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ABSTRACT: Identifying the spatial distributions of biomolecules in tissue is crucial for understanding integrated function. Imaging 
Mass Spectrometry (IMS) allows simultaneous mapping of thousands of biosyn-
thetic products such as lipids but has needed a means of identifying specific cell-
types or functional states to correlate with molecular localization. We report here 
advances starting from identity marking with a genetically encoded fluorophore. 
The fluorescence emission data were integrated with IMS data through multi-
modal image processing with advanced registration techniques and data-driven 
image fusion. In an unbiased analysis of spleens, this integrated technology ena-
bled identification of ether lipid species preferentially enriched in germinal cen-
ters. We propose that this use of genetic marking for microanatomical regions of 
interest can be paired with molecular information from IMS for any tissue, cell-
type, or activity state for which fluorescence is driven by a gene-tracking allele 
and ultimately with outputs of other means of spatial mapping. 

Simultaneously mapping the spatial localizations of biomol-
ecules enables the formulation of new hypotheses and can test 
models related to physiology, disease pathogenesis and clinical 
applications. Although a variety of technologies exist for spatial 
localization of metabolites, these technologies face barriers in 
providing full biological context to findings because biosynthe-
sis and steady-state levels of molecular determinants of cell me-
tabolism and function may be regulated post-translationally. 
Thus, complementary imaging modalities are required for cor-
relation of molecular images with biologically relevant sub-
structures. Matrix-assisted laser desorption/ionization 
(MALDI) imaging mass spectrometry (IMS) enables the map-
ping of thousands of unlabeled molecules, including lipids and 
other metabolic products, directly from tissue sections at high 
spatial resolution1. The challenge of correlating ion localization 
to unambiguous identification of microanatomical regions of 
interest (ROIs) is a computational and experimental challenge.  

Microscopy images collected from stained tissue (e.g. stain-
ing of tissues by hematoxylin and eosin (H&E) or 

Immunofluorescence (IF)) 2–4 are generally used to provide bi-
ological context to IMS data. However, the use of serial sec-
tions, the standard method of providing this biological context, 
limits the discriminant power of scoring cell identity or func-
tional status (e.g., activity of a particular gene) for small regions 
of interest. Moreover, differences in spatial resolution can make 
correlating IMS and microscopy images challenging. Routine 
spatial resolution of most IMS experiments is 10-30 µm but can 
attain 5 µm resolution using specialized instruments5,6. These 
considerations highlight the need for a multimodal workflow in 
which biological features can be identified at a microanatomic 
scale in IMS analyses7.  The spatial colocalization of a trans-
genic fluorophore with IMS data provides enhanced biological 
specificity and advanced data-mining strategies to uncover mo-
lecular correlations with ROIs.    

Every multimodal analysis has three central processes: regis-
tration (alignment of images in 2-D space8 ), data mining (pars-
ing through data for relevant m/z values9), and molecular iden-
tification (elucidation through MS/MS10). Traditionally, 



 

multimodal imaging has relied on manual interpretation of co-
registered ion images11, which is prone to human bias. Other 
supervised and unsupervised approaches have been used to im-
prove data analysis12–18. Each of these approaches still requires 
an independent benchmark to define cells or structures. Herein 
we provide evidence of a new approach that enabled the identi-
fication of ROIs on the same tissue section using a cell-type 
specific transgenic fluorophore to provide a biologically speci-
ficity and the basis for fluorophore-directed data mining.  

To develop this technology, we analyzed the spleens of unim-
munized and immunized mice using a well-characterized track-
ing allele that encodes green fluorescent protein (GFP) to ena-
ble high accuracy image registration and provide biological 
context19. Data mining strategies such as manual interpreta-
tion9,11, standard segmentation20, and data-driven image fusion21 
were subsequently applied to determine whether lipids could be 
mapped to a feature of normal microanatomy in immune re-
sponses. The analyses show that data-driven image fusion al-
lowed for the most robust mining of multimodal data by lever-
aging the correlation of Fem and IMS to identify previously un-
known spatial molecular relationships.  

