

April, 1978.

MINABILLITY STUDY
HAT CREEK PROJECT
B. C. HYDRO AND POWER AUTHORITY

MINeral TEChnology Specialists

April, 1978.

MINABILITY STUDY -- HAT CREEK PROJECT BRITISH COLUMBIA HYDRO \& POWER AUTHORITY

TABLE OF CONTENTS

1.0 Introduction

2.0 Summary
3. 0 Conclusions \& Recommendations
4. 0 Drill Hole Data
4. 1 Drill Hole Data Received
4.2 Data Entry
4.3 Data Checks
4.4 Missing Intervals
4.5 Unused or 'commented' data
4. 6 Geologic Zone Codes
4. 7 Specific Gravity Calculations
4.8 Seam Intersection Angles
4. 9 Calculation of True Thickness
5.0 Statistical Summaries of Drill Hole Data
5.1 Frequency Distribution
5. 2 Correlation between \% Ash and BTU's
6. 0 Compositing CMJV Zones
6.1 Calculation Procedures
6.2 Summary of CMJV Composites
6.3 Effect of True Thickness
7. 0 Compositing Based upon Minability
7.1 Calculation Procedures
7.2 Summary of Results
7.3 Dilution

MINTEC, INC.

1.0 INTRODUCTION

The purpose of this study is to examine the distribution of waste within the CMJV ${ }^{(1)}$ zones used in the MEPS ${ }^{(2)}$ model of the Hat Creek deposit of B. C. Hydro. This study was made at the request of B. C. Hydro and Power Authority.

The zones within the CMJV and MEPS model assume that the material within each zone will be mined as a unit. This method assumes internal waste within an ore zone is mined with the ore and will therefore dilute the average grade measured in BTU's. If the average grade, including internal dilution, of a zone is above the cutoff, the effect is to increase the tons and decrease the grade overall. If the average grade after dilution is below the cutoff, the overall tonnage is reduced and the grade increased.

Based upon assumptions for the degree of selectivity obtainable in mining, the effect on overall reserves of internal dilution can be measured if each drill hole intersection with a zone is assumed to have an equal area of influence. The coal tonnage is therefore assumed directly proportional to the total length of all coal intersections so the comparison can be based upon total intersection length.

The basis for mining selectivity is the grade as measured in BTU's. The mining selectivity is defined by the minimum waste thickness which can be selectively mined within a coal zone and discarded, and the minimum coal thickness which can be mined within waste zones.
(1)

CMJV -- Cominco-Monenco Joint Venture
(2)

MEPS -- A Computerized System used by CMJV
2.0 SUMMARY

The basic purpose of this study was to determine the difference to be expected between using the CMJV zones as minable units or assuming internal waste within the zones can be selectively mined.

Numerous computer runs were made examining various combinations of cutoff grades and mining thickness, however the results can be best described by comparing two runs using the assumptions below and based upon the true thickness and the CMJV good data for drilling in 1976 through 1978.

CMJV - the CMJV work is represented by compositing all intervals within each zone and summarizing the results with a 4000 BTU cutoff.

MIN- the removal of internal waste is represented by the ABLE compositing of zones by removing waste above .5 meters in thickness, and applying a 4000 BTU cutoff and . 5 meter minimum thickness to coal.

These runs are compared below.

	CMJV	MINABLE
Zone A	$\begin{aligned} & 3065 \mathrm{~m} \\ & 5544 \mathrm{BTU} \end{aligned}$	$\begin{aligned} & 2703 \mathrm{~m} \\ & 6843 \mathrm{BTU} \end{aligned}$
Zone B	$\begin{aligned} & 1892 \mathrm{~m} \\ & 7238 \mathrm{BTU} \end{aligned}$	$\begin{aligned} & 1815 \mathrm{~m} \\ & 7529 \cdot \mathrm{BTU} \end{aligned}$
Zone C	$\begin{aligned} & 1351 \mathrm{~m} \\ & 6291 \mathrm{BTU} \end{aligned}$	$\begin{aligned} & 1398 \mathrm{~m} \\ & 6551 \mathrm{BTU} \end{aligned}$
Zone D	$\begin{aligned} & 4546 \mathrm{~m} \\ & 9092 \mathrm{BTU} \end{aligned}$	$\begin{aligned} & 4532 \mathrm{~m} \\ & 9126 \mathrm{BTU} \end{aligned}$
TOTAL	$\begin{aligned} & 10854 \mathrm{~m} \\ & 7350 \mathrm{BTU} \end{aligned}$	$\begin{aligned} & 10448 \mathrm{~m} \\ & 7875 \mathrm{BTU} \end{aligned}$

The obvious results are an improvement in grade within each zone. The effect on the A zone is most significant.

Additional dilution will result at each ore/waste intersection in both cases and is not included in this summary.

MINTEC, INC.
3.0 CONCLUSIONS AND RECOMMENDATIONS

The results of this study show that removing internal waste of .5 meters or greater from the CMJV zones will significantly increase the BTU grade of the reserves above a 4000 BTU cutoff grade, especially in the A Zone.

These results are based upon a degree of selectivity which it may not be possible to achieve in mining. However the importance of selectivity in mining is indicated by these results and therefore the reserve calculations and mine planning methods should allow variation in the assumptions regarding selectivity and dilution.

The method of dividing the deposit into zones is adequate to define the geometry, however the procedure of mining each zone as a single unit does not allow the flexibility required for mine planning, especially in the A Zone which will be mined in the early years. Within each zone the coal thickness, quality parameters, and waste thickness should be defined.

4.0 DRILL HOLE DATA

The drill hole data is the basis for all computations, so it must be checked with extreme care. Appendices 1.1 and 1.2
${ }^{8}$ contain the data lists of the collar locations and assay data.
4.1 Drill Hole Data Received

Data for 141 drill holes was received on magnetic tape.

The survey data for each hole included:

> east coordinate of collar
north coordinate of collar
elevation coordinate of collar
average azimuth
average dip
depth of overburden
length of hole
For each sample interval the data included:
depth from collar to beginning of interval
depth from collar to end of interval
zone code
\% moisture
\% ash
\% volatiles
BTU's
\% sulfur

Down the hole survey data was not received for the holes and while it may not alter the results, it should be used since it most accurately locates the zone intersections.

Additional holes are within and on the fringe of the pit area, however they are not included in the data for various reasons inticated by CMJV.

4.2 Data Entry

The drill hole data was reformatted and loaded into the MEDS data files. Several syntax errors in the commented data were found and corrected.

The information for each sample interval is described in Table 4. 1. Items $1--9,15$ and 16 are entered from the data received and the remaining items are computed or entered separately.

In entering the data several minor errors in depths were found and corrected.

4.3 Data Checks

The data was checked for gross errors in analyses by printing separate lists of all intervals with values outside the range specified for each value. These limits were:

	Minimum	Maximum
$\%$		
$\%$ moisture	10.	30.
$\%$ ash	15.	90.
$\%$ volatile	20.	40.
BTU's	0.	12000.
$\%$ sulfur	0.	1.
Specific gravity	1.25	2.20

Data outside these limits were examined and corrections made if necessary.

The drill hole collar locations were plotted and compared to a map received. The coordinates for hole 260 were incorrect in the data file and corrected. Numerous holes on the map received were not found in the data received. The majority of these missing holes were on the periphery of the main data with the exception of holes 195 and 234 which are located in the center of the deposit.

Unused or 'commented' data

4.6

Missing Intervals
Within the data there are two possible ways of handling missing data. If the interval was not sampled because the coal quality was too low to be of interest, a zero can be assumed, but if the missing interval type is unknown, -1 can be used to indicate nothing is known about the interval and no value is assigned for compositing. The former method was used.
Certain data intervals received were preceded by a code of ' c ' which apparently indicates the data was not used in the CMJV studies. This code was retained by adding a code to each sample interval (LOC) for which a 0 indicates the data is used and a 1 indicates that it was commented out. This procedure enables the analysis of data to be performedwith and without the commented data.

Geologic Zone Codes

The zones assigned by CMJV are: A11, A12, A13, A14, A21, B11, B12, C11, C21, C22, D11, D12, D13 and D14. Additional codes found were A?, A1?, ?, ? ? ?, and W.

4.6 Geologic Zone Codes (Cont'd)....

Additional codes were added to define the overburden and waste rock above the first coal zone. These codes were represented in the data files by numeric codes:

```
A11 = 111, A12 = 112, A13 = 113, A14 = 114, A21 = 121,
```

$\mathrm{B} 11=211, \mathrm{~B} 12=212, \mathrm{C} 11=311, \mathrm{C} 21=321, \mathrm{C} 22=322$,
$D 11=411, D 12=412, D 13=413, D 14=414$,
overburden $=800$,
waste rock above 1 st coal $=650$,

```
A? = 900, A1? = 901,
W = 600
```


4.7 Specific Gravity Calculations

A relationship between specific gravity and ash content was received for a sub zone within each major zone, and was used for the entire zone.

A zone:specific gravity $=1.177+\%$ ash x .0083
B zone: " " $"=1.187+\%$ ash $x .0094$
C zone: $" \quad n=1.109+\%$ ash x .0113
Dzone: " $" \quad=1.191+\%$ ash $x .0113$
Other: $\quad=1.170+\%$ ash $\times .0096$
The specific gravity for each interval was computed using the above equations.

4.7 Specific Gravity Calculations (Cont'd)....

Since the specific gravity decreases as the BTU's increase,
 the specific gravities would tend to over estimate the BTU's.

4. 8 Zone Intersection Angles

Figure 4.1 illustrates the effect of drill holes intersecting the coal zones at various angles. Drill hole intensections used to measure zone thickness are misleading if the angle of intersection is not perpendicular to the zone.

Although the exact angle of intersection is not possible to measure, the inclination at the top of the zones in the section at each intersection can be estimated from the cross sections provided by B. C. Hydro containing the CMJV zones.

Mr. Simon Handelsman of B. C. Hydro manually measured the seam dips at the top of each zone. From the zone codes on the assay data received, these zone dip angles were directly related to the depths down each hole. Using these dip angles the average dip angle for each sample interval was linearly interpolated.

The sign convention used for the dip angles was to assign a negative sign for a dip to the east and positive sign for a dip to the west.

MINTEC, INC.

4.9 Calculation of True Thickness

Using the dip angle of each hole projected into the section and the dip angle of each zone, the true thickness of each zone intersection can be computed. The angle between the drill hole and the perpendicular to the zone was computed using the * zone dip and the drill hole dip. Using this angle and the intersection length the true thickness was computed.

