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Abstract

Selected configuration interaction (sCI) methods exploit the sparsity of the full con-

figuration interaction (FCI) wave function, yielding significant computational savings

and wave function compression without sacrificing the accuracy. Despite recent ad-

vances in sCI methods, the selection of important determinants remains an open prob-

lem. We explore the possibility of utilizing reinforcement learning approaches to solve

the sCI problem. By mapping the configuration interaction problem onto a sequen-

tial decision-making process, the agent learns on-the-fly which determinants to include

and which to ignore, yielding a compressed wave function at near-FCI accuracy. This

method, which we call reinforcement learned configuration interaction (RLCI), adds an-

other weapon to the sCI arsenal and highlights how reinforcement learning approaches

can potentially help solve challenging problems in electronic structure theory.

1 Introduction

Methods that allow for the efficient simulation of strongly correlated molecules and materials

are critical to energy, quantum information, and materials applications. Strong correlation

arises when the system cannot be qualitatively described by a single Slater determinant,
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such as in bond dissociation and in the description of many transition metal complexes.

Because of the breakdown of the single determinant approximation, methods like Kohn-Sham

density functional theory or perturbative techniques such as Møller-Plesset perturbation

theory cannot be used. Instead, the reference wave function must be modified to include

multiple determinants from the outset.

In principle, the full configuration interaction (FCI) method1 solves the electronic prob-

lem exactly for a given basis, but it scales exponentially, rendering FCI impractical for all

but the smallest of problems. However, it is well-known that the solution to the FCI wave

function is generally sparse. That is, many determinants do not significantly contribute to

the overall wave function; these determinants are sometimes referred to as computational

“deadwood.”2 From a practical standpoint, this means that significant compression of the

wave function is possible while retaining near-FCI accuracy. Approaches for wave function

compression based on the singular value decomposition3 and compressive sensing,4 for ex-

ample, have been explored. How to best exploit this sparsity is an open question,5,6 but it

is a question with important ramifications.

Exploring wave function compression is not just important for classical electronic struc-

ture calculations, where the sparsity may be exploited for significant computational savings.

As pointed out by Stair, et al.,5 highly compressed wave functions are desirable for chemical

applications of quantum computing on near-term devices. The reason is that many quantum

algorithms, such as variational quantum eigensolvers, rely on wave function parameteriza-

tion. Because the goal of these quantum algorithms is to yield an advantage over classical

simulation, one way to characterize the advantage of these methods is to compare against the

classical efficiency, in order determine if there is indeed a quantum advantage over classical

approaches.

In this light, selected configuration interaction (sCI) methods have come to the fore,

driven by several recent important methodological advances. The goal of selected CI methods

is to find sparse approximate solutions to the full configuration interaction (FCI) problem,
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which is generally done in an iterative manner where the FCI parameter space is efficiently

searched, ranked, and top contributors included in the process of obtaining a sparse solu-

tion to the CI problem. Most selected CI methods begin by selecting an initial variational

space (such as a Hartree-Fock, HF, reference or complete active space self-consistent field,

CASSCF, reference) and obtaining the variational ground state wave function within this

space. After the initial wave function is obtained, search algorithms explore the space outside

the current set of determinants to select important additional determinants to be included

in the variational space. The estimated significance of a determinant may be based off per-

turbative or energetic heuristic considerations. Furthermore, the space may be optionally

pruned to eliminate determinants deemed no longer significant. After the searching and

pruning, the ground state of the Hamiltonian in this new variational space is obtained. The

process is then repeated until some convergence criteria is reached.

Although all flavors of sCI follow this rough algorithm, they differ on the specifics of how

to achieve the goal: for example, there are deterministic,2,4,7–20 stochastic,21–27 and semi-

stochastic28–31 variations of sCI methods. The crucial ingredient is the searching/ranking

of determinants and the pruning of determinants no longer deemed significant. Although

several heuristics have been developed to achieve these goals, one open question is whether

or not these heuristics can be learned and improved upon via a machine learning (ML)

approach.

