER tubules were defined as linear branched 
structures and sheets as flat membrane cisternae as shown in Fig. 2a,d. 
Morphological features, such as the percentage of tubules or sheets 
among the whole ER, reflect ER status3 and provide indications for 

changes precisely. Compared to other organelles, such as mitochon-
dria and lysosomes, which are structurally simpler organelles that are  
often well separated from one another, the ER consists of highly  
convoluted and structurally connected domains. The task is further 
complicated by the fact that the signal-to-noise ratio (SNR) of images 
obtained during live cell microscopy is often poor, while clear differen
tiation of the organelle from its background is required to ensure 
successful segmentation into tubular and sheet domains. For moving 
structures and time-lapse imaging, this becomes a formidable task.

A number of machine learning-based methods have been deve
loped for the segmentation of cells8, mitochondria9,10 and nuclei11, 
which provide robust and precise classification of cell structures. How-
ever, to date, thresholding remains the standard method of use for ER 
segmentation12–14. Thresholding lacks both sensitivity and specificity, 
making quantitative conclusions hard to draw, especially in situations 
in which image quality is compromised by noise. Alternative methods 
are based on labor-intensive manual labeling of image data to generate 
specialized datasets for training of machine learning algorithms. These 
approaches do not generalize well to work with changing experimental 
setups or varying sample types15 (Extended Data Fig. 1). An additional 
challenge for ER segmentation can be seen in temporal consistency. 
Conventional segmentation is performed on a frame-by-frame basis, 
and segmented structures in sequential (time-lapse) images lose 
temporal continuity and thereby cause artifacts16. Currently, there is  
no ER-segmentation method capable of taking dynamic, spatial and 
temporal topology changes into consideration.

To address these difficulties, we developed ERnet, a deep learning 
software that automatically segments the ER, classifies its domains 
into tubules and sheets and quantifies structural and dynamic fea-
tures in image sequences obtained from live cells. ERnet is trained 
with image datasets to model the domain knowledge of ER struc-
tures, that is, the shapes of tubules and sheets. As a result, it enables 
feature-specific segmentation with enhanced robustness, specific-
ity and sensitivity regardless of pixel intensity in the images. ERnet 
works on two-dimensional (2D) data, but the quantitative results accu-
rately describe the three-dimensional (3D) structure of the organelle.  
After segmentation, ERnet quantifies topological features of the ER 
and recognizes subtle changes in ER structure and dynamics for vari-
ous stress conditions, including gene knockout (KO) and knockdown, 
ATP depletion, calcium depletion, etc. To validate the method, we 
tested the segmentation accuracy of ERnet on in vitro models sub-
jected to different genetic and metabolic manipulations, including 
cells mimicking phenotypes of HSP and NPC. Two phenotypes were 
identified as sensitive readouts of the ER response in these models, 
namely, the degree of fragmentation of ER networks and the hetero-
geneity in tubule connections. Both are indicators for the functional 
state of the ER network and can be used, for example, to quantify the 
degree of disorganization, shrinkage and collapse of ER structures in 
models of disease. We show the versatility of ERnet by application to 
widefield imaging, confocal and super-resolution microscopy data 
and test its performance in the presence of image noise. Furthermore, 
the method works in multiple cell lines. Minimal training or no retrain-
ing is required between different use scenarios. We provide ERnet  
as a user-friendly, open-source software package with a graphical  
user interface (Extended Data Fig. 2 and Supplementary Note) to  
make it a broadly accessible tool for biologists and to promote 
ER-related research in basic science and clinical applications.

Results
Design and workflow of ERnet
The general design of ERnet is schematized in Fig. 1a. First, recon-
structed sequential images of the ER were segmented in ERnet,  
followed by classification of ER structures into tubules and sheets. The 
tubular structure was further skeletonized using a surface axis thinning 
algorithm17. After this, the nodes and edges of the skeletonized ER were 
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possible ER defects. ER stress induced by an absence of the GTPase Rab7,  
which is known to modulate lysosome–ER contact sites, leads to 
enlargement of ER sheets and reduction of tubular domains in the 
cell periphery21. On the other hand, a depletion of protrudin, an 
ER-reshaping protein, induces HSP-associated ER dysfunctions by 
disrupting the sheet-to-tubule balance22. Therefore it is expected that 
topological features of the ER, such as its connectivity, assortativity 
or clustering coefficients, change for different phenotypes and with 
disease progression, a topic that is further explored in subsequent sec-
tions. It is worth highlighting the fact that, although the ER tubular net-
work underwent stark morphology changes (Supplementary Video 1)  
and demonstrated fluctuations in the number of nodes and edges  
(Fig. 2c, top) within individual recordings, its tubule and sheet percent-
ages of the whole ER remained stable (Fig. 2c, bottom), which suggests 
that the overall connections do not change in the absence of stimuli.

In the canonical model of ER structures, ER tubules radiate from 
sheets toward the cell periphery4, and the two structures are thought 
not to overlap. However, we observed that tubular structures also 
reside on the ER sheets themselves (Fig. 2d and Supplementary Video 
2), which, in what follows, we refer to as ‘sheet-based tubules’ (SBTs) 
and are clearly distinguished by ERnet as seen in Fig. 2d and Supplemen-
tary Videos 2 and 3. Similar to peripheral tubules, SBTs undergo rapid 
elongations and contractions, which can lead to either new tubular 

connections (blue arrows) or separations (gray arrows) (Fig. 2d, bot-
tom). A subsequent 3D reconstruction of SIM image sections further 
validated that such tubules are directly attached to sheets and are not 
the result of a projection view artifact (Fig. 2e, Extended Data Fig. 3 
and Supplementary Video 4). Analysis of 500 cells showed that this 
phenomenon is a common feature of the ER network (Fig. 2f).

In silico validation of ERnet
To examine the accuracy of ERnet, we generated synthetic ground 
truth data on which the performance of the method could be  
tested. First, we generated data to test semantic segmentation perfor-
mance. To do this, we used real SIM data of ER networks on which we 
applied the well-established Trainable Weka Segmentation machine 
learning algorithm15. This produced ground truth images for which 
ER structures were classified into tubules, sheets and SBTs (Fig. 3a).

