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Abstract
Chemical databases are an essential tool for
data-driven investigation of structure-property
relationships and design of novel functional
compounds. We introduce the first phase
of the COMPAS Project – a COMputational
database of Polycyclic Aromatic Systems. In
this phase, we have developed two datasets
containing the optimized ground-state struc-
tures and a selection of molecular properties of
∼34k and ∼9k cata-condensed polybenzenoid
hydrocarbons (at the GFN2-xTB and B3LYP-
D3BJ/def2-SVP levels, respectively), and have
placed them in the public domain. Herein
we describe the process of the dataset genera-
tion, detail the information available within the
datasets, and show the fundamental features of
the generated data. We analyze the correlation
between the two types of computation as well
as the structure-property relationships of the
calculated species. The data and the insights
gained from them can inform rational design
of novel functional aromatic molecules for use
in, e.g., organic electronics, and can provide a
basis for additional data-driven machine- and

deep-learning studies in chemistry.

Introduction
Polycyclic aromatic systems (PASs) – molecules
comprising multiple aromatic rings – are one
of the most prevalent classes of compounds in
both nature and man-made materials. They
are important in many fields of chemistry, but
their popularity in recent decades is largely
due to their performance as the semiconduct-
ing components in organic electronics.1,2 They
are uniquely suited to this role, as their char-
acteristic π-conjugation enables high conduc-
tance1,3 and their rigid structure enables close
packing,4,5 which allows for good charge mo-
bility. Moreover, their specific electronic and
physical properties (e.g., band-gap, solubility)
can be tuned through changes in annulation or
substitution with functional groups.6–10 In ad-
dition, PASs can function as platforms for elec-
trocatalysis,11 redox-active materials,12 and or-
ganic electrode materials.13,14

The development of improved organic
electronic devices, such as light emitting
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diodes (OLEDs),15 field effect transistors
(OFETs),5,16,17 solar cells (OSCs),2,8 sensors,18

and semiconductors10,16,17,19 hinges on the de-
sign of new functional PASs. With the decreas-
ing cost of computational resources and the
concurrent advent of machine-learning (ML)
and deep-learning (DL) techniques, data-driven
design of molecules and materials for various
uses has become an increasingly promising ap-
proach. Such tools may efficiently map the
chemical space and allow discovery of new
molecular motifs. However, they require suit-
able databases, and though many new chemical
databases have been constructed and curated
in recent years, a dedicated PAS database is
not available, to the best of our knowledge.

To date, the largest structured PAS-dedicated
database is the NIST Polycyclic Aromatic Hy-
drocarbon (PAH) database,20 which was first
published in 1997 and later revised and cor-
rected in 2020.21 The NIST PAH database
houses 660 PAHs – molecules comprising only
carbon and hydrogen – and their various experi-
mentally and computationally obtained proper-
ties. Notably, not all properties are provided for
every entry in the database, which makes the
database sparse and less suitable for ML and
DL applications. Recently, Alvarez-Ramírez
and Ruiz-Morales22 used the enumerated struc-
tures of this database to generate the FAR-
database, in which they provide several types of
nucleus-independent chemical shift (NICS)23–25

values for each molecule (namely, NICS(0),
NICS(1), NICS(0)ZZ, and NICS(1)ZZ). The re-
cent revision of the database, as well as the
data expansion of Alvarez-Ramírez and Ruiz-
Morales, highlight both the ongoing interest in
these molecules and the need for relevant data.

For the past number of years, our group
has been studying PASs with the aim of ob-
taining a deeper understanding of their prop-
erties and, specifically, how the global and
local molecular properties map to individ-
ual structural features. This knowledge can
inform the design of novel materials with
enhanced features and improved functional-
ity. Our research goals, combined with the
community’s need of a better PAS database
of those compounds, led us to embark on

the COMPAS (COMputational database of
Polycylic Aromatic Systems) Project (https:
//gitlab.com/porannegroup/compas). The
COMPAS Project undertakes the construction
of a curated, computationally-generated, freely-
accessible database of PAS structures and prop-
erties. To methodically and effectively tackle
the challenge of mapping the large and diverse
chemical space of PASs, we have divided the
project into phases, according to subclasses of
PASs.