Machine learning methods have had a significant impact across many domains, not least

in chemistry.32,33 New methods for the analysis and simulation of molecules and materials

have emerged based on developments in machine learning. For example, machine learning has

been used to design new materials,34 to predict protein structure,35 ground36 and excited37

state molecular properties, and even aid in the interpretation of complex molecular dynamics

trajectories.38,39 For the selected CI problem, machine learning has been used to predict

important configurations using supervised learning on data generated on-the-fly.40,41 This

enables more accurate potential energy surfaces with fewer iterations as compared to a
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stochastic sCI approach. Most applications of ML for quantum chemistry are in either the

domain of supervised or unsupervised learning and require large amounts of data. The

quality of the application depends on the amount and type of data, and even then the

training may not generalize to previously unseen scenarios, making (un-)supervised learning

difficult to apply to broad problem classes in general.

However, a related alternative—reinforcement learning—has been relatively unexplored

for quantum chemical application. Whereas unsupervised learning seeks to find underlying

structure in unlabeled data, and supervised learning uses labeled data to train a parame-

terized model, reinforcement learning is designed to learn from experiences or mistakes. It

uses feedback observed from an appropriately defined environment to improve strategies to

achieve some objective by taking an optimal sequence of actions. By exploring the environ-

ment that provides rewards (or penalties), the agent gradually learns which actions to take

and which to avoid. In contrast to supervised learning, no answer or action is directly given

to the agent, and there is no need to label data or worry about preparing training data, as

all data is incorporated as it is generated in the form of a reward signal. Because data can

be generated on-the-fly and is used as-is (e.g., there is no need to label data or split data

into training, test, and validation sets), reinforcement learning is an attractive approach for

the selected CI problem.

Here we propose an alternative approach to the selected configuration interaction problem

based on reinforcement learning, where the sCI problem is mapped to a sequential decision-

making process that implicitly learns the optimal actions to take to return an accurate,

compressed approximation to the FCI wave function. The optimal ranking of configura-

tions can be learned on-the-fly due to observing the impact of including or removing (groups

of) determinants on the ground state energy. After detailing the mathematical aspects of

the reinforcement learning configuration interaction (RLCI) method, we explore the perfor-

mance of RLCI methods against several prototypical cases, as well as some larger, strongly

correlated hydrogen ring systems.
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2 Methods

In configuration interaction methods, the goal is to obtain the ground state energy E of a

system by solving the eigenvalue problem corresponding to the molecular electronic Hamil-

tonian Ĥ, i.e.

Ĥ|ΨCI〉 = E|ΨCI〉 (1)

where the CI wave function |ΨCI〉 is represented as a linear expansion of excited Slater

determinants out of a reference state |R〉. That is to say,

|ΨCI〉 =

Nref∑
R

CR|R〉+
∑
S

CS|S〉+
∑
D

CD|D〉+ · · · (2)

The coefficients C indicate the contribution of the determinant to the final wave function

expansion and S, D, . . ., indicate the excitation level out of the reference state. The reference

|R〉 may be a single Slater determinant, such as a Hartree-Fock state, or it may be a CASSCF

reference. In contrast to a linear expansion out of the reference that is truncated at some

excitation level (e.g. configuration interaction with singles and doubles, CISD), the goal of

sCI methods is to minimize the expectation value of the molecular electronic Hamiltonian Ĥ

spanned by a subset of all possible determinants, without regard to an a priori truncation.

That is, we seek an optimal solution to

min
‖ΨCI‖0≤k

〈ΨCI|Ĥ|ΨCI〉
〈ΨCI|ΨCI〉

(3)

where ‖ΨCI‖0 is the cardinality (the number of non-zero elements) of the CI vector. The

goal of selected CI methods is to find the solution to Eq. (3) where k is the maximum

number of determinants to be considered in the sCI problem. The value of k is a user-

defined parameter, and will depend on the particular system and the desired accuracy. If k

is equal to the dimension of all possible determinants for a problem, the solution to Eq. (3) is

equivalent to the FCI problem. Ultimately, this problem can be viewed as a special instance
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of a combinatorial optimization problem, akin to the knapsack problem or the traveling

salesman problem. Given a subset of possible determinants to include, what is the optimal

combination of determinants that minimizes the expected value of the Hamiltonian?