The same SIM images on which the above Weka approach was 
used to generate ground truth data were then processed by ERnet, 
and the results were compared pixel by pixel. The ground truth test 
demonstrated a pixel accuracy for ERnet segmentation of between 92%  
and 99% compared to that for the ground truth data (Fig. 3c). In another 
test, we used the segmented images obtained with the Trainable  
Weka algorithm and fed this as input to ERnet. In this case again, the 
result was nearly identical to the ground truth.
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Fig. 1 | Workflow of ER structure segmentation and ERnet construction. 
a, The processing pipeline of ER segmentation and analysis. Time-lapse SIM 
images were first segmented by ERnet to classify tubules and sheets. The tubular 
network of the ER after segmentation was further skeletonized, and nodes 
and edges were identified to plot the connectivity graph. Using graph theory-
based methods, we quantified the metrics of ER network features that describe 
topology and dynamics. b, The Transformer-based architecture of ERnet. A 

moving window loads adjacent frames (Xt−2 to Xt+2) as inputs from time-lapse 
images into ERnet. A shallow feature-extraction module then projects the input 
into a feature map, which is followed by a sequence of residual blocks denoted as 
a window channel attention block (WCAB). Inside each WCAB, there is a sequence 
of Swin Transformer layers (STLs). For details, see Methods. SW-MSA, shifted 
window multi-head self-attention.
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In addition to the ground truth test for semantic segmentation, 
we also tested the accuracy of the connectivity analyses. To do this, 
we generated ground truth data of ER tubular domains by creating 
synthetic ER skeletons. We then widened and blurred the skeletons 
and added image noise to mimic ER structures recorded with optical 
microscopy (for details on this process, see Extended Data Fig. 4a  
and its descriptive caption). After this, the synthetic images were  
processed by ERnet to identify nodes and edges and to derive met-
rics for ER connectivity (Fig. 3d,e). ERnet reached accuracies ranging  
from 96% to 99% for identification of nodes and edges (Fig. 3f). Even 
in dense regions of the tubular network (magnified regions, Fig. 3e), 
ERnet still achieved a high precision to capture nodes and edges, 
with little difference found between the ERnet result and the ground  
truth data. Additionally, we quantified the differences in connectivity 
metrics obtained from ERnet and ground truth data (Fig. 3f). Because 
the assortativity metric ranges over very small scales, for example, 
from −0.05 to 0.08, even minor changes in connectivity can lead  

to large fluctuations of the former. Nevertheless, observed changes 
in metrics are still significantly smaller than those associated with  
the varying phenotypes reported in the following context.

Next, we tested the performance of ERnet on ground truth images 
in which we added variable levels of noise (Extended Data Fig. 4). The 
purpose was to provide a metric with which a user can decide upfront 
whether a given dataset obtained on a microscope is of sufficient  
quality to trust the ERnet output. We found that ERnet produced  
repeatedly reliable outputs for both connectivity and topology features 
for image data featuring SNRs better than ~5 (Extended Data Fig. 4). By 
analyzing the SNR obtained with a given experimental setup, users can 
objectively assess the quality of segmentation results, irrespective of 
where and how the data were obtained.

ERnet performs on various cell types and imaging modalities
To demonstrate the versatility and robustness of ERnet in different 
research scenarios, we validated the method on a range of datasets 
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Fig. 2 | Semantic segmentation of the ER and classification of tubules and 
sheets. a, An example of a segmentation result from video-rate SIM images of the 
ER. Left to right, (1) SIM image, (2) segmentation of ER tubular (cyan) and sheet 
(yellow) regions, (3) skeletonization of the tubular domain and (4) identification 
of nodes (red spots) and edges (green lines) based on the skeleton structure. 
Scale bar, 5 μm. b, Magnified regions of a. Yellow dashed circles indicate nodes 
that are closely positioned but can still be identified by ERnet. Scale bar, 2 μm. c, 
Quantitative analysis of the ER shown in a. Top, quantification of edges and nodes 
of the ER tubules of time-lapse frames. Bottom, percentage of the ER tubules 
(cyan) and sheets (yellow) of time-lapse frames (1.5 s per frame) (Source Data 
Fig. 2c). d, A representative frame from time-lapse images shows the structure 
of SBTs (1.5 s per frame). Top left, a SIM image of the ER structure. Top right, 

segmentation of the three ER structures: SBTs (magenta), sheets (yellow) and 
tubules (cyan). Bottom, three sequential frames showing the dynamic reshaping 
of SBTs from the above green boxed region. Blue arrows indicate a continuously 
elongating SBT, and gray arrows indicate a retraction. Scale bars, 5 μm (top) and 
2 μm (bottom). See Source Data Fig. 2d for quantitative analysis. e, Volumetric 
view of a 3D reconstruction of the sectioning SIM showing that the SBTs 
(magenta) are embedded in sheet domains (yellow). Scale bar, 2 μm (bottom). 
f, Violin plots of the percentages of tubules (T), sheets (S) and SBTs in COS-7 
cells (N = 500), showing that the presence of SBTs is a common feature of the ER 
network. In the violin plots, the white dot represents the median value of the data, 
the thick bar represents the interquartile range, and the thin bar represents the 
rest of the data distribution (Source Data Fig. 2f).
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for the image data above. c, Quantification of pixel differences from the three 
image channels. F1–F10 are frames 1–10, respectively, in sequentially recorded 
ER images (Source Data Fig. 3c). d, Comparison of ground truth data (synthetic 

ER tubular network) and ERnet results. The top right inset and that framed in a 
magenta box present the whole field of view of the ground truth data, which were 
input into ERnet. e, A magnified region of the highlighted sections in a showing 
that the connectivity revealed by ERnet is nearly identical to the ground truth. 
Red spots, nodes; green lines, edges. f, Comparison of the connectivity metrics. 
GT data, ground truth data. Numbers on the x axis indicate the image sample 
number (Source Data Fig. 3f).
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obtained by us and others. Fig. 4 presents the analysis of images 
obtained using different microscopy techniques including widefield, 
confocal and Airyscan microscopy. Even though ERnet’s precision 
may depend on the spatial resolution of the corresponding images,  
it performed well for all imaging techniques, with all tubules and  
sheets clearly classified and quantified (Source Data Fig. 4). Further-
more, we also performed validation tests for varying cell types com-
monly used in cell biology research, such as HEK, CHO and SH-SY5Y 
cells, and primary cultures of hippocampal neurons and glial cells 
derived from embryonic rats (Source Data Fig. 4). Further data from 
plant cells13 and publicly available datasets23,24 published by other 
authors using different experimental setups are shown in Extended 
Data Fig. 5. Although the specific ER phenotypes varied among the cell 
types, ERnet was able to robustly identify the corresponding tubular 
and sheet domains and performed subsequent quantitative analyses 
following segmentation. The model did not have to retrained for any 
of these scenarios, and no preprocessing of the raw data was neces-
sary before segmentation by ERnet, demonstrating the generality of  
the model and its ease of application.

ERnet provides detailed connectivity data on ER networks
ERnet can be used to quantify the connectivity of edges and nodes 
before plotting a corresponding connectivity graph (Fig. 5a). The  
connectivity graph highlights that the network of the ER is largely  
composed of three-way junctions (red nodes, Fig. 5a), while ER edges 
are capped with growth ends (green nodes, Fig. 5a).

