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We present several workflows for protein-ligand docking and
free energy calculation for use in the workflow management sys-
tem Galaxy. The workflows are composed of several widely used
open-source tools, including rDock and GROMACS, and can be
executed on public infrastructure using either Galaxy’s graph-
ical interface or the command line. We demonstrate the utility
of the workflows by running a high-throughput virtual screen-
ing of around 40000 compounds against the SARS-CoV-2 main
protease, a system which has been the subject of intense study
in the last year.
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Introduction
Computational techniques are commonly used to assess the
affinity of small druglike molecules to a biological target
molecule, typically a protein, in a process known as vir-
tual screening. Virtual screening is a complex, multi-step
process which needs to be performed at a high-throughput
level of thousands or millions of input molecules. As a re-
sult, workflow management systems such as KNIME, CWL,
Nextflow or Galaxy prove useful to organize analyses, allow-
ing automation and parallelization of commonly used steps
and avoiding tedious manual repetition.

In previous work, we published a range of cheminformat-
ics (1) and molecular dynamics tools (2) via the Galaxy plat-
form. Galaxy provides a range of useful features, including
a convenient web-based graphical interface, storage of essen-
tial metadata such as tool parameters to ensure reproducibil-
ity of analyses, and easy construction and execution of work-
flows from component tools, either on the command line or
via the graphical interface. In addition, we pointed out that
using Galaxy provides access to vast public compute infras-
tructures, including GPU resources for molecular dynamics
calculation, such as the denbi and STFC clouds which under-
pin the European Galaxy server, https://usegalaxy.
eu, a distinctive feature which distinguishes Galaxy from
other workflow management systems.

Here, we present several new workflows for protein-ligand
docking, molecular dynamics and free energy calculation.
These workflows are constructed out of simpler building
blocks (the component Galaxy tools) and can be used or mod-
ified as templates for other similar calculations. We demon-

strate the utility of these workflows by running them at high
scale on a system which has attracted much recent attention,
namely the main protease (Mpro) of the SARS-CoV-2 virus.

Previous experimental work, involving some of the au-
thors, revealed the crystal structures of Mpro in complex with
96 different fragment structures, including non-covalent hits
as well as hits covalently bound to the vital Cys145 residue in
the protease binding site (3). Fragment hits were also found
located at the interface between the Mpro dimers. Here we
focus our attention on the 22 non-covalent hits bound within
the protease active site, excluding two (denoted x1086 and
x0887) which bind to other pockets of the protein (the chem-
ical structures of the fragments studied are depicted in Sup-
plementary Figure 1). We use these 22 hits as the basis for
generating a list of candidate compounds using the Fragal-
ysis fragment network, a reimplementation of the Fragment
Network concept originally developed by Astex Pharmaceu-
ticals (4). These compounds are then docked using rDock
against each of the crystallographic structures from the frag-
ment screen. The resulting docked structures are validated
against the original fragment structures using the SuCOS
measure and scored using the TransFS deep learning-based
method. Based on these scores, the compounds can be ranked
and the most promising of them (around 200) used for fur-
ther free energy calculations. These are performed using the
MMGBSA technique, using an ensemble of a total of 5 ns
of simulation time per compound. Subsequently we take the
50 top-scoring compounds from the MMGBSA simulations
and perform more computationally expensive dcTMD calcu-
lations, requiring a total of 50 ns of simulation time per com-
pound.

Methods

Three main workflows have been developed as part of this
work: an initial protein-ligand docking and scoring work-
flow, in which hypothetical protein-ligand structures are gen-
erated and ranked; a relatively low-cost free energy calcula-
tion workflow, based on the MMGBSA technique, which is
run on the most promising of the docked complexes; and a
more costly free energy calculation technique, based on the
recently published dcTMD method.
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Fig. 1. Schematic of the docking and scoring workflow.

Protein-ligand docking and scoring. The inputs for the
docking and scoring workflow consist of a protein structure
for docking and a list of candidate compounds. The initial
list of candidates is generated with the Fragalysis fragment
network API, using the 22 selected fragment hits as inputs to
be extended, generating molecules that are close neighbours
of the starting molecules in the fragment network.

