Chemistry and Biology of Novel Meliaceae Limonoids

Fayaj A. Mulani^{1, 2†}, Sharvani S. Nandikol^{1, 2†} and Hirekodathakallu V. Thulasiram^{1, 2, 3}*

¹ Chemical Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune - 411008, India

² Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201002, India

³CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007, India

* Corresponding author: Hirekodathakallu V. Thulasiram

Email address: hv.thulasiram@ncl.res.in

Ph.: +91-20-2590 2478

[†]These authors contributed equally to this work.

*Correspondence:

Dr. Hirekodathakallu V. Thulasiram Professor / Senior Principal Scientist Chemical Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune - 411008, India. Fax: +91 2025902629 Tel: +91 2025902478 E-mail: hv.thulasiram@ncl.res.in

Email addresses of authors

hv.thulasiram@ncl.res.in

fa.mulani@ncl.res.in

ss.nandikol@ncl.res.in

Abstract

Nature has bestowed us with abundant bioactive/drug molecules for various uses in our everyday life. One such group of plant specialized molecules is limonoids, which are structurally characterized as 4.4.8-trimethyl-17furanyl steroidal skeleton. Limonoids are well known for their various biological activities such as potent antifeedent, anti-cancer, anti-inflammatory, insecticidal, anti-diabetic, anti-viral, anti-microbial etc. These tetranortriterpenes are highly oxygenated and structurally diversified molecules majorly found in Meliaceae and Rutaceae and less frequently in the Cneoraceae families in the plant kingdom. Many of these plants have been used in traditional medicine from ages. One of the well-known limonoid, azadirachtin A is highly valued and widely popular for its outstanding insecticidal properties. Till date, nearly 2500 limonoids with over 35 unique carbon frameworks have been observed. In recent times, these molecules have dig a great interest among researchers due to their myriad biological properties. With the advancement of analytical techniques, the limonoid research is aced to explore more different molecules from their sources. In our review we cover all the Meliaceous limonoids isolated during July 2010 to Dec 2020. We found over 1502 new limonoids, which are reported from various Meliaceae plants after Jun 2010. We have classified them based on their skeletal structure rearrangements and functional groups into various classes such as protolimonoids, Apoprotolionoid, Azadirone, Vilasinin, Cedrelone, Havanensin, Trichilin, Nimbin, Salannin, Azadirachtin, Nimbolidin, Nimbolinin, Obacunol, Evodulone, Trijugin, Cipadesin, Andirobin, Mexicanolide, Phragmalin, Khayanolide, Preieurianin, Aphanamixoid, Nor Limonoid and N-containing derivatives. Further we have discussed their biological activities in detail.

Contents		
1.	Introduction	5
2.	Classification of Meliaceae limonoids	6
2.1.	Limonoid precursor	10
2.1.1.	Protolimonoid/Tirucallanetriterpenoid	10
2.1.2.	Ring A-seco Protolimonoids	15
2.1.3.	Nor Protolimonoids	15
2.1.4.	Apoprotolimonoid/Apotirucallanetriterpenoid	16
2.1.5.	Ring A-seco Apoprotolimonoid	20
2.2.	Ring intact limonoids	21
2.2.1.	Azadirone-Class	21
2.2.2.	Cedrelone-Class	25
2.2.3.	$18(13 \rightarrow 14)$ abeo-Class	27
2.2.4.	Havanensin	27
2.2.5.	Trichilin	28
2.2.6.	Vilasinin	30
2.2.7.	Other ring intact	32
2.3.	Ring seco limonoids	33
2.3.1.	Demolition of single ring	33
2.3.1.1.	Ring A-seco	33
2.3.1.1.1.	Evodulone	33
2.3.1.1.2.	Other ring A-seco	35

2.3.1.2.	Ring B-seco	36
2.3.1.3.	Ring C-seco	40
2.3.1.3.1.	Azadirachtin/Meliacarpin	40
2.3.1.3.2.	Salannin	41
2.3.1.3.3.	Nimbolinin	42
2.3.1.3.4.	Nimbin	44
2.3.1.3.5.	Nimbolidin	45
2.3.1.4.	Ring D-seco	45
2.3.1.4.1.	Gedunin	45
2.3.1.4.2.	Other ring D-seco	46
2.3.1.5.	Ring E-seco	47
2.3.2.	Demolition of two rings	47
2.3.2.1.	Rings A,B-seco	47
2.3.2.1.1.	Prieurianin	47
2.3.2.1.2.	Aphanamixoid	51
2.3.2.1.3.	Other rings A,B-seco	52
2.3.2.2.	Rings A,D-seco	53
2.3.2.2.1.	Obacunol	53
2.3.2.2.2.	Chukrasone	54
2.3.2.2.3.	Other rings A,D-seco	55
2.3.2.3.	Rings B,D-seco	55
2.3.2.3.1.	Andirobin	55
2.3.2.3.2.	Other rings B,D-seco	59
2.3.2.4.	Rings B,C-seco	60
2.3.2.5.	Rings A,E-seco	60
2.3.3.	Demolition of three rings	61
2.3.3.1.	Rings A,B,D-seco	61
2.4.	Rearranged limonoids	61
2.4.1.	2,30-linkage	61
2.4.1.1.	Mexicanolide	61
2.4.1.2.	9,10-seco-Mexicanolide	70
2.4.1.3.	Phragmalin	71
2.4.1.3.1.	Phragmalin orthoester	71
2.4.1.3.1.1.	(1-8-9) Phragmalin orthoester	71
2.4.1.3.1.2.	(8-9-11) Phragmalin orthoester	76
2.4.1.3.1.3.	(8-9-12) Phragmalin orthoester	77

2.4.1.3.1.4.	(8-9-14) Phragmalin orthoester	77
2.4.1.3.1.5.	(8-9-30) Phragmalin orthoester	78
2.4.1.3.2.	Polyoxyphragmalin	80
2.4.1.3.3.	Seco Phragmalin	84
2.4.1.3.3.1.	1,2-seco Phragmalin	84
2.4.1.3.3.2.	1,10-seco Phragmalin	85
2.4.1.3.4.	16-Nor Phragmalin	85
2.4.2.	1,30-linkage along with 2,30-linkage	86
2.4.2.1.	Khayanolide	86
2.4.3.	8,11-linkage	88
2.4.3.1.	Trijugin	88
2.4.4.	10,11-linkage	89
2.4.4.1.	Cipadesin	89
2.4.5.	Other linkage	91
2.5.	Limonoid derivatives	92
2.5.1.	Pentanor triterpenoids	92
2.5.2.	Hexanor triterpenoids	94
2.5.3.	Heptanor triterpenoids	95
2.5.4.	Octanor triterpenoids	96
2.5.5.	Enneanor triterpenoids	96
2.5.6.	Degraded derivatives	97
2.5.7.	N-containing derivatives	97
2.5.8.	Other derivatives	100
3.	Biological activities of Meliaceae limonoids	101
3.1.	Antineoplastic activity	101
3.2.	Anti-inflammatory/potential inhibitors of macrophage activation	121
3.3.	Anti-microbial activity	123
3.4.	Anti-malarial activity of Meliaceae Limonoids	126
3.5.	Anti-Human immunodeficiency viral activity	126
3.6.	Melanogenesis inhibitory activity of Meliaceae limonoids	126
3.7.	11β-hydroxysteroid dehydrogenase type I inhibition Limonoids	127
3.8.	Miscellaneous activities of Meliaceae Limonoid	128
3.9.	Insecticidal activities	130
Conclusion and	future prospective	128
Acknowledgme	ent	128
References		

1. Introduction

Nature has always amazed us with its vast engineering of natural products from different sources. Limonoids are a class of plant specialized metabolites with innumerable biological effects. The first limonoid was isolated from citrus in 1841, called as limonin which was responsible for the bitterness of the lemon¹. Limonoids belong to class of tetracyclic triterpenoids which are formed by loss of four terminal carbons of the side chain in the apotirucallane (C30) skeleton and then cyclized to form the 17α -furan ring, also known as tetranortriterpenoids (C26). Limonoids are structurally diversified oxygenated compounds found in ring intact or highly rearranged *seco*-ring forms. They are distributed in Ptaeroxylaceae, Rutaceae, Cneoraceae, Simaroubaceae and Meliaceae families of plants². Some of the other plant families reported to contain limonoids are Burseraceae³, Flacourtiaceae⁴, Boraginaceae⁵ and Euphorbiaceae^{6,7,8,9}. However the abundance of these limonoids is mainly restricted to Meliaceae and Rutaceae families.

The Meliaceae family is comprised of 58 genera and 534 known species as listed in National Center for Biotechnology Information database [https://www.ncbi.nlm.nih.gov]. The Meliaceae family is also called as Mahogany family with pantropical distribution. This family mainly consists of woody plants and rarely shrubs. Since ages the Meliaceae family plants are used for various purposes like in folk medicine, as insecticides and their highly priced wood. Across the globe, Meliaceae plants are of great economic importance. The limonoids from Meliaceae family are called as meliacins displaying a wide array of biological activities like antimicrobial, cytotoxic, antimalarial, antifeedant, insecticidal etc. The most noted limonoid Azadirachtin isolated from seed kernel of *Azadirachta indica* is well known for its anti-feedant activity against more than 600 species of insects¹⁰. It is one of the most promising limonoid in developing biopesticides for integrated pest management. Apart from their application in agriculture, these limonoids are also good applicants in the field of medicine. For instance, Gedunin, Azadiradione, Nimbolide, Epoxyazadiradione have shown to exert cytotoxic activity against various human cancer cell lines^{11,12,13,14}. Owing to their limitless capability in the field of agriculture, human diseases and medicine, the research on discovery of novel meliacins is under way.

In the recent times, these molecules have dig a great interest among researchers due to their myriad biological properties. With the advancement of analytical techniques, the limonoid research aced to explore more different molecules from their sources. Q. Tan *et. al.* classified all the Meliaceae limonoids isolated between 1942 to 30 June 2010 in the review entitled 'Meliaceous limonoids: Chemistry and biological activities'¹². In this review, Qin-Gang Tan and Xiao-Dong Luo have enlisted 1159 limonoids which are isolated and characterized in six decades. Based on their skeletal structure, they have classified them in to seventeen different classes and discussed their bioactivities. After this some reviews have been published on chemical synthesis of limonoids¹⁵, limonoid chemistry², genus specific reviews covering the limonoids from a single genus^{16–24}, genus based classification of limonoids²⁵, phytochemistry and bioactivity based reviews^{26,27} structure activity relationship based bioactivity of natural and synthesized limonoids²⁸ and novel triterpenoids isolated from different plants^{29–34}. Although numerous reviews are published there is no systematic study discussing chemical and biological aspects of Meliaceae limonoids after the year 2010. This review highlights the classification of limonoids based on structure, covering their sources and various biological activities of novel limonoids. Overall this review describes the chemistry and biology of novel limonoids isolated from Meliaceae in the last ten years (1 July 2010 to 31 Dec. 2020). However this review doesn't address total/chemical synthetic efforts of new limonoids.

Limonoids biosynthesis in vivo remains elusive. The isoprene units derived from Mevalonate (MVA) or Methylerithritol (MEP) pathway undergo sequential condensation forming 30-carbon triterpene scaffold which then forms protolimonoid skeleton under the influence of oxidosqualene cyclases (Figure 1). Previously, based on the stereochemistry of protolimonoids in Meliaceae plants, Euphol, Tirucallol, or their Δ^7 -isomers i.e. butyrospermol and Tirucalla-7,24-dien-3β-ol were believed to be biogenetic precursor of limonoids^{35,36}. The major structural markers to differentiate between Euphol and Tirucallol are C20 configuration and bond rotation at (C17, C20). In Euphol, the C20 configuration is 20R and in Tirucallol it is 20S. The orientation of C22 with respect to C13 is *cis* in Euphol and *trans* in Tirucallol³⁷. The labeling studies did not confirm the biogenetic precursor of limonoids in the previous studies^{36,38}. The isotope labeled feeding experiments demonstrated the involvement of MVA pathway in limonoid biosynthesis is partially revealed. Very recently through genome mining and transcriptome sequence resources, an oxidosqualene cyclase producing Tirucalla-7,24-dien-3β-ol was identified in different limonoid producing plants like *Azadirachta indica*^{41,42}, *Melia azedarach* and *Citrus sinensis*⁴¹. Also the cytochrome P450 enzymes when coexpressed with this oxidosqualene cyclase produced Dihydroniloticin, Tirucalla-7,24-dien-21,3βdiol and Melianol which are protolimonoids⁴¹. These protolimonoids are formed by scaffold rearrangement and furan ring formation along with loss of four carbon atoms (Figure 1). These recent studies conclude Tirucalla-7,24dien-3β-ol as a biogenetic precursor of limonoid biosynthesis. Also from these studies the initial steps involved in protolimonoid formation from isoprene units is nearly perspicuous.

Figure 1. Limonoid biosynthetic pathway.

2. Classification of Meliaceae limonoids

Based on their chemical skeletons, 1502 Meliaceae limonoids were classified into 57 groups (Figure 2A/B) as Protolimonoid/Tirucallanetriterpenoid, Ring A-seco Protolimonoids, Nor Protolimonoid, Apoprotolimonoid/Apotirucallanetriterpenoid, Ring A-seco Apoprotolimonoid, Azadirone class limonoids, Cedrelone class limonoid, 18(13 \rightarrow 14) abeo class limonoid, Havanensin class limonoid, Trichilin class limonoid, Vilasinin class limonoid, Other ring intact class limonoid, Evodulone class limonoid, Other ring A-seco class limonoid, Ring B-seco class limonoid, Azadirachtin/Meliacarpin class limonoid, Salannin class limonoid, Nimbolinin class limonoid, Nimbolinin class limonoid, other ring

D-seco class limonoid, Ring E-seco class limonoid, Prieurianin class limonoid, Aphanamixoid class limonoid, Other rings A,B-seco class limonoid, Obacunol class limonoid, Chukrasone class limonoid, other rings A,D-seco class limonoid, Andirobin class limonoid, Other rings B,D-seco class limonoid, Rings B,C-seco class limonoid, Rings A,E-seco class limonoid, Rings A,B,D-seco class limonoid, Mexicanolide class limonoid, 9,10-seco-Mexicanolide class limonoid, [1-8-9] Phragmalin orthoester class limonoid, [8-9-11] Phragmalin orthoester class limonoid, [8-9-12] Phragmalin orthoester class limonoid, [8-9-14] Phragmalin orthoester class limonoid, [8,9,30] Phragmalin orthoester class limonoid, Polyoxyphragmalin class limonoid, 1,2-seco Phragmalin class limonoid, 1,10seco Phragmalin class limonoid, 16-Nor Phragmalin class limonoid, Khayanolide class limonoid, Trijugin class limonoid, Cipadesin class limonoid, Other linkage class limonoid, Pentanor triterpenoids class limonoid, Hexanor triterpenoids class limonoid, Heptanor triterpenoid, Octanor triterpenoids class limonoid, Enneanor triterpenoids class limonoid, Degraded derivatives class limonoid, N-containing derivatives class limonoid. Other derivatives class limonoid. The basic limonoid (azadiradione) skeleton is extensively modified/functionalized to produce variety of ring intact, ring seco and rearranged limonoids (Figure 2B). Most of the novel limonoids were isolated majorly from seeds (22.17 %) followed by twig (19.71 %), bark/stem (19.44 %), fruit (16.18 %), leaf (12.72 %) root (6.26 %) and flower (1.73 %) which is represented in Figure 2C. The highest number of novel limonoids were isolated in the year 2020 followed by 2014 (Figure 2D).

Figure 2A. Classification of limonoids and their tentative pathway of origin.

Figure 2B. Summary of major classes of Meliaceae limonoids

Figure 2C. Distribution plot showing the tissue specific isolation of novel limonoids

Figure 2D. Radar plot of all novel limonoids isolated from Meliaceae plants year wise.

2.1. Limonoid precursor

2.1.1. Protolimonoid/Tirucallanetriterpenoid

Protolimonoids are C30 tetracyclic triterpenes characterized by the presence of a steroidal skeleton containing $\Delta^{7,8}$ olefinic double bond. This class of limonoids are the precursor molecules for generation of variety of structurally diversified limonoids. A total of fifty five new protolimonoids were isolated from Xylocarpus moluccensis, Toona ciliata, Dysoxylum hainanense, Aphanamixis grandifolia, Dysoxylum lukii, Dysoxylum lenticellatum, Azadirachta indica, Capuronianthus mahafalensis, Melia azedarach, Guarea kunthiana, Aphanamixis polystachya, Walsura cochinchinensis, Dysoxylum binectariferum and Melia toosendan (Table 1/S1, Figure 3). The 3β -hydroxy-3-decarbonyl-24-epi-piscidinol A (1) is structurally similar to previously reported 24-epi-piscidinol⁴³ except at C3 carbonyl reduction. Toonamicrocarpavarin (2) has an additional double bond at $\Delta^{1,2}$ when compared to previously reported Piscidinol A⁴⁴. Toonapubesin D (3) is C21 hydroxy analog of compound (2). Toonapubesin E (4) differed from previously reported Hispidol A⁴⁵ at C29 hydroxylation. The C3 hydroxyl group in compound (4) is oxidized in Toonapubesin F (5). Dysoxyhaine D (6) is distinguished from compound (5) at C1 containing additional hydroxyl moiety and enol group at side chain. In Dysohainanin F (7) $\Delta^{23,24}$ double bond is formed and hydroxyl moiety is shifted from C21 to C26 when compared to compound (3). Aphanamgrandin K (8) and Toonapubesin G (10) are structurally similar to previously reported Dyvariabilin A^{46} and Piscidinol A^{44} respectively except at the side chain. Aphagranin F (9) is the C25 ethoxy analog of Piscidinol A reported previously⁴⁴. Xylocarpol C (11) differed from previously reported xylocarpol B⁴⁷ at C24 hydroxylation and C20 configuration. Aphagranin E (12) is a C25 methoxy analog of compound (11). The presence of two additional methoxy groups at C21 in Aphagranin A (13) is the only difference in comparison to compound (12). Aphagranin B (14) is a C25 ethoxy analog of compound (13). Aphagranin C (15) varied from compound (14) at C21 substitution. Compound (16) is C3 carbonyl reduced analog of Dymacrin D reported previously⁴⁸. In comparison to compound (16), Congoensin B (17) is oxidized at C21 and 3β -hydroxytirucalla-7,24-diene-6,23-dione (18) has keto carbonyl group at C6. 3β ,26-dihydroxytirucalla-7,24-diene-6,23-dione (19) is a C26 hydroxy analog of compound (18). Methyl 6-oxomasticadienolate (20) varied from compound (18) at C26 methyl group esterification and loss of carbonyl moiety at C23. The hydroxyl group at C3 in previously reported (23Z)-3 β ,25-dihydroxytirucalla-7,23-diene⁴⁹ is oxidized in compound (21). The C21 methyl group in previously reported 24,25-epoxytirucall-7-ene-3,23-dione⁵⁰ is replaced by acid in Dysolenticin H (22) and ester moiety in Dysolenticin I (23) respectively. Dysoxyhaine C (24) is a C6 hydroxy analog of 24,25epoxytirucall-7-ene-3,23-dione⁵⁰. The carbonyl group at C23 in 24,25-epoxy-3β,23-dihydroxy-7-tirucallene⁴⁹ is

reduced in compound (25). Capulin (26) is a very unique protolimonoid containing four membered ring in its side chain. Compound (27) is C25 methoxy analog of previously reported Melianodiol^{51,52}. Compound (28) is C3 epimer of previously reported Paramignyol A⁵³. Compounds (29 and 30) are C21 methoxy, C25 dehydroxy $\Delta^{25,26}$ and C25 dehydroxy $\Delta^{25,26}$ analogs of Melianodiol respectively. The C21 methoxy and C25 hydroxy groups in previously reported Agladupol E^{54} are removed in Dysolenticin E (31) along with additional hydroxyl group at C23 and oxidation at C24. Dysolenticin D (32) is a C3 oxidised analog of compound (31). Compound (33) is the C23 ethoxy analog of compound (31). The epoxide ring formation at C24,25 in compounds (34 and 47) makes them structurally different from compounds (33 and 44) respectively. Compound (35) has methoxy groups at C21 and C23 when compared to compound (34). Compound (36) is C3 oxidised analog of compound (35). Compound (37) is C3 tigloyl derivative of previously reported Melianol⁵⁵. Polystanin C (38) is C3 acetyl and C21 methoxy analog of Meliantriol reported previously⁵⁶. Polystanin D (**39**) is a C21 epimer of compound (**38**). Indicalilacol C (**40**) is the C21 methoxy analog of Meliantriol with an additional double bond at $\Delta^{9,11}$. Cochinchinoid K (**41**) is structurally similar to previously reported 24-epi-melianodiol⁴³ except at C3 reduction and C21 oxidation. Indicalilacol B (42) is C21 epimer of compound (41). Mesendanin M (43) is a C29 hydroxyl derivative of compound (42). Compound (44) is C21 methylated and C24 acetylated derivative of Melianodiol. The C24 acetoxyl group in compound (44) is replaced by keto carbonyl group in compound (45). Compound (46) is a C25 methoxy analog of compound (45). Dysolenticin B (51) is $\Delta^{20,22}$ analog of Nimolinone reported previously⁵⁷. Compound (49) is $\Delta^{23,24} \Delta^{25,26}$ analog of compound (48). Compound (50) is a C25 methoxy analog of compound (49). Compounds (51-54) contain six membered lactone ring at C17 and vary among each other in lactone ring substituents. Toonaciliatavarin D (55) is C3 epimer of Sapelin B reported previously⁵⁸.

Table 1. Protolimonoid/Tirucallanetriterpenoid 1-

No.	Limonoid	Substituent	Source
1	3β-hydroxy-3-decarbonyl-24-epi-piscidinol A		Xylocarpus moluccensis ⁵⁹
2	Toonamicrocarpavarin	$R = H; \Delta^{1,2}$	Toona Ciliata ⁶⁰
3	Toonapubesin D		Toona ciliata ⁶¹
4	Toonapubesin E		Toona ciliata ⁶¹
5	Toonapubesin F		Toona ciliata ⁶¹
6	Dysoxyhaine D		Dysoxylum hainanense ⁶²
7	Dysohainanin F		Dysoxylum hainanense ⁶³
8	Aphanamgrandin K		Aphanamixis grandifolia ⁶⁴
9	Aphagranin F		Aphanamixis grandifolia ⁶⁵
10	Toonapubesin G		Toona ciliata ⁶¹
11	Xylocarpol C	$R_1 = OH; R_2 = H$	Xylocarpus moluccensis ⁴⁷
12	Aphagranin E	$R_1 = \beta$ -OH; $R_2 = OCH_3$	Aphanamixis grandifolia ⁶⁵
13	Aphagranin A	$R = CH_3$	Aphanamixis grandifolia ⁶⁵
14	Aphagranin B	$R = CH_2CH_3$	Aphanamixis grandifolia ⁶⁵
15	Aphagranin C		Aphanamixis grandifolia ⁶⁵
16	3β-hydroxytirucalla-7,24-dien-23-one	$R_1 = \beta$ -OH; $R_2 = CH_3$	Dysoxylum lukii ⁶⁶
17	Congoensin B	$R_1 = \alpha$ -OH; $R_2 = COOH$	Entandrophragma
	-		congoënse ⁶⁷
18	3β-hydroxytirucalla-7,24-diene-6,23-dione	$\mathbf{R} = \mathbf{H}$	Dysoxylum lukii ⁶⁶
19	3β,26-dihydroxytirucalla-7,24-diene-6,23-dione	$\mathbf{R} = \mathbf{OH}$	Dysoxylum lukii ⁶⁶
20	Methyl 6-oxomasticadienolate		Dysoxylum lukii ⁶⁶
21	(23Z)-25-hydroxy-tirucalla-7,23- diene-3-one		Aphanamixis grandifolia ⁶⁴
22	Dysolenticin H	$R_1 = H; R_2 = COOH$	Dysoxylum lenticellatum ⁶⁸
23	Dysolenticin I	$R_1 = H; R_2 = COOCH_3$	Dysoxylum lenticellatum ⁶⁸
24	Dysoxyhaine C	$R_1 = OH; R_2 = CH_3$	Dysoxylum hainanense ⁶²
25	24,25-epoxy-3β-hydroxy-20- oxo-7-tirucallene		Azadirachta indica ⁶⁹
26	Capulin		Capuronianthus
			mahafalensis ⁷⁰
27	(21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25-methoxytirucall-7-		Melia azedarach ⁷¹
	en-3-one		
28	(3S,21S,23R,24S)-21,23-epoxy-21,25-dimethoxytirucall-7-ene-3,24-		Melia azedarach ⁷¹
	diol		
29	(21S,23R,24R)-21,23-epoxy-24-hydroxy-21- methoxytirucalla-7,25-	$R = CH_3$	Melia azedarach ⁷¹
	dien-3-one		
30	(21S,23R,24R)-21,23-epoxy-21,24-dihydroxytirucalla-7,25-dien-3-	$\mathbf{R} = \mathbf{H}$	Melia azedarach ⁷¹
	one		
31	Dysolenticin E		Dysoxylum lenticellatum ⁶⁸
32	Dysolenticin D		Dysoxylum lenticellatum ⁶⁸
33	(3α,13α,14 β,17α,20S,23R)-23-ethoxy-3-hydroxy-21,23-		Aphanamixis grandifolia ⁷²
	epoxylanost-7-en-24-one		

34 35	Dysolenticin F (3P 5P, 0P 10P 13S 14S 17S) 17 ((2P 3S 5P) 5 ((2S) 3.3		Dysoxylum lenticellatum ^{68}
33	dimethyloxiran-2-yl]-2,3,4,5-tetrahydro-2,5-dimethoxyfuran-3-yl}-		Aphanamixis granaijona
	4,4,10,13,14-pentamethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-		
	tetradecahydro-1H-cyclopenta- [α]phenanthren-3-ol		
36	(5R,9R,10R,13S,14S,17S)-17-{(2R,3S,5R)-5-[(2S)-3,3-		Aphanamixis grandifolia ⁷²
	dimethyloxiran-2-yl]-2,5- dimethoxytetrahydrofuran-3-yl}-		
	1,2,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-4,4,10,13,14-		
	pentamethyl- 3H-cyclopenta[a]phenanthren-3-one		- 73
37	3β- <i>O</i> -tigloylmelianol		Guarea kunthiana ¹³
38	Polystanin C	$R_1 = \alpha$ -OAc; $R_2 = \alpha$ -OCH ₃ ;	Aphanamixis polystachya'
20		$R_3 = \alpha - OH$	
39	Polystanin D	$R_1 = \alpha$ -OAc; $R_2 = \beta$ -OCH ₃ ;	Aphanamixis polystachya ¹⁴
40		$R_3 = \alpha - OH$	A 1: 1:
40	Indicalitacol C	$R_1 = p-OH; R_2 = \alpha-OCH_3;$ $R_1 = OH; A^{9,11}$	Azaairachta inaica
41	Cochinchinoid K	$R_3 = 0.01$, Δ $R_4 = \beta_0 OH$; $R_5 = H$	Walsura cochinchinensis ⁷⁶
42	Indicalilacol B	$R_1 = \alpha - OH$: $R_2 = H$	Azadirachta indica ⁷⁵
43	Mesendanin M	$R_1 = \alpha$ -OH: $R_2 = OH$	Melia azedarach ⁷⁷
44	(+)-21R*.23R*-epoxy-21α-methoxy-24S*.25-dihydroxyapotirucall-		Dysoxylum binectariferum ⁷⁸
	7-en-3-one		
45	(+)-21R*,23R*-epoxy-21a- methoxy-25-hydroxyapotirucall-7-en-	$\mathbf{R} = \mathbf{H}$	Dysoxylum binectariferum ⁷⁸
	3,24-dione		
46	(+)- 21R*,23R*-epoxy-21α,25-dimethoxyapotirucall-7-en-3,24-	$R = CH_3$	Dysoxylum binectariferum ⁷⁸
	dione		70
47	(+)-21R*,23R*-epoxy-21α-methoxy-24S*,25- oxidoapotirucall-7-en-		Dysoxylum binectariferum ⁷⁸
	3-one		69
48	Dysolenticin B		$Dysoxylum lenticellatum^{68}$
49	$(13\alpha, 14\beta, 17\alpha, 23Z)$ -21,23-epoxylanosta-7,20(22),23,25-tetraene-		Aphanamixis grandifolia ⁷²
50	3,21-dione		A 1 · · · · · · · · · · · · · · · · · · ·
50	$(13\alpha, 14p, 1/\alpha, 23z)$ -25-metnoxy-21,25-epoxytanosta-7,20(22),25-		Apnanamixis granaifolia
51	Dysolontiain A		Ducombum lonticallatum ⁶⁸
52	Mesendanin O		<i>Dysoxytum tenticetidium</i> <i>Melia toosandan</i> ⁷⁹
53	Dysoxylumstatin A		Dysorylum lukii ⁶⁶
54	Dysoxylumstatin B		Dysoxylum lukii ⁶⁶
55	Toonaciliatavarin D		Toona ciliata ⁸⁰
55			1 oona chuuu

36

`OR

41-43

0

Ĥ

'H

47

ЮH

53

OH ′OH

2.1.2. Ring A-seco Protolimonoid

This class of limonoids is characterized by open, rearranged ring A. A total of eleven new ring A seco protolimonoids were isolated from *Guarea guidonia and Aphanamixis grandifolia* (Table 2/S2, Figure 4). Guareoic acid B (**56**) contains substituted tetrahydrofuran ring with cleaved A ring. Guareoic acid A (**57**) is a C21 hydroxy analog of compound (**56**). The formation of ether bridge between C3 and C11 in Guareolide (**58**) is the only structural difference in comparison to compound (**56**). Aphanamgrandin H and I (**60** and **61**) are methyl ester and $\Delta^{24,25}$ analogs of Aphanamgrandin G (**59**) respectively. Aphanamgrandin J (**62**) is C21 methyl analog of 3,4-secotirucalla-23-oxo-4(28), 7,24-trien-21-al-3-oic acid reported previously⁸¹. Compounds (**63**, **64**) contain A ring with ether linkage and compounds (**65**, **66**) contain both ether linkage and lactone moiety in A ring. In Aphanamgrandin B (**66**) epoxide is formed at C7,8 when compared to Aphanamgrandin A (**65**).

Table 2.	Ring	A-seco	Protoli	monoid	56-66
I UDIC #	IVIII C	II-SUUU	I I VUVIII	monoru	50-00

No.	Limonoid	Substituent	Source
56	Guareoic acid B	$\mathbf{R} = \mathbf{H}$	Guarea guidonia ⁸²
57	Guareoic acid A	$\mathbf{R} = \mathbf{OH}$	Guarea guidonia ⁸²
58	Guareolide		Guarea guidonia ⁸²
59	Aphanamgrandin G	$\mathbf{R} = \mathbf{H}$	Aphanamixis grandifolia ⁶⁴
60	Aphanamgrandin H	$\mathbf{R} = \mathbf{C}\mathbf{H}_3$	Aphanamixis grandifolia ⁶⁴
61	Aphanamgrandin I	$\mathbf{R} = \mathbf{C}\mathbf{H}_3 \ \Delta^{24,25}$	Aphanamixis grandifolia ⁶⁴
62	Aphanamgrandin J		Aphanamixis grandifolia ⁶⁴
63	Aphanamgrandin C		Aphanamixis grandifolia ⁶⁴
64	Aphanamgrandin D	$\Delta^{24,25}$	Aphanamixis grandifolia ⁶⁴
65	Aphanamgrandin A		Aphanamixis grandifolia ⁶⁴
66	Aphanamgrandin B		Aphanamixis grandifolia ⁶⁴

2.1.3. Nor Protolimonoid

The loss of carbon units from the side chain is a peculiar characteristic of this class. A total of nine new nor protolimonoids were isolated from *Toona sinensis*, *Dysoxylum lenticellatum and Aphanamixis grandifolia* (Table 3/S3, Figure 5). Compound (**67**) is trinor protolimonoid differing at side chain in additional methylene group in comparison with previously reported (4,4,14-trimethyl-3-oxo-24-nor- 5α , 13α , 14β , 17α ,20*S*-chol-7-en-23-oic acid)⁸³. The shift in double bond at $\Delta^{6,7}$ to $\Delta^{7,8}$ with peroxide bridge formation between C5-C8 and additional olefinic bond at $\Delta^{9,11}$ in Compound (**68**) are the structural differences when compared to previously reported (4,4,14-trimethyl-3-oxo-24-nor- 5α , 13α , 14β , 17α ,20*S*-chol-7-en-23-oic acid)⁸³. Dysolenticin C (**69**) is the trinor analog of compound (**48**). Compound (**70**) is C3 carbonyl reduced and C21 methoxy analog of 24, 25, 26, 27-tetranortirucall-7-ene-3-oxo-23

(21)-lactone reported previously⁵⁰. Compound (**71**) is the C21 epimer of compound (**70**). Compounds (**72** and **73**) are C3 carbonyl analogs of compounds (**70** and **71**) respectively. The methoxy group in (**72**) is replaced by the ethoxy group in compound (**74**). Dysolenticin G (**75**) is hexanor protolimonoid.

Table 3. Nor Protolimonoid 67-75

No.	Limonoid	Substituent	Source
67	(20S)-3-oxo-tirucalla-25-nor-7-en-24-oic acid		Toona sinensis ⁸⁴
68	(20S)-5α,8α-epidioxy-3-oxo-24-nor-6,9(11)-dien-23-oic acid		Toona sinensis ⁸⁴
69	Dysolenticin C		Dysoxylum lenticellatum ⁶⁸
70	3α-Hydroxy-21α-methoxy-24,25,26,27-tetranortirucall-7-ene-23(21)-lactone	$R = \alpha - OCH_3$	Aphanamixis grandifolia ⁸⁵
71	3α-Hydroxy-21β-methoxy-24,25,26,27-tetranortirucall-7-ene-23(21)-lactone	$R = \beta - OCH_3$	Aphanamixis grandifolia ⁸⁵
72	3-Oxo-21a-methoxy-24,25,26,27-tetranortirucall-7-ene- 23(21)-lactone	$R = \alpha - OCH_3$	Aphanamixis grandifolia ⁸⁵
73	3-Oxo-21β-methoxy-24,25,26,27-tetranortirucall-7-ene- 23(21)-lactone	$R = \beta - OCH_3$	Aphanamixis grandifolia ⁸⁵
74	3-Oxo-21α-ethoxy-24,25,26,27-tetranortirucall-7-ene-23(21)- lactone	$R = \alpha - OCH_2CH_3$	Aphanamixis grandifolia ⁸⁵
75	Dysolenticin G		Dysoxylum lenticellatum ⁶⁸

2.1.4. Apoprotolimonoid/Apotirucallanetriterpenoid

The shift in methyl group from C14 to C8 and $\Delta^{7,8}$ olefinic double bond to $\Delta^{14,15}$ distinguishes the apoprotolimonoid skeleton from protolimonoids. A total of fifty four new apoprotolimonoids from *Xylocarpus moluccensis, Xylocarpus granatum, Aglaia odorata, Melia Toosendan, Chisocheton paniculatus, Walsura trichostemon, Walsura trifoliata, Azadirachta indica, Trichilia lepidota, Melia azedarach, Cedrela odorata, Dysoxylum hainanense, Toona ciliata, Swietenia macrophylla, Walsura trifoliata, Toona sinensis* and *Entandrophragma utile* were isolated (Table 4/S4, Figure 6). Compound (**76**) is the C25 dehydroxy analog of Protoxylogranatin B (**77**)⁸⁶. The reduction of $\Delta^{1,2}$ and C3 carbonyl moiety followed by C3 acetylation in Agladoral A (**78**) is the only difference from previously reported Senegalene C⁸⁷. Agladoral B (**79**) is C25 methoxy, C3, C7 deacetyl analog of compound (**78**). Agladoral E (**80**) is C7 acetyl, C21 methoxy analog of compound (**79**). Toosendine H (**81**) and Chisopanin G (**85**) are C21 ethoxy C25 hydroxy analogs of compounds (**79**) and (**83**) respectively. Toosendine I (**82**), Chisopanin F (**84**), Chisopanin H (**86**) and Xylogranatumine A (**106**) are C21

epimer of compounds (81), (83), (85) and Protoxylogranatin A reported previously⁸⁸ respectively. Chisopanin E (83) is C3 acetyl, C7 deacetyl analog of compound (80). Chisopanin I (87) is a C25 methoxy analog of compound (85). Chisopanin J (88) is a C25 ethoxy analog of compound (84). Xylogranatumine F (89) is C3 tigloyl and C21 ethoxy derivative of compound (81). Toonasinensin A (90) is C21 ethoxy, C26 hydroxy analog of previously reported Dictamnin A⁸⁹. The hemiacetal group at C17 in previously reported 3α-acetoxy-21,23-epoxyapotirucall-14- ene- 7α ,21R,24,25-tetrol⁹⁰ is replaced by lactone ring in Chisiamol G (91) making it a C21 carbonyl analog. Chisopanin K (92) is $\Delta^{20,22}$ analog of compound (91). Agladoral C (93) is C3, C21 dihydroxy analog of Toonaciliatine A reported previously⁹¹. Chisopanin C and A (**94** and **110**) are C3 acetyl analog of previously reported Toonaciliatine A and 7α-acetoxyl- 17α-20S-21,24-epoxy-apotirucall-14-ene-3α,23R,24S,25-tetraol respectively⁹². Chisopanin D (95) is a C21 ethoxy analog of compound (94). Agladoral D (96) is $\Delta^{1,2}$ and C3 carbonyl reduced analog of previously reported Bruceajavania A⁹³. Chisiamol H (97) is a C24,25 epoxy analog of compound (91). Xylogranatumine D (98) is $\Delta^{1,2}$ double bond reduced analog of Holstinone A reported previously⁹⁴. 7deacetylbrujavanone E (99), Chisopanin B (111) and Cedrodorol B (114) are C7 deacetyl analog of previously reported Brujavanone E^{95} , compound (110) and Mesendanin U^{79} respectively. Compound (100) is C6 hydroxy, C21, C24, C25 tri acetyl analog of compound (99). Xylogranatumine B (101) is C7 acetyl, C11 dehydroxy, C21 methoxy analog of compound (99). Xylogranatumine C (102) is C7 deacetyl, C24 acetyl analog of compound (101). Xylogranatumine E (103) is C11 acetyl, C24 deacetyl C25 methoxy analog of compound (102). Xylogranatumine G (104) is C21 methoxy analog of Senegalene C reported previously⁸⁷. 2-methyl butyrate moiety at C11 in previously reported Gentinone A^{96} is removed in the formation of Piscidinol L (105). Neemfruitin B (106) is a C21 acetyl analog of compound (105). Lepidotrichilin B (108) is $\Delta^{1,2}$ double bond reduced, C21 carbonyl analog of Dysorone D reported previously⁹⁷. Lepidotrichilin A (109) is C21 carbonyl analog of Dysorone D. Compound (112) is C3 tigloyl analog of previously reported Sapelin D^{98} . The tigloyl group at C3 in compound (112) is displaced by the benzoyl group in 3α -benzoate triterpenoid A (113). Dysohainanin E/Mesendanin U (115) is C7 acetyl analog of compound (114). Compound (115) was also isolated by another research group from Melia toosendan but trivially named differently as Mesendanin U⁷⁹. Toonaciliatavarin B (116) is C11 hydroxy $\Delta^{1,2}$ analog of compound (115). Entanutilin U (117) is C23, C24 epimer of previously reported Diepoxyazadirol⁹⁹. Acetoxyl group at C7 in compound (116) is replaced by ketocarbonyl group in Toonaciliatavarin A (118). Swietesenin (119) differed from Spicatin reported previously¹⁰⁰ with presence of glucose moiety at C7 and hydroxylation at C28. Piscidinol K (120) is C21 hydroxyl, $\Delta^{1,2}$ analog of compound (114). Piscidinol I (121) is C11 hydroxyl, C21 acetyl analog of compound (120). 11,25-dideacetyltrichostemonate (122) is C7 acetyl analog of compound (121) with oxidation at C23. Trichostemonate (123) is C11, C25 acetyl analog of Compound (122). Piscidinol J (124) is C7 deacetyl, C11 tigloyl analog of compound (122). The acetyl group at C7 in (122) is replaced by the carbonyl group in Piscidinol H (125). Piscidinone A (126) differed from compound (125) at C11 and C17 substitution. The tiglate group at C11 in compound (126) is replaced by 2-methylbutanoate in Piscidinone B (127). In Azadirahemiacetal (128) there is formation of four membered ring at C24,25 which contains ether bridge when compared with 1α ,7a-diacetoxyl-17a-20S-21,24-epoxy-apotirucall-14-ene- 3α ,23R,24S,25-tetraol reported previously⁹². Toonaciliatavarin C (**129**) differed from previously reported Chisiamol C¹⁰¹ with presence of enone system in A ring and hydroxylation at C11.

Table 4. Abobrotommonoid/Abothucananetriterbenoid /0-12	Table 4.	Apor	orotolimo	noid/Apotir	ucallanetrit	erpenoid 76-12	9
---	----------	------	-----------	-------------	--------------	----------------	---

No.	Limonoid	Substituent	Source
76	25-dehydroxy protoxylogranatin B	R = H	Xylocarpus moluccensis ⁴⁷
77	Protoxylogranatin B	R = OH	Xylocarpus granatum ⁸⁶
78	Agladoral A	$R_1 = R_2 = Ac; R_3 = \beta$ -OH; $R_4 = H$	Aglaia odorata ¹⁰²
79	Agladoral B	$R_1 = R_2 = H; R_3 = \beta$ -OH; $R_4 = CH_3$	Aglaia odorata ¹⁰²
80	Agladoral E	$R_1 = H; R_2 = Ac; R_3 = \alpha - OCH_3; R_4 = CH_3$	Aglaia odorata ¹⁰²
81	Toosendine H	$R_1 = R_2 = H; R_3 = \alpha$ -OCH ₂ CH ₃ ; $R_4 = H$	Melia Toosendan ¹⁰³
82	Toosendine I	$R_1 = R_2 = H; R_3 = \beta - OCH_2CH_3; R_4 = H$	Melia Toosendan ¹⁰³
83	Chisopanin E	$R_1 = Ac; R_2 = H; R_3 = \alpha - OCH_3; R_4 = CH_3$	Chisocheton paniculatus ¹⁰⁴
84	Chisopanin F	$R_1 = Ac; R_2 = H; R_3 = \beta - OCH_3; R_4 = CH_3$	Chisocheton paniculatus ¹⁰⁴
85	Chisopanin G	$R_1 = Ac; R_2 = H; R_3 = \alpha - OCH_2CH_3; R_4 = H$	Chisocheton paniculatus ¹⁰⁴
86	Chisopanin H	$R_1 = Ac; R_2 = H; R_3 = \beta - OCH_2CH_3; R_4 = H$	Chisocheton paniculatus ¹⁰⁴
87	Chisopanin I	$R_1 = Ac; R_2 = H; R_3 = \alpha$ -OCH ₃ ; $R_4 = CH_2CH_3$	Chisocheton paniculatus ¹⁰⁴
88	Chisopanin J	$R_1 = Ac; R_2 = H; R_3 = \beta - OCH_3; R_4 = CH_2CH_3$	Chisocheton paniculatus ¹⁰⁴
89	Xylogranatumine F	$R_1 = Tig; R_2 = H; R_3 = \alpha$ -OCH ₃ ; $R_4 = H$	Xylocarpus granatum ¹⁰⁵
90	Toonasinensin A		Toona sinensis ¹⁰⁶
91	Chisiamol G		Chisocheton paniculatus ¹⁰⁷
92	Chisopanin K		Chisocheton paniculatus ¹⁰⁴
93	Agladoral C	$R_1 = H; R_2 = Ac; R_3 = \beta$ -OH	Aglaia odorata ¹⁰²
94	Chisopanin C	$R_1 = Ac; R_2 = H; R_3 = \alpha - OCH_3$	Chisocheton paniculatus ¹⁰⁴
95	Chisopanin D	$\mathbf{R}_1 = \mathbf{A}\mathbf{c}; \mathbf{R}_2 = \mathbf{H}; \mathbf{R}_3 = \alpha \cdot \mathbf{O}\mathbf{C}\mathbf{H}_2\mathbf{C}\mathbf{H}_3$	Chisocheton paniculatus ¹⁰⁴

96	Agladoral D		Aglaia odorata ¹⁰²
97	Chisiamol H		Chisocheton paniculatus ¹⁰⁷
98	Xylogranatumine D		Xylocarpus granatum ¹⁰⁵
99	7-deacetylbrujavanone E	$R_1 = R_2 = H; R_3 = OH; R_4 = \beta - OH; R_5 = \alpha - OH; R_6 = H$	Walsura trichostemon ¹⁰⁸
100	21,24,25- triacetyl-7-deacetyl-6-	$\mathbf{P} = \mathbf{O} \mathbf{U} \cdot \mathbf{P} = \mathbf{U} \cdot \mathbf{P} = \mathbf{O} \mathbf{O} \mathbf{A} = \mathbf{P} = \mathbf{O} \mathbf{A} = \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{A} = \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O}$	108
	hydroxylbrujavanone E	$\mathbf{K}_1 = \mathbf{O}\mathbf{\Pi}$; $\mathbf{K}_2 = \mathbf{\Pi}$; $\mathbf{K}_3 = \mathbf{O}\mathbf{\Pi}$; $\mathbf{K}_4 - \mathbf{p}$ - $\mathbf{O}\mathbf{A}\mathbf{c}$; $\mathbf{K}_5 = \mathbf{O}\mathbf{A}\mathbf{c}$; $\mathbf{K}_6 = \mathbf{A}\mathbf{c}$	waisura iricnosiemon
101	Xylogranatumine B	$R_1 = H$; $R_2 = Ac$; $R_3 = H$; $R_4 = \alpha$ -OCH ₃ ; $R_5 = \beta$ -OH; $R_6 = H$	<i>Xylocarpus granatum</i> ¹⁰⁵
102	Xylogranatumine C	$R_1 = R_2 = R_3 = H; R_4 = \alpha$ -OCH ₃ ; $R_5 = \alpha$ -OAc; $R_6 = H$	Xylocarpus granatum ¹⁰⁵
103	Xylogranatumine E	$R_1 = R_2 = H; R_3 = OAc; R_4 = \alpha - OCH_3; R_5 = \alpha - OH; R_6 = CH_3$	Xylocarpus granatum ¹⁰⁵
104	Xylogranatumine G	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = \beta$ -OCH ₃ ; $R_5 = \alpha$ -OH; $R_6 = H$	Xylocarpus granatum ¹⁰⁵
105	Piscidinol L		Walsura trifoliata ¹⁰⁹
106	Neemfruitin B		Azadirachta indica ¹¹⁰
107	Xylogranatumine A		Xylocarpus granatum ¹⁰⁵
108	Lepidotrichilin B		Trichilia lepidota ¹¹¹
109	Lepidotrichilin A	$\Delta^{1,2}$	Trichilia lepidota ¹¹¹
110	Chisopanin A	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Chisocheton paniculatus ¹⁰⁴
111	Chisopanin B	$\mathbf{R} = \mathbf{H}$	Chisocheton paniculatus ¹⁰⁴
112	3α-tigloylsapelin D	R = Tig	Melia azedarach ¹¹²
113	3α -benzoate triterpenoid A	R = Bz	Melia azedarach ¹¹³
114	Cedrodorol B		Cedrela odorata ¹¹⁴
115	Dysohainanin E/Mesendanin U		Dysoxylum hainanense ⁶³ ,
			Melia toosendan ⁷⁹
116	Toonaciliatavarin B		Toona ciliata ⁸⁰
117	Entanutilin U		Entandrophragma utile ¹¹⁵
118	Toonaciliatavarin A		Toona ciliata ⁸⁰
119	Swietesenin	R = Glucose	Swietenia macrophylla ¹¹⁶
120	Piscidinol K	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}$	Walsura trifoliata ¹⁰⁹
121	Piscidinol I	$R_1 = OH; R_2 = Ac$	Walsura trifoliata ¹⁰⁹
122	11,25-dideacetyltrichostemonate	$R_1 = Ac; R_2 = R_3 = H$	Walsura trichostemon ¹⁰⁸
123	Trichostemonate	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{A}\mathbf{c}$	Walsura trichostemon ¹¹⁷
124	Piscidinol J	$R_1 = H; R_2 = Tig; R_3 = H$	Walsura trifoliata ¹⁰⁹
125	Piscidinol H		Walsura trifoliata ¹⁰⁹
126	Piscidinone A	$\Delta^{2^{\prime},3^{\prime}}$	Walsura trifoliata ¹¹⁸
127	Piscidinone B		Walsura trifoliata ¹¹⁸
128	Azadirahemiacetal		Azadirachta indica ¹¹⁹
129	Toonaciliatavarin C		Toona ciliata ⁸⁰

96

93-95

HŌ

НŌ

117

νОН

ОН

Figure 0. Subclutes of apoptotonnionola/apothucananeutierpenolas 70-12 5	Figure 6.	Structures	of apoprotol	limonoid/apo	otirucallanetriter	penoids 76-129
--	-----------	------------	--------------	--------------	--------------------	----------------

2.1.5. Ring A-seco Apoprotolimonoid

This class is characterized by a modified A ring. A total of eight ring A-seco apoprotolimonoids were isolated from *Aphanamixis polystachya*, *Walsura chrysogyne*, *Aglaia argentea* and *Aphanamixis grandifolia* (Table 5/S5, Figure 7). Compounds (**130** and **131**) isolated from *Aphanamixis polystachya* were reported as Aphataiwanin C and D respectively. Same compounds were isolated from *Walsura chrysogyne* by another research group which named them as Apowalsogyne B and A (**130** and **131**)^{120,121}. Aphataiwanin A (**132**) is a C25 dehydro analog of compound (**130**). Aphataiwanin B (**133**) is C21 epimer of compound (**132**). Polystanin A (**134**) is C7 deacetyl analog of Methyl- 1*E*,7R-diacetoxy- 23R,24,25 - trihydroxy- 20S- 21,24-epoxy- 3,4- seco-apotirucall- 4(28), 14(15)-diene- 3-oate reported previously¹²². The acetoxyl group at C7 in methyl-1*E*,7R-diacetoxy-23R,25-dihydroxy-20S,24R-21,24-epoxy-3,4-seco-apotirucall-4(28),14(15)-diene-3-oate reported previously¹²² is replaced by carbonyl group in Argentinin B (**135**). Polystanin E (**136**) differed from 7 α -acetoxyl-17 α -20S-21,24-epoxy-apotirucall-14-en-3-one- 23R,24S,25-triol reported previously⁹² in presence of acetoxyl group at C1 and formation of ester functionality with cleavage/rearrangement of A ring. Polystanin B (**137**) is derived from compound (**136**) with removal of acetic acid.

No.	Limonoid	Substituent	Source
130	Aphataiwanin C/Apowalsogyne B	$\mathbf{B} = \mathbf{\beta} \mathbf{OCH}$	Aphanamixis polystachya ¹²⁰ ,
		$\mathbf{K} = \mathbf{p} \cdot \mathbf{OCH}_3$	Walsura chrysogyne ¹²¹
131	Aphataiwanin D/Apowalsogyne A	$\mathbf{R} = \alpha_{\rm e}\mathbf{OCH}_{\rm e}$	Aphanamixis polystachya ¹²⁰ ,
		R - u-oen3	Walsura chrysogyne ¹²¹
132	Aphataiwanin A	$R = \beta$ -OCH ₃	Aphanamixis polystachya ¹²⁰
133	Aphataiwanin B	$R = \alpha - OCH_3$	Aphanamixis polystachya ¹²⁰
134	Polystanin A		Aphanamixis polystachya ⁷⁴
135	Argentinin B		Aglaia argentea ¹²³
136	Polystanin E		Aphanamixis grandifolia ¹²⁴
137	Polystanin B		Aphanamixis polystachya ⁷⁴

Table 5. Ring A-seco Apoprotolimonoid 130-137

Figure 7. Structures of ring A-seco apoprotolimonoids 130-137.

2.2. Ring intact limonoids

2.2.1. Azadirone-Class

Presence of carbonyl group at C3 and substituted oxygen at C7 are the signature features of the Azadirone skeleton. A total of fifty nine azadirone class Limonoids were isolated from Walsura robusta, Dysoxylum mollissimum, Toona ciliata, Azadirachta indica, Walsura cochinchinensis, Chisocheton macrophyllus, Entandrophragma angolense, Xylocarpus moluccensis, Walsura yunnanensis, Carapa guianensis, Trichilia gilgiana, Munronia unifoliolata, Xylocarpus granatum, Dysoxylum lukii Toona sinensis and Chisocheton pentandrus (Table 6/S6, Figure 8). Prior to this eighty different Azadirone class limonoids were reported from Meliaceae family¹². As assigned by HMBC spectrum, Walsurin A (138) has an epoxide ring at C13/14 and in compounds (138-141) carbonyl group at C6 is in keto form. Dysoxylumosin J and K (143 and 144) have the same molecular formula which later were differentiated by the position of acetyl functionality using NMR. Dysomollide F and G (161 and 162) are structucrally similar to previously reported turranolide¹²⁵ and lenticellatumin¹²⁶ respectively, but differ in functionality at C1 and C20. Toonayunnanin B (145) is structurally similar to previously reported 12α -acetoxyneotrichilinone¹²⁷. Compounds (146 and 147) are structurally similar to previously reported toonaciliatone A⁹¹ and 17-epiazadiradione¹²⁸ respectively. Cochinchinoid H (148) differs from compound (147) in substitution at C7 and C11. The acetyl group at C11 in compound (148) is shifted to C12 in Cochinchinoid I (149). The $\Delta^{1,2}$ olefinic double bond in compound (149) is reduced in Cochinchinoid J (150). Toonayunnanin A (152) has carbonyl group at C7 along with α , β -unsaturated carbonyl group at A ring with additional olefinic double bond at C9 and absence of acetyl group with respect to Toonaciliatone B (151). Ciliatasecone Y (153) is C6 hydroxy analog of compound (152). The epoxide ring in compound (151) is opened in Dysobinol (154). Compounds (155-157) are structurally similar to compound (151) but differ in substituents at B and C rings. Toonasinenoid E (158) is C16 hydroxy analogs of previously reported Trichilenone acetate⁹⁹. Ciliatasecone X (159) is C7 acetoxy analog of compound (150). The furan ring at C17 in compound (148) is replaced by γ -lactone ring in Xylomolin M (160). Compounds (163, 169-173) differ in functionality at C17 as determined by ROESY correlations. The olefinic group

in compound (160) is replaced by epoxide group in Azadiraindin E (164). Azadiraindin F (165) and Andirolide Q (174) are structurally similar to compound (160) and Yunnanolide B (166) is structurally similar to compound (164) but both of them differ in substitution at γ -lactone ring. The furan ring at C17 in compound (152) is replaced by substituted γ -lactone ring in Toonaciliatavarin F and G (167 and 168). The carbonyl group at γ -lactone ring in compound (163) is reduced in Neemfruitin A (175) along with C1 acetylation. Trigilgianin (176) has carbonyl and hydroxyl groups at C7 and C12 respectively. Munronoid I (177) possess acetyl functionality at C6 and C7 with α orientation. Hainanxylogranin V (178) is C11 hydroxy epimer of previously reported 20,21,22,23-tetrahydro-23oxoazadirone¹²⁹. Hainanxylogranin W (179) is C11 hydroxy epimer of previously reported 20,21,22,23-tetrahydro-23-oxoazadirone¹²⁹. Thaigranatin S (180) is C3 carbonyl reduced analog of previously reported 6- de(acetyloxy)-7deacetylchisocheton compound E¹³⁰. The A and D rings in Munronoid I (177) are reduced in compound (181). The acetyl group at C7 in compound (172) is converted to carbonyl group in Dysoxylumstatin C (182). Ciliatasecone S (183) differs from compound (154) with presence of $\Delta^{9,11}$ double bond and formation of ether linkage between C7,C14. Toonayunnanae F (**184**) is C6 deacetoxyl analog of compound (**183**). Furan ring in compound (**183**) is replaced by butenolide moiety in Ciliatasecone T (**185**). Compound (**186**) is C6 hydroxy, $\Delta^{1,2}$ analog of compound (**162**). Pentandricine B (**187**) is C17 butanolide analog of previously reported Azadirone¹³¹. Pentandricine C (**188**) is C7 deacetyl analog of compound (187). Pentandricine D (189) is C6 acetoxyl analog of compound (187). Ciliatasecone V (190) is C7 acetyl derivative of previously reported 7-deacetyl-23-hydroxyneotrichilenonelide¹³². Ciliatasecone U (191) is C23 dehydroxy analog of compound (190). Ciliatasecone W (192) is C11, C12 dihydroxy analog of previously reported 7-acetylneotrichilenone¹³³. Toonayunnanae G (193) is C6 acetoxyl analog of compound (142). Hainanxylogranin X (194) is C16 acetoxy analog of 7-acetoxyneotrichilenone¹³³. Toonasinenoid D (195) is C11 carbonyl analogs of previously reported Trichilenone acetate⁹⁹. Toonayunnanae H (196) is C11, C12 dihydroxy derivative of previously reported Azadirone¹³¹. Walsurin E isolated from *Walsura robusta*¹³⁴ and 7acetoxyneotrichilenone isolated from Azadirachta indica¹³³ reported previously are same but trivially named differently.

Table 6. A	Azadirone	class	limonoids	138-196
------------	-----------	-------	-----------	---------

Table	0. Azaun one class mitonolus 150-170		
No.	Limonoid	Substituent	Source
138	Walsurin A		Walsura robusta ¹³⁴
139	Walsurin B	$\mathbf{R} = \mathbf{H}$	Walsura robusta ¹³⁴
140	Walsurin C	$R = OAc; \Delta^{1,2}$	Walsura robusta ¹³⁴
141	Dysoxylumosin L	$R = OCOCH(CH_3)CH_2CH_3; \Delta^{1,2}$	Dysoxylum mollissimum ¹³⁵
142	Walsurin D	$R_1 = R_2 = R_3 = H$	Walsura robusta ¹³⁴
143	Dysoxylumosin J	$R_1 = OAc; R_2 = R_3 = H; \Delta^{1,2}$	Dysoxylum mollissimum ¹³⁵
144	Dysoxylumosin K	$R_1 = OH; R_2 = Ac; R_3 = H; \Delta^{1,2}$	Dysoxylum mollissimum ¹³⁵
145	Toonayunnanin B	$R_1 = R_2 = H; R_3 = OCOCH(CH_3)_2; \Delta^{1,2}$	Toona ciliata ¹³⁶
146	Toonaciliatone F	$R_1 = OAc; R_2 = Ac; R_3 = H; \Delta^{1,2}$	Toona ciliata ¹³⁷
147	7-benzoyl-17-epinimbocinol		Azadirachta indica ¹³⁸
148	Cochinchinoid H	$R_1 = OAc; R_2 = H; \Delta^{1,2}$	Walsura cochinchinensis ⁷⁶
149	Cochinchinoid I	$R_1 = H; R_2 = OAc; \Delta^{1,2}$	Walsura cochinchinensis ⁷⁶
150	Cochinchinoid J	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{OAc}$	Walsura cochinchinensis ⁷⁶
151	Toonaciliatone B	$\mathbf{R} = \mathbf{OAc}$	Toona ciliata ¹³⁷
152	Toonayunnanin A	$\mathbf{R} = \mathbf{H}; \Delta^{9,11}$	Toona ciliata ¹³⁶
153	Ciliatasecone Y	$R = OH; \Delta^{9,11}$	Toona ciliata ¹³⁹
154	Dysobinol		Chisocheton macrophyllus ¹⁴⁰
155	Entangolensin O	$R_1 = H$; $R_2 = \beta$ -OAc; $R_3 = H$; $R_4 = \beta$ -OH	Entandrophragma
			angolense ¹⁴¹
156	Toonaciliatone D	$R_1 = OAc; R_2 = \alpha - OH; R_3 = R_4 = H$	Toona ciliata ¹³⁷
157	Toonaciliatone E	$R_1 = OAc; R_2 = H; R_3 = OH; R_4 = H$	Toona ciliata ¹³⁷
158	Toonasinenoid E	$R_1 = R_2 = R_3 = H; R_4 = OH$	Toona sinensis ¹⁴²
159	Ciliatasecone X	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{R}_4 = \mathbf{H}; \Delta^{9,11}$	Toona ciliata ¹³⁹
160	Xylomolin M		Xylocarpus moluccensis ¹⁴³
161	Dysomollide F		Dysoxylum mollissimum ¹⁴⁴
162	Dysomollide G	$R_1 = H; R_2 = Bz; \Delta^{20,22}$	Dysoxylum mollissimum ¹⁴⁴
163	24,25,26,27-tetranorapotirucall- 6α-hydroxy-7α-	$\mathbf{R}_1 = \mathbf{OH}; \mathbf{R}_2 = \mathbf{Ac}$	Azadirachta indica ¹⁴⁵
	acetoxy-14-en-3-one-21,23-olide		
164	Azadiraindin E		Azadirachta indica ¹⁴⁶
165	Azadiraindin F		Azadirachta indica ¹⁴⁶
166	Yunnanolide B		Walsura yunnanensis ¹⁴⁷
167	Toonaciliatavarin F		Toona ciliata ⁸⁰
168	Toonaciliatavarin G		Toona ciliata ⁸⁰
169	24,25,26,27-tetranor-apotirucall-6α-hydroxy-7α-	$\Delta^{1,2}$	Azadirachta indica ¹⁴⁵
	acetoxy-1,14-dien-3-one-21,24-anhydride		
170	24,25,26,27-tetranor-apotirucall-6α-hydroxy- 7α-		Azadirachta indica ¹⁴⁵
	acetoxy-14-en-3-one-21,24-anhydride		

171	24,25,26,27-tetranor-apotirucall- 6α ,22-dihydroxy-	$\Delta^{1,2}$	Azadirachta indica ¹⁴⁵
172	$/\alpha$ -aceloxy-1,14,20(21)-liten-5-one-21,25-onde 24.25.26.27-tetraporapotirucall_ 6g.22-dihydroxy-		Azadirachta indica ¹⁴⁵
1/2	$7_{\alpha_{2}\alpha_{2}\alpha_{3}\alpha_{4}\alpha_{5}\alpha_{5}\alpha_{5}\alpha_{5}\alpha_{5}\alpha_{5}\alpha_{5}\alpha_{5$		Azuairacnia maica
173	7-O-acetyl-7-O-debenzoyl-22-hydroxy-21-		Azadirachta indica ¹⁴⁸
174			C
174	Andironde Q		Carapa guianensis
175	Neemiruitin A		Azaairachta inaica
176	Trigilgianin		Trichilia gilgiana
177	Munronoid I	$R_1 = OAc; R_2 = H$	Munronia unifoliolata ¹⁵¹
178	Hainanxylogranin V	$R_1 = H; R_2 = \alpha - OH$	Xylocarpus granatum ¹⁵²
179	Hainanxylogranin W	$R_1 = H; R_2 = \beta$ -OH	Xylocarpus granatum ¹⁵²
180	Thaigranatin S		Xylocarpus granatum ¹⁵³
181	1,2-dihydro-3α-hydroxy-turranolide		Xylocarpus granatum ¹⁵⁴
182	Dysoxylumstatin C		Dysoxylum lukii ⁶⁶
183	Ciliatasecone S	$R_1 = OAc; R_2 = \alpha - OH$	Toona ciliata ¹³⁹
184	Toonayunnanae F	$R_1 = H; R_2 = \beta - OH$	Toona ciliata ¹⁵⁵
185	Ciliatasecone T	·	Toona ciliata ¹³⁹
186	(5R,6R,7S,13S,17R)-6-hydroxy-7-(benzoyloxy)-		Azadirachta indica ¹⁵⁶
	21,23-epoxy- 4,4,8-trimethyl-24-norchola-		
	1,14,20,22-tetraene-3-one		
187	Pentandricine B	$R_1 = H$: $R_2 = Ac$	Chisocheton pentandrus ¹⁵⁷
188	Pentandricine C	$R_1 = R_2 = H$	Chisocheton pentandrus ¹⁵⁷
189	Pentandricine D	$R_1 = OAc$: $R_2 = Ac$	Chisocheton pentandrus ¹⁵⁷
190	Ciliatasecone V	R = OH	Toona ciliata ¹³⁹
191	Ciliatasecone U	R = 0 H	Toona ciliata ¹³⁹
102	Ciliatasecone W	$\mathbf{R} = \mathbf{H}$ $\mathbf{R}_{1} = \mathbf{H} \cdot \mathbf{R}_{2} = \mathbf{A}_{1} \cdot \mathbf{R}_{2} = \mathbf{R}_{2} = \mathbf{O} \mathbf{H} \cdot \mathbf{R}_{2} = \mathbf{H}$	Toona ciliata ¹³⁹
102	Toopayanpanaa G	$R_1 = 11, R_2 = Ac, R_3 = R_4 = 011, R_5 = 11$ $R_1 = 0.000, R_2 = R_1 = R_2 = R_1 = R_2$	Toong giligta ¹⁵⁵
195	Homenyula aranin V	$\mathbf{R}_1 = \mathbf{O}\mathbf{A}\mathbf{C}, \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{R}_4 = \mathbf{R}_5 = \mathbf{\Pi}$ $\mathbf{R}_1 = \mathbf{U}_1 \mathbf{R}_2 = \mathbf{A}_{21} \mathbf{R}_3 = \mathbf{R}_4 = \mathbf{R}_5 = \mathbf{\Pi}_1$	Vula camua cara atum ¹⁵²
194		$\mathbf{K}_1 - \mathbf{\Pi}, \mathbf{K}_2 - \mathbf{A}\mathbf{C}, \mathbf{K}_3 = \mathbf{K}_4 = \mathbf{\Pi}, \mathbf{K}_5 = \mathbf{O}\mathbf{A}\mathbf{C}$	To on a sin on sis ¹⁴²
195			Toona sinensis
196	I oonayunnanae H		Ioona ciliata

′OAc

Figure 8. Structures of azadirone class limonoids 138-196.

2.2.2. Cedrelone Class

This class of limonoids are identified by attendance of the carbonyl group at C3, C7 along with presence of $\Delta^{5.6}$ olefinic double bond and hydroxyl group at C6. A total of thirty six Limonoids were isolated from *Walsura robusta, Trichilia Americana, Dysoxylum mollissimum, Walsura yunnanensis, Turraea abyssinica* and *Toona sinensis* (Table 7/S7, Figure 9). Previously twenty five Cedrelone class limonoids were reported from the Meliaceae family¹². Compound (**197**) has methoxy and acetoxy moiety at C1 and C12 respectively on cedrelone skeleton. Compounds (**198, 199**) differ only at C1 substitution as confirmed by downfield shift observed in proton NMR. The methoxy group at C1 in compound (**198**) is replaced by hydroxyl group in compound (**200**). In Dysoxylumosin G (**201**), C11 is acetylated as compared to compound (**198**). Toonasinenoid C (**202**) is C11 acetyl analog of compound (**200**). Compounds (**203-207**) differ in substitution at C1, C11 and C12 with respect to compound (**200**). Compounds (**208-212**) differ at C11, C12 when compared to compound (**203**) with presence of additional olefinic double bond at $\Delta^{1.2}$. The furan ring in compound (**209**) is replaced by γ -lactone ring in compounds (**213-218**). In compounds (**219-229**) there is change in orientation of the γ -lactone ring. The olefinic double bond in substituted tetrahydrofuran ring of compound (**230**) is hydroxylated in Yunnanol A (**231**). The C14/15 oxirane and acetyl moiety in compound (**201**) are absent in Dysoxylumosin M (**232**) as indicated by NMR spectrum.

Table 7. Cedrelone	class	limonoid	197	-232
--------------------	-------	----------	-----	------

No.	Limonoid	Substituent	Source
197	1α -methoxy-12 α -acetoxydihydrocedrelone	$R_1 = CH_3; R_2 = H; R_3 = OAc$	Walsura robusta ¹³⁴
198	1α -methoxy- 11β -hydroxydihydrocedrelone	$R_1 = CH_3; R_2 = OH; R_3 = H$	Walsura robusta ¹³⁴
199	1α -ethoxy-11 β -hydroxydihydrocedrelone	$R_1 = CH_2CH_3; R_2 = OH; R_3 = H$	Walsura robusta ¹³⁴
200	1 α,11β-dihydroxy-1,2-dihydrocedrelone	$R_1 = H; R_2 = OH; R_3 = H$	Trichilia americana ¹⁵⁸
201	Dysoxylumosin G	$R_1 = CH_3$; $R_2 = OAc$; $R_3 = H$	Dysoxylum mollissimum ¹³⁵
202	Toonasinenoid C	$R_1 = H; R_2 = OAc; R_3 = H$	Toona sinensis ¹⁴²
203	11-oxo-dihydrocedrelone		Walsura robusta ¹³⁴
204	1,2-dihydrodeacetylhirtin	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{O}\mathbf{H}$	Trichilia americana ¹⁵⁸
205	1α-hydroxy-1,2-dihydrodeacetylhirtin	$R_1 = R_2 = OH$	Trichilia americana ¹⁵⁸
206	1 α -hydroxy- 1,2-dihydrohirtin	$\mathbf{R}_1 = \mathbf{OH}; \mathbf{R}_2 = \mathbf{OAc}$	Trichilia americana ¹⁵⁸
207	1α -methoxy-1,2-dihydrodeacetylhirtin	$R_1 = OCH_3$; $R_2 = OH$	Trichilia americana ¹⁵⁸
208	12 α -acetoxycedrelone	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{OAc}$	Walsura robusta ¹³⁴
209	Walsunoid H	$R_1 = \beta$ -OAc; $R_2 = H$	Walsura robusta ¹⁵⁹
210	11β-hydroxy-12 α -propanoyloxycedrelone	$R_1 = \beta$ -OH; $R_2 = OCOCH_2CH_3$	Trichilia americana ¹⁵⁸
211	Dysoxylumosin H	$R_1 = \alpha$ -OH; $R_2 =$	Dysoxylum mollissimum ¹³⁵
		OCOCH(CH ₃)CH ₂ CH ₃ ; 2'S	105
212	Dysoxylumosin I	$R_1 = \alpha$ -OH; $R_2 =$	Dysoxylum mollissimum ¹³⁵

OCOCH(CH3)CH2CH3; 2'R

		$OCOCH(CH_3)CH_2CH_3, 2K$	
213	Walsunoid F		Walsura robusta ¹⁵⁹
214	Walsunoid G		Walsura robusta ¹⁵⁹
215	11β-hydroxyisowalsuranolide		Walsura yunnanensis ¹⁴⁷
216	11β-hydroxy-1,2-dihydroisowalsuranolide	$R_1 = H$	Walsura yunnanensis ¹⁴⁷
217	1α,11β-dihydroxy-1,2-dihydroisowalsuranolide	$R_1 = OH$	Walsura yunnanensis ¹⁴⁷
218	11β-hydroxy- 1α-methoxy-1,2-dihydroisowalsuranolide	$R_1 = OCH_3$	Walsura yunnanensis ¹⁴⁷
219	Americanolide A	$R_1 = H; R_2 = CH_3$	Trichilia americana ¹⁵⁸
220	Americanolide B	$R_1 = R_2 = CH_3$	Trichilia americana ¹⁵⁸
221	Americanolide D	$R_1 = R_2 = H$	Trichilia americana ¹⁵⁸
222	Americanolide C		Trichilia americana ¹⁵⁸
223	Walsunoid D	$R = OCH_3$	Walsura robusta ¹⁵⁹
224	Walsunoid E	$\mathbf{R} = \mathbf{H}$	Walsura robusta ¹⁵⁹
225	Walsunoid B	$R_1 = R_2 = H; R_3 = \beta - OCH_3$	Walsura robusta ¹⁵⁹
226	Walsunoid C	$R_1 = R_2 = H; R_3 = OH$	Walsura robusta ¹⁵⁹
227	Walsuranolide B	$R_1 = R_2 = R_3 = H$	Walsura yunnanensis ¹⁴⁷
228	11β-hydroxy-23-O-methylwalsuranolide	$R_1 = R_2 = H; R_3 = OCH_3$	Walsura yunnanensis ¹⁴⁷
229	11β, 12α-diacetoxywalsuranolide	$\mathbf{R}_1 = \mathbf{Ac}; \mathbf{R}_2 = \mathbf{OAc}; \mathbf{R}_3 = \mathbf{OH}$	Turraea abyssinica ¹⁶⁰
230	Yunnanolide A		Walsura yunnanensis ¹⁴⁷
231	Yunnanol A		Walsura yunnanensis ¹⁴⁷
232	Dysoxylumosin M		Dysoxylum mollissimum ¹³⁵

225-229

óн

ÓН

223-224

Ó

óн

230

Ĥ

۰, óн

232

C

ÓН

231

ÓН

2.2.3. 18 (13→14) abeo-Class

In this class of Limonoids, there is a shift in the C18 methyl group from C13 to C14. Eleven compounds belonging to $18(13\rightarrow14)$ abeo-Class were isolated from *Walsura robusta, Dysoxylum mollissimum* and *Toona ciliata* (Table 8/S8, Figure 10). Only two limonoids belonging to this class were reported earlier from Meliaceae family¹². Walsuronoid F (**233**) is structurally similar to previously isolated compound walsuronoid B¹⁶¹. From the NMR data, Dysoxylumosin A (**234**) is also structurally similar to walsuronoid B but has a rare $18(13\rightarrow14)$ abeo limonoid skeleton. Toonaciliatone C (**236**) is C6 acetyl form of Walsuronoid I (**235**) and contain two α oriented acetyl groups at C6 and C7 as determined by NOE interactions between H7 and β -oriented methyl group at C8. The $\Delta^{1.2}$ double bond in compound (**235**) is reduced in compounds (**237-241**) and varies in substitutions at C1 and C11. The $\Delta^{12,13}$ olefinic double bond in compound (**234**) is shifted to $\Delta^{13,17}$ in Dysoxylumosin C and D (**242** and **243**) along with additional olefinic double bond at $\Delta^{11,12}$.

No.	Limonoid	Substituent	Source
233	Walsuronoid F	$\mathbf{R} = \mathbf{OH}$	Walsura robusta ¹³⁴
234	Dysoxylumosin A	$\mathbf{R} = \mathbf{H}$	Dysoxylum mollissimum ¹³⁵
235	Walsuronoid I	$\mathbf{R} = \mathbf{H}$	Walsura robusta ¹³⁴
236	Toonaciliatone C	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Toona ciliata ¹³⁷
237	Walsuronoid G	$R_1 = OCH_2CH_3; R_2 = OH$	Walsura robusta ¹³⁴
238	Walsuronoid H	$R_1 = R_2 = H$	Walsura robusta ¹³⁴
239	Dysoxylumosin B	$R_1 = OCH_3$; $R_2 = OH$	Dysoxylum mollissimum ¹³⁵
240	Dysoxylumosin E	$R_1 = OCH_3; R_2 = OAc$	Dysoxylum mollissimum ¹³⁵
241	Dysoxylumosin F	$R_1 = H; R_2 = OAc$	Dysoxylum mollissimum ¹³⁵
242	Dysoxylumosin C		Dysoxylum mollissimum ¹³⁵
243	Dysoxylumosin D		Dysoxylum mollissimum ¹³⁵

2.2.4. Havanensin

In this class of Limonoids, substituted oxygen is present at C1, C3 and C7 positions. nineteen compounds were isolated from *Munronia henryi*, *Turraea pubescens*, *Melia toosendan*, *Entandrophragma angolense*, *Trichilia sinensis*, *Melia azedarach* and *Toona sinensis* (Table 9/S9, Figure 11). Previously twenty nine Havanensin class limonoids were reported from Meliaceae family¹². The acetyl group in previously reported 6α -acetoxydeoxyhavanensin¹⁶² is replaced by hydroxyl group in Munronin N (244) as confirmed by NMR data. The acetyl group in previously reported mesendanin B¹⁶³ is replaced by propanoyl group in Turrapubin I (245). Mesendanin B (246), Mesendanin A (254), Entangolensin P (255), Meliarachin A (257) and Trisinlin A (258) are structurally similar to previously isolated compounds 14,15-deoxyhavanensin triacetate¹⁶⁴, sendanal¹⁶⁵ meliatoosenin B¹⁶⁶, neohavanensin¹⁶⁷ and mesendanin D¹⁶³ respectively. Compound (247) resembles compound (246) except in an additional acetoxyl group at C12 and deacetylation at C3, C7 with conversion of C28 methyl group to aldehyde group. Meliazedarine I (248) is C6 acetyl and C7 benzoyl analog of previously reported Sendanal¹⁶⁸. 6-Acetylsendanal and Sendanal B (249) are same but trivially named differently and C6 acetyl analog of previously reported Sendanal¹⁶⁸. Trichilinin M (250) is the C6 deacetyl analog of compound (248).The $\Delta^{14,15}$ olefinic double bond in compound (244) is hydroxylated in compounds (251, 252) which also have carbonyl group at C11. Mesendanin J (253) differs from Mesendanin J (252) in ether linkage formed between C7/14. Meliatoosenin F (256)

is the C3 deacetyl form of Meliarachin A (257). Mesendanin C and D (259 and 260) are acetyl derivatives of Trisinlin A (258) but differ in acetyl position. Toonasinenoid A (261) is C6 deactoxyl C11 hydroxy analog of compound (259). Toonasinenoid B (262) is C11 carbonyl analog of compound (258).

Table	5. Havanensin class infoliolu 244-202		
No.	Limonoid	Substituent	Source
244	Munronin N	$R_1 = H; R_2 = R_3 = Ac$	Munronia henryi ¹⁶⁹
245	Turrapubin I	$R_1 = Ac; R_2 = OCOCH_2CH_3; R_3 = Ac$	Turraea pubescens ¹⁷⁰
246	Mesendanin B	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{A}\mathbf{c}$	Melia toosendan ¹⁶³
247	24,25,26,27- tetra-norapotirucalla-(apoeupha)-	$R_1 = Ac; R_2 = H; R_3 = \alpha - OAc; R_4 = H$	Melia toosendan ¹⁶⁸
	1α,6α,12α-triacetoxyl-3α, 7α-dihydroxyl - 28-aldehyde-		
	14, 20, 22 - trien-21,23-epoxy		
248	Meliazedarine I	$R_1 = H; R_2 = Ac; R_3 = \alpha$ -OAc; $R_4 = Bz$	Melia azedarach ¹⁷¹
249	6-Acetylsendanal/ Sendanal B	$R_1 = H; R_2 = Ac; R_3 = \alpha$ -OAc; $R_4 = H$	Melia toosendan ^{172,173}
250	Trichilinin M	$R_1 = H; R_2 = Ac; R_3 = \beta - OH; R_4 = Bz$	Melia azedarach ¹⁷⁴
251	14,15-deoxy-11-oxohavanensin 3,12-diacetate	$\mathbf{R}_1 = \mathbf{Ac}; \mathbf{R}_2 = \mathbf{H}$	Melia toosendan ¹⁷⁵
252	Mesendanin J	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{OAc}$	Melia toosendan ¹⁶³
253	Mesendanin I		Melia toosendan ¹⁶³
254	Mesendanin A		Melia toosendan ¹⁶³
255	Entangolensin P		Entandrophragma
			angolense ¹⁴¹
256	Meliatoosenin F	$\mathbf{R} = \mathbf{H}$	Melia toosendan ¹⁷⁶
257	Meliarachin A	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Melia azedarach ¹⁷⁷
258	Trisinlin A	$R_1 = H; R_2 = Ac; R_3 = R_4 = R_5 = H$	Trichilia sinensis ¹⁷⁸
259	Mesendanin C	$R_1 = R_2 = Ac; R_3 = OAc; R_4 = R_5 = H$	Melia toosendan ¹⁶³
260	Mesendanin D	$R_1 = Ac; R_2 = R_3 = H; R_4 = Ac; R_5 = H$	Melia toosendan ¹⁶³
261	Toonasinenoid A	$R_1 = R_2 = Ac; R_3 = H; R_4 = R_5 = OH$	Toona sinensis ¹⁴²
262	Toonasinenoid B		Toona sinansis ¹⁴²

Table 9. Havanensin class limonoid 244-262

Figure 11. Structures of havanensin class limonoids 244-262.

2.2.5. Trichilin

This class of limonoids consists of oxygen either in hydroxyl or acetoxyl form at C1, C3, C7, epoxide moiety at C14/15 or oxygen at C15, keto carbonyl at C11 and ether bridge between C19/29. Thirty three trichilin class limonoids were isolated from *Melia toosendan, Melia azedarach* and *Trichilia sinensis* (Table 10/S10, Figure 12). Prior to this fifty one Trichilin class limonoids were reported from Meliaceae family¹². Compounds (**263**, **264**) are structurally identical with previously reported meliatoxin B1¹⁷⁹ and compounds (**265**, **275**) are congener of previously reported toosendanin¹⁸⁰. Compound (**266**) is structurally similar to compound (**265**) except in position of methoxy group. Meliatoosenin G and H (**267** and **268**) share same skeleton with previously reported neoazedarachin D¹⁸¹ except in variation of methoxy substitution and additional acetyl group. Trichisinlin A (**269**) and 12 α -

hydroxymeliatoxin B₂ (270) are structurally similar to previously reported Meliatoxin B₁ and Meliatoxin B₂ respectively^{182,179} except the variation of hydroxyl and acetoxyl group in compound (269) and hydroxyl group at C12 in compound (**270**). Trichisinlin B and C (**271** and **272**) are analogs of compound (**268**). Meliarachin L (**273**) is C29 ethoxy analog of previously reported Isochuanliansu¹⁸³. In comparison to previously reported 12-hydroxyamoorastatone,¹⁸⁴ Meliatoosenin E (**274**) has $\Delta^{9,11}$ double bond with varied position of hydroxyl and carbonyl groups. 7-benzoyltoosendanin (276) and 7-cinnamoyltoosendanin (277) are benzoyl and cinnamoyl derivatives of toosendanin respectively. Trichisinlin F (278) and Meliarachin C (279) are structurally similar to previously reported trichilin D^{185} except in the substitution at A ring. Compound (280) is C15 reduced form of previously reported discharge in the substitution at 11 mg. Compound (20) is one reduced form of previously reported isochuanliansu¹⁸³. Meliarachin G (281) structurally resemble neoazedarachin D¹⁸¹ with additional acetyl group at C12. Meliarachin H (282) is 3-deacetyl analog of compound (281) and Meliarachin I (283) is 12-deacetyl derivative of compound (282). From chemical shift value it was confirmed that Meliarachin J (284) is 29-epimer of neoazedarachin D. Meliarachin K (285) is 12 acetyl derivative of compound (284). With respect to meliatoosenin I (287) at C12 there is additional α oriented hydroxyl group and β orientated acetoxyl group in 12α -hydroxymeliatoosenin I (286) and Meliatoosenin J (288) respectively as determined by HMBC and NOESY correlation. The isobutyrate moiety in previously reported 7,14-epoxyazedarachin B^{186} is absent in Mesendanin H (289) which has an additional -OAc group at C12. The 2-methyl-butyryl group at C29 in compound (287) is replaced by isobutyryl group in Trichisinlin E (290). Meliarachin D (291) is a C29 methoxy analog of compound (289). Meliarachin E (292) is C12 deacetyl analog of compound (289). Meliarachin F (293) is C29 epimer of compound (292). The furan ring at C17 in previously reported trichilin D¹⁸⁷ is replaced by 21-hydroxybutenolide moiety in Meliazedalide B (294) with altered C17 configuration. Toosendalactonin A/B (295) was obtained as a mixture of C29 epimers.

Table	To: Themini class infonoid 205		
No.	Limonoid	Substituent	Source
263	12 α -hydroxymeliatoxin B ₁	$R_1 = H; R_2 = OAc; R_3 = Ac; R_4 = OCOCH(CH_3)CH_2CH_3; R_5 = H;$ $P_1 = OH$	Melia toosendan ¹⁷⁵
264	12g-acetoxylmeliatoxin Ba	$\mathbf{R}_6 = \mathbf{O}\mathbf{I}$ $\mathbf{R}_4 = \mathbf{H} \cdot \mathbf{R}_2 = \mathbf{O}\mathbf{A}\mathbf{C} \cdot \mathbf{R}_4 = \mathbf{A}\mathbf{C} \cdot \mathbf{R}_4 = \mathbf{O}\mathbf{C}\mathbf{O}\mathbf{C}\mathbf{H}(\mathbf{C}\mathbf{H}_2)_2 \cdot \mathbf{R}_5 = \mathbf{H} \cdot \mathbf{R}_5 = \mathbf{H} \cdot \mathbf{R}_5$	Melia toosendan ¹⁷⁵
201	120 dectory interfactorial D_2	$R_1 = 11, R_2 = 010, R_3 = 10, R_4 = 000001(013)2, R_5 = 11, R_6 = 0$ OAc	menu roosenuun
265	12- dehydroneoazedarachin D	$R_1 = R_2 = H; R_3 = Ac; R_4 = H; R_5 = OCH_3; R_6 = H$	Melia azedarach ¹⁸⁸
266	12-dehydro- 29-exo-neoazedarachin D	$R_1 = R_2 = H; R_3 = Ac; R_4 = OCH_3; R_5 = R_6 = H$	Melia azedarach ¹⁸⁸
267	Meliatoosenin G	$R_1 = R_2 = H; R_3 = Ac; R_4 = OCH_3; R_5 = H; R_6 = OAc$	Melia toosendan ¹⁷⁶
268	Meliatoosenin H	$R_1 = R_2 = H; R_3 = Ac; R_4 = H; R_5 = OCH_3; R_6 = OAc$	Melia toosendan ¹⁷⁶
269	Trichisinlin A	$R_1 = Ac; R_2 = OH; R_3 = Ac; R_4 = OCOCH(CH_3)CH_2CH_3; R_5 = R_6$ = H	Trichilia sinensis ¹⁸⁹
270	12α -hydroxymeliatoxin B_2	$R_1 = H; R_2 = OAc; R_3 = Ac; R_4 = OCOCH(CH_3)_2; R_5 = H; R_6 = OH$	Trichilia sinensis ¹⁸⁹
271	Trichisinlin B	$R_1 = Ac; R_2 = OAc; R_3 = R_4 = H; R_5 = OCH_3; R_6 = H$	Trichilia sinensis ¹⁸⁹
272	Trichisinlin C	$R_1 = H; R_2 = OAc; R_3 = Ac; R_4 = OCH_3; R_5 = R_6 = H$	Trichilia sinensis ¹⁸⁹
273	Meliarachin L	$R_1 = R_2 = H; R_3 = Ac; R_4 = H; R_5 = OCH_2CH_3; R_6 = OAc$	Melia toosendan ¹⁷³
274	Meliatoosenin E	1 2 / 5 / 1 / 5 2 5/ 6	Melia toosendan ¹⁷⁶
275	Meliarachin B		Melia azedarach ¹⁷⁷
276	7-benzoyltoosendanin	$R_1 = R_2 = R_3 = H; R_4 = Bz$	Melia azedarach ¹⁹⁰
277	7- cinnamoyltoosendanin	$R_1 = R_2 = R_3 = H$; $R_4 = Cin$	Melia azedarach ¹⁹⁰
278	Trichisinlin F	$R_1 = Ac; R_2 = OH; R_3 = COCH(CH_3)CH_2CH_3; R_4 = H$	Trichilia sinensis ¹⁸⁹
279	Meliarachin C	$R_1 = R_2 = H; R_3 = CH_3; R_4 = H$	Melia azedarach ¹⁷⁷
280	Mesendanin G	$R_1 = Ac; R_2 = OH; R_3 = H; R_4 = Ac$	Melia toosendan ¹⁶³
281	Meliarachin G	$R_1 = Ac; R_2 = OCH_3; R_3 = H; R_4 = Ac;$	Melia azedarach ¹⁷⁷
282	Meliarachin H	$R_1 = H; R_2 = OCH_3; R_3 = H; R_4 = Ac$	Melia azedarach ¹⁷⁷
283	Meliarachin I	$R_1 = H; R_2 = OCH_3; R_3 = R_4 = H$	Melia azedarach ¹⁷⁷
284	Meliarachin J	$R_1 = Ac; R_2 = H; R_3 = OCH_3; R_4 = H$	Melia azedarach ¹⁷⁷
285	Meliarachin K	$R_1 = Ac; R_2 = H; R_3 = OCH_3; R_4 = Ac$	Melia azedarach ¹⁷⁷
286	12a-hydroxymeliatoosenin I	$R_1 = OAc; R_2 = OCOCH(CH_3)CH_2CH_3; R_3 = H; R_4 = OH$	Melia toosendan ¹⁷⁵
287	Meliatoosenin I	$R_1 = OAc; R_2 = OCOCH(CH_3)CH_2CH_3; R_3 = R_4 = H$	Melia toosendan ¹⁷⁶
288	Meliatoosenin J	$R_1 = OAc; R_2 = OCOCH(CH_3)CH_2CH_3; R_3 = H; R_4 = OAc$	Melia toosendan ¹⁷⁶
289	Mesendanin H	$R_1 = H; R_2 = OH; R_3 = H; R_4 = OAc$	Melia toosendan ¹⁶³
290	Trichisinlin E	$R_1 = OAc; R_2 = OCOCH(CH_3)_2; R_3 = R_4 = H$	Trichilia sinensis ¹⁸⁹
291	Meliarachin D	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{OCH}_3; \mathbf{R}_3 = \mathbf{H}; \mathbf{R}_4 = \mathbf{OAc}$	Melia azedarach ¹⁷⁷
292	Meliarachin E	$R_1 = R_2 = H; R_3 = R_4 = OH$	Melia azedarach ¹⁷⁷
293	Meliarachin F	$R_1 = H; R_2 = OH; R_3 = H; R_4 = OH$	Melia azedarach ¹⁷⁷
294	Meliazedalide B	$R = COCH(CH_3)CH_2CH_3$	Melia azedarach ¹⁹¹
295	Toosendalactonin A/B	$R = COCH(CH_3)CH_2CH_3$	Melia azedarach ¹⁹²

2.2.6. Vilasinin

This class of limonoids possess α , β -unsaturated keto carbonyl at C1 or oxygen functionality at C1, C3 and C7 with ether linkage between C6 and C29. Thirty four Limonoids belonging to this class were isolated from Trichilia rubescens, Chisocheton ceramicus, Munronia unifoliolata, Melia toosendan, Walsura robusta, Walsura cochinchinensis, Cipadessa baccifera, Azadirachta indica and Chisocheton pentandrus (Table 11/S11, Figure 13). Previously forty four Vilasinin class limonoids were reported from Meliaceae family¹². Rubescin B (296) resembles previously reported ceramicine B¹⁹³ except in an extra $\Delta^{9,11}$ double bond. Ceramicine H and I (297 and 298) have additional tiglate and acetate group at C12 respectively, as compared to NMR data of previously isolated ceramicine B. Compounds (299-301) are structurally similar to previously reported meliavolkinin¹⁹⁴ except the substitutions at C1, C3 and C12. Ceramicine N (302) is structurally similar to previously reported ceramicine B except in the epoxidation at C14 and C15¹⁹³. Walsuronoid D (303) is structurally similar to compound (302) with additional hydroxyl at C11 and tigloyl moiety at C12. Cochinchinoid A and B (304 and 305) show the same molecular formula as obtained by using HRESI (-) MS but differ at stereochemistry of two ester substituents at C3 and C7. The ester moieties at C3 and C7 in compound (305) are replaced by tigloyl group in Cochinchinoid C (306) and it is displaced only at C3 in Cochinchinoid D (307). In Cipadesin L (308) hydroxyl group at C1 is acetylated and ester moiety at C3 is replaced by tigloyl group with absence of hydroxyl group at C17, when compared to compound (304). The olefinic double bond at $\Delta^{14,15}$ in compound (308) is replaced by an epoxide ring in Cipadesin M (309). From the spectral data, the presence of carbonyl functionalities at C11 and C15 in compound (310) was confirmed. Ceramicine J (311) is analog of previously reported ceramicine B^{193} except in the substituent variation at C14 and C15. There is an additional hydroxyl and tigloyl group at C11 and C12 respectively in Walsuronoid E (312) when compared to compound (311). Limonoid (313) closely resembles previously reported toosendone¹⁹⁵ but differs in ether linkage between C6/28. 7-tigloyl-12-oxo vilasini (314) is a deacetylated analog of compound (313). Toosendansin H (315) is C1 cinnamoyl analog of previously reported Nimbidinin¹⁹⁶. Toosendansin I (316) is C1 benzoyl analog of previously reported Azadirachtolide¹⁹⁷. The hydroxyl group at C7 in compound (**296**) is replaced by tigloyl moiety in Rubescin D (317) along with epoxidation of olefinic double bond at C9/11 and additional epoxide group is formed at C14/15. The epoxide ring in compound (317) is opened with ether bridge and C-C bond formation between C7 and C14 in Rubescin F and H (319 and 320) respectively. Pentendricine (321) differs from previously isolated ceramicine D¹⁹³ at C23, which has an additional hydroxyl group as determined by the NOESY experiment. Rubescin G (322) share similar skeletal structure with compounds (318, 321) but differ at modification of furan ring and presence of two epoxide rings respectively. The olefinic double bond at $\Delta^{9,11}$ in Rubescin B (296) is reduced in Ceramicine O (323) along with oxidation at C7. Ceramicine O (323) isolated from bark of Chisocheton *ceramicus* in Aug 2017 is published in journal of natural medicines and Rubescin I isolated from stem bark extract of *Trichilia rubescens* in March 2018 is published in Natural product research journal, have same structure but are trivially named different. Rubescin C (**324**) is like compound (**323**) except in the additional acetoxyl group at C11. With respect to compound (**323**), there is an additional $\Delta^{5,6}$ double bond in Rubescin A (**325**). Rubescin J (**326**) is acetoxyl analog of compound (**325**). Walsucochinone B (**327**) is structurally similar to compound (**323**) except in the additional epoxide group at $\Delta^{14,15}$ and substitutions at C11 and C12. Walsucochinone A (**328**) and Walsucochinone C (**329**) share a similar skeleton with compound (**327**) except in the presence of olefinic double bond at $\Delta^{5,6}$ and variation at C12 substitution.