To assess the integrity of the ER, we defined each disconnected 
ER region as a fragment. Although the number of fragments during  
ER reshaping fluctuates (Fig. 5b), ERnet revealed that, in a typical 
healthy cell, the majority of all edges and nodes are contained in a  
single large fragment at all times (over 92% of all 3,000 nodes and  
95% of all 4,000 edges in the example shown). As quantitative para
meters, we defined node- and edge-assembly ratios (the number  
of nodes or edges in the largest fragment divided by the total  
number of nodes or edges, respectively) (Fig. 5c). According to the 
definition, these values range from close to 0 (fully fragmented ER) to 
1 (fully connected). Additionally, ERnet quantified the degrees of the  
ER nodes, that is, how many edges (tubules) connect to each node  
( junction). As shown in Fig. 5d, three-way junctions were the most  
abundant and represented 66% of all junction types in this example. 
Despite the prevailing model of ER morphology, in which three-way 
junctions interconnect to form the whole ER tubular network, 
ERnet also identified nodes connected with more than three edges 
(tubules), that is, multi-way junctions. The presence of multi-way junc-
tions indicates the heterogeneous connectivity of ER tubules that are 
organized in a higher order of complexity than previously assumed.

Next, the assortativity and clustering coefficients (Fig. 5e,f), which 
describe connectivity patterns of nodes, were calculated based on the 
above metrics. The assortativity coefficient measures the tendency of 
nodes to connect with others of the same degree25. In a network with 
a high assortativity coefficient, most nodes are connected in a similar 
way with their neighbors (for example, via three-way junctions). The 
clustering coefficient, on the other hand, reflects the distribution of 

nodes within the whole network (for example, clusters of multi-way 
junctions may be separated from other clusters by junctions of lower 
degree). For a graphical explanation of these concepts, the reader is 
referred to Extended Data Fig. 6.

Assortativity coefficients range from −1 (network fully hetero-
geneous in connectivity, that is, nodes only connect with those of 
different degrees) to +1 (network fully homogeneous in connectivity, 
that is, nodes only connect with those of same degree). Similarly, for 
clustering coefficients, 1 describes a network in which all the nodes  
and edges are clustered, while 0 refers to no clustering. Fig. 5e shows 
the ER as a weak assortative network, which suggests a tendency,  
albeit a weak one, of nodes to connect with nodes of the same  
degree. In Fig. 5f, we show how the degree of clustering can change over 
time in an ER network. Tubules and junctions reorganize themselves 
rapidly, both within localized and global domains. Frequent events 
include the merging of multiple tubules forming clusters of nodes, but 
these then disassemble transiently. Overall, the data indicate that the 
network features a high degree of structural homogeneity, and local 
clustering is not a dominating feature to affect the overall phenotype.

To further investigate the structural dynamics of the ER, we tracked 
the lifetime of multi-way junctions and their transitions from multi-way 
junctions to three-way junctions. Fig. 5g,h shows rapid transitions 
between three-way (yellow arrows) and multi-way (blue arrows) junc-
tions driven by ER tubule reshaping. As shown in these cases, the forma-
tion of four-way or five-way junctions needs simultaneous connections 
of more than three tubules at the same junction, which occurs with a 
lower chance than the formation of a three-way junction, which only 
requires the connection of three tubules. Additionally, any movement 
of a tubule away from its multi-way junction can lead to the collapse 
of this junction and the generation of at least two three-way junctions. 
Therefore, as shown in Fig. 5i, the average lifetime of a multi-way junc-
tion is much shorter, that is, less than a third (9.0 s versus 30.8 s) of  
that of a three-way junction.

We also examined whether our 2D network approach is valid  
to segment ER structures, which are 3D in nature. We performed  
two different tests with both COS-7 and U2OS cells, which are the  
canonical models in fluorescence microscopy-based studies of  
the ER and for which ERnet was developed. For these flat cell types, 
we could confirm that a 2D analysis was sufficient to represent the  
ER network topology (Extended Data Fig. 7).

ERnet can characterize complex ER phenotypes
ER morphological defects caused by mutations in genes encoding 
ER-reshaping proteins or by metabolic perturbations have been linked 
to a variety of human diseases1,2,4. However, the exact phenotypical ER 
disruption under these conditions has not yet been sufficiently charac
terized. Using ERnet, we first analyzed ER morphological defects in 
stress models mimicking the ER phenotypes in two neurodegenerative 
diseases, namely, HSP and NPC. The inherited neurological disorder 
HSP can be characterized by progressive lower-limb weakness and 
muscle stiffness, which are caused by mutations in genes encoding 
ER-reshaping proteins such as atlastin (ATL)26 and protrudin27. We used 
ERnet to examine ER morphology defects in individual cells of different 

Fig. 4 | Robust performance of ERnet in a versatility test. a, A variety of cell 
lines with different ER morphologies were imaged by different microscopy 
techniques to investigate the robustness and versatility of ERnet. ER structures 
of COS-7, HEK, CHO and SH-SY5Y cells and primary cultures of hippocampal 
neurons and glial cells were tested as well as images acquired by widefield, 
confocal and Airyscan microscopy (1.5 s per frame). Scale bars, 20 μm. b, The 
topology of an ER tubular network of the COS-7 cell from the confocal image 
shown in a is represented by a connectivity graph. Nodes of different degrees  
are labeled with different colors: green (degree 1), light blue (degree 2), red 
(degree 3) and dark blue (degree >3). Bottom right, a magnified region of the 
black boxed part in the connectivity graph, demonstrating complex connectivity 

revealed by ERnet from the confocal microscopy image. The following analysis  
of c,d is based on this image data. c, Quantitative analysis of the ER structure  
of the image data from b reveals topology features of the ER tubular network. 
Top, percentage of ER tubules (cyan), sheets (yellow) and SBTs (magenta) of the 
time-lapse frames (43.5 s at 1.5 s per frame). Middle and bottom, changes  
of assortativity and clustering coefficients in time-lapse images (Source Data 
Fig. 4c,d). d, Quantitative analysis of the connectivity of the ER tubular network 
in the cell from b. Top, quantification of the nodes of different degrees, showing 
a dominance of third-degree nodes (three-way junctions). Middle, number of 
components (ER fragments) in time-lapse images. Bottom, changes in the node 
or edge ratio over time.
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models by measuring two topological features, that is, the degree of ER 
tubule fragmentation and the heterogeneity in these tubular connec
tions. Compared with control cells, ATL (ATL2 and ATL3) KO28 leads  
to a collapse of ER network integrity. Such ER fragmentation was  
clearly revealed in ATL KO cells by the increasing number of fragments 
and a 20-fold reduction of the node-assembly ratio (90% in control 

versus 4.5% in ATL KO) (Fig. 6a and Supplementary Videos 5 and 6). 
ERnet also highlighted that the lack of ATL significantly altered connec-
tivity in the ER tubular network, as witnessed by a reduced percentage 
of three-way junctions among all nodes (22% versus 65% in control) 
and by the disorganized connectivity (−0.25 in assortativity). These 
measurements provide quantitative rather than descriptive evidence  
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of ATL’s role in ER tubular network formation, which has previously 
been reported to be crucial for the fusion of ER membranes and  
thus the formation of continuous networks26. With these quantita-
tive analyses, we can compare morphological defects caused by  
different treatments. In another model of HSPs, depletion of protrudin 
(Extended Data Fig. 8) also resulted in ER tubular network fragmenta-
tion (350 fragments) (Supplementary Video 7) and in disorganized 

