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Abstract

Transparent conducting oxides have become ubiquitous in modern opto-electronics. However,
the number of oxides that are transparent to visible light and have the metallic-like conductivity
necessary for transparent conducting oxide applications is limited to a handful of systems that
have been known for the past forty years. In this work, we use hybrid density functional theory
and defect chemistry analysis to demonstrate that tri-rutile zinc antimonate, ZnSb2O6, is an ideal
transparent conducting oxide, and identify gallium as the optimal dopant to yield high conductivity
and transparency. To validate our computational predictions, we have synthesised both powder
samples and single crystals of Ga-doped ZnSb2O6 which conclusively show behaviour consistent
with a degenerate transparent conducting oxide. This study demonstrates the possibility of a family
of Sb(V) containing oxides for transparent conducting oxide and power electronics applications.

1 Introduction

Transparent conducting oxides (TCOs) are an essential component of modern photovoltaic and display
screen technologies. Sn-doped In2O3 (ITO) displays the superior opto-electronic properties among the
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industrially used TCOs; it has been reported to possess resistivities as low as 8×10−5 Ω cm, mobilities
that exceed 50 cm2 V−1 s−1, carrier concentrations on the order of 1 × 1021 cm−3, all whilst retaining
over 90% transparency to visible light. [1] The more earth abundant TCOs, such as F-doped SnO2

(FTO) [2] or Al-doped ZnO (AZO) [3] display mobilities and conductivities below that of ITO, which
limits their application in display screen technologies. However, ITO is not considered for large area
applications such as in photovoltaics or smart window applications, despite recent improvements in
the efficiency of indium based TCOs via innovative doping (Mo and Ce), [4,5,6] due to the expense and
scarcity of indium. Therefore, there is a drive to try to increase the performance of the known earth
abundant TCOs, [7,8] or more unusually, to discover new TCOs. The last “new” TCOs to be reported
were La-doped BaSnO3 in 2012, [9] an oxide that had been studied as a TCO for decades without
success until the synthesis of a high quality, high-mobility single crystal, and the correlated metals
SrVO3 and CaVO3 in 2015. [10]

In terms of materials design, the common trend in the majority of the effective n-type TCOs is
the presence of post-transition metal cations with the electronic structure (n− 1)d10ns0np0. In these
materials, the s orbitals of the cation hybridise with oxygen s states yielding conduction bands with
low electron effective masses. [11] Indeed the majority of the cations in the industrially relevant TCOs
are limited to groups 12, 13 and 14 of the periodic table. In an early investigation of ternary oxides,
Shannon et al noted that edge-sharing Cd2+, In3+ and Sn4+ octahedra were a feature of common
transparent conductors. [12]

In 2004, Mizoguchi and Woodward employed a joint theory and experimental study to investigate
the necessity for edge-sharing octahedral connectivity when designing n-type TCOs. [13] They found
that edge-sharing is not a prerequisite, and corner sharing can also provide excellent dispersion of the
conduction band, such as in BaSnO3.

[9] Interestingly, they identified some ternary oxides containing
Sb(V) and Bi(V) which displayed reasonable curvature of the conduction band minimum, [13] including
tri-rutile zinc antimonate (ZnSb2O6). It should be noted that group 15 cations in their highest
oxidation states possess the same (n− 1)d10ns0np0 electronic structure as the cations in the common,
successful TCOs.

Despite the identification of ZnSb2O6 as a potential TCO, the material has not received a huge
amount of attention. It had previously been studied by Kikuchi et al as a potential TCO and ther-
moelectric in 2005, [14] but it was only ever produced as a powder and little data on the optoelectronic
properties were published. Hautier et al identified ZnSb2O6 as a potential low electron effective mass
TCO in their computational screening study of 2014, calling on the solid-state community for further
computational and experimental investigation. Meanwhile, Li et al briefly investigated it as a potential
anode for Li battery technology. [15] However, no high quality single crystals of ZnSb2O6 have been
reported, and its full potential as a transparent conductor is yet to be assessed.

In this work, we investigated the crystal and electronic structure of ZnSb2O6 with hybrid density
functional theory, and validated this description with quasi-particle self-consistent GW theory (Green’s
function, G with a screened Coulomb interaction, W ). A full intrinsic defect analysis was performed
that showed when nominally undoped, ZnSb2O6 does not fulfil the Mott criterion for metallic-like
conductivity. We then considered three extrinsic dopants, and demonstrated that Ga is the optimum
electron donor in ZnSb2O6. Using this knowledge, we successfully grew powder and single crystal sam-
ples of Ga-doped ZnSb2O6, which displayed excellent optical transparency (>99%), electron mobility
between 40 cm2 V−1 s−1 to 50 cm2 V−1 s−1 and carrier concentrations on the order of 2 × 1020 cm−3.
The results presented in this study demonstrate that Ga-doped ZnSb2O6 displays all the indicators
of a high-performance transparent conductor, and serve as an important proof-of-concept for Sb(V)
based TCO design.

