1. Translate the suffix notation $\delta_{i j} c_{j}+\epsilon_{k j i} a_{k} b_{j}=d_{l} e_{m} c_{i} b_{l} c_{m}$ into ordinary vector equation.
Solution: This suffix notation can be rewritten as

$$
c_{i}+\epsilon_{i k j} a_{k} b_{j}=b_{l} d_{l} c_{m} e_{m} c_{i}
$$

So it stands for the expression

$$
\vec{c}+\vec{a} \times \vec{b}=(\vec{b} \cdot \vec{d})(\vec{c} \cdot \vec{e}) \vec{c}
$$

2. Use suffix notation to show that the $n \times n$ identity matrix commutes with any $n \times n$ matrix with respect to matrix multiplication.

Solution:

$$
\delta_{i j} A_{j k}=A_{i k}=A_{i j} \delta_{j k}
$$

3. Compute $\epsilon_{i j k} \epsilon_{i j k}$

Solution: We know $\epsilon_{i j k}^{2}=0$ if any of i, j, k are the same, and $\epsilon_{i j k}^{2}=1$ if i, j, k are distinct, so

$$
\epsilon_{i j k} \epsilon_{i j k}=\epsilon_{123}^{2}+\epsilon_{231}^{2}+\epsilon_{312}^{2}+\epsilon_{132}^{2}+\epsilon_{213}^{2}+\epsilon_{321}^{2}=6
$$

4. Use Suffix notation to show $\vec{a} \cdot(\vec{b} \times \vec{c})=-\vec{c} \cdot(\vec{b} \times \vec{a})$

Solution:

$$
\begin{aligned}
a_{i}(\vec{b} \times \vec{c})_{i} & =a_{i} \epsilon_{i j k} b_{j} c_{k} \\
& =-c_{k} \epsilon_{k j i} b_{k} a_{i} \\
& =-c_{k}(\vec{b} \times \vec{a})_{k}
\end{aligned}
$$

5. Using suffix notation to find an alternative expression for $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$ which doesn't involve cross product.

Solution:

$$
\begin{aligned}
(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d}) & =\epsilon_{i j k} a_{j} b_{k} \epsilon_{i l m} c_{l} d_{m} \\
& =\epsilon_{i j k} \epsilon_{i l m} a_{j} b_{k} c_{l} d_{m} \\
& =\left(\sigma_{j l} \sigma_{k m}-\sigma_{j m} \sigma_{k l}\right) a_{j} b_{k} c_{l} d_{m} \\
& =a_{j} b_{k} c_{j} d_{k}-a_{j} b_{k} c_{k} d_{j} \\
& =(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c})
\end{aligned}
$$

6. If A, B are two $n \times n$ matrices, use suffix notation to prove $(A B)^{T}=B^{T} A^{T}$, where ${ }^{T}$ means transpose

Solution:

$$
\begin{aligned}
(A B)_{i j}^{T} & =(A B)_{j i} \\
& =A_{j k} B_{k i} \\
& =B_{k i} A_{j k} \\
& =B_{i k}^{T} A_{k j}^{T} \\
& =\left(B^{T} A^{T}\right)_{i j}
\end{aligned}
$$