connectivity, however, to a lesser extent. A further metric suitable 
for the comparison of ER health under different treatments is the 
size of the ER, which is revealed by the connectivity graph. An ATL 
KO cell that was more fragmented than a protrudin-knockdown cell  
suffered from more severe shrinkage of the ER with a smaller number  
of nodes and edges (Fig. 6a), indicating that ER membranes may be 
degraded or recycled in response to stresses.
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Fig. 5 | Quantitative analysis by ERnet reveals complex connectivity of the  
ER tubular network. a, The topology of an ER tubular network is represented  
by a connectivity graph. (1), a representative region of multi-way junctions  
(dark blue spots); (2), a polygonal structure organized by three-way junctions  
and tubules; (3), a representative region of ER tubular growth tips (green spots).  
b–f, Quantitative analysis of the cell shown in a over a time window of 45 s at 1.5 s 
per frame (Source Data Fig. 5f). b, Number of components (ER fragments) in 
time-lapse images. c, Changes of the node- or edge-assembly ratio over time.  
d, Quantification of nodes of different degrees, showing a dominance of third-
degree nodes (three-way junctions). Same color scheme as that in a. e,f, Changes 

in assortativity and clustering coefficients in time-lapse images. g,h, Examples 
of transitions between three-way (yellow arrows) and multi-way (yellow arrows, 
three-way; blue arrows, four-way; green arrows, five-way) junctions. Scale bar, 
1 μm. i, Quantification of the lifetime of junctions (nodes) with different degrees. 
Data are presented as mean ± s.e.m., ***P < 0.001, Tukey’s one-way ANOVA. N = 12 
events per condition per experiment from three independent experiments and 
36 events per condition were analyzed in total. P values, growth tip versus multi-
way junctions, 0.8947; growth tip versus three-way junctions, 0.0001; three-way 
versus multi-way junctions, 0.0006 (Source Data Fig. 5i).
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Next, we induced cholesterol accumulation in lysosomes  
by U18666A administration to the cell, which induces blockage  
of cholesterol transfer from lysosomes to the ER in NPC29. Accumu-
lation of cholesterol in lysosomes leads to lysosome deposition in  
perinuclear regions and, therefore, affects ER structure and  
distribution3. However, the exact ER morphological defects have  
not yet been characterized. ERnet revealed that the ER of U18666A- 
treated cells features a disassortative network (−0.34), and its low 
node-assembly ratio (2.6%) suggests a highly fragmented structure 
(Fig. 6a,b and Supplementary Video 8), which highlights the fact 
that lysosomal defects can strongly affect the ER and thus provides  
for a useful tool with which to improve an understanding of  
organelle dysfunction in NPC.

Finally, we tested the performance of ERnet in cells upon ER  
collapse under metabolic manipulations that substantially affect  
overall homeostasis inside the cell. A SIM video showed that the  

ER largely loses its dynamic reshaping capabilities upon administra-
tion of the store-operated calcium entry inhibitor SKF96365 (ref. 30) 
(Supplementary Video 9). In the connectivity graph, the ER became 
largely fragmented and featured as a disassortative network (Fig. 6a,b). 
Compared with SKF96365, NaN3 depletes ATP31, thus capping sup-
port for all energy-consuming processes inside the cell, including ER  
tubule elongation, retraction and membrane fusion. Therefore, ATP 
depletion by NaN3 was expected to substantially affect the structural 
dynamics of the ER. ERnet revealed the level of ER network fragmenta-
tion resulting from a lack of ATP (Fig. 6a,b and Supplementary Video 10); 
however, the phenotypes were not equivalent to those observed upon 
depletion of ER-reshaping proteins: for example, the node-assembly 
ratio in ATP-depleted cells was found to be nearly fourfold of that in 
ATL KO cells (0.19 versus 0.05).

Overall, while ERnet provides a quantitative assessment of  
overall network topology, it is also sensitive enough to detect subtle 
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green (degree 1), light blue (degree 2), red (degree 3) and dark blue (degree >3). 
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left) appear more amorphous than strongly fragmented networks (stressed cells, 
middle). Raw image data are presented in Supplementary Videos 5–11 (1.5 s per 
frame). siProtrudin, protrudin knockdown. b, Topological features of the ER 
tubular network in the conditions in a were quantitatively analyzed by ERnet. The 
effects on ER structures from different treatments can be directly visualized and 
compared by plotting the distribution of the node-assembly ratio (y axis) and 
assortativity coefficient (x axis). The analysis of ER phenotype, such as that in 
ATL KO cells, demonstrated severe fragmentation and altered connectivity in the 
numerical data plot (Source Data Fig. 6b). DMSO, dimethyl sulfoxide.
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changes in local ER morphology, valuable attributes in the investigation 
and differentiation of ER-related phenotypes of disease.

Discussion
A measurement of cellular organelle properties such as shape, posi-
tion and mobility provides a quantitative basis for analyzing the struc-
ture and function of organelles in both fundamental and therapeutic 
research. Here, we introduce ERnet, a versatile tool that performs 
robust and precise segmentations and analyses of ER structures under 
a variety of conditions.

The accuracy of ERnet’s semantic segmentation algorithm is a 
result of its model design. In contrast to state-of-the-art CNN models 
commonly used for image segmentation, ERnet is constructed in a 
Vision Transformer architecture that outperforms CNNs in terms of 
image-classification accuracy and requires much smaller computa-
tional resources19,32. Another advantage of our design is a capability for 
temporal domain analyses of objects in sequenced image data. We inte-
grated two attention mechanisms, multi-head self-attention (MSA)33 
and channel attention34, into the Transformer architecture. These 
mechanisms greatly enhance the learning ability of ERnet in classifying 
ER structures in the spatio-temporal domain. While machine learning 
methods have previously been implemented for denoising images of 
ER structures35, reconstructing ER structures based on electron micros-
copy images36 and identification ER stress marker whorls37, ERnet is 
capable of video-rate image segmentation and analysis of live cells, 
further extending the deep learning toolbox for biomedical research.

Through application of ERnet, we were able to characterize and 
quantify structural features of dynamic ER networks. First, we found 
that the dominance of three-way junctions is a necessity to produce a 
continuous ER network that can spread throughout the cell. While we 
observed a prevalence of three-way junctions, we found that 20% of 
healthy ER furthermore consists of multi-way junctions (degree >3). By 
contrast, all stress manipulations of ER morphology, including models 
of HSPs and NPC, resulted in the fragmentation of ER structures to 
varying extents (Fig. 6).

Nixon-Abel et al.5 and Pain et al.13 also made use of microscopy data 
in the analysis of ER dynamics. However, their work focused on a very 
different set of ER phenomena than what we present here. Nixon-Abel 
et al.5 analyzed transient dynamics of individual tubules (for example,  
lateral tubule oscillations). Pain and colleagues designed AnalyzER 
to extract metrics of plant ER tubules, such as width, length and 
cross-sectional area. By contrast, our work focuses on global network 
topology and integrity, which are key features associated with physi-
ological and stress states. Our aim is to provide a robust and powerful 
tool for investigation of therapeutic strategies against ER-associated 
disease. Apart from this, ERnet, driven by deep learning to classify ER 
structures, can identify subtle changes in the whole ER and display the 
difference in quantitative plots. The connectivity graph is a unique fea-
ture of ERnet. It is a visual tool to display the connected parts of the ER 
and provides for a rapid visual cue on the degree of network integrity.

