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Modular forms and modular curves
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1, Introduction

The theory of modular forms has its roots in the work of 19th century math-
ematicians including Jacobi and Eisenstein. In the 1920’s and 30’s much of the
foundation for the modern theory was created by Hecke [Hec1], [Hec2], [Hec3].
In addition to establishing the analytic continuation and functional equation for L-
functions associated to modular forms, he showed that for a special class of modular
forms, the L-functions have Euler product expressions. This special class consists of
forms which are simultaneous eigenvectors for certain linear operators, now called
Hecke operators.

The work of Eichler and Shimura greatly advanced the role of modular forms
and their L-functions in number theory. One achievement [Shi1] was the construc-
tion of abelian varieties over Q whose L-functions were those studied by Hecke.
Shimuraalso proposed a partial converse, namely that every elliptic curve over Q
arises this way. This conjecture grew out of an idea of Taniyama [Shi8] and became
well-known through work of Weil [Weil]. A large part of the Shimura-Taniyama-
Weil conjecture has now been proved by Wiles [Wil2] (see also [Diam]), with a
key ingredient supplied by the work of Taylor and Wiles [TaWij.

In light of the recent work of Wiles, it is evident that two major developments
in the theory began to unfold around 1970, building on the work and insight of
Shimura.

One of these was the introduction of tools of modern algebraic geometry.
Deligne [Deli] generalized the Eichler-Shimura construction to higher weight us-
ing £-adic cohomology; Deligne-Rapoport [DeRa] and Drinfeld [Drin] studied the
arithmetic of modular curves; the study of congruences between modular forms was
placed in the algebraic-geometric context by work of Serre [Ser2], Swinnerton-Dyer
[SwDy]and Katz [Katz1]. This development has been a rich source of techniques,
results and ideas in the field and figures prominently in Mazur’s boundingof the
numberofrational torsion points on an elliptic curve over Q [Mazi], as well as in
the recent work of Ribet [Rib4] and Wiles [Wil2].

The other development was the beginning of the Langlands program. The work
of Jacquet and Langlands [JaLa] on automorphic representations placed the theory
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in a broader context and added insight from representation theory. According to
Langlands’ conjectures, these representations should correspondin a natural way to
algebraic-geometric objects. Roughly speaking, class field theory is the special case
of the correspondence for GL;. The Eichler-Shimura construction and Deligne’s
generalization provide special cases of one direction for GLz; special cases of the
other direction were established by Langlands [Lngl2] and Tunnell [Tunn], and
now by Wiles [Wil2].

This article was intendedto be a survey ofresults on modular forms and mod-
ular curves. In our attempt, and failure, to keep the work a reasonable length, we
chose to ignore many important aspects of the theory and instead to emphasize
those which play a role in the work of Ribet and Wiles. Noneof the results we
present here are ours, and we have no doubtoftenfailed to properly attribute them.
We apologize in advance for these and other shortcomings, which are due largely
to our ignorance. We can hardly claim to be experts on many of the topics we
included; indeed we learned a great deal in preparing this article.

Wehaveaimedthearticle at advanced or recent graduate studentsspecializing
in the field, though we hope that others will find it a useful reference. Parts of
the paper vary in the amount of background assumed. Beginning with §8, we
usually take for granted graduate courses in number theory and algebraic geometry
based for example on the material found in Lang [Lang], Silverman [Sil1] and
Hartshorne [Hart].

The article is divided into three parts.
Part I is a rapid introduction to modular forms, focusing on the theory of Hecke

operators and newforms. More detailed treatments of most of the topics we cover
can be found in a numberofvaluable texts, such as those of Shimura {Shil], Lang
[Lang2], Miyake [Miy2], Knapp [Kna2] and Hida {Hida3}.

In Part II, we turn our attention to modular curves. We begin with their
description as Riemann surfaces and moduli-theoretic interpretation. Then we go
on to explain someofthe algebraic geometric methods used to study their arithmetic
and that of their Jacobians. Much of the material can be found in Deligne-Rapoport
[DeRa], but muchis scattered in the literature.

Part III returns to the subject of modular forms from a more sophisticated
point of view. Wefirst give a brief introduction to modular forms in the context
of automorphic representations, mainly following Jacquet and Langlands [JaLa].
Then we approach from the perspective of the geometry of modular curves, often
following Shimura [Shi1] and Deligne-Rapoport [DeRal.
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Part I. Modular forms

2. Definitions and examples

Webegin by recalling the definition of a modular form andlisting some exam-
ples.

2.1. Definitions.

PRIMARY REFERENCES:

[Shil, §2.1], [Lang2, §1.2, VIL1], [Miy2, §2.1, 4.3], [Kna2, §VIIL2, [X.2] and
[Hida3,§5.1].

Let § denote the complex upper half-plane, and GLt (R) the subgroup of
GL2(R) consisting of elements with positive determinant. Then GL{(R) acts on

§) via Mobius transformations. For any integer k, any C-valued function f on §

and a € GL} (R), we define a new function f|[a], on § by

(Fllele)(z) = det(a)*“"(cz +d)“*f(a(z)), 2 €H

where a = ( ; i! A subgroup I of SL2(Z) is a congruence subgroup if it

contains '(N) for some positive integer NV, where

T(N) = {7 € SL2(2) |v= (3°) (aoa n)} :

T(N)itself is called the principal congruence subgroup(of level N). For example,

{7€Sta(2) |y=(5 2) (mony},
{veTo(N) |y=(% 1) (modmy }

are congruence subgroups of SL2(Z) containing '(N).
Let k be a non-negative integer, and I’ a congruence subgroup. By a modular

form of weight k with respect to I’, we mean a function f : § — Csatisfying

(i) f is holomorphic on 4;

Gi) fllnle = f for all 7 €T;
(iii) f is holomorphic at the cusps.

To(N)

llT,(N)

Weneedto explain (iii). The group I contains a matrix ;

integer h. Hence f(z +h) = f(z) for all z € 4, and thus f has a Fourier expansion
at oo of the form

f ) for some positive

oO

Sl2)= SF angh, ay = erie/.
n=—0oO

To say that f is holomorphic (resp. vanishes) at oo, we must have a, = 0 forall

n <0 (resp. n < 0); this condition is independentof the choice of h. If a € SL2(Z)
then f|[a]x|[yx = f|la]x for ally € a~"Ta, so that for any a € SLe(Z), f|[a], also
has a Fourier expansion at oo. We say that f is holomorphic (resp. vanishes) at

the cusps if f|[a], is holomorphic (resp. vanishes) at oo for all @ € SL2(Z).
Thespace (over C)of all such functions will be denoted M,(I); its dimension

is finite for any congruence subgroup T of SL2(Z). If an element f, in addition
to being a modular form, vanishes at (all) the cusps then it is called a cusp form;

the space of cusp forms on T of weight k will be denoted S,(I). Thefinite set

T'\(QU {oo}) can be viewed as the set of cusps of the modular curve associated to
I’, whence the terminology holomorphic at the cusps and vanishing at the cusps.
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Wewill discuss this in greater detail below in §12.1. Wewill also return there to
the topic of the dimensionsof the spaces M,(I’) and S;(I).

Now,let ¢ : (Z/NZ)* — C* be a Dirichlet character mod N; we also write
é for the (completely) multiplicative map on Z where, by convention, e(m) = 0
for m not prime to N. A modular form of weight k, level N, character <, or
simply of type (k, N,¢), is a modular form of weight k with respect to I'\(N) which
transforms under the bigger group I'o(NV) by the character ¢, i-e., it is an element
fe My,(Ti(N)) satisfying

(Fllvle)(2) = e(dy) F(z), Wy ETo(N)

where d_ denotes the d-entry of y. Such a modular form has the g-expansion at oo
of the form

wo

(2.1.1) f= Soa", ge
n=0

since ( 3 ) €T,(N). The space of all modular forms of type (k, N,e) is de-
noted M;(N,¢) or Mx(I'9(N),€). The Dirichlet character ¢ mod is called the
Nebentypus of any element in this space.

Equivalently, consider the action of d € (Z/NZ)* on M,(T,(N)) given by
(d)k: f+ f\[ale, where oa is any clement of SL2(Z) such that

(2.1.2) oa = ( eo ) (mod N);

here, d is the multiplicative inverse of d mod N. Theaction depends only on d
(mod N) and not on the choice of defining matrix og. The space M;(N,€)is then

the €-eigenspace with respect to this action. In particular, we have a direct sum
decomposition

Mi(Pi(N)) = Mz(N,e)

where ¢ runsoverall Dirichlet characters mod N such that e(—1) = (—1)*. Letting
S;(N,€) denote the space of cusp forms inM,(N, €),we obtain a similar decomposi-
tion of S,(Ti(N)).

2.2. Examples.

PRIMARY REFERENCES:

(Shil, §2.2], [Ser1, Ch. VII], [Kobl, Ch. III], [Miy2, Ch. VII], [Kna2, §VIII.2,
1X.3] and [Hida3, §5.1].

Notethat for weight k = 0, Mo(I) = C for any congruence subgroup of SL2(Z)
and Mo(N,¢) = 0 unless ¢ is the trivial character. We list here an assortment of
examples of modular forms of positive weight.

EXAMPLE 2.2.1. Let & be an even integer > 2. For z € §, consider the function

(2.2.1) Gi(z) = ye LLIL,

(ag) (mz--n}*

where ‘ denotes that the sum is over pairs of integers (m,n) not equal to (0,0).
The reader can check that it is a modular form on SL2(Z) of weight k, and that its
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q-expansion is given by

2k =
= esi n — p2mizGx(z) = 2¢(k)(1 3, Loor-alnd ), =e

where o%-1(n) = Vain d*-} and By, are the Bernoulli numbers defined by

te! — , F
aiPeg

see e.g. [Ser1, §VII.4]. Restricting the double sum in (2.2.1) over relatively prime

pairs (m,n) we obtain the normalized Eisenstein series

(2.2.2) E,(z) = iLata == = SY on-1(n)a"
n=1

where thefirst sum is over the integers m, n with (m,n) = 1.

Before proceeding with more examples, let us introduce some notation and

recall a few facts about Dirichlet L-functions and generalized Bernoulli numbers.

For a Dirichlet character ¢ modulo N its L-function is defined as usual by the

analytic continuation of the series

In(s,€) = So e(n)n* = Il (1- e(p)p *) |;
n=1 pln

here the subscript N is written only to emphasize the modulus of the character,

and will be droppedifit is clear from the context. If ¢ mod N is primitive, then

its functional equation can begiven (e.g. [Lang2, §XIV, Theorem 2.2(ii)]) in the

form

(2.2.3) L(1—s,é) = L(s,e)(N/2m)°T(s)(e™*/? + (—l)e mis/2)/W(e)

where W(e) = Lo e(j)e2"49/N denotes the Gauss sum of «.

For a Dirichlet character ¢ mod N (not necessarily primitive) the generalized

Bernoulli numbers B,,< are defined by the formula

N ai oo
B

5 e(a) = 1 = e tt.
a=1 as 0”

It is known(e.g. [Lang2, §XIV, Theorem 2.3]) that we have By. = —kLy(1—k,é)

fork > 1.

 

EXAMPLE 2.2.2. For an integer k > 0 and a Dirichlet character e mod N such

that e(—1) = (-1), consider theseries (in two variables z € 9, s € C)

(2.2.4) Fxwelzs)= > e(dy)9(,2)*(2)
y€Voo\P0(N)

* *

where we have put j(7,z) = cz + dy for any y = ( ae ) € GL2(R) and

ee = 1 : - ) | m € Z} is the stabilizer of oo in To(N). This series is

uniformly and absolutely convergent for R(2s) > 2—k +e (for any € > 0) and

satisfies the transformation property

Ex,ne(a(z), 8) = €(d)j(a,2)*|j(@, 2)|*Ek,n,e(2,$)
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under a = ( Be te ) in T'o(N) (whenever the series converges uniformly). The
function

T(s+k)Ly(2s + k,2)Ex,v,-(z,8)
can be continued to a meromorphic function on the whole s-plane which is entire
except when k = 0 and« is trivial. If k = 0 and N = 1, then it is analytic
everywhere except for simple poles at s = 0 and 1; if k — 0, N > 1 and

«

istrivial,
then there is only one simple pole at s = 1; see [Hec1, §1,2], and also [Miy2, §7.2],
wheretheseries (2.2.4) is denoted Ej,n(2,8;). We discuss its functional equation
in Remark 2.2.3 below.

Put, for k > 1,

Ex,n,e(Z) = Ex,N(2,0),
Then, as Hecke [Hec1] showed, Ex,n,< belongs to M;(N,¢) except when k = 2
and¢ is trivial.

In the case that ¢ is primitive, the Fourier expansion of FE;y,- is given by
CO

(2.2.5) Exne(2)=14+ A+ S9 ($7 e(d)a*1)q",
n=1 din

where g = e?7** and

L(k,2)N*(k — 1)!
~W(é\(—20i)F

see [Hec1, §1,2], [Shi5, (3.4)]. For N = 1 (soc is trivial) and k even > 2, note that
Ex,N,< is the normalized Eisenstein series E, introduced in Example 2.2.1. This
can be seen either from their definitions or by comparing their g-expansions (2.2.2)
and (2.2.5).

If € mod

N

is not. primitive, then Ex.,n,-(z) can be written as a linear combi-
nation of the forms Ej,,c,¢,(dz) over divisors d of N/C, where C’ is the conductor
of €y, the primitive character associated to c. (See [Hec1], also [Shi5, (3.3)].)

A= = —2Ly(1—k,e) =-2kBz? ;

REMARK 2.2.3. We digress briefly to discuss the functional equation for the
series Ey,w.e(z, 8) of (2.2.4).

In the case of N = 1 (k even, < = 1), the Eisenstein series E,(z,8) = Ex.11(z, 8)
satisfies the functional equation

y°Ex(z, 8) = 4(s)y***Ex(z, 1 — k — 8)
sending s to 1—k—s, where

Bg(s) = (—1)8/292-F2ey D(2s + k — 2)¢(28 +k —1) |
T(s)P(s+k)C(2s+k) ’

see e.g. [Kubo]. It follows from the functional equation that ®,,(s)®,(1—k—s) = 1,
which can also be checkeddirectly.

For general F;,,v,-, the functional equation is more complicated. We give here
only a vague indication ofits general shape and refer the reader to [Kubo], [Huxl]
and [Shi7] for more details. One can consider instead a vector-valued function
E(s) whose componentsincludetheseries E',,N,x for characters x mod N (satisfying
x(—1) = (—1)*). The componentsalso include certain “companionseries” for which
thestabilizers in the defining sums (cf. (2.2.4)) are those of cusps inequivalent to oo.
The functional equation then relates the values of € (s) and €(1—s) (with suitable
normalization in s). See also [Hida3, §9.3] for an adelic version.
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EXAMPLE 2.2.4. The following are special cases of Example 2.2.2 and deal

explicitly with weights one and two for which the defining series (2.2.4) do not
converge absolutely at s = 0. The weight one case also provides an Eisenstein series

which is important in studying congruences between modular forms (see Remark
2.2.5 below).

Let € be an odd character mod N,i.e., ¢(—1) = —1; we shall assume thatit is
primitive. Then

Gie(z) = Bie- 25> (So e(d))q”
nm=1 d\n

defines a modular form of type (1, N,<). Its constant term

N-1
Bie Ly e(a)a/N = —L(0,€)

a=1

is non-zero, and the normalized Eisenstein series E},- = G1,-/By,¢ is precisely Ey,y,-

of (2.2.5) in view of the fact that the values L(0,¢) and L(1,é) are related via the
functional equation (2.2.3) with s = 1 and é in place of e.

Similarly, in the case of weight k = 2, take € to be a primitive non-trivial even

character. Consider the series defined by

G2,-(z) = 5Boe = 2y> (So e(d)d)q”.
n=1 din

Its constant term B2,-/2 = —L(—1,«) is non-zero, and again from the functional
equation (2.2.3) relating L(—1,<) and L(2,@) (with s = 2), we see that the normal-
ized function E2,- = 2G2,-/B2,. is precisely E2,n,- of (2.2.5). Thus G2,- belongs to

M2(N, e).

REMARK 2.2.5. Now, take N to be an odd prime and fix a prime divisor

A of Q(4e-1) lying above (£) where yg_; denotes the set of (€— 1)-th roots of
unity. Let ¢ be the Dirichlet character mod ¢ such that ¢(a)a = 1 (mod 4) for
a € (Z/€Z)*. Here, e(a) belongs to z_; and the congruenceis in the ring of
integers O of Q(je_1). We have that E;,- satisfies the congruence [Koike,§1]

E\,-=1 (mod d);

indeed,all the coefficients of E,,. (except of course the constant term) are in bO

where b = £/( . e(a)a), and the denominator )>¢(a)a does not belong to the
prime \ so that b=0 (mod4).

We remarkhere that the Eisenstein series Z;_ of weight ¢—1 andlevel 1 (see
Example 2.2.1) satisfies the similar congruence

Ey-1=1 (modé) if@>5

which is essentially the von Staudt congruence; see e.g. [Lang2, §X.2].

Both E;,- and Ey_; play important roles in the theory of congruences between

modular forms, for they provide congruences between modular forms of different

weights. For example,if we take ¢ = 3 (and so ¢ is the non-trivial character mod

3) then E,,- has integer Fourier coefficients and satisfies F,,. = 1 (mod 3). If f
is a modular form of type (1,.M,e’) for some M > 0 and character e’, then fH},

is of type (2,3M,<e’). Moreover if f has coefficients in the ring of integers O of
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some numberfield, then so does fE;,< and the Fourier expansions of f and fE,.
are congruent mod 30.

EXAMPLE 2.2.6. When k = 2 and¢ is thetrivial character mod N,there is a
well knowntrick of Hecke to construct such modular forms (e.g. [Hec1, §2], [Kna2,
§IX.3]). Note that the right-hand side of (2.2.2) makes sense even for k = 2. Let
us denote it by Ey, i.e.,

E,(z) =1-24 sS oi (n)q”

(Bz = 1/6); it is obtained by choosing the order of summation in (2.2.1) to be
Yin(X, «-+)- Then Ey is holomorphic on § and at oo, butfails to have the (weight
2) modularity property with respect to SL,(Z) (in fact Mo(SL2(Z)) = 0). Let

Fo(2) = lim, Ea(2, 5),
where F(z, s) is the Eisenstein series in Example 2.2.2 with NV = 1 (andso ¢ is the
trivial character). This time F(z) is not holomorphic,for

F(z) = Eo(z) + e(ny)*
with some c # 0, but this nearly holomorphic function has the modularity property
of weight 2 under SL,(Z). Therefore, for any integer N > 0, the function

F(z) — NF2(Nz) = E(z) — NE,(Nz)
belongs to M2(C(N)). More generally, given numbers ca € C for d|N such that
Law ¢a/d = 0, the function Yaw CaFa (dz) = Saw CaH2(dz) is a modular form of
weight 2 on Ty(N).

In particular, if N = p is a prime then

E2(z) — pE2(pz) = (1 — p) — 24 (S“e(d)d)a”
n=1 din

is a weight 2 modular form oflevel p with trivial character.

EXAMPLE 2.2.7. Let 1

A= ace — E2).
Then A is a modular form on T';(1) = SL2(Z) of weight 12. It vanishes at oo since
the constant term in its g-expansionis 0, as can be seen from the g-expansionsof
E4 and Eg. As Alfa]i2 = A for all a € SL9(Z), we have that A vanishes at all the
cusps. Hence, A € S)2(Ty(1)). Its q-expansion is given by

co

Az) = @]] a —a")™
n=1

(e.g. [Ser1, §VII.4]), and the cvefficients define the Ramanujan function r(n).
There are no cusp forms on SL2(Z) with weight smaller than 12; see e.g. [Ser1,§VIL.3], [Shil, §2.6] (and also §12.1).

EXAMPLE 2.2.8. On smaller congruence subgroups of SL2(Z) there may be
cusp forms of low weight. For example, Sp (o(11)) = Cf, where

f(2) = (Q@Az))"”"? = g TT (A - a")-yp.
n=1
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In the terminology of §6.3, f is a newform oflevel or conductor 11 with trivial (or

no) character. For more of such examples, let N be one of the integers {2,3,5, 11}

andlet k = 24/(N +1). Then (A(z)A(Nz))/(\V*»is a cusp form on Do(N) and

spans S,(To(N)); see [Shil, Example 2.28], and also [Birch].

3. Hecke operators

Hecke operators [Hec3] arise in many contexts. They give rise to modular cor-

respondences,they act on modular forms and on the integral homology of modular

curves; roughly speaking, they act on objects arising from GLz by certain natural

representation-theoretic and algebro-geometric constructions. Though they can be

realized in various ways,it is the consistency with which they act that makes them

so useful to study. We begin with a description, following [Shil], of the abstract

Hecke ring using double cosets. Then we explain how these double cosets give rise

to modular correspondences, a subject to which we return in Part II. Then, as an

important and concrete instance of how Hecke operators act in a particular setting,

weshall discuss the representation of the Hecke ring on the space of modular forms.

In particular, we consider the eigenforms, eigenvalues and eigenspaces for the Hecke

operators, a subject to which we return in §6 and Part III.

Throughout this section, we shall fix a positive integer N.

3.1. Double coset description.

PRIMARY REFERENCES:

[Shi1, §3.1-3.3] and [Miy2, §2.7, 4.5].

With N as above,let

Ag(N) = {(° 1) €M,(Z)| det > 0, e=0 (mod N), (a,N)=1},

cAi(N) = i(2 1) € M,(Z)| det > 0,e=a-1=0 (mod NY)}.

Put T =1,(N) and A = A;(N); though the notation (T, A) will be reserved for

this pair in this section, our discussion is valid for (I'o(N), Ao(N)) verbatim.

Let R(I', A) denote the Z-module generated by the double cosets Tal, ae A.

Note that A = Une A", where A" = {a € Ajdeta =n}. This can be made into

ating by defining multiplication between two double cosets u = Tol and v = TGP

as follows, Consider their coset decompositions Tal = []; Ta; and P6T = ]], Tj.

Then Tal’BP = U;; PS; (not necessarily disjoint), and so l'al'GTis a finite union

of double cosets of the form ['yI’. Define

ev SO m(u, 0; w)w

where the sum is extended overall double cosets w = IT c Pal’AT, and

(3.1.1) m(u, vj w) = #{(i, j)|Poi8; = Py}

for w =I. One can check that these definitions depend only on u, v and w, and

not on the choices of representatives {aj}, {(;}, 7.

Equipped with the above multiplication law extendedlinearly, R(T, A) becomes

an associative, and in fact commutative, ring with  =T-1-T as the unit clement.

It is called the Hecke ring with respect to (I’, A).
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3.2. Modular correspondences.
PRIMARY REFERENCES:

[Shil, §3.4, §7.2] and [Miy2, §2.8}.

Now we explain how the double cosets we have defined give rise to correspon-
dences on modular curves. Though modular curves and correspondences will be
one of the central topics of Part II, we give a brief introduction here.

For a congruence subgroup I’ we call the quotient space I'\§ the modular curve
associated to T. We are especially interested in the modular curves

Yo(N) = To(N)\H
Yi(N) = Ti(N)\6

associated to I9(N) and T';(N) respectively.
For a pair of modular curves X and Y,it will suffice for the moment to view a

“correspondence on X x Y” as a homomorphism Div (X) — Div (Y) where Div X
denotes the free abelian group generated by the elements of X. In particular, a
function f : X — Y extends to a correspondence which we denote by the same
symbol. Note that the the correspondences on X x X form an associative ring,
where multiplication is given by composition of correspondences.

Let T’ be the congruence subgroup I'g(N) or ',(N), let Y be the curve Yo(N)
or ¥i(N), and let A be Ag(N)or Ai(N), respectively. For any a such that a~!Ta
and I are commensurable,e.g. for a € A, put

Ta=Cna'Ta and Y,=T,\f.

Let p : § — Y and gy, : § — Yq be the canonical projections, and consider
the (possibly branched) coverings 7, 7% : Y, — Y defined by 70 yy = y and
T™* 0 Yq = poa. These are induced from the obvious maps id and a on 9, i.e.,
m is the natural projection, and 7is the composition of the natural projection
T4\9 + a~'Ta\$ followed by the isomorphism a~'Ta\5 > T\9 obtained from
z++ a(z). Using these coverings, we get a correspondence 7, = r% o'm from Y
to itself where ‘7, the transpose of 7, is defined as follows: If = [ealoer is
a (finite) coset decomposition of T,\P then ‘r sends a point y(z) € Y, z € 9;
to the formal sum }7; y_(¢:2) of points in its preimage t~!(y(z)) (counted with
multiplicity). Thus, 7.((z)) is the divisor 7, y(ae;(z)). Since v(B(z)) depends
only on the coset ['9, we have: T)(y(z)) = Vi v(oi(z)) if PoP = [],Ta;. (‘The
coset decomposition = []; T'a¢; gives a disjoint union TaT = LI; Pee;, so that the
divisor is recovered with a; = ae;.) One can check that 7, depends only on the
double coset Tal’, and that Tal + 7, defines a homomorphism from the Hecke
ring R(T’, A)to the ring of correspondences on (I'\) x (F\S).

3.3. Hecke rings.

PRIMARY REFERENCES:
(Shit, §3.1-3.3] and [Miy2,§4.5].

For eachpositive integer n, denote by T(n) the formal sum ofall double cosets
TaD with a € A” in R(T, A). For example, T(p) = r( 4 yr for every prime
p. Further, for two positive integers a, d such that ald and (d, N) = 1, let T(a, d)
denote the double coset Toa( o : ye whereg, is as in (2.1.2). Note that T(1,p) =

T(p). Let us write m|N° if every prime factor of m divides N. The structure of
R(I, A) in terms of the Hecke operators T'(a, d) and T(m)is given by the following
[Shil, Theorem 3.34]
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PROPOSITION 3.3.1. 1. R(L,A) ts a polynomial ring over Z in the vari-
ables T(p,p) for all primes pYN and T(p) for all primes p.

2. Every element Tal with a € A is uniquely expressed as a product

T(m)T(a,d) = T(a,d)T(m),

where m|N®, ald and (d,N) = 1.
3. If (m,n) =1 or m|N® or n|N®, then T(mn) = T(m)T(n).
4. R(T, A) @z Q is generated over Q by T(n) for all n.

REMARK3.3.2. Thelast assertion follows from thefirst assertion together with
the equation

pT(p,p) = T(p)’ -T(p”),
which is valid for every prime p not dividing N.

Let P(1), A(1) be T, A with N = 1, ie., P(1) = SLo(Z) and A(1) the set
of 2 x 2 integral matrices with positive determinant. Let T(n), T(a,d) with ald
temporarily denote the Hecke operatorsof level 1, i.e., with respect to (P(1), A(1)).
Then R(T(1), A(1)) is Z[T(p), T(p,p); Vp] and R(T’, A) is its homomorphic image
via the map

T(p) + Tp)  Yprimep,
T(p,p) ++ T(p,p)  Y prime pJN ,
T(p,p) 0 V prime p|N .

Thus, any algebraic relation amongst the Hecke operators of R(T(1), A(1)) can be
translated to the correspondingrelation for the Hecke operators in R(T, A), where
the only change is that we put. 0 in place of T(p, p) for p|N. An example of such a
relation is

T(m)T(n) = $* dT(a, a)T(mn/d?)
d

where the sum is over positive divisors d of (m, n) which arerelatively prime to N.
The element T(p,p) for p/N, p prime,is often denoted S(p) in literature; if NV

is the level, we put S(p) =0 for p|N.

3.4. Action on modular forms.

PRIMARY REFERENCES:

(Shit, §3.4, 3.5], [Ser1, §VIL5], [Lang2, §VII.2, VIL3] and [Miy2, §2.8, 4.5].
Thus far, we have discussed the Hecke operators as elements in an abstract

ring. We now turn to considering how they are realized on the space of modular
forms. For this wefirst describe the action of a double coset on modular forms on
ry

For f € M,(I) and a € A, theaction of the double coset TaL is

f\Pol}, = s, flail,

where {a;} is the set of representatives for !\Tal', This gives a well-defined action
of [Tal], on M,(I) which preserves the subspace S,(I°). Extending bylinearity
gives an action of R(T, A) on M, (I) and & (I). To makethis action more explicit,
we use the following ([Shi1, Proposition 3.36]).
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LEMMA3.4.1. For every (a,N) = 1, fix an element oa of SLo(Z) as defined
by (2.1.2). Then for everyn €N, we have

A= JT] Teal €3)s
a

where the disjoint union is over a > 0 with ad =n, (a, N) = and over b (modd).

Recall that A” = {a € A| deta = n}. From this coset decomposition, we
have the action of the n-th Hecke operator on M,(I), denoted T(n),, given by

(3.4.1) FIT(m)e = D> flloo( § 3 dies
a,b

the sum being over a, 6 as in Lemma3.4.1.

Put To =Io(N), Ao = Ao(N). The above discussion and the lemmaare also
valid when (I, A) = (To, Ao).

More generally, the Hecke operators act on the space of modular forms of

type (k,N,e). Observe that the operators T'(n);, and T'(n,n), = n*—?(n), on
Mx(Ti(N)) preserve the subspaces M;(N,e) as they commute with the opera-
tions of d € (Z/NZ)* via (d)x. (Recall that (d), was defined before (2.1.2).) The
map ['6T' ++ [941defines a surjective homomorphism R(T, A) — R({o, Ao) and
the restriction of [[@T];, to M,(N, €) depends only on TyfTy. Therefore R(To, Ao)

acts on M;,,(N,¢) and the action is given by

flPooTone =De(ala))fllale, f € Mu(Nye)

where a € Ao, Toal’o = [],, Toa, and a(a) denotes the a-entry of the matrix
a. Using this and Lemma 3.4.1, the action of the Hecke operators can be made

explicit. The lemmagives Tal = [],, la, with a, of the form al if 5 ); which

yields Toalp = |], Toa, with the same a,,’s. Also, for f € Mx(N,¢) we have
f\[oalx = e(a)f for every integer a prime to N. Thus,if we denote by T(n)x,< and
T(a,d),,- the corresponding restricted actions of T(n);, and T(a,d), on M;(N,€)

as above, then

ary az+b
(3.4.2) FIT(r)ee =n*" D> So e(a)a-*f(Z-) (a> 0, ad =n).

a b=0

(Recall that ¢(a) = 0 for (a, N) #1.) Also,

SIT, dee = a7e(d)f
for f € M,,(N,¢) and (d, N) =1. This yields

(3.4.3) T(m)keT(r)ke = S> d*te(d)T(mn/d*)p-
d|(m,n)

For n with (n, N) = 1 we mayalso view T(n);,- a8 an operator on M,(I) by setting
it equal to 0 on the eigenspaces M,(N,¢’) for e’ # €, ie, T(n)e< = T(n)e opr,
where i

BE: = some E(a)(a)k€ F@INa) 2 ( ) bs

is the projection of M,([) onto M;(N,«).
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REMARK3.4.2. Let k and N be fixed. We have encountered, for each n €
N,several actions of the n-th Hecke operator T(n). Oneis the action T(n), on
Mx(Ti(N)) where T(n) is viewed as an element of the ting R(T(N),Ai(N));
another is the action of T(n);,,< on the space M;(N,¢); yet anotheris the action
To(n)x on My(Uo(N)) where T(n) is viewed as an element of R(To(N), Ao(N)).
But whenever a modular form f lies in the intersection of any two of these spaces
these Hecke actions on f are exactly the same. In addition to all previous notation,
we shall therefore use a looser notation T,, to denote anyof these actions and write
T,f or f|T, whenever the action on f is defined and k and N are clear from the
context. Similarly, we write (n)f or f|(n) in such a situation. Moreover, we shall
occasionally restrict our attention to the operators acting on a space of forms of
type (k, N,¢) with a given Nebentypus ¢, because the forms on T.o(N) yield such a
space (with ¢ thetrivial character mod N) while the space S(T (N)) is a direct
sum of the space S,(N,¢), where € ranges over all characters mod N satisfying
e(—1) = (-1)*.

Returning to the Hecke actions on modular forms, equation (3.4.3) can be
summarized by the formal identity

~

Dotan= []1 -Tp-* +e(p)p* 2 2)
n=1 p

on the space of modular forms of type (k, N, e). Also, if formula (3.4.2) for the
action of T(n),.,- is unraveled in termsof the q-expansion of f at co we obtain (e.g.
[Shil, (3.5.11)]):

PROPOSITION 3.4.3. Let )°j°anq” be the q-expansion of f € My(N,e), and
let a bang” be the q-expansion of Tmf. Then the coefficients b,, are given by

bn =D) €(d)dinna?
d|(m,n)

This formula provides a characterization of the Hecke operators which is quite
practical from a computational point of view.