Herein, we report on Phase 1 of the COM-
PAS project, which focuses on the subclass
of cata-condensed polybenzenoid hydrocarbons
(PBHs, sometimes also referred to as poly-
cyclic aromatic hydrocarbons, PAHs, or cata-
fusenes) in the ground state. For this subclass
of compounds we have generated two computa-
tional datasets: (1) COMPAS-1D – 8,678 cata-
condensed PBHs comprising 1–10 rings, calcu-
lated with density functional theory (DFT) at
the B3LYP-D3BJ/def2-SVP level of theory; (2)
COMPAS-1x – 34,074 cata-condensed PBHs
comprising 1–11 rings, calculated with xTB
using GFN2-xTB. In this manuscript, we de-
tail the technical aspects of constructing this
new database and describe the main features
of the generated data. We glean insight into
the structure-property relationships of the cata-
condensed PBHs and delineate future directions
for investigation.

Data Generation Workflow
The first phase of the COMPAS project focuses
on the family of cata-condensed polybenzenoid
hydrocarbons (PBHs), which comprise only
benzene rings (also known as PAHs or cata-
fusenes). Several examples of such molecules
are depicted in Figure 1. The flowchart in Fig-
ure 2 illustrates the steps taken to generate
these datasets. In the following sections, we
detail and rationalize the individual steps.

Step 1. Structure Enumeration

The chemical space of cata-condensed PBHs
containing up to 11 rings was fully enumerated
(see Table 1) with the CaGe (the Chemical &
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Figure 1: Examples of cata-condensed poly-
cyclic benzenoid hydrocarbons from the COM-
PAS database. Double bonds and hydrogens
are omitted for clarity.

abstract Graph environment)26 software, which
is an open source package for generating math-
ematical and chemical graphs. Using CaGe, we
obtained initial (unoptimized) xyz-coordinates
of all possible 36,043 molecules in this chemical
space (Figure 2, step 1).

Table 1: Overview of the data set.

No. Rings Molecular Formula No. Isomers No. Valid
1 C6H6 1 1
2 C10H8 1 1
3 C14H10 2 2
4 C18H12 5 5
5 C22H14 12 12
6 C26H16 37 37
7 C30H18 123 121
8 C34H20 446 440
9 C38H22 1,689 1,651
10 C42H24 6,693 6,408
11 C46H26 27,034 25,394

36,043 34,072

Step 2. xTB Optimization

The xyz-coordinates obtained from CaGe for
the 36,043 molecules enumerated were opti-
mized with xTB27 version 6.2, using GFN2-
xTB, a tight-binding quantum chemical method
to perform fast calculations of molecular ge-
ometries at the semi-empirical level. Follow-
ing optimization of the structures, harmonic

Figure 2: Flowchart of the data-generation pro-
cess. (1) CaGe26 was used to generate unopti-
mized geometries of all cata-condensed struc-
tures containing up to 11 rings. (2) xTB
was used to optimize all geometries. (3) The
data were filtered to remove invalid structures
or those having more than six rings annu-
lated linearly. The geometries of the remaining
molecules and their electronic properties make
up the COMPAS-1x dataset (34,072 molecules).
(4) DFT was used to further optimize the
molecules containing up to 10 rings. The ge-
ometries of these 8,678 molecules and their elec-
tronic properties make up the COMPAS-1D
dataset.

vibrational frequencies were calculated to en-
sure true minima on the potential energy sur-
face (i.e., Nimag = 0; Figure 2, step 2). After a
subsequent filtration step (see subsequent sec-
tion, Step 3. Data Filtration), 34,072 molecules
were retained. For each molecule, the cationic
and anionic forms were optimized with xTB as
well (with subsequent frequency calculations).
A total of ∼110k species overall were optimized.
In summary, 34,072 cata-condensed PBH struc-
tures containing up to 11 rings make up the
dataset denoted as COMPAS-1x (see Table 1).
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Step 3. Data Filtration