2 Results

2.1 Crystal Structure

ZnSb2O6 crystallises in a tri-rutile structure, belonging to the P42/mnm space group, as shown in
Figure 1. The structure consists of ZnO6 and SbO6 edge-sharing octahedra in the order ZnO6-SbO6-
SbO6 along the c-axis, with corner-sharing octahedra present throughout the a-b planes. It has
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Method a / Å c / Å a/c

PXRD∗ 4.6793 9.2906 0.5037
PBE0∗ 4.6740 9.2585 0.5048
PBEsol∗ 4.6921 9.3388 0.5024

Bystroem et al [18] 4.67 9.26 0.50

Nishiyama et al [19] 4.668 9.265 0.504

Kikuchi et al [14] 4.68 9.29 0.50

Table 1: Lattice parameters of ZnSb2O6 resolved from experiment and simulations. Asterisks denote
results from this work.

tetragonal unit cell parameters, a summary of which is provided in Table 1 for a range of exchange
correlation functionals and experiments. The XRD results show an excellent fit to the P42/mnm
space group, as can be seen in the XRD pattern in Figure 2, and the PBE0 lattice parameters are
in good agreement with room temperature XRD results. The PBEsol lattice parameters are slightly
overestimated, which is typical of the generalised gradient approximation (GGA) implementation in
DFT. [16]

(a) View along a-axis. (b) View along c-axis.

Figure 1: Crystal structure of ZnSb2O6, space group P42/mnm. Zn, Sb and O atoms are shown
in pale orange, dark orange and blue, respectively. There are two distinct anion sites, denoted by
different shades of blue. Visualised using vesta. [17]

Doping with Ga causes a systematic shift in the Bragg peaks to higher angles compared to undoped
samples, illustrated in Figure 14, indicating a shrinkage in cell size. This observation is consistent
with substituting Ga with Zn in an octahedral environment, as Ga has a smaller ionic radius (0.62 Å)

compared to Zn (0.74 Å). [20] The unit cell volumes also shift from 201.78 Å
3

to 201.48 Å
3

after Ga
doping, extracted by Rietveld refinement using the gsas-ii software. [21] These observations are con-
sistent with a solid solution of gallium replacing zinc in the tri-rutile structure, with no detectable
phase separation.
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Figure 2: Powder x-ray diffraction pattern for annealed ZnSb2O6. Dashed line indicates Rietveld
refinement for P42/mnm tri-rutile structure; difference between fit and data is shown below peak
positions.
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2.2 Electronic Structure

The electronic band structure of ZnSb2O6 was calculated using the PBE0 functional and is displayed
in Figure 3a. A direct band gap of 3.54 eV at Γ is observed, with relatively high dispersion at
the conduction band minimum (CBM), ideal for a prospective transparent conductor. The electron
effective mass in the Γ → X and Γ → M directions is 0.27me, and improves further along Γ → Z (in the
c-direction) to 0.22me, in reasonable agreement with the electron effective masses screened by Hautier
et al. [22] The high dispersion originates from the good overlap of Sb 5s orbitals, which are the main
contributor to the CBM density of states, with Zn and O s states. Qualitatively, the conduction band
shape is in good agreement with previous GGA-DFT calculations, while the hybrid functional corrects
for the systematic underestimation of the band gap, [22] and is competitive with state-of-the-art TCOs
In2O3, SnO2, ZnO and BaSnO3.

[2,8,7,23] Figure 3b shows the band structure computed with hQSGW
theory, which shows a small (3%) decrease in the direct band gap to 3.41 eV, with the electron effective
masses unchanged. Ultimately, the PBE0 description is sufficient, accurately describing the nature of
the band gap compared to the next level of theory, and is used subsequently for defect calculations.
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Figure 3: Electronic band structures of ZnSb2O6 computed with (a) hybrid DFT (PBE0); (b) quasi-
particle self-consistent GW using 80% scaling of self-energy (hQSGW).

Simulated and experimental photoelectron spectra of the valence band of ZnSb2O6 are shown in
Figure 4, plotted using galore. [24,25] The simulated spectrum is obtained from the PBE0 density of
states calculation, where the orbital contributions were weighted with tabulated photoionisation cross-
sections and broadened with Guassian and Lorentzian functions to match the experimental lineshapes.
The spectra were approximately aligned by the first peak position. The key valence band features in
Figure 4 are in agreement: an initial onset mainly comprised of Zn 3d, Sb 4d O 2p states followed by
a small dip and a large sharp peak assigned to Zn 3d states. However, the position of this peak is
under-bound by approximately 2 eV. Similar discrepancies have been observed with hybrid DFT for
Zn 3d states in ZnO and for Sn 4d states in SnO2.

[26,27]
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Figure 4: Simulated valence band spectra using the PBE0 functional, with a Gaussian broadening
of 0.6 eV, Lorentzian broadening of 0.2 eV and weighting by photoionisation cross-sections for E =
1486.6 eV. Experimental data is overlaid in black for a single crystal and cyan for a powder sample.
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2.3 Defect Chemistry

While the electronic structure of ZnSb2O6 is a promising indicator of high transparent conducting
performance, it is the defect chemistry that will ultimately control the electrical properties of the
system. Degenerate conductivity is achieved when the charge carrier concentration exceeds the Mott
criterion: [28,29,30,31]

nMott >

(
0.26

a0

)3

where a0 =
4πϵ0ϵ∞h̄2

m∗e2
and

1

m∗ =
1

m∗
e

+
1

m∗
h

(1)

which for ZnSb2O6 is 2.6 × 1018 cm−3, where a0 is the effective Bohr radius (1.89 × 10−9 m), ϵ0 is
the static dielectric constant (7.74), and m∗ is the reduced effective mass (1.97 × 10−31 kg).
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Figure 5: Thermodynamic stability region of ZnSb2O6, calculated using cplap. [32] The orange marker
denotes the most n-type growth conditions, the chemical potential limits at which the defect formation
energies in this work are reported.

