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EDITORIAL
In problem solving, I am often reminded of a Russian proverb: “Do not shoot a
sparrow with a cannon.” The meaning is subtle. It is not just about overkill and
exerting more power than needed. The fact is, you might not actually be able to
accomplish the task at hand since the chosen weapon, while powerful, is simply
ill-suited: a heavy awkward cannon to aim with versus a quick little bird that is
fast to get away.

I thought of this saying after my recent calculus exam. Here is a part of one
problem from it:

Rainbow trout in Deer Lake can no longer reproduce due to habitat
destruction, so city officials consider stocking the lake with fish and
allowing locals to fish them out. As such, the fish population satisfies
the differential equation dF

dt = s − rF, where F (t) is the number of
fish at time t (in months), s is the stocking rate (in number of fish per
month) and r is the fishing rate (proportion of fish population that
gets fished out every month).

a) Fishing is prohibited between October 1st and March 1st, but the
stocking continues at the rate of 100 fish per month (occurring
always in the 2nd of a month). If there are an estimated 1500
trout in the lake on October 1st, how many fish will there be on
March 1st?

b) . . .

My class was stumped! They all realized that they can plug in r = 0 but that left
them with a form of a differential equation we haven’t yet studied (in this course,
differential equations come before antiderivatives). They pulled out just about
every weapon from their differential equations ammunition: I saw phase diagrams,
analysis of steady states, slope fields, ... All of that for a poor little linear growth,
which in the end successfully escaped many of their attacks.

Lesson for my students and the rest of us: read and think before reaching for a
bazooka. In math and otherwise.

Kseniya Garaschuk

Crux Mathematicorum, Vol. 44(2), February 2018



THE CONTEST CORNER /47

THE CONTEST CORNER
No. 62

John McLoughlin

Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’un
concours mathématique de niveau secondaire ou de premier cycle universitaire, ou en
ont été inspirés. Nous invitons les lecteurs à présenter leurs solutions, commentaires et
généralisations pour n’importe quel problème. S’il vous plâıt vous référer aux règles de
soumission à l’endos de la couverture ou en ligne.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 1er juillet 2018.

La rédaction souhaite remercier André Ladouceur, Ottawa, ON, d’avoir traduit les
problèmes.

CC306. On considère un cube 5×5×5 dont la surface extérieure est peinte en
bleu. Biz coupe le cube en 53 cubes unités, puis il en prend un au hasard. Sachant
que le cube a au moins une face bleue, quelle est la probabilité que ce cube ait
exactement deux faces bleues ?

CC307. Déterminer toutes les solutions entières (x, y) de l’équation

x2 − xy + 2017y = 0.

CC308. On définit la matrice de Pascal n × n comme suit : a1j = ai1 = 1 ;
aij = ai−1,j + ai,j−i lorsque i, j > 1. Par exemple, la matrice de Pascal 3× 3 est1 1 1

1 2 3
1 3 6

 .

Démontrer que toute matrice de Pascal est inversible.

CC309. Soit P (x) et Q(x) des polynômes avec coefficients réels. Déterminer
des conditions nécessaires et suffisantes sur N de manière que si le polynôme
P (Q(x)) est de degré N , il existe une valeur réelle de x telle que P (x) = Q(x).

CC310. On donne

tanx+ cotx+ secx+ cscx = 6.

Déterminer la valeur de
sinx+ cosx.

Copyright c© Canadian Mathematical Society, 2018



48/ THE CONTEST CORNER

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CC306. Consider a 5×5×5 cube with the outside surface painted blue. Buzz
cuts the cube into 53 unit cubes, then picks a cube at random. Given that the
cube Buzz picked has at least one painted blue face, what is the probability that
the cube has exactly two blue faces ?

CC307. Find (with proof) all integer solutions (x, y) to

x2 − xy + 2017y = 0.

CC308. Define the n × n Pascal matrix as follows : a1j = ai1 = 1, while
aij = ai−1,j + ai,j−i for i, j > 1. So, for instance, the 3× 3 Pascal matrix is1 1 1

1 2 3
1 3 6

 .

Show that every Pascal matrix is invertible.

CC309. Suppose P (x) and Q(x) are polynomials with real coefficients. Find
necessary and sufficient conditions on N to guarantee that if the polynomial
P (Q(x)) has degree N , there exists real x with P (x) = Q(x).

CC310. Suppose

tanx+ cotx+ secx+ cscx = 6.

Find the value of
sinx+ cosx.

Crux Mathematicorum, Vol. 44(2), February 2018
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CONTEST CORNER
SOLUTIONS

Les énoncés des problèmes dans cette section paraissent initialement dans 2017 : 43(2),
p. 44–45.

CC256. All vertices of a polygon P lie at points with integer coordinates in
the plane (that is to say, both their co-ordinates are integers), and all sides of P
have integer lengths. Prove that the perimeter of P must be even.

Originally question 5 from The University of Melbourne Department of Mathema-
tics and Statistics School Mathematics Competition, 2012 (Senior Division).

We received five correct solutions. We present the one by Steven Chow.

Let n be the number of vertices of P , and denote by (xj , yj) the vertices of P in
clockwise order (where 1 ≤ j ≤ n), with the additional convention that xn+1 = x1
and yn+1 = y1.

If a is any integer then a ≡ a2 (mod 2). Using this observation, as well as the fact
that the side lengths of P are integers, the perimeter of P is

n∑
j=1

»
(xj − xj+1)

2
+ (yj − yj+1)

2 ≡
n∑
j=1

Ä
(xj − xj+1)

2
+ (yj − yj+1)

2
ä

≡
n∑
j=1

((xj − xj+1) + (yj − yj+1)) (mod 2) .

In the last line, all coordinates appear once with a positive sign and once with a
negative sign, so the sum is equal to zero. Therefore, the perimeter of P is even.

CC257. It is asserted that one can find a subset S of the nonnegative integers
such that every nonnegative integer can be written uniquely in the form x+2y for
x, y ∈ S. Prove or disprove the assertion.

Originally question 6 from The University of Melbourne Department of Mathema-
tics and Statistics School Mathematics Competition, 2012 (Senior Division).

We received three correct solutions. We present the solution of the Missouri State
University Problem Solving Group.

We prove that there is such a set, and our construction shows there is only one
such set S. The only way to write 0 as x + 2y for nonnegative integers x, y is
x = y = 0. Therefore 0 ∈ S. The only way to write 1 in this form is x = 1, y = 0,
and therefore 1 ∈ S. We may write 2 = 2 + 2(0) or 2 = 0 + 2(1), but if 2 ∈ S, then
we do not have uniqueness. Therefore, 2 /∈ S. Now 3 = 3 + 2(0) and 3 = 1 + 2(1),
so to ensure uniqueness we must have 3 /∈ S. Continuing in this way we see that S

Copyright c© Canadian Mathematical Society, 2018
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must contain 0, 1, 4, 5, 16, 17, 20, 21, 64, 65, and we notice that, other than 0, each
of these numbers is a sum of powers of 4. For example, 17 = 42 + 40, 20 = 42 + 41,
and 21 = 42 + 41 + 40. Let S be the set consisting of 0 together with all possible
sums of powers of 4 :

S = {0, 1, 4, 5, 16, 17, 20, 21, 64, 65, · · · }

To see that every nonnegative integer N can be written in the form N = x + 2y
for x, y ∈ S, consider the binary representation of N :

N =
t∑
i=0

bi2
i with each bi ∈ {0, 1}.

Now,

N =

bt/2c∑
i=0

bi2
2i +

b(t−1)/2c∑
i=0

bi2
2i+1 =

bt/2c∑
i=0

bi2
2i + 2

b(t−1)/2c∑
i=0

bi2
2i.

Taking

x =

bt/2c∑
i=0

bi2
2i and y =

b(t−1)/2c∑
i=0

b2i+122i,

we see that N = x+ 2y, and x, y ∈ S. The uniqueness follows from the uniqueness
of the base 2 representation.

CC258. The three points A, B and C in the diagram are vertices of an
equilateral triangle. Given any point P on the circle containing A, B and C,
consider the three distances AP , BP and CP . Prove that the sum of the two
shorter distances gives the longer distance.

Originally question 7 from The University of Melbourne Department of Mathema-
tics and Statistics School Mathematics Competition, 2015 (Intermediate Division).

We received 25 correct solutions, representing 12 solvers. We present the solution
by Andrea Fanchini.

By Ptolemy’s theorem, AB ·CP = BC ·AP = CA ·BP, but AB = BC = CA, so
CP = AP +BP.

Crux Mathematicorum, Vol. 44(2), February 2018
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CC259. If you are told that a rectangle has area A and perimeter P , is that
sufficient information to determine its side lengths ?

Originally question 2 from The University of Melbourne Department of Mathema-
tics and Statistics School Mathematics Competition, 2013 (Senior Division).

We received ten correct solutions. We present an amalgamation of many.

Let x and y be the side lengths of the rectangle. Then A = xy and P = 2(x+ y)
so that y = P

2 − x. Plugging into the area

A = x

Å
P

2
− x
ã
⇐⇒ x2 − P

2
x+A = 0.

