MATH-GA 2210.001: Homework Local Fields 1

- 1. Determine all the absolute values for the following fields:
 - (a) $k = \mathbb{C}$,
 - (b) $k = \mathbb{R}$,
 - (c) $k = \mathbb{F}_q$ a finite field with $q = p^r$ elements.
- 2. Let $||_{p_1}, ||_{p_2}, \ldots ||_{p_k}$ be nontrivial inequivalent absolute values on \mathbb{Q} corresponding to distinct primes $p_i, i = 1, \ldots k$, and let $a_1, \ldots a_k$ be elements of \mathbb{Q} . Let d be the common denominator of a_i . Show that for every $\epsilon > 0$ there is an element $a \in K$ such that $|a - a_i|_{p_i} < \epsilon$ for $i = 1, \ldots n$ and $|a|_p < 1/|d|$ for all absolute values corresponding to primes p distinct form $p_i, i = 1, \ldots k$.
- 3. Let k be a field and let $a_1, \ldots a_n$ (resp. $b_1, \ldots b_n$) be distinct elements of k. Let K = k(t) a purely transcendental extension of k. Show that there exists $x \in K$ such that the functions $x - b_i$ have a simple zero at $t = a_i$ for $i = 1, \ldots n$.
- 4. Let $L = \mathbb{C}(x)[\sqrt{x(x-1)(x+1)}]$ be a degree 2 extension of a purely transcendental extension $\mathbb{C}(x)$ of \mathbb{C} , generated by y with $y^2 = x(x-1)(x+1)$. The goal of this exercise is to show that L is not isomorphic to a purely transcendental extension $\mathbb{C}(t)$ of \mathbb{C} .
 - (a) Let $v: L^* \to \mathbb{Z}$ be a valuation on L. Show that v(x) is even.
 - (b) Show that x is not a square in L.
 - (c) Let $z \in \mathbb{C}(t)$ be an element, such that for any valuation

$$v: \mathbb{C}(t)^* \to \mathbb{Z},$$

one has that v(z) is even. Show that z is a square in $\mathbb{C}(t)$ (Hint: if z is divisible by $t - \alpha$, for $\alpha \in \mathbb{C}$, consider the valuation v given by the order of vanishing at α .)

(d) Conclude that L is not isomorphic to a purely transcendental extension $\mathbb{C}(t)$ of \mathbb{C} .