MATERIALS AND METHODS 
Materials. 

MALDI matrix 1,5-diaminonapthalene (DAN) was pur-
chased from Sigma-Aldrich Chemical Co. (St. Louis, MO, 
USA). Sheep red blood cells (SRBC), ammonium formate, car-
boxymethyl cellulose sodium salt, isopropyl alcohol, mass 
spectrometry grade water, chloroform, and acetonitrile were 
purchased from Fisher Scientific (Pittsburg, PA, USA); strep-
tavidin-Alexa647 antibody (Ab) and chemically conjugated 
monoclonal Ab (GL7-FITC, αIgD-PE and αCD35-biotin) were 
purchased from BD Biosciences (San Jose, CA). C57BL/6-J 
mice and breeding stock transgenic for a bacterial artificial 
chromosome that integrates a translational fusion of GFP with 
AID into the Aicda locus (AID-GFP mice; stock# 018421) were 
obtained from Jackson Laboratory and bred with C57BL/6-J. 
All mice were housed in ventilated micro-isolators under Spec-
ified-Pathogen-Free conditions in a Vanderbilt mouse facility 
and used in accordance with protocols approved by the Institu-
tional Animal Care & Use Committee. 

Tissue Preparation. 
AID-GFP (n=3) and C57BL/6-J (n=3) mice age six to seven 

weeks were immunized with sheep red blood cells to compare 
with non-immunized controls (C57BL6-J, n=3) and euthanized 
eight days post-immunization. Spleens were sectioned at 12 μm 
and three serial sections were used for H&E, IF, and IMS with 
Fem /AF on all sections prior to a secondary modality (Fig. 1). 

Mass Spectrometry Imaging. 
IMS sections were washed with ammonium formate and 

sprayed on a (TM Sprayer, HTX, Chapel Hill, NC, USA) with 
recrystallized 10 mg/ mL 1,5 DAN in 9:1 (v/v) acetonitrile/de-
ionized water. Negative ion mode IMS data were acquired from 
m/z 200-2,000 with a raster step of 30 μm with a 9.4T Bruker 
FT-ICR Solarix mass spectrometer (Bruker Daltonics, Billerica, 
MA, USA) with a laser power optimized for each sample be-
tween 18%-20% with 500 laser shots per pixel. Smart walk of 
25 μm was enabled to increase sensitivity. For image fusion 
analysis, a higher spatial resolution image was generated using 
the same 9.4T FT-ICR with similar settings except that the ras-
ter step was 15 μm without smart walk enabled, and 750 laser 

shots per pixel were generated at a laser power of 13%. All da-
tasets are available at: 
https://figshare.com/s/ab2f73880453100e0c2c. 

 

Figure 1. Workflow for multimodal analysis and data extraction. 
Shown are a schematic (a) and representative data (b-f) to illus-
trate the initial IMS analyses. a) Mice of the indicated genotypes 
(bearing or lacking an Aicda BAC transgene engineered to ex-
press AID-GFP translational fusion protein) and immunization 
status were used starting at 6-7 weeks of age. b-d) Spleens har-
vested 8 d post-immunization were used to generate triads of se-
rial tissue sections (12 μm thickness) (b), followed by fluores-
cence emission (Fem ) and other imaging modalities (c). After pro-
cessing, immunofluorescence (IF), IMS, and hematoxylin and eo-
sin staining (H&E) were each performed with one of the three 
sections (d). (e) Fem data from sections 1-3, as indicated, are 
shown adjacent to the IF, one m/z from negative ion mode IMS, 
and H&E images from the same section as the Fem . Intra- and in-
tersection registrations were then performed using a published 
method in which IMS data are aligned with the post IMS laser ab-
lation marks, and all other modalities were aligned to IMS data 
through Fem on each section9 . f) Manual interpretation, segmenta-
tion, and data-driven image fusion were performed with publicly 
available software to map ions of interest, as detailed in the Meth-
ods.  