Using the quadratic formula, we obtain

x =
P

4
±
√
P 2 − 16A

4
and y =

P

4
∓
√
P 2 − 16A

4
.

Since
P 2 − 16A = 4(x+ y)2 − 16xy = 4(x− y)2 ≥ 0,

there is always a real solution to our quadratic equation, and furthermore, there is
only one solution for each A and P , once we account for rotation. Hence, the side
lengths are uniquely determined as a pair from the specified area and perimeter
of a rectangle.

CC260. Assume you have a 9-faced die, appropriately constructed so that
when the die is thrown, each of the faces (which are numbered 1 to 9) occurs with
equal probability. Determine the probability that after n throws of the die, the
product of all the numbers thrown will be divisible by 14.

Originally question 6 from The University of Melbourne Department of Mathema-
tics and Statistics School Mathematics Competition, 2013 (Senior Division).

We received six correct solutions and one incorrect solution. We present the solu-
tion of the Missouri State University Problem Solving Group.

Let A be the set of n tosses that do not contain an even number and B the set
of n tosses that do not contain 7. The product of numbers shown in n tosses is
a multiple of 14 if and only if both an even number and 7 appear among the n
tosses. Thus we need to to count |Ac ∩Bc|. Now, |A| = 5n (since each toss can be
any of the five outcomes, 1, 3, 5, 7, 9), |B| = 8n, |A ∩B| = 4n. Thus,

|A ∪B| = |A|+ |B| − |A ∩B| = 5n + 8n − 4n,

and
|Ac ∩Bc| = |(A ∪B)c| = 9n − |A ∪B| = 9n − 5n − 8n + 4n.

Thus the required probability is

9n − 5n − 8n + 4n

9n
.

Copyright c© Canadian Mathematical Society, 2018
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THE OLYMPIAD CORNER
No. 360

Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale. Nous invitons les lecteurs à présenter
leurs solutions, commentaires et généralisations pour n’importe quel problème. S’il vous
plâıt vous référer aux règles de soumission à l’endos de la couverture ou en ligne.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 1er juillet 2018.

La rédaction souhaite remercier André Ladouceur, Ottawa, ON, d’avoir traduit les
problèmes.

OC366. Démontrer qu’il existe un nombre infini de triplets (a, b, c) d’entiers
strictement positifs tels que a, b et c soient premiers entre eux deux à deux et
ab+ c, bc+ a et ca+ b soient premiers entre eux deux à deux.

OC367. Un concours de mathématiques est composé de 3 problèmes, chacun
pouvant recevoir une note entière de 0 à 7. On sait qu’étant donné n’importe quels
deux concurrents, il existe au plus un problème pour lequel les concurrents ont
reçu la même note (par exemple, il n’y a pas deux concurrents qui ont reçu, dans
l’ordre, les notes 7, 1, 2 et 7, 1, 5, mais il peut y avoir deux concurrents qui ont
reçu, dans l’ordre, les notes 7, 1, 2 et 7, 2, 1). Déterminer le nombre maximal de
concurrents.

OC368. Soit n un entier strictement positif. Déterminer, en fonction de n, le
nombre de solutions de l’équation

x2 + 2016y2 = 2017n.

OC369. Soit I le centre du cercle inscrit dans le triangle ABC. Soit D le point
d’intersection de AI avec le côté BC et S le point d’intersection de AI avec le
cercle circonscrit au triangle ABC (S 6= A). Soit K et L les centres des cercles
inscrits dans les triangles respectifs DSB et DCS. Soit P l’image de I par une
réflexion par rapport à l’axe KL. Démontrer que BP ⊥ CP .

OC370. Soit deux entiers n et k tels que n ≥ k ≥ 2. Vous jouez au jeu suivant
contre un génie maléfique. Le génie tient 2n cartes, numérotées d’un côté de 1 à
n, deux cartes pour chaque valeur de i, i = 1, . . . , n. Au départ, le génie aligne
les cartes à l’envers dans un ordre quelconque. Vous montrez du doigt n’importe
quelles k cartes. Le génie remet alors ces cartes à l’endroit. Si deux des cartes ont
le même numéro, le jeu est terminé et vous avez gagné. Autrement, vous devez

Crux Mathematicorum, Vol. 44(2), February 2018
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fermer les yeux pendant que le génie permute les k cartes choisies et les remet à
l’envers. C’est ensuite votre tour à nouveau.

On dit que ce jeu est gagnable s’il existe un entier strictement positif m et une
stratégie qui garantit une victoire en m tours ou moins, peu importe comment le
génie joue. Pour quelles valeurs de n et de k le jeu est-il gagnable ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OC366. Prove that there exist infinitely many positive integer triples (a, b, c)
such that a, b, c are pairwise relatively prime, and ab+ c, bc+a, ca+ b are pairwise
relatively prime.

OC367. A mathematical contest had 3 problems, each of which was given
a score between 0 and 7, inclusive. It is known that, for any two contestants,
there exists at most one problem in which they have obtained the same score (for
example, there are no two contestants whose ordered scores are 7, 1, 2 and 7, 1, 5,
but there might be two contestants whose ordered scores are 7, 1, 2 and 7, 2, 1).
Find the maximum number of contestants.

OC368. Let n be a positive integer. Find the number of solutions of

x2 + 2016y2 = 2017n

as a function of n.

OC369. Let I be the incenter of 4ABC. Let D be the point of intersection
of AI with BC and let S be the point of intersection of AI with the circumcircle
of ABC (S 6= A). Let K and L be incenters of 4DSB and 4DCS. Let P be a
reflection of I with respect to KL. Prove that BP ⊥ CP .

OC370. Integers n and k are given, with n ≥ k ≥ 2. You play the following
game against an evil wizard. The wizard has 2n cards ; for each i = 1, . . . , n, there
are two cards labeled i. Initially, the wizard places all cards face down in a row,
in unknown order. You may repeatedly make moves of the following form : you
point to any k of the cards. The wizard then turns those cards face up. If any
two of the cards match, the game is over and you win. Otherwise, you must look
away, while the wizard arbitrarily permutes the k chosen cards and then turns
them back face-down. Then, it is your turn again.

We say this game is winnable if there exist some positive integer m and some
strategy that is guaranteed to win in at most m moves, no matter how the wizard
responds. For which values of n and k is the game winnable ?

Copyright c© Canadian Mathematical Society, 2018
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OLYMPIAD SOLUTIONS
Les énoncés des problèmes dans cette section paraissent initialement dans 2016 : 42(10),
p. 425–426.

OC306. Find all positive integers n such that

10n

n3 + n2 + n+ 1

is an integer.

Originally Problem 1 of the 2015 Japan Mathematical Olympiad.

We received four correct submissions ; we present the solution by Steven Chow.

Note first that n3 + n2 + n+ 1|10n =⇒ (n+ 1)(n2 + 1)|2n5n, so both n+ 1 and
n2+1 are products of powers of 5 and 2. If n+1 ≡ 0 (mod 5), then n ≡ −1 implies
that n2 + 1 ≡ 2 (mod 5), so n2 + 1 does not contain a power of 5 and hence is a
power of 2. Let n2 + 1 = 2t, where t ∈ N. Since n2 ≡ 0 or 1(mod 4), we have

n2 + 1 6= 0 (mod 4) =⇒ t = 1 =⇒ n2 + 1 = 2 =⇒ n = 1,

which does not satisfy the given condition,. We conclude that n+ 1 = 2a for some
a ∈ N, a ≥ 2. Then

n2 + 1 = (2a − 1)2 + 1 = 22a − 2a+1 + 2 = 2(22a−1 − 2a + 1),

so 22a−1 − 2a + 1 = 5b for some b ∈ N. Hence, 2a(2a−1 − 1) = 5b − 1.

Let b = 2cd where c, d ∈ Z where c ≥ 0, and d > 0 is odd. We claim that
5b − 1 = (5− 1)P · S, where

P =
c−1∏
j=0

Ä
52

j

+ 1
ä

and S =
d∑
k=1

5b−2
c·k.

If c = 0, then we define P = 0.

Note that

(5− 1)P = (5− 1)(5 + 1)(52 + 1) · · · (52
c−1

+ 1)

= (52 − 1)(52 + 1) · · · (52
c−1

+ 1)

= · · · = 52
c−1

− 1,

and since b = 2cd,

S = 5b−2
c

+ 5b−2
c+1

+ · · ·+ 5b−2
cd

= (52c)
d−1

+ (52c)
d−2

+ · · ·+ (52c)
0

= (52c)
d − 1.
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Hence,

2a
(
2a−1 − 1

)
= 5b − 1 = (5− 1)

(
c−1∏
j=0

Ä
52

j

+ 1
ä) d∑

k=1

5b−2
c·k. (1)

Since 52
j

+ 1 ≡ 2 (mod 4) for all j and
∑d
k=1 5b−2

c·k is odd (therefore d is odd),
by comparing the coefficients of the powers of 2 from both sides of (1), we see that
a = c+ 2. Then from (1) we obtain

2c+1 − 1 =

(
c−1∏
j=0

52
j

+ 1

2

)
d∑
k=1

5b−2
c·k ≥ 52

c−1

+ 1

2
>

(
22
)2c−1

2
= 22

c−1. (2)

But it is easy to see that for c ≥ 2

2c − 1 ≥ c+ 1, so 22
c−1 ≥ 2c+1 > 2c+1 − 1.

