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Introduction

Challenge

Proof of concept for digital twin applications for
mid-speed marine engines

Solution

Fast Running Engine Model together with
dedicated solvers to achieve real-time operation
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MATERIALS AND METHODS

Research object and

experimental setup

Cylinder configuration four, in line
Exhaust QOutlet
Bore 200 mm
Stroke 280 mm
Swept.volume/ 8.8 dm?
cylinder
Compression ratio 16:1
Rated Speed 1000 rpm
Brake power 848 kW
Fuel system Common rall
Solenoid / nine-hole
Injector axisymmetric / 153°

umbrella angle

ABB TPS48E01
four valves/cylinder,
Miller timing-capable Air inlet

Turbocharger

Valve system
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MATERIALS AND METHODS

Fast Running Engine
Model (FRM)

Target: real-time capable engine model with
minimal trade-off to model accuracy

The process was divided into three main steps
Stepl: Exhaust manifold (accuracy)

Step 2: All other sub-volumes, i.e. exhaust
pipes, intake manifold, compressor outlet pipes
and intake pipes (accuracy)

. Exhaust manifold (speed)
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MATERIALS AND METHODS

Fast Running Engine
Model (FRM)

Feature 1D-Detail FRM
Minimum d|§cret|zat|on 50 mm 200 mm
length intake
Minimum discretization 50 mm 300 mm
length exhaust
Number of flow components 181 a7

explicit, forward Runge-
Kutta method / explicit Euler
real-time (in the RT license)

explicit, forward Runge-
Kutta method

Solver

Maximum simulation time

0.00017 s 0.12s
step *

. L 19 s per steady-state case
Average simulation time ** 77 s per steady state case p y. .

(4 s with a real-time license)
* user-imposed limit

** on single CPU (Intel i7-8750H 2.20 GHz) with 16 GB RAM
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MATERIALS AND METHODS

Real-time
Implementation

= Target platform for real-time simulations
= Dell Optiplex 760 PC (2008 model year)
= Simulink Real-Time and a Modbus card

= Main changes for real-time operation
= Speed optimized solver (GT-Suite-RT license)

= Representation in Simulink via s-function and
C code
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RESULTS

The 1D engine model
o validation

“\\ Validation against experimental values

' Intake manifold pressure (p,)
Below measurements and target tolerances

600 - -
100 75 50 25
Engine load [%]

Averaged maximum cylinder pressure (Pey; max)
Below measurements and target tolerances, result of
iInaccuracies in p,

Exhaust temperature at turbine inlet (T)

50 25

e Match measurements with acceptable accuracy
(measurement inaccuracies)

100 75

BMEP and BTE
Match the measurement sufficiently
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RESULTS

—F— Detailed madel

EE Validation of the FRM

. . . | Validation against 1D model values
Fronelos Franelosa Target tolerances 5 % (for BMEP 0.5 bar).

Results were mostly inside the target tolerances

Largest uncertainty in exhaust temperature at
turbine inlet (Ty)

100 75 50 25

Frane ol Frame oad ] Significant reduction in simulation time was
| : ' | , achieved with minimal impact on model accuracy

Factor of real-time []
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Volumetric efficiency [-]
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Engine load [%] Engine load [%]
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RESULTS

Towards real-time
Implementation

factor of real-
time is 0.35

= Compared to standalone FRM:
= Calculation time is reduced from 19 to 4 seconds*

= No substantial change in model accuracy Over 70%

reduction in
calculation
time

Results inside
the target

tolerances of
+5 %

*approximate values per steady-state-case
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RESULTS

— Towards real-time

3 " implementation
' j
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= The real-time capable FRM was embedded in
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s S s Simulink and tested on the target platform
N S -] ' = Target platform had lower CPU performance
ol | ™ i memw compared to the PC used for prior simulations
T oo
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—l )] Simulink Real-Time
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Conclusions

|dentification and calibration of
the detailed 1D engine model,
(181 flow components) allows
model accuracy within cyclic
variations of the real engine.
Excellence in this respect
enables building an accurate
real-time FRM surrogate.

The FRM reduces the level of
complexity (47 flow

components), while maintaining

a good level of predictivity.

The FRM reaches fastest
simulation with minimum error
with discretization length of
100 % and 150 % of cylinder
bore for intake and exhaust
components respectively.

Applying explicit solver
optimized for speed (GT-Suite-
RT license) reduces the
FRM'’s real-time factor to 0.35.

The accuracy loss of the FRM
compared to the detailed engine
model is minor, (comfortably
within the 5 % tolerance levels).

Largest deviations appear at low-

load conditions.

The CPU speed of the available
RT machine was not efficient
enough, introducing errors in
high-frequency signals. The

mean value control outputs were
still calculated correctly.
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