Consider the operators Uy, Vj, defined on C[[g]] by

Ua, a0") =>omag", Vin ang”) =) ang”.
nm n n nm

They satisfy Umm = Un © Urns, Vinving = Vinx © Ving, and Up, © Vin = Vp 0 Up,
for primes p, # p2. Also, Um © Vm, is the identity, while V,,, 0 Umis the projection
on the part of the power series with powers of q divisible by m. In terms of these
operators, we have

Tn = 7 e(d)d*Va 0 Una
din

Equivalently, this is captured in the formal identity

sT,n2 = c e(n)n*-! Van~*)(x Ua).
n=1 n=1 n=1

(See Chapter VII, Theorem 3.2 of [Lang2].) Note that T, = Up for primes p
dividing N, since e(p) = 0 for such p by convention.



MODULAR FORMS AND MODULAR CURVES 53

3.5. Hecke eigenforms, eigenvalues and eigenspaces.

PRIMARY REFERENCES:

[Shil, §3.5], (Ser1, §VII.5], [Lang2, §VII.3] and [Kna2, §IX.6].

Let N bea positive integer, and denote by Ty the polynomial ring over Z gen-

erated by indeterminates T,, for all primes p and indeterminates 5, for all primes

p not dividing N. It is the full Hecke algebra of level N, and is isomorphic to the

Heckering R(I’, A) by the first assertion of Proposition 3.3.1. Also, denote by TY)
the subring generated by T,, S, for all. primes p not dividing N. Then the spaces of

modular or cusp forms we have discussed previously, such as M,(T1(N)), Sk(N,€),
etc., are modules over Ty and T\) via the usual Hecke action of these indeter-

minates. To study the Hecke action on a space of modular forms, we need only

consider the images of Ty and TY)in End M;(I'1(N)), the ring of endomorphisms

of M,(I'1(N)). We remark that in the literature, slightly different sets of Hecke

operators are often chosen, but they yield the same subring of End M,(I4(N)).

PROPOSITION 3.5.1. 1. Let T be the subring ofEnd M,(T1(N)) generated
by {Tn} for alln € N, and T’ the subring generated by {T>, (q)x} for all

primes p and all primes q/N. Then, T=T".

2. For k > 2, this ring is precisely the image of Tn in End. M,(C\(N)). For

k =1, T(=T’) is contained in the image, and we have equality after ten-
soring with Q. For k = 0, all these rings are just Z with all primes not

dividing N inverted.

3. Similar statements hold for TY) (with the corresponding subrings generated

by the elements “away from N” ).

Indeed, the formula

PX-"(p)y = Te — Tye

shows that for k > 1, {Tp} and {Tp, (q)x} generate the same subrings of endomor-
phisms. One inclusion is obvious and for the other, apply the formula with two

primes g and r congruent mod N (noticing that q*—!, r*— are relatively prime and
(g)x = (r),). A similar argument using

a?(Q)k = Sq

shows that this ring is precisely the image of Ty if k > 2. For k = 1 this formula

reads (gq), = gSq, yielding only one inclusion of the subrings, but an equality after

tensoring with Q. The same argumentis valid for TY). For k = 0, we have T= 1

if p is a prime dividing N; for primes p not dividing N, we have JT, = 1+ po,

(p)y) = 1 and S, = p~®. The formula p~! = Ty —1 (when p/V) shows that T = T’,
andthis ring is as described in the assertion. Similarly, as S, = (p~!)? = (T,—1)?,

it coincides with the image of Ty in the endomorphism ring; it is also the image

of TOY) in this case.

For T = Ty or T°), we call an element of M;(T1(N)) a T-eigenform ifit
is a commoneigenvector under all T €¢ T. A TOY)-eigenform is not necessarily a

Ty-eigenform. For instance, the Ramanujan A € Sy2(To(NV)) of Example 2.2.7 is
a T(’)-cigenform, but never a Ty-eigenform for N > 1.

REMARK3.5.2. All of the examples given in §2.2 are T(")-eigenforms. They
are even Ty-eigenforms, provided in Example 2.2.2 that the character ¢ is primitive,

and in Example 2.2.6 that N is prime.



54 F. DIAMONDANDJ. IM

Observe that a (non-zero) T\)-eigenform in M;.(T1(N)) has to have a (unique)
character,i.e., it is necessarily of type (k, N,<) for some Nebentypus ¢ mod N. This

is because the image of (Z/NZ)* in the endomorphism ringis contained in that of

T() by Proposition 3.5.1. Also, the subring generated by {(q),.} for all primes g not

dividing N is precisely the image of (Z/NZ)™ (under d++ (d),). In fact Proposition
3.5.1 yields several equivalent definitions of a T-eigenform. For instance, a modular
form on T';(N)is a T()-cigenform if and only if it is of type (k,N,¢) for some
€ and is a commoneigenvector under J, for all primes p not dividing N; it is a

Ty-eigenform if and only if it is a simultaneous eigenvector underall T,,.

For each non-zero T-eigenform f, we may consider the T-eigenspace consisting

of T-eigenforms g with the same eigenvalue as f under each operator in T. Note

that by commutativity of the operators involved, a TY)-eigenform will be a T y-
cigenform if the T()-eigenspace to which it belongs is one-dimensional. While
this fails in general, we shall see in §6.3 that this holds for certain forms called

newforms.

Let us next observe that every Ty-eigenspace is (at most) one-dimensional:

Suppose f € M;(N,e) is a (non-zero) Ty-eigenformand let 7>° ang” be the q-
expansion of f. Then its Fourier coefficients a, can be read off in terms of the

eigenvalues. If An, denotes the n-th eigenvalue, ie., f|Tn = Anf, then it follows
from Proposition 3.4.3 that

@ Gn = Andy for alln € N;

© a, 40ifk 40 (so, a, =0 > k=0 and f = ap);

© ifag #0 then An = Dog, e(d)a*.

Thus,if two forms of type (k, N,¢) are common eigenforms of T,, for all n with the

same system {A,,} of eigenvalues then oneis a scalar multiple of the other. Such a

form is said to be normalised if a; = 1.

REMARK 3.5.3. Let f be such an eigenform of weight k > 1. Then Tf =

6;(T)f defines a homomorphism 6; : Ty — C. The imageis in fact contained in a
numberfield, and the eigenvalues 4, lie in its ring of integers; see Corollary 12.4.5
below. This was proved by Shimura [Shil, Theorem 3.48] for k > 2; for k > 1, see

[Shi6, Propositions 1.3 and 2.2] and references therein, and also [Ser3,§2.5].

3.6.. Petersson inner product.

PRIMARY REFERENCES:

(Shil, §3.4, 3.5], [Lang2, §III.4] and [Miy2, §2.1, 4.5].

Let I’ be an arbitrary congruence subgroup of SL2(Z), and denote by I’ its

projectivization,i.e., its image in PSL2(Z) = SL2(Z)/{+1}. On the space S,(I) of
cusp forms, define the Petersson inner productof two elements f and g by

yf dedy
(3.6.1) =a7.aa|Heat) =
where D is a fundamental domain for I (see Remark 7.1.1). The convergence of

the integral can be deduced from the following growth proprty (e.g. [Shil, Lemma

3.61]) for cusp forms.

LEMMA3.6.1. If f is a cusp form in S(T) then f(z)y*/? is bounded on %
(here, y is the imaginary part of z).

 

Moreoverthe integral is independent of the choice of the fundamental domain

D,and of the choice of the congruence subgroup T' with respect to which f, g are
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modular. For the latter independence one uses that if I’ is another congruence
subgroup, say contained in I’, then a fundamental domain for I” can be chosen
which consists of [T : I”] translates of a fundamental domain for I’. The Petersson
inner productis positive definite on the space of cusp forms.

REMARK3.6.2. The notation ( , ) is also used whenever the integral (3.6.1)
converges. Forinstance, if f, g are weight k modular forms of which at least one
is a cusp form then fg is a cusp form of weight 2k, so that f(z)g(z)y* is bounded
on 5 by Lemma 3.6.1. Hence the integral (3.6.1) defining (f,) is meaningful and
finite in this case as well.

With respect to the Petersson product, the operation [a], of a € GLT(Q) is
unitary andits adjoint is given by [a], where ais the main involution ofa, i.e.,
a‘a = (deta). For example, on S;,(T1(N)) the adjoint of (a), for (a, N) = 1 is
(@),., where @ is an integer such that ad = 1 (mod N).

On Sx(Po(N)) the Hecke operators T, for (n,N) = 1 are self-adjoint with
respect to the Petersson product; see [Shi]. In fact, on S,(N, €) we havefor all n
prime to N

(Tnf,9) = e(n)(f,Tng) 5
ie., the adjoint of T,, with respect to (, ) is T* = é(n)T,. On S(Li(N)), the
adjoint T7 of T,, for (n,N) = 1 is T,, o (nm). Thus the operators of the form T,
and (n) for n relatively prime to N form a mutually commutative set of normal
operators on S,(I'(N)). (Those operators T;, with (n,N) # 1 on Sx(N,e) need
not be normal.) Applying the spectral decomposition theorem for normal operators
(e.g. [Hers, Theorem 6.10.4]), we deduce that thereis an orthogonal decomposition

Sk(F1(N)) = BSe(N,e)

(where ¢ runs overall Dirichlet characters mod N such that e(—1) = (—1)*), and
that each S,(N,¢) decomposes orthogonally into a direct sum of T()-eigenspaces
[Miy2, Theorem 4.5.4].

4, W-operators

PRIMARY REFERENCES:

(Shi1, §3.5], [Lang2, §VIL6], [AtLi, [LiOe, §5] and [Kna2, §1X.4, IX.7].
Wenow discuss the W-operators, which form another uscful class of operators

on modular forms. On the space of forms on I'y (N), these are involutions and they
commute with the Hecke operators T, for p not dividing N.

Let 0 =14(N), and wy = ( x a ): On M;(P), the linear operator [wy], =

[TwnT]x satisfies [wy]? = (—N)*-? and preserves the subspace S; (I) of cusp forms.
Welet Wy be the operator on M,(I') defined by Wy(f) = N1-*/?f|[wy],_. Thus
Wz = (-1)*, and Wy maps modular forms of type (k,N,¢) to those of type
(k, N,é) since

(a)[wre = [w]e (@)x
for every a € (Z/NZ)*, where aa =1 (mod N). Also, from the fact that

(Co‘L)(CwyT) = (PwyT)(PaL)
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for every a € A with (det a, N) = 1, it follows that

FIT(m)e,elwn]a = e(n) f[wr]eT(D)k,es fe Mi(N,¢)

for every n such that (n, N) =1. For such n we have

Wn(n)f = (n\Wwf and WyT,f = (n)T,Wnf

for f in M,(T).

Wealso find that Wy and Wy} are adjoint with respect to the Petersson inner

product on S,([). Moreover T;, is adjoint to WyTnWw for all integers n, andif

(n, N) = 1, then (n) is adjoint to Wy) (n)Ww. If a cusp form f is a simultaneous

eigenform away from N with eigenvalues A, (n,N) = 1, then so is Wwf with

the correspondingeigenvalues Xn, (n, N) = 1. However, suppose for some prime p

dividing N that f is an eigenvector under 7,. It need not be the case that Wyf

is an eigenvector under Ty. (See Remark 3.59 of [Shil].) Indeed,if the condition

“away from N” in the above statement is replaced by “for all n € NN” the new

statement is no longer true in general. The obstruction is due to the existence

of the so-called “old” or “non-primitive” forms which come from lowerlevels (see

§6.3).
More generally, we can associate an operator Wg to each positive divisor Q of

N such that Q and N/Qarerelatively prime. Consider any matrix

Qa 6b

wo=(% ae )
of determinant Q with a, 6 and d integers and d = 1 mod N/Q; such a ma-

trix normalizes T = T,(N). The map [wa], on Mx(I) is independent of the

choice of defining matrix wg and is consistent with the old definition in the case

N = Q. Moreover, the automorphism y > wayw 1 induces the involution

of Po(N)/Ti(N) ~ (Z/NZ)* (~ (Z/QZ)* x (Z/(N/Q)Z)*) which is given by

d+ d-! mod Q andthe identity mod N/Q onthe respective factors. From this

we deduce that if ¢q and €y,g are Dirichlet characters mod Q and N,/Q respec-

tively, then [we], maps modular forms of type (k, N,€Qé'N/Q) to those of type

(k,N,EgEn/q). Welet We denote the operator f + Q*~*/? f\[wa]x on Mx(L).

Note that it is not the case in general that WZ = (-1)* on M,(L), but that Wa

preserves M;(I'o(N)) and satisfies Ws = 1 on this subspace. (Recall that this

subspaceis trivial unless k is even.)
For the remainderof this section, we restrict our attention to the T'9(N) situ-

ation and consider the involution of M;(Ty(N)) defined by Wa. Wefind that it

commutes with all the Hecke operators T;, with (n, N) = 1. If Q and Q’ are divi-

sors of N as above with (Q, Q’) = 1 then the operators Wg and Wg commute and

WaWe = Wea. Hence, Wy = [I,,y Wai) where, for a prime p\IN, Q(p) = p"

denotes the highest powerof p dividing N.

Returning to the case Q = N,wefind that the involution Wy on S,(To(.V))is

self-adjoint relative to the Petersson product and commutes with all T;, such that

(n,N) = 1. The decomposition of S,(I'o(N)) into simultaneous eigenspaces away

from N is therefore compatible with its decomposition into Wy-eigenspaces. More

precisely, if E+ denote the latter eigenspaces (under Wwn)with eigenvalues +1 so

that S;,([o(N)) = E* © EW then this decomposition is T)-equivariant, i.e., we

have this decomposition as TC’.)-modules. It is in general not equivariant under the
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full Hecke algebra since T;,’s with (n, N) £1 do not commutewith the involution
Wy.

5. L-function and functional equation

PRIMARY REFERENCES:
[Miy2, §4.3, 4.7], (Ogg, §I, IV], [Shi1, §3.6] and [Kna2, §VIIL5, IX.4].

In this section we define Dirichlet series attached to modular forms andbriefly
discuss the main results of Hecke’s theory [Hec2], [Hec3] of such series. They
admit analytic continuations, satisfy functional equations and, in certain cases,
have Euler products.

Let

f= Yoang", q=er
=0

be the q-expansion of a modular form on1(V)of weight k. Its coefficients satisfy
@, = O(n°) for some constant c € R. For example, the Eisenstein series Ey,
(k = 4,6,...) have this property with c = k — 1 since on-i(n) < 2n*-! for k > 2.
For cusp forms f on I, (N) of weight k > 1 (the case k = 0 is trivial), ¢ may be
taken to be k/2 from the fact that |{(«+iy)|y*/? is bounded on 5. In general,if f
is in M,(Ty(N)), the value c = k—1 will suffice if & is at least 3. In the cases where
k = 2 or = 1, we may takec=1+¢€ andc=1/2, respectively. This follows from
the fact that modular forms of weight k > 1 are spanned by the cusp forms and the
“Eisenstein series”. The definition of Eisenstein series in this context is that given
in [Hec1], and includes those appearing in Examples 2.2.2-2.2.6. (In fact, it can
be shown that the space spanned by Eisenstein series is the orthogonal complement
of the space of cusp forms under the Petersson inner product of Remark 3.6.2; see
e.g. (Ogg, §IV] and Theorem 4.7.2 or §7.2 of [Miy2].) That their coefficients have
the growth property stated above follows from Satz 9 of {Hec1]; see also Theorem
4.7.3 of [Miy2] or Theorem

7

of [Schn, Ch. IX].

REMARK 5.0.1. The Ramanujan-Petersson conjecture asserts that for p not
dividing N, the eigenvalues of T, on Si(T1(N)) have absolute value bounded by
2p\*-1)/2, This was proved by Deligne [Del1,§5], [Del5] (see [DeSe, 9.1, 9.2] for
k =1). As a consequence, one can even take ¢ = (k—1)/2+€ (for any € > 0) for
f in S,(Ti(N)), and c= € for f in M,(T(N)).

The L-function of f is defined initially as the Dirichlet series

L(s, f) = PS Gan;
n=1

it is sometimes written L(f,s) as well. Since a, = O(n°) this series converges
absolutely and uniformly in the region R(s) > ¢+1+6 (for any 5 > 0) and thus
defines a holomorphic function in some right half-plane, at least. in R(s) >c+1.
The completed L-function defined by

A(s, f) = N*?(2n)~*T(s)L(s, f)
is essentially the Mellin transform of f; the reader can verify that

Ae )= wer [”(FG) —ao)y" “
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whenever the integral is convergent.

In the case when f is a cusp form on I'o(N) and an eigenfunction of the invo-

lution Ww, the L-function of f can be extended to the whole s-plane as an entire

function with functional equation

(5.0.1) A(s, f) = e#*A(k—s, f),

where « = +1is the eigenvalue of Wy. More generally, if f is a modular form of

type (k, N,) then A(s, f) extends to a meromorphic function with the functional

equation
A(s, f) =i*A(k — 8, Wy f)-

For details, see [Miy2, Theorem 4.3.5], [Shil, Theorem 3.66] or (Ogg, §1]. Note

that Wyf is a modular form of the same weight and level, but with character€.

The only possible poles of A(s, f) are simple ones at s = 0, k, and A(s, f) is entire

if f is a cusp form.

REMARK 5.0.2. Later (see §6.3), we shall discuss the notion of newforms. If

f is a newform oflevel N which is also a common eigenform underall the Hecke

operators T, (including p|N), then Wyf =cf where f = 0G,q” is the contragre-

dient of f and c a scalar. In particular, the functional equation may be rewritten

as
A(s, f) =ci*A(k— s, f),

which is analogous to that for Artin L-functions.

REMARK 5.0.3. A “converse theorem” due to Weil [Weil] (see also (Ogg, §V],

[Miy2, §4.3] and [JaLa]) provides sufficient conditions for a Dirichlet series to be

the L-function of a modular form. We will not state the conditions here, but only

stress that they include functional equations.

Let f be a normalised Ty-eigenform oftype (k, N,€). Then its Z-function has

an Buler product(see e.g. [Shil, Theorem 3.43], (Miy2, Theorem 4.5.16]): if f has

g-expansion )>A,q" with \, = 1 we have formally

(5.0.2) 1(6,f) = T] Q- Av? +e()p*2)
P

Conversely if f is a modular form of type (k, N,¢) whose q-expansion coefficients

are given by such an Euler product, then f is a Ty-eigenform with A, as the

eigenvalue of the n-th Hecke operator T,, for all n € N.

EXAMPLE 5.0.4. Let A be as in Example 2.2.7. It is a cuspidal T,-eigenform

of weight 12 (oflevel 1 with trivial character). Its L-functionis

L(s,A) =] Q-7@)p*+p)
Pp

and A(s,A) = (2m)~I'(s)L(s,A)is entire and satisfies the functional equation

which is invariant under s ++ 12—s. Note that W,A =

A

since wi € SL2(Z), so

that «= 1.

EXAMPLE 5.0.5. Let f be the weight 2 cusp form of conductor 11 as in Ex-

ample 2.2.8. One verifies that Wiif = —f. Hence, the completed L-function

A(s,f) = (2m/V11)~*T(s)L(s, f) is entire and satisfies the functional equation

A(s, f) = A(2-5, f).
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EXAMPLE 5.0.6. Take an Eisenstein series of weight two with prime conductor,
say H(z) = E,(z) — pE2(pz) of Example 2.2.6 where p is a prime. Then,its L-
function is —24 times

Do (Do eo(d)d)n-* = C(s)L(s ~ 1, €0)
n=1 din

where €o is the trivial character mod p; recall that €o(d) = 0 if pid. There are
simple poles of A(s, H) = (2x//p)~*I'(s)L(s,H) at s = 0 and s = 2(= k), owing
respectively to the presence of I'(s) and

Le 1,0) = (1 1/p°)¢(s 1).
There are no other poles, e.g. the pole of ¢(s) at s = 1 is cancelled by the zero of
L(s —1,€0) there (at s = 1, the Euler factor (1 — 1/p°~1)is zero while ¢(s— 1)is
finite).

Similarly,if we take the weight one Eisenstein series £;,- with an odd character
€ modp (with p prime) as in Example 2.2.4 then L(s, E;,-) is essentially ¢(s)L(s,e).

6. Newforms and multiplicity one

In this section we explain someof the relationships between cusp forms, espe-
cially Hecke eigenforms, of different levels. The main result is the multiplicity one
theorem of Atkin and Lehner [AtLe]. ‘They consider only modular forms on To(N),
but here we follow [Lang2, Chapter VIII] for exposition of the theorem in T,(N)
case. We shall return to the notion of multiplicity one from the point of view of
automorphic representations in §11.

6.1. Old and new subspaces.

PRIMARY REFERENCES:

[Lang2, §VIII.1], [Miy2, §4.6] and [AtLe]
Weconsider the action of Ty and TY) on S,(I,(N)), the space of cusp forms

of weight k and level N. We shall fix the weight k(> 1) throughout thesection,
but consider different levels.

Let d, M be positive integers such that dM divides N and let 1g = ( : }

If f(z) is a modular form on I';(M), then f|[0a]4(z) = d*-1f(dz) is a modular form
on T,(N) since vy'P'\(M)ug contains T,(N). Moreoverif f is a cusp form then so
is f|[ta]e; 80 f + f|[ca], defines an injective map

(6.1.1) tam, ? 8x(Pi(M)) + Sx(Ti(N))
which we will denote .* when M and N arefixed.

Let us examine the extent to which 14 is compatible with the action of the
Hecke operators. Using (3.4.2) wefind thatif p is a prime not dividing N, then

F\lealelT(p)e = FIT(p)el[eale

where T(p), in theleft side of the equationis relative to level N while that in the
right side is relative to level M. A similar statement holds for T(p, p) if p does not
divide N. Thus 13 is a homomorphism of T(%)-modules where we regard S; (I (M))
as a module for T™) using the obvious inclusion TY) c T). In particular,if f
in S,([y(M)) is a T™)-cigenform then f|[ea]x in S,(P'1(N)), for d dividing N/M,
is a T(’)-eigenform with the same eigenvalues away from N.
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REMARK6.1.1. The map (6.1.1) commutes with T(n) if (n,d) = 1, but gen-
erally fails to commute otherwise.

For a fixed N, the linear span of the images of the maps ljyy over all d,

M with dM|N, M # N,is called the old subspace of S,(T(N)), and is denoted

S;,(Ti(N))°4. We define the new subspace of S;,(Ti(N)), denoted S,(Ty())"*™,

as the orthogonal complement of S;,([(N))°4 in S,(Ti(N)) with respect to the
Petersson inner product. One checks that the space S,(['1(N))°!" is stable under
the action of T™) on Sx(T1(N)), andit follows that so is S,(I')(N))"°. Moreover

we can write

(6.1.2) Se(Ti(N)) = S> (Se(Ti(M))"°") |[eale
dM|N

as a T)-module with the space S;(I'1(N))°"4 of oldforms given by

dS SEM)Mele = DF (Se(T1(M))”*™eae -
dM|N,MAN dM|N,M£N

For each M,the T\)-module S;(I'1(M))"°™ admitsa basis consisting of T()-
eigenforms. Thus S;(I'(N)) has a basis consisting of T’)-eigenforms {f}, where

each f is of the following form: f = gi|[ta]x with g; € S,([i(M))"*” for some
positive integers d, M such that dM|N andg; is a T™)-eigenform.

REMARK 6.1.2. One can checkdirectly that the space S;(I'1(V))°4 is stable
under the action of the bigger ring Ty. Weshall see later that the sameis true for
S;(I1(N))"°”; moreover this space is spanned by Ty-eigenforms called “newforms”
or “primitive” forms. We shall also see that the sum in (6.1.2) is actually a direct,
sum decomposition. See the discussion following Corollary 6.3.1, especially Remark

6.3.4.

The maps ¢4yyy commute with the action of (Z/NZ)* where we define the ac-

tion of (Z/NZ)* on &;,(C)(M)) via the natural projection (Z/NZ)* — (Z/MZ)*.
It follows that we have a TY)-equivariant decomposition

S(T1(N))4 = Dain, e)e

overDirichlet characters ¢ mod N where S;.(N,¢)°!4 = Sx(N,€)NSx(Ti(N))°!4. We
have an analogous decomposition of the new subspaceinto eigenspaces S;,(N,¢)"°”,
and these satisfy

Si(N,€) = Sk (Nye)© Se(N,e)"™.

Wecan replace I’, by To in the appropriate definitions above to obtain mapsvj

and old and new subspaces S,(Ty(N))°!4 and S;,(Py(N))"°* of Sp(Py(N)). These

spaces coincide with S;,(N,¢)°! and S,(N,e)"°” where ¢ is the trivial character.
In fact, for the space of cusp forms of type (k,.V,¢) we may define the old and

new subspaces intrinsically as follows. Given M|N,a Dirichlet character x mod M

gives rise to a Dirichlet character mod N via the natural projection (Z/NZ)* >
(Z/MZ)*; denote it by yx. Moreover given a Dirichlet character € mod N,there
is at most one character x mod M such that yy = ¢. Indeed, if ¢y) denotes the

primitive character associated to € and C its conductor, then x exists only if C|M,

in which case x = (€0)v. Since v3 respects the action of (Z/NZ)* for dM|N, we see
that f +> f|[ea]e defines a map S_(M,x) > S.(N, xn) which we again denote v’.
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Then S;,(N,¢)°is simply the linear span of the images of 17 : Sy(M, x) > S,(N,e)
overall integers M and d such that M # N, C|M|N,x is the Dirichlet character
mod M with yw = ¢ and d divides N/M. The orthogonal complementof S,(N,e)4
in S(N,€) relative to the Petersson productis ,(N,<)"*. In particular, if ¢ mod
N is primitive then S,(N,¢)"°” = S,(N,<).

REMARK6.1.3. The maps 3 are essentially pullback homomorphisms induced
by the degeneracy maps Yo(N) — Yo(M) defined in §7.3 (with the roles of M and
N reversed).

EXAMPLE 6.1.4. We describe the decomposition of Sj(I';(33)) into its old and
new subspaces. By the dimension formulas in §12.1, we find that S)(I'j(33)) is 21-
dimensional. Wealso find that S(T(3)) = 0 and that S,(I'j(11)) = So(To(11))is
one-dimensional and therefore generated by a normalized T,1-eigenform f. There-
fore S2(T\(33))""4 = S2(Io(33))°"" is spanned by the linearly independent forms
f(z) and f(3z). The space S9(I'1(33))"°” decomposes as

52183, 6)",

where ¢€ runs over the 10 Dirichlet characters mod 33 which are “even” in the
sense that <(—1) = 1. For thetrivial character ¢, we have that S2(33,e)""” =
52(I'9(33))"*” is one-dimensional generated by a T33-eigenform. Applying the
dimension formulas to groups intermediate to T'\(33) and ['9(33), and using the
second part of Proposition 12.3.11, we find that S2(33,<)"°” = S)(33,¢) is two-
dimensional for each non-trivial even ¢. We shall see from the theory of new-
forms that each is spanned by T'33-eigenforms. Moreover, while f(z) and f(3z) are
not T's3-eigenforms, suitable linear combinations will be, so that in this example,
S2(P1(V)) is spanned by Ty-eigenforms. This is not the case in general. For ex-
ample, the reader may check that the subspace of So(I'(297)) spanned by f(z),
J(32), f(9z) and f(27z) is stable under T; but does not have a basis of eigenforms
for Ts.

Let us also note how the W-operators behave with respect to the maps v4. We
find that

gllealelfwanele =a"?ofa], for g € S,(T1(M)),
or equivalently,

fllwamle = fllwarelleale for f € S,(Li(M))
since [wy]g = (—N)*~? on S,(T1(N)). Thus Wy = (—N)!-*/2[wy],, preserves the
spaces S.(Ty(N))"** and S,(P1(N))°!4, and gives an isomorphism

Si (N, €)"°* — S,(N,e)2°*

and an analogous isomorphism for the old subspaces.

6.2. Multiplicity one theorem.

PRIMARY REFERENCES:
[Lang2, §VIII.3, VIIL.4], [Miy2, §4.6] and [AtLe].

Let T“) be as before. In addition to T)-eigenforms in Sx(Ti(N)), we shall
consider forms which are simultaneous eigenvectors under T', for almostall primes
p. Forthis, we introduce an auxiliary positive integer D and consider the action of
TY), Then, for f € S.(T1(N)) the following are equivalent by arguments similar
to those used for Proposition 3.5.1:
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e f is of type (k, N,¢) for some ¢ mod N andis a T“)-eigenform;
© f isa T’)-eigenform;
e f is acommoneigenform under T,, for all (n, ND) = 1.

A form f € S,([1(N)) is a common eigenform underT;, for almostall (i.e., all but
finitely many) primesp if and onlyif there exists D such that f isa T“)-eigenform.

Let f be such an eigenform of weight k > 1. We can associate to f a homomor-

phism 6, : T’) — C defined by Tf = 0;(T)f; wecall 65 the eigencharacteroff.

Since the T()-eigenspace to which f belongs contains a non-zero TN-eigenform

whose eigenvalues away from N are the sameas those of f, the image 0(TNDisa
subring of the ring generated by the eigenvaluesof the Ty-eigenform and therefore
(see Remark 3.5.3 and Corollary 12.4.5) contained in the ring of integers of an al-
gebraic numberfield (offinite degree over Q). Note that the valuesof ¢ associated
to f alreadylie in 0,(T°).

Now, the main result of Atkin-Lehner theory is the multiplicity one theo-
rem, which essentially says that an eigencharacter occurring in the new subspace
S,(1(N))"” does so with multiplicity one. This is a consequence of the following
key fact in the theory whose proof we omit. (See e.g. [Lang2, §VIII.4].)

PROPOSITION 6.2.1. Let f = 0° ang” be a cusp form onT;(N) and suppose
there is an integer D > 1 such that for all (n, ND) = 1 we have an = 0. Then
there exists a cusp form gp onT;(N/p) for each prime p|N such that

f=S2 he,
p|N

ie, f €S(T1(N))™.

This implies the following

COROLLARY 6.2.2. Let f = > a,q” be a cusp form on Ty(N) which is a si-

mullaneous eigenfunction under T, for almost all primes pYN. If a, =0 then f is

in the old subspace.

Indeed,with an auxilliary integer D chosen in an obvious way so that T,f = Apf
forall pND,if a; = 0 then from anp+e(p)p*~1an/p = Apan we get that ay» = 0 for
such p for all v by induction. (Recall that f of the proposition is necessarily of type
(N,¢) for some Dirichlet character ¢ mod N.) Hence, a,, = 0 for all (n, ND) = 1.
By Proposition 6.2.1, f is then in the old subspace.

In view of this, any (non-zero) T’”-eigenform f in S,(I'(N))"°* can be
normalised to have thefirst coefficient a; = 1. The multiplicity one theorem is

THEOREM 6.2.3. Let f, 9 © Sz(Ti(N)) be T’)-cigenforms with the same
eigencharacters, i.e., 0;(Tp) = 0(Tp) for all pyYND. If f € S,(Ti(N))"”, f
normalized, then g is a scalar multiple of f. (In particular, if g is in the old
subspace, then g = 0.)

Proof: If g # 0 is in the new subspace, then we may assumethatit is normalised,

so that f —g is a T’)-eigenform in the new subspace with thefirst coefficient
0. So f —g is also in the old subspace by Proposition 6.2.2, hence g — f = 0.
If g is in the old subspacethenit is a linear combination of functions 14g; where

gi © S.(Ti(M))"**, M #4 N, dM|N, and where each g; is an eigenform under

T) = TP’) with ND = MD!for some D’. Note that 04, (Tp) = 94(Tp) for p
not dividing ND. Unless g = 0, there is some i such that a1(g;) # 0 by Proposition
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6.2.2 (at level M instead of N), andso thereis a constant c such that a1(f—cg;) = 0.

As f —cgi € Sj(I1(N)) is a T’)-eigenform, Proposition 6.2.2 implies that f —cgi
is old at level N, which in turn means thatf is old at level N (becauseg;is already

old at that level). But f 4 0 is also new of level N by assumption, and we have a

contradiction, unless g = 0. Finally, if g = g®” +g°!4 then each component has the

sameeigencharacter as g (or f), and so the above argument shows that g°!’ = 0,
while g = g"°” is a multiple off.

6.3. Newforms.

PRIMARY REFERENCES:

[Lang2,§VIII.3], [Miy2, §4.6] and [AtLe].

We have already noted that for a T)-eigenform g on T',(M) (with M 4 N,
M|\N), the two forms g(= c}g) and 139 (with d > 1, dM|N) have the same T“)-
eigencharacter. If in addition g(# 0) is in the new subspace of level M, then

these two forms are linearly independent. Thus, we have the following corollary to
Theorem 6.2.3.

COROLLARY6.3.1. The subspace S;(I';(N))"™ (respectively, S,([1(N))°*) of
Sx(Ti(N)) is the orthogonal sum of the T®)-eigenspaces in Sy(I1(N)) whose
eigencharacters occur with multiplicity one (respectively, > 1).

The sameis true of course if we consider eigenforms under T“) in the old and
new subspaces of S;,(N,é), since an eigencharacter determines the Nebentypus.