Hence, (2) can only hold if c = 0 or 1.

If c = 0, then a = c+ 2 = 2, so n = 22− 1 = 3, and if c = 1, then a = c+ 2 = 3, so
n = 23 − 1 = 7. It is readily verified that n = 3 and 7 satisfy the given condition.

OC307. Several small villages are situated on the banks of a straight river. On
one side, there are 20 villages in a row, and on the other there are 15 villages in a
row. We would like to build bridges, each of which connects a village on the one
side with a village on the other side. The bridges must not cross, and it should be
possible to get from any village to any other village using only those bridges (and
not any roads that might exist between villages on the same side of the river).
How many different ways are there to build the bridges ?

Originally Problem 5 of the 2015 South Africa National Olympiad.

Two correct solutions, presented below, were received.

Solution 1, by Mohammed Aassila.

We prove by induction that, more generally, if there are a villages on one side of
the river and b on the other, then the answer isÇ

a+ b− 2

a− 1

å
=

(a+ b− 2)!

(a− 1)!(b− 1)!
.

With (a, b) = (20, 15), this equals
(
33
14

)
= 818809200.

If either a = 1 or b = 1, there is exactly one configuration of bridges in which a
bridge runs from the single village on one side of the river to each of the others.
Now suppose that a > 1, b > 1, the villages on one side of the river are labelled
A1, A2, . . . , Aa and on the other side B1, B2, . . . , Bb in parallel order, and the
induction hypothesis holds for every smaller value of a+ b.

Copyright c© Canadian Mathematical Society, 2018
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There cannot be at the same time a bridge joining A1 to Br for r > 1 and a bridge
joining B1 to As for s > 1, since bridges must not cross. Therefore A1 and B1 are
joined, and either (1) B1 is joined only to A1 or (2) A1 is joined only to B1.

In case (1), we can ignore B1 and consider all the configuration of bridges between
B2, . . . , Bb and A1, A2, . . . , Aa. There areÇ

a+ b− 3

a− 1

å
of these, each corresponding to a configuration for all the villages. In case (2), we
can similarly ignore A1 and find Ç

a+ b− 3

a− 2

å
configurations. Thus, in all, there areÇ

a+ b− 3

a− 1

å
+

Ç
a+ b− 3

a− 2

å
=

Ç
a+ b− 2

a− 1

å
ways to build the bridges.

Solution 2, by Steven Chow.

With the notation of the first solution, for 1 ≤ i ≤ a, let ci be the number of bridges
connecting Ai to a village on the other side of the river. If there are nonconsecutive
integers m and n for which Ai is connected to Bm and Bn, then Ai is connected
to every village Bk between Bm and Bn, for otherwise there would be no route of
bridges from Bk to any other village.

A1 must be connected to B1, Aa to Bb, and for each i ≥ 2, Ai to Bd, the village
with the largest index connected to Ai−1.

The total number t of bridges can be counted in two ways. First, t = c1+c2+· · ·+ca.
Secondly, there is at least one bridge to each village Bj . Also, each village Ai (i ≥ 2)
is connected by a bridge to an extreme Bd connected to Ai−1, accounting for all
the additional bridges to Bd. Thus

t = b+ (a− 1) = a+ b− 1.

Furthermore, for each choice of positive integers ci (1 ≤ i ≤ a) for which c1 + c2 +
· · ·+ ca = a+ b− 1, there is a suitable configuration of bridges. Such a choice can
be made in Ç

(a+ b− 1)− 1

a− 1

å
=

Ç
a+ b− 2

a− 1

å
ways.

Crux Mathematicorum, Vol. 44(2), February 2018



THE OLYMPIAD CORNER /57

OC308. Let n be a positive integer and let d1, d2, . . . , dk be its positive divisors.
Consider the number

f(n) = (−1)d1d1 + (−1)d2d2 + · · ·+ (−1)dkdk.

Assume f(n) is a power of 2. Show that if m is an integer greater than 1, then m2

does not divide n.

Originally Problem 6 of day 2 of the 2015 Mexico National Olympiad.

There was one solution, submitted by Steven Chow, which is presented here.

If n is odd, then f(n) = −σ(n) < 0, where σ(n) is the sum of the positive divisors
of n. In this case, f(n) is not a power of 2.

Let n = 2rs where r ≥ 1 and s =
∏
pa, the product taken over all the odd prime

divisors of n. Since the divisors of n have the form 2ud where 0 ≤ u ≤ r and d
divides s,

f(n) = (2r + 2r−1 + · · ·+ 2− 1)σ(s) = (2r+1 − 3)
∏

σ(pa).

Suppose that f(n) is a power of 2. Then so are 2r+1 − 3 (which is odd) and
σ(pa) = 1 + p + · · · + pa for each odd prime divisor p of n. Thus r = 1, a is odd
and

σ(pa) = (1 + p)(1 + p2 + p4 + · · ·+ pa−1).

Since p ≥ 3, p2 ≡ 1 (mod 4), and 1 + p2 + p4 + · · · + pa−1 is a power of 2, either
a = 1 or the number of terms in the sum is a multiple of 4 and so divisible by
1 +p2. But, 1 +p2, being congruent to 2, modulo 4, cannot be a power of 2. Hence
a = 1 and n = 2

∏
p is a product of distinct prime factors. Therefore, n cannot

have any nontrivial square divisors.

(Thus, f(n) is a power of 2 if and only if n is the product of 2 and any number of
distinct Mersenne primes.)

OC309. Let A,B,D,E, F,C be six points that lie on a circle (in order) and
satisfy AB = AC. Let P = AD∩BE, R = AF ∩CE, Q = BF ∩CD, S = AD∩BF
and T = AF ∩ CD. Let K be a point lying on ST satisfying ∠QKS = ∠ECA.
Prove that

SK

KT
=
PQ

QR
.

Originally Problem 2 of day 1 of the 2015 China National Olympiad.

The only solutions we received came from Mohammed Aassila and Steven Chow ;
we will present a composite of the two.
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We shall be using directed angles. Since AB = AC, ∠AFB = ∠CFA = ∠CDA ;
thus, ∠TFS = ∠TDS, whence DFTS is cyclic. Therefore,

∠QSK = ∠FST = ∠FDT = ∠FDC = ∠FAC = ∠RAC.

Moreover, since we are given that ∠SKQ = ∠ACE = ∠ACR, 4KQS ∼ 4CRA,
which implies that SK

KQ = AC
CR .

Similarly, ∠KTQ = ∠BAP and ∠QKT = ∠QKS = ∠ACE = ∠ABE = ∠ABP ,
so 4KQT ∼ 4BPA, which implies that KQ

KT = BP
BA . Consequently,

SK

KQ
· KQ
KT

=
AC

CR
· BP
AB

Å
=
AC

CR
· BP
AC

ã
,

and we have
SK

KT
=
BP

CR
. (1)

The Sine Law applied to ∆QCR and ∆PBQ, respectively, yields

CR

QR
=

sin∠RQC
sin∠QCR

and
BP

PQ
=

sin∠BQP
sin∠PBQ

. (2)

Pascal’s Theorem applied to the hexagon ADCEBF implies that P , Q, and R are
collinear, whence ∠BQP = ∠FQR. Furthermore,

∠PBQ = ∠EBF = ∠ECF = ∠RCF,

so that equation (2) becomes

BP

PQ
=

sin∠FQR
sin∠RCF

. (3)
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Finally, because FR bisects the angle at F in ∆CFQ, we have (by the sine version
of Ceva’s theorem)

sin∠RQC
sin∠QCR

=
sin∠FQR
sin∠RCF

. (4)

Putting together equations (2), (4), and (3), we have

CR

QR
=
BP

PQ
,

which together with equation (1) yields the desired conclusion, namely

SK

KT
=
BP

CR
=
PQ

QR
.

OC310. For a positive integer k, let n =
(
2k
)
! and let σ(n) denote the sum

of all positive divisors of n. Prove that σ(n) has at least one prime divisor larger
than 2k.

Originally Problem 8 of day 2 of the 2015 China Western Mathematical Olympiad.

We received 3 submissions, all correct. We present a composite solution based
on similar proofs by Mohammed Aassila, Steven Chow, and the Missouri State
University Problem Solving Group.

For any prime p and m ∈ N, let vp(m!) denote the highest power of p which divides

m!. It is well known that vp(m!) =
∑∞
i=1

ö
m
pi

ù
. Hence,

v2(n) = v2((2k)!) = 2k−1 + 2k−2 + · · ·+ 2 + 1 = 2k − 1.