Item \#	Description
1	Drill Hole Number
$\therefore 2$	From
3	To
4	Interval length
5	\% moisture
6	\% ash
7	\% volatiles
8	BTU's
9	\% sulfur
10	Specific gravity
11	Vertical thickness
12	True thickness
13	Zone dip at intersection
14	Fixed carbon calculated (100% - items $(5+6+7)$)
15	CMJV zone code
16	Use code $0=$ good data, $=1$ commented
17	Unused

5.0 STATISTICAL SUMMARIES OF DRILL HO LE DATA

In order to further test the drill hole data, statistical analyses were run on each parameter and the correlation between ash content and BTU's was examined.
5.1 Frequency Distribution

Frequency distributions were examined for BTU's, \% moisture, \% ash, \% sulfur, \% volatiles and intersection thickness. Appendix 2 contains these results. These distributions were examined for obvious errors. Table 5.1 is the distribution of BTU's for the assay interval data.
5.2 Correlation between \% Ash and BTU'S

Since there is correlation between $\%$ ash and BTU's; a check on the data can be made by comparing these values in a manner similar to a scatter diagram. Appendix 2 contains this comparison.

MINTEC, INC.

TABLE 5.1 - Assay Interval BTU Value Frequency Distribution - Weighted by True Thickness and Specific Gravity

NOTES:
1.

This run includes only the good data within the zones in the drilling during 76, 77 and 78.
2. Under the heading TOTAL is the product of true thickness times specific gravity.
3. The BTU value is in hundreds.
4. EFTK is the true thickness
M401VI STATISTTCAL ANALYSIS DF ASSAY dATA
ASSAY (GOOD, 76/77/78) WEIGHTED KY THUF THK \& S.G.
C. hydRU and power autinety HAT CEREK PROJECT DISTRIBUTIUN TYPE $=1$ NOKM

assay interval	FRFO'.	total	PCT.	GRADE	DEV.	Grade-ci	GRADE+CI	1 H
$0.000-5.000$	16^{\prime}.	17919.	100.00	$\begin{array}{r} 71.522 \\ 4.700 \end{array}$	$\begin{array}{r} 25.195 \\ 2.247 \end{array}$	$\begin{array}{r} 71.153 \\ 4.607 \end{array}$	$\begin{array}{r} 71.891 \\ 4.733 \end{array}$	$\begin{aligned} & \forall T U S \\ & E F T \end{aligned}$
$5.000-10.000$	37.	17903.	99.91	71.582	25.125	71.214	71.950	etus
				4.703	2.246	4.670	4.730	EFTY
$10.000-15.000$	194^{\prime}.	17867.	99.71	71.714	24.982	71.348	72.1081	ETUs
				4.710	2.243	4.677	4.743	FFTk
$15.000-20.000$	429°.	17672.	98.02	72.355	24.354	71.990	72.714	brus
				4.602	1.922	4.034	4.640	EFTK
$20.000-25.000$	400.	17243.	96.23	73.715	23.058	73.371	74.059	crus
				4.653	1.742	4.627	4.679	EFTK
$25.000-30.000$	344°.	16843.	93.99	74.930	21.924	74.599	75.261	bTUS
				4.680	1.731	4.654	4.700	EFTk
200-35.000	453.	16499.	92.07	75.924	21.03n	75.604	76.245	แTUS
-				4.705	1.728	4.679	4.732	E.FIK
35.000-40.000	633°.	16040.	89.55	77.151	19.996	76.842	77.460	bTus
				4.698	1.567	4.673	4.722	EFTK
40.000-45.000	586.	15413.	86.01	78.780	18.680	78.485	79.074	htus
				4.732	1.565	4.707	4.750	EFTX
$45.000=50.000$	787^{\prime}.	14828.	82.75	80.209	17.575	79.926	80.492	BTUS
				4.763	1.559	4.738	4.788	EFTK
$50.000-55.000$	849^{\prime}.	14040.	78.35	82.044	16.207	81.776	82.312	bTus
				4.805	1.558	4.779	4.831	EFTK
$55.000 \cdot 60.000$	887^{\prime}.	13191.	73.62	83.945	14.821	83.692	84.198	BTus
				4.835	1.556	4.809	4.862	EFTK
$60.000-65.000$	858^{\prime}.	12305.	08.67	85.846	13.475	85.608	86.084	HTuc
				4.868	1.508	4.840	4.895	EFTK
$65.000 \cdot 70.000$	987.	11447	63.88	87.599	12.286	87.374	47.824	yTus
				4.896	1.581	4.867	4.925	EFTK
$70.300=75.000$	1158^{\prime}.	10460.	58.37	89.496	11.105	89.283	89.709	ETUS
				4.948	1.590	4.918	4.979	6FIk
$5.000=80.000$	1412*.	9302.	51.91	41.632	9.858	91.431	91.832	mTus
				4.984	1.550	4.953	5.016	EFTK
$80.000-85.000$	$1431{ }^{\circ}$	7890.	44.03	94.169	8.472	93.982	94.350	BTUS

m401V1 statisttcal analysis of asbay data C. HYDFO AND POWER AUTHORITY . HAT CKEFK PRMUKCT
DISTRIBUTION TYPE $=1$ WOKM

ASSAY	Interval	FKFQ.	TOTAL	PCT.	Gkade,	IRFV.	grave-ci	GRADE+CI	Int
					5.033	1.570	4.998	5.008	EftK

$85.000=90.000$	$1384{ }^{\prime}$.	6459.	36.05	$\begin{array}{r} 96.720 \\ 5.111 \end{array}$	$\begin{aligned} & 7.154 \\ & 1.620 \end{aligned}$	$\begin{array}{r} 96.552 \\ 5.071 \end{array}$	$\begin{array}{r} 96.901 \\ 5.150 \end{array}$	$\begin{aligned} & \text { GTUS } \\ & \text { EFTK } \end{aligned}$
$90.000-95.000$	1573'.	5075.	28.32	$\begin{array}{r} 99.248 \\ 6.095 \end{array}$	$\begin{aligned} & 5.909 \\ & 1.288 \end{aligned}$	$\begin{array}{r} 99.085 \\ 5.000 \end{array}$	$\begin{array}{r} 99.411 \\ 5.131 \end{array}$	$\begin{aligned} & \text { ETUS } \\ & \text { EFTK } \end{aligned}$
$95.000-100.000$	1350.	3552.	19.82	$\begin{array}{r} 102.174 \\ 5.1093 \end{array}$	$\begin{aligned} & 4.530 \\ & 1.269 \end{aligned}$	$\begin{array}{r} 102.025 \\ 5.051 \end{array}$	$\begin{array}{r} 102.323 \\ 5.134 \end{array}$	$\begin{aligned} & \text { BTUS } \\ & \text { EFTK } \end{aligned}$
$00.000=10^{5.000}$	1143^{\prime}.	2202.	12.29	$\begin{array}{r} 105.037 \\ 5.024 \end{array}$	$\begin{aligned} & 3.199 \\ & 1.133 \end{aligned}$	$\begin{array}{r} 104.903 \\ 4.977 \end{array}$	$\begin{array}{r} 105.170 \\ 5.072 \end{array}$	$\begin{aligned} & \text { RTUS } \\ & \text { EFTK } \end{aligned}$
.05,000-110.000	838°.	1059.	5.91	$\begin{array}{r} 107.709 \\ 5.018 \end{array}$	$\begin{aligned} & 2.263 \\ & 1.162 \end{aligned}$	$\begin{array}{r} 107.572 \\ 4.948 \end{array}$	$\begin{array}{r} 107.845 \\ 5.088 \end{array}$	$\begin{aligned} & \text { HTUS } \\ & \text { EFTK } \end{aligned}$
.10.000-115.000	219*.	221.	1.23	$\begin{array}{r} 111.286 \\ 4.792 \end{array}$	$\begin{aligned} & 1.166 \\ & 1.304 \end{aligned}$	$\begin{array}{r} 111.131 \\ 4.619 \end{array}$	$\begin{array}{r} 111.441 \\ 4.965 \end{array}$	HTUS EFTK
$\cdots 00-120.000$	2.	2.	0.01	$\begin{array}{r} 117.931 \\ 1.578 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{array}{r} 117.931 \\ 1.578 \end{array}$	$\begin{array}{r} 117.931 \\ 1.578 \end{array}$	$\begin{aligned} & \text { ETUS } \\ & \text { EFTK } \end{aligned}$
. 20.000-125.000	0°.	-0.	-0.00	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { BTUS } \\ & \text { tFTK } \end{aligned}$			

6.0 COMPOSITING CMJV ZONES

From the information available, we assume that the method used by CMJV to compute reserves is based upon the minable unit being a.complete zone. This means that internal waste is not being discarded regardless of thickness within these zones if. the average for the zone is above the BTU cutoff grade.

In order to determine the effect of the inclusion of internal. waste, the CMJV zones were composited. Table 6.1 describes the composite results for each zone.

6.1 Calculation Procedures

The calculation procedures used to composite the zones was to weight the interval data within the zones by the true zone length and specific gravity. All good data within the zone is used.to compute the weighted average. Appendix 3 contains a list of the composited data. These results are based upon true thickness.

6.2 Summary of CMJV Composites

Table 6.2 summarizes the CMJV composites for a 0.0 BTU cutoff assuming each zone is mined as a unit.

Table 6.3 summarizes the CMJV composites for a 4000 BTU cutoff grade. These results are assumed to represent the CMJV method of compositing and are used as a basis for comparison with the minable composites computed in Section 7.

Table 6.4 is the frequency distribution of the BTU'S for the CMJV composites and shows the effect of variation of cutoff grade on the total intersection length and average BTU grade.
6.3 Effect on True Thickness

The effect of using intersection length, vertical thickness, or true thickness was examined and the results are in Tables 6.5 and 6.6. The use of true thickness versus intersection length or vertical thickness does not appear to affect the results.

MINTEC, INC.

Item \#	Description
1	Drill hole number
2	East coordinate of top of zone
3	North coordinate of top of zone
4	Elevation of top of zone
5	\% moisture
6	BTU's
7	\% sulfur
8	Specific gravity
9	Coal true thickness
10	Waste true thickness
11	Number of ore/waste inter face
12	Dip argle of zone
13	Zone code
14	

TABLE 6.2

COB1 * 'GOOD' RATA COMFOSITED EY CMJV ZONES *** 5 MFRTL 1978 ** WT= TRUE
MINIMLM GRADE ETU S
MINIMUM WASTE THICKNESS $=00.00$
MINIMUM COAL THICKNESS $=099.00$
$=0.00$

ZONE CMFS SMFL METERS S.G. MOISTURE $\%$ ASH \% VOL ETUS \% S W-THK 'O/W

OUED	106	90	3542.0	1.94	0.00	80.00	0.00	0	0.00	0.00	0
WST	101	40	1715.8	1.94	0.00	80.00	0.00	0	0.00	0.00	0
FLT	1	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
UKN	3	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0.
A11	23	183	691.5	1.56	10.44	48.39	13.05	5412	0.49	0.00 .1	0
A12	28	392	1308.9	1.57	7.98	48.68	10.70	5401	0.41	0.00	0
A13	28	176	599.7	1.59	8.01	51.50	11.36	5027	0.35	0.00	0
A14	30	333	1043.2	1.61	8.25	53.45	9.78	4740	0.40	0.00	0
A21	27	139	595.1	1.80	2.67	75.48	2.06	1044	0.10	0.00	0