Thecorollary implies that S;,(I';(V))"°” is stable under the action of the full
Hecke ring Ty. In fact, a T)-eigenspace in S,(I'1(N))®°™ or S_(N,e)#°™ is one-
dimensional andis therefore stable under Ty since the Hecke operators all com-

mute. Therefore a T"/)-eigenform in S,(T'1(N))"¢™ is necessarily a Ty-eigenform.
Thus the following are equivalent in the new subspaceoflevel N:

(i) f is a Ty-eigenform;
(ii) f is a T)-eigenform;
(iii) f isa T’”)-eigenform for some D.

Recall also that such a form f can be normalized so that a; = 1. A normalized

eigenform in S,(I'\(N))"°™ is called a newform (or a primitive cusp form) oflevel

REMARK 6.3.2. Conditions (ii) and(iii) are equivalent for f in S,(T1(N)), but
they do not imply (i).

REMARK6.3.3. The multiplicity one theorem holds also for forms of different
levels. Let f, € Sg(T1(Nj))"*” (¢ = 1,2) be two normalized Hecke eigenforms

with eigenvalues ai, under J), for primes p. Suppose a, = a, for all but finitely
many primes p. Then we must have f; = fo. This follows from the multiplicity

one Theorem 6.2.3 once the equality N; = N» of their levels is established by

considering their functional equations (Remark 5.0.2); see e.g. [Miy2, §4.6]. Thus
for a T’)-eigenspace of S;,(T1(N)), there is a unique pair (f,.M) such that f is
in the eigenspace and is a newform of level M.

REMARK 6.3.4. We have mentioned, in Remark 6.1.2, that the decomposition

(6.1.2) is actually a direct sum. This can be seen as follows: First, note that
S([1(N)) is an orthogonal sum of T’)-eigenspaces. Let g be a newform oflevel
M,and suppose M divides N. Then for every positive integer d dividing N/M,
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14g is a T™)-cigenform belonging to the same TY)-eigensubspace of S,(I'1(V)) to
which g belongs. In this eigenspace, we have a direct sum ®aCx%g, d over divisors
of N/M,because the set {g(z), g(2z),9(3z),.. .} is linearly independent over C for
such a form g. Now, for each M|N,let (GPces ght } be the set of newforms of
level M, and let eM (1 <j < jm) denote the corresponding eigencharacters. Note
that the set is actually a basis for S,(I',(M))"*”. Now by multiplicity one (Theorem
6.2.3) and Remark 6.3.3 these 6™, over all M|N and 1 <j < jy, are distinct as
eigencharacters of T\’), Hence, the forms gM € S,(LPi(N)) belong to mutually
distinct TY’)-eigenspaces. These arguments thus yield the following direct sum

Im

DD @B Cuigi")
M|N j=1 didM|N

in S,(T,(N)). Interchanging the two inner sums gives precisely the sum appearing
in (6.1.2), but with @ in place of D.

Let f =) Ang” be the newform in a T(’)-eigenspace of Si(P1(N)) (or equiv-
alently a T“)-eigenspace for some D). Since f is a Tyy-eigenform for some M
dividing N,its L-function L(s, f) has an Euler product (5.0.2) where ¢ is a char-
acter mod M. The L-functions of the Ty-eigenforms in the T()-eigenspace are
obtained by simple modifications of the Euler factors of L(s, f) at primes dividingN/M.

EXAMPLE 6.3.5. Returning to Example 6.1.4, we sce that S2(T',(33)) decom-
posesinto 20 T3)-eigenspaces, two for each even Dirichlet character mod 33. One
of those is two-dimensional, but the rest are one-dimensional, generated by a new-
form oflevel 33. The two-dimensional T(*)-eigenspace is generated by f(z) and
f(3z) where f (Example 2.2.8) is a newform oflevel 11 withtrivial Nebentypus and
A3 = —1. Letting ay and 3 denote the roots of X2+X +3 = 0, one finds that this
T5)_eigenspace is generated by the T33-eigenforms f; = f — a3 f(3z) and fr =
f—(3f(3z). The L-function L(s, f) (Example 5.0.5) has an Euler productfor which
the Eulerfactor at 3 is L3(s, f) = (1+3-°+3!) = [(1-a43-*)(1— 33 a
The L-function L(s, f;) (resp. L(s, fo)) are obtained from L(s, f) by replacing
Ls(s, f) with (1— 633-*)-} (resp. (1 — a33-*)-1).

Let us also consider N = 297. Onefinds that the 4-dimensional TY”)-eigenspace
of S9(P1(V)) generated by f(z), f(3z), f(9z) and f(27z) contains only three nor-
malized Ty-eigenforms and that their Z-functions are obtained from L(s, f) by
replacing Ls(s, f) by (1 — 8337*)-1, (1 — a33~8)~! and 1.

Let us now consider the T' (N)situation. The involution Wy commutes with
the Hecke operators T, for all p/N (p prime) so that a newform f of level N is
also an eigenvector for Wy (with eigenvalue ¢ = +1); similarly it is an eigenvector
for Wop) for all p|N, with corresponding eigenvalues e(Q(p)) = +1. Consequently,
L(s, f) satisfies the functional equation (5.0.1) with ¢ = TI,iv €(Q(p)). Moreover,
Ap = 0 if p?|N, while 1, = —p*/2-le(p)if p||N. This last assertion is obtained
using the following fact (see [AtLe, Lemma 7]): For f in Sk(To(N)), Tf is a cusp
form on I'9(N/p)if p?|NV, while T;,f + p*??-'W,f is on T(N/p)if p||N. Indeed,
in either case, the given form oflevel N/p is in &,(Po(N))°" andso, having the
same T‘)-eigencharacter as the newform f, must be 0. Since Tpf = Apf, while
W,f = ¢(p)f in the second case, we obtain the desired values for Ap when p|N.
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Part II. Modular curves

7. Elementary theory

Recall that in §3.2 we defined the modular curve associated to a congruence
subgroup I of SL2(Z) as the quotient space I'\\s) where the action of SL9(Z) on the
complex upper-half plane § is given by linear fractional transformations. We have
thus defined a modular curve simply as a topological space, but we shall interpret
it in §7.2 as a moduli spaceforelliptic curves. This interpretation will yield in §8
a natural algcbraic-geometric description of the curve as the set of complex points
of a “moduli scheme.”

7.1. Topological structure.
PRIMARY REFERENCES:

(Shi, §1.3-1.5], [Ser1, §VIL1), [Lang2, §I11.1, I1L.2] and [Miy2,Ch. 1].
We first describe the topological structure of the modular curve Y = SL2(Z)\h

by giving a convenient set of representatives in § for this quotient. (See [Ser1,
§VIL.1] and [Shil, §1.4].) As the diagonal matrix —1 acts trivially, we have Y =
PSL(Z)\. The group PSL2(Z) = SL2(Z)/{+1} is generated by the elements

af 0 A _ O 1g=2(4 af r=+(} :)

with relations S? = T° = 1. Every element z of § can be written in the form ¥(z')
for some y € PSL2(Z) and somez’ in the set

D={c+iyEH\a?+y? > 1,2] < 1/2}.

Letting D! denote the interior of D together with the subset of the boundary
satisfying x > 0, we find that for every z there is a unique z’ in D’ such that z
is in PSLo(Z)z’. The element of PSL2(Z) such that z = +(z’) is not necessarily
unique, but the only points of D’ with nontrivial stabilizers are i and C= ets,
Their stabilizers are the groups (S) and (T') respectively. Observe that the points of
D’are in one-to-one correspondence with the points of Y, but the two topological
Spaces are not homeomorphic. Rather the topological space Y can be constructed
from D as the quotient space obtained by identifying z with —Z for boundary points
of D; thus Y is homeomorphic to R?.

REMARK 7.1.1. A “nice” set of representatives in § (or for some authors,its
closure, and for others, its interior) for the modular curve ['\9 is called a “fun-
damental domain” for I. Weshall not give a precise definition here, but remark
only that D is a fundamental domain for SL2(Z) and that for any IT there is a
fundamental domain of the form UyD where y runs over a suitable set of coset
representatives for I\SLo(Z). (See [Shil, §1.4] and [Miy2, §1.6].)

The spaces I'\are Hausdorff and inherit from § the structure of a one-
dimensional complex manifold [Shil, §1.5]. If the image T of P in PSL2(Z) has no
elementsoffinite order, then I’ acts withoutfixed points on §. This is the case for
example if ! = ['|(V) with N > 3, and then the local homeomorphism § — ['\5
fully describes the complex structure on the quotient. Slightly more care is re-
quired if I'\ haselliptic points. These are points for which a preimage in § has a

non-trivial stabilizer, necessarily offinite order, in I. Note that there are only two

elliptic points on Y = SL2(Z)\S; they are PSL2(Z)i and PSL2(Z)¢. The function
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f(z) = ((z—-i)/(z+1))? defines a homeomorphism from a neighborhood of PSL2(Z)z
in Y to a neighborhoodofthe origin in C. The complex structure at PSL2(Z)i
is then given by f and a similar function works in a neighborhood of PSL2(Z)¢.
The resulting complex manifold Y is biholomorphic to the complex plane. For an
arbitrary congruence subgroup I, the natural projection '\S — SL2(Z)\ maps
the finite set of elliptic points to SL2(Z)i USL2(Z)¢. To complete the description
of the complex structure of I'\, one can use the fact that this projection is a

homeomorphism in a neighborhoodofeachelliptic point.
Note that the curves [\§ are not compact. We shall explain in §9.1 how they

are compactified by the addition of “cusps” to obtain a Riemann surface.

7.2. Moduli spaces.

PRIMARY REFERENCES:
[Huse, §11.1, 11.2] and [Sill, Appendix C §13]

Weare especially interested in the curves associated to [g(N) and T'\(N) for
positive integers NV, and we denote these curves Yo(N) and Y;(N)respectively. We
always wish to bear in mind their interpretation as “moduli spaces.”

Webegin with Yo(), whose points are naturally in bijection with isomorphism
classes of pairs (E, C) whereE is an elliptic curve over C and is a cyclic subgroup
of E of order N. (We consider the pairs (E,C) and (E’,C’) to be isomorphic if
there is an isomorphism ¢ : E — E’ such that ¢(C) = C’.) To establish the
bijection, simply associate to T € § the pair

1
E, = (C/A,, yv/2)

where A, is the lattice Z+Zr. One checks that any pair (7, C) is isomorphic to E,
for some T € §), and that E, is isomorphic to B,. if and only if r’ € T9(N)r. Note
that if N = 1 then Yo(J) is simply the set of isomorphism classesofelliptic curves.
Asan elliptic curve over C is determined up to isomorphism by its j-invariant, the

map T+ j(E,) defines a bijection Yo(1) — C.
Similarly the points of Y;(N) are in bijection with isomorphism classes of pairs

(E, P) where E is anelliptic curve and P is a point of E of order N. (For 7 € 4, use
E=C/A, and P =1/N mod A,.) The action of I'9(NV) on § induces an action of
To(N)/Ti(N) on ¥i(N). Using the isomorphism I'9(N)/T(N) = (Z/NZ)* defined

by ( Z ++ dmod N, we view (Z/NZ)* as acting on Y;(N) as well. The

corresponding automorphism (d) of Y;(N) has the moduli-theoretic interpretation
(E,P) + (E,dP). Note that (—1) is the identity, so the action of (Z/NZ)*
factors through (Z/NZ)*/{+1}. Note also that Yo(N) is naturally the quotient
of ¥;(N) by the action of this group and the natural projection Yi\(N) — Yo(N)
has the simple moduli-theoretic interpretation (E, P) + (E,(P)) where (P) is the

subgroup of E generated by P.

7.3. Modular correspondencesrevisited.

PRIMARY REFERENCES:
[Ser1, §VII5], [Sil2, §1.9], [Kna2, §VIIL.7] and [Kobl, §IIL.5].

Wehavealready considered in §3.2 certain natural projection mapsor “degener-

acy maps” between modular curves and used these mapsto define correspondences.
Let us return to this matter from a more moduli-theoretic point of view.
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If M is a multiple of N, then Ty(M) is contained in T9(N) and there is a

natural projection from Yo(M) to Yo(N). There are in fact a numberof natural

degeneracy maps from Y(M) to Yo(NV); for any divisor d of M/N, we have that

tal'p(M)uz' C To(N) so that 7 +> dr induces a map from Yo(M) to Yo(N). Here

tq denotes the matrix ( : : ) as introduced in §3.2. We are especially interested

in the case where M = Npfor a prime p, and we denote by a and ( the degeneracy

mapsdefined,respectively, by 7 ++ 7 and t ++ pr. These have the moduli-theoretic

interpretations a(H, C’) = (E£,Cy) where Cy is the subgroup of C of order N, and

3(B,C) = (E/C,,C/C,) where C, is the subgroupof C oforder p. The coverings

Yo(Np)
Be Sa

Yo(N) Yo(N),

possibly branched, give rise to a correspondence(see §3.2) T, = a0'f on Yo(N) x
Yo(N). If p does not divide N, then T,(T9(N)r)is the divisor 37 9(N)7(r) where

¥ runs through the set

men {2 SER)~(3 25 )CE D}
Identifying points of Yo(N) with pairs (H,C), we find that 7, has the following

natural characterization

T,(E,C) = )\(E/D,(C + D)/D)
D

where D runs over cyclic subgroups of E of order p. If p divides N, then T, (in this

case frequently denoted U, in the literature) has similar descriptions, except that

we omit the last element from the above set of matrices and require that D ¢ C.
It follows directly from this description that T,,T, = T,T, for all primes p and q.

REMARK 7.3.1. In §3.4 the symbolT; is used to denote the endomorphism of

S2(I'o(N)) induced by the double coset T(p) =T'o(N)7T'o(N) where y = ( aS }-

We have also explained in §3.2 how T(p) gives rise to a correspondence on

Yo(N) x Yo(N). There 7, is defined as Bo'A where the maps A and B to
Yo(N) are not from Yo(Np), but from G\f) where G is conjugate to [9(Np) by 7.

However, the correspondences 7, and T, on Yo(NV) are the same, as can be seen by
composing A and B with the isomorphism between Xo(Np) and G\f to obtain the
degeneracy maps ( and a,respectively.

More generally, to any positive integer n we can associate a modular correspon-

dence T;, on Yo(N) x Yo(N) by the formula

(7.3.2) T,(E,C) = $°(B/D,(C + D)/D)
D

where D runs over subgroups of £ of order n satisfying CMD = 0. Then T,,

coincides with the correspondence which arises from T(n) by the construction of

§3.2. In particular, having set T; = 1 and defined 7, for all primes p, the T,, are
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characterized by the equations (see Proposition 3.3.1)

Te = TriT,- pTpr-2 ifr > 2 and pis a prime not dividing N;
(7.3.3) TIpr = Ts if p is a prime dividing N;

Ton = ByTh if (m,n) =1.
One can similarly define and describe modular correspondences on Y\(N) x

Yi(N). In particular, suppose that p is a prime not dividing N and consider the
curve ¥ =1\(N,p)\5, where I')(N,p) denotes T',(N) MVo(p). The modular corre-
spondenceT,, is defined by a o'@ where a and @ are the degeneracy maps from Y
to Y;(N) defined, respectively, by 7+ 7 and T1> pr. Theeffect of J, on a point
Ti(N)r of ¥\(V) is given by the formal sum T1(N)y(r) where 7 runs through
the set in (7.3.1), except that the last matrix requires a slight modification. We
now have the moduli-theoretic interpretation:

T,(E,P) = }-(E/D, P mod D)
D

where D runs over subgroups of E of order p. One can again define T,, for inte-
gers n > 1 with a moduli-theoretic interpretation analogous to the one in (7.2.2),
and again these coincide with the correspondences which arise from T(n) via the
construction of §3.2. They satisfy the equations listed in (7.3.3) except that now
Tyr = T,r-1T, — (p)pTpr-2 for primes p not dividing N. Note also that the corre-
spondence T;, commutes with the action of (Z/NZ)* and the natural projection
¥i(N) > Yo(N).

REMARK 7.3.2. One can also give a simple moduli-theoretic interpretation of
the involutionof Y|(N) induced by the matrix wy defined in §4. The pair (E, P) is
sent to (E/(P), P’ mod (P)) where P’is a point of E[N] satisfying (P, BP} = ern
where (,) is the Weil pairing on E|N]. Denoting the involution again by wy
we have the identities wvT,wn = ‘T, for all n > 1 and wy(d)wy = (d)-? for
all integers d relatively prime to N. Similarly, for Q dividing N andsatisfying
(Q, N/Q) = 1, the involution weg of Yo(N) defined in §4 has the interpretation

(B,C) 4 (B/C1Q), (EIQ) + C)/Cla)).
8. Canonical models

The aim of this section is to explain how the interpretation of the modular
curves as moduli spaces can be used to define canonical models for these curves.
Wewill also discuss the Eichler-Shimura congruence relation in this context. The
main reference will be [DeRa], but see also [Shil], [KaMa] and [MaWi]. We
assume some background in algebraic geometry, as can be found for example in
{Hart}.

Bya modelfor a modular curve Y over a subring R of C, we mean a pair (Y, 4)
where JY is a scheme over Spec R with one-dimensional fibers, and ¢@ is an analytic
isomorphism Y © )/(C).

EXAMPLE 8.0.1. Consider the scheme )) = Spec (Z[j]) over SpecZ and the
isomorphism ¢ : Yi(1) — )(C) which sends SL(Z)r to the clement of y(C)
defined by j ++ j(r). The pair (),) is a model for Y;(1) over Z.

Shimura’s theory of canonical models [Shil, §6.7] provides a compatible sys-
tem of models over number fields for modular curves associated to congruence
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subgroups. In particular, he shows that Yo(N) and Y;(N) can be viewed as quasi-

projective varieties defined over Q so that the projections, degeneracy maps and

correspondences discussed above can be defined over Q. We will adopt the point

of view of Deligne-Rapoport [DeRa] in order to define models over rings of the

form Z[1/N]. These models are an important tool in the study of the arithmetic
of modular curves and our discussion will barely scratch the surface. In addition

to [DeRa], the reader can consult [Igu1], [Igu2], [Igu3], [Drin], [KaMa] and
[MaWij.

8.1. Families of elliptic curves.

PRIMARY REFERENCES:
{KaMa, Chapter2], [Gross, §1] and [Sil2, Chapters IILIV].

Recall first that the points of Y;(N) correspond to pairs (E, P) where E is an

elliptic curve over C and P is a point of E of order N. We will now rephrase the

definition of a pair (E, P) so that it makes sense with C replaced by a scheme S

over Z[1/N]. By a family ofelliptic curves over S, often simply called “an elliptic
curve over S,” we mean a smooth, proper group scheme over S' whose geometric

fibers are elliptic curves.

EXAMPLE8.1.1. Let S = Spec Z[1/11] and let € be the closed subscheme of
P2 defined projectively by

VY2Z+yY7? = xX°= x°7— 10x7? — 2077.

Then € can be given the structure of an elliptic curve over S with zero section

S — E€ defined by “the point at 00,” X +0, Z0.

EXAMPLE8.1.2. Let S' = Spec (Z[j, j~1(j — 1728)—1]). Let € be the “generic”
elliptic curve over S,i.e., the closed subscheme of P2, defined by

Y?Z4+ XYZ = X* — 36(j — 1728)1xZ? — (7 — 1728)-1Z8.

At a geometric point Speck — S defined by j +> jo (where jo € k with jo 4 0, 1728),

the fiber of € has Weierstrass equation obtained by replacing j by jo in the equation
above(see [Sil1, §III.1]).

EXAMPLE 8.1.3. The Tate curve [Del4, §8] over S = Spec (Z((q))) is defined
by Y°Z+ XYZ = X9 + a4XZ? + agZ? in P2, where

eral 3g? — ¢?): ee: 5 a RIT — ala4 = sera q”); ag = = +5n*)q"/(1— 49").

8.2. Moduli problems.

PRIMARY REFERENCES:
[DeRa,Chapters IILIV], [KaMa, Chapters 3,4], [Shil, Chapter 6] and [MaWi,
§2.3].

Now define a contravariant functor 7,(N) from Z[1/N]-schemes to sets as fol-

lows: For a scheme S over Z[1/N], Fi(N)(S) is the set of isomorphism classes
of pairs (€,P) where € is an elliptic curve over 9 and P is an element of €(9)
of exact order N. A section P : S — € is said to have exact order N if for all
geometric points s : Speck — S, Pos has order N in E(k). If f : S + T is a mor-
phism of schemes, we define Fi(N)(f) : Fi(N)(T) — Fi(N)(S) by “base-change”
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(E,P) + (€3,Ps) where &s and Pg are defined so the squares in the following
diagram are cartesian:

Ss > T
| Ps LP

Es 7 €

1 i
Ss — T.

It follows formally from standard properties of base-change that (£3, Ps) defines
an element of F,(NV)(S) and that F(N)is a functor.

In this language, the substantive statementis the following:

THEOREM8.2.1. If N > 3, then there is a scheme Vi (N) which represents the
functor F,(N). Moreover Yi(N) is smooth of relative dimension one over Z[1/N]
with irreducible geometric fibers.

Theproofis essentially due to Igusa [Igu1], but the statement in this form is
most easily deduced from (2.7.3), (3.7.1) and (4.7.1) of Katz-Mazur [KaMa]. Sce
also [DeRa]for a sketch of Igusa’s method and statementssimilar to the one above.
The meaning of “),(N) represents F,(V)” is that for any scheme S over Z{1/N],
thereis a bijection, functorial in S', between the set of maps 5 4 Yi (N) and the set
of isomorphism classes of pairs (€,P) over $. It follows formally that the scheme
Yi (N) with this property is unique up to canonical isomorphism. Note also that
corresponding to the identity map in the case S$ = ,(N) is a pair (Exniy + Prpriiy.)
which can be considered the “universal elliptic curve with a point of order N.”
Indeed any pair (€,P) over a Z[1/N]-scheme T is obtained from (Eqniy , Puniv) by
base-change for a unique morphism T — ;(N). Considering the case S = C,
we find a natural bijection ¢ between ¥j(N) and Y,(N)(C). This bijection is an
analytic isomorphism, so (7,(N),¢) is indeed a modelfor Y, (N).

VARIANT 8.2.2. It will be convenient at times to use models defined using a
different set of conventions. Giving a section P : S — € of exact order N amounts to
giving a closed immersion (Z/NZ)5 <> € of group schemesover S, where (Z/NZ)g
denotes the constant group scheme Z/NZ over $ ([KaMa,(1.4.4)]). Someauthors,
Gross [Gross] and Katz [Katz1], [Katz2] for example, use a model for Y;(N)
which instead parametrizes pairs (€,i) where i is a closed immersion (My)s OE.
The resulting moduli problem is represented over Z by a smoothaffine scheme we
denote Y,,(N). We thus obtain a model for Yi(N) over Z, (Yu(N), 6,), with 6,
defined by r + (E/A,,i,) for 7 € §. Here i, denotes the embedding defined by
i-(¢w) = 1/N mod A, where Cy = e?7'/N_ Note that the models are isomorphic
when tensored with Z[1/N, Cy]. We caution thatthere is an isomorphism of schemes
Vi(N) = Yu(N)ziryn] over Z[1/N], but such an isomorphism does not respect the
maps ¢ and ¢, and thus is not an isomorphism of models over Z[1/N].-

Consider now the situation for Yo(N), which is complicated slightly by torsion
in I'o(N). Let us continue to assume that N > 3 and return later to the case
N <8. We can define a functor Fo(N) on Z[1/N]-schemes where Fo(N)(S)is the
set of isomorphism classes of pairs (€,C) where € is an elliptic curve over S and
C is a finite flat subgroup scheme of € whose geometric fibers are cyclic groups
of order N. It is tempting to ask for a model for Yo(N) which represents Fo(N).
The fact that a pair (€,C) has non-trivial automorphisms, multiplication by —1
for example, makes the issue of representability a subtler one. We can nonetheless
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proceedas follows. For an integer d relatively prime to N, the pair (Euniy »dPuniv )
over i (N) defines a morphism Y,(N) — ;(N) which wecall (d). Then d > (d)
defines a homomorphism G —> Aut((N)) where G = (Z/NZ)*, or in other
words, an action of G on ¥,(N). Equivalently, we can view (d) as the natural
transformation F,(N) — F,(N) defined by (€,P) + (€,dP). Note that (d) is
a model for the automorphism of Y;(N), which we also denoted (d), in the sense
that (4) o ¢(z) = (d)(z) for all z € Y\(N). We can then consider the quotient
scheme Yo(N) = G\)1(N). We mention someofits properties, proved in [DeRa,
Ch. VI] and [KaMa,Ch.8]. It is a smooth schemeover Z[1/N], and the natural
projection )i(N) — Yo(N) is finite and flat, but not necessarily etale. There
are also maps $5 : Fo(N)(S) + o(N)(S), functorial in Z[1/N]-schemes S, and
bijective if § = Speck for an algebraically closedfield k. Applying this for k = C,
we find that Y(N) is a model for Yo(N). As $s is not necessarily a bijection,
Yo(N) need not represent F(N). In any case Yo(N) has an interpretation as a
“coarse moduli scheme” ([DeRa, §1.8], [KaMa, §8.1]), but we will not define the
term here. We mention only that for a field k, ¥o(N)(k) can be identified with
the set of equivalence classes of pairs (€,C) over k, where two pairs are deemed
equivalent if they are isomorphic over the algebraic closure of k.

In the case N < 3, a similar construction yields a model over Z[1/N] for
Yo(N) = Yi(N). Again the scheme Yo(N) = J, (N) can be interpreted as a coarse
moduli scheme andit has the properties listed above for Yo(N) in the case N > 3.
For N = 1, we recover the model in Example 8.0.1. We find also that the map
Fo(1)(k) — Yo(1)(k) for a field k is described by sending an elliptic curve to its
j-invariant. Note that this is not a bijection in the case k = Q; quadratic twists of
an elliptic curve have the same j-invariant, but are not necessarily isomorphic over
Q.

8.3. Models for modular correspondences.
PRIMARY REFERENCES:

[DeRa,§V.1], [MaWiz,§2.5] and [KaMa, Chapters 5,6].
Wenow turn to the problem ofdefining models for the degeneracy maps and

modular correspondences considered in §7.3. For this we will need a model over
Z[1/N]for the curve Y =T\s, where f =1)(N,p) =T,(N)N To(p). We are now
working in a situation of bad reduction at the primep,in the sense that the “best”
model turns out to be regular if N > 3, but the fiber over p is not smooth. The
moduli-theoretic construction and analysis of this modelis due to Deligne-Rapoport
[DeRal, but for a more general construction of such models using Drinfeld’s notion
of “elliptic modules,” see [KaMal].

First note that we can interpret Y as the space parametrizing triples (E, P,C)
where

E

isan elliptic curve over C, P is a point of order N and Cisa cyclic subgroup
of order p. To be more explicit, and consistent with our description of Y;(Np), we
associate to 7 € § the triple (E, P,C) where F = C/A,, P = dN-! mod A, with
dp = 1 mod N,and Cis generated by p~!.

Mimicking the above definition for F,(N), we define a corresponding functor
F on Z[1/N]-schemes which assigns to such a scheme S$ the set of isomorphism
classes of triples (€,P,C) over S, where € is anelliptic curve over S, P is a point
of order N and

C

is

a

finite flat subgroup schemeof € with geometricfibers of rank
p. Note that if S = F,, then the group scheme C cannot adequately be described
as “the cyclic group of order p.” Indeed C may be isomorphic to Hy or Z/pZ if E is
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ordinary, and it must be isomorphic to a, if €, is supersingular. (See (Sill, §V.3]

for the definitions of ordinary and supersingular and [Shatz, §2] for definitions of

My and Gp.)
The following is a consequence of the work of Deligne and Rapoport. (See

[DeRa, V.1.20] and [KaMa,§5.1].)

THEOREM 8.3.1. If N > 3, then F is representable by a scheme Y which

provides a model for Y over Z[1/N]. Moreover ) is regular and Yzi1/np\ 48 smooth
over Z[1/Np] with irreducible geometric fibers.

Wewill return in §8.4 to consider the behavior of ) at p if p does not divide N,

for it is closely related to the Eichler-Shimura relation and plays an important role
in the work of Ribet [Rib4]. First let us give another description of the functor F
and define models for the degeneracy maps and modular correspondences.

By an isogeny 7 : (€,P) — (€',P’), we mean finite flat homomorphism
na: &€ — €' such that ro P = P’. If E is an elliptic curve over a scheme S and C

is a finite flat subgroup schemeof €, then there is an elliptic curve €’ = €/C over

S and an isogeny 7 : € — €’ with kernel C. Moreover F is naturally isomorphic to
the functor which assigns to a Z[1/N]-scheme S$' the set of isomorphism classes of
isogenies (€,P) — (€', P’) over S of degree p.

The definition of models a’, 3’ : Y — )4(N) for the degeneracy maps a,/ :

Y — Yj(N)is now as formal as that of (d) in §8.2. We define a model a’ for
q@ using the natural transformation F — F,(N) defined by sending an isogeny

(E,P) — (€',P’) to the pair (€,pP). (Note that it is necessary to use pP in
order to have a’ o ¢(z) = a(z) for z € Y, where ¢ is the isomorphism Y — )(C)
corresponding to our parametrization by Y of triples (E, P,C) over C.) We define
@' by sending the isogeny to its target (€’,P’). We can now describe a “model”

over Z[1/N]for the correspondence T;, as the mapping

T = (6',a’): Y—>V,(N) x Yi(N).

To see how this gives rise to T,,, consider T as a morphism of schemes over ); (1)

via the projection m7 : ¥1(N)x)i(N) > Yi (N). Identifying Y;(N) with \(NV)(C),
we find that the geometric fiber

Tr : Vx — Spec C x Vi(N) = Vi (N)

of T over a point « € Y,(N) defines the divisor T,(x). Indeed on points, T, is
simply the restriction to 3~-1(x) of a: Y + Y;(N).

REMARK8.3.2. If X and Y arevaricties over a field k, then a correspondence

on X x Y,or from X to Y,is usually defined as a divisor on X x Y (see [Shil,
§7.2]). We have defined T as a morphism rather than as a divisor in order to avoid

complications which arise when considering relative divisors over more general base

schemes than S = Speck.

8.4. Bad reduction.

PRIMARY REFERENCES:

[DeRa,§V.1] and [KaMa, Chapter 13).

Wenow return to the analysis by Deligne and Rapoport of the “bad reduction”
Yr, = Y x F, of the model in Theorem 8.3.1. We will define two natural maps

Vi(N)r, > Yer, Considerfirst the elliptic curve yp = (Euniv )F, over Vi(V), and
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the commutative diagram

€o + &o
i J

Y(N)p, > Y(N)r,
wherethe horizontal mapsare the absolute Frobenius endomorphisms. The diagram
gives rise to Frob : &) > EP) where Ev”) is the elliptic curve over )(N)p, defined
as the base-changeof Ep relative to 6. The map Frobis called the relative Frobenius
of &; it is an isogeny of degree

p

ofelliptic curves over Vi(N)r,. Writing Po for

(Puniv ew, and Pe) for Frob o Po, we get an isogeny

Frob: (€9, Po)  (&(”), Pl”)
which defines an element of F(),(N)r,) and thus a map

ip: Vi(N)p, > Ye,

For a more concrete description, recall that a point x : Spec F, — Ji(N) corre-
sponds toan elliptic curve E, over k = F, together with a point P, of order N. Its
image i o @ is the point Speck + which corresponds to the triple (E,, P,,C)
where C is the kernel of the Frobenius E, > E\). Note that BE”) is the ellip-
tic curve obtained by composing x with the absolute Frobenius automorphism of
Speck, or equivalently, by applying the Frobenius of k to the coefficients of an
equation defining F,, over k.

To define a second natural map Y,(N)F, — Yr,, we use the dual isogeny
Ver : EvD say &. This isogeny, often called the Verschiebung, is characterized by
the fact that Ver o Frob is multiplication by p on &. Thus

Ver : (&”, dP”) — (Ep, Po)
defines a map

iv: Vi(N)r, > de,,
where dp = 1mod N. For a point x as above, the image iy o x corresponds
(EY, dP!?), D) where

D

isthe kernel of the isogeny E{”) Ey dual to the Frobe-
nius.

From their effect on pairs (E,P), we can read off the composites of Oe, and
5p, with ip and iy. We find that

Of, cir = (p)p,
a oly = ©(8.4.1) Be, oip _*

Bp, oiy = id.

In particular, it follows that i» and iy are closed immersions. Using these immer-
sions, we can give a complete description of Jr, in terms of(N’)F,: First consider
the non-empty finite set of points on )(N)r, over which the geometric fiber of
&o is a supersingular elliptic curve. These form a closed subscheme of ”(N)r,
whose complement we denote )(N)°. Define )/°4 similarly and consider the
restrictions 194, ig"! : Y(N)t — ord. A point Speck = yord corresponding
to a triple (EZ, P,C) over k is in the imageof i, if and only if Cis connected,
and in the image of iy if and only if C is etale. It follows that i2¢ [| fe isan
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isomorphism. On the other hand, thefinite set of points corresponding to super-
singular elliptic curves lie in the intersection of the images of i and iy, and this

forms the singular locus of Yp,. We conclude that Jr, consists of two irreducible

components, each isomorphic to )|(N)F,> one via ip, the other via iy. A more

careful analysis shows that the componentscross transversally at the supersingular

points, identifying ip ox with iy o®oz for the points « : Speck > );(N) with E,

supersingular.