We first identify the thermodynamic stability region (blue) of ZnSb2O6 with respect to its com-
peting phases in Figure 5. Using the chemical potential limits bounded by this region, the transition
level diagram for intrinsic defects, namely zinc, antimony and two non-equivalent oxygen vacancies
(VZn, VSb and VO), cation substitutions (ZnSb and SbZn) and various interstitial sites (Zni, Sbi and
Oi), is calculated and displayed in Figure 6a.

The intrinsic defect chemistry does not support degenerate n-type behaviour. VO acts as a deep
donor defect, in line with the behaviour observed in established TCOs such as In2O3, SnO2 and
ZnO (CdO being the notable exception), [33,5,34,8,35] and is discussed in greater detail in the SI. The
SbZn substitution is the next lowest energy species, but it is charge compensated by VZn just below
the CBM, pinning the Fermi level in the gap. We can predict the position of the Fermi level and
charge carrier concentrations through a self-consistent Fermi level (SCFL) analysis – the synthesis
temperature of ZnSb2O6 is ∼ 1400 K, so by fixing the defect concentrations present at this temperature
and re-calculating the SCFL at room temperature, we can predict room temperature experimental
charge carrier concentrations. Undoped ZnSb2O6 is predicted to have 3.1×1016 cm−3 charger carriers
(significantly below the Mott criterion), with the SCFL to be 0.13 eV below the conduction band
edge, precluding undoped ZnSb2O6 from metallic-like conductivity. From experiment, we measure
5.0 × 1017 cm−3 carriers in undoped crystals, around an order of magnitude more than predicted,
and low conductivity (around 2 S/cm) in both powder and single crystal samples. The larger carrier
concentration measured in the crystals is likely due to adventitious H-doping during synthesis, as well
as trace amounts of other impurities that could contribute electrons (such as Cl from the carrier gas),
and is in qualitative agreement with the SCFL analysis – that when nominally undoped, ZnSb2O6

does not display metallic conductivity.
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Figure 6: Moving from left to right across the top and then bottom rows, transition level diagrams for
(a) intrinsic defects only; (b) doping with gallium; (c) doping with fluorine; (d) doping with aluminium.
The blue and orange shaded regions denote the valence and conduction bands, respectively. Each
coloured line represents a different defect, and the gradient of that line denotes the charge state.
Filled circles represent transition levels, where two charge states are in thermodynamic equilibrium.
Calculated using aide. For VO, Oi, Zni and Gai, only the lower energy of the two non-equivalent
defect sites are plotted.

Next, we investigated Ga, Al and F as potential electron donors in ZnSb2O6 in order to drive
the Fermi level up into the conduction band and realise degenerate conductivity. The transition level
diagram for each dopant is shown in Figure 6b-d, where we find that GaZn and AlZn are low energy
donors, with formation energies of 0.45 eV and 0.58 eV in their neutral charge states, respectively. In
both cases, the dopant interstitial defects are rather high in energy (around 5 eV at the CBM), and are
charge compensated by their respective dopant-substitutions onto the Sb site. FO anion substitutions
have higher formation energies of 1.38 eV and 1.46 eV for the inequivalent oxygen sites, while the F
interstitials do not donate electrons to the conduction band. Crucially, we find that the native p-type
defects, VZn and ZnSb are too high in energy to charge compensate GaZn, AlZn and FO. We complete
the same SCFL analysis as before for each case, and find that Ga emerges as the superior dopant
with a predicted room temperature charge carrier concentration of 3.4 × 1019 cm−3 and a SCFL of
3.69 eV (0.15 eV above the CBM), thereby predicting degenerate conductivity. For Al and F, the
predicted charge carrier concentrations are 3.2×1017 cm−3 and 7.2×1018 cm−3, with the SCFL sitting
above the CBM in both cases. Experimentally, we record carrier concentrations of 8.9 × 1019 cm−3,
2.0 × 1020 cm−3 and 2.4 × 1020 cm−3 for 1%, 3% and 8% Ga-doping in single crystals. The presence
of adventitious H is the most likely origin of discrepancy, but again we find qualitative agreement
with the SCFL analysis. Conductivity rises by several orders of magnitude in the single crystals to
526 S cm−1, 1230 S cm−1 and 1890 S cm−1 respectively, and a similar trend is observed in the doped
powders (Figures 17 and 18), competitive with established TCOs.

Through hard X-ray photoelectron spectroscopy (HAXPES), we find further evidence to support
this description of the defect chemistry of ZnSb2O6. At high photon energies (approaching 6 keV),
we can exploit the greater photoionisation cross-section of Sb 5s states, which we know make up the
conduction band minimum, allowing us to observe any filled conduction band states. Figure 7 shows
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Figure 7: Valence band spectra of undoped (left, red) and Ga-doped (right, blue) ZnSb2O6 taken at a
photon energy of 5.92 keV. Also overlaid is the soft X-ray spectrum of the same sample, at a photon
energy of 1.48 keV. Inset shows a zoomed in view of the Fermi level, set to 0 eV.

the valence band spectra for undoped (left, red) and Ga-doped (blue, right) ZnSb2O6 aligned to the
Fermi level of Au foil, with a zoom on the Fermi level shown in the inset for each spectrum. For the
undoped system, there is no emission at 0 eV binding energy – i.e. there are no filled states. Upon
Ga-doping, there is strong emission at 0 eV binding energy with a typical Fermi-Dirac-like distribution,
indicating that the conduction band is populated with electrons, and the crystal displays degenerate
conductivity.

