
Decoupling strategy-enabled radical generality via an asymmetric SH2 path 

Li-Wen Fan1,2,5, Jun-Bin Tang1,2,5, Li-Lei Wang1,2,5, Ji-Ren Liu1,2,4,5, Zhong-Liang Li3, Yu-Shuai Zhang3, 

Dai-Lei Yuan3, Li Qin1,2, Cheng Luan3, Qiang-Shuai Gu3✉, Xin Hong4✉, Zhe Dong1,2✉ & Xin-Yuan 

Liu1,2✉ 

1Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, 

Southern University of Science and Technology, Shenzhen, China. 

2Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, 

Shenzhen, China. 

3Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of 

Science and Technology, Shenzhen, China. 

4Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean 

Energy Utilization, Zhejiang University, Hangzhou, China. 

5These authors contributed equally: Li-Wen Fan, Jun-Bin Tang, Li-Lei Wang, Ji-Ren Liu. 

✉email: guqs@sustech.edu.cn; hxchem@zju.edu.cn; dongz@sustech.edu.cn; liuxy3@sustech.edu.cn 

  

https://doi.org/10.26434/chemrxiv-2024-3n41t ORCID: https://orcid.org/0000-0002-6978-6465 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-3n41t
https://orcid.org/0000-0002-6978-6465
https://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 

Reaction generality is essential for evaluating the value and impact of a synthetic method. However, 

asymmetric catalysis, particularly that involving highly reactive species such as radicals, typically 

prioritizes enantioselectivity at the expense of generality. Selectivity and reactivity often conflict because 

the bond-forming step is usually also stereodetermining. If these two steps were separated, the reaction 

selectivity and generality issues could then be addressed independently. Herein we report a catalytic 

asymmetric radical coupling with great generality by merging the copper-catalyzed enantioselective S(IV) 

center formation and copper-mediated enantiospecific SH2 radical coupling. This decoupling strategy has 

enabled the successful coupling of over 30 different carbon-, nitrogen-, and oxygen-based radicals having 

a broad range of reactivity with N-acyl sulfenamides, leading to diverse S-chiral compounds with 

exceptional enantioselectivity. Thus, it offers a holistic approach to accessing a rich portfolio of S(IV) and 

S(VI) chiral centers, which is anticipated to have a transformative impact on the synthesis of S-chiral 

compounds and benefit medicinal chemistry and other related fields. Furthermore, this decoupling strategy 

via SH2 processes has promising potential to enable a comprehensive single-electron methodology for 

forging other chiral centers with heteroatoms such as phosphorous(III) and silicon(IV), and eventually also 

carbon atoms. 
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Main Text:  

Robust organic synthetic methods have played an unparalleled role in the world of new molecule synthesis1–

3. Developing a reaction with both a high yield and a broad scope (reaction generality) is the ultimate goal 

for synthetic chemists4. Indeed, powerful synthetic methods can even change the target that people want to 

make5. For example, due to the great generality of palladium-catalyzed C(sp2)–C(sp2) cross-coupling, 

arenes and heteroarenes have become the most common functional groups in the FDA-approved drugs6–8. 

On the other hand, catalytic asymmetric reactions pose an additional enantioselectivity issue (Fig. 1a)9,10, 

which significantly complicates the optimization of reaction conditions11. In reality, the development of a 

catalytic asymmetric reaction with great generality (broad scopes with high selectivity; Fig. 1a, right) 

comparable to that of palladium-catalyzed C(sp2)–C(sp2) cross-coupling still remains a formidable 

challenge, particularly for those involving highly reactive species12. This challenge in asymmetric synthesis 

involves the most often trade-off between high reactivity and high stereoselectivity, which is vividly 

portrayed in the reactions involving highly reactive carbocation intermediates. These transformations, 

renowned for their excellent reactivity, frequently face significant obstacles in securing enantioselective 

control (Fig. 1a, left)13. Conversely, certain reactions, while demonstrating remarkable enantioselectivity, 

are constrained in their scopes (Fig. 1a, middle). In this aspect, natural enzyme-catalyzed reactions serve 

as a compelling testament, being meticulously evolved over millennia for only a few selected substrates14,15. 