No.	Limonoid	Substituent	Source
296	Rubescin B		Trichilia rubescens ¹⁹⁸
297	Ceramicine H	$\mathbf{R} = \mathrm{Tig}$	Chisocheton ceramicus ¹⁹⁹
298	Ceramicine I	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Chisocheton ceramicus ¹⁹⁹
299	Munronoid N	$R_1 = \alpha$ -OTig; $R_2 = \alpha$ -OAc; $R_3 = \alpha$ -OCH ₃	Munronia unifoliolata ²⁰⁰
300	Meliatoosenin K	$R_1 = \alpha$ -OTig; $R_2 = \alpha$ -OH; $R_3 = \alpha$ -OAc	Melia toosendan ¹⁷⁶
301	Munronoid J	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{OAc}$	Munronia unifoliolata ¹⁵¹
302	Ceramicine N		Chisocheton ceramicus ²⁰¹
303	Walsuronoid D		Walsura robusta ²⁰²
304	Cochinchinoid A	$R_1 = H; R_2 = R_3 = COCH(CH_3)CH_2CH_3 2'R; R_4 = H;$	Walsura cochinchinensis ⁷⁶
		$R_5 = OH$	
305	Cochinchinoid B	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{R}_3 = \text{COCH}(\text{CH}_3)\text{CH}_2\text{CH}_3$ 2'S; $\mathbf{R}_4 = \mathbf{H};$ $\mathbf{R}_2 = \mathbf{OH}$	Walsura cochinchinensis ⁷⁶
306	Cochinchinoid C	$R_{3} = 0H$ $R_{4} = H$: $R_{2} = R_{2} = Tig$: $R_{4} = R_{5} = H$	Walsura cochinchinensis ⁷⁶
307	Cochinchinoid D	$R_1 = H; R_2 = Tig; R_3 = COCH(CH_2)CH_2CH_2; R_4 =$	Walsura cochinchinensis ⁷⁶
		$OAc: R_5 = H$	
308	Cipadesin L	$R_1 = R_2 = Ac; R_2 = COCH(CH_2)CH_2CH_2; R_4 = R_5 = H$	Cipadessa baccifera ²⁰³
309	Cipadesin M	1 2 7 3 (- 3) - 2 - 37 4 3	Cipadessa baccifera ²⁰³
310	11.15-dioxotrichilinin		Melia toosendan ¹⁷⁵
311	Ceramicine J	$R_1 = R_2 = H$	Chisocheton ceramicus ²⁰⁴
312	Walsuronoid E	$R_1 = OH; R_2 = OTig$	Walsura robusta ²⁰²
313	3-acetyl-7-tigloylnimbidinin	$R_1 = H; R_1 = Ac; R_3 = Tig$	Azadirachta indica ¹³⁸
314	7-tigloyl-12-oxo vilasini	$R_1 = R_2 = H; R_3 = Tig$	Azadirachta indica ¹¹⁹
315	Toosendansin H	$R_1 = Cin; R_2 = R_3 = H$	Melia toosendan ²⁰⁵
316	Toosendansin I		Melia toosendan ²⁰⁵
317	Rubescin D		Trichilia rubescens ²⁰⁶
318	Rubescin E		Trichilia rubescens ²⁰⁶
319	Rubescin F		Trichilia rubescens ²⁰⁷
320	Rubescin H		Trichilia rubescens ²⁰⁷
321	Pentendricine		Chisocheton pentandrus ²⁰⁸
322	Rubescin G		Trichilia rubescens ²⁰⁷
323	Ceramicine O/ Rubescin I		Chisocheton ceramicus ²⁰¹ /
			Trichilia rubescens ²⁰⁹
324	Rubescin C		Trichilia rubescens ¹⁹⁸
325	Rubescin A	$\mathbf{R} = \mathbf{H}$	Trichilia rubescens ¹⁹⁸
326	Rubescin J	$\mathbf{R} = \mathbf{OAc}$	Trichilia rubescens ²⁰⁹
327	Walsucochinone B		Walsura cochinchinensis ²¹⁰
328	Walsucochinone A	$R = COCH(CH_3)CH_2CH_3$	Walsura cochinchinensis ²¹⁰
329	Walsucochinone C	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Walsura cochinchinensis ²¹⁰

R

Ĥ

302

AcO

304-308

310

313-315

οн

316

C

O² HO QR HO, Ο Ó Ó ò O റ്

327 328-329

H₀

2.2.7. Other ring intact

Ceramicine F and G (**330** and **331**) are analogs, isolated from *Chisocheton ceramicus* (Table 12/S12, Figure 14). Nineteen Meliaceae limonoids belonging to this class were reported earlier¹². They differ in substitution at C4, where there is an aldehyde group in compound (330) and ester group in compound (331).

 Table 12. Other class ring intact limonoid 330-331

No.	Limonoid	Substituent	Source
330	Ceramicine F	$\mathbf{R} = \mathbf{H}$	Chisocheton ceramicus ¹⁹⁹
331	Ceramicine G	$R = OCH_3$	Chisocheton ceramicus ¹⁹⁹

330-331

Figure 14. Structures of other ring intact class limonoids 330-331.

- 2.3. Ring seco limonoids
- **2.3.1.** Demolition of single ring
- 2.3.1.1. Ring A-seco

2.3.1.1.1. Evodulone

This class of limonoid is identified by the presence of an A ring in the form of a seven membered lactone ring and oxygen at C7. Forty two Limonoids were isolated belonging to this class from Munronia henryi, Toona ciliata, Toona sinensis, Munronia delavayi, Aphanamixis grandifolia, Aphanamixis polystachya and Munronia unifoliolata (Table 13/S13, Figure 15). Previously sixteen Evodulone class limonoids were reported from Meliaceae family¹². Munronin H (332) is structurally similar to previously isolated surenone²¹¹ except in additional two acetyl groups at C11, C12 and absence of hydroxyl group at C6. The hydroxyl group is absent in Toonayunnanin D (333) at C6 and an additional isobutyryloxy group is present at C12 in Toonasinenine J (334) with respect to surenone. The NMR spectroscopic data of Munronin I (335) is similar to compound (332) but has acetyl group at C1 and $\Delta^{1,2}$ double bond is absent. The acetyl group at C12 in compound (335) is replaced by tigloyl group in Mulavanin E (336). The carbonyl group at C7 in compound (335) is reduced to hydroxyl group in Toonin B (337) along with absence of acetoxyl groups at C11 and C12. Aphanalide L (338) has additional hydroxyl groups at C11, C12 in comparison to compound (337). Aphanalide E and H (339 and 342) are analogs of Toonin B with variation in substitution pattern at C7, C11 and C12. Aphanalide F 340) is acetyl derivative of Aphanalide E (339). The C14/15oxirane in Toonayunnanin D (333) is absent in Aphanalide I (343) along with carbonylated C15 and hydroxylation at C7 and C11 as confirmed by X-ray crystallography. Toonayunnanin C (344) is analog of compound (343) but differs in substitution at C11 and C12. The $\Delta^{1,2}$ double bond in Aphanalide I is absent in Aphanalide K (345) which also has an additional acetoxyl group at C1 as determined by the ROESY experiment. Aphanalide D (346) is a structural analog of compound (345) but differs at C12 substitution. The NMR spectral data of Munronoid K (347) is similar to previously reported carapolide I^{212} except in the addition of 2-hydroxy-3-methylpentanoate at C12. Based on NMR data, Munronoid L (348) is structurally similar to compound (347) but differs only in acetylation at C12. The 2-hydroxy-3-methylpentanoate group at C7 in compound (347) is replaced by 3-methylbut-2-enoate in Munronoid L (349). The chemical shift difference i.e, shift in acetoxyl group from C7 to C12 in Munronin J (350) was confirmed by comparing spectroscopic data of previously reported carapolide I. Aphanagranin A (351) resemble Aphanalide L (338) but differ at C15 hydroxyl moiety and oxetane ring moiety between C7/C14 formed by opening of epoxide ring at $\Delta^{14,15}$. Aphanalide A-C (352-354) are structural analogs of compound (351) but differ in substitution at C11 and C12. Aphanalide J (355) differs structurally from compound (351) in formation of α . β unsaturated double bond by removal of acetoxyl group from C1. Munronoid C (356) is structurally similar to Toonayunnanin D except in presence of two additional acetoxyl groups at C6, C7, missing carbonyl group at C7 and replaced furan ring by γ -lactone ring at C17. In comparison with compound (**356**), $\Delta^{14,15}$ double bond are formed in Munronoid D (357). Munronoid E and F (358 and 359) have additional keto group and hydrogen peroxide group at C16 respectively, in comparison to compound (357). The NMR spectral data of Munronoid G (360) is similar to previously reported rubralin C^{213} except the conversion of tiglate group to keto carbonyl at C7. Munronoid H (361)

is detiglylated form of rubralin C. Toonaolide N (**362**) is C21 hydroxy butenolide analog of compound (**357**). Toonaolide M (**363**) is C6 deacetyl analog of compound (**362**). Toonaolide L (**364**) is C6 deacetoxyl analog of compound (**362**). Toonaolide J (**365**) is C7 deacetyl analog of compound (**364**). Toonaolide K (**366**) is oxidized at C7 compared with compound (**365**). Furan ring in compound (**333**) is replaced by C21 hydroxy butenolide moiety in Toonaolide D (**367**). Toonaolide E (**368**) is $\Delta^{9,11}$ analog of compound (**367**). Furan ring in previously reported Surenin²¹¹ is replaced by C21 hydroxy butenolide moiety in Toonaolide F (**369**). Toonaolide P (**370**) and Toonaolide Q (**371**) are derived from compound (**365**) and compound (**364**) respectively with presence of carbonyl at C15. Toonaolide O (**372**) is C23 hydroxy butenolide analog of compound (**365**). Furan ring in compound (**333**) is replaced by C23 hydroxy butenolide moiety in Toonaolide G (**373**).

No.	Limonoid	Substituent	Source
332	Munronin H	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{OAc}$	Munronia henryi ¹⁶⁹
333	Toonayunnanin D	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}$	Toona ciliata ¹³⁶
334	Toonasinenine J	$R_1 = H; R_2 = OCOCH(CH_3)_2$	Toona sinensis ²¹⁴
335	Munronin I	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Munronia henryi ¹⁶⁹
336	Mulavanin E	R = Tig	Munronia delavayi ²¹⁵
337	Toonin B	$\mathbf{R}_1 = \mathbf{A}\mathbf{c}; \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{H}$	Toona sinensis ²¹⁶
338	Aphanalide L	$\mathbf{R}_1 = \mathbf{A}\mathbf{c}; \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{O}\mathbf{H}$	Aphanamixis grandifolia ¹²⁴
339	Aphanalide E	$R_1 = H; R_2 = OH; R_3 =$ OCOCH(OH)CH(CH_3)CH_2CH_3	Aphanamixis polystachya ²¹⁷
340	Aphanalide F	$R_1 = Ac; R_2 = OH; R_3 =$ OCOCH(OH)CH(CH_3)CH_2CH_3	Aphanamixis polystachya ²¹⁷
341	Aphanalide G	$R_1 = H; R_2 = OCHO; R_3 =$ OCOCH(OH)CH(CH_3)CH_2CH_3	Aphanamixis polystachya ²¹⁷
342	Aphanalide H	$R_1 = H; R_2 = OCHO; R_3 = OCOCH_2CH(CH_3)_2$	Aphanamixis polystachya ²¹⁷
343	Aphanalide I	$R_1 = OH; R_2 = H$	Aphanamixis grandifolia ¹²⁴
344	Toonayunnanin C	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathrm{COCH}(\mathbf{CH}_3)_2$	Toona ciliata ¹³⁶
345	Aphanalide K	$\mathbf{R} = \mathbf{H}$	Aphanamixis grandifolia ¹²⁴
346	Aphanalide D	$R = COCH(OH)CH(CH_3)CH_2CH_3$	Aphanamixis polystachya ²¹⁷
347	Munronoid K	$R_1 = Ac; R_2 = OAc; R_3 =$ COCH(OH)CH(CH ₃)CH ₂ CH ₃	Munronia unifoliolata ²⁰⁰
348	Munronoid L	$\mathbf{R}_1 = \mathbf{R}_3 = \mathbf{A}\mathbf{c}; \mathbf{R}_2 = \mathbf{O}\mathbf{A}\mathbf{c}$	Munronia unifoliolata ²⁰⁰
349	Munronoid M	$R_1 = R_3 = Ac; R_2 = OCOCHC(CH_3)_2$	Munronia unifoliolata ²⁰⁰
350	Munronin J	$\mathbf{R}_1 = \mathbf{R}_3 = \mathbf{A}\mathbf{c}; \mathbf{R}_2 = \mathbf{H}$	Munronia henryi ¹⁶⁹
351	Aphanagranin A	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}$	Aphanamixis grandifolia ²¹⁸
352	Aphanalide A	$R_1 = CHO; R_2 = COCH_2CH(CH_3)_2$	Aphanamixis polystachya ²¹⁷
353	Aphanalide B	$R_1 = H; \ R_2 = COCH_2CH(CH_3)_2$	Aphanamixis polystachya ²¹⁷
354	Aphanalide C	$R_1 = H; R_2 = COCH(OH)CH(CH_3)CH_2CH_3$	Aphanamixis polystachya ²¹⁷
355	Aphanalide J		Aphanamixis grandifolia ¹²⁴
356	Munronoid C		Munronia unifoliolata ¹⁵¹
357	Munronoid D		Munronia unifoliolata ¹⁵¹
358	Munronoid E		Munronia unifoliolata ¹⁵¹
359	Munronoid F		Munronia unifoliolata ¹⁵¹
360	Munronoid G		Munronia unifoliolata ¹⁵¹
361	Munronoid H		Munronia unifoliolata
302	Toonaolide N	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{O}\mathbf{A}\mathbf{C}$ $\mathbf{R}_1 = \mathbf{O}\mathbf{U}\mathbf{E}\mathbf{R}_2 = \mathbf{O}\mathbf{A}\mathbf{C}$	$Toona ciliata^{219}$
303 264	Toonaolida I	$\mathbf{R}_1 = \mathbf{O}\mathbf{H}; \mathbf{R}_2 = \mathbf{O}\mathbf{A}\mathbf{c}$ $\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{O}\mathbf{A}\mathbf{c}$	Toona ciliata ²¹⁹
304	Toonaolida I	$\mathbf{R}_1 = \mathbf{n}, \mathbf{R}_2 = \mathbf{O}\mathbf{R}\mathbf{c}$ $\mathbf{P}_1 = \mathbf{H}, \mathbf{P}_2 = \mathbf{O}\mathbf{H}$	Toong ciligta ²¹⁹
366	Toopaolide K	$\mathbf{K}_1 = \mathbf{\Pi}, \mathbf{K}_2 = \mathbf{O}\mathbf{\Pi}$	Toona ciliata ²¹⁹
367	Toonaolide D		Toona ciliata ²¹⁹
368	Toonaolide E	۸ ^{9,11}	Toona ciliata ²¹⁹
369	Toonaolide F		Toona ciliata ²¹⁹
370	Toonaolide P	R = OH	Toona ciliata ²¹⁹
371	Toonaolide O	R = OAc	Toona ciliata ²¹⁹
372	Toonaolide O		Toona ciliata ²¹⁹
373	Toonaolide G		Toona ciliata ²¹⁹

Table 13. Evodulone class limonoid 332-373

ō

ÓН

0

′′OAc

ООН

0

́ОН

345-346

356

Figure 15. Structures of evodulone class limonoids 332-373.

2.3.1.1.2. Other ring A-seco

Structural analogs Walrobsin A and B (374 and 375) were isolated from Walsura robusta which differ from each other in substitution at C2 and contain a unique 5-oxatricyclo [5.4.1] undecane ring system (Table 14/S14, Figure 16). The skeletal structure of Dysomollide E (376) isolated from Dysoxylum mollissimum was similar to previously reported nymania 2^{220} except in displacement of γ -substituted butyrolactone ring by furan ring, deacetylation at C1, C7 and presence of acetoxyl group at C16. Angustifolianin (**377**) is C7 deacetyl analog of previously reported Nymania 2^{220} . Toonaolide C (**378**) is C6 acetoxyl C4, C21 dihydroxy, $\Delta^{20,22}$ analog of previously reported Nymania 2^{220} .

Table 14. Other ring A-seco class infonoid 574-578			
No.	Limonoid	Substituent	Source
374	Walrobsin A	$\mathbf{R} = \mathbf{Tig}$	Walsura robusta ²²¹
375	Walrobsin B	$R = COCH(CH_3)CH_2CH_3$	Walsura robusta ²²¹
376	Dysomollide E		Dysoxylum mollissimum ¹⁴⁴
377	Angustifolianin		Aglaia angustifolia ²²²
378	Toonaolide C		Toona ciliata ²¹⁹

 Table 14. Other ring A-seco class limonoid 374-378

2.3.1.2. Ring B-seco

Ring B-seco class limonoids are characterized by modification of the B ring. Fifty eight compounds belonging to this class were isolated from Turraea pubescens, Toona ciliata and Toona sinensis (Table 15/S15, Figure 17). Previously twenty six ring B-seco class limonoids were reported from Meliaceae family¹². Turrapubin E (379) shares similar skeletal structure with previously reported 11-epi-toonacilin¹²⁷ except deacetylation at C12. The C12 acetoxyl group in 11-epi-toonacilin is replaced by isobutanoyloxy and 2-methylbutanoxy moiety in Turrapubin F and G (380 and 381) respectively. Toonacilianin E (382) is C6 hydroxyl analog of 11-epi-toonacilin and Toonasinenine E (383) is C12 deacetoxyl analog of compound (382). The $\Delta^{1,2}$ double bond in 11-epi-toonacilin is absent in Turrapubin A (384) which also has acetoxyl group at C1. The acetyl group at C12 in Turrapubin A is replaced by Isobutanoyloxy and 2-methylbutanoxy groups in Turrapubin B and C (385 and 386) respectively. Toonayunnanin F (387) is structurally similar to Toonasinenine E but differ at C8 hydroxylation and acetoxyl group at C11 is absent; in addition to this, Toonasinenine G (388) has hydroxyl group at C12. Toonayunnanin I (389) is acetylated at C6 with C1, C11 ether linkage when compared to Toonayunnanin F. Limonoids (390-393) vary at C6 and C12 in acetylation and hydroxylation as compared to compound (389). Ciliatasecone L (394) is C11 dehydroxy analog of compound (390). The methyl group in Toonayunnanin I (389) at C29 is replaced by the formyl group in Toonayunnanin J (395). Whereas in Toonacilianin H (396), the acetyl group from C6 to C12 are shuffled and C29 is acetylated. The acetyl group at C6 in Toonayunnanin J is deacetylated in Toonasinenine B (397). Ciliatasecone M (398) is a C12 hydroxy analog of compound (395). Toonaciliatone G (399) possesses additional keto carbonyl at C12 when compared to Toonayunnanin I. Toonaciliatone E (400) is acetylated form of previously reported toonaciliatin B²²³. The double bond at $\Delta^{14,15}$ in previously isolated Turraflorin G²²⁴ is replaced by an oxirane ring in Turrapubin D (**401**). Toonayunnanin G (**402**) differs from Toonayunnanin I in reduction of $\Delta^{1,2}$ double bond and Toonacilianin I (403) is a C12 hydroxyl form of compound (402). Toonacilianin J (404) is a C29 acetoxyl derivative of compound (403). Toonavunnanin H (405). Toonasinenine A (406) and Toonasinenine C (407) are dehydroxyl and deacetoxyl analogs of compound (404). The epoxide ring and hydroxyl group in compound (402) are shuffled from C14/15 to C8/14 and C8 to C15 respectively, in Toonayunnanin K and L (408 and 409). The carbonyl group at C3 in Toonasinenine G (388) is reduced with oxirane ring formation at C1/2 in Toonacilianin D (410) and Toonasinenine F (411). Toonacilianin B, C (412, 413) and Toonaciliatone H (414) share the same skeleton as compound (409) except the cleavage of C1/11 ether bridge and formation of $\Delta^{1,2}$ double bond. Ciliatasecone G (415) is C15 acetyl analog of compound (412). Toonacilianin A (416) and Toonasinenine H (417) are C3 keto carbonyl group reduced analogs of compounds (412, 414) respectively. Ciliatasecone F (418) is C15 acetyl analog of compound (416).
Ciliatonoid B (420) is a carbonyl reduced analog of Ciliatonoid A (419). The absolute configuration of Turrapubin H (421) was assigned by comparing the CD spectrum of previously isolated Turrapubesin D²²⁵. The hydroxyl group at γ -lactone ring in compound (421) is absent in Toonaciliatavarin H (422). The structure of Tooniliatone A (423) was confirmed by Cu K α X-ray crystallographic analysis. Toonayunnanae A (424) differs from previously reported Toonafolin²¹⁴ with absence of C1, C11 ether linkage and additional $\Delta^{1,2}$ double bond. Toonayunnanae C (425) and Toonayunnanae D (426) are C6 dehydroxy and C6 acetyl analog of compound (387) respectively. Toonayunnanae E (427) is C8 hydroxy analog of previously reported Turraflorin G²²⁴. The epoxide ring at C14, C15 in compound (390) and compound (393) is replaced by $\Delta^{14,15}$ double bond in Ciliatasecone O (428) and Ciliatasecone P (429) respectively. Ciliatasecone D (430) differs from compound (413) with presence of hydroxyl group at C14 and $\Delta^{8.9}$ double bond with cleavage of C8,C14 epoxide ring. Ciliatasecone E (431) differs from compound (430) with reduction of C3 carbonyl and shifting of double bond from $\Delta^{8.9}$ to $\Delta^{8.30}$. Ciliatasecone H (432) and Ciliatasecone I (433) are C30 methoxy analogs of previously reported Turrapubesin A²²⁶ respectively. Ciliatasecone I (434) is C15 oxidized and C30 dechlorinated analog of previously reported Turrapubesin A²²⁶. Ciliatasecone J (435) is C15 acetyl analog of previously reported Turrapubesin C²²⁵. Ciliatasecone J (436) differs from compound (409) with C12 hydroxylation, C15 acetylation and cleavage of C8, C14 epoxide ring with presence of $\Delta^{8,9}$ double bond.

Table 15. F	Ring B-seco	class limonoi	d 379-436
-------------	-------------	---------------	-----------

No.	Limonoid	Substituent	Source
379	Turrapubin E	$R_1 = H; R_2 = \beta$ -OAc; $R_3 = OH$	Turraea pubescens ¹⁷⁰
380	Turrapubin F	$R_1 = H; R_2 = \beta$ -OAc; $R_3 = OCOCH(CH_3)_2$	Turraea pubescens ¹⁷⁰
381	Turrapubin G	$R_1 = H; R_2 = \beta$ -OAc; $R_3 = OCOCH(CH_3)CH_2CH_3$	Turraea pubescens ¹⁷⁰
382	Toonacilianin E	$R_1 = OH; R_2 = \alpha - OAc; R_3 = OAc$	Toona ciliata ²²⁷
383	Toonasinenine E	$\mathbf{R}_1 = \mathbf{OH}; \mathbf{R}_2 = \alpha \cdot \mathbf{OAc}; \mathbf{R}_3 = \mathbf{H}$	Toona sinensis ²¹⁴
384	Turrapubin A	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Turraea pubescens ¹⁷⁰
385	Turrapubin B	$R = COCH(CH_3)_2$	Turraea pubescens ¹⁷⁰
386	Turrapubin C	$R = COCH(CH_3)CH_2CH_3$	Turraea pubescens ¹⁷⁰
387	Toonayunnanin F	$\mathbf{R} = \mathbf{H}$	Toona ciliata ¹³⁶
388	Toonasinenine G	R = OH	Toona sinensis ²¹⁴
389	Toonayunnanin I	$\mathbf{R}_1 = \mathbf{OAc}; \mathbf{R}_2 = \mathbf{H}$	Toona ciliata ¹³⁶
390	Toonacilianin F	$R_1 = H; R_2 = OH$	Toona ciliata ²²⁷
391	Toonacilianin G	$R_1 = OAc; R_2 = OH$	Toona ciliata ²²⁷
392	Toonaciliatin P	$R_1 = OAc; R_2 = H$	Toona ciliata ²²⁸
393	Toonaciliatone-F	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{OH}$	Toona ciliata ²²⁹
394	Ciliatasecone L	$R_1 = R_2 = H$	Toona ciliata ¹³⁹
395	Toonayunnanin J	$R_1 = CHO; R_2 = OAc; R_3 = H$	Toona ciliata ¹³⁶
396	Toonacilianin H	$R_1 = CH_2OAc; R_2 = H; R_3 = OAc$	Toona ciliata ²²⁷
397	Toonasinenine B	$R_1 = CHO; R_2 = R_3 = H$	Toona sinensis ²¹⁴
398	Ciliatasecone M	$R_1 = Ac; R_2 = OAc; R_3 = OH$	Toona ciliata ¹³⁹
399	Toonaciliatone-G		Toona ciliata ²²⁹
400	Toonaciliatone-E		Toona ciliata ²²⁹
401	Turrapubin D		Turraea pubescens ¹⁷⁰
402	Toonayunnanin G	$\mathbf{R} = \mathbf{H}$	Toona ciliata ¹³⁶
403	Toonacilianin I	$\mathbf{R} = \mathbf{OH}$	Toona ciliata ²²⁷
404	Toonacilianin J	$\mathbf{R}_1 = \mathbf{OAc}; \mathbf{R}_2 = \mathbf{OH}$	Toona ciliata ²²⁷
405	Toonayunnanin H	$\mathbf{R}_1 = \mathbf{OAc}; \mathbf{R}_2 = \mathbf{H}$	Toona ciliata ¹³⁶
406	Toonasinenine A	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}$	Toona sinensis ²¹⁴
407	Toonasinenine C	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{OAc}$	Toona sinensis ²¹⁴
408	Toonayunnanin K	$\mathbf{R} = \mathbf{OAc}$	Toona ciliata ¹³⁶
409	Toonayunnanin L	$\mathbf{R} = \mathbf{H}$	Toona ciliata ¹³⁶
410	Toonacilianin D	$\mathbf{R} = \mathbf{H}$	Toona ciliata ²²⁷
411	Toonasinenine F	R = OH	Toona sinensis ²¹⁴
412	Toonacilianin B	$\mathbf{R}_1 = \mathbf{OH}; \mathbf{R}_2 = \mathbf{H}$	Toona ciliata ²²⁷
413	Toonacilianin C	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}$	Toona ciliata ²²⁷
414	Toonaciliatone H	$\mathbf{R}_1 = \mathbf{OAc}; \mathbf{R}_2 = \mathbf{H}$	Toona ciliata ²²⁹
415	Ciliatasecone G	$R_1 = OH; R_2 = Ac$	Toona ciliata ¹³⁹
416	Toonacilianin A	$\mathbf{R}_1 = \alpha$ -OH; $\mathbf{R}_2 =$ OH; $\mathbf{R}_3 =$ H	Toona ciliata ²²⁷
417	Toonasinenine H	$\mathbf{R}_1 = \alpha$ -OH; $\mathbf{R}_2 = \mathbf{R}_3 = \mathbf{H}$	Toona sinensis ²¹⁴
418	Ciliatasecone F	$\mathbf{R}_1 = \beta \text{-OH}; \mathbf{R}_2 = \text{OH}; \mathbf{R}_3 = \mathbf{A}\mathbf{c}$	Toona ciliata ¹³⁹
419	Ciliatonoid A		Toona ciliata ²⁵⁰
420	Ciliatonoid B		Toona ciliata ²³⁰
421	Turrapubin H	$\mathbf{R}_1 = \beta$ -OAc; $\mathbf{R}_2 = \text{COCH}(\text{CH}_3)_2$; $\mathbf{R}_3 = \text{OH}$	Turraea pubescens ^{1/0}
422	Toonaciliatavarin H	$\mathbf{R}_1 = \alpha \text{-} \mathbf{OAc}; \mathbf{R}_2 = \mathbf{Ac}; \mathbf{R}_3 = \mathbf{H}$	Toona ciliata ^{®0}
423	Tooniliatone A		Toona ciliata ²⁵¹
424	Toonayunnanae A		Toona ciliata ²³²
425	Toonayunnanae C	$\mathbf{R} = \mathbf{H}$	Toona ciliata ²³²

426	Toonayunnanae D	$\mathbf{R} = \mathbf{O}\mathbf{A}\mathbf{c}$	Toona ciliata ²³²
427	Toonayunnanae E		Toona ciliata ²³²
428	Ciliatasecone O	$\mathbf{R} = \mathbf{H}$	Toona ciliata ¹³⁹
429	Ciliatasecone P	$\mathbf{R} = \mathbf{OH}$	Toona ciliata ¹³⁹
430	Ciliatasecone D		Toona ciliata ¹³⁹
431	Ciliatasecone E		Toona ciliata ¹³⁹
432	Ciliatasecone H	$R = CH_3$	Toona ciliata ¹³⁹
433	Ciliatasecone I	$R = CH_2CH_3$	Toona ciliata ¹³⁹
434	Ciliatasecone K		Toona ciliata ¹³⁹
435	Ciliatasecone J		Toona ciliata ¹³⁹
436	Ciliatasecone Q		Toona ciliata ¹³⁹

AcO

379-383

404-407

Ĥ₄

0.... νō он ►R COOCH₃ HO, 13

399

408-409

410-411

400

412-415

νō

419

424

OR3

Figure 17. Structures of ring B-seco class limonoids 379-436.

2.3.1.3. Ring C-seco

2.3.1.3.1. Azadirachtin/Meliacarpin

Ring C-seco Limonoids are characterized by modifications of the C ring. The only structural difference between Azadirachtin and Meliacarpin skeletons is the additional C7, C13 ether bridge in Meliacarpins. Nine Limonoids belonging to this class were isolated from *Azadirachta indica, Turraea pubescens* and *Melia toosendan* (Table 16/S16, Figure 18). A total of forty Azadirachtin/Meliacarpin class limonoids were reported from Meliaceae family¹². 1-tigloylazadirachtol (**437**) is derivative of previously reported Azadirachtol²³³. Turrapubin K (**438**) also known as 3-deacetyl-3-propanoylazadirachtin-A is analog of azadirachtin-A. Turrapubin J (**439**) is structurally similar to previously reported 1-tigloyl-3-acetylazadirachtinn²³⁴. Toosendane A-C (**440-442**) are structural analogs of 1-tigloyl-3,20-diacetyl-11-methoxymeliacarpinin reported earlier²³⁵. Azadirachtin J (**443**) is C23 methoxy analog of previously reported Azdirachtin O²³⁶. Toosendansin E (**444**) is C23 ethoxy analog of previously reported 1,3-dicinnamoyl-11-hydroxymeliacarpin²³⁷. Toosendansin F (**445**) is C23 epimer of compound (**444**).

Table 16. Azadirachtin/Meliacarpin class limonoid 437-445

No.	Limonoid	Substituent	Source
437	1-tigloylazadirachtol		Azadirachta indica ¹⁴⁵
438	Turrapubin K		Turraea pubescens ¹⁷⁰
439	Turrapubin J		Turraea pubescens ¹⁷⁰
440	Toosendane A	$\mathbf{R}_1 = \mathbf{OTig}; \mathbf{R}_2 = \mathbf{H}$	Melia toosendan ²³⁸
441	Toosendane B	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{Tig}$	Melia toosendan ²³⁸
442	Toosendane C	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{COC}(\mathbf{CH}_3)\mathbf{CH}_2$	Melia toosendan ²³⁸
443	Azadirachtin J		Azadirachta indica ²³⁹
444	Toosendansin E	$R = \beta - OCH_2CH_3$	Melia toosendan ²⁰⁵
445	Toosendansin F	$R = \alpha - OCH_2CH_3$	Melia toosendan ²⁰⁵

437

439

Figure 18. Structures of azadirachtin/meliacarpin class limonoids 437-445.

2.3.1.3.2. Salannin

This class of limonoids are characterized by ether linkages between C6-C28 and C7-C13. Twenty eight Salannin class limonoids were isolated from Melia azedarach, Melia Toosendan and Azadirachta indica (Table 17/S17, Figure 19). Previously twenty one Salannin class limonoids were reported from Meliaceae family¹². The tiglate group at C1 in salannin is displaced by methacrylate, cinnamoyl and benzoyl groups in compounds (446, 448, 449) respectively, whereas Toosendansin A (447) is tiglylated at C3. Compound (449) was isolated by two different research groups in 2013^{188,119} from different plants but trivially named differently. Meliazedarine D (450), Meliazedarine E/Ohchinin benzoate (451), Meliazedarine F (452), Meliazedarine G (453), Meliazedarine H (454) and 1-(E)-3,4-dimethylpent-2-enal-11-methoxycarbonyl nimbidinol acetate (455) differs in substitution at C1, C3 with varying combination of cinnamoyl, benzoyl and tigloyl moieties compared to compound (447). Compound (456) is structurally similar to previously reported 2,3-dihydronimbolide²⁴⁰ except at C3 additional α -methoxy group. Limonoids (457-459) are derivatives of compound (456) with presence of tiglate, benzyl and methacrylate moieties at C1 respectively. The furan ring in compound (457) is displaced by α , β -unsaturated γ -lactone ring in compound (460). The tiglate group at C1 and furan ring in salanin is replaced by isovalerate group and C23-OH substituted γ -lactone ring in Limonoid (461) respectively. Limonoids (462-468) are derivatives of compound (461) but differ in substitution at C1 and C23. The furan ring at C17 in 28-deoxonimbolide is replaced by a, β-unsaturated-21-hydroxy γ -lactone ring in limonoid (469). Nimbolide B (470) differs from compound (469) in additional keto carbonyl at C28. Compounds (471, 472, 473) are structural analogs of compounds (469, 460, 467) respectively differing in substitution at C17.

No.	Limonoid	Substituent	Source
446	3-deacetyl-4'-demethylsalannin	$R_1 = COC(CH_2)CH_3; R_2 = H$	Melia azedarach ²⁴¹
447	Toosendansin A	$R_1 = Tig; R_2 = Tig$	Melia Toosendan ²⁴²
448	1-O-decinnamoyl-1-O-Z-cinnamoylohchinin	$R_1 = Z$ -Cin; $R_2 = H$	Melia azedarach ¹⁸⁸
449	1-O-decinnamoyl-1-Obenzoylohchinin/1-benzoyl-3-	$R_1 = Bz; R_2 = H$	Melia azedarach ¹⁸⁸ /
	deacetyl-1- detigloyl salannin		Azadirachta indica ¹¹⁹
450	Meliazedarine D	$R_1 = Cin; R_2 = Tig$	Melia azedarach ¹⁷¹
451	Meliazedarine E/Ohchinin benzoate	$\mathbf{R}_1 = \mathbf{Cin}; \mathbf{R}_2 = \mathbf{Bz}$	Melia azedarach ^{171,174}
452	Meliazedarine F	$R_1 = Bz; R_2 = Cin$	Melia azedarach ¹⁷¹
453	Meliazedarine G	$\mathbf{R}_1 = \mathbf{B}\mathbf{z}; \mathbf{R}_2 = \mathbf{B}\mathbf{z}$	Melia azedarach ¹⁷¹
454	Meliazedarine H	$\mathbf{R}_1 = \mathrm{Tig}; \mathbf{R}_2 = \mathrm{Bz}$	Melia azedarach ¹⁷¹
455	1-(E)-3,4-dimethylpent-2-enal-11-methoxycarb- onyl	$COCHC(CH_3)CH(CH_3)_2; R_2 = Ac$	Azadirachta indica ¹⁵⁶
	nimbidinol acetate		
456	2.3-dihydro- 3α -methoxynimbolide		Azadirachta indica ¹³⁸
457	3-deacetyl-28-oxosalannin	$\mathbf{R} = \mathrm{Tig}$	Melia azedarach ²⁴¹
458	1-O-decinnamovl-1-O-benzovl- 28-oxoohchinin	R = Bz	Melia azedarach ¹⁸⁸
459	3-O-deacetyl-40-demethyl- 28-oxosalannin	R = Met	Melia azedarach ¹⁸⁸
460	3-deacetyl-28-oxosalannolactone		Melia azedarach ²⁴³
461	1-isovalerovl- 1-detiglovlsalanninolide	$R_1 = COCH_2CH(CH_2)_2$; $R_2 = Ac$; $R_3 =$	Azadirachta indica ¹³⁸
		OH	
462	17-defurano-17-(5x-2.5-dihvdro-5-hvdroxy-2- oxofuran-3-	$R_1 = COCHCH(CH_3)_2$; $R_2 = H$; $R_3 = OH$	Azadirachta indica ²⁴⁴
	vl)-2',3'-dehvdrosalannol	1 (- 3/2/ 2 / 5 -	
463	Ohchininolide	$R_1 = Cin; R_2 = R_3 = H$	Melia azedarach ¹⁸⁸
464	1-O-decinnamovl-1-O-benzovlohchininolide	$R_1 = Bz; R_2 = R_3 = H$	Melia azedarach ¹⁸⁸
465	23-methoxyohchininolide A	$R_1 = Cin; R_2 = H; R_3 = OCH_3$	Melia azedarach ¹⁸⁸
466	23-methoxyohchininolide B	$R_1 = BZ; R_2 = H; R_3 = OCH_3$	Melia azedarach ¹⁸⁸
467	23-hydroxyohchininolide	$R_1 = Cin; R_2 = H; R_3 = OH$	Melia azedarach ¹⁸⁸
468	1-O-decinnamovl- 1-O-benzovl-23-hvdroxvohchininolide	$R_1 = Bz; R_2 = H; R_3 = OH$	Melia azedarach ¹⁸⁸
469	17-defurano-17-(2x-2,5-dihydro-2- hydroxy-5-oxofuran-3-	1 7 2 7 5 -	Azadirachta indica ²⁴⁴
	vl)-28-deoxonimbolide		-
470	Nimbolide B		Azadirachta indica ²⁴⁵
471	17- defurano-17-(2,5-dihydro-2-oxofuran-3-yl)-28-		Azadirachta indica ²⁴⁴
	deoxonimbolide		
472	3-deacetyl-28-oxoisosalanninolide		Melia azedarach ²⁴³
473	21-hydroxyisoohchininolide		Melia azedarach ¹⁸⁸

2.3.1.3.3. Nimbolinin

This class of limonoids contain five and seven membered ring with ether linkage. Another notable feature of this class is the presence of unusual 17β furan ring in majority of the compounds reported instead of 17α furan ring. Thirty four compounds were isolated belonging to this class from Melia toosendan, Munronia henryi, Melia azedarach and Azadirachta indica (Table 18/S18, Figure 20). Prior to this thirty eight Nimbolinin class limonoids were reported from Meliaceae family¹². Compound (474) is detigloylated derivative of previously reported 1α tigloyloxy- 3α -acetoxyl- 7α -hydroxyl- 12α -ethoxyl nimbolinin²⁴⁶ and compound (475) is its epimer. Compounds (474-**490**) possess the same skeleton but differ among themselves in substituents at C1, C3 and C12. The cinnamovl group in nimbolinin C is displaced by methacryl moiety in the compound (476). Compound (477) is decinnamoyl derivative of compound (476). The ethoxy group in previously isolated ethoxynimbolinin C^{195} is displaced by methoxy group in compound (478). The tiglate group at C1 in compound (478) is shifted to C7 in compound (479). Compounds (480, 481) are tigloyl and benzoyl analogs of compound (479) respectively. Meliatoosenin L (482) is 3deacetyl, 7-tigloyl derivative of previously isolated 12-O-methylvolkensin²⁴⁷. Compounds (**483-486**) differ among themselves in tiglovlation and acetylation at C1 and C3. Compounds (487-490) are derived from previously reported ethoxynimbolinin. The methoxy group at C12 is α -oriented in previously isolated 12-O-methylvolkensin but it is β oriented in Munronin K (491). The tigloyl group in compound (491) is replaced by cinnamoyl moiety in 1benzoylnimbolinin C (492). Compounds (493 and 494) are benzoyl and 3-deacetylbenzoyl derivatives of previously reported Nimbolinin C respectively²⁴⁸. Compound (**494**) exists in tautomeric form as $12\alpha/12\beta$. The cinnamoyl group in nimbolinin C is absent in Compound (495). The methoxy group in compound (495) is replaced by the methacryl group in compound (496). Toosendansin B and C (497 and 498) are C7 benzoyl and tigloyl derivatives of 12-Omethylvolkensin respectively. Meliatoosenin T (499) is C1 acetyl, C7 methacrylate analog of previously reported 15-O-deacetyl-15-O-methylnimbolidin A^{249} . Meliatoosenin U (**500**) is C1 deacetyl analog of (**499**). The 15 β -O bond in 12-O-methylvolkensin is a-oriented in Munronin L (501). Azadirachta R (502) is C3 acetylated form of previously reported azecin 2²⁵⁰ except the furan ring shift from C26 to C27. The acetyl group at C1 and C7 in 17epi-12-dehydroxyheudebolin is tigloylated and hydroxylated respectively, in Munronin M (503) along with altered C26 configuration. The furan ring at C17 in previously reported 1-deacetylnimbolinin B²⁵¹ is replaced by 21hydroxybutenolide moiety in Meliazedalide A (504). Meliazedarine A (505) is C15 epimer of previously reported 15-O-deacetyl-15-O-methylnimbolidin B^{249} . Meliazedarine B (**506**) is C15 epimer of previously reported 15-Odeacetyl-15-O-methylnimbolidin A²⁴⁹. Meliazedarine C (507) is the C7 methacrylate analog of previously reported 15-O-deacetyl-15-O-methylnimbolidin B²⁴⁹

Labic	Table 10, 10 million class million 474-507				
No.	Limonoid	Substituent	Source		
474	1α , 7α -dihydroxyl- 3α -acetoxyl- 12α -ethoxylnimbolinin	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = \alpha$ -	Melia toosendan ²⁵²		
		OCH ₂ CH ₃			
475	1α -tigloyloxy- 3α -acetoxyl- 7α -hydroxyl- 12β -ethoxylnimbolinin	$R_1 = Tig; R_2 = Ac; R_3 = H; R_4 = \beta$ -	Melia toosendan ²⁵²		
		OCH ₂ CH ₃			
476	1-decinnamoyl-1-(20-methylacryloyl)nimbolinin C	$R_1 = COC(CH_2)CH_3; R_2 = Ac; R_3 =$	Melia toosendan ¹⁷⁵		
		H; $R_4 = \alpha - OCH_3$			

Table 18. Nimbolinin	class li	imonoid	47 4	-507
----------------------	----------	---------	-------------	------

477	1-decinnamoylnimbolinin C	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = \alpha$ - OCH ₂	Melia toosendan ¹⁷⁵
478	3-deacetyl-12-O-Methylyolkensin	$R_1 = Tig: R_2 = R_2 = H: R_4 = g-OCH_2$	Melia toosendan ¹⁷⁵
479	1α , 3α -dihydroxyl- 7α -tigloyloxy- 12α -ethoxylnimbolinin	$R_1 = R_2 = H; R_3 = Tig; R_4 = \alpha$ -	Melia toosendan ¹⁶⁸
480	7α -ditigloyloxy- 3α -acetoxyl- 12α - ethoxylnimbolinin	$R_1 = Tig; R_2 = Ac; R_3 = Tig; R_4 = \alpha$ -	Melia toosendan ¹⁶⁸
481	lα-benzoyloxy-3α-acetoxyl- 7α-hydroxyl-12β- ethoxylninbolinin	$R_1 = Bz; R_2 = Ac; R_3 = H; R_4 = \beta$ -	Melia toosendan ¹⁶⁸
482	Meliatoosenin L	$R_1 = Tig; R_2 = H; R_3 = Tig; R_4 = \alpha$ -	Melia toosendan ¹⁷⁶
483	Meliatoosenin M	$R_1 = H; R_2 = Ac; R_3 = Tig; R_4 = \alpha$ - OCH ₂	Melia toosendan ¹⁷⁶
484	Meliatoosenin N	$R_1 = R_2 = Ac; R_3 = Tig; R_4 = \beta$ - OCH ₃	Melia toosendan ¹⁷⁶
485	Meliatoosenin O	$R_1 = Tig; R_2 = Ac; R_3 = H; R_4 = \alpha$ - OCH ₂ CH ₃	Melia toosendan ¹⁷⁶
486	Meliatoosenin S	$R_1 = Tig; R_2 = R_3 = H; R_4 = \alpha - OCH_3$	Melia toosendan ¹⁷⁶
487	12-ethoxynimbolinin G	$R_1 = Cin; R_2 = Ac; R_3 = H; R_4 = \beta$ - COCH ₂ CH ₃	Melia toosendan ²⁵³
488	12-ethoxynimbolinin H	$R_1 = H; R_2 = Ac; R_3 = Tig; R_4 = \beta$ - COCH ₂ CH ₃	Melia toosendan ²⁵³
489	12-ethoxynimbolinin E	$R_1 = Bz; R_2 = R_3 = H; R_4 = \alpha$ - OCH ₂ CH ₃	Melia toosendan ²⁵⁴
490	12-ethoxynimbolinin F	$R_1 = Tig; R_2 = R_3 = H; R_4 = \beta$ - OCH ₂ CH ₃	Melia toosendan ²⁵⁴
491	Munronin K	$R_1 = Tig; R_2 = Ac; R_3 = H; R_4 = \beta$ - OCH ₃	Munronia henryi ¹⁶⁹
492	1-benzoylnimbolinin C	$R_1 = Cin; R_2 = Ac; R_3 = H; R_4 = \alpha$ - OCH ₃	Melia azedarach ¹⁹⁰
493	1-O-benzoyl-3-O-deactylnimbolinin C	$R_1 = Bz; R_2 = R_3 = H; R_4 = \alpha$ -OCH ₃	Melia azedarach ¹⁹²
494	12 α -1-O-tigloyl-1-O-deacetyl-nimbolinin B	$R_1 = Tig; R_2 = Ac; R_3 = Tig; R_4 = \alpha$ - OH/ β -OH	Melia toosendan ²⁵⁵
495	$3\alpha\text{-}acetoxy\text{-}1$ a,7 α -dihydroxy-12 α -methoxynimbolinin	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = \alpha$ - OCH ₃	Melia azedarach ²⁵⁶
496	3 α -acetoxy-1 α ,12 α -dihydroxy-7 α -(2-methylprop-2-enoyl) nimbolinin	$R_1 = H; R_2 = Ac; R_3$ =COC(CH ₂)CH ₃ ; $R_4 = \alpha$ -OH	Melia azedarach ²⁵⁶
497	Toosendansin B	R = Bz	Melia toosendan ²⁴²
498	Toosendansin C	$\mathbf{R} = \mathrm{Tig}$	Melia toosendan ²⁴²
499	Meliatoosenin T	R = Ac	Melia toosendan ¹⁷³
500	Meliatoosenin U	$\mathbf{R} = \mathbf{H}$	Melia toosendan ¹⁷³
501	Munronin L		Munronia henryi ¹⁶⁹
502	Azadirachta R		Azadirachta indica257
503	Munronin M		Munronia henryi ¹⁶⁹
504	Meliazedalide A		Melia azedarach ¹⁹¹
505	Meliazedarine A	$R_1 = Tig; R_2 = \alpha - OCH_3$	Melia azedarach ¹⁷¹
506	Meliazedarine B	$R_1 = Bz; R_2 = \alpha - OCH_3$	Melia azedarach ¹⁷¹
507	Meliazedarine C	$R_1 = Met; R_2 = \beta - OCH_3$	Melia azedarach ¹⁷¹

2.3.1.3.4. Nimbin

This class of limonoids consists of ether linkage at C ring. Six Limonoids belonging to this class were isolated from *Melia azedarach, Melia toosendan* and *Azadirachta indica* (Table 19/S19, Figure 21). Previously fourteen Nimbin class limonoids were reported from Meliaceae family¹².1-detigloylohchinolal (**508**) is C1 detigloylated form of previously reported Ohchinolal/salannal²⁵⁸. The tigloyl group at C1 in Ohchinolal is replaced by methacrylate in Mesendanin E (**509**). Mesendanin F (**510**) is acetylated at C1, C3 and is derived from 1-detigloylohchinolal. Toosendansin G (**511**) is C1, C3 ditigloyl, C6 acetyl analog of compound (**508**). The furan ring in 6-deacetylnimbin is replaced by β , γ -epoxy- γ -lactone ring in compound (**512**) and 3,4-dihydroxy-2,5-dimethoxytetrahydrofuran ring in compound (**513**).

No.	Limonoid	Substituent	Source
508	1-detigloylohchinolal	$R_1 = R_2 = H; R_3 = Ac$	Melia azedarach ²⁴¹
509	Mesendanin E	$\mathbf{R}_1 = \mathbf{COC}(\mathbf{CH}_3)\mathbf{CH}_2; \mathbf{R}_2 = \mathbf{H}; \mathbf{R}_3 = \mathbf{Ac}$	Melia toosendan ¹⁶³
510	Mesendanin F	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{A}\mathbf{c}$	Melia toosendan ¹⁶³
511	Toosendansin G	$R_1 = R_2 = Tig; R_3 = H$	Melia toosendan ²⁰⁵
512	deacetyl-20,21-epoxy-20,22-dihydro- 21-deoxyisonimbinolide		Azadirachta indica ¹³⁸
513	deacetyl-20,21,22,23-tetrahydro-20,22-dihydroxy-21,23-		Azadirachta indica ¹³⁸
	dimethoxynimbin		

2.3.1.3.5 Nimbolidin

A total of nine compounds were isolated from *Melia toosendan* and *Walsura chrysogyne* (Table 20/S20, Figure 22). Eleven Nimbolidin class were reported previously from Meliaceae family¹². Meliatoosenin P (**514**) is a deacetylated form of previously reported 1-O-tigloyl-1-O-debenzoylohchinal²⁵⁹. Meliatoosenin Q (**515**) is derived from compound (**514**) but differs in substitution at C3 and C11. The ester group at C11 in ohchinolal is replaced by the aldehyde group in Meliatoosenin R (**516**). Walsogyne C and E (**518** and **520**) are 2',3'-dihydro derivatives of Walsogyne B and D (**517** and **519**) respectively. Walsogyne F and G (**521** and **522**) are diastereomers and differ from walsogyne A at C17 substitution.

No.	Limonoid	Substituent	Source
514	Meliatoosenin P	$R_1 = H; R_2 = CHO$	Melia toosendan ¹⁷⁶
515	Meliatoosenin Q	$R_1 = Ac; R_2 = CH(OCH_3)_2$	Melia toosendan ¹⁷⁶
516	Meliatoosenin R		Melia toosendan ¹⁷⁶
517	Walsogyne B	$\Delta^{2,3}$	Walsura chrysogyne ²⁶⁰
518	Walsogyne C		Walsura chrysogyne ²⁶⁰
519	Walsogyne D	$\Delta^{2,3}$	Walsura chrysogyne ²⁶⁰
520	Walsogyne E		Walsura chrysogyne ²⁶⁰
521	Walsogyne F	$R = \beta$ -OH	Walsura chrysogyne ²⁶⁰
522	Walsogyne G	$R = \alpha - OH$	Walsura chrysogyne ²⁶⁰

Figure 22. Structures of nimbolidin class limonoids 514-522.

2.3.1.4. Ring D-seco

2.3.1.4.1. Gedunin

Baeyer Villiger oxidation at the D ring in the Azadiradione skeleton forms a δ -lactone D ring leading to a signature characteristic of the Gedunin class. A total of twenty one compounds belonging to Gedunin class were isolated from *Carapa guianensis*, *Entandrophragma angolense*, *Trichilia monadelpha*, *Khaya senegalensis*, *Azadirachta indica* and *Toona sinensis* (Table 21/S21, Figure 23). Previously thirty nine Gedunin class limonoids were reported from Meliaceae family¹². Carapansin C (**523**) differs at C17 furan ring substitution when compared to nimolicinol. Andirolide A (**524**) is C6 acetyl derivative of Carapansin C (**523**). Andirolide H (**525**) is C7 deacetyl, C6 acetoxyl derivative of Gedunin. Compounds (**526-529**, **533-535**) are derived from 7-oxogedunin. Khasenegasin W (**530**) and Entangolensin N (**531**) are derived from previously reported khivorin²⁶¹. Compound (**526**). The furan ring in 1-deacetylkhivorin is replaced to 21-hydroxybutenolide in Khasenegasin

X (536). Compounds (537-543) possess gedunin skeleton but differ at C17 with varied substitutions of tetrahedron furan moiety. Toonasinemine K and L (542 and 543) differ in orientation of the methoxy group at C23.

Table	21. Genullin class innonolu 525-545		
No.	Limonoid	Substituent	Source
523	Carapansin C	$\mathbf{R} = \mathbf{H}$	Carapa guianensis ²⁶²
524	Andirolide A	$\mathbf{R} = \mathbf{OAc}$	Carapa guianensis ²⁶³
525	Andirolide H		Carapa guianensis ²⁶⁴
526	5-hydroxy-7-deacetoxy-7-oxogedunin		Entandrophragma angolense ²⁶⁵
527	Carapanolide J	$\mathbf{R}_1 = \mathbf{OH}; \mathbf{R}_2 = \mathbf{H}$	Carapa guianensis ²⁶⁶
528	Monadelphin B	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{OAc}$	Trichilia monadelpha ²⁶⁷
529	Entangolensin L	$\mathbf{R}_1 = \mathbf{OAc}; \mathbf{R}_2 = \mathbf{H}$	Entandrophragma angolense ¹⁴¹
530	Khasenegasin W	$R_1 = OH; R_2 = OAc; R_3 = H$	Khaya senegalensis ²⁶⁸
531	Entangolensin N	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}; \mathbf{R}_3 = \mathbf{OAc}$	Entandrophragma angolense ¹⁴¹
532	5,6-dehydro-7-deacetoxy-7-oxogedunin		Entandrophragma angolense ²⁶⁵
533	Andirolide I		Carapa guianensis ²⁶⁴
534	Monadelphin A		Trichilia monadelpha ²⁶⁷
535	Entangolensin M		Entandrophragma angolense ¹⁴¹
536	Khasenegasin X		Khaya senegalensis ²⁶⁸
537	Azadiraindin G		Azadirachta indica ¹⁴⁶
538	Andirolide J	$\mathbf{R}_1 = \mathbf{OAc}; \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{H}$	Carapa guianensis ²⁶⁴
539	Toonasinemine H	$R_1 = R_2 = H; R_3 = OH$	Toona sinensis ²⁶⁹
540	Toonasinemine I	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{OAc}; \mathbf{R}_3 = \mathbf{OH}$	Toona sinensis ²⁶⁹
541	Toonasinemine J		Toona sinensis ²⁶⁹
542	Toonasinemine K	$R = \alpha - OCH_3$	Toona sinensis ²⁶⁹
543	Toonasinemine L	$R = \beta - OCH_3$	Toona sinensis ²⁶⁹

Table 21, Gedunin class limonoid 523-543

H

, F

536

′OAc

AcO`

2.3.1.4.2. Other ring D-seco

Ó

Figure 23. Structures of gedunin class limonoids 523-543.

Five compounds isolated from *Walsura cochinchinensis* and *Cipadessa baccifera* were grouped in this class (Table 22/S22, Figure 24). Only three other ring D-seco class limonoids were reported from the Meliaceae family¹². Cochinchinoid E (**544**) is structurally similar to previously isolated piscidofuran⁴⁴ except in the deacetylation at C3, C7 and acetylation at C11. Cochinchinoid F and G (**545** and **546**) are analogs with varying orientation of methyl group at C3. The tigloyl group at C1 in previously isolated piscidofuran⁴⁴ is replaced by acetoxy group in Cipadesin J (**547**). Cipadesin K (**548**) differs from compound (**547**) in an additional 2-methylbutyryloxy group at C7 which was confirmed by HMBC correlation.

Table 22. Other class I	limonoid 54	44-548
-------------------------	-------------	--------

No.	Limonoid	Substituent	Source
544	Cochinchinoid E	$\Delta^{2,3'}$	Walsura cochinchinensis ⁷⁶
545	Cochinchinoid F	β-2'	Walsura cochinchinensis ⁷⁶
546	Cochinchinoid G	α-2'	Walsura cochinchinensis ⁷⁶
547	Cipadesin J	$\mathbf{R} = \mathbf{H}$	Cipadessa baccifera ²⁰³
548	Cipadesin K	$R = COCH(CH_3)CH_2CH_3$	Cipadessa baccifera ²⁰³

Figure	24.	Structures of	of (Other	ring ((D-seco)	class	limonoi	ds 54 4	4-548.
						_ ~~~~/				

2.3.1.5. Ring E-seco

Compared with previously reported Azadirone¹³¹ in Thaigranatin T (**549**) there is oxidative cleavage of the furan ring (Table 23/S23, Figure 25).

Table 23. Ring E-seco 549

No.	Limonoid	Substituent	Source
549	Thaigranatin T		<i>Xylocarpus granatum</i> ¹⁵³

Figure 25. Structures of ring E-seco class limonoids 549.

2.3.2. Demolition of two rings

2.3.2.1. Rings A.B-seco

2.3.2.1.1. Prieurianin

Cleavage in the B ring of the evodulone class with formation of an exocyclic $\Delta^{8,30}$ olefinic double bond is noted characteristic of the prieurianin class. Seventy one compounds were isolated from *Munronia henryi*, *Munronia unifoliolata*, *Munronia delavayi*, *Aphanamixis polystachya*, *Cipadessa cinerascens*, *Dysoxylum mollissimum*,

Dysoxylum hainanense, Trichilia welwitschii, Aphanamixis grandifolia, Munronia henryi and Aphanamixis sinensis (Table 24/S24, Figure 26). Previously thirty six Prieurianin class limonoids were reported from Meliaceae family¹². The acetyl group in previously reported Nymania- 3^{270} is absent in Munronin P (**550**) which contained additional tigloyloxy moiety at C12 as confirmed by HREIMS and NMR data. The epoxide ring at C14/15 in Nymania-3 is converted to $\Delta^{14,15}$ double bond in Munronin Q (551). Munronoid B (552) is C11 deacetoxyl derivative of compound (551). Based on NMR data, the C14/15 oxirane ring in nymania-4 is absent in Munronin B (553). Munronoid A (554) is C11 deacetoxyl derivative of compound (553). Compounds (555-561) are structurally similar except in substitution at C17. The acetyl group at C12 in (555) is replaced by tigloyl group in Mulavanin A and B (557 and 561). The carbonyl group at C21 in compound Munronin C (556) is absent in Munronin E (558). Munronoid O (560) is a 21-dehydroxyl derivative of Munronin F (559). Mulavanin D (562) differs from previously reported 14,15 β -epoxyprieurianin²⁷¹ in loss of substituent at C1 and acetyl group substitution at C2. Aphanamolide B (563) is a deacetylated analog of prieurianin. Aphanaonoid I (564) is C1 acetyl analog of previously reported Prieurianin²⁷². Aphanaonoid J (565) is C12 3-methylbutanovloxy analog of (564). The ether bridge between C1 and C11 in Aphapolynin B (566) is absent in the compound (563). Aphanaonoid H (567) is C29 acetyl analog of compound (566). Ciparasin P (568) is structurally similar to compound (562) except in the methoxy group at C30, double bond shift from $\Delta^{8,30}$ to $\Delta^{8,14}$ and open epoxide ring with hydroxylation at C15. The acetoxy group in dysoxylumin B is replaced by $\Delta^{1,2}$ double bond in Dysomollide A (569). Aphanamixoid K-M (570-572) and Aphanamixoid B (573) are structural congeners differing in substitution at C12. From the NMR spectroscopic data, Aphapolynin C (574) and rohituka-7 reported earlier²⁷³ differ only in substitution at C15. The formyl group at C11 in compound (574) is replaced by hydroxyl group in Aphapolynin D (575). Aphapolynin E (576) differ from Aphapolynin D (575) in ether linkage between C1 and C11, shift in hydroxyl group from C14 to C16, shift in double bond from $\Delta^{8,30}$ to $\Delta^{8,14}$ and absence of double bond at $\Delta^{1,2}$. Dysohainanin D (577) differs from previously reported Dysoxylumolide A²⁷⁴ in substitution at C12 and C16. Dregeanin DM4 (578) is an analog of compound (577). The isovalerate group at C12 and acetyl group at C15 in previously reported rohituka-13²⁷³ is replaced by hydroxyl and keto carbonyl groups respectively in Aphanagranin C (579). Dysoxylumasin B (580) is analog of previously reported dysoxylumolide A^{274} but has 2-methylbutanoxyl at C16 and γ -hydroxybutenolide at C17. Aphapolynin A (581) differs from Aphanamolide D (582) in substitution at C12. Aphagranols A and B (583 and 584) are regioisomers. The C1/11 ether linkage and lactone A ring in Aphanagranin C is cleaved in Munronin A (585) along with reduced keto carbonyl group. The C1/11 ether linkage in previously isolated Dysoxylumic acid C²⁷⁴ is shifted to C11/14 in Dysoxylumasin A (586) along with an opened epoxide ring. Aphanamolide B, A (587, 588) and Aphanagranin B (589) share a similar skeleton but vary in substitution at C12. Aphanamolide C (590) differs from compound (588) in additional ether linkage between C1 and C11. The lactone A ring in compound (579) is cleaved in Aphanagranin D (591). Compound (592) was isolated by two different research groups from two different plants in the year 2011 and 2013 but trivially named as Dysohainanin A and Dysoxylumasin C. It is structurally similar to previously reported Dysoxylumic acid C^{274} but vary in substitution at C16. Dysoxylumasin D (594) is a structural analog of compound (592). Aphanamixoid N-P (594-596) are structural analogs but differ in substitution at C12. The C1/11 ether linkage in Dysohainanin A (592) is cleaved in Dysohainanin B (597) followed by acetylation and formylation at C1 and C11 respectively, along with presence of methyl ester moiety at C3. Dysohainanin C (598) is C3 ethyl ester analog of compound (597). Dysoxylumasin E and F (599 and 600) have a non substituted acid group at C3 when compared to compound (598). The epoxide ring in Aphapolynin F (601) is cleaved in Aphapolynin G (602) along with hydroxylation and carbonylation at C14 and C15 respectively. Zaphaprinin P-Q (603-604) contains C3 acid and methyl ester moiety respectively when compared with compound (602). Zaphaprinin U-Y (605-609) differs in substitution at C3, C12 when compared with compound (602). The C1/11 ether bridge of compound (602) is cleaved in Aphapolynin H and I (610 and 611) along with hydroxylation and formylation at C11 respectively. Aphanaonoid F (612) is C1 deacetyl, C3 methyl ester C11 acetyl analog of compound (610). Aphanaonoid G (613) is C12 3-methylbutanoyloxy analog of compound (612). In Aphanaonoid A (614) there is formation of ether linkage between C1 and C29 compared with previously reported Zaphaprinin A^{275} . In Zaphaprinin A (615) there is formation of ether linkage between C3, C11 when compared with Rohituka 2^{276} . Aphanaonoid B (616) is C6 ethyl ester C11 deformy and C1, C29 ether linkage analog of compound (563). Aphanaonoid E (617) is C1, C4 substituted epimer of compound (602). Zaphaprinin R-T (618-620) are derived from compound (602) with varying substitution at C3, C15.

Table 24. Prieurianin class limonoid 550-620

No.	Limonoid	Substituent	Source
550	Munronin P		Munronia henryi ²⁷⁷

551 Munronin Q 552 Munronoid B 553 Munronin B 554 Munronoid A 555 Munronin C 556 Munronin D 557 Mulavanin A 558 Munronin E 559 Munronin F 560 Munronoid O 561 Mulavanin B 562 Mulavanin D 563 Aphanamolide B 564 Aphanaonoid I 565 Aphanaonoid J Aphapolynin B 566 567 Aphanaonoid H 568 Ciparasin P 569 Dysomollide A Aphanamixoid K 570 571 Aphanamixoid L 572 Aphanamixoid M 573 Aphanamixoid B 574 Aphapolynin C 575 Aphapolynin D 576 Aphapolynin E 577 Dysohainanin D 578 Dregeanin DM4 579 Aphanagranin C 580 Dysoxylumasin B 581 Aphapolynin A 582 Aphanamolide D 583 Aphagranols A 584 Aphagranols B 585 Munronin A 586 Dysoxylumasin A 587 Aphanamolide B 588 Aphanamolide A 589 Aphanagranin B 590 Aphanamolide C 591 Aphanagranin D 592 Dysohainanin A/ Dysoxylumasin C 593 Dysoxylumasin D 594 Aphanamixoid N 595 Aphanamixoid O 596 Aphanamixoid P 597 Dysohainanin B 598 Dysohainanin C 599 Dysoxylumasin E 600 Dysoxylumasin F 601 Aphapolynin F 602 Aphapolynin G 603 Zaphaprinin P 604 Zaphaprinin Q 605 Zaphaprinin U 606 Zaphaprinin V 607 Zaphaprinin W 608 Zaphaprinin X 609 Zaphaprinin Y 610 Aphapolynin H 611 Aphapolynin I 612 Aphanaonoid F 613 Aphanaonoid G 614 Aphanaonoid A 615 Zaphaprinin A 616 Aphanaonoid B 617 Aphanaonoid E

R = OAc $\mathbf{R} = \mathbf{H}$ R = OAc $\mathbf{R} = \mathbf{H}$ $R_1 = Ac; R_2 = H$ $R_1 = Ac; R_2 = CH_3$ $R_1 = Tig; R_2 = H$ $R_1 = Ac; R_2 = OH$ $R_1 = Ac; R_2 = H$ $R_1 = Tig; R_2 = OH$ $R_1 = \beta$ -OAc; $R_2 = H$; $R_3 = COCH(OH)CH(CH_3)CH_2CH_3$ $R_1 = \alpha$ -OH; $R_2 = Ac$; $R_3 = COCH(OH)CH(CH_3)CH_2CH_3$ $R_1 = \alpha$ -OH; $R_2 = Ac$; $R_3 = COCH_2CH(CH_3)_2$ $\mathbf{R} = \mathbf{H}$ $\mathbf{R} = \mathbf{A}\mathbf{c}$ $\mathbf{R} = \mathrm{Tig}$ $R = COCH(CH_3)CH_2CH_3$ $\mathbf{R} = \mathbf{B}\mathbf{z}$ $\mathbf{R} = \mathbf{A}\mathbf{c}$ R = CHO $\mathbf{R} = \mathbf{H}$ $R_1 = COCH(OH)CH(CH_3)_2$; $R_2 = COCH(CH3)CH_2CH_3$ $R_1 = COCH(OH)CH(CH_3)CH_2CH_3$; $R_2 = H$ $R_1 = \beta - CH_3$; $R_2 = CH_2CH_3$ $R_1 = R_2 = CH_3$ $R = \beta - H$ $R = \alpha - H$ $R_1 = H; R_2 = CH_3; R_3 = H$ $\begin{array}{l} R_1 = \beta \text{-OH}; \ R_2 = \alpha \text{-CH}_3; \ R_3 = \text{CH}_3 \\ R_1 = \text{OH}; \ R_2 = \text{CH}_3; \ R_3 = \text{H} \end{array}$ $R = COCH(CH_3)CH_2CH_3$ $R = COCH(OAc)CH(CH_3)_2$ R = Tig $R = COCH(CH_3)CH_2CH_3$ $\mathbf{R} = \mathbf{B}\mathbf{z}$ $R_1 = CH_3$; $R_2 = COCH(CH_3)CH_2CH_3$ $R_1 = CH_2CH_3$; $R_2 = COCH(CH_3)CH_2CH_3$ $R_1 = H; R_2 = COCH(OAc)CH(CH_3)_2$ $R_1 = H; R_2 = COCH(CH_3)CH_2CH_3$ $R_1 = OCH_2CH_3$; $R_2 = COCH(OH)CH(CH_3)CH_2CH_3$ $R_1 = OH; R_2 = COCH(OH)CH(CH_3)CH_2CH_3$ $R_1 = OCH_3$; $R_2 = COCH(OH)CH(CH_3)CH_2CH_3$ $R_1 = OH; R_2 = COCH(OH)CH(CH_3)_2$ $R_1 = OCH_3$; $R_2 = COCH(OH)CH(CH_3)_2$ $R_1 = OCH_2CH_3$; $R_2 = COCH(OH)CH(CH_3)_2$ $R_1 = OH; R_2 = COCH_2CH(CH_3)_2$ $R_1 = OCH_3; R_2 = COCH_2CH(CH_3)_2$ $R_1 = \alpha$ -OAc; $R_2 = CH_2CH_3$; $R_3 = H$; $R_4 =$ COCH(OH)CH(CH₃)CH₂CH₃ $R_1 = \alpha$ -OAc; $R_2 = CH_2CH_3$; $R_3 = CHO$; $R_4 =$ COCH(OH)CH(CH₃)CH₂CH₃ $R_1 = \beta$ -OH; $R_2 = CH_3$; $R_3 = Ac$; $R_4 = COCH(OH)CH(CH_3)CH_2CH_3$ $R_1 = \alpha$ -OH; $R_2 = CH_3$; $R_3 = Ac$; $R_4 = COCH_2CH(CH_3)_2$

Munronia henryi²⁷⁷ Munronia unifoliolata¹⁵¹ Munronia henryi16 Munronia unifoliolata¹⁵¹ Munronia henryi¹⁰ Munronia henryi¹⁶⁹ Munronia delavayi²¹⁵ Munronia henryi¹⁶⁹ Munronia henryi¹⁶⁹ Munronia unifoliolata²⁰⁰ Munronia delavayi²¹⁵ Munronia delavavi²¹⁵ Aphanamixis polystachya²⁷⁸ Aphanamixis sinensis²⁷⁹ Aphanamixis sinensis²⁷⁹ Aphanamixis polystachya²⁸⁰ Aphanamixis polystachya²⁷⁹ Cipadessa cinerascens²¹ Dysoxylum mollissimum¹⁴⁴ Aphanamixis polystachya²⁸² Aphanamixis polystachya²⁸² Aphanamixis polystachva²⁸² Aphanamixis polystachya²⁸³ Aphanamixis polystachya²⁸⁴ Aphanamixis polystachya²⁸⁴ Aphanamixis polystachya²⁸⁴ Dysoxylum hainanense⁶³ Trichilia welwitschii285 Aphanamixis grandifolia²¹⁸ Dysoxylum mollissimum²⁸⁶ Aphanamixis polystachya²⁸⁰ Aphanamixis grandifolia²⁸⁷ Aphanamixis grandifolia²⁸⁸ Aphanamixis grandifolia²⁸⁸ Munronia henryi¹⁶⁹ Dysoxylum mollissimum²⁸⁶ Aphanamixis polystachya²⁸⁴ Aphanamixis polystachya²⁷⁸ Aphanamixis grandifolia²¹⁸ Aphanamixis grandifolia²⁸⁷ Aphanamixis grandifolia²¹⁸ Dysoxylum hainanense⁶³ Dysoxylum mollissimum²⁸⁶ Dysoxylum mollissimum²⁸⁶ Aphanamixis polystachya²⁸² Aphanamixis polystachya²⁸² Aphanamixis polystachya²⁸² Dysoxylum hainanense⁶² Dysoxylum hainanense⁶³ Dysoxylum mollissimum²⁸⁶ Dysoxylum mollissimum²⁸⁶ Aphanamixis polystachya²⁸⁴ Aphanamixis polystachya²⁸⁴ Aphanamixis grandifolia²⁷⁵ Aphanamixis polystachya²⁸⁴ Aphanamixis polystachya²⁸⁴

Aphanamixis polystachya²⁷⁹ Aphanamixis polystachya²⁷⁹ Aphanamixis polystachya²⁷⁹ Aphanamixis grandifolia²⁷⁵ Aphanamixis polystachya²⁷⁹ Aphanamixis polystachya²⁷⁹

590

587-589

591

592-593

2.3.2.1.2. Aphanamixoid

This class is characterized by the presence of seven membered lactone rings and intact C and D rings. Nine Limonoids belonging to Aphanamixoid class were isolated from *Aphanamixis polystachya* (Table 25/S25, Figure 27). Aphanamixoid C-E (**621-623**) are C11 acetoxyl analogs of Aphanamixoid A (**624**). And compounds (**622**, **623**) differ from each other in substitution at C12 containing tigloyloxy and 2-methylbutanoate groups respectively. The presence of additional $\Delta^{2,30}$ olefinic double bond in Aphanamixoid F and G (**625** and **626**) corresponds to compounds (**621** and **622**) respectively. The orientation of $\Delta^{2,30}$ olefinic bond in compound (**625**) is changed from *E* to *Z* in Aphanamixoid H (**627**). Aphanamixoid I and J (**628** and **629**) are structurally similar to compounds (**625** and **626**) respectively except at C14/15 epoxidation.

No.	Limonoid	Substituent	Source
621	Aphanamixoid C	$\mathbf{R}_1 = \mathbf{OAc}; \mathbf{R}_2 = \mathbf{Ac}$	Aphanamixis polystachya ²⁸²
622	Aphanamixoid D	$\mathbf{R}_1 = \mathbf{OAc}; \mathbf{R}_2 = \mathbf{Tig}$	Aphanamixis polystachya ²⁸²
623	Aphanamixoid E	$R_1 = OAc; R_2 = COCH(CH_3)CH_2CH_3$	Aphanamixis polystachya ²⁸²
624	Aphanamixoid A	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{A}\mathbf{c}$	Aphanamixis polystachya ²⁸³
625	Aphanamixoid F	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Aphanamixis polystachya ²⁸²
626	Aphanamixoid G	$\mathbf{R} = \mathrm{Tig}$	Aphanamixis polystachya ²⁸²
627	Aphanamixoid H		Aphanamixis polystachya ²⁸²
628	Aphanamixoid I	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Aphanamixis polystachya ²⁸²
629	Aphanamixoid J	$\mathbf{R} = \mathrm{Tig}$	Aphanamixis polystachya ²⁸²

2.3.2.1.3. Other rings A,B-seco

Twenty five Limonoids belonging to this class were isolated from Toona sinensis, Trichilia connaroides, Toona ciliata, Aphanamixis polystachya and Aphanamixis grandifolia (Table 26/S26, Figure 28). A total of thirty one limonoids belonginging to this class were reported previously from Meliaceae family¹². Trichiconlide A (630) consists of an unprecedented 5/6/5/6/5 carbon ring skeleton and is a hybrid between basic limonoid and rearranged phragmalin class limonoid. Toonayunnanin E and I (631 and 632) are C6 acetoxyl and hydroxyl analogs of previously reported Toonaciliatin I respectively²²³. In Aphanaonoid C (633) there is formation of C1, C14 ether linkage with cleavage of C3, C11 ether linkage when compared with compound (614). C3 ester moiety in compound (633) is replaced by acid moiety in Aphanaonoid D (634). Zaphaprinin B (635) is C17 epimer of previously reported Rohituka 12^{289} . Zaphaprinin C (636) is C3 methoxy analogs of previously reported Rohituka 1^{276} with differing substitution at C11, C12 with presence of carbonyl group at C15 and formation of ether linkage between C1, C14. Zaphaprinin D (637) is the C3 ethoxy analog of compound (636). Zaphaprinin E-O (638-648) differs at C3, C11, and C12 substitution when compared with compound (636). Toonaolide B (649) when compared with compound (367) there is cleavage of the B ring with formation of C1, C8 ether linkage. Furan ring in previously reported Surenolactone²⁹⁰, Toonaciliatin I^{223} and Toonaciliatin H^{223} is replaced by C21 hydroxy butenolide moiety in Toonaolide H (650), Toonaolide T (651) and Toonaolide V (653) respectively. Toonaolide U (652) is the C6 acetoxyl analog of compound (651). C8, C14 epoxide ring in compound (653) is replaced by $\Delta^{8,14}$ double bond in Toonaolide W (654).

Table 26. Other rings	A,B-seco class	limonoid	630-65 4
-----------------------	----------------	----------	-----------------

No.	Limonoid	Substituent	Source
630	Trichiconlide A		Trichilia connaroides ²⁹¹
631	Toonayunnanin E	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Toona ciliata ¹³⁶
632	Toonasinenine I	$\mathbf{R} = \mathbf{H}$	Toona sinensis ²¹⁴
633	Aphanaonoid C	$R = CH_3$	Aphanamixis polystachya ²⁷⁹
634	Aphanaonoid D	$\mathbf{R} = \mathbf{H}$	Aphanamixis polystachya ²⁷⁹
635	Zaphaprinin B		Aphanamixis grandifolia ²⁷⁵
636	Zaphaprinin C	$R = OCH_3$	Aphanamixis grandifolia ²⁷⁵
637	Zaphaprinin D	$R = OCH_2CH_3$	Aphanamixis grandifolia ²⁷⁵
638	Zaphaprinin E	$R_1 = \beta$ -H; $R_2 = OH$; $R_3 = COCH(OH)CH(CH_3)CH_2CH_3$	Aphanamixis grandifolia ²⁷⁵
639	Zaphaprinin F	$R_1 = \beta$ -H; $R_2 = OCH_2CH_3$; $R_3 = COCH(OH)CH(CH_3)CH_2CH_3$	Aphanamixis grandifolia ²⁷⁵
640	Zaphaprinin G	$R_1 = \alpha$ -H; $R_2 = OH$; $R_3 = COCH(OH)CH(CH_3)CH_2CH_3$	Aphanamixis grandifolia ²⁷⁵
641	Zaphaprinin H	$R_1 = \alpha$ -H; $R_2 = OCH_3$; $R_3 = COCH(OH)CH(CH_3)CH_2CH_3$	Aphanamixis grandifolia ²⁷⁵
642	Zaphaprinin I	$R_1 = \alpha$ -H; $R_2 = OCH_2CH_3$; $R_3 = COCH(OH)CH(CH_3)CH_2CH_3$	Aphanamixis grandifolia ²⁷⁵
643	Zaphaprinin J	$R_1 = \beta$ -H; $R_2 = OH$; $R_3 = COCH(OH)CH(CH_3)_2$	Aphanamixis grandifolia ²⁷⁵
644	Zaphaprinin K	$R_1 = \beta$ -H; $R_2 = OCH_2CH_3$; $R_3 = COCH(OH)CH(CH_3)_2$	Aphanamixis grandifolia ²⁷⁵
645	Zaphaprinin L	$R_1 = \alpha$ -H; $R_2 = OH$; $R_3 = COCH(OH)CH(CH_3)_2$	Aphanamixis grandifolia ²⁷⁵
646	Zaphaprinin M	$R_1 = \alpha$ -H; $R_2 = OCH_3$; $R_3 = COCH(OH)CH(CH_3)_2$	Aphanamixis grandifolia ²⁷⁵
647	Zaphaprinin N	$R_1 = \alpha$ -H; $R_2 = OCH_2CH_3$; $R_3 = COCH(OH)CH(CH_3)_2$	Aphanamixis grandifolia ²⁷⁵
648	Zaphaprinin O	$R_1 = \alpha$ -H; $R_2 = OH$; $R_3 = COCH_2CH(CH_3)_2$	Aphanamixis grandifolia ²⁷⁵
649	Toonaolide B		Toona ciliata ²¹⁹
650	Toonaolide H		Toona ciliata ²¹⁹
651	Toonaolide T	$\mathbf{R} = \mathbf{H}$	Toona ciliata ²¹⁹
652	Toonaolide U	$\mathbf{R} = \mathbf{OAc}$	Toona ciliata ²¹⁹
653	Toonaolide V		Toona ciliata ²¹⁹
654	Toonaolide W		Toona ciliata ²¹⁹

Figure 28. Structures of other rings A,B-seco class limonoids 630-654.

2.3.2.2. Rings A,D-seco

2.3.2.2.1. Obacunol

Sixteen Limonoids were isolated from Dysoxylum mollissimum, Clausena emarginata and Toona sinensis (Table 27/S27, Figure 29). A total of thirty one Obacunol class limonoids were reported previously from Meliaceae family¹². The $\Delta^{1,2}$ double bond in previously reported Dysoxylin²⁹² is reduced in Dysomollide B (655) along with presence of acetoxyl group at C1. Dysomollide C (656) differs from compound (655) in an additional 2-hydroxy-3methylbutyryl group at C7. The acetoxy group at C11 in previously reported odoralide²⁹³ is shifted to C6 in Dysomollide D (657). The hydroxyl group at C6 in previously reported methyl isoobacunoate diosphenol²⁹⁴ is shifted to C11 in Clauemargine A (658) along with reduction of $\Delta^{5,6}$ double bond. Clauemargine B (659) is a C2 diastereomer of compound (658). The furan ring at C17 in compound (658) is replaced by γ -hydroxy butenolide moiety in Clauemargine C (660). Clauemargine D (661) differs from compound (660) at hydroxyl substitution in the lactone ring. The acetoxyl group at C7 in 11β -hydroxyceorin G is replaced by the keto carbonyl group in Clauemargine E (662). The furan moiety at C17 in compound (662) is replaced by γ -hydroxybutenolide moiety in structural analogs Clauemargine F and G (663 and 664). The A ring in compound (662) is cleaved in Clauemargine H-J (665-667). The methoxy carbonyl group at C3 in Clauemargine H and I (665 and 666) is replaced by ethoxy carbonyl group in Clauemargine J (667). The furan ring at C17 and acid group at C3 in compound (665) is replaced by γ -hydroxy butenolide and ester moiety in Clauemargine K (668) respectively. Clauemargine L (669) is derived from compound (665) in which a lactone ring is formed between C3 and C11 with loss of acetoxyl group from C1 and methoxy group from C3. The carbonyl group at C7 and hydroxyl group at C11 in compound (662) is replaced by acetoxyl group in Ttoonin A (670).

 Table 27. Obacunol class limonoid 655-670

No.	Limonoid	Substituent	Source

655	Dysomollide B	$\mathbf{R} = \mathbf{H}$	Dysoxylum mollissimum ¹⁴⁴
656	Dysomollide C	$R = COCH(OH)CH(CH_3)_2$	Dysoxylum mollissimum ¹⁴⁴
657	Dysomollide D		Dysoxylum mollissimum ¹⁴⁴
658	Clauemargine A	$R = \beta - H$	Clausena emarginata ²⁹⁵
659	Clauemargine B	$R = \alpha - H$	Clausena emarginata ²⁹⁵
660	Clauemargine C		Clausena emarginata ²⁹⁵
661	Clauemargine D		Clausena emarginata ²⁹⁵
662	Clauemargine E		Clausena emarginata ²⁹⁵
663	Clauemargine F		Clausena emarginata ²⁹⁵
664	Clauemargine G		Clausena emarginata ²⁹⁵
665	Clauemargine H	$R_1 = OCH_3; R_2 = OAc$	Clausena emarginata ²⁹⁵
666	Clauemargine I	$R_1 = OCH_3; R_2 = OH$	Clausena emarginata ²⁹⁵
667	Clauemargine J	$R_1 = OCH_2CH_3; R_2 = OAc$	Clausena emarginata ²⁹⁵
668	Clauemargine K		Clausena emarginata ²⁹⁵
669	Clauemargine L		Clausena emarginata ²⁹⁵
670	Ttoonin A		Toona sinensis ²¹⁶

Figure 29. Structures of obacunol class limonoids 655-670.

2.3.2.2.2. Chukrasone

This class of limonoids contains five membered, rearranged A ring with a carbonyl group at C6. Five Limonoids belonging to this class were isolated from *Chukrasia tabularis* and *Carapa guianensis* (Table 28/S28, Figure 30). Based on 1D and 2D NMR spectroscopic data, Chukrasone A (**671**) contains gedunin type skeleton with change at A ring, which is five membered. The hydroxyl group at C30 in compound (**671**) is absent in Guianofruit C (**672**) which also has an additional $\Delta^{14,15}$ olefinic double bond. The 2-methylpropanoyl group at C3 in compound (**672**) is replaced by the tigloyl group in Guianofruit D (**673**) which also has an additional acetoxyl group at C30. Guianofruit B (**674**) is C30 deacetyl analog of compound (**673**). The tigloyl moiety at C3 in compound (**674**) is

replaced by 3-methyl butanoate group in Guianofruit A (675) which also have additional $\Delta^{8,30}$ double bond formed by dehydroxylation.

Tuble 20, Chulki usone clubs innonoite 0/1 0/2	Tabl	e 28 .	Chukrasone	class	limonoid	671-675
--	------	---------------	------------	-------	----------	---------

No.	Limonoid	Substituent	Source
671	Chukrasone A		Chukrasia tabularis ²⁹⁶
672	Guianofruit C	$R_1 = COCH(CH_3)_2; R_2 = H$	Carapa guianensis ²⁹⁷
673	Guianofruit D	$\mathbf{R}_1 = \mathrm{Tig}; \mathbf{R}_2 = \mathrm{OAc}$	Carapa guianensis ²⁹⁷
674	Guianofruit B	$\mathbf{R}_1 = \mathrm{Tig}; \mathbf{R}_2 = \mathbf{H}$	Carapa guianensis ²⁹⁸
675	Guianofruit A		Carapa guianensis ²⁹⁸

Figure 30. Structures of chukrasone class limonoids 671-675.

2.3.2.2.3. Other rings A,D-seco

Trangmolin E (**676**) was isolated from *Xylocarpus moluccensis* in which there is oxidative cleavage of C2-C3 bond followed by rearrangement at A ring (Table 29/S29, Figure 31).

Table 29.	Other rings	A.D-seco	class	limonoid	676
					~ ~ ~

No.	Limonoid	Substituent	Source
676	Trangmolin E		Xylocarpus moluccensis ²⁹⁹

Figure 31. Structures of other rings A,D-seco class limonoid 676.

2.3.2.3. Rings B,D-seco

2.3.2.3.1. Andirobin

This class of Limonoids are characterized by a Gedunin skeleton with cleaved B ring and exocyclic double bond at $\Delta^{7,8}$ and/or presence of C1-O-C14 ether linkage. Forty two Limonoids belonging to this class were isolated from *Khaya senegalensis, Carapa guianensis, Cipadessa baccifera, Cipadessa cinerascens, Sandoricum koetjape, Xylocarpus moluccensis* and *Entandrophragma angolense* (Table 30/S30, Figure 32). Thirty nine Andirobin class limonoids were reported previously from the Meliaceae family¹². Khasenegasin Y (**677**) is C1 epimer of previously reported swietmanin J³⁰⁰. Khasenegasin Z (**678**) differs from compound (**677**) in presence of hydroxyl group at C14 with reduced $\Delta^{14,15}$ double bond. Khayandirobilide A (**679**) varies from previously reported Domesticulide A³⁰¹ in

presence of γ -methoxy butenolide and hydroxyl moieties at C17 and C1 respectively with reduced $\Delta^{1,2}$ double bond. The furan ring at C17 in Andirobin isolated earlier³⁰² is replaced by γ -ethoxy butenolide in Andirolide S (680). The carbonyl at C3 in Methyl angolensate isolated previously³⁰³ is replaced by the tigloyl group in Cipaferen N (681). Cipaferen E-G (682-684) are derived from compound (681) and differ in substitution at C2 and C3. The hydroxyl group at C3 in compound (683) is replaced by acetoxyl group in Sanjecumin A (685) along with additional acetoxyl and hydroxyl group at C12 and C15 respectively. The 2-methyl butanoate group at C2 in compound (685) is replaced by 2-methylpropanoate group in Sanjecumin B (686). Cipaferen I and J (687 and 688) are C17 γ-hydroxy butenolide analogs of compound (684). Xylomolin N (689) is a 21-dehydroxy analog of previously reported Moluccensin O³⁰⁴. Previously in the year 2010 6-deacetoxydomesticulide D (690) was reported as moluccensin O³⁰⁴ but in 2011 it was renamed as 6-deacetoxydomesticulide D. 6-deacetoxydomesticulide D 21-methylether (691) is C21-methoxy analog of Moluccensin O. Andirolide W (692) is C23 ethoxy analog of previously reported Moluccensin N^{304} . Khaysenelide K (693) is C6 deacetyl analog of previously reported Domesticulide C^{301} . Cipaferen H (694) is C2 tiglovloxy analog of Moluccensin N. The furan ring at C17 in methyl angolensate is replaced by substituted tetrahydrofuran ring in Entangosin (695). The hydroxyl group at C11 in Cineracipadesin B is converted to keto carbonyl group in Cipadesin P (696) and is missing in Cipadesin Q (697) along with elimination of C2 acetoxyl group. Cibacciferin A (698) is C2 isobutyryloxy, C9 hydroxy analog of compound (683). 11α -Acetoxycibacciferin A (699) is C11 acetoxy analog of compound (698). Cibacciferin B (700) is C2 2-methylbutyryl with shift of hydroxyl group from C9 to C11 analog of compound (698). 2'-Epi-cibacciferin B (701) is C2' epimer of compound (700). Cibacciferin C (702), 2'-Epi-cibacciferin C (703) differs from compound (700), compound (701) with shift of hydroxyl group from C11 to C9. 11a-Acetoxycibacciferin C (704) is C11 acetoxy analog of (702). Cibacciferin D (705) is C2, C3 acetoxy C3 hydroxy analog of compound (698). Entangolensin C and D (706 and 707) are C1 and C11 epimers but differ from Cineracipadesin C at C3 (carbonyl) and C11 (hydroxyl) substitution. The acetoxy group at C11 in Cineracipadesin D is absent in Cineracipadesin G (708) which also has γ methoxy butenolide at C17. The acetoxyl group at C3 in compound (708) is replaced by carbonyl group in Entangolensin E-F (709-710) along with shuffled carbonyl and methoxy groups from C21 to C23. Entangolensin I and J (711 and 712) are C21 epimers of compound (710) having hydroxyl group at C20 with reduced $\Delta^{20,22}$ double bond. Entangolensin G (713) is C21 methoxy analog of (709) and Entangolensin H (714) is C20 22-dihydroxy analog of (713). Koetjapin A-C (715-717) differ from each other in substitution at C9 and C11. Koetjapin D (718) is C3 epimer of previously isolated Cipatrijugin A³⁰⁵. Koetjapin A-D (715-718) has an unusual 17β furan ring instead of the canonical 17α furan ring.

No.	Limonoid	Substituent	Source
677	Khasenegasin Y		Khaya senegalensis ²⁶⁸
678	Khasenegasin Z		Khaya senegalensis ²⁶⁸
679	Khayandirobilide A		Khaya senegalensis ³⁰⁶
680	Andirolide S		Carapa guianensis ¹⁴⁹
681	Cipaferen N	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathrm{Tig}$	Cipadessa baccifera ³⁰⁷
682	Cipaferen E	$R_1 = OH; R_2 = COCH(CH_3)CH_2CH_3$	Cipadessa baccifera ³⁰⁸
683	Cipaferen F	$R_1 = OCOCH(CH_3)CH_2CH_3; R_2 = H$	Cipadessa baccifera ³⁰⁸
684	Cipaferen G	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{A}\mathbf{c}$	Cipadessa baccifera ³⁰⁸
685	Sanjecumin A	$R = COCH(CH_3)CH_2CH_3$	Sandoricum koetjape ³⁰⁹
686	Sanjecumin B	$R = COCH(CH_3)_2$	Sandoricum koetjape ³⁰⁹
687	Cipaferen I		Cipadessa baccifera ³⁰⁸
688	Cipaferen J		Cipadessa baccifera ³⁰⁸
689	Xylomolin N	$\mathbf{R} = \mathbf{H}$	Xylocarpus moluccensis ¹⁴³
690	6-deacetoxydomesticulide D	$\mathbf{R} = \mathbf{OH}$	Entandrophragma angolense ²⁶⁵
691	6-deacetoxydomesticulide D-21-	$R = OCH_3$	Entandrophragma angolense ²⁶⁵
	methylether		210
692	Andirolide W	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{OCH}_2\mathbf{CH}_3$	Carapa guianensis ³¹⁰
693	Khaysenelide K	$R_1 = OH; R_2 = \beta - OH$	Khaya senegalensis ³¹¹
694	Cipaferen H		Cipadessa baccifera ⁵⁰⁸
695	Entangosin		Entandrophragma angolense ²⁰⁵
696	Cipadesin P		Cipadessa baccifera ²⁰³
697	Cipadesin Q	$R_1 = H; R_2 = \beta$ -OAc; $R_3 = R_4 = R_5 = H$	Cipadessa baccifera ²⁰⁵
698	Cibacciferin A	$R_1 = OCOCH(CH_3)_2; R_2 = \alpha - OH; R_3 = R_4 = H; R_5 = OH$	Cipadessa baccifera ³¹²
699	11α-Acetoxycibacciferin A	$R_1 = OCOCH(CH_3)_2; R_2 = \alpha - OH; R_3 = R_4 = H; R_5 = OAc$	Cipadessa baccifera ³¹²
700	Cibacciferin B	$ R_1 = OCOCH(\beta-CH_3)CH_2CH_3; R_2 = \alpha-OH; R_3 = R_4 = H; R_5 $ = OH	Cipadessa baccifera ³¹²
701	2'-Epi-cibacciferin B	$R_1 = OCOCH(\alpha$ -CH ₃)CH ₂ CH ₃ ; $R_2 = \alpha$ -OH; $R_3 = R_4 = H$; $R_5 = OH$	Cipadessa baccifera ³¹²

Table 30. Andirobin class limonoid 677-718

702	Cibacciferin C	$R_1 = OCOCH(\beta-CH_3)CH_2CH_3; R_2 = \alpha-OH; R_3 = R_4 = H; R_5$ = OH	Cipadessa baccifera ³¹²
703	2'-Epi-cibacciferin C	$R_1 = OCOCH(\alpha$ -CH ₃)CH ₂ CH ₃ ; $R_2 = \alpha$ -OH; $R_3 = R_4 = H$; $R_5 = OH$	Cipadessa baccifera ³¹²
704	11α-Acetoxycibacciferin C	$R_1 = OCOCH(\beta-CH_3)CH_2CH_3; R_2 = \alpha-OH; R_3 = R_4 = H; R_5 = OAc$	Cipadessa baccifera ³¹²
705	Cibacciferin D	$R_1 = OAc; R_2 = \beta - OAc; R_3 = OH; R_4 = R_5 = H$	Cipadessa baccifera ³¹²
706	Entangolensin C	$\mathbf{R}_1 = \alpha - \mathbf{H}; \mathbf{R}_2 = \alpha - \mathbf{OH}$	Entandrophragma angolense ¹⁴¹
707	Entangolensin D	$\mathbf{R}_1 = \beta - \mathbf{H}; \mathbf{R}_2 = \beta - \mathbf{O}\mathbf{H}$	Entandrophragma angolense ¹⁴¹
708	Cineracipadesin G		Cipadessa cinerascens ³¹³
709	Entangolensin E		Entandrophragma angolense ¹⁴¹
710	Entangolensin F		Entandrophragma angolense ¹⁴¹
711	Entangolensin I	$R = \beta$ -OCH ₃	Entandrophragma angolense ¹⁴¹
712	Entangolensin J	$R = \alpha - OCH_3$	Entandrophragma angolense ¹⁴¹
713	Entangolensin G		Entandrophragma angolense ¹⁴¹
714	Entangolensin H		Entandrophragma angolense ¹⁴¹
715	Koetjapin A	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{O}\mathbf{H}$	Sandoricum koetjape ³¹⁴
716	Koetjapin B	$R_1 = OH; R_2 = H$	Sandoricum koetjape ³¹⁴
717	Koetjapin C	$R_1 = R_2 = OH$	Sandoricum koetjape ³¹⁴
718	Koetjapin D		Sandoricum koetjape ³¹⁴

ОН

680

678

 R_2

COOCH₃

692-693

но

·,,

681-684

Ĥ

689-691

соосн3

Ó

R

0́

Ś

С

ö

710

711-712

H₃CO

713

Figure 32. Structures of andirobin class limonoids 677-718.

2.3.2.3.2. Other Rings B,D-seco

Eleven Limonoids belonging to this class of rings B,D-seco were isolated from *Swietenia macrophylla*, *Xylocarpus moluccensis, Entandrophragma angolense, Trichilia connaroides* and *Cipadessa baccifera* (Table 31/S31, Figure 33). Previously only six limonoids belonging to this class were reported from Meliaceae family¹². Swietemacrolide D (**719**) is C8 hydroxy analog of previously reported domesticulide A^{301} . Thaimoluccensin A (**720**) is a dehydroxy analog of compound (**719**). The hydroxyl group at C8, C14 in compound (**720**) is replaced by $\Delta^{8,14}$ double bond in Entangolensin B (**721**) with hydroxylation at C15. In Trichiconlide B (**722**) there is rearrangement of A/B ring moiety and the absolute configuration was determined by single crystal X-ray diffraction. The $\Delta^{1,2}$ double bond in previously reported Secomahoganin³¹⁵ is reduced in Thaixylomolin A (**723**) with additional ether linkage between C1 and C6 followed by deacetylation at C6. Trangmolin A-C (**724-726**) are structural analogs and differ among themselves in substitution at C3 and C6. The structure of Trangmolin D (**727**) was assigned by NMR spectroscopy. Cipaferoid C (**729**) is the C12 hydroxy analog of Cipaferoid B (**728**).