2.4 Charge transport properties

Charge transport properties are important metrics in assessing the performance of prospective TCOs.
Specifically, it is desirable for a TCO to possess high electron mobility in order to maximise con-
ductivity. Figure 8a shows the experimental electron mobility of undoped and Ga-doped ZnSb2O6

single crystals over the temperature range 200 K to 350 K, where we observed an impressive room
temperature mobility of 48.8 cm2 V−1 s−1 at the maximum doping level (2.4 × 1020 cm−3), resulting
in a conductivity of 1890 S cm−1 (Figure 8c). Our THz domain spectroscopy (TDS) results on pow-
der samples of Ga-doped ZnSb2O6 also demonstrate metallic-like conductivity in samples of up to 8%
nominal Ga doping (Figures 17 and 18 in the SI). This is on par with many state of the art transparent
conductors. Electron mobilities of 40 cm2 V−1 s−1 to 60 cm2 V−1 s−1 and conductivity on the order of
1 × 104 S cm−1 are common in thin films of ITO, FTO and AZO. [5,2,7]

To further understand the origin of the high mobility in ZnSb2O6, we performed charge trans-
port calculations using the amset package. [36] This allowed us to calculate the limits to intrinsic
mobility from various scattering mechanisms including polar optical phonons (POP), acoustic defor-
mation potentials (ADP), and ionised impurities (IMP). We found that at low carrier concentrations,
corresponding to the nominally undoped sample, polar optical phonon scattering dominates, while
at higher concentrations the limiting scattering mechanism switches to ionised impurity scattering.
This is demonstrated in Figure 8b, where the mobility of the undoped sample displays the strong
temperature dependence typically associated with a system dominated by POP scattering, while at
high carrier concentrations the mobility becomes largely temperature independent, indicative of IMP
based scattering. In Figure 9, we explicitly plot the scattering rates at room temperature at both low
and high carrier concentrations, clearly demonstrating this switch in the mobility limiting scattering
mechanism.

There are some discrepancies between the experimental observations and simulations. First, our
calculations predict that the nominally undoped material should exhibit a very high electron mobility
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of around 70 cm2 V−1 s−1 at room temperature, and display a strong temperature dependence. How-
ever, our undoped sample shows the lowest mobility and only a weak temperature dependence. The
trend of mobility with increased carrier concentration is in fact unclear across the whole batch of sam-
ples. Possible causes of these discrepancies include non-uniform distribution of the dopant during the
CVT (chemical vapour transport) growth process, which would make extracting dopant concentration
dependent charge transport properties less reliable; other unintentional impurities in the samples,
increasing scattering rates; directional-dependence effects during measurement of the single crystals –
the mobility of ZnSb2O6 has reasonable anisotropy, as shown in Figure 15. While alternative single
crystal growth methods or the deposition of epitaxial thin films could provide further insight, the
qualitative agreement between theory and experiment in this study demonstrates the feasibility and
realisation of Ga-doped ZnSb2O6 as a transparent conducting oxide.
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Figure 8: (a) Experimental and (b) simulated mobility and (c) experimental and (d) simulated con-
ductivity of undoped and Ga-doped ZnSb2O6 in the temperature range 200 K to 350 K. Measurements
performed on single crystals.
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Figure 9: Room temperature simulated scattering rates at (a) 5.0×1017 cm−3 and (b) 2.4×1020 cm−3

charge carrier concentrations. ADP is acoustic deformation potential scattering, IMP is ionised im-
purity scattering, and POP is polar optical phonon scattering. Moving from low to high carrier
concentrations causes a switch in dominant scattering from POP to IMP.
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Figure 10: Optical image of CVT grown single crystals of undoped (left) and Ga-doped (right)
ZnSb2O6. Each crystal has been polished to 150 µm thickness.

2.5 Optical Properties

Images of undoped and Ga-doped ZnSb2O6 crystals are displayed in Figure 10, which have been
polished to approximately 150 µm thicknesses to aid visual comparison. The undoped samples are
colourless and transparent, while the Ga-doped crystals display a blue tint. The transmission intensity
T (%) of light through a material is given by the Beer-Lambert law T (λ) = exp(−αλt), where αλ is
the absorption coefficient and t the sample thickness. For crystals polished down to a measurement-
standard thickness of 150 nm, we report optical transmission greater than 99% for all samples, a
significant improvement over the often reported ∼ 90% transmission intensity for ITO thin films. [37]

Table 2 summarises the optical data.

Table 2: Transmission data at 550 nm with extracted absorption coefficient and calculated transmission
at thickness 150 nm and the extracted experimental band gaps in ZSO and ZSGO.

Sample
T(550 nm)
t 150 µm

αλ cm−1

λ 550 nm
T(550 nm)
t 150 nm

Direct-allowed
band gap eV

Undoped 60.6% 13.1 99.98% 3.38 ± 0.02
1% doped 16.3% 108.1 99.83% 3.56 ± 0.02

The optical band gap of ZnSb2O6 rises from 3.38 eV, which is in excellent agreement with the
direct gap value obtained from the hQSGW calculation, to 3.56 eV upon nominal 1% Ga-doping in
single crystals. This is indicative of the Moss-Burstein shift that is common among the degenerately
doped TCOs. Figure 11 shows the experimentally derived band gaps from absorption measurements
for both undoped and doped single crystals.

