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ABSTRACT: The first total synthesis of rhabdastrellic acid A, a highly cytotoxic isomalabaricane triterpenoid, has been 
accomplished in a linear sequence of 14 steps from commercial geranylacetone. The prominently strained 
trans-syn-trans-perhydrobenz[e]indene core characteristic of the isomalabaricanes is efficiently accessed in a selective 
manner for the first time through a rapid, complexity-generating sequence incorporating a reductive radical polyene 
cyclization, an unprecedented oxidative Rautenstrauch cycloisomerization, and umpolung 𝛼-substitution of a 
p-toluenesulfonylhydrazone with in situ reductive transposition. A late-stage cross-coupling in concert with a modular 
approach to polyunsaturated side chains renders this a general strategy for the synthesis of numerous family members 
of these synthetically challenging and hitherto inaccessible marine triterpenoids. 

 
The intricate molecular architectures of natural products have inspired and informed medicinal chemists for decades, 

and their vast span of biological activities has accelerated the discovery of novel chemotypes with applications in 
medicine. Accordingly, the total synthesis of complex natural products continues to be one of the most fruitful 
strategies for obtaining new molecular scaffolds for drug development, providing solutions to supply problems as well 
as opportunities for analogue synthesis and medicinal chemistry.1 We identified the eminently cytotoxic 
isomalabaricane triterpenoids as promising anticancer leads particularly well-suited for synthetic efforts (Figure 1a).2,3 
These apoptosis-inducing marine tricyclic triterpenoids have demonstrated low nanomolar cytotoxicity coupled with 
high specificity for certain cancer cell lines, along with a range of other antineoplastic effects including microtubule 
disassembly and disruption of DNA Damage Response mechanisms.2-4 Among several isomalabaricanes with 
promising antiproliferative activities, rhabdastrellic acid A (1) and stelletin B (4) stand out as potent apoptosis inducers 
in the nanomolar range within human colon, leukemia, glioblastoma and non-small cell lung cancer cell lines, 
interfering with PI3K/Akt/mTOR growth factor signaling and inducing G1 arrest and autophagic cell death.2,4c–d, 4f–g 
Stelletin B has demonstrated remarkable selectivity for cancer cells over normal healthy tissue. An unusual 
glycosylated isomalabaricane, stelliferin riboside (5), was quite toxic to the L5178Y mouse lymphoma cell line, with 
an IC50 value of 0.22 nM.2,3b  

Despite these exciting preliminary reports of potent antitumor activity, the isomalabaricane scaffold remains largely 
unexplored as a potential anticancer lead.2a,2c To date no complete biochemical mechanism of action has been 
proposed, no specific molecular targets have been identified, no pharmacophore has been elucidated for this molecular 
framework, and further biological studies have been hampered by the extreme scarcity of these compounds. The need 
for foundational biochemical investigations, bolstered by the possibility for analogue synthesis and drug development, 
lends a distinct urgency to the creation of an efficient, scalable, and highly general synthetic strategy to synthesize the 
isomalabaricane triterpenoids. 

Nonetheless, the isomalabaricanes have resisted the efforts of synthetic chemists, and have stood unconquered in the 
37 years since their first isolation.5 The extreme difficulty in preparing the trans-syn-trans-perhydrobenz[e]indene 
tricyclic core can be readily seen through simple conformational analysis, demanding both A- and B-rings be held 
rigidly in their high-energy twist-boat conformations. This formidable strain energy and unorthodox conformation 
stymies many of the traditional techniques for constructing polycyclic terpene systems, and helps to rationalize the 
complete void in the literature for any successful total syntheses of trans-syn-trans-perhydrobenz[e]indene natural 
products. With a keen interest in furthering the biological evaluation of the isomalabaricanes, we set out to provide a 
general, modular, and scalable solution to this tenacious problem in terpene synthesis. Herein we report the successful 
implementation of a catalytic enyne cycloisomerization with subsequent retro-ene transpositive reduction to gain 
access to the trans-syn-trans-perhydrobenz[e]indene core of the isomalabaricane triterpenoids in only eight steps from 
commercial geranylacetone, as well as the completion of the first total synthesis of rhabdastrellic acid A (1). 