In reinforcement learning, an agent is trained to take a series of actions in order to

maximize a reward.42 Herein we follow much of the notation and framework laid out for the

k-sparse eigenproblem in Ref 43 and apply it to the sCI case. The reinforcement learning

process proceeds in a series of episodes, where the agent explores the environment and obtains

rewards or penalties for its actions. In order to map the sCI procedure onto a reinforcement

learning framework, it is necessary to define the state, the environment, actions, and rewards.

The state is the current set of selected determinants to include in the approximate calculation

of the sCI problem. The environment is the space of all possible Slater determinants. During

each step of an episode, the local reward r can be determined by the change in the obtained

eigenvalue λnew from the previous step λold, that is

r = λold − λnew. (4)

Herein we will utilize a Q-learning approach,42,44 wherein the goal is to learn the optimal

state-action value function Q(s, a). Although several different RL approaches could be used,

Q-learning is advantageous for its simplicity, robustness in planning, and ability to learn

the optimal policy while following a different exploration policy.42 In Q-learning, the learned

function Q(s, a) returns the value of taking a particular action a out of a state s. For a given

set s of determinants that make up the current sCI space, possible actions a are removing

the p-th determinant from the current set and replacing it with a SD q that is outside the

current sCI space, i.e.,

a = (p, q), for p ∈ s and q /∈ s (5)

So when the optimal Q(s, a) is obtained, from any state s it is possible to obtain the optimal
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set of determinants by following the policy π(s) for a given state, i.e.,

π(s) = argmax
a

Q(s, a) (6)

Although the ultimate goal is to learn the optimal policy in Eq. (6) via learning the

optimal state-action value function Q(s, a), the behavioral policy—that is to say the actions

taken during training—need not follow the policy that is being learned in Eq. (6). Indeed,

this is undesirable in that the agent will not explore actions which may appear sub-optimal

yet may ultimately lead to the global optimal Q(s, a): this is the exploration-exploitation

trade off. Q-learning, because it is off-policy (meaning it need not follow Eq. (6) during

training) has the flexibility to follow physics-inspired and potentially more efficient search

policies, all the while ensuring it learns the optimal Q(s, a) and π(s).

The dimension of Q(s, a) is dim(s)×dim(a). Because dim(s) scales as
(
Ndet

k

)
, where Ndet

is the dimension of the FCI space, and for any state s, dim(a) scales as k × (Ndet − k), the

size of Q(s, a) is clearly too large to store and utilize directly. To overcome this limitation,

we use a linear approximation to Q(s, a) ≈ Qw(s, a), where

Qw(s, a) =
∑

i∈Ndet

wifi(s, a) = w>f . (7)

Here, Qw(s, a) is the inner product between weights wi and feature vectors fi(s, a), which

have yet to be defined. One possible definition of the feature vectors fi(s, a), and the one

used in this work, is

fi(s, a) =


1 if i ∈ s and i 6= p, or if i /∈ s and i = q

−1 if i ∈ s and i = p

0 otherwise

(8)
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which then reduces Eq. (7) to a difference in weights wi, namely

Qw(s, a) =
∑
i∈s′

wi − wp (9)

where s′ is the active set of determinants subsequent to taking the action a = (p, q), as

defined in Eq. (5). One advantage of this choice is that the information in Qw(s, a) is

completely captured in the weights w. Furthermore, the weights w, which are independent

of s and a, can be interpreted as maintaining a global ranking for the set of all possible

determinants. The definition of the feature vectors in Eq. (8) can be interpreted as mapping

the expected value of an action a = (p, q) to the anticipated change in energy by removing

determinant p and replacing it with determinant q. In other words, this choice for fi(s, a)

enforces consistency between w and Qw(s, a): for a given action a = (p, q) it will always

return a positive value if wp is lower ranked than wq, or a negative value if wp is higher

ranked than wq.

In Q-learning, the Q-values (therefore, the weights w) are updated every step according

to the conventional update rule42

wi ← wi + α
dQw(s, a)

dwi

δ (10)

where the Bellman error δ is

δ = r + γmax
a′

Qw(s′, a′)−Qw(s, a) = r + γw>f ′ −w>f (11)

and f ′ denotes the feature vector after taking the action a′. α is the learning rate and γ is

the discount factor, which are user-defined parameters and both should take values in (0, 1].