An advantage of the use of deep learning in biological imaging is 
that it facilitates discovery of new biological phenomena. The sensitiv-
ity of ERnet to changing structural features led to the identification of 
SBTs. These ER components share similar structures and dynamics with 
the tubules that radiate from the sheet domains toward the periphery 
of the cell; however, their existence in the sheet domain greatly extends 
the coverage of the tubular ER toward the cell center and even close to 
the nucleus. We note that SBTs are evident also in data presented in 
previous reports, such as that by Schroeder and colleagues38 (for exam-
ple, Figs. 1e,h, 3b and 4a), but the phenomenon was not recognized 
specifically. In our method, SBTs are classified in addition to sheets 
and tubules on their own. While ERnet can be used with any imaging 
technique, conventional or super-resolved, its ability to detect and 
classify SBTs does depend on SNR and image resolution. Therefore, 
some differences are expected in output produced from very different 

imaging methods. We also note that ER topology can vary substantially 
from cell to cell and do not recommend conclusions to be drawn from 
data that are not representative of the whole cell population. How SBTs 
are regulated in both physiological and pathological conditions will be 
an important question for future studies.

Similar to all segmentation and classification methods, including  
those performed by humans, ERnet is necessarily limited by the quality  
of the input data. We found that, for SNRs greater than around 5, ERnet 
reliably quantifies topology structures for any microscopy method 
of appropriate image resolution. Because we optimized ERnet for 
high-throughput analysis, the algorithm treats ER networks as 2D 
structures for computational efficiency. While we saw no problems with 
this for the cell types that we analyzed, one needs to be cautious when 
applying the method to highly 3D networks. ERnet could be extended 
to three dimensions and integrated with further organelle-analysis 
tools, for example, methods for characterization of lysosomes and 
mitochondria, to permit comprehensive investigations of organelle–
organelle interactions and their role in the development, aging and 
degeneration of cells.

We believe that our work demonstrates an efficient tool for 
precise structure segmentation and multi-parameter analysis of 
ER phenotypes. Its user-friendly graphical interface and automatic 
batch-processing capabilities obviate the need for manual annotation.
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Methods
Cell culture
COS-7 cells were purchased from the American Type Culture Collec-
tion (CRL-1651, ATCC). COS-7 cells were grown in T75 or T25 flasks or 
six-well plates by incubation at 37 °C in a 5% CO2 atmosphere. Complete 
medium for normal cell growth consisted of 90% DMEM, 10% FBS and 
1% streptomycin. Cells were kept in the logarithmic phase of growth and 
passaged on reaching 70–80% confluence (approximately every 3–4 d). 
Medium was changed every 2 or 3 d. For SIM imaging experiments, 
COS-7 cells were plated onto Nunc Lab-Tek II Chambered Coverglass 
(Thermo Fisher Scientific, 12-565-335) to achieve ∼70% confluence 
before transfection.

COS-7 cells were transfected with mEmerald-Sec61b-C1 (Addgene, 
90992, gifted by J. Lippincott-Schwartz, Janelia Research Campus) as 
indicated with Lipofectamine 2000 according to the manufacturer’s 
protocol 24–48 h before imaging. Cells were stained with SiR-lysosome 
at 1 μM for 4 h before imaging. Cells were imaged in a microscope 
stage-top micro-incubator (OKO Lab) with continuous air supply (37 °C 
and 5% CO2). Cells were treated with U18666A (662015, Sigma) at 10 μM 
for 24 h to block cholesterol transfer from lysosomes to the ER before 
imaging. Cells were treated with SKF96365 (S7809, Sigma) at 100 μM 
for 3 h to deplete calcium before imaging. Cells were treated with NaN3 
(0.05%, wt/vol) and 2-deoxyglucose (20 mM) for 2 h to deplete ATP 
before imaging. SH-SY5Y cells (CRL-2266, ATCC) were cultured and 
imaged as previously described39. The ATL KO model28 was constructed 
by deleting ATL2 and ATL3 using the CRISPR–Cas9 system in COS-7 cells 
(ATL1 is not detectable in COS-7 cells), a gift from J. Hu, Chinese Acad-
emy of Sciences, China. CHO-K1 (CCL-61, ATCC) cells were purchased 
from ATCC and were cultured in Ham’s F-12 Nutrient Mixture medium 
supplemented with 10% FBS, 2 mM l-glutamine and 100 U ml−1 penicil-
lin–streptomycin. Cells were transfected with pFLAG_ER mCherry40. 
U2OS cells (HTB-96, ATCC) were cultured in DMEM supplemented 
with 10% FBS, 2 mM l-glutamine and 100 U ml−1 penicillin–streptomy-
cin. Cells were transfected with pFLAG_ER mCherry. Primary tissues, 
including hippocampal neurons and glial cells, were isolated from 
rats at postnatal day 1 (Sprague–Dawley rats from Charles River) and 
cultured as described before41. HEK293T cells (CRL-3216, ATCC) were 
cultured and imaged as described before42.

Small interfering RNA transfection and western blot
Protrudin was depleted using SMARTpool: ON-TARGETplus Human 
ZFYVE27 (118813) small interfering RNA (siRNA) (SMARTpool, L-016349-
01-0005, Horizon). The negative siRNA control (MISSION siRNA  
Universal Negative Control, SIC001) was purchased from Sigma- 
Aldrich. COS-7 cells were plated in both glass-bottom Petri dishes 
(for imaging) and six-well plates (for western blot validation). Cells 
were transfected with 20 nM siRNA oligonucleotides and 20 nM nega-
tive control siRNA using Lipofectamine RNAiMax (13778075, Thermo 
Fisher Scientific) according to the manufacturer’s protocol. After 6 h of  
siRNA transfection, cells were washed, and the medium was replaced 
with complete culture medium. Twenty-four hours after siRNA trans-
fection, cells were transfected with the plasmid DNA indicated in the 
Results using Lipofectamine 2000 (Invitrogen). On the day of imaging, 
cells were stained with SiR-lysosome. Cells in glass Petri dishes were 
imaged 24 h after DNA transfection.

Cells in six-well plates were collected for western blot validation 
72 h after siRNA transfection. Protein concentration was measured 
using a bicinchoninic acid protein assay kit. Immunoblotting was 
performed by standard SDS–polyacrylamide gel electrophoresis–
western protocols. Primary antibody concentrations were as fol-
lows: anti-protrudin at 1:5,000 (Proteintech, 12680-1-AP, R34447), 
anti-glyceraldehyde-3-phosphate dehydrogenase at 1:30,000 (G8795, 
Sigma-Aldrich); secondary antibodies (Amersham ECL Rabbit IgG, 
HRP-linked whole antibody, NA934, 17457635, GE Healthcare Life 
Sciences; Amersham ECL Mouse IgG, HRP-linked whole antibody 

(NA931VS, 17234832, GE Healthcare Life Sciences)) were used at 1:3,000 
for all rabbit antibodies and for all mouse antibodies. The signal was 
detected with SuperSignal West Pico Chemiluminescent Substrate.

