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Introduction 

The virtual workshop took place on May 18-20, 2021. It was a follow-up from the December 2020 

NIH Workshop on Ultra Large Chemistry Databases.1 The organizers were: 

 Marc Nicklaus, Head, Computer-Aided Drug Design Group, Center for Cancer Research, 

National Cancer Institute 

 Gergely Zahoranszky-Kohalmi, Informatics Lead, ASPIRE, National Center for Advancing 

Translational Sciences, National Institutes of Health 

 Eric Stahlberg, Director, Biomedical Informatics and Data Science, Frederick National 

Laboratory, National Cancer Institute 

 G. Sitta Sittampalam, Senior Advisor to the Director, National Center for Advancing 

Translational Sciences, National Institutes of Health 

 Janelle Cortner, Director, Data Management Program, National Cancer Institute 

A major theme emerging from the December 2020 workshop was the fact that all the databases of a 

billion or more structures are virtual. For each virtual molecule the question then arises of whether, 

or how, it can be synthesized. The organizers therefore assembled speakers to give presentations 

about how reaction-related data are represented, captured, managed in databases, analyzed, used 

for drug design, applied in robotics, and exchanged locally as well as globally. 

There were about 500 registered “attendees” from about 30 different countries. Maximum live 

attendance at any one time was about 220. This report summarizes talks from 27 practitioners in the 

reaction informatics field. The aim is to represent as accurately as possible the information that was 

delivered by the speakers; the report does not seek to be evaluative. The themes, in the order used 

for this report, were reaction representations, file formats, and standards; sources of reaction data; 

AI and machine learning applications of reaction-related data in de novo drug design, synthetic 

accessibility, synthesis planning, reaction prediction etc.; and automation and progression toward 

autonomous synthesis. 

The CHMTRN and PATRAN languages for representing chemical reactions 

Philip Judson, Lhasa Limited, Leeds, United Kingdom 

The CHeMistry TRaNslator and PAttern TRANslator (CHMTRN/PATRAN) languages were developed in 

the Logic and Heuristics Applied to Synthetic Analysis (LHASA) project at Harvard University, a 

pioneering project in artificial intelligence led by E. J. Corey. The project began more than 50 years 

ago as Organic Chemical Simulation of Synthesis (OCSS). Corey’s team aimed to make a computer 

think as a chemist would. The work led to the retrosynthetic approach to synthesis planning, and a 

Nobel Prize to Corey himself. 

mailto:wendy@warr.com
https://cactus.nci.nih.gov/presentations/NIHBigDB_2020-12/NIHBigDB.html
https://cactus.nci.nih.gov/presentations/NIHBigDB_2020-12/NIHBigDB.html
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By 1972, OCSS had become LHASA. The aim now was to make the computer both think and 

communicate as a chemist.2 The graphical end-user input and output was unprecedented at that 

time. The architecture consisted of an interface, a reasoning (inference) engine, and knowledge 

base. The knowledge base is independent of the software, another novel idea for 1972. Data such as 

the reaction of ethanol with chloroethane to form diethyl ether, and similar reactions, can be 

converted to knowledge in the form of a generic reaction: alcohols plus alkyl halides can react to 

form ethers. In the retrosynthetic version, an ether is made from alcohol and alkyl halide precursors.  

In practice, generic reactions do not work in all cases (e.g., an alkyl aryl ether cannot be made from 

an alcohol and a phenyl halide). A good knowledge base needs to understand such facts and express 

them as a chemist would. This was done with CHMTRN (pronounced “chemtran”), in which 

transforms are keyed by functional group(s) at the reaction center. The transformation to the 

precursors and qualifying statements about features favoring or disfavoring the retroreaction are 

described using an English-like language.  

There are limitations to the use of functional groups. Chemists give names to only a relatively small 

number of reactive structural features, and LHASA, being constrained by the capabilities of 

computers at the time, could only include a maximum of 64 functional groups. Moreover, many 

reactions involve multiple atoms and bonds that are not normally thought of as functional groups. 

The solution was to use PATRAN (Figure 1). In practical terms CHMTRN and PATRAN are used as a 

single language in the knowledge base for LHASA, PATRAN being embedded in retroreaction 

descriptions written in CHMTRN. 

 

Judson showed an example of some CHMTRN statements (Figure 2). Originally, “rating” statements 

on the “quality” of a reaction were given as percentages. Nowadays, qualitative rating statements 

are written (e.g., TYPICAL*YIELD, EXCELLENT; RELIABILITY, GOOD; REPUTATION, GOOD; 

HOMOSELECTIVITY, FAIR; and HETEROSELECTIVITY, FAIR). 

Figure 1. PATRAN example. 



3 
 

 

The Synthetically Accessible Virtual Inventory (SAVI)3 is a database of over 1 billion compounds 

predicted to be easily synthesizable. The compounds have been created by a set of transforms based 

on an adaptation and extension of CHMTRN)/PATRAN. SAVI uses qualitative rating increments and 

decrements. For example, original statements said: 

SUBTRACT 30 IF THERE IS A WITHDRAWING GROUP ON ATOM*5 

IF ATOM*3 IS IN A RING OF SIZE 6 THEN ADD 15 

but the qualitative statements are: 

LOWER*RATING STRONGLY IF THERE IS A WITHDRAWING GROUP ON ATOM*5 

IF ATOM*3 IS IN A RING OF SIZE 6 THEN RAISE*RATING SLIGHTLY. 

The functional group properties of atoms ([FGS=...]; [FGNOT=...]) are currently limited in SAVI to the 

64 functional groups declared in CHMTRN. It would make the language more powerful if more 

subpatterns could be used. Functional groups are already defined using PATRAN patterns in the 

knowledge base, so there is not an inherent language limitation. 

Lhasa Limited’s end-user interface for knowledge bases has always been graphical. Graphical 

alternatives have been used for knowledge base editing but textual knowledge base source code has 

the advantages of portability, long term stability, and the requirement for only a standard, simple, 

text editor. A dual scheme is an option. For example, the rule base for Harmoneus (a set of decision 

trees for chemical hazard classification) can be edited using a graphical interface but it can also be 

written to, and read from, a source text file. 

The CHMTRN/PATRAN combination was the earliest language to be developed for chemical reaction 

knowledge bases. It was designed to be English-like language. It was not widely adopted outside the 

LHASA project and almost fell out of use. It is still the most powerful and flexible textual language for 

describing chemical reactions. The time is right to make new use of CHMTRN/PATRAN either by 

refining and modernizing it, or as the basis and inspiration for something new, or maybe for both 

options. 

Figure 2. Some CHMTRN statements for a Friedel-Crafts reaction. 
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LHASA revival for forward-synthetic evaluation in CACTVS4 

Wolf-Dietrich Ihlenfeldt, Xemistry, Glashütten, Germany 

LHASA was originally designed to work retrosynthetically. The SAVI3 team have re-implemented 

CHMTRN/PATRAN to use both original LHASA knowledge base entries, and encode new reaction 

knowledge developed after the 1980s. The software is operated in a scripting environment (Python 

or Tcl) and can be adapted to different tasks. SAVI uses the engine for forward reaction prediction to 

generate an ultralarge database of reaction products which are synthesizable in a single step 

(currently) from commercially available starting materials. Starting material scans, forward reactions, 

retrosynthetic scoring, and report generation are derived from a LHASA transform. Ihlenfeldt 

demonstrated these steps for a simple reaction: the Williamson ether synthesis (Figure 3). 

 

Ihlenfeldt showed methoxyethane as rendered (forwardly) by a naïve transform-based enumerator 

from SMIRKS.5 He then showed the results of loading a byte-compiled version of the Williamson 

ether synthesis rule, and querying a few attributes. Reacting a starting material ensemble in a 

forward direction gives a duplicate-filtered list of products which can be formed according to the 

simple reaction pattern in the transform code. In this case, there is only a single product: 

methoxyethane, looking very much the same as the SMIRKS approach.  

The intelligent part, however, is in the retrosynthetic scoring of the forward products in the LHASA 

approach. There are multiple retrosynthetic candidate retroreactions, and each one has its own 

score. The overall score is the best score of any of those. The candidate reactions in this case are the 

six combinations of methanol or ethanol with chloromethane, or bromomethane or iodomethane, 

but which one of the scored alternatives corresponds to the exact reaction used in the forward 

reaction? (Incidentally, the simple algorithm only works only for standard cases such as this ether 

synthesis. Some transforms are more complex, perhaps retrosynthetically attaching “superatoms” 

(e.g., “Alk” for “alkyl”), and then a more advanced substructure matching procedure is needed to 

match the retro reaction and forward reaction.) The reaction carries detailed information about how 

the score was derived. The code is not really human-readable but it can be visualized (Figure 4). 
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(Scoring for symmetrical ethers is slightly more complex, involving some filtering and automatic 

deduplication.) Nonparticipating functional groups can have an effect on retrosynthetic scores. 

Amines, for example, lower the score considerably (Figure 5). 

 

Phenols are more acidic than alkyl alcohols and allow more gentle reaction conditions: “pH9:10” is 

displayed under “Conditions” as a milder alternative (which indirectly has an effect on the 

compatibility evaluation of nonreacting functional groups). If there is another hydroxy group in the 

starting alcohol, and a nonsymmetrical ether is made, the reaction gets seriously downgraded 

(Figure 6). 

Figure 4. Visualization of a LHASA transform. 

Figure 5. Effect of amines on ether synthesis. 
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The transform is stereospecific, and if there is stereochemistry at the reaction center, it gets inverted 

(Figure 7). 

 

The above are some highlights in the top-level transform code, but there are also functions 

implemented in the various auxiliary library files. The library part is a generic inspection engine for 

nucleophilic substitution (SN2) reactions which can detect what can go awry with these reactions. It 

is reusable for all reactions of that class. Some parts of the library code are never executed in this 

transform because of an implicit hard, basic reaction condition setting, as derived from the 

transform context. For the generic SN2, there are about 280 lines of code, more than for the actual 

top-level Williamson transform. Ihlenfeldt presented some examples. The score for vinyl alcohol and 

Figure 6. Effect of additional hydroxy group. 

Figure 7. Stereo inversion in ether synthesis. 
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chloromethane, for cyclohexanol and chloromethane, and for tert-butanol and chloromethane is 83. 

Further examples are shown in Figure 8. 

 

Examples cover cases of ring-specific compilations (bridgeheads, small ring formation, preferred 

elimination on 6-membered rings, and blocked inversion on small rings), steric hindrance, 

topological symmetry versus asymmetry, alternative SN2' reaction mechanisms with allylic 

configurations and their topological equivalence or inequivalence with the SN2 mechanism, 

interfering groups and their effect on selecting suitable starting materials (e.g., forcing use of I or Br 

if Cl is present and to be preserved), and dozens of other factors which are impossible to catch with 

a simple reaction template application mechanism. 

These were the basics of how to run forward reactions, how to score those reactions, and how to 

check that the scored set both actually contains the forward reaction, and has an acceptable score. It 

is also possible to find suitable starting materials for these transforms to batch-generate libraries of 

synthesizable molecules. The LHASA object supports the generation of queries for reagents from the 

patterns for intermolecular or intramolecular reactions, and with constraints for the multiplicity of 

potentially reacting groups. Ihlenfeldt has set up an in-memory sample dataset for demonstration. In 

the standard case, these queries would be run on an SDfile,6 or in the Xemistry4 database cartridge. 

Figure 8. Further examples from auxiliary library files.  
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In summary, Ihlenfeldt illustrated the basics of how to run forward reactions, how to score those 

reactions, and how to check that the scored set both actually contains the forward reaction, and has 

an acceptable score. He demonstrated these steps on a very simple reaction, and highlighted why 

these are much more powerful than the run-of-the-mill transform pattern application in standard 

library enumerators, especially with respect to the reliability of the proposed reactions. 

Using different reaction formalisms to manage reactions and explore chemical space 

Victorien Delannée, Hitesh Patel and Marc C. Nicklaus, National Cancer Institute (NCI) Computer-

Aided Drug Design (CADD) Group, Frederick, Maryland, United States 

Over the past 50 years, different reaction formalisms have been created for different specific 

purposes: unique identification, data exchange, classification, writing transforms, and models and 

predictions. Probably the first reaction format was used in Corey and Wipke’s OCSS7 in 1969. OCSS 

was based on rules to generate new molecules. Since then many different reaction formats have 

been created and are emerging to meet different needs. Delannée and co-workers have created two 

new open-source formats: ReactionCode,8,9 and Smarts and Logic In ChEmistry (SLICE).10 

ReactionCode is a new machine-readable format for reaction searching, analysis, classification, and 

transforms, and for encoding and decoding. The researchers considered the use of Reaxys 

BINCODE11 and ClassCode12 to retrieve reactions in a reaction database, “visualize” them, and make 

inferences. These representations are helpful for similarity search and classification, and they are 

fast and can be automated, but they are overly general (e.g., elements are grouped by atoms, such 

as group 1 instead of chlorine) and they cannot recover the exact reaction. Thus there was a need 

for ReactionCode, a new machine-readable format for reaction searching, analysis, classification, 

transforms, and encoding and decoding.8,9 ReactionCode is a multilayer, machine-readable code, 

which aggregates reactants and products into a Condensed Graph of Reaction (CGR, see the 

following presentation by Alexandre Varnek). The pseudomolecule is encoded by layers, starting 

from the reaction center and moving to the extremities, and it is organized in three blocks (Figure 9). 



9 
 

 

ReactionCode is used for indexing, compression, and fast searching for similar reactions based on 

the reaction center and neighborhood similarities in a database context. It is helpful in graph 

databases. The team has used it in a diversity analysis of the 479,035 reactions in the USPTO 

database.13 ReactionCode identified 9532 different reaction centers. In other words, the UPSTO 

dataset contains 9532 reaction types. The 10 most-represented reaction types are found in 203,776 

(42.5%) of the reactions, and 90% of the USPTO dataset is covered by only 400 reaction types, which 

corresponds to 4.2% of all reaction types identified in this dataset. The NCI team also found that 

4607 reaction types (48.3%) are only represented by one single reaction in the USPTO dataset. 

ReactionCode is a versatile, open source9 reaction transform language which can be used in reaction 

searching and identification, in classification and diversity analysis, and in machine learning. It can 

also be used to identify misannotated reactions and to correct unbalanced reactions.  

In future, sublayers will be replaced by two auxiliary layers, one for charge, isotope and 

stereochemistry information, and the other for SMIRKS capability for properties, and adding 

flexibility. Next there will be a new stereochemistry system (with shorthand and ordered indexes 

based on the Cahn, Ingold, Prelog (CIP) rules) and bonds will be encoded using the number of 

electrons involved in the bond. Half-bonds, ionic bonds and any noncovalent sigma, pi, delta, single, 

double, triple, and quadruple bonds will be determined a posteriori. One- and three-electron bonds 

Figure 9. ReactionCode example.      
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found in radical compounds will be covered and so will three-center, two-electron or three-center, 

four-electron bond systems. ReactionCode will be integrated in SAVI.3 

The second new open-source formats devised by Delannée and his colleagues is SLICE,10 a new 

formalism for encoding chemistries to explore chemical space and move toward target-specific 

library generation. The team wanted to devise an open source and upgradable format to improve 

the speed of compound generation for both coders and noncoders. SLICE is based on 

CHMTRN/PATRAN, discussed earlier in this report. 

A unique strength of CHMTRN is the use of a logic validated by chemists to predict both possible 

failure and success of reactions. It is a reasoning language combining FORTRAN-like syntax and 

English “buzz words” to describe chemical synthesis knowledge. Its capabilities include conditional 

statements (IF … THEN), control statements (FOR EACH), a scoring system, reusability (with no need 

for hardcoded, in-house solutions), and published documentation. 

Unfortunately CHMTRN also has some drawbacks. It is an old, unstructured, and nonstandardized 

language (e.g., “KILL IF THERE IS AN AMINE*3” and “IF THERE IS AN AMINE*3 THEN KILL” express the 

same statement). It is slow: about 2 million CPU hours were needed to generate 1.75 billion 

products. It is also limited. There is no graphical PATRAN editor. CHMTRN is complex (a 

programming background is needed to use it) and there are no writing standards. It works 

retrosynthetically, which makes a forward-synthetic use more complicated, and is currently 

implemented only in the cheminformatics toolkit CACTVS4 after the effective demise of the LHASA 

program. 

The NCI team set the following specifications for the new language, SLICE. Firstly, it must be simple. 

It must be usable by novices without a programming background. It must have a GUI that is easy to 

learn and read. It must need minimal code, and use a structured and controlled language. Secondly, 

it must be powerful. It must be fast, bidirectional (forward and retrosynthetic), have advanced 

usage, and contain all CHMTRN/PATRAN functionalities, and more (e.g., variables, functions, 

external libraries, and operations). Thirdly, it must be open: open source, upgradable, compatible 

with multiple programming languages, and interoperable, allowing maximal CHMTRN to SLICE 

compatibility. 

Writing a transform requires a chemistry description; a chemical pattern description language 

(SMARTS, SMIRKS, and ReactionCode); a reasoning language to encode chemistry rules; and a 

development environment requiring minimal code with a text editor using a template. The easiest 

way of writing a transform would be with a GUI and there is ongoing work on a new GUI based on 

JChemPaint.14 Delannée presented a number of screen shots from this. A logic assistant (Figure 10) 

for writing statements (without the user having to know how to code) in the reasoning language is 

built around a simple structure inspired by “If This Then That” (IFTTT) and powered by Google 

Blockly.15 The transform information is held in an XML file. 
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In conclusion, SLICE is a language dedicated to chemistry. It is fast: 2000 times faster than the 

CHMTRN/PATRAN implementation. It can be used for reaction predictions and for bringing logic to 

SMARTS. It has a unique coding structure for novice users, with no compilation errors thanks to 

preconfigured blocks. Minimal code is needed. SLICE is open source, upgradable, and interoperable. 

Condensed Graph of Reaction: an efficient approach to reactions mining 

Alexandre Varnek1,2 and Timur Madzhidov3; 1University of Strasbourg, France; 2ICReDD, Hokkaido 

University, Japan; 3Kazan Federal University, Russia 

Representing chemical reactions is much more complex than representing molecules: there are 

multiple species (principally reagents and products), reactions can be multistep, and the yield 

depends on experimental conditions. Condensed Graph of Reaction (CGR) is a pseudomolecule 

representing a given reaction (Figure 11). The concept of a superimposed reaction skeleton graph 

was introduced by Yuri Kiho16 and George Vladutz17 and was later reinvented by Shinsaku Fujita as 

an “imaginary transition structure”.18 Gérard Kaufmann and co-workers19-21 at the University of 

Strasbourg called it CGR and used it in reaction classification, reaction rules, and synthesis design. 

Varnek later used CGR to describe reactions in descriptor-based chemical space and to develop 

machine-learning models.22 A software package (CGRtools)23 is publicly available for CGR 

manipulations such as canonicalization and standardization, signature calculation, substructure 

isomorphism, extraction of transformation rules, and reaction enumeration. 

Figure 10. SLICE logic assistant. 
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.  

Reactions can be encoded as CGR/SMILES,24 as CGR molfiles (CGR/MOL), as CGR in silico design and 

data analysis (ISIDA) substructural fragments for machine learning applications,25,26 or as CGR 

hashcodes. For CGR/MOL, the standard fields (atom block and bond block) of an MDL CTfile are 

parsed and visualized by ChemAxon software27 and a CGR block is added. 

Varnek’s team has published a workflow for standardizing, curating, and cleaning reaction data, 

followed by curation of transformations, and curation of reaction conditions and endpoints.28 CGR is 

used in atom-to-atom mapping, reaction role assignment, removal of duplicates, and reaction 

balancing.24 The team has trained a sequence-to-sequence autoencoder with bidirectional Long 

Short-Term Memory (LSTM) layers on SMILES/CGR strings, encoding reactions of the USPTO 

database13
 and has enumerated novel chemical reactions that are stoichiometrically coherent 

(balanced).24 

Madzhidov, Varnek and co-workers28 have reported a reaction standardization protocol followed by 

a comparison of some popular atom-to-atom mapping tools (ChemAxon’s,29 EPAM’s Indigo tool,30 

RDTool,31 NextMove Software’s NameRxn32 and RXNMapper33 from IBM) and some consensus atom-

to-atom mapping strategies. For this purpose, a dataset of 1851 manually curated and mapped 

reactions was prepared and used as a reference set. Success rate varies from 34% (for NameRxn) to 

84% (for RXNMapper). Despite the fact that it has some disadvantages, RXNMapper was selected as 

the best tool, and it was applied to map the USPTO13 dataset. Heuristic rules were used to correct 

erroneous mapping.34  

In a method similar to that of InfoChem’s CLASSIFY,12 the teams of Varnek and Madzhidov consider 

the structural environment in spheres around the reacting centers. Broad classification uses reaction 

centers alone, medium classification uses reaction centers plus alpha atoms (excluding hydrogens), 

and narrow classification uses reaction centers plus alpha atoms (excluding hydrogens and 

consecutive sp3 atoms). In the USPTO database, the researchers found 219,000 CGR motifs of 

“reaction centers plus alpha atoms” in 1.36 million reactions; 1063 motifs occur in ≥100 reactions. 