Since

σ(m) =
t∏
i=1

pαi+1
i − 1

pi − 1

when the prime power factorization of m is m =
∏t
i=1 p

αi
i , we see that 22

k−1|σ(n).

Since 22
k − 1 = (22

k−1 − 1)(22
k−1

+ 1) we then have 22
k−1

+ 1|σ(n).

Next, a well known theorem of Euler about Fermat numbers (see K.H. Rosen, Ele-
mentary Number Theory and its Applications (5th Ed.), Pearson-Addison Wesley ;
Theorem 3.20, p. 128) states that all prime divisors p of Fm = 22

m

+1 satisfy p ≡ 1(
mod 2m+2

)
.

Hence, if p is a prime such that p|22k−1

+ 1, then p = 2k+1t + 1 for some t ∈ N.
Since p > 2k+1 > 2k and p|σ(n) we conclude that in fact, every prime divisor of
Fk−1 is greater than 2k.
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PROBLEM SOLVING 101
No. 3

Shawn Godin

This month, we will look at a problem from the last Canadian Open Mathematics
Challenge, hosted by the CMS. You can check out the contest, and past contests
on the CMS website at cms.math.ca/Competitions/COMC.

We will look at problem C1 from the 2017 COMC :

For a positive integer n, we define function P (n) to be the sum of
the digits of n plus the number of digits of n. For example, P (45) =
4+5+2 = 11. (Note that the first digit of n reading from left to right,
cannot be 0).
(a) Determine P (2017).
(b) Determine all numbers n such that P (n) = 4.
(c) Determine with an explanation whether there exists a number n
for which P (n)− P (n+ 1) > 50.

The problem is interesting not because it is overly difficult, but because of the
precision of the argument needed. Many students were able to fully solve this
problem, but many did not get full marks because of what they didn’t say . . .

Let’s dive right in. Part (a) is a straight forward use of the definition of the function
to get

P (2017) = 2 + 0 + 1 + 7 + 4 = 14.

In part (b) it gets interesting because it asks us to determine all numbers that
have the stated property. There is an implication that not only should we find all
such numbers, but we need to prove that there are not any more. We will proceed
by defining two new functions S(n) and N(n) which give the sum of the digits and
the number of digits of n, respectively. Then we have

P (n) = S(n) +N(n).

We are dealing with positive integers, so each n must have a non-zero digit and
hence S(n) ≥ 1. We also clearly have N(n) ≥ 1. Since P (n) = S(n) + N(n), we
can write P (n) ≥ 1 + N(n), or N(n) ≤ P (n)− 1. We want P (n) = 4 so we must
have N(n) ≤ 4 − 1 = 3. So any numbers that satisfy the given property must
be at most 3 digits long. We can then look at the three cases to find the desired
numbers : 3, 11, 20 and 100. Many students got these four solutions, but failed to
show, or mention in any way, that there couldn’t be any others.

On the other hand, when we look at the last part of the problem it is the opposite
situation. There are many situations in mathematics where there are proofs that
a certain thing exists, but with no indication of how to find the thing. An example
would be an algorithm for producing primes. Mathematicians have long sought a
easy way to predict or produce prime numbers.
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Consider the following algorithm :

• start with a list of all primes that you know : p1, p2, p3, . . . , pn,

• construct the number N = p1 × p2 × p3 × · · · pn + 1,

• clearly pi - N for each i = 1, . . . , n

hence either N is a prime, that was not previously on your list or N is composite.
If N is composite, it factors uniquely into primes, but we saw that none of “our”
primes are factors of N , so all the prime factors of N are “new”.

This algorithm will work every time. Unfortunately, determining if N is prime can
be difficult for large values of N . If N is composite, it is even harder to factor large
numbers into their prime components. So the algorithm will generate new primes,
but we may not be able to get at them easily.

On the other hand, we can show that there exists a number with a certain property
by finding one. Thus, if we show

P (2 017 999 999)− P (2 018 000 000) = 74− 21 = 53 > 50

then n = 2 017 999 999 is a number that satisfies the condition for part (c), and I
am done.

It is a shame to leave such a nice problem hanging like that, so let’s dig deeper and
see what we can say about P (n)− P (n+ 1). In most cases, n and n+ 1 differ by
only their last digit. In that case, P (n+ 1) = P (n) + 1, so P (n)−P (n+ 1) = −1.
For example P (123) = 1 + 2 + 3 + 3 = 9 and P (124) = 1 + 2 + 4 + 3 = 10, so
P (123)− P (124) = 9− 10 = −1.

On the other hand, if n ends in a 9, n+ 1 will end in a 0, so there will be a large
difference between P (n) and P (n+1). As the number of nines at the end increases,
so does the difference between P (n) and P (n+ 1) :

P (20 179)− P (20 180) = 8

P (201 799)− P (201 800) = 17

P (2 017 999)− P (2 018 000) = 26

P (20 179 999)− P (20 180 000) = 35

Upon closer inspection we see that if we look at the non-trailing nines and zeros,
the sum of the remaining digits of n+ 1 will be 1 more than the remaining digits
of n. Unless n is composed solely of nines, n and n+ 1 will have the same number
of digits. So if we let n have k trailing nines, and let σ be the sum of the non-
trailing nines of n and let d be its number of digits, then P (n) = σ + 9k + d and
P (n+1) = σ+1+k×0+d = σ+d+1, as long as n isn’t made solely of nines. If n is
totally made of nines P (n) = 9d+d = 10d and P (n+1) = 1+d×0+(1+d) = d+2.
Hence, if n is not made up of just nines we have

P (n)− P (n+ 1) = σ + d+ 9k − (σ + d+ 1) = 9k − 1
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and if n is made up of just nines we get

P (n)− P (n+ 1) = 10d− (d+ 2) = 9d− 2

so we can solve our problem completely by solving two inequalities

9k − 1 > 50 9d− 2 > 50

9k > 51 9d > 52

k >
51

9
d >

52

9

which are equivalent to k ≥ 6 and d ≥ 6, since k and d are integers. This tells us
that any number that ends in at least six nines has the desired property.

There are many things we can do with this function such as determining the largest
or smallest n for which P (n) = k for some k or even coming up with a way to
enumerate the number of solutions to P (n) = k. Enjoy your explorations !

Crux Mathematicorum, Vol. 44(2), February 2018



Michel Bataille /63

On the Centres of Root-Mean-Square

Triangles
Michel Bataille

A triangle ABC with sides BC = a,CA = b, AB = c is root-mean-square if the
squares of its sides are in arithmetic progression, that is, if one of the equalities
2a2 = b2 + c2, 2b2 = c2 + a2, 2c2 = a2 + b2 holds. In such a triangle, one of
the sides is the root mean square of the other two sides, a property explaining
the name. Root-mean-square triangles regularly appear in geometry problems, as
neatly shown by J. Chris Fisher’s 2011 retrospective ([5]). See also [3] for a recent
example.

We propose several characterizations of these triangles, some of them believed to
be new, which involve the four most familiar centres of the triangle. Surprisingly,
most of the results can be presented in pairs, according to a duality that evokes
the isogonal conjugacy (see [1] p. 270 for details about this conjugacy).

In what follows, G,H,O, and K denote the centroid, the orthocenter, the circum-
centre, and the symmedian point of the triangle ABC. Also let α = ∠BAC, β =
∠CBA, γ = ∠ACB.

Without loss of generality, we restrict ourselves to root-mean-square triangles sa-
tisfying 2a2 = b2 + c2 that we call A-RMS triangles.

With the circles with diameters AH and AO

From now on, we denote by γH and γO the circles with diameters AH and AO,
respectively. Our first characterization involves H and G :

ABC is A-RMS if and only if G is on the circle γH .

Recalling that
−−→
OH =

−→
OA +

−−→
OB +

−−→
OC = 3

−−→
OG, we can calculate the dot product−→

AG ·
−−→
GH as follows :

−→
AG ·

−−→
GH = 2

−→
AG ·

−−→
OG =

2

9
(
−−→
OB +

−−→
OC − 2

−→
OA) · (

−→
OA+

−−→
OB +

−−→
OC)

=
2

9
(OB2 +OC2 − 2OA2 + 2

−−→
OB ·

−−→
OC −

−−→
OC ·

−→
OA−

−→
OA ·

−−→
OB).

Let R = OA = OB = OC be the circumradius of ∆ABC. Since ∠BOC = 2α if α
is acute and 2(180◦−α) otherwise, the dot product

−−→
OB ·

−−→
OC is equal to R2 cos 2α.

Similar results hold for the dot products
−−→
OC ·

−→
OA,

−→
OA ·

−−→
OB and so

−→
AG ·

−−→
GH =

2

9
R2(2 cos 2α− cos 2β − cos 2γ) =

1

9
(b2 + c2 − 2a2)

where the last equality is deduced from

2 cos 2α−cos 2β−cos 2γ = 2(sin2 β+sin2 γ−2 sin2 α) =
1

2R2
·(b2 +c2−2a2). (1)
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Thus,
−→
AG·
−−→
GH = 0, that is,

−→
AG and

−−→
GH are orthogonal, if and only if b2+c2 = 2a2

and the result follows.