Larger values of γ favor rewards in the future, rather than immediate rewards which are given

by smaller values of γ. Although the update in Eq. (10) appears to be a gradient descent

method, for approximate state-action value functions such as that used in Eq. (7), this is no
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longer the case. This has been pointed out in Ref 45, Appendix I. To see this, assume that

the update in Eq. (10) has been mapped onto the general gradient descent expression

w← w − α∂J(w)

∂wi

(12)

where J(w) is some loss function. In the case of Eq. (10), we have

∂J(w)

∂wi

= −∂Qw(s, a)

∂wi

δ (13)

=
∂w>f

∂wi

(
w>f − (r + γw>f ′)

)
(14)

= fi
(
w>f − (r + γw>f ′)

)
(15)

However, to be a suitable gradient descent method, the second derivatives must be symmet-

ric. Yet for approximate Qw(s, a) it can be shown that this is not the case:

∂2J(w)

∂wj∂wi

= fi(fj − γf ′j);
∂2J(w)

∂wi∂wj

= fj(fi − γf ′i). (16)

Therefore, the weights w are not guaranteed to converge in approximate Q-learning. How-

ever, it is possible to modify the weight update in Eq. (10) in order to yield a suitably

convergent learning algorithm. To this end, we modify the Greedy-GQ method of Ref 46,

which relies on minimizing not the Bellman error directly, but rather the Bellman error pro-

jected onto the basis of feature vectors. This is to compensate the gradient due to the lack

of an incomplete basis. These terms can be understood in analogy to the Pulay forces47 in

conventional electronic structure nuclear gradients, where additional terms arise due to the

fact that the electronic structure calculations are performed in an incomplete basis.

Therefore, the loss function J(w) is chosen to minimize the projected Bellman error,
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rather than the Bellman error (Eq. (11)) itself42,46

J(w) = ‖Π · δ‖2

=
(
δ · f>

) (
f · f>

)−1
(δ · f) (17)

which leads to the gradient expression

1

2

∂J(w)

∂wi

= δ · (γf ′ − f) · f>
(
f · f>

)−1
f

= −δ · f · f>
(
f · f>

)−1
f + γf ′ · f>

(
f · f>

)−1
f

= −δ · f + γf ′ · f> · v (18)

where we define a new vector of auxiliary weights v in order to avoid the computational

overhead of inverting matrices of feature vectors, namely

v =
(
f · f>

)−1
(δ · f) . (19)

The vector v need not be explicitly formed, and will be learned on-the-fly during the

training as will be shown. Thus, with the above results, the new update formula for w is

w← w + α ·
(
δ · f − γ · (f>v) · f ′

)
(20)

and

v← v + β · (δ − f>v) · f . (21)

v is of the same dimension as w and may be initialized to zero at the beginning of the

RLCI algorithm. The update for v in Eq. (21) is derived from the Least Mean Square

(LMS) rule that seeks v so as to minimize the squared error
(
f>v − δ

)2
. This modifies

the update scheme to account for the fact that the linear approximation to Q(s, a) is not

complete. Note that upon setting the parameter β to zero the algorithm will recover the
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classic approximate Q-learning algorithm. In this gradient corrected method, the update in

Eq. (20) implicitly assumes that the update in Eq. (21) is at, or near, steady-state. In other

words, the secondary learning rate β needs to be greater than the learning rate α.46 Because

α and β take values between 0 and 1, in our experience a reasonable value for β is
√
α, where

α is the learning rate. This eliminates the need to set an additional hyperparameter, while

maintaining the condition that β > α.

2.1 Algorithm overview

Here we summarize the algorithm used to generate the results discussed in subsequent sec-

tions.

1. From a given reference, initialize the set s through the greedy probing algorithm pro-

posed in Ref 48. In this work, we use the HF wave function as the reference. Briefly, the

greedy probing method builds up the set s incrementally through a perturbation-based

approach until dim(s) = k, at which the procedure terminates. The new determinants

to be added to s are obtained from the first-order perturbative wave function estimate,

as is commonly used in other sCI methods, such as CIPSI and ASCI

c
(1)
i =

∑
j 6=iHijc

(0)
j

(E(0) −Hii)
(22)

where Hpq are the Hamiltonian matrix elements between determinants p, q, and E(0)

is the energy for the Hamiltonian in the current determinant basis indexed by j with

eigenvector components c
(0)
j . At each iteration of the greedy probing algorithm, the

determinant i corresponding to the largest value of |c(1)
i | is added to the set s at each

iteration. Unless otherwise stated, we add a single determinant to the set s at each

iteration, but we note that the selection procedure need not be limited to adding a

single determinant at each iteration and determinants may be added in “batches”,

e.g. adding the five determinants with the largest magnitude of |c(1)
i | to the set s until
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a dimension of k is reached.