Rakhimbekova et al. have studied the application domain35 and cross-validation36 of quantitative 

structure-property relationship models based on CGR descriptors. In work soon to appear in 

Mendeleev Communications, they have compared the use of ISIDA fragments and difference RDKit 

fingerprints37 as descriptors in models for the reaction rate constant of Diels-Alder, SN2, and E2 

Figure 11. Condensed Graph of Reaction. 
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reactions and a tautomeric equilibrium constant; CGR descriptors were used in the top-ranked 

models. 

In earlier work, a Ph.D. student in cosupervised by Varnek and Madzhidov built a structure-reactivity 

database of 10,000 manually prepared records for chemical reactions with annotated reactivity data 

and reaction conditions from Viktor Palm’s handbook38 and from Ph.D. theses. Madzhidov and 

Varnek’s group have used this in the first direct QSPR modeling of equilibrium constants of 

tautomeric transformations in different solvents and at different temperatures, which do not require 

intermediate assessment of acidity (basicity) constants for all tautomeric forms.39 A support vector 

regression method (SVM) was used to build the models with CGR descriptors. The training set 

consisted of 785 transformations belonging to 11 types of tautomeric reactions. The models 

obtained performed well both in cross-validation and on two external test sets. Benchmarking 

studies demonstrated that the models outperformed results obtained with a density functional 

theory (DFT) method and with ChemAxon’s tautomerizer40 applicable only in water at room 

temperature. 

The teams have also used generative topographic mapping (GTM, a probabilistic extension of self–

organizing maps)41 to visualize, analyze and model the equilibrium constants of tautomeric 

transformations as a function of both structure and conditions.42 The modeling set contained 695 

entries corresponding to 350 unique transformations of 10 tautomeric types, for which equilibrium 

constant values were measured in different solvents and at different temperatures. The cross-

validated balanced accuracy was close to 1 and the clusters, assembling equilibrium of particular 

classes, were well separated in 2D GTM latent space. Data points corresponding to similar 

transformations measured under different experimental conditions were well separated on the 

maps. SVM methods were compared. 

Another case study is similarity-based assessment of optimal reaction conditions.43 It is assumed that 

similar reactions proceed under similar conditions. For a given query, a tool searches the most 

similar reactions in a database and retrieves their reaction conditions (catalyst, solvent, 

temperature, etc.). The similarity is assessed using the Tanimoto coefficient for bitstrings computed 

for CGRs. CGR-based, in-house tools were used to process data for 142,111 catalytic hydrogenation 

reactions extracted from the Reaxys database.44 These were filtered to 72,000 reactions with four 

functional groups and 67 protective groups. The protective groups were classified as “cleaved” or 

“remaining”, depending on the reaction conditions. The models developed in the study showed high 

accuracy (∼90%) for predicting optimal experimental conditions of protective group deprotection. 

Comparison of the results with Greene’s manually prepared reactivity charts45 showed that reactivity 

assignments for some protective groups in Greene’s charts are erroneous or statistically poorly 

supported. 

CGRs have also been used in de novo design of novel chemical transformations. Varnek’s team has 

used GTM to explore the latent space of the SMILES-based autoencoders and generate focused 

molecule libraries.46 They built a sequence-to-sequence neural network with bidirectional LSTM 

layers and trained it on the SMILES strings from ChEMBL23.47 Very high (>98%) reconstruction rates 

of the test set molecules were achieved. Using GTM, the researchers visualized the autoencoder 

latent space on the two-dimensional topographic map. Targeted map zones can be used for 

generating novel molecule structures by sampling associated latent space points and decoding them 
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to SMILES. In later work,24 novel latent space points were sampled around a map area populated by 

Suzuki reactions and decoded to corresponding reactions. Thirteen Suzuki-like reactions new with 

respect to the training data were detected and five of them have been found in recent publications. 

Varnek concludes that CGR is an elegant way of reducing reaction complexity. It can be used 

efficiently in various cheminformatics applications such as encoding, building databases, reaction 

data curation and visualization, reaction classification, machine-learning and modeling, and de novo 

design of new transformations. 

CSRML, an XML based transform reaction language 

Tomasz Magdziarz, MN-AM, Nürnberg, Germany 

Chemical Subgraphs and Reaction Markup Language (CSRML)48 is an XML-based representation with 

a well-defined object model built around the concept of a chemotype. Chemotypes allow users to 

encode not only connectivity and topology but also various properties of atoms, bonds, electron 

systems, and whole molecules. Annotations and queries can be easily combined with Boolean 

operators. Hydrogen atoms are explicit. CSRML has built-in validation and rich metadata. 

Metadata include XML comments; label, title, comment, description, revision, timestamp and author 

of the CSRML document; and label, title, comment, and description of other elements, including 

subgraphs, molecules, atoms, bonds, and reaction rules. The multiple hierarchy organization of 

subgraphs and reaction rules is shown in Figure 12. 

 

Matching and testing elements are included to assist in the design, development and validation of 

new chemotypes. In addition to conventional representations based on valence shell electron-pair 

repulsion theory, CSRML also provides a novel approach for querying electron systems for cases in 

which the actual order of the underlying bonds is irrelevant and what matters is the type of the 

bonding electron system (e.g., σ or π) and the number of electrons. Magdziarz gave an example of a 

nitro group attached to an aromatic atom, as in nitrobenzene where a maximum of 10 π electrons is 

allowed. A similar electron rule applied in SMARTS may fail or be more complex in cases such as m-

dinitrobenzene where the 14 π electrons cause a mismatch. 

Figure 12. Object model of CSRML. 
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CSRML reaction rules reuse subgraphs with all annotations, including physicochemical properties. 

There is an extensive set of transformation changes. Precise and accurate matchings and product 

generation are featured. The reaction rules have a hierarchy of reaction parts (roles, stoichiometry, 

atom mapping, and subgraphs (including validation)); transformations (bond types and order, atom 

property changes, and absolute or relative changes; and reaction examples (illustration and 

validation). Subgraphs can be defined in place or referenced. Magdziarz presented as an example 

the Diels-Alder cycloaddition reaction of a diene and a dienophile: a pericyclic reaction of six carbon 

atoms and six π electrons. In this reaction activated dienophiles react in relatively mild conditions, 

dienes need to adapt to a s-cis conformation, and electron-rich dienes are favored. Electronic effects 

lower the activation energy: electron-withdrawing substituents on the dienophile and electron-

donating groups on the diene. Steric hindrance is another issue, involving bulky substituents on the 

dienophile, bulky substituents on the termini of the diene, and intramolecular repulsions in the 

diene. 

CSRML takes a two-pronged approach to steric hindrance at the diene (Figure 13). In the subgraph 

approach only one of R or R’ can be a small alkyl (CH3), and one of R1 or R2 can be an even larger 

substituent such as tert-butyl. The second approach uses an atom hindrance property: a measure of 

the sum of volumes of neighboring atoms in a function of inverse squared distance. Termini of the 

diene cannot be sterically hindered and C-2 and C-3 cannot be simultaneously hindered. 

 

Reaction rules can be used to generate reactions for matching reactants to predict, for example, the 

metabolites of a compound. The ChemTunes49 database and knowledge base for safety evaluation 

and risk assessment is a knowledge base of in vitro and in vivo toxicity information. It comprises 

multiple components and workflows to support the safety and risk assessment of chemical 

compounds, including a database with expert quality control; the mechanism of action based 

ToxGPS prediction system for a series of human health and regulatory-relevant toxicity endpoints; 

and the Liver BioPath, a tool for human metabolism prediction. It is a metabolism prediction web 

service based on CSRML rules for phase I/II metabolism. 

Figure 13. CSRML rule with exclusion of steric hindrance at diene. 



16 
 

Magdziarz presented the example of safrole: a weak genotoxic hepato-carcinogen in mice and rats, 

exerting toxicity through metabolic bio-activation.50 ChemTunes Liver BioPath predicted eight 

metabolites of safrole, the first six of which are reported metabolites. The CSRML rules applied are 

shown in Figure 14. Metabolites reported or not reported by Ioannides50 are also indicated in the 

figure. 

 

CSRML is also used in ToxPrint,51,52 a publicly available invariant reference set of structural features 

targeted to cover chemical structures from large toxicity databases and regulatory inventories. The 

ToxPrint chemotype library can be applied by using the ChemoTyper program.53,54 CSRML also has an 

extensive set of literature-based rules covering all major tautomerism types. 

In summary, the proper use of the connectivity and topology in combination with physicochemical 

properties, and the ability to define electron system queries can significantly elevate the accuracy of 

CSRML defined subgraphs. All defined subgraphs can be readily reused in CSRML reaction rules. 

Subgraphs are used to represent and match the chemical species, reactants or products, 

participating in a reaction. Both sides of the reaction equation are thus represented with 

chemotypes and together with a set of transformations allow users to generate accurate reactions 

for matching substrates and products. CSRML reaction rules have been used in metabolism 

prediction. CSRML also has applications in tautomerization, toxicity fingerprints, and many other 

fields. 

Documentation and publication of reactions with Chemotion ELN and Repository 

Nicole Jung, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany 

To facilitate and improve academic work on research projects, an electronic laboratory notebook 

(ELN) and a repository for research data have been developed as open-source software at the 

Karlsruhe Institute of Technology (KIT). The two systems can be used in combination or 

independently to plan, record, store, and disclose experiments or research data in chemistry.  

ELNs are a key prerequisite to comprehensive documentation of research processes, the digital 

storage of research data, and their reuse. ELNs allow faster research processes and faster access to 

information. They enable researchers to store data in a standardized way and to manage research 

data based on automatically generated identifiers and descriptors. This is important for the single 

Figure 14. CSRML reaction rules applied to safrole metabolites. 
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bench chemist but it is even more important for the scientific community which can benefit from 

this resource of well-organized research data, if mechanisms for their disclosure are established. 

Researchers do not supply the information to the community. Chemotion55 addresses the challenge 

of digitization of chemistry:. There are 1800 reactions in the repository at KIT and they relate to 

25,000 reactions in the ELN. In the Chemotion ELN, users can save reactions and samples, make 

calculations, and generate reports. Reaction-related data include free text entries as well as 

standardized descriptors. Literature references are also stored. Data can be imported with 

ChemScanner which extracts chemical information from ChemDraw files (.cdx, .cdxml, or cdx(ml) 

files containing .doc and .docx files). ChemSpectra allows users to view, edit and export spectra from 

mzML XML-based files for proteomics mass spectrometric data56
 and Joint Committee on Atomic 

and Molecular Physical Data (JCAMP-DX) files.57 The spectral viewer function does not require any 

other software to be installed. Jung showed a movie of IR data analysis and uploading of IR data to 

the ELN. During the process, ontologies are applied and metadata are added. 

Reactions and data can be exported and reports can be produced. Microsoft Excel lists based on 

SMILES identifiers (and soon, the IUPAC International Chemical Identifier, InChI)58 and reaction 

information can be produced. Collections can be exported as zip files (reaction information as 

JavaScript Object Notation (JSON) and associated files). Whole Chemotion data collections can be 

exported as SDfiles,6 .xlsx, .docx, and JSON. Videos of Chemotion functionality can be seen on the 

Chemotion website.55 

The configuration of different report functions allows users to produce publications including 

chemical structures and a DOI link to the repository. Some parts of the ELN are machine readable 

and some taxonomies are included but others are neither standardized nor machine readable. There 

is a need to extend report functions for reactions and to support different standards (e.g., 

EnzymeML,59 and the Unified Data Model (UDM),60 described later in this report). Users can publish 

chemical structures, and attach characterization data and make them citable by DOI using the 

Chemotion repository61 for molecules, reactions, and research data. Registration with a few scientific 

data providers is automated. Data from the repository are checked for input to PubChem.62 

The next steps for machine readability include concepts to gain machine readable reaction 

descriptions and intuitive use for scientists, to enable transfer into protocols for machines, and to 

establish efficient workflows to mirror reactions to automated processes. KIT is investing about €4 

million (euros) plus personnel through 2021 to 2022 to establish an automated platform for 

chemical synthesis. Partners and collaborators are welcomed; BASF is already a participant. Open 

hardware and software concepts are preferred. 

Germany is funding its National Research Data (“Forschungsdaten”) Infrastructure (NFDI)63 with over 

85 million euros for the next 10 years. This covers research data management for all areas of 

science, represented by 30 consortia. The NFDI recognizes that digital data storage is an 

indispensable prerequisite for treating new research issues, generating findings and making 

innovations. NFDI4Chem64 is the chemistry consortium in the NFDI. It is an initiative to build an open 

and findable, accessible, interoperable, and reusable (FAIR)65 infrastructure for research data 

management in chemistry. Free facilities are now available. There are no excuses for not sharing 

data. 
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RXNO, the name reaction ontology 

Colin Batchelor, Royal Society of Chemistry, Cambridge, United Kingdom 

Thomas Hofweber in the Stanford Encyclopedia of Philosophy defines the larger discipline of 

ontology as having four definitions66 but for the purposes of this presentation, an ontology is a 

machine-readable account of what things exist in a domain and the relations that necessarily hold 

between those things. Ontologies tell you what holds by definition and they help constrain what you 

can say about what is happening in particular. Good ontologies are tautologous, pedantic, trivial, and 

obvious. You can use the language of ontologies to label things in a database. An example is given in 

Figure 15. 

 

Ontologies are useful in making data ready for use in AI applications. They provide stable identifiers 

that can be reused across applications. They capture tacit knowledge and what is obvious to human 

beings but not to computers. They are human-readable definitions in plain text and, for automatic 

classification, machine-readable ones (Figure 16). They offer typed relations for systematic 

correspondences (e.g., between methods and instruments, and between reactions and products). 

The Open Biological and Biomedical Ontology (OBO)67 framework lets you use other ontologies to 

help build your own. It is “lighter weight” than Web Ontology Language (OWL).68. Figure 16 shows 

the application of OBO to the RXNO name reaction ontology,69 a formal ontology of chemical named 

reactions. Ontologies give specifications for synonyms (exact, broad, narrow, and related) for use in 

Figure 15. Example of an ontology. 

https://plato.stanford.edu/index.html
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text mining. They are an important part of linked data projects and graph databases in the life 

sciences. 

 

The Royal Society of Chemistry (RSC) was an early adopter of ontologies for annotating entities in 

text mining. RSC’s Project Prospect70 ran from 2006 to 2010, aiming at semantic annotation of 

chemistry articles, using manual annotation and text mining to output enhanced HTML, RSS feeds, 

and open-source ontologies. There are very well-established and understood methods for indexing 

and searching chemical structures, providing many chemists with the chief route into the literature. 

Chemical structures can be extracted at least semi-automatically from molecule names71 and author-

supplied graphics, in particular PerkinElmer’s .cdx files, but chemistry papers talk about more than 

just chemical structures. 

What ontologies might be used for chemical reactions? The IUPAC “color books”, the world’s 

authoritative resource for chemical nomenclature, terminology and symbols, might be considered: 

 Green Book: Quantities, Units and Symbols in Physical Chemistry 

 Red Book: Nomenclature of Inorganic Chemistry 

 Blue Book: Nomenclature of Organic Chemistry 

 Purple Book: Compendium of Polymer Terminology and Nomenclature 

 Orange Book: Analytical Nomenclature 

 Silver Book: Compendium of Terminology and Nomenclature of Properties Clinical 

Laboratory Sciences 

 White Book: Biochemical Nomenclature 

 Gold Book: Chemical Terminology 

The Red Book does not give definitions but it does tell you how to name compounds. The Gold 

Book72 is almost an ontology. It has definitions in the right form but the text is written for human 

beings rather than for machines. It is also available in XML and JSON. ChEBI,73 a chemical ontology, 

was developed at the European Molecular Biology Laboratory-European Bioinformatics Institute 

(EMBL-EBI) as a spinoff from the Gene Ontology.74 It covers small molecules, subatomic particles, 

parts of a small molecule, biological roles, and applications. The RSC has developed three 

ontologies:75 the chemical methods ontology (CHMO), describing about 3000 classes of experiments 

and instruments; the name reactions ontology (RXNO), describing about 600 classes of organic 

syntheses; and molecular processes (MOP), describing molecular processes in general (partly based 

on ChEBI). 

Figure 16. Reaction ontology example. 
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The RXNO ontology unifies several previous attempts to systematize chemical reactions including 

the Merck Index and the hierarchy of Carey et al.76 To devise RXNO, three chemists (two organic and 

one theoretical) took 100 name reactions (from personal knowledge and several compendia of 

named organic reactions) and decided on the principal axis of classification: the objective of the 

reaction. They developed an initial flowchart (Figure 17) and refined the classification in batches of 

100 reactions. The objective of the reaction was chosen for classification because mechanisms are 

difficult to determine and can depend on reaction conditions. There is also no point in replicating 

what can be done with reaction fingerprints or reaction embeddings. Therefore organic reactions are 

represented based on the intent of the chemist, that is, what the chemist was trying to achieve with 

the reaction. 

 

Some further relations were used: “protects” connects a protection reaction to a given group; 

“deprotects” connects a deprotection reaction to a given group; “has specified product”, “has 

specified reactant”, “has catalyst”, and “has intermediate” connect reactions to their participants in 

different roles; and “achieves planned objective” connects a planned process to an objective 

specification. The ontology for a Diels-Alder reaction is shown in Figure 18. 

Figure 17. Development of RXNO. 
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SMIRKS and generic Reaction IUPAC International Identifiers (RInChIs)77 are not included in RXNO 

because the RSC found it very hard to get them right and the data structures implied by OWL were 

not a good fit. 

RXNO is an open-source ontology, available in OWL and OBO formats, under a CC BY 4.0 license.75 It 

has about 600 classes with full human-readable definitions and varying degrees of axiomatization. 

RXNO is used in the Unified Data Model60 and in NextMove Software’s NameRxn.32 NFDI4Chem64 

have been using the ontology and have been improving the documentation and submitting new 

classes. There is also anecdotal evidence of use of RXNO inside big pharma. 

Tracking reactions with the Reaction InChI (RInChI) 

Jonathan Goodman, Cambridge University, Cambridge, United Kingdom 

Goodman’s research group studies reactions using experimental methods and computational 

techniques. The first approach gives rich data, rather slowly. DFT methods are accurate but also 

rather slow. The team uses them both to get quantitative information about reactions and also to 

develop qualitative models to help people understand reactions: what picture can you draw on your 

fume-cupboard to tell you which catalyst to use? 

1,1'-Bi-2-naphthol (BINOL) is an organic compound that is often used as a ligand for transition-metal 

catalyzed asymmetric synthesis. A related reaction78 is shown in Figure 19. BINOL has axial chirality 

and the two enantiomers can be readily separated and are stable toward racemization. Lou et al.79 

reported the asymmetric allylboration of ketones using 3,3'-Br2-BINOL; the reaction products were 

obtained in good yields and high enantiomeric ratios. Goodman’s team has used DFT calculations78 

to establish the identity of the reacting chiral species. The results show that a cyclic Lewis acid-

activated boronate is the most reactive species on the basis of calculated energy barriers, and it is 

Figure 18. RXNO for the Diels-Alder reaction. 
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only this species that leads to the correct enantiomer. The stereoinduction can be rationalized in 

terms of the competing chair-like transition structures. 

 

Chiral phosphoric acids have become powerful catalysts for the stereocontrolled synthesis of a 

diverse array of organic compounds.80 Catalysts based on the BINOL-derived phosphoric acid scaffold 

show a large structural diversity, especially in the 3,3' substituents, and little is known about the 

molecular requirements for high selectivity. As a result, selection of the best catalyst for a particular 

transformation requires a trial and error screening process, as the size of the 3,3' substituents is not 

simply related to their efficacy: the right choice is neither too large nor too small. Goodman’s team 

has developed computational approaches to identify and quantify structural features on the catalyst 

that determine selectivity.80,81 

A large number of organic reactions feature post-transition-state bifurcations.82 Selectivities in such 

reactions are difficult to analyze because they cannot be determined by comparing the energies of 

competing transition states. Molecular dynamics approaches can provide answers but are 

computationally very expensive. Goodman’s team has reported an algorithm that predicts the major 

products in bifurcating organic reactions with negligible computational cost. It requires two 

calculated transition states, two product geometries, and no additional information The algorithm is 

quick and simple to run and, except for two reactions with long alkyl chains, calculates selectivity 

more accurately than transition state theory alone.83 

Goodman’s team has also reported a system for automatic processing and assignment of raw 13C 

and 1H NMR data. The system, DP4-AI,84 has been integrated into a computational organic molecular 

structure elucidation workflow. It maintains the same high rate of correct structure elucidation as 

DP4 using NMR descriptions written by an expert chemist but has achieved a 60-fold increase in 

processing speed, and near-elimination of the need for scientist time, when rigorously evaluated 

using a challenging test set of molecules.85 

All these examples illustrate that the more we learn about reactions, the more we learn about their 

complexity. To understand them, we need as many data on reactions as possible but the data are 

useful only if we can analyze them using the resources that we have available. RInChI is an important 

tool for addressing this challenge.77 InChI58 is an identifier for molecules; RInChI is an identifier for 

reactions. RInChI enables users to make connections between reactions from different data sources, 

even when the number of reactions being considered is very large. It was designed to be easy to 

construct and to use, to be based on InChI, to be canonical, and to be based only on the relevant 

reaction, not on a central authority. 