A-A21	109	1084	3643.3	1.58	8.52	50.49	10.98	5149	0.41	0.00	0
A	136	1223	4238.4	1.61	7.61	54.41	9.58	4505	0.36	0.00	0
$B 11$	39	255	1014.8	1.53	11.47	38.08	14.61	7090	0.55	0.00	0
$B 12$	40	281	1016.9	1.56	10.55	41.51	13.99	6573	0.56	0.00	0
E	79	536	2031.7	1.55	11.01	39.82	14.30	5829	0.56	0.00	0

C11	38	144	803.6	1.90	4.38	71.80	3.52	1692	0.14	0.00	0
C21	38	218	844.4	1.73	7.95	57.64	8.59	3976	0.30	0.00	0
C22	45	274	1192.6	1.71	8.92	55.86	8.74	4222	0.24	0.00	0
c-C11	83	492	20.37 .0	1.72	8.51	56.60	8.67	4120	0.27	0.00	0
c	121	636	2840.6	1.77	7,26	61.22	7.11	3382	0.23	0.00	\bigcirc
111	50	265	1175.2	1.48	12.93	31.71	15.84	8056	0.28	0.00	0
112	56	244	1125.5	1.41	13.35	24.69	19.40	9130	0.24	0.00	0
113	61	215	1024.4	1.38	13.88	21.15	19.97	9683	0.30	0.00	0
014	69	281	1263.9	1.41	13.95	23.79	21.37	9361	0.36	0.00	0
\square	236	1005	4588.0	1.42	13.52	25.54	19.11	9027	0.30	0.00	0
ALL	572	3400	13698.7	1.57	9.81	45. 12	12.58	5952	0.34	0.00	0
A/A?	1	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0,00	0
A1?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A-A21	110	1084	3643.3	1.58	8.52	50.49	10.98	5149	0.41	0.00	0
ALL A	137	1223	4238.4	1.61	7.61	54.41	9.58	4505	0.36	0.00	0
$\begin{aligned} & \text { ORE } \\ & A L L \end{aligned}$	508 573	3117 3400	$\begin{aligned} & 12300.0 \\ & 13698.7 \end{aligned}$	1.54 1.57	$\begin{array}{r} 10.55 \\ 9.81 \end{array}$	41.25 45.12	13.91 12.58	$\begin{aligned} & 6574 \\ & 5952 \end{aligned}$	0.37 0.34	0.00 0.00	0

TABLL.

MINIMUM GFAIEE BTU S
MINIMUM WASTE THICKNESS
$=9000.00$
MINIMUM COAL THICKNESS

ZONE CMF'S SMPL METERS S.G. MOISTURE \% ASH \% VOL ETUS \% S W-THK \quad O/W

OUED	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
WST	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
FLT	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
UKN	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A11	16	168	627.7	1.55	11.58	46.92	14.49	5554	0.49	0.00	0
A12	22	374	1240.7	1.56	9.44	48.10	1.1.32	5511	0.43	0.00	0
A13	20	136	462.9	1.56	10.36	43.04	14.97	5597	0.39	0.00	0
A14	19	257	733.7	1.57	9.86	49.22	11.75	5474	0.49	0.00	0
A21.	0	\bigcirc	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A-A21	77	935	3065.0	1.56	9.71	48.12	12.62	5544	0.45	0.00	0
A	77	935	3065.0	1.56	9.71	48.12	12.62	5544	0.45	0.00	0
B11	32	235	951.8	1.51	11.32	35.59	14.83	7472	0.58	0.00	0
B12	34	257	940.2	1.54	10.31	38.70	14.39	7005	0.58	0.00	0

B	66	492	1892.0	1.53	10.81	37.15	14.61	7238	0.58	0.00	0
011	13	48	165.5	1.59	9.85	44.14	9.54	6175	0.43	0.00	0
C21	22	130	484.8	1.59	10.76	43.48	11.63	6220	0.45	0.00	0
C22	30	164	701.0	1.57	11.75	42.24	11.99	6368	0.37	0.00	0
C-C11	52	294	1185.8	1.58	11.34	42.75	11.84	6307	0.40	0.00	0
c	65	342	1351.3	1.58	11.16	42.92	11.5 ${ }^{\text {a }}$	6291	0.41	0.00	0
D11	47	260	1156.7	1.47	12.95	31.04	15.81	8157	0.28	0.00	0
112	54	237	1101.9	1.41	13,31	23.75	19.25	9273	0.25	0.00	0
D13	60	215	1024.4	1.38	13.88	21.15	19.97	9583	0.30	0.00	0
D14	66	281	1262.9	-1.41	13.95	23.79	21.37	9361	0.36	0.00	0
B	227	993	4545.9	1.42	13.52	25.12	19.08	9092	0.30	0.00	0
ALL	435	2762	10854.1	1.50	11.61	34.36	15,40	7350	0.41	0.00	0
A/A?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A1?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A-A2I	77	935	3065.0	1.56	9.71	48.12	12.62	5544	0.45	0.00	0
ALL A	77	935	3065.0	1.56	9.71	49.12	12.62	5544	0.45	0.00	0
ORE	422	2714	10688.6	1.30	11.64	36.24	15.49	7370	0.41	0.00	0
ALL	435	2762	10854.1	1.50	11.61	36.36	15.40	7350	0.41	0.00	0

TABLE 6.4 -- Frequency Distribution of BTU for CMJV Composites weighted by True Thickness and Specific Gravity.

NOTES:

1. This run includes only the good data within the zones in the drilling during 76,77 and 78.
2.- Under the heading TOTAL is the product of true thickness times specific gravity.
2. The BTU value is in thousands
3. -DZ- is the true thickness
M40IVI STATISTTCAL ANALYSIS OF ASSAY DATA

* c m j v compasites atus
B. C. HYDRO AND POWFR AUTHOKITY

76/77/78 ** WETGHTTNG BY T * SG HAT CREEK PROJECT

DISTRIBUTION TYPE $=;$ NOHM
assay Interval frfó. tutal pCt. ghade dev. grademei gradetci int

$0.000-0.500$	892°.	20812.	100.00	$\begin{array}{r} 6.159 \\ 33.490 \end{array}$	$\begin{array}{r} 2.887 \\ 18.927 \end{array}$	$\begin{array}{r} 6.119 \\ 33.232 \end{array}$	$\begin{array}{r} 6.198 \\ 33.747 \end{array}$	$\begin{aligned} & \text { RTUS } \\ & \text { =0Z } \end{aligned}$
$0.500=-1.000$	450°.	19921.	95.72	6.424	2.656	6.388	6.461	bTus
				33.274	19.199	33.007	33.541	-DZ=
$1.000-1.500$	$718^{\prime \prime}$.	19471.	93.55	6.556	2.540	6.520	6.592	ETus
				33.240	19.334	32.908	33.511	-0\%
$1.500-0.000$	441^{\prime}.	18153.	90.11	6.759	2.363	6.725	6.792	htus
				33.096	19.153	32.822	33.370	-DZ-
$2.000=2.500$	43^{\prime}.	18312.	87.98	6.881	2.254	6.848	6.914	hTUs
				33.204	19.275	32.925	33.483	- DZ
2.500-0 3.000	$183{ }^{\circ}$	17876.	85.89	6.995	2.158	6.964	7.027	htus
				33.426	19.423	33.141	33.710	-D2-
$3.000-3.500$	$7{ }^{\circ} 8^{\circ}$	17093.	85.01	7.040	2.124	7.009	7.071	bTus
				33.616	19.431	33.329	33.902	-DZ:
3.500= $=$	77^{\prime}.	16975.	81.56	7.199	2.019	7.109	7.229	btus
				33.353	19.554	33.058	33.647	-D2-
4.000-0	871.	16262.	78.14	7.351	1.925	7.321	7.380	BTOS
				33.227	19.610	32.926	33.528	- ${ }^{\text {I }} \mathrm{Z}$
$4.5000=$	$83^{\circ}{ }^{\circ}$.	15391.	73.95	7.525		7.496	7.554	bTus
				33.247	19.990	32.931	33.563	-DZ-
5.000-0	2079.	14518.	69.76	7.695	1.744	7.666	7.723	bTus
				32.444	18.929	32.136	32.752	-1)2=
5,500=0 6,000	1670.	12489.	60.01				8.123	atus
				30.472	17.052	$30,173$	30.771	-1)2-
$6.000-6.500$	1079.	10880.	52.27	8.443	1.341	8.417	8.468	BTUS
				28.659	16.410	28.350	28.907	-02-
$6.500-7.000$	890°.	9801.	47.09	8.689	1.175	8.666	8.712	HTUS
				28.107	16.702	27.776	28.438	- $\mathrm{O}_{2}=$
7.00000	$1175{ }^{\circ}$	8921.	42.86	8.981	1.051	8.859	8.903	hitus
				27.980	16.988	27.628	28.333	- D\%
\%.500-0	1035.	7746.	37.22	9.130	0.894	9.110	9.150	bTUS
				27.564	17.559	27.172	27.955	-0'2)
8.000-0-8,500	$1294{ }^{\circ}$	6711.	32.25	9.341	0.764	9. 323	9.360	bTUS

TABLE 6.4 (continued)
Mávi Statistical analysis of assay data

ASSAY INTERVAL :	FRFQ.	TUTAL	PCT.	$\begin{array}{r} \text { GRADE } \\ 27.752 \end{array}$	$\begin{gathered} \text { DEV } \\ 18.43 i \end{gathered}$	$\begin{array}{r} \text { GRADE-CI } \\ 27.311 \end{array}$	$\begin{array}{r} \text { GRADE }+C I \\ 28.193 \end{array}$	$\begin{array}{r} \text { INT } \\ -D Z= \end{array}$
8.500009 .000	1110°	5418.	26.03	$\begin{array}{r} 9.601 \\ 20.321 \end{array}$	$\begin{array}{r} 0.606 \\ 18.942 \end{array}$	$\begin{array}{r} 9.585 \\ 25.816 \end{array}$	$\begin{array}{r} 9.617 \\ 26.826 \end{array}$	brus $-0 \%=$
$9.000=0.500$	1476".	4308.	20.70	$\begin{array}{r} 9.813 \\ 27.058 \end{array}$	$\begin{array}{r} 0.48 \mathrm{a} \\ 20.722 \end{array}$	$\begin{array}{r} 9.798 \\ 26.439 \end{array}$	$\begin{array}{r} 9.828 \\ 27.677 \end{array}$	$\begin{aligned} & \text { ETUS } \\ & \text {-DZ } \end{aligned}$
$9.5000-10.000$	1379°.	2893.	13.90	$\begin{aligned} & 10.081 \\ & 27.104 \end{aligned}$	$\begin{array}{r} 0.355 \\ 24.131 \end{array}$	$\begin{aligned} & 10.008 \\ & 26.285 \end{aligned}$	$\begin{aligned} & 10.094 \\ & 28.044 \end{aligned}$	$\begin{aligned} & \text { BTUS } \\ & \text { - } \mathrm{PZ}= \end{aligned}$
10.000--10.500	1160°.	1513.	7.27	$\begin{aligned} & 10.348 \\ & 22.472 \end{aligned}$	$\begin{aligned} & 0.259 \\ & 7.486 \end{aligned}$	$\begin{aligned} & 10.335 \\ & 22.095 \end{aligned}$	$\begin{aligned} & 10.361 \\ & 22.850 \end{aligned}$	$\begin{aligned} & \text { BTUS } \\ & \text {-aZ } \end{aligned}$
10.500-011.000	33°.	353.	1.70	$\begin{aligned} & 10.715 \\ & 22.814 \end{aligned}$	$\begin{aligned} & 0.162 \\ & 7.719 \end{aligned}$	$\begin{aligned} & 10.698 \\ & 22.006 \end{aligned}$	$\begin{aligned} & 10.732 \\ & 23.622 \end{aligned}$	$\begin{aligned} & \text { ETUS } \\ & \text { - D' } \end{aligned}$
11.000-011.500	50\%'.	50.	0.24	$\begin{aligned} & 11.049 \\ & 3 T .591 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 11.049 \\ & 37.591 \end{aligned}$	$\begin{array}{r} 11.04 .9 \\ 37.591 \end{array}$	$\begin{aligned} & \text { BTUS } \\ & \text {-DZ } \end{aligned}$
-1.500-12.000	0.	-0.	-0.00	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { ETUS } \\ & \text {-DZ- } \end{aligned}$			
12.000--12.500	0°.	- 0	-0.00	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	$\begin{aligned} & \text { ETUS } \\ & -D Z= \end{aligned}$