The dual theorem, formed by substituting K for G and O for H, also holds !

ABC is A-RMS if and only if K is on the circle γO.

Analogously, since σK = a2A+ b2B + c2C where σ = a2 + b2 + c2, we see that

σ2−−→AK ·
−−→
OK = (b2

−−→
OB + c2

−−→
OC − (b2 + c2)

−→
OA) · (a2

−→
OA+ b2

−−→
OB + c2

−−→
OC)

= R2[b2c2(2 cos 2α− cos 2β − cos 2γ) +m]

where (with the help of the law of sines)

m = b2(b2 − a2)(1− cos 2γ) + c2(c2 − a2)(1− cos 2β)

= 2b2(b2 − a2)(sin2 γ) + 2c2(c2 − a2)(sin2 β)

=
b2c2

2R2
(b2 + c2 − 2a2).

Using (1) again we find that

σ2−−→AK ·
−−→
OK = R2

ï
b2c2
Å
b2 + c2 − 2a2

2R2

ã
+
b2c2

2R2
(b2 + c2 − 2a2)

ò
= b2c2(b2 + c2 − 2a2),

and conclude that
−−→
AK ·

−−→
OK = 0 if and only if 2a2 = b2 + c2.

In the wake of the proofs above, let us remark that from 3σG = σA + σB + σC
and 3σK = 3a2A+ 3b2B + 3c2C we deduce

3σ
−−→
KG = 3σ(G−K) = (b2 + c2 − 2a2)A+ (c2 + a2 − 2b2)B + (a2 + b2 − 2c2)C.

As a result,

A non-equilateral triangle ABC is A-RMS if and only if KG is parallel
to BC,

a characterization that was the subject of a problem of Bankoff’s in 1978 ([2]).

The proof of the first theorem above also shows that

ABC is A-RMS if and only if G is on the circle γO.

Another way to obtain this result is to introduce the midpoints N and P of CA and
AB and calculate BP · · ·BA and BG · · ·BN . The details are left as an exercise
for the reader, who is referred to Figure 3.

With the circles (BHC) and (BOC)

Before addressing another pair of characterizations, we consider two lemmas pre-
senting interesting properties valid in any triangle.
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In an arbitrary triangle ABC, let H1 be the orthogonal projection of
H onto the median through A. Then B,H,H1, C are concyclic.

Figure 1

Let H ′, O′ and A′ be the reflections of H,O and A in the line BC, respectively.
Since H ′ is on the circumcircle Γ of ∆ABC (a well-known result), the points H
and A′ lie on the reflection Γ′ of Γ and so does the reflection A′′ of A′ in the
diameter OO′ of Γ′ (Figure 1). Now, A′′ is the reflection of A in the midpoint M
of BC and ∠HA′A′′ = ∠AA′A′′ = 90◦, hence HA′′ is a diameter of Γ′. Finally,
either H1 = H or ∆HH1A

′′ is right-angled at H1, hence H1 is on Γ′.

The dual lemma holds as well :

In an arbitrary triangle ABC, let O1 be the orthogonal projection of
O onto the symmedian through A. Then B,O,O1, C are concyclic.

Figure 2

This results from a property of the symmedian proved in [4]. For convenience, we
sum up the argument : Let the tangent t to Γ at A intersect BC at Q (Figure 2).
The symmedian through A is the polar of Q with respect to Γ so that O1 is the
inverse of Q in Γ. Thus, O1 is on the inverse of the line BC, that is, on the circle
through B,C and O.

We can now state and prove a second pair of dual theorems.

ABC is A-RMS if and only if G is on the circle through B,H,C.
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Consider the first lemma above and figure 1. Note that the circle through B,H,C
is the circle Γ′ and must be so understood when H = B or H = C. Also note that
the reflection A′′ of A in M is different from G and diametrically opposite to H
on Γ′.

If ABC is A-RMS, then G is on γH , hence HG is orthogonal to the median AM .
Thus G = H1 and G is on the circle (BHC). Conversely, if G is on (BHC) = Γ′

(with diameter HA′′), then HG is orthogonal to the median AA′′. Thus, G is on
γH and ABC is A-RMS.

Dually, we also have

ABC is A-RMS if and only if K is on the circle through B,O,C.

The proof is similar (using the second lemma and Figure 2) and the details are
left to the reader.

One more characterization

From our theorems so far, we deduce that if ABC is a scalene A-RMS triangle,
then the circle γH and the circle (BHC) intersect at H and G while the circle γO
and the circle (BOC) intersect at O and K (Figure 3).

Figure 3

A close examination of Figure 3 suggests the tangency of two of the drawn circles.
Indeed, we have the following theorem :

ABC is A-RMS if and only if the circles γO and (BHC) are externally
tangent. If this is the case, the point of tangency is G.

As before, (BHC) = Γ′ is the reflection of Γ in BC and O′ denotes its centre. We
first suppose that ABC is A-RMS, so that G is on Γ′ and γO (Figure 3). Let D
and P be the midpoints of AO and AB, respectively. Note that P is on γO whose
centre is D. Consider the homothety h with centre G and scale factor −2. Since
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h(O) = H, h(P ) = C and h(G) = G, we have h(γO) = Γ′ and so h(D) = O′. Thus,
D,G,O′ are collinear with G between D and O′ so that γO and Γ′ are externally
tangent at G.

Conversely, suppose that γO and Γ′ are externally tangent at, say, T (Figure 4).

Figure 4

Let hT be the homothety with centre T and scale factor − 1
2 , which transforms

the circle Γ′ into the circle γO. Let hA be the homothety with centre A and scale
factor 2. Clearly, hT (O′) = D and hA(D) = O. Let B′ = hT (B), C ′ = hT (C)
and B′′ = hA(B′), C ′′ = hA(C ′). The transformation hA ◦ hT is the symmetry
SU about the midpoint U of OO′ (since − 1

2 × 2 = −1 and hA ◦ hT (O′) = O).
Observing that U is also the midpoint M of BC, we see that B′′ = SU (B) = C
and C ′′ = SU (C) = B. Now, C = hA(B′), B = hA(C ′), hence B′ is the midpoint
of AC and C ′ is the midpoint of AB. Thus, the point of intersection T of BB′

and CC ′ coincides with the centroid G. Since G is on γO, a prior theorem ensures
that ABC is A-RMS.

Exercises

To conclude we propose a few exercises, providing the reader with an opportunity
to take another look at the results above.

1. Using the fact that ∠CAG = ∠KAB (Figure 3), prove again that if ABC is
A-RMS, then GK and BC are parallel.

2. Let ABC be A-RMS. The symmedians BK and CK intersect the circle γO at

B1 and C1 (other than K), respectively. Prove that OB1 = OC1 = Ra2

2bc .

3. Let ABC be a triangle and let the circle with diameter AG intersect AB and AC
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respectively at E and F (distinct fromA). The line EF intersects the perpendicular
to BC through G at U . Show that ABC is A-RMS if and only if the reflection of
A about U is on BC.

4. Use results of the article to prove that ABC is A-RMS if and only if ∠GAB =
∠GBC. (Compare with [3].)

5. Let ABC be A-RMS. Prove that the circumcircles of ∆ABG and ∆ACG are
tangent to BC and that the product of their radii equals the square of the circum-
radius of ∆ABC.
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PROBLEMS
Nous invitons les lecteurs à présenter leurs solutions, commentaires et généralisations
pour n’importe quel problème présenté dans cette section. De plus, nous les encourageons
à soumettre des propositions de problèmes. S’il vous plâıt vous référer aux règles de
soumission à l’endos de la couverture ou en ligne.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 1er juillet 2018.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à l’Uni-
versité de Saint-Boniface, d’avoir traduit les problèmes.

4311. Proposé par Mihaela Berindeanu.

Soient A et B deux matrices dans M3 (Z) telles que AB = BA et detA = detB =
1. Déterminer les valeurs possibles de det

(
A2 +B2

)
sachant que

det
(
A2 + 2AB + 4B2

)
− det

(
A2 − 2AB + 4B2

)
= −4.

4312. Proposé par William Bell.

Démontrer que
∞∑
r=1

1

2r
tanh

( x
2r

)
= cothx− 1

x
.

4313. Proposé par Marian Cucoanes and Leonard Giugiuc.

Soit I le centre du cercle inscrit du triangle ABC, et soient Ha, Hb et Hc les
orthocentres des triangles IBC, ICA et IAB, respectivement. Démontrer que les
triangles ABC et HaHbHc ont la même surface.

4314. Proposé par Michel Bataille.

Soit n un entier positif. Évaluer l’expression qui suit, en forme close

n∑
k=1

k2k ·
(
n
k

)(
2n−1
k

) .

4315. Proposé par Moshe Stupel, modifié par les éditeurs.

Soit H l’orthocentre du triangle ABC et soient R, r et r′ le rayon du cercle
circonscrit, le rayon du cercle inscrit et le rayon du cercle exinscrit opposé au
sommet A, respectivement. Démontrer que HA+ r′ = 2R+ r.
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4316. Proposé par Daniel Sitaru.