For those initial candidates, various charge forms between
pH 4.4 and 10.4 are enumerated using DimorphiteDL (5). A
single three-dimensional conformer for each of these forms
is then produced using OpenBabel (6) as the starting struc-
ture for docking. The main task of the workflow, after enu-
merating charge forms and conformer generation, is to dock
each of the enumerated conformers into the binding sites of
the fragment crystal structures to generate numerous dock-
ing poses, using the open source rDock software (7). Pocket
definition for the docking was achieved by the so-called
‘Frankenstein ligand’ technique of combining atomic coor-
dinates from all fragments into a single hybrid molecule for
use as a reference ligand.

Docking produced a large number of poses, which were
then evaluated using two measures. Firstly, the SuCOS (8)
measure is used to assess the overlap between the putative
binding position of the compound and each of the experi-
mental fragment crystal structures. The aim is to validate the
docked poses and to ensure they share a similar conforma-
tion and position to at least one of the experimental crystal-
lographic structures. Secondly, the TransFS (9) tool, based
on a deep learning model trained on a variety of molecular
interactions, is used to score each of the poses.

A schematic of the workflow is provided in Figure 1. For
our concrete use case, we provide an initial list of 53,787
compounds, which are generated by the Fragalysis fragment
network. After charge and conformer enumeration, this value
is expanded to 219,247, or around 4 conformers per com-
pound. For each of these, 25 docking poses are generated,
giving a total of 5,481,175 poses.

It should be noted that this workflow is run separately for
each of the fragment crystal structures, i.e. 22 times, corre-
sponding to a total of over 120 million docking poses. Poses
are thus validated against a single fragment during the Su-
COS scoring stage. As a result, for each fragment, we obtain
a separate list of poses which are ranked only on the basis
of their overlap with that single fragment. All poses are also
scored using the TransFS tool.

A customizable subworkflow is responsible for filtering

the poses based on the assigned scores. Filtering proceeds by
selecting the top 5000 compounds for each fragment (around
0.1%) by SuCOS score. As a rule of thumb, a SuCOS score
of over 0.5 is acceptable; thus, all poses which differ sub-
stantially in conformation and position from the experimental
structures are discarded. This subset of poses with high Su-
COS scores is then filtered further in one of three ways: 1) se-
lecting all with SuCOS > 0.6 and TransFS > 0.9, 2) selecting
all with SuCOS > 0.7 and TransFS > 0.8, 3) for all fragments
where these two filtering steps resulted in less than 3 outputs,
the top 3 poses based on TransFS scores are selected. By
applying this complex filtering, we obtain a range of poses
which score highly for both TransFS and SuCOS measures,
as well as ensuring a wide chemical diversity of poses with
all of the component fragments represented.

The filtering is implemented using the sdsort and sdfilter
commands which are provided alongside rDock.

MMGBSA free energy workflow. The list of compounds
obtained after application of the docking and scoring work-
flow comprises around 210 molecules. To obtain a low-cost
assessment of the free energy of binding for each of the poses,
we perform MMGBSA calculations using AmberTools (10).

Firstly, a subworkflow for system parameterization is used
to prepare the selected ligands for MD simulation. The
docked poses are converted from SDF to MOL2 format and
parameterized using the GAFF forcefield, using tools based
on AmberTools and acpype (11). Meanwhile, the protein
structure is parameterized with the AMBER99SB forcefield,
using a tool based on GROMACS’s pdb2gmx (12). Using
the tagging system provided by Galaxy, each of the poses
is annotated with its respective SuCOS and TransFS value,
together with the identity of its parent fragment. These meta-
data are inherited by datasets produced in subsequent anal-
ysis, allowing quick overview of all data for any particular
compound.