Like InChI, it has a layered structure (Figure 20): 

Figure 19. Asymmetric allylboration of ketones. 
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 Layer 1: RInChI version, and underlying InChI version 

 Layer 2 and 3: starting materials and products 

 Layer 4: solvents, catalysts, and other “stuff” which survives the reaction 

 Layer 5: direction: d+, d-, d=, (dx, for failed), or unspecified 

 Layer 6: count of no-structure materials. 

Nothing else is included. For comparison, reaction SMILES handles only reactants, reagents, and 

products, and is not canonical. 

 

Hashed representations of RInChIs (RInChIKeys) are suitable for database and web operations. The 

current version of the RInChI code provides three options containing successively less information: 

Long-RInChIKeys, Short-RInChIKeys and Web-RInChIKeys. Web-RInChIKeys deduplicate InChIs over 

all groups and hash all major and minor InChI layers into a fixed length string ignoring the specific 

role of the reaction components. 

Goodman presented the results of preliminary tests on RInChI using the SAVI database of more than 

a billion reactions.3 He downloaded 1,748,464,003 SAVI-generated products and reactions on April 6, 

2021. He found 1,094,782,440 Web-RInChIKeys of which 1,050,824,321 were different. Hash 

collisions are possible, but unlikely in a database of this size. Most of the duplicates are present as a 

pair but one Web-RInChIKey (IPWKGWBMOUVREXHYK-NUHFFFADPSCTJSA) is present 12 times: 

there are 12 different SMILES for the product (Figure 21) and its tautomers. He calculated that there 

are, at most, 1,094,782,429 reactions in SAVI. 

RInChI=1.00.1S/C2H6O/c1-2-3/h3H,2H2,1H3!C4H8O2/c1-2-3-

4(5)6/h2-3H2,1H3,(H,5,6)<>C6H12O2/c1-3-5-6(7)8-4-2/h3-5H2,1-

2H3!H2O/h1H2<>H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/d= 

Layer 1, Layer 2, Layer 3, Layer 4, Layer 5 
Layer six is omitted, because all the molecules involved have structures 

Figure 20. RInChI example: three different representations of the same 
equilibrium all generate the same RInChI. 
 

H2SO4

H2SO4

H2SO4
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Goodman concludes that RInChI is complicated enough to be useful. It is good at linking reactions 

and good at differentiating reactions. RInChIs are indeed easy to use, based on InChI, canonical, and 

based only on the reaction, not on a central authority. 

Papers do not usually report negative results, even though these can be the key to understanding 

reactivity and the limits of the applications of new synthetic methods. Goodman is working with 

Prof. Simon Woodward at the University of Nottingham to develop a standard set of conditions 

which will be applicable to as many reactions as possible. These will not always be successful, of 

course, but researchers may be more ready to report a reaction which failed because of the 

constraints on the conditions than one which failed despite attempts to optimize the conditions, and 

robots will record the outcome of the standard conditions before optimization processes. It is hoped 

that this will lead to more reporting of reactions which did not deliver the anticipated outcomes. 

New RInChI features are being developed, including ways of recording generic reactions and atom 

mapping, which should lead to the easier grouping of reactions into related classes using the RInChI. 

The RInChI should be an effective tool in promoting the use and reuse of open data in the discovery 

of new reactions. 

Structure transformations with Ambit-SMIRKS 

Nikolay Kochev1,2, Svetlana Avramova2, Nina Jeliazkova2; 1University of Plovdiv, Department of 

Analytical Chemistry and Computer Chemistry, Plovdiv, Bulgaria, 2Ideaconsult Ltd, Sofia, Bulgaria 

AMBIT86 began in 2005 as part of the European Chemical Industry Council (CEFIC) Long Range 

Initiative. It is built on top of the Chemistry Development Kit (CDK).87 It has many cheminformatics 

modules but the current presentation concentrated on Ambit-SMARTS88 and Ambit-SMIRKS.89 SMiles 

ARbitrary Target Specification (SMARTS) is a language used for describing molecular patterns and 

properties. Its rules are straightforward extensions of SMILES. The language SMIRKS is defined for 

generic reactions. It is a hybrid of SMILES and SMARTS and a restricted version of reaction SMARTS 

involving changes in atom-bond patterns. 

Ambit-SMIRKS has functionality for parsing of SMIRKS linear notations into internal reaction 

representations based on the CDK objects; application of the stored reactions against target 

(reactant) molecules for actual transformation of the target chemical objects; reaction searching; 

stereo information handling; product postprocessing, etc. The transformations can be applied on 

various sites of the reactant molecule in several modes: single, nonoverlapping, nonidentical, 

nonhomomorphic or externally specified list of sites using an efficient substructure searching 

algorithm. Ambit-SMIRKS handles the molecules’ stereo information and supports basic chemical 

stereo elements implemented in the CDK library. The full SMARTS logical expressions syntax for 

Figure 21. Web-RInChIKey: IPWKGWBMOUVREXHYK-NUHFFFADPSCTJSA. 
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reactions specification is supported, including recursive SMARTS expressions and additional syntax 

extensions. The architecture is shown in Figure 22. 

 

Ambit-SMIRKS is distributed as a Java library under a Lesser General Public License (LGPL).90 

SMIRKSManager and SMIRKSReaction Java modules can be fine-tuned with a set of flags to carry out 

various functions some of which Kochev discussed. 

The reactant part of the SMIRKS linear notation is used as a definition of a SMARTS substructure 

search query, where the mapping indices are ignored. Ambit-SMIRKS uses the substructure search 

implementation of Ambit-SMARTS to find the reaction sites. The substructure searching can be 

performed in several modes: single, non-overlapping, non-identical, nonhomomorphic, or externally 

specified list of sites (Figure 23). A reaction transformation according to the substructure match 

modes is shown in Figure 24. 

 

Figure 22. Ambit-SMIRKS architecture. 

Figure 23. Substructure search match in various modes for cyclohexane-1,2-diamine. 
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The SMIRKS linear notation supports atom mapping. Unmapped atoms on the reactant side of the 

SMIRKS, and all bonds incident to unmapped atoms are removed from the resulting products. 

Unmapped atoms on the product side of SMIRKS are created and added to the resulting products 

and the corresponding new bonds (from the unmapped atom to other atoms) are created as well. In 

all other cases where atoms are “rearranged” by changing, adding or removing bonds, obligatory 

usage of mapped atoms is considered a good practice. An incorrect usage of unmapped atoms leads 

to side effects and “strange” or incorrect application of the reactions SMIRKS. Even if specifying 

syntactically correct SMIRKS, the chemical logic when using unmapped atoms is different and Ambit-

SMIRKS will follow exactly the transformation logic. For normal chemical transformations, SMIRKS 

atom mapping is needed and within the Ambit-SMIRKS module it is considered as a good practice.89 

An exception to the recommended practice of fully using mapped atoms is the case of explicit H 

atoms. The majority of cheminformatics software systems, as well as Ambit-SMIRKS, handle the 

hydrogen atoms in two ways: as implicit H atoms described as attributes to other heavy atoms and 

as explicit H atoms which are treated as normal heavy atoms. Usually, the implicit hydrogen atoms 

approach is preferred but using explicit H atoms in SMIRKS transformations allows robust and more 

precise description of the chemical reaction logic. The three main scenarios of H atom treatment 

within Ambit-SMIRKS software are handling H atoms explicitly, or handling H atoms implicitly or 

explicitly with an H atom transformation option, or handling H atoms “automatically”.89 Handling H 

atoms automatically is not recommended but there are ways of doing it, with postprocessing clean-

up. 

Cheminformatics systems handle aromaticity in two major ways: by Kekulé resonance structure 

representations and by delocalized aromatic systems, typically represented by aromaticity flags of 

atoms and bonds. The aromaticity information within SMIRKS is primarily used to define the 

substructure searching queries for identification of reaction transformation sites. Making use of such 

information (particularly within the product side of the SMIRKS) to define aromatic system 

transformations is quite challenging. Within Ambit-SMIRKS, it is considered a good practice to 

handle aromatic transformation as Kekulé structures, since in this way all bonds orders are defined 

explicitly and the SMIRKS transformation of the bonds is clearly defined as well. After applying a 

Figure 24. Modes of reaction application. 
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reaction rule, Ambit-SMIRKS performs a postprocessing aromaticity detection algorithm and if 

aromatic systems are formed due to the bond changes, the aromatic atom and bond flags are 

assigned accordingly. The resulting molecules could be represented in aromatic form or stay in a 

Kekulé form.  

Some may consider the need to rely on particular aromaticity detection algorithm a disadvantage. 

This is only a reasonable point when the cheminformatics system lacks a good aromaticity detector. 

Ambit-SMIRKS relies on the CDK aromaticity detector which has been significantly improved in the 

latest releases of CDK. When users prefer their own aromaticity detector, Ambit-SMIRKS offers 

another option. 

The stereochemistry in cheminformatics systems is represented in two main ways. In one, the 

absolute stereochemistry approach describes the elements of the stereo group by ordering the 

stereo elements on the basis of absolute chemical logic that does not depend on the atom 

numbering. For example, the CIP priority rules are used in some cases of computer representation 

and handling of molecular stereo information. The widely used approach for stereo handling on a 

topological level is the so called relative stereo representation. The relative stereo approach is used 

for the CDK-based internal stereo representation of a molecule, as well as for the molecule SMILES. 

The SMILES, SMARTS and SMIRKS notations are based on the relative stereo approach, which is used 

to describe the stereo configurations in molecules, search queries and reactions. The stereo element 

priorities within relative approaches depend on the atom numbering and thus influence the 

algorithms of atom iteration used to define the sets of stereo elements. The priority of the stereo 

elements in the case of SMIRKS, SMARTS or SMILES is defined by the order of appearance in the 

linear notation, which is equivalent to usage of random atom numbering. 

Ambit-SMIRKS stereo handling is based on the relative approach for stereo information 

representation, as both the SMIRKS linear notation and the internal CDK objects are based on it. The 

major types of stereo elements supported by CDK library are tetrahedral chiral atoms, cis/trans 

double bond configuration, and allene atom chirality. Ambit-SMIRKS stereo transformation 

functionality depends on whether or not the stereo transformation is directly specified by SMIRKS. If 

the stereo information is not directly specified by SMIRKS, Ambit-SMIRKS handles three cases: stereo 

element preservation, stereo element change of ligand, and stereo element removal. If the stereo 

information is directly specified by SMIRKS, Ambit-SMIRKS handles three cases: creating a new 

stereo element, stereo element update or change, and stereo element removal.89 

Since its initial development for the purpose of metabolite generation within Toxtree (a method for 

toxic hazard estimation using a decision tree approach),91 the Ambit-SMIRKS module has been used 

in various cheminformatics projects, both developed by the authors of the package and by external 

teams. These include enviPath,92 a database and prediction system for the microbial 

biotransformation of organic environmental contaminants; BioTransformer,93 a software tool that 

predicts small molecule metabolism in mammals, their gut microbiota, and the soil and aquatic 

microbiota; ExCAPE-DB,94 a chemogenomics resource of over 70 million structure-activity 

relationship data points from PubChem62 and ChEMBL, 47 and GLORY, a generator of the structures 

of cytochrome P450 metabolites.95 The Ambit-SMIRKS GUI90 and the Ambitcli90,96 command line Java 

application for processing chemical files, structure standardization, import into an AMBIT database 

and processing AMBIT database entries are publicly available. 
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Reaction SPL documents 

Gunther Schadow, Pragmatic Data, Indianapolis, IN, USA 

The purpose of a reaction data format is to share reaction knowledge and data between different 

people and systems. Many people and systems have created reaction data formats; each having 

their own point of view and specific purpose and limitations. The idea of standardization is that 

many points of view and purposes are represented and can relate to each other, without an 

insistence on details some just do not care about, and without inhibiting others to express all their 

details. We should want a format that support the full life cycle without barriers among R&D 

experiment, publications, patents, documentation and control of the production process, regulatory 

applications and monitoring, and trade and logistics. 

Data are important but language has infinite expressiveness. Humans like documents with their 

freedom of unconstrained expression. Data are best carried in the documents where they originate 

because information extraction and data mining are hard and error prone; it is a chore for people to 

have to enter data into other systems; and data entry to other systems divorces data from the 

original source. Databases with “comment” fields are not as useful because the original train of 

thought is butchered. Rich text document support is important for expressivity. Data should not be 

divorced from text. If you have a downstream system that requires data alone to be shared, and 

cannot handle user text input, the text can simply be excluded for that system, but the users should 

not be deprived of a place to express themselves completely. 

Structured Product Labeling (SPL)97 is a robust yet fairly light XML document standard. It uses a 

highly generic but usefully refinable data schema, which is, like a language, highly expressive. It 

originated in medicine but almost all use cases have been examined in great detail: people, 

organizations, products, and devices; science and measurements, including complex data, 

waveforms, and imaging; missing data and uncertainty; workflows, protocols, and processes; and 

scale from geography down to organization, building, devices, substances, molecules, and even 

subatomic structures, if need be. 

Schadow has worked in health and life science data interoperability for over 30 years and created 

convenient and useful solutions, including major parts of the HL7 standard98 which comes from the 

medical domain but which includes all scientific data types. The Unified Code for Units of Measure 

(UCUM), adopted by HL7, has been the recognized, de facto standard for units for over a decade. 

Schadow has also created a comprehensive standard of essential real world responsive data types 

that was ratified by the International Standards Organization (ISO), and a generic, powerful 

“language”-based HL7 Reference Information Mode (RIM). He has applied all these tools to the SPL 

standard for the U.S. Food and Drugs Administration (FDA), for regulated products and substances, 

for over a decade. The FDA Pharmaceutical Quality/Chemistry, Manufacturing and Controls 

(PQ/CMC) terminology is ready for use. 

Many models and schemas for reaction representation (RInChI, CSRML, the UDM, and the Open 

Reaction Database (ORD)) are discussed elsewhere in this report. Chemical Markup Language 

(CML)99 and the reaction molfile6 are not. CHMTRN/PATRAN (discussed earlier in this report) is a 

domain-specific programming language. Software systems have been written by StructurePendium 

(related to RInChI and UDM, also discussed in this report), KIT (see Chemotion above) and NextMove 

Software (see the discussion about Pistachio below). 

https://cactus.nci.nih.gov/presentations/NIHReactInf_2021-05/Schadow_Reaction-SPL.ppt
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UDM, CSRML, and ORD extract data on the data package; reactions; molecules; analysis; and basic 

data types, including physical quantities, and units (scalar, vector, matrix, etc., and string, Boolean, 

text, date and time stamps, and ID). The data package records author, version, bibliography, 

literature references, and attached documents. Reaction data for UDM, CSRML, and ORD include a 

representation; conditions (in the case of UDM and ORD); properties perhaps; set-up and work-up in 

the case of ORD; and not usually atom-mapping. (Note that CGR carries atom-mapping.) UDM’ 

reaction representation encapsulates RXNfile6 or RInChI.77 CSRML models reaction rules, and goes 

from generic entities to specific experiments and processes. UDM represents reactants, products, 

reagents, catalysts, solvents, etc. UDM and ORD encapsulate various molecule formats as a string; 

CSRML has substructures, references, atom, bond, and electron system. Analytical data are carried in 

UDM as name-value pairs for “observations, property”; in ORD, they are embedded in “Outcomes: 

Analysis, ProductMeasurement”. No system handles unintended reactions and impurities well. 

Schadow gave his own impressions from analysis of UDM, ORD, CSRML. All of them have some 

aspects of documents with author, version, etc. but none has free, mixed, content-rich text (except 

CSRML to some extent, perhaps). In UDM and ORD, chemical details are encapsulated within only 

higher level structures; CSRML has a detailed chemical model for molecule, substructure, atom, 

bond, and even electron system. ORD takes a very experimental point of view with outcomes, not 

outputs, and the identity of the output molecules is only the result of analytic observations (a 

posteriori). UDM takes a more a priori approach with chemical structure assertions of inputs and 

outputs, whereas CSRML is very oriented toward chemical structure a priori. A universal standard 

should accommodate all these aspects as desired by the author of any particular document. 

An ontology describes what an entity is (and does), whereas an epistemology concentrates on how 

we know what it is. Epistemology deals with observable analysis of something, for example, the 

inferred molecule; or change as seen in observable properties, for example, the inferred mechanistic 

model. We need to consider a thing versus the property of a thing versus observations and 

measurements about the thing. 

In Schadow’s philosophy, a substance (chemical entity) can be thought of as a molecule or a 

material. A molecule is an abstract concept, only known in quantities, moiety, atoms, bonds, and 

electrons. A material exists on a macroscopic scale: we can experience instances of materials (e.g., 

this bag of NaOH pellets) not just abstract kinds. Materials are substance plus form, some forms can 

be counted (e.g., tablets) other measured in mass or volume (e.g., powder, liquid). Materials are 

created by a maker, through some process, in a certain quality or purity (or impurity). Reactions are 

change, or (inter)action among substances. On a molecular scale, reactions have a theoretical, 

physicochemical mechanism; on a macroscopic scale, they are performed as an experiment or 

manufacturing process. Process versus process step, and reaction versus reaction step are 

considered. There is also a modality (or “mood”) dimension of reactions and processes as defined, 

planned, executed, observed, or hypothesized. Reactants, products (including reversibility), solvents, 

catalysts, etc. are all “interactors” which participate in the reaction. They are called “participations” 

(some people call them “roles”). Other participants are macroscopic vessels and instruments 

(devices). Specification, analytics, and properties of things are considered as opposed to reactions, 

conditions, and control parameters. 
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Schadow showed a typical HL7 RIM (Figure 25) and a detailed schema for how the concept might be 

applied to a chemical process (Figure 26). He demonstrated the XML document package, showed 

rendering and validation, and ran through the XML in some detail to indicate how practical and 

applicable this solution is. 

 

SPL is practical. The drug industry has experience with it. SPL has proven ability to clean up 

databases. It has tools: XForms, W3C XML Schema and Schematron, rendering stylesheet (XSLT), and 

database import. A draft specification for PQ/CMC was developed for the FDA in 2017 and is ready 

for use when somebody wants an actual solution. Schadow has been working on standardization for 

30 years, and on SPL since 2003; Pragmatic Data LLC has existed since 2008 and they have 

implemented dozens of business cases taking only weeks and months, not years, thanks to SPL. 

Figure 25. HL7 Reference Information Mode (RIM). 

Figure 26. SPL schema for a chemical process. 
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XML is well-known in the publishing industry and is similar to HTML. It is ideal for text and data, and 

has proven tools for processing: XPath to navigate and validate (Schematron); XSLT as a sound and 

fast, data-oriented programming language; HTML as the lingua franca for rendering; CSS flexible 

styling; and HTML5, CANVAS, and SVG, for multimedia, and animation, without limits. XML is 

preferable to JSON. JSON is generally used for smaller data packages not documents; XML is easier 

to read for text than JSON and is also not hard to parse in JavaScript. For 30 years, Schadow has seen 

silver bullet fads come and go; for 15 years, he has worked with XML tools and nothing has 

surpassed them. His solution can transform to and from any syntax; what matters is the conceptual 

model. 

There are other document standards. XML DOCBOOK is very powerful, but perhaps overkill. DOCX 

should be supremely powerful, and most people use Word, but it is very hard to work with DOCX. 

HTML is perhaps too simple and is screen-oriented. TEX is much more mature and widespread, and 

produces scientific documents perfectly laid out for printers and publishers. Schadow would favor it 

but would still transform the data in XML and XSLT. 

His next steps are to publish the specification, an implementation guide, and detailed validation 

procedures. He will create examples and conversion tools; extend the SPL stylesheet for rendering 

reaction details; and provide an online resource for preview, display, and rendering, validation, and 

some XForms-based authoring. He will test the system with interested parties, and he welcomes 

input and participation. 