In a parallel fashion, chemical asymmetric catalysis has historically emphasized enantioselectivity over the 

breadth of reaction scope. To gain a general catalytic asymmetric reaction scope, a long catalyst 

optimization campaign is often required even for a quite limited chemical space16. Recent strategies, such 

as multi-substrate screening, show promise in reducing the optimization efforts10,11,17. Nevertheless, their 

widespread implementation is still in its infancy.  
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The primary obstacle in developing a broadly applicable, catalytic asymmetric reaction with highly 

reactive species can be rationalized by a typical bond-coupling catalytic cycle (Fig. 1b). It is quite intuitive 

that the new chemical bond formation step (Fig. 1b, Step C), which generates a new stereocenter, should 

be the stereodetermining step for the whole catalytic cycle. Accordingly, Step A and Step B usually do not 

contribute to the reaction enantioselectivity. The intrinsic high reactivity of in-situ-formed species, like B', 

most often significantly compromise the stereodiscrimination abilities of chiral catalysts. And the higher 

the reactivity of species B', the more difficult the stereochemical control becomes. This phenomenon 

frequently appears in the field of catalytic asymmetric reactions involving highly reactive intermediates 

such as radicals12,18. 

On the contrary, if the bond formation step is not stereodetermining, the dilemma of reactivity and 

selectivity might be mitigated accordingly (Fig. 1c)19–21. As such, we hypothesized that using distinct in-

cycle catalytic species to address the reactivity and selectivity issues separately could be the key to solve 

the generality challenge. In this ideal scenario, an earlier Step B (Fig. 1c) might determine the 

enantioselectivity and the bond-forming Step C (Fig. 1c) would only contribute to the reaction scope. In 

this way, decoupling the reactivity and selectivity issues would effectively allow synthetic chemists more 

flexibility to resolve both problems using a single catalyst. Therefore, this strategy of decoupling reactivity 

and selectivity could serve as a universal approach to improve the generality of catalytic asymmetric 

reactions. 

To test this concept and considering the normally high reaction rate and stereospecificity of a 

bimolecular homolytic substitution (SH2) reaction22, we envisioned that it would be an ideal candidate for 

Step C. The SH2 substitution is conceptually similar to an SN2 (bimolecular nucleophilic substitution) 

reaction in nature. The attacking “nucleophile” in SH2 is an open-shell species such as organic radicals and 

the “electrophile” being attacked breaks the leaving group bond in a homolytic way, unlike the heterolytic 
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manner involved in SN223,24. Thanks to the high reactivity of organic radicals, this process has been widely 

leveraged to construct diverse carbon–carbon25, carbon–heteroatom26,27, and heteroatom-heteroatom 

bonds28. Moreover, it has a unique advantage in the formation of hindered chemical bonds, such as those 

attached to a quaternary carbon center, under mild conditions29. However, there has been only a preliminary 

success in achieving the catalytic enantioselective SH2 processes by enzyme catalysis30 and biomimetic 

chiral metal catalysis31,32, likely due to their commonly very low activation energies22. 

Considering all these facts, we believed that it would be better to transfer chirality instead of creating 

it de novo via the SH2 process33. As such, by applying the abovementioned decoupling strategy (Fig. 1c), 

we expected to generate a chiral intermediate with excellent enantioselectivity in the earlier part of the 

catalytic cycle. The chiral information would then be transferred to the final product via an enantiospecific 

SH2 process. We anticipated that this decoupling approach could offer both excellent enantioselectivity and 

wide reaction generality. Herein, we describe our efforts in developing a highly versatile catalytic 

asymmetric radical cross-coupling of N-acyl sulfenamides with exceptionally diverse electrophiles. 