Solvent (water represented with the TIP3P model) and
sodium or chloride counterions are added as required to
neutralize the system, before performing energy minimiza-
tion. The molecular dynamics simulations themselves are
performed using GROMACS. 100 ps of equilibration simula-
tions are performed. The production simulations (length 200
ps) are then performed. For each compound, an ensemble of
20 simulations are performed, taking advantage of Galaxy’s
collection functionality to create a list of datasets and apply a
tool over the entire list as a single workflow step. The size of
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Fig. 2. Schematic of the MMGBSA workflow. A modular subworkflow for system parameterization is shared with the dcTMD workflow; see Figure 4 for details.

the ensemble is configurable as a workflow parameter. The
production simulations are then used as a basis for the MMG-
BSA calculations and a mean across the ensemble is calcu-
lated. An schematic of the entire workflow is provided in
Figure 2. It should be noted that the entropic component to
the free energy is not included in the calculations, so the val-
ues generated represent only the enthalpy of binding.

dcTMD free energy workflow. As a further demonstration
of the capabilities of our tools, and the flexibility of the
Galaxy platform which allows them to be combined in nu-
merous different ways, we have designed a third workflow
which makes use of the recently published dcTMD free en-
ergy technique. The main aim of dcTMD is to provide in-
sight into the kinetics of protein-ligand dissociation; a drug
candidate which has a low rate of dissociation from the target
protein and thus a high ‘residence time’ in the binding site
will be preferred to a candidate which dissociates quickly.
The theoretical background, with comparisons against vari-
ous common benchmark systems, was provided in two pre-
vious publications (13, 14); the physical basis of the method
is described in detail in those two works. The main advan-
tage of the dcTMD method is its provision of free energy
and friction profiles for protein-ligand dissociation, with even
sampling of the entire reaction coordinate, including areas of
high free energy which are infrequently sampled at equilib-
rium and inherently difficult to study.

The process entails simulation of an ensemble of constraint
targeted molecular dynamics (TMD) simulations, in which a
constraint pulling force is applied between two atom groups
(typically, the ligand and part of the protein) to separate the
two groups at constant velocity. The pull groups used for
Mpro simulations are depicted in Figure 3. By applying a
weighted average across the ensemble, based on an approx-
imation of the Jarzynski equality (15), free energy and fric-
tion profiles for the system at equilibrium can be calculated,
despite the fact the ensemble is made up of non-equilibrium
simulations.

Fig. 3. Pull groups for the TMD simulations. Group 1 consists of the ligand non-
hydrogen atoms. Group 2 consists of a selection of alpha-carbons in the Mpro
active site, highlighted as red spheres.

In order to streamline the process of performing dcTMD
calculations, we have developed a complete Galaxy workflow
for both simulation and the subsequent calculations. This
workflow functions similarly to the MMGBSA workflow, in
that it represents the MD ensembles using Galaxy collections,
the size of which can be parameterized using a workflow pa-
rameter. For dcTMD simulations, an ensemble size of around
100 is recommended; we therefore set ensemble size to 100
for each ligand. MD simulations are performed using GRO-
MACS 80 ps equilibration for each simulation is performed,
followed by a 500 ps production TMD simulation, in which
the two pulling groups are separated with a velocity of 1 m/s
- in other words, the ligand ends the simulation at 500 pm
from its initial position bound in the active site. Pulling sim-
ulations are achieved using the PULL code incorporated into
GROMACS. As the Mpro binding site is rather shallow, this
simulation length is sufficient to sample the entire dissocia-
tion pathway.
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Fig. 4. Schematic of the dcTMD workflow.

An essential part of the dcTMD process is pathway separa-
tion. One of the core assumptions of the dcTMD protocol is
Gaussianity of the work profile of the ensemble, which is ac-
ceptable if the ligand takes a uniform path between the bound
and unbound state, but breaks down if the ligand is able to
take multiple paths out of the binding site. Therefore, it is
essential to carry out an analysis to determine whether dis-
tinct paths are present in the ensemble. Galaxy tools are also
provided to align the TMD trajectories according to the pro-
tein atoms and perform hierarchical clustering based on the
RMSD between ligand positions. The user then has the op-
tion to inspect the clusters manually and to apply the dcTMD
calculation again to a subcluster of the ensemble.