In the early stages of strategic design, we endeavored to develop a general blueprint for isomalabaricane triterpenoid 
synthesis that was amenable to diversification and analogue generation (Figure 1b). To provide modular access to the 
numerous isomalabaricanes that differ only in the structure of their pendant side chain, we planned for a late-stage 
Stille cross-coupling of linear tributylvinylstannanes with an exocyclic vinyl electrophile on the tricyclic core. This 
coupling partner could be synthesized through careful functional group and redox manipulations on the C-ring 
cyclopentanone after the key stereochemistry had been established at the BC-ring junction. The highly strained boat 
conformation in the B-ring severely circumscribes the methods available for its construction. To avert the considerable 



 2 

challenges associated with the creation of such strained polycyclic systems via biomimetic cationic cyclization, which 
have been well documented,6,7 we opted instead for a stepwise process involving a cyclopentannulation of a much 
simpler bicyclic framework. In order to set the all-carbon quaternary center at C-8 with a large concomitant increase in 
ring strain, we envisioned the use of a stereospecific, gold-catalyzed Rautenstrauch cycloisomerization of enyne 7, 
which has been hypothesized to proceed through a helical transition state with complete transfer of chirality from the 
propargylic pivalate ester.8 This motif would be affixed to elementary trans-decalin 8, reminiscent of the venerable 
Wieland–Miescher ketone,10 which we speculated could be more rapidly and efficiently synthesized from simple and 
readily available precursors through a polyene cyclization.  

 

Figure 1. a) Selected isomalabaricane triterpenoids. b) Key retrosynthetic disconnections. 

The synthesis begins with two chemoselective modifications of a basic linear terpene to activate it for cyclization 
(Figure 2a). Commencing with the commercially available terpene geranylacetone (9), epoxynitrile 10 was synthesized 
on a decagram scale by a modified Van Leusen reductive cyanation10 of the ketone with 
p-toluenesulfonylmethylisocyanide, followed by selective epoxidation of the terminal olefin with N-bromosuccinimide 
in water under standard conditions.11 With all requisite carbons and reactive handles now in place, construction of the 
bicyclic ketone 8 was accomplished with an efficient Ti(III)-mediated reductive radical polyene cyclization12 and 
subsequent silylation of the resulting C-3 alcohol, generating an inconsequential 5:1 mixture of diastereomers on the 
C-8 methyl group. We find it worth noting that protected decalones of type 8, widely-used synthetic intermediates 
traditionally accessed in nine steps via Robinson annulation of 1,3-cyclohexanedione,13 can be easily prepared on 
decagram scale using this method in only four steps and >50% overall yield. One-carbon homologation of the ketone 
to 𝛼,β–unsaturated aldehyde 11 was achieved on decagram scale in 80% yield through alkylation with 
dichloromethyllithium and Lewis-acid promoted elimination of the intermediate 𝛼–chloro aldehyde following a 
modified protocol from Nozaki and Yamamoto.14 Due to the inherent allylic strain within the trans-decalin framework 
and in accordance with previous studies in analogous bicyclic systems,15 we found that competing olefin isomerization 
to the thermodynamically preferred deconjugated aldehyde was unavoidable under the conditions necessary to effect 
dehydrohalogenation. However, this byproduct was minor, and could readily be converted to the desired conjugated 
aldehyde 11 through kinetic 𝛾–protonation of its tert-butyl metallodienamine in quantitative yield, and thus all 
aldehydic material could be progressed beyond this stage. Finally, a highly diastereoselective addition of freshly 
prepared lithium acetylide with in situ pivalate protection completed the synthesis of key cycloisomerization precursor 
7 in 90% yield. Gratifyingly, in one pass this six-step sequence could produce more than five grams of enyne 7 as a 
single diastereomer, and provided rapid entry into our cyclization studies aimed towards the construction of the C-ring. 
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Using conditions first reported by Toste,8 we were delighted to find that the envisaged Rautenstrauch rearrangement 
proceeded in high efficiency under cationic gold(I) catalysis to construct tricyclic enone 6 as a single diastereomer, the 
configuration of which was confirmed by single crystal X-ray analysis. The transformation proved to be robust and 
practical, and could be carried out on multi-gram scale under open-flask conditions. Only 2.5 mol% of the catalyst was 
needed to achieve full conversion within several hours. Furthermore, the active catalyst, Ph3PAuOTf, could be formed 
in situ from commercial components through salt metathesis of Ph3PAuCl and AgOTf. A protic additive was found to 
be essential for hydrolysis of the intermediate enol ester.16 Finally, it is worthy of note that, to the best of our 
knowledge, this is the first example of the construction of a quaternary stereocenter using a gold-catalyzed 
Rautenstrauch cycloisomerization. 