REMARK8.4.1. We mayalso define models for the maps defined in Remark
7.3.2 by the matrices wy of §4 (see [MaWi, §2.5]). For a positive integer N

and an elliptic curve € over S we can regard the Weil pairing as a morphism

E[N] xs E[N] > pwy,s. If S is a Z[1/N]-scheme and P is a point in €(S) of
exact order N, then pairing with P defines a surjective morphism of group schemes
E[N] — by,5 whose kernel is C = (P), the subgroup scheme generated by P.

Nowlet S = SpecZ[1/N,e?"*/"]. Then e?7*/" defines a point of 2y(S) and thus
gives rise to a point P’ of (E[N]/C)(S) Cc &'(S) of exact order N where €’is the
elliptic curve €/C. We can then naturally define a model for wy on );(N)g by
(E,P) + (E', P’).

For a prime p not dividing N, we can define a model w for w, on ) by sending an

isogeny (€,P) — (€’,P’) to its dual isogeny (€’,P’) + (€,pP). Note the relation
w* = (p) on Y andtherelations wr,ir = (p)r,iv and wr,iy = ip in characteristic
p. In particular, w interchanges the twoirreducible components of Vp,.

Similarly, for suitable divisors Q of N we can define models for the involutions

we on the coarse moduli schemes Yo(). Furthermore, we can define a model for

w, on Y4(Np) which interchanges ip and iy.

8.5. The Eichler-Shimurarelation.
PRIMARY REFERENCES:
{Shi1, Chapter 7], [Del1, §4] and [DeRa,§VI.6]

Note that our computation of the four composites in (8.4.1) describes the com-
posite of the normalization i = i» []iy with the modular correspondence Tp, in

characteristic p:

YN),WN)e,
L

Yr,
l

Vi(N)r, x Vi(N)x,-

We have

(8.5.1) Tp, 01 = (®, (p)r,) [](id, &).

This formula can be viewed as a form of the Eichler-Shimura congruence relation

[Eich], [Shi1, Theorem 7.9] (see also [Del1, §4]), which essentially says that the
correspondenceT,, in characteristic p is generically the sum of the correspondences

defined by the maps(4,(p)r,) and (id, &). For a precise statement, again consider
T as a morphism of schemes over Y,(N) via 7. Taking fibers over an ordinary

point x: SpecF, > J1(N)r, Ji (NV), we have

iW)TW) Veead

% Speck x Yi(N).
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The composite agrecs with the one obtained from the fiber over x of the morphism
(®, (p)p,) [](id, ©). Note that the divisor imageofthe resulting morphismis simply

(3.5.2) &.(2) + (p)e,«®*(2).
The situation for Yo(N) for N > 1 is much the same, except that instead of V

we use a model (Np) for Yo(Np) over Z[1/N] defined as a coarse moduli scheme.
Again Y4(Np)zj1/xp) = Yo(Np)is smooth over Z{1/Np]. If p does not divide N,
then (Np) may not be regular, but ¥o(Np)x,, can still be described as the union
of two copies of Yo(V) crossing transversally at supersingular points. The Fichler-
Shimura relation takes the same form as in (8.5.1) or (8.5.2), except that (p) is
replaced by theidentity. For N = 1, the imageof Tp, in

Yo(1)r, x Yo(1)r, ~ Spec (Fp[j1, 52)
is defined by

(i1 — 32)(G? - 52),
a form of the Eichler-Shimurarelation already known to Kronecker.

9. Compactification

We will now explain how to adjoin cusps to compactify the modular curve '\
and obtain a Riemann surface [Shil, Chapter 1]. Following Deligne and Rapoport
[DeRa] we give the moduli-theoretic interpretationfor this compactification in the
case I' = ['9(N) or T'\(N) and discuss the properties of the resulting canonical
models.

9.1. The cusps.
PRIMARY REFERENCES:

(Shil, §1.3-1.6] and [Miy2, §1.7,1.8,4.2].
Let 5* = HUQU {ov}and let I’ be a congruence subgroup of SL2(Z). Using

the natural action of GLo(Q) on P!(Q) = QU {co} defined by

a b\m_am+bn
¢e d}n ~~ cm+dn’

we extend the action of I on § to one on §*. We now consider the quotient
T\H*. We write Xo(N) for [o(N)\5* and X,(N) for T\(N)\%*. Before defining a
topology on §* and making the quotient a Riemann surface, note that SL2(Z) acts
transitively on P*(Q) and in general ['\P!(Q)is finite. The elements ofthis finite
set, which is the complementof '\$ in I\*, are called the cusps of T\9":

EXAMPLE 9.1.1. There is a unique cusp SL2(Z) - co = QU {oo} on Xo(1).

EXAMPLE 9.1.2. Let B denote the subgroup {+( ee )} of PSL2(Z/NZ)
and let U denote the subgroup {+( ; 4 )}- Thenthe set of cusps of Xo(N)is in
bijection with the double coset space

B\PSL2(Z/NZ)/U.
Thebijection is defined by

To(N) -£ =Lo(W) - (00) + BFU
where y = ( ee ) is in SLo(Z) and 7 is the image of 7 in PSL2(Z/NZ). In
particular, Xo(p) has two cusps I'9(p) - 0 and I'o(p) - 00.



76 F. DIAMOND AND J. IM

EXAMPLE9.1.3. Similarly there is a bijection between the set of cusps of
Xi(N) and U\PSL2(Z/NZ)/U. Note also that this is in bijection with the sct

(9.1.1) { (c,d) | ce Z/NZ,d € (Z/(c, N)Z)*} /{41}.

Explicitly, the cusp T\(N) - £ corresponds to the pair (c,d) where d is chosen so
that ad = 1 mod (c,N). The determination of the number of cusps on X; (N)is
then straightforward (see [Miy2, Theorem 4.2.9]); one finds that X; (1) has one
cusp, X;(2) has 2, X,(4) has 3 and that if N 4 1, 2 or 4, then the numberof cusps
on X;(N)is

5oa9(n/d) = % [Yn — 9? + o,(0)1-1),
plN

where the first sum is over positive divisors d of N.

Let us now define a topology on §*. As a base of open neighborhoods of §*
we use the open subsets of § (with its usual topology) and the sets

y({x + iy|y > C}U {oo})
for y € SLo(Z) and 0 < C € R. Thus § is an open subspace of §* and QU {oo}
is discrete. The quotient space ['\* is compact and connected. It is the union
of the open subspace I'\$) and thefinite set of cusps. We have already defined
a complex structure on I'\§ and we shall now define a complex structure in a
neighborhoodof each cusp. For y € SL2(Z), let h be the positive integer such that
+( 7 ) generates the stabilizer of oo in the image of y~!T'y in PSL2(Z). The
map 7(T) ++ €?7"7/h, (00) + 0 defines a homeomorphism from a neighborhood of
Ty(oo) in '\§* to the unit disk in C. The homeomorphism depends only on the
cusp and not on the choice of + and the resulting complex structure is compatible
with the one we have already defined on T'\. We may now regard T\S* asa
Riemann surface.

EXAMPLE 9.1.4. Recall that Yo(1) is biholomorphic to C via r + j(E,). Map-
ping SL2(Z) - 00 to oo extends this to an isomorphism of Xo(1) with the Riemann
sphere P1(C).

Wefind also that if I’ and I” are congruence subgroups of SL2(Z) and ¥ is an
element of GL} (Q) such that Tc yT’y, then 7 7(r) for 7 in §* induces a
holomorphic map ['\* — I’\*. The only possible ramification occurs over the
cusps and elliptic points of I’\9"*.

Nowlet I’ = SL2(Z) andlet 7 betheidentity. The resulting map to SL2(Z)\9*
may be ramified only over the points SL2(Z)é, SLo(Z)e"*/? and SL2(Z) - co, which
correspond via j (see Example 9.1.4) to the points 1728, 0 and oo in P1(C). Apply-
ing the Hurwitz formula to this covering of the Riemann sphere yields the formula
[Shil, Prop. 1.40]

(9.1.2) gai SS Se SS as

for the genus g of I'\S*. Here y is the index of the image of I in PSL2(Z), voo is
the number of cusps and v2 (respectively v3) is the number ofelliptic points over
j = 1728 (respectively j = 0).
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EXAMPLE 9.1.5. As Xo(11) has no elliptic points and two cusps, and T9(11)
has index 12 in SL2(Z), we see that Xo(11) has genus one. Wefind also that Xj(11)
has genus one and the cover X;(11) + Xo(11) is cyclic of degree 5, with Galois
group (Z/11Z)*/{+1}.

EXAMPLE9.1.6. By the formulaof Example 9.1.3 together with the fact that
X(N) has noelliptic points for N > 3, we see that the genus of X; (N) for N>4
is given by

g=1+ - [[a-»)- # J] -—2? +4,() (1 — p74)?}.
PIN pln

For N < 4 the genus of X1(JV)is 0;in fact, this is the case for N < 10. To compute
the genus of Xg(NV), see [Shil, Prop. 1.43].

Letting [ = IY = 1\(N) and taking y in Tp(N), we obtain the action of
(Z/NZ)* = To(N)/Ti(N) on X,(N) extending the one on ¥;(N). The quotient
of Xi(N) by this action is naturally identified with Xo(N). Note also that the
degeneracy maps Yo(M) — Yo(N) defined by 7 = ta (see §7.3) for divisors d of
M/N extend to maps Xo(M) — Xo(N). In particular for M = Np we denote the
extensions of a and 6 by the same symbols and ao‘ gives rise to a correspondence
on X(N) which we again denote T,. Similarly using [’ =1,(N) and 2 = Ty(N)N
T'o(Np) we define the modular correspondence T;, on Xy(N).

9.2. Generalized elliptic curves.

PRIMARY REFERENCES:

[DeRa, ChapterII] and [Del4].

Our next task is to explain the modular interpretation of the cusps as general-
ized elliptic curves. This interpretation was introduced by Deligne and Rapoport
[DeRal]in their construction of smooth, proper models over Z[1/N] for Xo(N) and
X1(N).

To motivate the definition of a generalized elliptic curve, let us first recall that
we identify the point SL2(Z)r of Yo(1) with theelliptic curve E, = C/(Z @ Zr)
(up to isomorphism). Observe that as a complex Lie group, EL, is isomorphic to
C*/{e?"""7} via the exponential map z + e2"**, Morcover if tT = 2+iy with y> 0,
then an equation for the curve E, over C is obtained by substituting g = e277 in
the powerseries that appear in the definition of the Tate curve (Example 8.1.3).
This provides the following intuitive description of the behavior of E, as SL2(Z)r
tends to the cusp SL2(Z) - co; the real number y tends to 00, g tends to 0 and the
equation for H, degenerates to

(9.2.1) Y?4XY = X?.

So the modular interpretation of the cusp of Xo(1) should be provided by the
“degenerate elliptic curve” C, the projective variety over C defined by (9.2.1).
Note that the only singularity of C is the ordinary double point X = Y = 0.
Writing C'°* for the smooth locus of C,, we can define an “addition” morphism + :
CTS x C — C by substituting g = 0 in the grouplaw for the Tate curve. Moreover
the isomorphism Gy, = Spec C[Z,Z~*] — Cte defined by X + Z(Z— 1) 2,
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Y ++ Z(Z—1)~* extends to a normalization P! — C’ and the diagram

Gu xP! — Pp!

J t
C=! xC + C

commutes, where the upper arrowis given by the natural action of Gyn on P?.
The pair (C,+) we have just described is called the Néron 1-gon over C. To

interpret the cusps of other modular curves, we shall need to consider Néron poly-
gons [DeRa, §II.1]. We define the Néron N-gon (Cn,+) over an algebraically
closed field k as follows. The scheme Cy over k has N irreducible components,
each isomorphicto the projective line P!, and N ordinary double points. To com-
plete the characterization of Cy up to isomorphism, we index the components with
elements of Z/NZ and require the normalization r : Liezswz P! — Cy to send
(oo); and (0);41 to the same point for each i. Thus r restricts to an isomorphism
Liczswz Gm — Cy®, and the dual graph of Cy is an N-gon. Welet + be the
morphism Cy" x Cy — Cy characterized by the commutativity of the diagram

Lieznz Gm x Liczywz PEs Liezwz P?
J L

On? & Cn x Cn,
where the vertical arrows are given by r and the top arrow is defined by

((2)is (y)5) > (wy)iny
on closed points. In particular, + extends the addition on the group scheme Cyr =
Gm x Z/NZ to an action of Cy’ on Cy, and the induced action on the dual graph
is via rotations.

We are now ready to generalize the notion of an elliptic curve so as to include
schemes whose geometric fibers are elliptic curves or Néron polygons. A generalized
elliptic curve ([DeRa,II.1.4]) over S$ is a pair (E,+) where E is a schemeof curves
over S and + is an S-morphism E™ x5 E > E. We require that + makes ET
a commutative group scheme over S acting on E and that the geometric fibers of
(Z, +) are elliptic curves or Néron polygons. Two elementary observations are that
a generalized elliptic curve over S is smoothif and only if it is an elliptic curve and
that a generalized elliptic curve over an algebraically closedfield is either anelliptic
curve or a Néron polygon. The key example is the following (see [DeRa, Chapter
VII] and [Del4,§7]:

EXAMPLE 9.2.1. Define the Tate curve £, as in Example 8.1.3, but working
over S' = Spec (Z[{g]]) rather than Spec (Z((q))). Then Ej;is the complement of
the closed subscheme defined by X = Y = q=0. The group law on theelliptic
curve E, x sSpec (Z(q))) extends to a morphism + : E(* xs E, — E, making Er
a commutative group scheme acting on E,. Suppose that s : Z{[q]] — k defines a
geometric point of S. If s(q) = 0, then (E,,,,+x) is isomorphic to the Néron 1-gon
over k. On the other handif s(q) # 0, then E,,x is an elliptic curve. In particular
if k = C and s(q) = e?""" with r = x + iy and y > O,then this elliptic curve is
isomorphic to C*/{e?™'""| = F..

9.3. Canonical models revisited.

PRIMARY REFERENCES:

[DeRa] and [KaMa,Chapter8].



MODULAR FORMS AND MODULARCURVES 79

Wecan now regard the Riemann surface X;(N) as a moduli space. Its points
are naturally in bijection with the isomorphism classes of pairs (E£,P) where E isa
generalized elliptic curve over C and P is a point of E™ of order N such that the
subgroup generated by P meets every component. Indeed weshall now complement
the bijection defined in §7.2 by a natural one-to-one correspondence between the
set of cusps of X(N) and theset of isomorphism classes ofpairs (E, P) where E is
a Néron polygon. To a pair of integers (c, d) we associate the pair (E, P) where E is
the N/(c, N)-gon over C and

P

is the point (e?""4/")./”,,.y). The group generated
by P meets every component, andif dis relatively primeto (c, N’), then P has order
N. The image of the pair (c,d) in (9.1.1) determines (E, P) up to isomorphism,
and the resulting map from the set of cuspsis the desired bijection.

To define canonical models for the curves X,(N), we proceed as we did for
Yi (V) in §8.2, but using generalized elliptic curves. More precisely, for a Z[1/N]-
scheme S we define G;(N)(S) to be the set of isomorphism classes of pairs (€,P)
where is a generalized elliptic curve and is a section S — £8 of exact order N.
We further require that for all geometric points s : Speck > S', the image of the
resulting immersion (Z/NZ), — &,°" meets every component [DeRa, IV.4.14].
By the results of Deligne and Rapoport [DeRa, Chapter IV] (see [Gross, Propo-
sition 2.1]), if N > 4, then G,(N)is representable by a smooth curve %(N) over
Spec Z[1/N]

Thebijection X,(N) — 4, (N)(C) we defined above is holomorphic and we now
have a smooth, proper modelfor X(N) over Z[1/N]. One can define an analogous
functor Go(N) and a smooth, proper model for Xo(N) over Z[1/N] is provided by
a scheme 4(N) which can be interpreted as a coarse moduli scheme. (This is
also the case for X;(N) = Xo(N) for N < 4.) We also have a natural action of
(Z/NZ)* on X,(N) and X(N) can be identified with the quotient scheme. There
is a tautological natural transformation F\() — G,(N) which identifies ),(N)
with an open subschemeof 4,(), and similarly Y%(N) can be identified with an
open subscheme of (NV). :

EXAMPLE 9.3.1. The isomorphism (1) = A} = Spec (Z[j]) in §8 extends to
an isomorphism %(1) = PZ. The resulting bijection Go(N)(k) + P1(k) for an
algebraically closed field & sends an elliptic curve to its j-invariant and the 1-gon
to oo.

EXAMPLE 9.3.2. The curve %(11)q is of genus one (see Example 9.1.5) and
has a rational point, the cusp at oo for instance. Therefore %(11)q can be given
the structure of an elliptic curve over Q. It is known to be isomorphic over Q to
the curve €g where € is the elliptic curve of Example 8.1.1 (see the tables of [Ant4]
for example).

By [DeRa, §VII.2] (see also [MaWi, §2.10]), a formal neighborhood of the
complement of Fy(N) in Go(N), or F,(.N) in G,(N), can be described using Tate
curves.

EXAMPLE 9.3.3. The Tate curve E, of Example 9.2.1 is a generalized elliptic
curve over Z[q|]. It therefore defines an element of Go(1)(Z|[q]]) and thus givesrise
to a morphism

@: Spec Z[[q]] + Spec Z[j 1] Ap (1).
The morphism can be made explicit by writing j—! as a formal power series in
q. The complement of Yo(1) in %(1) is defined by j-! = 0 and is the image
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of the immersion SpecZ — %(1) defined by the reduction mod q of the Tate
curve (which can be considered a Néron 1-gon over Z). Moreover ¢ induces an
isomorphism between the formal scheme Spf Z{[q]] and the completion of %X(1)
along the complement of (1).

EXAMPLE 9.3.4. The two cusps, I'9(p)-oo and To(p)-0, of Xo(p) = %(p)(C) &
Go(p)(C) are given by the pairs (C,D) and (C’, D') respectively, where C’ is the
1-gon over C and D is the image of Mp 7 Gm = CT, and C’is the p-gon over
C and D’is any subgroup of C’*S of order p which meets every component. Let
E be the Tate curve E,,5 over S = Z(1/p]|[g]]. Then €*has a subgroup scheme
D canonically isomorphic to My. The pair (€,D) defines a morphism

¢

: Spec S$ +
%o(p) and the cusp I'o(p) - 00 correspondsto the complex point of Xo(p) given by
q++ 0. The Tate curve over Z[1/p](q'/”)) extends to a generalized elliptic curve £'
over S’ = Z[1/p]|[q'/"]] whose geometric fibers arc elliptic curves or p-gons [DeRa,
§VIT.1]. (There is a map €’ + &,,s whichis an isomorphism over Z(1/p](q'/”)) but
contracts those components of the singular geometric fibers of €’ which do not meet
the unit section.) Furthermore, €’° has

a

finite flat subgroup scheme D’of degree
p which meets every component. The pair (E’, D’) defines ¢’ : Spec S’ 3 %(p) and
mapping q to 0 yields the complex point corresponding to I'y(p)-0. The completion
of Xo(p) along the complement of Y%(p) is isomorphic to Spf S[[Spf 5’. A similar
construction, but involving more cusps, describes a formal neighborhood of the
complement of Yo(N) in X(N) for composite N.

EXAMPLE9.3.5. Note that the cusp [';(N)-00 of X, (N) = 4% (.N)(C)is usu-
ally not defined over Q,as it corresponds to C; together with a generating section
of Hy C Gm & Ci°*. Rather the closure in X(N) of the imageof this complex
point is isomorphic to Spec Z[1/N, e?"!/" + e-2*#/]_ Moreover a formal neighbor-
hoodofthis closed subscheme can be described as in Example 9.3.4 but now using
the Tate curve over Z[1/N,e?"*/][[q]] (see §12.3). In fact, one can give an explicit
description of the completion of 4; (N) along the complementof ), (N)as a disjoint
union of formal spectra of power series rings in one variable over etale extensions
of Z[1/N].

VARIANT 9.3.6. Recall that the alternate convention of Variant 8.2.2 provides
a model Y,,(N) for ¥;(N) over Z. Using immersions (uy)s & ET instead of
sections S — *°8, one obtains a model ¥,,(N) over Z for X; (N)(assuming N > 4).
Then 4,,(N) contains Y,(NV) as an open subschemeandthe cusp I’; (NV)-0o is defined
over Q with respect to this model. This convention will be more convenient for
discussing the q-expansion principle in §12.3.

Although %,,(N) is not proper, we have the following [Katz2, §II.2.5].

THEOREM 9.3.7. The scheme %,(N) is smooth over Z with geometrically ir-
reducible fibers, and X(N)ziijnj és proper over Z[1/N].

Wecan proceedas in §8.3-§8.5, but now using proper models for the compact-
ified modular curves (see [DeRa, §V.1]). Suppose p is a prime not dividing N and
assume that N > 4. Let PT =1y(N)NVo(p) and let X = T\S*. Wefirst define a
proper model 4 for X over Z[1/N] which parametrizestriples (€,P, D) where now
€ is a generalized elliptic curve over S and for each geometric point Speck — S the
imageofthe fiber (Z/NZ), x D, — E[°8 meets every component. We then define
models as in §8.3 for the degeneracy maps a, 3: X > X; (NV)and consequently the



MODULAR FORMS AND MODULAR CURVES 81

modular correspondence T, : X —» X;(N) x X(N). We remark only on

a

slight
complication in the case of a. The pair (€,pP) does not necessarily satisfy the
condition on the geometric fibers (Z/NZ);, — €;°". There is however a generalized
elliptic curve € over S and a

|

morphism nm : € —+ € which induces on geometric
fibers an isomorphism G, — &°* where G;, is the open subgroup schemeof €;°*
consisting of the components which meet the image of (Z/NZ),. (‘Thus those wid
do not are contracted to points on the singular locus. See [DeRa,§IV.1] and Ex-
ample 9.3.4 above.) Wedefine a modelfor a using (E,p1 0 P) where (£€,P,D) is
the universal triple over ¥.

We can analyze 4p, just as we did Jr, in §8.4. The definition of

ip: 41(N)p, — Ap,

is essentially as in §8.4, but slightly morecare is required to define iy. In particular,

EP) must: be replaced by a generalized elliptic curve (Efyr so that the numberof
components on each singular fiber is divisible by p. (Sce Example 9.3.4.) We
then obtain (8.4.1), but now for endomorphisms of 4,(N) r,- Wefind that 4 is
regular and that 4p, has two irreducible components, each isomorphic to 4 (N)r,,
crossing transversally at points where the geometric fiber of & is a supersingular
elliptic curve. Thus the map

(9.3.1) ip [iv : 41(N)r, [[ 41 (4)e, > Ae,

identifies %,(N)r, |] 41(N)r, with the normalization of Vp,, which we denote
(4p,)~.

‘A consequence of this description is the formula [DeRa,VI (6.11.2)]

(9.3.2) g =2g+s-1

where g’ is the genus of X, g is the genus of X,(N) ands is the number of super-

singular points (EZ, P) in 4(N)(F,). Combined with the Hurwitz formula(recall
we assume NV > 4 so there are noelliptic elements), this yields

ie ae —1)[PSL.(Z) :Ti(N)).

Notealso that the Eichler-Shimura relation, (8.5.1) or (8.5.2), remains valid for the
correspondence 4p, — 4(N)r, x 4(N)r,.

Onefinds a similar description in terms of 4%(N) for a coarse moduli scheme
%(Np) which is a proper model for Xo(Np) over Z[1/N] (see [DeRa, §V1.6]). In
particular 45(Np)r, can bedescribed in terms of X(p)p, and the Eichler-Shimura
relation holds. (The only changes are that 4}(Np) is not necessarily regular and

the formula for the numberof supersingular pointsis slightly more complicated.) In

particular, XG(p)r, has two irreducible components, each isomorphic to %(1)m, =
Ph: A formal neighborhood of the complement of J%4(p) in ¥/(p) is described

exactly as in Example 9.3.4. Note that there is a “cuspidal section” in ¥/(p)(Z)
whose image in 4)(p)(C) = Xo(p) is T'o(p) - co (respectively, Ty(p) - 0) and whose
image in 49(p)(F,) factors through ip (respectively,iy).

Finally, we remark that the models for the various w-operators defined in Re-

mark 8.4.1 can be extended to the proper models considered above.
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10. Jacobians of modular curves

In this section we will examine the Jacobians of modular curves, their reduction

modulo primes, and the endomorphisms induced by Hecke operators.

10.1. Abelian varieties and Jacobians.

PRIMARY REFERENCES:
[Mum1], [Rosen], [Mil2], [Mil3] and [BLRa, Chapters 8,9].

Wenow review some gencralities concerning abelian varieties and Jacobians of

algebraic curves.

Wefirst recall that an abelian variety A over an algebraically closedfield k is a

proper group variety over k. It is necessarily smooth, projective and commutative

[Mil2, §1,2]. One can consider more generally abelian schemes, or families of

abelian varieties, over an arbitrary base scheme S. An abelian scheme over S is

a smooth proper group scheme over S' whose geometric fibers are abelian varieties

[Mil2, §20].
If k = C and is a g-dimensional abelian variety, then the complex manifold

A(C)is isomorphic to a complex torus V/L where V is a g-dimensional vector space
and L is a discrete subgroup of rank 2g [Rosen, §1]. An arbitrary complex torus

V/L can be identified with the set of complex points of an abelian variety over C

if and only if V/L possesses a non-degenerate Riemann form [Rosen, §3], ie., a

positive definite Hermitian form on V whose imaginary part is integer valued on L.

In this case, the sameis true for the complex torus V*/L* where V* C Homr(V,C)
is the space of conjugate linear functions on V (i.e., additive functions ¢ satisfying

o(zv) = Zd(v) for all z € C, v EV), and L* = {¢ € V*|d(L) CR+iZ}. If A
and A*are abelian varieties satisfying A(C) = V/L and A*(C) = V*/L*, then A*
is called the dual abelian variety of A [Rosen, §4]. Note that A is isomorphic to

(A*)*.
Now let C be a Riemannsurface and let W denote the complex vector space

of holomorphic differentials on C. Consider the complex torus V/L where V =

Hom(W,C) and L is the image of the map H,(C,Z) — Hom(W,C) defined by
integration. Note that the cotangent space of V/L at the origin may be naturally

identified with W. The intersection pairing on H,(C,Z) can be used to define a
nondegenerate Riemann form on V/L,and the resulting abelian variety J is called

the Jacobian of C [Mil3, §2]. Moreover this Riemann formgives rise to a canonical
isomorphism J = J*.

Another interpretation of the Jacobian of C’ is provided by the Picard functor

Pic® (see [Mil3, §1]). Let Div°(C) denote the group of divisors on C of degree
zero, and let Pic°(C) denote Div?(C) modulo the group ofprincipal divisors. In-
tegration then defines a natural map Div°(C) — V/L which, according to the
Abel-Jacobi theorem, induces a natural isomorphism of groups Pic°(C) = J(C).
Now choose a base-point P in C and define a mapping C — Pic °(C) by sending

Q to the divisor Q — P. The resulting map C — V/L is analytic and induces an

isomorphism H®(J(C),Q!) + H°(C,Q') = W whichis independent of the base-
point. Moreover the isomorphism is compatible with the natural identification of

W with the cotangent space of J(C) = V/Z at theorigin.
To describe the Jacobian of a curve over any field, or indeed an arbitrary

base scheme S, we use the Picard functor [Mil3, §8], [BLRa, Chapter 8]. For a
morphism of schemes s : X — S, Grothendieck [Gro1] defines a relative Picard
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functor Pic x; on S-schemes by “sheafifying” the functor which sends T to the

groupofisomorphism classes of invertible sheaves on Xp = X xg T. Underquite

general hypotheses (see Chapters 8 and 9 of [BLRal]) this contravariant functor
is represented by a group scheme over S, and we denoteits identity component

Pic &ys The definition is functorial in X, so that a morphism Y — X of S-
schemesgives rise to a natural transformation Pic x/s — Picy;s and consequently a

morphism Pic $,js — Pic yy s» We remark also that formation of Pic?ys commutes

with base change, meaning that Pic (xr)yr is naturally isomorphic to Pic 9.ya xsT.

If X — S$ is a relative curve, meaning that it is smooth and proper and its

geometric fibers are curves, then Pic\ys is an abelian scheme which we denote

Jxgs and call the Jacobian of X (over S), [BLRa, §9.2]. If also S = Speck for
an algebraically closed field k, then Pic x/s($) may be identified with the group
of invertible sheaves on X, or equivalently, with Div(X) modulo the group of

principal divisors. Then Pic /s(3) may be identified with Pic®(X), the group

Div°(X) modulo the group of principal divisors. Moreover if k = C, then the

isomorphism V/L = J(C) = Jx/c(C)is analytic, so our two descriptions of the
Jacobian in this case are equivalent.

The relative Picard functor also provides a general construction of the dual of
an abelian scheme. If A is an abelian schemeover S, then Pic 4/s is representable

by a scheme, and Pic%ys is an abelian scheme, [BLRa,§8.4, Theorem 5], [FaCh,

1.1]. We write A* for Pic %ys andcallit the dual abelian scheme of A. Again thereis
a natural isomorphism A = (A*)*. For a relative curve X over S there is a general

construction of a “©-divisor” on Jx/s which gives rise to an isomorphism ¢xX/S
of Jx/s with Jy1s [BLRa,§9.4]. The constructions of the dual abelian scheme,

its biduality and the autoduality of the Jacobian are compatible with base-change.
Theyare also compatible with the descriptions given above in the case S = Spec C.

A morphism 7 : Y — X of relative curves over $ induces by Picard functo-
riality a homomorphism of abelian schemes 1* : Jyys — Jyjs. We obtain also

a homomorphism 7, : Jy;s — Jx/s defined by the composite ¢y/s 9 (n*)*bxs

where (1*)* 2 J}js — Jx/g is again defined by Picard functoriality. We thus have

two functors from the category of relative curves over S to the category of abelian
schemes over S; the contravariant Picard functor Pic® defined by Pic °(X) = J.x/s

and Pic°(m) = 7*, and the covariant Albanese functor Alb defined by Alb (xX) =
Jx/g and Alb (7) = m,, [Mil3, §6]. If S = Speck for an algebraically closed field
k, then 1* on Jx/s(S) is induced by the map Div (X) — Div (Y) defined bypull-
back of divisors; a point « € X(S) is sent to Lyen-1(2)€y/2y Where €y/z is the

ramification degree. On the other hand, 7, on Jy/g(S) is induced by the map
Div (Y) — Div (X) which sends y € Y(S') to m(y). Note that 7, 07* is simply
multiplication by the degree of 7.

There is in general a natural isomorphism of s,Q},/s with the cotangent sheaf

0,g/8 along the zero section i : S — Jx/s. For S = Speck, this can be

viewed as an isomorphism H°(X,Q\/;) = Coto(Jx/s) (see [Mil3, Proposition

2.2]). Consider now the maps induced by 7* and 7, on the cotangent spaces at
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zero of the Jacobians. We get a commutative diagram

PCH.) = BY,
|

Cot o(Jx/s) — Coto(Jy/s)
where the upper arrow is obtained by Serre duality from the natural map

H'(¥,Oy) > H"(X,Ox)
and the lower arrow is induced by 7*. The description of the map induced by 7. on

cotangent spaces is even simpler, for it is given by pull-back of differentials Wx =

A(X, %;s) + Wy = HY, O75). For k = C,the isomorphism H(X, 0%75) 2

Cot o(Jx/s) is simply the identification of W with the cotangent space at zero of
V/L. Wefind also that the map 7is given on complex tori by Vy /Ly — Vx/Lx

where Vy — Vx is dual to the natural pull-back Wx — Wy and Ly — Lx is

defined by H\(Y(C), Z) + H,(X(C), Z).

10.2. Models for Jacobians.
PRIMARY REFERENCES:

(Shil, Chapter 7], [MaWi, §2.1,2.5], [BLRa, Chapter 1] and [Ray3].

Let us consider the Jacobian of the curve Xo(N), denoted Jy(N). The mod-
ular correspondence T,, regarded as an endomorphism of Div (Xo(V)) induces an
endomorphism of Jo(N), which we also denote T,. We have that 7; = a, 0 (*
where a and @ are the degeneracy maps X9(Np) — Xo(N) defined in §9.1 (see e.g.

[MaWi,§2.5]). Since the curve X(N) is defined over Q,so is the abelian variety
Jo(N). Moreover,since a and are defined over Q,so is T,. More generally we can
define endomorphisms T,, of Jo(N) and of J;(N), the Jacobian of X;(N). These
are defined over Q as is the action of (Z/NZ)* on J,(N) defined by the operators
(d) x.