2. Given the initial set s, initialize w using the magnitude of the eigenvector components

for the k × k Hamiltonian submatrix spanned by the determinants in s. For values

of wi /∈ s, the initial value is estimated using the perturbation theory expression in

Eq. (22). In general, the values of wi ∈ s and wi /∈ s, which combine to form the initial

vector w, are not on the same scale as they are estimated from different procedures.

Therefore, each component of wi (i.e., the component wi ∈ s and the component

wi /∈ s are each normalized individually to the unit vector and subsequently scaled

by its proportion of w. This ensures that the initial values of wi spanning the full

determinant space are approximately on the same scale. The auxiliary vector v is

initialized to zero, following Ref 46.

3. Once initialized, the behavioral search policy is as follows. In order to efficiently prune

and expand the active determinant space s, we generate two ranked lists: the first

list S1 contains candidate determinants within the current space to be removed (given

by low value in w) and the second list S2 contains candidate determinants outside

the current space s to be added (given by high value in Eq. (22)). The dimension

of S1 is the same as the selected subspace k, and nominally the dimension of S2 is

(Ndet − k), but for efficiency considerations, S2 may be limited to the most important

external determinants. In this work we make the top 150 determinants available for

consideration in the search policy. Note that if an action is selected, the loop over

S1 is immediately terminated. Action pairs a = (p, q), p ∈ s, q /∈ s from the two lists

are iterated over, and an action a is taken if it satisfies a Metropolis-like criterion as

detailed in Ref 43. If no action is selected, the learning procedure terminates.

4. Once the action a is selected, the search policy terminates and the local reward r is

computed according to Eq. (4) and the weights w and v are updated according to

Eq. (20) and Eq. (21), respectively. Upon taking an action a = (p, q), S1 can be
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updated by removing p and adding q, and the next candidate external determinant in

S2 can be considered. This prevents the need to re-construct S1 and S2 at each step

in an episode. The episode terminates when no further suitable candidate actions can

be found, or once the space is exhausted.

5. These training steps are iterated through until the completion of an episode. To reini-

tialize the state for a new training episode, the largest k values of w may be used.

We have also found it useful to occasionally and randomly initialize with the best s

obtained during the training procedure.
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Algorithm 1: Reinforcement Learning Configuration Interaction (RLCI)

Input: matrix A (efficiently represented), number of determinants k

Output: Approximate solution (λ, |ψCI〉) with ‖ψCI‖0 ≤ k

Initialize learning rate α, discount rate γ, exploration rate τ , weights w, and v;

for episode in 1, 2, ...,max episode do

Select an initial state s;

Construct S1 from i ∈ s with smallest wi’s;

Construct S2 from j /∈ s with largest |cj|’s;

for j = 1, 2, ..., |S2| do

for i = 1, 2, ..., |S1| do

s′ = ((s \ S1[i]) ∪ S2[j]);

Compute smallest eigenvalue λ′ of A(i ∈ s′, i ∈ s′);

Generate a random number ε ∼ U(0, 1);

if λ′ < λ · (1− τ · ε) then

Let p = S1[i], q = S2[j], take action a = (p, q) to get new state s′;

Evaluate local reward r;

Update w and v;

end

end

end

Output best approximate (λ, |ψCI〉) during training;

end

Although the cost of the exploration policy can be greatly reduced by limiting the search

space in S2 to the top m external determinants, the RLCI algorithm may still require multiple

matrix diagonalizations. However, the brunt of this cost can be greatly reduced by utilizing

an iterative subspace diagonalizer, such as Davidson’s algorithm,49 which reduces the cost

to O(k2), where k is the subspace dimension. The cost is reduced further still by solving
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for the lowest eigenpair once at the beginning of each episode, then caching the resulting

eigenvector for re-use as an initial guess in subsequent search iterations. Since each action

involves the replacement of a single pair of determinants, the wave function overlap between

successive actions is very high, and Davidson’s algorithm will converge in a few number of

iterations. As each new eigenproblem is solved, the guess vector may be overwritten and

re-used for the next matrix diagonalization, ensuring that the guess for the current Davidson

diagonalization differs from the previous one by no more than one row.