Table	51. Other Kings D,D-seeo class line		
No.	Limonoid	Substituent	Source
719	Swietemacrolide D	R = OH	Swietenia macrophylla ³¹⁶
720	Thaimoluccensin A	$\mathbf{R} = \mathbf{H}$	Xylocarpus moluccensis ³¹⁷
721	Entangolensin B		Entandrophragma angolense ¹⁴¹
722	Trichiconlide B		Trichilia connaroides ²⁹¹
723	Thaixylomolin A		Xylocarpus moluccensis ³¹⁸
724	Trangmolin A	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{OAc}$	Xylocarpus moluccensis ²⁹⁹
725	Trangmolin B	$\mathbf{R}_1 = \mathbf{OH}; \mathbf{R}_2 = \mathbf{OAc}$	Xylocarpus moluccensis ²⁹⁹
726	Trangmolin C	$\mathbf{R}_1 = \mathbf{OAc}; \mathbf{R}_2 = \mathbf{H}$	Xylocarpus moluccensis ²⁹⁹
727	Trangmolin D		Xylocarpus moluccensis ²⁹⁹
728	Cipaferoid B	$\mathbf{R} = \mathbf{H}$	Cipadessa baccifera ³¹⁹
729	Cipaferoid C	$\mathbf{R} = \mathbf{OH}$	Cipadessa baccifera ³¹⁹

Table 31. Other Rings B,D-seco class limonoid 719-729

Figure 33. Structures of other rings (B,D-seco) class limonoids 719-729.

2.3.2.4. Rings B,C-seco

Toonasecone A (**730**) is C9, C11 seco limonoid isolated from *Toona ciliata* and is derived from previously isolated Toonacilin³²⁰ (Table 32/S32, Figure 34). It is deacetylated at C11, C12 and 2-methyl propanoate group is added at C11.

Table 32. Kings D,C-seco class innonolu 750	Table 32.	Rings B	,C-seco	class	limonoid	730
---	-----------	----------------	---------	-------	----------	-----

No.	Limonoid	Substituent	Source	
730	Toonasecone A		Toona ciliata ³²¹	

Figure 34. Structures of rings (B,C-seco) class limonoid 730.

2.3.2.5. Rings A,E seco

Toonaolide S (731) is ring E cleaved analog of compound (357) (Table 33/S33, Figure 35).

Table 33. Rings A,E-seco class limonoid 731

No.	Limonoid	Substituent	Source
731	Toonaolide S		Toona ciliata ²¹⁹

Figure 35. Structures of rings (A,E-seco) class limonoid 731.

2.3.3. Demolition of three rings

2.3.3.1. Rings A,B,D-seco

Three such Limonoids were isolated from *Trichilia connaroides* and *Khaya senegalensis* (Table 34/S34, Figure 36). Prior to this only six limonoids belonging to this class were reported from Meliaceae family¹². Trichiconin C (**733**) is C4 deacetyl derivative of Trichiconin B (**732**). Khayseneganin D (**734**) is a C6 hydroxy analog of previously isolated methyl ivorensate³²².

Table 34. R	ings A.B.D-se	co class limon	oid 732-734
-------------	---------------	----------------	-------------

No.	Limonoid	Substituent	Source
732	Trichiconin B	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Trichilia connaroides ³²³
733	Trichiconin C	$\mathbf{R} = \mathbf{H}$	Trichilia connaroides ³²³
734	Khayseneganin D		Khaya senegalensis ³²⁴

Figure 36. Structures of rings (A,B,D-seco) class limonoids 732-734.

2.4. Rearranged limonoids

2.4.1. 2,30-linkage

2.4.1.1. Mexicanolide

It consists of C2/30 linkage and C6, C7 are present outside the ring. About 255 limonoids were isolated belonging to this class from *Carapa guianensis*, *Xylocarpus moluccensis*, *Swietenia macrophylla*, *Khaya senegalensis*, *Chukrasia tabularis*, *Swietenia mahogani*, *Cipadessa baccifera*, *Trichilia sinensis*, *Cipadessa cinerascens*, *Heynea trijuga*, *Xylocarpus granatum*, *Trichilia connaroides*, *Guarea kunthiana*, *Khaya ivorensis*, *Xylocarpus rumphii*, *Chisocheton erythrocarpus*, *Aphanamixis polystachya* and *Chisocheton erythrocarpus* (Table 35/S35, Figure 37). Previously 199 Mexicanolide class limonoids were reported from Meliaceae family¹². Limonoids (**735-758**) have $\Delta^{14,15}$ olefinic double bond and differ among themselves in substitution at C2, C3, C6 and C8. The olefinic double bond is shifted from $\Delta^{14,15}$ to $\Delta^{8,14}$ in compounds (**759-775**) and they differ among themselves in substitution at C2, C3, C6 and C30. In addition to this there is also change in substitution at C15 in compounds (**776-790**). Trichinenlide W (**791**) and Granatumin U (**792**) contain $\Delta^{8,30}$ double bond with acetylation at C29 and vary in substitution at C29, but compounds (**793-799**) differ in substitution at C2, C3, C6, C11, C14 whereas

compounds (800-818) differ in substitution at C2, C3 and C6. In Khasenegasin Q (819) and Cipadessain K (820) there is olefinic double bond at $\Delta^{8.9}$ but differ at C3-O with acetylation in compound (819) and tigloylation in compound (820). Limonoids (821-823) contain additional double bond at $\Delta^{14,15}$ with respect to compound (819) but differ in substitution at C2, C3, C6 and C15. The double bond at $\Delta^{8,9}$ in compound (821) is shifted to $\Delta^{8,30}$ in limonoids (824-835) along with varying substituents at C2, C3 and C6. The $\Delta^{8,30}$ double bond in compounds (791, 831) is replaced by the epoxide group in Trichinenlide V (836) and Limonoids (837-844) respectively. Compounds (845-854) are $\Delta^{14,15}$ double bond reduced structural analogs of Khasenegasin O (838) but differ in substitution at C2, C3 and C6. Trichinenlide I-K (855-857) are structural analogs of previously reported Quivisianolide A³²⁵ but differ in substitution at C3 and C6. Compounds (858-862) are structural analogs of previously reported quivisianolide B³²⁶ with varying substituents at C3 and C6. Xylorumphiin L (863) differs from previously reported Xyloccensin H³²⁷ in substitution at C3 and C30. Xylomexicanin I (864) contains bridged B and C rings. 6-O-Acetyl-2ahydroxymexicanolide (865) is C6 acetoxyl analog of previously reported 2α -hydroxymexicanolide³²⁸. Structure of Trichiconin A (866) was determined by single crystal X-ray diffraction. At A ring, in Godavarin C (867) and Triconoid C (868) additional six and five membered rings are formed respectively, in contrast to previously reported grantumin A^{329} . $\Delta^{14,15}$ double bond in compound (867) is absent in compounds (869-872). Thaigranatin K (873) is C30 hydroxy $\Delta^{8,9}$ analog of compound (871). The ether bridge is formed between C8 and C3 in Mexicanolide K (874). Mexicanolide J (875) and Xylorumphiin D (876) are $\Delta^{9,11}$ dehydro analogs of compound (874) differing in hydroxyl group substitution, whereas in compounds (877, 878) $\Delta^{9,11}$ double bond is shifted to $\Delta^{14,15}$ with dehydroxylation at C2 and C30. Furan ring in compound (876) is replaced by 21 hydroxy butenolide in Hainanxylogranin A (879). Hainanxylogranin B (880) is C6 acetoxyl analog of compound (879). Hainanxylogranin C (881) is the C6 hydroxy analog of compound (879). Hainanxylogranin D (882) is a C30 hydroxy analog of compound (879). The furan ring at C17 in compounds (868, 853) is replaced by γ -methoxy butenolide in Trichiliasinenoid E (883) and Cipadessain G, H (884, 885) respectively. Cipaferen M and D (886 and 887) are structurally similar to compound (804) except in substitution at C17. 3-O-detigloyl-3-O-isobutyryl-21-deoxo-23oxofebrifugin A (888) is C3 isobutyryloxy analog of compound (887). 3-O-detigloyl-3-O-isobutyrylgranatumin E (889) and 3-O-detigloyl-3-O-isobutyryl-21-O-methylgranatumin E (890) are C21 hydroxy and methoxy analogs of compound (888) respectively. 3-O-detigloyl-3-O-propanoylgranatumin E (891) is C3 propanoyl analog of compound (889). 21-O-methylgranatumin E (892) is C3 tigloyl analog of compound (890). Compounds (893-915) are C17 y-substituted butenolide analogs in which compounds (893, 894) are analogs of Swietenolide (766); compounds (895-897) are analogs of 6-O-Acetyl- 2α -hydroxymexicanolide (865); 8-hydro-14,15-en-cabralin (898) is analog of compound (755); compounds (901, 903) are analogs of khayasin T (769); Cipadessain F (905) is analog of compound (853) and compounds (909-913) are analogs of Swieteliacate C (802). 3-O-detigloyl-3-Oisobutyrylfebrifugin A (914) is C3 isobutyryloxy analog of previously reported Febrifugin A³²⁹. 3-O-detigloyl-3-Oisobutyryl-23-O-methylfebrifugin A (915) is C23 methoxy analog of compound (914). In compounds (927-937), C1/8 ether linkage is formed with respect to Carapanosin E (735) and compounds (916-926) are $\Delta^{14,15}$ double bond reduced analogs of Xylomolin F (927). Hainanxylogranin E (938) is C3 tigloyl, C23 hydroxy butenolide, C30 acetyl analog of compound (928). Hainanxylogranin H (939) is C21 methoxy butenolide analog of compound (938). Hainanxylogranin I (940) is C21 hydroxy butenolide analog of compound (938). Limonoids (941-954) are structural analogs of previously isolated xyloccensin L^{330} but differ in substitution at C3 and C29. Krishnagranatin E and F (951 and 952) are epimers. In Granatumin R and S (955 and 957) epoxide group is absent at C8/30. Limonoids (958-**987**) are structurally similar to compound (**955**) but in compounds (**958**, **959**) double bonds are present at $\Delta^{8,9}$ and $\Delta^{14,15}$; in compounds (**960-963**) double bonds are present at $\Delta^{8,30}$ and $\Delta^{14,15}$; in compounds (**964-972**) double bond is present at $\Delta^{8,9}$ and in compounds (**976-987**) double bond is present at $\Delta^{8,30}$. Carapanin B (988) is ring D cleaved analog of mexicanolide skeleton with presence of C16 C30 δ lactone ring for the first time in mexicanolide class of compound. Thaigranatin F (989) is C30 epimer of compound (975).

No.	Limonoid	Substituent	Source
735	Carapanosin E	$R_1 = OH; R_2 = COCH(CH_3)_2; R_3 = H; R_4 = \alpha - OH; R_5 = OCOCH(CH_3)CH_2CH_3$	Carapa guianensis ³³¹
736	Carapanosin F	$R_1 = OH; R_2 = Tig; R_3 = H; R_4 = \alpha$ -OH; $R_5 = OCOCH(CH_3)CH_2CH_3$	Carapa guianensis ³³¹
737	Xylomolin D	$R_1 = OH; R_2 = COCH(CH_3)CH_2CH_3; R_3 = OH; R_4 = \alpha - OH; R_5 = H$	Xylocarpus moluccensis ¹⁴³
738	Swieteliacate E	$R_1 = R_2 = H; R_3 = \beta$ -OH; $R_4 = \alpha$ -OH; $R_5 = H$	Swietenia macrophylla ¹¹⁶
739	Khasenegasin P	$R_1 = OH; R_2 = Ac; R_3 = H; R_4 = \alpha \text{-}OH; R_5$	Khaya senegalensis ²⁶⁸

		= H	
740	Carapanolide T	$R_1 = OH; R_2 = COCH(CH_3)_2; R_3 = H; R_4 = a-OH; R_5 = H$	Carapa guianensis ³³²
741	Carapanolide U	$R_1 = OH; R_2 = Tig; R_3 = H; R_4 = \alpha - OH; R_5 = H$	Carapa guianensis ³³²
742	Andirolide X	$R_1 = OH; R_2 = Ac; R_3 = H; R_4 = α-OH; R_5$	Carapa guianensis ³¹⁰
743	Carapanolide C	$= OCOCH(CH_3)_2$ $R_1 = OAc; R_2 = COCH(CH_3)CH_2CH_3; R_3 =$	Carapa guianensis ³³³
744	Carapanolide D	H; $R_4 = \alpha$ -OH; $R_5 = H$ $R_1 = OH; R_2 = COCH(CH_3)CH_2CH_3; R_3 =$	Carapa guianensis ³³³
745	Carapanolide E	H; $R_4 = \alpha$ -OH; $R_5 = OAc$ $R_1 = H; R_2 = COCH(CH_3)_2; R_3 = H; R_4 = \alpha$	Carapa guianensis ³³³
746	Andirolide T	-OH; $R_5 = H$ $R_1 = OH; R_2 = Ac; R_3 = H; R_4 = \alpha$ -OH; R_5	Carapa guianensis ¹⁴⁹
747	Andirolide B	= OCOCH(CH ₃)CH ₂ CH ₃ R ₁ = OAc; R ₂ = Ac; R ₃ = H; R ₄ = β -OH; R ₅	Carapa guianensis ²⁶³
748	Andirolide C	= H $R_1 = OAc; R_2 = COCH(CH_3)_2; R_3 = H; R_4 =$	Carapa guianensis ²⁶³
749	Andirolide D	β -OH; R ₅ = H R ₁ = OAc; R ₂ = Tig; R ₃ = H; R ₄ = β -OH; R ₅	Carapa guianensis ²⁶³
750	Andirolide L	= H R ₁ = OH; R ₂ = Tig; R ₃ = H; R ₄ = α -OH; R ₅	Carapa guianensis ²⁶⁴
751	Andirolide M	= OCOCH(CH ₃) ₂ R_1 = OH; R_2 = COCH(CH ₃) ₂ ; R_3 = H; R_4 =	Carapa guianensis ²⁶⁴
752	Carapanolide R	α -OH R ₅ = OCOCH(CH ₃) ₂ R ₁ = OH; R ₂ = COCH(CH ₃) ₂ ; R ₃ = H; R ₄ =	Carapa guianensis ³³⁴
753	Carapanolide S	α -OH; R ₅ = OAc R ₁ = OH; R ₂ = Tig; R ₃ = H; R ₄ = α -OH; R ₅	Carapa guianensis ³³⁴
754	Andirolide Q	= OAc $R_1 = OH; R_2 = COCH(CH_3)_2; R_3 = H; R_4 =$	Chukrasia tabularis ³³⁵
755	Godavarin I	α-OH; $R_5 = H$ $R_1 = H$; $R_2 = Ac$; $R_3 = H$; $R_4 = \beta$ -OH; $R_5 =$	Xylocarpus moluccensis ³³⁶
756	Thaixylomolin W	H R ₁ = OH; R ₂ = Ac; R ₃ = OH; R ₄ = α-OH;	Xylocarpus moluccensis ³³⁷
757	Thaixylomolin X	$ R_5 = H \\ R_1 = OH; R_2 = Ac; R_3 = OAc; R_4 = \alpha - OH; $	Xylocarpus moluccensis ³³⁷
758	Thaixylomolin Y	$R_5 = H$ $R_1 = OH; R_2 = H; R_3 = OAc; R_4 = \alpha - OH;$	Xylocarpus moluccensis ³³⁷
759	Xylomolin A1	$R_5 = H$ $R_1 = OH; R_2 = COCH(CH_3)_2; R_3 = OAc; R_4$	Xylocarpus moluccensis ¹⁴³
760	Xylomolin A2	= H $R_1 = OH; R_2 = COCH_2CH_3; R_3 = OH; R_4 =$	Xylocarpus moluccensis ¹⁴³
761	Xylomolin A3	H $\mathbf{R}_1 = \mathbf{OH}; \mathbf{R}_2 = \mathbf{COCH}(\mathbf{CH}_3)\mathbf{CH}_2\mathbf{CH}_3; \mathbf{R}_3 =$	Xylocarpus moluccensis ¹⁴³
760	Vulamalin A5	$R_4 = OH$ $R_2 = OH$ $R_3 = OA \approx R_2 = OA \approx R_3 = OH$	V ., <i>l</i> = = = = = = = = = = = = = = = = = = =
762	Aylomolin A6	$R_1 = OH, R_2 = Ac, R_3 = OAc, R_4 = OH$ $R_1 = OAc; R_2 = Ac; R_3 = OH; R_3 = H$	<i>Xylocarpus moluccensis</i>
705	Xylonionii A0 Xylonionii A7	$\mathbf{R}_1 = \mathbf{O}\mathbf{A}\mathbf{c}, \mathbf{R}_2 = \mathbf{A}\mathbf{c}, \mathbf{R}_3 = \mathbf{O}\mathbf{\Pi}, \mathbf{R}_4 = \mathbf{\Pi}$	Xylocarpus motuccensis
704		$\mathbf{K}_1 = \mathbf{O}\mathbf{A}\mathbf{C}; \mathbf{K}_2 = \mathbf{A}\mathbf{C}; \mathbf{K}_3 = \mathbf{K}_4 = \mathbf{\Pi}$	Aylocarpus moluccensis
/65	3-O-propionyiproceranolide	$R_1 = H; R_2 = COCH_2CH_3; R_3 = R_4 = H$	Swietenia macrophylla ³³⁹
766	Swietenolide	$R_1 = R_2 = H; R_3 = \beta - OH; R_4 = H$	Swietenia mahogani
767	3-O-acetylswietenolide	$R_1 = H; R_2 = Ac; R_3 = \beta - OH; R_4 = H$	Swietenia mahogani ³³⁹
768	3, 6-00-diacetylswietenolide	$R_1 = H; R_2 = Ac; R_3 = OAc; R_4 = H$	Swietenia mahogani ³³⁹
769	khayasin T	$R_1 = H; R_2 = Tig; R_3 = R_4 = H$	Swietenia mahogani ³³⁹
770	3- <i>O</i> -tiglovlswietenolide	$R_1 = H$: $R_2 = Tig$: $R_3 = \beta$ -OH: $R_4 = H$	Swietenia mahogani ³³⁹
771	Moluccensin R	$\mathbf{R}_{1} = \mathbf{OH}$; $\mathbf{R}_{2} = \mathbf{COCH}(\mathbf{CH}_{2})_{2}$; $\mathbf{R}_{2} = \alpha_{2}\mathbf{OH}$;	Xylocarpus moluccensis ³⁴⁰
//1	Monuccensiii K	$R_1 = O(1, R_2) = COCH(C(13)), R_3 = U O(1, R_3)$	Aylocarpus motaccensis
772	Moluccensin S	$\mathbf{R}_4 = \mathbf{H}$ $\mathbf{R}_1 = \mathbf{OH}; \mathbf{R}_2 = \mathbf{COCH}(\mathbf{CH}_3)\mathbf{CH}_2\mathbf{CH}_3; \mathbf{R}_3 =$	Xylocarpus moluccensis ³⁴⁰
773	Cipadesin N	α -OH; $R_4 = H$ $R_1 = OH; R_2 = COCH(CH_3)CH_2CH_3; R_3 =$	Cipadessa baccifera ²⁰³
774		$\mathbf{K}_4 = \mathbf{H}$	V I 153
//4	Thaigranatin M	$R_1 = R_2 = H; R_3 = OAC; R_4 = H$	<i>Aylocarpus granatum</i>
775 776	Thaixylomolin U Xylomolin A4	$\kappa_1 = OH; \kappa_2 = H; \kappa_3 = \alpha \text{-OAc}; \kappa_4 = H$ $R_1 = OH; \kappa_2 = COCH(CH_3)CH_2CH_3; \kappa_3 =$	Xylocarpus moluccensis ³³⁷ Xylocarpus moluccensis ¹⁴³
777		$OAc; R_4 = H; R_5 = OH$	T
///		$\kappa_1 = OH; \kappa_2 = 11g; \kappa_3 = H; \kappa_4 = Ac; \kappa_5 = OCOCH(CH_3)CH_2CH_3$	Trichilla sinensis
778	Trichinenlide L	$R_1 = OH; R_2 = Tig; R_3 = H; R_4 = Ac; R_5 = OAc$	Trichilia sinensis ³⁴²
779	Trichinenlide M	$R_1 = OH; R_2 = Tig; R_3 = OAc; R_4 = H; R_5 = OAc$	Trichilia sinensis ³⁴²

780	Trichinenlide N	$R_1 = OH; R_2 = Tig; R_3 = R_4 = H; R_5 = OAc$
781	Trichinenlide O	$\mathbf{R}_{1} = \mathbf{OH} \cdot \mathbf{R}_{2} = \mathbf{COCHCHCH}_{2} \cdot \mathbf{R}_{2} = \mathbf{OAc}^{2}$
/01	Theimeinide 0	$R_1 = 011, R_2 = 00000000000000000000000000000000000$
		$\mathbf{R}_4 = \mathbf{A}\mathbf{C}; \mathbf{R}_5 = \mathbf{O}\mathbf{A}\mathbf{C}$
782	Trichinenlide P	$R_1 = OH; R_2 = COCH(CH_3)CH_2CH_3; R_3 =$
		$OAc; R_4 = Ac; R_5 = OAc$
783	Trichinenlide O	$\mathbf{R}_1 = \mathbf{OH}$: $\mathbf{R}_2 = \mathbf{Tig}$: $\mathbf{R}_2 = \mathbf{R}_4 = \mathbf{H}$: $\mathbf{R}_5 =$
105	The mile and a	$R_1 = 011, R_2 = 115, R_3 = 124 = 11, R_3 = 00000000000000000000000000000000000$
		$OCOCH(CH_3)_2$
784	Trichinenlide R	$R_1 = OH; R_2 = Tig; R_3 = OAc; R_4 = Tig; R_5$
		= OAc
785	Trichinenlide S	$\mathbf{R}_1 = \mathbf{OH}^{\mathbf{I}} \mathbf{R}_2 = \mathbf{Tig}^{\mathbf{I}} \mathbf{R}_2 = \mathbf{H}^{\mathbf{I}} \mathbf{R}_4 = \mathbf{Tig}^{\mathbf{I}} \mathbf{R}_5 =$
, 60		Ω_{Λ_2}
704		
/86	Cipadessain I	$R_1 = H; R_2 = H; R_3 = R_4 = R_5 = H$
787	Heytrijunolide A	$R_1 = OH; R_2 = Tig; R_3 = OAc; R_4 = H; R_5 =$
		OH
788	Heytrijupolide B	$\mathbf{R}_{1} = \mathbf{O}\mathbf{H}^{2}\mathbf{R}_{2} = \mathbf{T}_{1}\mathbf{G}^{2}\mathbf{R}_{2} = \mathbf{O}\mathbf{A}\mathbf{G}^{2}\mathbf{R}_{3} = \mathbf{A}\mathbf{G}^{2}\mathbf{R}_{4}$
/00	neyunjulonde D	-OU
		=ОП
789	Heytrijunolide C	$R_1 = OH; R_2 = Tig; R_3 = OAc; R_4 = Ac; R_5$
		= OAc
790	Godavarin J	$R_1 = H$: $R_2 = Ac$: $R_2 = R_4 = R_5 = H$
701	Trichinanlide W	$\mathbf{P} = \mathbf{OH} \cdot \mathbf{P} = \mathbf{Tig}$
791		$\mathbf{R}_1 = \mathbf{O}\mathbf{I}$, $\mathbf{R}_2 = \mathbf{I}\mathbf{I}\mathbf{g}$
792	Granatumin U	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{A}\mathbf{c}$
793	Xylomolin E	$R_1 = OH; R_2 = Ac; R_3 = OAc; R_4 = H; R_5 =$
		OH
794	Khasenegasin S	$\mathbf{R}_1 = \mathbf{H} \cdot \mathbf{R}_2 = \mathbf{A}_1 \cdot \mathbf{R}_2 = \mathbf{H} \cdot \mathbf{R}_4 = \mathbf{O} \mathbf{H} \cdot \mathbf{R}_5 = \mathbf{H}$
705	Cinadossain A	$\mathbf{R}_1 = \mathbf{H}, \mathbf{R}_2 = \mathbf{H}, \mathbf{R}_3 = \mathbf{H}, \mathbf{R}_4 = \mathbf{OH}, \mathbf{R}_3 = \mathbf{H}$ $\mathbf{P}_1 = \mathbf{U}, \mathbf{P}_2 = \mathbf{T}$ is $\mathbf{P}_2 = \mathbf{U}, \mathbf{P}_3 = \mathbf{OH}, \mathbf{P}_3 = \mathbf{U}$
793	Cipadessain A	$K_1 = H, K_2 = Hg, K_3 = H, K_4 = OH, K_5 = H$
796	Cipadessain B	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = R_4 = H;$
		$R_5 = OH$
797	Hainanxvlogranin J	$R_1 = OAc; R_2 = Ac; R_3 = OH; R_4 = R_5 = H$
798	Hainanyylogranin K	$\mathbf{R}_1 = \mathbf{O}\mathbf{A}\mathbf{c}$; $\mathbf{R}_2 = \mathbf{A}\mathbf{c}$; $\mathbf{R}_3 = \mathbf{H}$; $\mathbf{R}_4 = \mathbf{R}_5 = \mathbf{H}$
700	Hainanyyiogrammin I	$R_1 = 0.16, R_2 = 16, R_3 = 11, R_4 = R_5 = 11$
199		$R_1 = \Pi; R_2 = DZ; R_3 = \Pi; R_4 = R_5 = \Pi$
800	Swietemacrolide A	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = OAc$
801	Swietemacrolide B	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{COC}(\mathbf{CH}_3)\mathbf{CH}_2; \mathbf{R}_3 = \mathbf{OAc}$
802	Swieteliacate C	$R_1 = H; R_2 = COCH_2CH_3; R_3 = H$
803	6- <i>O</i> -acetylswietenin B	$\mathbf{R}_1 = \mathbf{H}^{\dagger} \mathbf{R}_2 = \mathbf{COCH}_2 \mathbf{CH}_2^{\dagger} \mathbf{R}_2 = \mathbf{OAc}$
804	Febrifugin	$R_1 - H; R_2 - Tig; R_2 - H$
004		$R_1 = 11, R_2 = 11g, R_3 = 11$
805	Swietenine	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = 11g; \mathbf{R}_3 = p \cdot \mathbf{OH}$
806	Swietenine acetate	$R_1 = H; R_2 = Tig; R_3 = \beta$ -OCOCH ₃
807	Khasenegasin R	$R_1 = R_2 = H; R_3 = \beta - OAc$
808	3-de(2-methylbutanoyl)-3-propanoylcipadesin	$R_1 = H^{\dagger} R_2 = COCH_2CH_2^{\dagger} R_2 = H$
809	2-hydroxy_6-deacetoxyswietenine	$\mathbf{R}_1 = \mathbf{O}\mathbf{H}$: $\mathbf{R}_2 = \mathbf{T}$ ig: $\mathbf{R}_2 = \mathbf{H}$
810	2 hydroxy o dedeetoxyswietennie	$\mathbf{R}_1 = \mathbf{O}\mathbf{I}_1, \mathbf{R}_2 = \mathbf{I}\mathbf{I}_2, \mathbf{R}_3 = \mathbf{I}\mathbf{I}$
810	Granatumin H	$R_1 = \Pi; R_2 = COC\Pi(C\Pi_3)_2; R_3 = \Pi$
811	Granatumin I	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{COC}(\mathbf{CH}_3)\mathbf{CH}_2; \mathbf{R}_3 = \mathbf{H}$
812	Trichiconnarone A	$R_1 = OH; R_2 = COCHCHCH_3; R_3 = H$
813	Trichiconnarone B	$R_1 = OH; R_2 = COC(CH_3)CH_2; R_3 = H$
814	Humilinolide F	$\mathbf{R}_{1} = \mathbf{OH}; \mathbf{R}_{2} = \text{Tig}; \mathbf{R}_{2} = \mathbf{OCOCH}_{2}$
015	mathed 2 hadress 2h distant and 1 secondias	$R_1 = OH, R_2 = Hg, R_3 = OCOCH3$
815	memyr 2-nydroxy-50-ugioyloxy-1-oxomenac-	$\mathbf{K}_1 = \mathbf{O}\mathbf{H}; \mathbf{K}_2 = \mathbf{\Pi}\mathbf{g}; \mathbf{K}_3 = \mathbf{H}$
	8(30)-enate	
816	Swietenine acetate	$R_1 = H; R_2 = Tig; R_3 = OCOCH_3$
817	Thaixylogranin E	$R_1 = H$; $R_2 = COCH(CH_2)_2$; $R_3 = OAc$
818	Theivylograpin F	$\mathbf{R}_1 = \mathbf{H}_1 \mathbf{R}_2 = \mathbf{COC}(\mathbf{CH}_2)\mathbf{CH}_2 \mathbf{R}_2 = \mathbf{OA}_2$
Q10	Khasanagasin O	$R_1 = 11, R_2 = COC(C113)C112, R_3 = OAC$ $P = A_2$
019		$\mathbf{N} - \mathbf{A}\mathbf{C}$
820	Cipadessain K	$\mathbf{R} = \mathrm{Tig}$
821	Xylomolin B1	$R_1 = OH; R_2 = Ac; R_3 = H$
822	Xvlomolin B2	$R_1 = R_2 = R_3 = H$
823	Heytrijunolide E	$\mathbf{R}_1 = \mathbf{OH}^{\dagger} \mathbf{R}_2 = \mathbf{H}^{\dagger} \mathbf{R}_2 = \mathbf{OH}^{\dagger}$
824	Vulemelin C1	$\mathbf{R}_1 = \mathbf{O}\mathbf{I}\mathbf{I}, \mathbf{R}_2 = \mathbf{I}\mathbf{I}, \mathbf{R}_3 = \mathbf{O}\mathbf{I}\mathbf{I}$
024		$\mathbf{K}_1 = \mathbf{O}\mathbf{H}; \mathbf{K}_2 = \mathbf{A}\mathbf{C}; \mathbf{K}_3 = \mathbf{O}\mathbf{H}$
825	Xylomolin C2	$\mathbf{R}_1 = \mathbf{OH}; \mathbf{R}_2 = \mathbf{COCH}(\mathbf{CH}_3)\mathbf{CH}_2\mathbf{CH}_3; \mathbf{R}_3 =$
		Н
826	6-O-Acetyl-6-dehydroxymoluccensin T	$R_1 = OH; R_2 = COCH(CH_3)_2; R_3 = OAc$
827	Swielimonoid A	$R_1 = H; R_2 = Tig; R_3 = OH$
828	3-0- methylbutyrylseneganolide A	$\mathbf{R}_{1} = \mathbf{H} \cdot \mathbf{R}_{2} = \mathbf{COCH} \cdot \mathbf{CH} (\mathbf{CH}) \cdot \mathbf{P} = \mathbf{H}$
020	S-O- mentyroutyryrseneganonue A	$R_1 = 11, R_2 = COCH_2CH(CH_3)_2, R_3 = H$
829	Moluccensin T	$\mathbf{R}_1 = \mathbf{OH}; \mathbf{R}_2 = \mathbf{COCH}(\mathbf{CH}_3)_2; \mathbf{R}_3 = \mathbf{OH}$
830	Moluccensin U	$R_1 = OH; R_2 = COCH(CH_3)CH_2CH_3; R_3 =$
		OH
831	Thaixylogranin G	$R_1 = H$: $R_2 = A_C$: $R_2 = OH$
832	Theirydogranin H	$\mathbf{P} = \mathbf{H} \cdot \mathbf{P} = COCH/CU \cdot CU \cdot \mathbf{P} =$
032		$\kappa_1 = \pi, \kappa_2 = COCH(CH_3)CH_2CH_3; \kappa_3 = 0$
		UH
833	Thaigranatin J	$R_1 = H; R_2 = COCH(CH_3)CH_2CH_3; R_3 =$
		OAc
834	Trichanolide F	$R_1 = OH$; $R_2 = Tig$; $R_3 = \beta - OH$

 $R_2 = COCHCHCH_3; R_3 = OAc;$ $R_5 = OAc$ $R_2 = COCH(CH_3)CH_2CH_3; R_3 =$ Ac; $R_5 = OAc$ $R_2 = Tig; R_3 = R_4 = H; R_5 =$ CH3)2 $R_2 = Tig; R_3 = OAc; R_4 = Tig; R_5$ $R_2 = Tig; R_3 = H; R_4 = Tig; R_5 =$ = Tig; R₃ = R₄ = R₅ = H $R_2 = Tig; R_3 = OAc; R_4 = H; R_5 =$ $R_2 = Tig; R_3 = OAc; R_4 = Ac; R_5$ $R_2 = Tig; R_3 = OAc; R_4 = Ac; R_5$ $= Ac; R_3 = R_4 = R_5 = H$ $R_2 = Tig$ = Ac $R_2 = Ac; R_3 = OAc; R_4 = H; R_5 =$ = Ac; R₃ = H; R₄ = OH; R₅ = H = Tig; R₃ = H; R₄ = OH; R₅ = H = COCH(CH₃)₂; R₃ = R₄ = H; $R_2 = Ac; R_3 = OH; R_4 = R_5 = H$ $R_2 = Ac; R_3 = H; R_4 = R_5 = H$ = Bz; R₃ = H; R₄ = R₅ = H = $COCH(CH_3)_2$; $R_3 = OAc$ = COC(CH₃)CH₂; R₃ = OAc = COCH₂CH₃; R₃ = H = COCH₂CH₃; R₃ = OAc = Tig; R₃ = H = Tig; $R_3 = \beta$ -OH = Tig; $R_3 = \beta$ -OCOCH₃ H; $R_3 = \beta$ -OAc = COCH₂CH₃; $R_3 = H$ $R_2 = Tig; R_3 = H$ = COCH(CH₃)₂; R₃ = H = COC(CH₃)CH₂; R₃ = H $R_2 = COCHCHCH_3; R_3 = H$ $R_2 = COC(CH_3)CH_2; R_3 = H$ $R_2 = Tig; R_3 = OCOCH_3$ $R_2 = Tig; R_3 = H$ = Tig; R₃ = OCOCH₃ = COCH(CH₃)₂; R₃ = OAc = COC(CH₃)CH₂; R₃ = OAc $\mathbf{R}_2 = \mathbf{A}\mathbf{c}; \, \mathbf{R}_3 = \mathbf{H}$ $R_3 = H$ $R_2 = H; R_3 = OH$ $\mathbf{R}_2 = \mathbf{A}\mathbf{c}; \, \mathbf{R}_3 = \mathbf{O}\mathbf{H}$ $R_2 = COCH(CH_3)CH_2CH_3; R_3 =$ $R_2 = COCH(CH_3)_2; R_3 = OAc$ = Tig; R₃ = OH = COCH₂CH(CH₃)₂; R₃ = H $R_2 = COCH(CH_3)_2; R_3 = OH$ $R_2 = COCH(CH_3)CH_2CH_3; R_3 =$ = Ac; R₃ = OH = COCH(CH₃)CH₂CH₃; R₃ = = COCH(CH₃)CH₂CH₃; R₃ = $R_1 = OH; R_2 = Tig; R_3 = \beta - OH$

Trichilia sinensis³⁴² Trichilia sinensis³⁴² Trichilia sinensis³⁴² Trichilia sinensis³⁴² Trichilia sinensis³⁴² Cipadessa cinerascens³⁴³ Heynea trijuga³⁴⁴ Heynea trijuga³⁴⁴ Heynea trijuga³⁴⁴ Xylocarpus moluccensis³³⁶ Trichilia sinensis³⁴¹ Xylocarpus granatum³⁴⁵ Xylocarpus moluccensis¹⁴³ Khaya senegalensis²⁶⁸ Cipadessa cinerascens³⁴³ Cipadessa cinerascens³⁴³ Xylocarpus granatum¹⁵² Xylocarpus granatum¹⁵² Xylocarpus granatum¹⁵² Swietenia macrophylla³¹⁶ Swietenia macrophylla³¹⁶ Swietenia macrophylla¹¹⁶ Swietenia macrophylla³³⁸ Swietenia mahogani³³⁹ Swietenia mahogani³³⁹ Swietenia mahogani³³⁹ Khaya senegalensis²⁶⁸ Cipadessa cinerascens³⁴⁶ Swietenia mahogani³⁴⁷ Xylocarpus granatum³⁴⁸ Xylocarpus granatum³⁴⁸ Trichilia connaroides³⁴⁹ Trichilia connaroides³⁴⁹ Guarea kunthiana³⁵⁰ Guarea kunthiana³⁵⁰ Guarea kunthiana³⁵⁰ Xylocarpus granatum³⁵¹ Xylocarpus granatum³⁵¹ Khaya senegalensis²⁶⁸ Cipadessa cinerascens³⁴³ Xylocarpus moluccensis¹⁴³ Xylocarpus moluccensis¹⁴³ Heynea trijuga³⁴⁴ Xylocarpus moluccensis¹⁴³ Xylocarpus moluccensis¹⁴³

Trichilia sinensis³⁴²

Xylocarpus moluccensis³⁵² Swietenia macrophylla³⁵³ Khaya ivorensis³⁵⁴ Xylocarpus moluccensis³⁴⁰ Xylocarpus moluccensis³⁴⁰

Xylocarpus granatum³⁵¹ Xylocarpus granatum³⁵¹

Xylocarpus granatum¹⁵³

Trichilia connaroides355

835	Hainanxylogranin M	$R_1 = OAc; R_2 = Ac; R_3 = H$
836	Trichinenlide V	
837	Sundarbanxylogranin B	$R_1 = H; R_2 = Ac; R_3 = H$
838	Khasenegasin O	$R_1 = R_2 = R_3 = H$
839	14.15-didehvdroruageanin A	$R_1 = H$: $R_2 = COCH(CH_3)_2$: $R_3 = H$
840	Thaixylogranin A	$R_1 = H$: $R_2 = COCH(CH_2)_2$: $R_2 = OH$
841	Thaixylogranin B	$R_1 - H; R_2 - A_C; R_2 - OA_C$
842	Thairy logramin D	$\mathbf{R}_1 = \mathbf{H}, \mathbf{R}_2 = \mathbf{A}\mathbf{c}, \mathbf{R}_3 = \mathbf{O}\mathbf{R}\mathbf{c}$ $\mathbf{R}_4 = \mathbf{H}; \mathbf{R}_2 = \mathbf{A}\mathbf{c}; \mathbf{R}_3 = \mathbf{B}_2\mathbf{O}\mathbf{H}$
8/3	Hainanyylogranin D	$\mathbf{R}_1 = \mathbf{H}, \mathbf{R}_2 = \mathbf{A}\mathbf{C}, \mathbf{R}_3 = \mathbf{p} \cdot \mathbf{O}\mathbf{H}$ $\mathbf{P}_1 = \mathbf{H} \cdot \mathbf{P}_2 = \mathbf{C}\mathbf{O}\mathbf{C}\mathbf{H}(\mathbf{a}, \mathbf{C}\mathbf{H}_2)\mathbf{C}\mathbf{H}_2\mathbf{C}\mathbf{H}_2$
045	Hamanxylogramm F	$K_1 = H, K_2 = COCH(u-CH_3)CH_2CH_3, K_3 = U$
811	Trichenolida G	$\mathbf{P} = \mathbf{O}\mathbf{U}_{1}\mathbf{P} = \mathbf{T}_{1}\mathbf{g}_{1}\mathbf{P} = \mathbf{\beta}\mathbf{O}\mathbf{U}$
044	Maviannalida I	$R_1 = OH; R_2 = Hg; R_3 - p - OH$
845	Mexicanolide I	$\mathbf{R}_1 = \mathbf{O}\mathbf{H}; \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{H}$
846	6-deoxyswietemahonin A	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{COCH}_2\mathbf{CH}_3; \mathbf{R}_3 = \mathbf{H}$
847	swietemahonin E	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathrm{Tig}; \mathbf{R}_3 = \beta \cdot \mathbf{OH}$
848	Swietemacrophin	$R_1 = OAc; R_2 = Tig; R_3 = H$
849	Swielimonoid B	$R_1 = H; R_2 = COCH(CH_3)CH_2CH_3; R_3 =$
		OH
850	Trichinenlide H	$R_1 = OH; R_2 = COCHCHCH_3; R_3 = OH$
851	Trichanolide	$R_1 = OH; R_2 = COCH(CH_3)CH_2CH_3; R_3 =$
		Н
852	Heytrijunolide D	$R_1 = OH; R_2 = COCHCHCH_3; R_3 = H$
853	14-hydroxy-14,15-dihydrogranatumin C	$R_1 = H; R_2 = Tig; R_3 = H$
854	Thaixylogranin C	$R_1 = H; R_2 = COCH_2CH_2; R_3 = H$
855	Trichinenlide I	$R_1 = \text{Tig} \cdot R_2 = H$
856	Trichinenlide I	$R_1 = R_2, R_2 = R$ $R_2 = COCHCHCH3; R_2 = H$
857	Trichinenlide K	$R_1 = \text{Coefficients}, R_2 = H$ $R_1 = \text{Tig: } R_2 = OH$
858	Trichinanlida B	$\mathbf{R}_1 = \mathbf{H}\mathbf{g}, \mathbf{R}_2 = \mathbf{O}\mathbf{H}$ $\mathbf{P}_1 = \mathbf{C}\mathbf{O}\mathbf{C}\mathbf{H}\mathbf{C}\mathbf{H}\mathbf{C}\mathbf{H} \cdot \mathbf{P}_2 = \mathbf{H}$
850	Trishinanlida C	$R_1 = COCHCHCH_3, R_2 = H$ $R_1 = COCHCHCH_1, R_2 = OH$
839	Triabinentide C	$\mathbf{R}_1 = \mathbf{COCHCHCH}_3; \mathbf{R}_2 = \mathbf{OH}$
800	Thenhenhee D	$\mathbf{K}_1 = 11\mathbf{g}; \mathbf{K}_2 = \mathbf{H}$
861	Trichinenlide E	$R_1 = T_1g; R_2 = OH$
862	Cipadesin O	$R_1 = COCH(CH_3)CH_2CH_3; R_2 = H$
863	Xylorumphiin L	
864	Xylomexicanin I	
865	6-O-Acetyl-2α-hydroxymexicanolide	
866	Trichiconin A	
867	Godavarin C	
868	Triconoid C	
869	Trichinenlide X	$R_1 = OH; R_2 = Tig$
870	Moluccensin V	$R_1 = H; R_2 = Ac$
871	Godavarin A	$R_1 = H; R_2 = Tig$
872	Godavarin B	$R_1 = H; R_2 = COCH(CH_3)_2$
873	Thaigranatin K	
874	Mexicanolide K	
875	Mexicanolide I	$\mathbf{R}_{1} = \mathbf{H} \cdot \mathbf{R}_{2} = \mathbf{O}\mathbf{H}$
876	Vulorumphiin D	$R_1 = 11, R_2 = 011$ $P_1 = 011; P_2 = 11$
870	Andirolido N	$R_1 = OH, R_2 = H$ R = OH
0//	Andronue N	
8/8	14-deoxy- Δ 14,15-xyloccensin K	K = H
8/9	Hainanxylogranin A	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}$
880	Hainanxylogranin B	$R_1 = \alpha$ -OAc; $R_2 = H$
881	Hainanxylogranin C	$\mathbf{R}_1 = \mathbf{OH}; \mathbf{R}_2 = \mathbf{H}$
882	Hainanxylogranin D	$R_1 = H; R_2 = OH$
883	Trichiliasinenoid E	
884	Cipadessain G	$\mathbf{R} = \mathbf{S}$ -Methylbut
885	Cipadessain H	$\mathbf{R} = \mathrm{Tig}$
886	Cipaferen M	$R1 = COCH(CH_3)CH_2CH_3; R_2 = OH$
887	Cipadessain D/21-deoxo-23-oxofebrifugin A	$R1 = Tig; R_2 = H$
		-
888	3-O-detigloyl-3-O-isobutyryl-21-deoxo-23-	$R_1 = COCH(CH_3)_2; R_2 = H$
	oxofebrifugin A	
889	3-O-detigloyl-3-O-isobutyrylgranatumin E	$R_1 = COCH(CH_2)_2$; $R_2 = \alpha$ -OH
890	3-O-detigloyl-3-O-isobutyryl-21-O-	$R_1 = COCH(CH_2)_2$; $R_2 = \alpha - OCH_2$
570	methylgranatumin E	
801	3-0-detiglovl-3-0-propanovlaranatumin E	$\mathbf{R}_{1} = \mathbf{COCH}_{1}\mathbf{CH}_{2}\mathbf{R}_{2} = \mathbf{H}$
802	21. O mothylaronetymin E	$\mathbf{R}_1 = \mathbf{COCH}_2\mathbf{CH}_3, \mathbf{R}_2 = \mathbf{\Pi}$ $\mathbf{D}_1 = \mathbf{Tig}_1 \mathbf{D}_2 = \mathbf{Tig}_2 \mathbf{D}_2$
072 902	21-O-methylgranatumin E	$\mathbf{K}_1 = \mathbf{\Pi}\mathbf{g}; \mathbf{K}_2 = \mathbf{u} \cdot \mathbf{U} \mathbf{\Pi}_3$
893	Swietenacate D	$\mathbf{\kappa}_1 = \mathbf{H}; \mathbf{\kappa}_2 = \mathbf{p} \cdot \mathbf{O}\mathbf{H}$
894	Cipadessain J	$\mathbf{K}_1 = \mathbf{COCH}(\mathbf{CH}_3)\mathbf{CH}_2\mathbf{CH}_3; \mathbf{R}_2 = \mathbf{H}$
895	Khaysenelide A	$\mathbf{K} = \mathbf{H}$
896	Khaysenelide B	$\mathbf{R} = \mathbf{C}\mathbf{H}_3$
897	3-deacetyl-8-hydro-cabralin-14,15-en-3-one	
898	8-hydro-14,15-en-cabralin	$R_1 = Ac; R_2 = H$

Trichilia sinensis³⁴¹ Xylocarpus granatum³⁵⁶ Khaya senegalensis²⁶⁸ Khaya ivorensis354 Xylocarpus granatum³⁵¹ Xylocarpus granatum³⁵¹ Xylocarpus granatum¹⁵³ Xylocarpus granatum¹⁵² Trichilia connaroides³⁵⁵ Heynea trijuga³⁵⁷ Swietenia macrophylla³³⁸ Swietenia mahogani³³⁹ Swietenia macrophylla³⁵⁸ Swietenia macrophylla³⁵³ Trichilia sinensis³⁴² Trichilia connaroides³⁵⁹ Heynea trijuga³⁴⁴ Xylocarpus granatum¹⁵⁴ Xylocarpus granatum³⁵¹ Trichilia sinensis³⁴² Cipadessa baccifera²⁰³ Xylocarpus rumphii³⁶⁰ Xylocarpus granatum³⁶¹ Xylocarpus moluccensis³⁵² Trichilia connaroides³²³ Xylocarpus moluccensis³³⁶ Trichilia connaroides³⁶² Trichilia sinensis³⁴¹ Xylocarpus moluccensis³⁴⁰ Xylocarpus moluccensis³³⁶ Xylocarpus moluccensis³³⁶ Xylocarpus granatum¹⁵³ Heynea trijuga³⁵⁷ Heynea trijuga³⁵⁷ Xylocarpus rumphii³⁶³ Carapa guianensis²⁶⁴ Chisocheton erythrocarpus³⁶⁴ Xylocarpus granatum¹⁵ *Xylocarpus granatum*¹⁵² Xylocarpus granatum¹⁵² Xylocarpus granatum¹⁵² Trichilia sinensis³⁶⁵ Cipadessa cinerascens³⁴³ Cipadessa cinerascens³⁴³ Cipadessa baccifera³⁰⁸ Cipadessa cinerascens³⁴³/ Cipadessa baccifera³⁶⁶ Cipadessa baccifera³⁶⁶ Cipadessa baccifera³⁶⁶ Cipadessa baccifera³⁶⁶ Cipadessa baccifera³⁶⁶ Cipadessa baccifera³⁶⁶ Swietenia macrophylla¹¹⁶

Xylocarpus granatum¹⁵²

Cipadessa baccifera⁵⁰⁶ Swietenia macrophylla¹¹⁶ Cipadessa cinerascens³⁴³ Khaya senegalensis³⁶⁷ Khaya senegalensis³⁶⁷ Aphanamixis polystachya³⁶⁸ Aphanamixis polystachya³⁶⁸

899	Hainanxylogranin N	$R_1 = Tig; R_2 = \alpha$ -OH	Xylocarpus granatum ¹⁵²
900	Hainanxylogranin O	$R_1 = COCH(CH_3)CH_2CH_3; R_2 = \alpha - OH$	<i>Xylocarpus granatum</i> ¹⁵²
901	Cipaferen K	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \text{COCH}(\text{CH}_3)\text{CH}_2\text{CH}_3; \mathbf{R}_3 = \mathbf{R}_4$ = $\mathbf{R}_5 = \mathbf{H}$	Cipadessa baccifera ³⁰⁸
902	Cipaferen L	$R_1 = H; R_2 = Tig; R_3 = R_4 = R_5 = H$	Cipadessa baccifera ³⁰⁸
903	Trichinenlide T	$R_1 = OH; R_2 = Tig; R_3 = R_4 = R_5 = OAc$	Trichilia sinensis ³⁴²
904	Thaixylomolin V	$R_1 = OH$: $R_2 = Ac$: $R_3 = OAc$: $R_4 = R_5 = H$	Xylocarpus moluccensis ³³⁷
905	Cinadessain F	$R_1 = OOCH(CH_2)CH_2CH_2$; $R_2 = CH_2$	Cinadessa cinerascens ³⁴³
906	21 ovo 23 hydroxylmageanin A	$\mathbf{R}_1 = \text{COCH}(\text{CH}_3) \text{cH}_2\text{CH}_3, \mathbf{R}_2 = \text{CH}_3$	Cipadessa baccifera ³⁶⁶
900 907	3-O-detigloyl-3-O-(2'R-methylbutanoyl)-21-	$R_1 = COCH(CH_3)2, R_2 = H$ $R_1 = COCH(CH_3)CH_2CH_3; R_2 = H$	Cipadessa baccifera ³⁶⁶
908	oxo-23-hydroxylruageanin A 3-O-deisobutyryl-3-O-tigloyl-14,15-dedihydro- 21-oxo-23-hydroxylruageanin A		Cipadessa baccifera ³⁶⁶
000	Khasenegasin T	$\mathbf{R}_{1} = \mathbf{R}_{2} = \mathbf{R}_{2} = \mathbf{R}_{3} = \mathbf{OH}$	Khava sanagalansis ²⁶⁸
010	Khasenegasin I	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{R}_4 = \mathbf{O}\mathbf{H}$ $\mathbf{P}_1 = \mathbf{H}_1 \cdot \mathbf{P}_2 = \mathbf{R}_1 \cdot \mathbf{O}\mathbf{A}_2 \cdot \mathbf{P}_3 = \mathbf{P}_1 = \mathbf{O}\mathbf{H}_2$	Khaya senegalensis
011	Khasenegasin V	$R_1 = R_1, R_2 = p - OAc, R_3 = R_4 = OR$	Khaya senegalensis
012	Cinadaaaain C	$R_1 = R_2 = 11, R_3 = 0AC, R_4 = 011$	Cin a dagag ain angag ang ³⁴³
912	Cipadessain C Cipadessain E	$\mathbf{R}_1 = \mathbf{\Pi}\mathbf{g}, \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{R}_4 = \mathbf{O}\mathbf{\Pi}$ $\mathbf{R}_2 = \mathbf{C}\mathbf{O}\mathbf{C}\mathbf{U}, \mathbf{C}\mathbf{U}, \mathbf{R}_3 = \mathbf{R}_4 = \mathbf{O}\mathbf{\Pi}$	Cipadessa cinerascens
915		$\mathbf{R}_1 = \mathbf{COCH}_2\mathbf{CH}_3; \ \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{R}_4 = \mathbf{OH}$	Cipaaessa cinerascens
914	3-O-detigloyI-3-O-isobutyryifebrifugin A	$R_1 = COCH(CH_3)_2; R_2 = R_3 = H; R_4 = \alpha$ - OH	Cipadessa baccifera
915	3-O-detigloyl-3-O-isobutyryl-23-O- methylfebrifugin A	$R_1 = COCH(CH_3)_2; R_2 = R_3 = H; R_4 = \alpha$ - OCH ₃	Cipadessa baccifera ³⁶⁶
916	Andirolide U/ Ivorenoid G	$R_1 = OAc; R_2 = COCH(CH_3)_2; R_3 = H; R_4 =$	Carapa guianensis ¹⁴⁹ / Chukrasia
017	Vulorumphiin A	$\Pi = \Omega H \cdot P = C O C H (C H) \cdot P = H \cdot P =$	Vyloogramus mumphii ³⁶³
917		$R_1 = OH, R_2 = COCH(CH_3)_2, R_3 = H, R_4 = OCOCH(CH_3)_2$	
918	Xylorumphiin B	$R_1 = OH; R_2 = COCH(CH_3)CH_2CH_3, 2'S;$ $R_3 = H; R_4 = OCOCH(CH_3)_2$	Xylocarpus rumphii ³⁰³
919	Xylorumphiin E	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = H; R_4 = OCOCH(CH_2)_2$	Xylocarpus rumphii ³⁶⁹
920	Xylorumphiin F	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = H; R_4 = OCOCH(CH_2)CH_2CH_2 2'S$	Xylocarpus rumphii ³⁶⁹
921	2-hydroxy xylorumphiin F	$R_1 = OH; R_2 = COCH(CH_3)_2; R_3 = H; R_4 = OCOCH(CH_3)_CH_2CH_2CH_2S$	Xylocarpus rumphii ³⁶⁹
922	Xylorumphiin G	$R_1 = OH; R_2 = COCH(CH_3)CH_2CH_3, 2'S;$ $R_1 = OH; R_2 = COCH(CH_3)CH_2CH_3, 2'S;$	Xylocarpus rumphii ³⁶⁹
923	Xylorumphiin H	$R_3 = H; R_4 = OCOCH(CH_3)CH_2CH_3, 2.5$ $R_1 = OH; R_2 = Ac; R_3 = H; R_4 =$	Xylocarpus rumphii ³⁶⁹
004		$OCOCH(CH_3)_2$	G · · · · 370
924	Carapanin C	$R_1 = OAC; R_2 = 11g; R_3 = R_4 = H$	Carapa guianensis
925	Chukorthoester G	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = OH; R_4 = H$	Chukrasia tabularis ³¹¹
926	Chukorthoester H	$ R_1 = OH; R_2 = COCH(CH_3)_2; R_3 = OH; R_4 $ = H	Chukrasia tabularis ³⁷¹
927	Xylomolin F	$\mathbf{R}_1 = \mathbf{OH}; \mathbf{R}_2 = \mathbf{Ac}; \mathbf{R}_3 = \mathbf{OH}; \mathbf{R}_4 = \mathbf{COCH}(\mathbf{CH}_2)_2$	Xylocarpus moluccensis ¹⁴³
928	Xylorumphiin K	$R_1 = H; R_2 = COCH(CH_3)CH_2CH_3; R_3 =$ H: $R_4 = COCH(CH_3)CH_2CH_2$	Xylocarpus rumphii ³⁶⁰
929	Carapanolide F	$R_1 = OH; R_2 = Tig; R_3 = H; R_4 = COCH(CH_2)CH_2CH_2$	Carapa guianensis ³³³
930	Carapanolide G	$R_1 = OH; R_2 = Tig; R_3 = H; R_4 = COCH(CH)$	Carapa guianensis ³³³
931	Xylogranin A	$R_1 = OH; R_2 = COCH(CH_3)_2; R_3 = H; R_4 = COCH(CH_3)_2$	Xylocarpus granatum ³⁷²
932	Xylomexicanin D	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = COCH(CH_3)$	Xylocarpus granatum ³⁷³
933	Xylorumphiin C	$R_1 = H; R_2 = COCH(CH_3)CH_2CH_3; R_3 = H;$ $R_1 = COCH(CH_3)CH_2CH_3; R_3 = H;$	Xylocarpus rumphii ³⁶³
934	Xylorumphiin I	$R_4 = COCH(CH_3)_2$ $R_1 = OH; R_2 = COCH(CH_3)CH_2CH_3; R_3 =$ $H: P_1 = COCH(CH_3)CH_2CH_3; R_3 =$	Xylocarpus rumphii ³⁶⁹
935	Thaixylomolin T	$R_1 = OH; R_2 = Ac; R_3 = OH; R_4 = COCH(CH)CH CH$	Xylocarpus moluccensis ³³⁷
036	Hainanyylogranin F	$\mathbf{P} = \mathbf{H} \cdot \mathbf{P} = \text{Tig} \cdot \mathbf{P} = \mathbf{g} \cap \mathbf{H} \cdot \mathbf{P} = \mathbf{A} \mathbf{c}$	Vylocarnus aranatum ¹⁵²
930 937	Hainanxylogranin G	$R_1 = H; R_2 = COCH(CH_3)CH_2CH_3; R_3 =$	<i>Xylocarpus granatum</i> ¹⁵²
		$OH; R_4 = AC$	172
938	Hainanxylogranin E	$\mathbf{R} = \mathbf{OH}$	<i>Xylocarpus granatum</i> ¹⁵²
939	Hainanxylogranin H	$R = \alpha - OCH_3$	<i>Xylocarpus granatum</i> ¹⁵²
940	Hainanxylogranin I		<i>Xylocarpus granatum</i> ¹⁵²
941	Sundarbanxylogranin E	$R_1 = COCH(CH_3)CH_2CH_3; R_2 = H$	Xylocarpus granatum ³⁵⁶
942	Xylomexicanin J	$R_1 = Ac; R_2 = H$	Xylocarpus granatum ³⁶¹
943	Granatumin P	$R_1 = Ac; R_2 = H$	Xylocarpus granatum ³⁴⁵
			-

944	Granatumin Q
945	Hainangranatumin F
946	Godavarin F
947	Hainanxylogranin U
948	Sundarbanxylogranin C
949	Sundarbanxylogranin D
950	Moluccensin W
951	Krishnagranatin E
952	Krishnagranatin F
953	Godavarin G
954	Thaixylogranin D
955	Granatumin R
956	Granatumin S
957	Thaigranatin I
958	GranatuminT
959	Godavarin K
960	Krishnagranatin B
961	Krishnagranatin C
962	Krishnagranatin D
963	Erythrocarpine F
964	Swietemacrolide C
965	Granatumin N
966	Granatumin O
967	Thaigranatin C
968	Thaigranatin D
969	Erythrocarpine G
970	Erythrocarpine H
971	Godavarin D
972	Godavarin E
973	Thaigranatin H
974	Thaigranatin G
975	Thaigranatin E
976	Granatumin L
977	Granatumin M
070	
978	Granatumin V
9/9	Granatumin w
980	Granatumin X
981	Granatumin Y
982	Inalmoluccensin B
985	Krisinagranatin A
984	Thaigranatin A
985	Thaigranatin B
986	Xylomexicanin G
987	Xylomexicanin H
988	Carapanin B

989

Thaigranatin F

Xylocarpus granatum³⁴⁵ $R_1 = COC(CH_3)CH_2; R_2 = H$ $R_1 = COCH_2CH_3; R_2 = H$ $R_1 = COCH(CH_3)_2; R_2 = H$ $R_1 = COCH(CH_3)CH_2CH_3; R_2 = \alpha - OH$ $R_1 = Tig; R_2 = \alpha - OCH_3$ $R_1 = COCH(CH_3)_2; R_2 = \beta - OCH_3$ $\begin{array}{l} R_1 = \text{Tig}; R_2 = \beta \text{-OCH}_3 \\ R_1 = R_2 = \alpha \text{-OH} \end{array}$ $\mathbf{R}_1 = \mathbf{R}_2 = \beta - \mathbf{OH}$ $R_1 = COCH(CH_3)_2; R_2 = \alpha - OCH_3$ $R_1 = Tig; R_2 = \beta - OCH_2CH_3$ $\mathbf{R} = \mathbf{Tig}$ $R = COCH(CH_3)_2$ $\mathbf{R} = \mathbf{A}\mathbf{c}$ $\mathbf{R} = \mathbf{A}\mathbf{c}$ R = Tig $R_1 = Tig; R_2 = H$ $R_1 = COCH(CH_3)_2; R_2 = H$ $R_1 = Ac; R_2 = OH$ $R_1 = Bz; R_2 = H$ $R_1 = H; R_2 = \alpha$ -OH; $R_3 = H$ $R_1 = Ac; R_2 = R_3 = H$ $R_1 = COC(CH_3)CH_2; R_2 = R_3 = H$ $R_1 = Tig: R_2 = R_3 = H$ $R_1 = Tig; R_2 = OH; R_3 = H$ $R_1 = Bz; R_2 = R_3 = H$ $R_1 = Cin; R_2 = R_3 = H$ $R_1 = Tig; R_2 = R_3 = H$ $R_1 = COCH(CH_3)_2; R_2 = R_3 = H$ $R_1 = COCH(CH_3)CH_2CH_3$; $R_2 = OH$; $R_3 =$ Н $R_1 = Tig; R_2 = H; R_3 = OH$ $R_1 = H; R_2 = Tig; R_3 = R_4 = H$ $R_1 = H; R_2 = COCH(CH_3)CH_2CH_3; R_3 = R_4$ = H $R_1 = H; R_2 = Ac; R_3 = R_4 = H$ $R_1 = H; R_2 = COCH(CH_3)_2; R_3 = R_4 = H$ $R_1 = H; R_2 = COC(CH_3)CH_2; R_3 = R_4 = H$ $R_1 = H; R_2 = Tig; R_3 = H; R_4 = OH$ $R_1 = OH; R_2 = Ac; R_3 = R_4 = H$ Xylocarpus granatum³⁷⁵ $R_1 = H; R_2 = COCH(CH_3)_2; R_3 = H; R_4 =$ OH $R_1 = H; R_2 = Tig; R_3 = \beta - OH; R_4 = H$ $R_1 = H; R_2 = COCH_2CH_3; R_3 = R_4 = H$ $R_1 = H; R_2 = Ac; R_3 = R_4 = H$

 $R_1 = H; R_2 = COCH(CH_3)CH_2CH_3; R_3 = R_4$

= H

Xylocarpus granatum³⁷⁴ Xylocarpus moluccensis³³⁶ Xylocarpus granatum¹⁵² Xylocarpus granatum³⁵⁶ Xylocarpus granatum³⁵⁶ Xylocarpus moluccensis³⁴⁰ Xylocarpus granatum³⁷⁵ Xylocarpus granatum³⁷⁵ Xylocarpus moluccensis³³⁶ Xylocarpus granatum³⁵¹ *Xylocarpus granatum*³⁴⁵ Xylocarpus granatum³⁴⁵ Xylocarpus granatum¹⁵³ *Xylocarpus granatum*³⁴⁵ Xylocarpus moluccensis¹³⁰ Xylocarpus granatum³⁷⁵ Xylocarpus granatum³⁷⁵ Xylocarpus granatum³⁷⁵ Chisocheton erythrocarpus³⁶⁴ Swietenia macrophylla³¹ *Xylocarpus granatum*³⁴⁵ Xylocarpus granatum³⁴⁵ Xylocarpus granatum³⁷⁶ Xylocarpus granatum³⁷⁶ Chisocheton erythrocarpus³⁶⁴ Chisocheton erythrocarpus³⁶⁴ Xylocarpus moluccensis³³⁶ Xylocarpus moluccensis³³⁶ Xylocarpus granatum¹⁵³ Xylocarpus granatum¹⁵³ Xylocarpus granatum³⁷⁶ Xylocarpus granatum³⁴⁵ Xylocarpus granatum³⁴⁵ Xylocarpus granatum³⁷⁷ Xylocarpus granatum³⁷⁷ Xylocarpus granatum³⁷⁷ Xylocarpus granatum³⁷⁷ Xylocarpus moluccensis³¹⁷

Xylocarpus granatum³⁷⁶ Xylocarpus granatum³⁷⁶ Xylocarpus granatum³⁷⁸ Xylocarpus granatum³⁷⁸

Carapa guianensis³⁷⁰ Xylocarpus granatum¹⁵³

793-799

824-835

836

855-857

868

886-892

C

H₃COOC

റ ò

H₃COOC

ΗΟ

 R_2Q

HO

R

Ó

Figure 37. Structures of mexicanolide class limonoids 735-989.

2.4.1.2. 9,10-seco-Mexicanolide

This class is characterized by cleavage of C9-C10 bonds. Eighteen compounds were assigned in this class which were isolated from Xylocarpus granatum, Xylocarpus moluccensis, Entandrophragma angolense and Carapa guianensis (Table 36/S36, Figure 38). A total of twenty one limonoids belonging to this class were reported previously from Meliaceae family¹². Xylomexicanin C (990) is structurally similar to previously reported Xylomexicanin A³⁷⁹. Hainangranatumin A and B (991 and 992) are C2' epimers but differ from compound (990) at C30-O by presence of methacrylate group whereas Hainangranatumin C (993) has propyl group at C30-O. The $\Delta^{14,15}$ double bond in compound (993) is reduced in Hainangranatumin D (994) containing acetoxylated C30. The structure of Hainangranatumin I (995) differs from compound (993) by flipping at C8 and C9. Hainangranatumin J (996) and 30-O-tigloylhainangranatumin J (997) are C30-O isopropyl and tigloyl analogs of compound (995) respectively. Xylomexicanin F (998) is C18 β -CH₃, C19 α -CH₃ and C8 β -OH, C30 detigloyl epimer of compound (997). In Thaixylomolin Q (999), C2/C30/C8 bridge is formed between A and C rings. The keto carbonyl group at C1 in compound (999) is replaced by $\Delta^{1,2}$ double bond in Entangolensin A (1000) which also have additional hydroxyl group at C10 followed by dehydroxylation and deacetoxylation at C2 and C6 respectively. The furan ring in compound (994) is replaced by γ -hydroxy butenolide group in Hainangranatumin E (1001) and 30-Oacetylhainangranatumin E (1002). Carapanolide A and B (1003 and 1004) have ether linkage between C2 and C9. 9epixylogranatinA (1005) is C9 epimer of previously reported Xylogranatin A³⁸⁰. The $\Delta^{1,10}$ and $\Delta^{14,15}$ double bonds in compound (1005) are reduced in Xylogranatumin A (1006) with ether bridge formation between C1 and C8. 9-Omethyl xylogranatin R (1007) is C9 methyl ester analog of previously reported xylogranatin R^{381} .

Table 36	9.10-seco	-Mexicanolide	class l	imonoid	990-1007
Table 50.	, ,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- Micanonuc	CIASS I	monoiu	JJU-100 7

No.	Limonoid	Substituent	Source
990	Xylomexicanin C	$R = COCH(CH_3)_2$	Xylocarpus granatum ³⁷³
991	Hainangranatumin A	$R = COCH(CH_3)CH_2CH_3; 2'R$	Xylocarpus granatum ³⁷⁴
992	Hainangranatumin B	$R = COCH(CH_3)CH_2CH_3; 2'S$	Xylocarpus granatum ³⁷⁴
993	Hainangranatumin C	$R = COCH_2CH_3$	Xylocarpus granatum ³⁷⁴
994	Hainangranatumin D		Xylocarpus granatum ³⁷⁴
995	Hainangranatumin I	$R = COCH_2CH_3$	Xylocarpus granatum ³⁷⁴
996	Hainangranatumin J	$R = COCH(CH_3)_2$	Xylocarpus granatum ³⁷⁴
997	30-O-tigloylhainangranatumin J	$\mathbf{R} = \mathrm{Tig}$	Xylocarpus granatum ¹⁵⁴
998	Xylomexicanin F		Xylocarpus granatum ³⁷⁸
999	Thaixylomolin Q		Xylocarpus moluccensis ³⁸²
1000	Entangolensin A		Entandrophragma angolense ¹⁴¹
1001	Hainangranatumin E	$R = COCH(CH_3)CH_2CH_3; 2'S$	Xylocarpus granatum ³⁷⁴
1002	30-O-acetylhainangranatumin E	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Xylocarpus granatum ¹⁵⁴
1003	Carapanolide A	$R = COCH(CH_3)_2$	Carapa guianensis ³⁸³
1004	Carapanolide B	$\mathbf{R} = \mathrm{Tig}$	Carapa guianensis ³⁸³
1005	9-epixylogranatinA		<i>Xylocarpus granatum</i> ¹⁵⁴
1006	Xylogranatumin A		Xylocarpus granatum ¹⁵⁴
1007	9-O-methyl xylogranatin R		Xylocarpus granatum ¹⁵⁴

Figure 38. Structures of 9,10-seco mexicanolide class limonoids 990-1007.

2.4.1.3. Phragmalin

- 2.4.1.3.1. Phragmalin orthoester
- 2.4.1.3.1.1. (1-8-9) Phragmalin orthoester

This class of Limonoid is characterized by presence of ortho-acetate groups at C1, C8 and C9. A total of 118 compounds belonging to this class were isolated from Carapa guianensis, Swietenia macrophylla, Chukrasia tabularis, Soymida febrifuga, Xylocarpus rumphii, Xylocarpus granatum, Entandrophragma candollei, Neobeguea mahafalensis and Entandrophragma utile (Table 37/S37, Figure 39). Sixty five Meliaceae limonoids belonging to this class were reported earlier¹². Compounds (1008-1019) are structurally similar to previously reported Febrinin A^{384} but differ in substitution at A and C rings. The $\Delta^{14,15}$ double bond in compound (**1019**) is replaced by exocyclic double bond at C15 in Chukrasine F (1020) and Velutinasin A (1021). Chubularisin J (1022) has cyclopropyl ring at C13-C14 and Chubularisin K (1023) is deacetyl derivative of compound (1022). Chukorthoester F (1024) is C12 deacetyl analog of compound (1023). The $\Delta^{14,15}$ double bond in compound (1019) is reduced in compounds (1025-1030) with substituent variation at C2, C3, C12, C15, C30 in compounds (1025, 1028) and at C30 in compounds (1029, 1030). Compounds (1031-1047) are structural analogs of compound (1008) with reduced $\Delta^{14,15}$ double bond. Five and six membered lactone rings are formed between C5-C10 in Chukbularisin B (1048) and Swietenitin R-S (1049, 1050) respectively. Limonoids (1051-1060) differ from compound (1049) at C2, C3, and C30 substitution but limonoids (1056-1060) have additional substitution at C12 and $\Delta^{14,15}$ double bond. The lactone moiety at D ring in compound (1048) is cleaved in Carapanosin D (1061). Dormir F (1062) contains a cleaved D ring with an ether bridge formed between C11 and C19 which is shifted to C11/12 in Dormir G (1063). The five membered lactone ring in compound (1061) is six membered in Andirolide O and P (1064 and 1065). The epoxide ring at C11/12 in compound (1063) is replaced by acetoxyl group at C11 in compounds (1066, 1067). At C3, the 2-methyl butenolide group in Dodoguin (1066) is replaced by isopropyl group in Dormir A (1067). Encandollen C (1068) is C2, C3 diacetyl, C11 deacetoxyl, C30 propionate analog of compound (1066). Encandollen D (1069) is C3 propionate, C30 acetyl analog of compound (1068). Encandollen E (1070) is C3 isopropionate analog of compound (1068). Dormir B and C (1071 and 1072) are analogs of compounds (1066 and 1067) respectively with an additional six membered lactone ring formed between C6 and C19. Libiguin B (1073) exists in keto-enol form with a lactone ring formed between C16 and C30. The isopropyl group at C15 in compound (1073) is replaced by methyl group in Chukvelutilide I-P (1074-1081) with substituent variation in C2, C11 and C19. Dormir E (1082) and Libiguin A (1083) are structural analogs of compounds (1066, 1067) respectively, and have six membered lactone ring formed between B and C ring junctions with deacetoxylation at C11. The keto carbonyl at C17 in Dormir E (1082) is replaced by acetoxyl group in Limonoids (1084-1088). In comparison to compound (1074), Limonoids (1089-1094) exist in enol form with six membered lactone ring formed at A ring. Compounds (1095-1117) are structurally similar to compound (1073) with substituent variation at A and C rings. Guianolide B (1119) is deacetyl form of Guianolide A (1118) which is structurally similar to Guianofruit E (1120) except at C30 substitution. Chubularisin B (1121) differs from compound (1012) at C31 substitution. Chukfuransin B (1123) is the C12 acetoxyl form of Chukfuransin A (1122). The structures of Chukfuransin C and D (1124 and 1125) were determined by X-ray crystallographic studies.

No.	Limonoid	Substituent	Source
1008	Carapanosin A	$R_1 = H; R_2 = Ac; R_3 = \beta$ -OH; $R_4 = H; R_5 = OAc; R_6 = COCH_2CH_3$	Carapa guianensis ²⁶²
1009	Carapanosin B	$R_1 = H; R_2 = Ac; R_3 = \beta$ -OAc; $R_4 = H; R_5 = OAc; R_6 = COCH_2CH_3$	Carapa guianensis ²⁶²
1010	Carapanolide W	$R_1 = H; R_2 = Ac; R_3 = R_4 = H; R_5 = OH; R_6 = COCH_2CH_3$	Carapa guianensis ³³²
1011	Carapanolide I	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = R_4 = R_5 = H; R_6 = Ac$	Carapa guianensis ³³³
1012	Swietenitin Q	$R_1 = Ac; R_2 = Tig; R_3 = R_4 = H; R_5 = OH; R_6 = H$	Swietenia macrophylla ³⁸⁵
1013	Carapanolide Y	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = OH; R_5 = OCOCH(CH_3)_2; R_6 =$	Chukrasia tabularis ³⁸⁶
		$COCH(CH_3)_2$	
1014	Guianofruit F	$R_1 = R_2 = Ac; R_3 = R_4 = H; R_5 = OH; R_6 = COCH_2CH_3$	Carapa guianensis ²⁹⁷
1015	Guianofruit G	$R_1 = R_2 = Ac; R_3 = R_4 = H; R_5 = OH; R_6 = COCH(CH_3)_2$	Carapa guianensis ²⁹⁷
1016	Entanutilin E	$R_1 = R_2 = R_3 = H; R_4 = OH; R_5 = OAc; R_6 = COCH(CH_3)_2$	Entandrophragma utile ³⁸⁷
1017	Chukorthoester C	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = R_4 = H; R_5 = OAc; R_6 =$	Chukrasia tabularis ³⁷¹
		$COCH(CH_3)_2$	
1018	Chukorthoester D	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = R_4 = H; R_5 = OAc; R_6 = COCH_2CH_3$	Chukrasia tabularis ³⁷¹
1019	Soymidin D		Soymida febrifuga ³⁸⁸
1020	Chukrasine F	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$	Chukrasia tabularis ³⁸⁹
1021	Velutinasin A	$\mathbf{R}_1 = \mathbf{OAc}; \mathbf{R}_2 = \mathbf{H}$	Chukrasia tabularis ³⁹⁰
1022	Chubularisin J	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{A}\mathbf{c}$	Chukrasia tabularis ³⁹¹
1023	Chubularisin K	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{A}\mathbf{c}$	Chukrasia tabularis ³⁹¹
1024	Chukorthoester F	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{H}$	Chukrasia tabularis ³⁷¹
1025	Xylorumphiin J	$R_1 = R_2 = Ac; R_3 = H; R_4 = \beta$ -OH; $R_5 = Ac$	Xylocarpus rumphii ³⁶⁹
1026	Soymidin A	$R_1 = H; R_2 = Tig; R_3 = H; R_4 = \beta$ -OCOCH ₂ CH ₃ ; $R_5 = H$	Soymida febrifuga ³⁹²
1027	Chukorthoester A	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = OAc; R_4 = \alpha - OCOCH(CH_3)_2; R_5 =$	Chukrasia tabularis ³⁷¹
		$COCH(CH_3)_2$	

Table 37. [1-8-9] Phragmalin orthoester class limonoid 1008-1125
1028	Chukorthoester B	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \text{COCH}(\text{CH}_3)_2; \mathbf{R}_3 = \text{OAc}; \mathbf{R}_4 = \alpha - \text{OCOCH}(\text{CH}_3)_2; \mathbf{R}_5 = \alpha - \alpha$	Chukrasia tabularis ³⁷¹
1020	Service entry N		C
1029	Swietenitin N	$R = COCH_2CH_3$	Swietenia macrophylla ²⁸⁵
1030	Swietenitin O	R = Ac	Swietenia macrophylla ³⁰³
1031	Carapanolide X	$R_1 = H; R_2 = Ac; R_3 = \beta$ -OH; $R_4 = R_5 = OAc; R_6 = COCH_2CH_3$	Carapa guianensis ³³²
1032	Velutinasin E	$R_1 = H; R_2 = Ac; R_3 = OH; R_4 = OH; R_5 = OAc; R_6 = COCH_2CH_3$	Chukrasia tabularis ³⁹⁰
1033	Swietenitin P	$R_1 = Ac; R_2 = Tig; R_3 = OH; R_4 = R_5 = H; R_6 = COCH_2CH_3$	Swietenia macrophylla ³⁸⁵
1034	Chuktabularoid J	$R_1 = H; R_2 = Ac; R_3 = R_4 = OH; R_5 = OAc; R_6 = H$	Chukrasia tabularis ³⁹³
1035	Carapanolide M	$R_1 = H$: $R_2 = Ac$: $R_3 = R_4 = OH$: $R_5 = OAc$: $R_6 = COCH_2CH_3$	Carapa guianensis ³³⁴
1036	Carapanolide N	$\mathbf{R}_1 - \mathbf{H}_1 \mathbf{R}_2 - \mathbf{A}_1 \mathbf{C}_1 \mathbf{R}_2 = \mathbf{R}_2 - \mathbf{A}_1 \mathbf{C}_1 \mathbf{R}_2 = \mathbf{R}_2 - \mathbf{A}_1 \mathbf{C}_1 \mathbf{R}_2 \mathbf{R}_2 = \mathbf{R}_2 - \mathbf{A}_1 \mathbf{C}_1 \mathbf{R}_2 \mathbf{R}_$	Carapa guianensis ³³⁴
1037	Carapanolide O	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{R}; \mathbf{R}_3 = \beta \text{ OAc; } \mathbf{R}_4 = \mathbf{R}_3 = \text{OAc; } \mathbf{R}_6 = \text{COCH}(\text{CH}_3)_2$	Carapa quianonsis ³³⁴
1037		$\mathbf{R}_1 = \mathbf{H}, \mathbf{R}_2 = \mathbf{A}\mathbf{C}, \mathbf{R}_3 = \mathbf{p} \cdot \mathbf{O}\mathbf{A}\mathbf{C}, \mathbf{R}_4 = \mathbf{O}\mathbf{H}, \mathbf{R}_5 = \mathbf{O}\mathbf{A}\mathbf{C}, \mathbf{R}_6 = \mathbf{C}\mathbf{O}\mathbf{C}\mathbf{H}(\mathbf{C}\mathbf{H}_3)_2$	Carapa guianensis
1038	Carapanolide P	$R_1 = H; R_2 = Ac; R_3 = p-OAc; R_4 = OH; R_5 = OAc; R_6 = COCH_2CH_3$	Carapa guianensis
1039	Carapanolide Q	$R_1 = H; R_2 = Ac; R_3 = \beta$ -OAc; $R_4 = H; R_5 = OAc; R_6 = COCH_2CH_3$	Carapa guianensis
1040	Guianofruit H	$R_1 = H; R_2 = Ac; R_3 = R_4 = OH; R_5 = OAc; R_6 = COCH(CH_3)_2$	Carapa guianensis ²⁹⁷
1041	Guianofruit I	$R_1 = H; R_2 = Ac; R_3 = \beta$ -OAc; $R_4 = R_5 = OAc; R_6 = COCH_2CH_3$	Carapa guianensis ²⁹⁷
1042	Hainangranatumin H	$R_1 = Ac; R_2 = H; R_3 = \beta - OAc; R_4 = H; R_5 = OAc; R_6 = Ac$	Xylocarpus granatum ³⁷⁴
1043	Velutabularin M	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{A}_1 \mathbf{C}$, $\mathbf{R}_2 = \mathbf{\alpha}_2 \mathbf{O}_1 \mathbf{A}_1 \mathbf{C}$, $\mathbf{R}_4 = \mathbf{H}$, $\mathbf{R}_5 = \mathbf{O}_1 \mathbf{C}$, $\mathbf{R}_5 = \mathbf{A}_1 \mathbf{C}$	Chukrasia tahularis ³⁹⁴
1045	Entoputilin D	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_1, \mathbf{R}_3 = \mathbf{U} \circ \mathbf{R}_2, \mathbf{R}_4 = \mathbf{I}_1, \mathbf{R}_5 = \mathbf{O} \cdot \mathbf{R}_2, \mathbf{R}_6 = \mathbf{R}_2$ $\mathbf{P}_1 = \mathbf{H}_1 \cdot \mathbf{P}_2 = \mathbf{H}_1 \cdot \mathbf{P}_2 = \mathbf{P}_1 = \mathbf{O} \cdot \mathbf{A}_2 \cdot \mathbf{P}_2 = \mathbf{O} \cdot \mathbf{C} + \mathbf{C} \cdot \mathbf{H}_1$	Entandronbraama utila ³⁸⁷
1044		$K_1 = H, K_2 = H, K_3 = H, K_4 = K_5 = OAC, K_6 = COCH(CH_3)_2$	
1045	Chukorthoester E	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = R_4 = R_5 = H; R_6 = Ac$	Chukrasia tabularis ¹¹
1046	Hainanxylogranin S	$R_1 = H; R_2 = Tig; R_3 = R_4 = R_5 = H; R_6 = Ac$	<i>Xylocarpus granatum</i> ¹³²
1047	Hainanxylogranin T	$R_1 = H; R_2 = COCH(CH_3)CH_2CH_3; R_3 = R_4 = R_5 = H; R_6 = Ac$	<i>Xylocarpus granatum</i> ¹⁵²
1048	Chukbularisin B		Chukrasia tabularis ³⁹⁵
1049	Swietenitin R	$\mathbf{R} = \mathbf{H}$	Swietenia macrophylla ³⁸⁵
1050	Swietenitin S	$\mathbf{R} - \mathbf{A}\mathbf{c}$	Swietenia macrophylla ³⁸⁵
1050	Commonolido I	$\mathbf{R} = \mathbf{A}\mathbf{C}$ $\mathbf{D} = \mathbf{H} \cdot \mathbf{D} = \mathbf{A} \circ \mathbf{D} = \mathbf{C} \mathbf{O} \mathbf{C} \mathbf{H} \cdot \mathbf{C} \mathbf{H}$	Canana aniananaia ²⁶⁶
1051		$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{A}\mathbf{C}; \mathbf{R}_3 = \mathbf{COCH}_2\mathbf{CH}_3$	Carapa guianensis
1052	Andirolide V	$R_1 = H; R_2 = Ac; R_3 = COCH(CH_3)_2$	Carapa guianensis
1053	Swietenitin T	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathrm{Tig}; \mathbf{R}_3 = \mathrm{COCH}_2\mathrm{CH}_3$	Swietenia macrophylla ³⁸³
1054	Swietenitin U	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathrm{Tig}; \mathbf{R}_3 = \mathbf{Ac}$	Swietenia macrophylla ³⁸⁵
1055	Andirolide E	$R_1 = R_2 = Ac; R_3 = COCH_2CH_3$	Carapa guianensis ²⁶³
1056	Encandollen B	$R_1 = H; R_2 = Ac; R_3 = OAc; R_4 = COCH(CH_2)_2$	Entandrophragma
1050		$R_1 = 11, R_2 = 100, R_3 = 0100, R_4 = 00001(0113)_2$	candollai ³⁹⁶
1057	Domin D	$\mathbf{P} = \mathbf{H} \cdot \mathbf{P} = \mathbf{COCH}(\mathbf{CH}) \cdot \mathbf{CH} \cdot \mathbf{P} = \mathbf{H} \cdot \mathbf{P} = \mathbf{COCH}(\mathbf{CH})$	Nach acusa mahafalanaia ³
1057	Dormir D	$K_1 = H; K_2 = COCH(CH_3)CH_2CH_3; K_3 = H; K_4 = COCH(CH_3)_2$	Neobeguea manafalensis
1058	Carapanolide	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{A}\mathbf{c}; \ \mathbf{R}_3 = \mathbf{H}; \ \mathbf{R}_4 = \mathbf{COCH}_2\mathbf{CH}_3$	Carapa guianensis ^{205,552}
	V/Andirolide F		
1059	Swietenitin V	$R_1 = H; R_2 = Tig; R_3 = H; R_4 = Ac$	Swietenia macrophylla ³⁸⁵
1060	Tabulvelutin A	$R_1 = R_2 = H; R_3 = OBZ; R_4 = COCH(CH_3)_2$	Chukrasia tabularis ³⁹⁸
1061	Carapanosin D	1 2 7 5 - 7 4 (- 5)2	Carapa guianensis ³³¹
1062	Dormir F		Noohaayaa mahafalansis ³
1002			Neobegueu munujuiensis
1063	Dormir G		Neobeguea manafalensis
1064	Andirolide O	R = Ac	Carapa guianensis ²⁰⁴
1065	Andirolide P	$\mathbf{R} = \mathbf{H}$	Carapa guianensis ²⁰⁴
1066	Dodoguin	$R_1 = H; R_2 = COCH(CH_3)CH_2CH_3; R_3 = OAc; R_4 = COCH(CH_3)_2$	Neobeguea mahafalensis ³
1067	Dormir A	$R_1 = H$: $R_2 = COCH(CH_3)_2$: $R_3 = OAc$: $R_4 = COCH(CH_3)_2$	Neobeguea mahafalensis ³
1068	Encandollen C	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{A}_1 \mathbf{C} \cdot \mathbf{R}_2 = \mathbf{H} \cdot \mathbf{R}_4 = \mathbf{C}_1 \mathbf{C}_1 \mathbf{C}_1 \mathbf{C}_1 \mathbf{C}_2 \mathbf{C}_1 \mathbf{C}_1$	Entandrophragma
1000	Energiadonen C	$n_1 = n_2 = n_2, n_3 = n_1, n_4 = coon_2 cn_3$	agridallai ³⁹⁹
1000			
1069	Encandollen D	$\mathbf{R}_1 = \mathbf{Ac}; \mathbf{R}_2 = \mathbf{COCH}_2\mathbf{CH}_3; \mathbf{R}_3 = \mathbf{H}; \mathbf{R}_4 = \mathbf{Ac}$	Entandrophragma
			candollei ³⁹⁹
1070	Encandollen E	$R_1 = R_2 = Ac; R_3 = H; R_4 = COCH(CH_3)_2$	Entandrophragma
			candollei ³⁹⁹
1071	Dormir B	$R = COCH(CH_2)CH_2CH_2$	Neobeguea mahafalensis ³
1072	Dormir C	$\mathbf{R} = \mathbf{COCH}(\mathbf{CH}_{a})_{a}$	Nechequea mahafalensis ³
1072	Libiquin D	$\mathbf{K} = \operatorname{COCH}(\operatorname{CH}_3)_2$	Noch server manafalousis
1075			Neobeguea manajatensis
1074	Chukvelutilide I	$\mathbf{R}_1 = \mathbf{Ac}; \mathbf{R}_2 = \mathbf{H}; \mathbf{R}_3 = \mathbf{OAc}$	Chukrasia tabularis
1075	Chukvelutilide J	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}; \mathbf{R}_3 = \mathbf{OAc}$	<i>Chukrasia tabularis</i>
1076	Chukvelutilide K	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{A}\mathbf{c}; \mathbf{R}_3 = \mathbf{O}\mathbf{A}\mathbf{c}$	Chukrasia tabularis ⁴⁰¹
1077	Chukvelutilide L	$R_1 = H; R_2 = Ac; R_3 = OAc$	Chukrasia tabularis ⁴⁰¹
1078	Chukvelutilide M	$R_1 = Ac; R_2 = R_3 = H$	Chukrasia tabularis ⁴⁰¹
1079	Chukvelutilide N	$\mathbf{R}_1 - \mathbf{R}_2 - \mathbf{R}_2 - \mathbf{H}$	Chukrasia tabularis ⁴⁰¹
1075	Chukvelutilide N	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{H}$ $\mathbf{P}_1 = \mathbf{P}_2 = \mathbf{A}_2; \mathbf{P}_2 = \mathbf{H}_1$	Chukrasia tabularis ⁴⁰¹
1080		$\mathbf{K}_1 - \mathbf{K}_2 - \mathbf{A}\mathbf{C}, \mathbf{K}_3 - \mathbf{\Pi}$	
1081	Cnukvelutilide P	$\mathbf{K}_1 = \mathbf{H}; \mathbf{K}_2 = \mathbf{AC}; \mathbf{K}_3 = \mathbf{H}$	Cnukrasia tabularis
1082	Dormir E	$\mathbf{R} = \mathrm{COCH}(\mathrm{CH}_3)\mathrm{CH}_2\mathrm{CH}_3$	Neobeguea mahafalensis ³
1083	Libiguin A	$R = COCH(CH_3)_2$	Neobeguea mahafalensis ⁴
1084	Tabulalin C	$R_1 = R_2 = R_3 = R_4 = H; R_5 = OAc$	Chukrasia tabularis ⁴⁰²
1085	Tabulalin N	$R_1 = R_2 = Ac; R_3 = H; R_4 = OAc; R_5 = H$	Chukrasia tabularis ³⁸⁶
1086	Chuktabularoid G	$\mathbf{R}_1 - \mathbf{H} \cdot \mathbf{R}_2 - \mathbf{A}_1 \cdot \mathbf{R}_2 - \mathbf{R}_4 - \mathbf{O} \mathbf{A}_2 \cdot \mathbf{R}_5 - \mathbf{H}$	Chukrasia tabularis ³⁹³
1000	Chultabularoid II	$\mathbf{x}_1 = \mathbf{n}, \mathbf{x}_2 = \mathbf{n}, \mathbf{x}_3 = \mathbf{x}_4 = \mathbf{O}\mathbf{n}, \mathbf{x}_5 = \mathbf{n}$ $\mathbf{D}_1 = \mathbf{D}_2 = \mathbf{A}_2; \mathbf{D}_2 = \mathbf{D}_1 = \mathbf{O}\mathbf{A}_2; \mathbf{D}_2 = \mathbf{U}$	Chukrasia tahularis ³⁹³
100/	Chuktabularold H	$\mathbf{K}_1 - \mathbf{\Pi}, \mathbf{K}_2 = \mathbf{A}\mathbf{C}, \mathbf{K}_3 = \mathbf{K}_4 = \mathbf{U}\mathbf{A}\mathbf{C}, \mathbf{K}_5 = \mathbf{H}$	Chukrasla tabularis
1088	Chuktabularoid I	$\kappa_1 = \kappa_2 = Ac; \ \kappa_3 = \kappa_4 = \kappa_5 = H$	Chukrasia tabularis
1089	Velutinasin D	$R_1 = H; R_2 = R_3 = COCH(CH_3)_2; R_4 = Ac$	Chukrasia tabularis ³⁹⁰
1090	Velutinasin J	$R_1 = Ac; R_2 = COCH(CH_3)_2; R_3 = R_4 = Ac$	Chukrasia tabularis ³⁸⁶
1091	Chukvelutilide Z	$R_1 = R_2 = H; R_3 = R_4 = Ac$	Chukrasia tabularis ³³⁵

Swietenia macrophylla³⁸⁵ Carapa guianensis³³² Chukrasia tabularis³⁹⁰ Swietenia macrophylla³⁸⁵ Chukrasia tabularis³⁹³ Carapa guianensis³³⁴ Carapa guianensis³³⁴ Carapa guianensis³³⁴ Carapa guianensis³³⁴ Carapa guianensis³³⁴ Carapa guianensis²⁹⁷ Carapa guianensis²⁹⁷ *Sylocarpus granatum*³⁷⁴ Chukrasia tabularis³⁹⁴ Entandrophragma utile³⁸⁷ Chukrasia tabularis³⁷¹ *Sylocarpus granatum*¹⁵² *Sylocarpus* granatum¹⁵² . Chukrasia tabularis³⁹⁵ Swietenia macrophylla³⁸⁵ Swietenia macrophylla³⁸⁵ Carapa guianensis²⁶⁰ Carapa guianensis¹⁴⁹ wietenia macrophylla³⁸⁵ Swietenia macrophylla³⁸⁵ Carapa guianensis²⁶³ Entandrophragma candollei³⁹⁶ Veobeguea mahafalensis³⁹⁷ Carapa guianensis^{263,332} Swietenia macrophylla³⁸⁵ Chukrasia tabularis³⁹⁸ Carapa guianensis³³¹ Veobeguea mahafalensis³⁹⁷ Veobeguea mahafalensis³⁹⁷ Carapa guianensis²⁶⁴ Carapa guianensis²⁶⁴ Veobeguea mahafalensis³⁹⁷ Veobeguea mahafalensis³⁹⁷ Entandrophragma andollei³⁹⁹

Entandrophragma candollei³⁹⁹ Entandrophragma andollei³⁹⁹ Veobeguea mahafalensis³⁹⁷ Veobeguea mahafalensis³⁹⁷ Veobeguea mahafalensis⁴⁰⁰ Chukrasia tabularis⁴⁰¹ Veobeguea mahafalensis³⁹⁷ Veobeguea mahafalensis⁴⁰⁰ Chukrasia tabularis⁴⁰² Chukrasia tabularis³⁸⁶ Chukrasia tabularis³⁹³ Chukrasia tabularis³⁹³ Chukrasia tabularis³⁹³ Chukrasia tabularis³⁹⁰ Chukrasia tabularis³⁸⁶

1092	Chubularisin N	$R_1 = Ac; R_2 = R_3 = R_4 = COCH(CH_3)_2$	Chukrasia tabularis ³⁹¹
1093	Chubularisin L	$\mathbf{R} = \mathbf{H}$	Chukrasia tabularis ³⁹¹
1094	Chubularisin M	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Chukrasia tabularis ³⁹¹
1095	Encandollen A	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = OH; R_5 = OAc; R_6 = Ac; R_7 = H$	Entandrophragma candollei ³⁹⁶
1096	Chukvelutilide U	$R_1 = R_2 = Ac; R_3 = H; R_4 = OH; R_5 = OAc; R_6 = Ac; R_7 = OAc$	Chukrasia tabularis ⁴⁰¹
1097	Chukvelutilide V	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = OH; R_5 = OAc; R_6 = Ac; R_7 = OAc$	Chukrasia tabularis ⁴⁰¹
1098	Chukvelutilide W	$R_1 = R_2 = Ac; R_3 = OAc; R_4 = OH; R_5 = OAc; R_6 = Ac; R_7 = H$	Chukrasia tabularis ⁴⁰¹
1099	Chukvelutilide X	$R_1 = H; R_2 = Ac; R_3 = OAc; R_4 = OH; R_5 = OAc; R_6 = Ac; R_7 = H$	Chukrasia tabularis ⁴⁰¹
1100	Chukvelutilide I	$R_1 = R_2 = Ac; R_3 = H; R_4 = OH; R_5 = OAc; R_6 = Ac; R_7 = OAc$	Chukrasia tabularis ⁴⁰³
1101	Chukvelutilide J	$R_1 = R_2 = Ac; R_3 = H; R_4 = OH; R_5 = OAc; R_6 = Ac; R_7 = H$	Chukrasia tabularis ⁴⁰³
1102	Chukvelutilide K	$R_1 = R_2 = Ac; R_3 = R_4 = OAc; R_5 = OH; R_6 = Ac; R_7 = H$	Chukrasia tabularis ⁴⁰³
1103	Chukvelutilide L	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = OH; R_5 = OAc; R_6 = Ac; R_7 = OAc$	Chukrasia tabularis ⁴⁰³
1104	Chukvelutilide G	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = R_5 = OCOCH(CH_3)_2; R_6 =$	Chukrasia tabularis ³⁸⁹
		$COCH(CH_3)_2$; $R_7 = H$	
1105	Velutinalide A	$R_1 = R_2 = R_3 = R_4 = R_5 = H; R_6 = COCH(CH_3)_2; R_7 = H$	Chukrasia tabularis ⁴⁰⁴
1106	Velutinalide B	$R_1 = R_2 = R_3 = R_4 = R_5 = H; R_6 = COCH_2CH_3; R_7 = H$	Chukrasia tabularis ⁴⁰⁴
1107	Chuktabularoid A	$R_1 = R_2 = Ac; R_3 = OH; R_4 = R_5 = OAc; R_6 = Ac; R_7 = H$	Chukrasia tabularis ³⁹³
1108	Chukvelutilide Q	$R_1 = R_2 = Ac; R_3 = H; R_4 = Ac; R_5 = OAc$	Chukrasia tabularis ⁴⁰¹
1109	Chukvelutilide R	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = Ac; R_5 = OAc$	Chukrasia tabularis ⁴⁰¹
1110	Chukvelutilide S	$R_1 = R_2 = Ac; R_3 = H; R_4 = Ac; R_5 = H$	Chukrasia tabularis ⁴⁰¹
1111	Chukvelutilide T	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = Ac; R_5 = H$	Chukrasia tabularis ⁴⁰¹
1112	Chukvelutilide M	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = COCH(CH_3)_2; R_5 = OAc$	Chukrasia tabularis ⁴⁰³
1113	Velutinasin B	$R_1 = R_2 = Ac; R_3 = H; R_4 = Ac; R_5 = OAc$	Chukrasia tabularis ³⁹⁰
1114	Velutinasin C	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = Ac; R_5 = OAc$	Chukrasia tabularis ³⁹⁰
1115	Chukvelutilide H	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = R_4 = Ac; R_5 = OAc$	Chukrasia tabularis ⁴⁰⁵
1116	Chukvelutilide A1	$R_1 = H; R_2 = R_3 = Ac; R_4 = COCH_2CH_3; R_5 = OAc$	Chukrasia tabularis ³⁸⁶
1117	Chukvelutilide Y	$R_1 = R_2 = Ac; R_3 = H; R_4 = COCH_2CH_3; R_5 = OAc$	Chukrasia tabularis ³³⁵
1118	Guianolide A	$\mathbf{R}_1 = \mathbf{Ac}; \mathbf{R}_2 = \mathbf{COCH}_2\mathbf{CH}_3$	Carapa guianensis ⁴⁰⁶
1119	Guianolide B	$R_1 = H; R_2 = COCH_2CH_3$	Carapa guianensis ⁴⁰⁶
1120	Guianofruit E	$\mathbf{R}_1 = \mathbf{Ac}; \mathbf{R}_2 = \mathbf{COCH}(\mathbf{CH}_3)_2$	Carapa guianensis ²⁹⁷
1121	Chubularisin B		Chukrasia tabularis ³⁹¹
1122	Chukfuransin A	$\mathbf{R} = \mathbf{H}$	Chukrasia tabularis ⁴⁰⁷
1123	Chukfuransin B	$\mathbf{R} = \mathbf{OAc}$	Chukrasia tabularis ⁴⁰⁷
1124	Chukfuransin C		Chukrasia tabularis ⁴⁰⁷
1125	Chukfuransin D		Chukrasia tabularis ⁴⁰⁷

1066-1070

1071-1072

1073

1074-1081

Figure 39. Structures of (1-8-9) phragmalin orthoester class limonoids 1008-1125.