The Unified Data Model (UDM) 

Elena Herzog1, Frederik van den Broek2, Gerd Blanke3, Jarek Thomczak4, Markus Fischer1; 1Elsevier 

Information Systems, Frankfurt, Germany; 2Elsevier, Amsterdam, The Netherlands; 
3StructurePendium Technologies, Essen Germany; 4Informatics Unlimited, Cambridge, United 

Kingdom 

Most of the reaction-centric cheminformatics systems (for reaction searching and navigation, 

reaction similarity and classification, automatic determination of reaction mapping, and mechanism 

elucidation) were developed before the mid-1990s, but there has been a renewed interest for the 

last seven years. Much recent research has been carried out on improved reaction prediction by 

using machine learning; improved reaction mechanism recognition by machine learning; synthetic 

feasibility; retrosynthesis (design, planning, and optimization); and reaction outcome prediction 

(prediction of products, yield, specificity, and safety). The ultimate goal is fully automated synthesis 

machineries. 

Researchers want to have quick and easy access to all necessary data. In the ideal world everything 

would be seamlessly integrated: integration of data would allow search across different domains. In 

the real world, data generation, exchange, integration, management, and use by the pharmaceutical 

industry is much less straightforward. In-house, chemists collect data from instruments, and store 

and use them in ELNs and laboratory information management systems (LIMS), and in drug design 

and modeling. They want to exchange data with contract research organizations (CROs) and 

commercial suppliers. The data generation challenge involves dozens of different file formats. The 

data then have to be integrated in warehouses, lakes, and data marts which are used for data 

mining, analysis, and reporting, and for preparation of patents, and so on. The problem is that there 
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is no common language to exchange data among most of these tools. This makes data exchange and 

integration unnecessarily expensive. 

The UDM60 aims at improving data exchange and integration of chemical reaction data for efficient 

search, visualization, analysis and predictive modeling. The UDM project is a collective effort of 

vendors and life science organizations to create an open, extendable, and freely available reference 

model and data format for the exchange of experimental information about compound synthesis 

and testing. 

The project carried out nine interviews concerning data use cases in the pharmaceutical industry and 

found that the vast majority of users wanted data integration from various ELNs; data exchange 

between pharma and CROs; data preparation for AI and machine learning; data exchange between 

various applications (e.g., LIMS, molecule design tools, and visualization tools); data comparison 

(e.g., predicted and published synthesis routes, routes predicted from different AI and machine 

learning models); data preparation for ingestion into in-house repositories (warehouses, lakes, and 

data marts); and data transfer from and to laboratory devices. An additional opportunity is to make 

data FAIR.65 

The data integration task for the UDM project is to collect and integrate existing in-house and 

publicly available reaction data; to use machine learning, AI, and similarity methods to improve and 

optimize the prediction of chemical reactions; to integrate synthesis machineries into the workflow, 

and to become FAIR. 

The origin of the UDM was a Roche project (in 2012-2013) to integrate Roche in-house chemistry 

data into Elsevier’s Reaxys44 database system. It was further developed by Roche and Elsevier, with 

contributions from other pharmaceutical companies, as a data transfer format for chemical 

reactions from a variety of ELNs into Reaxys.  

To unify the different data models into one common system (UDM), several public reaction 

databases licensed by Roche had to be integrated. Fortunately, most of them largely shared the FIZ 

Chemie ChemInform data model for reactions. Additionally, the UDM had to integrate the model of 

the Synopsis/Accelrys Protecting Groups database and the MDL Metabolite database which 

contributed about one third of all data field definitions. Reactions from the Roche electronic lab 

journal, with a mostly “flat” approach to store reaction and reaction data, had no significant 

influence on the UDM development. 

Version 1.0 of UDM was developed to define the transfer model for data export into Reaxys. It was 

written for the MDL RDfile format,6 with BIOVIA’s Pipeline Pilot100 as the transfer framework. The 

internal ELN data were exported using NextMove Software’s HazELNut101 into Pipeline Pilot; the 

other databases were exported from MDL ISIS Direct into Pipeline Pilot. 

UDM version 2.0 moved from an RDfile-based format to an XML-based format with significant 

advantages. RDfile implies 7-bit ASCII content whereas XML uses the 8-bit Unicode Transformation 

Format (UTF-8). The RDfile format uses naming conventions to represent a hierarchical data model 

with potentially multiple data hierarchies. In general, the actual format of RDfiles depends on the 

data model of the database to which it is linked so that RDfiles from different sources may not be 

compatible. In comparison, UDM 2.0 uses one explicit data model for its XML schema. In an RDfile 
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there is no type control or validation of values of individual data field values whereas XML has strong 

typing and controlled vocabularies. RDfiles represent chemical reactions in the RXN format that 

internally uses the molfile format for each reaction component, whereas in the UDM, multiple 

representations are allowed (e. g. explicit molfiles for each reaction component, RXN files, Reaction 

InChIs, etc.). Validation, processing and conversion of RDfiles require dedicated tools or libraries 

whereas standard XML technologies provide a large part of the data processing operations. 

Elsevier took over the rights for the further development of UDM at the end of 2013. It has become 

the major exchange format for Reaxys data. In 2017, Elsevier donated the UDM to the Pistoia 

Alliance102 for further development. The founders of the Pistoia working group were BIOVIA, 

Elsevier, GSK, Novartis, and Roche. The current UDM team includes AstraZeneca, Bionocvision, 

BIOVIA, Bristol-Myers Squibb, CAS, ChemAxon, Discovery Information, Elsevier, GSK, IDBS, Ideayabio, 

InfoChem, Informatics Unlimited, KIT, NextMove Software, PerkinElmer, Roche, and 

StructurePendium. 

 

In the UDM, reactions are represented by the following entities: 

 Reaction diagram (with optional atom-atom-mapping) 

 Molecular properties 

 Reactant, product, catalyst, solvent, reagent properties 

 Conditions 

 Analytical data 

 Preparation section 

 Scientists 

 Literature and patent reference 

 Reaction outcome 

 Reaction scale 

 Reaction classes 

 Semantic annotations 

 Comments 

 Vendor data.  

Figure 27. Simplified UDM data model. 
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A simplified data model is shown in Figure 27. A history of UDM releases is shown in Figure 28. 

BIOVIA provides a UDM node with the latest (2021) version of Pipeline Pilot. 

 

Under investigation for future enhancement are improved documentation of XML tools to work with 

UDM and conversion and validation tools; fuller support for multistep reactions; better support for 

the results of reaction predictions; extensions for biological data, materials and predictive data; and 

extensions of supported chemical entity types (mixtures and formulations and chemical entities that 

are described by recipes). In perspective is a move from the Unified Data Model to the Universal 

Data Model. 

The Pistoia Alliance closed the UDM as a Pistoia project with the successful delivery of version 6.0 

and the UDM is being transferred into a community-led development. The UDM project can be 

downloaded from GitHub.60 The transition conditions for the UDM into an open source project have 

been negotiated. A new organization to handle the financial issues and to define the governance for 

the open source development is being sought. Interviews with the stakeholders are underway to 

investigate the current usage of the UDM and ask for potential financial support. The UDM is now 

available under an MIT license. 

Pistachio 

John Mayfield, Ingvar Lagerstedt, and Roger Sayle, NextMove Software, Cambridge, United Kingdom 

Pistachio103 is a document-centric database of 13.3 million reactions automatically extracted from 

U.S. Patent Office (USPTO), European Patent Office (EPO), and World Intellectual Property 

Organization (WIPO) patents. JSON and SMILES are provided for bulk analysis and model building. 

There is a containerized web application for exploring and querying the data. The aim is to extract 

reactions as described in the original document, whatever faults they may have. This may include 

mistakes in the original description such as incorrect IUPAC names. 

The first patent extraction process104 from NextMove Software was based on work published in 

Daniel Lowe’s Ph.D. thesis,105 but used NextMove’s LeadMine106 instead of Open-Source Chemistry 

Analysis Routines (OSCAR4).107
 LeadMine improves chemical entity and physical quantity 

recognition, and corrects spelling. The Pistachio data have had a significant impact.33,108-114 Note that 

Figure 28. UDM releases. 
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although there are 13.3 million reactions in Pistachio, many are identical by connection table, or 

almost identical, as evidenced by the fact that there are only 4.2 million RInChIs (without any role 

normalization). 

The USPTO CC-Zero reaction data up to September 2016 are freely available.13 Pistachio is not free. It 

uses improved extraction methods and is updated quarterly with the latest patent data. In addition 

to the U.S. patents, Pistachio includes reactions extracted from EPO and WIPO text, as well as USPTO 

sketches. NameRxn32 classification and atom-to-atom mapping are provided for 71.5% of the 

reaction citations. Example and step labels, solvent mixtures, solvent associations, document 

assignees, and targets and diseases are also now captured. Due to the improved extraction methods, 

and tweaks to filtering, Pistachio is a not quite a “superset” of USPTO but the majority of the 

reactions in USPTO CC-Zero are included. 

Mayfield outlined the sectioning, tagging and tokenization, parsing, action phrases, and reaction 

assembly stages of the text mining operation.115 Since 2001, the USPTO has redrawn chemical 

sketches with ChemDraw for all patent applications and grants. This dataset provides a large 

collection in which to identify conventions and rectify systematic problems. By identifying and 

resolving these problems, NextMove Software has extracted a high quality collection of fragments, 

molecules, reactions, and schemes using their Praline tool.116 Pistachio includes the reaction SMILES 

extracted using this tool. 

Reactions are filtered and roles are re-assigned before atom-to-atom mapping; if a reagent 

contributes any atom to the product it is considered a reactant. NameRxn was originally written as a 

classification tool; mapping is a by-product. It has 1543 rule-based classes, so it is easy to update a 

mapping disagreement. It has higher precision but lower recall than some other mapping algorithms 

as it can only those reactions it can recognize. Typically, on an in-house ELN the coverage is 70-80% 

but it is easy to construct a benchmark on rarely used reactions that NameRxn will not recognize. 

Mapping is fast and takes only a few hours to remap the entire database; remapping is carried out 

before every release. In Lin et al.’s benchmarking study,28 NextMove software demonstrated the 

lowest number of correct and incorrect atom-to-atom mapping results compared with the other 

tools because it adopts the principle that no answer is better than a wrong answer. There are also 

cases where a product atom is unmapped because the software did not know where a group came 

from, a group or catalyst was missing, or there was a stoichiometry problem (multiple groups from 

one reactant). 

Indigo30 and RXNMapper33 fail in a reaction example containing the faulty name 8-(3,5-Bis-

trifluoromethyl-benzoyl)-3-furan-2-yl-methyl-1-o-tolyl-1,3,8-triaza-spiro[4.5]decane-2,4-dione. 

NextMove software changes the name to 8-(3,5-Bis-trifluoromethyl-benzoyl)-3-furan-2-ylmethyl-1-

o-tolyl-1,3,8-triaza-spiro[4.5]decane-2,4-dione and maps the reaction correctly. In a case study of 23 

reactions from the patent US 2020/0087299 A1, NameRxn succeeded in over 80% of mappings and 

Indigo in under 10%. 

NextMove Software appreciates feedback and will work on correcting any errors reported. Plans for 

the future include identifying compound numbers that appear only in reaction schemes, better 

indication of quality (integration of RXNMapper, mapping bench indicators, and boot-strapping 

reaction sequences to resolve ambiguous chemical names), handling reactions from patents not 
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written in English, and addressing the fact that general procedures and example references currently 

resolve only compounds. 

Machine learning with CAS reaction data 

David Dastrup, CAS, Columbus, OH, USA 

CAS has a comprehensive collection of connected science: over 250 million substances and more 

than 130 million single and multistep reactions have been gathered from over 50,000 scientific 

journals and documents. Fifty languages are translated, and patents from over 64 patent offices 

worldwide are indexed. CAS scientists curate, connect, and analyze scientific knowledge. Curation 

gives meaning to data, information across disciplines is connected, and analysis reveals insights. 

Substances in the CAS Reactions collection are linked to CAS REGISTRY117 which contains 182 million 

organic and inorganic substances and about 70 million protein and nucleic acid sequences published 

since the early 1800s. Reactions published since 1840 are indexed with yield data, detailed reaction 

conditions (time, temperature, pressure, and pH), and reaction descriptions such as 

“stereoselective”. 

Points for consideration when curating data for machine learning are reaction representation, data 

capture, reaction selection based on project, and data exchange. Published reactions are not 

applicable for all objectives. What is disclosed and what can be directly implied from the literature 

has to be represented. An example of CAS reaction capture is shown in Figure 29: the literature item 

is shown at the top, and at the bottom is part of a CAS SciFindern record for the first reaction 

captured by CAS. 

 

In collaboration with a customer, CAS selected a subset of reactions for a particular transformation 

with yields evenly distributed across selected content, ensuring a variety of reactant and catalyst 

structural features. Failed reactions are not often reported but low-yield reactions are included in 

Figure 29. CAS data capture (bottom) for a literature reaction (top). 
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this subset of 10,000 reactions which was supplied to a CAS customer for machine learning 

purposes. Reaction data are exchanged as RDfiles (with atom-mapped reactants and products);6 as 

XML files with reactants, products, reagents, solvents, catalysts, conditions and notes; and as SDfiles6 

for substance representation. 

Dastrup presented a case study in which Bayer sought to predict the viability of reactions for 

synthetic planning, with an emphasis on novel areas of science.118 Lack of training data diversity had 

impacted the performance of a synthesis planning application: testing against selected reaction 

classes initially showed only 16% predictive power. The diversity of the predictions is correlated with 

the breadth of the data source: how many reaction types are represented and how diverse the 

reactants and product are in each reaction. The accuracy of the predictions depends on the quality 

and consistency of the data and their representation: the number of examples available for each 

reaction type and the spectrum of reactants, products, and reaction conditions available. Bayer’s 

data diversity was strengthened with custom-curated CAS reactions to provide additional examples 

to underrepresented templates. 

The training set initially used was commercially available positive data (8 million reactions) and 

implied synthetic negative data (24 million). Then 14,500 curated CAS reactions for specific 

templates were added to the training set and accuracy for the test set of selected reactions 

increased to 48%. This enhanced predictive power within “rare” reaction categories now contributes 

new, useful results and opens up previously difficult areas of science. CAS Reactions are available 

through the CAS SciFinder Discovery Platform119 and STN IP Protection Suite.120 Customers can tailor 

their own data and delivery format through CAS Custom Services.121 

The Open Reaction Database 

Connor Coley, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA and Steven 

Kearnes, Relay Therapeutics, Cambridge, MA, USA 

The Open Reaction Database (ORD)122 is designed to support machine learning and related efforts in 

reaction prediction, chemical synthesis planning, and experiment design. Its goals are to provide a 

structured data format for chemical reaction data; to provide an interface for easy browsing and 

downloading of data; to make reaction data freely and publicly available for anyone to use; and to 

encourage sharing of precompetitive proprietary data, especially high throughput experimentation 

(HTE) data. ORD’s initial goals are not to capture reaction processes as action sequences for robotic 

execution, or to store processed, structured, analytical data or other inputs that are not directly 

related to the machine learning efforts, or to integrate model building or other use of the data as 

part of the database.  

Members of the governing committee are: Connor Coley (MIT), Abby Doyle (Princeton), Spencer 

Dreher (Merck), Joel Hawkins (Pfizer), Klavs Jensen (MIT), and Steven Kearnes (Relay Therapeutics). 

Advisory Board members are: Juan Alvarez (Merck), Alán Aspuru-Guzik (Toronto, and MADNESS), 

Tim Cernak (Michigan and Entos), Lucy Colwell (Cambridge, SynTech, and Google), Werngard 

Czechtizky (AstraZeneca), Matthew Gaunt (Cambridge and SynTech), Mimi Hii (Imperial, and ROAR), 

Greg Landrum (T5 Informatics), Fabio Lima (Novartis), Christos A. Nicolaou (Lilly), Sarah Reisman 

(Caltech), Matthew Sigman (Utah), Jay Stevens (BMS), Sarah Trice (Entos), and Matt Tudge (GSK). 
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The ORD schema captures the most important aspects of reactions in a structured format since 

structured data enable downstream machine learning applications. Guided by a recent survey, the 

focus is on single-step batch reactions. Additional details are in a flexible, unstructured format. 

Chemists’ expectations around structure and nomenclature are matched. ORD records what 

physically occurred in a chemical reaction and de-emphasizes recording of a chemist’s intent. For 

example, ORD records the actual masses and volumes that were used to create a stock solution, not 

the target concentration. 

Primary uses of the ORD are in synthetic organic chemistry. For high-throughput experimentation, 

data are recorded in spreadsheet formats including only varied parameters; one template reaction is 

defined to specify all aspects held constant; and the dataset is defined by iterating over the 

spreadsheet and creating one reaction entry per experimental condition. For traditional bench 

chemistry, a chemist uses a graphical web form to define the settings and outcomes of all reactions 

used within a paper or project; the structured dataset is saved, and uploaded to the ORD and used 

as part of the supporting information; and a list of reactions is exported from the dataset in a text 

format like that of supporting information in a journal article. 

The schema is shown in Figure 30. The protocol123 is not unlike XML but is smaller, faster, and 

simpler. In the readable definitions, each field gets a name and a tag number. Storage formats are 

text and binary. The code compiles to language-specific classes. 

 

Kearnes showed a reaction example and its inputs (Figure 31), its setup and conditions (Figure 32), 

and its outcomes (Figure 33). There is an interactive editor.124 

Figure 30. ORD schema. 
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Users can search the database by exact match or substructure for multiple inputs or outputs, and 

look up reactions by ID, DOI, or reaction SMARTS. A Python client with equivalent functionality is 

also provided. 

The data are available on GitHub125 under a CC-BY-SA 4.0 license. Daniel Lowe’s USPTO grants 

dataset13 is also available, converted from CML.99 Schema, code, and web interfaces are available on 

GitHub under an Apache 2.0 license.125 Examples and tutorials are available on GitHub and YouTube. 

The terms of use have been drafted in kind by Google lawyers. Alpha testing began in September 

2020, beta testing and prelaunch expansion in November 2020. Public launch is planned for mid-

2021. ORD will be open to all contributors for submissions; specific contributions from industry and 

Figure 31. Example of ORD reaction input. 

Figure 32. Example of ORD reaction setup and conditions. 

Figure 33. Example of ORD reaction outcomes. 
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academia will be invited; and downstream use in machine learning and other applications will be 

solicited. 

Using reaction data for generative molecular design 

Valerie Gillet, University of Sheffield, Sheffield, United Kingdom 

The many different approaches to de novo drug design126 first used in the 1990s had restricted 

sampling of chemical space. Scoring tended to be 3D-based (e.g., it predicted binding) and the 

methods were agnostic of chemical synthesis. Reaction-based design of new molecules uses 

transformation rules extracted from collections of known reactions and the aim is to restrict the 

enumerated chemical space to a manageable number of synthetically accessible structures. 

Generative model approaches typically use joint distributions to generate new molecules (usually as 

SMILES strings) with characteristics similar to the training data. They take no direct account of 

synthetic accessibility.  

In reaction-based approaches, a typical approach to account for synthetic accessibility has been to 

encode a fixed set of known transformations which can then be applied to starting molecules. For 

example, the Flux program127 is a fragment-based de novo design tool in which a simple 

retrosynthesis method is used to fragment molecules into building blocks. The building blocks can 

then be used to construct new molecules.  

The reaction-based de novo design research of Gillet’s team has focused on using reaction vectors 

(RVs)128 derived from large collections of known reactions. RVs represent the structural changes that 

take place at the reaction center along with the environment in which the reaction occurs. They are 

counts of atom pair descriptors that change during the reaction: negative ones for those removed 

from reactant(s) and positive ones for those gained in the product(s). A database of reactions is 

converted into a database of RVs with literature references. A structure generation algorithm applies 

RVs to previously unseen starting materials in order to suggest novel syntheses.128 The reaction 

center is described by AP2 atom pairs and the center is extended through the use of AP3s (Figure 

34). The fragmentation and reconstruction algorithm applied during RV database generation enables 

fast structure generation: hundreds of structure generation operations per second. 

 

In the first part of the procedure, reactions have to be cleaned. All species not involved in reaction 

mapping (e.g., catalysts and reagents) are removed. Reaction balancing is then carried out, adding in 

species not included in the reaction and separation of reactions. AP2s and AP3s are then calculated 

and the RV is validated for structure generation. Duplicates are finally removed. Gillet’s team 

processed 1.8 million reactions from the USPTO database.13 Sixty seven percent of the reactions in 

AP2: X1(n,p,r)-2(BO)-X2(n,p,r) 
AP3: X1(n,p,r)-3-X2(n,p,r) 
 
X = element type 
n = number of bonds to heavy atoms 
p = number of π bonds 
r = number of ring memberships 
BO = bond order 

Figure 34. Reaction vector atom pairs. 
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the database had RVs with redundant AP2s and AP3s; 18% failed the cleaning stage; and 9% gave 

unique unclassified RVs. Following cleaning, calculation of RVs, and removal of duplicates, the RVs 

corresponding to a reaction which had been annotated by class were validated. Of the 115,602 

unique classified RVs, 92,530 were validated.  