Accordingly, the reaction readily accommodates more than 30 different C-, N-, and O-based radicals with 

a broad range of reactivity, thus providing convenient access to all sorts of highly enantioenriched S(IV) 

and S(VI) compounds. This superior reaction generality hinges on a decoupled process consisting of 

copper-catalyzed enantioselective S(IV) center formation and copper-sulfinimidoyl complex-mediated 

enantiospecific SH2 radical coupling (Fig. 1d). 
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Fig. 1 | Decoupling strategy-enabled asymmetric radical reaction generality. a, Highly reactive species 

pose a great challenge for achieving both high enantioselectivity and wide reaction generality that an ideal 

synthetic method should possess. b, The major obstacle can be well appreciated in a typical bond coupling 

catalytic cycle where the bond-forming step and stereodetermining step are commonly coupled together. 

This brings about the issue of reactivity and selectivity, which are likely reciprocally correlated to each 

other. c, Separating these two steps is believed to be beneficial to mitigate the aforementioned reactivity-

selectivity dilemma. d, This decoupling strategy allows for a copper-catalyzed general asymmetric radical 

cross-coupling platform, achieved by combining copper-catalyzed enantioselective S(IV) center formation 

with copper-sulfinimidoyl complex-mediated enantiospecific SH2 radical coupling. This approach 

successfully accommodates an array of over 30 different radicals featuring C, N, and O centers with various 

levels of reactivity. 

 

Design plan and stoichiometric experiments 

Transition metal-catalyzed asymmetric radical cross-coupling reactions have been developed rapidly in the 

past decade34,35. However, current methods heavily rely on enantioselective reductive elimination to forge 

stereocenters (Fig. 1b). To address the reactivity and selectivity issue through the decoupling strategy 

discussed above, we initially assumed that the preceding oxidative addition would determine the 

enantioselectivity. The following enantiospecific SH2 would then deliver the enantioenriched product while 

maintaining a broad reaction scope. In this scenario, the stereoselective formation of a thermodynamically 

favored chiral L*Mn+1–Nu complex with a configurationally stable chiral nucleophile motif would be 

greatly preferred. With this in mind, we promptly identified sulfur nucleophiles as promising candidates 

given the often robust metal–S bonds36. In addition, S(II) and S(IV) compounds have a pronounced 

propensity to engage in intramolecular homolytic substitution (SHi) reactions23,24, particularly with high 
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stereochemical fidelity when applicable37. Noteworthy is that chiral S(IV) and S(VI) centers are not only 

important chiral synthons in asymmetric organic synthesis but also prevalent functional groups in medicinal 

chemistry (Supplementary Fig. 2)38,39. Some elegant catalytic asymmetric methods have been disclosed for 

synthesizing these valuable molecules40–42 (see Supplementary Fig. 1 for further discussions). However, a 

comprehensive approach to attaining assorted S(IV) and S(VI) centers with a broad spectrum of 

substitutions still remains to be devised.  

S(IV)–metal complexes with S-stereogenic centers can be formed through S(II)/S(IV) 

tautomerization by bivalent sulfur compounds, such as N-acyl sulfenamides43, upon deprotonation. Thus, 

we initially chose N-acyl sulfenamides as nucleophiles and started to verify the abovementioned hypothesis 

using several stoichiometric control experiments. With our recent achievement in copper-catalyzed 

asymmetric radical carbon–heteroatom bond formation44, we reasoned that copper would be the ideal 

transition metal catalyst due to its high resistance to sulfur poisoning. When N-acyl sulfenamide S1 was 

mixed with copper in the presence of base, a well-defined copper(II)–sulfinimidoyl complex M1 was 

formed instead of a copper(II)–amido complex (Fig. 2a; see Supplementary Fig. 3 for its X-ray structure). 