Widefield and structured illumination microscopy
SIM imaging was performed using a custom three-color system built 
around an Olympus IX71 microscope stage, which we have previously 
described43. Laser wavelengths of 488 nm (iBEAM-SMART-488, Top-
tica), 561 nm (OBIS 561, Coherent) and 640 nm (MLD 640, Cobolt) were 
used to excite fluorescence in samples. The laser beam was expanded 
to fill the display of a ferroelectric binary spatial light modulator 
(SXGA-3DM, Forth Dimension Displays) to pattern the light with a 
grating structure. Polarization of light was controlled with a Pockels 
cell (M350-80-01, Conoptics). A 60×, 1.2-numerical aperture (NA) 
water-immersion lens (UPLSAPO 60XW, Olympus) focused the struc-
tured illumination pattern onto the sample. This lens also captured the 
samples’ fluorescent emission light before imaging onto an sCMOS 
camera (C11440, Hamamatsu). The maximum laser intensity at the  
sample was 20 W cm−2. Widefield images and raw SIM images were 
acquired with HCImage Live software (Hamamatsu) to record image 
data to a disk and a custom LabVIEW 2016 program (freely available 
upon request) to synchronize the acquisition hardware. Multicolor 
images were registered by characterizing channel displacement 
using a matrix generated with TetraSpeck beads (Life Technologies) 
imaged in the same experiment as the cells. COS-7 cells expressing 
mEmerald-Sec61b-C1 (ER marker) and stained with SiR-lysosome  
(lysosome marker) were imaged by SIM every 1.5 s (including imag-
ing exposure time (20–30 ms for each channel) of both channels) for  
60 frames.

Reconstruction of SIM images with LAG SIM
Resolution-enhanced images were reconstructed from raw SIM data 
with LAG SIM, a custom plugin for Fiji–ImageJ available in the Fiji 
Updater. LAG SIM provides an interface to the Java functions provided 
by fairSIM44. LAG SIM allows users of our custom microscope to quickly 
iterate through various algorithm input parameters to reproduce SIM 
images with minimal artifacts; integration with SQUIRREL45 provides 
numerical assessment of such reconstruction artifacts. Furthermore, 
once appropriate reconstruction parameters have been calculated, 
LAG SIM provides batch reconstruction of data so that a folder of 
multicolor, multi-frame SIM data can be reconstructed overnight with 
no user input.

Airyscan imaging
Airyscan imaging was performed using an LSM 880 confocal micro-
scope (Zeiss). A Zeiss Plan-Apochromat 63×, 1.40-NA DIC M27 oil  
objective was used. For visualization of ER structure, ER mCherry was 
excited by a diode-pumped solid-state 561-nm laser (1% intensity) 
and detected using the Airyscan detector. Bit depth was set at 16 bits.  
Using the Fast-Airyscan mode, live cell time-lapse images were  
acquired every 1 s (60 frames) with an image size of 1,364 × 1,244 pixels. 
Cells were kept in a controlled environment (37 °C, 5% CO2) during  
imaging. Following acquisition, images were deconvoluted using  
Airyscan processing. Image processing was performed with ZEN 2.3 
SP1 FP3 (black) software (version 14.0.25.201).

Confocal imaging
A part of confocal imaging was performed using a STELLARIS 8 confocal 
microscope (Leica). An HC PL APO CS2 63×, 1.40-NA oil objective was 
used. For visualization of ER structure, ER mCherry was excited with 
a white light laser at 587 nm with 3% intensity and detected using the 
HyD S3 detector (detection range, 592–750 nm). Bit depth was set at  
16 bits. Live cell time-lapse images were acquired every 1.5 s (90 frames) 
with an image size of 512 × 512 pixels. Cells were kept in a controlled 
environment (37 °C, 5% CO2) during imaging.
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ERnet construction and training
For segmentation of sequential ER images, a spatio-temporal shifted 
window vision transformer neural network was trained and used. The 
proposed model was inspired by the previous models Vision Trans-
former19, its more efficient shifted window variant Swin20 and adapta-
tion to image restoration with SwinIR46. We also combined the MSA 
mechanism33 with a channel attention mechanism34 in ERnet, a design 
that makes the model more adaptive to different phenotypes of the ER. 
Swin introduced the inductive bias to self-attention called SW-MSA, 
which can be compared to the inductive bias inherent in convolutional 
networks. SwinIR introduced residual blocks to the Swin Transformer to 
help preserve high-frequency information for deep feature extraction. 
The Video Swin Transformer extended the SW-MSA to three dimen-
sions, such that spatio-temporal data could be included in the local 
attention for the self-attention calculation. Further to this, the success 
of the channel attention mechanism47 inspired the inclusion of this 
other inductive bias in addition to 3D local self-attention following 
the SW-MSA approach.

The inputs to the model have the dimension T × H × W × C, where 
H is the height, W is the width of the image dimensions, T is 5 for ERnet 
(five adjacent temporal frames) and C is 1 (grayscale inputs). A shallow  
feature-extraction module in the beginning of the network archi-
tecture, shown in Fig. 1, projects the input into a feature map, F0, of 
the T × H × W × D dimension, where the embedding dimension D is a  
hyperparameter. The feature map is passed through a sequence of 
residual blocks denoted as WCAB:

Fi = HWCAB(Fi−1), i = 11, ..,n .

Inside each WCAB is a sequence of STLs, in which MSA is calculated 
using local attention with a shifted window mechanism. Inputs to the 
STL layer are partitioned into T

P
× HW

M2
 3D tokens of the P × M2 × D dimen-

sion, where P and M are the patch sizes along the temporal and spatial 
axes, respectively. Here, we use T = 3 and M = 4. For a local window 
feature, x ∈ ℝP×M2×D , query (Q), key (K) and value (V) matrices, 
{Q,K,V} ∈ ℝPM2×D, are computed by multiplication with projection matri-
ces following the original formulation of transformers. Attention is 
then computed as

Attention(Q,K,V) = SoftMax(QKT/√d + B)V,

where d is the dimension of query and key features and B ∈ ℝP2×M2×M2 is 
a relative positional bias found to lead to substantial improvements in 
classification performance. STLs are joined in a way similar to the 
residual blocks, although the use of SW-MSA is alternated with a version 
without shifted windows, W-MSA, ensuring that attention is computed 
across window boundaries, which would not have been the case without 
SW-MSA.

After the final STL, the mth layer in a WCAB, a transposed 3D con-
volutional layer is used to project the 3D tokens back into a T × H × W × D 
feature map, Fi,m. A channel attention module is then used on Fi,m to 
determine the dependencies between channels following the calcula-
tion of the channel attention statistic. The mechanism works by using 
global adaptive average pooling to reduce the feature map to a vector, 
which, after passing through a 2D convolutional layer, becomes weights 
that are multiplied back onto Fi,m such that channels are adaptively 
weighed. A residual is then obtained by adding a skip connection from 
the beginning of the ith WCAB to prevent loss of information, that is, 
low-frequency information, and the vanishing gradient problem.  
A fusion layer combines the temporal dimension and the channel 
dimensions. For the final upsampling module, we use the subpixel 
convolutional filter to expand the image dimensions by aggregating 
the fused feature maps.