To test whether the method can reproduce known drugs, the team used an approach similar to the 

pseudoretrosynthetic design protocol of Flux 127 (Figure 35) but with fragment combinations driven 

by RVs. The ligands fragmented were 73 of the top 200 prescribed drugs in the United States in 

2017. Similar fragments were retrieved from a database of 750,000 reagents in the Enamine 

database.129 The 92,530 validated RVs were used in de novo molecule generation. Similarity 

calculations for the Enamine searches and for similarity of the output molecules to a known drug 

were based on RDKit Morgan fingerprints.130 The top scoring compound generated for 70% of the 

drugs had more than 0.5 similarity to the parent drug. 

 

Another validation was also devised to test whether products from the RV method are synthetically 

accessible. The team used 15,000 starting materials (fragments, leads, and drugs) selected from 

ZINC131 and 10,000 reagents also selected from ZINC. A set of 26,757 single-step reactions was 

extracted from Journal of Medicinal Chemistry publications covering the period January–September 

2018, using Reaxys,44 and was cleaned. Using 4500 RVs from this dataset (“JMC”), 8.91 million 

products were generated, 8.2 million of which were unique, leading to 8.24 million unique readable 

products after invalid SMILES had been removed. Of these 8.24 million products, 88.98% were 

synthetically accessible according to RAscore.132 

In a prospective design study, the aim was to generate compounds with poly [ADP-ribose] 

polymerase 1 (PARP1) activity, maintaining PARP1 affinity, reducing affinity for antitargets (P-

glycoprotein (Pgp) and breast cancer resistance protein (BCRP)), and improving blood brain barrier 

penetration. Fragments from PARP1 ligands were used to search 750,000 reagents in the Enamine 

database, and the 93,000 RVs from the USPTO database were used in de novo generation (see the 

flowchart at the top of Figure 35). For scoring, a QSAR regression model was built from 1800 

compounds in ChEMBL.47 Classification models were built from 500 Pgp and 250 BCRP (substrates 

and nonsubstrates, respectively) and from 2000 positive and negative blood brain penetrators, 

extracted from the literature. In the final selection, functional group transformations were applied to 

Figure 35. Flux flowchart. 
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compounds identified as reactive using Hann definitions.133 Unsuitable compounds located by 

searching for various SMARTS patterns were filtered out and the remaining compounds were docked 

to the Protein Data Bank (PDB)134 structure 4RGE using GOLD.135 

Following manual inspection of the docking poses, 20 compounds were selected for synthesis. All 

were predicted as PARP1 active, and nonsubstrates of Pgp and BCRP, and able to penetrate the 

blood brain barrier. None was available for purchase or was in ChEMBL47 or PubChem.62 Eight of the 

20 compounds were submitted for synthesis by medicinal chemists at Evotec. The proposed 

synthetic routes according to RVs were inspected and adjusted according to reagent availability 

(cost, delivery times, etc.), additional steps required (e.g., protection chemistry) and successful 

conditions. The compounds are currently being tested for PARP1 activity. Three are “scaffold hops” 

based on known scaffolds, the others are novel. 

The reaction databases used in the work above were relatively small. Commercial reaction databases 

can contain millions of reactions and a mechanism to control the combinatorial explosion achievable 

with de novo design is required, especially when multistep reactions are considered. As modern drug 

discovery is a multiobjective optimization problem, further work has focused on embedding the 

structure generation algorithm within an iterative loop to provide populations of molecules that 

satisfy multiple objectives while also having a high degree of confidence that they are synthetically 

accessible. 

One approach is to use a recommender system136 to filter the RVs by recommended reaction classes. 

Gillet’s team has used two related machine learning models: a reaction classification model137 and a 

reaction class recommender.138 The former is a multiclass model which takes in a set of reaction 

vectors labeled by reaction class and predicts the reaction class of a previously unseen reaction. The 

recommender is a multilabel model which takes in a set of starting materials represented as 

molecular descriptors and labeled by reaction classes, and predicts a list of recommended reaction 

classes for a previously unseen starting material. 

The training set for the reaction classification model was 111,000 unique RVs, represented as AP2s 

and AP3s, from granted patents in the USPTO database. Random forest (RF) was selected as the best 

machine learning method. For internal validation, 336 classes with >30 RVs were selected from the 

whole dataset and divided 40:60 into a training set and a test set. For external validation, 25,000 

unseen RVs were extracted from USPTO patent applications (i.e., RVs from USPTO grants were not 

included). The model performance was similar to that of the model of Schneider et al.139 but the 

dataset was extended from 50 to 336 classes. The model was combined with a conformal prediction 

approach to return a confidence in the prediction. 

A limitation of RVs is that they account for structural changes that occur at the core of a reaction 

only, and they do not consider the presence of competing functionalities that can compromise the 

reaction outcome. The reaction class recommender enhances the reaction vector framework to 

address this issue. A training set of starting materials was extracted from 1.1 million classified 

reactions. Starting materials with identical descriptors were merged and the reaction class labels 

were appended. The data were split into 80% used for training and 20% for testing. The external set 

used in validation was JMC. Extensive experiments were carried out for optimal training of the 

recommender, combining two sets of classification labels with nine molecular descriptors, and four 

multilabel approaches. Multilabel classification problems are generally addressed using two 
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alternative methods: problem transformation (PT), where the multilabel problem is transformed to 

be compatible with traditional classifiers such as random forests (RF) or SVM; and algorithm 

adaptation (AA) methods (e.g. multilabel k-nearest neighbors). In preliminary work, the PT method 

gave better performance than AA so Gillet’s team focused on PT methods which can be divided into 

binary relevance, classifier chain (CC), and label powerset. Avalon and FeatMorgan fingerprints gave 

the best performance followed by MACCS fingerprints.138 Some results are shown in Figure 36. 

`  

The recommender was further validated in a procedure similar to the one described earlier for the 

retrospective design of known drugs (73 of the top 200 prescribed drugs using 750,000 Enamine 

reagents and 93,000 RVs). Results (Figure 37) suggest that the use of the recommender drastically 

reduces the number of solutions explored by the algorithm while preserving the chance of finding 

relevant solutions and increasing the global synthetic accessibility of the designed molecules. 

 

Gillet’s team is currently developing a reaction-based de novo design algorithm based on Monte 

Carlo tree search (Figure 38). A simulation step is used in this approach whereby an intermediate 

molecule is scored on the basis of the structures that can be generated from it. 

Fingerprint Setup “Micro” recall “Micro”precision “Micro” F1-score 

Avalon 1024-bit CC-RF 0.29 0.76 0.42 

MACCS CC-RF 0.25 0.69 0.37 

 

Test set 

Fingerprint Correct Wrong No recommendation 

Avalon 1024-bit 33.5 21.9 44.6 

MACCS 37.1 23.1 39.8 

 

External set 

Figure 36. Reaction class recommender: validation (1). 

Figure 37. Reaction class recommender: validation (2). 
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SynSpace: multistep forward-synthesis for scaffold hopping and generative design in 

synthetically feasible chemical space 

Greg Makara, ChemPass, Budapest, Hungary 

Historically, the lead discovery process at a big pharmaceutical company takes 2.5-4.0 years, 

consuming the resource of 250 full-time equivalent staff. The design-make-test-analyze (DMTA) 

cycle time and the number of cycles are critical factors in getting a drug to market earlier. Chemical 

synthesis is by far the longest and most expensive stage, taking 0.5 –4 months per cycle. The data of 

“stragglers” miss out on several cycles; compelling design ideas are hard to dismiss even where there 

are perceived synthetic challenges; and it is hard to drop a compound once synthetic effort is 

underway as “there is always another route”. Off-the-shelf and virtual commercial catalogs will have 

little impact after lead finding. 

Consider a lead optimization workflow in which 300,000 building blocks are reduced to 110,000 

dockable compounds by various filters. About 30,000 of the docking hits are submitted to machine 

learning and free energy perturbation (FEP) procedures, 5000 are selected, and after further 

refinement, about 35 are selected. Retrosynthesis can be carried out at the end, after all the 

expensive virtual screening and filtering processes, or a lot of money could be spent on running 

retrosynthesis on 100,000 compounds, or millions of compounds, most of which get thrown out in 

the docking and FEP stages (though perhaps RAscore132 can help). 

It would be much better if the entire idea space were synthetically feasible, so that costly processes 

could be carried out on relevant, synthetically feasible chemical space. All designed structures would 

be worthy of evaluation and there would be no wasted resources and cost, assuming that the 

designed space were as good as that offered by deep generative design or simple enumeration. 

Therefore ChemPass design technology looks at what can be synthesized from starting materials, 

intermediates, or lead structures. Technology development was required to solve rule-based AI for 

forward in silico synthesis, molecule design based on multistep in silico synthesis, and control of the 

combinatorial explosion. SynSpace140 offers customized ideation in synthetically feasible space, with 

about 300 transformations in the current version. It is a user-friendly computational tool that can 

bridge the gap between medicinal and computational chemists, making preclinical research more 

Figure 38. Monte Carlo tree search. 

https://cactus.nci.nih.gov/presentations/NIHReactInf_2021-05/Makara_Slides_05-19-2021_FINAL.pdf
https://cactus.nci.nih.gov/presentations/NIHReactInf_2021-05/Makara_Slides_05-19-2021_FINAL.pdf
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efficient: computational chemists do not need synthesis knowledge and medicinal chemists do not 

need cheminformatics knowledge. 

There are SynSpace modules for multiple design tasks:  

 reaction-based design for library design (including DNA-encoded libraries)  

 starting material base design for side-chain analogue design 

 scaffold hopping and scaffold analogue design 

o 1-step process, 1-Click design 

o 2-step general scaffold design 

 multistep and multisite library enumeration 

 retrosynthesis 

 derivatization design (DD) for automated generation 

 automated three-step generative design (reactant-based design). 

SynSpace 1-Click scaffold design (for forward synthesis and 3D overlap) is a simple tool that requires 

no cheminformatics skill set. The design outcome is influenced by simple user settings for H-bonding 

features, aromaticity, and ring size. An intelligent ring closing method is included so that bicyclic 

derivatives of monocyclic leads can be easily explored. New scaffolds with properties, synthetic 

information, and novelty assessment can be displayed in a spreadsheet format. 

There are two proprietary generative design tools: reagent-based generative design and 

derivatization design.141 The latter offers simple control on the number and type of variations, the 

depth of modification at each site (exploration or exploitation of scaffold hopping and variational 

analogues), similarity, and desired set size. Simple user inputs drive the fully automated process. All 

the designed molecules possess vital synthesis, reagent, and vendor data. 

Makara presented a DD example (Figure 39). There were 5214 products when the similarity 

thresholds were set as in Figure 39A. Positional (or reaction step) contribution to the total result set 

depends on the reagent (positional) similarity range set by user (the primary driver); commercial (or 

custom uploaded) reagent diversity; and reaction type (bimolecular better than monomolecular.) 

Figure 39B shows the contributions to diversity for Figure 39A. Figure 39C shows the contributions to 

diversity for the case when all similarities are set to 0.7 and there are 9264 products. The positional 

(or reaction step) contribution to the total result set has now become well distributed. 
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The ChemPass team have reported a case study with the discoidin domain receptor 1 (DDR1), 

comparing derivative design (DD) to generative design by generative adversarial network (GAN).142 

SynSpace DD is superior to the industry standard deep design142 in this study: it has a much higher 

hit rate, better docking scores, and more new motifs. It can be used in early lead optimization: it 

needs no large training set and a user can start from one hit or lead. It can effectively optimize a 

lead, or create new lead classes, or do both at the same time. It produces synthetically feasible 

compounds: users have had an 85% wet lab success rate for schemes with 3-6 steps. 

Makara summarized lead generation via scaffold hopping, derivatization design, and docking pose 

analyses in the DDR1 use case. Scaffold 1 with a new DDR1 motif from the derivatization design case 

study had a GlideScore of -13.1 and docking ligand efficiency (DLE) 0.62. (Ponatinib has a score of -

15.4, DLE 0.54, and IC50 9 nM.) ChemPass has a tool for automated analysis of docking results (see 

below) which flags structural irregularities, leading to false positives (inactive structures). Of course, 

experimental spot checking should be done to confirm this. Scaffold 1 had flagged poses. 

When docking was carried out in 20,000 analogue space, all the docked molecules were flagged. The 

best GlideScore was -16.7 with DLE 0.65. Exploration with 1-click scaffold design led to 39 relevant 

scaffold analogues with desired features. Scaffold 2 had Glide SP score -12.5 with DLE 0.55, and no 

flags; Scaffold 1 control had Glide SP score -14.0 with DLE 0.60, flagged. Scaffold 2 was exploited by 

docking in 30,000 analogue space. Many docked analogues had no flags. The best GlideScore was -

16.9 with DLE 0.68, and no flags. Two compounds were selected for synthesis and testing. One 

related to Scaffold 1 had GlideScore 15.5, flagged. IC50 was >10uM. One compound related to 

Scaffold 2 had GlideScore -14.9 and no flags. It had an IC50 around 100nM offering an attractive entry 

point for further optimization. Exploration and exploitation in synthetically feasible lead analogue 

Figure 39. Derivatization design example. 

Figure 39A 

Figure 39B Figure 39C 
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space have become simple, rapid, and cost-effective processes, running virtual cycles, as seen in the 

example, or traditional DMTA cycles. 

Techniques to lower the false positive rate in docking have been reported.143,144 One technique144 is 

somewhat similar to one of the decoy finding tools ChemPass have developed and used in the 

example above for flagging docked structures. ChemPass’s experimental data for the flagged 

structure with IC50 >10uM confirm the tool’s red flagging the compound, while the second, with IC50 

100nM and no flag, is experimentally confirmed to be active. 

Additional in-house tools in AI-assisted discovery include active learning, desirability scoring, 

machine learning and deep learning models, and automated analysis of docking results. Active 

learning enhances throughput and speed. Active learning selection and desirability scoring 

outperform GANs and medicinal chemists. 

Deep learning models to predict reaction conditions 

Matt Clark, Elsevier, Philadelphia, PA, USA 

There are many reasons for wanting to find the best conditions for a given reaction. Augmenting 

computer retrosynthesis to help evaluate paths based on conditions can help to identify reactions 

with conditions suitable for automated systems. It can also provide options for greener conditions by 

predicting when greener solvents and reagents will work; reduce costs by selecting less expensive 

reagents and solvents; and circumvent patented processes with alternative conditions. 

Chemical reactions can run under many conditions. Process chemists like reactions such as Suzuki 

coupling which give a high yield under many conditions. Clark displayed a reaction which runs to 

100% yield with many conditions. This reaction has high “condition diversity”: a measure of the 

diversity of conditions possible to carry out a reaction. It has many solvents, reagents, and catalysts 

nearly all of which work to provide high yield. The way that a deep learning model is trained can be 

customized to emphasize which factor makes one set of conditions more desirable. Many reactions 

have only one set of conditions but it could be that other, untried conditions would work even 

better. The Reaxys44 reaction with the most sets of conditions has 2,839 unique sets of conditions 

and the reagents are diverse.  

Clark’s aim, given a reaction, expressed in reaction SMILES, was to suggest the best reagents, 

catalysts, time, temperature, and associated yield using an AI model. He created a neural network 

model based on vectorized reactions and conditions. He trained it on Reaxys data and all reagents 

and conditions reported for each reaction. Organic reactions alone were selected. The reagents, 

solvents, and catalysts were modeled as a “one-hot” bitmap, one for each reagent (Figure 40). Since 

the same reaction can be carried out with different reagent sets, each row is really a “variation”. The 

network looks at all the variations of all reactions in the training. The model can then suggest the 

prioritized best reagent set for a test reaction. 
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The reaction descriptors are Morgan 1024 bit fingerprints: reactant(s) fingerprint + product(s) 

fingerprint + Xor(reactants, products), where Xor encodes changes that took place between 

reactants and products. The descriptor thus has 1024*3 bits. 

Conditions are grouped to predict a “class” of conditions more reliably. Ranges are selected by 

evaluating the histogram of observed values in Reaxys. The prediction therefore gives the ranges of 

time categorized as 1, 6, 12, and 24 hours; temperature categorized as –78, 0, 20, 50, and 100 

degrees, and yield categorized as 25, 50, 75, and 100%. The network (a Keras Tensorflow system) is 

trained to predict a reagent, solvent, and a time, temperature, and yield set based on reaction 

fingerprints. It is a “classification” of which reagents and conditions are appropriate. Of all the 

networks tested, the one in Figure 41 worked best. The model was trained on 90% of 8,137,207 

organic reactions. The internal test set was the 10% that constituted the most recent reactions. 

 

For the Reaxys reaction with the most reported conditions (2,839 unique sets of conditions), the 

predicted conditions are among the many 100% yield conditions (Figure 42). 

Figure 40. One-hot encoding. 

Figure 41. Best neural network. 
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The predictions for the most recorded Suzuki reaction (Figure 43) are good even though the model 

was trained on all sorts of different reactions. 

 

Clark also tried an example from a recent publication on reaction prediction.145 His method 

predicted the reagents, solvent, and temperature correctly; the time and yield predictions were not 

so good (Figure 44). 

 reagents

oxygen (0.91) 
dihydrogen peroxide (0.43) 

tert-butylhydroperoxide (0.20) 
2,2,6,6-Tetramethyl-1-piperidinyloxy free radical (0.13) 

 potassium bromide (0.09)

 solvents

water (1.00) 
acetonitrile (0.56) 

dichloromethane (0.32) 
toluene (0.13) 

 sulfuric acid (0.12)

 temperature
100C (0.33) 

20C (0.33) 
 50C (0.18)

 time
1h (0.28) 
6h (0.18) 

 24h (0.18)

 yield
100% (0.39) 

25% (0.32) 
 75% (0.21)

 sensitivity  8.803

 

Figure 42. Example of prediction results. 

Reported Reagents 

Name Count 

potassium carbonate 859 

sodium carbonate 144 

potassium phosphate 135 

cesium carbonate 126 

palladium diacetate 115 

tetrabutylammonium bromide 85 

potassium hydroxide 62 

palladium dichloride 47 

sodium hydroxide 31 

potassium tert-butylate 23 

 

Figure 43. Suzuki reaction. 
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A team at MIT has reported four “worst case” examples.146 Clark tried them in his own system. The 

first (Figure 45) is multistage; modeling does not suggest a number of stages. The use of ammonia 

and lithium are suggested. The reported water as a solvent is interesting in connection with lithium. 

The yield is predicted well but time and temperature are not. 

 

In the second example (Figure 46), ruthenium and Grubbs catalysts are predicted correctly, and 

predicted time and yield are generally correct. 

Figure 44. Test on example from recent publication on reaction prediction. 

Figure 45. “Worst case” number one. 
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In the third example (Figure 47), the predicted reagents are generally correct, and time is in a 

generally correct category, but the two reports in the literature demonstrate different temperatures. 

 

Figure 46. “Worst case” number two. 

Figure 47. “Worst case” number three. 
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In the fourth example (Figure 48), different reagents are suggested but they are plausible (e.g., 

Staudinger reaction and catalyzed hydrogen). The predicted temperature and time are generally 

correct. 

 

Clark also tried a very recent process patent from Reaxys, not in the training set. The recorded 

conditions were “boron trifluoride diethyl etherate at 30 ⁰C for 2 hours”. Boron trifluoride diethyl 

etherate was the top reagent predicted by Clark’s system. Other reagents that might work were also 

suggested. 

Finally, Clark has plotted a graph of all reported synthetic paths to sorafenib back to industrial 

chemicals and determined the minimum number of reagents, plus condition changes, to carry out 

the synthesis. He is currently looking at reaction paths and evaluating pathways. 

The “ground truth” for assessing accuracy of reaction predication is not straightforward; assessment 

of retrosynthesis has similar issues. Some reactions have hundreds of conditions that will produce 

100% yield: the concept of condition diversity is worth exploring. Several areas of application are 

enabled by the current level of prediction of conditions. Finding alternative reagents and solvents 

can be a part of patent circumvention with retrosynthesis. Another use is determining which 

reactions could take place with a given set of reagents. 

Reaction Predictor: reaction prediction at the mechanistic level using deep learning 

Pierre Baldi, University of California Irvine, Irvine, CA, USA 

Reaction prediction is a complex, multifaceted, problem, in both forward and backwards directions. 

Reaction conditions and rates, different applications (e.g., retrosynthesis, or “brewing”), and global 

reactions versus mechanistic reactions are some of the aspects. Rule-based reaction prediction 

systems are based on the manual implementation of a set of rules. They are fast at production time 

but are limited by the coverage of the rules and hard to maintain. Systems based on quantum 

mechanics are, in principle, the most accurate and satisfying but they are computationally very 

expensive and not scalable. Machine learning based systems learn from data. They are fast at 

coleyFig4 RX8648319  
With diothiothreitol In pyridine; water at 20℃; for 1h; 
Reduction;  

Figure 48. “Worst case” number four. 
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production time, scalable, and relatively accurate. The main problem is that appropriate data may 

not be available. Hybrid systems are also possible. 