REMARK 10.2.1. Some authors, for example Ribet [Rib4], use T, to denote
the endomorphism (3, 0a*, which weshall call T;*. More generally, we can consider
endomorphisms T;* of Jo(N) and J;(N). For n relatively prime to N, these are

related by T* = (n)*T;, on Ji(N) and T* = T;, on Jo(N) coincide.

REMARK 10.2.2. The Atkin-Lehner involutions wa give rise to involutions
wa,» of Jo(N) defined over Q. Similarly, for p not dividing N, the endomorphism
Wp,» of the Jacobian of I, (N, p)\* is defined over Q andsatisfies w2, = (p),. The

involution wy, of J;(N) is defined over Q(e?7'/") and satisfies wy.Trwya =
T; for all positive integers n. Thus wy,, intertwines the operators defined us-

ing our conventions and those mentioned in Remark 10.2.1. We find also that

wy,x(d)xwn,x = (d)* for all d relatively prime to N.

As we did for the modular curves, we would like to construct “good” integral

models for their Jacobians and study their reduction modulo primes. We will then

examine the effect of the Hecke operators. To begin, recall that we have defined

a model for Xo(N) over Z[1/N]. It is obtained from the relative curve X(N)
over Z[1/N] which is a coarse moduli scheme parametrizing pairs (€,C) where €
is a generalized elliptic curve and C is a “cyclic subgroup scheme” of order N. Its

Jacobian Jx,(v)/z[1/N] = Pic Xa(N)/ZI1/N] is an abelian scheme which can be viewed

as a model for Jo(N) using the isomorphism of Jx,(.v)/z[1/~w] * C with Jo(N). Now

consider a geometric fiber Jx,(1v)/z[1/] X & where k is an algebraic closure of Q or
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of F, where q is a prime not dividing N. The group ofclosed points of this abelian

variety is naturally isomorphic to Pic °(%(N)x).
To obtain a model for the endomorphism T, using the Picard functor, let us

first work over Z[1/Np]. For then we can consider the two natural degeneracy maps

a’, 8’ : Xo(Np) + Xo(N)ziinpj Of relative curves over Z[1/Np]. The endomor-

phism 7, = a’, 0 (8’)* of Jxy(ny/z{1/nj X Z1/Np] is in an obvious sense a modelfor

T,. For a primeq not dividing Np, (TF, is given by the composite (ap,)+°(Bp,a

Wecan also describe theeffect of J) on Jx.(y)/zpi/n(k) & Pic °((N)x) for al-

gebraically closed k of characterise:not dividing Np. It is gotten from the endo-

morphism of Div (49(V);) which sends (£,C) to the divisor >(E/D,(C+D)/D)
where the sumis over cyclic subgroups D of E where D has order p andis not

contained in C. The formula assumes that £ is an elliptic curve, but it extends in

a natural way to Néron polygons.

We would next like to extend J, to an endomorphism of Jx,(yy/zi1/nj and
describe its reduction modulo p for a prime p not dividing N. More care is needed

in this case since Xo(Np) does not have a smooth and proper model over Z[1/N];
the resulting description will be another manifestation of the Eichler-Shimura con-

gruence relation.

Weshall use the theory of Néron models for abelian varieties and begin by
recalling some of the facts we need; see [BLRa, Chapter 1] or [Artin, §1]. Let R
be a Dedekind domain and Kits field of fractions. A smooth scheme A over R

is said to have the Néron mapping property if for each smooth scheme B over R,

the natural map Homr(B, A) — Homx(Bx,Ax) is a bijection. If A is an abelian

scheme over K, then a smooth scheme A over R is called a Néron model for A

if A has the Néron mapping property and there is an isomorphism ¢: Ag — A.
The existence of such a model for A follows from the work of Néron. One checks

formally that the pair (A, ¢@) is unique up to canonical isomorphism, and also that

A naturally inherits the structure of a commutative group scheme over R. If A

is also proper over R, then A is an abelian scheme over R. Furthermoreit is a

consequence of a theorem of Weil that an abelian scheme over R has the Néron

mapping property, so it is necessarily the Néron model ofits generic fiber [BLRa,

§1.2, Proposition 8].

EXAMPLE 10.2.3. Viewing Xo(11)q as an elliptic curve over Q (see Example
9.3.2), we see that its Néron model over Z[1/11] is %(11), the elliptic curve of

Example 8.1.1.

lf A is an elliptic curve, then the possible types of reduction A xp R/m of a
Néron model A at a maximal ideal m of R areclassified by Néron [Neron]; see
also [Sil2, §IV.8] and [BLRa,§1.5].

EXAMPLE 10.2.4. For an example of a Néron model which is not an abelian

scheme,let R = C[[{q]] and consider Ey,z = E, x sSpec R where E,is the Tate curve
over S' = Spec Z|[q]] (Example 9.2.1). Then the smooth commutative group scheme
A = E;turns out to be the Néron modelfor its generic fiber Ax = Ej, where

= Cla). Recall from §9.2 that Ag/gz is isomorphic to Gm over R/gR=C.

Although the formation of a Néron model does not commute with arbitrary
base change, it does commute with ctale base change, as well as localization and

completion at a maximal ideal of R [BLRa, §7.2]. In particular, if A is a Néron
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model over Z for an abelian variety A over Q, then Agji/aq is a Néron model over

Z[1/M] for A, and Az, is a Néron model over Zq for Aq,.

EXAMPLE 10.2.5. For an example of the failure to commute with base change,

let R’ = Spec C[[q'/?]] and K’ = Spec C((q'/?)) and consider Ey,x: = Eq,x XK K’.
By Hensel’s lemmaor the general theory of the Tate curve, we find that Ey,«-(K’)
has a point of order 2 with coordinates (x,y) satisfying « = y = 0 mod q'/?R’. As

these points do not extend to elements of A(R’) (with A as in Example 10.2.4), we

see that Ag = AxRR’ cannot be the Néron model of Ey,~ over R’. Rather, in this

case, the Néron model A’ can be constructed by gluing two copies of Ag, along the

automorphism ofits generic fiber defined by translation by this point of order 2, The

example also illustrates that the fibers of the Néron model need not be connected,

for A’ x g (R’/q'/?R’) is isomorphic to the product of Gm with the constant group

scheme of order 2. More generally, let R! = k[[q'/?]] and K’ = k((q!/*)) for a field
k and a prime p and consider the generalized elliptic curve €’ over R’ defined as in

Example 9.3.4. Then A’ = (&’)"*® is the Néron modelofits generic fiber E,,~7- and

its reduction mod q!/? is isomorphic to Gm x Z/pZ.

EXAMPLE 10.2.6. Consider J = Jx,(27)g/Q Whichis anelliptic curve over Q

with conductor 27. Its minimal Weierstrass equation Y? + Y = X° — 7 produces

a scheme 7 over Z such that 7zj1/3) an elliptic curve over Z[1/3], but 7p, is not
smooth. The smooth locus of J is the identity component 7° of the Néron model

J, which is obtained by gluing three copies of 7° along translations of 7z,1/3)
by a point of order 3. We find that Jp, is isomorphic to the product of G, with

the constant group scheme of order 3. On the other hand, J’ = J, extends to an

elliptic curve J’ over Oz where L is the Galois extension of Q gotten by adjoining
the coordinates of all points of J of order 4. Therefore 7‘ is the Néron model of

J’ over O,, so unlike Example 10.2.5, even formation of the identity component of

the Néron model does not commute with base change.

Now let us return to the case of Jo(N) or, to be more precise, its model

Jx(N)q/Q Over Q. Welet Jo(N) denote its Néron model over Z. Then T;, ex-

tends uniquely to an endomorphism 7, of the Néron model. As Jx,~y/ztijnj is

an abelian scheme,it is naturally isomorphic to the Néron model Jo(N)zi1/nj over
Z{1/N]. Moreover the endomorphism we have denoted T, is simply T,,z/1/~p], 8°

we have already described J,,r, for primes q not dividing Np. Using for example

the compatibility criterion in [MaWi, Section 2.1] we find that the description ex-

tends to Tp,r, on Pic °(4(N)x) where k is an algebraic closure of F, and p doesnot

divide N. Namely it is given by the endomorphism of Div (4%)(N),) which sends

the pair (7, C) over k to

e (B/Do,(C + Do)/Do) +p: (E/D1,(C + Di)/D1) if E is ordinary, Do is the
connected subgroup schemeof E[p] and D, is the etale subgroup scheme of

E[p];
° feeeEaD), (C+D)/D) if E is supersingular and D is the unique subgroup

schemeof order p.

(Again this assumes that EF is an elliptic curve, but the description in the ordinary

case can be extended to Néron polygons.) We thus find that

(10.2.1) Thr, = 0. + 0*
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where © is the Frobenius endomorphism of the curve 4(N)r,- This is the Eichler-
Shimura congruencerelation (see §8.5) on the Jacobian of 4(N)r,; it can also be
written as

(10.2.2) TF, = Frob + Ver

where Frob is the Frobenius endomorphism of Jo(N’)r, and Veris the Verschiebung
endomorphism.

Thesituation is quite similar on the Jacobian J;(N) of X;(N). We can again
consider the Néron model Ji(N) over Z of Jx,()q/Qq and define Hecke operators
T,. Then Ji(N)zi1/nj can be identified with the Jacobian of 2(N) over Z[1/N]
and T,,z[1/Np] can be described as a composite a’, o (8’)* where a’ and 3’ are

degeneracy maps from the curve *z{1/Np|- Recall from §9.3 that ¥ is a model over

Z[1/N] for the modular curve associated to the group ['(N,p) =T1(N) NTo(p).
This gives a description of Tp,z{1/N] On divisors as (E, P) + >>,(EZ/D, P mod D)
which takes the form

(10.2.3) Thr, = 2s + (p)r,,«®" = Frob + (p)p,,. Ver

in characteristic p if p does not divide N.

REMARK 10.2.7. As noted in Remark 10.2.1, some authors use T; in terms of

which (10.2.3) becomes

Tp, = 8" + (p)p, Bs = Ver + (p)f,Frob.
VARIANT 10.2.8. Recall from Variant 9.3.6 the alternate model 4,,(N) for

X,(N). Then Jy, (1v)g/Q is a model over Q for J;(N) and welet J,u(N) denote
its Néron model over Z. Then T, is defined over Q and we again write T, for its
extension to J,(N). In this context the Eichler-Shimurarelation is

TF, =O" + (pp,«Pe5 Typ, = Bs + (p)p, O".
10.3. Bad reduction of Jacobians.

PRIMARY REFERENCES:
[Rib4,§2,3], [BLRa, Chapters 7,9] and [DeRa, Chapter V].

Nowlet us briefly discuss the structure of Jacobians of modular curves in some
situations of bad reduction.

Wefirst recall how some of the terminology used to describe the reduction of

elliptic curves extends to the setting of abelian varieties [BLRa, §7.4]. If m is a

maximal ideal of R, A is a Néron model over R and AR/m is an abelian scheme,

then A = Ax is said to have good reduction at m. If the identity component of
Arym is a torus, meaning that it is isomorphic over the algebraic closure of R/m
to a product of copies of G,,, then A is said to have multiplicative reduction at
m. For example, the Tate curve over k(q'/?)) (Example 10.2.5) has multiplicative
reduction at the prime g'/?k[[g]] of &[[q]]. On the other hand, J = IX (27)Q/Q
(Example 10.2.6) has neither good nor multiplicative reduction at m = 3Z;it is

said to have potentially good reduction at m since J‘ = Jz, has good reduction at
the primes lying over m in the integral closure of R in a finite Galois extension L
of K.

Assume now that N > 4 and thatp is a prime not dividing N. Recall from §9.3
that the model ¥ for X =T,(N,p)\H* is not smooth over Z[1/N] butit is regular
and the irreducible components of tp, are smooth. The Néron model J over Z

of Jxg/q is naturally a model for the Jacobian of X and we can apply results of
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Raynaud [Ray2] (see [BLRa, §9.5] and [Rib4, §2,3]) to describe Jz, using the
Picard functor. Raynaud proves that in such a situation the identity component of
Jz, is naturally isomorphic to Pic ve [Zp? the identity component of the algebraic

P

space which represents Pic Xz, /Zp- ‘Thus Is, is isomorphic to Pic_/F,> Which

mapsby Picard functoriality to the abelian scheme Pic (Yep) /F,> Where Xp, is the

normalization of 4,. In fact there is an exact sequence of smooth group schemes
over F,

(10.3.1) 19TH, -+B+1

where B = Pic (xe,)~ /F, and T is a torus which can be described explicitly in terms

of the singularities of Vp,,. Using the description of (4p, )~ provided by (9.3.1), we
see that B is isomorphic to two copies of Jj(N)r,. The dimension of the torus T
is s— 1 where s is the numberof supersingular points on 4;(N)p, (see 9.3.2). We

mention also that the component group Jr,,/Te, can be computedas in [Rib4, §2]

using a Picard-Lefschetz formula [Gro2, Exp.IX, §12] (see also [Edi1] and [BLRa,
§9.6]).

Suppose that G is a smooth commutative group schemeovera field k and that
there is an exact sequence 1 + T’ —» G + B — | where B is an abelian scheme

and T is a torus. Then G is uniquely such an extension andis called a semiabelian

scheme ([BLRa, §7.4]). Thus (10.3.1) shows that Te, is a semiabelian scheme

and we say that Jaq has semiabelian (or semistable) reduction at p. The situation
for Jo(Np)r, with p not dividing N is quite similar to that for Je,,; but slightly
complicated by the fact that Jo(Np) may not be regular. Onestill finds that
Jo(Np)q has semiabelian reduction at p, now with B isomorphic to two copies of
Jo(N)r, and T described by the supersingular points of X(N)r,- For more details

in this case we refer to [Rib4, §3] and D. Prasad’s article in this volume.
It is a general fact that an abclian scheme A over K, the field of fractions

of a Dedekind ring R, has “potentially semiabelian reduction” at all primes in R

[BLRa, §7.4]. This means that there is a finite Galois extension K’ of K such
that Ax: has semiabelian reduction at all primes in the integral closure of R in

K'. Consider for example J,(Np)q with p not dividing N. This does not usually
have semiabelian reduction at p, but it follows from the properties of the model
for Xi(Np) constructed by Deligne and Rapoport that Ji(Np)aic,) has semia-
belian reduction at the prime over p, where ¢, is a primitive pth root of unity.

In fact, the results of [DeRa, §V.3] provide the following natural description of

J = Jx,(wp)q/Q = Ai(Np)q (which is valid without the hypothesis N > 4).

THEOREM 10.3.1. Let m be the natural projection X;(Np)q — XQ and con-

sider the filtration
OCA, CAQCI

where Ay is the image of n* and Ais the image of x* composed with

7 = ((aQ)*, (BQ)*) : AWN) > J.
Then A; has good reduction at p, A2/A; has multiplicative reduction at p and J/A»
acquires good reduction at the prime over p in Q(¢,).

REMARK 10.3.2. That 2* and ¥ havefinite kernels follows from the fact that
the dual maps induce injections on cotangent spaces. A deeper result of Ribet

[Rib3, Corollary 4.2] based on work of Ihara [Ihara] is that ¥ is actually injective.
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In the case N = 1, the kernel of 7* is the Shimura subgroupoflevel p (see [Maz1,
§IL.11], [LiOel).

EXAMPLE 10.3.3. Let N = 11 and p= 3. By Example 9.1.6, X;(33) has genus
21 and X)(11) has genus one. Appealing to the Hurwitz formula, wefind also that
T(11,3)\* has genus 11. Thus the dimensions of J, Aj and A; are respectively
21, 11 and 2. Note that we can also interchange theroles of the primes 3 and 11
and define abelian subvarieties A C AS C J. Wefind then that Ai = 0 and A
coincides with the image of Jo(33)q — J1(33)q. Therefore AS is 3-dimensional
and there is a filtration

(10.3.2) OCA, CASCACI.

We conclude that

e A, is two-dimensional and has multiplicative reduction at 11 and good re-

duction at 3. In fact: it is isogenous to two copies of Jo(11)q, an elliptic
curve of conductor 11.

e A}/A; is one-dimensional and has multiplicative reduction at 3 and 11. It
is an elliptic curve of conductor 33.

e A»/A% is 8-dimensional, has multiplicative reduction at 3 and acquires good
reduction at the prime over 11 in Q(¢,)).

¢ J/Ag is 10-dimensional and acquires everywhere good reduction over Q(¢33).

The description of suitable models for the curves Xy(M) and X,(M), and
consequently of the behavior of Néron models for Jo(M) and J,(M), naturally

becomes more complicated at a prime p when higher powers of p divide M. Wewill

not pursue this here, but we refer the reader to [KaMa, Chapter 14] and [MaWi,
Chapter 3] for more on the matter. We shall discuss in §12.5 the related problem
of describing the natural Galois action on the Tate modules of these Jacobians.

Finally let us recover the Eichler-Shimura congruencerelation from the descrip-

tion of I, given by (10.3.1). Wefirst observe that the endomorphismT,, of J; (N)

is the composite of the homomorphisms of Néron models J,(N) > J extending
(8')* and J — Ji(N) extending a’. Thus 7,can be computed as the composite

AN), > Jr, - A(N)r,-

Since J;(N)r, is an abelian scheme, thefirst map factors through the connected

component of the identity, Te, For the same reason, the second maprestricted

to Tt, factors through the projection in (10.3.1) to the abelian scheme B =

Pic (Xe,)~/Fe" Using ir [iv to identify B with J,(N)j,, we are reduced to com-
puting the composite

A(N)r, > F(N)é, + Ti(N)p,-

The endomorphisms of 7(N)r, which come into play arise from the endomor-
phisms of ¥(N)p, considered in the analysis of Ap, in §9.3. Indeed the first
map arises by Picard functoriality from Br, and sends a point z in Ji(N)r,(S) to

(&*(x),z) in A(N)x,(S)?. We have used here the extension of (8.4.1) to Xp, and
the evident compatibility of Raynaud’s description with Picard functoriality. Sim-

ilarly using the compatibility with Albanese functoriality (see [Ray3]), we deduce
that the second map, which arises from a’, sends a point (y, z) to (p)r,«(y) +®.(z).
Computing the composite we recover(10.2.3). The situation is similar for Jo(NFn
but (p) is replaced by the identity.



90 F. DIAMONDANDJ. IM

Part III. Modular formsrevisited

11. Automorphic representations

Let A be the ring of adeles of Q. Wewill write Ar for the ring of finite adeles.

For each positive integer N, let Un denote the open compact subgroup of Af

consisting of elements of ZX = Ls Z> which are congruent to 1 mod NV’Di:

Recall that a Hecke character is a continuous homomorphism A™ — C% trivial

on Q*. To Dirichlet character € : (Z/NZ)* — C™, we associate a Hecke character

ea as follows. We write AX = Q*R2,2*, and let ¢4(aru) = e(u-! mod N) for

a é€Q*,c ERX) andue Z*. Tecall that every Hecke character of finite order

arises this way. More generally, every continuous quasi-character of A*/Q* can

be written as <4| |* for some Dirichlet character « and some s € C. Wewill
usually omit the subscript A. We will also use “character” to mean a continuous

homomorphism to C™ and call a character unitary if the values have norm 1.

In this section we discuss how modular forms can be regarded as functions on

GL»2(A). These in turn give rise to (infinite-dimensional) automorphic representa-
tions of GL2(A) which are, in some sense, generalizations of the Hecke characters

of GLi(A) we have just defined. We will also discuss how these automorphic
representations are described in terms of local factors. The primary reference is

Jacquet-Langlands [JaLal], but see also the expositions of their work by Godement
[Godel] and Gelbart [Gelb].

Before proceeding, we give a word of motivation for this translation to the

adelic language. Recall that it is the language in which class field theory most

naturally describes abelian extensions of numberfields. In the same spirit, Lang-
lands’ conjectures are expressed in this language, providing even deeperarithmetic
information from the theory of modular forms.

11.1. The adelic setting.

PRIMARY REFERENCES:

[Cas2, §3], [Gelb, §3] and [Cas1, §1].

Write Ga, Ga, Goo and Ge, respectively, for GL2(Q), GL2(A), GLo(R) and

GLo(Ar). Put §* = C—R. Welet U5, = SO2(R)R%, the stabilizer of i = /—1 €
C in Goo. We identify G../Us. with §* by g +> gi, and define j : Goo x Zr G

by j(y,z) = cz +d where y = ( ee }: Let S;, be the space of functions @ :

Ga\Ga — such that

(1) 6(gu) = ¢(g) for all u in some open compact subgroup U of Gr;
(2) b(gtcc) = j (tec; t)* (det: tte )6(g) for all too € Use, 9 € Ga;
(3) for all g € Gp the map

Ht + C
hi ++ $(gh)j(h,i)*(deth)—',

where h € G., is holomorphic (the map is well-defined by (2));

(4) @ is slowly increasing,i-e., for every c > 0 and every compact subset K C
Ga, there exist constants A, B such that

lo((¢ 2 )a) < Alal#
for all h € K and a € A®™ with |a| > ¢;
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(5) @ is cuspidal, i.e., for all g € Ga

[,.9((8 4)2) =o,
where dz is a non-trivial Haar measure.

We regard S; as a G's-module where the action is given by right translation.
For an open compact subgroup U of G, we write S,(U) for the space of U-

invariant functions in Sx, i-e., those @ € S, such that (gu) = ¢(g) for all u € U,
g € Ga. Note that S, = Uy S&(U) over all such U.

For N > 0, let Uo(N) (respectively, U,(N), Vy) be the subgroup of GL2(Z)

consisting of matrices congruent to ( “es ) (respectively, ( $4 ) the identity)

modulo NM,(Z). For an element ¢ of S,(Ui(N)), we define a function fe: HC

by
f(hi) = $(h)j(h,i)*(deth)~! for h E GL} (R).

(See e.g. [Cas2, Theorem 3] or (Gelb, Proposition 3.1].) Then fy is in S,(T'1(N))
and @+ fy, in fact defines an isomorphism

(11.1.1) Sk(Ui(N)) = Se(Pi(N)).

Moreover for a mod N Dirichlet character ¢, we find that S,(N,¢) corresponds

to the subspace of S;(Ui(N)) consisting of ¢ such that ud = ea(detu)¢ for all
u € Uo(N). In particular, S,(Uo(N)) corresponds to S,(To(N)).

REMARK 11.1.1. One can formulate the definition of a modular curve adeli-

cally as well. For an open compact subgroup U of Ge, define

Xy = Gq\Ga/UVeo.
(Note that X7; need not be connected.) One then has a system of canonical mod-
els defined over Q [Shil, 86.7], [Del2, §1,2] admitting a natural moduli-theoretic
interpretation in terms of elliptic curves with level structure [Del2, §4,5], [Mil1,
gq].

Wealso find that the Hecke action on the spaces S;,(U) has a very simple

description. If VU, U’ are open compact subgroups in G¢, then for g € G¢ wedefine

the operator [JgU"] : S,(U’) > S,(U) by

(11.1.2) ((UgU'])(9) = $>(rid)(9) = > o(Gh:)
i ¢

where UgU' = [[h,U’. Note that if Ug,U’ = Ug’ as double cosets, then the
operators coincide as well. To recover the classical Hecke operators from this, let

wq € Af be the element such that (w,), = q if vu = q and (w,), =lifu#¢q.

Define endomorphisms of S;,(U) by

(11.1.3) T, = (Un), Sy = [Um,U]

where jg = ( va ) € Gs. For U = U,(N)(or Uo(N)), these are compatible

under(11.1.1) with the operators denoted T, and S, on S,(I'1(N)) (or Sk(To(N)))
in §3.4; see [Cas1, Theorem 1.1] and the example followingit.

Wefind also that if U contains Vi, then all the operators T, and S$, commute

for g not dividing N, thus making S,(U) a T(")-module. For each eigencharacter
6 of T = T®), we can form the union Sx.9 of the eigenspaces in S,(U) for the
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restriction of @ to T’’), where the union is over pairs (U, N) such that Vy Cc U.

Then Sj9 is stable under the action of Gs, and we write Sx,9(U) for Ske Sk(U).

THEOREM 11.1.2. Let 0 be a homomorphism T — C suchthat S;,9 is nontriv-
ial. Then S;,9 is an irreducible Gg-module, and there is a unique integer N=WNo

such that Sx,g(Ui(N)) is one-dimensional. Conversely, each irreducible constituent
of S, is of the form Sx.9 for some @.

Weshall explain in §11.5 how the theorem is deduced from representation-

theoretic results, but first we review some of the theory of irreducible admissible
representations. We begin by describing the possible local “factors” of such a
representation in the next two subsections and then deal with the global theory in

811.4. In §11.5 we relate the representations Sx,g to weight k cuspidal automorphic

representations of Ga and apply a representation-theoretic multiplicity one theorem

to obtain Theorem 11.1.2.

REMARK 11.1.3. Note that @ is only determined up to equivalence by Sx,o,

where 9; and @ are deemed equivalent if their restriction to T(”) coincides for
some M. However we shall see that for each multiple M of Ng, T@) acts via an

eigencharacter on Sx 9(Viz)-

REMARK 11.1.4. Recalling the theory of newforms 86.3, we see that the space
Sx,0(U1(N)) of Theorem 11.1.2 is spanned by ¢ where fg is the newform of level N

with T()-eigencharacter determined by the equivalence class of 6. We therefore

have natural bijections among the following three sets:

1. equivalence classes of eigencharacters @ such that S;,¢ is nontrivial;
2. irreducible constituents of S,;
3. newforms of weight k.

In fact, the theory of newforms can be recovered from the analysis of the structure
of S, as a G-module provided by the theory of Jacquet and Langlands; see [Cas2,

§3].

11.2. Admissible representations; p-adic case.

PRIMARY REFERENCES:
[JaLa, §2-4], [Gode,§1] and (Gelb, §4B].

Let p be a finite prime. In this subsection only, G denotes the group GL2(Qp),

K its standard maximal compact open subgroup GL2(Z,p) and Z theset of scalar

matrices in G.

Let « : G > GL(V) be a representation of G on a complex vector space V.

The representation 7 is said to be admissible if (i) every vector v € V is fixed by

some open subgroup of G, and(ii) for every open compact subgroup U of G, the

subspaceof vectors in V fixed by U is finite-dimensional. (See [JaLa, §2] or [Gelb,
Definition 4.9].)

If U is an open compact subgroup of G, we write V” for the subspace of vectors
in V fixed by U. For open compact subgroups U and U’ and an element g of G,

we define the double coset operator [UgU’]: VU > VYby

(11.2.1) [UgU']o = Sid

where UgU’ = [[hiU’. (See (11.1.2).)



MODULAR FORMS AND MODULAR CURVES 93

REMARK 11.2.1. A finite-dimensional admissible representation is continuous
and the only continuous irreducible finite-dimensional representations of G are of
the form g ++ w(det(g)) where w is a character of Qs, [JaLa, Proposition 2.7].

Theclassification of irreducible infinite-dimensional admissible representations
of G is carried out in [JaLa, §2,3]. (See also [Gode,§1.1- 1.11].) We begin with
certain induced representations defined as follows ([JaLa, (3.1)], [Gelb, (4.9)],
{Gode,§1.8].) Let 41, 42 be any two characters of Qx, and consider the space of
all locally constant functions ¢ on G'satisfying

1/2
(11.2.2) ($3 )9) =H(ar)u2(a2) “| (9), Var,a2 € QX; 

here | | denotes the usual p-adic metric. The group G acts on the space by right
translation, and this representation is denoted p(i1, 42). The representation is
reducibleif and only if 4 = 4143+ =| |*1. (See [JaLa, Lemma3.2.3], also [Gode,
§1, Theorem 6] or [Gelb, Theorem 4.8]). Whenit is irreducible it is called a
principal series representation.

If u(x) = |2|~*, then (1, jz2) has a one-dimensional subrepresentation. Indeed
putting w = yu |1/? = 2] |-1/? we see that the function g +> w(det(g)) spans a
subspace stable under G. If u(x) = |z|, then there is a one-dimensional quotient,
and in either of these cases the infinite-dimensional subquotient of p(j1,W2) is
irreducible, [JaLa, Lemma3.2.3]. This subquotientis called the special or Steinberg
representation, and is sometimes denoted sp(j11, 12).

In all of the above cases welet (1, 42) denote the unique infinite dimensional
irreducible subquotient of p(y1, 2). Then (p11, 2) and (4, 45) are equivalent if
and onlyif {11,42} = {uw}, 4}. (See [Gode, §1, Theorem 4.7], also [Gelb, Remark
4.19]).

The admissible representations of G which are not of the form (41, #2) are
called supercuspidal. (See [JaLa, Proposition 2.17], [Gode, §1, Theorems 3,4].)
These are characterized by the property that for all v € V and all w in V of V,
the functions g ++ y)(7(g)v), called matrix coefficients, are compactly supported
modulo the centre Z. Here V denotes the admissible dual of V, the space oflinear
functionals y : V — C invariant under some open compact subgroup.

Wealso note that any irreducible admissible representation of G defines (by
Schur’s lemma) a character of the centre Z of G, called the central character of
m. We denote by w, the corresponding character of Qx = Z. For example, if
m = (p41, M2), then Ww, = fy [2.

We sometimes further restrict our attention to unitarizible representations,i.e.,
the admissible representations on which there is a G-invariant positive-definite Her-
mitian form. The irreducible ones are precisely (see [Gode])

e Principal series 7(u, #2) with 44; and pp unitary (called continuous series).
e Principal series x(, @~!) with yuji = |x|” for some real o with 0 < lo] <1

(called complementary series).
e Special or supercuspidal representations with unitary central character.

EXAMPLE 11.2.2. The unitarizible special representations are those of the
form sp(x| |*/2,x| |~!/?) with x a unitary character.
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REMARK 11.2.3. Special and supercuspidal representations are said to belong

to the discrete series. Unitarizible discrete series representations are square inte-
grable in the sense that their matrix coefficients are square integrable modulo the
centre [JaLa, Lemma15.2}, [Roga, Proposition 2.6].

REMARK 11.2.4. For unitarizible 7, we can form the completion of V with
respect to the norm defined by the positive-definite Hermitian form (see [Gode,

§1.17]). This determines a unitary representation 7 of G on a Hilbert space V from

which 7 can be recovered as the representation on K-finite vectors in Vv. (A vector

v is called K-finite if the span of 7(K)v is finite-dimensional, or equivalently if v is
fixed by some open compact subgroup of G.) Moreover7 is irreducible if and only
if # is topologically irreducible, [Gode, §1, Lemma 10]. We remarkalso that every

topologically irreducible unitary representation of G arises in this way, i.e., as the

completion of an irreducible unitarizible representation (Cart, Corollary 2.3].

The conductor ¢, of an infinite-dimensional irreducible admissible representa-

tion 7 is defined to be the largest ideal ¢ of Z, such that V4) 4 0, where

(11.2.3) Tile) = {( a ) eK |od-1ed.

For c = c, this space of fixed vectors is in fact one-dimensional. (See [Cas2,
Theorem 1]; the reader can check that our definition of the conductor is equivalent
to the one given by Casselman.) Note that ¢, is divisible by the conductor of w,,, and

that v is fixed by U;(c) if and only if (g)v = w,(d)v for all g = ( me ) € Up(e),

where Uy(c) is defined as the group of matrices in K with c € c. Note also that ¢,

is determined by the restriction of 7 to K. We havethe followinglist of possible
conductors (see the proof of Theorem 1 in [Cas2]; [Gelb, Remark 4.25]):

e If t= 7(u1, M2) is principal series then c, = fif2 where f; (i = 1,2) denotes
the conductor of ju;-

e If t = sp(x| |!/2,x| |-1/2) is special, then c, = f?  pZy, where f is the
conductor of x;

e If 7 is supercuspidal then ¢, = p"Zp for some n > 2.

EXAMPLE 11.2.5. An infinite-dimensional irreducible admissible representa-

tion 7 of G is called unramified (or class 1 or spherical) if c, = Zp, or equivalently

if the subspace V* of V fixed by 1(K) is one-dimensional. (See [Gelb, §4.B.3].)

The unramified representations play an important role in global theory; see section

11.4, Note that according to the list above, these are precisely the principal series

representations 7(j11, 2) for unramified characters j41, p2 (with pip,’ # | |**).

We find that V“ is spanned by the function on G defined by
aji/2

$o(( ou )k) = [41 (a)2(d) \F| , kek.

Applying the double coset operators

3 0 . = 0Tp=K(8 9)Ki Sp=K(8 §)K

to @o, we find

(11.2.4) Tp¢o = p'/?(u1(p) + Ha(p))¢0; PSpo = pir (P)Hap) do.
So the characters jz; and jz are determined by the eigenvalues of T, and 5S, on a

nonzero vector fixed by K;therefore so is the isomorphism class of the unramified

representation 7(j11, ji2).
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11.3. Admissible representations; real case.