Because the initial coordinates generated by
CaGe were sometimes quite far from the op-
timal geometries (especially for non-planar
molecules), some structures did not optimize
properly. The main difficulty arose from CaGe
placing atoms closer to each other than they
should be. Specifically, we identified two types
of cases where this led to an incorrectly op-
timized structure: a) when two carbons were
too close in space, they would form a bond,
even though they were not supposed to be
bonded, resulting in various-sized rings or sp3-
hybridized carbons; b) when a hydrogen atom
was too close to two carbons, it might shift
during the optimization process to the wrong
carbon, leading to the wrong final structure.
In some cases, we encountered both of these
issues in the same molecule. To check for
and filter out the incorrectly-optimized struc-
tures, we performed two individual tests. The
first test used a modified version of the Predi-
XY program28 to check that all molecules con-
tained only six-membered rings. The second
test used the xyz2mol script developed by the
Jensen group,29 which converts xyz-coordinates
to SMILES formats, to check for undesired mo-
tifs, such as saturated carbons. The “bad”
structures were discarded (Figure 2, step 3).
We then filtered the data further by discarding
all molecules containing a linear stretch longer
than six rings. A "linear stretch" is a substruc-
ture within the PBH, in which the consecutive
rings are annulated linearly. Examples A and
B in Figure 1 depict linear stretches of three
and five rings, respectively (i.e., anthracene and
pentacene). Linear stretches longer than six
rings are known to have non-negligible open-
shell character30–32 in the ground-state and
such molecules are relatively unstable.

Step 4. Further Optimization with DFT

Of the 34,072 retained xTB-optimized struc-
tures, 8,678 (all valid structures containing up
to 10 rings, Figure 2, step 4) were further opti-
mized with DFT calculations, performed with
ORCA version 4.2.0,33,34 using the B3LYP35–38

functional and the def2-SVP39 basis set, with

Grimme’s D340 dispersion correction and the
Becke-Johnson damping scheme.41,42 This level
of theory was chosen following a benchmarking
procedure (see Supporting Information, Section
S1.2, for further details). DFT is considered to
be a more accurate computational method than
semi-empirical methods such as tight-binding
(for both geometries and molecular properties)
and, in particular, B3LYP has been shown to
perform well with PAHs.43–45 Nevertheless, it
is also a more computationally costly method,
which factored into our decision to reduce the
dataset at this stage. The main rationale be-
hind reducing the dataset was that the COM-
PAS Project is aimed at enabling investigations
of structure-property relationships in PASs and
molecular design of novel PASs. From the
data of the 1–10-ring isomers, we could already
grasp the important insight needed (see Data
Analysis section), without adding the data of
the 11-ring isomers. Moreover, the results of
the 1–10-ring isomers indicated that there is a
good linear correlation between xTB and DFT
results (see Data Analysis section). There-
fore, if needed, it is possible to obtain close
to DFT-level accuracy from xTB-level calcu-
lations. Thus, we elected to forgo the more
computationally expensive DFT calculations on
the large family of 11-ring isomers. The DFT-
optimized geometries and properties form the
dataset denoted as COMPAS-1D.

Representations and Properties

As mentioned above, to differentiate the two
datasets, we denote the dataset containing
xTB-optimized structures and xTB-calculated
properties as COMPAS-1x, and the dataset
containing DFT-optimized structures and
DFT-calculated properties as COMPAS-1D.

The properties contained in each of the two
datasets are detailed in Table 2, where HOMO
and LUMO are the highest occupied and low-
est unoccupied molecular orbitals, respectively;
SPE is the dispersion-corrected single-point en-
ergy (i.e., the energy of the optimized structure
without zero-point corrections); SCF energy is
the energy of the optimized structure without
dispersion correction; ZPE is the zero-point en-
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ergy; aIP is the adiabatic ionization potential;
and aEA is the adiabatic electron affinity.