2D chemical structure data may be represented as labeled graphs, strings, fingerprint vectors, or lists 

of atom coordinates. There exist deep learning approaches that can handle each type of 

representation. If the inputs are vectors of fixed size, as for example in computer vision, a typical 

architecture is a feedforward neural network. If the inputs are structured objects (e.g., graphs, 

molecules, or sequences) of variable size, a typical architecture is a recursive neural network (RNN). 

There are two kinds of approaches for designing an RNN: the inner approach and the outer 

approach. The inner approach requires that the data and the approach be represented by a directed 

acyclic graph (DAG). This approach uses RNNs to “crawl” the edges inside the DAG. The outer 

approach does not require a DAG. It uses RNNs in a direction that is orthogonal to (or outside) the 

data graph to “fold” the graph. Since molecules are typically described by undirected cyclic graphs, 

in order to use an inner approach, Baldi’s team has developed methods to address the discrepancy, 

essentially by considering an ensemble of recursive neural networks associated with all possible 

vertex-centered acyclic orientations of the molecular graph.147 

Baldi’s team has worked on reaction prediction at the mechanistic level using deep learning. Having 

a mechanistic prediction partially addresses issues of causality and interpretability (and debugging). 

On the other hand, elementary steps must be chained to form global reactions; this means that such 

a system may be slower at production time. The main obstacle, however, is the lack of data. In 2009 

there was no database of “arrow-pushing” mechanisms, so Baldi’s student Jonathan Chen built a set 

of 1800 SMIRKS-based transformation rules in the Reaction Explorer system.148,149 Reaction Explorer 

covers the undergraduate organic chemistry curriculum in an interactive educational system now 

licensed by Wiley and distributed worldwide. Unfortunately the rules are tedious to update and they 

cover only a fraction of known chemical reactions. The system is not scalable. 

So, Baldi’s team started to develop Reaction Predictor, a system based on machine learning.150,151 

The system describes single mechanistic reactions as interactions between coarse approximations of 

molecular orbitals (MOs) and uses topological and physicochemical attributes as descriptors. Using 

the existing Reaction Explorer rule-based system, Baldi’s team derived a dataset consisting of 1630 

full multistep reactions with 2358 distinct starting materials and intermediates, associated with 2989 

productive mechanistic steps and 6.14 million unproductive mechanistic steps.  

Reaction Predictor learns a ranking model over potential filled-to-unfilled MO interactions such that 

the top-ranked mechanistic steps yield the major products. The machine learning implementation 

follows a two-stage approach. The first is atomic prediction of potential source and sink sites: finding 

the MOs on each atom and predicting atoms with the electron donor (source) and electron acceptor 

(sink) MOs. Atom level reactivity filters are trained to prune 94% of nonproductive reactions. The 

second step is ranking the predicted pairs: forming the reactions by letting the source and sink MOs 

interact, ranking the outcomes, and pruning. An ensemble of ranking models perfectly ranks the 

productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four 

are considered.150 Polar, pericyclic, and radical reaction type ranking models have been successfully 

developed.151 Feedforward and convolutional neural networks, RNNs (plus LSTMs),152 graph neural 

networks (GNNs), and transformers have been used. 
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Global reactions can be identified by chaining together the elementary reaction predictions. Baldi’s 

team curated a dataset of over 11,000 elementary reactions. Using these for training, they 

demonstrated an 80% top-five recovery rate on a separate, challenging benchmark set of reactions. 

A fundamental problem of synthetic chemistry is the identification of unknown products observed 

via mass spectrometry. Reaction Predictor includes a pathway search feature that can help identify 

such products through multitarget mass search.152 

In the final part of his presentation, Baldi discussed the core problem of the data. There is a need for 

a public, free, downloadable, comprehensive database of reactions. Some seeds exist, for example, 

the USPTO dataset and datasets in some academic laboratories. The problem with the lack of a 

publicly available reaction database is somewhat reminiscent of the situation for small molecules 

about 20 years ago, when the American Chemical Society (ACS) raised opposition to the building of 

the PubChem62 database. There is no evidence that PubChem impacted ACS negatively.  

Two decades ago, Baldi’s team built ChemDB, a public database and web server of small molecules 

and related cheminformatics resources.153 It supports multiple molecular formats and is periodically 

updated, automatically whenever possible. The database includes a user-friendly graphical interface 

on the web,154 and chemical reactions capabilities, as well as unique search capabilities.  

Nevertheless, Baldi’s vision of a long term stable solution to the data problem cannot depend on 

individual academic laboratories or for-profit corporations. A public database of chemical reactions 

should ideally be developed and managed by an international consortium (e.g., something like the 

Conseil Européen pour la Recherche Nucléaire, CERN). Failing that, and more realistically, it could be 

developed and managed by an agency of the federal government such as the NIH, the U.S. National 

Science Foundation, or the U.S. Department of Energy or some combination of those. A 

multipronged approach is needed to populate and sustain such a database, involving negotiations 

with commercial database companies, aggregation of existing datasets plus crowd sourcing, 

automatic extraction from the literature and the web using AI approaches, and legislation (e.g., 

requiring chemical vendors to provide chemical reactions). 

Integrating synthetic accessibility with AI-based generative drug design 

Brian Atwood, Iktos, Paris, France 

De novo molecule generation and optimization can suggest novel molecular structures suitable as 

therapeutics against a particular target but the utility of these approaches is hindered by ignorance 

of synthesizability. To highlight the severity of this issue, Gao et al. have used a data-driven 

computer-aided synthesis planning program to quantify how often molecules proposed by state-of-

the-art generative models cannot be readily synthesized. The analysis demonstrates that there are 

several tasks for which these models generate unrealistic molecular structures despite performing 

well on popular quantitative benchmarks.155 

Known heuristics methods for scoring synthesizability are fast but fail to distinguish the 

synthesizability of compounds perfectly. They include SMILES, SAscore,156 SCScore,157 and RAscore.132 

The first is a simple heuristic which considers the length of the SMILES. SAscore uses the complexity 

and frequency of known fragments, on a scale of 1 to 10, the lower the better. SCScore uses a model 

which encodes the increasing complexity of reactions’ sequences (from 1 to 5, the lower the better). 
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RAscore uses a classification model which predicts the feasibility of a molecule according to 

AiZynthFinder (from 0 to 1, the higher the better). 

Synthetic accessibility prediction is a highly nonlinear task, with steep “feasibility cliffs”: one of two 

very similar molecules may be very easy to make while the other is very hard to make. Depending on 

the database of starting materials used, the prediction can go from simple to complex: for example, 

elvitegravir can be made in one step from an available starting material according to one system but 

requires 10 steps before an available starting material is found according to another system. We 

need more than a heuristic. 

Synthetic feasibility is also difficult to define, even for expert chemists. Process chemists and 

medicinal chemists look at synthetic accessibility from a different viewpoint. Iktos asked four 

chemists to score 100 molecules from a generative AI output on a scale of 1 (hard) to 4 (easy). Only 

18% were in complete agreement; 56% agreed within one on the scale; 25% disagreed by two 

points. 

The Spaya158 program from Iktos employs a data-driven AI approach to discover retrosynthetic 

routes. An iterative exploration of all possible routes is performed until commercially available 

starting materials are identified. The reaction and starting materials databases are customizable. An 

easy-to-use online platform enables chemists to generate and explore retrosynthetic routes. Once 

users choose a route among the ones found by Spaya, they can easily navigate the retrosynthetic 

tree. They can also further expand the tree by breaking up the starting materials. 

Users take the API and get a retro score (RScore) on a scale of 0 to 1 (the higher the better), after a 

few seconds or up to one minute per molecule per CPU. The Spaya API scales in the cloud. RScore is 

defined for a given route and is dependent on the probability of the model, its applicability domain, 

the number of steps in the route, and the convergence of the route ((except for RScore = 1 which 

means an exact literature match). Correlation between the RScore and the number of reaction steps 

has been demonstrated on a sample of molecules from ChEMBL.47 If RScore is considered as a 

ground truth, SAscore is the best known metric to assess synthetic feasibility compared to SCScore 

or SMILES length (Figure 49). 

 
Figure 49. Comparison of RScore with other scores. 
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Since SAscore is the metric that correlates the best with RScore, Iktos decided to compare the scores 

on different tasks from the GuacaMol159 benchmark. There was no major difference between 

SAscore and RScore on the output in simple tasks: the percentage of molecules with RScore > 0.5 

and the average reward on the top 100 molecules. 

The team also studied RScore versus known scores during generation on more complex tasks. 

Phosphoinositide 3-kinase (PI3K) pathway is a potential target for cancer chemotherapy and 

inhibitors of other nodes in the pathway such as mammalian target of rapamycin (mTOR) are also 

significant. Iktos workers used PI3K and mTOR datasets and evaluated generation against two QSAR 

kinase activity models with two metrics, including similarity to the initial dataset, and QED, a 

quantification160 of “chemical beauty”. The PI3K/mTOR dataset serves as a proxy for a real-life lead 

optimization task, where the more stringent constraints of the QSAR activity models often result in 

the molecular generator proposing nonsynthesizable molecules.161 The Iktos team studied the 

impact of the different scores during the generation, using RScore in postprocessing as a guide 

(Figure 50). Classic generation and RAscore produce many molecules but most of them are difficult 

or infeasible to make. 

 

RScore produces more molecules fitting the objectives, with a better diversity, and with a very high 

proportion of easy-to-make molecules compared to other scores (Table 1). It is interesting to 

observe that a simple metric like SAscore produces good results in this case study. 

 

Contrary to other scores, Spaya RScore is able to distinguish between complex molecules which are 

nevertheless easy to make and molecules containing irrelevant moieties: molecules which are 

obviously not synthesizable and sometimes unstable (Figure 51). 

Figure 50. Number of molecules fulfilling the two objectives (PI3K mTOR). 

RA = RAscore 
SC = SCScore 
SA = SAscore 

Table 1. RScore versus known scores during generation on more complex tasks 
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Contrary to heuristics or a predictive model, RScore can be easily customized. Iktos studied the 

impact of the database of commercially available starting materials on a benchmark of known 

molecules. RScore can be tuned for synthetic feasibility or for synthetic complexity assessment. The 

chemistry can also be changed, focusing on classic reactions such as amide coupling or cross-

coupling. 

RScore is highly accurate and produces very good results, but it takes a bit more time to compute 

than Iktos would have liked, so they developed RSPred, based on a neural network trained on 

230,000 molecules retrosynthesized by Spaya API. The area under the receiver operating 

characteristic curve (ROC AUC) was 0.96 for a neural network model based on Morgan fingerprints 

to predict RScore > 0.4. RScore and RSpred produce comparable results (Figure 52) but the time 

needed is reduced from seconds to 10 milliseconds. 

 

Iktos has used RSpred in a complex client project recently, concerning AI generation with eight 

objectives (activity, selectivity, and absorption, distribution, metabolism, and excretion (ADME)). 

RSpred appears to outperform SA score by a very large margin in this complex multiparameter 

optimization project. 

Figure 51. Some examples of generative model output. 

Figure 52. RScore and RSPred. 

RA = RAscore 
SC = SCScore 
SA = SAscore 
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In summary, using generative AI without a synthetic accessibility heuristic leads to ugly molecules. 

Among the known heuristics, SAscore appears to be the best one to generate appealing molecules. 

RScore appears to be better than SAscore, producing more, easy-to-make, diverse molecules. This 

may be due to the fact that it runs a full retrosynthesis, requiring that the input molecule can be 

made from an available starting material. Contrary to other scores, RScore can be easily customized 

either by modifying the scope of the chemistry or the catalog of starting materials. Despite the 

quality of the output of RScore, computing this score is time-consuming and not really suitable for 

generative AI. RSpred appears to reach a similar performance to that of RScore but it is much faster, 

at a much lower cost, which makes it a very attractive tool for generative AI. RScore is accurate and 

very precise so there is great value in its score for postprocessing and prioritization of designs, 

whereas RSpred is very efficient for generative AI. 

Data-driven synthesis planning beyond retrosynthesis 

Connor Coley, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA 

Classically, the discovery of physical matter, such as in lead optimization for drug discovery, is 

divided into stages of design, make, and test. An analogous cycle for searching hypothesis space 

could be described as hypothesize, validate, and revise beliefs. This is exemplified by preclinical drug 

discovery, where discovering a new drug candidate can take over two years and cost more than 

$500 million. The need is to use information more efficiently (make better compounds) or to obtain 

information more quickly (test more compounds), or both. Central to the scientific process is this 

inherent trade-off between the value of information, and the cost required to get that information. 

We constantly make these decisions when we do research, whether it is conscious or not. In order to 

tip the scales, Coley’s team want to make it easier to test the performance of candidate compounds, 

and have focused on compound synthesis as a significant rate- and cost-determining step. 

Coley has a vision for autonomous synthesis162,163 where the user inputs a command such as “make 

ibuprofen”, software converts this into instructions for a synthesis robot, and the output is a sample 

of ibuprofen. In data-driven synthesis planning we move from the concept of “known compounds 

made through known routes incorporating known reaction types” to the concept of “new 

compounds made through new routes incorporating known reaction types”. Even in current manual 

workflows, computer-aided synthesis planning (CASP) can alleviate some manual tasks, and ideally, 

bring greater objectivity to route design. 

Assuming retrosynthesis rules are not written manually, template-based methods for retrosynthesis 

involve algorithmic extraction of templates (rules), and determining the relevance and applicability 

of a template. In the extraction procedure,164 the core of the transformation is found, generalized 

neighbors are added, the template is extended to known functional groups, and SMARTS patterns 

from atom-mapped reaction SMILES strings are canonicalized and recorded. A neural network is 

trained to predict the most probable rules to apply to a particular reaction,165 and augmentation and 

pretraining166 teach the neural network an increased set of templates that could theoretically lead to 

successful reactions for a given target.  
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The workflow167 is shown in Figure 53. The CASP steps are: (1) one-step retrosynthesis, (2) multistep 

planning, (3) condition recommendation, and (4) reaction outcome prediction. Given a product 

molecule, what reactants could produce it? Given a product molecule and a one-step retrosynthesis 

model, which multistep pathway starts from commercially available starting materials? Given a 

product molecule and reactants that could potentially produce it, what are the actual conditions that 

should be used for the experiment? If I run this experiment as planned, what products do I expect to 

make? 

The third task is condition recommendation. Full condition combinations are too sparse in the 

datasets for training to predict reaction conditions. Each (catalyst, reagent(s), solvent(s)) set is 

unlikely to have been seen many times, and relatively few species are actually used. Restricting the 

answer set146 to 803 catalysts, 2247 reagents, and 232 solvents excludes only 5% of reactions in 

Reaxys.44 

Gao et al. developed a neural-network model to predict the chemical conditions most suitable for 

any particular organic reaction.146 The task of condition prediction can be divided into two parts: 

chemical context prediction (catalysts, solvents, reagents) is treated as a set of multiclass 

classification problems (i.e., choosing chemical species from a fixed list), while temperature 

prediction is treated as a regression problem. Trained on about 10 million examples from Reaxys,44 

the network model is able to propose conditions where a close match to the recorded catalyst, 

solvent, and reagent is found within the top-10 predictions 69.6% of the time, with top-10 accuracies 

for individual species reaching 80–90%. Moreover “wrong” is often reasonable. 

The fourth task is prediction of reaction outcomes. The issue is that there are many input-output 

pairs, but it is not known how to write an exact function to relate them. In one approach, Coley and 

his co-workers have used template-free prediction as a sequence of graph edits.168 They have 

reported a supervised learning approach to predict the products of organic reactions given their 

reactants, reagents, and solvent(s). By training a graph convolutional neural network model on 

hundreds of thousands of reaction precedents from the patent literature, the neural model makes 

informed predictions of chemical reactivity. The overall model structure is designed to reflect how 

expert chemists approach the task (Figure 54). 

Figure 53. Workflow for algorithmic synthesis design. 
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First, the system learns to identify reactive sites that are most likely to undergo a change in 

connectivity (arrow 2 above). This parallels the identification of reactive functional groups and 

consideration of how they might react, but without codifying rigid rules about functional group 

decomposition. Next, the software performs a focused enumeration of products that could result 

from those interactions subject to chemical valence rules (arrow 3). It then learns to rank those 

candidates (determining what modes of reactivity are most likely, as would a chemist) to produce 

the final prediction of major products (arrow 4). 

One of the things that all this research is enabling is rapid ideation of full synthetic pathways. Longer, 

more complex pathways are possible. Chemists will be able to study many possible pathways to a 

target, not the shortest, cheapest, highest-yielding, “best” pathway. Application to semi-automated 

synthesis is also possible. The ideal automated synthesis platform would be capable of planning its 

own synthetic routes and executing them under conditions that facilitate scale-up to production 

goals. Individual elements of the chemical development process (design, route development, 

experimental configuration, and execution) have been streamlined in previous studies169-172 but no 

one has presented a path toward integration of CASP, expert-refined chemical recipe generation, 

and robotically executed chemical synthesis. Recently Coley and his colleagues have reported a 

proof of concept toward fully autonomous synthesis.173  

If reduced to liquid handling steps, automation is “easy”. “Automated synthesis” platforms all 

require some expert chemist guidance when asked to make a new molecule (e.g., selecting 

concentrations, vessel types, or reaction times). If we manage to get a starting point of > 0% yield, 

empirical reaction optimization is possible. 

There have been many recent advances in retrosynthesis. Rule-based, expert systems (since LHASA) 

include Chematica (SYNTHIA),174,175 ICSYNTH,176 SciFinder,119 and Reaxys.44 Rule-based, learned 

approaches have been reported by Segler and Waller,177 Coley et al.(ASKCOS),164,173 Genheden et al. 

Figure 54. Prediction of reaction outcomes. 
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(AiZynthFinder),178 Dai et al.,179 and molecule.one,180 Galixir, Iktos (Spaya),158 and PostEra.181 Learned 

approaches have used nearest-neighbor,112 neural translation,110,182,183 and graph translations.184-186 

Data-driven methods work best on molecules similar to training molecules. Standard small, druglike 

molecules are handled well by all of these approaches. Expert rules can be better at extrapolating 

from reactions with few precedents where evaluating the appropriateness of generality or specificity 

in algorithmic extraction is challenging. Factors such as stereoselectivity or regioselectivity are hard 

to predict by all data-driven methods, especially when controlled by sterics or distant directing 

groups. 

Many approaches to condition recommendation have been reported. Reaxys-trained classifiers have 

been used in a “global” approach (with “any” reaction as input).145,146,187 “Local” approaches to 

condition prediction treat a specific reaction family.188-190 Global approaches to product and yield 

prediction have addressed outcome prediction111,112,168,191-193 or selectivity.194-198 Local approaches to 

product and yield prediction have addressed high throughput experimentation of a single type199,200 

and catalyst screening.201,202 Local data-driven models do not generalize between reaction family 

HTE campaigns. None of the local or global methods is useful for discovering new synthetic 

transformations; at best, they can discover novel pairs of known electrophiles and nucleophiles. 

Chemists are actually starting to use these data-driven synthesis tools routinely for route scouting: 

discovery chemists are using routes as proposed and process chemists are using them for idea 

generation. Data-driven methods can be retrained easily on the most recent reaction data. These 

tools can help accelerate chemical development but they are not providing reliable suggestions that 

are immediately actionable (e.g., using robotics), or discovering new synthetic methods. Better data 

will lead to better methods, and combining computation with lab automation will enable 

“exploration”. The tools are not expanding synthetically accessible chemical space; removing the 

need for expert chemist expertise; or helping in low data environments.  

In retrosynthetic planning, data-driven tools are not helping with complex natural product synthesis 

(better data, from CAS, for example, and better methods are needed), and they are not perfectly 

generalizing from rare reactions. In condition recommendation, data-driven tools are not proposing 

catalysts and ligands to enable fundamentally new transformations. In reaction outcome prediction, 

data-driven tools are not operating at the mechanistic level or extrapolating to new reaction types. 

Is there a compromise with Baldi’s ReactionPredictor (see above)? Work is ongoing to ground 

models in physical organic chemistry. 

 
Figure 55. Information sources affect method development.    
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Information sources affect method development (Figure 55). Currently absent from databases are 

order of addition, addition speed, ambient temperature and humidity, reagent purity, chemical 

vendor, and other useful information. 

Learning the language of chemical reactions using transformer models 

Philippe Schwaller, IBM Research Europe, Rüschlikon, Switzerland 

Lowe et al. have text-mined U.S. patent data to derive reactions and reaction SMILES.13,105 Lowe 

admitted that, while typically correct, the atom-to-atom maps are wrong in many cases, and hence 

should not be entirely relied upon. So, the IBM team have mainly developed approaches that are 

independent of atom-mapping, although they recently developed their own atom-to-atom mapping 

program, RXNMapper.33 

Earlier, Schwaller and his colleagues had used the updated version of the USPTO reaction dataset 

and treated reaction prediction as a data-driven, machine translation problem between SMILES 

strings of reactants plus reagents, and the products.111 To map the sequence of the reactants and 

reagents to the sequence of the products, they used an attention-based model borrowed from 

human language translation. In standard seq2seq, two distinct recurrent neural networks (RNN) 

work together: an encoder that processes the input sequence and emits its context vector C, and a 

decoder that uses this representation to output a probability over a prediction. In seq2seq with 

attention there is one state per input, and attention provides the ability to concentrate selectively 

on one aspect of context. The Molecular Transformer111 architecture uses multihead context 

attention:203 no recurrent neural networks are needed, but stacks of attention layers. 