PRIMARY REFERENCES:

[JaLa, §5], [Gode,§2], [Gelb, §4A], [Wal2, Chapters 3,5] and [Wal1, §2,8].

In this subsection, we put G = Go = GL2(R), denote by K its maximal
compact subgroup O2(R), and let g be the complexification gl,(C)of the Lie algebra

of G.
Let m be a unitary representation of G on a Hilbert space V such that the map

Gx V — is continuous. Let Vo be the subspace of K-finite vectors in V (see

Remark 11.2.4). Though Vo is stable under K it is not necessarily stable under

G, unlike the p-adic case. We assume that Homx(W, Vp) is finite-dimensional for

every irreducible p: K — GL(W).

REMARK 11.3.1. By a theorem of Harish-Chandra [HaCh](see [Wal2, Chap-

ter 3] and [Gode,§2.1]), this holds if 7 is topologically irreducible.

REMARK 11.3.2. Under our assumption, the vectors in Vj are smooth in the

sense of [Wal2, 1.6.6]; see [Gode, §2.1], (Wall, Theorem 2.8].

To such a 7 one can associate, essentially by differentiation, a representation

of the Lie algebra g. For X in the Lie algebra of G and v € Vo, the derivative

d
(11.3.1) at(exp tX)v|z<0 = lim ¢~" (x(exptX)u — v)

exists and defines an element of Vo. (See [Wal2, 1.6.3], [Gelb, (4.5)].) Extending
linearly to g we obtain the desired homomorphism of complex Lie algebras

dr: g — gl(Vo).

We denote by 7the pair of representations dx and 7|x on Vo; this pair satisfies

certain continuity and compatibility conditions making Vy a (g, K)-module. (See
[Wal2, §3.3], for example, for the definition of a (g, K)-module.)

A (g, K)-module M is admissible if Hom(W, M)is finite-dimensional for every
irreducible p: K —+ GL(W); thus Vo is automatically admissible. There are natural
notions of homomorphisms andirreducibility for (g, K)-modules. We say that an

admissible (g, K)-module is unitarizible if it is isomorphic to Vo for some unitary 7
as above. The association of 1 to 7 is evidently functorial, but we have moreover

the following theorem of Harish-Chandra (see [Wal1, §2], [Wal2, Theorem 3.4.11]).

THEOREM 11.3.3. Let  : G — GL(V) and nr’ : G > GL(V’) be unitary
representations as above. Then V is topologically irreducible if and only if Vo is

an irreducible (g,K)-module; in that case, V is isomorphic to V' as topological

G-modules if and only if Vo is isomorphic to Vg as (g, K)-modules.

Thus according to the theorem and Remark 11.3.1, the classification of irre-

ducible unitary representations of G is equivalent to that of irreducible, unitarizible,

admissible (g, K)-modules(cf. Remark 11.2.1). We have thus shifted our attention

to (g, K)-modules from representations of G.

REMARK 11.3.4. Here we have strayed somewhat from the formulation of

Jacquet-Langlands [JaLa, §5], where the focus is instead shifted to the classifi-

cation of irreducible, admissible representations of a certain algebra 71called the

Hecke algebra of G'. See also [Gode,§2,(9)] and [Gelb, Definition 4.1] for a variant;
there Hp is defined as the algebra

He =U(g) P(e) *U(g),
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under convolution product of distributions, where U4(g) denotes the universal en-

veloping algebra of g and c_ is the Dirac measure at the point ( od ) of G.

(See also [Flath, §3] and [Cas3, §1.2.1].)

Recall that a character ¢ : R* — C% has the form e(t) = |t|*sgn(¢)” for some
s € Cand m € Z/2Z. Wesay that < is the central character of a (g, K)-module
if {+1} = KM R% acts via sgn™ and the center of g acts via multiplication by
s (where we have identified R* with the center of G and C with the center of g
in the obvious way). An analogue of Schur’s lemma [Wal2, Lemma3.3.2] shows
that every irreducible (g, K)-module has a central character. Note also that if ¢
is the central character of 7, then it is also the central character of the associated

(g, K)-module.
Now werecall the classification of irreducible admissible (g, K’)-modules. Anal-

ogous results in the context of admissible representations of the Hecke algebra (sec

Remark 11.3.4) are given in [JaLa, Theorem 5.11], [Gode, §2, Theorem 2] and
[Gelb, Theorems4.4, 4.5]. The version given here can be deduced from the Lang-
lands classification [Wal2, Theorem 5.4.4], [Wal1, §8.4].

Let 41, 2 be two characters of R*. As in [JaLa, §5] (also, [Gode, §2, (14)],
[Gelb,(4.2)]), consider the space B = B,,,,,, of all functions ¢ on G satisfying

1/2

H(% gd =mtauatea)|2| a0)
 

for allg € G,ty, tg € R* and which are right K-finite(i.c., the functions g ++ (gk),
k € K, generate a finite dimensional space). The action of K is by right translation
and that of g is defined as in (11.3.1). Note that the central character of B is p11 p12.
Let js be the character jipz and let n(t) = sgn(t).

e The (g, K)-module B is irreducible unless j.(t) = t"n(t) for some nonzero
integer n.

e If u(¢) = t"n(t) for some integer n > 0, then B contains exactly one proper
(g, K)-submodule B°. It is infinite dimensional; the quotient Bf = B/B* has
dimension n.

e If u(t) = t"7(t) for some integer n < 0, then B contains exactly one proper

(g, K)-submodule B’. It is |n|-dimensional; the quotient B® = B/BE is

infinite dimensional.

Let us denote by (11,42) the (g,K)-module B,,,,,. if it is irreducible, but
the finite-dimensional Biyu, otherwise. In the latter case, the infinite-dimensional

Bs, uz i8 denoted o(j1,/12); it is defined only if u(t) = t"n(t) for some nonzero
integer n.

The (g, K)-modules (1,42) make up the principal series for G, the termi-

nology often being reserved for the case where j(t) is not of the form "7(¢) with
ne€Z. The o(pi1, 2) are called discrete series; (141, U2) is called a limit of discrete
series if =n.

Every irreducible admissible (g, K)-module is isomorphic to either (1, u2) or
o(t1, 42) for some characters jand 42. Moreover, the only equivalences among
them are the following

© (urs oe) ~ (4, a) Hf {or M2} = {Hr Mohs
© (er, He) ~ (ms Ho) if (ee, Mea} = {uh ma} or {u0in, wan}.
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Next we list those which are unitarizible (Gelb, Remark 4.7], [Wal1, §8.7],
[Knal}):

¢ Principal series (11,42) with 4 and 2 unitary (continuous series).
¢ Principal series (yu, ~!) with ji = |x|? for some real o with 0 < jo| <1

(complementary series).
e Discrete series o(;, 42) with unitary central character.

REMARK 11.3.5. Each (g, K)-module in the above list arises from an irre-
ducible unitary representation 7 of G. Moreover 7 is unique up to isomorphism,
and its central character is jj12. Among these, it is precisely the unitarizible
discrete series which arise from square-integrable 7 (see e.g. [Knal, §1], and also
Remark 11.2.3).

Finally, we distinguish the (g, K)-modules which arise in the consideration of
cusps forms of weight k for k > 2; see [Roga, Proposition 2.5]. Let

(11.3.2) on = o(| [YA| [0/29hy,
These are precisely the unitarizible discrete series with central character 1 or 7.
There is a nonzero subspace of o;% consisting of vectors vsatisfying

os sind — pik z11.3.3) ( eg cas v = ey for all@ ER;

3: 1 -\o = 04 2:

(wherethe first matrix is in K and the second in g). The subspace is unique and
its existence characterizes o, among the irreducible admissible (g, A’)-modules. We
fix such a nonzero vector vx, called a lowest weight vector.

11.4. The global theory.

PRIMARY REFERENCES:

[JaLa, §9], [Gode,§3.2], [Gelb, §4C] and [Flath].

Using the notion of a restricted tensor product enables us to describe global
admissible representations in terms of a factorization into local components. The
procedure is analogous to the description of a Hecke character in terms ofits local
components.

Suppose that we are given, for each finite prime Pp, an irreducible admissible
representation 7 : Gp — GL(V,) where Gp = GL2(Q,). (Here V, could be one or
infinite-dimensional.) Suppose also that Tp is unramified for all p not in a finite set
S. For each p ¢ 5, choose a non-zero vector €p in the one-dimensional subspace of
K,-fixed vectors in V,, where K,, = GL2(Zp). Let W bethelinear span of elements
of the form ®, up such that vp = ey forall but finitely many p. 'lhen we define
the action of G's componentwise on such elements and extend the action lincarly
to W. This yields an irreducible representation G => GL(W) which is called the
restricted tensor product of the mp and is denoted ®@ mp (sec [JaLa, §9], [Flath,
§2]). Up to isomorphism, @)7, is independent of the choice of {ep}. Moreover
the Gg-module W is admissible in the sense that (i) every vector in W is fixed by
some open subgroupof G’, and(ii) for every open compact subgroup U of Gr, the
subspaceof vectors in W fixed by U is finite-dimensional.

Suppose that we are also given an irreducible admissible (g, Koo)-module V,.,
where g = glo(C) and K5, = O2(R). We can then consider V = Veg @ W; it is a
(g, Koc) x G-module, by which we simply mean that it is compatibly a (g, K)-
module and a G-module. It is irreducible in the sense that it has no proper
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(g, Koo) x Gp-submodules. Moreover V is admissible in the sense that (i) every
vector in V is fixed by some open subgroup of Gf, and(ii) for every open compact
subgroup U of Gr, the subspaceof vectors in V fixed by is an admissible (g, K..)-

module.

REMARK11.4.1. If we suppose further that each 7p is unitarizible, then we

could require that ep be a unit vector for p ¢ S. The resulting Gr-moduleis then

endowed with an invariant positive-definite Hermitian form. We can then form the

Hilbert space completion Wof W and obtain a unitary representation of Gr. If Voo is

also unitarizible, then the construction yields an admissible unitary representation
of Ga from which V is recovered as a dense (g,K..) x Gr-submodulesatisfying

certain finiteness conditions (see [Gode,§3.3]).

Conversely every irreducible, admissible (g, A.) x Gr-module can be written

as a restricted tensor product; moreover the local factors V, and V., are unique up
to isomorphism. (This follows from results of [JaLa, §9]; see also [Flath, Theorem
3], [Gode, §3.2] and [GGPS].)

In particular, suppose that we are given an irreducible, admissible represen-

tation 7: Gp + GL(W). Then 7 is isomorphic to ®) 7, for a collection oflocal
representations 7) : Gp > GL(Vp). Note also that 7 has a central character which
factors into the product of the central characters of the local representations.

Suppose now that each 7,is infinite-dimensional. We then define the conductor
of 7 to be Nyx = Hy p"» where for each p, the conductor of 7p is p"?Z,. Observe
that then N,, is the least positive integer N such that there is a nonzero vector in

W fixed by U,(N); moreover the space of such vectors is one-dimensional.
Given a character ¢ : Af’ + C% and a Gr-module W,welet W(eodet) denote

its twist by eodet, ie., the Gg-module W @M where M is the one-dimensional C's-

module gotten from the representation ¢odet. ‘Then W is admissible (respectively,
irreducible) if and only if W(¢odet) is admissible (respectively, irreducible). If W is
the restricted tensor product formed from local representations 7, : G, + GL(Vp),
then V(eo det) is formed from the representations mp ® (€p © det).

11.5. Cuspidal representations.

PRIMARY REFERENCES:
[JaLa, §10], [Gode, §3], [Gelb, §5,6] and [Cas2].

Let X denote the space RXyGq\Ga where we regard R23, as contained in the
scalar matrices of G,,. Welet dx be a G'a-invariant measure on X and we consider

the Hilbert space L?(X). Recall that this is the space of (equivalenceclasses of)
measurable functions ¢ : X — C such that

[locade < 0
x

it is endowed with the inner product

(1, $2) = il 1(@)bo(a) da.

Then Ga acts on L?(X)unitarily by right translation.
Weshall consider here only the subspace L2(X) consisting of @ satisfying a

certain cuspidality condition. (We are thus ignoring the contribution of Eisenstein
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series; see [Gelb, §8] for example.) We let L3(X) denote the set of # such that the
function

gr #(( 5 4% )g)dyLi ((3 % )9)

vanishes almost everywhere on Ga. Then L2(X) is a closed subspace stable under
the action of Ga. It decomposes into a Hilbert space direct sum

(11.5.1) 12(X) = @Ra,
where the sum is over (a countable set of) closed irreducible subspaces stable un-
der the action of Ga. The isomorphism classes of unitary representations GA>
GL(R..) which arise in this way are called cuspidal automorphic representations.
The existence of such a decomposition can be established by a method found in
[GGPS](see also [Gode, §3.1] and [GeJa, §2]), along with the fact that each
isomorphism class occurs with only finite multiplicity. Using the existence and
uniqueness of Whittaker models, Jacquet-Langlands [JaLa, §10,11] prove that the
multiplicities are one.

The theory developed in [JaLa] in fact yields a strong multiplicity one theo-
rem which we state below. To do so, wefirst switch to the context of admissible
(g, Koo)  Gg-modules by furtherrestricting our attention to the space of cuspidal
automorphic forms, denoted Ap. This is the space of smooth, K-finite, 3-finite,
slowly increasing functions in L3(X). Here “smooth” is as a function of Cis, KS
the maximal compact K.GL»(Z) and3 is the center of U(g) (Remark 11.3.4); we
have already discussed the notionsof“finite” (Remark 11.4.1) and “slowly increas-
ing” (§11.1). Note that our Ao is the algebraic direct sum overfinite order Hecke
characters € of the spaces denoted Ao(e) in [Gelb, Definition 3.3].

The space Apo is a dense subspace of L? and an admissible (g, K,oo) X Gp-module.
It decomposes into an algebraic direct sum

(11.5.2) Ay =~ BVa
where for each a, Va is an irreducible admissible (g, Koo) x Gp-module dense in
the space R occurring in (11.5.1); see [Gelb, Theorem 5.1]. Now factor each
Vq as explained in §11.4 and denote the corresponding admissible Gp-modules(re-
spectively (g,K.,)-module) by Va,» (respectively, Va,o.). We can now state the
strong multiplicity one theorem as follows. (See [Gelb, §6], [Cas2, Theorem 2] and
[PSh2].)

THEOREM 11.5.1. Suppose V. and Vg are constituents of Ay such that Vee
Va,» as Gp-modules for all but finitely many primes p. Then Va = Va.

Note that the theorem asserts not only that V. and Vg are isomorphic, but
that they coincide as subspaces of Ag.

The theorem also incorporates results about non-holomorphic automorphic
forms called Maass forms [Maass], but we will content ourselves with a discus-
sion of the transition back to the setting of §11.1 and the theory of newforms. (See
[Cas2, §3] and [Gelb, §5].)

Recall that for each k > 2, we distinguished a unitarizible discrete series
(g, Koo)-module denoted o%. Let

Ao,k = Home,i.) (7%, Ao).
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Then Ao,, is an admissible Gg-module and decomposes as the direct sum of

Va,e = Homyg«,,)(7%s Vix);

over @ such that Va... is isomorphic to o,. By Schur’s Lemma, V,,¢ is an irreducible

admissible G's-module isomorphicto the restricted tensor product of the Va,,. The
constituents in the decomposition of Ag,, correspond to the irreducible constituents

of S;, but the local factors Vq,p) are unitarizible whereas the factors of S, are not.

To complete the transition, we twist Ay, by a Hecke character and define an

isomorphism

Ao,«(| det |!-*/?) % S;,

of Gr-modules as follows. Recall that at the end of §11.3 we characterized a, by
the existence of a certain lowest weight vector v,. Now if 7 is a homomorphism

ox — Apoof (g, Koo)-modules, then we define the function ¢, on Ga by

r(g) = | det(g)|*~*/?(r(ve))(9).

Then ¢, is in S;; the left invariance under Gg and right invariance under an open

compact subgroup of G¢ are clear from the definitions; the cuspidality and slowly

increasing properties follow from those of r(v;,); the transformation property with

respect to U,, and the holomorphicity follow from the properties of vu, (see [Roga,
Proposition 2.13] and [Gelb, Proposition 2.1]). One can show that, conversely,
each function in S; arises in this way.

Thus the G-module S, decomposesas a direct sum of admissible irreducible

Wa = Va,e( )*/?),
where a runs over the constituents of Ap with Va,oo a. Moreover, writing

Ta : Gp + GL(W,) as

Qrar:
wefind that

e For each pair (a, p), 7a,p is an infinite-dimensional, admissible, irreducible
representation of Gp. (See [JaLa, Proposition 9.3], also [Cas1, §1].)

e For each a, 74,» is unramified for all but finitely many p.

e If ta,» & 7,p for all but finitely many p, then the constituents W, and Wg
coincide (by Theorem 11.5.1).

We can now deduce Theorem 11.1.2 from the results we have collected (see

[Cas2, §3]). Indeed each S;9 is a sum of constituents W,. If W, is such a con-
stituent, we see that for all but finitely many p, 7»,p is the unramified principal

series 7(11, 42) characterized by

(11.5.3) p'/?(41(p) + H2(p)) = (Tp); peta (p)H#2(p) = OPS)
as can be seenfrom (11.2.4). Therefore W,, is unique, and conversely each W, is an

Sx, With the equivalenceclass of 9 determined by the above formulas. Furthermore,

the conductor of 74 is the unique positive integer N such that S),9(U;(N)) is one-

dimensional. We thus deduce the existence of a unique newform corresponding to

the (equivalence class) of the eigencharacter 0.
Note also that the Dirichlet character ¢ of the newform is determined by the

central character of the corresponding 7,; to be precise, the central character is

&Al 2 —*,
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REMARK 11.5.2. Note that for all p, ta, @ | det |~!+*/2 is unitarizible, and
for all but finitely many p, it is an unramified principal series. That it is in fact
a continuous series representation for all but finitely many p is equivalent to the
Ramanujan-Petersson conjecture that

A(T) < 2p*-V/?
forall butfinitely manyp (sce [Sata, §4], [Gelb, Proposition 5.17], [Roga, Theorem
2.14] and Remark 5.0.1). By proving and applying the Weil conjectures, Deligne
[Del1], [Del5] shows that this holds for all primes p not dividing the conductor of
Tq (see Remark 12.5.10 below).

Whereas the unramified local representations Ta,p are completely determined
by the eigenvalues of 7, and S,, on the newform corresponding to a, this is not the
case in general. Let us consider some examples where we can at least determine
the type of ramified local representations occurring in the factorization.

EXAMPLE 11.5.3. Consider the 20 newforms of weight 2 andlevel dividing 33,
Le., the 20 a’s such that 7 has conductor dividing 33. (See Examples 6.1.4, 6.3.5
and 10.3.3.) Since 33 is square-free, it follows from thelist of possible conductors
in §11.2 that no 7,» is supercuspidal. Moreoverif 4,» is ramified, but its central
characteris not, then 74,» ~ sp(x| |'/?,x| |71/?) for some x. (Note that since k = 2,
the central character has finite order and hence so does y.) On the other hand,
if both 7,,, and its central character are ramified, then 74) ~ ™(J11, {42) for some
unitary 4; and 2, exactly one of whichis ramified. As there are two newforms of
level 33 for each of the 10 even Dirichlet characters, we find

e one 7 of conductor 11 with 711 special;

© one 7 of conductor 33 with 73 and 7, special;

e eight m of conductor 33 with m3 special and 7; principalseries;
e ten 7 of conductor 33 with 73 and 7; principal series.

In the first two cases, the central character is trivial, so the special representa-
tions are of the form sp(x| |!/?, | |~!/*) where y maybe either the trivial or the
unramified quadratic character.

EXAMPLE 11.5.4. As another example, consider the unique newform of weight
two, level 27 andtrivial character. Since the central character is trivial and the
conductorof 73 is 27, we see that: 73 is supercuspidal. This follows again from the
list of possible conductors; the conductor of a principal series or special represen-
tation 7, with unramified central character must be of the form p°Z, where 6 is
either even or 1.

REMARK 11.5.5. Recall that the L-function associated to a newform f has
an Euler product andsatisfies a functional equation (see Remark 5.0.2). The the-
ory of Jacquet-Langlands offers another interpretation of the Euler product. We
may view the L-function as being attached to the corresponding cuspidal automor-
phic representation and the Euler factor at a prime p can be described in terms
of the corresponding local representations 7, (see [JaLa, Theorem 2.18], [Gode,
§1.14], (Gelb, Theorem 6.15]). For example,if Tp is the unramified principal series
({1, #2), then the local factor is

L(t, 8) = L(t, 8) L(u2, 8) = (1 — pa (p)p~*)1 (1 — pro (p)p*) “1,



102 F. DIAMOND ANDJ. IM

which according to (11.5.3) is simply the value at s+ 1/2 of the Euler factor at p of

L(f,s). The analysis of L(mp, s) in [JaLa] (see also [Gode, §1.14,1.15] and [Gelb,
§6]) is in the spirit of Tate’s analysis of the Euler factors of an L-function associated
to a Hecke character [Tate1]. They define also an <factor e(1p,s) which plays a

role in the local functional equation, and there is an analogous construction of L-

and ¢-factors at oo (see [Gode, §2.7,2.8], [Gelb, Theorem 6.16]). One feature of
this point of view is that by [JaLa, Corollary 2.19] (or [Gelb, Theorem 6.14]), 7,
is determined by its central character together with the pair of functions

(x8) - L(t ®@(x det), s)

(x,8) ++ €(mp ® (x 0 det), s)

where x runs over characters of Q*.

12. Sheaves and cohomology

In this section we explain how modular forms can be viewed as sections of

line bundles on modular curves. Wealso discuss the Eichler-Shimura isomorphism

relating modular forms to the cohomology of modular curves ([Shil, Chapter 8]),

and the association of Galois representations to eigenforms for the Hecke operators

({Shil, Chapter 7], [Del1], [DeSe]).
Weshall usually try to state results for arbitrary weight, or weight k > 1

when necessary. However the reader should be aware from the start that, as we

indicate below, many of the results are much simpler in the setting of cusp forms

of weight k = 2. Then the relevant line bundle is simply the cotangent bundle,

the cohomology groups are defined using constant coefficients, and the associated

Galois representations are constructed from the Jacobian of the modular curve.

12.1. Line bundles.

PRIMARY REFERENCES:

[Shil, Chapter 2] and [Miy2, §2.2-2.5].

We now explain how modular forms may be viewed as holomorphicsections of

line bundles on modular curves. Much of the discussion is a reformulation in the
language of sheaves of results found in [Shil, §2.3-2.6], and we refer the reader

there for more details.

Let k be an integer and I’ a congruence subgroup of SL2(Z). We let X denote
the modular curve ['\* and Y the open subspace I'\%. Weshall say that I is k-

small (or simply smallif k is fixed in the discussion), if the following two conditions
are satisfied:

e ifk #0, then the image of I in PSL2(Z) has no nontrivial elementsoffinite
order;

e if k is odd, then —1 ¢T andthecusps of X are regular.

(If —1 ¢T, then the cusp [ - y(00) with 7 € SL2(Z) is regular if the stabilizer in T

of (00) is contained in at ( 4 \i) For example, if N > 4, then T';(N)is

k-small for all k. To prove this, note that if 7 is an elliptic or parabolic element of

Ti (N), then |tr (y)| < 2 and tr (y) = 2 mod N,andtherefore tr (vy) = 2 (see [Miy2,
Theorem 4.2.9]).

Now define an action of SL2(Z) on § x C by the formula

a (2,€) = (a(z), (ez +.d)*€)
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for a = ( : i € SL2(Z), z € H and € € C. IfT is small, then the quotient

'\(xC), with the natural projection mapto Y, has the structure of a complex line
bundle over Y. Moreover,it extends to a line bundle over X using thetrivialization
over a neighborhoodof the cusps (see §9.1) defined by

D- (z,€) + (L- y(z),€)
for y € SL2(Z) and z = r+iy with y > 0. Welet G; denote the resulting line
bundle and write ~ : G;, + X for the projection map.

Next we consider the sheaf G, on X of holomorphic sections of Gy. Thus G,
is an invertible sheaf of Ox-modules where Ox = Gpis the sheaf of holomorphic
functions on X. If f is a modular form of weight k with respect to T, then we
can define an element of G,(Y) by P- z+ [’- (z, f(z)). The condition that x
be holomorphic at the cusps translates to the condition that this extends to a
holomorphic section ¢; : X — G,. We find that f 4 oy establishes a natural
bijection between the spaces M,(I’) and G(X) = H°(X,G,).

If I’ is not small, then choose a small congruence subgroup I’ normal in P and
let 7 denote the natural projection map from X’ = I”\H* to X. Replacing [ by I’
in the definition of G,, we obtain an invertible sheaf Gj, of Ox:-modules on X’ and
an action of I on the sheaf 7,G{, which factors through T/T’. Wealso find that the
action of y on 7,.G;(X) = Gi(X') = M;,(I’) is simply the operator \[y~1]x defined
in §2.1. Thus M,(I’) = (14G;)"(X) where (7.G;)"is the subsheaf of 7,.G/, given
by sections invariant under I’. Thus for arbitrary k and T, we can write

(12.1.1) Mx(P) = H°(X, Ge)
where G, is defined to be (7.G{)". We find that Gj, is an invertible sheaf of Ox-
modules on X (unless k is odd and —1 is in I, in which case M,(I’) and G, are
both zero). It is independentof the choice of I’ in the sense that a different choice
produces a sheaf canonically isomorphic to G;,. Moreover in the case that [’ = Tr,
this definition of G, coincides with the previous one.

We can proceed similarly to interpret the cusp forms of weight k with respect
to Tas global sections of a certain invertible sheaf on X. Assume first that I is
small. Let C, C Ox denote the sheaf of holomorphic functions on X which vanish
at the cusps. We define F, to be the invertible sheaf G, @ox Cy of Ox-modules
on X. Then F; is naturally a subsheaf of G, and we mayidentify F),(X) C Ge(X)
with S,([) C Mx(I). For arbitrary I’, we again choose a small normal subgroup
I’, and consider the Ox:-sheaf Fi, C Gi, on X’. The action of T on 7G}, restricts
to one on 7,F; and we let F, = (1,F’)'. Then F; is independentof the choice of
T and the definition agrees with the earlier one if f =I’. We now have

(12.1.2) Sx (T) = H°(X, Fx)
where F; is an invertible Ox-subsheaf of G,, and the identification is compatible
with (12.1.1). The equation

(12.1.3) Fi = Ge Box Cr

remains valid where C; is defined as the sheaf of holomorphic functions which vanish
at the regular cusps if k is odd, and at all cusps if k is even (see [Shil1, §2.4] or
[Miy2, §2.3]).

EXAMPLE 12.1.1. If k = 0, then Gy = Ox, Mo(I’) = Ox(X)is the space of
constant functions C and Sy(T) = 0.
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EXAMPLE 12.1.2. More interesting, of course, is the case of k = 2. We find

that Fa is isomorphic to 24, the Ox-sheaf of holomorphic differentials on X. For

an explicit description of the isomorphism,first suppose that T is small and take

w € Q4(U) for an open subset U of X. Write o*w = f(z) dz for a holomorphic
function f on o~1(U) where @ is the natural map § — X. For US =UNY,
the holomorphic map U° — G2 defined by I: z ++ I’ - (z, f(z)) is an element of
G2(U°) = F2(U°) which extends uniquely to an clement ¢,, of F2(U). Moreover
w+» gd, defines an Ox(U)-linear isomorphism 04(U) — F2(U) compatible with
restriction, so

(12.1.4) Ok = Fo.

IfT is not small, then we still obtain (12.1.4) by choosing a suitable I’ and checking
that Q4, © Fs is compatible with the natural action of I’. In general, (12.1.4) to-

gether with (12.1.2) gives an isomorphism ([Shil, Corollary 2.17], [Miy2, Theorem
2.3.2])

O%(X) > S2(V)
which is simply w ++ f(z) where o*w = f(z)dz. In particular, note that the
dimension of S2(T) is just the genus of X which werecall is given by (9.1.2).

More generally, we can compute the dimension of M,(I°) and S;(I) using the
Riemann-Roch formula, provided k # 1. To do so, wefirst compute the degrees

of the invertible sheaves G, and ¥;,. If I is k-small for all k, then we find that

G?* is naturally isomorphic to G, and hence geex* as= G,. Together with the
Sncmrsossterrs (12.1.4) and (12.1.3), this gives

Fr = Gr_-2 Box Uk.

Moreover the formula (9.1.2) gives

Kk, 7 k_4y_ kega yg) WeFR= 9 DR + M0lg 1) = Fy Yoo

where g is the genus of X, yu is the index of the image of T in PSL2(Z), and v.
is the number of cusps on X. Thus if k is negative, so is the degree of Gx, and

M;,(I) = S(T) = 0. On the other hand, if k > 2 then the degree of G;, is greater
than 2g — 2, so

deg Gx = (g — 1)k + Vag

k(12.1.5) dime Mx(P) = (9 ~ 1)(k = 1) + Y505 = at o+>

by the Riemann-Roch formula. Similarly, if k > 2 then

k(12.1.6) dime S4(P) = (g — 1)(-1) + ¥o0(5 — 1) = E(k-a

EXAMPLE 12.1.3. By Example 9.1.6, we see that if N > 4 and k > 2, then the

dimension of M;(T1(N)) is
2

WX [a -2) + 4 [Ja —p? + 5,00 - 2).
PIN PIN

For the dimension of S,(I'(V)), change the “+” to a “—,” and if k = 2 then add
1. One can write

Mi(Pi(N)) = Se(Ti(N)) @ Ex(Ti(N))
where €;,(I';(NV)) is spanned by Eisenstein series (see §2.2) which can be described
explicitly.
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Weshall briefly describe the situation when I is not k-small. For more details,

see [Shil, §2.4,2.6] (especially Theorems 2.23 and 2.25) or [Miy2, §2.5]. First

suppose that -1 ¢T. Then westill have (12.1.4) and (12.1.3), but the natural map

Geox Pe os Gx may fail to be an isomorphism at elliptic points and irregular cusps

of X. Computing on stalks at these points gives instead that

(12.1.7) Geox" = G, Box Dk Box Ek

where D, (respectively, €,) is the sheaf of holomorphic functions with zeroes of

orderat least k/2 (respectively, k/3 and k/4) at irregular cusps (respectively,elliptic

points over j = 0 and 1728). Wefind thatif k > 2, then M; has dimension

(R= ye + 64k) fh a(k)= re Bok) + ;

if k > 2, where u (respectively, wu’) is the number of regular (respectively, irregular)

cusps on X, 6n(k) = n[k/n] —k+ 1 and the rest of the notation is as in §9.1. We

have a similar expression for the dimension of S;,(I‘); replace “+” by “—” in the

terms involving u and u’, and add 1 if k = 2. If —1is in’, then we assume k is even

and obtain the same dimension formulas using g&ox (#/2) aw Gr @ox Ex instead of

(12.1.7); no distinction is needed between regular and irregular cusps in this case.

EXAMPLE 12.1.4. We shall now give a complete description of the modular

forms oflevel at most 4 in terms of the examples of §2.2.

First note that we have dim M,(SL2(Z)) = [k/12]+1 for even positive k, unless

k = 2 mod 12 in which case the dimension is [k/12]. Similarly dim S,(SL2(Z)) =

[k/12], unless k > 12 and k = 2 mod12 in which case the dimensionis [k/12] — 1.

One deduces that the Fisenstein series E, and Eg of Example 2.2.1 are algebraically

independent and that @,Mj(SL2(Z)) is isomorphic to a polynomial ring in the

variables Hy and Eg (see [Shi1, Proposition 2.27] or [Ser1, VI1.3.2]).

For evenpositive k, M;(I'1(2)) has dimension [k/4] + 1. Consider the algebra

homomorphism

@:C[X,Y] > @eMz(T1(2))

defined by X > Fh, Y +> B4, where F) is the Eisenstein series E2(z) — 2E2(2z) of

Example 2.2.6. One can check from the explicit Fourier expansions that F} and E,

are linearly independent. It follows that so are F} and FE, and therefore Eg is in

the image. The injectivity of ¢ then follows from the algebraic independence of E4

and Eg, and comparing dimensions for each k we conclude that ¢ is an isomorphism.

Thus @,M,(T1(2)) is generated as an algebra by Fy and Es.

Similarly we find that for N = 3 (respectively, 4) and any weight k # 1,

M,('1(N)) has dimension [k/3] + 1 (respectively, [k/2] +1). We also find that

@x(M,I1(N)) is a polynomial ring in two variables generated by the Eisenstein

series E},,< and E3,,< (respectively, F1,1v,-< and F2), where

¢

is the quadratic char-

acter of conductor N (see Example 2.2.2 for the definition and Fourier expansion).

Finally, in each of the cases with N < 4, @xS,(T1(N)) isa principalideal in the

algebra of modular forms. The generators are A, (A(z)A(2z))/3, (A(z)A(3z))"/4

and E;}.,(A(2z))!/?, respectively. (See Examples 2.2.7 and 2.2.8).