The model is trained by minimizing a multi-class cross-entropy 
loss function,

LCE (Θ;D) =
1
N

N
∑
i=1

⎛
⎜⎜
⎝

1
WH

W
∑
x=1

H
∑
y=1

K
∑
k=1

−fHi;x,y(k) log
⎡
⎢
⎢
⎣

exp (F (Θ; ILi )x,y;k)

∑K
j=1 exp (F (Θ; I

L
i )x,y; j)

⎤
⎥
⎥
⎦

⎞
⎟⎟
⎠
,

where k and j are iterators over a total of K unique classes, and 
 fHi;x,y(k) is a function equal to 1 if the target class for the pixel at (x, y) of 
the ith image is k and equal to 0 otherwise. In this paper, we study  
the segmentation of background, tubules, sheets and SBTs, and, there-
fore, K = 4 in the equation above. Θ represents the trainable parameters 
of the network referred to as F(·), while D is the training dataset of  
size N consisting of the set of image samples ILi . I refers to input, 
 L refers to low quality images.

The training data are obtained by acquiring experimental 
data using SIM. A total of 20 sequential stacks of different samples  
are acquired, where each stack consists of 60 SIM images reconstructed 
with ML-SIM. The super-resolved SIM outputs are then segmented  
by manually fine-tuning a random forest model in the Weka plugin  
for ImageJ on an image-by-image basis.

ERnet has been trained with the Adam optimizer and a cross- 
entropy loss function using a learning rate of 1 × 10−5 that is halved 
after 30,000 iterations. A total of 65,000 iterations were made, which 
equals 100 epochs of the training dataset. A Nvidia A100 GPU was used 
with a batch size of ten. Training samples were randomly cropped  
to 128 × 128, while inference was performed with 1,024 × 1,024 inputs. 
For ERnet, the WCAB number, STL number, window size, embedding 
size D and attention head number are set to 6, 6, 8, 96 and 6, respec-
tively. The other hyperparameters are further specified below.

Implementation details are as follows: implementation, Training/
archs/swin3d_rcab3_arch.py; patch size, (3, 4, 4); window size, (2, 8, 8); 
MLP ratio, 2; number of STLs, 5; depths of STLs, (6, 6, 6, 6, 6); embed-
ding dimension, 192; attention head number, (8, 8, 8, 8, 8); batch size, 
10; image size, 128; number of input channels, 1; number of output 
channels, 4; data workers, 4; validation images, 70; training images, 
650; number of epochs, 100; learning rate, 0.0001; learning scheduler, 
reduced by 0.5 per 50 epochs.

Network analysis methods
To quantify structural changes in the ER, methods from network  
analysis are applied48,49. We represent the ER structure of tubules 
through an undirected and unweighted graph. All tubule junctions 
are represented by nodes, and tubules are represented by edges.

Networks are built in a Python routine, and their metrics are  
measured through the Python package graph-tool18 and NetworkX50. 
We measure the size of the network through the number of nodes  
N and edges E within the system. The number of edges attached to one 
node is called the node degree k, and the distribution of the degrees is 
one of the most fundamental parts of the analysis of network structures.

To quantify structural arrangements of the ER, we focus on primary 
network connectivity metrics. First, we measure the network density d 
between nodes and edges (equation (2)). Other metrics that describe 
network connectivity are the global clustering coefficient (equation (2))  
and network assortativity (equation (3)). The global clustering coef-
ficient describes the tendency of the network to build triangles  
by relating triplets to each other. Three nodes connected to each  
other through three edges are a ‘closed triplet’, while three nodes  
connected to each other through two edges are called an ‘open  
triplet’ (ref. 51). Network assortativity describes the likelihood of nodes 
connecting with nodes of similar properties, here specifically, as is 
common, a node degree. Assortative mixing is contrasted with disas-
sortative mixing where nodes tend to connect to others of dissimilar 
properties52. The assortativity coefficient r is described in equation 
(3), where eij is the fraction of edges linking a node with type i to nodes 
of type j, ai is the sum over eij for all j, and bi is the sum over eij for all i. 
An assortativity coefficient of r = 0 indicates no mixing preference, 
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whereas positive values indicate assortative tendencies and negative 
values indicate disassortative tendencies.

d = 2E
N(N − 1) (1)

Cl = number of closed triplets
number of all triplets (2)

r =
∑i eii −∑i aibi
1 −∑i aibi

(3)

Additionally, we include macroscopic network arrangements 
by counting the number of network components. Networks may be 
entirely connected or composed of many distinct components53. For 
networks evolving over time, network components outline merging 
or splitting behavior. In networks with many components, the most 
characteristic topological features are often exhibited in the largest 
component54.

Ground truth test of connectivity analysis
First, we generate a random network and use triangulation and tessel-
lation to obtain a fully connected network. Using cubic spine interpola-
tion (third panel), we generate a backbone that mimics a connected ER 
tubular network. This dataset can then be processed to mimic micro-
scopic imaging data through addition of noise and PSF blurring. The 
noise level is a parameter defined here as a scaling factor of the standard 
deviation of a Gaussian noise source, ranging from 0 to 20. The SNR 
values follow a more standardized definition given by the ratio of the 
mean of the signal and the standard deviation of the background. The 
SNR for random noise N is defined as

SNR = EEE[SSS2]
EEE[NNN2]

.

S is a random variable representing the signal. S2 is the signal 
power. If the noise has the expected value of zero, the denominator is 
its variance, the square of its standard deviation σN.

Data visualization
Videos of time-lapse imaging and analysis were performed using Fiji 
(NIH). Connectivity graphs in the figures were replotted by a Python mod-
ule named ‘connectivity graph.py’. Instructions for using this module  
are provided inside the file. Colors of the segmented ER domains, 
including tubules, sheets and SBTs, are displayed in grayscale format 
from ERnet, which can be changed based on the user’s preference.

Statistical analysis
Statistical significance between two values was determined using a 
two-tailed, unpaired Student’s t-test (GraphPad Prism 8.2.1). Statisti-
cal analysis of three or more values was performed by one-way ANOVA 
with Tukey’s post hoc test (GraphPad Prism). All data are presented 
as mean ± s.e.m.; *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.

Statistical parameters including the exact value of n, the mean, 
median, dispersion and precision measures (mean ± s.e.m.) and statis-
tical significance are reported in the figures and figure legends. Data 
were judged to be statistically significant when P < 0.05 by two-tailed 
Student’s t-test. In the figures, asterisks denote statistical significance 
as calculated by Student’s t-test (*P < 0.05, **P < 0.01, ***P < 0.001 and 
****P < 0.0001).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions in the paper are present in 
the Source data. All the datasets used to train and test the model are 
publicly accessible at the figshare repository: https://figshare.com/
articles/dataset/ERnet_datasets/21975878/1. Source data are provided 
with this paper.