An enhanced version of the Molecular Transformer predicts regioselective and stereoselective 

carbohydrate reactions using transfer learning.197 It was experimentally validated on a 14-step 

synthesis of a lipid-linked oligosaccharide but the transfer learning approach should be applicable to 

any reaction class of interest.  

A retrosynthetic version of the transformer has been developed in conjunction with the University of 

Pisa.183 The transformer also predicts reagents, catalysts, and solvents and it is not dependent on 

atom-by-atom mapping. Since no chemical knowledge is embedded other than the information 

learnt from reaction data, the quality of the datasets plays a crucial role in the performance of the 

prediction models built by Schwaller and his co-workers. Toniato et al.114 have proposed a machine 

learning based, unassisted approach to remove chemically wrong entries from chemical reaction 

collections. The results show an improved prediction quality for models trained on the cleaned and 

balanced USPTO and Pistachio103 datasets.  

To make its AI model accessible, IBM has made IBM RXN for Chemistry freely available.204 Users 

draw reactants and run a prediction. They get back the product and a confidence score. There is also 

a retrosynthesis feature. IBM RoboRXN for Chemistry205 is a pioneer project combining AI, 

automation and cloud to accelerate material discovery. Vaucher et al. devised a method to convert 

unstructured experimental procedures written in English to structured synthetic steps (action 

sequences) reflecting all the operations needed to conduct the corresponding chemical 

reactions.206,207 Chemical recipes are thus converted to machine-readable instructions. The team 

generated a dataset of 693,517 chemical equations and associated action sequences by extracting 

and processing text from patents. They used the dataset to train three different models: a nearest-
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neighbor model based on recently introduced reaction fingerprints, and two deep-learning 

sequence-to-sequence models based on the transformer, and on bidirectional and auto-regressive 

transformer (BART)208 architectures. An analysis by a trained chemist revealed that the predicted 

action sequences are adequate for execution without human intervention in more than 50% of the 

cases. 

Reaction transformer models may transform from a sequence to a sequence or from a sequence to a 

single value or label. In the latter case no decoder is needed. Schwaller and his colleagues have 

shown that such transformer-based models can infer reaction classes from text-based 

representations of chemical reactions.209 The best model reaches a classification accuracy of 98.2%. 

The team also showed that the learned representations can be used as reaction fingerprints that 

capture fine-grained differences between reaction classes better than traditional reaction 

fingerprints. The insights into chemical reaction space enabled by the learned fingerprints have been 

illustrated by an interactive reaction atlas providing visual clustering and similarity searching. 

Schwaller and his colleagues have also predicted reaction yields, given a text-based representation 

of the reaction, using an encoder transformer model combined with a regression layer, and have 

demonstrated outstanding prediction performance on two sets of high-throughput experiment 

reactions.210 

Bidirectional encoder representations from transformers (BERT)211 and a “lite” version, ALBERT,212 

are designed to pretrain deep bidirectional representations from unlabeled text by jointly 

conditioning on both left and right context in all layers. The resulting pretrained BERT or ALBERT 

model can be fine-tuned with just one additional output layer to create state-of-the-art models for a 

wide range of tasks. 

Schwaller and his co-workers have developed a BERT reaction classification model (Figure 56) with 

an encoder made of stacks of self-attention layers. All self-attention layers consist of multiple 

attention heads. Using a classifier head, the model was applied to a chemical reaction classification 

task. The encoding of the [CLS] token can also be used as a reaction fingerprint (RXNFP). 
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The pretraining stage is unsupervised; training data are unlimited. The researchers pretrained the 

models using masked language modeling loss (Figure 57) on the chemical reactions. The task of the 

model in masked language modeling consists of predicting individual tokens of the input sequence 

that have been masked with a probability of 0.15. A special class token [CLS] was prepended to the 

tokenized reaction SMILES. The [CLS] token was never masked during the self-supervised training. 

The embeddings of the [CLS] token were taken as input for the classifier head. The next stage is 

supervised training with fine-tuning for two tasks: BERT plus classification head for reaction 

classification, and BERT plus regression head for reaction yield prediction. 

 

In another work, Schwaller and colleagues solely pretrained BERT/ALBERT models on unlabeled 

reactions and asked what knowledge the models had extracted from the reaction data during 

pretraining. It was visual inspection of the attention heads that led the IBM team to realize that the 

system had learned atom-by-atom mapping: unsupervised transformers capture the hidden 

grammar of chemical reactions. The team used this signal to build an atom-mapping tool called 

RXNMapper.33  

Figure 56. BERT reaction classification. 

Figure 57. Self-supervised training. 
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In the RXNMapper algorithm, attention weights learned by a transformer, without atom-mapping 

supervision or human labeling, encode atom rearrangement information between products and 

reactants. A neighbor multiplier algorithm gets attention weights from the model and iterates 

through product atoms, mapping the most likely pair and increasing attention from the product 

neighbors to the corresponding reactant neighbors. The mapper shows a remarkable performance in 

terms of accuracy and speed (7 seconds for 1000 imbalanced reactions). On 49,000 strongly 

unbalanced patent reactions,109 RXNMapper predicted 99.4% of atom mappings correctly (up from 

about 96% without the neighbor multiplier). Transformers capture the grammar of chemical 

reactions and could be used in synthesis planning, quantum mechanical simulations, and reaction 

accessibility and interpretability studies. 

Template-based approaches to reaction planning are dependent on atom mapping in template 

building;112,173,177,213 GNN-based approaches need atom maps for graph edits.168 SMILES-to-SMILES 

approaches are independent of atom mapping.111,183 All systems can benefit from better atom 

mapping. A demonstration of RXNMapper214 and open source code215 are available on the web. 

Structuring time course sensor data for improved chemical outcomes and reproducibility 

Chris Smith, DeepMatter, Glasgow, Scotland 

DeepMatter digitizes chemistry, developing products that combine laboratory hardware and state-

of-the-art software to enable improved reproducibility, predictability, and speed in scientific 

outcomes. The company’s products span fields such as pharmaceutical research and development, 

fine chemicals, scientific publications, and education. DigitalGlassware216 simplifies data collection 

and data structuring, bringing real-time sensor data from the lab to a browser, and producing a 

minable data repository of high quality data. ICSYNTH176 is a computer-aided synthesis design and 

retrosynthesis tool that supplies novel synthetic routes to a target compounds, runs fast calculations 

against high quality curated data, and can be integrated with customers’ proprietary data. 

The company o2h discovery has an integrated drug discovery platform operating from a state-of-

the-art research center in India. Late in 2020, DeepMatter carried out some chemistry experiments 

with o2h to improve reproducibility and improve yield using a more structured approach to the 

chemistry using time-course data. They then analyzed the data using machine learning. 

A Buchwald-Hartwig coupling reaction was used: a palladium-catalyzed “one-pot” amination which is 

a reliable metal-catalyzed amine-based coupling. There were four steps in the experimental 

protocol. Chemist A used a published paper to execute a chemical synthesis in triplicate in the 

traditional way, analyzing the reaction with high-performance liquid chromatography (HPLC) over 

time. Chemist B encoded and refined the protocol as a digital recipe, using the recipe builder in 

DigitalGlassware. Chemist A, using the recipe developed by Chemist B, performed the reaction in 

triplicate, analyzing the reaction with HPLC over time. The whole process allowed for data analysis 

using machine learning on subsequent work. 

DeepMatter codify their chemistry using recipes: digital protocols as a basis for structured 

information, stored in the cloud. These are easy to create, share and recreate. The gap between 

human- and machine-readable procedures is bridged in this migration from “sketch and text” to 

readable, writable and controllable XML. DigitalGlassware provides intent and context when the 
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chemist ultimately considers outcomes such as the expected volume of addition set against the 

actual volume of addition. 

The reaction in the o2h use case was analyzed every 30 minutes using HPLC since DeepMatter 

wanted time series comparison with the data captured by DeviceX, the self-contained multisensor 

device, from DigitalGlassware, that autonomously monitors chemical reactions. A significant 

quantity of time series data across a portion of the reaction space was captured by the digital 

controller (Figure 58). Note the increase of about 50% in yield and the 80% reduction in error. 

 

Next, DeepMatter used data science to explore the data further and model them. The first step was 

to try and visualize the data, in this case, the aggregated sensor data with respect to HPLC outcomes. 

In scatter plots where each point represented data associated with an HPLC sample, a pattern 

existed indicating that there was indeed a correlation between sensor data and outcome over time, 

albeit noisy in some parts. A time series among individual runs and recipe versions could be 

observed indicating that modeling could go ahead using the derived features. 

The first analysis was yield prediction. The objective was to predict product formation over time, 

given sensor and recipe data as input. In process-style chemistry, where repeated runs are similar, 

predicting yield over time enables the chemist to detect failing chemistry or anomalous progress, 

and to decide whether to continue chemistry. Predicting yield over time allows data scientists to 

start to model reaction space (optimize yield, lower cost etc.), and reduces demand on the HPLC 

machine. The modeling used a variety of approaches and dataset permutations but gradient-

boosted regression trees performed the best. The results (Figure 59) indicated that modeling yield is 

possible; some runs had a very low error rate (<3% mean absolute error (MAE)). The indications of 

which features were most important were noisy, but there was no “killer feature”. Hold over 

temperature was highly ranked and UV seemed to be a consistent indicator of progression. The 

system allows real-time, in situ prediction of yield. 

Reaction finished here (*) 

Figure 58. Yield assessed by HPLC, triplicate measurements. 

(Note error bars) 
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The objective of predicting reaction completion was similar to that of yield prediction, but was 

focused on conversion instead. The objectives were to predict what percentage of the original 

starting material has been converted into another product and predict whether the reaction had 

finished rather than the yield at which it finished. The input data features and modeling approaches 

investigated were the same as for yield prediction. Yield and conversion correlated very closely, but 

not 1:1. The results (Figure 60) were slightly better than yield prediction in some cases. There were 

overestimates and underestimates in some cases, but the same pattern often showed. Some 

chemists may care more about whether a reaction has completed than about the amount of product 

formed. 

 

Also analyzed were sensor swimlanes. A swimlane diagram is a type of flowchart that delineates who 

does what in a process. It provides clarity and accountability by placing process steps within the 

horizontal or vertical “swimlanes” of a particular employee, work group or department. It shows 

connections, communication, and handoffs among these lanes, and it can serve to highlight waste, 

redundancy and inefficiency in a process. 

In the present example, the objective is to visualize adherence to or deviation from previous runs of 

the same reaction. It could be used for exploring both options. One objective is quickly to identify 

deviations from the norm in behavior of target variables, and so reduce wastage. The analysis could 

also be used as a means of iteratively refining processes to get marginal gains, and thus increase 

Figure 59. Yield prediction. 

MAE = mean absolute error 
MSE = mean squared error 

Figure 60. Predicting reaction completion. 

MAE = mean absolute error 
MSE = mean squared error 
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profit. The analysis used only original sensor data, on a per sensor stream basis. It modeled the 

signals from historic runs to obtain the “average” signal over time. It required mapping of signal 

features between runs: even repeated chemistry is never exactly replicated in terms of time and 

duration. It was shown that chemists can now, at run-time, be alerted to deviations detected in 

behavior. The analysis is complementary to the yield and conversion models. 

Another use case was work performed with a DeepMatter industry partner on some novel chemistry 

previously thought to take 20 hours. The effects of color change and pH were studied. Using a 

digitized recipe and sensor data, DeepMatter discovered that the process is actually complete in 20 

minutes. Three correlations for reaction completion were found, including one previously unknown 

correlation. 

Chemistry as an observation-based science can lead to poor reproducibility and knowledge loss. 

Human interaction to make chemical products introduces many opportunities for error. Labs of the 

future are modernizing data capture and dissemination through digitization; data transfer and 

sharing are at the heart of this revolution. DeepMatter are committed to open data standards with 

the Practical Chemistry Markup Language (PCML), Practical Chemical Runtime Record (PCRR) XML 

standards, and the XDL format (see the talk by Cronin below). Aggregated, structured, time-course 

datasets improve real-time and post-run analytics, leading to better productivity and discovery. 

Industry 4.0 will move toward full AI integration in the chemistry pipeline (robotics, automated 

synthesis, reaction optimization etc.), for which strong commercial and public datasets are required. 

A universal approach to reaction informatics 

Leroy Cronin, University of Glasgow, Glasgow, Scotland, United Kingdom 

Dedicated automated synthesis instruments have been constructed for peptide and oligonucleotide 

synthesis, flow chemistry, sugar chemistry, cross coupling, and radiosynthesis. The Eli Lilly synthesis 

laboratory is more widely applicable in that it covers an entire laboratory but their system is not 

universal: the code used in there is limited to the precise hardware and software built for the Lilly 

system and hence it is a one-off system. The reactionware,217 chemputer, chemputation, and 

chemical synthesis language devised by Cronin’s team172 are, in contrast, universally applicable in 

terms of their architecture, language and hardware requirements.218,219 

 

Universality in chemistry is vital and requires a well-defined set of abstracts, as was required for 

digital computing (Figure 61). Currently, chemistry lacks rigorous mappings and abstractions. The 

chemistry literature contains more than a century’s worth of instructions for making molecules, all 

written by and for humans, not computers, and hence is ambiguous because a lot of tacit knowledge 

Figure 61. Levels of abstraction. 
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is needed, but practical chemistry can be encoded from abstractions (Figure 62). The XDL and 

Chemify220 project is dedicated to a new era of chemical synthesis driven using a universal language 

developed to make molecules more accessible, cheaply, and safely, as well as reducing labor and 

expanding chemical space in terms of the number of molecules that can be made. 

 

Cronin’s team has developed the first chemical state machine (the architecture of which was 

formerly called a “chemputer”): an autonomous compiler and robotic laboratory platform to 

synthesize organic compounds on the basis of a chemical programming language that removes 

ambiguity and defines a new standard system for a chemical programming language, XDL 

(pronounced “chi-DL”).172 XDL is a “Turing-complete” programming language doing for chemical 

reactions because the language abstraction can represent any possible function to make any 

compound. This language for expressing chemistry and materials science has been released free 

under an MIT or Apache 2.0 license.221 It is compatible with any robot system and will link with the 

Open Reaction Database, Standardization in Lab Automation (SiLA 2)222, optimization and machine 

learning routines, and RXN files6 etc.  

Cronin hypothesized that a standardized format for reporting a chemical synthesis procedure, 

coupled with an abstraction and formalism linking the synthesis to physical operations of an 

automated robotic platform, would lead to a new era of reproducibility and reliable discovery as well 

as the ability to collaborate and scale reactions. Chemputation is the process of running XDL code 

reliably on any compatible hardware (named by analogy with computation, the Turing-complete 

running of programs on a digital computer). He calls this architecture and abstraction the Chemical 

Processing Unit or ChemPU. The chemical synthesis state machine is universal because the 

abstraction of chemical assembly leads to a state machine that can make any molecule or material 

on any machine or robot. Inputs are digital and physical; outputs are physical. XDL is human- and 

machine-readable and is verified for reproducibility and security.218 

The requirements placed on software and hardware for the full digitization of chemistry are shown 

in Figure 63: (a) the basic requirements and scope of a programming language for chemistry and (b) 

the executable procedures. The API should contain operations that are easily recognized by 

chemists, and the syntax should be as straightforward as possible. 

Figure 62. Encoding practical chemistry from abstractions. 
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Cronin demonstrated the procedure: copy the text and translate it to XDL (Figure 64), fix any 

translation errors, give the project a title, generate a graph of the physical setup required, compile 

the XDL and graph together to produce an XDL execution file, simulate the execution file to check for 

runtime errors, set up a physical platform to match the graph, and run the execution file. 

 

XDL is moving toward XDL 2 which will allow parallel reactions, more complex reaction planning, and 

integration of medium and high throughput systems (see Figure 65 which shows a new setup for 

stacking and scheduling reactions). Since XDL is fully formed language, it will be much more reliable 

than a scripting system which is important for security, verification and reliability. 

Figure 63. Software and hardware requirements. 

Figure 64. XDL screen shot (split down center). 
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The integration of sensor systems for monitoring and controlling the state of the chemical synthesis 

machine, and the integration of high resolution spectroscopic tools are vital if these systems are to 

facilitate closed-loop autonomous experiments which then can update the XDL in real time. Systems 

that not only make molecules and materials, but also optimize their function, and use algorithms to 

assist with the development of new synthetic pathways and process optimization become 

possible.219  

Digital-chemical robot systems need to integrate feedback from simple sensors and online analytics 

in order to navigate process space autonomously. This will open the door to accessing known 

molecules (synthesis), exploring whether known compounds or reactions are possible under new 

conditions (optimization), and searching chemical space for unknown new molecules, reactions, and 

modes of reactivity (discovery). Cronin’s team is currently working on parallelization, and concurrent 

synthetic threads, for higher throughput. The overall vision is that following from the first 

Chemputer robot, the system has developed into a universal architecture that can run on any 

qualified hardware. The process of running the XDL chemical programs is Chemputation and the 

process of checking if XDLs can run on any given configuration safely and reliably will need the 

Chemputability of the procedures to be confirmed thus ushering in the era of digital chemistry. 

A map of the amine-acid coupling system 

Tim Cernak, University of Michigan, Ann Arbor, MI, USA 

Analysis of the role of synthetic organic chemistry in hit and lead optimization efforts suggests that 

only a few reactions dominate. Thus, the uptake of new synthetic methodologies in drug discovery is 

limited.223 Amide coupling (Figure 66) is the single most-used reaction. It works well; it is robust and 

trusted. Chemical transformations determine the structure of a product, and therefore its 

properties, which in turn affect complex macroscopic functions such as the metabolic stability of 

pharmaceuticals or the volatility of perfumes. Therefore, reaction selection can influence the success 

or failure of a candidate molecule to meet a functional objective. Amide coupling is popular but 

there are many other ways to connect an amine with a carboxylic acid. Cernak’s team have shown 

computationally that amines and acids can couple via hundreds of hypothetical yet plausible 

transformations, and they have demonstrated experimentally the application of a dozen such 

reactions.224 

Figure 65. Setup for stacking reactions. 
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 Figure 66. Amine-acid coupling.  

To study the contribution of chemical transformations to properties, the team developed a string-

based notation and used an enumerative combinatorics approach (Figure 67) to produce a map of 

conceivable amine-acid coupling transformations, which could be charted using cheminformatics 

techniques. 

 

Graph enumeration in a simple focused set of amines and acids suggested different products which 

can be produced using different catalysts (Figure 68). Each had a different property set depending, 

for example, on the number of hydrogen bond donors and acceptors in the acid molecule. In one 

case, logP changed by two orders of magnitude when the catalyst was changed. 

Figure 67. Enumerative combinatorics. 
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Cernak showed a map of the amine-acid-coupling system (Figure 69) with molecules from 

DrugBank,225 showing many connections between theoretical compounds and known drugs. The 

high degree of connectivity between hypothetical reactions and drugs is simply observed through 

the presence of many connecting (purple) lines. The researchers conclude from this that most, if not 

all, of the amine-acid coupling reactions in the map could find use in drug discovery and synthesis, 

since the reactions produce common drug substructures. 

 

Data mining the amine-acid coupling system produced should enable reaction discovery: after 

learning from purple lines in the map, new coupling reactions can be tried with HTE. Cernak’s team 

demonstrated this by developing an esterification reaction (Figure 70) found within the mapped 

Figure 68. Results of amine-acid enumeration. 

Figure 69. Map of the amine-acid coupling system. 
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space. Complex molecules with distinct property profiles can also be discovered within the amine-

acid coupling system, impacting the late-stage diversification of drugs and natural products. 

 

HTE has evolved over the past few decades as a tool for experimental reaction development. The 

beauty of HTE is that reactions are run in a systematic format, so data points are internally 

consistent, the reaction data are reported whether the desired product is observed or not, and 

automation may reduce the occurrence of false positive or negative data points. Also, experimental 

workflows for HTE lead to datasets with reaction metadata that are captured in a machine-readable 

format. Cernak’s team has reported technologies, with case studies, for running synthetic reactions 

in parallel from the milligram to microgram scale in glass vials and plastic well plates.226  

In ultrahigh throughput experimentation (ultraHTE), reactions are run in ~1 μL droplets inside of 

1536-well microtiter plates to minimize the use of starting materials while maximizing the output of 

experimental information. The performance of ultraHTE in 1536-well microtiter plates has led to an 

explosion of available reaction data, which have been used to identify specific substrate-catalyst 

pairs for maximal efficiency in novel cross-coupling reactions.227 

Cernak’s team have developed software, called phactor, to facilitate the performance and analysis of 

HTE in a chemical laboratory.228 It allows experimentalists to design arrays of chemical reactions in 

24-, 96-, 384-, or 1536-well plates. Users can access online reagent data, such as a lab inventory, to 

populate wells, and produce instructions to perform the screen manually, or with the assistance of a 

liquid handling robot. After completion of the screen, analytical results can be uploaded for 

evaluation, and to guide the next series of experiments. All chemical data, metadata, and results are 

stored in a machine-readable format. 