12.2. Cohomology.

PRIMARY REFERENCES:

[Shil, Chapter8], [Hida3, §6.1, 6.2] and [Lang2, Chapter vi].
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Wenow turn to the Eichler-Shimura isomorphisms, which relate modular forms

to the cohomology of modular curves. We maintain the notation of the preceding

section. Again the results can be found in a somewhat different form in Shimura’s
text [Shil, §8.2]; we consider the cohomology of the curves X and Y as well as
that of the group I’. (See also [Hida3, §6.2] and [Del1, (2.10)].)

REMARK 12.2.1. We postpone until §12.4 discussion of the Hecke action on

cohomology, and wealsorestrict our attention for the moment to cohomology with
complex coefficients.

‘We begin with the case of weight two, and explain later how the results are

generalized to higher weight. Let us first consider H*(X,C) defined using singular

cohomology or, equivalently, the cohomology of the constant sheaf C on X. By

the de Rham theorem, H'(X,C)is naturally isomorphic to Hi}, (X). Recall that
Hp (X) is the i** cohomology group of the complex

0>0°(X) + ¢(X) = C7(X) +0

where C” denotes the sheaf of smooth complex-valued differential n-forms on X and

the map C” —+ C"*"is differentiation. In particular H'(X,C) can beidentified with
the space of closed 1-forms on X modulo the space of exact 1-forms. Furthermore,

according to the Hodge decomposition theorem, the natural map

H°(X) @ H°(X) + Hp (X)

is an isomorphism where H!°(X) (respectively, H°!(X)) is the space of holo-
morphic (respectively, antiholomorphic) 1-forms on X. Next recall that we have

identified H1°(X) = H°(X,Q4) with S2(I). Note also that f 4 f(z) dz defines a
conjugate linear isomorphism S2([) + H®!(X) and thus a C-linear isomorphism
S2(C) = H!°(X) where S2(I) denotes the complex vector space C @c Sy(T), the
map C — C being complex conjugation. Thus we have a natural isomorphism

(12.2.1) S(T) ®Sa(P) & H"(X,C).

Moreover the cup product can be expressed in terms of the Petersson inner product

(see (12.2.6) below).
Next we consider the cohomology of the non-compact curve Y. Let U be the

intersection of Y with a sufficiently small neighborhood of the cusps of X. Wefind
that the sequence

0— H)(X,C)— H'(Y,C) — H'(U,C)

is exact, and the spaces have dimension 2g, 2g ++v. —1 and v. Wefind also that

the image of H1(X,C) in H1(Y,C)coincides with that of H}(Y,C) - H1(Y,C)
where H}(Y,C) is the cohomology with compact support. Note that this map is

neither injective nor surjective if v4. > 1; we denote the image BY, C).

Again we have a de Rham isomorphism H‘(Y,C) ~ Hi, (Y), but now the
natural map H°(Y,Q}) > Hb, (Y) is not injective. (Indeed H°(Y, 01) is infinite-
dimensional over C and H'(Y,C)is finite-dimensional.) Consider instead the com-
posite

(12.2.2) M32(C) = H°(X, G2) @ H°(Y, a1) — H'Y,C)
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where the middle injection is defined using the isomorphism Go| © Q4- given by

(12.1.3) and (12.1.4). We thus obtain a commutative diagram

09> S&T) + MT) + Mba(L)/S(L)
J { M

0 — HY(X,C) = A'Y,C) = H}(U,C)

with exact rows. The map M2(I) — H1(U,C) can be described explicitly in terms

of residues at the cusps and we find the kernel is precisely S(I‘). Thus the last

vertical map is injective, and since the first map is injective by (12.2.1), we see

that so is (12.2.2). Comparing dimensions we conclude that we have produced an
isomorphism

(12.2.3) M3(L) @ S2(P) ¥ H'(¥,C)
Wecanalso relate the cohomology of X and Y to that of the group [. If I’is

small, then § — Y is the universal cover and hence I’ is the fundamental group of

Y. Wetherefore have a natural isomorphism

(12.2.4) H(Y,C) © H1(P, C) = Hom(T, C).
Wecheck that (12.2.4) holds for arbitrary [ by passing to a small normal subgroup
I’. The isomorphism H1(Y’,C) & H!(I’, C)is compatible with the natural action
of I and one checks that H1(Y,C) (respectively, H1(I’, C)) maps isomorphically to
H"(Y',C)? (respectively, H1(I’,C)"). As in [Shi1, §8.2] or [Hida1,§3] (but note
that we are working with coefficients in C), one can give a very explicit description
of the composite

M2(T) 6 82(0) > H*(L, C).
The form f € M2(L)is sent to the homomorphism I’ > C defined by

(za)

4/ f(z) dz
zo

for a fixed choice of base point zy € §, and the map on S2(I)is described similarly

by integrating antiholomorphic differentials. We can also identify the image of

H,(Y,C), or equivalently of S,(I') @ S2(L), in H1(I,C) as H}(I,C), the group
of parabolic cohomology classes. If M is a T-module, then we say that a class in

H' (I, M)is parabolicif its image underrestriction in H1(I',, M)is trivial for each
s € QU {oo}(or equivalently, for each s in a set of representatives for the cusps
of X), where T, denotes the stabilizer in I of s (see (Shil, §8.1], [Hida2, §4]).

Note that H} (I, C) can be identified with Hom(I'/N,C) where N is the normal
subgroup generated by the T’,.

Next we briefly explain how this generalizes to weight k > 2 by replacing C

with a certain (k —1)-dimensional representation of SL2(Z). (See [Shil, §8.2].) We
let Vi = Symm &*(C?) with an action of SLo(Z) gotten fromthe standard one on
C?. For f in M;(I) we define a class in H1(I', Vz) by the cocycle

(12.2.5) re f™1e)( 4)ae
Here z is a basepoint, v*-? denotes the image of v @--- @v in Symm*~?(C?)
and the integral is that of a vector-valued differential. Together with a similar
construction for antiholomorphic differentials, we obtain a C-linear map

B:My(l) @ S(T) — H'(D, Vz)
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whichrestricts to

Bp : Sk(T) @ S(T) > Hy(U, Ve):

THEOREM 12.2.2. 3 and 8, are isomorphisms.

We have already covered the case k = 2; for k > 2 we sketch a proof which

is a variant of the one presented in [Shil, §8.2]; see also [Hida3, §6.2]. First one

reduces to the case where I’ is small. Then a : § — Y is the universal cover, and

the covering group I acts naturally on (7*Vx)(9) = Vi. where V;, is the locally

constant sheaf of continuous sections from Y to T'\( x Vi), where Vz is given the

discrete topology. Since § is contractible, the natural maps

H'(L, Vk) + H'(Y, Ve)

are isomorphisms [Mum1, §2, Appendix]. These groups vanish for i # 1 assuming

k > 2. Let
a:My(T) @S(L) > H'(Y, Ve)

denote the composite of 3 with H1(I, Vi) > H'(Y, Vx).

Now consider the restriction map r : H1(Y,V,) + H'(UNY, Vx) where U is

again a suitable neighborhood of the cusps of X. Wefind that r is surjective with

kernel H}(Y, Vx) (the image of Hi(Y,V«)) and that the kernelof ro @ is precisely

S(T) © S,(L). (See [Hida2, §5] for such an argument in the context of group

cohomology.) Thus a restricts to a homomorphism

Op : S(T) @S,(L) > HY, Ve)-

That a and ay are isomorphismsfollows on combining the assertions

® dyis injective;

e dime H1(Y, V;,) = dime Mx (I) + dime S,(P).

To prove the first assertion, we use the cup product to construct a pairing

on H}(Y, Vi) which is compatible with the Petersson inner product discussed in

§3.6. First note that I’ acts trivially on AZ(V3), so the standard alternating pairing

v®w ++ det(v,w) defines a I’-linear map 7 : V3 ®c V3 + C, where C has trivial

T-action. Next one checks that there is a unique T-linear map

TK: Vi @c Vk CO

such that 7 (v'-? @ wk?) = 1(v@w)*-? (using the notation introduced following

(12.2.5)). This then defines a homomorphism Vz @c Vk — C of sheaves on Y.

The composite

H(V,V,) ©c HY, Ve) 4 HB(¥, Vie @c Vi) % ER(Y,C) = C

induces the desired pairing ¢,. Taking fi, gi € S.(I’) for i = 1,2, we find (see [Shil,

(8.2.18)})

(12.2.6) du(Orp(fr,91) ® Op(far Fa)) = Cx (fis g2) + (—1)*(fa, 1)),

where C, £ 0 depends only on k and we have written 9; for 1@ gi € S,(T).

(This formula holds also for k = 2.) The injectivity of a, then follows from the

nondegeneracyof the Petersson inner product.

To prove the second assertion, note that by (12.1.5) and (12.1.6) we have

dimg M,(L) + dime Sx (T) = (29 — 2 + Yoo) (k — 1) = —x(¥) dime (Vi)
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where x(Y) = }>(—1)* dime A"(Y, C)is the Euler characteristic of Y. We can then
appeal to the Mayer-Vietoris sequence for sheaf cohomology to check that

So(-1)' dime H'(Y, Va) = x(¥) dime (Vi),

and we are done since H*(Y,V,) = 0 for i# 1.

REMARK 12.2.3. Note that we may also regard the quotient P\(§ x Vy) as a
vector bundle over Y and consider the Oy-sheaf V,, ~ Vx @®c¢ Oy of holomorphic

sections. The map 9 x C > x V; defined by

(ae) (€( 4 )"%)
induces a morphism (G,_2)|y — Vy of Oy-sheaves on Y. Tensoring with G2|y >
QY, (see (12.1.4)), we obtain Gly + Vi; @o, QL. The restriction of a to M,(T)
can then be described as the composite

Mz(T) + Gx(¥) > (Ve @oy QY)(Y) > HY, Va),
the last map coming from the de Rham isomorphism.

12.3. The g-expansion principle.
PRIMARY REFERENCES:

[DeRa, §VII.3], [Katz1, Chapter 1] and [Maz1, §I1.4,I1.5].

Wenow discuss some of the theory of modular forms with coefficients in rings
other than C. Such a theory is useful, for example, in the study of congruences
between eigenvalues of Hecke operators.

Let P =[o(N) or I; (N) and consider the injective map

(12.3.1) Mx(C) + C{[q]]
sending a modular form to its qg-expansion, i.e., its Fourier expansion at oo as
in (2.1.1). Let M,([;Z) denote the preimage of Z[[q]], i-e., set of elements of
M,(L) with Fourier coefficients in Z. For an arbitrary ring A, we write M,(I; A)
for M,(T;Z) @ A. Since My(I;Z) — Z{[q]] has torsion-free cokernel, the map
M,(T; A) — Al[q]] obtained by tensoring with A is also injective. We define
S,([;A) similarly using cusp forms, and we identify it with an A-submodule of
M,(T; A). (Note that S,(P;Z) = M,(I; Z) NS, (L).)

Let us naively call M;(P; A) (respectively, S,,(['; A)) the A-module of modular
forms (respectively, cusp forms) with coefficients in A. The definition is naive in
that we have not shown that M; (I; Z) contains bases for M,,(T) and S;,(I), and we
need this in order to identify M;(I; C) with M,(T). The existence of such basesis
due to Shimura; see [Shil, Theorem 3.52] for the case of S;,([°) with k > 2. Here,
however, we shall explain how to deduce the general result: from the g-expansion
principle of Deligne-Rapoport [DeRa, §VII.3] and Katz [Katz1, Chapter 1] (see
also [Katz2, Chapter 2]).

Theinjectivity of M;.(T; A) — Al[q]] may be viewed as a naive version ofthe q-
expansion principle. To state a more powerful version, we need an algebraic notion

of a modular form with coefficients in an arbitrary ring A. We begin by regarding
the sheaves G, (see §12.1) as arising naturally in the context of the moduli problems
discussed in §7.2 and §8.

For simplicity, we restrict our attention for the moment to Tj(N) with N > 4.
Recall from §8.2 that there is a universal elliptic curve with a point of order N

over the model );(N) for ¥:(N) =Ti(N)\S. In the consideration of g-expansions



110 F. DIAMOND ANDJ. IM

it is more convenient to use the model ),(N) of Variant 8.2.2. Let Emniy now
denote the universal elliptic curve (over ,,(N)), and iuniy the canonical immersion

(Hn)y,(N) — Euniv- We let Euniy denote the complex points of Eyniy; thus Euniy

is a complex analytic family ofelliptic curves over Yi(N). We choose e?*/" as our

Nth root of unity and let Puniy : ¥Yi(N) — Euniv be the corresponding family of
points of order N given by iuniv -

Wecan describe Eyniy and Puniy concretely as follows. Define a right action

of Z x Zon § x C by

(2,¢) - (m,n) = (2,¢ +mz +n)
for m,n € Z, z € H and ¢ € C. The quotient is naturally a family of elliptic curves

over §, and z++ (z,1/N) defines a family of points of order N. Now define a left

action of [,(N) on the quotient so that + = ( : 2 ) sends the orbit of (z,¢) to

that of (y(z), (cz +d)~'¢). The quotient

Ty(N)\(8 x C)/(Z x Z)),
viewed as an elliptic curve over Y;(NV) can beidentified with Eyniy , and the section

defined by z++ 1/N can beidentified with Puniy «

The line bundle Gi|y,(w) on Yi(N) (see §12.1) can now beidentified with
restriction along the zero-section of the relative cotangent bundle of Eyniy over

Y,(N). To makethis identification precise, note that the latter bundle is canonically

(12.3.2) T(N)\(H x V),

c @

on § x is given by (z,d¢) ++ (7(z), (cz + d)d¢). We identify this with Gily,1y)
via

where V is the cotangent space of C at the origin and the action of y = ( ae )

(2,€) (2, 2migd¢).
We can extend the moduli-theoretic description of G; to the cusps by consid-

ering the universal generalized elliptic curve with an immersion of zy (see Variant
9.3.6). Again denote the universal curve Eyniy (now over 4,,(N)) and considerits

complex points; these form a complex analytic family of generalized elliptic curves

Euniy over Xi(N). We can again give a concrete description of E,niy; in partic-

ular, its fiber over the cusp ';(N) - co is simply C/Z, the point of order N being
1/N mod Z. The description of Eyniy in these terms near other cuspsis slightly

more complicated (see §9.3 and [DeRa,VII.4]), and we will not go into detail here.
However, the cotangent bundle of Eyniy over X1(N) restricted to the zero section

depends only on the identity component, and can again beidentified with G).

An advantageof the moduli-theoretic description of G; is that the base need not

be C. Indeed we can construct an invertible sheaf on ¥,(N) which is a “canonical
model” for the line bundle G,. Let w denote the pull-back along the zero section

X(N) + Euniv of the sheaf Q} /x,(): Then w is an invertible sheaf on X(N),

and the complex analytic sheaf on X;(N) associated to wc can beidentified with
the sheaf we denoted G, in §12.1. We also have w®* as a model for G,. The
Gauss-Manin connection yields an isomorphism

(12.3.3) w*ly,(y) > %,cya
(see [DeRa, §VI.4.5], [Katz1, A1.3] and [Schl, 2.4]). Moreover the complement
of Y,(N) in X(N) defines a divisor Z,,(N) and we write £ for the corresponding
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invertible sheaf on *,,(N). Then (12.3.3) extends to an isomorphism

(12.3.4) we? + Weyz @L-

The isomorphism is compatible with that of (12.1.4) and allows us to regard
welk-2) @ Qhyz as a model for Fy.

For an arbitrary ring A, we define a modular form over A (of weight k with
respect to [';(N)) to be an clement of

H(Xi(N)a,w9*).
Similarly, we define a cusp form over A as an element of

(X(N)awe@Oy, crya/a):
We write M,(Ii(N);A) for the A-module of modular forms over A. We write
Sx(U1(N); A) for the cusp forms which we regard as a submodule of M;(I1(N); A)
via (12.3.4).

REMARK 12.3.1. Note the terminology over A to distinguish this from the
naive definition of modular forms with coefficients in A.

Identifying G, with the complex analytic sheaf associated to w8*, we obtain
natural isomorphisms

(12.3.5) Mx(Ti(N);C) = Me(Pi(N)); Se(T1(N);C) & S(Pi(N)).
Base change arguments (see [Katz1, §1.7] and [Maz1, II.3]) together with Theorem
9.3.7 yield the followingresult.

THEOREM 12.3.2. If B is an A-algebra and either of the following hold
e B is flat over A;

e©k>1 and N is invertible in B,

then the natural maps

Mz(Pi(N); A) @a B > Mi(Ti(N); B);
S.(T1(N); A) @4 B > S(T1(N); B)

are isomorphisms.

REMARK 12.3.3. The definition we have given for a modular form over A is
most convenient for the applications below. Howeverit is not necessarily the most
suitable if, for example, A is a field of characteristic p dividing N. Moreover we
have restricted our attention here to ['(N) with N > 4. For discussion of various
notions of modular forms over a ring A, base-change and g-expansion in a more
gencral context, see [DeRa, VII.3], [Katz1, §1.7, 1.8], [Katz2, §11.2.2], [Maz1,
II.4] and [Gross, §10].

Wenow explain how Deligne and Rapoport’s algebraic description of the cusps
allows us to define the g-expansion of a modular form over A. More details can be
found in [DeRa,VII.3] and [Katz1, A.1.3]. See also [Gross, §2] for statements in
the context of modular forms with respect to T',(N).

In our discussion in §9.3 of the work of Deligne-Rapoport [DeRa], we described
how the cusps of X,(N) correspond to degenerate elliptic curves. Moreover we
indicated how Tate curves can be used to describe the completion of 4’,(N) along
D, the cuspidal divisor. However in the present discussion we shall continue to use
the models discussed in Variant 9.3.6.
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Now consider the point sx, of %,,(N)(Z) arising from the generalized ellip-
tic curve P! (over Z) with its canonical embedding of My. The image of s,, in
%X,(N)(C) = Xi(N) is the cusp we have identified with T\(N)-oo. The map
Spec Z — %,(NV)is a closed immersion, and we write ¥,,(N) for the completion of
%,(N) along the image. The Tate curve E, over Z|[q]] has a canonical immersion
of wy so that the composite

Spec Z — Spec Z[[q]] > ¥,.(N)
is Soo, where the first map is the closed immersion defined by q + 0. This gives
rise to a morphism of formal schemes

Joo : Spf Z[[q]] > X(N),
which is in fact an isomorphism (see [DeRa, VII.2|). Moreover the isomorphism
identifies the completion of w with the sheaf on Spf Z|{q]] corresponding to the
Z([q||-module ene,/zi(qij Where € is the zero section of E,. But this is a free

Z{{q]|-module with a canonical generator denoted wean in [Katz1, A.1.3]. Using
wen as a generator for the completion of w®* and working over an arbitrary ring
A, one obtains the g-expansion homomorphism

(12.3.6) 00,4? Mi (U1 (N); A) > Alfa]].
Therestriction to S,(P1(N); A) maps to qAl[q]]. The maps ¢,.,4 are functorial in
A,and in the case A = C, this becomes the usual g-expansion at oo in (2.1.1):

We now state the q-expansion principle of [DeRa, Theorem VIL.3.9] in our
context. It is proved using Theorem 9.3.7 and the arguments of Deligne-Rapoport
or Katz, [Katz1, §1.6].

THEOREM 12.3.4. 1. The q-erpansion homomorphism ¢4,5. is injective

for every ring A.
2. If A is a subring of B, then the commutative diagram

Mulha(W),A) =e Alla

Mx(Ti(N),B) **  Bifal]
is Cartesian; i.e., the image ofM,(I\(N); A) in My(Ti(N); B) is precisely
the set of modular forms whose q-expansions at oo have coefficients in A.

3. The above assertions hold with M;, replaced by S;.

The first part of the theorem states that a modular form over A is deter-
mined by its q-expansion at oo. The second part of the theorem shows in par-

ticular that the image of M,(T1(N);Z) in Mj(01(N);C) = Mz(Pi(N)) is pre-
cisely M,(T1(N);Z). More generally if R is a subring of C, we may identify
Mx(Ti(N); R) with the set of modular forms whose Fourier coefficients at oo lie in
R. Analogous statements hold for cusp forms by the third part of the theorem.

REMARK 12.3.5. For each cusp s of X;(N) and Z[1/N, e?"*/’]-algebra A, one
can define a corresponding g-expansion homomorphism ¢,,4 with values in A[|q!/"]]
(for suitable h). One then obtains the analogue of Theorem 12.3.4 (see [DeRa,
§VII.3]). In particular, if f is in M,(P1(N), A), then its g-expansion ¢,,4(f) is
identically zero for some cusp s if and onlyifit is identically zero for all cusps s.
Wehavealso thatif the q-expansion at one cusp has coefficients in a Z[1/N, e?7*/]-
subalgebra B of A, then so does it at all cusps.
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An element of M,(I'i(N); A) is in S,(T\(N); A) if and only if the constant
term of the g-expansion vanishes at all cusps.

For f € My(Ti(N);Z) C M;(0'1(N)), it need not be the case that the Fourier
expansions have integer coefficients at cusps other than ';(N) - 00. One can show
however that the denominators of the coefficients of ¢5,4(f) € Z[I/N,e2™/"][[q]]
are bounded. (See [DeRa, Corollary VII.3.11], [Katz1, A.1.2].)

REMARK 12.3.6. Had we used the model 4; (N) for X\(N) of §9.3 rather than
that of Variant 9.3.6, the cusp [';(N) - co would not be defined over Q. We would
then havehad to restrict our attention throughout to algebras over Z[1/N, e27'/% J:

‘We now record some consequences of the g-expansion principle. First, we com-

bine Theorem 12.3.4 with Theorem 12.3.2 to obtain the following.

THEOREM 12.3.7. The natural maps

Mx(Ti(N);A) > Mg(Ti(N); A);
S.(Pi(N);A) — Se(Ti(N); A)

are injective, and are isomorphisms provided one of the following holds

e Ais flat over Z;

e k>1 and N is invertible in A.

Note especially that this holds if k > 1 and is a field of characteristic prime

to N. (Recall that we are assuming N > 4.)
Note also that Theorem 12.3.7 holds if A = C yielding the following corollary.

CoROLuary 12.3.8. For all positive integers N and k, the space M,(I'1(N))
(respectively, Sx(T1(N))) has a basis in My(I1(N); Z) (respectively, S,(T1(N);Z)).

Note that we have removed the assumption that N > 4. Indeed Example 12.1.4

shows that for N < 4, the spaces are spanned by monomials in forms with integer

Fourier coefficients (see (2.2.5) and Example 2.2.7).

CorROLLary 12.3.9. Suppose that f = Sang” is in Mx (Ii (N)) (respectively,
Sx(Pi(N))) ando is an automorphism ofC. Then there is a form f? in M,(T1(N))
(respectively, S,([\(N))) with Fourier expansion Y\ a2”.

This follows from Corollary 12.3.8, or in case N > 4 directly from the g-

expansion principle Theorem 12.3.4 applied too : A— B with A= B=C.

COROLLARY 12.3.10. Suppose that k > 0 and f = Sc ang” is in Mx(Ti(N)).
Let K be the the subfield of C generated by {an|n >0}. Then ao is in K.

The proofis as follows ((Shi6, Proposition 1.3]). If o is a field automorphism
of C fixing A, then the constant aj — ao = f? — f is in. M,(I1(N)) and hence is

equal to 0.

Again assume that N > 4 andlet Eyy;, denote the universal generalized elliptic

curve over %,,(N) with immersion iyniy of wy. For d in (Z/NZ)*, we denote by

(d) the automorphism of ¥,,(N) corresponding to the pair (Eqniv , diuniv ). Then (d)
is a modelover Z for (d) : X:(N) + Xi(N). Moreover we mayidentify (d)*w with
w and thus obtain an action of (Z/NZ)* on

Mx(T1(N); Z) = H°(4,(N),w®).

More generally we can define in this way actions of (Z/NZ)* on M,(Ii(N); A)
and S;(T,(N); A) for arbitrary A. The action is functorial in A and respects the
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inclusion of S,(I'1(N); A) in M;(Ii(N); A). Moreover it is compatible via (12.3.5)
with the action of (Z/NZ)* on M,(I',(N)) of the operators denoted (d), in §2.1.

In particular, it follows that

PROPOSITION 12.3.11. 1. The subsets My(U1(N);Z) and S;,(0y(N);Z)
are preserved by the operators (d) for d € (Z/NZ)*.

2. If f isin Mx(N,e), then f? is in Mx(N,€°), where f°? is defined in Corol-
lary 12.3.9 and €° denotes oo.

The second assertion follows from the fact that (d), commutes with f +> f?.
Note that both assertions hold for all N > 1, since for N < 4 each (d) acts by +1

on M,(T1(N)).
Now consider the “trace” map

SS @e: Me(Fi(N)) > Ma(To(W)).
de(Z/NZ)*

The mapis surjective as its restriction to Mx(I'9(NV)) is multiplication by ¢(N) =
|(Z/NZ)*|. By Proposition 12.3.11, we see that M,(Ii(N);Z) is mapped to
My,(To(N); Z) = Mi. (Li(N);Z) Mz(Po(N)). The sameassertions hold for cusp
forms and we deduce the following from Corollary 12.3.8.

CoROLLARY 12.3.12. Let f = o(N) or T'y(N) with N > 1. Then M,(T)

(respectively, S,([)) has a basis in My(I;Z) (respectively, S,(I';Z)).

This holds also for I’ satisfying T:(N) C T C To(N). Onealso finds that
the spaces M,(N,¢) and S;,(N,e) are spanned by forms with g-expansions in Z[e]
where Z[e] denotes the ring generated by the valuesof<.

12.4. Hecke action.

PRIMARY REFERENCES:

[Shil, Chapters 3,8], [Del1, §3] and [Hida3,§6.3].

For f in M,(T1(N)) and n > 0,let us write an(f) for the nth Fourier coefficient
in the g-expansion of f at oo. For each positive integer m, Proposition 3.4.3 gives

(12.4.1) On (Tin f) = Sdannjaa((d) A) 5
the sum being over positive divisors d of (m,n) which are relatively prime to N.
So by Proposition 12.3.11, we have

PROPOSITION 12.4.1. Let k, N and m be positive integers, and let T =To(N)
or T,(N). If f is inM,(I;Z), then so is Tf, and similarly for S,(T; Z).

REMARK 12.4.2. Note that we do not need to appeal to Proposition 12.3.11

in the case of I’ = I'9(N); indeed Proposition 12.4.1 is immediate from (12.4.1).

Let T be as in Proposition 3.5.1, i.e., the subring of End M,(I') generated by

the Hecke operators Ty, for all m > 1, or equivalently by the {Tp, (q)x} for all
primes p and all primes g/N. By Proposition 12.4.1 we may regard M,(I; Z) as a

T-module. Thus for an arbitrary ring A, we may regard

M,(L; A) = My (tT: Z) ® A

as a T @ A-module. :
Appealing to Corollary 12.3.12, we see that the map T — EndMy,(I; Z) is

injective. Therefore
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COROLLARY 12.4.3. The ring T is a finitely generated free Z-module.

REMARK 12.4.4. See the discussion following Proposition 12.4.10 for an alter-
nate proofin the case k > 2 using the Eichler-Shimura isomorphism.

Theresult has the following application to Hecke eigenvalues. (See for example
[Shit, §3.5] or [Shi3, §1].) Suppose that f € M;(L) is a simultaneous eigenform
for the operators in T and consider the eigencharacter 0 : T — C defined by
f|T = 0(T)f. The imageofthe ring T in

C

is finitely gencrated as a Z-module,
hence is contained in the ring of algebraic integers of a numberfield. Moreover,for
a € Gal (Q/Q) and d € (Z/NZ)*, it follows from (12.4.1) and the compatibility of
fr f? with fH (d)f that Taf? = (Imf)’.

Corotiary 12.4.5. Let k and N be positive integers and ¢ a mod N Dirich-
let character. Suppose that f = Sang” is a normalized eigenform in M,(N,<)
(respectively, S.(N,€)) for the Hecke operators T.,, for all n > 1. Then there is
a number field whose ring of integers contains the Fourier coefficients a, for all
n> 1. Fora € Gal(Q/Q), the form f? is a normalized eigenform in M,(N,€?)
(respectively, S.(N,e°)) for the operators T, for alln > 1. Moreover if f isa
newform, then so is f’.

REMARK 12.4.6. If f is a newform then the ficld Kgenerated by the eigen-
values a,, is either totally real or CM (i.c., a totally imaginary quadratic extension
of a totally real field). This follows from [Shi1, Proposition 3.56] (see [Shi3,§1] or
[Shi5, Lemma2)).

REMARK 12.4.7. If I is an ideal of a ring A, we say that two forms f and
g in M,(T; A) are congruent mod J if their images in M,(I;.A/I) coincide, or
equivalently, if the coefficients of the associated g-expansions Sang”) Do bag” in
Al[q]] satisfy a, = 6, mod I for all n > 0.

Mostinteresting is the case where A is the ring of integers of a number field
and f andg are eigenforms for the action of the Hecke operators. The study of such
congruencesarises naturally in the context of the associated Galois representations
(see Remark 12.5.5) in the recent work of Ribet [Rib4] and Wiles [Wil2]. For
earlier work on the subject, see for example [Ser2], [SwDy], [Katz1], [DoOhl,
{Hida1] and [Rib3}.

We shall now describe the natural action of the Hecke operators on someof the
objects we related to modular forms in the preceding sections.

Let us first consider the case of cusp forms of weight two with respect to T =
T,(N) or To(N). Let A denote the corresponding semigroup A,(N) or Ao(N)
in the notation of §3.1. Let X = ['\*. For 6 in A, we write IP for Pn 6ré-!
and X° for X = I\*. (Recall from §3.2 that I's denotes 616 n I.) Let
na: X°— X be the canonical projection. andlet 7s : X° + X be the map induced

by z+ 6-12, Recall that the isomorphism (12.1.4)identifies Fy with the sheaf 4,
of holomorphic differentials and hence S2(I°) with H°(X,04,). The Hecke operator
TéL on the space S(T) is then given by

(12.4.2) H®(X, 2) + H°(X?, Qh.) = H°(X, 24),

thefirst map being the pullback m*, the second being the trace 75, on differentials.
(See [Shi1, (7.2.6)].)
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REMARK12.4.8. Recall that for [ =I,(N) with N > 4, we gave in §12.3 an
algebraic definition of the A-module of modular forms over A, denoted M,(T; A).
According to theorem 12.3.7, the natural inclusion M,(T; A) > M,(T; A) is an
isomorphism under suitable hypotheses. Hence M,,(['; A) inherits an action of the

Hecke operators.

Recall that we have already given a geometric description of the action of the
operators (d) on M;,(I; A), and it is compatible with the one on M,(T; A). One
can do this also for the operators T), at least if p is invertible in A; see [Katz1,
§1.11].

Now wediscuss the Hecke action on the cohomology groups considered in §12.2

(see [Shil, §8.3]).
Recall that in the case of weight k = 2, (12.2.3) and (12.2.4) related H'! (I, C)

to the space of modular forms with respect to T. We now consider H'(I,Z) and
define on it. an action of the abstract Hecke ring R(T, A). For 6 € A, we define an

endomorphism of H!(I,Z) as the composite

(12.4.3) Hir,Z) > Hr’, Z) > H(L5,Z) > HL, Z)

where thefirst map is restriction, the second is gotten from conjugation by 6 and
the last is the transfer (or trace) map. The map dependsonly on the double coset
Tél, and the image of a class x is denoted x|(['6T) (see [Shil, §8.3], [Hidal, §3]).
Extending linearly, we obtain the desired action of R(T, A).

Recall that for k > 2, we let V, denote the I-module Symm B26). Now

consider M, = SymmBtn) with its action not only of I’, but also of A. For

a double coset Tél in R(T’, A), we define an endomorphism of H'(I', Mx) by a
composition generalizing (12.4.3), but let us instead give a more explicit description
of the endomorphism

HAT, My) — HAD, Mz)
(234) a 4 2|(Ter)
following [Shi1, §8.3]. We let u be a cocycle representing 1 and we decompose Tal

as a disjoint union of 16; with i= 1,... ,r. Now for y €T andfor each i, we have
8:75;(3) €T for some j(i). We then define a map v: T — My, by

o(7) = > &- (i765),
g=1

where z is the main involution of Mo(Z), i-e., the anti-involution defined by 3+ =

(tr @)I. Then v is a cocycle andits cohomology class depends only x and the double
coset T'6T; we define x|(['6T) to bethis class.

Onefinds that the action of the double cosets extends linearly to define an
action of the Hecke ring R(I’,A), and that H}(I,Mx) is preserved by R(T, A).

(See §12.2 for the definition of the parabolic cohomology groups AZ (, Mx)-)

REMARK 12.4.9. In thesituations where the group cohomology can beidenti-
fied with a cohomology group for the modular curve, the double coset operator has

a description analogous to (12.4.3). (See [Hidal, §3].)
In particular, for k = 2 we mayidentify (12.4.3) with the composite

Tee(12.4.5) HUY,Z) & W(v*®,Z) “FY WY, Z)
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where Y =T'\S and yoreA: This works also using the compactified curves to
describe the action on H;(I,Z).