＊M40IVI＊STATISTTCAL ANAIYSIS OF ASSAY DATA
＊C M J V CÚMPNSTTES RTUS
B．C．HYDKO AND POWFR AUTHIRITY
＊＊76／77／78＊＊WETGHTING AY T SG HAT CREEK PROJECT

DISTRIBUTION TYPE $=i$ AORM

INT	GRADE	PCT．	n．．．．．．．t．．．．．．．5．．．．．．．．t．．．．．．．．10．．．．．．．．＊	FRFM IN
1	0.250	4．2月		892.
2	0.750	2.16		450.
3	1.250	3.45		718.
4	1.750	2.12		441.
5	2.250	2.10	早＊＊＊＊＊＊＊	436.
6	2.750	0.88	令＊＊＊	183.
7	3.250	3.45		718.
8	3.750	3.42	号＊＊＊＊＊＊＊＊＊＊＊＊＊	712 ．
9	4.250	4.19		871.
10	4.750	4.19	茦＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊	473.
11	5.250	9.75		2029.
12	5.750	7.73		1610.
13	6.250	5.18		1079．
14	6.750	4.23		880．
15	7.250	5.64	系＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊	1175.
16	7.750	4.97		1035.
17	8.250	6.22		1294.
18	8.750	5.33		1110.
19	9.250	6.80		1410.
$? 0$	9.750	6.63	ก＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊	1379.
Wex 1	10.250	5.57		1160.
22	10.750	1.46		303.
23	11.250	0.24	$0 *$	50.
24	11.750	0.00	\cdots	0.
25	12.250	0.00	0	0 ．
INT	GRADE	PCT．	0．．．．．．．．t．．．．．．．．．5．．．．．．．．．t．．．．．．．．10．．．．．．．．．t	FREG IN

TABLE 6.5

MINIMUM GRADE ETU $\quad=1000.00$
MINIMUM WASTE THICKNESS $=999.00$
MINIMUM COAL THICKNESS $=0.00$

ZONE CMFS SMFL METERS S.G. MOISTUFE \% ASH \% VOL BTUS \% S W-THK O/W

OUEI	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
WST	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
FL.T	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
UKN	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A11	.16	198	697.8	1.55	11.85	40.95	14.62	5646	0.48	0.00	0
A12	22	374	1.429 .9	1.56	8.26	49.27	10.09	5485	0.43	0.00	()
A13	20	136	564.3	$1+57$	10.75	48.47	15.10	5516	0.39	0.00	0
A14	19	257	926.7	1.57	10.13	49.37	11.50	5438	0.49	0.00	0
Aこ1	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
$A-A 21$	77	935	3618.7	1.55	9.81	48.33	12.42	5508	0.45	0.00	0
A	77	935	3618.7	1.56	9.81	48.33	12.42	5508	0.45	0.00	0
B11	32	235	1111.0	1.52	11.07	35.98	14.45	7414	0.58	0.00	0
E12	34	257	1093.7	1.54	10.39	39.12	1.4 .39	6942	0.59	0.00	0
- B	66	492	2204.7	1.53	10.73	37.55	14.42	7178	0.58	0.00	0
C11	13	48	197.7	1,60	9.95	44.77	10.29	6050	0.41	0.00	O
C21	22	130	585.8	1.58	11.38	43.08	12.56	6272	0.44	0.00	0
C22	30	164	803.4	1.57	12.27	42.01	12.94	6397	0.37	0.00	0
c-cı1	52	294	1389.2	1.57	11.89	42.46	12.78	3344	0.40	0.00	0
c	65	342	1586.9	1.58	11.65	42.75	12.46	6307	0.40	0.00	0
011	47	260	1395.6	1.47	12.34	30.85	16.19	8193	0.28	0.00	0
012	54	237	1279.0	1.41	13.11	23.69	18.56	9285	0.24	0.00	0
013	60	215	1196.6	1.38	13.86	21.20	20.29	9672	0.30	0.00	0
D14	66	281	1516.5	1.41	14.18	23.64	22.27	9371	0.36	0.00	0
\square	227	993	5387.7	1.42	13.36	25.06	19.57	9100	0.30	0.00	0
ALL.	435	2762	12798.0	1.50	11.63	36.43	15.62	7337	0.41	0.00	0
A / A ?		0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A1?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
$A-A 21$	77	935	3618.7	1.56	9.81	48.35	12.42	5508	0.45	0.00	0
ALL A	77	935	3618.7	1.50	9.81	48.33	12.42	5508	0.45	0.00	0
- ORE	422	2714	12600.3	1.50	11.66	36.29	15.71	7359	0.41	0.00	0
ALL	435	2762	12798.0	1.50	11.63	36.43	15.62	7337	0.41	0.00	0

TABLE 6.6

. OO4 * 'GOOD' MATA COMFUSITED BY CMJU ZONES ** क AFRTL 1978 ** WT: VERT $76 / 77 / 78$.

$$
\begin{aligned}
& \text { MINIMUH GRADE ETU } 9 \\
& =4000.00 \\
& \text { MINTMUM WASTE THICKNESS }=999.00 \\
& \text { MINIMUM COAL THICKNESS }=0.00
\end{aligned}
$$

ZONE CMPS SMPL METERS G.G. MOLSTURE \% ASH \% VOL BTUS \% S W-THK OM

OUBL	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
WST	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
FLT	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
UKN	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A11	16	168	638.8	1.55	12.00	46.90	14.81	5653	0.49	0.00	0
A12	22	374	1398.4	1. 6	0.28	48.30	10.89	5480	0.43	0.00	0
A13	20	136	557.5	1.57	10.87	48.45	15.27	5519	0.39	0.00	0
A14	19	257	914.5	1.57	10.26	49.33	11.64	5445	0.49	0.00	0
A21	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A-A21	77	935	3559.2	1.56	9.91	48.32	12.52	5510	0.45	0.00	0.
A	77	935	3559.2	1.56	9.91	48.32	12.52	5510	0.45	0.00	0
E11	32	235	1088.4	1.52	11.29	35.92	14.73	7424	0.59	0.00	0
B12	34	257	1081.2	1.54	10.50	39.13	14.54	6939	0.59	0.00	0
E	66	492	2169.6	1.53	10.90	37.53	14.63	7180	0.59	0.00	0
C11	13	48	194.1	1.60	10.13	44.68	10.47	6063	0.42	0.00	0
C21	22	130	564.5	1.58	11.54	43.33	12.99	6242	0.44	0.00	0
C22	30	164	784.8	1.57	12.44	42.17	13.12	6377	0.37	0.00	0
C-C11	52	294	1349.4	1.58	12.06	42.66	13.06	5320	0.40	0.00	0
c	65	342	1543.5	1.58	11.82	42.91	12.73	6287	0.40	0.00	0
111	47	260	1376.5	1.47	12.46	30.83	16.38	3198	0.28	0.00	0
$\underline{12}$	54	237	1267.1	1.41	13.22	23.70	19.73	9284	0.25	0.00	0
113	60	215	1186.2	1.38	1.3 .97	21.23	20.45	9668	0.30	0.00	0
014	66	281	1504.9	1.41	14.28	23.65	22.43	9369	0.37	0.00	0
\square	227	993	5334.6	1.42	13.49	25.06	19.74	9100	0.30	0.00	0
ALL	435	2762	12606.9	1.50	11.76	36.41	15.81	73.42	0.41	0.00	0
A/A?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A1T	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A-A21	77	935	3559.2	1.56	9.91	48.32	12.32	5510	0.45	0.00	0
ALL A	77	935	3559.2	1.56	9.91	48.32	12.52	5510	0.45	0.00	0
- ORE	422	2714	12412.8	1.50	11.79	36.27	15.90	7363	0.41	0.00	0
ALL	435	2762	12606.9	1.50	11.76	36.41	15.81	7342	0.41	0.00	0

7.0 COMPOSITING BASED UPON MINABILITY

The results described in 6.3 must be compared to composites based upon selective mining.

7.1 Calculation Procedures

The basic rules for compositing the data based upon minability requires three parameters.
$\mathrm{C}=$ cutoff grade in ETU'S
$\mathrm{WT}=$ minimum true waste thickness which can be selectively mined within an ore zone
$C T=$ the minimum true coal thickness which can be mined

The calculation procedure used is a simple one, consistent with the parameters above, but may not give the optimum results in all cases. The procedure involves three steps.
-- the continuous intervals of material below the cutoff were examined and removed if their accumulative thickness exceeded WT.
-- the remaining intervals were examined, and any continuous intervals with an average BTU content less than C or thickness less than CT were removed.
7.1 Calculation Procedures (Cont'd)....
-- the remaining intervals were accumulated within each zone and averaged by zone. The weighting used both thickness and specific gravity. These composites were computed by zone for comparison with the results in 6.3 after applying the cutoff and ore thickness constraint.

7.2 Summary of Results

Tables 7.3 to 7.8 contain these results including a list of the data and resulting composites for each hole. Table 7.1 contains a summary for a 4000 BTU cutoff and . 5 meter minimum thickness for both coal and waste.

Table 7.2 shows the distribution of BTU value for the minable composites.

Also in Tables 7.3 to 7.8 is a series of runs examining the effect of various combinations of minimum thickness assumptions for mining.

Tables 7.9 and 7.10 show the effect of using vertical thickness and intersection length in the analysis.

7.3 Dilution

The dilution at the interface between coal and waste is ignored in this study for both sets of composites. However for the minable composites, the number of interfaces is determined. For the base case in Table 7.1 the number of interfaces $(\mathrm{O} / \mathrm{N})$ is 1034. Assuming coal loss at each interface at .3 meters (about 1 foot), the coal loss i.s 310 meters or 3%.

The loss for the CMJV composites would be less, since less internal waste is assumed to be selectively mined.