The experimental absorption coefficient is rather low, on the order of 300 cm−1, compared to other
TCOs. Investigation of the optical transition matrix from DFT calculations reveals that the VBM
to CBM transition is forbidden, and the first strong onset is predicted to be from a band 0.72 eV
below the VBM (Figures 20 and 21 in the SI). Both experiment and theory point towards very
low absorption in ZnSb2O6 below photon energies of ∼ 3.7 eV, possibly up to 4.25 eV. However, the
thickness of the crystals causes the absorption coefficient to plateau above energies of 3.7 eV, preventing
accurate measurement of the absorption coefficient above this energy and precluding observation of
the predicted strong onset at around 4.25 eV, similar to the case in GeSe single crystals. [38] When
polished down to thicknesses of 150 nm, our single crystals display transmission intensity greater than
99%, which supports the low absorption coefficient and symmetry forbidden nature of the direct gap,
but a thin film deposition is required to probe this behaviour further.

Transmission data for the 150 µm single crystal samples at a wavelength of 550 nm can be found
in Figure 19 of the SI, from which we derived the Haacke figure of merit, shown in Figure 12. This
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indicates an extremely high figure of merit at micron thicknesses, and competitive values at thicknesses
on the order of ∼ 100 nm.

Figure 11: Absorption data and extracted band gaps for nominally undoped and 1% doped ZnSb2O6

single crystals, t = 150 µm.

Figure 12: Haacke figure of merit data at transmittance wavelength of 550 nm.

2.6 Band alignment

In Figure 13, the calculated band alignment of ZnSb2O6 is shown, compared against commonly used
TCOs. Our calculations reveal an ionisation potential (IP) and electron affinity (EA) of 9.6 eV and
6.1 eV, respectively. Sb 5s states contribute strongly to the CBM, much like ns states in the other
post-transition metal TCOs, but sit lower in energy due to the increased distance from the nucleus and
improved shielding of effective charge by core electrons. Therefore, the EA of ZnSb2O6 is significantly
greater than that of the industry leading TCOs. Upon Ga-doping, the Fermi level is predicted to sit
above the conduction band minimum, which means a work function nearly 1 eV larger than In2O3 could
be achieved. This has tremendous implications in organic photovoltaics (OPVs) which rely entirely
on the charge extraction capability of the positive and negative electrodes. Having a transparent
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Figure 13: Band alignment of ZnSb2O6 compared against common TCOs. Ga2O3 from experiment, [39]

ZnO, SnO2 and In2O3 from theory. [34,40]

anode with a large electron affinity, and therefore work function, allows for closer band alignment to
particularly low lying HOMOs (highest occupied molecular orbitals) in OPV devices, which can form
stronger Ohmic contacts, increase the output voltage and drive up device efficiency. [41,42] Furthermore,
replacing organic hole-extracting layers like PEDOT:PSS with a metal oxide like ZnSb2O6 could
help to reduce the corrosion on the electrode. [43] To engineer large work functions in existing TCOs,
modulation of the conduction band is required by alloying with heavy, and sometimes toxic, elements
(for example In2-xTlxO3 and Sn1-xPbxO2)

[34,44] – exploiting the native band alignment in ZnSb2O6 is
a much cheaper, safer and easier way of incorporating a large work function material into devices.
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3 Conclusion

We have used ab initio calculations to predict a new, earth abundant transparent conducting oxide
ZnSb2O6, which we have successfully grown in single crystal form via chemical vapour transport.
By studying the intrinsic and extrinsic defect chemistry, we were able to identify an effective doping
strategy in order to realise degenerate conductivity through Ga-doping. We have used state-of-the-art
packages to predict carrier concentrations and to calculate electron scattering rates, giving a more
accurate prediction of charge transport properties that goes beyond the constant relaxation time
approximation. Overall, we find good qualitative agreement between these predictions and our single
crystals, with our best samples achieving carrier concentrations in excess of 2 × 1020 cm−3, electron
mobility over 40 cm2 V−1 s−1 and conductivity of 1890 S cm−1. The optical behaviour of Ga-doped
ZnSb2O6 is also promising, with a direct band gap of around 3.4 eV and optical transmittance greater
than 99%. The next logical step is to develop a thin film deposition process for Ga-doped ZnSb2O6, in
order to test its performance in typical device stacks and to better understand the relationship between
charge carrier concentration, transport properties and optical band gap. Overall, this discovery is a
significant milestone in the development of earth-abundant transparent conductors, offering a high-
performance, low-cost alternative to industry standard materials, and opens the door to a whole family
of Sb(V)-based transparent conducting oxides.
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4 Methodology

4.1 Computational Methods

4.1.1 Geometry Optimisation and Electronic Structure

Density functional theory calculations were primarily performed within the plane-wave periodic code
vasp, [45,46,47,48] which uses the projector augmented wave method to describe the interactions between
valence and core states, [49,50] details of which can be found in Table 3. A plane-wave energy cut-off
of 500 eV was used for all calculations, and a 7 × 7 × 4 Γ-centred k-point mesh was employed. The
PBE0 [51,52] hybrid exchange correlation functional was used because it has been shown to accurately
reproduce the band gap of rutile-structured SnO2.

[34,44,8] The static dielectric constant was calculated
with density functional perturbation theory (DFPT) using the PBEsol functional. [53,54,55] Effective
masses and band structures were calculated and plotted using the sumo code. [56]

O F Al Zn Ga Sb

2s22p4 2s22p5 3s23p1 3d104s2 4s24p1 5s25p3

Table 3: Explicitly treated valence electrons used in this work.