A schematic of both the main dcTMD workflow and the
optional pathway separation is provided in Figure 4. Our
main aim in calculating the dcTMD free energy profiles is to
obtain a value for the maximum free energy reached, which
heavily influences the kinetics of dissociation. The position
of this barrier on the reaction coordinate is also of interest;
by inspecting the free energy and friction profiles generated
in combination with the TMD trajectories, links can be made
between features of the profiles and events along the unbind-
ing coordinate.

Workflow execution. The workflows detailed here required
a high number of executions, particularly in the case of the
MMGBSA workflow, which was invoked over 200 times.
Galaxy provides a graphical web-based interface for tool and
workflow execution, as well as to inspect outputs, but this
is of limited use for a project like this one, which requires
workflows to be executed several hundred times.

Fortunately, command-line tools are available to automate
this process, by providing programmatic access to Galaxy’s

API. Workflows are invoked using the command line tool
Planemo, modifying the input files for each run. This can
easily be scaled up using a simple shell script containing a
for loop.

The Python library BioBlend (16) was also used exten-
sively to move and organize datasets, run individual tools,
and restart paused workflows.

Table 1 summarizes execution statistics for each of the
workflows.

Results and discussion
We have assembled three different workflows which can be
applied sequentially for virtual screening of a protein. In par-
ticular, we have demonstrated the use of these workflows
by running them on the SARS-CoV-2 main protease. A
key point is that these workflows consist of simple building
blocks which can be simply disassembled and recombined to
allow different types of analyses and calculations than those
covered here. Of the 40000 compounds in our original li-
brary, we have identified around 210 docking poses which are
scored highly by the TransFS measure, as well as matching
the conformations and positions of the component fragments
well. For these compounds, we have performed MMGBSA
calculation based on ensembles of MD simulations. Addi-
tionally, we demonstrate a more computationally intensive
dcTMD workflow on a subset of around 50 highly scoring
compounds. A summary table is provided in Table 2.

Docking. Figures 5a and 5b shows distributions of TransFS
and SuCOS scores per fragment. TransFS scores cluster
around a modal value of 0, with a small minority of com-
pounds scoring highly; the 99th percentile lies at 0.61, but

4 | ChemRxiv Bray et al. |



Table 1. Summary of workflow resource usage. Values for resource usage are approximate and can vary substantially between workflow invocations.

Workflow CPU time / h GPU time / h Data storage / GB Number of executions Datasets created
Docking and scoring 3000 1 80 22 6000
MMGBSA 30 2 3 209 893
dcTMD 112 14 6 50 1726

(a) (b)

(c) (d)
Fig. 5. (a) and (b) Distributions of SuCOS and TransFS scores per fragment; the mean values are marked in black. (c) Scatter plot
of SuCOS and TransFS scores for all compounds. (d) Example docking pose (cyan) superimposed on the crystallographic fragment
x0091 (pink) from which it is derived. SuCOS score for the overlap is 0.77.

the distributions of scores are similar for all the fragments
(Supplementary Table 1). The single exception is x1093,
for which all compounds score effectively 0; the reason for
this is difficult to identify, due to the black box nature of the
TransFS method, so the TransFS filtering is simply skipped
for this fragment. The SuCOS scores are very unevenly dis-
tributed, depending on the compound’s parent fragment. It
can be observed, for example, that in general smaller frag-
ments such as x0995 score highly, which is unsurprising, as
a smaller fragment can fulfil the conditions for overlap more
easily. When filtering compounds based on SuCOS score,
this should be taken into account, else an unwanted bias to-
wards these smaller fragments is introduced.

Figure 5c demonstrates that the SuCOS and TransFS
scores are orthogonal, allowing effective filtering of the com-

pounds on two different measures. While the top right corner
of Figure 5c is relatively sparsely occupied, there are enough
compounds present there to select a reasonable number of
candidates which score highly on both measures for further
study. However, because of a difference between SuCOS
score distribution between the different fragments, applying
a crude cutoff would ensure certain fragments were heavily
overrepresented, while others would remain completely un-
represented. We therefore have developed the more complex
filtering workflow described in the Methods section, to en-
sure all fragments receive some representation in the filtered
dataset.