Image Registration. 
Image registration techniques were performed according to 

previously published methods19 , however, rather than using AF 
images for registration we used Fem / AF images. 

IMS Data Analysis. 

https://figshare.com/s/ab2f73880453100e0c2c
https://figshare.com/s/ab2f73880453100e0c2c
https://figshare.com/s/ab2f73880453100e0c2c


 

All data was RMS normalized and further analyses were per-
formed: manual interpretation analyses were performed in 
SCiLS, spatially shrunken centroid segmentation analysis was 
performed in R with the package Cardinal. Image fusion anal-
yses were performed according to previously published meth-
ods21, but utilizing the partial least squares regression correla-
tion to compare image pairs of IMS and Fem data. Localization 
to germinal centers was determined using QuPath software for 
annotation and an R script for data extraction. Weighted aver-
ages were tested for significance with ratio T tests. 

Identification of lipid Species 
LC-MS/MS of total splenocytes was performed on a Q Exac-

tive HF mass spectrometer from m/z 375-1650 in PRM mode 
with an isolation window of 2 Da for each ion of interest using 
eluates from a Vanquish UHPLC (Thermo Scientific, Waltham, 
MA, USA). MS/MS resolving power was 15,000 at m/z 200, 
while full scan resolving power was at m/z 200 was 30,000. 
Complementary analyses were performed using MS/MS based 
imaging experiments using a 15T Bruker FT-ICR solariX mass 
spectrometer (Bruker Daltonics, Billerica, MA, USA). Data 
was collected in negative ion mode from m/z 250-2,000 with 
1,000 laser shots per pixel and a raster step was set to 60-120 
μm. Ions were isolated with a 2-6 Da mass window and frag-
mented using collision induced dissociation (CID) with a colli-
sion energy of 17-27 V. 

RESULTS AND DISSCUSSION 
Overview. We used multiple microscopy-based imaging mo-

dalities (H&E, IF, and Fem) registered to IMS measurements to 
elucidate the lipidomic differences between GC and splenic 
white pulp or lymphoid follicles (Fig. 1). Specifically, the AID-
GFP (Activation-Induced Deaminase-Green Fluorescent Pro-
tein) transgene provided a region-specific fluorophore22. This 
tracking allele highlights a micro-anatomical feature that forms 
within lymphoid follicles during the course of humoral immun-
ity due to a large increase in Aicda gene expression in GC B 
lymphocytes, which diversifies and improves qualities of anti-
body responses 22. Fem provided a non-destructive means of 
identifying GC via co-localization with AID-GFP, while AF 
from endogenous molecules provided histological images of 
other splenic tissue structures (e.g., red pulp and white pulp sur-
rounding GC). This Fem/AF modality also provided a single im-
age type that could be collected from every tissue section prior 
to other modalities (i.e. H&E stained microscopy, IF micros-
copy, and IMS) (Fig. 1 b-d), enabling high accuracy image reg-
istration (Fig. 1e). In H&E stains, the most traditional means of 
providing biological context to IMS data, red pulp can be dif-
ferentiated from white pulp but GC are less conclusively differ-
entiated, IF microscopy allowed for the identification of GC and 
their s (LZs) and dark zones (DZs) substructures. Because AID 
expression is similar in LZ and DZ, both H&E and IF after im-
munostaining were performed on serial sections. As this results 
in plane-of-section differences from sections used for IMS, ad-
vanced registration approaches were needed. By integrating 
these modalities into a single multi-planar dataset, we enabled 
a full integration of imaging modalities to provide a unique 
combination of molecular coverage, spatial resolution, and bio-
logical specificity.  