The kinetic and thermodynamic obstacles to reduce this enone from the desired face were substantial, requiring 
hydrogen delivery at the bisneopentylic site of a trisubstituted, electronically-deactivated olefin from the concave face 
to set the final stereocenter of the trans-syn-trans core, increasing its strain even further. After extensive 
experimentation, we found that the proper stereochemistry could only be established through a reductive transposition 
of the corresponding 𝛼,β–unsaturated p-toluenesulfonylhydrazone with catecholborane, using the Kabalka 
modification of the Caglioti reaction.17 In order to provide a functional handle with which to bring in the side chain 
after reduction, we explored the effect of 𝛼–substitution on the transposition process and found simple alkyl and silyl 
ethers to be optimal for an efficient and selective sequence. 

To streamline this process, we developed a series of tandem reactions to achieve annulation and reduction in a rapid 
and economical fashion. We hypothesized that omission of the protic additive during cycloisomerization might render 
the intermediate enol pivaloate susceptible to electrophilic attack to generate 𝛼–functionalized cyclopentenones. With 
no synthetically useful electrophilic alkoxylating agents available to produce the requisite alkyl ether, we strove to 
construct this motif through an umpolung 𝛼–substitution of an appropriate p-toluenesulfonylhydrazone during the 
reductive transposition. Thus, simultaneous treatment of enyne 9 with the Au(I) catalyst and N-chlorosuccinimide 
delivered 𝛼–chloro ketone 12 in 70% yield and as a single diastereomer. To our knowledge, this is the first example of 
an intercepted Rautenstrauch cycloisomerization with intermolecular electrophilic functionalization. The 𝛼–chloro 
enone 12 was found to be an ideal substrate for a convenient one-pot protocol incorporating lanthanum(III) triflate-
catalyzed hydrazone formation with subsequent exposure to potassium carbonate in methanol, promoting conjugate 
addition of the solvent into a transiently generated azoalkene, followed by reductive transposition under the standard 
conditions. This unconventional complexity-building annulation sequence from 7 to 13 rapidly constructs the C-ring, 
forges three contiguous stereocenters including both challenging bridgehead positions entrenched within the completed 
trans-syn-trans-perhydrobenz[e]indene tricyclic nucleus, and establishes an appropriate allylic electrophile for 
subsequent elaboration in only two steps. 

With the nature of this electrophile restricted by the demands of the reductive transposition, we required a suitable 
method to activate the relatively unreactive methyl ether 13 for allylic substitution. After a brief exploration of 
transition-metal umpolung processes, we found that the desired transformation could be achieved through reductive 
zirconation and trapping with acetyl chloride under copper catalysis.18 Although this somewhat rare transformation is 
reported in the literature to work quite poorly with 5-membered cyclic allylzirconocene species, we were able to obtain 
the desired deconjugated enone 14 in 70% yield after sufficient optimization.18c Relay hydroboration of this olefin from 
the ketone, followed by in situ deprotection of the silyl group with triflic acid and two-fold global oxidation furnished 
triketone 15 as a single constitutional isomer, the structure of which was confirmed by single crystal X-ray diffraction 
analysis. 