More encouragingly, ethylation of the S(IV) center occurred quantitatively when M1 was treated with 

triethylborane under standard conditions for ethyl radical generation. In addition to the sulfilimine product 

1, an ethylene-bonded copper(I) complex M2 was also isolated in quantitative yield and fully characterized 

by X-ray diffraction analysis (Fig. 2b; see Supplementary Fig. 4 for its X-ray structure). We strongly believe 

that this ethylation reaction is a standard SH2 process occurring on the S(IV) center, as the copper center is 

largely coordinately saturated. These findings suggested that copper(II) species are a viable “radical leaving 

group” for advancing SH2-based asymmetric catalysis (e.g., Step C in Fig. 2d). Unfortunately, all attempts 

to isolate the optically active complex M1 were not fruitful at this stage. To probe the stereochemistry of 

this SH2 reaction, we investigated the intramolecular radical substitution reaction of enantioenriched 
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sulfilimine 2 (Fig. 2c) as a model. When treated with supersilane (tris(trimethylsilyl)silane) and 

triethylborane under ambient conditions, the chiral S(IV) center underwent radical substitution with 100% 

inversion, demonstrating high enantiospecificity. Overall, these experiments provided favorable evidence 

for the feasibility of a conceivable catalytic cycle involving an enantiodetermining oxidative addition 

followed by an enantiospecific SH2 step (Fig. 2d). Thus, we proceeded to optimize the reaction conditions 

for catalysis, employing N-acyl sulfenamide S2 and propargyl bromide C1 as the model substrates. 
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Fig. 2 | Inspirations and reaction development. a, Synthesis of Cu(II)-sulfinimidoyl complexes. b, The 

SH2 reaction of ethyl radicals with Cu(II)–sulfinimidoyl complexes. c, The enantiospecific intramolecular 

homolytic substitution reaction of chiral sulfilimine. d, A proposed catalytic cycle for copper-catalyzed 

enantioselective radical cross-coupling of N-acyl sulfenamides with electrophiles via enantiospecific SH2 

substitution. e, Copper-catalyzed enantioselective S–C coupling of N-acyl sulfenamides with propargyl 
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bromides. TpPh2, hydrotris(3,5-diphenylpyrazol-1-yl)borate; Tol, p-tolyl; Bz, benzoyl; Bn, benzyl; Piv, 

pivaloyl; TTMSS, tris(trimethylsilyl)silane; w/o, without; Cu/L*, copper salt and chiral ligand; L*, chiral 

ligand; B, base; ND, not determined. 

 

Reaction development and scope 

To achieve both great reaction generality and excellent enantioselectivity, we first performed a detailed 

ligand screening; common commercially available neutral N- and/or P-based ligands as well as 

carboxamide-based anionic ligands provided moderate to good yields but only marginal enantioselectivity 

for the current transformation (Supplementary Table 1). By contrast, the sulfonamide-based anionic ligands 

L1 to L4 all gave both high isolated yields and excellent enantioselectivity (Fig. 2e; see Supplementary 

Tables 2–4 for additional condition optimization results). We speculated that these ligands might generate 

more configurationally stable L*Cu(II)–S(=NPiv)Tol complexes for the following SH2 step. 

After successfully solving the enantioselectivity issue, we proceeded to test the generality of this 

transformation (Fig. 3). Our first step was to investigate the electrophile scope using N-acyl sulfenamide 

S2 as the standard nucleophile. We examined a range of alkyl halides as the precursor to alkyl radicals, 

which were generated using copper-catalyzed direct halogen-atom transfer (XAT) or indirect aryl radical-

mediated XAT processes45 based on literature reports. We were delighted to discover that the decoupling 

strategy effectively produced a diverse array of chiral sulfoximines (4–6 and 10–25) from various alkyl 

radical species (Fig. 3; see Supplementary Figs. 5 and 6 for X-ray structures of 5 and 15, respectively) (see 

Supplementary Tables 5 and 6 for additional condition optimization results). These alkyl radicals exhibited 

varying stabilities46, ranging from the highly stabilized benzyl radical R7 (C–H bond-dissociation energy 

(BDE): 90 kcal/mol) to the very unstabilized methyl radical R22 (C–H BDE: 105 kcal/mol), and all 

demonstrated excellent enantioselectivity with high isolated yields. Even the extremely reactive aryl radical 
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(C–H BDE: 113 kcal/mol) also delivered the arylation product 7 with 95% enantiomeric excess (e.e.) (see 

Supplementary Table 7 for additional condition optimization results). Besides radical stabilities, the present 

asymmetric cross-coupling reaction showed substantial insensitivity toward radical steric properties. This 

is evidenced by the fact that monosubstituted (e.g., R1, R7, R10, and R17), disubstituted (R2, R13, and 