Table 2: Properties available in the COMPAS-
1x and the COMPAS-1D databases, respec-
tively. All energies are reported in eV and the
dipole moment is reported in Debye.

Properties COMPAS-1x COMPAS-1D
HOMO
LUMO
HOMO-LUMO gap
SPE (neutral)
SPE (cation)
SPE (anion)
Rel. SPE (neutral)
SCF energy (neutral)
ZPE (neutral)
ZPE (cation)
ZPE (anion)
aIP
aEA
Dipole moment

COMPAS-1x contains the ZPEs for the neu-
tral and charged (−1 and +1) forms for all
34,072 structures. COMPAS-1D does not con-
tain ZPE data, because we did not perform
frequency calculations at the DFT level. The
xTB-calculated ZPE values can be used to cor-
rect the aIP, the aEA, and the relative en-
ergy for both the xTB and the DFT calcu-
lated properties if desired (ZPE corrections are
not highly method-dependent,46 thus can of-
ten be used across methods). The relative
single-point energy (only for the neutral forms)
was obtained by calculating the difference in
single-point energy between each molecule and
its lowest-energy isomer. Accordingly, for each
molecular formula, the lowest value is zero, with
all isomers having positive relative energy with
respect to the reference isomer.

In addition to these properties, we in-
clude for each molecule three types of iden-
tifiers/representations: a) a given name that
includes its molecular formula and a serial
number; b) its SMILES representation;47,48 and
c) its annulation sequence.49

Data Analysis
The newly-constructed COMPAS-1D and
COMPAS-1x are the first datasets of their type,
to the best of our knowledge, and offer a unique
opportunity to probe the properties of the cata-
condensed PBHs and their distribution within
the chemical space. In this section we provide
an overview of the data and discuss some of the
trends that are uncovered.

Agreement between xTB and DFT

Figure 3 shows the distributions of the various
properties, computed with both xTB and DFT
(note: to enable comparison between the two
methods, only the data for the PBHs containing
up to 10 rings are displayed). At first glance,
the plots in Figures 3A-E appear to show seem-
ingly consistent offsets between the distribu-
tions of the two methods, with the xTB values
always being more negative than the DFT ones.
For the HOMO level, this offset is ca. 4 eV; for
the LUMO level it is ca. 6 eV; and, accordingly,
for the HOMO-LUMO gap it is ca. 2 eV. Sim-
ilarly, there is an offset seen in Figures 3D-E,
with DFT giving ca. 5 eV lower aIP values and
ca. 5 eV higher aEA values, which is in accor-
dance with the HOMO and LUMO energies (as
expected from analogy to Koopmans’ theorem
and its DFT counterpart50,51). Despite these
shifts, the distribution shapes seem to be quite
similar between the two datasets for these five
properties. Plotting the individual data points
of the xTB calculations versus the DFT calcu-
lations (Figure 4) shows that the results of the
two methods are linearly correlated, confirming
that, though the two methods do not quantita-
tively agree, the trends are similar. Thus, it is
possible to obtain chemical insight relating to
trends in the data from each of them. This also
demonstrates that it is possible to obtain prop-
erties at DFT-level accuracy for PBHs from the
much faster and less expensive xTB calcula-
tions, using a correction/fitting scheme. How-
ever, we note that for each property, the slope is
not equal to 1, which means that the difference
is not simply a constant offset. Rather, the dif-
ference between the methods increases with the
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Figure 3: KDE plots of the distribution of xTB-calculated properties vs DFT-calculated properties:
A) HOMO; B) LUMO; C) HOMO-LUMO gap; D) adiabatic ionization potential; E) adiabatic
electron affinity; F) relative single-point energy. All values are reported in eV.

value of the property. We also note that, un-
surprisingly, the single data point that appears
separate from the rest of the data is benzene.