Soit f : [0, 11]→ R une fonction intégrable et convexe. Démontrer que∫ 5

3

f(x)dx+

∫ 8

6

f(x)dx ≤
∫ 2

0

f(x)dx+

∫ 11

9

f(x)dx.

4317. Proposé par Leonard Giugiuc.

Soient a, b, c et d des nombres réels. Résoudre ce système d’équations
a+ b+ c+ d = 4,

abc+ abd+ acd+ bcd = 2,

abcd = − 1
4 .

4318. Proposé par Thanos Kalogerakis.

Soient deux cercles qui intersectent, avec centres distincts, et soient A et B situés
sur leur diamètre en commun, avec un point sur le premier cercle et un en dehors,
et de même pour le deuxième cercle. Démontrer comment construire le mi point
de AB, à l’aide d’une règle rectifiée seulement ; démontrer que votre construction
est correcte.

4319. Proposé par Marius Drăgan.

Soient x1, x2, . . . , xn ∈ (0,+∞), n ≥ 2, α ≥
3

2
tels que xα1 + xα2 + · · · +xαn = 1.

Démontrer l’inégalité suivante

n∏
i=1

(1 + xi + xα+1
i ) ≤ 3α.

4320. Proposé par Abhay Chandra.

Soient a, b, c et d des nombres réels positifs. Démontrer que

(a+ b)(a+ c)(a+ d)(b+ c)(b+ d)(c+ d) ≥ 16 (a+ b+ c+ d)
4
√
a5b5c5d5.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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4311. Proposed by Mihaela Berindeanu.

Let A and B be two matrices in M3 (Z) with AB = BA and detA = detB = 1.
Find the possible values for det

(
A2 +B2

)
knowing that

det
(
A2 + 2AB + 4B2

)
− det

(
A2 − 2AB + 4B2

)
= −4.

4312. Proposed by William Bell.

Prove that
∞∑
r=1

1

2r
tanh

( x
2r

)
= cothx− 1

x
.

4313. Proposed by Marian Cucoanes and Leonard Giugiuc.

Let I be the incenter of triangle ABC, and denote by Ha, Hb and Hc the ortho-
centers of triangles IBC, ICA and IAB, respectively. Prove that triangles ABC
and HaHbHc have the same area.

4314. Proposed by Michel Bataille.

Let n be a positive integer. Evaluate in closed form

n∑
k=1

k2k ·
(
n
k

)(
2n−1
k

) .
4315. Proposed by Moshe Stupel, modified by the editors.

Let H be the orthocenter of triangle ABC, and denote by R, r, and r′ respectively
the circumradius, inradius, and radius of the excircle that is opposite vertex A.
Prove that HA+ r′ = 2R+ r.

4316. Proposed by Daniel Sitaru.

Let f : [0, 11]→ R be an integrable and convex function. Prove that∫ 5

3

f(x)dx+

∫ 8

6

f(x)dx ≤
∫ 2

0

f(x)dx+

∫ 11

9

f(x)dx.

4317. Proposed by Leonard Giugiuc.

Solve the following system of equations over reals :
a+ b+ c+ d = 4,

abc+ abd+ acd+ bcd = 2,

abcd = − 1
4 .
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4318. Proposed by Thanos Kalogerakis.

Given a pair of intersecting circles (just their circumferences, not their centres), let
AB be the common diameter with one end on each circle and neither end inside
either circle. Show how to construct the midpoint of AB using only a straightedge
and prove that your construction is correct.

4319. Proposed by Marius Drăgan.

Let x1, x2, . . . , xn ∈ (0,+∞), n ≥ 2, α ≥
3

2
such that xα1 + xα2 + · · · +xαn = 1.

Prove the following inequality :

n∏
i=1

(1 + xi + xα+1
i ) ≤ 3α.

4320. Proposed by Abhay Chandra.

For positive real numbers a, b, c, d, prove that

(a+ b)(a+ c)(a+ d)(b+ c)(b+ d)(c+ d) ≥ 16 (a+ b+ c+ d)
4
√
a5b5c5d5.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for pu-
blication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2017 : 43(2), p. 67–71.

4211. Proposed by Michel Bataille.

Let A and M be two n×n matrices with complex entries such that A is invertible
and M has rank 1.

a) Evaluate tr(A−1M) if det(A+M) = 0.

b) Find (A+M)−1 if det(A+M) 6= 0.

We received 6 correct solutions and will feature just one of them here, by Leonard
Giugiuc.

Denote A−1M = B. Since rank(A) = n and rank(M) = 1, then rank(B) = 1.

a) Define the polynomial f : C −→ C as f(x) = det(xIn +B), ∀x ∈ C.

Since rank(B) = 1, it follows that f(x) = xn−1(x + tr(B)). On the other
hand, we have that det(In +B) = 0, so f(1) = 0, which implies tr(B) = −1.

Note that det(A+M) = 0 if and only if tr(A−1M) = −1.

b) Define the matrix C as

C = In −
B

1 + tr(B)
.

Observe that since rank(B) = 1, we have B2 = tr(B) ·B. Thus

(In +B)C = (In +B)

Å
In −

B

1 + tr(B)

ã
= In +B − B(1 + tr(B))

1 + tr(B)
= In.

From this we get :

(A+M)−1 = [A(In +B)]−1

= (In +B)−1A−1

=

Å
In −

B

1 + tr(B)

ã
A−1

= A−1 − A−1MA−1

1 + tr(A−1M)
.
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4212. Proposed by Florin Stanescu.

Let a, b and c be the sides of a triangle, r the inradius and R the circumradius.
Show that

a

b+ c
+

b

a+ c
+

c

a+ b
+
r

R
≤ 2.

We received 18 submissions, all of which are correct. Unfortunately, as pointed
out by solvers Michel Bataille, and Mircea Lascu and Titu Zvonaru (jointly), the
same problem by the same proposer has appeared in Math. Reflections, 2016, No. 4
as Problem S382 (with a solution published on page 10 of the solution part), as
well as problem 27298 in Romanian “Gazeta Mathematica”, 11/2016. However,
we have decided to publish the following solution, modified slightly, by Mircea Lascu
and Titu Zvonaru (who actually submitted two different proofs) since it is different
from the one in Math Reflections and uses less-known results.

Let ∆ and s denote the area and semiperimeter of the triangle, respectively. By
Ravi’s substitution (a = y + z, b = z + x, c = x + y, with x, y, z > 0), we have
x+ y+ z = 1

2 (a+ b+ c) so x = 1
2 (b+ c− a) = s− a, y = 1

2 (c+ a− b) = s− b, and
z = 1

2 (a+ b− c) = s− c. Then

r

R
=

4(rs)2

4Rrs2
=

4∆2

abcs
=

4s(s− a)(s− b)(s− c)
abcs

=
4xyz

abc
,

so the given inequality is equivalent to

y + z

2x+ y + z
+

z + x

x+ 2y + z
+

x+ y

x+ y + 2z
+

4xyz

(x+ y)(y + z)(z + x)
≤ 2. (1)

Let L denote the expression on the left hand side of (1). By the Engel’s form (or
Titu’s lemma) of the Cauchy-Schwarz Inequality, we have

y + z

2x+ y + z
=

1

y + z

(y + z)2

(x+ y) + (x+ z)

≤ 1

y + z

Å
y2

x+ y
+

z2

x+ z

ã
=
x(y2 + z2) + yz(y + z)

(x+ y)(y + z)(z + x)
.

It follows that

L ≤ 2(x2y + xy2 + y2z + yz2 + z2x+ zx2 + 2xyz)

(x+ y)(y + z)(z + x)
= 2,

so (1) holds and the proof is complete.
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4213. Proposed by Oai Thanh Dao and Leonard Giugiuc.

Let ABC be a triangle with no angle more than 120◦ and let I be its incentre.
Consider points D ∈ AI, E ∈ BI and F ∈ CI such that

AD =

Å
s− a− r√

3

ã
cos

A

2
,

BE =

Å
s− b− r√

3

ã
cos

B

2
,

CF =

Å
s− c− r√

3

ã
cos

C

2
,

where a, b and c are sides opposite of angles A, B and C, respectively, s is the
semiperimeter and r is the inradius of ABC. Prove that triangle DEF is equila-
teral.

The definitions of AD,BE,CF that appeared in the published statement of the
problem incorrectly had angles A

3 ,
B
3 ,

C
3 instead of A

2 ,
B
2 , and C

2 . Two of the
submissions made the correction and, like the proposers, supplied a complete solu-
tion. A fourth correspondent noted the error and provided a counterexample. We
present the solution by C.R. Pranesachar.

Because each of the angles A,B,C is less than 120◦,

s− a =
r

tan A
2

>
r√
3
.