R19), and tri-substituted alkyl radicals (e.g., R11, R14, and R15) all afforded good yields and excellent 

enantioselectivity (>90% e.e.). Perhaps most remarkably, the enantioselectivity was not affected by the 

radical polarity47. Both nucleophilic (e.g., R10 and R14) and electrophilic (e.g., R9 and R12) alkyl radicals 

exhibited comparably high enantioselectivity. More importantly, both the nucleophilic dimethylaminyl 

radical R5 and the highly electrophilic tert-butoxyl radical R6 smoothly underwent the coupling reaction 

(see Supplementary Tables 8–9 for condition optimization results), yielding chiral sulfinamidine 8 and 

sulfinimidate ester 9 with high e.e. It is worth to mention that the tert-butoxyl radical R6 is known to 

undergo rapid β-scission (rate constant kβ at 295 K in acetonitrile: 6 × 104 s−1)48, resulting in methyl radicals 

and acetone. However, in our reaction, the coupling product 9 was efficiently formed while acetone was 

hardly detected, indicating a very fast SH2 process, as originally presumed. Interestingly, we were able to 

convert N-acyl sulfenamide S2 to a range of chiral sulfinamidines 26–37 (see Supplementary Fig. 7 for the 

X-ray structure of 26) using highly diverse aminyl radicals derived from their corresponding N-

benzoyloxyamine precursors. Overall, we believe that the present transformation has an unprecedented 

radical scope in the field of catalytic asymmetric radical cross-coupling. 
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Fig. 3 | Substrate scope of radicals. Standard reaction conditions: N-acyl sulfenamide (0.20 mmol), alkyl 

bromide (1.2 equiv.), CuI (5.0 mol%), L1 (7.5 mol%), and K3PO4 (3.0 equiv.) in dichloromethane (2.0 mL) 

at room temperature (r.t.) under argon. The yield is isolated. The e.e. values are based on chiral high-

performance liquid chromatography analysis. aPredicted C–H BDE by DeepSynthesis at 
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http://pka.luoszgroup.com/bde_prediction. bExperimental C–H BDE from literature46. cAlkyl iodide (1.5 

equiv.), CuI (10 mol%), L3 (15 mol%), and MesN2BF4 (2.0 equiv.) in MTBE (4.0 mL). dTogni’s reagent 

II (1.5 equiv.) at ‒10 °C. ePhN2BF4 (1.5 equiv.), CuI (30 mol%), and L4 (45 mol%) in PhF (2.0 mL). fN-

Benzoyloxyamine (1.5 equiv.) in EtOAc (2.0 mL). gtBuOOH (1.2 equiv.) in CH3CN (2.0 mL) at ‒10 °C. In 

addition to 9, the other product (Ss)-TolS(=O)NHPiv (9′, 40% yield, 91% e.e.) was formed. Modifying the 

work-up procedure led to only 9′ in 95% yield with 96% ee (see Supplementary Fig. 11 for details). hL2 

(7.5 mol%). iAlkyl bromide (1.5 equiv.). jAt 10 °C. kAt 40 °C. lAt ‒30 °C. BDE, bond-dissociation energy; 

Mes, mesityl; MTBE, methyl tert-butyl ether; Boc, tert-butyloxycarbonyl. 

 

We next sought to evaluate the scope of the N-acyl sulfenamide coupling partner. As shown in Fig. 

4, multiple N-acyl sulfenamides that contain S-(hetero)aryl groups having distinct electronic properties or 

substitution patterns produced the desired sulfilimine products (38–46) in good yields with excellent 

enantioselectivity. We were pleased to discover that S-alkyl N-acyl sulfenamides are suitable substrates 