We observe that the aEA plot has a small
"island" of data points that are not on the
main correlation line. A closer inspection of
this area reveals that it contains ca. 30 data
points. Plotting the aEA against the LUMO for
both the xTB and DFT data shows that only
the DFT plot has this "island", which suggests
that the deviation is attributed to the DFT cal-
culation (Supporting Information, Figure S4).
The well-behaved data of the DFT-calculated
LUMO versus the HOMO (Figure 7) indicate
that the neutral forms are treated well and the
deviation likely stems from the DFT calcula-
tion of the anionic forms of the molecules. The
molecules contained in this "island" have cer-
tain structural similarities: they all comprise
long consecutive angularly annulated stretches
and multiple branching points (Supporting In-
formation, Figures S7E and S8E). The combi-
nation of these structural features often leads
to curvature and deviation from planarity, and
it is possible that our chosen functional/basis
set combination is less appropriate for such

cases. In particular, for anionic species, it is
considered important to include diffuse func-
tions in the basis set, to allow for better treat-
ment of the electron delocalization. Though
previous reports have indicated that addition
of diffuse functions does not necessarily lead to
more accurate geometries and energies for pla-
nar PAHs,43,52 it is not clear how this affects
non-planar systems. At the same time, consid-
ering the small number of molecules (ca. 0.3%)
that appear to be affected, we believe the choice
of a more cost-effective basis set is justified.

The only property which shows a notice-
able difference between the distributions of two
types of calculations is the relative energy (Fig-
ure 3F). Because the relative energy is cal-
culated as the difference between the SPE of
each molecule and the SPE of its lowest-energy
isomer (similar to a homodesmotic equation),
some of the method-dependent variances are ex-
pected to cancel out. Yet, xTB shows a dis-
tribution ranging between 0 and 1.4 eV and
DFT shows a distribution ranging between 0
and 2.2 eV. This is not surprising, as the two
methods are inherently different. Despite these
differences, the scatter plot (Figure 4F) shows
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Figure 4: Scatter plots of the various molecular properties, calculated with DFT versus calculated
with xTB: A) HOMO; B) LUMO; C) HOMO-LUMO gap; D) adiabatic ionization potential;
E) adiabatic electron affinity; F) relative single-point energy. All values reported in eV.

a good agreement between the two methods
(R2 = 0.94), with a slope of ca. 1.5. We ini-
tially suspected that the quantitative difference
between the results might stem from the two
methods accounting differently for dispersion
interactions: the xTB calculations were per-
formed with the D453 correction whereas the
DFT calculations were performed with the D340

correction (with Becke-Johnson damping). To
further investigate this, we studied the correla-
tions of the the self-consistent field (SCF) ener-
gies and dispersion corrections separately (Sec-
tion 2.2 in the Supporting Information). In-
deed, the plot of the D3 corrections versus the
D4 corrections revealed a size-dependent rela-
tionship, whereby there is a slightly different
linear correlation for each family of isomers,
which could lead to variance in the relative
energy (Figure S10). In addition, we found

a slightly better agreement between the DFT-
calculated and xTB-calculated SCF relative en-
ergies (i.e., when the dispersion correction was
omitted, Figure 5). However, the overall trend
of a slope > 1 remained, which stems from the
intrinsic differences between the two methods.

We then hypothesized that the quantitative
differences may be attributed be the geomet-
ric deformation from planarity of the PBHs.
While many of the PBH structures are planar
(or nearly planar), a large number are curved
or contain curved regions, which introduce tor-
sional and/or helical strain (e.g., structures D,
E, F, and H in Figure 1). We surmised that the
two computational methods may account for
this strain differently, resulting in their lack of
agreement. To validate this hypothesis, we col-
ored the individual data points according to the
deviation along the z-axis (i.e., ∆z, calculated
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as the largest difference between z-coordinates
after placing the DFT-optimized molecules in
the xy-plane). Both plots in Figure 5 show a
stratification of the data, whereby there are dis-
tinct individual linear correlations correspond-
ing to the different extents of deviation from
planarity (∆z). This indicates that, indepen-
dent from the dispersion effects, the deviation
from planarity plays a role in the two method
affording different values of relative energy.