TABLE 7.1

MINTMUM GRADE ETU G	$=4000.00$
MINTMUM WASTE THICKNESS	$=0.50$
MINIMUM CDAL THICKNESS	$=0.50$

ZONE CMPS SMFL METERS S.G. MOTSTUFE \% ASH \% VOL BTUS \% S :W-THK G/W

avbi	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
WST	0	0	0.0	0.00	0.00	0.00	0.00	- 0	0.00	0.00	0
FLT	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
UKN	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A11	17	126	498.3	1.47	13.78	35.46	17.70	7452	0.66	193.20	103
A12	23	270	979.2	1.49	7.25	38.58	13.29	5979	0.49	329.76	188
A13	24.	120	438.9	1.52	9.84	41.51	15.67	¢620	0.43	151.87	31
A14	27	223	709.2	1.52	9.59	42.21	12.14	6566	0.54	333.96	167
A21	16	34	77.5	1.60	4.68	50.9%	4.05	5259	0.43	259.44	53
A-A21.	91	739	2625.6	1.50	10.28	39.49	14.09	5893	0.52	1008.80	539
A	107	773	2703.1	1.50	10.11	39.83	13.79	6843	0.52	1278.24	592
B11	34	222	929.3	1.51	11.96	34.57	15.34	7642	0.59	61.30	58
B12	37	232	986.1	1.52	10.96	35.98	15.35	7411	0.60	118.71	95

$\begin{array}{llllllllllll}B & 71 & 454 & 1815.3 & 1.51 & 11.41 & 35.26 & 15.36 & 7529 & 0.60 & 180.01 & 153\end{array}$

C11	17	40	148.3	1.56	10.01	40.24	9.88	6762	0.46	76.83	2
C21	30	133	506.6	1.58	10.84	42.59	12.50	6423	0.48	205.25	71
C 22	44	178	742.8	1.56	11.80	41.00	12.47	6598	0.37	413.86	88
C-C11	74	311	1249.4	1.57	11.41	41.65	12.48	65.27	0.41	619.11	159
c	91	351	1397.7	1.57	11.26	41.50	12.21	6551	0.42	695.94	181
011	48	253	1137.9	1.47	13.12	30.30	15.92	8264	0.28	37.38	19
012	55	238	1107.6	1.41	13.39	23.82	19.40	9266	0.25	17.89	12
D13	60	214	1023.2	1.38	13.90	21.08	20.00	9593	0.30	1.18	6
014	66	281	1262.9	1.41	13.95	23.79	21.37	9361	0.36	0.00	71
\pm	229	986	4531.6	1.42	13.59	24.89	19.18	9126	0.30	56.44	108
ALL	498	2564	10447.7	1.48	11.95	33.04	16.09	7375	0.43	2210.64	1034
A / A ?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A1?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0

A-A21	91	739	2625.6	1.50	10,28	39.49	14.09	6893	0.52	1008.80	539
ALL A	107	773	2703.1	1.50	10.11	39.84	13.79	6843	0.52	1278.24	592
ORE	465	2490	10221.9	1.47	12.04	32.78	16.28	7913	0.43	1864.37	959
ALL	498	2564	10447.7	1.48	11.95	33.04	16.09	7875	0.43	2210.64	1034

TABLE 7.2 -- Frequency Distribution of BTU's for Minable Composites weighted by True Thickness and Specific Gravity

NOTES:

1. . This run includes only the good data within the zones in the drilling during 76,77 and 78.
2. Under the heading TOTAL is the product of true thickness times specific gravity.
3. The BTU value is in thousands
4. -DZ-is the true thickness
5. A cutoff of 4000 BTU and minimum thickness of .5 meters was used to compute the compositing.
MOIVI STATISTTCAL ANAEYSIS OF ASSAY DATA
MINABLE COMPNSTTES RTUS * 76/77/78 ** WETGHTING HY T * SG
H. C. HYDRO AND PDWER AUTIIRRITY CPEEK PROUECT
DISTRIBUTIUN TYPE $=i$ NGRM

ASSAY INTERVAL FRFQ. TOTAL PCT. GRADE DEV. GRADE-CI GRADEACL INT

*W4OIVI** STATISTTCAL ANATYSIS OF ASSAY DATA
** MINABLE COMPASTTES HTIS *** 76/77/78**WETGHTTNG BY T \quad SG B. C. HYDKO AND PUWER AUTHORTTY HAT CREEK PROJECT

DISTRIBUTIUN T	$=\quad i$	IVORM						
ASSAY INTERVAL	FRFO:	TITAL	PCT.	$\begin{array}{r} \text { GRADE } \\ 27.517 \end{array}$	$\begin{array}{r} \text { DEV } \\ 18.227 \end{array}$	$\begin{array}{r} G R A D E=C 1 \\ 27.086 \end{array}$	$\begin{array}{r} \text { GRADE }+C I \\ 27.949 \end{array}$	$\begin{array}{r} \text { IHT } \\ -D Z= \end{array}$
8.500-9.000	1375	5631.	36.51	$\begin{array}{r} 9.572 \\ 26.716 \end{array}$	$\begin{array}{r} 0.617 \\ 18.769 \end{array}$	$\begin{array}{r} 9.556 \\ 26.226 \end{array}$	$\begin{array}{r} 9.588 \\ 27.206 \end{array}$	$\begin{aligned} & \text { BTUS } \\ & \text { =DZ } \end{aligned}$
$9.000=9.500$	1361°	4305.	27.92	$\begin{array}{r} 9.819 \\ 27.030 \end{array}$	$\begin{array}{r} 0.483 \\ 20.715 \end{array}$	$\begin{array}{r} 9.805 \\ 26.411 \end{array}$	$\begin{array}{r} 9.833 \\ 27.649 \end{array}$	bTus -DZ $=$
$9.500=-10.000$	1431*	2945.	19.09	$\begin{aligned} & 10.072 \\ & 27.344 \end{aligned}$	$\begin{array}{r} 0.358 \\ 23.955 \end{array}$	$\begin{aligned} & 10.059 \\ & 26.478 \end{aligned}$	$\begin{aligned} & 10.085 \\ & 28.249 \end{aligned}$	$\begin{aligned} & \text { BTUS } \\ & \text { =OZ } \end{aligned}$
$10.000=-10.500$	1160°	1513.	9.81	$\begin{aligned} & 10.348 \\ & 22.472 \end{aligned}$	$\begin{aligned} & 0.259 \\ & 7.486 \end{aligned}$	$\begin{aligned} & 10.335 \\ & 22.095 \end{aligned}$	$\begin{aligned} & 10.301 \\ & 22.850 \end{aligned}$	GTUS $-D Z=$
$10.500=11.000$	303.	353.	2.29	$\begin{aligned} & 10.715 \\ & 22.814 \end{aligned}$	$\begin{aligned} & 0.162 \\ & 7.719 \end{aligned}$	$\begin{aligned} & 10.698 \\ & 22.006 \end{aligned}$	$\begin{aligned} & 10.732 \\ & 23.622 \end{aligned}$	BTUS $-D Z=$
$11.000-11.500$	50%	50.	$0.3-2$	$\begin{aligned} & 11.049 \\ & 37.590 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 11.049 \\ & 37.590 \end{aligned}$	$\begin{aligned} & 11.049 \\ & 37.590 \end{aligned}$	$\begin{aligned} & \text { BTUS } \\ & \text {-DZ }= \end{aligned}$
- $500-12.000$	0 O.	-0.	00.00	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & \text { BTUS } \\ & -02= \end{aligned}$			
$12.000-12.500$	0%	$=0$.	0.00	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	gTUS $-02=$			

*M401VI** STATISTTCAL ANALYSIS OF ASSAY DATA

;017 * 'gOOA' MATA COMFOSITEI EY CMJU ZONES ** E AFRIL 1978 ** WT= TRUE $70 / 77 / 78$
MINIMUM GFAIE BTUS $=1000.00$
MINIMUM WASTE THICKNESS $=1.00$
MINIMUM COAL THICKNESS $=1.00$

ZONE CMFS: SMPL NETEFS S.G: MOLSTURE \% ASH \% VOL BTUS \% S W-THK O/W

OUED	0	0	0.0	0.00	0.00	0.00	$0.00{ }^{\circ}$	0	0.00	0.00	0
WST	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
FLT	0	0	0.0	0.00	0.00	0.00	0.00	-	0.00	0.00	0
UKN	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A11	17	126	498.3	1.47	13.78	35.46	17,70	7452	0.56	193.20	103
A12	23	276	933.5	1.49	9.23	38.78	13.25	3949	0.48	325.43	175
A13	24	124	441.6	1. 52	9.78	41.62	14.96	6575	0.43	149.17	74
A14	27	231	715.7	1.53	9.48	42.71	12.00	6491	0.53	327.47	147
A21	13	34	76.9	1.60	4.47	51.89	3.73	5121	0.42	172.27	42
A-A21	91	757	2639.2	1.50	10.23	39.77	14.01	6852	0.52	995.27	489
A	104	791	2716.0	1.50	10.06	40.13	13.70	6800	0.52	1167.54	541.
811	33	222	929.2	1.51	11.85	34.61	15.34	7635	0.59	60.39	53
B12	37	234	887.9	1.52	10.93	36.13	15.34	7387	0.60	116.90	85
- B	70	456	1817.1	1.51	11.40	35.36	15.34	7513	0.60	177.30	138
C11	16	43	149.5	1.56	9.79	40.81	9.62	6677	0.45	45.08	18
C21	30	136	508.7	1.58	10.89	42.70	12.54	6405	0.48	203.20	64
c22	44	183	747.0	1.56	11.73	41.25	12.33	6563	0.37	409.60	78
c-C11	74	319	1255.7	1.57	11.39	41.84	12.45	6499	0.41	612.80	142
c	90	362	1405.2	1.57	11.22	41.73	12.15	6518	0.42	657.88	160
111	48	254	1138.4	1.47	13.11	30.32	15.92	8252	0.27	36.85	17
012	55	238	1107.6	1.41	13.39	23.82	19.40	9266	0.25	17.89	12
D13	60	214	1023.2	1.38	13.90	21.08	20.00	9693	0.30	1.18	6
014	60	281	1262.9	1.41	13.95	23.79	21.37	9361	0.36	0.00	71

D	229	987	4532.1	1.42	13.59	24.90	19.17	9125	0.30	55.91	100
ALL	493	2596	10470.4	1.48	11.93	33.19	16.04	785	0.43 .2058 .63	945	
A/A?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A1?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0

$A-A 21$	91	757	2639.2	1.50	10.23	39.77	14.01	6852	0.52	995.27	499
$A L L A$	104	791	2716.0	1.50	10.06	40.13	13.70	6800	0.52	1167.54	541
ORE	464	2519	10244.0	1.47	12.02	32.91	16.24	7893	0.43	1841.23	885
ALL	493	2596	10470.4	1.48	11.93	33.18	16.04	7952	0.43	2058.63	945

TABLE 7.:

IINIMUM GFADE ETU B
MINIMUM WASTE THICKKESS $=4000.00$
MINIMUM COAL THICKKNESS $=1.50$
$=1.50$

ZONE CMPS SMFL METEFS S.G. MOTSTURE \% GSH \% VOL BTUS \% $\%$ W THK O/W

OVEL	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
WST	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
FLT	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
UKN	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A11	17	131	505.3	1.47	13.68	36.11	17.48	7356	0.65	185.25	91
A12	23	289	1000.8	1.50	9.11	39.63	13.08	6819	0.47	308.09	147
A13	24	131	450.4	1.53	9.55	42.70	14.60	6450	0.42	140.32	57
A14	27	246	733.3	1. 5.3	9.50	43.65	11.31	6353	0.52	309.86	1.15
A21	12	33	75.4	1.61	4.53	53.01	3.78	4977	0.42	157.79	33
A-A21	91	797	2689.9	1.51	10.1 .3	40.64	13.79	6727	0.51	944.52	411
A	103	830	2765.4	1.5.1	9.97	41.00	13.50	6676	0.51	1102.31	444
B11	33.	224	931.9	1.51	11.81	34.70	15.29	7622	0.59	57.73	47
E12	37	242	897.2	1.52	10.87	36.58	15.23	7320	0.60	107.60	70
- B	70	466	1829.0	1.51	11.35	35.63	15.26	7473	0.59	165.33	117
C11	16	44	150.5	1.56	9.71	41.03	9.54	6645	0.44	44.05	16
C21	30	136	508.7	1.58	10.89	42.70	12.54	6405	0.48	203.20	64
C22	43	181	742.7	1.56	11.81	41.16	12.36	6576	0.37	394.65	70
C-C11	73	317	1251.4	1.57	11.43	. 41.79	12.43	6506	0.41	597.85	134
c	89	361	1401.9	1.57	11.25	41.71	12.12	6521	0.42	641.90	150
011	48	254	1138.4	1.47	13.11	30.32	15.92	8262	0.27	36.85	17
012	55	238	1107.6	1.41	13.39	23.82	19.40	9266	0.25	17.89	12
013	60	214	1023.2	1.38	13.90	21.08	20.00	9693	0.30	1.18	6
014	66	281	1262.9	1.41	13.95	23.79	21.37	9361	0.36	0.00	71
D	229	987	4532.1	1.42	13.57	24.90	19.17	9125	0.30	55.91	106
ALL	491	2644	10528.4	1.48	11.89	33.50	15.96	7906	0.42	1965.47	817
A/A?	0	0	0.0	0.00	0.00	0.00	0.00	\bigcirc	0.00	0.00	0
A1?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A-A21	91	797	2689.9	1.51	10.13	40.64	13.79	6727	0.51	944.52	41.1
ALL. A	103	830	2765.4	1.51	9.97	41.00	13.50	6676	0.51	1102.31	444
ORE	463	2567	10302.4	1.48	11.98	33.23	16.15	7847	0.42	1763.62	768
ALL	491	2644	10528.4	1.48	11.89	33.50	15.96	7806	0.42	1965.47	817

TABLE 7.5

OL9* GOOD LAATA COHFOSITED BY CMN ZONES ** E AFRDL 1970 ** WT= TKUES76/77/78
MINIMUM GRADE ETUS
MINIMUM WASTE THICKNESS $=4000.00$
MINIMUM COAL THCKNESS $=2.00$

ZONE CMFS SMFL METEFS S.G. MOISTURE \% ASH \% VOL ETUS \% S W-THK OFW

OVEn	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
WST	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
FLT	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
UKN	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A11	17	13.3	508.5	1.47	13.65	36.39	17.42	7313	0.65	183.01	37
A12	23	299	1017.2	1.50	9.00	40.30	12.73	6717	0.47	291.75	130
A. 13	24	132	452.9	1.53	9.48	43.05	14.4.50	6392	0.42	137.86	51
A14	27	254	745.3	1.54	9.35	44.32	11.57	6250	0.51	297.38	104
A21	10	31	71.0	1.62	3.23	54.15	2.85	4318	0.40	136.47	27

$A-A 21$	91	818	2724.4	1.51	10.03	41.17	15.63	6.641	0.51	910.00	372
A	10.1	849	2795.5	1.51	9.84	4.1 .52	13.34	6591	0.50	1046.47	379
B11	33	224	931.9	1.51	11.81	34.70	15.29	7522	0.59	57.73	47
B12	36	248	904.2	1.53	10.82	36.92	15.29	7262	0.59	90.60	57
B	69	472	1836.0	1.52	11.32	35.80	15.29	7443	0.59	148.34	10.4

C11	16	47	154.0	1.57	9.73	41.78	9.38	6529	0.44	40.59	13
C21	30	140	516.2	1.59	10.78	43.22	12.32	6328	0.47	195.68	52
cas	42	182	745.2	1.57	11.84	41,41	12.30	6540	0.37	371.40	60
C-C11	72	322	1261.4	1.57	11.41	42.16	12.31	6453	0.41	567.08	112
c	88	369	1415.4	1.57	11.22	42.11	11.99	6461	0.41	607.67	125
[111	48	254	1138.4	1.47	13.11	30.32	15.92	8262	0.27	36.85	17
$\underline{112}$	55	238	1107.6	1.41	13.39	23.82	19.40	9266	0.25	17.89	12
013	60	214	1023.2	1. 38	13.90	21.08	20.00	9693	0.30.	1.18	6
014	66	28.1	1262:9	1.41	13.95	23.79	21.37	9361	0.36	0.00	71

\square	229	987	4532.1	1.42	13.59	24.90	19.17	9125	0.30	55.91	106
ALL	487	2677	10570.0	1.48	11.84	33.77	15.88	7763	0.42	1858.39	734
A/AT?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A1?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0

A-A21	91	818	2724.4	1.51	10.03	41.17	13.63	6641	0.51	910.00	372
ALL A	101	849	2795.5	1.51	9.84	41.52	13.34	5591	0.50	1046.47	396
ORE	461	2599	10354.0	1.49	11.93	33.49	16.09	7805	0.42	1681.33	694
ALL	487	2677	10579.0	1.48	11.84	33.77	15.88	7763	0.42	1858.39	734

TABLE 7.6

020'* GODD' IAATA COMFOSITEL EY CMJU ZONES.** E AF'RLI 1978 ** WT= TFUE $76 / 77 / 78$
MINIMUM GRADE ETU S
MINIMUM WASTE THICKNESS $=4000.00$
MINIMUM COAL THICKNESS $=2.50$
2.50

ZONE CMPS SMPL METERS G.G. MOISTURE \% ASH \% VOL ETUS \% S W-THK 0,W

- OUBD	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
WST	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
FLT	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
UKN	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A11	17	135	512.8	1.48	13.59	36.74	17.25	7257	0.64	178.75	82
A12	23	316	1048.2	1.51	8.95	41.57	12.67	6521	0.47	260.76	103
A13	24	137	464.6:	1.53	9.34	44.09	14.33	6224	0.41	126.20	43
A14	27	257	752.9	1.54	9.37	44.64	11.52	6200	0.51	290.31	98
A21	10	31	72.1	1.63	3.16	55.10	2.80	4643	0.40	135.40	23
A-A21	91	845	2778.4	1.52	9.96	41.97	13.46	6515	0.50	856.02	326
A	101	876	2850.5	1.52	9.78	42.33	13.17	6464	0.50	991.42	340
B11	33	228	938.7	1.51	11.75	34.96	15.15	7582	0.59	50.88	42
B12	36	250	908.7	1.53	10.75	37.20	15.19	7215	0.59	86.02	52
B	69	478	1847.5	1.52	11.26	36.07	15.17	7401	0.59	136.90	94
C11	16	48	156.4	1.57	9.55	42.19	9.21	6463	0.43	38.17	10
C21	30	143	522.6	1.59	10.76	43.41	12.26	6292	0.47	189.28	49
C22	42	182	746.0	1.57	11.78	41.50	12.28	6526	0.37	370.59	5
C-C11	72	325	1258.6	1.58	11.36	42.29	12.27	6429	0.41	559.87	103
c	88	373	1425.1	1.58	11.16	42.28	11.94	6432	0.41	598.03	113
L11	48	254	1138.4	1.47	13.11	30.32	15.92	8262	0.27	36.85	15
$\underline{112}$	55	239	1109.9	1.41	13.35	23.95	19.34	9247	0.25	15.57	11
013	60	214	1023.2	1.38	13.90	21.08	20.00	9693	0.30	1.18	6
114	66	281	1262.9	1.41	13.95	23.79	21.37	9361	0.36	0.00	71
D	229	988	4534.4	1.42	13.58	24.93	19.16	9121	0.30	53.59.	103
ALL	487	2715	10657.4	1.48	11.78	34.14	15.78	7706	0.42	1779.94	659
A / A ?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A1?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A-A21	91	845	2778.4	1.52	9.96	41.97	13.46	6515	0.50	856.02	326
ALL A	101	876	2850.5	1.52	9.78	42.33	13.17	6404	0.50	991.42	349
are	461	2636	10428.9	1.48	11.88	33.35	15.99	7749	0.42	1506.38	626
ALL	487	2715	10657.4	1.48	11.78	34.14	15.78	7706	0.42	1779.94	559

TABLE 7.7

221

MINIMUM GRADE ETU	$=$	4000.00
MINIMUM WASTE THICKNESS	\cdots	3.00
MINIMUM COAL THICKNESS	\cdots	3.00

ZONE CMFS SMFL METEFS S.G. MOTSTURE \% ASH \% VOL BTUS \% S W-THK O/W

QUBI	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	1)
WST	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
FLT	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
UKN	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A11	17	140	523.7	1. 40	13.24	37.05	16.80	7096	0.63	167.87	3
A12	23	320	1050.8	1.52	9.87	42.24	12.86	6411	0.46	248.16	ES
A13	24	1.43	481.4	1.54	9.26	45.02	14.07	6078	0.40	109.39	3.7
A14	26	264	769.0	1.55	9.39	45.57	11.50	60.48	0.50	270.32	83
A21	9	28	66.9	1.63	3.41	54.97	3.02	1688	0.36	127.03	21
A-A21	90	867	2834.8	1.52	9.87	42.85	13.29	6377	0.49	795.74	276
A	99	895	2901.7	1.53	9.71	43.14	13.04	6335	0.49	922.77	297
E11	33	229	941.3	1.51	11.71	35.05	15.19	7563	0.59	48.35	30
B12	36	251	911.6	1.53	10.71	37.29	$15 \cdot 13$	7203	0.59	83.14	50
E	69	480	1852.9	1.52	11.22	36.16	15.16	7397	0.59	131.47	83
011	15	49	156.2	1.50	9.56	42.42	9.21	5423	0.44	29.74	6
C21	29	144	525.6	1.59	10.88	43.62	12.46	6259	0.48	154.47	42
C 22	41	183	747.2	1.57	11.60	41.70	12.29	6484	0.36	355.84	47
C-C11	70	327	1272.8	1.58	11.34	42.55	12.30	6390	0.41	510.31	89
c	85	376	1429.0	1.58	11.1.4	42.5 .4	12.02	6394	0.41	540.05	75
011	47	253	1135.6	1.47	13.15	30.30	15.96	82.44	0.28	28.13	13
012	55	239	1109.9	1.41	13.35	23.95	19.34	9247	0.25	15.57	11
013	60	214	1023.2	1.38	13.90	21.08	20.00	9693	0.30	1.18	\%
014	66	281	1262.9	1.41	13.95	23.79	21.37	9361	0.36	0.00	71