MMGBSA. It is interesting to note that the strongest binders,
according to the MMGBSA calculations, were those com-
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Fig. 6. Plot of MMGBSA enthalpies for poses derived from each of the 22 fragments (mean marked by the large circles).

pounds derived from the x0397 fragment (Figure 6). x0397 is
notable as the only fragment which induces a conformational
change in the protein; on binding, it displaces the sidechains
of the Cys145 and His41 catalytic residues and allows ac-
cess to an additional subpocket (S1’) to which other frag-
ments cannot bind. Considering the other subpockets, com-
pounds derived from fragments located in both subpockets
S1 (e.g. x0434, x0678) and S2 (e.g. x0395, x0387) score
highly. On the other hand compounds derived from the three
sulfonamide derivatives x0161, x0195 and x0946, which bind
in S3, score poorly. Figure 7 depicts four fragments bound to
each of the subpockets, together with a derived docking pose
superimposed.

Inspection of hydrogen bonds formed during the MD sim-
ulations reveals a range of different interactions formed and
a wide variation over the set of fragments, as expected. For
example, fragment x0678 contains a pyridine group which
forms a hydrogen bond with the side chain of His163, buried
within subpocket S1. This bond is inherited by several of the
compounds derived from x0678. Alternatively, for others of
the compounds, the pyridine ring of x0678 is replaced with
a hydroxyl or oxime group, which can then form a hydro-
gen bond with the side chain of Glu166, although the bond
does not exist for the fragment itself. Glu166 is also able to
form hydrogen bonds with some compounds from its main
chain amide group, reflecting its key position at the entrance
to subpocket S1.

As it provides access to S1’, x0397 is also the only frag-
ment which enables significant hydrogen bonding with the
catalytic cysteine residue.

dcTMD. Various information can be extracted from the TMD
ensemble. Firstly, free energy profiles can be calculated, de-
picting the free energy of the system relative to the bound
state at different points on the pulling coordinate. Friction
profiles can also be calculated, depicting the friction present
in the system over a particular point in the reaction coordi-
nate. A classic protein-ligand dissociation free energy profile
depicts a peak between the bound and unbound state, with the
unbound state generally higher in free energy than the bound
state (for example, Figure 8). The height of the peak is of
particular interest, as it represents the kinetic barrier to disso-
ciation (Table 2). Secondarily, the position of the peak, or any
other features in the free energy or friction profiles, can pro-
vide insight into the dissociation pathway, when considered
together with manual inspection of the TMD trajectories.

For all of the ligands examined, it appears there is only a
single pathway available for ligand dissociation, thus obviat-
ing the need to perform the pathway separation step. This is
not surprising, given that the binding pocket of Mpro is fairly
close to the protein surface.

Inspecting the TMD trajectories, various other interactions
become apparent which were not observed in the equilibrium
simulations already performed. For the ligands located in
the S1 and/or S1’ pockets, such as those derived from frag-
ments x0397 or x0991, an interaction with Asn142 at around
0.25 nm from the binding site can be observed. Asn142 pro-
trudes over the active site, partially covering the entrance to
S1 and S1’, where many of the most successful candidate
compounds are bound. Therefore, exiting from the binding
site entails overcoming a steric clash with the side chain, as
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(a) (b)

(c) (d)
Fig. 7. Ligands binding in pockets S1’ (a)), S1 (b), S2 (c) and S3 (d). Parent fragments are colored pink (x0397), purple (x0678), green
(x0387) and orange (x0161).

Fig. 8. Free energy curves derived from dcTMD calculations for two of the screened
compounds.

well as breaking any transient electrostatic interaction formed
with the asparagine side chain. In support of this theory, in
the TMD trajectories inspected, the dcTMD free energy peak
observed at around 0.3 nm corresponds to the point at which
the ligand pushes the side chain aside, having already bro-
ken the key molecular interactions, so that no major obsta-
cles now remain to leaving the active site. For ligands exiting
from the S2 subpocket, an interaction with Ser46 on the other
side of the active site is more significant (Figure 9).