The link to deviation from planarity led us to
question whether the two methods might have
significant differences in the optimized struc-
tures of the curved PBHs. However, we found
that the methods agree rather well on the ∆z
values (Figure S13 in the Supporting Informa-
tion shows a good linear correlation between
the ∆z values of the xTB-optimized structures
and the DTF-optimized structures, with a slope
of 1.03). This implies that the optimized ge-
ometry is not significantly method-dependent.
In addition, as mentioned above, the excellent
agreements observed in the other five plots in-
dicate that the other electronic properties are
treated quite well. Yet, there is a clear dif-
ference in calculation of the energies, which
is related to non-planarity, as seen from Fig-
ure 5. Thus, it is possible that this discrepancy
stems from the GFN2-xTB and DFT methods
treating curved aromatic systems differently; in
particular, we believe it is caused by the tor-
sional (helical) strain being treated differently
by these methods.

Trends within the data

The distribution plots in Figures 3A-E indicate
the likelihood of locating a PBH molecule with
a property in a specific range, but do not pro-
vide any information on the connection between
structural features and the location of a given
molecule within the distribution. To probe
the structure-property relationships further, we
first divided the dataset into "families", where
each family contains all of the isomers of the
same number of rings (e.g., Family 5 is the set
of molecules containing five rings, and so forth).
For cata-condensed PBHs, all molecules with
the same number of rings also have the same

Figure 5: Scatter plot of the DFT-calculated
vs the xTB-calculated relative energy with (A)
and without (B) the dispersion corrections in
eV, colored based on the ∆z values.

molecular formula, therefore each family can
also be defined by a unique molecular formula
(see Table 1 for the molecular formula corre-
sponding to each family). We then plotted the
kernel-density estimate distributions (KDEs) of
the DFT-calculated properties for Families 5–
10 (Families 1–4 were omitted because they
contain too few molecules to form meaningful
distributions), with each individual family in-
dicated by a different color (Figure 6). We cau-
tion that the KDE visualization tends to exag-
gerate the range of distributions, i.e., the ex-
tremities of the density plots are not entirely
accurate. This can be seen clearly in the plot
of the relative energy (Figure 6F) where the val-
ues are all positive, but the KDE visualization
shows distributions spreading into the negative
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region. The exact histograms for all families
and all properties are provided in the Support-
ing Information (sections 2.3 and 2.4).

It can be seen from all plots that, though
there are overlaps between the families, there
also clear trends based on the number of rings
contained in the system. We observe that the
median HOMO level becomes higher and the
median LUMO level becomes lower as the num-
ber of rings grows. This is in line with the
known trend of increased conjugation "squeez-
ing" the frontier molecular orbitals together.
Accordingly, the average HOMO-LUMO gap
becomes smaller as the number of rings in-
creases. The aIP decreases and the aEA in-
creases (in absolute value) with the number of
rings. Both of these trends are in accordance
with the respective behaviors of the HOMO and
LUMO levels (which, within Koopmans’ the-
orem, give a good approximation of the aIP
and aEA). In addition, the aEA is known to
be size-dependent,54 as larger molecules stabi-
lize the negative charge more efficiently through
delocalization. However, we note at the same
time the similarities in range for all the fami-
lies. One might expect that larger structures,
which have more structural diversity, might also
display a wider range of properties. Yet, the
range of property values does not change sig-
nificantly with the increase in molecular size,
starting from Family 5 (mean, median, mini-
mum, and maximum values of the distributions
for each family are shown in the Supporting
Information, section 2.5). This suggests that
structural diversity, in and of itself, does not
lead to substantial changes in the property val-
ues. This observation can be rationalized by
conclusions from previous work from our group.
As part of our ongoing research into structure-
property relationships of PASs, we recently de-
lineated several guidelines for molecular design
of triplet-state PBHs, based on their decompo-
sition into series of tricyclic subcomponents.49