Registration. We first tested whether this method allowed 
incorporation of Fem as an additional modality within each sec-
tion to enable a high degree of spatially localized biological in-
formation. Sections were analyzed for GCs in spleens of mice, 
immunized or not, and bearing or lacking an AID-GFP 

transgenic fluorophore. The same tissue sections were then used 
for IMS, while serial sections were used for IF and H&E. This 
method was applied to an investigation of the differences be-
tween lipids associated with GCs and other regions in spleens 
using non-destructive Fem as a mono-modal registration me-
dium19 (Fig. 1e). Spleens of non-immunized controls were com-
pared to those of immunized mice bearing or lacking the AID-
GFP transgene (Fig. 1a). IMS was then used to identify m/z fea-
tures after collection of Fem images of the AID-GFP fluoro-
phore. 

  

Figure 2. High accuracy registration of multimodal data. a) Rep-
resentative registered images highlighting the types of detection. 
Rectangular areas of immunized AID-GFP transgenic  (AID-GFP 
Imm) mouse spleen are shown with each section, from left to 
right: Hematoxylin and eosin (H&E); fluorescence emission/auto-
fluroescence (Fem /AF); immunofluorescence (IF) after staining 
with mAb; IMS with three ions [m/z 752.5591, m/z 791.5410, 
and m/z 810.5269] overlaid for context of white pulp and red 
pulp; and a single ion image showing m/z 752.5591 (IMS752 ). In-
tensity scales from least to greatest total ion intensity and color 
legends are displayed below each set of images. A 1000 µm scale 
bar is depicted in the H&E image. Fem was taken on the same sec-
tion imaged by IMS. IF and H&E were then taken from serial sec-
tions to the IMS section. IF was used to identify micro-anatomic 
portions of lymphoid follicles, and included both indirect and di-
rect staining of GL7, IgD, and CD35. b) Higher magnification im-
ages of a single representative GC (designated by a white box in 
1a) are shown with the same sample order and modalities. GC LZ 
and DZ are demarcated by a yellow and blue outline respectively. 
c) The bar graph shows the ratio of ion intensities in GC to non-
GC regions for the m/z features of 776.5596 and 752.5591 [iden-
tified by IMS MS/MS in Fig. 4 as PE (O-18:0 22:6) and PE (O-
18:0 20:4), respectively] (p= 0.0409, p=0.0099, n=3). d) The geo-
metric mean of the ratio of LZ/DZ ion intensity of two lipids is 



 

1.6 and 1.5 for PE (O-18:0 20:4) and PE (O-18:0 22:6) (p=0.007, 
n=65, p=<0.0001, n=65). Replicates and magnified regions for 
WT Imm and WT Non-Imm samples can be found in the Fig. S2. 

In addition to identification of GC within the section destined 
for IMS through Fem, we investigated lipid difference in sub-
regions of the GC. Accordingly, the workflow incorporated IF 
staining of adjacent sections with antibodies specific for mark-
ers that not only would identify GC by independent criteria 
(IgDneg GL7+) but also would allow subdivision of the GC into 
functionally distinct domains termed the dark (DZ, CD35neg) 

and light (LZ, CD35+) zones. To compare the conventional use 
of serial sections to intra-section registration, we quantitated the 
error in overlap between adjacent sections.  GC masks anno-
tated for all AID-GFP mouse spleen serial section pairs (n =5) 
were used to calculate a Dice-Sorenson coefficient (DSC), a sta-
tistical means of determining the similarity of two samples that 
were registered as described by Patterson et al19. The average 
DSC was 0.81 (±0.3) for the five pairs, indicating that serial 
sections as registered can be expected to have 81% GC overlap 
(Fig. S1, Table S1). 

Table 1. GC Lipids revealed through all data mining strategies. From left to right the m/z value, identification of the lipid found 
the MS/MS imaging, matches to the LIPIDMAPS database, p value for a t-test between GC and non-GC regions, p value for a ratio 
paired t-test between LZ and DZ, ppm error in identification, manual interpretation discovery, segmentation discovery, or data-driven 
image fusion discovery.  