For fragments binding in the S2 subpocket, an interaction
on the other side of the binding pocket is frequently observed,
with the short helical substructure between amino acids 44
and 50 evident, in particular Ser46, the side chain of which
is optimally oriented to face the ligand as it exits the S2 sub-
pocket.

Interactions. In order to validate the results from the
dcTMD and MMGBSA workflows, the interactions between
the protein binding site and the docked molecule were sys-
tematically examined. For this purpose, a Python script (17)
based on the Open Drug Discovery Toolkit (ODDT) (18)
was used. All hydrogen bonds and hydrophobic interactions
between the crystallographic fragments and the binding site
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(a)

(b) (c)
Fig. 9. (a) Friction profiles for four selected ligands; the profiles for the ligands binding in subpocket S1/S1’ (red/pink) show a rise starting
at 0.2 nm, whereas for those binding in subpocket 2 (blue/cyan), this is absent, with an increase being observable instead at 0.3 nm.
(b) Ligands exiting the subpocket S1/S1’ at 0.25 nm from the initial binding position, with Asn142 highlighted, and (c) subpocket S2 at
0.33 nm from the initial binding position, with Ser46 highlighted.

were extracted, together with the less frequently occurring in-
teractions salt bridges, π-stacking and π-cation interactions,
and halogen bonds. Subsequently, the same script was used
to analyse the MMGBSA trajectories produced for each pose,
filtering to include only those interactions present in the frag-
ments. By applying the script to an MD trajectory rather than
a static structure, an estimate can be obtained of the occu-
pancy of an interaction over time, rather than simply its pres-
ence or absence.

38 interactions were found between the initial 22 frag-
ments and the protein binding site, an average of 1.73 in-
teractions per fragment. By contrast, averaging over the MD
trajectories, each compound on average shows 3.13 interac-
tions with the binding site, demonstrating that the method ef-
fectively combines multiple fragments to increase the num-
ber of protein-ligand interactions. MMGBSA free energies
correlate with the number of interactions (Figure 10), so that
considering only the subset of compounds with MMGBSA of
less than -20 kcal/mol gives an average of 4.57 interactions.

Fig. 10. The average number of interactions observed and the free energy as cal-
culated by MMGBSA are correlated (R2=-0.46). The weakness of the relationship
reflects the high variation in the strength and importance of interactions.
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Table 2. Compounds with a maximum dcTMD free energy of over 10 kJ/mol, together with all other calculated scores, and interactions inherited from the component
fragments. The chemical structures of the compounds are depicted in Supplementary Figure 2. (BO = backbone oxygen, BN = backbone nitrogen, SC = side chain, HB =
hydrogen bond, HI = hydrophobic interaction)

Molecule dcTMD
maximum
free en-
ergy /
kJ/mol

Parent
fragments

Other
com-
ponent
fragments

Distance
of dcTMD
maximum
from
binding
site / nm

MMGBSA
/ kcal/mol

SuCOS TransFS Interactions
with oc-
cupancy
and derived
fragment

1 22.41 x0387 x0434 0.45 -17.74 0.56 0.94

Cys44BO HB 91.5% (x0387)
Met165 HI 88.5% (x0434)
Gln189 HI 94.5% (x0434)

His41 π-stacking 6.5% (x0387)

2 18.4 x0387 x0434 0.34 -25.51 0.54 0.95
Met165 HI 94% (x0434)

His41 π-stacking 44% (x0387)
Gln189 HI 88% (x0434)

3 16.45 x0991 x0946 0.24 -29.93 0.64 0.96

4 15.25 x0397 0.24 -31.97 0.65 0
Gly143BN HB 100% (x0397)
Cys145BN HB 83.5% (x0397)

Thr25 HI 10.5% (x0397)

5 14.57 x0397 0.18 -30.74 0.61 0
Gly143BN HB 85.5% (x0397)
Cys145BN HB 89.5% (x0397)

Thr25 HI 62.5% (x0397)