Regarding memory utilization, the weights w and v are currently stored explicitly with

dimension of the full Hilbert space and this proves to be the largest memory bottleneck.

However, many of the (potential) weights are never accessed during the RLCI iterations,

and may never need to be stored explicitly. To this end, sparse storage techniques for the

learned weights may be utilized. For future work, it may be that moving beyond the linear

parameterization of the state-action value function and utilizing deep neural networks can

provide a more compact representation of the state and action space.

3 Results

3.1 Prototypical cases: dissociation curves

In order to test the performance of the proposed RLCI method, we have computed potential

energy curves for the symmetric dissociation of N2, CO, and an H8 chain. These systems span

a range of strong to weak correlation and allow us to evaluate the prototypical performance

of RLCI methods for use in quantum chemistry. Note that we assume a point group of

C1 for all systems investigated here, and all data is obtained with an RHF reference wave

function using canonical RHF orbitals, and the underlying integrals and Hamiltonians were

obtained using an interface to the PySCF software package.50 Although currently the code

is far from optimized, we aim to show that RLCI is a promising route forward for generating

highly compact wave functions at chemical accuracy. In this work, we choose α = 0.5 and
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γ = 0.99 for all cases. Learning rates are not damped to avoid early convergence to local

minima, and the somewhat larger value of the learning rate α is suitable considering the

deterministic CI environment.42 The exploration rate decays as a function of episode, with

τ = exp (−0.5 · episode). Additionally, all RL runs are terminated within 30 episodes.

Other choices of hyperparameters may be explored in future work.

(a) (b)

Figure 1. Comparison of RLCI and HCI methods for the dissociation of the
N2 molecule with the STO-6G basis with different levels of approximation. (a)
Difference between FCI and RLCI or HCI potential energy curves, relative to
the FCI minimum. The shaded gray area indicates region of chemical accuracy
(1 kcal/mol). (b) Comparison of the number of determinants used to calculate
each point along the potential energy surface. The size of the full space is 14,400
determinants.

An exploration of the dissociation behavior of N2 using the RLCI method is given in

Fig. 1. The errors with respect to FCI for N2 with the STO-6G basis is given in Fig. 1a.

N2 dissociation is a challenging problem in quantum chemistry, and most single-reference

methods will fail to describe this process, particularly at larger separations. This is due to

the high amount of strong correlation required to dissociate the triple bond. To compare with

existing sCI methods, we compared with the heat-bath selected configuration interaction

(HCI) method15 in PySCF with varying levels of approximation. HCI depends on two

parameters, ε1 and ε2, and values for these parameters were chosen to reasonably mimic

the level of accuracy obtained with the RLCI method at different levels of sparsity. This

is to give a sense of how much each method can compress the wave function. Because
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the parameters that govern the accuracy of each method differ (the RLCI parameter is the

number of determinants k, whereas the HCI ε values govern determinant cutoff parameters)

they cannot be compared one-to-one, however by observing the error with respect to FCI

and the number of determinants used in Fig. 1b, general trends can be observed. The HCI

and RLCI methods are competitive in the sense that both methods can be tuned to yield

errors below chemical accuracy with reasonable wave function compression (worst case for

all methods for N2 here are still < 10% of the total FCI space). As can be seen, in order

to get the accuracies to roughly agree in Fig. 1a, the number of parameters (determinants)

for HCI is roughly double that of RLCI. In the more strongly correlated regime (> 2.0 Å),

the agreement in accuracy between HCI and RLCI diverges, despite HCI utilizing a greater

number of parameters. In fairness, for the current implementation HCI is a significantly

faster method, but the savings in terms of wave function compression for RLCI suggest that

pursuing further improvements to the method may be warranted.

(a) (b)

Figure 2. Comparison of RLCI and HCI methods for the dissociation of the
CO molecule with the STO-6G basis with different levels of approximation. (a)
Difference between FCI and RLCI or HCI potential energy curves, relative to
the FCI minimum. The shaded gray area indicates region of chemical accuracy
(1 kcal/mol). (b) Comparison of the number of determinants used to calculate
each point along the potential energy surface. The size of the full space is 14,400
determinants.