Additionally, a quasiparticle calculation was performed using the “hybrid quasiparticle self-consistent
GW” (hQSGW) method as implemented in the questaal code using a linearised muffin-tin orbital
(LMTO) basis set. In this hybrid approach a converged self-energy is obtained by the quasiparticle self-
consistent GW (QSGW) approach, and an empirical 80% of the self-energy is combined with the LDA
self-energy to obtain a prediction of the semiconductor bandgap. [57,58,59] This correction is routinely
used to account for neglected interactions and improve the accuracy of bandgap estimations. [60,61] The
lattice parameters and atomic positions were used from the results of the PBE0 geometry optimisa-
tion. The LMTO basis set was generated with the recommended parameters in questaal, using a
10 Ry1/2 cut-off for the interstitial mesh in the one-particle Hamiltonian steps, 2.7 Ry1/2 cut-off for
the interstitial mesh of the two-particle objects and 3.3 Ry1/2 cut-off for the basis envelope functions
in GW steps. The 7 × 7 × 4 k-point grid used for the DFT calculations was reduced to 3 × 3 × 2 for
the GW steps. Effective masses were determined by quadratic fitting to band structure data, using
tools in the questaal package.

4.1.2 Defect calculations

Stable competing phases with the Zn-Sb-O chemical potential space were relaxed using the PBE0
functional, a plane-wave energy cut-off of 500 eV and a converged k-point mesh until the forces were

reduced to below 1 × 10−2 eV Å
−1

. The ground state energies were used to identify the chemical
potential limits that bound the thermodynamic stability of ZnSb2O6, using the program cplap. [32]

The chemical potential of oxygen was set as the dependent variable in the cplap analysis, as this can
be most readily changed in experiment through the use of partial pressures. The chemical potential
limits from the thermodynamic stability calculations can be found in the SI.

A 2 × 2 × 1 supercell (72 atoms) of the primitive cell was generated as an approximately cubic
template for defect calculations (9.35 Å by 9.35 Å by 9.26 Å). There are two distinct cation sites in
the P42/mnm space group (Figure 1), one occupied by Zn (pale orange) and the other by Sb (dark
orange) in ZnSb2O6, and two distinct anion sites (pale and dark blue), both occupied by O. Two
interstitial candidate sites were identified: “i1” on the 8h Wyckoff site between two Zn and two Sb
atoms, and “i2” on the 4c Wyckoff site between two Zn atoms. All supercells were optimised to reduce

forces below 1 × 10−2 eV Å
−1

, keeping the lattice vectors constant while allowing ionic coordinates to
move. Supercell calculations were performed using a Γ-centred 2 × 2 × 2 k-point mesh.

The Gibbs free energy of formation for each defect D with charge q in a given chemical environment
µ and at a given Fermi energy EF (relative to the VBM) is approximated as: [62]
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∆Gf (D, q, µ,EF ) = (ED,q − Ehost) +
∑
i

ni(E
ref
i + µi) + q(EF + ϵVBM,host) + Esc-corr(D, q). (2)

To account for changes in composition n of each element i, the DFT total energy of a standard
elemental reference Eref

i is combined with a relative value of chemical potential µi. Post-processing
supercell corrections are applied to counteract the effects of using a finite supercell, and consist of:
potential alignment correction, to account for the shift in eigenvalues between a charged and non-
charged supercell; [63] anisotropic image charge correction, developed by Murphy and Hine from the
Makov-Payne method, a finite-size correction that removes the Coulombic repulsion between peri-
odic images of defective supercells by treating the defect as a periodic point charge in a dielectric
medium; [64,65] and a band filling correction, which counteracts the unrealistic filling of the conduction
band (emptying of the valence band) in a finite-sized supercell. [63] At a given EF , the lowest energy
charge state dominates for that defect, and a “transition level” is the point at which two charge states
are in thermodynamic equilibrium.

4.1.3 Charge Transport Calculations

Electronic transport properties were calculated using the amset package, which solves the linearised
Boltzmann transport equation under the relaxation time approximation. Unlike the constant re-
laxation time approach, amset explicitly calculates band and k-dependent relaxation times using
scattering matrix elements obtained from first principles inputs. Accordingly, amset can provide
fundamental insights into the strength of scattering processes that limit charge transport, and has
demonstrated excellent agreement with experimental measurements of mobility in a range of semi-
conductors. [36] In the present work, we have included scattering due to polar optical phonons (POP),
acoustic deformation potentials (ADP), and ionised impurities (IMP). We have not included piezoelec-
tric scattering as ZnSb2O6 is centrosymmetric (4/mmm point group symmetry) and therefore does not
display piezoelectricity. The primary input for amset was a hQSGW band structure calculation on a
relatively dense 7×7×8 k-point mesh. To calculate wave function overlaps, we used the wave function
coefficients from a PBE0 calculation on the same k-point mesh, performed using VASP. The hQSGW
and PBE0 computational methodologies were the same as described in the “Geometry Optimisation
and Electronic Structure” section above. To obtain the transport properties and scattering rates, the
electronic band structure and wave function coefficients were interpolated onto a dense 87 × 87 × 45
k-point mesh. One benefit of AMSET compared to state-of-the-art approaches based on density func-
tional perturbation theory combined with Wannier interpolation (DFPT+Wannier) is that scattering
rates can be obtained from common materials parameters without requiring an expensive DFPT cal-
culation. [66] The calculated materials parameters (dielectric constants, polar phonon frequency, and
elastic constants) along with additional settings used by amset are provided in Section SX of the
Supporting Information. The full AMSET methodology, including the scattering matrix elements and
interpolation scheme is given in detail in Ref. 36.