With rapid access to the fully oxidized tricyclic core of the isomalabaricanes in hand, the stage was set for the 
synthesis of the polyene side chains and the final cross-coupling. We identified 3-picoline (16) as an ideal starting 
material for a divergent synthesis of numerous side chain coupling partners through Zincke reaction and 1,6-addition-
elimination of tributylstannyl lithium, a sequence first disclosed by Vanderwal.19 Stannanedienal 17 should serve as a 
common intermediate to a variety of side chain coupling partners through olefination or allylation chemistries. To this 
end, the tetraenylstannane methyl ester 19, a precursor of rhabdastrellic acid A (1) and stelletin E (2), was prepared in 
69% yield through Horner–Wadsworth–Emmons olefination with known phosphonate ester 18.20 As we initiated 
studies into the formation of a suitable vinyl electrophile for cross-coupling, we found that, consistent with the 
preceding synthetic operations for these molecules, the triketone 15 exhibited a strong bias against the selectivity we 
required. Chemoselective functionalization of unsymmetrical 1,3-diketones seems to be a largely unaddressed problem 
in organic synthesis. Triflation under a wide variety of conditions delivered only the undesired endocyclic 
constitutional isomer. Gratifyingly, bromination with the Vilsmeier reagent proved uniquely capable of delivering the 
requisite vinyl bromide as a single constitutional and geometrical isomer.21  
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Figure 2. a) The total synthesis of rhabdastrellic acid A (1). Reagents and conditions: 1. 9, TosMIC, t-BuOK, Et2O, EtOH, 
0 °C to 25 °C, 94%; 2. NBS, THF/H2O 2:1, 0 °C; then K2CO3, MeOH, 25 °C, 85%; 3. Cp2TiCl2, Zn, THF, 25 °C; then 
NaH2PO4, 70%; 4. TIPSOTf, 2,6-lutidine, DCM, 0 °C to 25 °C, 95%; 5. LDA, DCM, THF, –100 °C to 60 °C; then LiClO4, 
CaCO3, DMPU, 80% (2:1 r.r.); 6. n-BuLi, C2H2, THF, –78 °C to –40 °C; then PivCl, 25 °C, 95%; 7. NCS, Au(PPh3)Cl 
(2.5 mol%), AgOTf (2.5 mol%), DCM, 25 °C, 65%; 8. TsNHNH2, La(OTf)3 (15 mol%), MeOH, 60 °C; then K2CO3, 25 °C; 
then CatBH, CsOAc, CHCl3, 0 °C to 65 °C, 60%; 9. Cp2ZrCl2, n-BuLi, THF, 0 °C to 25 °C; then CuOAc (20 mol%), AcCl, 
55 °C, 70%; 10-11. BH3•DMS, THF, –78 °C to 25 °C; then TfOH, 0 °C to 25 °C; then IBX, EtOAc, reflux, 85%; 12-13. 
(COBr)2, DMF, DCM, 0 °C to 25 °C; then Pd2(dba)3 (10 mol%), Ph3As (30 mol%), 19, NMP, 70 °C, 45%; 14. LiOH, 
THF/H2O/MeOH 2:2:1, 50 °C, 95%. b) Synthesis of coupling partner 19. Reagents and conditions: LHMDS, 18, THF,  
–10 °C; then HMPA, –60 °C; then 17, –78 °C to 25 °C, 69%. 

 
Stille coupling of this vinyl bromide with tetraenylstannane 19 under "soft" palladium conditions reported by De 

Lera22 assembled the methyl ester of rhabdastrellic acid A (20) in 45% overall yield from triketone 15, in an 8:1 ratio 
with the isomeric methyl ester of stelletin E. The isomalabaricanes have been widely reported to undergo facile C-13–
C-14 olefin isomerization upon irradiation with visible light;2,3 however, this mixture of isomers was consistently 
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observed even with rigorous exclusion of ambient illumination. Saponification of this ester with lithium hydroxide 
quantitatively delivered rhabdastrellic acid A (1) with stelletin E (2) in a 2:1 ratio, both spectroscopically identical to 
the naturally obtained materials.3d,3g Olefin isomerization under our current cross-coupling and hydrolysis conditions 
remains a limitation in this synthesis, and efforts to address these challenges are underway. 

The synthesis of rhabdastrellic acid A (1) was accomplished in 14 steps with an average yield of 82% per step, 
representing the first total synthesis of an isomalabaricane triterpenoid as well as the only reported highly selective 
chemical approach for the synthesis of their remarkably strained trans-syn-trans-perhydrobenz[e]indene core.23 
Highlights of this strategy include the implementation of a rapid and scalable sequence to access synthetically useful 
Wieland–Miescher ketone derivatives, as well as development of a tandem oxidative cycloisomerization and reductive 
transposition with umpolung 𝛼–substitution sequence that dramatically improves step economy. This work adheres 
closely to recently articulated guidelines for efficiency and ideality in total synthesis,24 and all synthetic operations 
engage in requisite C–C bond formation or productive redox alteration, with the exception of a single protecting group 
manipulation. We believe this unconventional approach to the tricyclic core in concert with the generalizable Zincke 
aldehyde route for polyenylstannanes will serve as a universal strategy for the synthesis of isomalabaricane 
triterpenoids, providing material for comprehensive biological mode-of-action studies that has hitherto been near-
inaccessible. 
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