Next, we explore the dissociation of the CO molecule in Fig. 2. Though HCI maintains a

roughly constant accuracy throughout the dissociation, it requires roughly 2−3× the number

17



of determinants as RLCI. In contrast, RLCI can maintain kcal/mol accuracy or better while

utilizing 4.0% of the determinant space. That said, the errors for RLCI increase during

dissociation up until around 1.7 Å, at which point they begin to decrease again, whereas

HCI is relatively constant accuracy. This suggests that investigating ways to dynamically set

the RLCI parameter k may be beneficial. For HCI, the free parameters govern the cutoffs

used to determine the importance of a determinant, which in this particular case seems to

yield more constant energy errors, though this requires the use of an increasing determinant

space.

(a) (b)

Figure 3. Comparison of RLCI and HCI methods for the symmetric dissociation
of an H8 chain with the STO-6G basis with different levels of approximation. (a)
Difference between FCI and RLCI or HCI potential energy curves, relative to
the FCI minimum. The shaded gray area indicates region of chemical accuracy
(1 kcal/mol). (b) Comparison of the number of determinants used to calculate
each point along the potential energy surface. The size of the full space is 4,900
determinants.

Finally, we explore the symmetric dissociation of the H8 chain in Fig. 3. Despite its

apparent simplicity, this is a challenging system with rapidly increasing amounts of strong

correlation as the system dissociates. This is reflected in the linear increase in log error

in Fig. 3a, and the linear increase in determinants required for HCI to maintain its sub-

chemical accuracy observed in Fig. 3b. Despite these challenges, RLCI is able to obtain better

accuracy for fewer determinants compared to HCI for most points along the dissociation

curve, similar to what has been observed in the other prototype calculations for CO and N2.
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At high intra-atomic separations, the necessary parameters to achieve chemical accuracy in

the (very) strongly correlated limit seem to limit toward a unified value of roughly 25% of the

determinant space. We note that there is no orbital optimization in either the RLCI or HCI

methods presented here, which may prove beneficial in cases such as these. Or, there may

simply be limits to how well determinant-based methods can compress the wave function

and other wave function ansätze, such as matrix51 or tensor18 product states may prove

more efficient. Utilizing configuration state function (CSFs) may also additionally compress

the wave function, though the RLCI will lose some of the computational advantages of a

determinant-based approach. Thus, further improvements may be found in both extending

RLCI to treat orbital optimization, as well as extending RL methods to optimize non-

determinant-based wave function ansätze, like CSFs or tensor product states.

An example of the convergence behavior with respect to episode for the previous three

test cases is given in Fig. 4, which depicts the difference between the best estimate of the

energy at each episode and the lowest energy obtained overall. Each of the molecules (CO,

H8 chain, and N2) was fixed with an interatomic distance of 1.5 Å and otherwise used the

same parameters as those given previously. To explore the impact of the the dimension of

the external determinant search space |S2| was allowed to vary, with |S2| = 50, 100, 200.

As can be seen, there is a rapid initial drop in energy in the first few episodes, which serve

to quickly correct the initial guess. As later episodes explore the determinant space, the

agent continues to decrease the energy and refine the set of determinants. Larger external

determinant spaces may provide faster convergence with respect to episode, but the larger

set of candidate actions results in longer episodes, which may explain this behavior. If the

external determinant space is too small, the agent may end up in a higher energy local

minima, as may be the case in Fig. 4b for the |S2| = 50 case after episode 28. In most cases,

minimal energetic refinement is obtained after 30 episodes, though for larger systems it may

be necessary to consider additional episodes.
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(a)

(b)

(c)

Figure 4. Difference between the best estimate of the energy at each episode
i and the lowest energy obtained overall for (a) CO, (b) H8 chain, and (c) N2.
Each molecule used a STO-6G basis and had an interatomic distance of 1.5 Å.
The dimension of the subspace k was 200 determinants, and the dimension of
the external determinant search space |S2| was varied to be 50, 100, or 200. All
other parameters correspond to those used in the rest of the work. A small scalar
constant of 1× 10−4 was added to the lowest energy obtained overall in order to
avoid plotting zero on a log scale.
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3.2 Larger examples: hydrogen rings

In order to get a sense of the performance for larger systems, we have applied the RLCI

algorithm to larger systems of hydrogen rings with a STO-6G basis. These hydrogen rings

have been investigated recently in order to explore the ability of several methods to compress

the wave function in strongly correlated materials.5 In order to apply the RLCI method to

these larger systems, we have implemented the RLCI algorithm in the Chronus Quantum

electronic structure program,52 with efficient determinant manipulation based on Ref. 53.