D	228	987	4531.0	1.42	13.59	24.92	19.17	9122	0.30	44.88	101
ALL	481	2738	10715.2	1.49	11.74	34.47	15.74	7554	0.42	1639.15	581
A/A?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A1?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0

A-A21	90	867	2834.13	1.52	9.87	42.85	13.29	6377	0.49	795.74	276
ALL A	99	895	2901.7	1.53	9.71	43.14	13.04	63.35	0.49	922.77	297
ORE	457	2661	10492.1	1.48	11.84	34.20	15.94	7.694	0.42	1482.40	5 E ¢
ALL	481	2738	10715.2	1.49	11.74	34.47	15.74	7SE4	0.42	$1639 \cdot 16$	581

MTJTMUM GRADE BTU
MINIMUM WASTE THICKNESS $=4000.00$
MTMIMUM COAL THTCKNESS $=5.00$
=

ZONE CMFS SMFL METEFS $9 . G$. MOTSTUFE \% ASH \% VOL ETUS \% 5 W-THK O/W

OUET	0	0	0.0	0.00	0.00	0.00	0.00	, 0	0.00	0.00	0
WST	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
FLT	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
UKN	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A1. 1.	17	149	553.0	1.50	12.45	40.63	15.69	6670	0.59	138.56	51
A12	23	357	1.1.6.4.9	1.54	8.41	45.15	11.61	5962	0.44	144.06	34
A13	24	152	512.4	1.56	8.82	47.18	13.28	5727	0.38	78.37	20
AL. 4	26	283	823.3	1.56	9.41	47.60	11.28	5722	0.48	216.02	51
A21	, 1	1	5.1	1.63	18.77	54.49	25.65	4710	0.62	19.61	2
A-A21	90	941	3053.5	1.54	9.47	45.37	12.52	5982	0.47	577.01	156
A	91	942	3058.6	1.54	9.48	45.38	12.55	5980	0.47	596.62	158
B11	32	231	943.5	1. 31.	11.168	35.23	15.14	7539	0.59	26.10	31
812	35	254	922.8	1.53	10.57	37.92	14.83	71.12	0.58	46.20	39
B	67	485	1866.3	1.52	11.1.3	36.57	15.01.	7326	0.59	72.31	70

A-A21	90	9.41	3053.	1.34	9.47	45.37	12.52	5982	0.47	577.01	156
All a	71.	942	3053.6	1.94	9.48	45.38	12.55	5980	0.47	596.62	158
ORE	4.47	2739	10723.4	1.89	11.87	35.32	15.62	7522	0.41	1001.97	376
all	460	2783	1.0872.	1.49	11.66	35.42	15.55	7506	0.41	1033 +78	379

TABLE 7.9

COO1 * 'GOOL' DATA COMPOSITER BY CMJU ZONES ** G AFRIL 1978 ** WT= LNTH(76/77/7E

MINTMUM GRADE ETU $S=4000.00$
MTMTMUM WASTE THICKNESS = $=0.50$
MIMTMUM COAL THTCKNESS $=.0 .50$

ZONE CMFS SMFL METERS 5. 5. MOTSTURE \% ASH \% VOL BTUS \% 5 W-THK O/W

OUEA	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
WST	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
FLT	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
UKN	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A11	17	126	559.1	1.47	14.06	35.52	17.77	7444	0.66	219.60	103
A12	23	268	1126.3	1.49	9.98	38+61	12.88	6971	0.48	384.00	192
A13	24	119	526.5	1.52	10.27	41.52	15.52	6596	0.45	184.50	83
A14	27	219	875.8	1.52	10.09	41.90	12.33	6601	0.55	419.50	175
A21	17	36	93.3	1.60	4.89	50.73	4.27	5292	0.43	398.60	57

$1-A 21$	91	732	3087.7	1.50	10.42	39.51	14.04	6884	0.53	1207.60	553
A	108	768	3181.0	1.50	10.25	39.86	13.74	6834	0.52	1606.20	610
$\mathrm{B11}$	34	221	1079.5	1.51.	11.73	34.75	14.98	7617	0.59	80.10	60
$\mathrm{B12}$	37	231	1031.3	1.52	11.16	36.26	15.52	7372	0.62	156.10	97

E	71	452	2110.8	1.51	11.45	35.49	15.24	7497	0.60	236.20	157
(*) 011	18	42	174.1	1.55	10.52	39.90	11.16	6801	0.45	112.30	26
021	30	132	610.6	1.57	11.29	42.07	13.13	6494	0.47	264.90	73
C22	44	178	858.9	1.56	12.14	40.90	13.29	6610	0.37	514.80	88
c-C11	74	310	1469.5	1.57	11.78	41.39	13.23	6561	0.41	779.70	161
c	92	352	1643.6	1.56	11.65	41.23	13.01	6587	0.42	892.00	187
[1. 1	48	253	1372.:	1.46	12.55	30.08	1.5.40	8304	0.28	47.70	19
012	55	238	1286.2	1.41	13.22	23.72	1.9.74	9281.	0.25	25.10	12
0113	60	214	1195.3	1.33	13.88	$21+1.4$	20.31	9682	0.30	1.30	6
[11. 4	6s	281	1.51.6.5	1.4.1	14.18	23.64	22.27	7371	0.36	0.00	71
n	229	986	5370.9	1. 42	13.45	24.82	19.69	9135	0.30	74.10	. 108
ALL.	500	2558	12306.3	1.48	12.00	32.98	16.40	7880	0.43	2808.50	1062
A/A? A1?	0 0	0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0	0.00 0.00	0.00 0.00	0

$\mathrm{A}-\mathrm{A} 21$	91.	732	3087.7	1.50	10.42	39.51	14.04	58884	0.53	1207.60	553
ALLL A	108	768	3181.0	1.50	10.25	39.86	13.74	6834	0.52	$1606+20$	610
ORE	465	2480	12038.9	1. 4 ?	12.08	32.73	16.58	7918	0.43	2297.60	979
ALL.	500	2558	12306.3	1.48	12.00	32.98	16.40	7880	0.43	2808.50	1062

TABLE 7.10

COO2 * 'GOOD' DATA COMFOSJTED EY CMJN ZONES ** 6 AFRIL 1978 ** WT= UERT(76/77/78

$$
\begin{array}{lr}
\text { MINTMUM GRADE ETU } & =4000.00 \\
\text { MTNIMUM WASTE THICKNESS } & =0.50 \\
\text { MINIMUM COAL THTCKNESS } & =0.50
\end{array}
$$

ZONE CMFS SMFL HETEFS S.G. MOISTUFE \% ASH \% VOL BTUS \% S W-THK O/W

Quba	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
het	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
FLT	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00 .	0.00	0
UKT	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
A1!	17	126	553.2	1.47	14.19	35.54	17.95	7441	0.66	216.44	103
A12	23	268	1101.5	1.49	9.00	38.68	12.89	6960	0.48	373.95	192
A.3	24	119	517.1	1.5.5	10.45	41.47	1.5 .79	6604	0.45	179.83	83
A14	27	219	863.6	1.52	1.0 .22	41.95	12.49	6593	0.55	408.38	175
A2	17	36	89.7	1.60	5.08	50.82	4.44	5280	0.44	391.41	57
A-AEA	91.	732	3035.3	1. 50	10.53	39.54	14.1.8	6879	0.53	1178.60	553
A	108	768	3135.0	1.50	10.36	39.89	13.88	6830	0.53	1570.01	610
E1. 1	34	221.	1.058 .1	1.51.	11.95	34.71	15.27	7623	0.60	76.07	60
812	37	231	1019.3	1.52	11.28	36.25	15.68	7371	0.62	155.15	97

${ }^{3}$	71	452	2077.4	1.51	11.62	35.47	15.47	7499	0.61	231.22	157
[1]	1.7	41	170.8	1.55	10.66	39.35	11.28	6808	0.46	92.05	24
621	30	132	591.1	1.58	11.42	42.3 .4	13.52	6460	0.47	260.27	73
Ce2	44	178	838.7	1.56	12.31	41.04	13.49	6589	0.37	500.22	88
$5-6.1$	74	310	1430.0	1.57	11.94	41.58	13.50	6535	0.41	760.48	161
C	91	351	1600.8	1. 57	11.81	41.40	13.27	6564	0.42	852.53	185
[13	48	253	1.353 .8	1. 26	12.69	30.05	16+60	8310	0.28	47.60	19
412	55	238	1274.2	1.1 .1	1.3 .33	23.73	1.9 .91	9280	0.25	25.07	12
11.3	60	214	1134.9	1.30	18.78	$21+16$	20.48	9678	0.30	1.30	6
414	66	291	1504.7	1.41	14.28	$23+65$	22.47	9369	0.37	0.00	71
r	229	986	5317.9	1.42	1.3 .57	24.81	1.9 .87	9136	0.30	73.97	108
ALIL	499	2557	12121.0	$1+48$	$12 \cdot 14$	32.97	1.6 .60	7882	0.43	2727.73	1060
is/A?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0
At?	0	0	0.0	0.00	0.00	0.00	0.00	0	0.00	0.00	0

A-A2t	-91.	732	3035.3	1.50	10.53	39.54	1.4 .18	6879	0.53	1178.60	553
Al..L. A	1.08	768	3125:0	1.50	10.36	39.89	13.83	6330	0.53	1570.01	610
ORE	465	2480	11860.5	1.47	12.22	32.72	16.73	7910	0.43	2244.27	979
GLL	499	255%	12121.0	1.48	$12+14$	32.97	16.60	7882	0.43	2727.73	1.060

BRITISH COLUMBHA HYDRO AND POWER AUTHORITY

FOR PERSONAL CONTACT
DIAL \qquad
TELEX: 04.54456
TWX: 610.922-6438

744 WEST HASTINGS ST., STE. 500 VANCOUVER, B.C. VGC 1AS

File: 604H-1301.4-2
7 April. 1978

Mr. A. F. Banfield, Jr.
Mintec, Inc.
2780 North Stone
Tucson, Arizona
U. S. A. 85705

Dear Fred:
Thank you for your notes dated 9 March 1978.
It was decided that it would be reasonable to follow your recommendations of 9 March 1978 which consist of a step by step approach. The initial objectives will be to complete some statistics on minable units and to develop a model initially based on the CMNV 12 coal zones plus two waste zones. By testing the modelling and display capabilities on three or five test sections the value of the model may be established and the capability to model the deposit in the future on other geological interpretations confirmed. To minimize time, the work should initially be done at Mintec's office in Tucson. It has been made clear that all the programs can be set up eventually in Vancouver for use locally. However, due to plotter problems this should be deferred initially.