From AI = r/sin A
2 we obtain

ID = AI −AD =
r

sin A
2

−
Ç

r

tan A
2

− r√
3

å
cos

A

2

=
r

sin A
2

Å
1− cos2

A

2

ã
+

r√
3

cos
A

2

=
2r√

3

Ç√
3

2
sin

A

2
+

1

2
cos

A

2

å
=

2r√
3

sin

Å
A

2
+
π

6

ã
,

with similar expressions for IE and IF . We may take r =
√
3
2 for the sake of

convenience. Since ∠EIF = π
2 + A

2 , we get by the Cosine Rule that

EF 2 = sin2

Å
B

2
+
π

6

ã
+ sin2

Å
C

2
+
π

6

ã
+ 2 sin

Å
B

2
+
π

6

ã
sin

Å
C

2
+
π

6

ã
sin

A

2
.

Similarly

FD2 = sin2

Å
C

2
+
π

6

ã
+ sin2

Å
A

2
+
π

6

ã
+ 2 sin

Å
C

2
+
π

6

ã
sin

Å
A

2
+
π

6

ã
sin

B

2
.
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Hence,

FD2 − EF 2

= sin2

Å
A

2
+
π

6

ã
− sin2

Å
B

2
+
π

6

ã
+ 2 sin

Å
C

2
+
π

6

ã
·
Å

sin

Å
A

2
+
π

6

ã
sin

B

2
− sin

Å
B

2
+
π

6

ã
sin

A

2

ã
=

1− cos
(
A+ π

3

)
2

−
1− cos

(
B + π

3

)
2

+ 2 sin

Å
C

2
+
π

6

ã
·
ñÇ√

3

2
sin

A

2
+

1

2
cos

A

2

å
sin

B

2
−
Ç√

3

2
sin

B

2
+

1

2
cos

B

2

å
sin

A

2

ô
= sin

Å
A+B

2
+
π

3

ã
· sin
Å
A−B

2

ã
+ 2 sin

Å
C

2
+
π

6

ã
·
Å

1

2
cos

A

2
sin

B

2
− 1

2
sin

A

2
cos

B

2

ã
= sin

Å
A−B

2

ã
·
Å

sin

Å
π

2
− C

2
+
π

3

ã
− sin

Å
C

2
+
π

6

ãã
= sin

Å
A−B

2

ã
·
Å

sin

Å
C

2
+
π

6

ã
− sin

Å
C

2
+
π

6

ãã
= 0.

Thus FD2 = EF 2 and, analogously, EF 2 = DE2. Consequently, FD = EF =
DE, and the triangle DEF is equilateral, as desired.

Alternatively, one can directly obtain the common value for the squares of the
sides, namely,

DE2 = EF 2 = FD2 =
r2

3
(3 + cosA+ cosB + cosC +

√
3(sinA+ sinB + sinC)).

4214. Proposed by Leonard Giugiuc and Daniel Sitaru.

Let ABC be a triangle with every angle bigger than π
6 . Find min(cosA cosB cosC).

We received 9 submissions all of which were correct. However, as pointed out by 5
of these solvers, the minimum value to be found actually does not exist unless the
condition that “all angles are bigger than π/6” is replaced by “all angles are bigger
than or equal to π/6.” Otherwise, the value we find is inf(cosA cosB cosC). It is
unclear whether the proposers were aware of this subtlety. We present the solution
by Roy Barbara.

Let P = cosA cosB cosC. We prove that under the revised assumption that all
angles are at least π/6, minimum(P ) = −3/8. Without loss of generality, we may
assume that π/6 ≤ C ≤ B ≤ A. If A ≤ π/2, then P ≥ 0 > −3/8, so we can
assume that A > π/2. Then clearly

π/6 ≤ C ≤ B < π/2 < A ≤ 2π/3,
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so
−1/2 ≤ cosA < 0 < cosB ≤ cosC ≤

√
3/2.

In particular, | cosA| ≤ 1/2. Hence

0 < | cosA| cosB cosC ≤ 1

2

Ç√
3

2

å2

=
3

8

whence
P = cosA cosB cosC = −| cosA| cosB cosC ≥ −3/8,

with equality if and only if A = 2π/3 and B = C = π/6.

4215. Proposed by Gheorghe Alexe and George-Florin Serban.

Find positive natural numbers a, b and c such that

a+ 1

b
,

b+ 1

c
and

c+ 1

a

are all natural numbers.

We received 25 solutions, of which 24 were correct and complete. We present 2
solutions.

Solution 1, by Joseph DiMuro.

First, assume that two of a, b, and c are equal ; without loss of generality, assume
a = b. Then a+1

b = 1 + 1
b is an integer only if a = b = 1 ; if that is true, then

b+1
c = 2

c is an integer only if c = 1 or 2. This gives us two solutions : (a, b, c) =
(1, 1, 1) or (1, 1, 2).

Now, assume that a, b, and c are all distinct ; without loss of generality, assume a
is the smallest. For a+1

b to be an integer, we must have a+ 1 ≥ b ; since a < b, we
must have a + 1 = b. The second fraction is then a+2

c ; for that to be an integer,
we must have a + 2 ≥ c. Since a < c, we must have c = a + 1 or c = a + 2. If
c = a+ 1, then a+2

c = 1 + 1
c ; this will not be an integer, since c > 1. So we must

have c = a+ 2. The third fraction is then c+1
a = 1 + 3

a , which is an integer if and
only if a = 1 or 3. This gives us two solutions : (a, b, c) = (1, 2, 3) or (3, 4, 5).

Therefore, (a, b, c) must be a cyclic permutation of one of the following ordered
triples : (1, 1, 1), (1, 1, 2), (1, 2, 3), or (3, 4, 5).

Solution 2, by Michel Bataille.

We show that the solutions for (a, b, c) are

(1, 2, 3), (3, 1, 2), (2, 3, 1), (3, 4, 5), (5, 3, 4), (4, 5, 3), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1).

It is easily checked that each of these ten triples is a solution. Conversely, let
(a, b, c) be any solution. Then,

a+ 1 = bu, b+ 1 = cv, c+ 1 = aw (1)
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for some positive integers u, v, w. By addition, we obtain a+b+c+3 = aw+bu+cv,
hence 3 = a(w − 1) + b(u − 1) + c(v − 1). Since a(w − 1), b(u − 1), c(v − 1) are
nonnegative integers, we are led to distinguish three cases.

(i) If one of a(w−1), b(u−1), c(v−1) is equal to 3, the other two being equal to 0.
For example, if a(w−1) = 3, b(u−1) = c(v−1) = 0, we must have u = v = 1
and (w = 2, a = 3 or w = 4, a = 1) so that (a, b, c) = (3, 4, 5) or (a, b, c) =
(1, 2, 3) (using (1)). Taking b(u − 1) = 3 instead gives (a, b, c) = (5, 3, 4) or
(a, b, c) = (3, 1, 2) and taking c(v − 1) = 3 leads to (a, b, c) = (4, 5, 3) or
(a, b, c) = (2, 3, 1).

(ii) If a(w − 1), b(u − 1), c(v − 1) are 0, 1, 2 in some order, suppose for example
that a(w−1) = 0 so that w = 1 and a = c+1. In the case when b(u−1) = 1,
we obtain b = 1, u = 2 and from (1), a = 1 which yields the contradiction
c = 0. In the case when c(v − 1) = 1, then c = 1, v = 2 and (1) gives b = 1
and a = 2 and (a, b, c) = (2, 1, 1). We similarly obtain (a, b, c) = (1, 2, 1) if
b(u− 1) = 0 and (a, b, c) = (1, 1, 2) if c(v − 1) = 0.

(iii) If a(w − 1) = b(u− 1) = c(v − 1) = 1, then clearly (a, b, c) = (1, 1, 1).

Editor’s Comments. Many other solutions used the following approach. Since the
three given numbers must be natural, then b ≤ a + 1, c ≤ b + 1 and a ≤ c + 1,
which gives c− 1 ≤ b ≤ a+ 1 ≤ c+ 2, so a ∈ {c− 2, c− 1, c, c+ 1}. Now, using a
case by case analysis you can find all the solutions (the proof is left to the reader).

4216. Proposed by Mihaela Berindeanu.

Let ABC be an acute triangle with orthocenter H and circumcircle Γ . Let AH ∩
BC = {E} , AH ∩ Γ = {A,D}, the bisector of angle A cuts BC in F and Γ in
G, EG∩ Γ = {G,S}, SF ∩ Γ = {S,M}. If X is the midpoint of AM , prove that
−−→
AH =

−−→
XB +

−−→
XC.

We received eight submissions, all correct, and feature the solution by Steven Chow.
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We shall see that the restriction to acute triangles can be dropped : The result
holds for an arbitrary ∆ABC. Directed angles are used (mod π).

From the Secant-Secant Angle Theorem,

]SEF = ]SAB + ]GAC = ]SAB + ]BAG = ]SAF.

Consequently, AFES is cyclic and

]ASM = ]ASF = ]AEF =
π

2
.

From Thales Theorem, this implies that AM is a diameter of Γ, so X is the circum-
centre of 4ABC. Because H is the orthocentre of 4ABC, it follows immediately

that
−−→
XH =

−−→
XA+

−−→
XB +

−−→
XC. Therefore

−−→
AH =

−−→
XB +

−−→
XC.