4.1.4 Self Consistent Fermi Level Analysis

To calculate the SCFL of ZnSb2O6, a python based implementation of sc-fermi was used (which can
be found at https://github.com/bjmorgan/py-sc-fermi). [67] The required inputs are an electronic
density of states of the defect-free system, a temperature, the total cell volume and number of electrons,
and the thermodynamic transition levels for all defect species. The SCFL is calculated by recognising
that the overall charge of a system must be equal to zero, which must be equal to the concentration of all
of the charged defects plus any positive holes and negative electrons. We can construct simultaneous
equations using the Fermi-Dirac distribution and the formation energy of a defect (Equation 2),
and therefore find the Fermi level that gives overall charge neutrality. A rigorous description of
this problem, and how it is implemented in the code, can be found in the original paper by John
Buckeridge. [67]

In our analysis, we calculated the SCFL at the synthesis temperature of ZnSb2O6 and froze the
defect concentrations at this temperature. We then recalculated the SCFL at room temperature,
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allowing the concentration of the individual charge states of each defect to change, in order to predict
the total electron concentration at the temperature at which our experiments were performed. A
detailed jupyter notebook containing our calculation of the SCFL can be found in the online data
repository.

4.1.5 Band alignment

The core level alignment method was used to calculate the ionisation potential and electron affinity
of ZnSb2O6.

[68] A slab-gap model was constructed using the PBE0 relaxed structure and a vacuum
and slab thickness of 30 Å using the surfaxe code. [69] The (110) termination was selected, which
has been demonstrated to be the lowest energy surface for rutile SnO2.

[70] The planar average of the
electrostatic potential was converged and calculated within surfaxe, and the plateau of this was
taken to be the energy of the vacuum.

4.2 Experimental Methods

4.2.1 Solid State Synthesis

Powders of ZnO (Sigma-Aldrich, 4N), Sb2O3 (Sigma-Aldrich, 4N) and Ga2O3 (Sigma-Aldrich, 5N)
were dried and ground together in near stoichiometric molar ratios. The powder was heated for 12
hours at 600 °C in a 400 mbar Ar atmosphere in a sealed quartz tube to pre-react to form the ZnSb2O4

phase. The 1-2-4 polycrystalline powder was then extracted, reground and heated in an air atmosphere
at 800 °C for a further 12 hours for oxidation into the ZnSb2O6 (1-2-6) phase. This two-step process
was necessary to control antimony evaporation during baking, [14] and we typically observed less than
1% Sb loss during the synthesis which could be accurately accounted for by adding excess Sb2O3 in
the starting materials.

Chemical vapour transport (CVT) was selected for the crystal growth method as it is appropriate
for materials with high melting points and low vapour pressures such as ZnO [71] and Ga2O3.

[72]

Advantages include that high purity crystals can be obtained as, due to the closed nature of the
growth system, minimal external impurities can be incorporated into the crystals. A sealed quartz
ampule was employed using Cl2 as a transport agent. The Cl2 was added to the transport ampule via
an evacuation rig similar to that described by Binnewies et al. [73] The tube was sealed at a length of
15 cm and placed horizontally at the centre of a two-zone furnace set at 1100 °C and 1000 °C. Since
the reaction is endothermic the precursor was placed at the hot end of the ampule. After 200 hr, the
powder was fully transported to the cold end in the form of single crystals adhered to the ampule walls.
The ampule showed signs of attack during the growth reaction determined by XRD to be cristobalite
(SiO2), a feature not uncommon in CVT reactions using Cl2 as a transport agent. [74] It is important
to note EDS analysis shows no trace of silicon incorporated into the crystals. Gallium oxide also had
a tendency to react with the ampule walls, and around 20% molar excess was added to the starting
powders to compensate.

4.2.2 Characterisation

Samples were cut and polished into cuboid geometries with typical dimensions of 0.8 mm by 0.6 mm
by 0.2 mm. The composition of the crystals was determined using an Oxford instruments energy-
dispersive x-ray spectroscopy (EDS) system built into a JEOL JSM-6060OLV scanning electron mi-
croscope (SEM) operating at 20 keV, and the resultant data analysis using the Aztec software from
Oxford Instruments. Electrical properties of the crystals were determined using a five-point Hall-bar
geometry with Dupont silver-epoxy contacts annealed onto the bars allow Hall effect and resistivity
measurements concurrently. Measurements were taken on a Quantum Design PPMS-9 using a 1 mA
excitation current in magnetic fields between ± 1 T at temperatures from 350 K to 50 K. The Hall
component of the transverse voltage Vxy was obtained by extracting the odd function dependence of
the transverse resistance with an applied magnetic field. For optical measurements, a Shimadzu Solid
UV-Vis-IR 3700 spectrophotometer was used to measure the transmittance of the crystals over the
range of 250 nm to 900 nm. Structural characterisation was made by x-ray diffraction measurements
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on crushed crystals using a Rigaku SmartLab with a 9 kW rotating anode providing Cu Kα radiation.
This arrangement employs a vertical goniometer and measured under a continuous scanning rate at
4 degrees per minute at 0.02° intervals of a 10° to 120° (2θ) range. X-ray photoemission spectroscopy
(XPS) experiments were carried out using a Thermo K-alpha spectrometer utilising a 400 µm diam-
eter Al Kα beam (1486.6 eV) equipped with a dual-beam Ar flood gun. The binding energies have
been referenced to adventitious C 1s (284.8 eV). HAXPES measurements were carried out at the I09
beamline at Diamond Light Source Ltd, using a photon energy of 6 keV with a semi-grazing angle
between the beam and sample of 11°. The binding energy scale and the experimental resolution of
250 meV were determined from Au foil in electrical contact with the sample.
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Online repository of computational data can be found at DOI.

Figure 14: Systematic shift in Bragg peaks as a function of Ga-doping.

The chemical potential limits from the thermodynamic stability calculations can be found in Table 4
below.