m/z Lipid ID  DB Matches P value GC 
vs. non-GC 

P value 
LZ vs. DZ 

ppm 
error* 

Man. 
Int. Seg. Image Fu-

sion 

671.4647 PA(18:1_16:1) 6 0.09 0.0007 0.070     222.1 

699.4957 PA(18:1_18:1) 6 0.03 0.0002 0.36     277.2 

699.4957 PA(18:0_18:2) 7 0.03 0.0002 0.36     277.2 

699.4957 PA(20:2_16:0) 7 0.03 0.0002 0.36     277.2 

714.5069 PE(18:2 16:0) 4 0.04 0.2 0.053     102.5 

716.5224 PE(18:0_16:1) 3 0.1 0.9 0.059     243.8 

725.5120 PA(20:3_18:0) 8 0.007 0.02 0.53     63.2 

740.5246 PE(18:1_18:2) 4 0.01 0.01 2.9     112.8 

742.5389 PE(18:0_18:2) 5 0.04 0.0006 1.0     290.5 

746.5130 PE(P-16:0_22:6) 6 0.005 <0.0001 1.5     280.0 

748.5273 PE(O-16:0_22:6) 6 0.007 0.2 0.37     236.6 

752.5591 PE(O-18:0_20:4) 5 0.01 <0.0001 0.32 X X 219.0 

762.5088 PE(16:0_22:6) 4 0.03 0.2 2.6     167.0 

772.5314 PE(P-18:1_22:6) 5 0.03 0.01 5.0     163.3 

776.5596 PE(O-18:0_22:6) 5 0.05 <0.0001 0.88 X X 244.7 

786.5303 PS(18:0_18:2) 8 0.02 0.0004 2.9     279.4 

812.5460 PS(18:0_20:3) 2 0.03 0.3 3.0     37.1 

857.5182 PI(16:0_20:4) 16 0.009 0.002 0.82     400.6 

883.5360 PI(18:1_20:4) 6 0.003 0.1 3.3   X 565.8 

887.5609 PI(18:0_20:3) 14 0.0006 0.07 3.9   X 252.9 

* Note that ppm error was determined from a tune mix doped IMS experiment. 

 Data Mining. Overall, 1,375 m/z features were detected at a 
S/N > 3 by IMS, including a variety of lipids with diverse pat-
terns of localization to substructures of spleen that included red 
and white pulp.  In addition to these constitutive features of 
splenic micro-anatomy, GC form in the white pulp after lym-
phocyte activation by immunization generates T cell help. Mice 
were immunized to increase size, differentiation, and numbers 
of GC which were observed in all imaging modalities when 
comparing immunized to non-immunized controls (Fig. 2a, Fig. 
S2). In Fem images, a difference in GC localized GFP expression 
can be seen between samples with and without AID-GFP (Fig. 

2a, Fig. S2). AF detected in the DAPI and TRITC channels en-
hanced the identification GC in the FITC channel by distin-
guishing GC from other portions of the white pulp highlighted 
by the AF.   

The IMS data were first analyzed using manual interpretation 
(Fig. 1f). Two ions of interest were selected by virtue of their  
association with in-section AID-GFP, m/z 752.5591 and m/z 
776.5596 (Fig. 2a). A ratio paired T-test applied to the ion in-
tensity was performed to determine significance of correlation 
and anti-correlation throughout this work. Specifically, GCs 



 

were compared to non-GC regions. Because, AID-GFP does not 
distinguish the GC sub-regions23, IF of adjacent sections was 
employed to identify the LZ and DZ.  

Data were further analyzed for significant differences in GC 
LZs and DZs 24 as identified in Fem and IF microscopy images. 
To obtain ion intensity for statistical analysis, we used QuPath 
and a home-built R program to extract ion intensity values for 
all GC and non-GC regions identified through Fem. Sub-regions 
of GC, LZ and DZ identified through IF were annotated in 
QuPath25, and compared. Pairs of GC LZs and DZs were iden-
tified based on shortest Euclidian distance (Fig. S3).   