4217. Proposed by Dan Stefan Marinescu and Leonard Giugiuc.

Let n ≥ 3 and consider a cyclic convex polygon A0A1 . . . An−1 in which the cir-
cumcenter O coincides with the center of gravity. Let M and N be two distinct
points such that O lies on the line segment MN and ON = (n − 1)OM . Prove
that

n−1∑
k=0

MAk ≤
n−1∑
k=0

NAk.

We received one incorrect solution. We present the solution of the proposers.

[Ed. : To clarify, the center of gravity in the question is the center of gravity of
the vertices of the polygon, not the center of gravity of the polygon as a lamina.]

Without loss of generality we may assume that the circumcenter O is the origin
of the convex plane and that all the vertices Ak = zk ∈ C lie on the unit circle.
By the condition that O is also the center of gravity, we have

∑n−1
k=0 zk = 0 and

thus also
∑n−1
k=0 zk = 0 for the sum of the complex conjugates. We set M = −z

and N = (n− 1)z for some complex number z.

Since |zk| = 1, we have MAk = |zk + z| = |zk + z||zk| = |1 + zzk| and similarly
NAk = |zk − (n− 1)z| = |1− (n− 1)zzk|.

Furthermore for any k,

|1+zzk| =
∣∣∣∣∣1−z n−1∑

m=0
m 6=k

zk

∣∣∣∣∣ =
1

n− 1

∣∣∣∣∣ n−1∑
m=0
m 6=k

(1−(n−1)zzm)

∣∣∣∣∣ ≤ 1

n− 1

n−1∑
m=0
m6=k

|1−(n−1)zzm|.

In conclusion,

n−1∑
k=0

MAk =
n−1∑
k=0

|1 + zzk| ≤
n−1∑
k=0

1

n− 1

n−1∑
m=0
m6=k

|1− (n− 1)zzm|

=
n−1∑
k=0

|1− (n− 1)zzk| =
n−1∑
k=0

NAk.
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4218. Proposed by Daniel Sitaru.

Prove that for all a, b, c ∈ (0,∞) and any natural number n ≥ 3, we have

1

n
n
√
a+ b+ c ≥ 3 3

√
abc

(a+ b+ c)n−1 + n− 1
.

We received 14 solutions, out of which we present the one by Dan Daniel, slightly
modified by the editor.

By the Arithmetic Mean - Geometric Mean (AM-GM) inequality, we have a+ b+
c ≥ 3 3

√
abc ; hence, it is sufficient to prove that

n
√
a+ b+ c

n
≥ a+ b+ c

(a+ b+ c)n−1 + n− 1
. (1)

Applying the AM-GM inequality again to the n numbers (a + b + c)n−1, 1, . . . , 1
(where there are n− 1 ones in the list),

(a+ b+ c)n−1 + (n− 1)

n
≥ n

»
(a+ b+ c)n−1 · 1n−1 =

a+ b+ c
n
√
a+ b+ c

⇔
n
√
a+ b+ c

n
≥ a+ b+ c

(a+ b+ c)n−1 + n− 1
;

that is, (1) holds. From the two applications of AM-GM it follows easily that, in
the given inequality, equality holds if and only if a = b = c = 1

3 .

4219. Proposed by Nguyen Viet Hung.

Let a, b, c and d be distinct positive integers such that

a

a+ b
+

b

b+ c
+

c

c+ d
+

d

d+ a

is a integer. Prove that a+ b+ c+ d is not prime.

We received twelve correct solutions of varying complexity. We present the solution
of the proposer.

Denote the displayed quantity by m. Then

m <
a+ c+ d

a+ b+ c+ d
+

b+ d+ a

b+ c+ d+ a
+

c+ a+ b

c+ d+ a+ b
+

d+ b+ c

d+ a+ b+ c
= 3

and

m >
a

a+ b+ c+ d
+

b

b+ c+ d+ a
+

c

c+ d+ a+ b
+

d

d+ a+ b+ c
= 1,

whence m = 2.
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Since

m =
a

a+ b
+

Å
1− c

b+ c

ã
+

c

c+ d
+

Å
1− a

d+ a

ã
,

it follows that

0 = a

Å
1

a+ b
− 1

d+ a

ã
+ c

Å
1

c+ d
− 1

b+ c

ã
=

(b− d)(a− c)(ac− bd)

(a+ b)(b+ c)(c+ d)(d+ a)
.

Hence ac = bd, and so

a(a+ b+ c+ d) = a2 + ab+ bd+ ad = (a+ b)(a+ d).

If a + b + c + d were prime, it would have to divide one of the smaller positive
numbers a+ b and a+ d. Since this cannot be, the sum is composite.

Editor’s comment. Observe that, if ac = bd, then

m =
a

a+ b
+

b

b+ c
+

ac

ac+ ad
+

bd

bd+ ab

=
a

a+ b
+

b

b+ c
+

bd

bd+ ad
+

ac

ac+ ab

=
a

a+ b
+

b

b+ c
+

b

a+ b
+

c

b+ c
= 2,

so that the condition ac = bd suffices for m = 2 and there are lots of examples. If
we relax the condition that a, b, c, d are distinct, then ac = bd may fail and m = 2
whenever any three are equal, a = c or b = d, separately.

4220. Proposed by Leonard Giugiuc, Daniel Sitaru and Hung Nguyen Viet.

Let s and r be real numbers with 0 < r < s and let a, b, c ∈ [s − r, s + r] be real
numbers such that a+ b+ c = 3s. Prove that

ab+ bc+ ca ≥ 3s2 − r2 and abc ≥ s3 − sr2.

We received 11 correct solutions. We present the solution by Nghia Doan.

Let x = a − s + r, y = b − s + r, and z = c − s + r. Then 0 ≤ x, y, z ≤ 2r and
x+ y + z = 3r. We have∑

ab =
∑

(x+ s− r)(y + s− r)

=
∑

[xy + (x+ y)(s− r) + (s− r)2]

=
∑

xy + 2(s− r) ·
∑

x+ 3(s− r)2

=
∑

xy + 6r(s− r) + 3(s− r)2

=
∑

xy + 3s2 − 3r2.
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We can assume x ≥ y ≥ z. Then

r ≤ x ≤ 2r ⇒
Å
x− 3r

2

ã2
≤ r2

4
.

so that

xy + yz + zx = x(3r − x) + yz ≥ x(3r − x) =
9

4
r2 −

Å
x− 3r

2

ã2
≥ 2r2.

Thus ∑
ab ≥ 3s2 − r2.

For the second inequality, we have

abc = (x+ s− r)(y + s− r)(z + s− r)
= xyz + (s− r)(xy + yz + zx) + (s− r)2(x+ y + z) + (s− r)3

= xyz + (s− r)(xy + yz + zx) + 3r(s− r)2 + (s− r)3

≥ xyz + 2r2(s− r) + 3r(s− r)2 + (s− r)3

= xyz + 2r2s− 2r3 + 3rs2 − 6r2s+ 3r3 + s3 − 3rs2 + 3r2s− r3

= xyz + s3 − sr2

≥ s3 − sr2.
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A Taste Of Mathematics
Aime-T-On les Mathématiques

ATOM

ATOM Volume XVI : Recurrence Relations

by Iliya Bluskov

ATOM Volume XV : Géométrie plane, avec des nombres
par Michel Bataille

ATOM Volume XIV : Sequences and Series
by Margo Kondratieva with Justin Rowsell

ATOM Volume XIII : Quadratics and Complex Numbers
by Edward J. Barbeau

ATOM Volume XII : Transformational Geometry
by Edward J. Barbeau

ATOM Volume XI : Problems for Junior Mathematics Leagues
by Bruce L.R. Shawyer & Bruce B. Watson

ATOM Volume X : Modular Arithmetic
by Naoki Sato

ATOM Volume IX : The CAUT Problems
by Edward J. Barbeau

ATOM Volume VIII : Problems for Mathematics Leagues III
by Peter I. Booth, John McLoughlin and Bruce L.R. Shawyer

ATOM Volume VII : Problems of the Week
by Jim Totten

ATOM Volume VI : More Problems for Mathematics Leagues
by Peter I. Booth, John McLoughlin and Bruce L.R. Shawyer

ATOM Volume V : Combinatorial Explorations
by Richard Hoshino and John McLoughlin

ATOM Volume IV : Inequalities
by Edward J. Barbeau and Bruce L.R. Shawyer

ATOM Volume III : Problems for Mathematics Leagues
by Peter I. Booth, John McLoughlin and Bruce L.R. Shawyer

ATOM Volume II : Algebra Intermediate Methods
by Bruce L.R. Shawyer

ATOM Volume I : Mathematical Olympiads’ Correspondence Program
(1995-96) by Edward J. Barbeau

To order the booklets, visit the ATOM page on the CMS website :
http://cms.math.ca/Publications/Books/atom
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FROM THE ARCHIVES
Did you know that Crux volumes before volume 39 are open to the public ? You
can find these archived materials at https: // cms. math. ca/ crux/ . Let’s take a
look at some problems proposed 30 years ago.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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