2.4.1.3.1.2. (8-9-11) Phragmalin orthoester

This class of limonoid is characterized by presence of ortho-acetate groups at C8, C9 and C11. A total of nine compounds were isolated belonging to this class from *Chukrasia tabularis* (Table 38/S38, Figure 40). Previously six Meliaceae limonoids of this class were reported¹². Compounds (**1126-1131**) share similar skeletal structure with previously reported tabularisin E^{408} but vary in substituents at C2, C3, C6 C12, C15 and C30. The cyclopropyl group at C13-C14 in compound (**1126**) is replaced by $\Delta^{14,15}$ double bond in compounds (**1132-1134**).

Table 38	. [8-9-11]	Phragmalin	orthoester	class	limonoid	1126-1134
----------	------------	------------	------------	-------	----------	-----------

No.	Limonoid	Substituent	Source
1126	Tabularisin T	$R_1 = H; R_2 = Ac; R_3 = COCH_2CH_3$	Chukrasia tabularis ⁴⁰⁹
1127	Chukbularisin C	$R_1 = H; R_2 = R_3 = COCH(CH_3)_2$	Chukrasia tabularis ³⁹⁵
1128	Chubularisin H	$R_1 = OAc; R_2 = R_3 = COCH(CH_3)_2$	Chukrasia tabularis ³⁹¹
1129	Chubularisin I	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = COCH_2CH_3$	Chukrasia tabularis ³⁹¹
1130	Chuklarisin B	$R_1 = OAc; R_2 = COCH(CH_3)_2; R_3 = COCH_2CH_3$	Chukrasia tabularis ⁴¹⁰
1131	Velutabularin K	$R_1 = H; R_2 = Ac; R3 = COCH_2CH_3$	Chukrasia tabularis ³⁹⁴
1132	Chuktabularoid E	$R_1 = \alpha$ -OH; $R_2 = COCH(CH_3)_2$; $R_3 = CH_3$	Chukrasia tabularis ³⁹³
1133	Chuktabularoid F	$R_1 = \alpha$ -OH; $R_2 = H$; $R_3 = CH(CH_3)_2$	Chukrasia tabularis ³⁹³
1134	Velutabularin L	$R_1 = OAc; R_2 = COCH(CH_3)_2; R_3 = CH_3$	Chukrasia tabularis ³⁹⁴

Figure 40. Structures of (8-9-11) phragmalin orthoester class limonoids 1126-1134.

2.4.1.3.1.3. (8-9-12) Phragmalin orthoester

This class of limonoid is characterized by ortho-acetate groups at C8, C9 and C12. Three Limonoids were isolated from *Xylocarpus moluccensis* and *Chukrasia tabularis* belonging to this class (Table 39/S39, Figure 41). The 8,9,30-orthoacetate group in compound (**1132**) is replaced by 8,9,12-orthoacetate group in limonoids (**1135-1137**).

Table 39.	[8-9-12]	Phragmalin	orthoester	class	limonoid	1135-1	137
-----------	----------	------------	------------	-------	----------	--------	-----

No.	Limonoid	Substituent	Source
1135	Thaixylomolin O	$R_1 = R_2 = Ac; R_3 = H; R_4 = Ac$	Xylocarpus moluccensis ³⁸²
1136	Thaixylomolin P	$R_1 = H; R_2 = Ac; R_3 = H; R_4 = Ac$	Xylocarpus moluccensis ³⁸²
1137	Chubularisin A	$R_1 = R_2 = H; R_3 = OAc; R_4 = COCH(CH_3)_2$	Chukrasia tabularis ³⁹¹

1135-1137

Figure 41. Structures of (8-9-12) phragmalin orthoester class limonoids 1135-1137.

2.4.1.3.1.4. (8-9-14) Phragmalin orthoester

This class of Limonoids is characterized by the presence of ortho-acetate group is situated at C8, C9 and C14. Five compounds were isolated from *Swietenia macrophylla* and *Entandrophragma utile* belonging to this class (Table 40/S40, Figure 42). A total of fourteen Meliaceae limonoids were reported earlier¹². Compounds (**1138-1141**) are C11 acetoxyl forms of previously reported Swietenitin J⁴¹¹ and have 8,9,14-orthoacetate group differing at A ring substitution. Entanutilin O (**1142**) is C11 isobutyrate analog of previously reported Entandrophragmin⁴¹².

$1 a \beta (1 - \gamma) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	Table	40. 8-9-14	Phragmalin	orthoester	class	limonoid	1138-1	14	ł.
--	-------	-------------	------------	------------	-------	----------	--------	----	----

No.	Limonoid	Substituent	Source
1138	Swielimonoid C	$R_1 = OAc; R_2 = \alpha - CH_2CH_3; R_3 = \beta - OCH_3$	Swietenia macrophylla ³⁵³
1139	Swielimonoid D	$\mathbf{R}_1 = \mathbf{OAc}; \mathbf{R}_2 = \beta - \mathbf{CH}_2 \mathbf{CH}_3; \mathbf{R}_3 = \alpha - \mathbf{OCH}_3$	Swietenia macrophylla ³⁵³
1140	Swielimonoid E	$R_1 = OH; R_2 = \beta - CH_2CH_3; R_3 = \alpha - OCH_3$	Swietenia macrophylla ³⁵³
1141	Swielimonoid F	$R_1 = OAc; R_2 = \beta - CH_3; R_3 = \alpha - OCH_3$	Swietenia macrophylla ³⁵³
1142	Entanutilin O		Entandrophragma utile ¹¹⁵

Figure 42. Structures of (8-9-14) phragmalin orthoester class limonoids 1138-1142.

2.4.1.3.1.5. (8-9-30) Phragmalin orthoester

Ortho-acetate group situated at C8, C9 and C30 is the signature trait to identify this class of Limonoids. Forty nine Limonoids belonging to this class were isolated from *Xylocarpus moluccensis, Carapa guianensis, Chukrasia tabularis, Xylocarpus granatum, Swietenia mahogany, Swietenia macrophylla, Soymida febrifuga* and *Entandrophragma utile* (Table 41/S41, Figure 43). Previously thirty two Meliaceae limonoids of this class were reported¹². The 8,9,11-orthoacetate group in compound (**1132**) is replaced by 8,9,30-orthoacetate group in compounds (**1143-1176**) and also differ in substitution at A and C rings. Compounds (**1177-1187**) have cyclopropyl group at C13-C14. Moluccensin Z1 and Z2 (**1188** and **1190**) are C17 γ -methoxy butenolide analog of Moluccensin Y (**1154**). Hainanxylogranin R (**1189**) is C6, C12 diacetoxyl, C23 demethyl analog of compound (**1188**). Limonoid (**1191**) is structurally similar to 8,9,30-ortho-tigloylate-swietemacrophine (**1162**) but differ at C31 by presence of methyl group and 20,21,22,23-diepoxy furan ring at C17.

Table 41.	[8,9,30]	Phragmalin	orthoester	class	limonoid	1143-	-1191
-----------	----------	-------------------	------------	-------	----------	-------	-------

No.	Limonoid	Substitunts	Source
1143	Xylomolin L1	$R_1 = OAc; R_2 = Ac; R_3 = OH; R_4 = R_5 = H; R_6 = CH_3$	<i>Xylocarpus moluccensis</i> ¹⁴³
1144	Xylomolin L2	$R_1 = OH; R_2 = Tig; R_3 = R_4 = H; R_5 = OH; R_6 = CH_3$	Xylocarpus moluccensis ¹⁴³
1145	12-Deacetylxyloccensin U	$R_1 = OH; R_2 = Ac; R_3 = R_4 = H; R_5 = OH; R_6 = CH_3$	Xylocarpus moluccensis ³⁵²
1146	2-O-Acetyl-2-dehydroxy-12-	$R_1 = OAc; R_2 = Ac; R_3 = R_4 = H; R_5 = OH; R_6 = CH_3$	<i>Xylocarpus moluccensis</i> ³⁵²
	deacetylxyloccensin U		
1147	Andirolide Y	$R_1 = OCOCH_2CH_3; R_2 = Ac; R_3 = OAc; R_4 = H; R_5 =$	Carapa guianensis ³¹⁰
		OAc; $R_6 = CH_3$	
1148	Chukvelutilide N	$R_1 = OCOCH(CH_3)_2; R_2 = Ac; R_3 = R_4 = H; R_5 = OH;$	Chukrasia tabularis ⁴⁰³
		$R_6 = CH_3$	
1149	Carapanolide H	$R_1 = OH; R_2 = COCH(CH_3)_2; R_3 = R_4 = R_5 = H; R_6 =$	Carapa guianensis ³³³
		CH ₃	
1150	Xylogranin B	$R_1 = OH; R_2 = Bz; R_3 = R_4 = R_5 = H; R_6 = CH_3$	Xylocarpus granatum ^{3/2}
1151	Swietephragmin H	$R_1 = OAc; R_2 = Tig; R_3 = R_4 = R_5 = H; R_6 = CH_3$	Swietenia mahogani ³⁴⁷
1152	Swietephragmin I	$R_1 = OAc; R_2 = Tig; R_3 = R_4 = R_5 = H; R_6 = CH_2CH_3$	Swietenia mahogani ³⁴⁷
1153	11-hydroxyswietephragmin B	$R_1 = OAc; R_2 = Tig; R_3 = H; R_4 = OH; R_5 = H; R_6 = CH(CH_3)CH_2CH_3$	Swietenia mahogani ³⁴⁷
1154	Moluccensin Y	$R_1 = OAc; R_2 = Ac; R_3 = R_4 = R_5 = H; R_6 = CH_3$	Xylocarpus moluccensis ³⁴⁰
1155	Krishnagranatin I	$R_1 = OH; R_2 = H; R_3 = \alpha - OAc; R_4 = H; R_5 = \alpha - OAc; R_6$	Xylocarpus granatum ³⁷⁵
	-	$= CH_3$	
1156	2-dehydroxylswietephragmin C	$R_1 = H; R_2 = Tig; R_3 = R_4 = R_5 = H; R_6 =$	Swietenia macrophylla ⁴¹³
		CH(CH ₃)CH ₂ CH ₃	
1157	Chuktabularoid D	$R_1 = OH; R_2 = Ac; R_3 = \alpha - OH; R_4 = \alpha - OH; R_5 = \alpha$ -	Chukrasia tabularis ³⁹³
		OAc; $R_6 = CH(CH_3)_2$	
1158	Andirolide G	$R_1 = OCOCH_2CH_3$; $R_2 = Ac$; $R_3 = R_4 = H$; $R_5 = \alpha$ -OH;	Carapa guianensis ²⁶³
		$R_6 = CH_3$	
1159	Granaxylocartin A	$R_1 = H; R_2 = Ac; R_3 = OH; R_4 = H; R_5 = OH$	Xylocarpus granatum ⁴¹⁴
1160	12α-acetoxyswietephragmin I	$R_1 = OAc; R_2 = Tig; R_3 = R_4 = H; R_5 = OAC; R_6 = CH_3$	Swietenia macrophylla ⁴¹⁵
1161	3β-O-detigloyl-3β-O-benzoyl-	$R_1 = OAc; R_2 = Bz; R_3 = R_4 = H; R_5 = OAc; R_6 = CH_3$	Swietenia macrophylla ⁴¹⁵
	12α-acetoxyswietephragmin I		
1162	8,9,30-ortho-tigloylate-	$R_1 = OH; R_2 = Tig; R_3 = R_4 = H; R_5 = OAc; R_6 = (E)$ -	Swietenia macrophylla ⁴¹⁵
	swietemacrophine	$CH_3C=CHCH_3$	
1163	2-deacetyl-6-acetoxyl-swietephragmin I	$R_1 = OH; R_2 = Tig; R_3 = OAc; R_4 = R_5 = H; R_6 = CH_3$	Swietenia macrophylla ⁴¹⁵

1164	2-deacetyl-12α-acetoxyswietephragmin I	$R_1 = OH; R_2 = Tig; R_3 = R_4 = H; R_5 = OAc; R_6 = CH_3$	Swietenia macrophylla ⁴¹⁵
1165	3β-O-detigloyl-3β-O-benzoyl- 6-O-acetylswietephragmin D	$R_1 = OH; R_2 = Bz; R_3 = OAc; R_4 = R_5 = H; R_6 = CH(CH_2)_2$	Swietenia macrophylla ⁴¹⁵
1166	6-acetoxyl-12α-deacetoxyl-8,9,30- ortho-tigloylate-swietemacrophine	$R_1 = OH; R_2 = Tig; R_3 = OAc; R_4 = R_5 = H; R_6 = (E)$ - CH ₂ C-CHCH.	Swietenia macrophylla ⁴¹⁵
1167	Entanutilin F	$R_1 = OH; R_2 = COCH(CH_3)_2; R_3 = R_4 = H; R_5 = OAc;$	Entandrophragma utile ³⁸⁷
1168	Entanutilin G	$R_6 = CH_3$ $R_1 = OCOCH(CH_3)_2; R_2 = R_3 = R_4 = H; R_5 = OAc; R_6$	Entandrophragma utile ³⁸⁷
1169	Entanutilin H	$R_1 = OCOCH(CH_3)_2; R_2 = R_3 = H; R_4 = R_5 = OAc; R_6$	Entandrophragma utile ³⁸⁷
1170	Entanutilin I	$R_1 = OH; R_2 = H; R_3 = H; R_4 = R_5 = OAc; R_6 = CH(CH)$	Entandrophragma utile ³⁸⁷
1171	Thaixylomolin Z	$R_1 = OH; R_2 = Ac; R_3 = \alpha - OH; R_4 = H; R_5 = OH; R_6 = CH$	Xylocarpus moluccensis ³³⁷
1172	2-O-acetylthaixylomolin Z	$R_1 = OAc; R_2 = Ac; R_3 = \alpha - OH; R_4 = H; R_5 = OH; R_6 = CH.$	Xylocarpus moluccensis ³³⁷
1173 1174	Hainanxylogranin Q Entanutilin K	$R_1 = OH; R_2 = Ac; R_3 = R_4 = R_5 = H; R_6 = CH_3$	<i>Xylocarpus granatum</i> ¹⁵² <i>Entandrophragma utile</i> ³⁸⁷
1175	2, 11-O, O-diacetyl epoxy febrinin, (2- acetyl soymidin B)	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Soymida febrifuga ³⁸⁸
1176	Velutabularin L	$\mathbf{R} = \mathbf{H}$	Sovmida febrifuga ³⁹²
1177	Tabularisin S	$R_1 = H; R_2 = Ac; R_3 = OAc; R_4 = H; R_5 = Ac; R_6 = CH(CH_2)_{2}$	<i>Chukrasia tabularis</i> ⁴⁰⁹
1178	Chukbularisin D	$R_1 = H; R_2 = Ac; R_3 = OAc; R_4 = R_5 = Ac; R_6 = CH(CH_2)$	Chukrasia tabularis ³⁹⁵
1179	Chukbularisin E	$R_1 = COCH(CH_3)_2; R_2 = Ac; R_3 = OAc; R_4 = R_5 = Ac;$ $R_4 = CH_3$	Chukrasia tabularis ³⁹⁵
1180	Chukvelutilide O	$R_1 = COCH(CH_3)_2; R_2 = Ac; R_3 = OH; R_4 = H; R_5 = Ac; R_6 = CH_2$	Chukrasia tabularis ⁴⁰³
1181	Tabularin R	$R_1 = R_2 = H$; $R_2 = OAc$; $R_4 = R_5 = Ac$; $R_6 = CH_2$	Chukrasia tabularis ⁴⁰⁵
1182	Chubularisin C	$R_1 = R_2 = R_3 = H; R_4 = Ac; R_5 = COCH(CH_3)_2; R_6 = CH_2CH_3$	Chukrasia tabularis ³⁹¹
1183	Chubularisin D	$R_1 = COCH2CH3; R_2 = Ac; R_3 = R_4 = H; R_5 = COCH(CH_3); R_2 = CH_3$	Chukrasia tabularis ³⁹¹
1184	Chubularisin E	$R_1 = COCH(CH_3)_2; R_2 = Ac; R_3 = R_4 = H; R_5 = COCH(CH_3)_2; R_2 = COCH(CH_3)_2; R_5 = CH_3$	Chukrasia tabularis ³⁹¹
1185	Chubularisin F	$R_1 = H; R_2 = Ac; R_3 = OAc; R_4 = R_5 = H; R_6 = CH(CH_2)_2$	Chukrasia tabularis ³⁹¹
1186	Chubularisin G	$R_1 = H; R_2 = Ac; R_3 = OAc; R_4 = R_5 = Ac; R_6 = CH(CH_2)_2$	Chukrasia tabularis ³⁹¹
1187	Chuklarisin A	$R_1 = COCH(CH_3)_2; R_2 = Ac; R_3 = OAc; R_4 = Ac; R_5 = COCH(CH_2)_2; R_6 = CH_2$	Chukrasia tabularis ⁴¹⁰
1188	Moluccensin Z1		Chukrasia tabularis ³⁸⁶
1189	Hainanxylogranin R		Xylocarpus granatum ¹⁵²
1190	Moluccensin Z2		Chukrasia tabularis ³⁸⁶
1191	12g-acetoxy1-20B.21B-22g.23g-		Swietenia macrophylla ⁴¹⁵
	diepoxyswietephragmin C		serenia naci opnytta

2.4.1.3.2. Polyoxyphragmalin

A total of seventy five polyoxyphragmalins were isolated from *Carapa guianensis*, *Heynea trijuga*, Trichilia connaroides, Trichilia sinensis, Soymida febrifuga, Khaya senegalensis, Swietenia macrophylla, Xylocarpus moluccensis, Xylocarpus granatum, Aphanamixis polystachya and Chukrasia tabularis (Table 42/S42, Figure 44). Thirty four Polyoxyphragmalin class limonoids were reported from Meliaceae family¹². Limonoids (1192-1216) contain $\Delta^{8,14}$ double bond and differ from each other in substituents at C1, C2, C3, C6, C15 and C30. The olefinic $\Delta^{8,14}$ double bond in Carapanolide K (1192) is shifted to $\Delta^{8,30}$ in Soymidin E (1217). Thaigranatin N (1218) is C2 dehydroxy, C3 acetyl analog of compound (1217). Thaigranatin O (1219) is C2 dehydroxy analog of compound (1217). Thaigranatin P (1220) is C2 dehydroxy, C3 acetyl analog of compound (1217) with shift in double bond from $\Delta^{8,30}$ to $\Delta^{8,14}$. Khayseneganin B (1221) is structurally similar to previously reported Khayanolide C^{416} except the interchanged substituents at C2 and C3. Khavseneganin C (1222) is a C1 acetyl analog of compound (1221). The only difference between compound (1192) and Swietenitin W and X (1223 and 1224) is the epoxide group at C8/9, and substituted exocyclic double bond at C15. Compounds (1225-1227) have additional keto carbonyl group at C30 and differ at C1 and C2 substitutions when compared to compound (1192). Swietenine J (1228) is structurally similar to previously reported Tabulalin⁴¹⁷ except the variation in substituents at A and B rings. Godavarin H (1229) is C2, C6, C12, C30 acetoxyl form of compound (1228). The hydroxyl group at C8 in compound (1221) is replaced by an additional conjugated double bond at $\Delta^{8,9}$ in Khayseneganin A (1230). Compounds (1231-1234) are analogs of previously reported Moluccensin H⁴¹⁸ containing additional hydroxyl group at C15 with loss of carbonyl group at C30 and varying substituents at A ring. Compounds (1235-1238) differ from compound (1225) at C1, C3 and C6 substitution. The $\Delta^{8.9}$ olefinic double bond and acetoxyl group at C2 in compound (1232) is shifted to $\Delta^{8,30}$ and C3 respectively in Granatumin K (1239). Granatumin J (1240) is C12 α acetoxyl form of previously reported Xylocarpin A^{419} . Krishnagranatin G (**1241**) is C1 deacetyl analog of compound (1240) whereas Krishnagranatin H (1242) is C12 deacetoxyl analog of compound (1241). 6-O-acetyl xylocarpin D (1243) is C2 epimer of compound (1240). Compound (1244) differ from compound (1242) at C17 where there is 20,22-dihydroxy-21,23-dimethoxy tetrahydrofuran moiety and epoxide group at C8/14 with C3, C6 deacetylation. The furan ring at C17 in compound (1217) is replaced by γ -substituted butenolide ring in compounds (1245 and 1246) along with C2/14 ether bridge formation. Khayseneganin I (1247) differs from compound (1246) at C3, C6 containing hydroxyl group and furan ring at C17. Khayseneganin I (1247) was isolated in 2014⁴²⁰ from Swietenia mahogani and named as 2-methoxy khayseneganin E. Khayseneganin E-H (1248-1251) differ from compound (1247) at A ring substitution. Velutabularin A-F (1252-1257) have six membered lactone ring between C15-C30, D ring lactone is cleaved to form five membered ring with C15/17ether linkage, cyclopropyl ring is present at C13-C14 and they vary among themselves only in substitution at C6, C11 and C12. The D ring ether linkage in compound (1252) is cleaved in Velutabularin G-J (1258-1261) and differs in substitution at C2, C6, C11, C12 and

C17. The five and six membered lactone rings are present at C and A rings respectively in Tabulalin D (**1262**). The lactone ring attached to A ring in compound (**1262**) is cleaved in Tabulalin E (**1263**). The cyclopropyl ring at C13-14 in compound (**1258**) is absent in compounds (**1264-1266**) and also differ in substitution at C6, C11 and C12.

No	Limonoid	Substituent	Source
1102	Coronomolido V	$\mathbf{D} = \mathbf{D} = \mathbf{H} \cdot \mathbf{D} = \mathbf{T} \cdot \mathbf{n} \cdot \mathbf{D} = \mathbf{H} \cdot \mathbf{D} = \mathbf{A} \cdot \mathbf{n} \cdot \mathbf{D}$	Canana anianan-:-266
1192	Carapanonde K	$\kappa_1 = \kappa_2 = H; \kappa_3 = 11g; \kappa_4 = H; \kappa_5 = AC; \kappa_6 = COCH(CH) CH CH$	Carapa guianensis
1102	TT	$COCH(CH_3)CH_2CH_3$	421
1193	Heytrijumalin A	$R_1 = R_2 = H; R_3 = T_1g; R_4 = OAC; R_5 =$	Heynea trijuga
		$COC(OH)(CH_3)_2; R_6 = COCH(CH_3)_2$	421
1194	Heytrijumalin B	$R_1 = R_2 = Ac; R_3 = Tig; R_4 = H; R_5 =$	Heynea trijuga ⁴²¹
		$COC(OH)(CH_3)_2$; $R_6 = Ac$	
1195	Heytrijumalin C	$R_1 = R_2 = Ac; R_3 = Tig; R_4 = OAc; R_5 =$	Heynea trijuga ⁴²¹
		$COC(OH)(CH_3)_2$; $R_6 = Ac$	
1196	Hevtrijumalin D	$R_1 = R_2 = H$; $R_3 = Tig$; $R_4 = OAc$; $R_5 = R_6 = Ac$	Hevnea trijuga ⁴²¹
1197	Hevtrijumalin E	$R_1 = Ac; R_2 = H; R_3 = Tig; R_4 = OAc; R_5 = R_6 = Ac$	Heynea trijuga ⁴²¹
1198	Hevtrijumalin F	$R_1 = R_2 = A_C$, $R_2 = Tig$, $R_4 = OAC$, $R_5 = R_5 = A_C$	Heynea trijuga ⁴²¹
1100	Heytriumalin G	$R_1 = R_2 = A_c; R_3 = H_5, R_4 = OHc, R_5 = R_6 = Hc$ $R_1 = R_2 = A_c; R_3 = COC(CH_1)CH_2; R_4 = OA_c; R_5 = R_6$	Heynea trijuga ⁴²¹
11//	neyurjunann o	$R_1 = R_2 = R_1, R_3 = COC(CH_3)CH_2, R_4 = ORC, R_5 = 0$	neynea ir ijaga
1200	Trichagmalin C	$\mathbf{R}_6 = \mathbf{A}\mathbf{C}$ $\mathbf{P}_{-} = \mathbf{P}_{-} = \mathbf{U} \cdot \mathbf{P}_{-} = \mathbf{T}_{12} \cdot \mathbf{P}_{-} = \mathbf{D}_{-} = \mathbf{U} \cdot \mathbf{P}_{-} = \mathbf{U} \cdot \mathbf{U} \cdot \mathbf{U} + \mathbf{U} \cdot \mathbf{U} + \mathbf{U} \cdot \mathbf{U} + \mathbf{U} \cdot \mathbf{U} + \mathbf{U} + \mathbf{U} + \mathbf{U} + \mathbf{U} \cdot \mathbf{U} + \mathbf$	Trichilia convaroidar ³⁵⁹
1200	Thenaginann C	$\mathbf{K}_1 = \mathbf{K}_2 = \mathbf{\Pi}; \ \mathbf{K}_3 = \mathbf{\Pi}g; \ \mathbf{K}_4 = \mathbf{K}_5 = \mathbf{\Pi}; \ \mathbf{K}_6 = \mathbf{\Pi}$	Tricnitia connarotaes
1001		$COCH(CH_3)_2$	
1201	15-Acetyltrichagmalin C	$R_1 = R_2 = H; R_3 = Tig; R_4 = H; R_5 = Ac; R_6 =$	Trichilia connaroides ³³⁷
		$COCH(CH_3)_2$	270
1202	1,2-Diacetyltrichagmalin C	$R_1 = R_2 = Ac; R_3 = Tig; R_4 = R_5 = H; R_6 =$	Trichilia connaroides ³⁵⁹
		$COCH(CH_3)_2$	
1203	Trichagmalin D	$R_1 = R_2 = H; R_3 = Tig; R_4 = H; R_5 = R_6 = Ac$	Trichilia connaroides ³⁵⁹
1204	Trichagmalin E	$R_1 = R_2 = Ac; R_2 = Tig; R_4 = R_5 = H; R_6 = Ac$	Trichilia connaroides ³⁵⁹
1205	15-Acetyltrichagmalin F	$\mathbf{R}_1 - \mathbf{R}_2 - \mathbf{A}_1$, $\mathbf{R}_2 - \mathbf{T}_1$, $\mathbf{R}_2 - \mathbf{H}_2$, $\mathbf{R}_3 - \mathbf{R}_4$	Trichilia connaroides ³⁵⁹
1205	Trichagmalin E	$R_1 = R_2 = R_1, R_3 = R_2, R_4 = R_1, R_5 = R_6 = R_6$ $P_1 = P_2 = H_1, P_2 = R_1, R_2 = R_2, R_4 = R_1, R_5 = R_6$	Trichilia connaroidas ³⁵⁹
1200		$R_1 = R_2 = 11, R_3 = 11g, R_4 = 11, R_5 = COC(O11)(C11_3)_2,$ $R_1 = 11$	Thennia connarotaes
1207	20 A set statistic second in E	$\mathbf{K}_6 = \mathbf{\Pi}$	T-i-1:1:
1207	30-Acetyltrichagmalin F	$R_1 = R_2 = H; R_3 = H; R_4 = H; R_5 =$	Trichilia connaroides
		$COC(OH)(CH_3)_2; R_6 = Ac$	250
1208	1,30-Diacetyltrichagmalin F	$R_1 = Ac; R_2 = H; R_3 = Tig; R_4 = H; R_5 =$	Trichilia connaroides ³⁵⁹
		$COC(OH)(CH_3)_2$; $R_6 = Ac$	
1209	Trisinenmalin A	$R_1 = Ac; R_2 = H; R_3 = Tig; R_4 = H; R_5 =$	Trichilia sinensis ⁴²²
		$COCH(CH_3)_2$; $R_6 = Ac$	
1210	Trisinenmalin B	$R_1 = R_2 = H; R_3 = Tig; R_4 = H; R_5 =$	Trichilia sinensis ⁴²²
		$COCH(CH_2)CH_2CH_2$; $R_{\epsilon} = H$	
1211	Trisinenmalin C	$\mathbf{R}_1 - \mathbf{R}_2 - \mathbf{H}_1 \mathbf{R}_2 - \mathbf{Tig}_1 \mathbf{R}_1 - \mathbf{H}_1 \mathbf{R}_2 -$	Trichilia sinensis ⁴²²
1211		$R_1 = R_2 = 11, R_3 = 11g, R_4 = 11, R_5 = COCH(CH)CH CH + P = A_c$	Trenitia sinensis
1010	Tricine multin F	$P = P = A \Rightarrow P = COCH(CH) \Rightarrow P = H = P$	T .: . 1 : 1 :
1212		$K_1 = K_2 = AC; K_3 = COCH(CH_3)_2; K_4 = H; K_5 = COCH(CH_4) + D = A_2$	Trichilla sinensis
		$COCH(CH_3)_2; K_6 = AC$	T 1 1 1 1 1 1 1 1 1 1
1213	Trisinenmalin F	$R_1 = H; R_2 = Ac; R_3 = COCH(CH_3)_2; R_4 = H; R_5 =$	Trichilia sinensis ¹²²
		$COCH(CH_3)2; R_6 = Ac$	(22
1214	Trisinenmalin G	$R_1 = R_2 = H; R_3 = COCH(CH_3)CH_2CH_3; R_4 = H; R_5 =$	Trichilia sinensis ⁴²²
		$COCH(CH_3)_2$; $R_6 = Ac$	
1215	Trisinenmalin H	$R_1 = Ac; R_2 = H; R_3 = COCH(CH_3)_2; R_4 = H; R_5 =$	Trichilia sinensis ⁴²²
		$COCH(CH_3)_2$; $R_6 = Ac$	
1216	Trisinenmalin I	$R_1 = R_2 = H$; $R_3 = COCH(CH_3)_2$; $R_4 = H$; $R_5 =$	Trichilia sinensis ⁴²²
		$COCH(CH_3)_2$: $R_6 = Ac$	
1217	Sovmidin F	$\mathbf{R}_{1} = \mathbf{OH} \cdot \mathbf{R}_{2} = \mathbf{Tig}$	Sovmida febrifuga ³⁸⁸
1217	Theigranatin N	$\mathbf{R}_1 = \mathbf{O}\mathbf{I}_1, \mathbf{R}_2 = \mathbf{I}\mathbf{I}\mathbf{g}$ $\mathbf{P}_1 = \mathbf{H}_1 \mathbf{P}_2 = \mathbf{A}_2$	Vylocampus anapatum ¹⁵³
1210		$\mathbf{R}_1 = \mathbf{n}, \mathbf{R}_2 = \mathbf{A}\mathbf{c}$	Xylocarpus granatum
1219	Thaigranatin O	$R_1 = H; R_2 = 11g$	<i>Aylocarpus granatum</i>
1220	Thaigranatin P		Xylocarpus granatum ¹³³
1221	Khayseneganin B	R = OH	Khaya senegalensis ³²⁴
1222	Khayseneganin C	$\mathbf{R} = \mathbf{OAc}$	Khaya senegalensis ³²⁴
1223	Swietenitin W	R= H	Swietenia macrophylla ³⁸⁵
1224	Swietenitin X	$R = CH_3$	Swietenia macrophylla ³⁸⁵
1225	Thaixylomolin D	$R_1 = Tig: R_2 = H$	Xylocarpus moluccensis ⁴²³
1225	Theirylomolin E	$\mathbf{R}_{1} = \mathbf{H}_{1} \mathbf{R}_{2} = \mathbf{COCH}(\mathbf{CH}_{2})_{1}$	Yulocarpus moluceonsis ⁴²³
1220	Thaixylumonnin C	$\mathbf{R}_1 = \mathbf{H}, \mathbf{R}_2 = \mathbf{COCH}(\mathbf{CH}_3)_2$ $\mathbf{P}_1 = \mathbf{COCH}(\mathbf{CH}_3) + \mathbf{P}_2 = \mathbf{H}_3$	Vylocarpus moluccensis
1227	Tharmoluccensin C	$\mathbf{K}_1 = \text{COCH}(\text{CH}_3)_2; \mathbf{K}_2 = \mathbf{H}$	Aylocarpus moluccensis
1228	Swietenine J	$\mathbf{K}_1 = \mathbf{K}_2 = \mathbf{K}_3 = \mathbf{K}_4 = \mathbf{K}_5 = \mathbf{H}$	Swietenia macrophylla
1229	Godavarin H	$\mathbf{R}_1 = \mathbf{Ac}; \mathbf{R}_2 = \mathbf{OAc}; \mathbf{R}_3 = \mathbf{OH}; \mathbf{R}_4 = \mathbf{R}_5 = \mathbf{OAc}$	Xylocarpus moluccensis
1230	Khayseneganin A		Khaya senegalensis ³²⁴
1231	Heytrijumalin H	$R_1 = H; R_2 = Tig; R_3 = OAc$	Heynea trijuga ⁴²¹
1232	Heytrijumalin I	$R_1 = H; R_2 = Tig; R_3 = H$	Heynea trijuga ⁴²¹
1233	Trichagmalin A	$R_1 = Ac; R_2 = Tig; R_3 = H$	Trichilia connaroides ³⁵⁹
		. ,20,3	

Table 42. Polyoxyphragmalin class limonoid 1192-1266

1234	Trichagmalin B	$R_1 = Ac; R_2 = COC(CH_3)CH_2; R_3 = H$	Trichilia connaroides ³⁵⁹
1235	Xylomolin K1	$R_1 = H; R_2 = COCH(CH_3)CH_2CH_3; R_3 = OH$	Xylocarpus moluccensis ¹⁴³
1236	Xylomolin K2	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = H$	Xylocarpus moluccensis ¹⁴³
1237	Moluccensin X	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = H$	Xylocarpus moluccensis ³⁴⁰
1238	Thaixylomolin F	$R_1 = COCH(CH_3)_2; R_2 = Ac; R_3 = H$	Xylocarpus moluccensis ⁴²³
1239	Granatumin K		Xylocarpus granatum ³⁴⁸
1240	Granatumin J	$\mathbf{R}_1 = \mathbf{A}\mathbf{c}; \mathbf{R}_2 = \alpha - \mathbf{O}\mathbf{A}\mathbf{c}$	Xylocarpus granatum ³⁴⁸
1241	Krishnagranatin G	$R_1 = H; R_2 = \beta - OAc$	Xylocarpus granatum ³⁷⁵
1242	Krishnagranatin H	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}$	Xylocarpus granatum ³⁷⁵
1243	6-O-acetyl xylocarpin D	$\mathbf{R}_1 = \mathbf{Ac}; \mathbf{R}_2 = \alpha \cdot \mathbf{OAc}$	Xylocarpus granatum ¹⁵⁴
1244	20,22-dihydroxy-21,23-		Aphanamixis polystachya ³⁶⁸
	dimethoxytetrahydrofuran		
	khayanolide A		
1245	1-deacetyl-3-dehydroxy- 3-	$R_1 = H; R_2 = CH_3$	Aphanamixis polystachya ³⁶⁸
	oxokhaysenelide E		
1246	Meliaphanamixin A	$R_1 = OCH_3; R_2 = H$	Aphanamixis polystachya ³⁶⁸
1247	Khayseneganin I	$\mathbf{R}_1 = \mathbf{C}\mathbf{H}_3; \mathbf{R}_2 = \mathbf{O}\mathbf{H}$	Khaya senegalensis ⁴²⁵
1248	Khayseneganin E	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{O}\mathbf{H}$	Khaya senegalensis ³²⁴
1249	Khayseneganin F	$R_1 = CH_3; R_2 = H$	Khaya senegalensis ³²⁴
1250	Khayseneganin G	$\mathbf{R} = \mathbf{H}$	Khaya senegalensis ³²⁴
1251	Khayseneganin H	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Khaya senegalensis ³²⁴
1252	Velutabularin A	$R_1 = H; R_2 = COCH_2CH_3; R_3 = Ac$	Chukrasia tabularis ⁴²⁶
1253	Velutabularin B	$R_1 = H; R_2 = COCH(CH_3)_2; R_3 = Ac$	Chukrasia tabularis ⁴²⁶
1254	Velutabularin C	$R_1 = OAc; R_2 = Ac; R_3 = COCH(CH_3)_2$	Chukrasia tabularis ⁴²⁶
1255	Velutabularin D	$R_1 = OAc; R_2 = H; R_3 = COCH(CH_3)_2$	Chukrasia tabularis ⁴²⁶
1256	Velutabularin E	$R_1 = OAc; R_2 = COCH(CH_3)_2; R_3 = Ac$	Chukrasia tabularis ⁴²⁶
1257	Velutabularin F	$\mathbf{R}_1 = \mathbf{OAc}; \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{Ac}$	Chukrasia tabularis ⁴²⁶
1258	Velutabularin G	$R_1 = H; R_2 = OAc; R_3 = Ac; R_4 = COCH(CH_3)_2$	Chukrasia tabularis ⁴²⁶
1259	Velutabularin H	$R_1 = H; R_2 = OAc; R_3 = COCH(CH_3)_2; R_4 = Ac$	Chukrasia tabularis ⁴²⁶
1260	Velutabularin I	$R_1 = COCH(CH_3)_2; R_2 = OAc; R_3 = R_4 = Ac$	Chukrasia tabularis ⁴²⁶
1261	Velutabularin J	$R_1 = R_2 = H; R_3 = Ac; R_4 = COCH(CH_3)_2$	Chukrasia tabularis ⁴²⁶
1262	Tabulalin D		Chukrasia tabularis ⁴⁰²
1263	Tabulalin E		Chukrasia tabularis ⁴⁰²
1264	Tabulalin J	$R_1 = H; R_2 = R_3 = Ac$	Chukrasia tabularis ⁴²⁷
1265	Tabulalin A	$R_1 = R_2 = R_3 = H$	Chukrasia tabularis ⁴⁰²
1266	Tabulalin B	$R_1 = OAc; R_2 = R_3 = H$	Chukrasia tabularis ⁴⁰²

2.4.1.3.3. Seco Phragmalin

2.4.1.3.3.1. 1,2-seco Phragmalin

Twenty six 1,2-seco Limonoids were isolated from Trichilia connaroides, Chisocheton ceramicus, Trichilia sinensis, Xylocarpus granatum, Xylocarpus moluccensis and Chisocheton erythrocarpus(Table 43/S43, Figure 45). Previously nineteen Meliaceae limonoids of this class were reported¹². The structure of Trichiliton G (1267) was determined by 1D and 2D NMR studies. Trichiliton H (1268) differs from compound (1267) at C17 substitution. In Chisomicine B (1269) there is epoxide ring at C8/30 and the structure was confirmed by X-ray crystallography. Triconoid D (1270) contains five membered lactone ring at C4-C5 relative to compound (1267) and furan ring at C17. The epoxide group in previously reported Granaxylocarpin C⁴¹⁹ is replaced by $\Delta^{8,30}$ double bond in Chisomicine C (**1271**). The $\Delta^{8,14}$ double bond and γ -hydroxy butenolide ring at C17 in compound (**1268**) is replaced by $\Delta^{8,9}$, $\Delta^{14,15}$ double bond and furan ring in Trichiliton I (1272) respectively. Trichisinton A (1273) is structurally similar to previously reported Trichiliton A⁴²⁸ except in keto carbonyl group at C2 and substituent variation at C3, C15 and C30, Trichisinton B-D (1274-1276) differs from compound (1273) at C3 and C15 substitution. Relative configuration of Trichisinton C (1277) was determined with respect to Khayseneganin A reported earlier^{429,416}. Trichiconlide E (1278) is structurally similar to previously reported Trichiliton A⁴²⁸ except in substitution at C3 and additional δ -lactone ring at C7 and C28. Trichiconlide F (1279) is C15 dehydroxy derivative of compound (1278). The δ -lactone ring at C28 in compound (1279) is cleaved in Sundarbanxylogranin A (1280) which also have isobutyryloxy group at C3. Andhraxylocarpin C (1281) and Chisomicine A (1282) are C3 acetyl and tigloyl derivatives of compound (1282) respectively. Chisomicine A (1282) was first isolated from Chisocheton *ceramicus* in the year 2011, and it was again isolated in the year 2012 from *Xylocarpus granatum* by a different research group who named it as Andhraxylocarpin D. The $\Delta^{2,30}$, $\Delta^{8,14}$ olefinic double bonds in compound (**1281**) are shifted to $\Delta^{8,30}$, $\Delta^{14,15}$ in Xylomolin J1 (1283) which is carbonylated at C2. At C3, Xylomolin J2 (1284) and Trangmolin F (1285) are 2-methylbutyryloxy and isobutyryloxy analogs of compound (1283) respectively. The C1 carbonyl and C3 acetate groups in compound (1283) is reduced and tigloylated in Andhraxylocarpin A (1286) along with C2-O-C1 ether bridge formation. Andhraxylocarpin B (1287) and Malayanine A (1288) are C3-O acetyl and benzoyl analogs of compound (1286) respectively. The carbonyl at C2 in compound (1283) is reduced in Trichiconlide C and D (1289 and 1290) with C1-O-C2 ether bridge formation and additional δ-lactone ring at C7, C28 with varying substituents at C3. Thaigranatin Q (1291) is $\Delta^{2,30}$, $\Delta^{8,14}$ double bond reduced, C2 hydroxy analog of compound (1282). Thaigranatin R (1292) is C15 hydroxy analog of compound (1282).

No.	Limonoid	Substituent	Source
1267	Trichiliton G	~	Trichilia connaroides ⁴³⁰
1268	Trichiliton H		Trichilia connaroides ⁴³⁰
1269	Chisomicine B		Chisocheton ceramicus ⁴³¹
1270	Triconoid D		Trichilia connaroides ³⁶²
1271	Chisomicine C		Chisocheton ceramicus ⁴³¹
1272	Trichiliton I		Trichilia connaroides ⁴³²
1273	Trichisinton A	$R_1 = COCH(CH_3)_2; R_2 = COCH(CH_3)_2$	Trichilia sinensis ⁴²²
1274	Trichisinton B	$R_1 = COCH(CH_3)CH_2CH_3; R_2 =$	Trichilia sinensis ⁴²²
		COCH(CH ₃)CH ₂ CH ₃	
1275	Trichisinton C	$R_1 = Tig; R_2 = COCH(CH_3)_2$	Trichilia sinensis ⁴²²
1276	Trichisinton D	$R_1 = Tig; R_2 = COCH(CH_3)CH_2CH_3$	Trichilia sinensis ⁴²²
1277	Trichiconlide C		Trichilia connaroides ²⁹¹
1278	Trichiconlide E	$\mathbf{R} = \mathbf{OH}$	Trichilia connaroides ⁴³³
1279	Trichiconlide F	$\mathbf{R} = \mathbf{H}$	Trichilia connaroides ⁴³³
1280	Sundarbanxylogranin A	$R = COCH(CH_3)_2$	Xylocarpus granatum ³⁵⁶
1281	Andhraxylocarpin C	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Xylocarpus moluccensis ⁴³⁴
1282	Andhraxylocarpin D/ Chisomicine A	$\mathbf{R} = \mathbf{Tig}$	Xylocarpus granatum ⁴³⁴ /
			Chisocheton ceramicus ⁴³¹
1283	Xylomolin J1	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Xylocarpus moluccensis ¹⁴³
1284	Xylomolin J2	$R = COCH(CH_3)CH_2CH_3$	<i>Xylocarpus moluccensis</i> ¹⁴³
1285	Trangmolin F	$R = COCH(CH_3)_2$	Xylocarpus moluccensis ²⁹⁹
1286	Andhraxylocarpin A	$\mathbf{R} = \mathrm{Tig}$	<i>Xylocarpus moluccensis</i> ⁴³⁴ /
			<i>Xylocarpus granatum</i> ⁴³⁴
1287	Andhraxylocarpin B	$\mathbf{R} = \mathbf{A}\mathbf{c}$	<i>Xylocarpus granatum</i> ⁴³⁴
1288	Malayanine A	$\mathbf{R} = \mathbf{B}\mathbf{z}$	Chisocheton erythrocarpus ⁴³⁵
1289	Trichiconlide C	$\mathbf{R} = \mathrm{Tig}$	Trichilia connaroides ⁴³³
1290	Trichiconlide D	$R = COCHCHCH_3$	Trichilia connaroides ⁴³³
1291	Thaigranatin Q		<i>Xylocarpus granatum</i> ¹⁵³
1292	Thaigranatin R		Xylocarnus granatum ¹⁵³

2.4.1.3.3.2. 1,10-seco Phragmalin

Malayanine B (**1293**) isolated from *Chisocheton erythrocarpus* is structurally similar to compound (**1288**) except in the γ -lactone ring between C7-C10, C1/8 ether linkage instead of C1/2, presence of C1-C2 bond with cleavage of C1-C10 bond and has benzoyl group at C3-O (Table 44/S44, Figure 46).

Table 44	1 10-seco	Phraomalin	class	limonoid	1293
1 anic 44.	1,10-5000	1 III agiilailii	ciass	mnonoiu	14/5

1 abic 44.	1,10-seco i maginann ci		
No.	Limonoid	Substituent	Source
1293	Malayanine B		Chisocheton erythrocarpus ⁴³⁵
		O H HO OBz	
		1293	
Figure 46	Structure of (1,10-seco)	phragmalin class limonoid 1293 .	

2.4.1.3.4. 16-Nor Phragmalin

All 27 limonoids (**1294-1320**) belonging to this class were isolated from *Chukrasia tabularis* (Table 45/S45, Figure 47). Previously twenty five Meliaceae limonoids of this class were reported¹². The furan ring at C17 in previously reported Chuktabularin B⁴³⁶ is replaced by γ -hydroxy butenolide moiety in Chukbularisin A (**1294**). Compounds (**1295-1297**) are structurally similar to previously reported Chuktabularin A⁴³⁶ but differ in substitution

at A and C rings. The δ -lactone ring in previously reported Chuktabularin D⁴³⁶ is replaced by γ -lactone ring in Chukrasone B (**1298**) and also varies in substituents at C17, C31, A and C rings. Compounds (**1299-1308**) are structurally similar to previously reported Chuktabularin A⁴³⁶ except in the substituents at C2, C3, C11, C12 and C31. Compounds (**1309-1313**) are structurally similar to previously reported Chuktabularin A⁴³⁶ except in the substituents at C2, C3, C11, C12 and C31. Compounds (**1309-1313**) are structurally similar to previously reported Chuktabrin A reported earlier⁴³⁶ with varying substituents at C6, C11, C12, C19 and C31. Similar skeletal features were observed in limonoids (**1314-1316**) with formation of δ -lactone ring at C7/19. Cleavage at C31 in Chuktabrin G (**1315**) leads to the formation of Chuktabrin J (**1317**). The carbonate at OH-9 in Chuktabrin E and J (**1312** and **1317**) is shifted to OH-1 in Chuktabrin F (**1318**) and OH-30 in Chuktabrin I (**1319**) respectively. The δ -lactone ring in compound (**1319**) is cleaved in Chuktabrin D (**1320**).

Table 45. 1	6-Nor Phrag	nalin class	limonoid	1294	-132	0
-------------	-------------	-------------	----------	------	------	---

No.	Limonoid	Substituent	Source
1294	Chukbularisin A		Chukrasia tabularis ³⁹⁵
1295	Velutinasin G	$R_1 = Ac; R_2 = H; R_3 = Ac; R_4 = H; R_5 = CH_2CH_3$	Chukrasia tabularis ³⁹⁰
1296	Velutinasin H	$R_1 = R_2 = H; R_3 = R_4 = Ac; R_5 = CH_3$	Chukrasia tabularis ³⁹⁰
1297	Chukvelutin E	$R_1 = R_2 = Ac; R_3 = R_4 = H; R_5 = iPr$	Chukrasia tabularis ⁴³⁷
1298	Chukrasone B		Chukrasia tabularis ²⁹⁶
1299	Chuktabularin U	$R_1 = R_2 = Ac; R_3 = R_4 = H; R_5 = CH_3$	Chukrasia tabularis ³⁹⁵
1300	Chuktabularin V	$R_1 = R_2 = R_3 = Ac; R_4 = COCH(CH_3)_2; R_5 = CH_3$	Chukrasia tabularis ³⁹⁵
1301	Chuktabularin W	$R_1 = Ac; R_2 = COCH(CH_3)_2; R_3 = R_4 = Ac; R_5 = CH_2CH_3$	Chukrasia tabularis ³⁹⁵
1302	Chuktabularin X	$R_1 = R_2 = R_3 = R_4 = H; R_5 = CH_2CH_3$	Chukrasia tabularis ³⁹⁵
1303	Chuktabularoid C	$R_1 = H; R_2 = R_3 = R_4 = Ac; R_5 = CH_3$	Chukrasia tabularis ³⁹³
1304	Chukvelutin F	$R_1 = R_2 = Ac; R_3 = R_4 = H; R_5 = iPr$	Chukrasia tabularis ⁴³⁷
1305	Chubularisin O	$R_1 = R_2 = R_3 = Ac; R_4 = COCH(CH_3)_2; R_5 = CH_3$	Chukrasia tabularis ³⁹¹
1306	Chubularisin P	$R_1 = H; R_2 = R_3 = Ac; R_4 = COCH_2CH_3; R_5 = CH_2CH_3$	Chukrasia tabularis ³⁹¹
1307	Chubularisin Q	$R_1 = Ac; R_2 = H; R_3 = Ac; R_4 = COCH(CH_3)_2; R_5 = CH_2CH_3$	Chukrasia tabularis ³⁹¹
1308	Chubularisin R	$R_1 = H; R_2 = R_3 = R_4 = Ac; R_5 = iPr$	Chukrasia tabularis ³⁹¹
1309	Velutinasin F	$R_1 = H; R_2 = R_3 = OAc; R_4 = H; R_5 = CH_3$	Chukrasia tabularis ³⁹⁰
1310	Chuktabrin C	$R_1 = R_2 = R_3 = OAc; R_4 = H; R_5 = CH_2CH_3$	Chukrasia tabularis ³⁹⁵
1311	Chuktabrin D	$R_1 = H; R_2 = R_3 = OH; R_4 = H; R_5 = CH_2CH_3$	Chukrasia tabularis ³⁹⁵
1312	Chuktabrin E	$R_1 = H; R_2 = R_3 = R_4 = OAc; R_5 = CH_2CH_3$	Chukrasia tabularis ³⁹⁵
1313	Chuktabularoid B	$R_1 = R_2 = R_3 = OAc; R_4 = H; R_5 = iPr$	Chukrasia tabularis ³⁹³
1314	Chuktabrin K	$R_1 = R_2 = H$	Chukrasia tabularis ⁴²⁷
1315	Chuktabrin G	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{A}\mathbf{c}$	Chukrasia tabularis ³⁹⁵
1316	Chuktabrin H	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{A}\mathbf{c}$	Chukrasia tabularis ³⁹⁵
1317	Chuktabrin J		Chukrasia tabularis ³⁹⁵
1318	Chuktabrin F		Chukrasia tabularis ³⁹⁵
1319	Chuktabrin I		Chukrasia tabularis ³⁹⁵
1320	Chukvelutin D		Chukrasia tabularis ⁴³⁷

Figure 47. Structures of 16-Nor phragmalin class limonoids 1294-1320. 2.4.2. 1,30-linkage along with 2,30-linkage 2.4.2.1. Khayanolide

These are rearranged phragmalin class limonoids. Twenty four Limonoids were isolated from *Xylocarpus* moluccensis and *Khaya senegalensis* (Table 46/S46, Figure 48). The epoxide group at C30 in previously reported Khayanolide A⁴²⁹ is replaced by $\Delta^{8,14}$ olefinic double bond in Xylomolin G1 (1321) which also has an additional ethoxide group at C30. Compounds (1322-1329) are analogs of compound (1321) with differing substituent groups at C3, C6 and C30. The $\Delta^{8,14}$ double bond in compound (1321) is shifted to $\Delta^{14,15}$ in Xylomolin H (1330) which also has C1-O isobutyryl moiety, hydroxyl group at C8 and C30. Compounds (1331-1333) contain additional conjugated double bond at $\Delta^{8,9}$ relative to compound (1330) and differ in substitution at C3 and C30. Xylomolin I (1334) and Thaixylomolin H (1335) are structural analogs of Thaixylomolin M (1331) except the substituents at C6 and interchanged substituents between C2 and C3. Thaixylomolin G (1336) is a C11 keto carbonyl analog of compound (1335). The $\Delta^{8,9}$, $\Delta^{14,15}$ double bond in compound (1335) is replaced by $\Delta^{8,14}$ double bond in Thaixylomolin I (1337). Thaixylomolin J (1338) is C30 ethoxide analog of compound (1337). Krishnolide A (1339) is a structural analog of previously isolated Khayanolide A⁴²⁹ but differs in substitution at C3, C6 and C30. The C17 furan ring in previously reported khayanolide B⁴²⁹ is replaced by γ -substituted butenolide moiety in Khaysenelide C-F (1340-1343) and also varying substituents at C1 and C3. Thaixylomolin S (1344) is C6 hydroxy, C30 2-methylbutyryloxy, $\Delta^{14,15}$ analog of previously reported 3-acetyl khayalactone⁴³⁸.

Table 46. Khayanolide class limonoid 1321-1344

No.	Limonoid	Substituent	Source
1321	Xylomolin G1	$R_1 = Ac; R_2 = OH; R_3 = OCH_2CH_3$	Xylocarpus moluccensis ¹⁴³
1322	Xylomolin G2	$\mathbf{R}_1 = \text{COCH}(\text{CH}_3)_2; \mathbf{R}_2 = \text{OH}; \mathbf{R}_3 = \text{OCH}_2\text{CH}_3$	Xylocarpus moluccensis ¹⁴³
1323	Xylomolin G3	$R_1 = Ac; R_2 = OH; R_3 = H;$	Xylocarpus moluccensis ¹⁴³
1324	Xylomolin G4	$R_1 = COCH(CH_3)_2; R_2 = R_3 = H$	Xylocarpus moluccensis ¹⁴³
1325	Xylomolin G5	$R_1 = COCH(CH_3)CH_2CH_3; R_2 = R_3 = H$	Xylocarpus moluccensis ¹⁴³
1326	Thaixylomolin K	$R_1 = Ac; R_2 = R_3 = H$	Xylocarpus moluccensis ³⁵²
1327	Thaixylomolin L	$R_1 = Ac; R_2 = H; R_3 = OCH_2CH_3$	Xylocarpus moluccensis ³⁵²
1328	Krishnolide C	$R_1 = COCH(\alpha - CH_3)CH_2CH_3; R_2 = H; R_3 = OCOCH(CH_3)_2$	Xylocarpus moluccensis ⁴³⁹
1329	Krishnolide D	$\mathbf{R}_1 = \text{COCH}(\text{CH}_3)_2; \mathbf{R}_2 = \text{H}; \mathbf{R}_3 = \text{OCOCH}(\text{CH}_3)_2$	Xylocarpus moluccensis ⁴³⁹
1330	Xylomolin H		Xylocarpus moluccensis ¹⁴³
1331	Thaixylomolin M	$\mathbf{R}_1 = \mathbf{Ac}; \mathbf{R}_2 = \mathbf{H}$	Xylocarpus moluccensis ³⁵²
1332	Thaixylomolin N	$R_1 = Ac; R_2 = OTig$	Xylocarpus moluccensis ³⁵²
1333	Krishnolide B	$R_1 = COCH(\alpha - CH_3)CH_2CH_3; R_2 = OCOCH(CH_3)_2$	Xylocarpus moluccensis ⁴³⁹
1334	Xylomolin I	$R_1 = COCH(CH_3)CH_2CH_3; R_2 = OH$	Xylocarpus moluccensis ¹⁴³
1335	Thaixylomolin H	$\mathbf{R}_1 = \mathbf{Ac}; \mathbf{R}_2 = \mathbf{H}$	Xylocarpus moluccensis ³⁵²
1336	Thaixylomolin G		Xylocarpus moluccensis ³⁵²
1337	Thaixylomolin I	R = OH	Xylocarpus moluccensis ³⁵²
1338	Thaixylomolin J	$R = OCH_2CH_3$	Xylocarpus moluccensis ³⁵²
1339	Krishnolide A		Xylocarpus moluccensis ⁴³⁹
1340	Khaysenelide C		Khaya senegalensis ³⁶⁷
1341	Khaysenelide D		Khaya senegalensis ³⁶⁷
1342	Khaysenelide E	$R = CH_3$	Khaya senegalensis ³⁶⁷
1343	Khaysenelide F	$\mathbf{R} = \mathbf{H}$	Khaya senegalensis ³⁶⁷
1344	Thaixylomolin S		Xylocarpus moluccensis ³³⁷

Figure 48. Structures of khayanolide class limonoids 1321-1344.

2.4.3. 8,11-linkage

2.4.3.1. Trijugin

The presence of C8-C11 linkage and ether linkage in the form of an eight membered ring is the signature mark of this class. Twenty three Limonoids were isolated from *Heynea trijuga, Cipadessa baccifera, Cipadessa cinerascens* and *Trichilia connaroides* (Table 47/S47, Figure 49). Previously Trijugin class limonoids were reported from the Meliaceae family¹². The $\Delta^{8,30}$ olefinic double bond in previously reported Trijugin H⁴⁴⁰ is replaced by epoxide moiety in Trichisin A (**1345**). The $\Delta^{2,6}$ ether bridge and hydroxyl group at C2 in compound (**1345**) is absent in Trichisin D (**1346**). In comparison to compound (**1346**), there is an additional hydroxyl group at C9 with formation of ether linkage at C9-O-C6 in Trichisin E (**1347**). The C2-O-C6 ether bridge and C2 hydroxyl group in Trijugin H are absent in Cipatrijugin E (**1348**). Cipatrijugin G (**1349**) is a C11 hydroxyl analog of compound (**1348**). Compounds (**1350-1355**) are structural analogs of compound (**1348**) with variation at C2, C3 and C11 substitution. Limonoids (**1356-1359**) are 12-deacetyl analogs of previously reported Trijugin A⁴⁴¹ except in the substituents at C6 and C11. Trichisin B and C (**1360** and **1361**) are D ring cleaved analogs of compounds (**1357** and **1349**) respectively. Ciparasin E-G (**1362-1364**) and Cipatrijugin G (**1365**) are C17 γ -hydroxy butenolide analogs of compound (**1365**) is structurally similar to previously reported Trichilin A⁴⁴² except in the cleaved ether bridges at C6/9 and C1/14. Cipaferoid A (**1367**) is structurally similar to previously reported methyl angolensate⁴⁴³ except in the additional seven membered lactone ring between C7 and C11.

No.	Limonoid	Substituent	Source
1345	Trichisin A		Heynea trijuga ³⁵⁷
1346	Trichisin D		Heynea trijuga ³⁵⁷
1347	Trichisin E		Heynea trijuga ³⁵⁷
1348	Cipatrijugin E	$\mathbf{R} = \mathbf{H}$	Cipadessa baccifera ⁴⁴⁴
1349	Cipatrijugin G	$\mathbf{R} = \mathbf{OH}$	Cipadessa cinerascens ⁴⁴⁵
1350	Ciparasin A	$R_1 = OAc; R_2 = Ac; R_3 = OH$	Cipadessa cinerascens ²⁸¹
1351	Ciparasin B	$\mathbf{R}_1 = \mathbf{OH}; \mathbf{R}_2 = \mathbf{Ac}; \mathbf{R}_3 = \mathbf{OH}$	Cipadessa cinerascens ²⁸¹
1352	Ciparasin C	$R_1 = OH; R_2 = Ac; R_3 = OAc$	Cipadessa cinerascens ²⁸¹
1353	Ciparasin D	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{H}$	Cipadessa cinerascens ²⁸¹
1354	Cipatrijugin F	$\mathbf{R}_1 = \mathbf{OAc}; \mathbf{R}_2 = \mathbf{Ac}; \mathbf{R}_3 = \mathbf{H}$	Cipadessa baccifera ⁴⁴⁴
1355	Cipatrijugin H	$R_1 = H; R_2 = Ac; R_3 = OH$	Cipadessa cinerascens ⁴⁴⁵
1356	Trichisin F	$\mathbf{R}_1 = \beta - \mathbf{H}; \mathbf{R}_2 = \mathbf{O}\mathbf{H}$	Heynea trijuga ³⁵⁷
1357	Trichisin G	$\mathbf{R}_1 = \alpha - \mathbf{H}; \mathbf{R}_2 = \mathbf{O}\mathbf{H}$	Heynea trijuga ³⁵⁷
1358	Trichisin H	$\mathbf{R}_1 = \alpha - \mathbf{H}; \ \mathbf{R}_2 = \mathbf{H}$	Heynea trijuga ³⁵⁷
1359	12-deacetoxyltrijugin A	$\mathbf{R}_1 = \beta - \mathbf{H}; \mathbf{R}_2 = \mathbf{H}$	Trichilia connaroides ⁴³²
1360	Trichisin B		Heynea trijuga ³⁵⁷
1361	Trichisin C		Heynea trijuga ³⁵⁷
1362	Ciparasin E	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}; \mathbf{R}_3 = \beta \cdot \mathbf{OH}$	Cipadessa cinerascens ²⁸¹
1363	Ciparasin F	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{OAc}; \mathbf{R}_3 = \beta - \mathbf{OH}$	Cipadessa cinerascens ²⁸¹
1364	Ciparasin G	$R_1 = H; R_2 = OAc; R_3 = \beta - OH$	Cipadessa cinerascens ²⁸¹
1365	Cipatrijugin G	$R_1 = OAc; R_2 = H; R_3 = OH$	Cipadessa cinerascens ⁴⁴⁶
1366	Trichiliton B		Trichilia connaroides ⁴⁴⁷
1367	Cipaferoid A		Cipadessa baccifera ³¹⁹

Table 47. Trijugin class limonoid 1345-1367

Figure 49. Structures of trijugin class limonoids 1345-1367.

0 Ή

2.4.4. 10,11-linka 2.4.4.1. Cipadesin 10,11-linkage

H₃COOC-

This class of Limonoids is characterized by linkage between C10 and C11. Twenty three Limonoids belonging to this class were isolated from Cipadessa cinerascens and Cipadessa baccifera (Table 48/S48, Figure 50). Earlier ten Cipadesin class limonoids were reported from Meliaceae family¹². The structure of Ciparasin H (**1368**) is structurally similar to previously reported Cipadesin A^{448} except in the rearrangement at B ring. Ciparasin I-L (1369-1372) are structurally similar to compound (1368) but differ in substitution at C2 and C8. Ciparasin K and L (1371 and 1372) are C8 epimers. Cibacciferin E (1373) is C2 deacetoxyl, C6 hydroxy analog of previously reported Cipadesin A⁴⁴⁹. 2β-Acetoxycibacciferin E (1374) is C6 hydroxy analog of previously reported Cipadesin A^{449} . 6-Dehydroxycibacciferin F (**1375**) is C2 isobutyrate, C3 deacetyl analog of previously reported Cipadesin G⁴⁵⁰. Cibacciferin F (1376) and 12-Deacetoxycibacciferin E (1377) are C6 hydroxy analogs of compound (1375) and previously reported Cipadesin G⁴⁵⁰ respectively. 2β-Acetoxy-12-deacetoxycibacciferin E (1378) is C2 acetoxyl analog of compound (1377). Ciparasin M (1379) is C2 deacetyl analog of previously reported Cipadesin C^{450} . Ciparasin N and O (1380 and 1381) are C3 deacetyl and C12 dehydroxyl analogs of compounds (1379 and 1380) respectively. Cibacciferin G (1382) is C3 deacetyl analog of previously reported Cipadesin C⁴⁵⁰. Cibacciferin H (1383) and 12-Dehydroxycibacciferin H (1384) are C2 hydroxy analog of previously reported Cipadesin E^{313} and Cipadonoid C³⁰⁵ respectively. Cibacciferin I (1385) is C6 hydroxy analog of previously reported Cipadonoid D³⁰⁵. Cipaferen O and C (1386 and 1387) differ in substitutions at C2 and C6. The C2-O tiglate and γ -hydroxy butenolide groups in compound (1386) are replaced by 2-methylbutanoate and furan moiety in Cipaferen A (1388) respectively. Cipaferen B (1389) is a C6 hydroxy analog of compound (1388). Cipaferen D (1390) differs at C17 substitution from compound (1387).

No.	Limonoid	Substituent	Source
1368	Ciparasin H	$R_1 = OAc; R_2 = \alpha - H$	Cipadessa cinerascens ²⁸¹
1369	Ciparasin I	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \alpha - \mathbf{H}$	Cipadessa cinerascens ²⁸¹
1370	Ciparasin J	$\mathbf{R}_1 = \mathbf{OH}; \mathbf{R}_2 = \alpha - \mathbf{H}$	Cipadessa cinerascens ²⁸¹
1371	Ciparasin K	$R_1 = OAc; R_2 = \beta - OH$	Cipadessa cinerascens ²⁸¹
1372	Ciparasin L	$R_1 = OAc; R_2 = \alpha - OH$	Cipadessa cinerascens ²⁸¹
1373	Cibacciferin E	$R_1 = H; R_2 = \beta$ -OAc; $R_3 = OH; R_4 = OAc$	Cipadessa baccifera ³¹²
1374	2β-Acetoxycibacciferin E	$R_1 = OAc; R_2 = \beta - OAc; R_3 = OH; R_4 = OAc$	Cipadessa baccifera ³¹²
1375	6-Dehydroxycibacciferin F	$R_1 = OCOCH(CH_3)_2; R_2 = \alpha - OH; R_3 = R_4 = H$	Cipadessa baccifera ³¹²
1376	Cibacciferin F	$R_1 = OCOCH(CH_3)_2$; $R_2 = \alpha$ -OH; $R_3 = OH$; $R_4 = H$	Cipadessa baccifera ³¹²
1377	12-Deacetoxycibacciferin E	$R_1 = H; R_2 = \beta$ -OAc; $R_3 = OH; R_4 = H$	Cipadessa baccifera ³¹²
1378	2β-Acetoxy-12-deacetoxycibacciferin E	$R_1 = OAc; R_2 = \beta - OAc; R_3 = OH; R_4 = H$	Cipadessa baccifera ³¹²
1379	Ciparasin M	$R_1 = OH; R_2 = \beta - OAc; R_3 = H; R_4 = OH$	Cipadessa cinerascens ²⁸¹
1380	Ciparasin N	$R_1 = OH; R_2 = \beta - OH; R_3 = H; R_4 = OH$	Cipadessa cinerascens ²⁸¹
1381	Ciparasin O	$R_1 = OH; R_2 = \beta - OH; R_3 = H; R_4 = H$	Cipadessa cinerascens ²⁸¹
1382	Cibacciferin G	$R_1 = OAc; R_2 = \alpha - OH; R_3 = H; R_4 = OH$	Cipadessa baccifera ³¹²
1383	Cibacciferin H	$R_1 = OH; R_2 = \alpha - OAc; R_3 = H; R_4 = OH$	Cipadessa baccifera ³¹²
1384	12-Dehydroxycibacciferin H	$R_1 = OH; R_2 = \alpha - OAc; R_3 = R_4 = H$	Cipadessa baccifera ³¹²
1385	Cibacciferin I	$R_1 = H; R_2 = \beta$ -OAc; $R_3 = \beta$ -OH; $R_4 = OAc$	Cipadessa baccifera ³¹²
1386	Cipaferen O	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathrm{Tig}$	Cipadessa baccifera ³⁰⁷
1387	Cipaferen C	$R_1 = OH; R_2 = COCH(CH_3)CH_2CH_3$	Cipadessa baccifera ⁴⁵¹
1388	Cipaferen A	$\mathbf{R} = \mathbf{H}$	Cipadessa baccifera ⁴⁵¹
1389	Cipaferen B	$\mathbf{R} = \mathbf{OH}$	Cipadessa baccifera ⁴⁵¹
1390	Cipaferen D		Cipadessa baccifera ⁴⁵¹

Table 40. Cipaucom class innonoiu 1300-13	able to, Cipaues	n ciass mnonoiu 13	10-1370
---	------------------	--------------------	---------

2.4.5. Other linkage

Nineteen Limonoids belonging to this class were isolated from *Carapa guianensis*, *Trichilia connaroides*, Cipadessa cinerascens, Xylocarpus granatum, Entandrophragma utile, Khaya senegalensis, Swietenia mahogani and Toona ciliata (Table 49/S49, Figure 51). A total of twenty six Meliaceae limonoids of this class were reported from¹². Guianolactone A (1391) contains a 5,6,6,6,6 ring system. Guianolactone B (1392) possesses a 6,6,5,6,6 ring system and exhibits keto-enol tautomeism. Spirotrichilin A (1393) has a 1,7-dioxadispiro [2.3.0.4]-hendecane system in B/C rings. The C2-methylformate group in compound (1393) is absent in Spirotrichilin B (1394). Cipacinoid A (1395) has a cleaved D ring and Cipacinoid B (1396) is a C2 hydroxy analog of compound (1395). Cipacinoid C and D (1397 and 1398) are C17 epimers. Andhraxylocarpin E (1399) is structurally similar to previously reported Xylogranatin A^{380} except in the additional five membered ring formed by C28 and C30 linkage. Entanutilin L (**1400**) is C3 carbonyl analog of previously reported Delevoyin C⁴⁵². Entanutilin M (**1401**) is C6 isobutyrate analog of compound (1400). Entanutilin A (1402) is C3-deacetyl analog of previously reported Delevovin C⁴⁵². Entanutilin N (1403) is C3 deacetyl, C7 isovaleryl analog of previously reported Delevoyin C⁴⁵². Senegalension A (1404) is structurally similar to previously reported Khayanolide C^{416} except in the additional five membered lactone ring. Senegalension B (1405) is C1 acetyl derivative of compound (1404). Senegalension C (1406) contains a spiro ring system. Swietemahalactone (1407) corresponds to Khayanolide C except in the rearranged A and B rings. When compared with previously reported Toonacilin³²⁰ in Toonayunnanae B (1408) there is formation of C1, C14 ether linkage with opening of C14, C15 epoxide ring. Toonaolide A (1409) contains C21 hydroxy butenolide moiety and rearranged ring A having lactone moiety.

No.	Limonoid	Substituent	Source
1391	Guianolactone A		Carapa guianensis ⁴⁵³
1392	Guianolactone B		Carapa guianensis ⁴⁵³
1393	Spirotrichilin A		Trichilia connaroides ⁴⁵⁴
1394	Spirotrichilin B		Trichilia connaroides ⁴⁵⁴
1395	Cipacinoid A	$\mathbf{R} = \mathbf{H}$	Cipadessa cinerascens ⁴⁵⁵
1396	Cipacinoid B	R = OH	Cipadessa cinerascens ⁴⁵⁵
1397	Cipacinoid C	17S	Cipadessa cinerascens ⁴⁵⁵
1398	Cipacinoid D	17R	Cipadessa cinerascens ⁴⁵⁵
1399	Andhraxylocarpin E		Xylocarpus granatum ⁴³⁴

Table 49. Othe	r linkage	class	limonoid	1391	-1409
----------------	-----------	-------	----------	------	-------

1395-1396

1406

1407

2.5. Limonoid derivatives

2.5.1. Pentanor triterpenoids

ЮH

The major characteristic of this class is the absence of five carbons on the steroidal skeleton. Twenty eight Limonoids belonging to this class were isolated from Swietenia macrophylla, Chisocheton ceramicus, Walsura robusta, Azadirachta indica, Chisocheton cumingianus, Toona ciliata, Xylocarpus moluccensis, Toona sinensis and Carapa guianensis (Table 50/S50, Figure 52). Previously twenty seven Pentanor class limonoids were reported from Meliaceae family¹². Swieteliacate A (1410) is structurally similar to Azadirone skeleton but differs at C17 substitution and lacks one carbon unit at C28 with presence of glucose moiety at C7. Swieteliacate B (1411) is a C4 hydroxy analog of compound (1410). Ceramicine L (1412) is structurally similar to previously reported Ceramicine A^{459} except in the additional methyl group at C4 and deacetylation at C6. The C4-O-C29 linkage leads to the formation of the epoxide group at C4 in Ceramicine P (1413). In Ceramicine E (1414) there is shuffling of C6, C7 substituents and presence of additional epoxide at C2/3 with respect to compound (1413). Walsunoid A (1415) resembles previously reported 11β-hydroxycedrelone⁴⁶⁰ but differs at C17 substitution. From NMR data, the structure of Azadiraindin B (1416) matches with previously reported Azadiradione¹¹⁰ except at C17 substitution. The acetoxyl group at C12, C1-C10 bond and C1/14 ether linkage in previously reported Trijugin A^{441} is absent in Chisotrijugin (1417) with C1/2 epoxide ring formation. The C28 methyl group in previously reported Toonacilianin G^{227} is absent in Toonaciliatone A (1418). The $\Delta^{1,2}$ double bond and C3 keto carbonyl in compound (1418) is reduced in Toonaciliatone B (1419). In comparison to Nimbinene⁴⁶¹ olefinic double bond is formed at $\Delta^{4,29}$ in Morenolide (1420). Compounds (1421 and 1422) are structurally similar to Nimbandiol⁴⁶² except at C17 substitution. The methyl formate group at C8 in previously reported Thaixylomolin A³¹⁸ is absent in Thaixylomolin R (1423) with opening of C14/15 epoxide ring and $\Delta^{8,14}$ olefinic bond formation. The furan ring at C17 in previously reported Nimbandiol⁴⁶² is replaced by γ -hydroxy butenolide moiety in Nimbandiolactone-21 (1424) and substituted tetrahydrofuran ring moiety in Nimbandioloxyfuran (1425). Toonacilianin K (1426) is structurally similar to previously reported toonaciliatin F^{223} except the hydroxylation at C1. Toonacilianin L (1427) is C3 epimer of compound (1426). Toonaciliatin O (1428) and Toonasinenine D (1429) are C12 acetyl analog and C12 dehydroxyl derivative of compound (1427) respectively. The hydroxyl at C3 in previously reported Toonaciliatin F^{223} is carbonylated in Toonaciliatin N (1430) along with C12 acetylation. Ciliatonoid C (1431) is C2 dehydroxy analog of compound (1429). Ciliatasecone R (1432) is the C1 dimethyl analog of previously reported Toonaciliatin J^{463} Toonaciliatone C (1433) differs from compound (1431) in the additional keto carbonyl group at C12. The C12 hydroxyl group in previously reported Toonaciliatin F^{223} is converted to carbonyl group in Toonaciliatone D (1434). Carapanin A (1435) when compared with previously reported Swiemahogin A^{464} C16 is absent. Ciliatasecone N (1436) is C12 dehydroxy analog of compound (1418). Toonayunnanae I (1437) is $\Delta^{1,2}$ double bond reduced analog of compound (1418).

No.	Limonoid	Substituent	Source
1410	Swieteliacate A	$R_1 = H; R_2 = Glucose$	Swietenia macrophylla ¹¹⁶
1411	Swieteliacate B	$R_1 = OH; R_2 = Glucose$	Swietenia macrophylla ¹¹⁶
1412	Ceramicine L		Chisocheton ceramicus ²⁰⁴
1413	Ceramicine P		Chisocheton ceramicus ²⁰¹
1414	Ceramicine E		Chisocheton ceramicus ¹⁹⁹
1415	Walsunoid A		Walsura robusta ¹⁵⁹
1416	Azadiraindin B		Azadirachta indica ⁴⁶⁵
1417	Chisotrijugin		Chisocheton cumingianus ⁴⁶⁶
1418	Toonaciliatone A		Toona ciliata ²²⁹
1419	Toonaciliatone B		Toona ciliata ²²⁹
1420	Morenolide		Azadirachta indica ⁴⁶⁷
1421	17-desfuran-17-(22-hydroxybut-20(21)-ene-21,23-γ-lactone) nimbandiol		Azadirachta indica ¹⁴⁵
1422	17-desfuran-17-(21-hydroxy-20(22)-ene-21,23-γ-lactone) nimbandiol		Azadirachta indica ¹⁴⁵
1423	Thaixylomolin R		Xylocarpus moluccensis ³⁸²
1424	Nimbandiolactone-21		Azadirachta indica ⁴⁶⁸
1425	Nimbandioloxyfuran		Azadirachta indica ⁴⁶⁸
1426	Toonacilianin K	$R_1 = \beta$ -OH; $R_2 = OH$	Toona ciliata ²²⁷
1427	Toonacilianin L	$R_1 = \alpha$ -OH; $R_2 = OH$	Toona ciliata ²²⁷
1428	Toonaciliatin O	$R_1 = \alpha$ -OH; $R_2 = OAc$	Toona ciliata ²²⁸
1429	Toonasinenine D	$R_1 = \alpha$ -OH; $R_2 = H$	Toona sinensis ²¹⁴
1430	Toonaciliatin N		Toona ciliata ²²⁸
1431	Ciliatonoid C	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}$	Toona ciliata ²³⁰
1432	Ciliatasecone R	$R_1 = CH_3; R_2 = OH$	Toona ciliata ¹³⁹
1433	Toonaciliatone C		Toona ciliata ²²⁹
1434	Toonaciliatone D		Toona ciliata ²²⁹
1435	Carapanin A		Carapa guianensis ³⁷⁰
1436	Ciliatasecone N		Toona ciliata ¹³⁹
1437	Toonayunnanae I		Toona ciliata ¹⁵⁵

1 abit 30 , 1 unuality in the behavior class in the figure 1

2.5.2. Hexanor triterpenoids

Seven limonoids belonging to this class were isolated from *Munronia henryi*, *Azadirachta indica*, *Chisocheton ceramicus*, *Carapa guianensis Aphanamixis polystachya* and *Cipadessa baccifera* (Table 51/S51, Figure 53). Earlier four limonoids of this class were reported from Meliaceae family¹². The furan ring in previously reported Nymania- 3^{270} is replaced by ethynyl group in Munronin O (1438). The furan ring in previously reported Epoxyazadiradione¹³¹ is absent in Azadiraindin A (1439) which also contains additional five membered ring at C16 and C17. Ceramicine K (1440) is C6-deacetyl, C4-acetyl derivative of previously reported Ceramicine A⁴⁵⁹. The furan ring moiety at C17 in previously reported Methyl angolensate⁴⁴³ is replaced by acetyl group in Andirolide K

(1441). The C28 methyl group in compound (1412) is absent in Ceramicine M (1442) which also has C7-O-C4 ether bridge. Aphananoid A (1443) when compared with compound (347) there is ring B contraction with absence of C7. Cipaferen R (1444) differs from compound (887) at C17 substitution where butenolide moiety is replaced by acetyl group.

Table 51. nexanor triterbenoids class innonoid 1450-14	1444	
--	------	--

No.	Limonoid	Substituent	Source
1438	Munronin O		Munronia henryi ²⁷⁷
1439	Azadiraindin A		Azadirachta indica ⁴⁶⁵
1440	Ceramicine K		Chisocheton ceramicus ²⁰⁴
1441	Andirolide K		Carapa guianensis ²⁶⁴
1442	Ceramicine M		Chisocheton ceramicus ²⁰¹
1443	Aphananoid A		Aphanamixis polystachya ⁴⁶⁹
1444	Cipaferen R		Cipadessa baccifera ³⁶⁶

1440

1438

Figure 53. Structures of hexanor triterpenoids class limonoids 1438-1444.

2.5.3. **Heptanor triterpenoids**

Five compounds belonging to this class were isolated from Munronia henryi, Munronia delavayi, Toona ciliata and Entandrophragma utile (Table 52/S52, Figure 54). Prior to this eight Meliaceae limonoids of this class were reported¹². The tiglate group at C12 and furan moiety at C17 in compound (550) are replaced by acetate and carboxylic acid groups respectively in Munronin G (1445). The acetate group at C12 in compound (1445) is replaced by tiglate group in Mulavanin C (1446). Oxidative cleavage of C17 furan ring in Cedrelone gives Toonapubesic acid B (1447) and further reduction of $\Delta^{5,6}$ olefinic double bond and C7 carbonyl followed by C6, C7 acetylation of hydroxyl group gives Toonapubesic acid A (1448). Entanutilin R (1449) is C3 isobutyrate analog of previously reported Entilin D⁴⁷⁰

Table 52. H	Heptanor	triterpeno	id 1	1445-14	449
-------------	-----------------	------------	------	---------	-----

No.	Limonoid	Substituent	Source
1445	Munronin G	$\mathbf{R} = \mathbf{A}\mathbf{c}$	Munronia henryi ¹⁶⁹
1446	Mulavanin C	$\mathbf{R} = \mathrm{Tig}$	Munronia delavayi ²¹⁵
1447	Toonapubesic acid B		Toona ciliata ⁶¹
1448	Toonapubesic acid A		Toona ciliata ⁶¹

2.5.4. Octanor triterpenoids

A total of six Limonoids belonging to this class were isolated from *Azadirachta indica, Carapa guianensis* and *Melia azedarach* (Table 53/S53, Figure 55). Three Meliaceae limonoids of this class were reported earlier¹². Azadiraindin C and D (**1450** and **1451**) are C17 hydroxy epimers of previously reported desfuranoazadiradione⁴⁷¹. Andirolide R (**1452**) is C6 acetoxyl analog of previously reported desfuranoazadiradione⁴⁷¹. The furan ring at C17 in compound (**458**) is replaced by keto carbonyl group in 3-deacetyl-17- defurano-17,28-dioxosalannin (**1453**). 17- defurano-17-oxoohchinin (**1454**) differs from compound (**1453**) at C1 substitution. 17-defurano-17-oxosalannin (**1455**) is C3 acetyl analog of compound (**1453**).

Table 53.	Octanor	triterpenoids	class l	limonoid	1450-1455
I GOIC CC.	Occurror	the penotas	CILLIDD I	in on one	1100 1100

No.	Limonoid	Substituent	Source
1450	Azadiraindin C	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \alpha - \mathbf{O}\mathbf{H}$	Azadirachta indica ⁴⁶⁵
1451	Azadiraindin D	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \beta - \mathbf{OH}$	Azadirachta indica ⁴⁶⁵
1452	Andirolide R	$R_1 = OAc; R_2 = H$	Carapa guianensis ¹⁴⁹
1453	3-deacetyl-17- defurano-17,28-dioxosalannin		Melia azedarach ²⁴³
1454	17-defurano-17-oxoohchinin	$R_1 = Cin; R_2 = H$	Melia azedarach ¹⁸⁸
1455	17-defurano-17-oxosalannin	$R_1 = Tig; R_2 = Ac$	Azadirachta indica472

Figure 55. Structures of octanor triterpenoids class limonoids 1450-1455.

2.5.5. Enneanor triterpenoids

Azadiralactone (**1456**) isolated from *Azadirachta indica* is deacetyl analog of previously reported 7α -acetoxy-4,4,8-trimethyl- 5α -(13α Me)-17-oxa-androsta-1,14-dien-3,16-dione (13α -nimolactone)⁴⁷¹ (Table 54/S54, Figure 56).

Tal	ole 54.	Enneanor	triterpen	oids cla	ass limonoid	l 1456
-----	---------	----------	-----------	----------	--------------	--------

No.	Limonoid	Substituent	Source
1456	Azadiralactone		Azadirachta indica ¹¹⁹

Figure 56. Structures of enneanor triterpenoids class limonoid 1456.

2.5.6. Degraded derivatives

Isodictamdiol A (**1457**) isolated from *Dictamnus angustifolius* is C7 epimer of previously reported Isodictamdiol⁴⁷³ (Table 55/S55, Figure 57). Previously eighteen Meliaceae limonoids of this class were reported¹².

Table 55. Degraded derivat	tives class	limonoid	1457
----------------------------	-------------	----------	------

I uble e	er Degraaea aerr		
No.	Limonoid	Substituent	Source
1457	Isodictamdiol A		Dictamnus angustifolius ⁴⁷⁴
		1457	
Figure	57. Structures of d	egraded derivatives class limonoid 1457 .	

2.5.7. N-containing derivatives

As the name indicates, this class of Limonoids contain nitrogen in their structure. Forty three Limonoids belonging to this class were isolated from Azadirachta indica, Amoora tsangii, Aphanamixis grandifolia, Xylocarpus moluccensis, Xylocarpus granatum, Trichilia sinensis, Entandrophragma utile, Trichilia connaroides, Entandrophragma angolense and Toona ciliata (Table 56/S56, Figure 58). Previously ten Meliaceae limonoids of this class were reported¹². Nimbandiolactam-21 (1458) differs from previously reported Nimbandiol⁴⁶² at C17 substitution containing α_{β} -unsaturated γ -lactam moiety. The hydroxyl group at C4 in Nimbolide is replaced by carboxylic acid group in Nimbic acid B (1459) along with a cleaved C ring and γ -hydroxyl group is present at C17. The C3 acetyl group in previously reported Salannolactam-21475 is replaced by keto carbonyl group in Azadiramide A (1460) which also has $\Delta^{1,2}$ olefinic double bond with detigloylation. The C17 furan ring in compound (550) is replaced by N-substituted lactam ring in Amooramide A-C (1461-1463) which also differ at C12 substitution. The acetyl group at C11 in compound (1461) is replaced by formyl group in Amooramide G (1466). Amooramide F (1467) differs from compound (1464) at lactam ring N-substitution. The carbonyl group at C21 in compound (1461) is shifted to C23 in Amooramide H-J (1468-1470) along with variation at C12 substitution. Amooramide K and L (1471 and 1472) are N-methyl substituted analogs of compounds (1468 and 1469) respectively. Aphanalide M (1473) differs from compound (337) at C12 substitution. Thaixylomolin B (1474) shows structural similarities with phragmalins but has substituted pyridine ring at C7-C15. The methyl group at C2 in compound (1474) is replaced by isopropyl group in Thaixylomolin C (1475). Xylomexicanin E (1476) has azaspiro skeleton between B and C rings along with an unusual 17 β furan ring. Trichinenlide A (1477) is structurally similar to previously reported Swietenine F³²⁶ except at C3 substituted benzoyl moiety which contain nitrogen. The hydroxyl group at C6 in compound (1477) is shifted to C2 in Trichinenlide F (1478) which also has epoxide group at C8 and C30. Trichinenlide G (1479) is C6 acetoxyl analog of compound (1478). The acetyl group at C3 in previously reported Utilin C⁴⁷⁶ is replaced by nicotinoyl group in Entanutilin B (1480). The C3 hydroxyl group in compound (868) is replaced by nicotinoyl group in Triconoid A (1481). The hydroxylation at C14 in compound (1481) yields Triconoid B (1482). The olefinic double bond at $\Delta^{8,30}$ in compound (1481) is shifted to $\Delta^{8,14}$ in Trichiliasinenoid D (1483). The

ethoxy group at C3 in Hainangranatumin G (1484) is the only structural difference from previously reported xylogranatin F^{381} . The furan ring at C17 in previously reported methyl angolensate⁴⁷⁷ is replaced by 21-methoxy lactam ring in Entangolensin K (1485). The furan ring at C17 in Azadirone and Epoxyazadiradione is replaced by lactam ring in Toonasinemine B and A (1486 and 1487) respectively. The C17 furan ring in gedunin is replaced by maleimide moiety in compound (1488). Compounds (1488 and 1491) were isolated from *Toona sinensis* and reported by two different research groups in 2016 but trively named differently as Toonasin A/Toonasinemine D and Toonasin C/Toonasinemine F respectively. Toonasin B (1489) and Toonasinemine E (1490) are C6 and C11 acetoxyl analogs of compound (1488) respectively. The carbonyl group at C23 and C21 in compound (1488) is reduced in compound (1491) and Toonasinemine G (1492) respectively. The furan ring at C17 in gedunin is replaced by lactam moiety in Toonasinemine C (1493). Entanutilin C (1494) is C3 N-containing benzoyl, C6 deacetoxyl, C11 deacetyl analog of compound (1036). Entanutilin J (1495) is C3 N-containing benzoyl analog of compound (1052). Entanutilin Q (1497) is C3 N-containing benzoyl, C6 hydroxy analog of compound (152). Entanutilin Q (1497) is C3 N-containing benzoyl, C6 hydroxy analog of compound (170). Entanutilin P (1496) is C3 N-containing benzoyl, C6 hydroxy analog of compound (170). Entanutilin P (1496) is C3 N-containing benzoyl, C12 acetoxy analog of compound (1498), roonaolide R (1499) and Toonaolide X (1500) respectively.

Table 56. N-containing	derivativ	es class lim	onoid 1458-150(
------------------------	-----------	--------------	-----------------

No.	Limonoid	Substituent	Source
1458	Nimbandiolactam-21		Azadirachta indica478
1459	Nimbic acid B		Azadirachta indica ²⁴⁵
1460	Azadiramide A		Azadirachta indica479
1461	Amooramide A	$R_1 = OAc; R_2 = OBz; R_3 = H$	Amoora tsangii ⁴⁸⁰
1462	Amooramide B	$R_1 = OAc; R_2 = OBz; R_3 = CH_3$	Amoora tsangii ⁴⁸⁰
1463	Amooramide C	$R_1 = OAc; R_2 = OBz; R_3 = CH_2CH_2OH$	Amoora tsangii ⁴⁸⁰
1464	Amooramide D	$R_1 = OAc; R_2 = OCOCH(CH_3)CH_2CH_3; R_3 = H$	Amoora tsangii ⁴⁸⁰
1465	Amooramide E	$R_1 = OAc; R_2 = OCOCH(CH_3)_2; R_3 = H$	Amoora tsangii ⁴⁸⁰
1466	Amooramide G	$R_1 = OCHO; R_2 = OBz; R_3 = H$	Amoora tsangii ⁴⁸⁰
1467	Amooramide F		Amoora tsangii ⁴⁸⁰
1468	Amooramide H	$R_1 = OBz; R_2 = H$	Amoora tsangii ⁴⁸⁰
1469	Amooramide I	$R_1 = OCOCH(CH3)CH2CH3; R_2 = H$	Amoora tsangii ⁴⁸⁰
1470	Amooramide J	$R_1 = OCOCH(CH_3)_2; R_2 = H$	Amoora tsangii ⁴⁸⁰
1471	Amooramide K	$R_1 = OBz; R_2 = CH_3$	Amoora tsangii ⁴⁸⁰
1472	Amooramide L	$R_1 = OCOCH(CH_3)CH_2CH_3; R_2 = CH_3$	Amoora tsangii ⁴⁸⁰
1473	Aphanalide M		Aphanamixis grandifolia ¹²⁴
1474	Thaixylomolin B	$\mathbf{R} = \mathbf{C}\mathbf{H}_3$	Xylocarpus moluccensis ³¹⁸
1475	Thaixylomolin C	$\mathbf{R} = \mathbf{i}\mathbf{P}\mathbf{r}$	Xylocarpus moluccensis ³¹⁸
1476	Xylomexicanin E		Xylocarpus granatum ³⁷⁸
1477	Trichinenlide A		Trichilia sinensis ³⁴²
1478	Trichinenlide F	$\mathbf{R} = \mathbf{H}$	Trichilia sinensis ³⁴²
1479	Trichinenlide G	$\mathbf{R} = \mathbf{OAc}$	Trichilia sinensis ³⁴²
1480	Entanutilin B		Entandrophragma utile ⁴³⁰
1481	Triconoid A	$\mathbf{R} = \mathbf{H}$	Trichilia connaroides ³⁶²
1482	Triconoid B	R = OH	Trichilia connaroides ³⁰²
1483	Trichiliasinenoid D		Trichilia sinensis ³⁰³
1484	Hainangranatumin G		Xylocarpus granatum ^{3/4}
1485	Entangolensin K		Entandrophragma angolense ¹⁴¹
1486	Toonasinemine B		Toona sinensis ²⁰⁹
1487	Toonasinemine A		Toona sinensis ²⁰⁹
1488	Toonasin A/Toonasinemine D	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}$	Toona sinensis ^{481,209}
1489	Toonasin B	$R_1 = OAc; R_2 = H$	Toona sinensis ⁴⁰¹
1490	Toonasinemine E	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{OAc}$	Toona sinensis ²⁰⁹
1491	Toonasin C/Toonasinemine F		Toona sinensis ²⁶⁹
1492	Toonasinemine G		Toona sinensis ²⁶⁹
1493	Toonasinemine C		Toona sinensis ²⁰⁰
1494	Entanutilin C		Entandrophragma utile ³³⁷
1495	Entanutilin J		Entandrophragma utile ²¹
1496	Entanutilin P		Entanarophragma utile ¹¹⁵
149/	Entanutilin Q		Entandrophragma utile ¹¹
1498	Toomaolida D		Toona ciliata $T_{0,0}$
1499	Toomaolida X		100000 cuitata Teorra eiliste ²¹⁹
1300	I OUIIAUIIUE A		100na ciliala

1458

O

Ĥ

соосн3

1467

AcO

110

0=

ò

H₃CO

1468-1472

н

. . .