Code availability
The ERnet model is written in Python. The software and Colab  
versions of ERnet are also freely available online through GitHub at  
https://github.com/charlesnchr/ERnet-v2.
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Extended Data Fig. 1 | A test of Weka trainable segmentation with different 
input data. Top left: An input image was used to train a classifier of Weka 
Trainable Segmentation. Top right: The tubules (cyan) and sheet (yellow) can be 
clearly classified after segmentation. Bottom left: a new image was applied to 

the trained classifier shown above. Bottom right: segmentation result of the new 
input data. This test was independently repeated five times with similar results. 
Scale bars: 5 μm.
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Extended Data Fig. 2 | ERnet graphical user interface. Left part of the interface shows the path of input and output images. Bottom left: options of the analysis 
provided by ERnet. Right part of the interface shows the input images (magenta) and segmented results.
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Extended Data Fig. 3 | Validation of 2D analysis of 3D ER structure. (a) 3D 
projection view of a U2OS cell expressing sec61-mCherry. The peripherical ER 
is mainly distributed as a flat, single layer while the perinuclear ER is more 3 
dimensional in character (see Supplementary Video 12). (b) 3D projection view of 
a COS-7 cell expressing mEmerald-Sec61b-C1. i: (left) 3D reconstruction of image 
sections. ii: projection of the volumetric view of corresponding the sections 
shown in (i). Peripherical ER features are flat and singly layered (Supplementary 

Video 13). In the perinuclear region, multiple layers of ER are visible. iii: each 
section from the 3D image stack shown in (i) is segmented individually by ERnet. 
iv: The resulting segmented frames are then combined into a 3D volume to show 
the network topology (Supplementary Video 14). Cyan regions (tubules) show 
flat, 2D regions with little 3D character. Perinuclear regions appear in yellow 
(sheets), where the topology is 3 dimensional in character.
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Extended Data Fig. 4 | Performance validation of ERnet as a function of 
signal-to noise-ratio prevailing in ER image data. (a) Pipeline to develop 
synthetic ground truth data to mimic ER structure as it would appear when 
imaged under the microscope including resolution loss through PSF blurring, 
and addition of image noise affecting the Signal to Noise ratio (SNR). A network 
was generated from points distributed randomly over a given field of view. 
Triangulation and tessellation were then used before cubic spine interpolation to 
obtain a network mimicking features of a fully connected tubular ER system. We 
added Gaussian noise and blurred images with a PSF kernel to produce ground 
truth data as obtained by our microscope setup. (b) Representative synthetic 
ER networks were generated at different noise levels. Ground truth images (left 
column) were processed, and Gaussian noise superimposed (middle column). 
Images were then analysed by ERnet to produce the skeleton map displaying the 
connectivity (right column), including nodes and edges. The output could then 

be directly compared with the results from ground truth data. (c) Degradation 
of network metrics as a function of decreasing image signal to noise ratio. The 
top panel compares the number of nodes obtained from the noisy data with that 
of the ground truth data (1 = fully matched, 0 = no match) as a function of noise 
level. The bottom panel shows how the number of three-way junctions (node 
of degree three) identified by ERnet decreases as noise increases. In the ground 
truth image (Noise level 0) ca 90% of all nodes constitute three-way junctions. For 
image signal to noise-ratios exceeding 5, ERnet reproduced the network topology 
to within 90% of the ground truth. N = 5 synthetic images per noise level. Data 
are presented as mean ± SEM. The algorithms and full instructions to generate 
synthetic ER networks mimicking microscopy data are available on GitHub 
and see Source Data Extended Data Fig. 4c. (https://github.com/charlesnchr/
ERnet-v2).
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Extended Data Fig. 5 | Validation of ERnet on publicly available datasets of 
ER images. ERnet recovers network topologies from ER recorded with different 
imaging techniques and cell types, including mammalian and plant cells. (a)–(g) 
Raw images (grayscale images, left hand side) and corresponding results from 
ERnet image segmentation (colour images, right hand side). Tubules (cyan), 
sheets (yellow), and sheet-based tubules, SBTs (magenta) are clearly recovered 
in all cases studied. (a-b) are from the dataset provided by Pain et al.13 and 
represent ER present in plant cells recorded with AiryScan confocal imaging; 

33 different images from this dataset were reanalysed by ERnet and compared 
with the results from AnalyzER; (c-f) are from the dataset provided by Qiao et al., 
2021 (COS-7 cells, recorded with SIM); 18 different images from this dataset were 
tested by ERnet; (g) is from the dataset provided by Qin et al., 2020 (COS-7 cells, 
recorded with SIM); 2 different images from this dataset were tested by ERnet; (h) 
ER morphology metrics for all structures identified by ERnet. See Source Data 
Extended Data Fig. 5.
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Extended Data Fig. 6 | Graphical explanation of graph theory concepts. (a) In 
this example of an assortative network, nodes show a preference of attaching to 
others that are similar. Here, nodes with the same degree tend to attach to each 
other (a node’s degree is represented by its colour and number in the node). (b) 
In this example of disassortative network, nodes show a preference of attaching 
to others that are not similar. Here, nodes with different degrees tend to attach 

to each other. (c) In this example, a network is shown characterised by a high 
clustering coefficient: here nodes tend to connect also to the neighbours of 
their neighbours, leading to the formation of network triangles. (d) Example of 
a network with a low clustering coefficient: nodes do not tend to connect to the 
neighbours of their neighbours. None, or only few, network triangles are formed 
as a result.
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Extended Data Fig. 7 | Quantitative comparison between the 2D and 3D 
analysis. (a) Top panel: 3D SIM image sections were overlayed to produce a 
flattened image of the ER; left: central section of the ER image stack; right: 
colour coded flattened ER structures. Bottom: comparison of ERnet results 
for both types of images reveal nearly identical connectivity, supporting 
the notion that a 2D analysis suffices to capture ER topology in the cell types 
studied. Red spots: nodes; green lines: edges. Lower bottom: comparison of 
the connectivity metrics. To do this, we obtained volumetric sections of ER 
structures with SIM and reconstructed the data in 3D. We then applied ERnet on 

flattened image stacks or individual 2D sections and compared the two results. 
For phenotyping the effect of drugs in cell lines such as COS-7 or U2OS, which are 
morphologically flat, the advantages in speed and applicability of a 2D method 
greatly outweigh the disadvantage of not capturing the occasionally occurring 
3-dimensional network features. N = 3 sectioning SIM images. Data are presented 
as mean ± SEM. See Source Data Extended Data Fig. 7a. (b) Same analysis to 
(a) performed on tubular domains only. N = 3 sectioning SIM images. Data are 
presented as mean ± SEM. See Source Data Extended Data Fig. 7b.
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Extended Data Fig. 8 | Western blot validation of Protrudin depletion. Validation of siRNA depletion of Protrudin by Western blot. Two independent experiments 
were repeated with similar results. See source data file for uncropped scans of blots.
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