We observed that a specific structural motif
– the longest linear stretch – determines sev-
eral molecular properties, including the singlet-
triplet energy gap (which is dependent on the
HOMO and LUMO energies) and the location
of spin density in the triplet state (note: the

longest linear stretch refers to the longest series
of consecutive laterally annulated benzene rings
in the molecule). In other words, if the longest
linear substructure determines the molecular
properties, regardless of the overall molecular
size, this can explain how molecules of varying
sizes have similar property values (overlapping
distributions). It also explains the plateau-like
behavior observed starting at Family 6 in the
minimum values of the LUMO, HOMO-LUMO
Gap, aEA, and aIP and in the maximum value
of the HOMO (section 2.5 in the Supporting In-
formation). Because all linear stretches longer
than six rings were excluded from the datasets,
the longest linear stretch in all of the Families
6–10 is a six-ring stretch. Accordingly, they all
have similar min/max values.

Finally, we see that the maximum relative
energy increases with the number of rings.
Our understanding of this trend is that, the
larger the molecules are, the more opportuni-
ties there are for introducing destabilizing ef-
fects. Namely, we anticipate that helical struc-
tures or multiple curved structures can begin to
emerge as the number of rings increases, which
generate torsional/helical strain.

To further investigate the effects of struc-
tural motifs on the molecular properties of most
interest to us, we plotted the HOMO versus
the LUMO values and colored the individual
data-points according to various structural mo-
tifs. The motifs we selected for visualization
were: a) the number of rings; b) longest lin-
ear stretch, which is the longest consecutive se-
quence of linearly annulated rings; c) longest
angular stretch, which is the longest consecutive
sequence of angularly annulated rings; and d)
the number of branching points in the molecule.
These visualizations are depicted in Figure 7A-
D, respectively).

From Figure 7A it is clear that both the
HOMO and the LUMO are not directly affected
by the number of rings in the molecule. Mean-
ing, the family-dependent trends observed in
the distribution plots (Figure 6) are not triv-
ially linked to the number of rings contained in
the molecules of each family. Rather, there is
a more subtle relationship between the molec-
ular electronic property and the structure of
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Figure 6: KDE plots of the distribution of DFT-calculated values, separated into families:
A) HOMO; B) LUMO; C) HOMO-LUMO gap; D) adiabatic ionization potential; E) adiabatic
electron affinity; F) relative single-point energy. All values reported in eV. Families containing
molecules with fewer than 5 rings are not shown.

the molecule, that is indirectly connected to
the size of the molecules. The structural mo-
tif that shows the clearest stratification of the
data is the longest linear stretch, which is con-
sistent with our previous conclusions regard-
ing the importance of this feature (vide supra).
Figure 7B shows clearly that the HOMO level
becomes less negative and the LUMO level be-
comes more negative as the linear stretch elon-
gates. This is in line with the family-dependent
trends seen above: the greater the number of
rings, the more isomers can be made with longer
linear stretches. Conversely, it appears that
the HOMO becomes more negative and the
LUMO becomes less negative with the elonga-
tion of the longest angular stretch. However,
this behavior is not as clear-cut as with the lin-
ear stretch; one can see from Figure 7C that
there are molecules with varying longest angu-
lar stretches distributed throughout the scatter
plot. Thus, this general relationship might be
better rationalized as the lack of a long linear
stretch motif. In other words, given that the
molecules have a finite size, molecules that have
long consecutive angular stretches will natu-

rally have shorter consecutive linear stretches,
which can explain the apparent trend. The ef-
fect of the presence of branching points is visu-
alized in Figure 7D. In general, it appears that
increasing the number of branching points leads
to a lower HOMO and a higher LUMO. Again,
this can be interpreted in light of the linear
stretches: an increase in branching points by
necessity precludes the existence of long linear
stretches. The same behaviors were observed
for the aIP and aEA (see Supporting Informa-
tion, section S2.1).