-0 Ē₁

0

I H

H₃COOC H

0

1476

H₃COOC OCH₂CH₃ Ĥ 🖌 5

1481-1482

1483

NH

C

1484

Figure 58. Structures of (N-containing) derivatives class limonoids 1458-1500.

2.5.8. Other derivatives

Walsucochinoid A and B (**1501** and **1502**) were isolated from *Walsura cochinchinensis* (Table 57/S57, Figure 59). Compound (**1501**) has a vilasinin skeleton with rearranged C/D rings and contains five membered C ring fused with six membered aromatic D ring. The C3-isobutyryloxyl and C16-methoxy groups in compound (**1501**) are replaced by tiglyloxyl and hydroxyl groups respectively in compound (**1502**).

Table 57. Other derivat	tives class	limonoid	1501-1502
-------------------------	-------------	----------	-----------

No.	Limonoid	Substituent	Source
1501	Walsucochinoid A	$\mathbf{R}_1 = \text{COCH}(\mathbf{CH}_3)_2; \mathbf{R}_2 = \mathbf{CH}_3$	Walsura cochinchinensis ⁴⁸²
1502	Walsucochinoid B	$\mathbf{R}_1 = \mathrm{Tig}; \mathbf{R}_2 = \mathbf{H}$	Walsura cochinchinensis ⁴⁸²

1501-1502

Figure 59. Structures of other derivatives class limonoids 1501-1502.

3. Biological activities of Meliaceae Limonoids

Numerous biological activities of novel limonoids are described in this section such as antineoplastic, antiinflammatory, anti microbial, anti malarial, anti viral, mealanogeneis/11 β -HSD1 inhibitory activity, insecticidal/antifeedant activity etc. But the biological activity profiling of previously known limonoids are not included. A total of 1368 novel limonoids were screened for various bioactivities among which anti-neoplastic topped the list (39.69 %) followed by others (Figure 60).

Figure 60. Distribution of novel limonoids screened for various bioactivities

3.1 Antineoplastic activity

The meliaceae limonoids have shown promising antineoplastic activities against various types of cancers. In vitro these new Limonoids have shown prominent antineoplastic activity. About 36.15 % of novel limonoids isolated from different meliaceae plants were screened for anitneoplastic activity. Among them only 42.90 % of them exhibited cytotoxic effects against 49 different types of cancer cell line and the rest were inactive (Table 58, 59). The most abundant cytotoxic effects were exhibited by Mexicanolide class limonoids (12.87 %), followed by

Protolimonoid (10.30 %), Salannin (9.01 %), Azadirone (5.57 %), Andirobin (5.15 %), Apoprotolimonoid (4.72 %), Polyoxyphragmalin (4.72 %), Cedrelone (4.29 %), Ring-B seco (4.29 %) and other classes (Figure 61). However Phragmalin orthoester (1-8-9) class constituted the most inactive limonoids (11.29 %) for antineoplastic activity followed by Mexicanolide (10.96 %), Ring-B seco (10.0 %), Prieurianin (7.74 %), Apoprotolimonoid (4.83 %), Obacunol (4.83 %), 1,2-seco Phragmalin (3.87 %), Azadirone (3.22 %), Andirobin (3.22 %), Polyoxyphragmalin (3.22 %), Pentanor triterpenoids (3.22 %) and other classes (Figure 61). The novel limonoids were mainly screened for human breast carcinoma MCF-7 cells (13.67 %), lung adenocarcinoma A549 cells (12.90 %), acute promyelocytic leukemia HL-60 (12.48 %), hepatocellular carcinoma SMMC-7721 (7.35 %), Hepatoblastoma HepG2 (5.80 %), colon adenocarcinoma SW480 (5.54 %) and followed by other cell lines (Figure 62). The most potent novel limonoids which exhibited cytotoxic effects (<2 μ M) are discussed. The most potent cytotoxic effects against human cancer cells HCT116, SW480 with IC₅₀ value of 0.05 and 0.26 μ M respectively, was exhibited by Xylogranin B (1150). The limonoid Trichostemonate (123) showed significant cytotoxicity against HeLa cells (human endocervical adenocarcinoma) with IC₅₀ value of 0.93 μg/mL. Another most potent limonoid 1α-hydroxy-1,2-dihydrodeacetylhirtin (205) exhibited cytotoxicity against human cancer cell lines SMMC-7721, A549, MCF-7 and SW480 with IC₅₀ value of 1.0, 1.1, 1.0, 1.6 µM respectively. Also Munronin A (585) display strong cytotoxicity against human cancer cell lines HL-60, A549, MCF-7 and SW480 with IC₅₀ value of 0.44, 1.6, 1.5, 0.86 µM respectively. Monadelphin A (534) exhibited cytotoxic effect against mouse leukemia cell line L5178Y with IC_{50} value of 0.62 µg/mL.

Limonoid	Cells	Activity
Toonamicrocarpavarin (2)	HL-60	At 40 μ M, showed weak cytotoxicity with inhibition ratio of 25-36 $\%^{52}$
	SMMC-7721	At 40 μ M, showed weak cytotoxicity with inhibition ratio of 25-36 % ³²
	A549	At 40 μ M, showed weak cytotoxicity with inhibition ratio of 25-36 % ⁵²
	MCF-7	At 40 μ M, showed weak cytotoxicity with inhibition ratio of 25-36 % 52
	SW480	At 40 μ M, showed weak cytotoxicity with inhibition ratio of 25-36 % $^{\rm 52}$
Toonaciliatavarin D (55)	MCF-7	$IC_{50} = >50 \ \mu M^{72}$
	MCF-7/ADM	$IC_{50} = >50 \ \mu M^{72}$
	KB	$IC_{50} = 39.5 \ \mu M^{72}$
	KB/VCR	$IC_{50} = >50 \ \mu M^{72}$
	SMMC-7721	$IC_{50} = 31.4 \ \mu M^{72}$
	K562	$IC_{50} = 43.1 \ \mu M^{72}$
Dysohainanin F (7)	HL-60	$IC_{50} = >40 \ \mu M^{55}$
	SMMC-7721	$IC_{50} = >40 \ \mu M^{55}$
	A549	$IC_{50} = >40 \ \mu M^{55}$
	MCF-7	$IC_{50} = >40 \ \mu M^{55}$
	SW480	$IC_{50} = >40 \ \mu M^{55}$
Dysohainanin E/Mesendanin U (115)	HL-60	$IC_{50} = >40 \ \mu M^{55}$
	SMMC-7721	$IC_{50} = >40 \ \mu M^{55}$
	A549	$IC_{50} = >40 \ \mu M^{55}$
	MCF-7	$IC_{50} = >40 \ \mu M^{55}$
	SW480	$IC_{50} = >40 \ \mu M^{55}$
Dysohainanin A (592)	HL-60	$IC_{50} = >40 \ \mu M^{55}$
	SMMC-7721	$IC_{50} = >40 \ \mu M^{55}$
	A549	$IC_{50} = >40 \ \mu M^{55}$
	MCF-7	$IC_{50} = >40 \ \mu M^{55}$
	SW480	$IC_{50} = >40 \ \mu M^{55}$
Aphagranin B (14)	L6	$IC_{50} = 57.4 \ \mu M^{57}$
3β -hydroxytirucalla-7,24-diene-6,23-dione (18)	A549	$IC_{50} = 24.89 \ \mu M^{58}$
	BGC-823	$IC_{50} = 24.01 \ \mu M^{58}$
	HCT-15	$IC_{50} = 24.23 \ \mu M^{58}$
	HeLa	$IC_{50} = 27.09 \ \mu M^{58}$
	HepG2	$IC_{50} = 25.33 \ \mu M^{58}$
	MCF-7	$IC_{50} = 25.99 \ \mu M^{58}$
	SGC-7901	$IC_{50} = 27.31 \ \mu M^{58}$

Table 58: Cytotoxic Activity of Meliaceous Limonoids against Cancer Cell Lines

	SK-MEL-2	$IC_{50} = 27.75 \ \mu M^{58}$
3β-hydroxytirucalla-7,24-dien-23-one (16)	A549	$IC_{50} = 18.64 \ \mu M^{58}$
	BGC-823	$IC_{50} = 17.95 \ \mu M^{58}$
	HCT-15	$IC_{50} = 18.41 \ \mu M^{58}$
	HeLa	$IC_{50} = 20.68 \ \mu M^{58}$
	HepG2	$IC_{50} = 19.77 \ \mu M^{58}$
	MCF-7	$IC_{50} = 20.23 \ \mu M^{58}$
	SGC-7901	$IC_{50} = 20.68 \ \mu M^{58}$
	SK-MEL-2	$IC_{50} = 21.59 \mu M^{58}$
3B,26-dihydroxytirucalla-7,24-diene-6,23-dione (19)	A549	$IC_{50} = 26.54 \ \mu M^{58}$
	BGC-823	$IC_{50} = 23.87 \ \mu M^{58}$
	HCT-15	$IC_{50} = 25.51 \ \mu M^{58}$
	HeLa	$IC_{50} = 27.78 \ \mu M^{58}$
	HepG2	$IC_{50} = 25.72 \ \mu M^{58}$
	MCF-7	$IC_{50} = 22.22 \ \mu M^{58}$
	SGC-7901	$IC_{50} = 26.13 \ \mu M^{58}$
	SK-MEL-2	$IC_{50} = 26.75 \ \mu M^{58}$
Methyl 6-oxomasticadienolate (20)	A549	$IC_{50} = 25.41 \ \mu M^{58}$
	BGC-823	$IC_{50} = 24.38 \ \mu M^{58}$
	HCT-15	$IC_{50} = 27.27 \ \mu M^{58}$
	HeLa	$IC_{50} = 28.10 \ \mu M^{58}$
	HepG2	$IC_{50} = 24.59 \ \mu M^{58}$
	MCF-7	$IC_{50} = 26.03 \ \mu M^{58}$
	SGC-7901	$IC_{50} = 26.65 \ \mu M^{58}$
	SK-MEL-2	$IC_{50} = 28.10 \ \mu M^{58}$
Dysoxylumstatin A (53)	A549	$IC_{50} = 26.17 \ \mu M^{58}$
	BGC-823	$IC_{50} = 27.87 \mu M^{58}$
	HCT-15	$IC_{50} = 28.09 \ \mu M^{58}$
	HeLa	$IC_{50} = 27.45 \ \mu M^{58}$
	HepG2	$IC_{50} = 28.94 \ \mu M^{58}$
	MCF-7	$IC_{50} = 25.53 \ \mu M^{58}$
	SGC-7901	$IC_{50} = 28.09 \ \mu M^{58}$
	SK-MEL-2	$IC_{50} = 28.30 \ \mu M^{58}$
Dysoxylumstatin B (54)	A549	$IC_{50} = 28.88 \ \mu M^{58}$
Dysoxylumstatin B (54)	A549 BGC-823	$\begin{split} IC_{50} &= 28.88 \ \mu M^{58} \\ IC_{50} &= 30.08 \ \mu M^{58} \end{split}$
Dysoxylumstatin B (54)	A549 BGC-823 HCT-15	$\begin{array}{c} IC_{50} = 28.88 \ \mu M^{58} \\ IC_{50} = 30.08 \ \mu M^{58} \\ IC_{50} = 30.48 \ \mu M^{58} \\ \end{array}$
Dysoxylumstatin B (54)	A549 BGC-823 HCT-15 HeLa	$\begin{array}{c} IC_{50} = 28.88 \ \mu M^{58} \\ IC_{50} = 30.08 \ \mu M^{58} \\ IC_{50} = 30.48 \ \mu M^{58} \\ IC_{50} = 29.68 \ \mu M^{58} \\ \end{array}$
Dysoxylumstatin B (54)	A549 BGC-823 HCT-15 HeLa HepG2	$\begin{array}{c} IC_{50} = 28.88 \ \mu M^{58} \\ IC_{50} = 30.08 \ \mu M^{58} \\ IC_{50} = 30.48 \ \mu M^{58} \\ IC_{50} = 29.68 \ \mu M^{58} \\ IC_{50} = 30.88 \ \mu M^{58} \\ IC_{50} = 30.88 \ \mu M^{58} \end{array}$
Dysoxylumstatin B (54)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7	$\begin{array}{c} IC_{50} = 28.88 \ \mu M^{58} \\ IC_{50} = 28.88 \ \mu M^{58} \\ IC_{50} = 30.08 \ \mu M^{58} \\ IC_{50} = 29.68 \ \mu M^{58} \\ IC_{50} = 29.68 \ \mu M^{58} \\ IC_{50} = 30.88 \ \mu M^{58} \\ IC_{50} = 27.09 \ \mu M^{58} \end{array}$
Dysoxylumstatin B (54)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901	$\begin{split} & \Gamma_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 30.88 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ \end{split}$
Dysoxylumstatin B (54)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2	$\begin{split} \hline{IC}_{50} &= 28.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 28.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 30.08 \ \mu M^{58} \\ \hline{IC}_{50} &= 30.48 \ \mu M^{58} \\ \hline{IC}_{50} &= 29.68 \ \mu M^{58} \\ \hline{IC}_{50} &= 30.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.09 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.89 \ \mu M^{58} \\ \hline{IC}_{50} &= 31.27 \ \mu M^{58} \end{split}$
Dysoxylumstatin B (54) Dysoxylumstatin C (182)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549	$\begin{split} \hline{IC}_{50} &= 28.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 28.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 30.08 \ \mu M^{58} \\ \hline{IC}_{50} &= 29.68 \ \mu M^{58} \\ \hline{IC}_{50} &= 29.68 \ \mu M^{58} \\ \hline{IC}_{50} &= 30.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.09 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.09 \ \mu M^{58} \\ \hline{IC}_{50} &= 31.27 \ \mu M^{58} \\ \hline{IC}_{50} &= 62.62 \ \mu M^{58} \\ \end{split}$
Dysoxylumstatin B (54) Dysoxylumstatin C (182)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823	$\begin{split} \hline{IC}_{50} &= 28.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 28.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 30.08 \ \mu M^{58} \\ \hline{IC}_{50} &= 29.68 \ \mu M^{58} \\ \hline{IC}_{50} &= 29.68 \ \mu M^{58} \\ \hline{IC}_{50} &= 30.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.09 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.09 \ \mu M^{58} \\ \hline{IC}_{50} &= 31.27 \ \mu M^{58} \\ \hline{IC}_{50} &= 62.62 \ \mu M^{58} \\ \hline{IC}_{50} &= 65.29 \ \mu M^{58} \\ \end{split}$
Dysoxylumstatin B (54) Dysoxylumstatin C (182)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15	$\begin{split} \hline{IC}_{50} &= 28.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 28.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 30.08 \ \mu M^{58} \\ \hline{IC}_{50} &= 29.68 \ \mu M^{58} \\ \hline{IC}_{50} &= 29.68 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.09 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.09 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.89 \ \mu M^{58} \\ \hline{IC}_{50} &= 31.27 \ \mu M^{58} \\ \hline{IC}_{50} &= 62.62 \ \mu M^{58} \\ \hline{IC}_{50} &= 65.29 \ \mu M^{58} \\ \hline{IC}_{50} &= 65.78 \ \mu M^{58} \\ \end{split}$
Dysoxylumstatin B (54) Dysoxylumstatin C (182)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15	$\begin{split} \hline{IC}_{50} &= 28.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 28.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 30.08 \ \mu M^{58} \\ \hline{IC}_{50} &= 30.48 \ \mu M^{58} \\ \hline{IC}_{50} &= 29.68 \ \mu M^{58} \\ \hline{IC}_{50} &= 29.68 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.09 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.09 \ \mu M^{58} \\ \hline{IC}_{50} &= 31.27 \ \mu M^{58} \\ \hline{IC}_{50} &= 62.62 \ \mu M^{58} \\ \hline{IC}_{50} &= 65.29 \ \mu M^{58} \\ \hline{IC}_{50} &= 65.78 \ \mu M^{58} \\ \hline{IC}_{50} &= 64.32 \ \mu M^{58} \\ \hline{IC}_{50} &= 64.32 \ \mu M^{58} \\ \end{split}$
Dysoxylumstatin B (54) Dysoxylumstatin C (182)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa	$\begin{split} \hline{IC}_{50} &= 28.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 28.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 30.08 \ \mu M^{58} \\ \hline{IC}_{50} &= 29.68 \ \mu M^{58} \\ \hline{IC}_{50} &= 29.68 \ \mu M^{58} \\ \hline{IC}_{50} &= 29.68 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.09 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.09 \ \mu M^{58} \\ \hline{IC}_{50} &= 31.27 \ \mu M^{58} \\ \hline{IC}_{50} &= 62.62 \ \mu M^{58} \\ \hline{IC}_{50} &= 65.29 \ \mu M^{58} \\ \hline{IC}_{50} &= 65.78 \ \mu M^{58} \\ \hline{IC}_{50} &= 64.32 \ \mu M^{58} \\ \hline{IC}_{50} &= 66.02 \ \mu M^{58$
Dysoxylumstatin B (54) Dysoxylumstatin C (182)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa Herge MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7	$\begin{split} \hline IC_{50} &= 28.88 \ \mu M^{58} \\ \hline IC_{50} &= 28.88 \ \mu M^{58} \\ \hline IC_{50} &= 30.08 \ \mu M^{58} \\ \hline IC_{50} &= 29.68 \ \mu M^{58} \\ \hline IC_{50} &= 29.68 \ \mu M^{58} \\ \hline IC_{50} &= 27.09 \ \mu M^{58} \\ \hline IC_{50} &= 27.09 \ \mu M^{58} \\ \hline IC_{50} &= 27.89 \ \mu M^{58} \\ \hline IC_{50} &= 31.27 \ \mu M^{58} \\ \hline IC_{50} &= 62.62 \ \mu M^{58} \\ \hline IC_{50} &= 65.78 \ \mu M^{58} \\ \hline IC_{50} &= 66.78 \ \mu M^{58} \\ \hline IC_{50} &= 66.02 \ \mu M^{58} \\ \hline IC_{50} &= 62.38 \ \mu M^{$
Dysoxylumstatin B (54) Dysoxylumstatin C (182)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901	$\begin{split} \hline IC_{50} &= 28.88 \ \mu M^{58} \\ \hline IC_{50} &= 28.88 \ \mu M^{58} \\ \hline IC_{50} &= 30.08 \ \mu M^{58} \\ \hline IC_{50} &= 30.48 \ \mu M^{58} \\ \hline IC_{50} &= 29.68 \ \mu M^{58} \\ \hline IC_{50} &= 29.68 \ \mu M^{58} \\ \hline IC_{50} &= 27.09 \ \mu M^{58} \\ \hline IC_{50} &= 27.09 \ \mu M^{58} \\ \hline IC_{50} &= 31.27 \ \mu M^{58} \\ \hline IC_{50} &= 62.62 \ \mu M^{58} \\ \hline IC_{50} &= 65.29 \ \mu M^{58} \\ \hline IC_{50} &= 65.78 \ \mu M^{58} \\ \hline IC_{50} &= 64.32 \ \mu M^{58} \\ \hline IC_{50} &= 62.38 \ \mu M^{58} \\ \hline IC_{50} &= 64.32 \ \mu M^{58} \\ \hline IC_{50} &= 62.38 \ \mu M^{58} \\ \hline IC_{50} &= 64.32 \ \mu M^{58} \\ \hline IC_{50} &= 64.32 \ \mu M^{58} \\ \hline IC_{50} &= 64.32 \ \mu M^{58} \\ \hline IC_{50} &= 64.36 \ \mu M^{58} \\ \hline IC_{50} &= 64.56 \ \mu M^{$
Dysoxylumstatin B (54) Dysoxylumstatin C (182)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2	$\begin{split} \hline IC_{50} &= 28.88 \ \mu M^{58} \\ \hline IC_{50} &= 28.88 \ \mu M^{58} \\ \hline IC_{50} &= 30.08 \ \mu M^{58} \\ \hline IC_{50} &= 29.68 \ \mu M^{58} \\ \hline IC_{50} &= 29.68 \ \mu M^{58} \\ \hline IC_{50} &= 27.09 \ \mu M^{58} \\ \hline IC_{50} &= 27.09 \ \mu M^{58} \\ \hline IC_{50} &= 27.89 \ \mu M^{58} \\ \hline IC_{50} &= 31.27 \ \mu M^{58} \\ \hline IC_{50} &= 62.62 \ \mu M^{58} \\ \hline IC_{50} &= 65.29 \ \mu M^{58} \\ \hline IC_{50} &= 65.78 \ \mu M^{58} \\ \hline IC_{50} &= 64.32 \ \mu M^{58} \\ \hline IC_{50} &= 64.32 \ \mu M^{58} \\ \hline IC_{50} &= 64.32 \ \mu M^{58} \\ \hline IC_{50} &= 64.56 \ \mu M^{58} \\ \hline IC_{50} &= 68.45 \ \mu M^{$
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25-	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2	$\begin{split} \hline{IC}_{50} &= 28.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 28.88 \ \mu M^{58} \\ \hline{IC}_{50} &= 30.08 \ \mu M^{58} \\ \hline{IC}_{50} &= 30.48 \ \mu M^{58} \\ \hline{IC}_{50} &= 29.68 \ \mu M^{58} \\ \hline{IC}_{50} &= 29.68 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.09 \ \mu M^{58} \\ \hline{IC}_{50} &= 27.89 \ \mu M^{58} \\ \hline{IC}_{50} &= 31.27 \ \mu M^{58} \\ \hline{IC}_{50} &= 62.62 \ \mu M^{58} \\ \hline{IC}_{50} &= 65.29 \ \mu M^{58} \\ \hline{IC}_{50} &= 65.78 \ \mu M^{58} \\ \hline{IC}_{50} &= 64.32 \ \mu M^{58} \\ \hline{IC}_{50} &= 64.32 \ \mu M^{58} \\ \hline{IC}_{50} &= 64.56 \ \mu M^{58} \\ \hline{IC}_{50} &= 68.45 \ \mu M^{58} \\ \hline{IC}_{50} &= 51.00 \ \mu M^{63} \\ \end{split}$
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25- methoxytirucall-7-en-3-one (27)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K-MEL-2 HepG2 K-562	$\begin{split} & IC_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 30.48 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 31.27 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 65.79 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 62.38 \ \mu M^{58} \\ & IC_{50} = 62.38 \ \mu M^{58} \\ & IC_{50} = 62.432 \ \mu M^{58} \\ & IC_{50} = 62.38 \ \mu M^{63} \\ & IC_{50} = 93.0 \ \mu M^{63} \\ & IC_{50} = 93.0 \ \mu M^{63} \\ & IC_{50} = 93.0 \ \mu M^{63} \\ & IC_{50} = 82.0 \ \mu M^{50} \\ & IC_{50} = 82.0 \ \mu M^{50} $
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25- methoxytirucall-7-en-3-one (27)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K562 SGC-7901	$\begin{split} & IC_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 30.48 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 31.27 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.56 \ \mu M^{63} \\ & IC_{50} = 93.0 \ \mu M^{63} \\ & IC_{50} = 47.6 \ \mu M^{63} \\ & IC_{50} = 47.6 \ \mu M^{63} \\ & IC_{50} = 47.6 \ \mu M^{63} \\ \end{split}$
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25- methoxytirucall-7-en-3-one (27)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K562 SGC-7901 HL-60	$\begin{split} & IC_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 30.48 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 31.27 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 65.78 \ \mu M^{58} \\ & IC_{50} = 66.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 68.45 \ \mu M^{58} \\ & IC_{50} = 68.45 \ \mu M^{58} \\ & IC_{50} = 93.0 \ \mu M^{63} \\ & IC_{50} = 47.6 \ \mu M^{63} \\ & IC_{50} = 21.3 \ \mu M^{63} \\ & IC_{50} = 21.3 \ \mu M^{63} \\ \end{split}$
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25- methoxytirucall-7-en-3-one (27) (3S,21S,23R,24S)-21,23-epoxy-21,25-	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K562 SGC-7901 HL-60 HepG2	$\begin{split} & IC_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 30.48 \ \mu M^{58} \\ & IC_{50} = 30.48 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 31.27 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 65.78 \ \mu M^{58} \\ & IC_{50} = 66.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 68.45 \ \mu M^{58} \\ & IC_{50} = 68.45 \ \mu M^{58} \\ & IC_{50} = 68.45 \ \mu M^{63} \\ & IC_{50} = 93.0 \ \mu M^{63} \\ & IC_{50} = 21.3 \ \mu M^{63} \\ & IC_{50} = > 100 \ \mu M^{63} $
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25- methoxytirucall-7-en-3-one (27) (3S,21S,23R,24S)-21,23-epoxy-21,25- dimethoxytirucall-7-ene-3,24-diol (28)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K562 SGC-7901 HL-60 HepG2	$\begin{split} & \Gamma_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 31.27 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.36 \ \mu M^{58} \\ & IC_{50} = 5100 \ \mu M^{63} \\ & IC_{50} = 93.0 \ \mu M^{63} \\ & IC_{50} = 21.3 \ \mu M^{63} \\ & IC_{50} = > 100 \ \mu M^{63} \\ $
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25- methoxytirucall-7-en-3-one (27) (3S,21S,23R,24S)-21,23-epoxy-21,25- dimethoxytirucall-7-ene-3,24-diol (28)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K562 SGC-7901 HL-60 HepG2 HL-60	$\begin{split} & \Gamma_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 31.27 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.56 \ \mu M^{58} \\ & IC_{50} = 84.56 \ \mu M^{58} \\ & IC_{50} = 81.00 \ \mu M^{63} \\ & IC_{50} = 21.3 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 44.$
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25- methoxytirucall-7-en-3-one (27) (3S,21S,23R,24S)-21,23-epoxy-21,25- dimethoxytirucall-7-ene-3,24-diol (28) (21S,23R,24R)-21,23-epoxy-24-hydroxy-21-	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K562 SGC-7901 HL-60 HepG2 HL-60 HepG2	$\begin{split} & \Gamma_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 30.48 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.56 \ \mu M^{58} \\ & IC_{50} = 84.45 \ \mu M^{58} \\ & IC_{50} = 93.0 \ \mu M^{63} \\ & IC_{50} = 47.6 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 48.3 $
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25- methoxytirucall-7-en-3-one (27) (3S,21S,23R,24S)-21,23-epoxy-21,25- dimethoxytirucall-7-ene-3,24-diol (28) (21S,23R,24R)-21,23-epoxy-24-hydroxy-21- methoxytirucalla-7,25-dien-3-one (29)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K562 SGC-7901 HL-60 HepG2 HL-60 HepG2 K562	$\begin{split} & \Gamma_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 30.48 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.56 \ \mu M^{58} \\ & IC_{50} = 84.54 \ \mu M^{58} \\ & IC_{50} = 93.0 \ \mu M^{63} \\ & IC_{50} = 21.3 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 42.1 \ \mu M^{50} \\ & IC_{50} = 42.1 $
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25- methoxytirucall-7-en-3-one (27) (3S,21S,23R,24S)-21,23-epoxy-21,25- dimethoxytirucall-7-ene-3,24-diol (28) (21S,23R,24R)-21,23-epoxy-24-hydroxy-21- methoxytirucalla-7,25-dien-3-one (29)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K562 SGC-7901 HL-60 HepG2 K562 SGC-7901	$\begin{split} & \Gamma_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 30.48 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 66.22 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 62.38 \ \mu M^{58} \\ & IC_{50} = 62.38 \ \mu M^{58} \\ & IC_{50} = 64.56 \ \mu M^{58} \\ & IC_{50} = 84.54 \ \mu M^{58} \\ & IC_{50} = 47.6 \ \mu M^{63} \\ & IC_{50} = 21.3 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 42.1 \ \mu M^{63} \\ & IC_{50} = 42.1 \ \mu M^{63} \\ & IC_{50} = 49.4 \ \mu M^{53} \\ & IC_{50} = 49.4$
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25-methoxytirucall-7-en-3-one (27) (3S,21S,23R,24S)-21,23-epoxy-21,25-dimethoxytirucall-7-ene-3,24-diol (28) (21S,23R,24R)-21,23-epoxy-24-hydroxy-21-methoxytirucalla-7,25-dimethoxyti	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K562 SGC-7901 HL-60 HepG2 K562 SGC-7901 HL-60 HepG2 K562 SGC-7901 HL-60 HepG2 K562 SGC-7901	$\begin{split} & \Gamma_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 30.48 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 66.22 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 62.38 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.56 \ \mu M^{58} \\ & IC_{50} = 68.45 \ \mu M^{58} \\ & IC_{50} = 81.47 \ \mu M^{63} \\ & IC_{50} = 21.3 \ \mu M^{63} \\ & IC_{50} = 21.3 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 49.4 \ \mu M^{63} \\ & IC_{50} = 49.4 \ \mu M^{63} \\ & IC_{50} = 49.4 \ \mu M^{63} \\ & IC_{50} = 10.8 \ \mu M^{53} \\ & IC_{50} = 10.$
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25- methoxytirucall-7-en-3-one (27) (3S,21S,23R,24S)-21,23-epoxy-21,25- dimethoxytirucall-7-ene-3,24-diol (28) (21S,23R,24R)-21,23-epoxy-24-hydroxy-21- methoxytirucalla-7,25-dien-3-one (29) (21S,23R,24R)-21,23-epoxy-21,24-	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K562 SGC-7901 HL-60 HepG2 K562 SGC-7901 HL-60 HepG2 K562 SGC-7901 HL-60 HepG2 K562 SGC-7901 HL-60 HepG2	$\begin{split} & \Gamma_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 30.48 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 66.22 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 62.38 \ \mu M^{58} \\ & IC_{50} = 64.36 \ \mu M^{58} \\ & IC_{50} = 68.45 \ \mu M^{58} \\ & IC_{50} = 93.0 \ \mu M^{63} \\ & IC_{50} = 21.3 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 42.1 \ \mu M^{63} \\ & IC_{50} = 1008 \ \mu M^{63} \\ & IC_{50} = 10.8 \ \mu M^{63} \\ & IC_{50} = 10.8 \ \mu M^{63} \\ & IC_{50} = 38.5 \ \mu M^{63} \\ & IC_{50} = 48.5 \ \mu M^{63} \\ & IC_{50} = 500 \ \mu M^{63} \\ & IC_{50} = 10.8 \ \mu M^{63} \\ & IC_{50} = 500 \ \mu M^{51} \\ & IC_{50} = 500 \ \mu M^{63} \\ & IC_{50} = 50$
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25- methoxytirucall-7-en-3-one (27) (3S,21S,23R,24S)-21,23-epoxy-21,25- dimethoxytirucall-7-ene-3,24-diol (28) (21S,23R,24R)-21,23-epoxy-24-hydroxy-21- methoxytirucalla-7,25-dien-3-one (29) (21S,23R,24R)-21,23-epoxy-21,24- dihydroxytirucalla-7,25-dien-3-one (30)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K562 SGC-7901 HL-60 HepG2 K562 SGC-7901 HL-60 HepG2 K562 SGC-7901	$\begin{split} & \Gamma_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 30.48 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 66.22 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.36 \ \mu M^{58} \\ & IC_{50} = 64.45 \ \mu M^{58} \\ & IC_{50} = 84.45 \ \mu M^{58} \\ & IC_{50} = 30.0 \ \mu M^{63} \\ & IC_{50} = 21.3 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 49.4 \ \mu M^{63} \\ & IC_{50} = 38.5 \ \mu M^{63} \\ & IC_{50} = 34.3 \ \mu M^{63} \\ & IC_{50} = 34.3$
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25- methoxytirucall-7-en-3-one (27) (3S,21S,23R,24S)-21,23-epoxy-21,25- dimethoxytirucall-7-ene-3,24-diol (28) (21S,23R,24R)-21,23-epoxy-24-hydroxy-21- methoxytirucalla-7,25-dien-3-one (29) (21S,23R,24R)-21,23-epoxy-21,24- dihydroxytirucalla-7,25-dien-3-one (30)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K562 SGC-7901 HL-60 HepG2 K562 SGC-7901 HL-60 HepG2 K562 SGC-7901 HL-60 HepG2 K562 SGC-7901	$\begin{split} & \Gamma_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 30.48 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 65.29 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 64.56 \ \mu M^{58} \\ & IC_{50} = 68.45 \ \mu M^{58} \\ & IC_{50} = 84.5 \ \mu M^{63} \\ & IC_{50} = 21.3 \ \mu M^{63} \\ & IC_{50} = 21.3 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 49.4 \ \mu M^{63} \\ & IC_{50} = 38.5 \ \mu M^{53} \\ & IC_{50} = 38.5 \ \mu M^{53} \\ & IC_{50} = 38.5 \ \mu M^{53} \\ & IC_{50} = 38.5 $
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25- methoxytirucall-7-en-3-one (27) (3S,21S,23R,24S)-21,23-epoxy-21,25- dimethoxytirucall-7-ene-3,24-diol (28) (21S,23R,24R)-21,23-epoxy-24-hydroxy-21- methoxytirucalla-7,25-dien-3-one (29) (21S,23R,24R)-21,23-epoxy-21,24- dihydroxytirucalla-7,25-dien-3-one (30)	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K562 SGC-7901 HL-60	$\begin{split} & \Gamma_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 30.48 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 31.27 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 66.28 \ \mu M^{58} \\ & IC_{50} = 64.56 \ \mu M^{58} \\ & IC_{50} = 64.56 \ \mu M^{63} \\ & IC_{50} = 21.00 \ \mu M^{63} \\ & IC_{50} = 21.3 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 10.8 \ \mu M^{63} \\ & IC_{50} = 33.5 \ \mu M^{63} \\ & IC_{50} = 81.7 \ \mu M^{63} \\ & IC_{50} $
Dysoxylumstatin B (54) Dysoxylumstatin C (182) (21S,23R,24R)-21,23-epoxy-21,24-dihydroxy-25- methoxytirucall-7-en-3-one (27) (3S,21S,23R,24S)-21,23-epoxy-21,25- dimethoxytirucall-7-ene-3,24-diol (28) (21S,23R,24R)-21,23-epoxy-24-hydroxy-21- methoxytirucalla-7,25-dien-3-one (29) (21S,23R,24R)-21,23-epoxy-21,24- dihydroxytirucalla-7,25-dien-3-one (30) (3R,5R, 9R,10R,13S,14S,17S)-17-{(2R,3S,5R)-5-	A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 A549 BGC-823 HCT-15 HeLa HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 MCF-7 SGC-7901 SK-MEL-2 HepG2 K562 SGC-7901 HL-60 MCF-7	$\begin{split} & \Gamma_{50} = 28.88 \ \mu M^{58} \\ & IC_{50} = 30.08 \ \mu M^{58} \\ & IC_{50} = 30.48 \ \mu M^{58} \\ & IC_{50} = 29.68 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.09 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 27.89 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 62.62 \ \mu M^{58} \\ & IC_{50} = 64.32 \ \mu M^{58} \\ & IC_{50} = 62.38 \ \mu M^{58} \\ & IC_{50} = 62.38 \ \mu M^{58} \\ & IC_{50} = 62.456 \ \mu M^{58} \\ & IC_{50} = 62.38 \ \mu M^{58} \\ & IC_{50} = 64.56 \ \mu M^{58} \\ & IC_{50} = 64.56 \ \mu M^{63} \\ & IC_{50} = 81.7 \ \mu M^{63} \\ & IC_{50} = 44.9 \ \mu M^{63} \\ & IC_{50} = 41.9 \ \mu M^{63} \\ & IC_{50} = 38.5 \ \mu M^{63} \\ & IC_{50} = 38.5 \ \mu M^{63} \\ & IC_{50} = 38.5 \ \mu M^{63} \\ & IC_{50} = 81.7 \ \mu M^{63} \\ & IC_{50} = >100 \ \mu M^{63} \\ & IC_{50} = 81.7 \ \mu M^{63} \\ & IC_{50} = >100 \ \mu M^{63} \\ & IC_{50} = 81.7 \ \mu M^{63} \\ & IC_{50} = >100 \ \mu M^{63} \\ & IC_{50} = 81.7 \ \mu M^{63} \\ & IC_{50} = >100 \ \mu M^{63} \\ & IC_{50} = 81.7 \ \mu M^{63} \\ & IC_{50} = >100 \ \mu M^{63} \\ & IC_{50} = 81.7 \ \mu M^{63} \\ & IC_{50} = >100 \ \mu M^{63} \\ & IC_{50} = >100 \ \mu M^{63} \\ & IC_{50} = >100 \ \mu M^{63} \\ & IC_{50} = 81.7 \ \mu M^{63} \\ & IC_{50} = >100 \ \mu M^{63} \\ & IC_{50} = 81.7 \ \mu M^{63} \\ & IC_{50} = >100 \ \mu M^{63} \\ & IC_{50} = >100 \ \mu M^{64} \\ & IC_{50} = >1$

2,5-dimethoxyfuran- 3-yl}-4,4,10,13,14-pentamethyl-		
2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-		
1H-cyclopenta- [α]phenanthren-3-ol (35)		
(5R,9R,10R,13S,14S,17S)-17-{(2R,3S,5R)-5-[(2S)-	MCF-7	$IC_{50} = 10.3 \ \mu M^{64}$
3,3-dimethyloxiran-2-yl]-2,5-	HeLa	$IC_{50} = 29.9 \ \mu M^{64}$
dimethoxytetrahydrofuran-3-yl}-		
1,2,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-		
4,4,10,13,14-pentamethyl- 3H-		
cyclopenta[α]phenanthren-3-one (36)	MOD 7	10 52.2 3 (64
$(13\alpha, 14\beta, 1/\alpha, 23Z)$ -25-methoxy-21,23-epoxylanosta- 7 20(22) 22 triang 2 21 diama (50)	MCF-/	$1C_{50} = 53.3 \ \mu M^{-1}$
7,20(22),23-triene- 3,21-dione (50)	HeLa	$IC_{50} = 21.4 \ \mu M^{31}$
$(+)-21R^{*},23R^{*}-epoxy-21\alpha-methoxy-24S^{*},25-$	A549	$IC_{50} = 20.2 \ \mu M^{70}$
dinydroxyapotirucali- /-en-3-one (44)	BGC-823	$IC_{50} = 64.9 \mu M^{70}$
	HCT-15	$IC_{50} = 22.1 \mu M^{10}$
	HeLa	$1C_{50} = 68.6 \ \mu M^{-2}$
	HepG2	$IC_{50} = 7.5 \mu\text{M}$
	MCF-7	$1C_{50} = 78.7 \mu\text{M}^{-1}$
	SGC-7901	$1C_{50} = 21.7 \ \mu M^{20}$
(1) 21D* 22D* 21 25	SK-MEL-2	$IC_{50} = 23.7 \mu M^{20}$
(+)-21K*,25K*-epoxy-210- methoxy-25- hydroxyapoticyaell 7 op 2 24 diana (45)	A549	$1C_{50} = 20.6 \mu\text{M}$
nyuroxyapotirucan-7-en-3,24-urone (4 5)	BGC-823	$IC_{50} = 08.4 \mu M$
	HCI-IS UsLa	$1C_{50} = 21.0 \ \mu M$
	HepG2	$1C_{50} = 77.0 \mu\text{M}$
	MCE 7	$1C_{50} = 8.4 \mu M^{70}$
	MCF-7	$1C_{50} - 64.4 \mu W$
	SUC-7901	$1C_{50} - 23.8 \mu \text{M}$
(1) 21D* 22D* arous 21a 25 dimethousanatiment	SK-MEL-2	$1C_{50} - 27.2 \mu \text{M}$
(+)- 21K [*] ,25K [*] -epoxy-21a,25-unnethoxyapothucan- 7 en 3.24 dione (46)	A349	$IC_{50} = 22.0 \ \mu M$
7-cii-3,24- diolie (40)	БОС-825 ИСТ 15	$1C_{50} = 05.2 \mu\text{M}$
	Hele	$IC_{50} = 20.0 \ \mu M$
	HenG2	$IC_{50} = 7.6 \text{ µM}^{70}$
	MCE 7	$1C_{50} - 7.0 \mu\text{M}$
	SGC-7901	$IC_{50} = 01.1 \mu\text{M}$ $IC_{50} = 23.2 \mu\text{M}^{70}$
	SK-MFL-2	$IC_{50} = 23.2 \mu W^{70}$
(+)-21R* 23R*-epoxy-21a-methoxy-24S* 25-	A 549	$IC_{50} = 25.6 \mu M^{70}$
oxidoapotirucall-7-en-3-one (47)	BGC-823	$IC_{50} = 63.4 \mu M^{70}$
······································	HCT-15	$IC_{50} = 24.4 \mu M^{70}$
	HeLa	$IC_{50} = 73.3 \mu M^{70}$
	HepG2	$IC_{50} = 7.6 \ \mu M^{70}$
	MCF-7	$IC_{50} = 83.9 \ \mu M^{70}$
	SGC-7901	$IC_{50} = 24.0 \ \mu M^{70}$
	SK-MEL-2	$IC_{50} = 25.4 \ \mu M^{70}$
24,25-epoxy-3β-hydroxy-20- oxo-7-tirucallene (25)	HL-60	$IC_{50} = 18.0 \ \mu M^{61}$
	SMMC-7721	$IC_{50} = >40 \ \mu M^{61}$
	A549	$IC_{50} = >40 \ \mu M^{61}$
	MCF-7	$IC_{50} = 34.6 \ \mu M^{61}$
	SW480	$IC_{50} = >40 \ \mu M^{61}$
Mesendanin M (43)	HL-60	$IC_{50} = 17.8 \ \mu M^{69}$
	SMMC-7721	$IC_{50} = >40 \ \mu M^{69}$
	A549	$IC_{50} = >40 \ \mu M^{69}$
	MCF-7	$IC_{50} = >40 \ \mu M^{69}$
	SW480	$IC_{50} = >40 \ \mu M^{69}$
Guareoic acid A (57)	Jurkat	$EC_{50} = 39 \ \mu M^{74}$
	HeLa	$EC_{50} = 55 \ \mu M^{74}$
	MCF-7	$EC_{50} = 75 \ \mu M^{74}$
	PBMC	$EC_{50} = >100 \ \mu M^{74}$
(20S)-3-oxo-tirucalla-25-nor-7-en-24-oic acid (67)	A549	$IC_{50} = >40 \ \mu M^{76}$
	SGC-7901	$IC_{50} = >40 \ \mu M^{76}$
(20S)-5a,8a-epidioxy-3-oxo-24-nor-6,9(11)-dien-23-	A549	$IC_{50} = 20.3 \ \mu M^{76}$
oic acid (68)	SGC-7901	$IC_{50} = >40 \ \mu M^{76}$
3α-Hydroxy-21α-methoxy-24,25,26,27-	MCF-7	$IC_{50} = 42.2 \ \mu M^{77}$
tetranortirucall-7-ene- 23(21)-lactone (70)	HeLa	$IC_{50} = 37.6 \ \mu M^{77}$
	HepG2	$IC_{50} = 31.4 \ \mu M^{77}$
	SGC-7901	$IC_{50} = 26.1 \ \mu M^{77}$
	BGC-823	$IC_{50} = 24.2 \ \mu M^{77}$
3α-Hydroxy-21β-methoxy-24,25,26,27-	MCF-7	$IC_{50} = 67.1 \ \mu M^{77}$

tetranortirucall-7-ene- 23(21)-lactone (71)	HeLa	$IC_{50} = 24.3 \ \mu M^{77}$
	HenG2	$IC_{50} = 32.6 \mu M^{77}$
	SGC-7901	$IC_{50} = 213 \ \mu M^{77}$
	BGC-823	$IC_{50} = 12.8 \ \mu M^{77}$
3 Ovo 21g methovy 24 25 26 27 tetraportirucall 7	MCE 7	$IC_{50} = 12.6 \mu M^{77}$
3-0x0-210-methoxy-24,23,20,27-tetrahortifucali-7-	MCF-/	$IC_{50} = 100.5 \mu \text{M}$
ene- $25(21)$ -factorie (72)	HeLa	$IC_{50} = 95.5 \mu M$
	HepG2	$IC_{50} = 91.2 \ \mu M^{-1}$
	SGC-7901	$IC_{50} = 70.9 \ \mu M^{\prime\prime}$
	BGC-823	$IC_{50} = 154.4 \mu M^{\prime \prime}$
3-Oxo-21β-methoxy-24,25,26,27-tetranortirucall-7-	MCF-7	$IC_{50} = 76.2 \ \mu M^{77}$
ene- 23(21)-lactone (73)	HeLa	$IC_{50} = 52.8 \ \mu M^{77}$
	HepG2	$IC_{50} = 71.8 \ \mu M^{77}$
	SGC-7901	$IC_{50} = 71.9 \ \mu M^{77}$
	BGC-823	$IC_{50} = 41.7 \mu M^{77}$
3-Oxo-21g-ethoxy-24 25 26 27-tetraportirucall-7-	MCE-7	$IC_{50} = 50.2 \ \mu M^{77}$
(74)	Hela	$IC_{30} = 76.2 \ \mu M^{77}$
	HanC2	$IC_{50} = 70.2 \mu \text{M}^{17}$
	Rep02	$IC_{50} - 58.5 \mu M$
	SGC-7901	$IC_{50} = 108 \mu M^{-1}$
	BGC-823	$IC_{50} = 126.6 \mu M^{\prime \prime}$
7-deacetylbrujavanone E (99)	KB	$IC_{50} = 12.92 \ \mu g/mL^{100}$
21,24,25- triacetyl-7-deacetyl-6-hydroxylbrujavanone E (100)	КВ	$IC_{50} = 17.06 \ \mu g/mL^{100}$
11,25-dideacetyltrichostemonate (122)	HeLa	$IC_{50} = 12.99 \ \mu g/mL^{100}$
	KB	$IC_{50} = 3.95 \ \mu g/mL^{100}$
Trichostemonate (123)	HeLa	$IC_{50} = 0.93 \ \mu g/mL^{109}$
	KB	$IC_{c0} = 3.28 \mu g/m L^{109}$
Indicalilacol B (42)	KB	$IC_{50} = 5.20 \ \mu S^{-112}$
Indicalitación D (42)	KD VD C2	$IC_{50} = 15.0 \mu\text{M}$
	KD-C2	$IC_{50} = 10.1 \mu\text{W}$
	KB-C2	$IC_{50} = 7.29 \ \mu M^{-1}$
	(+2.5 μM	
	colchicine.)	67
	MCF-7	$IC_{50} = 19.0 \ \mu M^{07}$
Piscidinone A (126)	HT-29	$IC_{50} = 34.23 \ \mu g/mL^{110}$
	MCF-7	$IC_{50} = 17.77 \ \mu g/mL^{110}$
	HeLa	$IC_{50} = 25.17 \ \mu g/mL^{110}$
	A549	$IC_{50} = 17.94 \ \mu g/mL^{110}$
	B-16	$IC_{50} = 27.78 \ \mu g/m L^{110}$
	IEC-6	$IC_{50} = 16.37 \ \mu g/mL^{110}$
	1.6	$IC_{50} = 21.22 \mu g/mL^{110}$
	PC-3	$IC_{50} = 13.62 \text{ µg/mL}^{110}$
Discidinone B (127)	нт 20	$IC_{50} = 50.63 \mu g/mL^{-110}$
risciulione B (127)	MCE 7	$IC_{50} = 34.62 \text{ ms}/\text{mL}^{110}$
	MCF-/	$IC_{50} = 24.02 \ \mu g/mL$
	HeLa	$IC_{50} = 2/./4 \mu g/mL^{10}$
	A549	$IC_{50} = 18.48 \ \mu g/mL^{110}$
	B-16	$IC_{50} = 46.08 \ \mu g/mL^{110}$
	IEC-6	$IC_{50} = 18.52 \ \mu g/mL^{110}$
	L6	$IC_{50} = 13.52 \ \mu g/mL^{110}$
	PC-3	$IC_{50} = 14.10 \ \mu g/mL^{110}$
Aphataiwanin C/Apowalsogyne B (130)	HL-60	$IC_{50} = 26.9 \ \mu M^{113}$
	HepG2	$IC_{50} = 68.0 \ \mu M^{113}$
	A549	$IC_{50} = >50 \ \mu M^{113}$
	MCE-7	$IC_{50} = 62.5 \mu M^{113}$
	HEn 2	$ED_{20} = 37.78 \ \mu g/mI^{-112}$
	Hep-2	$ED_{50} = 37.76 \ \mu g/mL$
	hep02	$ED_{50} = 50.34 \ \mu g/mL$
	A549	$ED_{50} = >40 \ \mu g/mL$
	MCF-/	$ED_{50} = >40 \ \mu g/mL^{}$
Aphataiwanin D/Apowalsogyne A (131)	HL-60	$IC_{50} = 35.9 \ \mu M^{113}$
	HepG2	$IC_{50} = 30.9 \ \mu M^{113}$
	A549	$IC_{50} = 31.1 \ \mu M^{113}$
	MCF-7	$IC_{50} = 32.2 \ \mu M^{113}$
	HEp-2	$ED_{50} = 37.72 \ \mu g/mL^{112}$
	HepG2	$ED_{50} = >40 \text{ µg/mL}^{112}$
	A 549	$ED_{c0} = >40 \text{ µg/mL}^{112}$
	MCE-7	$FD_{ro} = >40 \ \mu g/mL^{112}$
Aphotoimonin A (122)	UEn 2	$ED_{20} = 28.12 \mu \alpha/m I^{-112}$
Aphatatwalilli A (132)	пер-2	$ED_{50} = 20.12 \ \mu g/IIIL$
	HepG2	$ED_{50} = 16.02 \ \mu g/mL^{22}$

	A549	$ED_{50} = 33.56 \ \mu g/mL^{112}$
	MCF-7	$ED_{50} = >40 \ \mu g/mL^{112}$
Aphataiwanin B (133)	HEp-2	$ED_{50} = 36.05 \ \mu g/mL^{112}$
	HepG2	$ED_{50} = 24.86 \ \mu g/mL^{112}$
	A549	$ED_{50} = >40 \ \mu g/mL^{112}$
	MCF-7	$ED_{50} = >40 \ \mu g/mL^{112}$
Argentinin B (135)	P388	$IC_{50} = 59.5 \ \mu M \text{ or } 34.25 \ \mu g/mL^{115}$
Polystanin E (136)	BEL-7402	$IC_{50} = 8.50 \ \mu M^{116}$
	SMMC-7721	$IC_{50} = 7.84 \ \mu M^{116}$
Swieteliacate B (1411)	HL-60	$IC_{50} = 30.59 \ \mu M^{108}$
	SW480	$IC_{50} = 32.86 \ \mu M^{108}$
Lepidotrichilin A (109)	U937	$IC_{50} = 48.0 \ \mu g/mL^{103}$
	MOLT4	$IC_{50} = 42.7 \ \mu g/mL^{103}$
Lepidotrichilin B (108)	U937	$IC_{50} = 48.0 \ \mu g/mL^{103}$
	MOLT4	$IC_{50} = 42.7 \ \mu g/mL^{103}$
Xylogranatumine F (89)	A549	54.2 % inhibition at 10 μ M ⁹⁷
Walsurin A (138)	MCF-7/DOX	$IC_{50} = 0.52 \ \mu M^{120}$ (Cytotoxicity of doxorubicin in presence of
		compound)
1α -methoxy-11 β -hydroxydihydrocedrelone (198)	MCF-7/DOX	$IC_{50} = 2.23 \ \mu M^{120}$ (Cytotoxicity of doxorubicin in presence of compound)
1 α -ethoxy-11 β –hydroxydihydrocedrelone (199)	MCF-7/DOX	$IC_{50} = 1.86 \ \mu M^{126}$ (Cytotoxicity of doxorubicin in presence of compound)
Walsuronoid F (233)	MCF-7/DOX	$IC_{50} = 4.36 \ \mu M^{126}$ (Cytotoxicity of doxorubicin in presence of compound)
Ciliatasecone F (418)	MCF-7/DOX	$IC_{50} = 1.14 \mu M^{131}$ (Cytotoxicity of doxorubicin in presence of compound)
Ciliatasecone K (434)	MCE-7/DOX	$IC_{ro} = 5.41 \text{ uM}^{131} (Cytotoxicity of doxorybicin in presence of the second s$
	MCI-7/DOX	compound)
Chukorthoester A (1027)	MCF-7/DOX	$IC_{50} = 0.26 \ \mu M^{303}$ (Cytotoxicity of doxorubicin in presence of compound)
Chukorthoester B (1028)	MCF-7/DOX	$IC_{50} = 0.46 \ \mu M^{363}$ (Cytotoxicity of doxorubicin in presence of compound)
Toonayunnanin B (145)	HL-60	$IC_{50} = 18.47 \ \mu M^{128}$
	SMMC-7721	$IC_{50} = 22.77 \ \mu M^{128}$
	A549	$IC_{50} = 21.70 \ \mu M^{128}$
	MCF-7	$IC_{50} = 20.17 \ \mu M^{128}$
	SW480	$IC_{50} = 21.46 \ \mu M^{128}$
7-benzoyl-17-epinimbocinol (147)	HL-60	$IC_{50} = 2.8 \ \mu M^{130}$
	A549	$IC_{50} = 6.3 \ \mu M^{130}$
	AZ521	$IC_{50} = 3.8 \mu M^{130}$
	SK-BR-3	$IC_{50} = 8.7 \mu M^{130}$
3-acetyl-7-tigloylnimbidinin (313)	HL-60	$IC_{50} = 12.3 \ \mu M^{130}$
	A549	$IC_{50} = 20.9 \ \mu M^{130}$
	AZ521	$IC_{50} = 21.8 \ \mu M^{130}$
22 diherdar $2n$ model are include (450)	SK-BK-3	$IC_{50} = 55.0 \ \mu M^{130}$
$2,3$ -dinydro- 3α -methoxynimbolide (430)	HL-00	$IC_{50} = 5.0 \mu\text{M}^{-120}$
	A349	$IC_{50} - 12.6 \mu M$
	SK BP 3	$IC_{50} = 2.0 \ \mu M$
1-isovalerovl- 1-detiglovlsalanninolide (461)	HL-60	$IC_{50} = 21.7 \text{ µM}^{130}$
1-isovaleloyi-1-deugloyisalaliililoide (401)	A 549	$IC_{50} = >100 \mu M^{130}$
	A7521	$IC_{50} = >100 \mu M^{130}$
	SK-BR-3	$IC_{50} = >100 \mu M^{130}$
deacetyl-20.21-epoxy-20.22-dihydro- 21-	HL-60	$IC_{50} = 24.2 \ \mu M^{130}$
deoxyisonimbinolide (512)	1.510	
	A549	$IC_{50} = >100 \ \mu M^{130}$
	AZ521	$IC_{50} = >100 \ \mu V I^{10}$
dependent 20.21.22.22 total-star 20.22 ditest	<u> 5К-ВК-3</u>	$IC_{50} = >100 \ \mu W$
21 23 dimethoxynimbin (513)	пL-00 А 5 40	$IC_{50} = 36.0 \ \mu M^{130}$
21,23-ametioxymmom (313)	A349 A7521	$IC_{50} = >100 \ \mu \text{VI}$ $IC_{-} = >100 \ \mu \text{M}^{130}$
	SK-BR-3	$IC_{50} = >100 \ \mu \text{W}$ $IC_{50} = >100 \ \mu \text{M}^{130}$
Dysohinol (154)	P388	$I_{0.50} = 407 \mu g/m I^{-132}$
Entangolensin () (155)	HenG2	$IC_{20} = 21.00 \text{ µM}^{133}$
	MCF-7	$IC_{50} = 36.93 \text{ µM}^{133}$
Entangolensin L (529)	HepG2	$IC_{50} = 20.39 \ \mu M^{133}$
	MCF-7	$IC_{50} = 17.20 \mu\text{M}^{133}$
	1	

Entangolensin F (710)	HepG2	$IC_{50} = 13.19 \ \mu M^{133}$
	MCF-7	$IC_{50} = 14.06 \ \mu M^{133}$
Entangolensin K (1485)	HepG2	$IC_{50} = >50 \ \mu M^{133}$
	MCF-7	$IC_{50} = >50 \ \mu M^{133}$
Xylomolin C2 (825)	HCT-8	$IC_{50} = 70.14 \mu M^{135}$
	HCT-8/T	$IC_{50} = 64.14 \text{ µM}^{135}$
	A 2780	$IC_{50} = 62.04 \text{ µM}^{135}$
	A2780/T	$IC_{50} = 62.04 \ \mu M$
	A2760/1	$1C_{50} = 62.17 \ \mu W$
X 1 1' 10 (100 A)	MDA-MB-231	$IC_{50} = >100 \mu\text{M}^{-1}$
Xylomolin J2 (1284)	HCT-8	$IC_{50} = 68.84 \mu M^{155}$
	НСТ-8/Г	$IC_{50} = >100 \ \mu M^{133}$
	A2780	$IC_{50} = 64.18 \ \mu M^{135}$
	A2780/T	$IC_{50} = 77.80 \ \mu M^{135}$
	MDA-MB-231	$IC_{50} = 37.68 \ \mu M^{135}$
Xylomolin G2 (1322)	HCT-8	$IC_{50} = >100 \ \mu M^{135}$
	HCT-8/T	$IC_{50} = >100 \ \mu M^{135}$
	A2780	$IC_{50} = >100 \ \mu M^{135}$
	A2780/T	$IC_{50} = >100 \ \mu M^{135}$
	MDA-MB-231	$IC_{50} = 94.51 \ \mu M^{135}$
24 25 26 27-tetranor-anotirucall-6g-hydroxy-7g-	HeI a	$IC_{50} = 95 \mu M^{137}$
acetoxy-1 14-dien-3-one-21 24-anhydride (169)	PC-3	$IC_{50} > 0 \mu M^{137}$
110 hydroxyicowolouronolido (215)	IU-5	$IC_{50} = 2.1 \times M^{139}$
11p-nydroxylsowalsuranonde (215)	HL-00	$IC_{50} = 3.1 \mu\text{M}^{-1}$
	SMMC-7721	$IC_{50} = 2.2 \mu M^{3/3}$
	A549	$IC_{50} = 2.6 \mu M^{139}$
	MCF-7	$IC_{50} = 3.9 \mu M^{139}$
	SW480	$IC_{50} = 2.4 \ \mu M^{139}$
	BEAS-2B	$IC_{50} = 9.4 \ \mu M^{139}$
Yunnanolide A (230)	HL-60	$IC_{50} = 3.6 \ \mu M^{139}$
	SMMC-7721	$IC_{50} = 2.4 \ \mu M^{139}$
	A549	$IC_{50} = 3.7 \ \mu M^{139}$
	MCF-7	$IC_{50} = 4.2 \ \mu M^{139}$
	SW480	$IC_{50} = 3.5 \mu M^{139}$
	BEAS-2B	$IC_{50} = 5.0 \mu M^{139}$
7-0-acetyl-7-0-debenzovl-22-bydroyy-21-	HI_60	$IC_{30} = 10.9 \text{ m}M^{140}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21-	HL-60	$\frac{IC_{50}}{IC_{50}} = 10.9 \mu M^{140}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173)	HL-60 A549	$\frac{IC_{50}}{IC_{50}} = 10.9 \mu M^{140}$ $IC_{50} = 25.4 \mu M^{140}$ $IC_{-50} = 22.2 \mu M^{140}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173)	HL-60 A549 AZ521	$\begin{split} & IC_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 25.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \end{split}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173)	HL-60 A549 AZ521 SK-BR-3	$\begin{split} & IC_{50}^{50} = 10.9 \mu M^{140} \\ & IC_{50} = 25.4 \mu M^{140} \\ & IC_{50} = 23.2 \mu M^{140} \\ & IC_{50} = 33.8 \mu M^{140} \\ & IC_{50} = 31.8 \mu M^{140} \end{split}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174)	HL-60 A549 AZ521 SK-BR-3 P388	$\begin{split} & IC_{50}^{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 25.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = >100 \ m M^{141} \\ & IC_{50} = >100 \ m M^{141} \end{split}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60	$\begin{split} & IC_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 25.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = >100 \ m M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ \end{split}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 P388	$\begin{split} & IC_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 25.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 5100 \ m M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ \end{split}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 P388 HL-60	$\begin{split} & IC_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 25.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = >100 \ m M^{141} \\ & IC_{50} = >100 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ \end{split}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 P388 HL-60 P388	$\begin{split} & IC_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 25.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = >100 \ m M^{141} \\ & IC_{50} = >100 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.8 \ m M^{141} \\ & IC_{50} = 1.8 \ m M^{141} \end{split}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 P388 HL-60 P388 HL-60 P388 HL-60	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 25.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = >100 \ m M^{141} \\ & IC_{50} = >100 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.8 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 P388 HL-60 P388 HL-60 P388 HL-60 P388 HL-60 P388 HL-60 P388	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 25.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.8 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.8 \ m M^{141$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60	$\begin{split} & IC_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 25.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 31.8 \ \mu M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.8 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.2 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & $
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916) Andirolide V (1052)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 P388	$\begin{split} & IC_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 25.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = >100 \ m M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.8 \ m M^{141} \\ & IC_{50} = 1.8 \ m M^{141} \\ & IC_{50} = 1.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 33.5 \ m M^{141} \\ \end{split}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916) Andirolide V (1052)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 P388 HL-60 P388 HL-60 P388 HL-60 P388 HL-60 P388 HL-60 P388 HL-60	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 33.5 \ m M^{141} \\ & IC_{50} = 22.0 \ m M^{141} \end{split}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916) Andirolide V (1052) Andirolide R (1452)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 P388 HL-60 P388 HL-60 P388 HL-60 P388 HL-60 P388 HL-60 P388 HL-60 P388	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 33.5 \ m M^{141} \\ & IC_{50} = 22.0 \ m M^{141} \\ & IC_{50} = 154 \ m M^{141} \\ & IC_{50} = 150 \ m M^{$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916) Andirolide V (1052) Andirolide R (1452)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.8 \ m M^{141} \\ & IC_{50} = 1.8 \ m M^{141} \\ & IC_{50} = 1.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 33.5 \ m M^{141} \\ & IC_{50} = 15.4 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & $
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916) Andirolide V (1052) Andirolide R (1452)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.8 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 33.5 \ m M^{141} \\ & IC_{50} = 15.4 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{150} \\ \end{split}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21-methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916) Andirolide R (1452) 1 α,11β-dihydroxy-1,2-dihydrocedrelone (200)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 P388	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.8 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 24.0 \ \mu M^{150} \\ & IC_{50} = 20.6 \ m M^{150} \\ \end{split}$
 7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916) Andirolide V (1052) Andirolide R (1452) 1 α,11β-dihydroxy-1,2-dihydrocedrelone (200) 	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 A540	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 15.4 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = 10.5 \ m M^{150} \\ & IC_{50} = 10.5 \ m^{150} \\ & IC_{50} = 10.5 $
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173)Andirolide Q (174)Andirolide S (680)Andirolide T (746)Andirolide U (916)Andirolide R (1452)1 α,11β-dihydroxy-1,2-dihydrocedrelone (200)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 SMMC-7721 A549 MCF 7	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.0 \ m M^{141} \\ & IC_{50} = 15.4 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = 18.5 \ \mu M^{150} \\ & IC_{50} = 10.5 \ \mu M^{150} \\ & I$
 7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916) Andirolide V (1052) Andirolide R (1452) 1 α,11β-dihydroxy-1,2-dihydrocedrelone (200) 	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 P388 HC-60 P388 HL-60 MCF-7721 A549 MCF-7	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.4 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{150} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = 8.5 \ \mu M^{150} \\ & IC_{50} = 8.$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916) Andirolide R (1452) 1 α,11β-dihydroxy-1,2-dihydrocedrelone (200)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 SMMC-7721 A549 MCF-7 SW480	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 19.8 \ m M^{141} \\ & IC_{50} = 19.8 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 22.0 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = 8.5 \ \mu M^{150} \\ & IC_{50} = 8.4 $
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916) Andirolide R (1452) 1 α ,11β-dihydroxy-1,2-dihydrocedrelone (200) 1,2-dihydrodeacetylhirtin (204)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 MCF-721 A549 MCF-7 SW480 HL-60	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{150} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = >40 \ \mu M^{150} \\ & IC_{50} = >40 \ \mu M^{150} \\ & IC_{50} = >40 \ \mu M^{150} \\ & IC_{50} = 4.9 \ \mu M^{150} \\ & IC_{50} = 4.$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173)Andirolide Q (174)Andirolide S (680)Andirolide T (746)Andirolide U (916)Andirolide V (1052)Andirolide R (1452)1 α,11β-dihydroxy-1,2-dihydrocedrelone (200)1,2-dihydrodeacetylhirtin (204)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60 SMMC-7721	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{150} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = >40 \ \mu M^{150} \\ & IC_{50} = >40 \ \mu M^{150} \\ & IC_{50} = 3.1 \ \mu M^{150} \\ & IC_{50} = 3.1 \ \mu M^{150} \end{split}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173)Andirolide Q (174)Andirolide S (680)Andirolide T (746)Andirolide U (916)Andirolide V (1052)Andirolide R (1452)1 α,11β-dihydroxy-1,2-dihydrocedrelone (200)1,2-dihydrodeacetylhirtin (204)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60 SMMC-7721 A549	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 33.5 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = >40 \ \mu M^{150} \\ & IC_{50} = >40 \ \mu M^{150} \\ & IC_{50} = 4.9 \ \mu M^{150} \\ & IC_{50} = 3.1 \ \mu M^{150} \\ & IC_{50} = 3.1 \ \mu M^{150} \\ & IC_{50} = 3.1 \ \mu M^{150} \\ & IC_{50} = 2.9 \ \mu $
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173)Andirolide Q (174)Andirolide S (680)Andirolide T (746)Andirolide U (916)Andirolide R (1452)1 α,11β-dihydroxy-1,2-dihydrocedrelone (200)1,2-dihydrodeacetylhirtin (204)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60 SMMC-7721 A549 MCF-7 SWMC-7721 A549 MCF-7	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 33.5 \ m M^{141} \\ & IC_{50} = 13.6 \ m M^{150} \\ & IC_{50} = 240 \ \mu M^{150} \\ & IC_{50} = 240 \ \mu M^{150} \\ & IC_{50} = 240 \ \mu M^{150} \\ & IC_{50} = 3.1 \ \mu M^{150} \\ & IC_{50} = 2.9 \ \mu M^{150} \\ & IC_{50} = 9.8 \ \mu M^{150} \\ & IC_{50} = 10.5 \ \mu M^{150} \\ & IC_{50}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916) Andirolide R (1452) 1 α ,11 β -dihydroxy-1,2-dihydrocedrelone (200) 1,2-dihydrodeacetylhirtin (204)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60 SMMC-7721 A549 MCF-7 SW480	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 1.8 \ m M^{141} \\ & IC_{50} = 1.8 \ m M^{141} \\ & IC_{50} = 1.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 14.9 \ \mu M^{150} \\ & IC_{50} = 240 \ \mu M^{150} \\ & IC_{50} = 240 \ \mu M^{150} \\ & IC_{50} = 240 \ \mu M^{150} \\ & IC_{50} = 3.1 \ \mu M^{150} \\ & IC_{50} = 2.9 \ \mu M^{150} \\ & IC_{50} = 9.8 \ \mu M^{150} \\ & IC_{50} = 9.0 \ \mu M^{150} \\ \hline \\ & IC_{50} = 9.0 \ \mu M^{150} \\ & IC_{50} = 9.0 \ \mu M^{150} \\ \hline \\ & IC_{50} = 9.0 \ \mu M^{150} \\ \hline \\ & IC_{50} = 9.0 \ \mu M^{150} \\ \hline \\ & IC_{50} = 9.0 \ \mu M^{150} \\ \hline \\ & IC_{50} = 9.0 \ \mu M^{150} \\ \hline \\ \hline \\ & IC_{50} = 9.0 \ \mu M^{150} \\ \hline \\ \hline \\ \hline \\ \hline \end{aligned}$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916) Andirolide R (1452) 1 α ,11 β -dihydroxy-1,2-dihydrocedrelone (200) 1,2-dihydrodeacetylhirtin (204)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 13.6 \ m M^{150} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = 240 \ \mu M^{150} \\ & IC_{50} = 240 \ \mu M^{150} \\ & IC_{50} = 3.1 \ \mu M^{150} \\ & IC_{50} = 2.9 \ \mu M^{150} \\ & IC_{50} = 2.9 \ \mu M^{150} \\ & IC_{50} = 9.0 \ \mu M^{150} \\ & IC_{50} = 9.1 \ \mu M^{150} \\ & IC_{50} = 0.1 \$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173)Andirolide Q (174)Andirolide S (680)Andirolide T (746)Andirolide U (916)Andirolide V (1052)Andirolide R (1452)1 α ,11β-dihydroxy-1,2-dihydrocedrelone (200)1,2-dihydrodeacetylhirtin (204)1 α -hydroxy-1,2-dihydrodeacetylhirtin (205)	HL-60 AZ521 SK-BR-3 P388 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60 SMMK-7721	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & \Pi_{c_{50}} = 23.2 \ \mu M^{140} \\ & \Pi_{c_{50}} = 23.2 \ \mu M^{140} \\ & \Pi_{c_{50}} = 33.8 \ \mu M^{140} \\ & \Pi_{c_{50}} = 33.8 \ \mu M^{141} \\ & \Pi_{c_{50}} = 58.4 \ m M^{141} \\ & \Pi_{c_{50}} = 1.4 \ m M^{141} \\ & \Pi_{c_{50}} = 1.3 \ m M^{141} \\ & \Pi_{c_{50}} = 12.9 \ m M^{141} \\ & \Pi_{c_{50}} = 33.5 \ m M^{141} \\ & \Pi_{c_{50}} = 22.0 \ m M^{141} \\ & \Pi_{c_{50}} = 15.4 \ m M^{141} \\ & \Pi_{c_{50}} = 15.4 \ m M^{141} \\ & \Pi_{c_{50}} = 13.5 \ m M^{141} \\ & \Pi_{c_{50}} = 18.5 \ \mu M^{150} \\ & \Pi_{c_{50}} = 20.6 \ \mu M^{150} \\ & \Pi_{c_{50}} = 240 \ \mu M^{150} \\ & \Pi_{c_{50}} = 240 \ \mu M^{150} \\ & \Pi_{c_{50}} = 2.9 \ \mu M^{150} \\ & \Pi_{c_{50}} = 2.9 \ \mu M^{150} \\ & \Pi_{c_{50}} = 2.9 \ \mu M^{150} \\ & \Pi_{c_{50}} = 1.1 \ \mu M^{150} \\ & \Pi_{c_{50}} = 1.0 \ \mu M^{150} \\ & \Pi_{c_{50}} = 3.1 \ \mu M^{150} \\ & \Pi_{c_{50}} = 1.0 $
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173)Andirolide Q (174)Andirolide S (680)Andirolide T (746)Andirolide U (916)Andirolide V (1052)Andirolide R (1452)1 α,11β-dihydroxy-1,2-dihydrocedrelone (200)1,2-dihydrodeacetylhirtin (204) $ \alpha$ -hydroxy-1,2-dihydrodeacetylhirtin (205)	HL-60 AZ521 SK-BR-3 P388 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60 SMMC-7721 A549	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 22.0 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = 2.9 \ \mu M^{150} \\ & IC_{50} = 3.1 \ \mu M^{150} \\ & IC_{50} = 2.9 \ \mu M^{150} \\ & IC_{50} = 9.8 \ \mu M^{150} \\ & IC_{50} = 9.8 \ \mu M^{150} \\ & IC_{50} = 9.0 \ \mu M^{150} \\ & IC_{50} = 1.1 $
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173)Andirolide Q (174)Andirolide S (680)Andirolide T (746)Andirolide U (916)Andirolide V (1052)Andirolide R (1452)1 α ,11β-dihydroxy-1,2-dihydrocedrelone (200)1,2-dihydrodeacetylhirtin (204)1 α -hydroxy-1,2-dihydrodeacetylhirtin (205)	HL-60 AZ521 SK-BR-3 P388 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60 SMMC-7721 A549	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 22.0 \ m M^{141} \\ & IC_{50} = 15.4 \ m M^{141} \\ & IC_{50} = 15.4 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = 2.9 \ \mu M^{150} \\ & IC_{50} = 9.8 \ \mu M^{150} \\ & IC_{50} = 9.8 \ \mu M^{150} \\ & IC_{50} = 9.0 \ \mu M^{150} \\ & IC_{50} = 1.1 \ \mu M^{150} \\ & IC_{50} = 1.0 \ \mu$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173)Andirolide Q (174)Andirolide S (680)Andirolide T (746)Andirolide U (916)Andirolide V (1052)Andirolide R (1452)1 α ,11β-dihydroxy-1,2-dihydrocedrelone (200)1,2-dihydrodeacetylhirtin (204)1 α -hydroxy-1,2-dihydrodeacetylhirtin (205)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60 SMMC-7721 A549	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & \Pi_{50} = 23.2 \ \mu M^{140} \\ & \Pi_{50} = 33.8 \ \mu M^{141} \\ & \Pi_{50} = 58.4 \ m M^{141} \\ & \Pi_{50} = 1.4 \ m M^{141} \\ & \Pi_{50} = 1.3 \ m M^{141} \\ & \Pi_{50} = 1.3 \ m M^{141} \\ & \Pi_{50} = 1.3 \ m M^{141} \\ & \Pi_{50} = 12.9 \ m M^{141} \\ & \Pi_{50} = 12.9 \ m M^{141} \\ & \Pi_{50} = 12.9 \ m M^{141} \\ & \Pi_{50} = 13.5 \ m M^{141} \\ & \Pi_{50} = 13.5 \ m M^{141} \\ & \Pi_{50} = 13.5 \ m M^{141} \\ & \Pi_{50} = 20.6 \ \mu M^{150} \\ & \Pi_{50} = 20.6 \ \mu M^{150} \\ & \Pi_{50} = 20.6 \ \mu M^{150} \\ & \Pi_{50} = 2.9 \ \mu M^{150} \\ & \Pi_{50} = 3.1 \ \mu M^{150} \\ & \Pi_{50} = 3.1 \ \mu M^{150} \\ & \Pi_{50} = 3.1 \ \mu M^{150} \\ & \Pi_{50} = 9.8 \ \mu M^{150} \\ & \Pi_{50} = 9.9 \ \mu M^{150} \\ & \Pi_{50} = 1.1 \ \mu M^{15$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173) Andirolide Q (174) Andirolide S (680) Andirolide T (746) Andirolide U (916) Andirolide R (1452) 1 α ,11 β -dihydroxy-1,2-dihydrocedrelone (200) 1,2-dihydrodeacetylhirtin (204) 1 α -hydroxy-1,2-dihydrodeacetylhirtin (205)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60 SMMCF-7 SW480 HL-60 SM480 HL-60	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 22.0 \ m M^{141} \\ & IC_{50} = 15.4 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = >40 \ \mu M^{150} \\ & IC_{50} = >40 \ \mu M^{150} \\ & IC_{50} = 2.9 \ \mu M^{150} \\ & IC_{50} = 2.9 \ \mu M^{150} \\ & IC_{50} = 9.8 \ \mu M^{150} \\ & IC_{50} = 9.8 \ \mu M^{150} \\ & IC_{50} = 1.1 \ \mu M^{150} \\ & IC_{50} = 1.0 \ \mu M^{150} \\ & IC_{50} = 1.1 \ \mu M^{150} \\ & IC_{50} = 1.0 \ \mu$
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21- methoxylimocinin (173)Andirolide Q (174)Andirolide S (680)Andirolide T (746)Andirolide U (916)Andirolide V (1052)Andirolide R (1452)1 α ,11β-dihydroxy-1,2-dihydrocedrelone (200)1,2-dihydrodeacetylhirtin (204)1 α -hydroxy-1,2-dihydrodeacetylhirtin (205)	HL-60 A549 AZ521 SK-BR-3 P388 HL-60 SMMC-7721 A549 MCF-7 SW480 HL-60 SMMCF-7 SW480 HL-60 SM480 HL-60 MCF-7 SW480 HL-60	$\begin{split} & \Gamma_{50} = 10.9 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 23.2 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{140} \\ & IC_{50} = 33.8 \ \mu M^{141} \\ & IC_{50} = 58.4 \ m M^{141} \\ & IC_{50} = 1.4 \ m M^{141} \\ & IC_{50} = 1.3 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 12.9 \ m M^{141} \\ & IC_{50} = 21.0 \ m M^{141} \\ & IC_{50} = 13.5 \ m M^{141} \\ & IC_{50} = 20.6 \ \mu M^{150} \\ & IC_{50} = 240 \ \mu M^{150} \\ & IC_{50} = 2.40 \ \mu M^{150} \\ & IC_{50} = 2.9 \ \mu M^{150} \\ & IC_{50} = 2.9 \ \mu M^{150} \\ & IC_{50} = 2.9 \ \mu M^{150} \\ & IC_{50} = 3.1 \ \mu M^{150} \\ & IC_{50} = 3.1 \ \mu M^{150} \\ & IC_{50} = 1.0 \ \mu M^{150} \\ & IC_{50} = 1.1 \ \mu M^{150} \\ & IC_{50} = 1.0 \$

	A549	$IC_{50} = 18.6 \ \mu M^{150}$
	MCF-7	$IC_{50} = 39.6 \ \mu M^{150}$
	SW480	$IC_{50} = 33.3 \ \mu M^{150}$
1α -methoxy-1,2-dihydrodeacetylhirtin (207)	HL-60	$IC_{50} = 5.3 \ \mu M^{150}$
	SMMC-7721	$IC_{50} = 3.7 \mu M^{150}$
	A549	$IC_{50} = 5.2 \ \mu M^{150}$
	MCF-7	$IC_{50} = 10.2 \ \mu M^{150}$
	SW480	$IC_{50} = 15.9 \ \mu M^{150}$
11β-hydroxy-12 α –propanoyloxycedrelone (210)	HL-60	$IC_{50} = 14.8 \ \mu M^{150}$
	SMMC-7721	$IC_{50} = 5.3 \ \mu M^{150}$
	A549	$IC_{50} = 6.4 \ \mu M^{150}$
	MCF-7	$IC_{50} = 15.4 \ \mu M^{150}$
	SW480	$IC_{50} = 15.7 \ \mu M^{150}$
Munronin A (585)	HL-60	$IC_{50} = 0.44 \ \mu M^{161}$
	SMMC-7721	$IC_{50} = 2.3 \ \mu M^{161}$
	A549	$IC_{50} = 1.6 \mu M^{161}$
	MCF-7	$IC_{50} = 1.5 \ \mu M^{161}$
	SW480	$IC_{50} = 0.86 \ \mu M^{161}$
	HL-60	It showed 58.8% inhibition at 10 ⁻⁵ mol/L ¹⁶¹
12- dehydroneoazedarachin D (265)	HL-60	$IC_{50} = 11.8 \ \mu M^{180}$
	A549	$IC_{50} = >100 \ \mu M^{180}$
	AZ521	$IC_{50} = 11.8 \ \mu M^{180}$
	SK-BR-3	$IC_{50} = >100 \ \mu M^{180}$
12-dehydro- 29-exo-neoazedarachin D (266)	HL-60	$IC_{50} = 9.1 \ \mu M^{180}$
•	A549	$IC_{50} = >100 \ \mu M^{180}$
	AZ521	$IC_{50} = 18.8 \ \mu M^{180}$
	SK-BR-3	$IC_{50} = >100 \ \mu M^{180}$
1-O-decinnamoyl-1-O-Z-cinnamoylohchinin (448)	HL-60	$IC_{50} = 32.9 \ \mu M^{180}$
	A549	$IC_{50} = >100 \ \mu M^{180}$
	AZ521	$IC_{50} = >100 \ \mu M^{180}$
	SK-BR-3	$IC_{50} = >100 \ \mu M^{180}$
1-O-decinnamoyl-1-Obenzoylohchinin (449)	HL-60	$IC_{50} = 54.8 \ \mu M^{180}$
	A549	$IC_{50} = 82.3 \ \mu M^{180}$
	AZ521	$IC_{50} = 35.1 \ \mu M^{180}$
	SK-BR-3	$IC_{50} = 14.9 \ \mu M^{180}$
1-O-decinnamoyl-1-O-benzoyl- 28-oxoohchinin	HL-60	$IC_{50} = 22.7 \ \mu M^{180}$
(458)	A549	$IC_{50} = >100 \ \mu M^{180}$
	AZ521	$IC_{50} = 61.7 \ \mu M^{180}$
	SK-BR-3	$IC_{50} = >100 \ \mu M^{180}$
3-O-deacetyl-40-demethyl- 28-oxosalannin (459)	HL-60	$IC_{50} = 2.8 \ \mu M^{180}$
	A549	$IC_{50} = >100 \ \mu M^{180}$
	AZ521	$IC_{50} = 3.2 \ \mu M^{180}$
	SK-BR-3	$IC_{50} = >100 \ \mu M^{180}$
Ohchininolide (463)	HL-60	$IC_{50} = 31.7 \ \mu M^{180}$
	A549	$IC_{50} = >100 \ \mu M^{180}$
	AZ521	$IC_{50} = 82.9 \ \mu M^{180}$
	SK-BR-3	$IC_{50} = >100 \ \mu M^{180}$
1-O-decinnamoyl-1-O-benzoylohchininolide (464)	HL-60	$IC_{50} = 14.1 \ \mu M^{180}$
	A549	$IC_{50} = >100 \ \mu M^{180}$
	AZ521	$IC_{50} = 34.7 \ \mu M^{180}$
	SK-BR-3	$IC_{50} = 54.5 \ \mu M^{180}$
23-methoxyohchininolide A (465)	HL-60	$IC_{50} = 4.9 \ \mu M^{180}$
	A549	$IC_{50} = >100 \ \mu M^{180}$
	AZ521	$IC_{50} = >100 \ \mu M^{180}$
	SK-BR-3	$IC_{50} = >100 \ \mu M^{180}$
23-methoxyohchininolide B (466)	HL-60	$IC_{50} = 15.2 \ \mu M^{180}$
	A549	$IC_{50} = >100 \ \mu M^{180}$
	AZ521	$IC_{50} = 30.0 \ \mu M^{180}$
	SK-BR-3	$IC_{50} = >100 \ \mu M^{180}$
23-hydroxyohchininolide (467)	HL-60	$IC_{50} = 25.1 \ \mu M^{180}$
	A549	$IC_{50} = >100 \ \mu M^{180}$
	AZ521	$IC_{50} = 78.5 \ \mu M^{180}$
	SK-BR-3	$IC_{50} = >100 \ \mu M^{180}$
1-O-decinnamoyl- 1-O-benzoyl-23-	HL-60	$IC_{50} = 12.6 \ \mu M^{180}$
hydroxyohchininolide (468)	A549	$IC_{50} = 90.1 \ \mu M^{180}$
	AZ521	$IC_{50} = 55.7 \ \mu M^{180}$
	SK-BR-3	$IC_{50} = 4.3 \ \mu M^{180}$
---	--------------------	--
21-hydroxyisoohchininolide (473)	HL-60	$IC_{50} = 22.7 \ \mu M^{180}$
	A549	$IC_{50} = >100 \ \mu M^{180}$
	AZ521	$IC_{50} = >100 \ \mu M^{180}$
	SK-BR-3	$IC_{50} = 91.5 \ \mu M^{180}$
17-defurano-17-oxoohchinin (1454)	HL-60	$IC_{50} = 50.4 \ \mu M^{180}$
	A549	$IC_{50} = >100 \ \mu M^{180}$
	AZ521	$IC_{50} = >100 \ \mu M^{180}$
	SK-BR-3	$IC_{50} = >100 \ \mu M^{180}$
12α -hydroxymeliatoxin B ₂ (270)	K562	$IC_{50} = 25.14 \ \mu M^{181}$
	SGC-7901	$IC_{50} = 32.09 \ \mu M^{181}$
	BEL-7402	$IC_{50} = 38.62 \ \mu M^{181}$
Trichisinlin F (278)	K562	$IC_{50} = 27.38 \ \mu M^{181}$
	SGC-7901	$IC_{50} = 34.81 \ \mu M^{181}$
	BEL-7402	$IC_{50} = 20.58 \ \mu M^{101}$
Ceramicine I (298)	HL-60	$IC_{50} = 42.2 \ \mu M^{151}$
	A549	$IC_{50} = >50 \ \mu M^{171}$
	MCF-7	$IC_{50} = 44.0 \ \mu M^{1/4}$
	HCT116	$IC_{50} = >50 \mu M^{1/4}$
Ceramicine G (331)	HL-60	$IC_{50} = 26.1 \ \mu M^{3/2}$
	A549	$IC_{50} = 41.4 \ \mu M^{3/2}$
	MCF-/	$IC_{50} = 2/.3 \ \mu M^{22}$
W-1	HCIII6	$IC_{50} = >50 \mu\text{M}^{-12}$
waisuronoid D (303)	HL-00 SMMC 7721	$IC_{50} = 2.7 \ \mu \text{W}$
	A540	$IC_{50} = 5.1 \mu M^{194}$
	MCE 7	$IC_{50} = 4.1 \mu M^{194}$
	SW480	$IC_{50} = 5.1 \mu M^{1}$
Walsuronoid F (312)	HI -60	$IC_{50} = 2.6 \mu M^{1}$
Walsuronoid E (312)	SMMC-7721	$IC_{50} = 4.1 \text{ µM}^{194}$
	Δ549	$IC_{50} = 4.4 \mu M^{194}$
	MCF-7	$IC_{50} = 4.4 \mu \text{M}^{194}$
	SW480	$IC_{50} = 4.5 \text{ uM}^{194}$
Cipadesin K (548)	HL-60	$IC_{50} = 20.39 \ \mu M^{195}$
	SMMC-7721	$IC_{50} = 36.55 \ \mu M^{195}$
	A549	$IC_{50} = >40 \ \mu M^{195}$
	MCF-7	$IC_{50} = >40 \ \mu M^{195}$
	SW480	$IC_{50} = >40 \ \mu M^{195}$
Cipadesin N (773)	HL-60	$IC_{50} = 20.17 \ \mu M^{195}$
	SMMC-7721	$IC_{50} = >40 \ \mu M^{195}$
	A549	$IC_{50} = >40 \ \mu M^{195}$
	MCF-7	$IC_{50} = >40 \ \mu M^{195}$
	SW480	$IC_{50} = >40 \ \mu M^{155}$
Ceramicine J (311)	HL-60	At 50 μ M 36 % inhibition ¹⁹⁰
Ceramicine L (1412)	HL-60	At 50 μ M 25 % inhibition ^{1/6}
Ceramicine K (1440)	HL-60	At 50 μ M 33 % inhibition 33
Teopositemine L (329)	MCF-/	$IC_{50} = 16.4 \mu\text{M}$
Toonasinenine J (334)	A349	$1C_{50} = > 30 \mu\text{M}^{-1}$
	BUC-825	$IC_{50} = 22.7 \ \mu M$
	UCT 15	$IC_{50} = -40.7 \text{ mM}^{206}$
	Hel a	$1C_{50} - 49.7 \mu \text{M}$
	HenG?	$IC_{50} = 46.7 \text{ µM}^{206}$
	MDA-MB-231	$IC_{50} = > 50 \ \mu M^{206}$
	SGC-7901	$IC_{50} = > 50 \ \mu M^{206}$
	SHG-44	$IC_{50} = 31.4 \mu M^{206}$
Toonasinenine E (383)	A549	$IC_{50} = 20.4 \ \mu M^{206}$
	BGC-823	$IC_{50} = > 50 \ \mu M^{206}$
	CHG-5	$IC_{50} = 19.9 \ \mu M^{206}$
	HCT-15	$IC_{50} = 21.5 \ \mu M^{206}$
	HeLa	$IC_{50} = 23.6 \ \mu M^{206}$
	HepG2	$IC_{50} = 23.4 \ \mu M^{206}$
	MDA-MB-231	$IC_{50} = 21.0 \ \mu M^{206}$
	SGC-7901	$IC_{50} = 21.1 \ \mu M^{206}$
	SHG-44	$IC_{50} = > 50 \ \mu M^{206}$
Toonasinenine G (388)	A549	$IC_{50} = 18.4 \ \mu M^{206}$

	BGC-823	$IC_{50} = > 50 \ \mu M^{206}$
	CHG-5	$IC_{50} = 19.5 \ \mu M^{206}$
	HCT-15	$IC_{50} = 18.4 \ \mu M^{206}$
	HeLa	$IC_{50} = 21.6 \ \mu M^{206}$
	HepG2	$IC_{50} = 21.7 \ \mu M^{206}$
	MDA-MB-231	$IC_{50} = 20.8 \ \mu M^{206}$
	SGC-7901	$IC_{50} = 19.9 \ \mu M^{206}$
	SHG-44	$IC_{50} = > 50 \ \mu M^{200}$
Toonasinenine B (397)	A549	$IC_{50} = 5.7 \ \mu M^{200}$
	BGC-823	$IC_{50} = 33.7 \mu M^{200}$
	CHG-5	$IC_{50} = 5.0 \ \mu M^{200}$
	HCT-15	$IC_{50} = 5.7 \ \mu M^{200}$
	HeLa	$1C_{50} = 6.2 \ \mu M^{200}$
	HepG2	$1C_{50} = 5.5 \mu\text{M}^{206}$
	MDA-MB-231	$IC_{50} = 6.0 \ \mu M$
	SGC-7901	$1C_{50} = 6.0 \mu\text{M}$
Territoria A (104)	SHG-44	$1C_{50} = > 50 \ \mu M$
roonasinenine A (400)	A349 DCC 922	$1C_{50} - 15.5 \mu W$
	DUC-825	$1C_{50} - 250 \mu\text{W}$
	ИСТ 15	$IC_{50} = 14.0 \ \mu M$
	Hel a	$IC_{50} = 14.7 \mu\text{M}$ $IC_{-} = 14.0 \mu\text{M}^{206}$
	HenG2	$IC_{50} = 14.0 \mu\text{M}$ $IC_{$
	MDA MB 231	$IC_{50} = 13.9 \mu W$
	SGC-7901	$IC_{50} = 13.1 \text{ µM}^{206}$
	SHG-44	$IC_{50} = > 50 \ \mu M^{206}$
Toonasinenine C (407)	A549	$IC_{50} = 9.7 \mu M^{206}$
	BGC-823	$IC_{50} = > 50 \ \mu M^{206}$
	CHG-5	$IC_{50} = 8.3 \ \mu M^{206}$
	HCT-15	$IC_{50} = 10.1 \ \mu M^{206}$
	HeLa	$IC_{50} = 8.1 \ \mu M^{206}$
	HepG2	$IC_{50} = 9.1 \ \mu M^{206}$
	MDA-MB-231	$IC_{50} = 9.4 \ \mu M^{206}$
	SGC-7901	$IC_{50} = 9.4 \ \mu M^{206}$
	SHG-44	$IC_{50} = > 50 \ \mu M^{206}$
Toonasinenine F (411)	A549	$IC_{50} = 23.3 \ \mu M^{206}$
	BGC-823	$IC_{50} = > 50 \ \mu M^{206}$
	CHG-5	$IC_{50} = 23.9 \ \mu M^{200}$
	HCT-15	$IC_{50} = 24.6 \mu M^{200}$
	HeLa	$IC_{50} = 24.7 \ \mu M^{200}$
	HepG2	$IC_{50} = 24.0 \ \mu M^{200}$
	MDA-MB-231	$1C_{50} = 22.4 \ \mu M^{-3.5}$
	SGC-7901	$IC_{50} = 24.2 \mu\text{M}$
Teonorinanina II (417)	SHG-44	$1C_{50} = > 50 \ \mu \text{M}^{206}$
roonasinenine H (417)	A349 PCC 822	$1C_{50} - 54.8 \mu\text{M}$
	CHG-5	$IC_{50} = 31.2 \text{ µM}^{206}$
	НСТ-15	$IC_{50} = 33.2 \ \mu M^{206}$
	HeI a	$IC_{50} = 31.4 \ \mu M^{206}$
	HenG2	$IC_{50} = 31.6 \mu M^{206}$
	MDA-MB-231	$IC_{50} = 33.2 \ \mu M^{206}$
	SGC-7901	$IC_{50} = 33.6 \mu M^{206}$
	SHG-44	$IC_{50} = > 50 \ \mu M^{206}$
Toonasinenine I (632)	A549	$IC_{50} = 44.3 \ \mu M^{206}$
	BGC-823	$IC_{50} = 18.6 \ \mu M^{206}$
	CHG-5	$IC_{50} = > 50 \ \mu M^{206}$
	HCT-15	$IC_{50} = > 50 \ \mu M^{206}$
	HeLa	$IC_{50} = > 50 \ \mu M^{206}$
	HepG2	$IC_{50} = 43.2 \ \mu M^{206}$
	MDA-MB-231	$IC_{50} = > 50 \ \mu M^{206}$
	SGC-7901	$IC_{50} = 39.1 \ \mu M^{206}$
	SHG-44	$IC_{50} = 28.0 \ \mu M^{206}$
Toonasinenine D (1429)	A549	$IC_{50} = 2.3 \ \mu M^{206}$
	BGC-823	$IC_{50} = 27.9 \ \mu M^{200}$
	CHG-5	$IC_{50} = 2.8 \ \mu M^{200}$
	HCT-15	$IC_{50} = 2.6 \ \mu M^{206}$