The following information would be required as input:
(i) A tape of drill hole data containing surveys, sample intervals and zone picks.
(ii) A tape from CMJV of the digitized subzones.
(iii) Geologic cross sections of the zones.
(iv) Plan map of area.

The following would be expected from the study:

1. Statistics on coal and waste by main zones and subzones reflecting minable thicknesses.
2. Initially display three cross sections showing subzones, drill holes, average value at the drill hole for each subzone.
3. Profect "characteristics" (coal/waste), \% coal, \% waste ash, sulphur, Btu (using inverse square or other method).
4. Demonstrate ability to compute pit tonnages for working pits as required.
5. Demonstrate ability to produce bench plans of tons and grade.

It has been the writer's experience that the most successful. results are obtained when someone familiar with computer applications, mining and geology works closely with the computer people. Initially this should be full time, subsequently as required. Your plan indicates that most of the above could be met in about two weeks. Shortly after item 2 above is ready it should be reviewed with a BCHPA geologist.

The following notes extracted from your report outline the proposed work in greater detail:
A. The CMJV model being developed divides the deposit into 12 coal zones plus two waste zones vertically. These zones may be as thick as 100^{\prime} and are described as minable units analyses are averaged over the entire zone. This process is similar to the compositing of drill hole data into benches, where the effect of compositing on tonnage and grade has been examined for numerous deposits. As the bench height increases, the deposit tonnage above a speciffed cutoff grade generally decreases. The drilling during the last three years should be used to determine if in fact the zone size is sufficiently small to reflect the distribution of internal waste for reserve calculations and mine planning.

Based upon the drill hole data and the CMJV zones, the total feet of drilling above the cutoff grade would be computed. The average analyses and relative heat content can also be computed. These results would be compared to those computed for assumptions regarding the selectivity possible in mining defined by mindmum coal thickness minable, minimum parting thickness which can be selectively mined within the coal, and cutoff grade.

This work would require approximately three days after the data has been received by Mintec and entered into their computer system. The calculation procedures are similar to those in use in the evaluation of uranium and ofl shale deposits.

The size of the minable unit in the mine model can be as important as the calculation procedures used. It should be noted that largex units are practical if the distribution of ore and waste within the blocks is defined.
B. The Variable Block Modelling (VBM) method developed by Mintec could be used to model the Hat Creek deposit and has advantage that is easy to display graphically. The required steps to set up the VBM would include:
(i) entry of drill hole data into the Medsystem,
(ii) correlation of major zones and verification,
(iii) selection of minable units using one of several methods (lithology, grade, division of each zone Into fixed number of subzones),
(iv) development of gridded seam model (GSM) includes profection of seam or zone geometry and grade. The GSM is composed of a model for each zone or seam in a single file organized by seam. Various section and plan maps can be plotted,
(v) the GSM is converted to a VBM and plotted by the computer for checking by the geologic staff,
(vi) the VBM can be directly updated by the geologist by manual coding or digitizing,
(vii) the VBM initially would be composed of the geologic sections spaced 500^{\prime} apart. Additional sections would be developed by projection between these sections,
(viii) the method should first be tested on three sections (requirfing five sections of data). This test would require at least two weeks after data preparation is complete,
(ix) the data required includes all drill hole data for the five sections with survey data, analyses, and geologic picks for the major zones. Sections containing the geologic interpretation for the middle tiree sections would be required.
C. The value of the model developed would depend not only on its accuracy, but the ease of using the model to accomplish the required tasks of tine planning. The following capabilities are required:
(i) the model. must be easy to update,
(ii) the model must be capable of being fully displayed,
(iii) pit designs and sequential mining plans can be evaluated and maps and reserve sumarles developed

Yours very truly,

PRELIMINARY STUDY OF THE FEASIBILITY OF DEVELOPING A VARIABLE BLOCK MODEL، FOR THE HAT CREEK PROJECT

TABLE OF CONTENTS

1.0 Introduction
2.0 Summary
3.0 Conclusions
4.0 Variable Block Model Description
5. 0 Development of the Variable Block Model from Digitized Data
6. 0 Interpolation of Seam Geometry from Drill Hole Data
7.0 Interpolation of Coal Quality
8.0 Plan Display of the Variable Block Model
9.0 Pit Design
10.0 Calculation of Reserves

PRELIMINARY STUDY OF THE FEASIBILITY OF DEVELOPING A VARIABLE BLOCK MODEL FOR THE HAT CREEK PROJECT 1.0 INTRODUCTION

MINTEC has developed a method of modeling coal deposits called the Variable Block Model (VBM). This method allows the development of models which define the geometry of complex deposits accurately for use in mine plarning and ore reserve estimations.

The primary advantage of the model is that it represents the geometry of the deposit in a form easily modified by the engineer or geologist and can be displayed graphically.

The Hat Creek Deposit of B. C. Hydro is a complex deposit of 14 zones which are folded and faulted. In order to test the ability of the VBM to model this deposit, three sections are being modeled with the VBM and displayed for verification. Basic data to develop this model is the drill hole data file received from B. C. Hydro.

The drill hole data was composited into min \ddagger able zones based upon the CMJV zone definitions within the drill hole data received from B.C. Hydro. Using this composite data the variable block model was developed for sections $R(23950 \mathrm{~N}), \mathrm{Q}(24100 \mathrm{~N})$, \& $\mathrm{P}(24250 \mathrm{~N})$.

This model was developed directly from drill hole data with no manual intervention. Since certain drill holes which would play a role in developing geometry were missing from the file, there are some discrepancies between the VBM and the cross sections received from B. C. Hydro.

Section maps of the VBM were drawn by the computer on a digital plotter. A plan map was developed for several benches showing zone
the coal/contacts at the bench median ? $\stackrel{\varsigma}{\text { fection } Q \text { was used }}$ to demonstrate the method of determining economic pit limits based upon various stripping ratios. Also reserves were computed from section Q for a pit design.

4.0 VARIABLE BLOCK MODEL DESCRIPTION

The Variable Block Model consists of two files, one for defining the geometry and the other for defining characteristics of the ore. The geometry can be defined in either section or plan and is composed of Features. Each F'eature may be either a line or a closed polygon, representing a surface, zone, or pit design. These Features are signed codes which indicate the type of material they define.

Ore block Features are further defined by their characteristics stored in the Quality File. Each ore block can be subdivided into smaller blocks depending upon the variability of the grade within the blocks and the density of the data. Figure 2.1 is a sample of a cross section model with the Variable Block Modeling method. Figure 2.2 is a listing of the Quality Data with the blocks.

Sections or benches may be modeled, as required by he geometry of the deposit. The points defining the features can be easily changed in the Variable Block Model Geometry File and the Quality Data can be updated in the Quality File directly. The problems in developing the Variable Block Model for the Hat Creek Project are the definitions of the geometry of the zones and the distribution of grade within the zones.

MINTEC, INC.
4.0 Variable Block Model Iescription (Cont'd)....

Figure 2.3 illustrates a cross section through the deposit with the drill hole data, which is the basis for defining the zone geometry. Normally within the MEDSYSTEM, the geometry is defined by developing a gridded matrix of elevations for the top of each zone in the model. Various methods of gridding the data are available, however, by inspection none appear directly applicable for the Hat Creek Deposit. Also examination of the complex geometry in some of the sections indicated that no matter what method was developed, the geologist will have to be able to manually update the computer results.

5.0 DEVELOPMENT OF THE VARIABLE BLOCK MODEL FROM DIGITIZED DATA

Digitized data files were received from B. C. Hydro defining the surface and the various zones within the deposit. A simple way of developing the VBM directly from these sections was attempted. A vertical plane was passed through the digitized data for each section and the intersections computed. These intersections were sorted and used to develop a Variable Block Model to display the zones within the cross section. This method was based on the assumption that the digitized data points followed the contours of the surfaces. On plotting out a cross section from the Variable Block Model developed by this method, it was found that this assumption was incorrect. Also in manually plotting the digitized data points, it was found that each digitized point was an independent observation and did not necessarily indicate linear continuity with the previous point. For this reason it was not possible to develop a Variable Block Model from the digitized data. However, this method is feasible and is probably the most accurate and representative method available. The computer techniques are simple and inexpensive to perform and depend solely on the accuracy of the digitizing.

MINTEC, INC.
5.0 Development of the Variable Block Model from Digitized Data (Cont'd)....

Due to the continuity of the zones each contour line would have to be digitized. Enough contours to adequately define the zone geometry would be required. The quality parameters for the various zones could be interpolated separately and integrated into the model, since an alternative method of developing seam geometry was sought, instead of redigitizing the zones.

The composite data developed from the minable and the CMJV zones both contained the zone dip for each composite. Based on this information it appeared feasible to develop the geometry of each zone by interpolating between adjacent composites using the assumed seam or zone dip angles. Figure 4.1 describes the process involved. These steps are:

1. The composites for the individual section are selected and stored in a data file.
2. Based on these composites the seam geometry is computed and plotted on the printer.
3. The seam zone geometry is examined and the composite data corrected if necessary.
4. The quality parameters for each zone are interpolated and the zone geometry and quality data are stored in a new data file. The zone geometry and quality data files are read into the Variable Block Model for display and calculations of reserves.
6.0 Interpolation of Seam Geometry from Drill Hole Data (Cont'd)....
5. The Variable Block Model is displayed in plan and in section for verification. Individual points can be updated as required.

7.0 INTERPOLATION OF COAL QUALITY

The coal quality is defined by the BTU's, $\%$ ash, $\%$ sulfur, coal density, spec ${ }^{\text {ferific }}$ gravity, coal thickness and waste thickness. The coal and waste thicknesses are used to determine the percent of the block that is minable as ore. Drill hole spacing within the sections \Leftrightarrow-lesthan the diatione betiver secterns, and for this reason formathe we interpolated the coal characteristics using only the data within the section. It should be kept in mind that the more values that are weighted together to interpolate an individual block, the more the local variations are masked by the averaging. The method used to interpolate the gxade coal tin characteristics between drill holes within each zone was; interpolate between the adjacent dexpoxitxx composite values weighting by the inverse of the distance squared, the coal thickness and the parific gravity of the composites. For section Q a detailed listing of these interpolated grades for each grid point in the VBM is displayed. However, since the drill hole spacing is much greater than the spacing of grid points within the VBM, it is unnecessary to retain the individual grades. For this reason the ore zones coal quality values were averaged together for up to ten continuous grid points, or approximately 200 meters. On the fringes of the zones or where there were no adjacent drill holes on each side on the grid point, the nearest composite was projected to the grid point.

8.0 PLAN DISPLAY OF THE VARIABLE BLOCK MODEL

The same method of displaying the variable block model in section can be used to display it in plan. The intersection of the zones
toe on medion
with the toHtcrest for meeting of a bench can be displayed. The difficulty in using results developed in this manner is that since the angle of intersection the zone with the bench not known and the thickness of the coal is not displayed These coal seams do not indicate the actual tonnage of coal within the bench.

May be possible to actually compute the tonnage within the four points defined by the intersection of the top and the bottom of the seam with the adjacent sections.

In the case where the adjacent composites were not complementary, one being ore and the other being waste, the value of the nearest composite wasxas assigned to the block.