At the moment, the algorithm uses a canonical generalized Hartree-Fock reference, which

results in much larger and far more sparse determinant spaces. As an example, an H10/STO-

6G ring with canonical RHF orbitals has a full Hilbert space dimension of 63504, whereas

with GHF the full Hilbert space is three times larger with dimension 184756. In any case,

the RLCI algorithm is agnostic to the type of reference: if the method can handle a more

challenging GHF reference, it can also handle a RHF reference.

Table 1. Comparison of the percent FCI correlation energy (% corr.) captured
versus RLCI subspace dimension k as a function of the percentage of the full
Hilbert space (% Ndet) for hydrogen rings with n atoms, an interatomic separation
of 1.5 Å, using a STO-6G basis.

n k Ndet % Ndet % corr.
10 2000 184756 1.083% 96.2%
10 4000 184756 2.165% 98.3%
10 6000 184756 3.248% 99.2%
12 4000 2704156 0.148% 74.3%
12 6000 2704156 0.222% 77.2%
12 10000 2704156 0.370% 95.6%
14 6000 40116600 0.015% 86.2%
14 10000 40116600 0.025% 88.6%
14 20000 40116600 0.050% 91.3%
16 10000 601080390 0.002% 47.4%
16 20000 601080390 0.003% 49.6%
16 50000 601080390 0.008% 52.4%

In Tab. 1, we compare the performance of the RLCI algorithm for a series of hydrogen

rings with an interatomic separation of 1.5 Å and an STO-6G basis. This interatomic
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distance was previously found to exhibit strong correlation in hydrogen rings.5 Using the

GHF reference, fully correlating all electrons, and utilizing rings ranging from 10 to 16

atoms, the full Hilbert space spans from 105 to nearly 109 determinants. All parameters for

the calculations were the same as those used previously, with the exception that the greedy

initialization for each trial was done in batches corresponding to 1/10 of the subspace k. As

observed in the prototypical cases, only a small percent of the full Hilbert space is necessary

to capture a significant portion of the FCI correlation energy. For the H10 ring, 2% of the

Hilbert space is sufficient to capture 98% of the correlation energy. For the H14 ring, even

0.05% of the Hilbert space is sufficient to capture over 91% of the correlation energy. The

results in Tab. 1 are consistent with the observations found for the smaller, prototypical

systems.

4 Conclusion

Here we have explored the potential of using reinforcement learning techniques to solve

the selected configuration interaction problem. In the prototypical cases explored, RLCI

outperformed HCI in terms of generating more compact wave functions without neglecting

chemical accuracy (< 1 kcal/mol from FCI). Although we do not claim that the current

implementation is necessarily faster than existing sCI methods, we have provided support

that approaches based on reinforcement learning may yield more optimally compact wave

functions, at least at the determinantal level. In these dissociation curves presented here,

HCI appears to require on the order of 2− 3× the number of determinants for comparable

accuracy to RLCI. As is seen in the strongly correlated case of the stretched H8 chain, there

may be an upper limit to how compressed a wave function can become. In these cases,

other wave function ansätze may be required, or it may speak to the importance of orbital

optimization in the strongly correlated cases. Both avenues are worth pursuing with a RL

approach. Other improvements of the RLCI method include modifying the action space to
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allow more than one determinant to be added or removed from the state, optimizing the

learning rate and the discount factor, and gaining a better understanding of the trade-off

between exploration and exploitation. Further work to explore the transfer of data between

different Hamiltonians in order to improve efficiency should also be explored. Additional

investigations of perturbative corrections on top of the RLCI-learned wave function may

also yield robust convergence to the FCI limit with compact wave function references, as has

been observed in other sCI methods5,18,54–56
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