Ions discovered through manual interpretation, m/z 752.5591 
and m/z 776.5596, were mapped to the GC (~8-fold and ~5-fold 
enrichment; Fig. 2 b, c), and each of these lipid species was fur-
ther enriched in the LZ compared to the DZ (~1.6-fold and ~1.5-
fold enrichment within the GC; Fig. 2b, d).  

Spatially shrunken centroids segmentation which circum-
vents the potential for cognitive bias introduced through manual 
interpretation by computationally determining ROIs 20 (Fig. 1f). 
This approach generated a list of four ions that localize to GC,  
m/z 752.5591, 776.5596, 883.5360, and 887.5609 (m/z 
883.5360 p=0.0025, n=3; m/z 887.5609 p=0.0087, n=3) 
20,26(Table S2).  Of these, the first two (m/z 752.5591 and 
776.5596) matched the ions discovered by manual interpreta-
tion, and all localized to GCs but not all localized to LZ or DZ 
(m/z 883.5360, p=0.12, n =108 and m/z 887.5609, p=0.070, 
n=106) (Fig. 2; Fig. S6 q-r; Table 1). 

Although segmentation enabled the identification of four ions 
of interest localizing to GCs (Fig. 2a; Table 1), this approach is 
well suited only for determining ions that directly correlate to a 
specific tissue sub-region. Data-driven image fusion connects 
the spatial and informational content of two imaging modalities 
by constructing a cross-modality model using highly multivari-
ate linear regression to enable predictive and data mining appli-
cations (Fig. S4, Fig. S5)21. In previous work, data-driven image 
fusion has been used for image enhancement such as spatial 
sharpening, out-of-sample prediction, and image denoising.21  

We hypothesized that by fusing IMS images with those of 
Fem, the linear models produced through fusion processes could 
uncover new correlative relationships enabling fluorophore-di-
rected data mining. Accordingly, we tested the use of data-
driven image fusion to provide a deeper understanding of all 
correlative relationships between IMS and Fem data in GCs. 

From the fusion of a high resolution (15 µm) IMS image and 
Fem, 16 GC-specific ions were revealed (Table 1), of which four 
were those highlighted by segmentation-based analyses (Fig. 
2a, c). Integration of the image fusion algorithm into the work-
flow allowed identification of a far greater number of candi-
dates for GC-associated ions along with species that were anti-
correlated (e.g. m/z 687.5447 and m/z 788.5442, Fig.3; Fig. S5; 
Table S3).  

GC areas annotated in Fem images served as a means for iden-
tifying GC (p=0.0099, n=3, slope= 219.0 for green channel) and 
non-GC regions for statistical analysis (p=0.04, n=3, slope= -
57.5 for green channel and p=0.04, n=3, slope = -202.6 for 
green channel respectively) (Fig. 3; Table S3; Fig. S5). The ion 
m/z 752.5591 is shown for contrast with non-GC ions m/z 
687.5447 and m/z 788.5442 (Fig. 3). In contrast to manual in-
terpretation and segmentation, ten additional ions revealed 
through data-driven image fusion were higher in GCs and ex-
hibited a pattern of LZ >DZ (Table 1; Fig. S4-5). 

Molecular Identification. Due to the large number of poten-
tial isomers at these m/z values, mass accuracy alone is not 
enough to specifically identify lipids. For example, the phos-
phatidylethanolamine ether species PE(O-40:6) and PE(O-
38:4) are isomers of the phosphatidylethanolamine plasmalogen 
species PE(P-40:5) and PE(P-38:3), respectively. Liquid chro-
matography-tandem mass spectrometry (LC-MS/MS) deter-
mined the presence of both ether and plasmalogen species for 
these ions of interest in total lipid extracts from whole spleen 
tissue (Fig. 4a). Thus, a spatial component was needed to con-
firm the identity of the ions that correlate to Fem signals. IMS-
MS/MS was performed with sectioned spleens of immunized 
transgenic AID-GFP mice. The MS/MS-based imaging experi-
ment found these ions to be ether lipids PE(O-18:0_20:4) (Fig. 
4 b-d) and PE(O-18:0_22:6) and not the isomeric plasmalogens 
(Fig. 4e-f). In addition, the co-localization of the specific frag-
ment ions from these ether lipids with Fem signals reveals that 
these species are enriched in splenic GC. 