6 13.89 x0434 0.38 -25.42 0.49 0.65
Glu166BN HB 84.5% (x0434)

Met165 HI 64% (x0434)
Gln189 HI 19% (x0434)

7 13.61 x0678 0.73 -26.4 0.53 0.94
His163SC HB 14% (x0678)

Met165 HI 50% (x0678)
Glu166 HI 90% (x0678)

8 11.96 x0305 0.52 -25.07 0.54 0.94
Met165 HI 87.5% (x0305)

Gln189SC HB 13% (x0305)

9 10.95 x0434 0.43 -22.71 0.52 0.68
Gln189 HI 50.5% (x0434)
Met165 HI 10.5% (x0434)

Glu166BN HB 3.5% (x0434)

10 10.57 x0434 x0387 0.29 -34.78 0.52 0.77
Glu166BN HB 77.5% (x0434)

Met165 HI 61.5% (x0434)
His163SC HB 44% (x0434)

In addition, a search was also performed for new interac-
tions which do not originate from the crystallographic frag-
ments. This yielded very few results. The most common is a
salt bridge between the ligand and Glu166, which is present
in 11 molecules with an occupancy > 0.5. Others are even
rarer: the second most common interaction not present in
the original fragments is a hydrogen bond with the backbone
nitrogen of Pro168, for which the maximum occupancy is
0.45; a total of only 7 have an occupancy > 0.1. Considering
the chemical diversity of the fragments and their distribution
through the binding site, it is not surprising that there is little
scope for new interactions to appear, but it helps to confirm
that the compounds found successfully replicate the chem-
istry of the original fragments.

According to Table 2, the majority of the highest-scoring
compounds have several high-occupancy interactions inher-
ited from the fragments of which they are composed. In par-
ticular, a hydrophobic interaction between Met165 and the
ligand is present for almost all the compounds - this interac-

tion is also present for 10 of the 22 original fragments, due to
its crucial position at the intersection of the S1 and S2 sub-
pockets. For compounds derived from the x0434 fragment,
a hydrophobic interaction with Gln189 and a hydrogen bond
with Glu166 also frequently recurs. For compound 3, on the
other hand, no interactions can be detected; this is due to
the fact that no interactions exist, at least according to the
script used, between the parent fragment x0991 and the pro-
tein. For the compounds derived from the x0397 fragment,
which allows a change in protein conformation and which
provided the highest MMGBSA scores, other interactions
predominate: hydrogen bonds with Gly143 and Cys145, and
to a lesser extent a hydrophobic interaction with Thr25. Both
these hydrogen bonds between the ligand and the backbone
nitrogen atoms of Gly143 and Cys145 show a particularly
strong relationship with the dcTMD free energy score (Fig-
ure 11), and appear only with the x0397 fragment.

The dcTMD scores represent the peak of the free energy
profile of dissociation - thus, a high correlation between these

Bray et al. | ChemRxiv | 9



(a) (b)
Fig. 11. Maximum dcTMD free energy scores for compounds which display hydrogen bonding with the peptide backbone at residues
Gly143 (R2=0.69) and Cys145 (R2=0.85)

interactions and the dcTMD score implies they play an im-
portant role in raising the barrier to debinding, where they
are present.

Conclusion
We have presented several new workflows for virtual screen-
ing, including protein-ligand docking and scoring, an estab-
lished MD-technique (MMGBSA) and a more recently de-
veloped free energy technique (dcTMD), and demonstrated
their use with a study on the main protease of the SARS-
CoV-2 virus. These workflows allow us to study a very high
number of initial candidate compounds, before narrowing to
a smaller selection which we study using more computa-
tionally intensive MD techniques. The use of these work-
flows demonstrates the flexibility of the GROMACS-based
MD tools in Galaxy, which can be combined together to
create various different types of simulation, including non-
equilibrium TMD simulations.

A key motivation for using the Galaxy platform for this
kind of study is to enable reproducible, transparent research.
Therefore, all datasets are available in the form of published
Galaxy histories at https://usegalaxy.eu. Links to
the histories are provided in the supplementary material.
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