(47–57) and that their steric properties (54–56) or preexisting stereocenters (57) did not impact the 

reaction’s efficiency or enantioselectivity. Our protocols were also effective in accessing the chiral 

sulfinamidines (58–64) and sulfinamides (65–68)49 with different nitrogen or oxygen electrophiles. More 

importantly, many medicinally important functional groups were well-tolerated, such as acetanilide (41), 

pyridine (61), thiophene (46, 62, and 67), furan (63), primary alkyl chloride (50), and protected 

galactopyranose (57). 
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Fig. 4 | Substrate scope of N-acyl sulfenamides. Standard reaction conditions: N-acyl sulfenamide (0.20 

mmol), alkyl bromide (1.2 equiv.), CuI (5.0 mol%), L1 (7.5 mol%), and K3PO4 (3.0 equiv.) in 

dichloromethane (2.0 mL) at r.t. under argon. The yield is isolated. The e.e. values are based on chiral high-

performance liquid chromatography analysis. The diastereomeric ratio (d.r.) value is based on crude 

1H NMR analysis. aAlkyl bromide (1.5 equiv.). bN-Benzoyloxyamine (1.5 equiv.) in EtOAc (2.0 mL) at 

40 °C. cAt r.t. dtBuOOH (1.2 equiv.) in CH3CN (2.0 mL) at ‒10 °C. eCuI (10 mol%) and L1 (15 mol%) at 

‒20 °C. RC, CH2C≡CSiMe3; Ac, acetyl; TBDPS, tert-butyldiphenylsilyl. 
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Synthetic utility 

The method presented above provides a general coupling approach for converting N-acyl sulfenamides to 

a range of chiral S(IV) centers, encompassing sulfilimines, sulfinamidines, sulfinamides, and sulfinimidate 

esters. In addition, sulfilimine 69 (see Supplementary Fig. 16 for its synthesis) could be converted in a 

straightforward manner to sulfoxide 70 (Fig. 5a; see Supplementary Fig. 16 for additional examples 71 and 

72), which bear similar S-substituents that are otherwise challenging to differentiate stereochemically by 

direct oxidation methods (Supplementary Fig. 1). An intriguing prospect involves utilizing stereoselective 

reactions to convert these chiral S(IV) centers to their corresponding chiral S(VI) centers (Fig. 5a). As such, 

chiral sulfilimine 5 and sulfinamidine 26 were successfully transformed into sulfondiimine 74, sulfoximine 

75, sulfondiimidamide 76, and sulfonimidamide 77, respectively, by treatment with appropriate oxidants 

under catalytic conditions38. Furthermore, sulfinamide 9′ was either alkylated to produce sulfinimidate ester 

73 or oxidized to generate sulfonimidoyl fluoride 78 and sulfonimidamide 79. Both 7350 and 7851 are well-

known synthetic hubs towards a number of chiral S(IV) and S(VI) compounds. Notably, all these reactions 

transferred the chiral information of the S(IV) centers quantitatively to the products of S(IV) or S(VI) 

centers. Thus, this asymmetric radical coupling reaction offers a comprehensive synthetic solution for 

medicinal chemists to investigate novel chiral chemical space regarding sulfur-based bioactive molecules. 

Mechanistic study 

The control experiments with radical inhibitors TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) or BHT 

(butylated hydroxytoluene) all revealed substantial retardation of the coupling reactions with C-, N-, and 

O-based electrophiles (Supplementary Figs. 8 and 9), supporting the presumed involvement of radical 

species. More intriguingly, the catalytic system could convert radicals R7 and R12—generated by hydrogen 

atom abstraction from the corresponding hydrocarbon solvents (Supplementary Fig. 10)—into the desired 

coupling products 10 and 15, respectively, with high enantioselectivity, albeit in low yields. These results 
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further confirmed the intermediacy of radical species in the coupling reactions. To rule out a nucleophilic 

substitution pathway, both enantioenriched and racemic alkyl iodide C22 were subjected to the coupling 

reaction conditions (Fig. 5b). The resulting product 80 displayed identical diastereoselectivity originating 

from the carbon stereocenters (see Supplementary Fig. 12 for details), which are in accord with the proposed 

radical mechanism rather than an ionic one. In addition, the control experiments in the absence of catalyst 

or base all failed to afford the enantioenriched products (Fig. 2e and Supplementary Tables 10 and 11), 

indicating both reaction components are indispensable for this transformation. Further experiments in the 

presence of scalemic ligands revealed a linear relationship between the enantiopurities of the ligands and 

their corresponding products (Supplementary Fig. 13), supporting a 1:1 ligand-to-copper ratio in the 

enantiodetermining step. More importantly, our initial stoichiometric experiments clearly demonstrated the 

ready formation of Cu(II)–sulfinimidoyl complexes and their susceptibility toward SH2 substitution 

reactions (Fig. 2).  