	HeLa	$IC_{50} = 2.9 \ \mu M^{206}$
	HepG2	$IC_{50} = 3.0 \ \mu M^{206}$
	MDA-MB-231	$IC_{50} = 2.7 \ \mu M^{206}$
	SGC-7901	$IC_{50} = 2.1 \ \mu M^{206}$
	SHG-44	$IC_{50} = 44.9 \ \mu M^{206}$
Toonacilianin F (390)	A549	$IC_{50} = 5.75 \ \mu M^{219}$
	HL-60	$IC_{50} = 0.91 \ \mu M^{219}$
Toonaciliatone C (1433)	HepG2	$IC_{50} = 5.22 \ \mu M^{221}$
	MCF-/	$IC_{50} = 5.20 \mu\text{M}^{-21}$
Cilistonoid C (1421)	ПL-00 Ш. 60	$IC_{50} = 5.38 \mu\text{M}$
	D388	$IC_{50} = 1.19 \mu\text{M}$ $IC_{$
3 descetul 1' demethyleslannin (116)	F 500	$IC_{50} = 2.50 \ \mu M$
5-deacety1-4 -demetriyisalalilin (440)	A 549	$IC_{50} = >.00 \mu M^{233}$
	AZ521	$IC_{50} = 47.5 \ \mu M^{233}$
	SK-BR-3	$IC_{50} = > 100 \mu M^{233}$
3-deacetyl-28-oxosalannin (457)	HL-60	$IC_{50} = 39.1 \ \mu M^{233}$
	A549	$IC_{50} = > 100 \ \mu M^{233}$
	AZ521	$IC_{50} = > 100 \ \mu M^{233}$
	SK-BR-3	$IC_{50} = > 100 \ \mu M^{233}$
1-detigloylohchinolal (508)	HL-60	$IC_{50} = 5.0 \ \mu M^{233}$
	A549	$IC_{50} = 25.7 \ \mu M^{233}$
	AZ521	$IC_{50} = 7.3 \ \mu M^{233}$
	SK-BR-3	$IC_{50} = 76.5 \ \mu M^{233}$
17-defurano-17-(5x-2,5-dihydro-5-hydroxy-2-	HL-60	$IC_{50} = 41.6 \ \mu M^{236}$
oxofuran-3-yl)-2',3'-dehydrosalannol (462)	A549	$IC_{50} = >100 \ \mu M^{236}$
	AZ521	$IC_{50} = >100 \ \mu M^{236}$
	SK-BR-3	$IC_{50} = >100 \ \mu M^{236}$
17-defurano-17-(2x-2,5-dihydro-2- hydroxy-5-	HL-60	$IC_{50} = 2.1 \mu M^{230}$
oxofuran-3-yl)-28-deoxonimbolide (469)	A549	$IC_{50} = 37.8 \ \mu M^{230}$
	AZ521	$IC_{50} = 9.9 \ \mu M^{2.30}$
	SK-BR-3	$IC_{50} = 24.9 \ \mu M^{230}$
1/- deturano-1/-(2,5-dihydro-2-oxofuran-3-yl)-28-	HL-60	$IC_{50} = 18.5 \ \mu M^{230}$
deoxonimbolide (4/1)	A549	$IC_{50} = >100 \ \mu M^{-30}$
	AZJZI SV DD 2	$IC_{50} = 72.2 \ \mu M$
12-ethoyynimbolinin G (487)	SMMC-7721	$IC_{50} = 85.4 \mu W$
12-etiloxyiiiiilooniinii (1 (487)	MCF-7	$IC_{50} = 27.0 \ \mu g/mL$
12-ethoxynimbolinin E (489)	HL-60	$IC_{50} = 21.5 \ \mu M^{246}$
	SMMC-7721	$IC_{50} = >40 \ \mu M^{246}$
	A549	$IC_{50} = 26.4 \ \mu M^{246}$
	MCF-7	$IC_{50} = 25.2 \ \mu M^{246}$
	SW480	$IC_{50} = 31.8 \ \mu M^{246}$
Walsogyne B (517)	HL-60	$IC_{50} = 27.7 \ \mu M^{252}$
	HepG2	$IC_{50} = >50 \ \mu M^{252}$
	A549	$IC_{50} = >50 \ \mu M^{252}$
	MCF-7	$IC_{50} = >50 \ \mu M^{252}$
Walsogyne C (518)	HL-60	$IC_{50} = 7.7 \ \mu M^{252}$
	HepG2	$IC_{50} = 37.7 \ \mu M^{252}$
	A549	$IC_{50} = 29.9 \ \mu M^{232}$
	MCF-7	$IC_{50} = >50 \ \mu M^{252}$
Walsogyne D (519)	HL-60	$IC_{50} = >50 \ \mu M^{252}$
	HepG2	$IC_{50} = 21.7 \mu\text{M}^{-1}$
	A549 MCE 7	$IC_{50} = >50 \ \mu M$
Walsoguna G (522)	MCF-7 HL 60	$IC_{50} = 42.4 \mu\text{M}$ $IC_{$
waisogyne ((522)	HepG2	$IC_{50} = 7.6 \mu\text{M}^{252}$
	A549	$IC_{50} = >50 \text{ µM}^{252}$
	MCF-7	$IC_{50} = 18.2 \mu M^{252}$
Andirolide A (524)	P388	$IC_{50} = 3.3 \text{ mM}^{255}$
	HL-60	$IC_{50} = 19.4 \text{ mM}^{255}$
	L1210	$IC_{50} = 16.7 \text{mM}^{255}$
	KB	$IC_{50} = 11.4 \text{ mM}^{255}$
Andirolide D (749)	P388	$IC_{50} = >100 \text{ mM}^{255}$

	HL-60	$IC_{50} = 79.9 \text{ mM}^{255}$
	L1210	$IC_{50} = >100 \text{ mM}^{255}$
	KB	$IC_{50} = >100 \text{ mM}^{255}$
Andirolide F (1058)	P388	$IC_{50} = 14.4 \text{ mM}^{255}$
	HL-60	$IC_{50} = 16.1 \text{ mM}^{255}$
	L1210	$IC_{50} = 27.0 \text{ mM}^{255}$
	KB	$IC_{50} = 29.3 \text{ mM}^{255}$
Andirolide G (1158)	P388	$IC_{50} = 50.6 \text{ mM}^{255}$
	HI -60	$IC_{50} = >0.0 \text{ mM}^{255}$
	L 1210	$IC_{50} = >100 \text{ mM}^{255}$
	KB	$IC_{50} = 5100 \text{ mW}^2$
Andirolido H (525)	EM2 A	$EC = 7.7 \times 10^{-6} \text{ mol/J}^{-256}$
Andirolide N (977)	FM3A FM2A	$EC_{50} = 7.7 \times 10^{-6} \text{ mol/L}$
Andronde IV (877)	L 5179V	$LC_{50} = 9.7 \times 10^{-10} \text{ mol/L}$
Terresine II (530)	LJ1/81	$1C_{50} = 0.02 \ \mu g/mL$
1 oonasinemine H (539)	HepG2	$1C_{50} = >50 \ \mu M$
	MCF-/	$1C_{50} = >50 \mu\text{M}$
	0208	$1C_{50} = 15.44 \mu\text{M}^{261}$
Toonasinemine A (1487)	HepG2	$IC_{50} = 40.6 / \mu M^{203}$
	MCF-7	$IC_{50} = >50 \ \mu M^{201}$
	U2OS	$IC_{50} = >50 \ \mu M^{201}$
Toonasinemine D / Toonasin A (1488)	HepG2	$IC_{50} = 11.63 \ \mu M^{201}$
	MCF-7	$IC_{50} = 36.77 \ \mu M^{261}$
	U2OS	$IC_{50} = >50 \ \mu M^{201}$
Aphanamolide B (563)	A549	$IC_{50} = 60.4 \ \mu M^{2/0}$
	HL-60	$IC_{50} = 20.6 \ \mu M^{270}$
Aphanamolide A (588)	A549	$IC_{50} = 88.1 \ \mu M^{270}$
	HL-60	$IC_{50} = 191.0 \ \mu M^{270}$
Aphapolynin A (581)	BEL-7402	$IC_{50} = 23.7 \ \mu M^{272}$
	SGC-7901	$IC_{50} = >50 \ \mu M^{272}$
	BGC-823	$IC_{50} = 25.6 \ \mu M^{272}$
	HepG2	$IC_{50} = >50 \ \mu M^{272}$
	HeLa	$IC_{50} = >50 \ \mu M^{272}$
	MCF-7	$IC_{50} = >50 \ \mu M^{272}$
Aphanamolide D (582)	MCF-7	$IC_{50} = >100 \ \mu M^{279}$
	A549	$IC_{50} = 32.3 \ \mu M^{279}$
	SMMC-7721	$IC_{50} = 16.5 \ \mu M^{279}$
	HL-60	$IC_{50} = 10.2 \ \mu M^{279}$
Aphanamolide C (590)	MCF-7	$IC_{50} = >100 \ \mu M^{279}$
	A549	$IC_{50} = >100 \ \mu M^{279}$
	SMMC-7721	$IC_{50} = >100 \ \mu M^{279}$
	HL-60	$IC_{50} = 55.3 \ \mu M^{279}$
Cipaferen E (682)	A549	$IC_{50} = 16.21 \text{ µg/mL}^{300}$
	MCF-7	$IC_{50} = 19.95 \mu g/mL^{300}$
	ME-180	$IC_{r_0} = 15.30 \text{ µg/mL}^{300}$
	HT-29	$IC_{50} = 28.84 \text{ µg/mL}^{300}$
	B-16	$IC_{50} = 10.47 \text{ µg/mL}^{300}$
	ACHN	$IC_{50} = 24.56 \mu g/mL^{300}$
Cinaferen E (683)	Δ 5/19	$IC_{50} = 18.62 \mu g/mL^{300}$
cipateren i (003)	MCE 7	$IC_{50} = 15.84 \mu g/mL^{-300}$
	MC1-7 ME 190	$IC_{50} = 15.84 \mu g/mL$
	ME-160	$IC_{50} = 42.65 \text{ µg/mL}^{-300}$
	П1-29 D 16	$IC_{50} = 43.03 \ \mu g/mL$
	D-10	$IC_{50} = 14.43 \ \mu g/mL$
	ACHN	$1C_{50} = 30.79 \mu\text{g/mL}^{-1}$
Cipateren G (684)	A549	$IC_{50} = 16.21 \mu g/mL^{-1}$
	MCF-/	$IC_{50} = 12.58 \ \mu g/mL^{-50}$
	ME-180	$IC_{50} = 13.03 \mu\text{g/mL}^{300}$
	HT-29	$IC_{50} = 14.69 \mu g/mL^{300}$
	B-16	$IC_{50} = 10.71 \ \mu g/mL^{300}$
	ACHN	$IC_{50} = 16.11 \ \mu g/mL^{300}$
Cipateren I (687)	A549	$IC_{50} = 12.02 \ \mu g/mL^{300}$
	MCF-7	$IC_{50} = 17.15 \ \mu g/mL^{300}$
	ME-180	$IC_{50} = 18.19 \ \mu g/mL^{300}$
	HT-29	$IC_{50} = 21.50 \ \mu g/mL^{300}$
	B-16	$IC_{50} = 15.24 \ \mu g/mL^{300}$
	ACHN	$IC_{50} = 14.58 \ \mu g/mL^{300}$

Cipaferen J (688)	A549	$IC_{50} = 37.15 \ \mu g/mL^{300}$
	MCF-7	$IC_{50} = 26.08 \ \mu g/mL^{300}$
	ME-180	$IC_{50} = 39.81 \ \mu g/mL^{300}$
	HT-29	$IC_{50} = 41.92 \ \mu g/mL^{300}$
	B-16	$IC_{50} = 56.78 (>50) \mu g/m L^{300}$
	ACHN	$IC_{50} = 28.38 \ \mu g/mL^{300}$
Cipaferen H (694)	A549	$IC_{50} = 23.96 \ \mu g/mL^{300}$
• · · ·	MCF-7	$IC_{50} = 17.88 \ \mu g/mL^{300}$
	ME-180	$IC_{50} = 16.59 \ \mu g/mL^{300}$
	HT-29	$IC_{50} = 14.45 \ \mu g/mL^{300}$
	B-16	$IC_{50} = 8.51 \ \mu g/mL^{300}$
	ACHN	$IC_{50} = 14.03 \ \mu g/mL^{300}$
Cipaferen M (886)	A549	$IC_{50} = 24.10 \ \mu g/mL^{300}$
· · ·	MCF-7	$IC_{50} = 30.5 \ \mu g/mL^{300}$
	ME-180	$IC_{50} = 39.81 \ \mu g/mL^{300}$
	HT-29	$IC_{50} = 85.11 \ \mu g/mL^{300}$
	B-16	$IC_{50} = 51.40 \ \mu g/mL^{300}$
	ACHN	$IC_{50} = 21.37 \ \mu g/mL^{300}$
Cipaferen K (901)	A549	$IC_{50} = 75.85 \ \mu g/mL^{300}$
	MCF-7	$IC_{50} = 12.58 \ \mu g/mL^{300}$
	ME-180	$IC_{50} = 15.71 \ \mu g/mL^{300}$
	HT-29	$IC_{50} = 16.59 \ \mu g/mL^{300}$
	B-16	$IC_{50} = 12.02 \ \mu g/mL^{300}$
	ACHN	$IC_{50} = 60.25 \ \mu g/mL^{300}$
Cipaferen L (902)	A549	$IC_{50} = 31.06 \ \mu g/mL^{300}$
	MCF-7	$IC_{50} = 12.58 \ \mu g/mL^{300}$
	ME-180	$IC_{50} = 14.18 \ \mu g/mL^{300}$
	HT-29	$IC_{50} = 28.90 \ \mu g/mL^{300}$
	B-16	$IC_{50} = 16.21 \ \mu g/mL^{300}$
	ACHN	$IC_{50} = 25.11 \ \mu g/mL^{300}$
Koetjapin A (715)	P388	$IC_{50} = 46.8 \ \mu g/mL^{306}$
Koetjapin B (716)	P388	$IC_{50} = 52.0 \ \mu g/mL^{306}$
Koetjapin C (717)	P388	$IC_{50} = 59.2 \ \mu g/mL^{306}$
Koetjapin D (718)	P388	$IC_{50} = 16.8 \ \mu g/mL^{306}$
Carapanolide C (743)	P388	$IC_{50} = 17.9 \ \mu M^{325}$
	HL-60	$IC_{50} = 52.3 \ \mu M^{325}$
	L1210	$IC_{50} = 13.3 \ \mu M^{325}$
Carapanolide D (744)	P388	$IC_{50} = 27.1 \ \mu M^{325}$
	HL-60	$IC_{50} = 11.0 \ \mu M^{325}$
	L1210	$IC_{50} = >100 \ \mu M^{325}$
Carapanolide E (745)	P388	$IC_{50} = 15.8 \ \mu M^{325}$
	HL-60	$IC_{50} = 45.0 \ \mu M^{325}$
	L1210	$IC_{50} = 18.1 \ \mu M^{325}$
Carapanolide F (929)	P388	$IC_{50} = >100 \ \mu M^{325}$
	HL-60	$IC_{50} = 63.7 \ \mu M^{325}$
	L1210	$IC_{50} = 15.9 \ \mu M^{325}$
Carapanolide G (930)	P388	$IC_{50} = 81.2 \ \mu M^{325}$
	HL-60	$IC_{50} = 39.7 \ \mu M^{325}$
	L1210	$IC_{50} = 14.2 \ \mu M^{325}$
Carapanolide I (1011)	P388	$IC_{50} = 22.2 \ \mu M^{325}$
	HL-60	$IC_{50} = 21.2 \ \mu M^{325}$
	L1210	$IC_{50} = 16.9 \ \mu M^{325}$
Carapanolide H (1149)	P388	$IC_{50} = 89.8 \ \mu M^{325}$
	HL-60	$IC_{50} = 90.8 \ \mu M^{325}$
	L1210	$IC_{50} = 24.3 \ \mu M^{325}$
Cipadessain F (905)	HepG2	$IC_{50} = 8.67 \ \mu M^{335}$
Cipadessain C (912)	HepG2	$IC_{50} = 5.23 \ \mu M^{333}$
Heytrijunolide C (789)	HL-60	$IC_{50} = 21.88 \ \mu M^{336}$
	SMMC-7721	$IC_{50} = 20.66 \ \mu M^{336}$
	A549	$IC_{50} = 12.70 \ \mu M^{330}$
Thaixylogranin E (817)	HCT-8/T	$IC_{50} = 36.4 \ \mu M^{34.3}$
	MDA-MB-231	$IC_{50} = 57.9 \ \mu M^{343}$
Thaixylogranin F (818)		
	MDA-MB-231	$IC_{50} = 44.6 \ \mu M^{3+3}$
Thaixylogranin G (831)	MDA-MB-231 MDA-MB-231	$\frac{IC_{50} = 44.6 \ \mu M^{-43}}{IC_{50} = 40.6 \ \mu M^{\frac{343}{3}}}$
Thaixylogranin G (831) Thaixylogranin H (832)	MDA-MB-231 MDA-MB-231 MDA-MB-231	$\frac{IC_{50} = 44.6 \ \mu M^{343}}{IC_{50} = 40.6 \ \mu M^{343}}$ $IC_{50} = 38.5 \ \mu M^{343}$

Thaixylogranin B (841)	MDA-MB-231	$IC_{50} = 58.3 \ \mu M^{343}$
Thaixylogranin C (854)	A375	$IC_{50} = 47.1 \ \mu M^{343}$
	AGS	$IC_{50} = 41.7 \ \mu M^{343}$
	MDA-MB-231	$IC_{50} = 53.6 \ \mu M^{343}$
Thaixylogranin D (954)	A375	$IC_{50} = 41.9 \ \mu M^{343}$
	AGS	$IC_{50} = 35.0 \ \mu M^{343}$
	MDA-MB-231	$IC_{50} = 61.1 \ \mu M^{343}$
Swielimonoid B (849)	Huh-7	$CC_{50} = >200 \ \mu M^{345}$
3-O- methylbutyrylseneganolide A (828)	HL-60	$IC_{50} = >40 \ \mu M^{346}$
	SMMC-7721	$IC_{50} = >40 \ \mu M^{346}$
	A549	$IC_{50} = 37.3 \ \mu M^{346}$
	MCF-7	$IC_{50} = >40 \ \mu M^{346}$
	SW480	$IC_{50} = >40 \ \mu M^{346}$
Trichagmalin D (1203)	HL-60	$IC_{50} = 17.05 \ \mu M^{351}$
15-Acetyltrichagmalin E (1205)	HL-60	$IC_{50} = 21.01 \ \mu M^{351}$
Xylogranin B (1150)	DLD-1	$IC_{50} = 3.75 \ \mu M^{364}$
	HCT116	$IC_{50} = 0.05 \ \mu M^{364}$
	SW480	$IC_{50} = 0.26 \ \mu M^{364}$
	STF293(HEK)	$IC_{50} = 5.58 \ \mu M^{364}$
Xylomexicanin C (990)	KT	$IC_{50} = 4.60 \ \mu M^{365}$
Xylomexicanin F (998)	A549	$IC_{50} = 18.83 \ \mu M^{370}$
	RERF	$IC_{50} = 15.83 \ \mu M^{370}$
Thaixylomolin P (1136)	A2780	$IC_{50} = 37.5 \ \mu M^{374}$
	A2780/T	$IC_{50} = 37.5 \ \mu M^{374}$
Carapanolide A (1003)	L1210	$IC_{50} = 8.7 \ \mu M^{375}$
Guianolide A (1118)	P388	$IC_{50} = 33.7 \ \mu M^{398}$
Chukfuransin A (1122)	HL-60	$IC_{50} = 13.81 \ \mu M^{399}$
	SMMC-7721	$IC_{50} = 11.72 \ \mu M^{399}$
	A549	$IC_{50} = 39.09 \ \mu M^{399}$
	MCF-7	$IC_{50} = 16.54 \ \mu M^{399}$
	SW480	$IC_{50} = 16.25 \ \mu M^{399}$
Heytrijumalin B (1194)	HL-60	$IC_{50} = 23.08 \ \mu M^{413}$
	SMMC-7721	$IC_{50} = 25.69 \ \mu M^{413}$
	A549	$IC_{50} = 14.55 \ \mu M^{413}$
	MCF-7	$IC_{50} = >40 \ \mu M^{413}$
	SW480	$IC_{50} = >40 \ \mu M^{413}$
Trisinenmalin A (1209)	K562	$IC_{50} = 15.75 \ \mu M^{414}$
	SGC-7901	$IC_{50} = 15.54 \ \mu M^{414}$
	BEL-7402	$IC_{50} = 10.63 \ \mu M^{414}$
Trisinenmalin B (1210)	K562	$IC_{50} = >40 \ \mu M^{414}$
	SGC-7901	$IC_{50} = >40 \ \mu M^{414}$
	BEL-7402	$IC_{50} = 38.57 \ \mu M^{414}$
Trisinenmalin C (1211)	K562	$IC_{50} = 24.81 \ \mu M^{414}$
	SGC-7901	$IC_{50} = 14.56 \ \mu M^{414}$
	BEL-7402	$IC_{50} = 11.87 \ \mu M^{414}$
Trisinenmalin E (1212)	K562	$IC_{50} = >40 \ \mu M^{414}$
	SGC-7901	$IC_{50} = 27.99 \ \mu M^{414}$
	BEL-7402	$IC_{50} = 36.11 \ \mu M^{414}$
Trisinenmalin F (1213)	K562	$IC_{50} = >40 \ \mu M^{414}$
	SGC-7901	$IC_{50} = >40 \ \mu M^{414}$
	BEL-7402	$IC_{50} = 37.30 \ \mu M^{414}$
Trisinenmalin G (1214)	K562	$IC_{50} = 26.77 \ \mu M^{414}$
	SGC-7901	$IC_{50} = 15.22 \ \mu M^{414}$
	BEL-7402	$IC_{50} = 11.72 \ \mu M^{414}$
Trisinenmalin H (1215)	K562	$IC_{50} = >40 \ \mu M^{-1}$
	SGC-7901	$IC_{50} = >40 \ \mu M^{-1}$
	BEL-7402	$IC_{50} = 27.14 \ \mu M^{414}$
Trisinenmalin I (1216)	K562	$IC_{50} = 27.65 \ \mu M^{414}$
	SGC-7901	$IC_{50} = 17.15 \ \mu M^{414}$
	BEL-7402	$IC_{50} = 19.15 \ \mu M^{414}$
Cipatrijugin E (1348)	MCF-7	$IC_{50} = 5.0 \ \mu M^{4.00}$
	SW480	$IC_{50} = 6.6 \mu M^{4.50}$
	HL-60	$IC_{50} = 4.5 \ \mu M^{430}$
	SMMC-7721	$IC_{50} = 21.6 \mu M^{450}$
	A549	$IC_{50} = >40 \ \mu M^{430}$
Cipatrijugin G (1365)	A549	$IC_{50} = 9.78 \ \mu M^{438}$

Cipaferen C (1387)	KBS	$IC_{50} = 51.5 \ \mu M^{443}$
-	A549	$IC_{50} = 47.4 \ \mu M^{443}$
	MCF-7	$IC_{50} = 23.7 \ \mu M^{443}$
	IMR-32	$IC_{50} = 64.1 \ \mu M^{443}$
	HeLa	$IC_{50} = 44.7 \ \mu M^{443}$
Cipaferen A (1388)	KBS	$IC_{50} = 31.2 \ \mu M^{443}$
	A549	$IC_{50} = 24.9 \ \mu M^{443}$
	MCF-7	$IC_{50} = 12.5 \ \mu M^{443}$
	IMR-32	$IC_{50} = 19.0 \ \mu M^{443}$
	HeLa	$IC_{50} = 25.9 \ \mu M^{443}$
Cipaferen B (1389)	KBS	$IC_{50} = 71.2 \ \mu M^{443}$
	A549	$IC_{50} = 50.5 \ \mu M^{443}$
	MCF-7	$IC_{50} = 25.2 \ \mu M^{443}$
	IMR-32	$IC_{50} = 39.0 \ \mu M^{443}$
	HeLa	$IC_{50} = 51.0 \ \mu M^{443}$
Cipaferen D (1390)	KBS	$IC_{50} = 46.7 \ \mu M^{443}$
	A549	$IC_{50} = 38.9 \ \mu M^{443}$
	MCF-7	$IC_{50} = 19.5 \ \mu M^{443}$
	IMR-32	$IC_{50} = 67.1 \ \mu M^{443}$
	HeLa	$IC_{50} = 40.5 \ \mu M^{443}$
Senegalension A (1404)	HL-60	$IC_{50} = 40.0 \ \mu M^{449}$
	A549	$IC_{50} = 39.7 \ \mu M^{449}$
	MCF-7	$IC_{50} = 16.1 \ \mu M^{449}$
	SW480	$IC_{50} = 19.0 \ \mu M^{449}$
Azadiramide A (1460)	MDA-MB-231	$IC_{50} = 2.70 \ \mu mol/L^{4/1}$
Toonasin C/ Toonasinemine F (1491)	HL-60	$IC_{50} = 18.61 \ \mu M^{4/3}$
	SMMC-7721	$IC_{50} = 19.55 \ \mu M^{4/3}$
	A549	$IC_{50} = 15.07 \ \mu M^{4/3}$
	MCF-7	$IC_{50} = 17.79 \mu M^{4/3}$
	SW480	$IC_{50} = 12.47 \mu M^{4/3}$
Meliazedarine G (453)	HCT116	$IC_{50} = 0.3 \ \mu M^{103}$
Angustifolianin (377)	MCF-7	$IC_{50} = 50.5 \ \mu g/mL^{214}$
1-(E)-3,4-dimethylpent-2-enal-11-methoxycarb- onyl	HL-60	$IC_{50} = 25.1 \ \mu M^{1+5}$
nimbidinol acetate (455)	A549	$IC_{50} = 27.7 \ \mu M^{148}$
	AZ521	$IC_{50} = >100 \ \mu M^{148}$
(5D (D 70 120 17D) (1 1 7 (1 1)	SK-BR-3	$IC_{50} = >100 \ \mu M^{1.6}$
(5R,6R,/S,13S,1/R)-6-hydroxy-7-(benzoyloxy)-	HL-60	$IC_{50} = 3.6 \mu M^{140}$
21,25-epoxy- 4,4,8-trimetnyi-24-norchola-	A549	$IC_{50} = 5.7 \ \mu M^{1.6}$
1,14,20,22-tetraene-5-one (180)	AZ521	$IC_{50} = 3.1 \mu\text{M}^{-1}$
2 0 deticlered 2 0 is charter alfolic if a in A (014)	SK-BR-3	$IC_{50} = 8.9 \ \mu M$
5-O-deligioyi-5-O-isobutyryiledrilugin A (914)	HL-00	$IC_{50} = 22.04 \mu\text{M}^{358}$
	SIMINIC-7721	$IC_{50} = >40 \ \mu M$
	AJ49 MCE 7	$IC_{50} = >40 \ \mu M$
	SW480	$IC_{50} = 20.24 \text{ mM}^{358}$
2 O detigloul 2 O isobuturulgronatumin E (880)	SW460	$IC_{50} = 50.34 \mu\text{M}$
5-O-deligioyi-5-O-isobutyiyigianatunini E (667)	SMMC 7721	$IC_{50} = >40 \ \mu M^{358}$
	Δ 549	$IC_{50} = >40 \ \mu M^{358}$
	MCE-7	$IC_{50} = >40 \ \mu M^{358}$
	SW480	$IC_{50} = >40 \ \mu M^{358}$
21-O-methylgranatumin E (892)	HL-60	$IC_{50} = >40 \ \mu M^{358}$
	SMMC-7721	$IC_{50} = >40 \ \mu M^{358}$
	A 549	$IC_{50} = >40 \ \mu M^{358}$
	MCE-7	$IC_{50} = >40 \ \mu M^{358}$
	SW480	$IC_{50} = >40 \ \mu M^{358}$
Pentandricine B (187)	MCF-7	$IC_{50} = 212.02 \text{ µM}^{149}$
Pentandricine C (188)	MCF-7	$IC_{50} = 122.02 \mu M^{149}$
Pentandricine D (189)	MCF-7	$IC_{so} = 313.92 \mu M^{149}$
Toosendansin E (444)	U2OS	At 50 µM, showed cytotoxicity with inhibition rate of 42.8 % ¹⁹⁷
	MCF-7	MDR reversal fold change is 11/1 times ¹⁹⁷
Toosendansin H (315)		At 50 μ M showed cytotoxicity with inhibition rate of 81 1 0/197
	MCF-7	MDR reversal fold change is >500 times ¹⁹⁷
Entanutilin () (1142)	MCF-7/DOX	MDR reversal fold change value of 18 18 ¹⁰⁷
Entanutilin U (117)	MCF-7/DOX	MDR reversal fold change value of 7 94 ¹⁰⁷
Trichilinin M (250)	PANC-1	$IC_{ro} = 27.06 \mu M^{166}$
Meliazedarine E/Obchinin banzoata (151)	PANC-1	$IC_{50} = 21.00 \ \mu M$
menazedarine L/Onemini Delizoate (431)	I AINC-I	$10_{50} - 21.17$ µm

Limonoid	Cells
Toonaciliatavarin C, B, A, F, G, H (129, 116, 118, 167, 168, 422)	MCF-7, MCF-7/ADM, KB, KB/VCR, SMMC-7721, K562 ⁸⁰
Azadirahemiacetal (128), 7-tigloyl-12-oxo vilasini (314), 1-benzoyl-3-deacetyl-1- detigloyl salannin (449), Azadiralactone (1456), Swietesenin (119) and Swieteliacate E, C, D, A (738, 802, 893, 1410), Americanolide A, B, D, C (219-222), Munronin N, H-M, B-G (244, 332, 335, 350, 491, 501, 503, 553, 555, 556, 558, 559, 1445), 12-	HL-60, SMMC-7721, A549, MCF-7, SW480 ^{119,188,116,158,169,253,254,457,458,136,203,282,354,407,421,424,444}
ethoxynimbolinin H, F (488, 490), Senegalension B (1405), Senegalension C (1406),	
Swietemahalactone (1407), Toonayunnanin A, D, C, F, I, J, G, H, K, L, E (152, 333,	
344, 387, 389, 395, 402, 405, 408, 409, 631), Aphanamixoid K-P, C-J (570-572, 594-	
590, 021-023, 025-029), Chukruransin C (1124), Heytrijumalin A, D-F (1193, 1190- 1108), Swietenine L (1228), Cinedecin L, M, L, D, O, O, (308, 300, 547, 606, 607, 862)	
14.15-didehvdroruageanin A (839). Cipateriiugin F (1354)	
Xylogranatumine A, B, C, E, G, D (107 , 101-104 , 98)	A549 ¹⁰⁵
Entangolensin P, N, M, D, E, I, J, G, H (255, 531, 535, 707, 709, 711-714)	HepG2, MCF-7 ¹⁴¹
Xylomolin A1, A3, B1, C1, F, L2, K2, G1, H (759 , 761 , 821 , 824 , 927 , 1144 , 1236 , 1321 , 1330)	HCT-8, HCT-8/T, A2780 , A2780/T, MDA-MB- 231 ¹⁴³
Dysomollide F, G, E, A-D (161, 162, 376, 569, 655, 656, 659), Ciliatonoid A, B (419, 420)	HL-60, P388, A549 ^{144,230,295}
$24,25,26,27$ -tetranorapotirucall- 6α -hydroxy- 7α -acetoxy-14-en-3-one-21,23-olide (163), 24,25,26,27-tetranor-apotirucall- 6α -hydroxy- 7α -acetoxy-14-en-3-one-21,24-	HeLa, PC-3 ¹⁴⁵
anhydride (170), 24,25,26,27-tetranor-apotirucall- 6α ,22-dihydroxy- 7α -acetoxy-	
1,14,20(21)-trien-3-one-21,23-olide (171), 24,25,26,27-tetranorapotirucall- 6α ,22- dihudrouy 7a control 14,20(21), dien 2, one, 21,22, olide (172), 1, tieleularedineshtel	
(437) 17-desfuran-17-(22-hydroxyhut-20(21)-ene-21 23-y-lactone)- nimbandiol	
(1421) and 17-desfuran-17-(21-hydroxy-20(22)-ene- $21,23-\gamma$ -lactone) nimbandiol	
(1422)	
Yunnanolide B (166), 11β -hydroxy-1,2-dihydroisowalsuranolide (216), 1α , 11β -	HL-60, SMMC-7721, A549, MCF-7, SW480,
$\frac{dihydroxy-1,2-dihydroisowalsuranolide (217)}{\text{Turrapybin L E G A D H K L(245, 270, 281, 284, 286, 401, 421, 428, 430)}$	$\frac{BEAS-2B^{10}}{HL}$
Turiapubli I, E-O, A-D, H, K, J (245, 577-561, 564-560, 401, 421, 456, 457)	NE-00
dehydroxylswietephragmin C (1156)	K502, SGC-1901, BEL-1402
Ceramicine H, F, E (297, 330, 1414)	HL-60, A549, MCF-7, HCT-116
Pentendricine (321), Walsucochinone B-A (327-328), Chuktabularoid E-H, J (1132, 1133, 1086, 1087, 1034), Chukorthoester A-B, C-D, E, F, G-H (1027-1028, 1017-1018, 1045, 1024, 925-926)	MCF-7 200,210, 571575
Walrobsin A-B (374-375)	HepG2, HL-60, MCF-7, HT-29 ²²¹
Toonacilianin E, G-J, D, B, C, A, K, L (382, 391, 396, 403, 404, 410, 412, 413, 416,	A549, HL-60 ^{227,404}
1426, 1427), Velutinalide A, B (1105, 1106)	U C2 MOE 7 HL C0 ²²⁹
Toonaciliatone F, G, E, H, A, B, D (393, 399, 400, 414, 1418, 1419, 1434)	HepG2, MCF-7, HL-60 ⁻²⁴
3-deacetyl-28-oxosalannolactone (460), 3-deacetyl-28-oxoisosalanninolide (472), 3- deacetyl-17- defurano-17,28-dioxosalannin (1453)	HL-60, A549, AZ521, SK-BR-3243
Walsogyne E, F (520, 521), Polystanin E (136)	HL-60, HepG2, A549, MCF-7 ^{260,124}
Andirolide B, C, E (747 , 748 , 1055)	P388, HL-60, L1210, KB ²⁶³
Monadelphin B (528)	L5178Y ²⁶⁷
Toonasinemine I-L, B, E, F, G, C (540-543, 1486, 1490-1493)	HepG2 MCF-7 U2OS ²⁶⁹
Aphapolynin B (566)	BEL-7402, SGC-7901, BGC-823, HepG2, HeLa, MCF-7 ²⁸⁰
Aphapolynin C-E, B, F-I (574-576, 587, 601-602, 610-611)	MCF-7, BEL-7402, BGC-823 ²⁸⁴
Dregeanin DM4 (578)	NCI NC59 anticancer screen and showed no significant activity ²⁸⁵
Aphagranols A, B (583, 584)	MCF-7, A549, SMMC-7721, HL-60 ²⁸⁸
Clauemargine A-L (658-669)	HCT-116, HepG2, BGC-823, SK-OV-3 ²⁹⁵
Cipaferen N, O (681, 1386)	HeLa, PANC1, MDA-MB-231, IMR32, HepG2, SKNSH ³⁰⁷
Andirolide Q (754), Ivorenoid G (916), Chukvelutilide Z, Y (1091 , 1117), Chukvelutilide I-P, U-X, Q-T (1074-1081 , 1096-1099 , 1108-1111)	MCF-7, SMMC-7721, U2OS ^{335,401}
Cipadessain I, A, B, K, G, H, D, J, E (786, 795, 796, 820, 884, 885, 887, 894, 913)	HepG2 ³⁴³
Granatumin U, P-T, N, O, L, M (792, 943, 944, 955, 956, 958) Andhraxylocarpin C, D, A, B, E (1281, 1282, 1286, 1287, 1399)	A2058, MDA-MB-468, DU145 ^{345,434}
Xylorumphiin L (863)	NCI-59 human tumour cell line ³⁶⁰
Xylomexicanin G, H, E (986, 987, 1476)	A549, RERF, PC-3, PC-6, QG-56, QG-90 ³⁷⁸

Table 59: Inactive Meliaceous Limonoids against Tumor Cell Lines

Thaixylomolin Q, O, R (999, 1135, 1423)	A375, A549, HCT-8, HCT-8/T, A2780, A2780/T, MDA-MB-231 ³⁸²
Carapanolide B (1004), Guianolide B (1119)	P388, L1210, HL-60 ^{383,406}
Velutabularin B, D, E, I (1253, 1255, 1256, 1260)	MCF-7, Hela, SGC-7901, BGC-823, HepG2 ⁴²⁶
Trichiconlide E, F, C, D (1278, 1279, 1289, 1290)	A549, Hela ⁴³³
Trichiliton B (1366)	HL-60, BEL-7402, Hela, MCF-7 ⁴⁴⁷
Dysolenticin A, B, D, E, H, I (51, 48, 32, 31, 22, 23)	HL-60, SMMC-7721 ⁶⁸
Guareoic acid B (56), Guareolide (58)	Jurkat, HeLa, MCF-7, PBMC >100 μM ⁸²
(20S)-3-oxo-tirucalla-25-nor-7-en-24-oic acid (67), (20S)-5α,8α-epidioxy-3-oxo-24- nor-6,9(11)-dien-23-oic acid (68)	HeLa, HePG2, SW480 ⁸⁴
Toosendine H, I (81, 82)	U2OS ¹⁰³
7-deacetylbrujavanone E (99), 21,24,25- triacetyl-7-deacetyl-6-hydroxylbrujavanone E (100)	HeLa ¹⁰⁸
Meliazedarine A-C, D, F-H, I (505-507 , 450 , 452-454 , 248), Meliazedarine E/Ohchinin benzoate (451)	BEL-7402, HCT-116, A549, U251, HT-29 ¹⁷¹
Khaysenelide K (693)	MDA-MB-231, HePG2 ³¹¹
Encandollen C-E (1068-1070)	KB3-1 ³⁹⁹

Figure 61. Antineoplastic activities of novel limonoids.

Figure 62. Distribution plot showing the novel limonoids screened against various cancer cell lines.

3.2 Anti-inflammatory/potential inhibitors of macrophage activation

Many Limonoids possess anti-inflammatory activities. During inflammation, macrophages play an important role which become activated, releasing a variety of inflammatory factors. Nitric oxide (NO) and tumor necrosis factor alpha (TNF- α) are the key factors released during inflammation. The anti-inflammatory activities of Limonoids are listed in table 60. The inhibitory activities on lipopolysaccharide (LPS) stimulated inflammation factor-release (NO and TNF- α) of mouse macrophages RAW 264.7 in vitro were evaluated (Table 60). Limonoids 710, 812, 813, 858, 859, 1299 and 1420 inhibited NO expression in LPS stimulated RAW 264.7 cells with IC_{50} values of 1.75, 2.2, 2.9 2.85, 1.88, 2.40 and 1.42 μ M respectively as compared to IC₅₀ values of positive controls dexamethasone (0.06 µM), N-Monomethyl-L-arginine (32.55 µM), hydrocortisone (3.4 µM) and curcumin (5 µM). Compounds (110, 111, 92) inhibited TNF- α with IC₅₀ value of 26.9 μ M, 30.7 μ M and 47.4 μ M respectively and compounds (83-89, 91-95) were inactive (IC₅₀ = >100)¹⁰⁴. Compounds (130, 131, 132, 133) showed anti-inflammatory activity on superoxide anion generation with IC₅₀ value ranging between 5.79 to >10 µg/mL, as well as the significant inhibition on elastase release with IC₅₀ value ranging between of 5.22 to >10 μ g/mL by human neutrophils in the presence of FMLP/CB¹²⁰. Compounds (295, 493, 658, 659, 665-667, 679) inhibited NO production with IC₅₀ value of 315.75, 21.95 10.0, 6.7, 8.8, 7.0, 5.1 and 4.97 μ M respectively in LPS induced NO production in murine microglial BV-2 microglia cells while compounds (660-664, 668, 669, 67, 68) were inactive^{84,192,295,306}. At 100 µM, compounds (334, 383, 400, 397, 406, 407, 411, 417, 632, 1429, 6, 24, 44, 45, 46, 47) exhibited anti-inflammatory activity by inhibiting cyclooxygenase-1 with inhibition rate of 30.2, 44.3, <0, 92.7, 88.1, 91.1, 53.1, <0, <0, 95.2, <0, <0, 95.3, 94.7 94.2, 94.4 % respectively as well as they inhibited cyclooxygenase-2 with inhibition rate of 19.7, 21.4, <0, 39.3, 35.6, 40.2, 24.4, <0, <0, 40.1, 24.3, 21.1, 43.2, 39.5, 42.1, 41.8 % respectively^{62,78,214,229}. Compounds (720, 1227, 1391, 1392) exhibited inhibitory effects on NO production in activated macrophages with IC₅₀ value of 45.80, 32.26, 35.1 and 75.2 μ M respectively^{317,453}. Compounds (921, 934, 1282) exhibited inhibition of LPS induced NO production in J774.1 macrophages with IC₅₀ value of 24.5, 31.3 and 20.2 µM respectively while compounds (919, 920, 922, 923, 1025, 1269, 1271) were inactive^{369,431}. Compounds 1498, 366, 364, 362, 1499 exhibited anti-NLRP3 inflammasome activity by inhibiting lactate dehydrogenase IC_{50} values of 4.2, 4.9, 3.2, 7.2, 9.7 μ M respectively and IL-1 β release with IC₅₀ values of 3.9, 6.4, 3.4, 6.7, 8.4 respectively with cytotoxic value (CC₅₀) of >20 µM²¹⁹. Compounds (440, 1014, 1015, 1040, 1120, 723, 786, 795, 796, 820, 885, 894, 913, 1281, 1282, 1286, 1287, 1399, 1394, 1402, 1480, 81, 82, 1408, 425, 426, 427, 428-436, 183, 185, 190, 191, 398, 1432, 1436) were inactive for anti-inflammatory activity in LPS stimulated RAW 264.7 cells^{103,139,232,238,297,318,343,434,454,456}

Table 60: Anti-inflammatory	Activities of Meliaceae	Limonoids
-----------------------------	-------------------------	-----------

Limonoid	Cells	Activity NO
Toonaciliatavarin D (55)	RAW 264.7	$IC_{50} = 33.4 \ \mu M^{80}$
Toonaciliatavarin C (129)	RAW 264.7	$IC_{50} = 11.0 \ \mu M^{80}$
Toonaciliatavarin B (116)	RAW 264.7	$IC_{50} = 7.9 \ \mu M^{80}$
Toonaciliatavarin A (118)	RAW 264.7	$IC_{50} = 9.4 \ \mu M^{80}$
Toonaciliatavarin F (167)	RAW 264.7	$IC_{50} = 28.8 \ \mu M^{80}$
Toonaciliatavarin G (168)	RAW 264.7	$IC_{50} = 15.2 \ \mu M^{80}$
Toonaciliatavarin H (422)	RAW 264.7	$IC_{50} = 20.9 \ \mu M^{80}$
Chisopanin A (110)	RAW 264.7	$IC_{50} = 5.4 \ \mu M^{104}$
Chisopanin B (111)	RAW 264.7	$IC_{50} = 7.9 \ \mu M^{104}$
Chisopanin K (92)	RAW 264.7	$IC_{50} = 33.4 \ \mu M^{104}$
Chisopanin E (83)	RAW 264.7	$IC_{50} = 6.2 \ \mu M^{104}$
Chisopanin F (84)	RAW 264.7	$IC_{50} = 6.9 \ \mu M^{104}$
Chisopanin G (85)	RAW 264.7	$IC_{50} = 5.4 \ \mu M^{104}$
Chisopanin H (86)	RAW 264.7	$IC_{50} = >50 \ \mu M^{104}$
Chisopanin I (87)	RAW 264.7	$IC_{50} = 5.3 \ \mu M^{104}$
Chisopanin J (88)	RAW 264.7	$IC_{50} = 12.3 \ \mu M^{104}$
Chisopanin C (94)	RAW 264.7	$IC_{50} = 40.0 \ \mu M^{104}$
Chisopanin D (95)	RAW 264.7	$IC_{50} = >50 \ \mu M^{104}$
Entangolensin O (155)	RAW 264.7	$IC_{50} = >50 \ \mu M^{141}$
Entangolensin L (529)	RAW 264.7	$IC_{50} = >50 \ \mu M^{141}$
Entangolensin F (710)	RAW 264.7	$IC_{50} = 1.75 \ \mu M^{141}$
Entangolensin K (1485)	RAW 264.7	$IC_{50} = 7.94 \ \mu M^{141}$
Turrapubin I (245)	RAW 264.7	$IC_{50} = >20 \ \mu M^{170}$
Turrapubin E (379)	RAW 264.7	$IC_{50} = >20 \ \mu M^{170}$
Turrapubin F (380)	RAW 264.7	$IC_{50} = >20 \ \mu M^{170}$
Turrapubin G (381)	RAW 264.7	$IC_{50} = >20 \ \mu M^{170}$

Turrapubin A (384)	RAW 264 7	$IC_{ro} = >20 \ \mu M^{170}$
Turrepublic $\mathbf{P}(395)$	DAW 264.7	$IC_{50} > 20 \mu M^{170}$
Turrapuolin B (303)	RAW 204.7	$IC_{50} = 20 \mu M$
Turrapubin C (386)	RAW 264.7	$IC_{50} = >20 \ \mu M^{1.6}$
Turrapubin D (401)	RAW 264.7	$IC_{50} = >20 \ \mu M_{170}^{170}$
Turrapubin H (421)	RAW 264.7	$IC_{50} = >20 \ \mu M^{1/0}$
Turrapubin K (438)	RAW 264.7	$IC_{50} = >20 \ \mu M^{170}$
Turrapubin J (439)	RAW 264.7	$IC_{50} = >20 \ \mu M^{170}$
Meliazedalide B (294)	RAW 264 7	$IC_{ro} = 37.41 \text{ µmol/L}^{191}$
Welseheim A (274)	DAW 264.7	$IC_{50} = 7.5 \text{ mmore}^{221}$
$T = \frac{1}{2} D (441)$	RAW 204.7	$10_{50} - 7.95 \mu W$
Toosendane B (441)	RAW 264.7	$IC_{50} = 21.3 \ \mu M^{-23}$
Toosendane C (442)	RAW 264.7	$IC_{50} = 20.7 \ \mu M^{2.36}$
3-deacetyl-28-oxosalannolactone (460)	RAW 264.7	$IC_{50} = 86.0 \ \mu M^{243}$
3-deacetyl-28-oxoisosalanninolide (472)	RAW 264.7	$IC_{50} = >100^{243}$
3-deacetyl-17- defurano-17.28-dioxosalannin (1453)	RAW 264.7	$IC_{50} = >100^{243}$
Carapansin C (523)	RAW 264 7	$IC_{50} = 13.7 \mu M^{262}$
Carapanshi C (525)	DAW 264.7	$IC_{50} = 15.7 \mu W^2$ $IC_{-} = 27.4 \mu M^{266}$
Carapanonde J (327)	RAW 204.7	$IC_{50} = 37.4 \mu W$
Carapanolide L (1051)	RAW 264.7	$IC_{50} = >100 \ \mu M^{-30}$
Carapanolide K (1192)	RAW 264.7	$IC_{50} = 12.0 \ \mu M^{200}$
Toonasinemine H (539)	RAW 264.7	$IC_{50} = 12.56 \ \mu M^{269}$
Toonasinemine I (540)	RAW 264.7	$IC_{50} = 20.68 \ \mu M^{269}$
Toonasinemine J (541)	RAW 264 7	$IC_{50} = >50 \ \mu M^{269}$
Toonseinemine K (542)	RAW 264 7	$IC_{50} = >50 \ \mu M^{269}$
Toonasinemine I (542)	DAW 264.7	$IC_{50} = >50 \ \mu M^{269}$
Toonasinenine L (343)	KAW 204.7	$1C_{50} = 200 \mu\text{M}$
Toonasinemine B (1486)	RAW 264.7	$IC_{50} = 20.05 \ \mu M^{-35}$
Toonasinemine A (1487)	RAW 264.7	$IC_{50} = 10.21 \ \mu M^{209}$
Toonasin A/Toonasinemine D (1488)	RAW 264.7	$IC_{50} = >50 \ \mu M^{269}$
Toonasinemine E (1490)	RAW 264.7	$IC_{50} = >50 \ \mu M^{269}$
Toonasin C/Toonasinemine F (1491)	RAW 264.7	$IC_{50} = 12.56 \ \mu M^{269}$
Toonasinemine G (1492)	RAW 264 7	$IC_{50} = >50 \ \mu M^{269}$
Toonasinemine $C(1492)$	DAW 264.7	$IC_{50} = 50 \mu M^{269}$
$\frac{1}{4} = \frac{1}{2} = \frac{1}$	RAW 204.7	$IC_{50} = >50 \ \mu M^{284}$
Aphapolynin C (574)	RAW 204.7	$IC_{50} = >50 \mu M$
Aphapolynin D (575)	RAW 264.7	$IC_{50} = >50 \ \mu M^{204}$
Aphapolynin E (576)	RAW 264.7	$IC_{50} = >50 \ \mu M^{284}$
Aphanamolide B (587)	RAW 264.7	$IC_{50} = >50 \ \mu M^{284}$
Aphapolynin F (601)	RAW 264.7	$IC_{50} = >50 \ \mu M^{284}$
Aphapolynin G (602)	RAW 264.7	$IC_{50} = >50 \ \mu M^{284}$
Aphapolynin H (610)	RAW 264 7	$IC_{50} = >50 \ \mu M^{284}$
Aphapolynin I (010)	DAW 264.7	$IC_{50} = >50 \ \mu M^{284}$
$\frac{1}{1} = \frac{1}{1} + \frac{1}$	RAW 204.7	$1C_{50} = -30 \mu \text{M}$
Irichiconlide A (630)	RAW 264.7	$IC_{50} = 40.5 \ \mu M$
Guianofruit C (672)	RAW 264.7	$IC_{50} = 80.4 \ \mu M_{207}^{207}$
Guianofruit D (673)	RAW 264.7	$IC_{50} = 61.0 \ \mu M^{297}$
Guianofruit B (674)	RAW 264.7	At 30 µM, 65.6 % NO was produced with no
		cytoxicity to the positive control L-NMMA (43.1 %
		$(30 \mu\text{M})^{298}$
Guianofruit A (675)	RAW 264 7	At 30 µM 47.5 % NO was produced with no
	10110 204.7	autovigity to the positive control L NMMA (12.1.0)
		20 M^{298}
		30 µM)
Khayandirobilide A (679)	RAW 264.7	$IC_{50} = 5.04 \ \mu M^{300}$
Thaixylomolin B (1474)	RAW 264.7	$IC_{50} = 84.3 \ \mu M^{318}$
Carapanosin E (735)	RAW 264.7	$IC_{50} = 23.9 \ \mu M^{331}$
Carapanosin F 736)	RAW 264.7	$IC_{50} = 11.8 \mu M^{331}$
Carapapolide T (740)	RAW 264 7	$IC_{50} = 22 \mu M^{332}$
Carapanolide I (710)	PAW 264 7	$IC_{30} = 22 \mu M^{332}$
Carapanolide U (741)	DAW 204.7	$IC_{50} = 23.5 \mu M$
Carapanonde w (1010)	RAW 204.7	$IC_{50} = >30 \ \mu M$
Carapanolide X (1031)	RAW 264.7	$IC_{50} = >30 \ \mu M^{3/2}$
Carapanolide V (1058)	RAW 264.7	$IC_{50} = >30 \ \mu M^{332}$
Trichinenlide B (858)	RAW 264.7	$IC_{50} = 2.85 \ \mu M^{342}$
Trichinenlide C (859)	RAW 264.7	$IC_{50} = 1.88 \ \mu M^{342}$
Cipadessain G (884)	RAW 264.7	$IC_{50} = 20.54 \ \mu M^{343}$
Cinadessain D (887)	RAW 264 7	$IC_{30} = 23.90 \text{ µM}^{343}$
Cinadecsain E (005)	DAW 2647	$IC_{20} = 6.93 \ \mu M^{343}$
Circulation $C(012)$	DAW 204.7	$IC_{50} = 0.75 \mu W$
Cipadessain C (912)	KAW 264.7	$1C_{50} = 5.79 \mu\text{M}^{-1}$
Trichiconnarone A (812)	RAW 264.7	$IC_{50} = 2.2 \ \mu M^{3+2}$
Trichiconnarone B (813)	RAW 264.7	$IC_{50} = 2.9 \ \mu M^{349}$
Swietemacrophin (848)	RAW 264.7	$IC_{50} = 33.45 \ \mu M^{358}$
Trichiliasinenoid E (883)	RAW 264.7	$IC_{50} = 88.3 \ \mu M^{365}$
Trichiliasinenoid D (1483)	RAW 264 7	$IC_{50} = 93.8 \ \mu M^{365}$
Khavsenelide A (895)	RAW 264.7	$IC_{rr} = >50 \ \mu M^{367}$
Khausanalida D (904)	DAW 204.7	$IC_{50} = 50 \mu M^{367}$
$\frac{1}{1} = \frac{1}{1} $	KAW 204./	10.50 - 200
Knaysenelide U (1340)	KAW 264./	$IC_{50} = >50 \ \mu M^{-3}$

at

at

Khaysenelide D (1341)	RAW 264.7	$IC_{50} = >50 \ \mu M^{367}$
Khaysenelide E (1342)	RAW 264.7	$IC_{50} = >50 \ \mu M^{367}$
Khaysenelide F (1343)	RAW 264.7	$IC_{50} = >50 \ \mu M^{367}$
Encandollen B (1056)	RAW 264.7	At 50 μ mol/L, it exhibited NO inhibition at the rate = 33.6 $\%^{396}$
Encandollen A (1095)	RAW 264.7	At 50 μ mol/L, it exhibited NO inhibition at the rate = 15.6 $\%^{396}$
Chukvelutilide I (1074)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide J (1075)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide K (1076)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide L (1077)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide M (1078)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide N (1079)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide O (1080)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide P (1081)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide U (1096)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide V (1097)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide W (1098)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide X (1099)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide Q (1108)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide R (1109)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide S (1110)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Chukvelutilide T (1111)	RAW 264.7	$IC_{50} = >50 \ \mu M^{401}$
Tabulalin C (1084)	RAW 264.7	$IC_{50} = 13.0 \ \mu M^{402}$
Tabulalin E (1263)	RAW 264.7	$IC_{50} = 17.1 \ \mu M^{402}$
Tabulalin B (1266)	RAW 264.7	$IC_{50} = 15.3 \ \mu M^{402}$
Velutabularin B (1253)	RAW 264.7	$IC_{50} = 19.01 \ \mu M^{426}$
Velutabularin D (1255)	RAW 264.7	$IC_{50} = 10.09 \ \mu M^{426}$
Velutabularin E (1256)	RAW 264.7	$IC_{50} = 27.08 \ \mu M^{426}$
Velutabularin I (1260)	RAW 264.7	$IC_{50} = 46.34 \ \mu M^{426}$
Trichiliton G (1267)	RAW 264.7	$IC_{50} = 46.5 \ \mu M^{430}$
Trichiliton H (1268)	RAW 264.7	$IC_{50} = 62.1 \ \mu M^{430}$
Trichiliton I (1272)	RAW 264.7	$IC_{50} = 122.1 \ \mu M^{432}$
12-deacetoxyltrijugin A (1359)	RAW 264.7	$IC_{50} = 132.3 \ \mu M^{432}$
Chukvelutin E (1297)	RAW 264.7	$IC_{50} = 10.01 \ \mu M^{437}$
Chukvelutin F (1304)	RAW 264.7	$IC_{50} = 28.54 \ \mu M^{437}$
Chuktabularin U (1299)	RAW 264.7	$IC_{50} = 2.40 \ \mu M^{395}$
Chuktabrin D (1311)	RAW 264.7	$IC_{50} = 3.81 \ \mu M^{395}$
Chuktabrin E (1312)	RAW 264.7	$IC_{50} = 15.33 \ \mu M^{395}$
Chuktabrin G (1315)	RAW 264.7	$IC_{50} = 16.90 \ \mu M^{395}$
Chuktabrin H (1316)	RAW 264.7	$IC_{50} = 7.94 \ \mu M^{395}$
Chuktabrin J (1317)	RAW 264.7	$IC_{50} = 7.63 \ \mu M^{395}$
Chuktabrin F (1318)	RAW 264.7	$IC_{50} = 15.33 \ \mu M^{395}$
Chuktabrin I (1319)	RAW 264.7	$IC_{50} = 7.78 \ \mu M^{395}$
Spirotrichilin A (1393)	RAW 264.7	At 25 and 50 μ M, it exhibited NO inhibition at the rate = 25.89 % and 37.13 % respectively ⁴⁵⁴
Morenolide (1420)	RAW 264.7	$IC_{50} = 1.42 \ \mu g/mL^{467}$
Aphananoid A (1443)	RAW 264.7	$IC_{50} = 66.73 \ \mu M^{469}$
Toonayunnanae A (424)	RAW 264.7	$IC_{50} = 10.68 \ \mu M^{232}$
Carapanin B (988)	RAW 264.7	$IC_{50} = 12.6 \mu M^{370}$
Carapanin C (924)	RAW 264.7	$IC_{50} = 29.5 \ \mu M^{370}$
Toonayunnanae F (184)	RAW 264.7	$IC_{50} = 38.45 \ \mu M^{155}$
Khaysenelide K (693)	RAW 264.7	$IC_{50} = 27.74 \ \mu M^{311}$
• • • •		··· I

3.3 Anti-microbial activity

The anti-microbial activities of Limonoids are listed in table 61. Among the total limonoids isolated in the last decade only about 5.05 % were screened for anti-microbial activity against various gram positive/negative bacteria and fungi. Majority of the limonoids were (69.73 %) were inactive (Table 62) for anti-microbial activity. Swietemahalactone (**1407**) showed very good anti-bacterial activity against *Escherichia coli* (ATCC 25922), *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Staphylococcus epidermidis*, *Bacillus subtilis* with minimum inhibitory concentration of 0.01, 0.16, 0.13, 0.38 and 0.38 μ M respectively. This limonoid skeleton may be used to develop structural analogs to enhance the observed anti-microbial activity.

Limonoid	Miaroorganiam	Activity
3p-nydroxytirucalla-7,24-diene-6,23-dione (18)	Staphylococcus aureus	Zones of inhibition = 22.03^{60}
	Staphylococcus epidermidis	Zones of inhibition = 17.62^{60}
	Escherichia coli	Zones of inhibition = 22.02^{66}
	Enterobacter cloacae	Zones of inhibition = 19.82^{66}
	Klebsiella pneumoniae	Zones of inhibition = 24.23^{66}
	Pseudomonas aeruginosa	Zones of inhibition = $15 42^{66}$
	Shiqolla dysentariae	Zones of inhibition $= 17.12$
20 hydroxystimucally 7.24 diam 22 and (16)	Starbulo cocora autoria	Zenes of inhibition $= 20.55^{66}$
sp-nydroxytirucana-7,24-dien-25-one (10)	Staphylococcus aureus	Zones of minibilion = 29.55
	Staphylococcus epidermidis	Zones of inhibition = $2/.2/3$
	Escherichia coli	Zones of inhibition = 15.91^{60}
	Enterobacter cloacae	Zones of inhibition = No activity ⁶⁶
	Klebsiella pneumoniae	Zones of inhibition = 15.91^{66}
	Pseudomonas aeruginosa	Zones of inhibition = No activity 66
	Shigella dysenteriae	Zones of inhibition = 18.18^{66}
36 26-dihydroxytirucalla-7 24-diene-6 23-dione (19)	Staphylococcus aureus	Zones of inhibition = 1852^{66}
59,20 diffuloxy indealine 7,21 diene 0,25 diene (15)	Staphylococcus anidarmidis	Zones of inhibition $= 16.46^{66}$
	Each wishin and	Zones of inhibition $= 10.40$
	Escherichia coli	Zones of inhibition = 22.63°
	Enterobacter cloacae	Zones of inhibition = 18.52^{60}
	Klebsiella pneumoniae	Zones of inhibition = 16.46^{60}
	Pseudomonas aeruginosa	Zones of inhibition = 24.69^{66}
	Shigella dysenteriae	Zones of inhibition = 18.52^{66}
Methyl 6-oxomasticadienolate (20)	Staphylococcus aureus	Zones of inhibition = 16.53^{66}
, , , , , , , , , , , , , , , , , , ,	Stanhylococcus enidermidis	Zones of inhibition = 18.60^{66}
	Escherichia coli	Zones of inhibition $= 20.66^{66}$
	Escherichia con	Zenes of inhibition $= 16.52^{66}$
		Zones of minibilion = 16.55
	Klebsiella pneumoniae	Zones of inhibition = $16.53^{\circ\circ}$
	Pseudomonas aeruginosa	Zones of inhibition = No activity 60
	Shigella dysenteriae	Zones of inhibition = $18.60^{\circ\circ}$
Dysoxylumstatin A (53)	Staphylococcus aureus	Zones of inhibition/MIC $[mM] = 22/0.79^{66}$
	Staphylococcus epidermidis	Zones of inhibition/MIC $[mM] = 20/0.74^{66}$
	Escherichia coli	Zones of inhibition/MIC $[mM] = 20/1.45^{66}$
	Enterobacter cloacae	Zones of inhibition/MIC $[mM] = 21/1.04^{66}$
	Klebsiella preumoniae	Zones of inhibition/MIC $[mM] = 20/1.26^{66}$
	Riebsiella pheumoniae	Zenes of inhibition/MIC [mM] = $20/1.20$
	P seudomonas deruginosa	Zones of initiation/MIC [IIIM] = $20/2.55$
	Shigella dysenteriae	Zones of inhibition/MIC $[mM] = 20/1.04^{\circ\circ}$
Dysoxylumstatin B (54)	Staphylococcus aureus	Zones of inhibition/MIC $[mM] = 19/0.58^{00}$
	Staphylococcus epidermidis	Zones of inhibition/MIC $[mM] = 20/0.80^{66}$
	Escherichia coli	Zones of inhibition/MIC $[mM] = 19/1.41^{66}$
	Enterobacter cloacae	Zones of inhibition/MIC $[mM] = 19/1.31^{66}$
	Klebsiella pneumoniae	Zones of inhibition/MIC $[mM] = 18/1.29^{66}$
	Pseudomonas aeruginosa	Zones of inhibition/MIC $[mM] = 18/221^{66}$
	Shigalla dysontariaa	Zones of inhibition/MIC $[mM] = 20/1.00^{66}$
Dysamulumatatin $C(192)$	Starbulo coccus autous	Zenes of inhibition/MIC [mM] = $20/1.00$
Dysoxylumstatin C (162)	Staphylococcus aureus	Zones of initiation/MIC [IIIM] = $1/(1.21)$
	Staphylococcus epidermidis	Zones of inhibition/MIC $[mM] = 16/1.48^{\circ0}$
	Escherichia coli	Zones of inhibition/MIC $[mM] = 16/1.70^{30}$
	Enterobacter cloacae	Zones of inhibition/MIC $[mM] = 17/2.14^{\circ\circ}$
	Klebsiella pneumoniae	Zones of inhibition/MIC $[mM] = 17/1.77^{66}$
	Pseudomonas aeruginosa	Zones of inhibition/MIC $[mM] = 17/2.94^{66}$
	Shigella dysenteriae	Zones of inhibition/MIC $[mM] = 15/2.14^{66}$
Meliarachin H (282)	Bacillus subtilis	$MIC = 25 \text{ µg/mL}^{177}$
Meliarachin D (291)	Staphylococcus aureus	$MIC = 50 \mu g/mI^{177}$
	Bacillus subtilis	$MIC = 50 \ \mu g/mL^{177}$
7	Mission ATCC 0241	$MIC = 6.25 \text{ ms}/\text{mL}^{190}$
/- cinnamoyitoosendanin (277)	Micrococcus inteus ATCC 9341	$MIC = 6.25 \mu g/mL$
	Bacillus subtilisATCC 6633	$MIC = 25 \ \mu g/mL^{235}$
Mulavanin D (562)	Microsporum gypseum	$MIC = 25 \ \mu g/mL^{213}$
	Trichophyton rubrum	$MIC = 25 \ \mu g/mL^{215}$
1α -tigloyloxy- 3α -acetoxyl- 7α -hydroxyl- 12β -	Porphyromonas gingivalis ATCC	MIC= 31.25 μ g/mL ²⁵²
ethoxylnimbolinin (475)	33277	
Azadirachta R (502)	Bacillus subtilis	$MIC = 25 \text{ mg/mL}^{257}$
	Xanthomonas orvzae py orvzae	$MIC = 50 \text{ mg/mL}^{257}$
	(CGMCC 1 3358)	
	Connect 1.5550)	$MIC = 50 ma/mL^{257}$
	Staphylococcus aureus	MIC = 50 mg/mL
	(CMCC(B)26003)	
Aphapolynin C (574)	Uromyces viciae-fabae	At 100 ppm, inhibiton score = 99^{284}
	Pythium dissimile	At 20 ppm, inhibiton score = 55^{284}
Aphapolynin D (575)	Uromyces viciae-fabae	At 100 ppm, inhibiton score = 33^{284}
		**

	Pythium dissimile	At 20 ppm, inhibition score = 27^{284}
Aphapolynin E (576)	Uromyces viciae-fabae	At 100 ppm, inhibition score = 55^{284}
Anhanamolide B (587)	Sentoria tritici	At 100 ppm, inhibition score $= 18^{284}$
Aphanamonde D (507)	Pythium dissimile	At 20 ppm, inhibition score $= 27^{284}$
Aphanolynin H (610)	I ymum aissinnie Uromvegs viejąg-fabag	At 100 ppm, inhibition score $= 27^{284}$
Khavseneganin D (734)	Pseudomonas aeruginosa	$MIC = 25 \text{ µg/mL}^{324}$
Khayseneganni D (134)	Stankylococcus aurous	$MIC = 20 \ \mu g/mL^{324}$
	MDSA (mathiaillin registent	$MIC = 35 \ \mu g/mL^{324}$
	Stanhylococcus	$MIC = 25 \ \mu g/IIIL$
	suppyiococcus	
	MDCA 09#	$MIC = 50 m c/m I^{324}$
$T_{i} = 1$	MIKSA 98#	$MIC = 50 \ \mu g/IIIL$
Inchinasinenoid E (865)	Staphylococcus aureus	$MIC = >512 \ \mu g/mL$
	Canalaa albicans	$MIC = >512 \ \mu g/mL^{-4}$
	Escherichia coli	$MIC = >512 \ \mu g/mL^{365}$
	Pseudomonas aeruginosa	$MIC = >512 \ \mu g/mL^{365}$
Trichiliasinenoid D (1483)	Staphylococcus aureus	$MIC = >512 \ \mu g/mL^{303}$
	Candida albicans	$MIC = >512 \ \mu g/mL^{365}$
	Escherichia coli	$MIC = >512 \ \mu g/mL^{365}$
	Pseudomonas aeruginosa	MIC = $>512 \ \mu g/mL^{365}$
Swietemahalactone (1407)	Escherichia coli (ATCC 25922)	Zones of inhibition (mm) /MIC (μ M) = 20/0.010 ⁴⁵⁸
	Staphylococcus aureus	Zones of inhibition (mm) /MIC (μ M) = 15/0.160 ⁴⁵⁸
	Pseudomonas aeruginosa	Zones of inhibition (mm) /MIC (μ M) = 16/0.130 ⁴⁵⁸
	Staphylococcus epidermidis	Zones of inhibition (mm) /MIC (μ M) = 12/0.380 ⁴⁵⁸
	Bacillus subtilis	Zones of inhibition (mm) /MIC (μ M) = 12/0.380 ⁴⁵⁸
Morenolide (1420)	Mycobacterium tuberculosis	$MIC_{50} = 48.7 \ \mu g/mL^{467}$
	H37Rv	
	Mycobacterium tuberculosis	$MIC_{50} = >100 \ \mu g/mL^{467}$
	M299	

Table 62: Inactive Limonoids against Microbes

Ĩ

Limonoids	Microrganism
Meliarachin A, B, C, G-K, D-F (257, 275, 279, 281-285, 291-293)	Staphylococcus aureus (ATCC 25923), Staphylococcus epidermidis (ATCC 12228) Micrococcus luteus (ATCC 9341), Bacillus subtilis (CMCC 63501), Escherichia coli (ATCC25922), Shigella flexneri (ATCC20222), Pseudomonas aeruginosa (ATCC 14502) ¹⁷⁷
Toonaciliatin P, O, N (392, 1428, 1430), Chisiamol G, H (91, 97)	Helicobacter pylori-SS1 ^{228,107}
1 <i>a</i> , 7 <i>a</i> -dihydroxyl-3 <i>a</i> -acetoxyl-12 <i>a</i> -ethoxylnimbolinin (474)	Streptococcus mutans (ATCC 25175) and Porphyromonas gingivalis (ATCC 33277) ²⁵²
Aphapolynin F, G, I (601, 602, 611)	Phytophthora infestans, Septoria tritici, Uromyces viciae-fabae, Pythium dissimile, Alternaria solani, Botryotinia f uckeliana, Gibberella zeae ²⁸⁴
Koetjapin A-D (715-718)	Bacillus cereus (ATCC 11778), Staphylococcus aureus (ATCC 29737), Salmonella enterica (ATCC 14028), Citrobacter freundii (ATCC 43864) ³¹⁴
Khayseneganin C, H (1222 , 1251) and 3-de(2- methylbutanoyl)-3-propanoylcipadesin (808)	Pseudomonas aeruginosa, Staphylococcus aureus, MRSA (methicillin-resistant Staphylococcus aureus) 92#, MRSA 98# ^{324,346}
Swietenitin Q, N, O, P, R, S, T, U, V, W, X (1012, 1029, 1030, 1033, 1049, 1050, 1053, 1054, 1059, 1223, 1224)	Fungi and gram positive and negative bateria ³⁸⁵
Velutinalide A, B (1105, 1106)	Staphylococcus aureus, Pseudomonas aeruginosa ⁴⁰⁴
2-dehydroxylswietephragmin C (1156)	Staphylococcus aureus, Ralstonia solanaceanum, Fusarium oxysporum f. sp. Cuben, Fusarium oxysporu f. sp. Vasinfectum ⁴¹³
3-O-detigloyl-3-O-isobutyrylfebrifugin A (914), 3-O- detigloyl-3-O-isobutyryl-23-O-methylfebrifugin A (915), 3-O-detigloyl-3-O-isobutyrylgranatumin E (889), 3-O-detigloyl-3-O-isobutyryl-21-O-methylgranatumin E (890), 3-O-detigloyl-3-O-propanoylgranatumin E (891), 21-O-methylgranatumin E (892), 21-oxo-23- hydroxylruageanin A (906), 3-O-detigloyl-3-O-(2'R- methylbutanoyl)-21-oxo-23-hydroxylruageanin A (907), 3-O-deisobutyryl-3-O-tigloyl-14,15-dedihydro-21-oxo- 23-hydroxylruageanin A (908), Cipadessain D/21- deoxo-23-oxofebrifugin A (887), 3-O-detigloyl-3-O- isobutyryl-21-deoxo-23-oxofebrifugin A (888), Cipaferen R (1444)	Fusarium oxysporum f. sp. cubense, Ralstonia solanacearum ³⁶⁶

3.4 Anti-malarial activity

The life threating disease malaria is caused by *Plasmodium* parasites which are transmitted through female anopheles mosquito. The drug resistance to medicines such as chloroquine quests novel molecules for disease treatment. In this regard limonoids are favourable candidates whose anti-malarial activities of limonoids are listed in table 63. Nearly 1 % of limonoids were tested against different Chloroquine sensitivive/resistant strains of *Plasmodium falciparum*. The notable anti-malarial activity was exhibited by Neemfruitin A (**175**) against both sensitivive/resistant strains (D10/W2) of *Plasmodium falciparum* with IC₅₀ value of 2.82 and 1.74 μ M respectively, which was due to the absence of double bond at C1/C2 and lactol ring. Compounds **699** -**701**, **705**, **1373**, **1374**, **1377**, **1378**, **1382-1385** didn't exhibit anti-malarial activity.

Limonoid	Cells	Chloroquine sensitivity/resistance	Activity
Neemfruitin B (106)	D10	Sensitive	$IC_{50} = 9.49 \ \mu M^{110}$
	W2	Resistant	$IC_{50} = 9.98 \ \mu M^{110}$
Neemfruitin A (175)	D10	Sensitive	$IC_{50} = 2.82 \ \mu M^{110}$
	W2	Resistant	$IC_{50} = 1.74 \ \mu M^{110}$
Rubescin D (317)	3D7	Sensitive	$IC_{50} = 41.92 \ \mu M^{206}$
Rubescin E (318)	3D7	Sensitive	$IC_{50} = 1.13 \ \mu M^{206}$
Andirolide H (525)	FCR-3 type	Sensitive	$EC_{50} = 4.0 \times 10^{-6} \text{ mol/L}^{264}$
Andirolide N (877)	FCR-3 type	Sensitive	$EC_{50} = 9.7 \times 10^{-6} \text{ mol/L}^{264}$
Cipaferoid B (728)	Dd2	Resistant	$IC_{50} = 9.3 \ \mu mol/L^{319}$
Cipaferoid C (729)	Dd2	Resistant	$IC_{50} = 14.7 \ \mu mol/L^{319}$
Congoensin B (17)	NF54	Sensitive	$IC_{50} = 6.1 \ \mu M^{67}$
Cibacciferin A (698)	Dd2	Resistant	$IC_{50} = 20.0 \ \mu M^{312}$
Cibacciferin C (702)	Dd2	Resistant	$IC_{50} = 16.3 \ \mu M^{312}$
2'-Epi-cibacciferin C (703)	Dd2	Resistant	$IC_{50} = 12.3 \ \mu M^{312}$
11α-Acetoxycibacciferin C (704)	Dd2	Resistant	$IC_{50} = 23.1 \ \mu M^{312}$
Cibacciferin F (1376)	Dd2	Resistant	$IC_{50} = 16.9 \ \mu M^{312}$
6-Dehydroxycibacciferin F (1375)	Dd2	Resistant	$IC_{50} = 28.0 \ \mu M^{312}$

Table 63: Anti-malarial activity of Meliaceae Limonoids

3.5 Anti-Human Immunodeficiency Viral Activity

Acquired immunodeficiency syndrome (AIDS) is caused by the human immunodeficiency virus (HIV) is a global threat to human lives. Limonoids are most promising molecules in the development of new, more potent anti-HIV drugs. The anti-human immunodeficiency viral activities are listed in table 64. Majority of the tested limonoids such as (761, 821, 824, 927, 1144, 1236, 1330, 1350, 1352, 1353, 1362-1364, 1368-1372, 1379- 1381, 866, 941, 948, 949, 1280, 1328, 1329, 1333) failed to inhibit the invitro growth of HIV^{143,281,323,356,439}.

Table 64: Anti-Human Immunodeficiency Virus (HIV) Activity of Meliaceae Limonoids

Limonoid	Cells	Activity
Xylomolin A1 (759)	HIV-1 virus transfected 293 T cells	At 20 μ M, HIV-1 inhibitory rate was 17.49 % ¹⁴³
Xylomolin C2 (825)	HIV-1 virus transfected 293 T cells	At 20 μ M, HIV-1 inhibitory rate was 24.47 % ¹⁴³
Xylomolin K1 (1235)	HIV-1 virus transfected 293 T cells	At 20 μ M, HIV-1 inhibitory rate was 14.34 % ¹⁴³
Xylomolin J2 (1284)	HIV-1 virus transfected 293 T cells	At 20 μ M, HIV-1 inhibitory rate was 14.77 % ¹⁴³
Ciparasin P (568)	MTT cells infected by HIV-1	$EC_{50} = 6.1 \ \mu M^{281}$
Ciparasin B (1351)	MTT cells infected by HIV-1	$EC_{50} = 5.5 \ \mu M^{281}$
Trichiconin B (732)	HIV-1 NL 4-3 infected MT4 cells	$EC_{50} = 5.9 \ \mu M^{323}$
Trichiconin C (733)	HIV-1 NL 4-3 infected MT4 cells	$EC_{50} = 3.6 \ \mu M^{323}$
Sundarbanxylogranin B (837)	HIV-I virus transfected 293 T cells	$IC_{50} = 23.14 \ \mu M \text{ and } CC_{50} = 78.45 \ \mu M^{356}$
Krishnolide A (1339)	HIV-I virus transfected 293 T cells	$IC_{50} = 17.45 \ \mu M$ and $CC_{50} = 78.45 \ \mu M^{439}$

3.6 Melanogenesis Inhibitory Activity

The melanogenesis gives rise various pigmetary disorders whose inhibitory activity is listed in table 65. Compounds (147, 313, 456, 461, 512, 513) inhibited melanogenesis at 10 μ M with melanin content in B16 melanoma cells ranging from 1.0 to 101.3 % with cell viability ranging from 2.0 to 107.2 %. Compounds (173, 462, 469, 471, 443) inhibited melanogenesis at 30 μ M with melanin content in B16 melanoma cells ranging from 3.2 to 88.9 % with cell viability ranging from 18.9 to 142.7 %.

Table 65: Melanogenesis Inhibitory Activity of Meliaceae Limonoids

Limonoid	Cells	Activity
7-benzoyl-17-epinimbocinol (147)	B16	At 10 μ M, melanin content = 1.0 %, cell viability = 2.0 % ¹³⁸
3-acetyl-7-tigloylnimbidinin (313)	B16	At 10 μ M, melanin content = 30.3 % cell viability = 73.7 % ¹³⁸
2,3-dihydro-3α-methoxynimbolide (456)	B16	At 10 μ M, melanin content = 20.5 % cell viability = 69.9 % ¹³⁸
1-isovaleroyl- 1-detigloylsalanninolide (461)	B16	At 10 μ M, melanin content = 96.6 % cell viability = 103.9 % ¹³⁸
deacetyl-20,21-epoxy-20,22-dihydro- 21-	B16	At 10 μ M, melanin content = 101.3 % cell viability = 107.2 % ¹³⁸
deoxyisonimbinolide (512)		
deacetyl-20,21,22,23-tetrahydro-20,22-dihydroxy-	B16	At 10 μ M, melanin content =61.6 % cell viability = 98.8 % ¹³⁸
21,23-dimethoxynimbin (513)		
7-O-acetyl-7-O-debenzoyl-22-hydroxy-21-	B16	At 30 μ M, melanin content =16.9 % cell viability = 81.0 % ¹⁴⁸
methoxylimocinin (173)		
17-defurano-17-(5x-2,5-dihydro-5-hydroxy-2-	B16	At 30 μ M, melanin content =65.0 % cell viability = 142.7 % ²⁴⁴
oxofuran-3-yl)-2',3'-dehydrosalannol (462)		
17-defurano-17-(2x-2,5-dihydro-2- hydroxy-5-	B16	At 30 μ M, melanin =3.2 % cell viability = 18.9 % ²⁴⁴
oxofuran-3-yl)-28-deoxonimbolide (469)		
17- defurano-17-(2,5-dihydro-2-oxofuran-3-yl)-28-	B16	At 30 μ M, melanin content = 28.1 % cell viability = 53.4 % ²⁴⁴
deoxonimbolide (471)		
Azadirachtin J (443)	B16	At 30 μ M, melanin content = 88.9 % cell viability = 95.4 % ²³⁹

3.7 11β-hydroxysteroid Dehydrogenase Type I Inhibition Limonoids

11β-hydroxysteroid dehydrogenase type I (11β-HSD1) is an NADPH-dependent enzyme highly expressed in liver, central nervous system, adipose tissue thus making it a potential therapeutic target for various metabolic diseases. These are NADPH-dependent enzymes regulating active or inactive forms of glucocorticoids. The inhibition of 11β-HSD1 by various Limonoids are listed in table 66. Compounds (**141**, **211**, **234**, **239**, **240**, **241**, **242**, **243**) exhibited significant inhibitory activities against human and/or mouse 11β-HSD1 with IC₅₀ value ranging from 9.6 to >100 nM. At 10 μM, compounds (**148**, **149**, **150**, **304**, **305**, **306**, **307**, **544**) inhibited human and mouse 11β-HSD1 with percent inhibition values ranging from 2.64 to 56.22 %. Compounds (**209**, **41**) inhibited human 11β-HSD1 with IC₅₀ values of 9.9 and 3.20 μM respectively. Compound (**41**) inhibited mouse 11β-HSD1 with IC₅₀ value of 0.82 μM whereas compound (**209**) was inactive. At 10 μM, compounds (**213**, **214**, **223**, **224**, **225**, **226**, **1415**) inhibited human and mouse 11β-HSD1 with percent inhibition values ranging from 1.53 to 36.11 %. Compounds (**1501**, **1502**) were inactive for 11β-HSD1 inhibitory activity⁴⁸².

Table 66: 11β-hydroxysteroid Dehydrogenase type I inhibition Limonoids

Limonoid	Activity
Dysoxylumosin L (141)	Human and Mouse 11 β -HSD1 is IC ₅₀ = >100 nM each ¹³⁵
Dysoxylumosin H (211)	Human 11 β -HSD1 IC ₅₀ = >100 nM ¹³⁵
	Mouse 11 β -HSD1 IC ₅₀ = >100 nM ¹³⁵
Dysoxylumosin A (234)	Human 11 β -HSD1 IC ₅₀ = 61 nM ¹³⁵
	Mouse 11β -HSD1 IC ₅₀ = >100 nM ¹³⁵
Dysoxylumosin B (239)	Human 11 β -HSD1 IC ₅₀ = 54 nM ¹³⁵
	Mouse 11β -HSD1 IC ₅₀ = >100 nM ¹³⁵
Dysoxylumosin E (240)	Human 11 β -HSD1 IC ₅₀ = >100 nM ¹³⁵
	Mouse 11 β -HSD1 IC ₅₀ = >100 nM ¹³⁵
Dysoxylumosin F (241)	Human 11 β -HSD1 IC ₅₀ = 9.6 nM ¹³⁵
	Mouse 11β -HSD1 IC ₅₀ = >100 nM ¹³⁵
Dysoxylumosin C (242)	Human 11 β -HSD1 IC ₅₀ = >100 nM ¹³⁵
	Mouse 11 β -HSD1 IC ₅₀ = >100 nM ¹³⁵
Dysoxylumosin D (243)	Human 11 β -HSD1 IC ₅₀ = >100 nM ¹³⁵
	Mouse 11β -HSD1 IC ₅₀ = >100 nM ¹³⁵
Cochinchinoid H (148)	Human 11β-HSD1 at 10 μ M = 56.22 % ⁷⁶
	Mouse 11 β -HSD1 at 10 μ M = 14.49 % ⁷⁶
Cochinchinoid I (149)	Human 11β-HSD1 at 10 μ M = 32.70 % ⁷⁶
	Mouse 11 β -HSD1 at 10 μ M = 15.25 % ⁷⁶
Cochinchinoid J (150)	Human 11β-HSD1 at 10 μ M = 22.73 % ⁷⁶
	Mouse 11 β -HSD1 at 10 μ M = 12.78 % ⁷⁶
Cochinchinoid A (304)	Human 11 β -HSD1 at 10 μ M = 25.03 % ⁷⁶
	Mouse 11β-HSD1 at 10 μ M = -14.77 % ⁷⁶
Cochinchinoid B (305)	Human 11 β -HSD1 at 10 μ M = 38.25 % ⁷⁶
	Mouse 11β-HSD1 at 10 μ M = 10.59 % ⁷⁶
Cochinchinoid C (306)	Human 11β-HSD1 at 10 μ M = 7.63 % ⁷⁶
	Mouse 11β-HSD1 at 10 μ M = 5.56 % ⁷⁶
Cochinchinoid D (307)	Human 11β-HSD1 at 10 μ M = 16.67 % ⁷⁶
	Mouse 11β-HSD1 at 10 μ M = 2.64 % ⁷⁶

Cochinchinoid E (544)	Human 11β-HSD1 at 10 μ M = 22.07 % ⁷⁶
	Mouse 11β-HSD1 at 10 μ M = -15.05 % ⁷⁶
Walsunoid H (209)	Human 11 β -HSD1 IC ₅₀ = 9.9 μ M ¹⁵⁹
	Mouse 11 β -HSD1 IC ₅₀ = Not active ¹⁵⁹
Walsunoid F (213)	Human 11 β -HSD1 at 10 μ M = 13.18 % ¹⁵⁹
	Mouse 11 β -HSD1 at 10 μ M = 20.12 % ¹⁵⁹
Walsunoid G (214)	Human 11 β -HSD1 at 10 μ M = 16.80 % ¹⁵⁹
	Mouse 11 β -HSD1 at 10 μ M = -15.78 % ¹⁵⁹
Walsunoid D (223)	Human 11β-HSD1 at 10 μ M = 1.53 % ¹⁵⁹
	Mouse 11 β -HSD1 at 10 μ M = 19.01 % ¹⁵⁹
Walsunoid E (224)	Human 11β-HSD1 at 10 μ M = 11.11 % ¹⁵⁹
	Mouse 11 β -HSD1 at 10 μ M = 9.06 % ¹⁵⁹
Walsunoid B (225)	Human 11β-HSD1 at 10 μ M = 13.58 % ¹⁵⁹
	Mouse 11β-HSD1 at 10 μ M = 36.11 % ¹⁵⁹
Walsunoid C (226)	Human 11β-HSD1 at 10 μ M = 11.09 % ¹⁵⁹
	Mouse 11β-HSD1 at 10 μ M = 6.14 % ¹⁵⁹
Walsunoid A (1415)	Human 11 β -HSD1 at 10 μ M = 32.11 % ¹⁵⁹
	Mouse 11β-HSD1 at 10 μ M = 22.89 % ¹⁵⁹
Cochinchinoid K (41)	Human 11 β -HSD1 IC ₅₀ = 3.20 μ M ⁷⁶
	Mouse 11β-HSD1 IC ₅₀ = 0.82 μ M ⁷⁶

3.8 Miscellaneous activities of Meliaceae Limonoids

At 10 µM, compounds (181, 853, 997, 1002, 1005, 1006, 1007, 1243) were evaluated for neuroprotective effects against H₂O₂-induced neurotoxicity in PC12 cells¹⁵⁴. At 10 µM, compound (678) exhibited neuroprotective activity against glutamate induced injury in primary rat cerebellar granule neuronal cells with increased viability of 83.3 %, while compounds (530, 536, 677, 739, 794, 807, 819, 838, 909, 910, 911) were inactive²⁶⁸. Compound (10) exhibited significant inhibitory activity with an IC₅₀ value of 2.1 μ M in the bioassay of inhibitory activity against CDC25B dual specificity phosphatase, which is a key enzyme for cell cycle progression and was observed in a variety of cancers with a striking association with tumor aggressiveness and poor prognosis⁶¹. Compound (176) in vitro showed the antileishmanial activity on L. donovani promastigotes with IC₅₀ value of 6.044 µg/mL and also, cytotoxicity against RAW 264.7 cells was >200 μ g/mL indicating its high selectivity index of >33.09 μ g/mL¹⁵⁰. Compound (479) significantly promotes neurite outgrowth from PC12 cells in a dose-dependent manner in the presence of NGF (20 ng/mL) at concentrations ranging from 0.1 to 50.0 μ M, possessing strong NGF-potentiating activities on PC12 cells while compounds (247, 480, 481) were inactive¹⁶⁸. At 10 μ M, compounds (251, 263, 310, 476) significantly enhanced the TNF α -induced NF- $\kappa\beta$ luciferase activity approximately by two folds to more or less equal in comparison to TNFα-treated positive control group¹⁷⁵. Compounds (265, 266, 448, 449, 458, 463, 464, 465, 466, 467, 468, 473, 1454, 460, 472, 1453, 462, 469, 471, 1455) exhibited inhibitory effect against the Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells with IC_{50} value of 452, 401, 496, 482, 488, 521, 495, 530, 528, 497, 493, 453, 497, 431, 299, 318, 413, 475, 481 and 418 mol ratio/32 pmol TPA respectively^{188,243,244,472}. Compound (**295**) showed the highest potency to increase the nerve growth factor (NGF) production in C6 astrocytes (glioma cells) with the level of secreted NGF of 152.41 % (cell viability is (109.44 %) while in compound (493), the level of secreted NGF was 103.61 % (cell viability is (105.09 %)¹⁹². Compound (296) was evaluated for its capacity to protect HC-04 cells against oxidative stress (is thought to be involved in the pathophysiology of malaria and the development of anemia induced by malaria) induced by H_2O_2 , upon treatment for 24 h at concentrations of 1, 4, 20 and 50 µg/mL, it induced cell proliferation and cell viability was 129.76, 130.24, 134.63 and 135.12 respectively while compounds (324, 325) remained unchanged for 24 h at the same concentrations¹⁹⁸. Compound (296, 324) exhibited inhibition of lactase dehydrogenase (LDH) leakage during membrane damage (in cellular lesions) in the culture medium of HC-04 cells at 1 and 4 µg/mL while compound (325) exhibited inhibition of LDH at IC₅₀ value of 0.0026 μ M which was less than the positive control quercetin with IC_{50} value of 0.0030 μ M¹⁹⁸. Compounds (**302**, **323**, **1413**, **1442**) exhibited lipid droplet accumulation (LDA) inhibitory activity on a mouse pre-adipocyte cell line (MC3T3-G2/PA6) with IC₅₀ value of 7.1, 3.3, >50, 11.6 μ M respectively and cytotoxicity activity CC₅₀ value of >50, >50, >50 and 29.4 μ M respectively²⁰¹. Compound (334, 383, 388, 411, 417, 632, 1429, 6, 24) exhibited antiradical activities to the tested radical of 2,2-diphenyl-1picrylhydrazyl (DPPH) with IC₅₀ value of 73.1, 62.1, 59.2, 244.7, 51.3, 71.0, 104.0, 94.1, 99.7 µM respectively and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS⁺) with IC_{50} value of 167.3, 124.7, 119.8, 256.1, 109.7, 160.1, 52.2, 54.6 and 59.2 μ M respectively while compounds (**397**, **406**, **407**) were inactive for antiradical activities to the tested radical of DPPH and ABTS^{+214,62}. Compounds (**382**, **390**, **391**, **396**, **403**, **404**, **410**, **412**, **413**, **416**, **1426**, 1427) were inactive for MET tyrosine kinase activity²²⁷. Compound (497) at the concentration of 10⁻⁵ mol/L exhibited protection to the damaged SH-SY5Y cells induced by H_2O_2 with an inhibition value of 11.7 % while compounds (447, 498) were inactive²⁴². Compound (470) inhibited the growth of cress roots and shoots (IC₅₀ value

of 1.2 and 1.4 μ M respectively), while compound (1459) inhibited (IC₅₀ value of 5.7 and 9.4 μ M respectively)²⁴⁵. Similarly compound (470) inhibited barnyard roots and shoots (IC_{50} value of 3.7 and 39 μ M respectively) while compound (1459) inhibited (IC50 value of 29 and 210 µM respectively), thus exhibiting strong allelopathic activity²⁴⁵. At 10 ppm and 32 ppm, compounds (574, 575, 576, 587, 601, 602, 610, 611) didn't exhibit herbicidal activity against Arabidopsis thaliana and Poa annua respectively²⁸⁴. At 30 µM, compounds (671, 1298) exhibited potential inhibition of the delayed rectifier (I_{K}) K⁺ current in Chinese hamster ovary cells with inhibitory rate of 0.49 and 0.38 respectively²⁹⁶. At 10 µM, compound (719) showed weak protective effect on H₂O₂-induced apoptosis in human umbilical vascular endothelial cells (HUVECs) with the apoptotic rate decreased to ~50 %, compound (964) showed significant protective effect with the apoptotic rate decreased to 5.16 % while compounds (800, 801) were inactive³¹⁶. At 10 µM, compounds (1037, 1038) showed triglyceride metabolism-promoting activity in the high glucose-pretreated human hepatocellular carcinoma cell line, HepG2 with percent control of 90.1 and 88.8 % respectively while compounds (752, 753, 1035, 1036, 1039) were inactive³³⁴. Compounds (769, 804, 806) at 50 and 100 µM in vitro, exhibited significant inhibitory effect on adipocyte differentiation in 3T3-L1 cells in dose dependent manner while compounds (766, 767, 768, 769, 770, 805, 847) exhibited weak inhibitory effect³³⁹. At 50 mg/mL compounds (777, 791, 836, 869, 914, 889, 892), showed in vitro Acetylcholinesterase inhibitory activity with inhibition rate of 18.8 %, 18.5 %, 21.2 %, 23.7, 25.69, 15.47 and 13.48 % respectively^{341,366}. Compounds (1326, 1331, 1337) exhibited moderate anti-H1N1 activity with IC₅₀ values of 113.5, 121.5 and 77.1 µM respectively compared to positive control ribavirin with IC₅₀ value of 185.9 μM^{352} . Compound (849) exhibited antiviral activity against dengue virus 2 with EC₅₀ value of 7.2 μ M with selective index (CC₅₀/EC₅₀) value of >27.7³⁵³ At 50 µM (non toxic concentration), compound (1358) exhibited significant activity to reverse multidrug resistance in MCF-7/DOX cells with IC₅₀ value of 12.45 µM and reversal index of 3.89 µM³⁵⁷. Compound (878) displayed significant toxicity to late third instar larvae of Aedes aegypti with $LC_{50} = 10.20$ ppm and $LC_{95} = 34.67$ ppm (compared to rotenone, a well-known botanical insecticide with $LC_{50} = 2.62$ ppm and $LC_{95} = 16.58$ ppm); also displayed significant toxicity to late third instar larvae of Aedes albopictus $LC_{50} = 12.16$ ppm and $LC_{95} = 42.79$ ppm (compared to rotenone, a insecticide with $LC_{50} = 3.03$ ppm and $LC_{95} = 16.87$ ppm) and also to late third instar larvae of *Culex Quinquefasciatus* with $LC_{50} = 16.82$ ppm and $LC_{95} = 46.28$ ppm (compared to rotenone with $LC_{50} = 3.64$ ppm and $LC_{95} = 19.02$ ppm) while compounds (**963**, **969**, **970**) were inactive³⁶⁴. Compound (**1245**) showed affinity towards molecular chaperone Hsp90 with $K_D = 6.087 \mu M$ compared to well-known Hsp90 inhibitors radicicol ($K_D =$ 0.0018 μ M) and 17-N-allylamino-17-demethoxygeldanamycin (K_D = 0.376 μ M) while compounds (897, 898, 1244, 1246) didn't interact³⁶⁸. Compound (1150) exhibited inhibition of TCF/ β -catenin transcriptional activity (SuperTOP-Flash activity) measured using the cell line STF/293 (a 293 human embryonic kidney cell line stably transfected with SuperTOPFlash) with IC50 value of 48.9 nM while compound (931) did not decrease TCF/β-catenin transcriptional activity at 2 to 50 µM. At 10 µM, compounds (1155, 1241, 1242) exhibited inhibitory activity against lipopolysaccharide induced NF-KB activation, but showed no obvious toxicity on RAW264.7 macrophage cells^{372,375}. Compounds (1013, 1085, 1090, 1116, 1188, 1190, 1195) were inactive for inhibition of in vitro α -glucosidase and acetylcholinesterase activities^{386,413}. At 1 µg/mL, compounds (1021, 1032, 1089, 1113, 1114, 1295, 1296, 1309) exhibited inhibitory activity against lipopolysaccharide induced NF-KB production in NF-KB luciferaseexpressing human embryonic kidney 293 (HEK293-NF-κB-luc) cells in vitro with relative inhibitory potency of 0.25, 0.18, 0.11, 0.23, 0.23, 0.10, 0.33, 0.69 respectively compared to positive control hydrocortisone with relative inhibitory value of 0.29³⁹⁰. At 30 µM, compounds (1022, 1023, 1092, 1093, 1094, 1121, 1128, 1129, 1137, 1182, 1183, 1184, 1186, 1305, 1306, 1307, 1308) exhibited potential inhibition of the delayed rectifier (I_K) K^+ current in Chinese hamster ovary cells with inhibitory rate of 0.40, 0.88, 0.55, 0.75, 0.42, 0.68, 0.94, 0.86, 0.69, 0.51, 0.91, 0.90, 0.72, 0.69, 0.61, 0.51, 0.70 respectively³⁹¹. At 30 μ M, compounds (**1132**, **1133**, **1086**, **1087**, **1034**) were tested for reversing multidrug resistance in MCF-7/DOX cells but no significant effect was observed³⁹³. Compounds (1048, 1127, 1178, 1179, 1126, 1130, 1425, 1458) inhibited α-glucosidase in vitro with IC₅₀ value of 0.06 mM, 0.04 mM, 0.52 mM, 1.09 mM, 0.15 mM, 0.96 mM, 46.2 μ M, 79.7 μ M respectively and compounds (**1177**, **1187**, **1294**, **1424**) were inactive^{395,409,410,468,478}. In Swiss albino mice after 18-22 mins of administering 3-10 mg/kg of compound (1066) induced sleep with a duration of 16–18 min³⁹⁷. The in vivo pharmacological tests of compounds (1073, 1083), starting with a treatment from 0.004-0.4mg/kg/day for three consecutive days, over a three hour sampling period, induced a long-lasting augmentation of frequency and sustainment of mounting behavior in male rodents, with an effect lasting for up to 11 days post-treatment⁴⁰⁰. Compounds (**1105**, **1106**) were tested for their inhibitory activities towards several enzymes, such as hPTP1B (human protein tyrosine phosphatase 1B), CDC25B dual specificity phosphatase and pancreatic lipase, but they showed no inhibition⁴⁰⁴. Compound (114) exhibited in vitro inhibitory activity against PTP1B with IC₅₀ value of 3.93 μ g/mL compared to positive control oleanolic acid with IC₅₀ value of 1.05 μ g/mL¹¹⁴. At 50 mg/mL, compounds (1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1273, 1274, 1275, 1276) showed in vitro acetylcholinesterase inhibitory activity with inhibition rate of <10, 24.4, 19.7,

<10, <10, 17.2, 19.4, 16.9, <10, 10.6, 34.9 and 19.5 % respectively⁴²². Protein tyrosine phosphatase 1B (PTP1B) which has significant role in cell regulation, growth, and the onset of human diseases was inhibited in vitro by compound (1395) with IC₅₀ value of 16.7 μ M compared to positive control oleanolic acid with IC₅₀ value of 2.3 μ M, while compounds (1396, 1397, 1398) were inactive⁴⁵⁵. Up to 250 μ M compound (1457) exhibited no obvious selfaggregation but inhibited ADP-induced blood platelet aggregation with the inhibition rate of 24.6 % and platelet maximum aggregation of 33.6 % at 250 µM as compared to aspirin whose inhibition at 250 µM is 22.1 % and platelet maximum aggregation of 34.7 $\%^{474}$. At 10 μ M, compound (**1469**) significantly inhibited the TNF α -induced NF- $\kappa\beta$ luciferase activity by 64 % in HepG2- NF- $\kappa\beta$ -Luc cells while compounds (**1461**, **1462**, **1464**, **1468**) were inactive⁴⁸⁰. Compounds (1501, 1502) were inactive for in vitro H₂O₂-induced injury in SH-SY5Y cell damage⁴⁸². At 10 nM, compounds (76, 842) exhibited significant agonistic effect on human pregnane-X-receptor (PXR) to modulate PXR target gene CYP3A4 trans activation in HePG2 cells than positive control rifampicin^{47,153} whereas compound (1220) showed activation effect. Compounds (833, 774, 549) showed strong inhibitory activities against human carboxylesterase2 (hCES2) with IC₅₀ values of 6.63, 11.35 and 5.05 μ M, respectively¹⁵³. Compounds (261, 262, 202, 195, 158) exhibited neuroprotective effects against 6-OHDA-induced cell death in human neuroblastoma SH-SY5Y cells, showing EC₅₀ values of 0.27, 0.89, 3.08, 7.16 and 3.42 μ M, respectively as compared to positive control curcumin with EC₅₀ value of 6.08 µM¹⁴². At 100 µM, compounds (1344, 935, 775, 756-758, 1171, 1172, 879, 938, 936, 937, 939, 798, 1173, 1046, 947, 178, 179), inhibited human carboxylesterase 2 with inhibition rate of 49.4, 54.8, 65.0, 16.8, 55.1, 43.9, 23.7, 39.3, 33.0, 42.0, 59.7, 55.5, 60.0, 58.3, 52.4, 64.2, 46.3, 61.5, 34.7 and 47.9 %, respectively^{152,337}. Compounds (914, 915, 889-892, 906-908, 887, 888, 1444) didn't exhibit nematicidal activity against root knot nematode *Meloidogyne incognita*³⁶⁶. The autophagic activity of compound (**499**) was evaluated on a U-87 MG glioblastoma cell line which showed a weak cytotoxic effect and severe cell proliferation inhibition at 80 µM¹⁷³.