In as yet unpublished work, Cernak’s team have studied the amine-acid esterification shown in 

Figure 71. Sixteen catalysts were tried with 6 ligands, and 8 bases with 12 ligands. The results are 

shown in Table 2. 

 

Figure 70. Amine-acid esterification. 

Figure 71. HTE: amine-acid esterification. 
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The team has had success with the SPT Labtech mosquito in liquid handling for nanomole-scale high-

throughput chemistry.229-231  

The mosquito robot was used to interrogate many different activated amine and acid substrate 

combinations using ultraHTE. The results were run in quadruplicate to ensure reproducibility from 

the nanoscale result. Most substrate pairs gave the product and the reproducibility of the 

esterification reaction across four reaction replicates was very good. Reaction “hits” from the 1536-

well experiments were repeated on a traditional synthesis scale of ~25-50 mg to obtain isolated 

yields, which were generally good and in agreement with the nanoscale result. This technique was 

used in the late-stage diversification of complex pharmaceuticals, such as sulfadoxin.  

More broadly, Cernak proposed that new amine-acid coupling reactions will be of high value in late 

stage diversification, and demonstrated the application to a variety of drugs that carried amine or 

acid functional handles. Thus, from a single substrate pair, but varying the amine-acid 

transformation through the judicious selection of reaction conditions, they were able to obtain 

diverse analogues with different physicochemical properties such as pKa, logP, and HBD. 

Orchestrating automated synthesis: designing actionable routes 

Christos A. Nicolaou and Todd de Collo, Eli Lilly & Company, Indianapolis, IN, USA 

In the drug discovery process, hypotheses are tested in a DMTA cycle. Advances have been made in 

design, make and test stages. In silico structure design is now commonplace. Aiding the “make” 

stage are automated synthesis laboratories, automated purification laboratories and CASP. In the 

“test” stage are automation and robotics for screening. There has been an explosion in the number 

of publications on AI in cheminformatics and computer-aided structure design. 

The Proximal Lilly Collection (PLC),108 aims firstly, to define the chemical space of small, druglike 

compounds that could be synthesized using in-house resources and secondly, to facilitate access to 

compounds in this space for the purposes of drug discovery. Through library design and virtual 

screening, promising compounds are identified, filtered computationally, and scored, prioritized and 

selected for synthesis and testing. 

Table 2. Amine-acid Esterification, Results               
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DNA-encoded library (DEL) technology is a novel ligand identification strategy that allows the 

synthesis and screening of unprecedented chemical diversity more efficiently than conventional 

methods. Nicolaou and his colleagues have systematically studied how to increase the diversity of 

DELs and improve the molecular property space that can be covered. They have developed and 

applied eDESIGNER, an algorithm that comprehensively generates all possible library designs, 

enumerates and profiles samples from each library and evaluates them to select the libraries to be 

synthesized.232 This tool uses suitable on-DNA chemistries and available building blocks to design 

and identify libraries with a predefined molecular weight distribution and maximal diversity 

compared with compound collections from other sources. 

Highly integrated functions and processes are needed from start to finish in the DMTA cycle. With 

this in mind, Lilly created an integrated, globally accessible, automated chemical synthesis laboratory 

(ASL)169 and an automated purification laboratory. Building on this, Lilly created the Lilly Life Science 

Studio in San Diego to enable a computationally driven approach to the DMTA cycle, physically 

integrating several areas of the drug discovery process. This automated, cloud-based platform 

consists of 16 autonomous, yet interconnected, automated workstations for functions such as 

compound and reagent management, synthesis, and purification; and analytical, biological and 

biophysical testing. The concept behind the current laboratory automation paradigm is “idea to 

molecule”. The paradigm behind the Lilly Life Sciences Studio next generation drug discovery 

platform is “idea to data”.233 

There has been an explosion in the number of publications on AI in cheminformatics and CASP 

(many of them cited in this report). The Lilly “ChemoPrint” software234 is CASP in practice. It is a 

chemical context aware, data-driven method built upon millions of available reactions, with 

attractive run-time characteristics, to recommend synthetic routes matching a precedent-derived 

template. Coupled with modern automated synthesis platforms and available building block 

collections, the method enables drug discovery researchers to identify routes for target compounds 

which are easy to interpret and implement. 

Hurdles and challenges in closing the drug discovery loop are determining if a compound is really 

synthesizable, and estimating the real cost and the opportunity cost. Reducing everything to practice 

involves route instantiation: selecting the best route, going from theoretical routes to actionable 

recipes, and getting inspiration from observation (i.e., learning lessons from history) by taking 

advantage of known reaction procedures, and condition recommendation. 

Assessing the synthetic feasibility of a structural hypothesis involves making (and testing) the 

compound in question. Selecting the optimal route in not straightforward: there are too many 

options, some better than others, and the reactants identified may give rise to more than one 

reaction and product. Expert rule scoring can be used in assessing routes. These are heuristic rules, 

defined by expert chemists, concerning reactant availability, and reaction ease, robustness, and 

simplicity, and amenability to automation. 

Another approach is attempting the forward reaction of generated routes. Reactants for each 

matching route and a reaction template are input and all potential (predicted) products are output, 

with a flag for any reactant pair generating more than one product. This is a brute force approach 

and it is slow. The MIT-led Machine Learning for Pharmaceutical Discovery and Synthesis (MLPDS) 
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consortium235 is working on forward prediction models and impurity prediction, scoring the “best” 

route. 

The major missing link in closing the drug discovery loop is moving from a theoretical synthesis route 

to an actionable synthesis execution recipe: building block IDs, and the source; reaction conditions; 

detailed synthesis instructions (i.e., a procedure or recipe); and a complete execution order for 

automated systems (for expert review, not execution). Factors to consider are the procedure (from 

an ELN, for example), reaction conditions, and route instantiation (translation to a machine-ready 

synthesis workflow). Lilly validated five chemistries (amide coupling, Buchwald-Hartwig coupling, 

Suzuki coupling, sulfonamide formation, and urea formation) in 2019 and 15 more in 2020. 

One example of inspiration from observation is the work of Schneider et al. on unraveling the 

content of the medicinal chemist’s toolbox. The researchers used a sophisticated text-mining 

pipeline to extract 1.15 million unique whole reaction schemes, including reaction roles and yields, 

from pharmaceutical patents. The reactions were assigned to well-known reaction types using an 

expert system, and the evolution of reaction types over time was analyzed. 

Lilly’s virtual synthesis engine uses an annotated reaction repository for which a reaction database 

and an ontology were developed using NextMove Software’s NameRxn.32 About 2 million reactions 

were classified into more than 700 reaction types using the ontology implementation. More than 

60,000 chemical reactions have been executed in the ASL system by more than 220 researchers.108 

Lilly’s reactions are expert-reviewed rather than expert-defined. The system capitalizes on the 

availability of clean, robust reaction data in Lilly’s synthetic history (Synthory) database which is 

continuously updated, with adaptive learning. 

Lilly are carrying out ongoing work on identifying actionable routes. Lilly’s “eLN” containing millions 

of reactions has been mined, cleaned, standardized, and characterized. A subset containing 

associated automated synthesis workflows has been made. This will allow search for a proposed 

route: finding a similar automated reaction, and identifying the synthesis workflow. The system will 

recommend an actionable route, extract an automated workflow reaction template, and instantiate 

it with the desired reaction reactants, agents, etc. Results so far are promising. 

 

We are getting close to the possibility of autonomous discovery (Figure 72) but the missing link is still 

instantiation of the route in a machine language. 

Figure 72. The Idea2Data vision. 
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The SynRoute computational synthetic planning tool: lessons learned 

Mario Latendresse, James Herson, Markus Krummenacker, Peter Madrid, Jeremy Malerich, and 

Nathan Collins, SRI International, Menlo Park, CA, USA 

SRI Biosciences has developed SynFini, a suite of tools that makes use of AI to automate the 

translation of ideas into testable physical molecules.171 The SynFini platform helps scientists 

maximize time spent on what to make, rather than how to make it, by accelerating chemistry design, 

development and synthesis. Deep Adaptive Semantic Logic (DASL)236 is a framework for automating 

the generation of deep neural networks that incorporates user-provided formal knowledge to 

improve learning from data. SynRoute is a CASP tool that rapidly designs multistep routes. SynJet, 

for fast reaction screening and optimization, performs synthesis on a µg to mg scale. It is coupled 

with SynRoute. The AutoSyn automated bench chemistry platform is a miniaturized, flow chemistry 

plant with integrated analytics. Finally, data are generated from rapid in vitro bioassays and ADMET 

tests. 

AutoSyn incorporates a “cityscape”: a miniaturized chemical plant.171 Automated synthesis includes 

start-up, operation, and shut-down. The apparatus carries out multistep synthesis on a mg-gm scale. 

It features the ability to switch between two targets in less than two hours, using valves to select the 

flow path. Characterization is both in-line and on-line. A “subway map” on the cityscape maps 

synthetic routes on the baseline configuration. 

SynJet features 24 reagent dispensers, a transfer arm, six heater blocks, and a vial hopper. A 

customized Inkjet dispenses around one reaction a second for a 10 μL reaction. Reaction processing 

is highly parallel with screening for independently varied conditions including time, temperature, 

solvent, reagents, stoichiometry and catalysts. Chemical analysis is by HPLC/MS (at 120 seconds per 

reaction). 

SynRoute needs to work with both AutoSyn and SynJet. It has a web interface designed for use by 

chemists who enter a target compound as SMILES, InChI, InChIKey, or common name, or by drawing 

a structure, or inputting a structure as a file. They enter constraints (e.g., the maximum number of 

steps or maximum cost). Recently saved routes based on target compounds are displayed. After a 

route search, the results are displayed as strategies (e.g., 2-5 steps are summarized so the user can 

see the complexity of the route). Users then view strategy 3, route 1, say, and can refine it by 

avoiding or keeping certain compounds or reactions. They can curtail a route by selecting feedstock. 

A bill of materials can be prepared to help the chemist to order materials quickly. The route can be 

saved and put into the SynFini platform for creation of a process from a route. Pumps and a reactor 

are chosen and the operator of the synthesis system can load the pumps and choose solvents and 

reagents to be used. 

Fifty-nine reaction transformations from the medicinal chemist’s toolbox (MCT)237 have been 

incorporated in SynRoute. The route searching algorithm (Figure 73) generates reactions that 

connect to feedstocks or synthesizable compounds. A subnetwork is selected according to 

constraints such as route length. A diversified k-best route is applied based on cost and length of 

routes: shorter routes are better. Multiple routes are found, then clustered based on strategies. A 

typical search time is 20 to 90 seconds. 
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Latendresse and his colleagues created and trained classifiers for each transformation from the MCT. 

The goal is to predict whether a computer-generated reaction is workable. During a route search, all 

applicable MCT transformations are used to create new reactions. The machine learning classifier is 

applied to each computer-generated reaction and only reactions classified as “workable” are used in 

the search. The machine learning classifier reduces the exponential complexity of the search 

challenge and produces routes that have higher confidence overall.238 

Routes are “diversified” with different strategies: variations on their first retrosynthetic reaction. 

Finding multiple diversified routes is essential for the chemists to get a broader view of what is 

possible. This is technically done in the searching algorithm by spreading the routes found on each 

strategy. SynRoute uses a curated version of the Pistachio database103 from NextMove Software. 

Reactions that could not be classified are not used. As purchasable building blocks, SynRoute uses 

tier 1 and tier 2 of the eMolecules catalog.239 (Tier 3 molecules cannot be readily purchased.) 

Latendresse tested the performance of the classifier algorithm. Classifiers were created and trained 

for each MCT transformation. The encoding of reactions uses a sparse vector of atom classes. An 

atom class is defined as an atom species, its properties, and its direct neighbor atom species and 

properties with their bond types. Considering all atoms in the Reaxys database,44 27,429 classes 

were extracted. The classifiers have an average accuracy of 90% based on cross-validation studies 

with literature data (Figure 74). The overall performance of SynRoute is shown in Table 3. 

MCT = Medicinal Chemists’ Toolbox 

Figure 73. SynRoute search algorithm. 
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Reaction templates (i.e., transformation rules) can be generated automatically from a set of 

reactions. Typically, reaction SMIRKS/SMARTS are used to represent the templates as retrosynthetic 

transformations, for example, ester formation: 

[C:5][C:2](=[O:1])[O:3][C,c:4]>>[C:5][C:2](=[O:1])[OH].[OH:3][C,c:4]. The published techniques create 

about 100,000 specific templates to cover the given reaction set. These techniques have a major 

drawback: it is difficult to find the applicable and appropriate templates given a molecule. One 

possible solution is to reduce the number of templates by generalizing them. 

Unfortunately, the SMIRKS representation does not have well-defined semantics. For example, the 

well-known RDKit240 implementation does not implement the “or” syntax as expected in 

[NX3;!$(NC=O):1][CX4:2]>>[N:1].[F,Cl,Br,I][CX4:2]. It does not produce four different molecules, as 

expected from the or notation “[F,Cl,Br,I]”, but only one. There is a need for a more well-defined 

representation with semantics that do not depend on a unique implementation (e.g., RDKit). 

Innovative graph technologies for synthesis route design in ASPIRE. 

Gergely Zahoránszky-Kőhalmi,1 Mark Backus,1 Wendy M. Charles,2 Busola Grillo,1 Manideep 

Gurumurthy,1 Tyson S. Henry,2 Brian D. Jackson,2 Robert C. Lubeck,2 Nikita Lysov,1 Biju Mathew,1 

Dimitrios Metaxotos,1 Byron N. Nash,2 Frank J. Ricotta,2 Gianna Ricotta,2 Rafat Sarosh,1 James A. 

Scarpella,2 Nick Schaub,1 Ke Wang,1 Alexander G. Godfrey;1 1National Center for Advancing 

Translational Sciences (NCATS/NIH), Rockville, MD, USA; 2BurstIQ Inc., Denver, CO, USA 

NCATS proposes to transform chemistry from an individualized craft to a modern, information-based 

science through “A Specialized Platform for Innovative Research Exploration” (ASPIRE).241 By 

addressing long-standing challenges in the field of chemistry, including lack of standardization, low 

reproducibility, and an inability to predict how new chemicals will behave, ASPIRE is designed to 

bring novel, safe and effective treatments to more patients more quickly at lower cost. ASPIRE builds 

on the power of recent and emerging technological innovations such as chemical laboratory 

Figure 74. Accuracy of MCT classifiers. 

Table 3. Overall Performance of SynRoute 
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automation, microfluidic flow chemistry, high-throughput screening, and machine learning. This 

convergence of technologies, together with innovative cross-disciplinary engineering, provides a 

new opportunity to break translational bottlenecks in chemistry and benefit science and health. This 

initiative promotes multidisciplinary collaborations among government, academic and 

pharmaceutical researchers; funders; professional societies; scientific publishers; and other 

stakeholders. 

Challenges in the collaborative research environment include sharing data with third parties, and 

accessing the data needed for evidence-based synthesis route design, and for building AI and 

machine learning models. There is a need to keep track of the chain of custody. Secure reaction 

information storage also presents challenges: database access allows structures to be revealed, the 

risks of reverse mapping public InChIKeys to potentially novel reactions must be reduced, and 

substructure and similarity search need to be carried out in a protected database. 

Precomputed reaction graphs can be stored in a Neo4j242 multipartite graph database. Substances 

are encoded as InChIKeys; reactant, reagent, and product information are treated as edge labels; 

and “metanodes” represent annotation according to the RXNO name ontology.69 In a PostgreSQL243 

database with the RDKit cartridge,240 SMILES are stored only as encrypted strings and substructure 

search uses on-the-fly decryption (in memory). These databases can be used in evidence-based 

synthesis route design. 

NCATS is collaborating with BurstIQ244 in a blockchain pilot project to reduce the cost and risk of 

collaborative chemical reaction research. The advantages of blockchain are its tamper-resistant and 

tamper-evident data history, tracking of data access (chain-of-custody), consent contracts (granting 

and revoking permissions), scalability, and strong encryption, all with minimal manual 

administration. 

Reaction protections and collaborations are enhanced with blockchain. Access to reactions by 

reaction ID or InChIKey is controlled using cryptographic ownership and control, governance, and 

consent management. The chemical reactions cannot be reconstituted from the blockchain-based 

encryption. Access to blockchain assets can be controlled with granular, dynamic consent. Only the 

asset owner(s) and controller(s) can grant, modify, or revoke permissions for individuals or groups 

(projects) to access reactions at a very granular level, from a petabyte of data to a single data object. 

The blockchain serves as a single source of truth with a full audit trail. This facilitates data sharing 

with both trusted and untrusted partners. This approach also ensures that researchers are able to 

share and contribute to each other’s research without losing control of valuable intellectual 

property. 
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The ASPIRE reaction data management (RDM) system (Figure 75) has an API to: 

 find a reaction by reaction ID 

 find a reaction route by a target molecule’s InChIKey 

 find similar reactions (based on reaction fingerprints) 

 find reactions with a reactant, reagent, or product similar to a query structure 

 find reactions where a reactant, reagent or product contains the query substructure 

 find reactions associated with an RXNO reaction name (class) 

 depict a molecule (as a structure in SVG format). 

A prototype reaction portal has been built. Next steps are integration of blockchain functionality into 

all RDM API endpoints; integration of a consensus-based secure data sharing mechanism into the 

reaction portal; extending synthesis route design features; and exploring further utilization of the 

BurstIQ platform in knowledge base design. 

Conclusion 

While the event on ultralarge databases dealt largely with virtual libraries, the current one is more 

concerned with realities. There are useful large collections of curated reaction data such as Reaxys, 

CAS Reactions, and Pistachio but they are commercial. The most commonly used open source 

collection is the one loosely called “USPTO” and it covers only reactions published in patents. Other 

issues are the problems of bias, noise, and missing data fields. There is a particular problem with 

missing and erroneous data on reaction yields. The Open Reaction Database described herein aims 

to make reaction data freely and publicly available in a structured data format but the project is only 

in its infancy. 

The reaction representations discussed here start with the oldest, CHMTRN/PATRAN and run 

through de facto standards such as RDfiles and RXN files, and SMIRKS and SMARTS, and through 

CGR, right up to recent XML options, RInChI, and UDM. A new format, Reaction SPL, based on an 

existing standard, has also been proposed. There is a reaction ontology (RXNO). Software 

developments in connection with the SAVI and Pistachio databases and the open source Chemotion 

ELN and Repository are also noteworthy. 

There is much interest in transformer models for reactions: a number of sections herein discuss such 

systems. Atom-to atom mapping is an essential for some reaction informatics software applications, 

Figure 75. ASPIRE reaction data management system. 
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but not for others. The IBM RXN for Chemistry team have mainly developed approaches that are 

independent of atom-mapping, but they recently developed their own atom-to-atom mapping 

program, RXNMapper. Reaction informatics software applications discussed include de novo drug 

design, predicting reaction conditions, retrosynthesis, reaction outcome prediction, and synthetic 

accessibility (including various scoring systems). 

Access to synthetically accessible molecules in virtual libraries was a critical component of the 

previous NIH conference on ultralarge chemistry databases. Designing a new molecule is of little 

practical interest if it cannot be realized synthetically. Hence there is an interest in software to 

predict the feasibility of synthesis, and automation to streamline the actual synthesis. The fourth, 

and final, theme in this report is progress toward autonomous synthesis. Lilly’s Idea2Data vision, 

SRI’s SynFini, IBM RoboRXN, Cronin’s “Chemputation” and Cernak’s ultra-high throughput 

experimentation are reported herein. Standard formats are needed to link synthetic routes to 

robots. This is another topic for this report. The universality of XDL is one of the subjects explored. 

DeepMatter also report adherence to standards in their work on time-course sensor data. Finally, 

the ASPIRE project reports an interesting experiment with blockchain. 

As a result of significance of the subject matter of the two NIH workshops, and the interesting 

discussions that have taken place, the Journal of Chemical Information and Modeling has issued a 

call for papers for a special issue245 on reaction informatics and chemical space, edited by Matthias 

Rarey, Marc Nicklaus, and Wendy Warr, to be published early in 2022. This will highlight the 

achievements of recent years, showcase current research, and motivate scientists in academia and 

industry alike to explore the opportunities in navigating chemical space. 
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