Sb Zn O Al Ga F

A -0.4661 -1.206 -1.9432 -5.1465 -2.2096 -3.1588
B* -0.669 -1.6117 -1.808 -5.3493 -2.4124 -2.9559
C -2.7628 -3.7055 -0.7611 -6.9196 -3.9828 -1.909
D -4.6655 -4.4666 0 -8.0613 -5.1244 -1.5285
E -5.3273 -3.143 0 -8.0613 -5.1244 -2.1903

Table 4: Chemical potential limits (in eV) of each element considered in this defect study. Asterisk
denotes the limits used in the transition level diagrams in Figure 6.

All AMSET calculations were performed with the default settings, with the addition of free-carrier
screening in the polar optical phonon matrix element (free_carrier_screening: true).

High-frequency dielectric constant (ϵ0) =

3.15 0 0
0 3.15 0
0 0 3.45


Static dielectric constant (ϵ0) =

12.16 0 0
0 12.16 0
0 0 8.86



Elastic constant (GPa) =



234 159 138 0 0 0
159 234 138 0 0 0
138 138 393 0 0 0
0 0 0 178 0 0
0 0 0 0 86 0
0 0 0 0 0 86


Polar optical phonon frequency (THz) = 10.767

Directional mobilty plots from amset.
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Figure 15: Directional mobility of ZnSb2O6 at room temperature at two different carrier concentra-
tions.

4.2.3 Oxygen vacancies VO

There are two distinct oxygen environments in ZnSb2O6, shown in Figure 16. In the first (light blue
O atom), there are two equal Sb-O bonds of length 1.99 Å and a single Zn-O bond of 2.07 Å. In the
second, (dark blue O atom), the Sb-O bonds are of different lengths, 1.97 Å for the Sb in the edge-
sharing polyhedron and 1.98 Å for the Sb in the corner-sharing polyhedron, while the Zn-O bond is
longer at 2.09 Å. The formation energies of the neutral vacancy are 1.92 eV and 1.98 eV, respectively,
with both stabilising the +1 charge state for small Fermi level range (0.03 eV and 0.05 eV respectively).

Figure 16: Local coordination environments of the two distinct oxygen atoms in ZnSb2O6. View is
slightly offset from the a-axis.

In environment one, upon VO generation, the two Sb atoms relax inwards by 2.6%, while the Zn
relaxes outwards by 6.8%. Upon ionisation to V+

O, the two Sb atoms relax outwards by 7.4% from
their position in the neutral vacancy, and the Zn relaxes outwards by a further 0.7%. Ionising again
to V++

O causes a further 6.8% outwards relaxation of the Sb atoms and another 0.8% for the Zn atom.
In environment two, when the neutral vacancy forms, the Sb atom with the shorter bond length

relaxes inwards by 10.9%, while the other Sb atom relaxes outwards by 3.7% and the Zn atom relaxes
outwards by 8%. The Zn atom remains in approximately the same position regardless of charge
state. Upon ionisation to V+

O, the first Sb atom relaxes outwards again by 11.5%, surpassing its
original position, while the other Sb atom relaxes outwards by a further 8.0%. Then after the second
ionisation, the first Sb relaxes away by 13.5% and the second by a further 2.7%.
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In both cases, Sb is preferentially attracted towards the neutral vacancy over Zn, presumably due
to the higher charge on the cation and the smaller ionic radius. The relatively equally-sized steps
in inward and outward relaxation as a function of charge state in both cases stabilises the narrow
formation window of V+

O in ZnSb2O6, similar to what is observed in In2O3.
[33] This is different to

the negative-U behaviour observed in SnO2 and ZnO, [34,35] which is driven by the much larger and
non-stepwise change in bond lengths as a function of charge state.

4.2.4 THz spectroscopy

As synthesised Ga-doped ZnSb2O6 powder samples with nominal compositions of 2%, 8%, 10%, 15%
and 20% Ga were measured using THz-domain spectroscopy (TDS) in order to obtain electrical con-
ductivities. The spectrometer used a titanium sapphire laser as the source of ultrafast optical pulses
(50 fs) with a wavelength of 800 nm. The generated pulses had a bandwidth of 0.3 THz to 3 THz,
and the data was processed at 1 THz. Figures 17 and 18 show the electrical conductivity of these
solid solutions at a range of temperatures, which are supporting of metallic-like conductivity upon Ga
incorporation into the tri-rutile ZnSb2O6 structure.

Conductivity of the pure ZnSb2O6 sample is low at all temperatures, supportive of the defect
chemistry that there are no shallow, intrinsic donors able to provide intrinsic, degenerate conductivity.
As the nominal percentage of Ga increases, conductivity rises to a maximum around 1200 S cm−1, after
which it begins to tail off. This is about 60% of the conductivity achieved in the most heavily doped
single crystal. Considering the grain boundaries and extended defects present in powder samples, this
is as expected.

Figure 17: TDS spectra of Ga-doped ZnSb2O6 powders at 300 K and 200 K.
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Figure 18: TDS spectra of Ga-doped ZnSb2O6 powders at 100 K and 65 K. Error bars become
significantly larger at lower temperatures.

Figure 19: Transmittance data on single crystals polished to approximately 150 µm thickness.
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Figure 20: Calculated absorption spectrum of ZnSb2O6, showing a strong onset at around 4.2 eV,
indicating that the fundamental direct transition from VBM to CBM (3.53 eV) is in fact symmetry
forbidden.
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Figure 21: Optically allowed transition from 0.72 eV belove the VBM to the CBM.
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