The relative energy shows similar trends (see
Supporting Information, Figure S11), though
the behavior is more complex: while the relative
energy generally appears to increase with the
elongation of the longest linear stretch, there
are also several data points with very short
longest linear stretches that have high relative
energy values. These data points have a high
number of branching points and/or a long con-
secutive angular stretch, which indicates that
the relative energy has an additional struc-
tural dependencies, as was implied earlier (vide
supra).
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Figure 7: Scatter plots of the DFT-calculated HOMO versus LUMO, colored based on different
structural features: A) Number of rings; B) Longest linear stretch; meaning longest chain of rings
connected in a linear fashion; C) Longest angular stretch; meaning the longest chain of rings
connected in an angular fashion; D) Number of branching points. Benzene and naphthalene are
not shown.

Conclusions
In this report, we introduced the COMPAS
Project, a new computationally-generated
database of polycyclic aromatic systems, and
described the first phase of the database con-
struction. In Phase 1, we focused on the
family of cata-condensed PBHs and gener-
ated two separate datasets: (1) COMPAS-
1x, and (2) COMPAS-1D. The former con-
tains ∼34k PBHs consisting of 1–11 rings, with
structures and properties calculated with xTB
(using GFN2-xTB). The latter contains ∼9k
PBHs consisting of 1–10 rings, with structures
and properties calculated with DFT (namely,
at the B3LYP-D3BJ/def2-SVP level of the-
ory). Both datasets are freely available at
https://gitlab.com/porannegroup/compas.

In addition, we performed an analysis of
the data. Our results corroborated trends re-
ported in previous experimental and compu-
tational work and provided further support
for structure-property relationships we previ-
ously revealed with electronic-structure inves-
tigations. Specifically, we showed that the
longest linear annulation stretch is the deter-
mining structural feature for several electronic
molecular properties (HOMO, LUMO, aEA,
aIP), whereas molecular size in and of itself
is not an important factor for these proper-

ties. The relative energy of PBH isomers ap-
pears to show a size-dependency, but a more
careful inspection revealed that this is likely
due to larger molecules having more possibil-
ities to generate structures that are more dis-
torted from planarity. Similarly, the apparent
relationship between the number of branching
points and relative energy can also be explained
in terms of molecular non-planarity, as branch-
ing introduces more curved regions. In other
words, we believe the increase in relative energy
can be, in large part, attributed to greater tor-
sional/helical strain. Comparison of the xTB
and DFT results showed a linear relationship
between the two methods for HOMO, LUMO,
HOMO-LUMO gap, aEA, and aIP, providing
a basis for obtaining close to DFT-level prop-
erties with xTB calculations via a correction
scheme. For the relative energy, we observed a
lack of agreement between the xTB and DFT
values that is related to the devitation from
planarity. We ascribe this lack of agreement
to xTB and DFT calculating the energies of
non-planar PBHs differently, specifically their
torsional/helical strain energy. In light of this
finding, we can further conclude that the other
molecular properties are robust to minor struc-
tural variability. Additionally, we conclude that
all properties are treated adequately by both
methods and can be used to glean insights into
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structure-property trends, which can in turn in-
form design strategies for preparation of PBHs
with tailored properties.

Our group is currently performing additional
investigations of the data contained in the
COMPAS-1x and COMPAS-1D datasets. We
are probing the structure-property relationships
of these molecules using interpretable ML and
DL techniques, as well as analyzing the aro-
matic character of these molecules using a
wide variety of aromaticity indices. The re-
sults of these studies will be communicated in
due course. In addition, we are have com-
menced work on the next phases of the COM-
PAS Project, which focus on peri -condensed
PBHs and heterocycle-containing PASs. These
subsequent datasets will also be made freely
available to the scientific community upon com-
pletion.
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