For k > 2, assume [ = [\(N) with N > 4. Then the maps m and 75 are
covering maps and there is a canonical isomorphism

H(T', Mg) © H"(Y,M)
where M is the locally constant sheaf of continuous sections Y + [\( x My).
Writing M®for the corresponding sheaf on Y°, 2 ++ 2|(TaT’) becomes

(12.4.6) H"(Y,M) > H1(Y°,M®) = H1(Y°, tM?) = H1(Y,M),

where the mapsare defined as follows. The first map is just 7* together with the
canonical identification of ™*M with M®. The second mapis given by a map on
sheaves defined by 6’. The last is a trace. Combined with a similar construc-
tion for cohomology with compact support, one obtains also a description of the
endomorphism T'6l on H} (I, M;).

Wecan similarly define an action of R(I, A) on H'(T, V;) preserving HA (T, Vi)
(and indeed on H1 (I, My @ A) for any abelian group A). The action is compatible
with the canonical maps

HVT,Mk) > HVT,M)@C £ H(L,Vy)
HAT,M,) > HiT,M)@C © HiT,V).

More importantly, we have (see [Shil, Proposition 8.5])

PROPOSITION 12.4.10. The Eichler-Shimura isomorphisms 3 and Bp of The-
orem 12.2.2 are compatible with the action of R(T, A).

This gives another proof, due to Shimura [Shi1, §3.5], of Corollary 12.4.3 in /
the case k > 2. Indeed H'(I, M,) is finitely generated (using for example that C
has a subgroupoffinite index which is a finitely generated free group). Thus the
image of R(T, A) in End H1(I, M;) is finitely generated. Now observe that T is a
quotient of that image.

REMARK12.4.11. We note a variant in the case k = 2 which makes use of an
important observation. Recall that the Jacobian J = J,(N)(respectively, Jy(N))
of X = X(N) (respectively, Xo(N)) can be identified with Hom(W, C)/L, where
W = H°(X,Q\q) and is the image of H,(X,Z) in Hom(W, C)underthe canon-
ical map defined by integration (see §10). We have explained how the modular cor-
respondences on the curve X give rise to endomorphisms of .J; in fact they define
an action of R(T, A) = Ty on J. This in turn defines an action of Ty on Cot o(J),
the cotangent space of J at the origin, and this space is canonically isomorphic to

H®(J,Q4) = H°(X,Q%)  S(P)

(see §12.1). The action of Ty on S(T’)is precisely the one we first considered in
§3.4. Moreover, the map End J — End (CotoJ) is injective. We may thus identify
the image T of Ty in End S2(I) with the image of Ty in End J. Asthe latteris

finitely generated over Z (indeed it can be identified with a subring of End L), so
T is also finitely generated.

REMARK 12.4.12. The description of the Hecke action on the cohomology of
modular curves extends to the adelic setting (see Remark 11.1.1). It is then natural
to consider the direct limit of cohomology groups of Xy over all open compact
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U C Gg. Using coefficients in compatible systems of sheaves, the direct limit is

an admissible Gs-module which can be related to the ones considered in §11. See

[Del1, §3].

We next consider the structure of some of the Hecke modules we have been
discussing. Werestrict our attention to the context of cusp forms,fix a weight k > 0

and group I =[(N) or P(N). We let T denote the image of T in End S;(I).
(Recall from Proposition 3.5.1 that if k > 1, this coincides with the image of Ty,

and is thus consistent with the notation of Remark 12.4.11.) Now regard S,(I’;A)
as a module for T @ A using Proposition 12.4.1.

PROPOSITION 12.4.13. For every A, S,(I; A) is isomorphic to Homa(T,A).

This is proved in the case A = Z by showing that (f,T) ++ a;(f|T) is a perfect

pairing; the general case follows on extendingscalars. (See [Shil, §3.5] and [Rib2,

§2].)
Recall that we use S;(I’) to denote the complex vector space S;(I') @c¢C where

the map C — C is complex conjugation. For g € S;,([) we write g for g ®@1 in
S,(0). Then the C-linear pairing (f,9) > (f,Wng) defines an isomorphism of
T @ C-modules

S;,(L) ¥ Home (S; (LF), C)

(see §4). _
Moreover S;,(I') is isomorphic to S,(I') as a module for T @ C as each is iso-

morphic to S;(I'; Z) @ C. Hence S;(T) is also free of rank one over T ® C. In fact,
an explicit generator is given by

jM

Deenyags"
M|N j=1

in the notation of Remark 6.3.4.

We thus have

PROPOSITION 12.4.14. If A is a field of characteristic 0, then S,(T; A) is free
of rank one over T@ A. If k > 2, then H}(T, My) ® A is free of rank two over
TOA.

In the case A = C,this follows from the above discussion together with the

Eichler-Shimura isomorphism (Theorem 12.2.2) and its Hecke compatibility (Propo-
sition 12.4.10). The general case then follows from that of A = C.

Weclose the section with a brief discussion of the structure of the Hecke ring

T. Since T @ Q is a finitely generated Q-algebra, it canonically decomposes as the

product

(12.4.7) TeQ=][T
Pp

of its localizations at minimal prime ideals p. These are the primes ideals p of T

such that pM Z = 0. Writing Q for thefield of algebraic numbers in C, each such

p is the kernel of a homomorphism T — Q, determined up to Galois conjugacy. In
turn, each such homomorphism is realized as an eigencharacter 0+ for a unique nor-

malized eigenform f in S;(I) (see [Shil, Chapter 3]). Thus the factors in (12.4.7)
correspond to Galois conjugacy classes of normalized eigenforms (see Proposition
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12.4.5). Proposition 12.4.13 provides more information about the structure. It

implies the existence of a (non-canonical) isomorphism

(12.4.8) T ® Q = Homa(T, Q)

and hence

(12.4.9) T, = Homa(T,, Q).

Similarly T ® Ze is a productof local rings (T ® Ze)m where m runs through

the maximal ideals of T containing #. These maximal ideals are in one-to-one

correspondence with Gal (F¢/F,)-conjugacy classes of normalized T-eigenforms in
S,(0; Fe). (Recall that S;,(0; Fe) is defined as §,([;Z) @ Fy. We thus obtain a
natural action of Gal (F¢/F¢) as well as a g-expansion map to F,|[g]]. As usual,
normalized means that the coefficient of q is 1.)

The factor (T ® Zz)m may be identified with Ty, the completion of T at m.
It is a finite flat Zy-algebra and Ty, ® Q, can be identified with the product of

Ty ®Q Qe where p runs over the minimal primes contained in m. Two minimal

primes p; and pz are contained in the same m if and only if the corresponding

eigenforms are, up to Gal(Q/Q) conjugacy, congruent modulo a prime over @ (in

the sense of Remark 12.4.7).

REMARK 12.4.15. The rings Tm thus contain information about congruences
between modular forms. Their structure, much finer than that of the rings T,, plays
an important role in the work of Wiles [Wil2]. Henceforth in this remark we restrict

our attention to the case k = 2; this is the case with which Wiles is concerned and

in which the structure is best understood. Combining the g-expansion principle

with properties of the Jacobian, Mazur [Maz1, §9,14,15] proves the analogue of
(12.4.9),

(12.4.10) Tm = Homz,(Tm, Ze),
under certain hypotheses. The result has since been generalized by several authors;

see Remark 12.5.7 for a brief discussion of Mazur’s method and the hypotheses

required. The existence of such an isomorphism(12.4.10) is known to be equivalent
to the ring T,, being Gorenstein. An even stronger ring-theoretic property of Tm
is established by Taylor and Wiles [Ta'Wi] under certain hypotheses. This stronger
property, that T, be a complete intersection, was a crucial ingredient in Wiles’

proof of the Shimura-Taniyama-Weil conjecture for semistable elliptic curves.

12.5. é-adic representations.

PRIMARY REFERENCES:

{Shil, Chapter 7], [Del1], [Ser3, Part I] and [Cara, §0].

In this subsection we discuss how Galois representations are attached to mod-
ular forms.

Let k and N be positive integers. Let f be an element of S;(['1(N)) whichis
a normalized eigenform for the Hecke operators in Ty. Recall that this is the ring

generated by the operators T;, for all primes p, and S, for all primes p not dividing

N. Let K be a numberfield containing Ky (the field generated by the eigenvalues

of these Hecke operators acting on f), and let O beits ring of integers. Let ¢ be
the Nebentypus character, and write @ for the eigencharacter Ty — K defined by
the action on Cf, ie.,

Iw ap(f)

Sp ++ pk?e(p).
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A construction due to Shimura [Shil, Chapter 7] for k = 2, Deligne [Del1] for
k > 2, and Deligne and Serre [DeSe] for k = 1, attaches to f a certain compatible

family of ¢-adic Galois representations. This family consists of representations

(12.5.1) px : Gal (Q/Q) > GL2(Ky)

indexed by the primes » of K. Each p) is characterized up to isomorphism by the
following

© p, is continuous and unramified at primes p not dividing Né where£ is the

rational prime which A divides;

¢ for each primep not dividing N2, the characteristic polynomial of p,(Frob»)
is

(12.5.2) X? — 6(T,)X + p0(S,).

The determinant of p) is thus ext, where xe denotes the fth cyclotomic

character. (We have used € to denote the finite order character of Gal (Q/Q)
corresponding to the Dirichlet character ¢.) In particular, p is odd in the sense
that det o,(c) = —1 for any complex conjugation c.

REMARK 12.5.1. Our convention hereis that Frob, is an arithmetic Frobenius

element at p. To obtain such an element, choose a preimage in o, € Gal (Q,/Q,)

of the Frobenius automorphism of the residue field F,. Now choose an embedding

Q- Q, and let Frob, be the image of 0, under the inclusion

(12.5.3) Gal (Q,/Q,) + Gal (@/Q).
The conjugacy class of p,(Frob ,) is independentof the choice of such an element.

REMARK12.5.2. The term “compatible” refers to the fact that for primes p

not dividing N, the characteristic polynomial of p,(Frob ,) for A is independent of

the prime X not dividing p. (See [Del3, §9].)

REMARK 12.5.3. The representation depends only on the newform associated
to f, and thus can be viewed as arising from the corresponding automorphic rep-
resentation.

Using the continuity of p, and the compactness of Gal(Q/Q) we find that
there is a lattice in K? stable underthe action of Gal (Q/Q). This lattice yields a
representation

Gal (Q/Q) = GL2(O);

reducing modA, we obtain

Gal (Q/Q) — GL2(F)

whereF is an algebraic closure of O/X. The isomorphism class of the representa-

tion so defined is not necessarily independent of the choiceof lattice. Howeverits

semi-simplification is independent of the choice, and we denote it py. It may be

characterized as the unique continuous semisimple representation unramified out-

side N@ such that for all p/V2, the characteristic polynomial of p,(Frob ,) is given
by (12.5.2) mod A.
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REMARK 12.5.4. The representations p, are knownto beirreducible [Rib1,
Theorem 2.3], but p, may be reducible. Oneis particularly interested in the ir-
reducible py. Serre has conjectured [Ser4] that all continuous, odd, irreducible
representations

Gal (Q/Q) > GL2(F2)
arise from modular forms by the above construction. See H. Darmon’s article in
this volume.

REMARK12.5.5. Consider two eigenforms f; and f2 as above, with weights k,
and ky and levels N and No, and let A be a primeofa field Kcontaining Knp.
From the above characterization of p,, we see that the associated representations
/1,. and p2,, are isomorphic if and only if an(f:) = @n(f2) mod J for all integers
n relatively prime to N; Noé.

Now webriefly explain the construction of the representations ? in the case k =
2 (see [Shil, §7.6]). The construction proceeds by considering the Jacobian .J; (N)
of the modular curve X(N). Let J,(NV)[é"] denote the kernel of multiplication by
&in Ji(N), and let Tag(Ji(N)) denote the ¢-adic Tate module of J;(N),ie.,

lim Jy(N)(e"]

where the maps used to define the inverse limit are multiplication by @ Then
Tag(Ji(N)) is a free Zp-module of rank 2g where g is the genus of X,(N). The
action of Tw on Ji(N) induces an action of Ty on Tag(J,(N)). Moreover the
action factors through T, which acts faithfully on J,(V) and hence on Tag(J;(N))
(see Remark 12.4.11). One checks also that

We(Ai(N)) = Tae(Ji(N)) @z, Qe
is free of rank two over T ® Qy. Indeed this is a variant of Proposition 12.4.14
provided by the canonical isomorphism between Hj (X1(N), Ze) and Tar(J;(N)).

Next. we consider the Galois action on J;(N). Recall that X\(N) has a canon-
ical model over Z[1/N] which we denoted %;(N). Its Jacobian J = J, (N)zn]
is an abelian scheme over Z[1/N], and is a model for Jj(N). We may thus iden-
tify 1(N)[é"] with 7(Q)[é"] and obtain an action of Q on J;(N){é"], hence on
Tag(Ji(N)) and hence on We(Ji(N)). Moreover, the existence of models for Tp
and (q) as endomorphisms of .7 shows that the action of Gal (Q/Q) on We(J,(N))
is compatible with that of T.

Weare now ready to define p, as the representation on the K[Gal (Q/Q)]-
module

We(Ji(N)) @1eq, Ky,
where the map T @ Q¢ — K)is defined by the eigencharacter 0.

To see that p, has the desired properties, we use the Eichler-Shimura relation.
If p is a prime not dividing N, then Je has good reduction at p. Moreover we can
consider the finite flat group scheme 7(é"]z,, the kernel of multiplication by 2” on
Jz,. lf p # £, then this finite flat group scheme over Z, is etale, and the natural
maps

TO\QS") — Tez") = Te\F,)
are isomorphisms ([SeTa, Lemma 2]). The isomorphisms respect the action of
Gal (Q,/Q,), which factors through that of Gal (F,/F,). Moreover the isomor-
phisms and Galois action are compatible with the action of the Hecke operators.
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Now recall the Eichler-Shimurarelation (10.2.3)

(12.5.4) Tr, = Frob + (p)F,,«Ver,

which we presented as an identity of endomorphisms of Jp,. Since the endo-

morphism Frob induces Frob, on points, and since Ver Frob = p, we obtain the

equation
T, = Frob p + (p)pErob;,*

on J(é"|(Fp) = 7(é"|(Q,). The equation

Frob; — TpFrob p + p(p)

follows, and then so does the formula

px(Frob »)? — 0(Tp)p(Frobp) + p0(Sp).

Onecan use the Weil pairing to show that Frob, and (p)pFrob;,* have the same

trace and deduce that this in fact the characteristic polynomial.

REMARK 12.5.6. As

a

variant (see [Shi4, Theorem 1]), we could let p = ker

and consider the quotient. A = J;(N)/pJi(NV). Then A is an abelian variety defined

over Q and the action of T on J;(N) induces one of T/p on A. Let K = Ky and

identify T/p @ Q with K via #. Then we find that the dimension of A is [K : Q].

Moreover Tas(A) @z, Qeis free of rank two over K®Qg. Thusit can be written as a

product over the primes A of K dividing ¢. The factors, viewed as K[Gal (Q/Q)]-

modules, give rise to the representations p.

Note that in the case that f has rational coefficients, K equals Q and A is an

elliptic curve.

REMARK 12.5.7. We can nowsay a little more about the hypotheses and proof

for (12.4.10). First assume that £ does not divide 2N, and that A) is irreducible.

Let m be the the preimage of \ under @ : T + O,and let F = T/m. Consider

J;(N){m], where [m] denotes the intersection of the kernels of elements of m, An

analysis of the action of F[Gal (Q/Q)] shows that J)(N) [mn]is a direct sum ofcopies

of a model over F for py. (See [BLRij.)

In short, Mazur’s argument in [Maz1, §14] uses Dieudonné theory to compare

Ir, (Q with So(T1(N); Fe). One obtains

dimy S2(P1(N); Fe) @r F = 5 dime J, (N)[m] = dimy S2(T1(N); Fe) [ml],

which by the g-expansion principle is one (see Proposition 12.4.13). Applying

Nakayama’s lemma, one deducesthat S2(I'1(N); Ze)m is free over Ty, and (12.4.10)

follows. This proves also the “multiplicity one” result that J;(N)[m] is a model

over F for py. It gives also an integral version of Proposition 12.4.14, namely that

H, (X(N), Z)m is free of rank two over Tyn-

Though technically more difficult, the generalizations to many cases in which

0 divides 2N are based on the same principle (see [Edi2, §9] and [Wil2, §2.1}).

REMARK 12.5.8. For weight k > 2, the representations p, were constructed by

Deligne [Del1] using ¢-adic cohomology groups in the place of Wy. The definition

of the adic sheaf used, call it V;,, mirrors that of the sheaves V, and Vx which

appeared in §12.2. Very roughly speaking, Vj; (respectively, Vk, V~) comes from

Symm*~? of the ¢-adic Tate module, (respectively, de Rham complex, singular

cohomology) of the universal elliptic curve.
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REMARK 12.5.9. The case of k = 1 is of a somewhatdifferent nature. Deligne
and Serre [DeSe] (see also [Ser3, §3]) construct a representation using the rep-
resentations associated to congruent eigenforms of higher weight. Howeverin this
case, one actually obtains a continuous, odd, irreducible representation

p: Gal (Q/Q) > GL,(C),
unramified outside N. The characteristic polynomial of p(Frob ,) for p not dividing
N is then X? — 6(T,)X + 0((p)) (cf. (12.5.2)). The imageofp is finite and a basis
can be chosenso that the image ofp is in GLo(0). (So there is again a “compatible
family” of p), each being p itself.)

An important feature of the case k = 1 is the existence of converse results
due to Langlands [Lngl2] and Tunnell [Tunn]. If p is as above, and its imageis
solvable, then p arises from a cusp form of weight one.

REMARK 12.5.10. The Ramanujan-Petersson conjecture (see Remarks 5.0.1
and 11.5.2) follows from the fact that the roots of (12.5.2) have absolute value
p\*-D/?. Tn the case k = 2, this follows from the Fichler-Shimura theory on applying
the Weil conjectures to the abelian variety J,(N)r, (see [Shil, Theorem 7.12]).
For k > 2, one uses Deligne’s cohomological version of the Weil conjectures (see
[Del1, §5]) and for k = 1, one uses that p has finite image, [Ser3,§5].

From now on, let us assume that f is a newform (see Remark 12.5.3).
Let p be a prime not dividing Né and consider the the restriction of pr toa

decomposition group D,, meaning the image of an embedding as in (12.5.3). This
restriction is completely determined by p,(Frobp), whose characteristic polynomial
is determined by the eigenvalues of 5, and T,. We may view this relationship as
an equality of local factors of L-functions. Thelocal factor at p of the L-function
attached to the representation p) is defined as

(12.5.5) det(I — p,(Frob,,)p~*)~1,

(see [Del3, §9]), and this is the sameas thelocal factor at p of L(f,s). Moreover in
the case k = 2, this is related to the L-function of the abelian variety A in Remark
12.5.6, see [Shil, §7.5].

REMARK 12.5.11. Note that the characteristic polynomial of p(Frob ,) only
determines the semisimplification of palp,- In the case k = 1, the restriction is
semisimple as its image is finite. In the case k = 2, therestriction is semisimple
because this is known, by work of Tate (see [Mil1, Theorem 5.1]), to hold in general
for the representation of Gal (F,/F,,)on the &-adic Tate moduleofan abelian variety
over F,. It is not known whetherthe representations p,| D, are semisimple for k > 2
(where p is a prime not dividing Né).

Let 7 be the automorphicrepresentation corresponding to f. Recall that each
local factor 7, is determined by the eigenvalues of T, and S,, provided p does not
divide the conductor N (see Example 11.2.5). The representation Pxlp, is thus re-
lated to the representation 7. It is via such a relationship that one also describes
the representations p,|p, at ramified primes p # &. (See [Cara, §0.5], {[PSh1]
and the discussion at the end of §4 of [Lngl1].) This relationship is expressed by
the local Langlands correspondence; the proof of the existence of this correspon-
dence was completed by Kutzko, [Kutz]. The local Langlands correspondence is
a bijection between irreducible, admissible representations of GL2(Q,) and two-
dimensional F-semisimple complex representations of the Weil-Deligne group at
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p. (See [Tate2] and [Del3, §8] for the definitions of the Weil-Deligne group and
F-semi-simplicity; see [Kudla] and [Kna3] for further discussion of the local Lang-

lands correspondence.) If the representation of the Weil-Deligne group is defined

over K, one can then associate a continuous representation

Gal (Q,/Qp) + GL2(Ky).

Weshall only vaguely describe the local Langlands correspondence by saying that
it respects L and ¢ factors, the L-factor of the Galois representation being as in

(12.5.5) (but restricted to the coinvariants underinertia).

REMARK 12.5.12. With our choices of conventions for the automorphic rep-

resentations in §11 and Galois representations aboye, we are implicitly choosing

different conventions for the local Langlands correspondence than usually used in

the literature.

REMARK 12.5.13. The analogue of the local Langlands correspondence in the

context of GL; is provided by local class field theory. Moreover, the central charac-
ter of an irreducible, admissible representation of GL2(Q,) correspondsvia class-

field theory to the determinant of the corresponding Galois representation. If

x is a character of Q? with values in K * we will write y* for the character

D, & Gal (Q,,/Qp) + Ky corresponding to x via local classfield theory.

Given a newform f, a rational prime p and a prime A of K not dividing p, the

local Langlands correspondenceassociates (via the factor 7, of the automorphic
representation) a continuous representation

Gal (Q,/Q») Fy GL2(K)).

Work of Deligne, Langlands [Lngl1, §7] and Carayol [Cara] establishes that this
representation is isomorphic to the F-semisimplification of py|p,. The result,

[Cara, Théoréme (A)], has the following corollary.

THEOREM 12.5.14. For each prime X not dividing p,

e the Artin conductor of p\p, is the power ofp dividing N;

e the Euler factor at p of L(f,s) coincides with

L(py\p,58)-

Thefirst assertion follows from the fact that the local Langlands correspondence

respects conductors, the second fromits compatibility with the formation of L-

functions. (A similar statement holdsfor e-factors.)
Wenow discuss the meaning of the Deligne-Langlands-Carayol theorem in spe-

cific cases.

e If mp is the principal series m(j11| |!/?, 2| |'/?), then the semisimplification
of p,|p, is isomorphic to 14! @ pd} (extending scalars if necessary).

¢ If 7p is the special representation sp(x| |!/?,x| |~!/7), then pal, is iso-
morphic to x4 @ o where o can becharacterized up to isomorphism as the

ramified representation of the form

(vi):
e If 7, is supercuspidal, then we will only remark that |p, is irreducible.
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Note that if p does not divide N, the description of prlp, is just a reformu-
lation of the fact that the representation is unramified and that px(Frob ») has
characteristic polynomial (12.5.2).

Now we examinethe situation when k = 2 and the conductorof Jf is divisible by
p but not p? (see [Cas1]). We have seen then that there are two typesof possibilities
for mp. We give an indication of the proofin each case that the representation p,|p,
is as described by the local Langlands correspondence.

If the central character of 7 is unramified at p, then Tp = sp(x| |, x] |-1/)
for some unramified character x of finite order. One can then apply the results
of Deligne-Rapoport and Raynaud discussed in §10.3. In particular, the abelian
variety A of Remark 12.5.6 must have multiplicative reduction at pasitisa
subquotient of A;/A» in the notation of Theorem 10.3.1. An analysis of the ac-
tion of Gal(F,/F,) on the character group of the torus 7’ in (10.3.1) shows that
Frob p = p(p)!T, on T(F,). Applying general results about abelian varieties with
multiplicative reduction ([Ray1] or [Mum2]), one deduces that the invariants un-
der inertia at p of Tay(A) @z, Qe, viewed as a (Ky,)[Gal (Q,/Q,)|-module, are
free of rank one over Ky» and that Frob,acts via p0((p)~ Tp). Combined with
the knowledge of the determinant and the formula 0(T?) = 0((p)), it follows that
Pa|p, has the desired form.

Onthe other hand, suppose that the central character is ramified at p. Then
Tp = W(41| |*/*, pol |!/?) with jy unramified and 2 of conductor p. In this case,
the abelian variety A is a subquotient of J,(Np)/A2 and acquires good reduction
over Q,(¢,). One deduces from this that (p))| p, is a sum of two characters, each
of conductor dividing p. One knowsalso that the determinantis as predicted, so it
suffices to identify one of these characters as the unramified character ui. This was
carried out using the methods described by Langlands in [Lngl1].

REMARK 12.5.15. Therestriction of p, to a decomposition group Dy is more
difficult to describe. If k = 2 and @ does not divide N, then Px|p, arises from
an ¢-divisible group over Ze. This follows from the fact that Ai(N)q has good
reduction at ¢, and henceits ¢-divisible group extends to one over Ze.

For arbitrary k and N,if @(Ty)is a unit mod A, then pa|p, is “ordinary” in the
sense that it is of the form

omO x2
where x2 is unramified (see [Will, Theorem 2.2]). Moreover x2(Frob e) is O(Tp) if
£ divides N, andis the unit root of the polynomial

X? — (Ty)X + £6(S,)

if £ does not divide N.

13. Shimura-Taniyama-Weil Conjecture

PRIMARY REFERENCES:

[SDBi], [Maz2], [Kna2, Chapter XIII] and [Wil2].
Given an elliptic curve E over Q, we say that it is modularif there is a non-

constant map %(N)q— E for somepositive integer N.
The Shimura-Taniyama-Weil conjecture asserts



126 F. DIAMOND AND J. IM

CoNJECTURE 13.0.1. Every elliptic curve E defined over Q is modular.

Through work of Wiles and ‘Taylor [Wil2], [TaWij, [Diam], this is now known

for a large class ofelliptic curves, including all those with semistable reduction

at the primes 3 and 5. As their methods and results are discussed elsewhere in

this volume, we content ourselves here with a discussion of a numberof equivalent

conditions for E to be modular. Before listing them in Theorem 13.0.5, we recall in

the form of remarks several definitions and results, some of them discussed earlier

in the paper.

REMARK 13.0.2. Let E be an elliptic curve defined over Q, and let Np denote
its conductor. For each prime p let Ap = p+1— Bp where By is the numberof

projective solutions over F,, of the minimal Weierstrass equation for Z. Let ¢(p) = 1

or 0 according to whether or not / has good reduction at p. The Hasse-Weil L-
function L(E,s) is defined by the Euler product: [Sil2, §I1.10]

[GQ - Asp" + (pp).
Pp

The local factor at p, L)(E,s) can be described as follows:

e if EZ has good reduction at p, then Bp = #€(F,) where € is the Néron model

of E over Z, p does not divide Ng and Lp(E, s) = (1 — App~* + p'~?8)7;
e if E has split (respectively, non-split) multiplicative reduction at p, then

pl|Nz and L,(E,s) = (1—p~°)~} (respectively, (1+ p *) +):
e if E has additive reduction at p, then p*|Ng and L,(E,s) = 1.

For primes ¢  p, the localfactor L,(E,s) coincides with Lp(pz,e,s) where pry is

the representation of Gal (Q/Q) on Tag(Z) ®z, Qe. In particular, for primes p not

dividing Npé, ppe(Frob ,) has characteristic polynomial

X?— A,X +p.

REMARK 13.0.3. Given a newform f of weight 2, level N, trivial character and

rational q-expansion, we have seen how the theory of Eichler and Shimura associates

to f an elliptic curve over Q. This is the elliptic curve denoted A in Remark 12.5.6,

and it may be regarded as a quotient of Jy(N)q, as well as of Ai(N)aq,via the

natural maps

TI(N)q - A(N)q > A.
Writing ps for the representation denoted p in (12.5.1), we have pre = peyefor all

£ by construction. Moreover by the Deligne-Langlands-Carayol Theorem 12.5.14,

we have L(s, E) = L(s, f) and Nz = N.

REMARK13.0.4. Suppose £/Qis a modular elliptic curve with a nonconstant

morphism y : Xy(N)q —> E where y(ioo) = O. Then E has goodreduction at

primes p not dividing N. Let w be a Néron differential for E, i.e., one of the two

generators of H°(E,Q4) ¥ Z where € is the Néron modelof E over Z. Its pullback

*w defines an element h of So(['9(N)). One can deduce from the Eichler-Shimura

relation that h is a TOY)-eigenform with eigenvalues \, € Z of T, satisfying \p = Ap

for all p not dividing N. (See [SDBi, §3].)

We nowlist several equivalent conditions for an elliptic curve over Q to be

modular.

THEOREM 13.0.5. Foranelliptic curve E over Q of conductor Nz, the fol-

lowing are equivalent.
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X\ There exist a positive integer N and a non-constant holomorphic mapping

X(N) — E(C).

Jw There exist a positive integer N and a non-constant holomorphic mapping

J(N) — E(C).

Ry There exist positive integers N and D, and a T'”)-eigenform f in S2(T1(N))
with coefficients in a number field K such that

PEt ®q, Ky = pyr,

for some prime X of K.
Ly There exist positive integers N and D and a T')-eigenform f in So(T1(N))
such that

L,(s, f) = Lp(s,E),

for all primes p not dividing ND.
X, There exists a surjective morphism

%o(Ne)q — E
of curves over Q.

J, There exists a surjective homomorphism

Jo(Nz)qg — E

of abelian varieties over Q.

R, There exists a newform f in S2(To(Ng); Z) such that

Pre = pre

for all primes ¢.

Ls There exists a newform f in S2(To(Nz);Z) such that

L(s, f) = L(s,E).

In cach case,it is clear that the strong assertion (s) implies the corresponding
weak assertion (w). We discuss the remaining equivalences.

If X, holds for #, then Albanese functoriality (see §10.1) defines a surjective

morphism of Jacobians. Conversely, if J; holds, one chooses a basepoint to define

a map i: 4o(N)q — Jo(N)q and checks that the composite with Jy(N)g — E is
nonconstant and hence surjective. The equivalence between J,, and X, is similar.

If L, holds, then for p not dividing Npé, the characteristic polynomials of the
images of Frob, coincide under pp, and py, (see (12.5.2) and Remark 13.0.2).
Applying the Cebotarev density theorem and continuity of the representations,it
follows that the characteristic polynomials coincidefor all elements of Gal (Q/Q).
Then R, follows from the irreducibility of the representations. The proof that Ly

implies Rw is similar. Moreover the converse holds, and we may replace “some
prime \” with “all primes \” in the statementof R,,.

By Remark 13.0.4, X, provides a T)-eigenform h for which Ly, is satis-
fied. Replacing h with the associated newform f and applying the results of
Deligne, Langlands and Carayol (see Remark 13.0.3), we find that R,, implies

L(E,s) = L(f,s). Moreover f has trivial character, conductor Ny and integer
Fourier coefficients, so we conclude that L, holds.
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We now have
JI, @ X > Xy © Jy

4
RB ¢ L © Ly © R,.

That R, implies J; follows from Faltings’ isogeny theorem [Falt, §5, Corollary

2]. Indeed E is isogenous to theelliptic curve A associated to the newform f by

Eichler-Shimura (see Remark 13.0.3).
Finally, we sketch the proof that Xy implies Ly, (see also [Maz2], especially

the appendix). If £ has complex multiplication, then Ly is known by work of

Deuring [Deur] and Hecke (see [Shi2]). So we may assume that E does not have
complex multiplication. One showsfirst that the map X,(N) — E(C)is algebraic
and in fact defined over some numberfield F. We thus obtain a surjective map
Ji(N)e — Ep, and hence Ay + Ey where A is the abelian variety associated

(by a construction as in Remark 12.5.6) to some T‘%)-eigenform f = Sang” in

S2(T;(N)). Replacing N by a divisor, we can assume that f is a newform. We now

have (for any @) a surjection

Tag(A) @z, Qy > Tar(E) @z,Oy
of Q,[Gal(F/F)]-modules. The representation of Gal (Q/Q) on Tay(A) ®z, Q,
decomposes as a direct sumof ps, ®x, Q,, indexed by pairs (,1) where A is a
prime of K = Ky over @ and ¢ is an embedding Ky + Q,. Using that E does not
have complex multiplication, one finds that py¢ ®q, Q, restricted to Gal (F/F)

is irreducible. We then deduce that the restrictions to Gal (F/F) of pre ®q, Qe
and py,, ®x, Q, are isomorphic (for some and 1). One next shows that the

representations of Gal (Q/Q) are isomorphic, but with p,, replaced by a twist by

somefinite order character x : Gal(Q/Q) — Q;. Thus forall but: finitely many
primes p,

—s 2 1-2s)—1L,(E,s) = (1—x(p)app~* + x(p)"e(p)p'-**)
where we use x also to denote the corresponding Dirichlet character (which in fact

takes values in K*). Now Ly follows from the fact that 37 x(n)ang” is a TN’)-
eigenform in S,(I',(N’)) for some N’ and D; see [Shil, Proposition 3.64].
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