 

Figure 3. Identification of anti-correlating germinal center (not-
GC) ions by image fusion. a) Shown are representative registered 
images highlighting the localization of anti-correlating GC ions. 
From left to right, the following image types are pictured: H&E 
with scale bar, Fem , IF, IMS showing an overlay of non-GC ion 
m/z 687.5447 and GC ion m/z 752.5591, and IMS showing an 
overlay of non-GC ion m/z 788.5442. LZ and DZ as identified by 
IF are outlined in yellow and blue respectively. b) From left to 
right, the m/z value, identification, matches to the LIPIDMAPS 
database in the IMS MS/MS spectrum, statistical significance, and 
ppm error in mass identification are listed. These two ions were 
identified as PE-Cer (d36:1) by accurate mass and PS(18:1 18:0) 
through IMS MS/MS, respectively. A complete listing of results 
from image fusion is in Table 1; further information is in Ex-
tended Data (Fig. S4-5). 

In addition to plasmalogen and ether species, image fusion 
enabled the identification of a variety of phosphatidylethanola-
mine (PE), phosphatidic acid (PA), glycerophosphoserine (PS), 
and glycerophosphoinositol (PI) lipids that were enriched in 
GC, with some observed at higher intensity in GC LZ. Fatty 
acid tails of 16:0 and 18:0 were most common. We observed 
many repeats of fatty acid tails 20:3, 20:4, and 22:6. In GC, five 



 

out of eight lipids had unsaturated fatty acid tails, whereas in 
GC LZ, all eight had at least one unsaturated fatty acid tail. Two 
ions, m/z 687.5447, PE-Cer(d36:1) (phosphatidylethanolamine 
ceramide), and m/z 788.5442, PS(18:1_18:0), were identified as 
anti-correlating with GC (Fig. 3). This unique combination of 
IMS with biologically driven microscopy modalities, advanced 
image registration, multimodal data mining, and spatially 
driven identification provides a pipeline for elucidating molec-
ular drivers of biological processes.  As a test of the technology, 
this process revealed an enrichment of ether and plasmalogen 
lipid species in GC, a metabolically stressed environment cen-
tral to the qualities of antibody responses and humoral memory.  

 

 

Figure 4. Identification of species localizing to germinal centers 
as ether linked lipids. a) LC-MS/MS fragmentation spectra of to-
tal splenocytes show common fragments for both plasmalogen 
and ether lipids (enlarged) from a parent mass of m/z 752.545. b) 
Shown to the left is the chemical structure of the parent ether ion 
and to the right the corresponding ion image. c,d) The correlating 
ether fragments are depicted with the chemical structure on the 
left and ion image on the right. e,f,g,) Similarly, plasmalogen par-
ent ion structure and fragments are shown with chemical structure 
on the left and corresponding ion images on the right. 

We have developed a multimodal imaging process that com-
bines high spatial resolution IMS with microscopy utilizing a 
transgenic fluorophore to identify micro-anatomical regions of 
biological interest. Our approach incorporates high accuracy 
registration and various data mining tools, including data-
driven image fusion, to fully integrate multiple imaging 

modalities collected from a single tissue section and across ad-
jacent sections, enabling discovery of molecular drivers of im-
mune response. Unambiguous identification of GC and the as-
sessment of lipid abundances in light and dark zones was made 
possible by combining Fem of the transgenic tracking allele with 
traditional microscopy approaches (i.e. stained and IF micros-
copy). While data-driven image fusion has previously been 
used for spatial applications in image sharpening and out-of-
sample prediction, the evidence presented here indicates that it 
can also be applied to mine highly dimensional data to find cor-
relations between modalities by interpreting the linear models 
constructed during the fusion process. When compared to con-
ventional approaches, the yield of structure-associated mole-
cules was enhanced four- to five-fold, as 16 GC-associated lipid 
species were determined. 