To further elucidate the stereospecific SH2 mechanism, we performed DFT (density functional 

theory) calculations on the key C–S bond formation pathway (Fig. 5c, Supplementary Figs. 14 and 15, and 

Table 12). The Cu(II) intermediate INT-1 and cyanomethyl radical INT-2 undergo a C–S bond formation 

via an open-shell singlet transition state TS-3, generating INT-4 with the formed C–S bond, which 

eventually liberates the observed major product 15 (Fig. 5c). For the minor product formation pathway, 

INT-1 undergoes a configurational shift via TS-5, affording INT-6 with the opposite chirality of sulfur. 

Subsequential C–S bond formation via TS-7 generates INT-8, which eventually liberates the minor product 

(Fig. 5c). The configurational shift transitional state TS-5 is 1.7 kcal/mol unfavorable than the SH2 

transition state TS-3. This energy difference indicates that the C–S bond formation has a lower free energy 

barrier and the configuration flip is unlikely. Furthermore, NBO (natural bond orbital) analysis on the C–S 

bond formation transition state confirms the interaction between the SOMO (singly occupied molecular 
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orbital) of the cyanomethyl radical and the anti-bonding orbital of the Cu–S bond in TS-3 (Fig. 5d), which 

agrees with the nature of SH222. Based on this discussion, we propose that the C–S bond is formed via a 

stereospecific SH2 mechanism. 
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Fig. 5 | Synthetic utility and mechanistic studies. a, Product transformations to a variety of important 

chiral compounds containing S(IV) and S(VI) stereocenters. b, The control experiments using 
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enantioenriched and racemic secondary alkyl iodide substrates revealed identical diastereoselectivity, 

supporting the proposed radical mechanism. c, DFT-calculated structures and free energies (given in 

parentheses in kcal/mol) concerning the key C–S bond formation at the B3LYP-D3(BJ)/Def2-TZVP-

SMD(Dichloromethane)//B3LYP-D3(BJ)/Def2-SVP-SMD(Dichloromethane) level of theory. d, The 

calculated structure and NBO analysis of the key C–S bond formation transition state TS-3. aRuCl3 and 

NaIO4. btBuONO and DTBP. ciPrI and K2CO3. dAgNTf, tBu3tpy, and PhI=NNs. eAgNTf, tBu3tpy, PhI=NNs, 

and NaHCO3. fNaH; Selectfluor, and KOAc. gNH3 (aq.) and tBuOCl. [O], oxidation; [R], reduction; [Alk], 

alkylation; [N], imidation or amination; [F], fluorination; nHex, n-hexyl; DTBP, 2,6-di-tert-butylpyridine; 

Tf, trifluoromethanesulfonyl; tBu3tpy, 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine; Ns, p-

nitrobenzenesulfonyl; aq., aqueous solution; DFT, density functional theory; NBO, natural bond orbital. 

 

Summary 

In summary, we have developed a highly enantioselective radical cross-coupling reaction with great 

generality by exploiting a decoupling strategy via enantiospecific SH2 processes. The S(II) centers of N-

acyl sulfenamides were conveniently upgraded to a variety of chiral S(IV) centers with a highly diverse 

range of organic radicals. The broad reaction scope and high enantioselectivity relied on the decoupling of 

bond-forming and stereodetermining steps. We believe that this asymmetric radical coupling strategy would 

be readily extended to other heteroatom-chiral centers, including phosphorous(III) and silicon(IV), and 

eventually achieve broad generality on chiral carbon stereocenters. 
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Methods 

Descriptions of the methods used are provided in the Supplementary Information. 
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