3.9 Insecticidal activities

Several Limonoids are well known for their insecticidal activity. Compounds (597, 598) were inactive for insecticidal activity against brine shrimp (Artemia salina) at concentrations of 100, 50 and 10 ppm⁶³. At 100 ppm, compounds (384, 385, 386, 438, 439, 1043, 1131) exhibited inhibitory activity against brine shrimp larvae with the corrected mortality of 54.7, 81.7, 63.3, 100.0, 71.3, 16 and 47 % respectively while compounds (379, 421) were inactive (<50 % corrected mortality rate)^{170,394}. At 0.01 %, compound (**37**) showed highly efficacious inhibitory effects on egg production and hatchability, with 99.2% of product effectiveness on the reproductive cycle of engorged cattle tick female (R. microplus) with mean egg conversion value of 4.4 %, hatching value of 6.1 %, which is a promising candidate for the development of a biocontrol agent against engorged females of R. (B.) microplus, as an alternative to environmentally hazardous synthetic acaricides, particularly those against which this cattle tick has developed resistance⁷³. Compounds (357, 554) showed moderate insecticidal activity against Plutella xylostella (Diamond back moth) on an artificial diet (Brassica oleracea var. capitata) (200 ppm) with LC₅₀ value in the concentration of 200 µg/mL was 53.3 and 23.3 % respectively while compounds (177, 356, 358, 359, 360, 361, 552) were inactive¹⁵¹. Compounds (**356**, **357**, **359**, **554**) showed moderate antiviral activity against tobacco mosaic virus (TMV) with inhibitory value in the concentration of 500 µg/mL were 25.4, 29.3, 37.2 and 50 % respectively¹⁵¹. Compound (229) exhibited larvicidal activity on second instar larvae of *Tuta absoluta* with LD_{50} value of 6.6 ppm compared with azadirachtin whose LD₅₀ value is 7.8 ppm [Lethal dose with 95% fiducial limits]¹⁶⁰. At 50 µg/mL, compounds (244, 332, 335, 350, 351, 501, 503, 553, 555, 556, 558, 559, 585, 1445) showed antiviral activity against TMV with inhibitory rate of 33.6, 98.9, 97.6, 89.0, 97.9, 98.5, 49.3, 91.8, 50.6, 49.3, 33.8, 32.1, 54.3 and 30.7 % respectively and exhibited inactivation effect against TMV replication at 50 µg/mL with rate of 30.2, 98.2 (IC₅₀ = 19.6 μ g/mL), 95.3 (IC₅₀ = 20.4 μ g/mL), 81.8 (IC₅₀ = 27.7 μ g/mL), 91.4 (IC₅₀ = 25.8 μ g/mL), 88.9 (IC₅₀ = 28.1 μ g/mL), 38.5 %, 87.3 (IC₅₀ = 33.9 μ g/mL), 49.1, 45.4, 36.8, 30.9, 51.8 and 32.5 % respectively¹⁶⁹. At 200 μ g/mL, compounds (244, 332, 335, 350, 491, 501, 503, 553, 555, 556, 558, 559, 585, 1445) showed in vivo protective effect on N. glutinosa leaves exhibited against TMV were 25.3, 56.7, 60.2, 36.4, 63.8, 63.8, 24.7, 57.2, 40.3, 42.5, 49.7, 35.6, 43.8 and 30.5 % respectively and in vivo curative effect on N. glutinosa leaves exhibited against TMV at 200 µg/mL were 23.6, 52.8, 57.6, 29.9, 59.6, 44.9, 20.1, 43.9, 30.7, 29.1, 29.8, 25.2, 35.1 and 27.3 % respectively¹⁶⁹ Compound (258) exhibited insecticidal activity against newly hatched larvae of Spodoptera litura at the concentration of 20 µg/mL and its corrected mortalities at four exposure times of 7, 10, 14 and 20 days were 66.19, 79.05, 96.67 and 100.00 % respectively. And the corrected mortalities for azadirachtin at four exposure times of 7, 10, 14 and 20 days were 86.67, 93.33, 100.00 and 100.00 %, respectively¹⁷⁸. At 200 µg/mL, compounds (299, 347, 348, 349, 560) exhibited inhibition activities against TMV replication on N. glutinosa with inhibition rate of 24.5, 55.6, 34.6, 29.3 and 50.2 % respectively and at 30 µg/mL they exhibited inhibition activities against TMV replication on N. tabacum cv. K326 with an inhibition rate of 30.2, 67.2, 54.4, 45.7 and 64.2 % respectively²⁰⁰.

Compounds (299, 347, 348, 349, 560) exhibited infection inhibition activity against TMV on N. glutinosa in vivo with IC₅₀ value of 27.9, 28.3, 34.6, 37.0 and 22.2 µg/mL respectively²⁰⁰. At 1000 ppm, compounds (338, 343, 345, 355, 1473) exhibited insecticidal activity against Sitobion avenae with mortality score of 33, 66, 0, 33, 99 respectively; at 500 ppm they exhibited insecticidal activity against *Plutella xylostella* with mortality score of 0, 33, 0, 33, 66 respectively; at 500 ppm they exhibited insecticidal activity against *Diabrotica balteata* with mortality score of 99, 33, 33, 66, 99 respectively and at 50 ppm it exhibited insecticidal activity against Caenorhabditis *elegans* with mortality score of 0, 49, 0, 0, 49 respectively¹²⁴. At 100 μ g/mL, compounds (**351**, **589**) showed *in vitro* pesticidal activity against brine shrimp with regulated lethality of 16.98 and 41.32 % respectively²¹⁸. Compounds (447, 497, 498) were inactive for in vitro TMV inhibition²⁴². Compounds (526, 532, 690, 691, 695) at 1000 ppm (corresponding to a concentration of ca. 20 µg/leaf cm²) exhibited weak antifeedant activity against the third-instar larvae of Spodoptera littoralis (Boisd.)²⁶⁵. At 50 µg/mL, compounds (550, 551, 1438) exhibited an inactivation effect against TMV replication in systemic infection host N. tabacum cv. K326 with an inhibition rate of 70.8 % $(IC_{50} = 34 \ \mu g/mL)$, 96.9 % $(IC_{50} = 14.8 \ \mu g/mL)$ and 56.5 % $(IC_{50} = 48.3 \ \mu g/mL)$ respectively²⁷⁷. At 2000 ppm, compounds (570, 571, 572, 594, 595, 596, 623, 629) exhibited antifeedant activity against *Helicoverpa armigera* with antifeedant index of 47.31, 23.39, 34.02, 11.11, 42.80, 28.62, 33.88 and 23.62 % respectively, also compounds (621, 622, 625, 626, 628) exhibited potent antifeedant activity against *Helicoverpa armigera* with EC₅₀ value of 0.017, 0.049, 0.008, 0.012 and 0.028 μ mol/cm² respectively²⁸². At 2000 ppm, compound (579) showed moderate antifeedant activity against Spodoptera exigua with antifeedant index of 17 % and compound (624) exhibited potent antifeedant activity against Spodoptera exigua and Helicoverpa armigera with EC_{50} value of 0.052 and 0.015 µmol/cm² respectively²⁸³. At 1000 ppm, compounds (574, 575) exhibited insecticidal activity against Sitobion avenae and Plutella xylostella with mortality score of 33 each and at 500 ppm, exhibited insecticidal activity against with mortality score of 33 each while compounds (576, 587, 601, 602, 610, 611) were inactive against both²⁸⁴. At 500 ppm, compounds (574, 575, 601) exhibited insecticidal activity against Diabrotica balteata with mortality scores of 99, 66, 33 respectively while compounds (576, 587, 602, 610, 611) were inactive²⁸⁴. At 50 ppm, compound (574) exhibited insecticidal activity against *Caenorhabditis elegans* with mortality score of 66 while compounds (575, 576, 587, 601, 602, 610, 611) were inactive²⁸⁴. Compound (681) at 100 μ g/cm² and 25 μ g/cm², exhibited antifeedant activity against Spodoptera litura with antifeedancy rate of 62.48 and 28.50 % respectively and compound (1386) at 100 and 25 μ g/cm² exhibited antifeedant activity against *Spodoptera litura* with antifeedancy rate of 90.32 and 59.5 % respectively³⁰⁷. At 1 mM, compound (708) exhibited insect-resistance ability against Drosophila melanogaster with an antifeedant index of 32.8 % while the antifeedant index of blank control and positive control was 14.7 and 28.5 % respectively³¹³. At 0.5 mg/mL, compounds (**790**, **871**, **971**) exhibited antifeedant activity against third-instar larvae of Brontispa longissima with antifeedancy rate after 24 h exposure of 25.53, 45.07 and 47.20 % respectively also after 48 h exposure the antifeedancy rate was 19.78, 29.13 and 43.48 % respectively³³⁶. At 0.5 mg/mL, compounds (790, 871, 971) exhibited insecticidal activity against third-instar larvae of Brontispa longissima with corrected mortality rate at 74 h exposure time of 23.13, 6.67 and 7.04 % respectively³³⁶. At 1.0 mg/mL, compounds (771, 772) exhibited antifeedant activity against third-instar larvae of Brontispa longissima with antifeedancy rate after 24 h of 69.6 and 42.3 % respectively also after 48 h exposure the antifeedancy rate was 62.1 % and 44.1 % respectively³⁴⁰. At 1.0 mg/mL, compounds (771, 772) exhibited insecticidal activity against third-instar larvae of Brontispa longissima with corrected mortality rate at 9 days exposure time of 17.0 and 48.2 % respectively³⁴⁰. At 100 ppm, compound (**789**) exhibited insecticidal activity against Artemia salina L. with corrected mortality rate of 64.96 %³⁴⁴. Compounds (792, 893, 944, 955, 956, 958, 965, 966, 976, 977) were inactive for antifeedant and insecticidal screenings against the third to fifth-instar larvae of Brontispa longissima³⁴⁵. Compounds (809, 1152) at 500 ppm and compounds (1151, 1153) at 1000 ppm exhibited antifeedant activity against the third-instar larvae of Spodoptera littoralis³⁴⁷. Compounds (1019, 1175, 1217) exhibited low antifeedant activity against Spodoptera litura with antifeedant index of <20, 43.02 and 47.54 μ g/cm² respectively and compound (1019) exhbited low toxicity against Spodoptera litura with antifeedant index of <20 $\mu g/cm^2$, but compounds (1175, 1217) exhibited toxicity against Spodoptera litura with LC₅₀ value of 5.4 $\mu g/cm^2$ and 7.4 μ g/cm² respectively³⁸⁸. Compounds (**1019**, **1175**, **1217**) exhibited antifeedant activity against *Achaea janata* with antifeedant index of <20, 56.74, 40.31 μ g/cm² respectively³⁸⁸. Compound (**1060**) showed no significant mortality for antifeedant index of <20, 7.5 and 13.5 μ g/cm² respectively³⁸⁸. Compound (**1060**) showed no significant mortality for insecticidal activity using Plutella xylostella on an artificial diet (500 ppm), and Heliothis virescens on cotton (1000 ppm)³⁹⁸. Compounds (1100, 1101, 1102, 1103, 1112, 1148, 1180) exhibited lethality against brine shrimp larvae with LC₅₀ value of 84.1, 203.2, 172.3, 227.9, 143.3, 229.1 and 193.2 µM respectively⁴⁰³. At 100 ppm, compounds (1193, 1194, 1196, 1197, 1198) exhibited insecticidal activity against brine shrimp larvae with the corrected mortality of 41.0, 13.50, 23.33, 17.10 and 82.94 % respectively⁴²¹. Compounds (1281, 1282, 1286, 1287, 1399) didn't exhibit antifeedant and insecticidal activity against the third to fifth-instar larvae of the coconut leaf beetle

 $(Brontispa \ longissima)^{434}$. Compound (1407) did not exhibit insecticidal activity against Artemia salina L (LD₅₀ = >100 µg/mL)⁴⁵⁸. At 2000 µg/mL, compound (1439) exhibited antifeedant activity against third-instar larvae of Plutella xylostella with antifeedant rate of 28.0 % after 48 hrs with corrected mortality after 6 days is 0.0⁴⁶⁵. Compounds (105, 121) exhibited moderate antifeedant activity against tobacco caterpillar (S. litura) with mortality percent LC₅₀ (95 % FL) value of 22.40, 41.08 % respectively and castor semilooper (A. janata) with mortality percent LC₅₀ (95 % FL) value of 30.21, 41.35 % respectively, whereas compounds (120, 124, 125) did not exhibit activity as antifeedant index was $<20^{109}$. Comopound (249) exhibited antifeedant activity against fifth instar larvae of *Pieris rapae* L. with antifeedant effect AFC₅₀ value of 1.32 mM¹⁷³. Compounds **834**, **844** showed antifeedant activity against S. litura with antifeedant index values of 89.6 and 14.6 % respectively with toxicity values of 84.68 and 8.4 % respectively after 24 h treatment³⁵⁵. At 1000ppm, compounds (642, 618) showed insecticidal activity against Sitobion avenue with mortality score of 99 and 66 respectivley as compared to positive control thiamethoxam whose mortality score is 99²⁷⁵. At 500 ppm compounds (615, 635, 642, 647, 618, 619) showed insecticidal activity against Plutella xylostella with mortality score of 66, 33, 99, 33, 99, 33 respectively as compared to positive controls thiamethoxam and indaxocarb whose mortality rate is 66 and 99 respectivley²⁷⁵. At 500 ppm compounds (635, 642, 619) showed insecticidal activity against Diabrotica balteata with mortality score of 33, 33, 33 respectively as compared to positive control thiamethoxam whose mortality score is 99^{275} . Compounds (615 635-648, 603, 604, 618-620, 605-609) didn't exhibit insecticidal activities against Caenorhabditis elegans²⁷⁵.

Conclusion and further prospectus

Limonoids are wonder molecules of nature which are highly complex and structurally diversified. This class of plant specialized metabolites came into limelight after the discovery of Azadirachtin from Neem tree⁴⁸³. Since then, there is a tremendous curiosity among researchers to exploit more limonoids. Till date over 2500 different limonoids are reported from the Meliaeae family with numerous biological activities. The advancement in the spectroscopic techniques has contributed to the increased number of limonoids isolated from Meliaceae plants with different skeletons. In the last decade, 1502 novel limonoids belonging to 67 species and 28 genera are reported in this review. The highest contribution of novel limonoids was from genus Xylocarpus (15.51 %), Toona (9.70 %), Chukrasia (8.84 %), Aphanamixis (8.18 %), Melia (8.05 %) and Trichilia (7.12 %). The only plants from which the highest number of novel limonoids were reported in the last decade are Chukrasia tabularis, Xylocarpus granatum and Toona ciliata. Among the different classes of limonoids, Phragmalin class constituted the highest number of novel limonoids being reported with 313 followed by the Mexicanolide class with 273. Most of the novel limonoids reported here were exploited majorly for antineoplastic and anti-inflammatory activity. From this review we conclude that limonoids have a great potential to be the drugs of the future for various human ailments and also in the development of biopesticides for sustainable agriculture. The thorough discussion of chemistry of these limonoids paves a way to harness the biosynthetic potential leading to the identification of limonoid biosynthetic genes which will assist the heterologous production of limonoids for commercial use.

Acknowledgment

FAM and SSN acknowledge Council of Scientific and Industrial Research (CSIR), New Delhi and Department of Science and Technology (DST), New Delhi for the fellowship respectively.

Note

This manuscript is submitted to RSC Natural Product Reports journal.

References

- (1) Bernay, S. Limonin. Annalen 1841, 40, 317–319.
- (2) X., F.; Y. T., D.; X. J., H. The Advances in the Limonoid Chemistry of the Meliaceae Family. *Curr. Org. Chem.* **2011**, *15* (9), 1363–1391. https://doi.org/10.2174/138527211795378254.
- Joshi, B. S.; Hegde, V. R. Extractives of Balsamodendron pubescens: Stocks, Hook. Isolation and a New (3) Synthesis of Siderin. Proc. Indian Acad. Sci. -Chem. Sci. 1979. 88 (3). https://doi.org/10.1007/BF02844800.
- (4) Ahmad, J.; Wizarat, K.; Shamsuddin, K. M.; Zaman, A.; Connolly, J. D. Jangomolide, a Novel Limonoid from *Flacourtia jangomas*. *Phytochemistry* **1984**, *23* (6). https://doi.org/10.1016/S0031-9422(00)80439-2.
- (5) Zheng, S.; Meng, J.; Shen, X.; Wang, D.; Fu, H.; Wang, Q. Two New Limonoids from the Seeds of

Microula sikkimensis. Planta Med. 1997, 63 (04), 379-380. https://doi.org/10.1055/s-2006-957711.

- (6) Kubo, I.; Hanke, F. J.; Asaka, Y.; Matsumoto, T.; He, C. H.; Clardy, J. Insect Antifeedants from Tropical Plants I. Structure of Dumsin. *Tetrahedron* **1990**, *46* (5). https://doi.org/10.1016/S0040-4020(01)81960-8.
- (7) Nihei, K. I.; Hanke, F. J.; Asaka, Y.; Matsumoto, T.; Kubo, I. Insect Antifeedants from Tropical Plants II: Structure of Zumsin. *J. Agric. Food Chem.* **2002**, *50* (18). https://doi.org/10.1021/jf020245q.
- (8) Nihei, K.-I. I.; Asaka, Y.; Mine, Y.; Ito, C.; Furukawa, H.; Ju-Ichi, M.; Kubo, I. Insect Antifeedants from Tropical Plants: Structures of Dumnin and Dumsenin. J. Agric. Food Chem. 2004, 52 (11), 3325–3328. https://doi.org/10.1021/jf049819c.
- (9) Nihei, K. I.; Asaka, Y.; Mine, Y.; Kubo, I. Insect Antifeedants from Croton Jatrophoides: Structures of Zumketol, Zumsenin, and Zumsenol. *J. Nat. Prod.* **2005**, *68* (2). https://doi.org/10.1021/np049697i.
- (10) Morgan, E. D. Azadirachtin, a Scientific Gold Mine. *Bioorganic Med. Chem.* 2009, 17 (12). https://doi.org/10.1016/j.bmc.2008.11.081.
- (11) Atawodi, S. E.; Atawodi, J. C. Azadirachta indica (Neem): A Plant of Multiple Biological and Pharmacological Activities. *Phytochem. Rev.* 2009, 8 (3), 601–620. https://doi.org/10.1007/s11101-009-9144-6.
- (12) Tan, Q. G.; Luo, X. D. Meliaceous Limonoids: Chemistry and Biological Activities. *Chem. Rev.* 2011, 111 (11), 7437–7522. https://doi.org/10.1021/cr9004023.
- (13) Roy, A.; Saraf, S. Limonoids: Overview of Significant Bioactive Triterpenes Distributed in Plants Kingdom. *Biol. Pharm. Bull.* 2006, 29 (2), 191–201. https://doi.org/10.1248/bpb.29.191.
- (14) Paul, R.; Prasad, M.; Sah, N. K. Anticancer Biology of *Azadirachta indica* L (Neem): A Mini Review. *Cancer Biology and Therapy*. 2011. https://doi.org/10.4161/cbt.12.6.16850.
- (15) Fu, S.; Liu, B. Recent Progress in the Synthesis of Limonoids and Limonoid-like Natural Products. *Org. Chem. Front.* **2020**, 7 (14), 1903–1947. https://doi.org/10.1039/D0Q000203H.
- (16) Mouthé Happi, G.; Tchaleu Ngadjui, B.; Green, I. R.; Fogué Kouam, S. Phytochemistry and Pharmacology of the Genus *Entandrophragma* over the 50 Years from 1967 to 2018: A 'Golden' Overview. J. Pharm. Pharmacol. 2018, 70 (11), 1431–1460. https://doi.org/10.1111/jphp.13005.
- (17) Harneti, D.; Supratman, U. Phytochemistry and Biological Activities of *Aglaia* Species. *Phytochemistry* **2021**, *181*, 112540. https://doi.org/10.1016/j.phytochem.2020.112540.
- (18) Passos, M. S.; Nogueira, T. S. R.; Azevedo, O. de A.; Vieira, M. G. C.; Terra, W. da S.; Braz-Filho, R.; Vieira, I. J. C. Limonoids from the Genus *Trichilia* and Biological Activities: Review. *Phytochem. Rev.* 2021. https://doi.org/10.1007/s11101-020-09737-x.
- (19) Sun, Y.-P.; Jin, W.-F.; Wang, Y.-Y.; Wang, G.; Morris-Natschke, S.; Liu, J.-S.; Wang, G.-K.; Lee, K.-H. Chemical Structures and Biological Activities of Limonoids from the Genus *Swietenia* (Meliaceae). *Molecules* 2018, 23 (7), 1588. https://doi.org/10.3390/molecules23071588.
- (20) Shilpi, J. A.; Saha, S.; Chong, S. L.; Nahar, L.; Sarker, S. D.; Awang, K. Advances in Chemistry and Bioactivity of the Genus *Chisocheton blume*. *Chem. Biodivers.* 2016, 13 (5), 483–503. https://doi.org/10.1002/cbdv.201400373.
- (21) Bandi, A. K. R.; Lee, D.-U. Secondary Metabolites of Plants from the Genus *Cipadessa*: Chemistry and Biological Activity. *Chem. Biodivers.* **2012**, *9* (8), 1403–1421. https://doi.org/10.1002/cbdv.201100172.
- (22) Xu, W.-H. H.; Su, X.-M. M.; Wang, C.; Du, F.; Liang, Q. The Genus Amoora: A Phytochemical and Pharmacological Review. *Fitoterapia* 2019, 137 (July), 104269. https://doi.org/10.1016/j.fitote.2019.104269.
- (23) De Leo, M.; Milella, L.; Braca, A.; De Tommasi, N. Cedrela and Toona Genera: A Rich Source of Bioactive Limonoids and Triterpenoids. Phytochem. Rev. 2018, 17 (4), 751–783. https://doi.org/10.1007/s11101-018-9557-1.
- (24) Wang, G.-W. W.; Jin, H.-Z. Z.; Zhang, W.-D. D. Constituents from *Aphanamixis* Species and Their Biological Activities. *Phytochem. Rev.* 2013, *12* (4), 915–942. https://doi.org/10.1007/s11101-013-9317-1.
- (25) Zhang, Y.; Xu, H. Recent Progress in the Chemistry and Biology of Limonoids. *RSC Adv.* 2017, 7 (56), 35191–35220. https://doi.org/10.1039/c7ra04715k.
- Moghadamtousi, S.; Goh, B.; Chan, C.; Shabab, T.; Kadir, H. Biological Activities and Phytochemicals of *Swietenia macrophylla* King. *Molecules* 2013, 18 (9), 10465–10483. https://doi.org/10.3390/molecules180910465.
- (27) Komane, B. M.; Olivier, E. I.; Viljoen, A. M. *Trichilia emetica* (Meliaceae) A Review of Traditional Uses, Biological Activities and Phytochemistry. *Phytochem. Lett.* 2011, 4 (1), 1–9. https://doi.org/10.1016/j.phytol.2010.11.002.
- (28) Tundis, R.; Loizzo, M. R.; Menichini, F. An Overview on Chemical Aspects and Potential Health Benefits

of Limonoids and Their Derivatives. *Crit. Rev. Food Sci. Nutr.* **2014**, *54* (2), 225–250. https://doi.org/10.1080/10408398.2011.581400.

- (29) Hill, R. A.; Connolly, J. D. Triterpenoids. *Nat. Prod. Rep.* **2012**, *29* (7), 780. https://doi.org/10.1039/c2np20027a.
- (30) Hill, R. A.; Connolly, J. D. Triterpenoids. *Nat. Prod. Rep.* **2013**, *30* (7), 1028–1065. https://doi.org/10.1039/C3NP70032A.
- (31) Hill, R. A.; Connolly, J. D. Triterpenoids. *Nat. Prod. Rep.* **2015**, *32* (2), 273–327. https://doi.org/10.1039/C4NP00101J.
- (32) Hill, R. A.; Connolly, J. D. Triterpenoids. *Nat. Prod. Rep.* **2017**, *34* (1), 90–122. https://doi.org/10.1039/C6NP00094K.
- (33) Hill, R. A.; Connolly, J. D. Triterpenoids. *Nat. Prod. Rep.* **2018**, *35* (12), 1294–1329. https://doi.org/10.1039/C8NP00029H.
- (34) Hill, R. A.; Connolly, J. D. Triterpenoids. *Nat. Prod. Rep.* **2020**, *37* (7), 962–998. https://doi.org/10.1039/C9NP00067D.
- (35) Siddiqui, S.; Siddiqui, B. S.; Faizi, S.; Mahmood, T. Tetracyclic Triterpenoids and Their Derivatives from *Azadirachta indica. J. Nat. Prod.* **1988**, *51* (1), 30–43. https://doi.org/10.1021/np50055a003.
- (36) Ekong, D. E. U.; Ibiyemi, S. A.; Olagbemi, E. O. The Meliacins (Limonoids). Biosynthesis of Nimbolide in the Leaves of Azadirachta indica. J. Chem. Soc. D Chem. Commun. 1971, No. 18, 1117. https://doi.org/10.1039/c29710001117.
- (37) Nes, W. D.; Wong, R. Y.; Benson, M.; Landrey, J. R.; Nes, W. R. Rotational Isomerism about the 17(20)-Bond of Steroids and Euphoids as Shown by the Crystal Structures of Euphol and Tirucallol. *Proc. Natl. Acad. Sci.* **1984**, *81* (18), 5896–5900. https://doi.org/10.1073/pnas.81.18.5896.
- (38) Rani, K.; Akhila, A. Biosynthetic Relationship Between Nemocinol and Nimocinolide in *Azadirachta indica. Nat. Prod. Lett.* **1994**, *4* (3), 179–182. https://doi.org/10.1080/10575639408043902.
- (39) Akhila, A.; Srivastava, M.; Rani, K. Production of Radioactive Azadirachtin in the Seed Kernels of Azadirachta indica (The Indian Neem Tree). Nat. Prod. Lett. 1998, 11 (2), 107–110. https://doi.org/10.1080/10575639808041205.
- (40) Aarthy, T.; Mulani, F. A.; Pandreka, A.; Kumar, A.; Nandikol, S. S.; Haldar, S.; Thulasiram, H. V. Tracing the Biosynthetic Origin of Limonoids and Their Functional Groups through Stable Isotope Labeling and Inhibition in Neem Tree (*Azadirachta indica*) Cell Suspension. *BMC Plant Biol.* 2018, *18* (1), 230. https://doi.org/10.1186/s12870-018-1447-6.
- (41) Hodgson, H.; De La Peña, R.; Stephenson, M. J.; Thimmappa, R.; Vincent, J. L.; Sattely, E. S.; Osbourn, A. Identification of Key Enzymes Responsible for Protolimonoid Biosynthesis in Plants: Opening the Door to Azadirachtin Production. *Proc. Natl. Acad. Sci. U. S. A.* **2019**, *116* (34), 17096–17104. https://doi.org/10.1073/pnas.1906083116.
- (42) Pandreka, A.; Chaya, P. S.; Kumar, A.; Aarthy, T.; Mulani, F. A.; Bhagyashree, D. D.; B, S. H.; Jennifer, C.; Ponnusamy, S.; Nagegowda, D.; Thulasiram, H. V. Limonoid Biosynthesis 3: Functional Characterization of Crucial Genes Involved in Neem Limonoid Biosynthesis. *Phytochemistry* 2021, *184*, 112669. https://doi.org/10.1016/j.phytochem.2021.112669.
- (43) Puripattanavong, J.; Weber, S.; Brecht, V.; Frahm, A. W. Phytochemical Investigation of *Aglaia* andamanica. Planta Med. **2000**, 66 (8), 740–745. https://doi.org/10.1055/s-2000-9901.
- (44) K. Purushothaman, K.; Duraiswamy, K.; D. Connolly, J.; S. Rycroft, D. Triterpenoids from *Walsura* piscidia. Phytochemistry **1985**, 24 (10), 2349–2354. https://doi.org/10.1016/S0031-9422(00)83040-X.
- Jolad, S. D.; Hoffmann, J. J.; Schram, K. H.; Cole, J. R.; Tempesta, M. S.; Bates, R. B. Constituents of *Trichilia hispida* (Meliaceae). 4. Hispidols A and B, Two New Tirucallane Triterpenoids. *J. Org. Chem.* 1981, 46 (20), 4085–4088. https://doi.org/10.1021/jo00333a037.
- (46) Liu, H.; Heilmann, J.; Rali, T.; Sticher, O. New Tirucallane-Type Triterpenes from *Dysoxylum variabile*. J. *Nat. Prod.* **2001**, *64* (2), 159–163. https://doi.org/10.1021/np0002841.
- (47) Jiang, Z.-P.; Luan, Z.-L.; Liu, R.-X.; Zhang, Q.; Ma, X.-C.; Shen, L.; Wu, J. Mangrove Tirucallane- and Apotirucallane-Type Triterpenoids: Structure Diversity of the C-17 Side-Chain and Natural Agonists of Human Farnesoid/Pregnane–X–Receptor. *Mar. Drugs* 2018, 16 (12), 488. https://doi.org/10.3390/md16120488.
- (48) Mohamad, K.; Martin, M.-T.; Litaudon, M.; Gaspard, C.; Sévenet, T.; Païs, M. Tirucallane Triterpenes from Dysoxylum macranthum. Phytochemistry 1999, 52 (8), 1461–1468. https://doi.org/10.1016/S0031-9422(99)00455-0.
- (49) Luo, X.-D.; Wu, S.-H.; Ma, Y.-B.; Wu, D.-G. Tirucallane Triterpenoids from *Dysoxylum hainanense*.

Phytochemistry 2000, 54 (8), 801–805. https://doi.org/10.1016/S0031-9422(00)00172-2.

- (50) Wang, H.; Zhang, X. F.; Yang, S. M.; Luo, X. D.; Wang Huan, Zhang Xiao-Feng, Yang Shu-Min, L.; Xiao-Dong. A New Triterpenoid from *Amoora dasyclada*. Acta Bot. Sin. **2004**, 46 (10), 1256–1260.
- (51) Merrien, A.; Polonsky, J. The Natural Occurrence of Melianodiol and Its Diacetate in *Samadera madagascariensis* (Simaroubaceae): Model Experiments on Melianodiol Directed towards Simarolide. J. Chem. Soc. D Chem. Commun. **1971**, No. 6, 261. https://doi.org/10.1039/c29710000261.
- (52) Cortez, D. A. G.; Vieira, P. C.; Fernandes, J. B.; da Silva, G. F. G. F.; Ferreira, A. G. Limonoids from *Trichilia hirta. Phytochemistry* **1992**, *31* (2), 625–628. https://doi.org/10.1016/0031-9422(92)90048-U.
- (53) Phan, N. H. T.; Thuan, N. T. D.; Ngoc, N. T.; Huong, P. T. M.; Thao, N. P.; Cuong, N. X.; Van Thanh, N.; Nam, N. H.; Van Kiem, P.; Van Minh, C. Two Tirucallane Derivatives from *Paramignya scandens* and Their Cytotoxic Activity. *Phytochem. Lett.* **2014**, *9*, 78–81. https://doi.org/10.1016/j.phytol.2014.04.011.
- (54) Xie, B.-J.; Yang, S.-P.; Chen, H.-D.; Yue, J.-M. Agladupols A–E, Triterpenoids from *Aglaia duperreana*. J. *Nat. Prod.* **2007**, *70* (9), 1532–1535. https://doi.org/10.1021/np0702842.
- (55) Lavie, D.; Jain, M. K.; Kirson, I. Terpenoids. Part VI. The Complete Structure of Melianone. J. Chem. Soc. C Org. 1967, 1347. https://doi.org/10.1039/j39670001347.
- (56) Lavie, D.; Jain, M. K.; Shpan-Gabrielith, S. R. A Locust Phagorepellent from Two *Melia* Species. *Chem. Commun.* **1967**, No. 18, 910. https://doi.org/10.1039/c19670000910.
- (57) Salimuzzaman Siddiqui, Bina Shaheen Siddiqui, Shaheen Faizi, T. M. Studies on the Chemical Constituents of *Azadirachta indica* A. Juss (Meliaceae) Part VI {1}. *J. Chem. Soc.* **1986**, 8 (3), 341–347.
- (58) Jolad, S. D.; Wiedhopf, R. M.; Cole, J. R. Cytotoxic Agents from *Bursera klugii* (Burseraceae) I: Isolation of Sapelins A and B. J. Pharm. Sci. **1977**, 66 (6), 889–890. https://doi.org/10.1002/jps.2600660645.
- (59) Niu, K.; Shen, L.; Wu, J. A Tirucallane and Two Pairs of Tetranortriterpene 23-Epimers from the Thai Mangrove Xylocarpus moluccensis. J. Asian Nat. Prod. Res. 2016, 18 (1), 36–40. https://doi.org/10.1080/10286020.2015.1075006.
- (60) Zhang, L.; Xia, J.; Duan, Y.; Wei, K.; Gao, R.; Li, D.; Liu, X.; Zhang, T.; Qiu, M. Toonamicrocarpavarin, a New Tirucallane-Type Triterpenoid from *Toona ciliata*. *Nat. Prod. Res.* **2021**, *35* (2), 266–271. https://doi.org/10.1080/14786419.2019.1627351.
- (61) Wang, J.-R. R.; Liu, H.-L. L.; Kurtán, T.; Mándi, A.; Antus, S.; Li, J.; Zhang, H.-Y. Y.; Guo, Y.-W. W. Protolimonoids and Norlimonoids from the Stem Bark of *Toona ciliata* Var. Pubescens. *Org. Biomol. Chem.* 2011, 9 (22), 7685–7696. https://doi.org/10.1039/c10b06150j.
- (62) Zou, Y. H.; Liu, W. T.; Zhang, J. X.; Xiang, D. C. Triterpenoids from the Bark of *Dysoxylum hainanense* and Their Anti-Inflammatory and Radical Scavenging Activity. *Fitoterapia* **2017**, *121*, 159–163. https://doi.org/10.1016/j.fitote.2017.07.012.
- (63) Liu, W.-X. X.; Tang, G.-H. H.; He, H.-P. P.; Zhang, Y.; Li, S.-L. L.; Hao, X.-J. J. Limonoids and Triterpenoids from the Twigs and Leaves of *Dysoxylum hainanense*. *Nat. Products Bioprospect.* 2012, 2 (1), 29–34. https://doi.org/10.1007/s13659-011-0030-8.
- (64) Zeng, Q.; Guan, B.; Qin, J. J.; Wang, C. H.; Cheng, X. R.; Ren, J.; Yan, S. K.; Jin, H. Z.; Zhang, W. D. 2,3-Seco- and 3,4-Seco-Tirucallane Triterpenoid Derivatives from the Stems of *Aphanamixis grandifolia* Blume. *Phytochemistry* 2012, *80*, 148–155. https://doi.org/10.1016/j.phytochem.2012.05.017.
- (65) Wang, J.; Zhang, Y.; Luo, J.; Kong, L. Complete 1 H and 13 C NMR Data Assignment of Protolimonoids from the Stem Barks of *Aphanamixis grandifolia*. *Magn. Reson. Chem.* 2011, 49 (7), 450–457. https://doi.org/10.1002/mrc.2768.
- (66) Hu, J.; Wang, X.; Shi, X. Triterpenoids and Limonoids from *Dysoxylum lukii* with Cytotoxic and Antimicrobial Activities. *European J. Org. Chem.* 2011, No. 35, 7215–7223. https://doi.org/10.1002/ejoc.201101182.
- (67) Happi, G. M.; Kouam, S. F.; Talontsi, F. M.; Zühlke, S.; Lamshöft, M.; Spiteller, M. Minor Secondary Metabolites from the Bark of *Entandrophragma congoënse* (Meliaceae). *Fitoterapia* 2015, 102, 35–40. https://doi.org/10.1016/j.fitote.2015.01.018.
- (68) Huang, H.-L.; Wang, C.-M.; Wang, Z.-H.; Yao, M.-J.; Han, G.-T.; Yuan, J.-C.; Gao, K.; Yuan, C. Tirucallane-Type Triterpenoids from *Dysoxylum lenticellatum*. J. Nat. Prod. **2011**, 74 (10), 2235–2242. https://doi.org/10.1021/np2006296.
- (69) Chen, J.; Chen, J.; Sun, Y.; Yan, Y.; Kong, L.; Li, Y.; Qiu, M. Cytotoxic Triterpenoids from *Azadirachta indica*. *Planta Med.* **2011**, 77 (16), 1844–1847. https://doi.org/10.1055/s-0030-1271197.
- (70) Fossen, T.; Rasoanaivo, P.; Manjovelo, C. S.; Raharinjato, F. H.; Yahorava, S.; Yahorau, A.; Wikberg, J. E.
 S. A New Protolimonoid from *Capuronianthus mahafalensis*. *Fitoterapia* 2012, 83 (5), 901–906. https://doi.org/10.1016/j.fitote.2012.03.023.

- (71) Zhou, F.; Ma, X. H.; Li, Z. J.; Li, W.; Zheng, W. M.; Wang, Z. B.; Zeng, X. M.; Sun, K. H.; Zhang, Y. H. Four New Tirucallane Triterpenoids from the Fruits of *Melia azedarach* and Their Cytotoxic Activities. *Chem. Biodivers.* 2016, 13 (12), 1738–1746. https://doi.org/10.1002/cbdv.201600149.
- (72) Wang, J.-S.; Zhang, Y.; Wei, D.-D.; Wang, X.-B.; Luo, J.; Kong, L.-Y. Novel Tirucallane-Type Triterpenoids from *Aphanamixis grandifolia*. *Chem. Biodivers.* **2011**, 8 (11), 2025–2034. https://doi.org/10.1002/cbdv.201000250.
- (73) Miguita, C. H.; Silva Da Barbosa, C.; Hamerski, L.; Sarmento, U. C.; Do Nascimento, J. N.; Garcez, W. S.; Garcez, F. R. 3β-O-Tigloylmelianol from *Guarea kunthiana*: A New Potential Agent to Control Rhipicephalus (Boophilus) Microplus, a Cattle Tick of Veterinary Significance. *Molecules*. 2015, pp 111– 126. https://doi.org/10.3390/molecules20010111.
- (74) Zhang, Y.; Wang, J. S.; Wang, X. B.; Gu, Y. C.; Kong, L. Y. Polystanins A-D, Four New Protolimonoids from the Fruits of *Aphanamixis polystachya*. *Chem. Pharm. Bull.* **2013**, *61* (1), 75–81. https://doi.org/10.1248/cpb.c12-00332.
- (75) Kurimoto, S. I.; Takaishi, Y.; Ahmed, F. A.; Kashiwada, Y. Triterpenoids from the Fruits of *Azadirachta indica* (Meliaceae). *Fitoterapia* **2014**, *92*, 200–205. https://doi.org/10.1016/j.fitote.2013.11.004.
- (76) Han, M.-L.; Shen, Y.; Wang, G.-C.; Leng, Y.; Zhang, H.; Yue, J.-M. 11β-HSD1 Inhibitors from Walsura cochinchinensis. J. Nat. Prod. 2013, 76 (7), 1319–1327. https://doi.org/10.1021/np400260g.
- (77) Yuan, C.-M.; Zhang, Y.; Tang, G.-H.; Li, Y.; He, H.-P.; Li, S.-F.; Hou, L.; Li, X.-Y.; Di, Y.-T.; Li, S.-L.; Hua, H.-M.; Hao, X.-J. Cytotoxic Limonoids from *Melia azedarach. Planta Med.* **2012**, *79* (02), 163–168. https://doi.org/10.1055/s-0032-1328069.
- (78) Hu, J.; Song, Y.; Li, H.; Yang, B.; Mao, X.; Zhao, Y.; Shi, X. Cytotoxic and Anti-Inflammatory Tirucallane Triterpenoids from *Dysoxylum binectariferum*. *Fitoterapia* 2014, 99, 86–91. https://doi.org/10.1016/j.fitote.2014.09.010.
- (79) Dong, S. H.; He, X. F.; Dong, L.; Wu, Y.; Yue, J. M. Triterpenoids from *Melia toosendan. Helv. Chim. Acta* 2012, 95 (2), 286–300. https://doi.org/10.1002/hlca.201100323.
- (80) Zhang, F.; Wang, J.-S.; Gu, Y.-C.; Kong, L.-Y. Cytotoxic and Anti-Inflammatory Triterpenoids from *Toona ciliata*. J. Nat. Prod. 2012, 75 (4), 538–546. https://doi.org/10.1021/np200579b.
- (81) Orisadipe, A. T.; Adesomoju, A. A.; D'Ambrosio, M.; Guerriero, A.; Okogun, J. I. Tirucallane Triterpenes from the Leaf Extract of *Entandrophragma angolense*. *Phytochemistry* **2005**, *66* (19), 2324–2328. https://doi.org/10.1016/j.phytochem.2005.07.017.
- (82) Hernandez, V.; De Leo, M.; Cotugno, R.; Braca, A.; De Tommasi, N.; Severino, L. New Tirucallane-Type Triterpenoids from *Guarea guidonia*. *Planta Med.* **2018**, *84* (9–10), 716–720. https://doi.org/10.1055/s-0044-100524.
- (83) Zhou, X.-J.; Xu, M.; Li, X.-S.; Wang, Y.-H.; Gao, Y.; Cai, R.; Cheng, Y.-X. Triterpenoids and Sterones from the Stem Bark of *Ailanthus altissima*. *Bull. Korean Chem. Soc.* **2011**, *32* (1), 127–130. https://doi.org/10.5012/bkcs.2011.32.1.127.
- (84) Tang, J.; Xu, J.; Zhang, J.; Liu, W. Y.; Xie, N.; Chen, L.; Feng, F.; Qu, W. Novel Tirucallane Triterpenoids from the Stem Bark of *Toona sinensis*. *Fitoterapia* 2016, *112*, 97–103. https://doi.org/10.1016/j.fitote.2016.05.009.
- (85) Zhang, Y.; Wang, J.; Wei, D.; Wang, X.; Luo, J.; Luo, J.; Kong, L. Cytotoxic Tirucallane C26 Triterpenoids from the Stem Barks of *Aphanamixis grandifolia*. *Phytochemistry* **2010**, *71* (17–18), 2199–2204. https://doi.org/10.1016/j.phytochem.2010.08.017.
- (86) Hu, W.-M.; Wu, J. Protoxylogranatin B, a Key Biosynthetic Intermediate from *Xylocarpus granatum*: Suggesting an Oxidative Cleavage Biogenetic Pathway to Limonoid. *Open Nat. Prod. J.* 2010, 3 (1), 1–5. https://doi.org/10.2174/1874848101003010001.
- (87) Yuan, T.; Zhang, C.-R.; Yang, S.-P.; Yue, J.-M. Limonoids and Triterpenoids from *Khaya senegalensis*. J. Nat. Prod. **2010**, 73 (4), 669–674. https://doi.org/10.1021/np1000158.
- (88) Li, M.-Y.; Wu, J.; Zhang, S.; Xiao, Q.; Li, Q.-X. The Absolute Stereochemistry of Protoxylogranatin A a New Protolimonoid from the Seeds of Chinese Mangrove *Xylocarpus granatum*. J. Asian Nat. Prod. Res. 2008, 10 (6), 503–508. https://doi.org/10.1080/10286020801966690.
- (89) Bai, Y.; Jin, X.; Jia, X.; Tang, W.; Wang, X.; Zhao, Y. Two New Apotirucallane-Type Isomeric Triterpenoids from the Root Bark of *Dictamnus dasycarpus* with Their Anti-Proliferative Activity. *Phytochem. Lett.* **2014**, *10*, 118–122. https://doi.org/10.1016/j.phytol.2014.06.017.
- (90) Yang, M.-H.; Wang, J.-S.; Luo, J.-G.; Wang, X.-B.; Kong, L.-Y. Four New Triterpenoids from *Chisocheton* paniculatus and Their Anti-Inflammatory Activities. *Can. J. Chem.* **2012**, *90* (2), 199–204. https://doi.org/10.1139/v11-147.

- (91) Ning, J.; He, H.-P.; Li, S.-F.; Geng, Z.-L.; Fang, X.; Di, Y.-T.; Li, S.-L.; Hao, X.-J. Triterpenoids from the Leaves of Toona ciliata. J. Asian Nat. Prod. Res. 2010. 12 (6). 448-452. https://doi.org/10.1080/10286020.2010.493329.
- (92) Luo, X.-D.; Wu, S.-H.; Wu, D.-G.; Ma, Y.-B.; Qi, S.-H. Three New Apo-Tirucallols with Six-Membered Hemiacetal from Meliaceae. *Tetrahedron* 2002, 58 (33), 6691–6695. https://doi.org/10.1016/S0040-4020(02)00679-8.
- (93) Kitagawa, I.; Mahmud, T.; Simajuntak, P.; Hori, K.; Uji, T.; Shibuya, H. Indonesian Medicinal Plants. VIII. Chemical Structures of Three New Triterpenoids, Bruceajavanin A, Dihydrobruceajavanin A, and Bruceajavanin B, and a New Alkaloidal Glycoside, Bruceacanthinoside, from the Stems of Brucea Javanica (Simaroubaceae). *Chem. Pharm. Bull.* **1994**, *42* (7), 1416–1421. https://doi.org/10.1248/cpb.42.1416.
- (94) Mulholland, D. A.; Monkhe, T. V.; Taylor, D. A. H.; Rajab, M. S. Triterpenoids from *Turraea holstii*. *Phytochemistry* **1999**, *52* (1), 123–126. https://doi.org/10.1016/S0031-9422(99)00071-0.
- (95) Dong, S.-H.; Liu, J.; Ge, Y.-Z.; Dong, L.; Xu, C.-H.; Ding, J.; Yue, J.-M. Chemical Constituents from *Brucea javanica. Phytochemistry* **2013**, *85*, 175–184. https://doi.org/10.1016/j.phytochem.2012.08.018.
- (96) Omobuwajo, O. R.; Martin, M.-T.; Perromat, G.; Sévenet, T.; Païs, M.; Awang, K. Apotirucallane Triterpenes from *Aglaia argentea*. J. Nat. Prod. **1996**, 59 (6), 614–617. https://doi.org/10.1021/np960159i.
- (97) Adesanya, S. A.; Païs, M.; Sévenet, T.; Cosson, J. P. Apotirucallane Triterpenes from *Dysoxylum roseum*. J. Nat. Prod. 1991, 54 (6), 1588–1594. https://doi.org/10.1021/np50078a015.
- (98) Lyons, C. W.; Taylor, D. R. Stereochemistry of Sapelin B; Correlation with Sapelin D. Anomalies in the Use of Shift Reagents for Determining the Absolute Configurations of α-Glycols. J. Chem. Soc., Chem. Commun. 1976, No. 16, 647–648. https://doi.org/10.1039/C39760000647.
- (99) Siddiqui, B. S.; Ali, S. T.; Rasheed, M.; Kardar, M. N. Chemical Constituents of the Flowers of Azadirachta indica. Helv. Chim. Acta 2003, 86 (8), 2787–2796. https://doi.org/10.1002/hlca.200390229.
- (100) Connolly, J. D.; Phillips, W. R.; Mulholland, D. A.; Taylor, D. A. H. Spicatin, a Protolimonoid from Entandrophragma spicatum. Phytochemistry 1981, 20 (11), 2596–2597. https://doi.org/10.1016/0031-9422(81)83107-X.
- (101) Xie, B.; Yang, S.; Zhang, C.; Yue, J. Chisiamols A-F, Triterpenoids from *Chisocheton siamensis*. *Chinese J. Chem.* 2009, 27 (9), 1805–1810. https://doi.org/10.1002/cjoc.200990304.
- (102) Liu, J.; Yang, S. P.; Ni, G.; Gu, Y. C.; Yue, J. M. Triterpenoids from *Aglaia odorata* Var. Microphyllina. J. *Asian Nat. Prod. Res.* **2012**, *14* (10), 929–939. https://doi.org/10.1080/10286020.2012.730698.
- (103) Hu, Y. lin; Li, Y.; Qiu, L.; Li, J. he; Heng, L.; Wei, S. shan; Gao, H. liang; Wang, X. bing; Luo, J.; Kong, L. yi. New Triterpenoids with Diverse Side-Chains from the Barks of *Melia toosendan. Fitoterapia* 2018, 127 (January), 62–68. https://doi.org/10.1016/j.fitote.2018.01.011.
- (104) Yang, M. H.; Wang, J. S.; Luo, J. G.; Wang, X. B.; Kong, L. Y. Chisopanins A-K, 11 New Protolimonoids from *Chisocheton paniculatus* and Their Anti-Inflammatory Activities. *Bioorganic Med. Chem.* 2011, 19 (4), 1409–1417. https://doi.org/10.1016/j.bmc.2011.01.007.
- (105) Zhou, Z. F.; Taglialatela-Scafati, O.; Liu, H. L.; Gu, Y. C.; Kong, L. Y.; Guo, Y. W. Apotirucallane Protolimonoids from the Chinese Mangrove *Xylocarpus granatum* Koenig. *Fitoterapia* 2014, 97, 192–197. https://doi.org/10.1016/j.fitote.2014.06.009.
- (106) Liu, D.; Wang, R.; Xuan, L.; Wang, X.; Li, W. Two New Apotirucallane-Type Triterpenoids from the Pericarp of *Toona sinensis* and Their Ability to Reduce Oxidative Stress in Rat Glomerular Mesangial Cells Cultured under High-Glucose Conditions. *Molecules* 2020, 25 (4), 801. https://doi.org/10.3390/molecules25040801.
- (107) Zhang, F.; He, X. F.; Wu, W. Bin; Chen, W. S.; Yue, J. M. New Apotirucallane-Type Triterpenoids from *Chisocheton paniculatus. Nat. Products Bioprospect.* **2012**, 2 (6), 235–239. https://doi.org/10.1007/s13659-012-0065-5.
- (108) Sichaem, J.; Khumkratok, S.; Siripong, P.; Tip-Pyang, S. New Cytotoxic Apotirucallanes from the Leaves of Walsura trichostemon. J. Nat. Med. 2014, 68 (2), 436–441. https://doi.org/10.1007/s11418-013-0808-6.
- (109) Appa, M. S.; Suresh, G.; Yadav, P. A.; Prasad, K. R.; Rani, P. U.; Rao, C. V.; Babu, K. S. Piscidinols H-L, Apotirucallane Triterpenes from the Leaves of *Walsura trifoliata* and Their Insecticidal Activity. *Tetrahedron* 2015, 71 (9), 1431–1437. https://doi.org/10.1016/j.tet.2015.01.011.
- (110) Chianese, G.; R. Yerbanga, S.; Lucantoni, L.; Habluetzel, A.; Basilico, N.; Taramelli, D.; Fattorusso, E.; Taglialatela-Scafati, O. Antiplasmodial Triterpenoids from the Fruits of Neem, *Azadirachta indica. J. Nat. Prod.* 2010, *73* (8), 1448–1452. https://doi.org/10.1021/np100325q.
- (111) Terra, W. D. S.; Vieira, I. J. C.; Braz-Filho, R.; De Freitas, W. R.; Kanashiro, M. M.; Torres, M. C. M. Lepidotrichilins A and B, New Protolimonoids with Cytotoxic Activity from *Trichilia lepidota* (Meliaceae).

Molecules 2013, 18 (10), 12180–12191. https://doi.org/10.3390/molecules181012180.

- (112) Jin, Q.; Lee, C.; Lee, J. W.; Lee, M. S.; Lee, M. K.; Hwang, B. Y. A New Apotirucallane-Type Triterpenoid from the Fruit of *Melia azedarach. Nat. Prod. Sci.* **2013**, *19* (4), 342–346.
- (113) Wang, W.; Xia, Z.; Tian, Z.; Jiang, H.; Zhan, Y.; Liu, C.; Li, C.; Zhou, H. Chemical Constituents from the Fruits of *Melia azedarach* (Meliaceae). *Biochem. Syst. Ecol.* 2020, 92, 104094. https://doi.org/10.1016/j.bse.2020.104094.
- (114) Wu, W. Bin; Zhang, H.; Dong, S. H.; Sheng, L.; Wu, Y.; Li, J.; Yue, J. M. New Triterpenoids with Protein Tyrosine Phosphatase 1B Inhibition from *Cedrela odorata*. *Journal of Asian Natural Products Research*. Taylor & Francis 2014, pp 709–716. https://doi.org/10.1080/10286020.2014.919281.
- (115) Hu, Y.-L.; Tian, X.-M.; Wang, C.-C.; Olga, Q.; Yan, D.; Tang, P.-F.; Zhang, L.-N.; Kong, L.-Y.; Luo, J. New Triterpenoids, Steroids and Lignan from the Stem Barks of *Entandrophragma utile*. *Fitoterapia* 2020, 143, 104546. https://doi.org/10.1016/j.fitote.2020.104546.
- (116) Sun, Y. P.; Zhu, L. L.; Liu, J. song; Yu, Y.; Zhou, Z. yu; Wang, G.; Wang, G. K. Limonoids and Triterpenoid from Fruit of *Swietenia macrophylla*. *Fitoterapia* **2018**, *125* (December 2017), 141–146. https://doi.org/10.1016/j.fitote.2018.01.004.
- (117) Sichaem, J.; Aree, T.; Khumkratok, S.; Jong-Aramruang, J.; Tip-Pyang, S. A New Cytotoxic Apotirucallane from the Roots of *Walsura trichostemon*. *Phytochem. Lett.* **2012**, *5* (3), 665–667. https://doi.org/10.1016/j.phytol.2012.07.001.
- (118) Rao, M. S. A.; Suresh, G.; Yadav, P. A.; Prasad, K. R.; Nayak, V. L.; Ramakrishna, S.; Rao, C. V.; Babu, K. S. Novel Apo-Tirucallane Triterpenoids from *Walsura trifoliata*. *Tetrahedron Lett.* **2012**, *53* (46), 6241–6244. https://doi.org/10.1016/j.tetlet.2012.09.012.
- (119) Wang, H. W.; Liu, J. Q.; Chen, J. X.; Yang, Y. F.; Yan, Y. X.; Li, Z. R.; Qiu, M. H. New Triterpenoids from the Kernels of Azadirachta indica. Nat. Products Bioprospect. 2013, 3 (1), 33–37. https://doi.org/10.1007/s13659-013-0005-z.
- (120) Lin, C. J.; Lo, I. W.; Lin, Y. C.; Chen, S. Y.; Chien, C. Te; Kuo, Y. H.; Hwang, T. L.; Liou, S. S.; Shen, Y. C. Tetranortriterpenes and Limonoids from the Roots of *Aphanamixis polystachya*. *Molecules* 2016, *21* (9), 3–12. https://doi.org/10.3390/molecules21091167.
- (121) Nugroho, A. E.; Okuda, M.; Yamamoto, Y.; Chin-Piow, W.; Hirasawa, Y.; Kaneda, T.; Shirota, O.; Hadi, A. H. A.; Morita, H. Apowalsogynes A and B, Two Highly Oxidized 3,4- Seco -Apotirucallane Triterpenoids from *Walsura chrysogyne. Nat. Prod. Commun.* 2017, *12* (8), 1934578X1701200. https://doi.org/10.1177/1934578X1701200810.
- (122) Garcez, F. R.; Garcez, W. S.; Rodrigues, E. D.; Pott, V. J.; Roque, N. F. Seco-Protolimonoids from *Trichilia elegans* Ssp. Elegans. *Phytochemistry* **1996**, *42* (5), 1399–1403. https://doi.org/10.1016/0031-9422(96)00141-0.
- (123) Farabi, K.; Harneti, D.; Nurlelasari; Maharani, R.; Hidayat, A. T.; Awang, K.; Supratman, U.; Shiono, Y. New Cytotoxic Protolimonoids from the Stem Bark of *Aglaia argentea* (Meliaceae). *Phytochem. Lett.* 2017, 21 (September), 211–215. https://doi.org/10.1016/j.phytol.2017.07.006.
- (124) Zhang, Y.; Wang, J. S.; Wei, D. D.; Gu, Y. C.; Wang, X. B.; Kong, L. Y. Bioactive Terpenoids from the Fruits of Aphanamixis grandifolia. J. Nat. Prod. 2013, 76 (6), 1191–1195. https://doi.org/10.1021/np400126q.
- (125) Bentley, M. D.; Gaul, F.; Rajab, M. S.; Hassanali, A. Tetranortriterpenes from *Turraea robusta*. J. Nat. Prod. **1992**, 55 (1), 84–87. https://doi.org/10.1021/np50079a012.
- (126) Qi, S.-H.; Wub, D.-G.; Zhang, S.; Luo, X.-D. A New Tetranortriterpenoid from *Dysoxylum lenticellatum*. *Zeitschrift für Naturforsch. B* **2003**, *58* (11), 1128–1132. https://doi.org/10.1515/znb-2003-1116.
- Mulholland, D. A.; Monkhe, T. V; Coombes, P. H.; Rajab, M. S. Limonoids from *Turraea holstii* and *Turraea floribunda*. *Phytochemistry* **1998**, *49* (8), 2585–2590. https://doi.org/10.1016/S0031-9422(98)00441-5.
- (128) Kraus, W.; Cramer, R. 17-EPI-Azadiradion Uno 17-β-Hydroxy-Azadiradion, Zwei Neue Inhaltsstoffe Aus Azadirachta indica A. Juss. Tetrahedron Lett. 1978, 19 (27), 2395–2398. https://doi.org/10.1016/S0040-4039(01)94783-5.
- (129) Gunning, P. J.; Jeffs, L. B.; Isman, M. B.; Towers, G. H. N. Two Limonoids from *Chisocheton microcarpus*. *Phytochemistry* **1994**, *36* (5), 1245–1248. https://doi.org/10.1016/S0031-9422(00)89645-4.
- (130) Li, J.; Li, M.-Y.; Satyanandamurty, T.; Wu, J. Godavarin K: A New Limonoid with an Oxygen Bridge between C(1) and C(29) from the Godavari Mangrove *Xylocarpus moluccensis*. *Helv. Chim. Acta* 2011, 94 (9), 1651–1656. https://doi.org/10.1002/hlca.201100022.
- (131) Lavie, D.; Jain, M. K. Tetranortriterpenoids from Melia azadirachta L. Chem. Commun. 1967, No. 6, 278.

https://doi.org/10.1039/c19670000278.

- (132) Cortez, D. A. .; Fernandes, J. B.; Vieria, P. C.; Silva, M. F. G. F. d.; Ferreira, A. G.; Cass, Q. B.; Rubens Pirani, J. Meliacin Butenolides from *Trichilia estipulata*. *Phytochemistry* **1998**, *49* (8), 2493–2496. https://doi.org/10.1016/S0031-9422(98)00234-9.
- (133) Kraus, W.; Cramer, R.; Sawitzki, G. Tetranortriterpenoids from the Seeds of Azadirachta indica. *Phytochemistry* **1981**, 20 (1), 117–120. https://doi.org/10.1016/0031-9422(81)85229-6.
- (134) Zhang, Y.; An, F. L.; Huang, S. S.; Yang, L.; Gu, Y. C.; Luo, J.; Kong, L. Y. Diverse Tritepenoids from the Fruits of *Walsura robusta* and Their Reversal of Multidrug Resistance Phenotype in Human Breast Cancer Cells. *Phytochemistry* **2017**, *136*, 108–118. https://doi.org/10.1016/j.phytochem.2017.01.008.
- (135) Zhou, B.; Shen, Y.; Wu, Y.; Leng, Y.; Yue, J.-M. Limonoids with 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitory Activities from *Dysoxylum mollissimum*. J. Nat. Prod. 2015, 78 (8), 2116–2122. https://doi.org/10.1021/acs.jnatprod.5b00442.
- (136) Liu, J. Q.; Wang, C. F.; Li, Y.; Chen, J. C.; Zhou, L.; Qiu, M. H. Limonoids from the Leaves of *Toona ciliata* Var. Yunnanensis. *Phytochemistry* **2012**, *76*, 141–149. https://doi.org/10.1016/j.phytochem.2012.01.002.
- (137) Jiang, S. Y.; Liu, J. Q.; Xia, J. J.; Yan, Y. X.; Qiu, M. H. Five New Tetranortriterpenoids from the Seeds of *Toona ciliata. Helv. Chim. Acta* 2012, 95 (2), 301–307. https://doi.org/10.1002/hlca.201100325.
- (138) Manosroi, A.; Kitdamrongtham, W.; Ishii, K.; Shinozaki, T.; Tachi, Y.; Takagi, M.; Ebina, K.; Zhang, J.; Manosroi, J.; Akihisa, R.; Akihisa, T. Limonoids from *Azadirachta indica* Var. Siamensis Extracts and Their Cytotoxic and Melanogenesis-Inhibitory Activities. *Chem. Biodivers.* 2014, *11* (4), 505–531. https://doi.org/10.1002/cbdv.201300406.
- (139) Zhang, P.; Cui, Z.; Wei, S.; Li, Y.; Yin, Y.; Wang, X.; Luo, J.; Kong, L. Diverse Limonoids from Barks of *Toona ciliata* Var. Yunnanensis and Their Biological Activities. *Ind. Crops Prod.* 2020, 148, 112275. https://doi.org/10.1016/j.indcrop.2020.112275.
- (140) Nurlelasari; Katja, D. G.; Harneti, D.; Wardayo, M. M.; Supratman, U.; Awang, K. Limonoids from the Seeds of *Chisocheton macrophyllus*. *Chem. Nat. Compd.* **2017**, *53* (1), 83–87. https://doi.org/10.1007/s10600-017-1916-4.
- (141) Zhang, W. Y.; An, F. L.; Zhou, M. M.; Chen, M. H.; Jian, K. L.; Quasie, O.; Yang, M. H.; Luo, J.; Kong, L. Y. Limonoids with Diverse Frameworks from the Stem Bark of *Entandrophragma angolense* and Their Bioactivities. *RSC Adv.* **2016**, 6 (99), 97160–97171. https://doi.org/10.1039/c6ra19532f.
- (142) Fu, Y.-H.; Xie, Y.-T.; Guo, J.-M.; Wang, X.-P.; Jiang, B.; Zhang, W.; Qiang, L.; Kong, L.-Y.; Liu, Y.-P. Limonoids from the Fresh Young Leaves and Buds of *Toona sinensis* and Their Potential Neuroprotective Effects. *J. Agric. Food Chem.* **2020**, 68 (44), 12326–12335. https://doi.org/10.1021/acs.jafc.0c06352.
- (143) Zhang, J.; Li, W.; Dai, Y.; Shen, L.; Wu, J. Twenty-Nine New Limonoids with Skeletal Diversity from the Mangrove Plant, *Xylocarpus moluccensis*. *Mar. Drugs* 2018, 16 (1), 1–29. https://doi.org/10.3390/md16010038.
- (144) Han, M. L.; Zhao, J. X.; Liu, H. C.; Ni, G.; Ding, J.; Yang, S. P.; Yue, J. M. Limonoids and Triterpenoids from *Dysoxylum mollissimum* Var. Glaberrimum. J. Nat. Prod. 2015, 78 (4), 754–761. https://doi.org/10.1021/np500967k.
- (145) Gualtieri, M. J.; Malafronte, N.; Vassallo, A.; Braca, A.; Cotugno, R.; Vasaturo, M.; De Tommasi, N.; Dal Piaz, F. Bioactive Limonoids from the Leaves of *Azadirachta indica* (Neem). J. Nat. Prod. 2014, 77 (3), 596–602. https://doi.org/10.1021/np400863d.
- (146) Yan, Y. X.; Liu, J. Q.; Chen, J. X.; Chen, J. C.; Qiu, M. H. Three New Limonoids from *Azadirachta indica*. *J. Asian Nat. Prod. Res.* **2015**, *17* (1), 14–19. https://doi.org/10.1080/10286020.2014.962523.
- (147) Ji, K. L.; Zhang, P.; Hu, H. Bin; Hua, S.; Liao, S. G.; Xu, Y. K. Limonoids from the Leaves and Twigs of Walsura yunnanensis. J. Nat. Prod. 2014, 77 (8), 1764–1769. https://doi.org/10.1021/np400976p.
- (148) Kitdamrongtham, W.; Ishii, K.; Ebina, K.; Zhang, J.; Ukiya, M.; Koike, K.; Akazawa, H.; Manosroi, A.; Manosroi, J.; Akihisa, T. Limonoids and Flavonoids from the Flowers of *Azadirachta indica* Var. Siamensis, and Their Melanogenesis-Inhibitory and Cytotoxic Activities. *Chem. Biodivers.* 2014, *11* (1), 73–84. https://doi.org/10.1002/cbdv.201300266.
- (149) Sakamoto, A.; Tanaka, Y.; Inoue, T.; Kikuchi, T.; Kajimoto, T.; Muraoka, O.; Yamada, T.; Tanaka, R. Andirolides Q-V from the Flower of Andiroba (*Carapa guianensis*, Meliaceae). *Fitoterapia* **2013**, *90*, 20–29. https://doi.org/10.1016/j.fitote.2013.07.001.
- (150) Kowa, T. K.; Tchokouaha, L. R. Y.; Cieckiewicz, E.; Philips, T. J.; Dotse, E.; Wabo, H. K.; Tchinda, A. T.; Tane, P.; Frédérich, M. Antileishmanial and Cytotoxic Activities of a New Limonoid and a New Phenyl Alkene from the Stem Bark of *Trichilia gilgiana* (Meliaceae). *Nat. Prod. Res.* 2019, 0 (0), 1–7.

https://doi.org/10.1080/14786419.2018.1553879.

- (151) Ge, Y. H.; Zhang, J. X.; Mu, S. Z.; Chen, Y.; Yang, F. M.; Yang, L.; Hao, X. J. Munronoids A-J, Ten New Limonoids from *Munronia unifoliolata* Oliv. *Tetrahedron* 2012, 68 (2), 566–572. https://doi.org/10.1016/j.tet.2011.11.003.
- (152) Zhang, J.-C.; Liao, Q.; Shen, L.; Wu, J. Twenty-Five Limonoids from the Hainan Mangrove, *Xylocarpus granatum. Bioorg. Chem.* 2020, 100, 103903. https://doi.org/10.1016/j.bioorg.2020.103903.
- (153) Ren, Y.-X.; Zou, X.-P.; Li, W.-S.; Wu, J.; Shen, L. Discovery of Thai Mangrove Tetranortriterpenoids as Agonists of Human Pregnane–X–Receptor and Inhibitors against Human Carboxylesterase 2. *Bioorg. Chem.* 2021, 107, 104599. https://doi.org/10.1016/j.bioorg.2020.104599.
- (154) Zhou, Z. F.; Kurtán, T.; Mándi, A.; Gu, Y. C.; Yao, L. G.; Xin, G. R.; Li, X. W.; Guo, Y. W. Novel and Neuroprotective Tetranortriterpenoids from Chinese Mangrove *Xylocarpus granatum* Koenig. *Sci. Rep.* 2016, 6 (July), 1–10. https://doi.org/10.1038/srep33908.
- (155) Zhang, P.-P.; Bu, Y.-G.; Xue, S.; Cui, Z.-R.; Tang, P.-F.; Luo, J.; Kong, L.-Y. Four New Limonoids from the Barks of *Toona ciliata*. *Nat. Products Bioprospect.* **2021**, *11* (1), 81–86. https://doi.org/10.1007/s13659-020-00274-w.
- (156) Zhu, W.; Cheng, J.; Su, S.; Zhang, C.; Akihisa, T.; Manosroi, J.; Manosroi, A.; Feng, F.; Liu, W.; Zhang, J. Limonoids and Tricyclic Diterpenoids from *Azadirachta indica* and Their Antitumor Activities. *Bioorg. Chem.* 2020, 100, 103889. https://doi.org/10.1016/j.bioorg.2020.103889.
- (157) Supratman, U.; Salam, S.; Naibaho, W.; Fajar, M.; Nurlelasari; Katja, D. G.; Harneti, D.; Maharani, R.; Hidayat, A. T.; Lesmana, R.; Azlan Nafiah, M.; Shiono, Y. New Cytotoxic Limonoids from the Stem Bark of *Chisocheton pentandrus* (Blanco) Merr. *Phytochem. Lett.* **2020**, *35*, 63–67. https://doi.org/10.1016/j.phytol.2019.11.002.
- (158) Ji, K. L.; Zhang, P.; Li, X. N.; Guo, J.; Hu, H. Bin; Xiao, C. F.; Xie, X. Q.; Xu, Y. K. Cytotoxic Limonoids from *Trichilia americana* Leaves. *Phytochemistry* **2015**, *118*, 61–67. https://doi.org/10.1016/j.phytochem.2015.08.014.
- (159) Wang, G.-C.; Yu, J.-H.; Shen, Y.; Leng, Y.; Zhang, H.; Yue, J.-M. Limonoids and Triterpenoids as 11β-HSD1 Inhibitors from Walsura robusta. J. Nat. Prod. 2016, 79 (4), 899–906. https://doi.org/10.1021/acs.jnatprod.5b00952.
- (160) Essoung, F. R. E.; Chhabra, S. C.; Mba'ning, B. M.; Mohamed, S. A.; Lwande, W.; Lenta, B. N.; Ngouela, S. A.; Tsamo, E.; Hassanali, A. Larvicidal Activities of Limonoids from *Turraea abyssinica* (Meliaceae) on Tuta Absoluta (Meyrick). *J. Appl. Entomol.* **2018**, *142* (4), 397–405. https://doi.org/10.1111/jen.12485.
- (161) Yin, S.; Wang, X.-N.; Fan, C.-Q.; Liao, S.-G.; Yue, J.-M. The First Limonoid Peroxide in the Meliaceae Family: Walsuronoid A from *Walsura robusta*. Org. Lett. 2007, 9 (12), 2353–2356. https://doi.org/10.1021/ol070735+.
- (162) Mulholland, D. A.; Taylor, D. A. H. Limonoids from Australian Members of the Meliaceae. *Phytochemistry* **1992**, *31* (12), 4163–4166. https://doi.org/10.1016/0031-9422(92)80434-G.
- (163) Dong, S.-H.; Zhang, C.-R.; He, X.-F.; Liu, H.-B.; Wu, Y.; Yue, J.-M. Mesendanins A–J, Limonoids from the Leaves and Twigs of *Melia toosendan*. J. Nat. Prod. 2010, 73 (8), 1344–1349. https://doi.org/10.1021/np100150n.
- (164) Arenas, C.; Rodriguez-Hahn, L. Limonoids from *Trichilia havanensis*. *Phytochemistry* **1990**, *29* (9), 2953–2956. https://doi.org/10.1016/0031-9422(90)87113-9.
- (165) Ochi, M.; Kotsuki, H.; Tokoroyama, T. Sendanal, a New Limonoid from *Melia azedarach* Linn. Var. Japonica Makino. *Chem. Lett.* **1978**, 7 (6), 621–624. https://doi.org/10.1246/cl.1978.621.
- (166) Zhang, Y.; Tang, C.-P.; Ke, C.-Q.; Yao, S.; Ye, Y. Limonoids and Triterpenoids from the Stem Bark of *Melia toosendan. J. Nat. Prod.* 2010, 73 (4), 664–668. https://doi.org/10.1021/np900835k.
- (167) Adesogan, E. K.; Okorie, D. A.; Taylor, D. A. H. Limonoids from *Khaya anthotheca* (Welw.) C.DC. J. *Chem. Soc. C Org.* **1970**, No. 2, 205. https://doi.org/10.1039/j39700000205.
- (168) Zhang, Q.; Li, J.-K.; Ge, R.; Liang, J.-Y.; Li, Q.-S.; Min, Z.-D. Novel NGF-Potentiating Limonoids from the Fruits of *Melia toosendan. Fitoterapia* **2013**, *90*, 192–198. https://doi.org/10.1016/j.fitote.2013.07.019.
- (169) Yan, Y.; Zhang, J. X.; Huang, T.; Mao, X. Y.; Gu, W.; He, H. P.; Di, Y. T.; Li, S. L.; Chen, D. Z.; Zhang, Y.; Hao, X. J. Bioactive Limonoid Constituents of *Munronia henryi. J. Nat. Prod.* **2015**, *78* (4), 811–821. https://doi.org/10.1021/np501057f.
- (170) Yuan, C. M.; Tang, G. H.; Zhang, Y.; Wang, X. Y.; Cao, M. M.; Guo, F.; Li, Y.; Di, Y. T.; Li, S. L.; Hua, H. M.; He, H. P.; Hao, X. J. Bioactive Limonoid and Triterpenoid Constituents of *Turraea pubescens. J. Nat. Prod.* **2013**, *76* (6), 1166–1174. https://doi.org/10.1021/np400276q.
- (171) Song, M.; Zhang, J.; Chan, G.; Hou, Y.; Chen, X.-P.; Zhang, X.-Q.; Ye, W.-C.; Zhang, Q.-W. Bioactive

Limonoids and Triterpenoids from the Fruits of *Melia azedarach. J. Nat. Prod.* **2020**, *83* (12), 3502–3510. https://doi.org/10.1021/acs.jnatprod.9b01151.

- (172) Wang, H.; Dong, H.; He, Q.; Liang, J.; Zhao, T.; Zhou, L. Characterization of Limonoids Isolated from the Fruits of *Melia toosendan* and Their Antifeedant Activity against Pieris Rapae. *Chem. Biodivers.* 2020, *17* (4). https://doi.org/10.1002/cbdv.201900674.
- (173) Yan, G.; Li, J.; Chen, S.; Liu, Y.; Wu, J.-L.; Zhu, X.-M.; Li, N. New Limonoids from the Fruits of *Melia toosendan* and Their Autophagic Activities. *Phytochem. Lett.* **2020**, *35*, 15–22. https://doi.org/10.1016/j.phytol.2019.10.012.
- (174) Wang, W.; Xia, Z.; Yu, S.; Tian, Z.; Yan, B.; Jiang, H.; Zhou, H. Two New Limonoids from the Fruits of *Melia azedarach* (Meliaceae). *Chem. Biodivers.* **2021**, *18* (2). https://doi.org/10.1002/cbdv.202000822.
- (175) Zhu, G. Y.; Bai, L. P.; Liu, L.; Jiang, Z. H. Limonoids from the Fruits of *Melia toosendan* and Their NF-KB Modulating Activities. *Phytochemistry* 2014, 107, 175–181. https://doi.org/10.1016/j.phytochem.2014.08.009.
- (176) Zhang, Y.; Tang, C. P.; Ke, C. Q.; Li, X. Q.; Xie, H.; Ye, Y. Limonoids from the Fruits of *Melia toosendan*. *Phytochemistry* **2012**, *73*, 106–113. https://doi.org/10.1016/j.phytochem.2011.10.001.
- (177) Su, Z. S.; Yang, S. P.; Zhang, S.; Dong, L.; Yue, J. M. Meliarachins A-K: Eleven Limonoids from the Twigs and Leaves of *Melia azedarach*. *Helv. Chim. Acta* 2011, 94 (8), 1515–1526. https://doi.org/10.1002/hlca.201000444.
- (178) Liu, S. B.; Chen, H. Q.; Feng, G.; Guo, Z. K.; Cai, C. hong; Wang, J.; Mei, W. L.; Dai, H. F. A New Insecticidal Havanensin-Type Limonoid from the Roots of *Trichilia sinensis* Bentv. *Nat. Prod. Res.* 2018, 32 (23), 2797–2802. https://doi.org/10.1080/14786419.2017.1380016.
- (179) Macleod, J. K.; Moeller, P. D. R.; Molinski, T. F.; Koul, O. Antifeedant Activity Against Spodoptera litera Larvae and [13C]NMR Spectral Assignments of the Meliatoxins. J. Chem. Ecol. 1990, 16 (8), 2511–2518. https://doi.org/10.1007/BF01017474.
- (180) Nakatani, M. Limonoids from *Melia toosendan* (Meliaceae) and Their Antifeedant Activity. *ChemInform* **1999**, *30* (20), no-no.
- (181) Zhou, J.-B.; Tadera, K.; Minami, Y.; Yagi, F.; Kurawaki, J.; Takzaki, K.; Nakatani, M. New Limonoids from *Melia toosendan. Biosci. Biotechnol. Biochem.* 1998, 62 (3), 496–500. https://doi.org/10.1271/bbb.62.496.
- (182) Oelrichs, P. B.; Hill, M. W.; Vallely, P. J.; MacLeod, J. K.; Molinski, T. F. Toxic Tetranortriterpenes of the Fruit of *Melia azedarach. Phytochemistry* **1983**, *22* (2), 531–534. https://doi.org/10.1016/0031-9422(83)83039-8.
- (183) Xie, J.-X.; Yuan, A.-X. The Structure of Iso-Chuanliansu Isolated from Chinese Medicine--the Bark of Melia. Yao xue xue bao= Acta Pharm. Sin. 1985, 20 (3), 188–192.
- (184) Ahn, J.-W.; Choi, S.-U.; Lee, C.-O. Cytotoxic Limonoids from *Melia azedarach* Var. Japonica. *Phytochemistry* **1994**, *36* (6), 1493–1496. https://doi.org/10.1016/S0031-9422(00)89749-6.
- (185) Nakatani, M.; James, J. C.; Nakanishi, K. Isolation and Structures of Trichilins, Antifeedants against the Southern Army Worm. J. Am. Chem. Soc. **1981**, 103 (5), 1228–1230. https://doi.org/10.1021/ja00395a046.
- (186) Fukuyama, Y.; Nakaoka, M.; Yamamoto, T.; Takahashi, H.; Minami, H. Degraded and Oxetane-Bearing Limonoids from the Roots of *Melia azedarach. Chem. Pharm. Bull. (Tokyo).* 2006, 54 (8), 1219–1222. https://doi.org/10.1248/cpb.54.1219.
- (187) Huang, R. C.; Okamura, H.; Iwagawa, T.; Nakatani, M. The Structures of Azedarachins, Limonoid Antifeedants from Chinese *Melia azedarach* Linn. *Bull. Chem. Soc. Jpn.* **1994**, 67 (9), 2468–2472. https://doi.org/10.1246/bcsj.67.2468.
- (188) Akihisa, T.; Pan, X.; Nakamura, Y.; Kikuchi, T.; Takahashi, N.; Matsumoto, M.; Ogihara, E.; Fukatsu, M.; Koike, K.; Tokuda, H. Limonoids from the Fruits of *Melia azedarach* and Their Cytotoxic Activities. *Phytochemistry* **2013**, *89*, 59–70. https://doi.org/10.1016/j.phytochem.2013.01.015.
- (189) Liu, S. B.; Mei, W. L.; Chen, H. Q.; Wang, J.; Wang, Z. N.; Dai, H. F. Limonoids from the Roots of *Trichilia sinensis* and Their Cytotoxicities. Arch. Pharm. Res. 2018, 41 (12), 1170–1177. https://doi.org/10.1007/s12272-017-0915-0.
- (190) Liu, H. B.; Zhang, C. R.; Dong, S. H.; Dong, L.; Wu, Y.; Yue, J. M. Limonoids and Triterpenoids from the Seeds of *Melia azedarach. Chem. Pharm. Bull.* 2011, 59 (8), 1003–1007. https://doi.org/10.1248/cpb.59.1003.
- (191) Qiu, L.; Heng, L.; Xu, R.; Luo, J.; Li, Y. Two New Nimbolinin- and Trichilin-Class Limonoids Isolated from the Fruits of *Melia azedarach. Chin. J. Nat. Med.* **2019**, *17* (3), 227–230. https://doi.org/10.1016/S1875-5364(19)30025-1.

- (192) Park, S. J.; Nhiem, N. X.; Subedi, L.; Oh, I.; Kim, J. Y.; Kim, S. Y.; Kim, S. H. Isolation of Bioactive Limonoids from the Fruits of *Melia azedarach. J. Asian Nat. Prod. Res.* **2020**, *22* (9), 830–838. https://doi.org/10.1080/10286020.2019.1666826.
- (193) Mohamad, K.; Hirasawa, Y.; Litaudon, M.; Awang, K.; Hadi, A. H. A.; Takeya, K.; Ekasari, W.; Widyawaruyanti, A.; Zaini, N. C.; Morita, H. Ceramicines B–D, New Antiplasmodial Limonoids from *Chisocheton ceramicus. Bioorg. Med. Chem.* **2009**, *17* (2), 727–730. https://doi.org/10.1016/j.bmc.2008.11.048.
- (194) Rogers, L. L.; Zeng, L.; Kozlowski, J. F.; Shimada, H.; Alali, F. Q.; Johnson, H. A.; McLaughlin, J. L. New Bioactive Triterpenoids from *Melia volkensii*. J. Nat. Prod. **1998**, 61 (1), 64–70. https://doi.org/10.1021/np9704009.
- (195) Zhang, Q.; Shi, Y.; Liu, X. T.; Liang, J. Y.; Ip, N. Y.; Min, Z. Da. Minor Limonoids from Melia toosendan and Their Antibacterial Activity. *Planta Med.* 2007, 73 (12), 1298–1303. https://doi.org/10.1055/s-2007-981618.
- (196) Mitra, C. R.; Garg, H. S.; Pandey, G. N. Constituents of II Nimbidic Acid and Nimbidinin. *Tetrahedron Lett.* **1970**, *11* (32), 2761–2764. https://doi.org/10.1016/S0040-4039(01)98335-2.
- (197) Rojatkar, S. R.; Bhat, V. S.; Kulkarni, M. M.; Joshi, V. S.; Nagasampagi, B. A. Tetranortriterpenoids From *Azadirachta indica. Phytochemistry* **1989**, *28* (1), 203–205. https://doi.org/10.1016/0031-9422(89)85038-1.
- (198) Tontsa, A. T.; Mkounga, P.; Njayou, F. N.; Manautou, J.; Kirk, M.; Hultin, P. G.; Nkengfack, A. E. Rubescins A, B and C: New Havanensin Type Limonoids from Root Bark of *Trichilia rubescens* (Meliaceae). *Chem. Pharm. Bull.* **2013**, *61* (11), 1178–1183. https://doi.org/10.1248/cpb.c13-00506.
- Wong, C. P.; Shimada, M.; Nagakura, Y.; Nugroho, A. E.; Hirasawa, Y.; Kaneda, T.; Awang, K.; Hadi, A. H. A.; Mohamad, K.; Shiro, M.; Morita, H. Ceramicines E-I, New Limonoids from *Chisocheton ceramicus*. *Chem. Pharm. Bull.* 2011, 59 (3), 407–411. https://doi.org/10.1248/cpb.59.407.
- (200) Ge, Y. H.; Liu, K. X.; Zhang, J. X.; Mu, S. Z.; Hao, X. J. The Limonoids and Their Antitobacco Mosaic Virus (TMV) Activities from *Munronia unifoliolata* Oliv. J. Agric. Food Chem. 2012, 60 (17), 4289–4295. https://doi.org/10.1021/jf205362d.
- Nugroho, A. E.; Hashimoto, A.; Wong, C.-P.; Yokoe, H.; Tsubuki, M.; Kaneda, T.; Hadi, A. H. A.; Morita, H. Ceramicines M–P from *Chisocheton ceramicus*: Isolation and Structure–Activity Relationship Study. J. Nat. Med. 2018, 72 (1), 64–72. https://doi.org/10.1007/s11418-017-1109-2.
- (202) Ji, K. L.; Li, X. N.; Liao, S. G.; Hu, H. Bin; Li, R.; Xu, Y. K. Cytotoxic Limonoids from the Leaves of *Walsura robusta. Phytochem. Lett.* **2016**, *15*, 53–56. https://doi.org/10.1016/j.phytol.2015.11.004.
- (203) Ning, J.; Di, Y. T.; Fang, X.; He, H. P.; Wang, Y. Y.; Li, Y.; Li, S. L.; Hao, X. J. Limonoids from the Leaves of *Cipadessa baccifera*. J. Nat. Prod. **2010**, 73 (8), 1327–1331. https://doi.org/10.1021/np900852d.
- Wong, C. P.; Shimada, M.; Nugroho, A. E.; Hirasawa, Y.; Kaneda, T.; Hadi, A. H. A.; Osamu, S.; Morita, H. Ceramicines J-L, New Limonoids from *Chisocheton ceramicus*. J. Nat. Med. 2012, 66 (3), 566–570. https://doi.org/10.1007/s11418-011-0616-9.
- (205) Li, S.; Li, Y.; Xu, R.; Kong, L.-Y.; Luo, J. New Meliacarpin-Type (C-Seco) and C-Ring Intact Limonoids from the Fruits of Melia toosendan. Fitoterapia 2020, 144, 104605. https://doi.org/10.1016/j.fitote.2020.104605.
- (206) T. Armelle, T.; K. Pamela, N.; Pierre, M.; B. Müller, I.; Marat, K.; Sass, G.; A. Ephrem, N. Antiplasmodial Limonoids from *Trichilia rubescens* (Meliaceae). *Med. Chem. (Los. Angeles).* **2016**, *12* (7), 655–661. https://doi.org/10.2174/1573406412666160106154357.
- (207) Tsamo, A. T.; Pagna, J. I. M.; Nangmo, P. K.; Mkounga, P.; Laatsch, H.; Nkengfack, A. E. Rubescins F-H, New Vilasinin-Type Limonoids from the Leaves of *Trichilia rubescens* (Meliaceae). Zeitschrift fur Naturforsch. - Sect. C J. Biosci. 2019. https://doi.org/10.1515/znc-2018-0187.
- (208) Supriatno; Nurlelasari; Herlina, T.; Harneti, D.; Maharani, R.; Hidayat, A. T.; Mayanti, T.; Supratman, U.; Azmi, M. N.; Shiono, Y. A New Limonoid from Stem Bark of *Chisocheton pentandrus* (Meliaceae). *Nat. Prod. Res.* 2018, *32* (21), 2610–2616. https://doi.org/10.1080/14786419.2018.1428600.
- (209) Tsamo, A. T.; Melong, R.; Mkounga, P.; Nkengfack, A. E. Rubescins I and J, Further Limonoid Derivatives from the Stem Bark of *Trichilia rubescens* (Meliaceae). *Nat. Prod. Res.* 2019, *33* (2), 196–203. https://doi.org/10.1080/14786419.2018.1443087.
- (210) Trinh, B. T. D.; Nguyen, H. D.; Nguyen, H. T.; Pham, P. D.; Ngo, N. T. N.; Nguyen, L. T. T.; Nguyen, L. T. T.; Bui, D. N.; Dang, S. V.; Nguyen, L. H. D. Cytotoxic Limonoids from the Bark of *Walsura cochinchinensis*. *Fitoterapia* 2019, *133* (November 2018), 75–79. https://doi.org/10.1016/j.fitote.2018.11.008.
- (211) Kraus, W.; Kypke, K. Surenone and Surenin, Two Novel Tetranortriterpenoids from *Toona sureni* [Blume]

Merrill. Tetrahedron Lett. 1979, 20 (29), 2715–2716. https://doi.org/10.1016/S0040-4039(01)86395-4.

- (212) Foyere Ayafor, J.; Kimbu, S. F.; Ngadjui, B. T.; Akam, T. M.; Dongo, E.; Sondengam, B. L.; Connolly, J. D.; Rycroft, D. S. Limonoids from *Carapa grandiflora* (Meliaceae). *Tetrahedron* 1994, *50* (31), 9343–9354. https://doi.org/10.1016/S0040-4020(01)85511-3.
- (213) Musza, L.; Killar, L. M.; Speight, P.; Barrow, C. J.; Gillum, A. M.; Cooper, R. Minor Limonoids from *Trichilia rubra. Phytochemistry* **1995**, *39* (3), 621–624. https://doi.org/10.1016/0031-9422(94)00959-W.
- (214) Hu, J.; Song, Y.; Mao, X.; Wang, Z.-J. J.; Zhao, Q.-J. J. Limonoids Isolated from *Toona sinensis* and Their Radical Scavenging, Anti-Inflammatory and Cytotoxic Activities. J. Funct. Foods 2016, 20, 1–9. https://doi.org/10.1016/j.jff.2015.10.009.
- (215) Lin, B. D.; Chen, H. D.; Liu, J.; Zhang, S.; Wu, Y.; Dong, L.; Yue, J. M. Mulavanins A-E: Limonoids from *Munronia delavayi*. *Phytochemistry* 2010, 71 (13), 1596–1601. https://doi.org/10.1016/j.phytochem.2010.06.010.
- (216) Dong, X. J.; Zhu, Y. F.; Bao, G. H.; Hu, F. L.; Qin, G. W. New Limonoids and a Dihydrobenzofuran Norlignan from the Roots of *Toona sinensis*. *Molecules* 2013, 18 (3), 2840–2850. https://doi.org/10.3390/molecules18032840.
- (217) Wang, J. S.; Zhang, Y.; Wang, X. B.; Kong, L. Y. Aphanalides A-H, Ring A-Seco Limonoids from the Fruits of Aphanamixis polystachya. Tetrahedron 2012, 68 (21), 3963–3971. https://doi.org/10.1016/j.tet.2012.03.083.
- (218) Tong, L.; Zhang, Y.; He, H.; Hao, X. Four New Limonoids from *Aphanamixis grandifolia*. *Chinese J. Chem.* **2012**, *30* (6), 1261–1264. https://doi.org/10.1002/cjoc.201200309.
- (219) Shi, Q.-Q.; Zhang, X.-J.; Zhang, Y.; Wang, Q.; Amin, M.; Li, Q.; Wu, X.-W.; Li, X.-L.; Zhang, R.-H.; Dai, X.-C.; Xiao, W.-L. Toonaolides A–X, Limonoids from *Toona ciliata*: Isolation, Structural Elucidation, and Bioactivity against NLRP3 Inflammasome. *Bioorg. Chem.* 2020, 105, 104363. https://doi.org/10.1016/j.bioorg.2020.104363.
- (220) MacLachlan, L. K.; Taylor, D. A. H. Limonoids from Nymania capensis. Phytochemistry 1982, 21 (7), 1701–1703. https://doi.org/10.1016/S0031-9422(82)85043-7.
- (221) An, F. L.; Sun, D. M.; Li, R. J.; Zhou, M. M.; Yang, M. H.; Yin, Y.; Kong, L. Y.; Luo, J. Walrobsins A and B, Two Anti-Inflammatory Limonoids from Root Barks of *Walsura robusta*. Org. Lett. 2017, 19 (17), 4568– 4571. https://doi.org/10.1021/acs.orglett.7b02173.
- (222) Hutagaol, R. P.; Harneti, D.; Safari, A.; Hidayat, A. T.; Supratman, U.; Awang, K.; Shiono, Y. Cytotoxic Triterpenoids from the Stem Bark of Aglaia angustifolia. J. Asian Nat. Prod. Res. 2020, 1–8. https://doi.org/10.1080/10286020.2020.1776704.
- (223) Liao, S.-G.; Yang, S.-P.; Yuan, T.; Zhang, C.-R.; Chen, H.-D.; Wu, Y.; Xu, Y.-K.; Yue, J.-M. Limonoids from the Leaves and Stems of *Toona ciliata*. J. Nat. Prod. 2007, 70 (8), 1268–1273. https://doi.org/10.1021/np070146c.
- (224) McFarland, K.; Mulholland, D. A.; Fraser, L.-A. Limonoids from *Turraea floribunda* (Meliaceae). *Phytochemistry* **2004**, *65* (14), 2031–2037. https://doi.org/10.1016/j.phytochem.2004.06.019.
- (225) Wang, X.-N.; Yin, S.; Fan, C.-Q.; Lin, L.-P.; Ding, J.; Yue, J.-M. Eight New Limonoids from *Turraea* pubescens. Tetrahedron **2007**, 63 (34), 8234–8241. https://doi.org/10.1016/j.tet.2007.05.107.
- (226) Wang, X.-N.; Yin, S.; Fan, C.-Q.; Wang, F.-D.; Lin, L.-P.; Ding, J.; Yue, J.-M. Turrapubesins A and B, First Examples of Halogenated and Maleimide-Bearing Limonoids in Nature from *Turraea pubescens*. Org. Lett. 2006, 8 (17), 3845–3848. https://doi.org/10.1021/ol061466a.
- (227) Liu, J.; Yang, S. P.; Su, Z. S.; Lin, B. D.; Wu, Y.; Yue, J. M. Limonoids from the Stems of *Toona ciliata* Var. Henryi (Meliaceae). *Phytochemistry* 2011, 72 (17), 2189–2196. https://doi.org/10.1016/j.phytochem.2011.08.005.
- (228) Zhang, F.; Liao, S. G.; Zhang, C. R.; He, X. F.; Chen, W. S.; Yue, J. M. Limonoids and Diterpenoids from *Toona ciliata* Roem.Var. Yunnanensis. *Planta Med.* 2011, 77 (14), 1617–1622. https://doi.org/10.1055/s-0030-1270969.
- (229) Yang, M. S.; Hu, S. M.; Kong, L. Y.; Luo, J. B-Seco-29-nor-Limonoids from the Stem Barks of *Toona ciliata* Var. Yunnanensis. *Tetrahedron* **2015**, *71* (44), 8472–8477. https://doi.org/10.1016/j.tet.2015.09.025.
- (230) Liu, C. P.; Wang, G. C.; Gan, L. S.; Xu, C. H.; Liu, Q. F.; Ding, J.; Yue, J. M. Ciliatonoids A and B, Two Limonoids from *Toona ciliata*. Org. Lett. **2016**, *18* (12), 2894–2897. https://doi.org/10.1021/acs.orglett.6b01213.
- (231) Luo, J.; Huang, W. S.; Hu, S. M.; Zhang, P. P.; Zhou, X. W.; Wang, X. B.; Yang, M. H.; Luo, J. G.; Wang, C.; Liu, C.; Yao, H. Q.; Zhang, C.; Sun, H. Bin; Chen, Y. J.; Kong, L. Y. Rearranged Limonoids with Unique 6/5/6/5 Tetracarbocyclic Skeletons from: *Toona ciliata* and Biomimetic Structure Divergence. *Org.*

Chem. Front. 2017, 4 (12), 2417–2421. https://doi.org/10.1039/c7qo00678k.