We identified three key processes in multimodal imaging as 
(1) registration, (2) data mining, and (3) molecular identifica-
tion. Histological depth differences between serial sections are 
becoming larger challenges as the spatial resolution of IMS in-
creases27–29 due to the small size of single cells within a tissue. 
In addition to histological depth differences, accurate data 
alignment correlating H&E or IF to IMS becomes central as 
spatial resolution increases and regions of interest approach sin-
gle cells. Importantly, the technologies presented here should 
be applicable to fusion of IMS, fluorescence, and spatial tran-
scriptomic or protein data30,31. 

The unexpected finding that the prevalence of a series of 
ether lipid species is higher in GC frames new hypotheses, i.e., 
that molecular programing of GC lymphocytes is tied to in-
creased ether lipid synthesis and that these species are function-
ally important in humoral immunity. A higher abundance of 
ether lipids in the spleen and white blood cells has been re-
ported, but the exact role of these ether lipids remains uninves-
tigated32. Ether lipid synthesis begins in the peroxisome and is 
completed in the ER33. Disruption of this pathway in peroxi-
some biogenesis disorders such as Zellweger spectrum (PBD-
ZSD) or by gene-targeting generates decreased ether lipid lev-
els33–35. In this light, it was striking that image analysis of IMS 
uncovered GC PE lipids with the same tail lengths as their ether 
and plasmalogen counterparts. Most notably, PE(16:0_22:6) lo-
calized to GCs as did its ether lipid counterpart PE(O-
16:0_22:6) while its plasmalogen derivative, PE(P-16:0_22:6), 
localized not only to GC but within them to their LZ (Table 1; 
Fig. S5o-q; Table S3). This enrichment along a pathway sug-
gests that GC have enhanced peroxisomal activity, resulting in 
increased abundance of PE-ether lipids. 

The peroxisome also generates reactive oxygen species 
(ROS)36. Plasmalogen ether lipids scavenge reactive oxygen 
species37. This capability has not been documented for non-
plasmalogen ether lipids, but the structural similarity suggests a 
connection in synthesis pathways and roles38. Starting 3.5 d af-
ter immunization, GC form in the follicles of secondary lym-
phoid organs and are sites of B-cell proliferation, differentia-
tion, and selection that are central to promoting antibody affin-
ity increases as well as vaccine efficacy and humoral immun-
ity23.  Substantial AID- mediated mutational39 and nutrient23,40 
stresses appear to be present in GCs. This micro-anatomic struc-
ture consists of LZ and DZs in which the native oxygen levels 
vary, such that hypoxia is present in an LZ>DZ pattern23. While 
there is strong evidence of connections between hypoxia and 
inflammation41,42, much remains unknown as to the effect of 
this hypoxic microenvironment on lipid synthesis within these 



 

regions43. The role of ether lipids in the adaptive immune mi-
croenvironment has not yet been explored, and thus, manage-
ment of ROS and their levels are crucial for lymphocyte physi-
ology44.  This point, in conjunction with known metabolic 
stresses in GC23,39,45 and influences of hypoxia on ROS genera-
tion23, suggests that a model in which higher plasmalogen and 
ether lipid abundance in GC reflects a physiological role in 
which ether lipid production indicates the need to maintain op-
timal ROS levels36.  

CONCLUSION 
Two key methodological advances documented here – use of 

engineered alleles that track gene expression by linking a fluor-
ophore to the normal gene product, and application of data-
driven image fusion for data mining – should be widely appli-
cable to a variety of experiments in a broad range of biological 
systems. Gene-editing technologies such as CRISPR-Cas9 will 
further expand an already abundant supply of transgenes that 
mark specific biological pathways and cell-types. Moreover, 
this new application of image fusion as a means of elucidating 
ions of interest co-localizing with a specific fluorophore will 
enable unique applications of data mining, including applica-
tions in settings where unambiguous marking of a region of in-
terest by other modalities exists.  
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