- (232) Bu, Y.; Zhang, P.; Li, Y.; Tang, P.; Zhang, W.; Luo, J.; Kong, L. B-Seco Limonoids from the Bark of *Toona ciliata*. *Phytochem. Lett.* **2020**, *40*, 63–66. https://doi.org/10.1016/j.phytol.2020.09.004.
- (233) Klenk, A.; Bokel, M.; Kraus, W. 3-Tigloylazadirachtol (Tigloyl = 2-Methylcrotonoyl), an Insect Growth Regulating Constituent of *Azadirachta indica*. J. Chem. Soc. Chem. Commun. **1986**, No. 7, 523. https://doi.org/10.1039/c39860000523.
- (234) Kumar, C. S. S. R.; Srinivas, M.; Yakkundi, S. Limonoids from the Seeds of Azadirachta indica. *Phytochemistry* **1996**, *43* (2), 451–455. https://doi.org/10.1016/0031-9422(96)00226-9.
- (235) Takeya, K.; Qiao, Z.-S.; Hirobe, C.; Itokawa, H. Cytotoxic Azadirachtin-Type Limonoids from *Melia* azedarach. Phytochemistry **1996**, 42 (3), 709–712. https://doi.org/10.1016/0031-9422(96)00044-1.
- (236) Kanokmedhakul, S.; Kanokmedhakul, K.; Prajuabsuk, T.; Panichajakul, S.; Panyamee, P.; Prabpai, S.; Kongsaeree, P. Azadirachtin Derivatives from Seed Kernels of *Azadirachta excelsa*. J. Nat. Prod. 2005, 68 (7), 1047–1050. https://doi.org/10.1021/np050064t.
- (237) Bohnenstengel, F. .; Wray, V.; Witte, L.; Srivastava, R. .; Proksch, P. Insecticidal Meliacarpins (C-Seco Limonoids) from *Melia azedarach. Phytochemistry* 1999, 50 (6), 977–982. https://doi.org/10.1016/S0031-9422(98)00644-X.
- (238) Hu, Y.; Heng, L.; Xu, R.; Li, J.; Wei, S.; Xu, D.; Luo, J.; Li, Y. Meliacarpinin-Type Limonoids from the Bark of *Melia toosendan. Molecules* **2018**, *23* (10), 1–7. https://doi.org/10.3390/molecules23102590.
- (239) Su, S.; Cheng, J.; Zhang, C.; Akihisa, T.; Xu, J.; Zhu, W.; Liu, W.; Kikuchi, T.; Feng, F.; Zhang, J. Melanogenesis-Inhibitory Activities of Limonoids and Tricyclic Diterpenoids from *Azadirachta indica*. *Bioorg. Chem.* **2020**, *100*, 103941. https://doi.org/10.1016/j.bioorg.2020.103941.
- (240) Cui, B.; Chai, H.; Constant, H. L.; Santisuk, T.; Reutrakul, V.; Beecher, C. W. W.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M.; Kinghorn, A. D. Limonoids from *Azadirachta excelsa*. *Phytochemistry* **1998**, 47 (7), 1283–1287. https://doi.org/10.1016/S0031-9422(97)00711-5.
- (241) Pan, X.; Matsumoto, M.; Nakamura, Y.; Kikuchi, T.; Zhang, J.; Ukiya, M.; Suzuki, T.; Koike, K.; Akihisa, R.; Akihisa, T. Three New and Other Limonoids from the Hexane Extract of *Melia azedarach* Fruits and Their Cytotoxic Activities. *Chem. Biodivers.* 2014, *11* (7), 987–1000. https://doi.org/10.1002/cbdv.201400052.
- (242) Chen, L.; Zhang, J. X.; Wang, B.; Mu, S. Z.; Hao, X. J. Triterpenoids with Anti-Tobacco Mosaic Virus Activities from *Melia toosendan*. *Fitoterapia* **2014**, *97*, 204–210. https://doi.org/10.1016/j.fitote.2014.06.010.
- (243) Pan, X.; Matsumoto, M.; Nishimoto, Y.; Ogihara, E.; Zhang, J.; Ukiya, M.; Tokuda, H.; Koike, K.; Akihisa, M.; Akihisa, T. Cytotoxic and Nitric Oxide Production-Inhibitory Activities of Limonoids and Other Compounds from the Leaves and Bark of *Melia azedarach. Chem. Biodivers.* 2014, *11* (8), 1121–1139. https://doi.org/10.1002/cbdv.201400190.
- (244) Takagi, M.; Tachi, Y.; Zhang, J.; Shinozaki, T.; Ishii, K.; Kikuchi, T.; Ukiya, M.; Banno, N.; Tokuda, H.; Akihisa, T.; Mio Takagi, Yosuke Tachi, Jie Zhang, Takuro Shinozaki, Kenta Ishii, Takashi Kikuchi, Motohiko Ukiya, Norihiro Banno, Harukuni Tokuda, T. A. Cytotoxic and Melanogenesis-Inhibitory Activities of Limonoids from the Leaves of *Azadirachta indica* (Neem). *Chem. Biodivers.* **2014**, *11* (3), 451–468. https://doi.org/10.1002/cbdv.201300348.
- (245) Kato-Noguchi, H.; Salam, M. A.; Ohno, O.; Suenaga, K. Nimbolide B and Nimbic Acid B, Phytotoxic Substances in Neem Leaves with Allelopathic Activity. *Molecules* 2014, 19 (6), 6929–6940. https://doi.org/10.3390/molecules19066929.
- (246) Zhang, Q.; Liang, J. Y.; Li, Q. S.; Da Min, Z. New Limonoids from the Fruits of *Melia toosendan*. *Chinese Chem. Lett.* **2010**, *21* (7), 838–841. https://doi.org/10.1016/j.cclet.2010.02.018.
- (247) Tada, K. Limonoids from Fruit of *Melia toosendan* and Their Cytotoxic Activity. *Phytochemistry* 1999, *51* (6), 787–791. https://doi.org/10.1016/S0031-9422(99)00115-6.
- (248) Nakatani, M.; Fukuman, Y.; Sakumoto, T. Nimbolinins, C-Seco Limonoids from the Fruits of *Melia* toosendan. Heterocycles 2000, 53 (3), 689–695.
- (249) Zhou, H.; Hamazaki, A.; Fontana, J. D.; Takahashi, H.; Wandscheer, C. B.; Fukuyama, Y. Cytotoxic Limonoids from Brazilian *Melia azedarach. Chem. Pharm. Bull.* 2005, 53 (10), 1362–1365. https://doi.org/10.1248/cpb.53.1362.
- (250) Srivastava, S. D.; Srivastava, S. K. ChemInform Abstract: Insect Antifeedant Novel Limonoids from the Roots of *Melia azedarach. ChemInform* **2010**, *28* (39), no-no. https://doi.org/10.1002/chin.199739257.
- (251) Kraus, W.; Bokel, M. New Tetranortriterpenoids from *Melia azedarach* Linn.(Meliaceae). *Chem. Informationsd.* **1981**, *12* (15).

- (252) Zhang, Q.; Zheng, Q. H.; Liang, J. Y.; Li, Q. S.; Min, Z. Da. Two New Limonoids Isolated from the Fruits of *Melia toosendan*. *Chin. J. Nat. Med.* **2016**, *14* (9), 692–696. https://doi.org/10.1016/S1875-5364(16)30082-6.
- (253) Zhang, Q.; Zheng, Q. H.; Sang, Y. S.; Sung, H. H. Y.; Min, Z. Da. New Limonoids Isolated from the Bark of *Melia toosendan. Chin. J. Nat. Med.* **2018**, *16* (12), 946–950. https://doi.org/10.1016/S1875-5364(18)30136-5.
- (254) Zhang, Q.; Zhang, Y. G.; Li, Q. S.; Min, Z. Da. Two New Nimbolinin-Type Limonoids from the Fruits of Melia toosendan. Helv. Chim. Acta 2016, 99 (6), 462–465. https://doi.org/10.1002/hlca.201500516.
- (255) Su, S.; Shen, L.; Zhang, Y.; Liu, J.; Cai, J.; Hao, L.; Feng, Y.; Yang, S. Characterization of Tautomeric Limonoids from the Fruits of *Melia toosendan*. *Phytochem. Lett.* **2013**, 6 (3), 418–424. https://doi.org/10.1016/j.phytol.2013.05.006.
- (256) Jin, Q.; Lee, C.; Woo Lee, J.; Yeon Choi, J.; Tae Hong, J.; Kim, Y.; Kyeong Lee, M.; Yeon Hwang, B. Two New C - Seco Limonoids from the Fruit of *Melia azedarach. Helv. Chim. Acta* 2014, 97 (8), 1152–1157. https://doi.org/10.1002/hlca.201400045.
- (257) Gao, Q.; Sun, J.; Xun, H.; Yao, X.; Wang, J.; Tang, F. A New Azadirachta from the Crude Extracts of Neem (Azadirachta indica A. Juss) Seeds. Nat. Prod. Res. 2017, 31 (15), 1739–1746. https://doi.org/10.1080/14786419.2017.1290616.
- (258) Fukuyama, Y.; Miura, I.; Ochi, M. Bitter Limonoids from the Fruit of *Melia azedarach* L. Var. Japonica Makino. *Bull. Chem. Soc. Jpn.* **1983**, 56 (4), 1139–1142. https://doi.org/10.1246/bcsj.56.1139.
- (259) Xie, F.; Zhang, C. F.; Zhang, M.; Wang, Z. T.; Yu, B. Y. Two New Limonoids from *Melia toosendan*. *Chinese Chem. Lett.* **2008**, *19* (2), 183–186. https://doi.org/10.1016/j.cclet.2007.12.004.
- Nugroho, A. E.; Okuda, M.; Yamamoto, Y.; Hirasawa, Y.; Wong, C. P.; Kaneda, T.; Shirota, O.; Hadi, A. H. A.; Morita, H. Walsogynes B-G, Limonoids from *Walsura chrysogyne. Tetrahedron* 2013, 69 (20), 4139–4145. https://doi.org/10.1016/j.tet.2013.02.095.
- (261) Taylor, D. A. H. The Structure of an Extractive from *Khaya ivorensis*. *Phytochemistry* **1977**, *16* (11), 1847–1849. https://doi.org/10.1016/0031-9422(71)85116-6.
- (262) Inoue, T.; Ohmori, S.; Kikuchi, T.; Yamada, T.; Tanaka, R. Carapanosins A–C from Seeds of Andiroba (*Carapa guianensis*, Meliaceae) and Their Effects on LPS-Activated NO Production. *Molecules* 2017, 22, 502. https://doi.org/10.3390/molecules23071778.
- (263) Tanaka, Y.; Yamada, T.; In, Y.; Muraoka, O.; Kajimoto, T.; Tanaka, R. Absolute Stereostructure of Andirolides A-G from the Flower of *Carapa guianensis* (Meliaceae). *Tetrahedron* 2011, 67 (4), 782–792. https://doi.org/10.1016/j.tet.2010.11.028.
- (264) Tanaka, Y.; Sakamoto, A.; Inoue, T.; Yamada, T.; Kikuchi, T.; Kajimoto, T.; Muraoka, O.; Sato, A.; Wataya, Y.; Kim, H. S.; Tanaka, R. Andirolides H-P from the Flower of Andiroba (*Carapa guianensis*, Meliaceae). *Tetrahedron* 2012, 68 (18), 3669–3677. https://doi.org/10.1016/j.tet.2011.12.076.
- (265) Nsiama, T. K.; Okamura, H.; Hamada, T.; Morimoto, Y.; Doe, M.; Iwagawa, T.; Nakatani, M. Rings D-Seco and B,D-Seco Tetranortriterpenoids from Root Bark of *Entandrophragma angolense*. *Phytochemistry* 2011, 72 (14–15), 1854–1858. https://doi.org/10.1016/j.phytochem.2011.05.014.
- (266) Matsui, Y.; Kikuchi, T.; Inoue, T.; Muraoka, O.; Yamada, T.; Tanaka, R. Carapanolides J-L from the Seeds of *Carapa guianensis* (Andiroba) and Their Effects on LPS-Activated NO Production. *Molecules* 2014, *19* (11), 17137–17140. https://doi.org/10.3390/molecules191117130.
- (267) Nangmo, K. P.; Tsamo, T. A.; Zhen, L.; Mkounga, P.; Akone, S. H.; Tsabang, N.; Müller, W. E. G.; Marat, K.; Proksch, P.; Nkengfack, A. E. Chemical Constituents from Leaves and Root Bark of *Trichilia monadelpha* (Meliaceae). *Phytochem. Lett.* **2018**, *23* (November 2017), 120–126. https://doi.org/10.1016/j.phytol.2017.11.020.
- (268) Tian, X.; Li, H.; An, F.; Li, R.; Zhou, M.; Yang, M.; Kong, L.; Luo, J. New Structurally Diverse Limonoids from the Seeds of *Khaya senegalensis*. *Planta Med.* **2017**, *83* (3–4), 341–350. https://doi.org/10.1055/s-0042-117114.
- (269) Li, J. H.; Li, Y.; An, F. L.; Zhou, M. M.; Luo, J.; Jian, K. L.; Luo, J.; Kong, L. Y. Limonoids with Modified Furan Rings from Root Barks of *Toona sinensis*. *Tetrahedron* 2016, 72 (47), 7481–7487. https://doi.org/10.1016/j.tet.2016.09.061.
- (270) Govindachari, T. R.; Suresh, G.; Krishna Kumari, G. N.; Rajamannar, T.; Partho, P. D. Nymania-3: A Bioactive Triterpenoid from *Dysoxylum malabaricum*. *Fitoterapia* **1999**, 70 (1), 83–86. https://doi.org/10.1016/S0367-326X(98)00036-7.
- (271) Lukacova, V.; Polonsky, J.; Moretti, C.; Pettit, G. R.; Schmidt, J. M. Isolation and Structure of 14,15β-Epoxyprieurianin From the South American Tree *Guarea guidona*. J. Nat. Prod. **1982**, 45 (3), 288–294.
https://doi.org/10.1021/np50021a010.

- (272) Gullo, V. P.; Miura, I.; Nakanishi, K.; Cameron, A. F.; Connolly, J. D.; Duncanson, F. D.; Harding, A. E.; McCrindle, R.; Taylor, D. A. H. Structure of Prieurianin, a Complex Tetranortriterpenoid; Nuclear Magnetic Resonance Analysis at Nonambient Temperatures and X-Ray Structures Determination. J. Chem. Soc. Chem. Commun. 1975, No. 9, 345. https://doi.org/10.1039/c39750000345.
- (273) Zhang, H.; Chen, F.; Wang, X.; Wu, D.; Chen, Q. Complete Assignments Of1H And13C NMR Data for Rings A,B-Seco Limonoids from the Seed Of *Aphanamixis polystachya*. *Magn. Reson. Chem.* 2007, 45 (2), 189–192. https://doi.org/10.1002/mrc.1937.
- (274) Luo, X.-D.; Wu, S.-H.; Wu, D.-G.; Ma, Y.-B.; Qi, S.-H. Novel Antifeeding Limonoids from *Dysoxylum* hainanense. Tetrahedron 2002, 58 (39), 7797–7804. https://doi.org/10.1016/S0040-4020(02)00944-4.
- (275) Zhang, Y.; Wang, J.-S.; Gu, Y.-C.; Wang, X.-B.; Kong, L.-Y. Diverse Prieurianin-Type Limonoid Derivatives from the Fruits of *Aphanamixis grandifolia* and Their Absolute Configuration Determination. *Tetrahedron* 2014, 70 (37), 6594–6606. https://doi.org/10.1016/j.tet.2014.07.006.
- (276) Brown, D. A.; Taylor, D. A. H. Limonoid Extractives from *Aphanamixis polystachya*. *Phytochemistry* **1978**, *17* (11), 1995–1999. https://doi.org/10.1016/S0031-9422(00)88750-6.
- (277) Yan, Y.; Yuan, C. M.; Di, Y. T.; Huang, T.; Fan, Y. M.; Ma, Y.; Zhang, J. X.; Hao, X. J. Limonoids from *Munronia henryi* and Their Anti-Tobacco Mosaic Virus Activity. *Fitoterapia* 2015, 107, 29–35. https://doi.org/10.1016/j.fitote.2015.09.016.
- (278) Yang, S. P.; Chen, H. D.; Liao, S. G.; Xie, B. J.; Miao, Z. H.; Yue, J. M. Aphanamolide A, a New Limonoid from *Aphanamixis polystachya*. Org. Lett. **2011**, *13* (1), 150–153. https://doi.org/10.1021/ol102745h.
- (279) Zhang, P.; Xue, S.; Huang, W.; Wang, C.; Cui, Z.; Luo, J.; Kong, L. Diverse Prieurianin-Type Limonoids with Oxygen-Bridged Caged Skeletons from Two *Aphanamixis* Species: Discovery and Biomimetic Conversion. Org. Chem. Front. 2021, 8 (3), 566–571. https://doi.org/10.1039/D0QO01331E.
- (280) Zhang, Y.; Wang, J. S.; Wang, X. B.; Wei, D. D.; Luo, J. G.; Luo, J.; Yang, M. H.; Kong, L. Y. Aphapolynins A and B, Two New Limonoids from the Fruits of *Aphanamixis polystachya*. *Tetrahedron Lett.* 2011, 52 (20), 2590–2593. https://doi.org/10.1016/j.tetlet.2011.03.047.
- (281) Yu, J. H.; Wang, G. C.; Han, Y. S.; Wu, Y.; Wainberg, M. A.; Yue, J. M. Limonoids with Anti-HIV Activity from *Cipadessa cinerascens*. J. Nat. Prod. 2015, 78 (6), 1243–1252. https://doi.org/10.1021/acs.jnatprod.5b00025.
- (282) Cai, J. Y.; Chen, D. Z.; Luo, S. H.; Kong, N. C.; Zhang, Y.; Di, Y. T.; Zhang, Q.; Hua, J.; Jing, S. X.; Li, S. L.; Li, S. H.; Hao, X. J.; He, H. P. Limonoids from *Aphanamixis polystachya* and Their Antifeedant Activity. J. Nat. Prod. 2014, 77 (3), 472–482. https://doi.org/10.1021/np400678h.
- (283) Cai, J. Y.; Zhang, Y.; Luo, S. H.; Chen, D. Z.; Tang, G. H.; Yuan, C. M.; Di, Y. T.; Li, S. H.; Hao, X. J.; He, H. P. Aphanamixoid A, a Potent Defensive Limonoid, with a New Carbon Skeleton from *Aphanamixis polystachya*. Org. Lett. 2012, 14 (10), 2524–2527. https://doi.org/10.1021/ol3008149.
- (284) Zhang, Y.; Wang, J. S.; Wang, X. B.; Gu, Y. C.; Wei, D. D.; Guo, C.; Yang, M. H.; Kong, L. Y. Limonoids from the Fruits of *Aphanamixis polystachya* (Meliaceae) and Their Biological Activities. J. Agric. Food Chem. 2013, 61 (9), 2171–2182. https://doi.org/10.1021/jf3049774.
- (285) Tsamo, A.; Langat, M. K.; Nkounga, P.; Kamdem Waffo, A. F.; Nkengfack, A. E.; Mulholland, D. A. Limonoids from the West African *Trichilia welwitschii* (Meliaceae). *Biochem. Syst. Ecol.* 2013, 50, 368–370. https://doi.org/10.1016/j.bse.2013.04.011.
- (286) Xu, J.; Ni, G.; Yang, S.; Yue, J. Dysoxylumasins A-F: Six New Limonoids from *Dysoxylum mollissimum* Bl. *Chinese J. Chem.* **2013**, *31* (1), 72–78. https://doi.org/10.1002/cjoc.201200838.
- (287) Zhang, Y.; Wang, J. S.; Gu, Y. C.; Kong, L. Y. Ring A Rearranged Limonoids from the Fruits of *Aphanamixis grandifolia* and Their Cytotoxicity Evaluation. *Phytochem. Lett.* 2013, 6 (4), 539–543. https://doi.org/10.1016/j.phytol.2013.07.003.
- (288) Wang, X. B.; Zhang, Y.; Wang, J. S.; Gu, Y. C.; Kong, L. Y. Novel Ring A Rearranged Isomers with γ-Lactone from the Fruits of *Aphanamixis grandifolia*. *Tetrahedron Lett.* **2013**, *54* (45), 6023–6028. https://doi.org/10.1016/j.tetlet.2013.08.075.
- (289) Mulholland, D. A.; Naidoo, N. Limonoids from *Aphanamixis polystachya*. *Phytochemistry* **1999**, *51* (7), 927–930. https://doi.org/10.1016/S0031-9422(99)00157-0.
- (290) Kraus, W.; Kypke, K.; Bokel, M.; Grimminger, W.; Sawitzki, G.; Schwinger, G. Surenolactone a Novel Tetranortriterpenoid-A/B-Dilacton Aus *Toona sureni* [Blume] Merrill (Meliaceae). *Liebigs Ann. der Chemie* **1982**, *1982* (1), 87–98. https://doi.org/10.1002/jlac.198219820110.
- (291) An, F. L.; Luo, J.; Wang, X. B.; Yang, M. H.; Kong, L. Y. Trichiconlides A and B: Two Novel Limonoids from the Fruits of *Trichilia connaroides*. Org. Biomol. Chem. **2016**, 14 (4), 1231–1235.

https://doi.org/10.1039/c5ob02300a.

- (292) K. Jogia, M.; J. Andersen, R. Dysoxylin, a Limonoid from *Dysoxylum richii*. *Phytochemistry* **1987**, *26* (12), 3309–3311. https://doi.org/10.1016/S0031-9422(00)82494-2.
- (293) Kipassa, N. T.; Iwagawa, T.; Okamura, H.; Doe, M.; Morimoto, Y.; Nakatani, M. Limonoids from the Stem Bark of *Cedrela odorata*. *Phytochemistry* **2008**, 69 (8), 1782–1787. https://doi.org/10.1016/j.phytochem.2007.12.015.
- (294) Bennett, R. D.; Hasegawa, S. Limonoids of Calamondin Seeds. *Tetrahedron* **1981**, *37* (1), 17–24. https://doi.org/10.1016/S0040-4020(01)97708-7.
- (295) Xia, H. M.; Li, C. J.; Yang, J. Z.; Ma, J.; Chen, X. G.; Zhang, D.; Li, L.; Zhang, D. M. A,D- Seco-Limonoids from the Stems of *Clausena emarginata*. J. Nat. Prod. 2014, 77 (4), 784–791. https://doi.org/10.1021/np400797s.
- (296) Liu, H. B.; Zhang, H.; Li, P.; Gao, Z. B.; Yue, J. M. Chukrasones A and B: Potential Kv1.2 Potassium Channel Blockers with New Skeletons from *Chukrasia tabularis*. Org. Lett. **2012**, *14* (17), 4438–4441. https://doi.org/10.1021/ol301942v.
- (297) Tsukamoto, Y.; Oya, H.; Kikuchi, T.; Yamada, T.; Tanaka, R. Guianofruits C–I from Fruit Oil of Andiroba (*Carapa guianensis*, Meliaceae). *Tetrahedron* **2019**, 75 (9), 1149–1156. https://doi.org/10.1016/j.tet.2018.12.036.
- (298) Sasayama, A.; Akita, K.; Oya, H.; Kikuchi, T.; In, Y.; Fujitake, M.; Yamada, T.; Tanaka, R. Guianofruits A and B from the Fruit Oil of Andiroba (*Carapa guianensis*, Meliaceae) and Their Effects on LPS-Activated NO Production. *ChemistrySelect* **2018**, *3* (22), 6056–6060. https://doi.org/10.1002/slct.201801178.
- (299) Li, W.; Shen, L.; Bruhn, T.; Pedpradab, P.; Wu, J.; Bringmann, G. Trangmolins A–F with an Unprecedented Structural Plasticity of the Rings A and B: New Insight into Limonoid Biosynthesis. *Chemistry - A European Journal*. 2016, pp 11719–11727. https://doi.org/10.1002/chem.201602230.
- (300) Lin, B.-D.; Yuan, T.; Zhang, C.-R.; Dong, L.; Zhang, B.; Wu, Y.; Yue, J.-M. Structurally Diverse Limonoids from the Fruits of *Swietenia mahagoni*. J. Nat. Prod. 2009, 72 (12), 2084–2090. https://doi.org/10.1021/np900522h.
- (301) Saewan, N.; Sutherland, J. D.; Chantrapromma, K. Antimalarial Tetranortriterpenoids from the Seeds of *Lansium domesticum* Corr. *Phytochemistry* 2006, 67 (20), 2288–2293. https://doi.org/10.1016/j.phytochem.2006.07.005.
- (302) Lavie, D.; Levy, E. C.; Zelnik, R. The Constituents of *Carapa guianensis* Aubl. and Their Biogenetic Relationship. *Bioorg. Chem.* **1972**, *2* (1), 59–64. https://doi.org/10.1016/0045-2068(73)90007-2.
- (303) Ekong, D. E. U.; Olagbemi, E. O. West African Timbers. Part XVII. Correlation of Gedunin, Methyl Angolensate, and Andirobin. J. Chem. Soc. C Org. **1966**, 944. https://doi.org/10.1039/j39660000944.
- (304) Wu, J.; Yang, S.-X.; Li, M.-Y.; Feng, G.; Pan, J.-Y.; Xiao, Q.; Sinkkonen, J.; Satyanandamurty, T. Limonoids and Tirucallane Derivatives from the Seeds of a Krishna Mangrove, *Xylocarpus moluccensis. J. Nat. Prod.* **2010**, *73* (4), 644–649. https://doi.org/10.1021/np900823c.
- (305) Fang, X.; Zhang, Q.; Tan, C.-J.; Mu, S.-Z.; Lű, Y.; Lu, Y.-B.; Zheng, Q.-T.; Di, Y.-T.; Hao, X.-J. Cipadonoids B–G, Six New Limonoids from *Cipadessa cinerascens*. *Tetrahedron* 2009, 65 (36), 7408– 7414. https://doi.org/10.1016/j.tet.2009.07.023.
- (306) Zhou, M.-M.; Zhang, W.-Y.; Li, R.-J.; Guo, C.; Wei, S.-S.; Tian, X.-M.; Luo, J.; Kong, L.-Y. Anti-Inflammatory Activity of Khayandirobilide A from *Khaya senegalensis* via NF-KB, AP-1 and P38 MAPK/Nrf2/HO-1 Signaling Pathways in Lipopolysaccharide-Stimulated RAW 264.7 and BV-2 Cells. *Phytomedicine* 2018, 42, 152–163. https://doi.org/10.1016/j.phymed.2018.03.016.
- (307) Siva, B.; Venkanna, A.; Poornima, B.; Divya Reddy, S.; Boustie, J.; Bastien, S.; Jain, N.; Usha Rani, P.; Suresh Babu, K. New Seco-Limonoids from *Cipadessa baccifera*: Isolation, Structure Determination, Synthesis and Their Antiproliferative Activities. *Fitoterapia* 2017, *117*, 34–40. https://doi.org/10.1016/j.fitote.2017.01.003.
- (308) Siva, B.; Poornima, B.; Venkanna, A.; Prasad, K. R.; Sridhar, B.; Lakshma Nayak, V.; Ramakrishna, S.; Babu, K. S. Methyl Angolensate and Mexicanolide-Type Limonoids from the Seeds of *Cipadessa baccifera* Dedicated to the Memory of Our Beloved Colleague Dr. Y. Venkateswarlu. *Phytochemistry* 2014, 98, 174– 182. https://doi.org/10.1016/j.phytochem.2013.11.006.
- (309) Nagakura, Y.; Nugroho, A. E.; Hirasawa, Y.; Hosoya, T.; Rahman, A.; Kusumawati, I.; Zaini, N. C.; Morita, H. Sanjecumins A and B: New Limonoids from *Sandoricum koetjape*. J. Nat. Med. 2013, 67 (2), 381–385. https://doi.org/10.1007/s11418-012-0677-4.
- (310) Sakamoto, A.; Tanaka, Y.; Yamada, T.; Kikuchi, T.; Muraoka, O.; Ninomiya, K.; Morikawa, T.; Tanaka, R. Andirolides W-Y from the Flower Oil of Andiroba (*Carapa guianensis*, Meliaceae). *Fitoterapia* **2015**, *100*,

81-87. https://doi.org/10.1016/j.fitote.2014.09.003.

- (311) Bu, Y.-G.; Zhang, W.-Y.; Lu, Q.-P.; Luo, J.; Kong, L.-Y. Furan Fragment Isomerized Andirobin-Type Limonoids from the Stem Barks of *Khaya senegalensis*. J. Asian Nat. Prod. Res. **2021**, 23 (5), 498–503. https://doi.org/10.1080/10286020.2020.1767080.
- (312) Yu, J.-H.; Zhang, H.; Zhou, B.; Zimbres, F. M.; Dalal, S.; Liu, Q.-F.; Cassera, M. B.; Yue, J.-M. Limonoids from *Cipadessa baccifera*. J. Nat. Prod. **2020**, 83 (6), 1751–1765. https://doi.org/10.1021/acs.jnatprod.9b00666.
- (313) Fu, L. R.; Ma, Q. Y.; Huang, S. Z.; Dai, H. F.; Guo, Z. K.; Yu, Z. F.; Zhao, Y. X. Terpenoids and Their Anti-Feedant Activity from *Cipadessa cinerascens*. J. Asian Nat. Prod. Res. 2014, 16 (11), 1054–1059. https://doi.org/10.1080/10286020.2014.938060.
- (314) Bumi, M. B.; Heliawaty, L.; Hermawati, E.; Syah, Y. M. Four Limonoids from the Seeds Extract of *Sandoricum koetjape. J. Nat. Med.* **2019**, *73* (3), 641–647. https://doi.org/10.1007/s11418-019-01303-w.
- (315) Kadota, S.; Marpaung, L.; Kikuchi, T.; Ekimoto, H. Mahonin and Secomahoganin, New Tetranortriterpenoids from *Swietenia mahogani* (L.) JACQ. *Chem. Pharm. Bull. (Tokyo).* 1989, 37 (5), 1419–1421. https://doi.org/10.1248/cpb.37.1419.
- (316) Ma, Y. Q.; Liu, M. H.; Jiang, K.; Guo, L.; Qu, S. J.; Wan, Y. Q.; Tan, C. H. Limonoids from the Fruits of Swietenia macrophylla with Inhibitory Activity against H 2 O 2 -Induced Apoptosis in HUVECs. Fitoterapia 2018, 129 (June), 179–184. https://doi.org/10.1016/j.fitote.2018.07.001.
- (317) Ravangpai, W.; Sommit, D.; Teerawatananond, T.; Sinpranee, N.; Palaga, T.; Pengpreecha, S.; Muangsin, N.; Pudhom, K. Limonoids from Seeds of Thai *Xylocarpus moluccensis*. *Bioorganic Med. Chem. Lett.* 2011, 21 (15), 4485–4489. https://doi.org/10.1016/j.bmcl.2011.06.010.
- (318) Li, J.; Li, M.-Y.; Bruhn, T.; Zongwe Katele, F.; Xiao, Q.; Pedpradab, P.; Wu, J.; Bringmann, G. Thaixylomolins A–C: Limonoids Featuring Two New Motifs from the Thai *Xylocarpus moluccensis*. Org. Lett. 2013, 15 (14), 3682–3685. https://doi.org/10.1021/ol401556m.
- (319) Yu, J.; Zhou, B.; Dalal, S.; Liu, Q.; Cassera, M. B.; Yue, J. Cipaferoids A–C, Three Limonoids Represent Two Different Scaffolds from *Cipadessa baccifera*. *Chinese J. Chem.* 2018, *36* (2), 124–128. https://doi.org/10.1002/cjoc.201700627.
- (320) Neto, J. O.; Agostinho, S. M. M.; Silva, M. F. D. G. F. D.; Vieira, P. C.; Fernandes, J. B.; Pinheiro, A. L.; Vilela, E. F. Limonoids from Seeds of *Toona ciliata* and Their Chemosystematic Significance. *Phytochemistry* 1995, 38 (2), 397–401. https://doi.org/10.1016/0031-9422(94)00568-E.
- (321) Xia, J. J.; Li, X. Y.; Zhang, S. Z.; Liu, J. Q.; Zhang, W. M.; Yan, Y. X.; Ding, Z. T.; Qiu, M. H. An Unusual 9,11-Seco Limonoid from *Toona ciliata*. *Tetrahedron Lett.* **2014**, *55* (13), 2104–2106. https://doi.org/10.1016/j.tetlet.2014.02.057.
- (322) Adesogan, E. K.; Taylor, D. A. H. Methyl Ivorensate, an A-Seco-Limonoid from *Khaya ivorensis. J. Chem. Soc. D Chem. Commun.* **1969**, No. 15, 889. https://doi.org/10.1039/c29690000889.
- (323) Liu, C. P.; Xu, J. B.; Han, Y. S.; Wainberg, M. A.; Yue, J. M. Trichiconins A-C, Limonoids with New Carbon Skeletons from *Trichilia connaroides*. Org. Lett. **2014**, *16* (20), 5478–5481. https://doi.org/10.1021/ol5027552.
- (324) Yuan, C. M.; Zhang, Y.; Tang, G. H.; Di, Y. T.; Cao, M. M.; Wang, X. Y.; Zuo, G. Y.; Li, S. L.; Hua, H. M.; He, H. P.; Hao, X. J. Khayseneganins A-H, Limonoids from *Khaya senegalensis*. J. Nat. Prod. 2013, 76 (3), 327–333. https://doi.org/10.1021/np3006919.
- (325) Coombes, P. H.; Mulholland, D. A.; Randrianarivelojosia, M. Mexicanolide Limonoids from the Madagascan Meliaceae *Quivisia papinae*. *Phytochemistry* 2005, 66 (10), 1100–1107. https://doi.org/10.1016/j.phytochem.2005.03.002.
- (326) Kadota, S.; Marpaung, L.; Kikuchi, T.; Ekimoto, H. Constituents of the Seeds of *Swietenia mahagoni* Jacq.
 I. Isolation, Structures, and 1H- and 13C-Nuclear Magnetic Resonance Signal Assignments of New Tetranortriterpenoids Related to Swietenine and Swietenolide. *Chem. Pharm. Bull.* 1990, *38* (3), 639–651. https://doi.org/10.1248/cpb.38.639.
- (327) Taylor, D. A. H. Limonoid Extractives from *Xylocarpus moluccensis*. *Phytochemistry* **1983**, 22 (5), 1297–1299. https://doi.org/10.1016/0031-9422(83)80251-9.
- (328) Govindachari, T. R.; Kumari, G. N. K. Tetranortriterpenoids from *Khaya senegalensis*. *Phytochemistry* **1998**, 47 (7), 1423–1425. https://doi.org/10.1016/S0031-9422(97)00708-5.
- (329) Li, M.-Y.; Yang, X.-B.; Pan, J.-Y.; Feng, G.; Xiao, Q.; Sinkkonen, J.; Satyanandamurty, T.; Wu, J. Granatumins A–G, Limonoids from the Seeds of a Krishna Mangrove, *Xylocarpus granatum*. J. Nat. Prod. 2009, 72 (12), 2110–2114. https://doi.org/10.1021/np900625w.
- (330) Wu, J.; Zhang, S.; Xiao, Q.; Li, Q.; Huang, J.; Long, L.; Huang, L. Xyloccensin L, a Novel Limonoid from

Xylocarpus granatum. Tetrahedron Lett. 2004, 45 (3), 591–593. https://doi.org/10.1016/j.tetlet.2003.10.216.

- (331) Inoue, T.; Ohmori, S.; Kikuchi, T.; Yamada, T.; Tanaka, R. Carapanosins D—F from the Seeds of Andiroba (*Carapa guianensis*, Meliaceae) and Their Effects on LPS-Activated NO Production. *Molecules* 2018, 23 (7), 3–11. https://doi.org/10.3390/molecules23071778.
- (332) Miyake, T.; Ishimoto, S.; Ishimatsu, N.; Higuchi, K.; Minoura, K.; Kikuchi, T.; Yamada, T.; Muraoka, O.; Tanaka, R. Carapanolides T-X from *Carapa guianensis* (Andiroba) Seeds. *Molecules* 2015, 20 (11), 20955–20966. https://doi.org/10.3390/molecules201119737.
- (333) Inoue, T.; Matsui, Y.; Kikuchi, T.; In, Y.; Muraoka, O.; Yamada, T.; Tanaka, R. Carapanolides C-I from the Seeds of Andiroba (*Carapa guianensis*, Meliaceae). *Fitoterapia* 2014, 96, 56–64. https://doi.org/10.1016/j.fitote.2014.04.006.
- (334) Inoue, T.; Matsui, Y.; Kikuchi, T.; Yamada, T.; In, Y.; Muraoka, O.; Sakai, C.; Ninomiya, K.; Morikawa, T.; Tanaka, R. Carapanolides M-S from Seeds of Andiroba (*Carapa guianensis*, Meliaceae) and Triglyceride Metabolism-Promoting Activity in High Glucose-Pretreated HepG2 Cells. *Tetrahedron* 2015, 71 (18), 2753–2760. https://doi.org/10.1016/j.tet.2015.03.017.
- (335) Yi, L.; Zhang, H.; Tian, X.; Luo, J.; Luo, J.; Kong, L. Four New Limonoids from the Seeds of *Chukrasia* tabularis A. Juss. *Phytochem. Lett.* **2017**, *19*, 12–17. https://doi.org/10.1016/j.phytol.2016.11.004.
- (336) Li, J.; Li, M. Y.; Feng, G.; Xiao, Q.; Sinkkonen, J.; Satyanandamurty, T.; Wu, J. Limonoids from the Seeds of a Godavari Mangrove, *Xylocarpus moluccensis*. *Phytochemistry* **2010**, *71* (16), 1917–1924. https://doi.org/10.1016/j.phytochem.2010.07.015.
- (337) Shen, L.; Liao, Q.; Zhang, M.; Wu, J. Limonoids with Diverse Structures of Rings-A,B from the Thai Mangrove, *Xylocarpus moluccensis*. *Fitoterapia* **2020**, *147*, 104737. https://doi.org/10.1016/j.fitote.2020.104737.
- (338) Ma, Y. Q.; Jiang, K.; Deng, Y.; Guo, L.; Wan, Y. Q.; Tan, C. H. Mexicanolide-Type Limonoids from the Seeds of Swietenia macrophylla. J. Asian Nat. Prod. Res. 2018, 20 (4), 299–305. https://doi.org/10.1080/10286020.2017.1335715.
- (339) Yang, H.; Choi, M.; Lee, D.; Sung, S. Anti-Differentiation Effect of B, D-Seco Limonoids of *Swietenia* mahogani. Pharmacogn. Mag. 2017, 13 (50), 293. https://doi.org/10.4103/0973-1296.204549.
- (340) Li, J.; Li, M. Y.; Feng, G.; Zhang, J.; Karonen, M.; Sinkkonen, J.; Satyanandamurty, T.; Wu, J. Moluccensins R-Y, Limonoids from the Seeds of a Mangrove, *Xylocarpus moluccensis*. J. Nat. Prod. 2012, 75 (7), 1277–1283. https://doi.org/10.1021/np300053f.
- (341) Liu, S. B.; Mei, W. L.; Chen, H. Q.; Guo, Z. K.; Dai, H. F.; Wang, Z. N. Mexicanolide-Type Limonoids from the Roots of *Trichilia sinensis*. *Molecules* **2016**, *21* (9), 1–8. https://doi.org/10.3390/molecules21091152.
- (342) Xu, J. B.; Lin, Y.; Dong, S. H.; Wang, F.; Yue, J. M. Trichinenlides A-T, Mexicanolide-Type Limonoids from *Trichilia sinensis. J. Nat. Prod.* **2013**, *76* (10), 1872–1880. https://doi.org/10.1021/np400408s.
- (343) Sun, D. M.; An, F. L.; Wei, S. S.; Zhang, Y. Q.; Wang, X. B.; Luo, J.; Kong, L. Y. Cipadessains A-K, Eleven Limonoids from the Fruits of: *Cipadessa cinerascens*. *RSC Adv.* **2018**, 8 (19), 10437–10445. https://doi.org/10.1039/c8ra00728d.
- (344) Yang, W.; Kong, L. M.; Li, S. F.; Li, Y.; Zhang, Y.; He, H. P.; Hao, X. J. Five New Mexicanolide Type Limonoids from *Heynea trijuga*. *Nat. Products Bioprospect.* **2012**, *2* (4), 145–149. https://doi.org/10.1007/s13659-012-0040-1.
- (345) Li, M. Y.; Xiao, Q.; Satyanandamurty, T.; Wu, J. Limonoids with an Oxygen Bridge between C(1) and C(29) from the Seeds of a Krishna Mangrove, *Xylocarpus granatum. Chem. Biodivers.* 2014, *11* (2), 262– 275. https://doi.org/10.1002/cbdv.201300057.
- (346) Wang, X. Y.; Yuan, C. M.; Tang, G. H.; Zou, T.; Guo, F.; Liao, J. H.; Zhang, H. Y.; Zuo, G. Y.; Rao, G. X.; Zhao, Q.; Hao, X. J.; He, H. P. Limonoids from the Fruits of *Cipadessa cinerascens*. J. Asian Nat. Prod. Res. 2014, 16 (7), 795–799. https://doi.org/10.1080/10286020.2014.920011.
- (347) Abdelgaleil, S. A. M.; Doe, M.; Nakatani, M. Rings B,D-Seco Limonoid Antifeedants from *Swietenia* mahogani. Phytochemistry **2013**, 96, 312–317. https://doi.org/10.1016/j.phytochem.2013.08.006.
- (348) Chen, H.; Zhang, J.; Li, M. Y.; Satyanandamurty, T.; Wu, J. New Limonoids from the Seeds of a Krishna Mangrove, *Xylocarpus granatum*. *Chem. Biodivers.* **2013**, *10* (4), 612–620. https://doi.org/10.1002/cbdv.201200021.
- (349) Chen, A. H.; Wen, Q.; Ma, Y. L.; Jiang, Z. H.; Liu, Q. L.; Tang, J. Y.; Xu, W.; Liu, Y. P.; Fu, Y. H. Bioactive Mexicanolide-Type Limonoids from the Fruits of *Trichilia connaroides*. *Phytochem. Lett.* **2017**, 20, 17–21. https://doi.org/10.1016/j.phytol.2017.03.008.
- (350) Henrique Miguita, C.; Chaves Sarmento, U.; Hamerski, L.; Silva Garcez, W.; Rodrigues Garcez, F.

Mexicanolide- and Andirobine-Type Limonoids from the Fruits of *Guarea kunthiana*. *Rec. Nat. Prod.* **2014**, 8 (3), 290–293.

- (351) Liao, M.; Pedpradab, P.; Wu, J. Thaixylogranins A–H: Eight New Limonoids from the Thai Mangrove, *Xylocarpus granatum. Phytochem. Lett.* **2017**, *19*, 126–131. https://doi.org/10.1016/j.phytol.2016.12.019.
- (352) Li, W.; Jiang, Z.; Shen, L.; Pedpradab, P.; Bruhn, T.; Wu, J.; Bringmann, G. Antiviral Limonoids Including Khayanolides from the Trang Mangrove Plant *Xylocarpus moluccensis*. J. Nat. Prod. 2015, 78 (7), 1570– 1578. https://doi.org/10.1021/acs.jnatprod.5b00151.
- (353) Cheng, Y. Bin; Chien, Y. T.; Lee, J. C.; Tseng, C. K.; Wang, H. C.; Lo, I. W.; Wu, Y. H.; Wang, S. Y.; Wu, Y. C.; Chang, F. R. Limonoids from the Seeds of *Swietenia macrophylla* with Inhibitory Activity against Dengue Virus 2. J. Nat. Prod. 2014, 77 (11), 2367–2374. https://doi.org/10.1021/np5002829.
- (354) Ji, K. L.; Liao, S. G.; Zheng, X. L.; Na, Z.; Hu, H. Bin; Zhang, P.; Xu, Y. K. Limonoids from the Fruits of *Khaya ivorensis. Molecules* **2014**, *19* (3), 3004–3011. https://doi.org/10.3390/molecules19033004.
- (355) Solipeta, D. R.; Bandi, S.; Katragunta, K.; Mutheneni, S. R.; Katragadda, S. B. UPLC-MS E Guided Isolation of New Antifeedant Limonoids from Fruits of *Trichilia connaroides*. J. Agric. Food Chem. 2020, 68 (25), 6826–6834. https://doi.org/10.1021/acs.jafc.0c00862.
- (356) Dai, Y. G.; Wu, J.; Padmakumar, K. P.; Shen, L. Sundarbanxylogranins A–E, Five New Limonoids from the Sundarban Mangrove, *Xylocarpus granatum*. *Fitoterapia* 2017, *122* (August), 85–89. https://doi.org/10.1016/j.fitote.2017.08.013.
- (357) An, F.-L.; Sun, D.-M.; Wang, R.-Z.; Yang, M.-H.; Luo, J.; Kong, L.-Y. Trijugin- and Mexicanolide-Type Limonoids from the Fruits of *Heynea trijuga* That Reverse Multidrug Resistance in MCF-7/DOX Cells. *Phytochemistry* 2018, 151, 42–49. https://doi.org/10.1016/j.phytochem.2018.04.004.
- (358) Chen, L. C.; Liao, H. R.; Chen, P. Y.; Kuo, W. L.; Chang, T. H.; Sung, P. J.; Wen, Z. H.; Chen, J. J. Limonoids from the Seeds of *Swietenia macrophylla* and Their Anti-Inflammatory Activities. *Molecules* 2015, 20 (10), 18551–18564. https://doi.org/10.3390/molecules201018551.
- (359) Zhang, Q.; Di, Y. T.; He, H. P.; Fang, X.; Chen, D. L.; Yan, X. H.; Zhu, F.; Yang, T. Q.; Liu, L. L.; Hao, X. J. Phragmalin- and Mexicanolide-Type Limonoids from the Leaves of *Trichilia connaroides*. *J. Nat. Prod.* 2011, 74 (2), 152–157. https://doi.org/10.1021/np100428u.
- (360) Waratchareeyakul, W.; Hellemann, E.; Gil, R. R.; Chantrapromma, K.; Langat, M. K.; Mulholland, D. A. Application of Residual Dipolar Couplings and Selective Quantitative NOE to Establish the Structures of Tetranortriterpenoids from *Xylocarpus rumphii*. J. Nat. Prod. 2017, 80 (2), 391–402. https://doi.org/10.1021/acs.jnatprod.6b00906.
- (361) Wu, Y. B.; Wang, Y. Z.; Ni, Z. Y.; Qing, X.; Shi, Q. W.; Sauriol, F.; Vavricka, C. J.; Gu, Y. C.; Kiyota, H. Xylomexicanins i and J: Limonoids with Unusual B/C Rings from *Xylocarpus granatum*. J. Nat. Prod. 2017, 80 (9), 2547–2550. https://doi.org/10.1021/acs.jnatprod.7b00305.
- (362) Wang g., Fan y., Shyaula S., Y. J.; Wang, G.-C.; Fan, Y.-Y.; Shyaula, S. L.; Yue, J.-M. Triconoids A–D, Four Limonoids Possess Two Rearranged Carbon Skeletons from *Trichilia connaroides*.Pdf. Org. Lett. 2017, 19 (8), 2182–2185. https://doi.org/10.1021/acs.orglett.7b00873.
- (363) Sarigaputi, C.; Nuanyai, T.; Teerawatananond, T.; Pengpreecha, S.; Muangsin, N.; Pudhom, K. Xylorumphiins A-D, Mexicanolide Limonoids from the Seed Kernels of *Xylocarpus rumphii*. J. Nat. Prod. 2010, 73 (8), 1456–1459. https://doi.org/10.1021/np100423w.
- (364) Chong, S. L.; Hematpoor, A.; Hazni, H.; Sofian-Azirun, M.; Litaudon, M.; Supratman, U.; Murata, M.; Awang, K. Mosquito Larvicidal Limonoids from the Fruits of *Chisocheton erythrocarpus* Hiern. *Phytochem. Lett.* **2019**, *30* (January), 69–73. https://doi.org/10.1016/j.phytol.2018.12.013.
- (365) Cao, D. H.; Sun, P.; Liao, S. G.; Gan, L. S.; Yang, L.; Yao, J. N.; Zhang, Z. Y.; Li, J. F.; Zheng, X. L.; Xiao, Y. D.; Xiao, C. F.; Zhang, P.; Hu, H. Bin; Xu, Y. K. Chemical Constituents from the Twigs and Leaves of *Trichilia sinensis* and Their Biological Activities. *Phytochem. Lett.* **2019**, 29 (December 2018), 142–147. https://doi.org/10.1016/j.phytol.2018.11.020.
- (366) Cao, D.-H.; Liao, S.-G.; Sun, P.; Xiao, Y.-D.; Xiao, C.-F.; Hu, H.-B.; Weckwerth, W.; Xu, Y.-K. Mexicanolide-Type Limonoids from the Twigs and Leaves of *Cipadessa baccifera*. *Phytochemistry* 2020, 177, 112449. https://doi.org/10.1016/j.phytochem.2020.112449.
- (367) Li, Y.; Lu, Q.; Luo, J.; Wang, J.; Wang, X.; Zhu, M.; Kong, L. Limonoids from the Stem Bark of *Khaya* senegalensis. Chem. Pharm. Bull. **2015**, 63 (4), 305–310. https://doi.org/10.1248/cpb.c14-00770.
- (368) Camero, C. M.; Vassallo, A.; De Leo, M.; Temraz, A.; De Tommasi, N.; Braca, A. Limonoids from *Aphanamixis polystachya* Leaves and Their Interaction with Hsp90. *Planta Med.* 2018, 84 (12–13), 964– 970. https://doi.org/10.1055/a-0624-9538.
- (369) Sarigaputi, C.; Sommit, D.; Teerawatananond, T.; Pudhom, K. Weakly Anti-Inflammatory Limonoids from

the Seeds of *Xylocarpus rumphii*. J. Nat. Prod. **2014**, 77 (9), 2037–2043. https://doi.org/10.1021/np5003687.

- (370) Kikuchi, T.; Akita, K.; Koike, H.; In, Y.; Yamada, T.; Tanaka, R. Carapanins A–C: New Limonoids from Andiroba (*Carapa guianensis*) Fruit Oil. Org. Biomol. Chem. **2020**, 18 (45), 9268–9274. https://doi.org/10.1039/D0OB01872D.
- (371) Heng, L.; Zhao, M.; Xu, R.; Tao, R.; Wang, C.; Zhang, L.; Bu, Y.; Luo, J.; Li, Y. Phragmalin and Mexicanolide Limonoids with Reversal of Multidrug Resistance from the Seeds of *Chukrasia tabularis* A. Juss. *Phytochemistry* 2021, *182*, 112606. https://doi.org/10.1016/j.phytochem.2020.112606.
- (372) Toume, K.; Kamiya, K.; Arai, M. A.; Mori, N.; Sadhu, S. K.; Ahmed, F.; Ishibashi, M. Xylogranin B: A Potent Wnt Signal Inhibitory Limonoid from *Xylocarpus granatum*. Org. Lett. 2013, 15 (23), 6106–6109. https://doi.org/10.1021/ol4029995.
- (373) Wu, Y.-B.; Ni, Z.-Y.; Huo, C.-H.; Su, J.; Dong, M.; Sauriol, F.; Shi, Q.-W.; Gu, Y.-C.; Kiyota, H. Xylomexicanins C and D, New Mexicanolide-Type Limonoids from *Xylocarpus granatum*. *Biosci. Biotechnol. Biochem.* 2013, 77 (4), 736–740. https://doi.org/10.1271/bbb.120815.
- (374) Pan, J.-Y.; Chen, S.-L.; Li, M.-Y.; Li, J.; Yang, M.-H.; Wu, J. Limonoids from the Seeds of a Hainan Mangrove, *Xylocarpus granatum*. J. Nat. Prod. **2010**, 73 (10), 1672–1679. https://doi.org/10.1021/np100395w.
- (375) Liu, R.-X.; Liao, Q.; Shen, L.; Wu, J. Krishnagranatins A–I: New Limonoids from the Mangrove, *Xylocarpus granatum*, and NF-KB Inhibitory Activity. *Fitoterapia* **2018**, *131*, 96–104. https://doi.org/10.1016/j.fitote.2018.08.011.
- (376) Ren, J. L.; Zou, X. P.; Li, W. S.; Shen, L.; Wu, J. Limonoids Containing a C₁O⁻C 29 Moiety: Isolation, Structural Modification, and Antiviral Activity. *Mar. Drugs* 2018, 16 (11), 1–16. https://doi.org/10.3390/md16110434.
- (377) Chen, W.; Shen, L.; Li, M.; Xiao, Q.; Satyanandamurty, T.; Wu, J. Absolute Configurations of New Limonoids from a Krishna Mangrove, *Xylocarpus granatum*. *Fitoterapia* 2014, 94, 108–113. https://doi.org/10.1016/j.fitote.2014.02.001.
- (378) Wu, Y. B.; Qing, X.; Huo, C. H.; Yan, H. M.; Shi, Q. W.; Sauriol, F.; Gu, Y. C.; Kiyota, H. Xylomexicanins E-H, New Limonoids from *Xylocarpus granatum*. *Tetrahedron* **2014**, *70* (30), 4557–4562. https://doi.org/10.1016/j.tet.2014.04.062.
- (379) Shen, L.-R.; Dong, M.; Yin, B.-W.; Guo, D.; Zhang, M.-L.; Shi, Q.-W.; Huo, C.-H.; Kiyota, H.; Suzuki, N.; Cong, B. Xylomexicanins A and B, New Δ14,15-Mexicanolides from Seeds of the Chinese Mangrove *Xylocarpus granatum. Zeitschrift für Naturforsch. C* 2009, 64 (1–2), 37–42. https://doi.org/10.1515/znc-2009-1-207.
- (380) Yin, S.; Fan, C.-Q.; Wang, X.-N.; Lin, L.-P.; Ding, J.; Yue, J.-M. Xylogranatins A–D: Novel Tetranortriterpenoids with an Unusual 9,10-Seco Scaffold from Marine Mangrove *Xylocarpus granatum*. *Org. Lett.* **2006**, *8* (21), 4935–4938. https://doi.org/10.1021/ol062101t.
- (381) Wu, J.; Zhang, S.; Bruhn, T.; Xiao, Q.; Ding, H.; Bringmann, G. Xylogranatins F–R: Antifeedants from the Chinese Mangrove, *Xylocarpus granatum*, A New Biogenetic Pathway to Tetranortriterpenoids. *Chem. - A Eur. J.* 2008, *14* (4), 1129–1144. https://doi.org/10.1002/chem.200700663.
- (382) Dai, Y. G.; Li, W. S.; Pedpradab, P.; Liu, J. J.; Wu, J.; Shen, L. Thaixylomolins O-R: Four New Limonoids from the Trang Mangrove,: *Xylocarpus moluccensis*. *RSC Adv.* **2016**, *6* (89), 85978–85984. https://doi.org/10.1039/c6ra14721f.
- (383) Inoue, T.; Nagai, Y.; Mitooka, A.; Ujike, R.; Muraoka, O.; Yamada, T.; Tanaka, R. Carapanolides A and B: Unusual 9,10-Seco-Mexicanolides Having a 2R,9S-Oxygen Bridge from the Seeds of *Carapa guianensis*. *Tetrahedron Lett.* **2012**, *53* (49), 6685–6688. https://doi.org/10.1016/j.tetlet.2012.09.108.
- (384) Rao, M. M.; Gupta, P. S.; Singh, P. P.; Krishna, E. M. Structure of Febrinin-A, a New Tetranortripenoid from the Heartwood of *Soymida febrifuga*. *Chem. Informationsd.* **1979**, *10* (49).
- (385) Lin, B. D.; Zhang, C. R.; Yang, S. P.; Wu, Y.; Yue, J. M. Phragmalin-Type Limonoid Orthoesters from the Twigs of *Swietenia macrophylla. Chem. Pharm. Bull.* **2011**, *59* (4), 458–465. https://doi.org/10.1248/cpb.59.458.
- (386) Wang, Y. C.; Kong, F. D.; Wang, H.; Mei, W. L.; Liu, S. B.; Zhao, Y. X.; Dai, H. F. Six New Phragmalin Limonoids from the Stems of *Chukrasia tabularis* A. Juss. *Molecules* 2018, 23 (11). https://doi.org/10.3390/molecules23113024.
- (387) Hu, Y.-L.; Tian, X.-M.; Wang, C.-C.; Olga, Q.; Yan, D.; Tang, P.-F.; Zhang, L.-N.; Luo, J.; Kong, L.-Y. Highly Oxygenated and Rearranged Limonoids from the Stem Barks of *Entandrophragma utile*. *Phytochemistry* **2020**, *172*, 112282. https://doi.org/10.1016/j.phytochem.2020.112282.

- (388) Yadav, P. A.; Suresh, G.; Rao, M. S. A.; Shankaraiah, G.; Usha Rani, P.; Babu, K. S. Limonoids from the Leaves of *Soymida febrifuga* and Their Insect Antifeedant Activities. *Bioorganic Med. Chem. Lett.* 2014, 24 (3), 888–892. https://doi.org/10.1016/j.bmcl.2013.12.077.
- (389) Luo, J.; Li, Y.; Wang, J. S.; Kong, L. Y. Two New C-15 Enolic Acyl Phragmalin-Type Limonoids from *Chukrasia tabularis* Var. Velutina. *Nat. Prod. Res.* 2013, 27 (7), 597–602. https://doi.org/10.1080/14786419.2012.682995.
- (390) Zhang, F.; Zhang, C. R.; Tao, X.; Wang, J.; Chen, W. S.; Yue, J. M. Phragmalin-Type Limonoids with NF-KB Inhibition from *Chukrasia tabularis* Var. Velutina. *Bioorganic Med. Chem. Lett.* 2014, 24 (16), 3791– 3796. https://doi.org/10.1016/j.bmcl.2014.06.069.
- (391) Liu, H. B.; Zhang, H.; Li, P.; Wu, Y.; Gao, Z. B.; Yue, J. M. Kv1.2 Potassium Channel Inhibitors from *Chukrasia tabularis. Org. Biomol. Chem.* **2012**, *10* (7), 1448–1458. https://doi.org/10.1039/c1ob06666h.
- (392) Ashok Yadav, P.; Suresh, G.; Rajendra Prasad, K.; Suri Appa Rao, M.; Suresh Babu, K. New Phragmalin-Type Limonoids from *Soymida febrifuga*. *Tetrahedron Lett.* **2012**, *53* (7), 773–777. https://doi.org/10.1016/j.tetlet.2011.11.143.
- (393) Wang, C.; Li, Y.; Xu, R.; Zhang, P.; Zhang, W.; Wei, S.; Li, Y.; Luo, J.; Kong, L. Phragmalin-Type Limonoids with Structural Diversity at D-Ring from the Fruit Shells of *Chukrasia tabularis*. *Fitoterapia* 2019, 134 (February), 188–195. https://doi.org/10.1016/j.fitote.2019.02.032.
- (394) Liu, W.-X.; Chen, D.-Z.; Ding, J.-Y.; Hao, X.-J.; Li, S.-L. New Phragmalin-Type Limonoid Orthoesters from the Bark of *Chukrasia tabularis* Var. Velutina. *Helv. Chim. Acta* **2015**, *98* (10), 1403–1410. https://doi.org/10.1002/hlca.201400267.
- (395) Luo, J.; Li, Y.; Wang, J. S.; Lu, J.; Wang, X. B.; Luo, J. G.; Kong, L. Y. Twelve Novel and Diverse 16-Norphragmalin-Type Limonoids from *Chukrasia tabularis* Var. Velutina. *Chem. Pharm. Bull.* 2012, 60 (2), 195–204. https://doi.org/10.1248/cpb.60.195.
- (396) Quasie, O.; Li, H.; Luo, J.; Kong, L. Y. Two New Phragmalin-Type Limonoids Orthoesters from Entandrophragma candollei. Chin. J. Nat. Med. 2017, 15 (9), 680–683. https://doi.org/10.1016/S1875-5364(17)30097-3.
- (397) Fossen, T.; Yahorau, A.; Yahorava, S.; Raharinjato, F.; Razafimahefa, S.; Rasoanaivo, P.; Wikberg, J. E. S. New Polyfunctional Phragmalin Limonoids from *Neobeguea mahafalensis*. *Planta Med.* 2016, 82 (11–12), 1087–1095. https://doi.org/10.1055/s-0042-108741.
- (398) Yin, J.-L.; Di, Y.-T.; Fang, X.; Liu, E.-D.; Liu, H.-Y.; He, H.-P.; Li, S.-F. S.-L.; Li, S.-F. S.-L.; Hao, X.-J. Tabulvelutin A, the First 19-nor Limonoid with Unprecedented Ring System from *Chukrasia tabularis* Var. Velutina. *Tetrahedron Lett.* 2011, 52 (24), 3083–3085. https://doi.org/10.1016/j.tetlet.2011.03.112.
- (399) Happi, G. M.; Mouthe Kemayou, G. P.; Stammler, H.-G.; Neumann, B.; Ismail, M.; Kouam, S. F.; Wansi, J. D.; Tchouankeu, J. C.; Frese, M.; Lenta, B. N.; Sewald, N. Three Phragmalin-Type Limonoids Orthoesters and the Structure of Odoratone Isolated from the Bark of *Entandrophragma candollei* (Meliaceae). *Phytochemistry* **2021**, *181*, 112537. https://doi.org/10.1016/j.phytochem.2020.112537.
- (400) Razafimahefa, S.; Mutulis, F.; Mutule, I.; Liepinsh, E.; Dambrova, M.; Cirule, H.; Svalbe, B.; Yahorava, S.; Yahorau, A.; Rasolondratovo, B.; Rasoanaivo, P.; Wikberg, J. E. S. Libiguins A and B: Novel Phragmalin Limonoids Isolated from *Neobeguea mahafalensis* Causing Profound Enhancement of Sexual Activity. *Planta Med.* 2014, 80 (4), 306–314. https://doi.org/10.1055/s-0033-1360390.
- (401) Luo, J.; Zhang, H. J.; Quasie, O.; Shan, S. M.; Zhang, Y. M.; Kong, L. Y. Further C-15-Acyl Phragmalin Derivatives from *Chukrasia tabularis* A. Juss. *Phytochemistry* 2015, 117, 410–416. https://doi.org/10.1016/j.phytochem.2015.05.014.
- (402) Luo, J.; Li, Y.; Wang, J. S.; Kong, L. Y. D-Ring-Opened Phragmalin-Type Limonoids from *Chukrasia tabularis* Var. Velutina. *Chem. Biodivers.* 2011, 8 (12), 2261–2269. https://doi.org/10.1002/cbdv.201000285.
- (403) Yin, J. L.; Fang, X.; Liu, E. De; Yuan, C. M.; Li, S. F.; Zhang, Y.; He, H. P.; Li, S. L.; Di, Y. T.; Hao, X. J. Phragmalin Limonoids from the Stem Barks of *Chukrasia tabularis* Var Velutina. *Planta Med.* 2014, 80 (15), 1304–1309. https://doi.org/10.1055/s-0034-1382998.
- (404) Chen, X. L.; Liu, H. L.; Guo, Y. W. Phragmalin Limonoids from *Chukrasia tabularis* Var Velutina. *Planta Med.* 2012, 78 (3), 286–290. https://doi.org/10.1055/s-0031-1280403.
- (405) Li, Y.; Luo, J.; Wang, Q.; Kong, L. Y. Two New Limonoids from the Stem Barks of *Chukrasia tabularis* Var. Velutina. J. Asian Nat. Prod. Res. 2011, 13 (9), 781–786. https://doi.org/10.1080/10286020.2011.590799.
- (406) Inoue, T.; Matsui, Y.; Kikuchi, T.; In, Y.; Yamada, T.; Muraoka, O.; Matsunaga, S.; Tanaka, R. Guianolides A and B, New Carbon Skeletal Limonoids from the Seeds of *Carapa guianensis*. Org. Lett. **2013**, 15 (12),

3018-3021. https://doi.org/10.1021/ol400924u.

- (407) Hu, K.; Liu, J.-Q.; Li, X.; Chen, J.-C.; Zhang, W.-M.; Li, Y.; Li, L.; Guo, L.; Ma, W.; Qiu, M.-H. Chukfuransins A–D, Four New Phragmalin Limonoids with β-Furan Ring Involved in Skeleton Reconstruction from *Chukrasia tabularis*. Org. Lett. **2013**, 15 (15), 3902–3905. https://doi.org/10.1021/ol401650m.
- (408) Zhang, C.-R.; Yang, S.-P.; Zhu, Q.; Liao, S.-G.; Wu, Y.; Yue, J.-M. Nortriterpenoids from *Chukrasia tabularis* Var. Velutina. *J. Nat. Prod.* **2007**, *70* (10), 1616–1619. https://doi.org/10.1021/np070345w.
- (409) Peng, J.-L.; Wang, J.; Mei, W.-L.; Kong, F.-D.; Liu, Z.-Q.; Wang, P.; Gai, C.-J.; Jiang, B.; Dai, H.-F. Two New Phragmalin-Type Limonoids from *Chukrasia tabularis* and Their α -Glucosidase Inhibitory Activity. J. Asian Nat. Prod. Res. 2016, 18 (7), 629–636. https://doi.org/10.1080/10286020.2015.1136291.
- (410) Peng, J. L.; Jun-Wang; Kong, F. D.; Liu, Z. Q.; Wang, P.; Gai, C. J.; Jiang, B.; Mei, W. L.; Dai, H. F. Two New Phragmalin-Type Limonoids from Stems of *Chukrasia tabularis*. *Phytochem. Lett.* **2016**, *15*, 230–233. https://doi.org/10.1016/j.phytol.2016.01.003.
- (411) Lin, B.-D.; Zhang, C.-R.; Yang, S.-P.; Zhang, S.; Wu, Y.; Yue, J.-M. D-Ring-Opened Phragmalin-Type Limonoid Orthoesters from the Twigs of *Swietenia macrophylla*. J. Nat. Prod. **2009**, 72 (7), 1305–1313. https://doi.org/10.1021/np900139c.
- (412) Adesida, G. A.; Taylor, D. A. H. The Chemistry of the Genus *Entandrophragma*. *Phytochemistry* **1967**, 6 (10), 1429–1433. https://doi.org/10.1016/S0031-9422(00)82885-X.
- (413) Mi, C. N.; Li, W.; Chen, H. Q.; Wang, J.; Cai, C. H.; Li, S. P.; Mei, W. L.; Dai, H. F. Two New Compounds from the Roots of *Swietenia macrophylla*. J. Asian Nat. Prod. Res. 2018, 6020, 1–8. https://doi.org/10.1080/10286020.2018.1488831.
- (414) Wu, Y.; Wang, L.; Wei, X.; Shi, X.; Sauriol, F.; Gu, Y.; Shi, Q.; Qi, J. Granaxylocartin A, New Limonoid from the Seeds of *Xylocarpus granatum*. *Chem. Nat. Compd.* **2017**, *53* (5), 901–903. https://doi.org/10.1007/s10600-017-2151-8.
- (415) Pamplona, S.; Arruda, M.; Castro, K.; e Silva, C.; Ferreira, A.; da Silva, M.; Ohashi, O.; da Silva, M. Phragmalin Limonoids from *Swietenia macrophylla* and Their Antifeedant Assay against Mahogany Predator. *J. Braz. Chem. Soc.* **2018**, *29* (8), 1621–1629. https://doi.org/10.21577/0103-5053.20180033.
- (416) Abdelgaleil, S. A. .; Okamura, H.; Iwagawa, T.; Sato, A.; Miyahara, I.; Doe, M.; Nakatani, M. Khayanolides, Rearranged Phragmalin Limonoid Antifeedants from *Khaya senegalensis*. *Tetrahedron* 2001, 57 (1), 119–126. https://doi.org/10.1016/S0040-4020(00)00994-7.
- (417) Nakatani, M.; Abdelgaleil, S. A. M.; Saad, M. M. G.; Huang, R. C.; Doe, M.; Iwagawa, T. Phragmalin Limonoids from *Chukrasia tabularis*. *Phytochemistry* **2004**, 65 (20), 2833–2841. https://doi.org/10.1016/j.phytochem.2004.08.010.
- (418) Pudhom, K.; Sommit, D.; Nuclear, P.; Ngamrojanavanich, N.; Petsom, A. Moluccensins H–J, 30-Ketophragmalin Limonoids from *Xylocarpus moluccensis*. J. Nat. Prod. **2010**, 73 (2), 263–266. https://doi.org/10.1021/np900583h.
- (419) Yin, S.; Wang, X.-N.; Fan, C.-Q.; Lin, L.-P.; Ding, J.; Yue, J.-M. Limonoids from the Seeds of the Marine Mangrove *Xylocarpus granatum. J. Nat. Prod.* **2007**, *70* (4), 682–685. https://doi.org/10.1021/np060632k.
- (420) Zhang, W. M.; Liu, J. Q.; Deng, Y. Y.; Xia, J. J.; Zhang, Z. R.; Li, Z. R.; Qiu, M. H. Diterpenoids and Limonoids from the Leaves and Twigs of *Swietenia mahagoni*. *Nat. Products Bioprospect.* 2014, 4 (1), 53– 57. https://doi.org/10.1007/s13659-014-0006-6.
- (421) Yang, W.; Kong, L.; Zhang, Y.; Tang, G.; Zhu, F.; Li, S.; Guo, L.; Cheng, Y.; Hao, X.; He, H. Phragmalin-Type Limonoids from *Heynea trijuga*. *Planta Med.* **2012**, 78 (15), 1676–1682. https://doi.org/10.1055/s-0032-1315210.
- (422) Liu, S. B.; Chen, H. Q.; Guo, Z. K.; Dong, W. H.; Wang, J.; Mei, W. L.; Dai, H. F. Phragmalin-Type Limonoids from the Roots of *Trichilia sinensis*. *RSC Adv.* **2017**, 7 (46), 28994–29003. https://doi.org/10.1039/c7ra01785e.
- (423) Li, J.; Li, M. Y.; Xiao, Q.; Pedpradab, P.; Wu, J. Thaixylomolins D-F, New Limonoids from the Thai True Mangrove, *Xylocarpus moluccensis*. *Phytochem. Lett.* **2013**, 6 (3), 482–485. https://doi.org/10.1016/j.phytol.2013.06.005.
- (424) Liu, J. Q.; Wang, C. F.; Chen, J. C.; Qiu, M. H. Limonoids from the Leaves of *Swietenia macrophylla*. *Nat. Prod. Res.* **2012**, *26* (20), 1887–1891. https://doi.org/10.1080/14786419.2011.625499.
- (425) Yuan, C. M.; Tang, G. H.; Wang, X. Y.; Zhang, Y.; Guo, F.; Liao, J. H.; Zou, T.; Zuo, G. Y.; Hua, H. M.; He, H. P.; Hao, X. J. Two New Compounds from *Khaya senegalensis*. J. Asian Nat. Prod. Res. 2013, 15 (6), 638–643. https://doi.org/10.1080/10286020.2013.794419.
- (426) Luo, J.; Wang, J. S.; Luo, J. G.; Wang, X. B.; Kong, L. Y. Velutabularins A-J, Phragmalin-Type Limonoids

with Novel Cyclic Moiety from *Chukrasia tabularis* Var. Velutina. *Tetrahedron* **2011**, 67 (16), 2942–2948. https://doi.org/10.1016/j.tet.2011.02.049.

- (427) Li, Y.; Luo, J.; Li, H.; Kong, L. Y. Two New Phragmalin-Type Limonoids from *Chukrasia tabularis* Var. Velutina. *Molecules* **2013**, *18* (1), 373–380. https://doi.org/10.3390/molecules18010373.
- (428) Fang, X.; Di, Y.; Geng, Z.; Tan, C.; Guo, J.; Ning, J.; Hao, X. Trichiliton A, a Novel Limonoid from *Trichilia connaroides. European J. Org. Chem.* 2010, 2010 (7), 1381–1387. https://doi.org/10.1002/ejoc.200901245.
- (429) Nakatani, M.; Abdelgaleil, S. A. .; Okamura, H.; Iwagawa, T.; Sato, A.; Doe, M. Khayanolides A and B, New Rearranged Phragmalin Limonoid Antifeedants from *Khaya senegalensis*. *Tetrahedron Lett.* 2000, *41* (33), 6473–6477. https://doi.org/10.1016/S0040-4039(00)01080-7.
- (430) Wang, H. Y.; Wang, J. S.; Zhang, Y.; Luo, J.; Yang, M. H.; Wang, X. B.; Kong, L. Y. Inhibitory Effect of Four Triterpenoids from *Trichilia connaroides* on Nitric Oxide Production in Lipopolysaccharide-Stimulated RAW264.7 Cells. *Chem. Pharm. Bull.* **2013**, *61* (10), 1075–1080. https://doi.org/10.1248/cpb.c13-00286.
- (431) Najmuldeen, I. A.; Hadi, A. H. A.; Awang, K.; Mohamad, K.; Ketuly, K. A.; Mukhtar, M. R.; Chong, S. L.; Chan, G.; Nafiah, M. A.; Weng, N. S.; Shirota, O.; Hosoya, T.; Nugroho, A. E.; Morita, H. Chisomicines A-C, Limonoids from *Chisocheton ceramicus*. J. Nat. Prod. **2011**, 74 (5), 1313–1317. https://doi.org/10.1021/np200013g.
- (432) Ji, K. L.; Cao, D. H.; Li, X. F.; Guo, J.; Zhang, P.; Xu, Y. K. Two New Limonoids from the Roots of *Trichilia connaroides* with Inhibitory Activity against Nitric Oxide Production in Lipopolysaccharide-Stimulated RAW 264.7 Cells. *Phytochem. Lett.* 2015, 14, 234–238. https://doi.org/10.1016/j.phytol.2015.10.020.
- (433) An, F. L.; Sun, D. M.; Wang, X. B.; Yang, L.; Yin, Y.; Luo, J.; Kong, L. Y. Trichiconlides C–F, Four New Limonoids with 1,2-Seco Phragmalin-Type Carbon Skeleton from the Fruits of *Trichilia connaroides*. *Fitoterapia* **2018**, *125* (October 2017), 72–77. https://doi.org/10.1016/j.fitote.2017.12.023.
- (434) Li, J.; Li, M. Y.; Bruhn, T.; Götz, D. C. G.; Xiao, Q.; Satyanandamurty, T.; Wu, J.; Bringmann, G. Andhraxylocarpins A-E: Structurally Intriguing Limonoids from the True Mangroves *Xylocarpus granatum* and *Xylocarpus moluccensis. Chem. A Eur. J.* **2012**, *18* (45), 14342–14351. https://doi.org/10.1002/chem.201202356.
- (435) Chong, S. L.; Awang, K.; Martin, M. T.; Mokhtar, M. R.; Chan, G.; Litaudon, M.; Gueritte, F.; Mohamad, K. Malayanines A and B, Two Novel Limonoids from *Chisocheton erythrocarpus* Hiern. *Tetrahedron Lett.* 2012, *53* (40), 5355–5359. https://doi.org/10.1016/j.tetlet.2012.07.067.
- (436) Zhang, C.-R.; Yang, S.-P.; Liao, S.-G.; Fan, C.-Q.; Wu, Y.; Yue, J.-M. Chuktabularins A–D, Four New Limonoids with Unprecedented Carbon Skeletons from the Stem Bark of *Chukrasia tabularis*. Org. Lett. 2007, 9 (17), 3383–3386. https://doi.org/10.1021/ol701437h.
- (437) Luo, J.; Li, Y.; Wang, J. S.; Lu, J.; Kong, L. Y. Three New C-15-Isobutyryl 16-Norphragmalin-Type Limonoids from *Chukrasia tabularis* Var. Velutina. *Phytochem. Lett.* **2012**, *5* (2), 249–252. https://doi.org/10.1016/j.phytol.2012.01.005.
- (438) Zhang, B.; Yang, S.-P.; Yin, S.; Zhang, C.-R.; Wu, Y.; Yue, J.-M. Limonoids from *Khaya ivorensis*. *Phytochemistry* **2009**, *70* (10), 1305–1308. https://doi.org/10.1016/j.phytochem.2009.07.016.
- (439) Zhang, Q.; Satyanandamurty, T.; Shen, L.; Wu, J. Krishnolides A–D: New 2-Ketokhayanolides from the Krishna Mangrove, *Xylocarpus moluccensis*. *Mar. Drugs* 2017, 15 (11). https://doi.org/10.3390/md15110333.
- (440) Wang, X.-N.; Fan, C.-Q.; Yin, S.; Gan, L.-S.; Yue, J.-M. Structural Elucidation of Limonoids and Steroids from *Trichilia connaroides*. *Phytochemistry* 2008, 69 (6), 1319–1327. https://doi.org/10.1016/j.phytochem.2008.01.018.
- (441) Purushothaman, K. K.; Venkatanarasimhan, M.; Sarada, A.; Connolly, J. D.; Rycroft, D. S. Trijugins A and B, Tetranortriterpenoids with a Novel Rearranged Carbon Skeleton from *Heynea trijuga* (Meliaceae). *Can. J. Chem.* **1987**, 65 (1), 35–37. https://doi.org/10.1139/v87-008.
- (442) Geng, Z.-L.; Fang, X.; Di, Y.-T.; Zhang, Q.; Zeng, Y.; Shen, Y.-M.; Hao, X.-J. Trichilin B, a Novel Limonoid with Highly Rearranged Ring System from *Trichilia connaroides*. *Tetrahedron Lett.* 2009, 50 (18), 2132–2134. https://doi.org/10.1016/j.tetlet.2009.02.147.
- (443) Madhusudana Rao, M.; Meshulam, H.; Zelnik, R.; Lavie, D. Structure and Stereochemistry of Limonoids of Cabralea eichleriana. Phytochemistry 1975, 14 (4), 1071–1075. https://doi.org/10.1016/0031-9422(75)85189-2.
- (444) Ning, J.; Di, Y. T.; Wang, Y. Y.; He, H. P.; Fang, X.; Li, Y.; Li, S. L.; Hao, X. J. Cytotoxic Activity of

Trijugin-Type Limonoids from *Cipadessa baccifera*. *Planta Med.* **2010**, *76* (16), 1907–1910. https://doi.org/10.1055/s-0030-1249979.

- (445) Zhang, Z.; Cheng, Y.; Hu, G.; Li, G. Two New Trijugin-Type Limonoids from *Cipadessa cinerascens*. *Helv. Chim. Acta* **2013**, *96* (12), 2228–2232. https://doi.org/10.1002/hlca.201300228.
- (446) Jiang, C. S.; Li, Y.; Wang, Z. Z.; Huang, X. Y.; Xiao, W.; Guo, Y. W. Cipatrijugin G, a New Trijugin-Type Limonoid Bearing an Uncommon γ-Hydroxybutenolide Unit from the Aerial Parts of *Cipadessa cinerascens. Natural Products and Bioprospecting.* 2013, pp 267–270. https://doi.org/10.1007/s13659-013-0074-z.
- (447) Geng, Z.-L.; Fang, X.; Di, Y.-T.; Zhang, Q.; Shen, Y.-M.; Hao, X.-J. A New Limonoid From*Trichilia* connaroides. Zeitschrift für Naturforsch. B 2010, 65 (6), 762–764.
- (448) Leite, A. C.; Placeres Neto, A.; Ambrozin, A. R. P.; Fernandes, J. B.; Vieira, P. C.; Silva, M. F. das G. F. da; de Albuquerque, S. Trypanocidal Activity of Flavonoids and Limonoids Isolated from Myrsinaceae and Meliaceae Active Plant Extracts. *Rev. Bras. Farmacogn.* 2010, 20 (1), 01–06. https://doi.org/10.1590/S0102-695X2010000100002.
- (449) Fang, X.; Di, Y.-T.; Li, C.-S.; Geng, Z.-L.; Zhang, Z.; Zhang, Y.; Lu, Y.; Zheng, Q.-T.; Yang, S.-Y.; Hao, X.-J. Tetranortriterpenoids from the Leaves of *Cipadessa cinerascens*. J. Nat. Prod. 2009, 72 (4), 714–718. https://doi.org/10.1021/np800656r.
- (450) Zhang, Z.-G.; Yao, K.; Hu, G.-L.; Zhang, J. Three New Limonoids from the Leaves of *Cipadessa cinerascens. Helv. Chim. Acta* **2010**, *93* (4), 698–703. https://doi.org/10.1002/hlca.200900283.
- (451) Siva, B.; Suresh, G.; Poornima, B.; Venkanna, A.; Suresh Babu, K.; Rajendra Prasad, K.; Prasanna Anjaneya Reddy, L.; Sreedhar, A. S.; Venkata Rao, C. Cipadessin-Type Limonoids from the Leaves of *Cipadessa baccifera*. *Tetrahedron Lett.* **2013**, *54* (23), 2934–2937. https://doi.org/10.1016/j.tetlet.2013.03.103.
- (452) Mulholland, D. A.; Schwikkard, S. L.; Sandor, P.; Nuzillard, J. M. Delevoyin C, a Tetranortriterpenoid from *Entandrophragma delevoyi*. *Phytochemistry* **2000**, *53* (4), 465–468. https://doi.org/10.1016/S0031-9422(99)00546-4.
- (453) Higuchi, K.; Tani, Y.; Kikuchi, T.; In, Y.; Yamada, T.; Muraoka, O.; Tanaka, N.; Tanaka, R. Guianolactones A and B, Two Rearranged Pentacyclic Limonoids from the Seeds of *Carapa guianensis*. *Chem. - An Asian J.* **2017**, *12* (23), 3000–3004. https://doi.org/10.1002/asia.201701298.
- (454) An, F. L.; Luo, J.; Li, R. J.; Luo, J. G.; Wang, X. B.; Yang, M. H.; Yang, L.; Yao, H. Q.; Sun, H. Bin; Chen, Y. J.; Kong, L. Y. Spirotrichilins A and B: Two Rearranged Spirocyclic Limonoids from *Trichilia connaroides. Org. Lett.* **2016**, *18* (8), 1924–1927. https://doi.org/10.1021/acs.orglett.6b00738.
- (455) Yu, J. H.; Liu, Q. F.; Sheng, L.; Wang, G. C.; Li, J.; Yue, J. M. Cipacinoids A-D, Four Limonoids with Spirocyclic Skeletons from *Cipadessa cinerascens*. Org. Lett. **2016**, 18 (3), 444–447. https://doi.org/10.1021/acs.orglett.5b03487.
- (456) Luo, J.; Tian, X.; Zhang, H.; Zhou, M.; Li, J.; Kong, L. Two Rare Limonoids from the Stem Barks of *Entandrophragma utile. Tetrahedron Lett.* 2016, 57 (48), 5334–5337. https://doi.org/10.1016/j.tetlet.2016.10.055.
- (457) Yuan, C. M.; Zhang, Y.; Tang, G. H.; Li, S. L.; Di, Y. T.; Hou, L.; Cai, J. Y.; Hua, H. M.; He, H. P.; Hao, X. J. Senegalensions A-C, Three Limonoids from *Khaya senegalensis*. *Chem. An Asian J.* 2012, *7* (9), 2024–2027. https://doi.org/10.1002/asia.201200320.
- (458) Liu, J. Q.; Peng, X. R.; Zhang, W. M.; Shi, L.; Li, X. Y.; Chen, J. C.; Qiu, M. H. Swietemahalactone, a Rearranged Phragmalin-Type Limonoid with Anti-Bacterial Effect, from *Swietenia mahagoni*. *RSC Adv.* 2013, 3 (15), 4890–4893. https://doi.org/10.1039/c3ra23401k.
- (459) Mohamad, K.; Hirasawa, Y.; Lim, C. S.; Awang, K.; Hadi, A. H. A.; Takeya, K.; Morita, H. Ceramicine A and Walsogyne A, Novel Limonoids from Two Species of Meliaceae. *Tetrahedron Lett.* 2008, 49 (27), 4276–4278. https://doi.org/10.1016/j.tetlet.2008.04.145.
- (460) Luo, X.-D.; Wu, S.-H.; Ma, Y.-B.; Wu, D.-G. Tetranortriterpenoids from *Walsura yunnanensis. J. Nat. Prod.* **2000**, *63* (7), 947–951. https://doi.org/10.1021/np990607x.
- (461) Kraus, W.; Cramer, R. Pentanortriterpenoide Aus Azadirachta indica A. Juss (Meliaceae). Chem. Ber. 1981, 114 (7), 2375–2381. https://doi.org/10.1002/cber.19811140703.
- (462) Ishida, M.; Serit, M.; Nakata, K.; Raj Juneja, L.; Kim, M.; Takahashi, S. Several Antifeedants from Neem Oil, Azadirachta indica A. Juss., against *Reticulitermes speratus* Kolbe (Isoptera: Rhinotermitidae). *Biosci. Biotechnol. Biochem.* **1992**, *56* (11), 1835–1838. https://doi.org/10.1271/bbb.56.1835.
- (463) Chen, H.-D.; Yang, S.-P.; Wu, Y.; Dong, L.; Yue, J.-M. Terpenoids from *Toona ciliata. J. Nat. Prod.* **2009**, 72 (4), 685–689. https://doi.org/10.1021/np800811b.

- (464) Chen, Y.-Y.; Wang, X.-N.; Fan, C.-Q.; Yin, S.; Yue, J.-M. Swiemahogins A and B, Two Novel Limonoids from Swietenia mahogani. Tetrahedron Lett. 2007, 48 (42), 7480–7484. https://doi.org/10.1016/j.tetlet.2007.08.066.
- (465) Yan, Y. X.; Liu, J. Q.; Wang, H. W.; Chen, J. X.; Chen, J. C.; Chen, L.; Zhou, L.; Qiu, M. H. Identification and Antifeedant Activities of Limonoids from *Azadirachta indica*. *Chem. Biodivers.* **2015**, *12* (7), 1040– 1046. https://doi.org/10.1002/cbdv.201400282.
- (466) Katja, D. G.; Farabi, K.; Nuraini, V. A.; Nurlelasari, N.; Hidayat, A. T.; Mayanti, T.; Harneti, D.; Supratman, U. A New 30-nor Trijugin-Type Limonoid, Chisotrijugin, from the Bark of *Chisocheton cumingianus* (Meliaceae). *Int. J. Chem.* **2016**, 8 (3), 30. https://doi.org/10.5539/ijc.v8n3p30.
- (467) Passos, M. de S.; Carvalho, A. R. d.; Boeno, S. I.; Virgens, L. de L. G. das; Calixto, S. D.; Ventura, T. L. B.; Lassounskaia, E.; Braz-Filho, R.; Vieira, I. J. C. Terpenoids Isolated from *Azadirachta indica* Roots and Biological Activities. *Rev. Bras. Farmacogn.* **2019**, *29* (1), 40–45. https://doi.org/10.1016/j.bjp.2018.12.003.
- (468) Nguyen, N. Y. T.; Dang, P. H.; Thien Nguyen, V. T.; Vo, T. T.; Nguyen, D. A. T.; Nguyen, M. D. H.; Dang, P. H.; Tran, Q. Le. Nimbandiolactone-21 and Nimbandioloxyfuran, Two New 28-Norlimonoids from the Leaves of *Azadirachta indica* (Meliaceae). *J. Asian Nat. Prod. Res.* 2019, 21 (9), 867–872. https://doi.org/10.1080/10286020.2018.1476498.
- (469) Yang, B.-J.; Fan, S.-R.; Cai, J.-Y.; Wang, Y.-T.; Jing, C.; Guo, J.-J.; Chen, D.-Z.; Hao, X.-J. Aphananoid A Is an Anti-Inflammatory Limonoid with a New 5/6/5 Fused Ring Featuring a C 24 Carbon Skeleton from *Aphanamixis polystachya*. J. Org. Chem. 2020, 85 (13), 8597–8602. https://doi.org/10.1021/acs.joc.0c00922.
- (470) Daniewski, W. M.; Gumułka, M.; Danikiewicz, W.; Sitkowski, J.; Jacobsson, U.; Norin, T. Entilin D, a Heptanortriterpenoid from the Bark of *Entandrophragma utile*. *Phytochemistry* **1995**, *40* (3), 903–905. https://doi.org/10.1016/0031-9422(95)00177-9.
- (471) Siddiqui, B. S.; Faizi, S.; Siddiqui, S. Triterpenoids from the Fresh Coats of Azadirachta indica. *Phytochemistry* **1992**.
- (472) Akihisa, T.; Takahashi, A.; Kikuchi, T.; Takagi, M.; Watanabe, K.; Fukatsu, M.; Fujita, Y.; Banno, N.; Tokuda, H.; Yasukawa, K. The Melanogenesis-Inhibitory, Anti-Inflammatory, and Chemopreventive Effects of Limonoids in *n*-Hexane Extract of *Azadirachta indica* A. Juss. (Neem) Seeds. J. Oleo Sci. 2011, 60 (2), 53–59. https://doi.org/10.5650/jos.60.53.
- (473) Zhao, P. H.; Sun, L. M.; Liu, X. J.; Cao, M. A.; Yuan, C. S. Limonoids from the Root of *Dictamnus radicis* Cortex. *Chem. Pharm. Bull. (Tokyo).* **2008**, *56* (1), 102–104. https://doi.org/10.1248/cpb.56.102.
- (474) Sun, J. B.; Qu, W.; Wang, P.; Wu, F. H.; Wang, L. Y.; Liang, J. Y. Degraded Limonoids and Quinoline Alkaloids from *Dictamnus angustifolius* G. Don Ex Sweet. and Their Anti-Platelet Aggregation Activity. *Fitoterapia* **2013**, *90*, 209–213. https://doi.org/10.1016/j.fitote.2013.07.023.
- (475) Kraus, W.; Klenk, A.; Bokel, M.; Vogler, B. Tetranortriterpenoid-Lactame Mit Insektenfraßhemmender Wirkung Aus Azadirachta indica A. Juss (Meliaceae). Liebigs Ann. der Chemie 1987, 1987 (4), 337–340. https://doi.org/10.1002/jlac.198719870331.
- (476) Daniewski, W. M.; Gumulka, M.; Danikiewicz, W.; Gluziński, P.; Krajewski, J.; Sitkowski, J.; Błoszyk, E.; Drożdż, B.; Jacobsson, U.; Szafrański, F. A Tetranortriterpenoid from the Bark of *Entandrophragma utile*. *Phytochemistry* **1994**, *36* (4), 1001–1003. https://doi.org/10.1016/S0031-9422(00)90479-5.
- (477) Koul, O.; M. Daniewski, W.; Singh Multani, J.; Gumulka, M.; Singh, G. Antifeedant Effects of the Limonoids from *Entandrophragma candolei* (Meliaceae) on the Gram Pod Borer, *Helicoverpa armigera* (Lepidoptera: Noctuidae). J. Agric. Food Chem. 2003, 51 (25), 7271–7275. https://doi.org/10.1021/jf0304223.
- (478) Nguyen, N. Y. T.; Dang, P. H.; Nguyen, V. T. T.; Dang, P. H.; Tran, Q. L. A New Lactam 28-Norlimonoid from the Leaves of Azadirachta indica A. Juss. (Meliaceae). Nat. Prod. Res. 2018, 6419 (May), 1–6. https://doi.org/10.1080/14786419.2018.1479700.
- (479) Zhu, J.; Lu, X.; Fan, X.; Wu, R.; Diao, H.; Yu, R.; Xu, H.; Zi, J. A New Cytotoxic Salannin-Class Limonoid Alkaloid from Seeds of *Azadirachta indica* A. Juss. *Chinese Chem. Lett.* **2018**, 29 (8), 1261–1263. https://doi.org/10.1016/j.cclet.2017.11.042.
- (480) Zhu, G.-Y.; Chen, G.; Liu, L.; Bai, L.-P.; Jiang, Z.-H. C-17 Lactam-Bearing Limonoids from the Twigs and Leaves of *Amoora tsangii. J. Nat. Prod.* **2014**, *77* (4), 983–989. https://doi.org/10.1021/np401089h.
- (481) Meng, Q. Q.; Peng, X. R.; Lu, S. Y.; Wan, L. S.; Wang, X.; Dong, J. R.; Chu, R.; Zhou, L.; Li, X. N.; Qiu, M. H. Lactam Triterpenoids from the Bark of *Toona sinensis*. *Nat. Products Bioprospect.* 2016, 6 (5), 239–245. https://doi.org/10.1007/s13659-016-0108-4.
- (482) Han, M. L.; Zhang, H.; Yang, S. P.; Yue, J. M. Walsucochinoids A and B: New Rearranged Limonoids from

Walsura cochinchinensis. Org. Lett. 2012, 14 (2), 486–489. https://doi.org/10.1021/ol203082c. Butterworth, J. H.; Morgan, E. D. Isolation of a Substance That Suppresses Feeding in Locusts. Chem. (483) Commun. 1968, No. 1, 23–24. https://doi.org/10.1039/C19680000023.