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1. Introduction

The theory of modular forms has its roots in the work of 19th century math-
ematicians including Jacobi and Eisenstein. In the 1920’s and 30’s much of the
foundation for the modern theory was created by Hecke [Hec1], [Hec2], [Hec3].
In addition to establishing the analytic continuation and functional equation for L-
functions associated to modular forms, he showed that for a special class of modular
forms, the L-functions have Euler product expressions. This special class consists of
forms which are simultaneous eigenvectors for certain linear operators, now called
Hecke operators.

The work of Eichler and Shimura greatly advanced the role of modular forms
and their L-functions in number theory. One achievement [Shil] was the construc-
tion of abelian varicties over Q whose L-functions were those studied by Hecke.
Shimura also proposed a partial converse, namely that every elliptic curve over Q
arises this way. This conjecture grew out of an idea of Taniyama [Shi8] and became
well-known through work of Weil [Weil]. A large part of the Shimura-Taniyama-
Weil conjecture has now been proved by Wiles [Wil2] (see also [Diam]), with a
key ingredient supplied by the work of Taylor and Wiles [TaWi.

In light of the recent work of Wiles, it is evident that two major developments
in the theory began to unfold around 1970, building on the work and insight of
Shimura.

One of these was the introduction of tools of modern algebraic geometry.
Deligne [Del1] generalized the Eichler-Shimura. construction to higher weight us-
ing f-adic cohomology; Deligne-Rapoport [DeRa] and Drinfeld [Drin] studied the
arithmetic of modular curves; the study of congruences between modular forms was
placed in the algebraic-geometric context by work of Serre [Ser2], Swinnerton-Dyer
[SwDy] and Katz [Katz1]. This development has been a rich source of techniques,
results and ideas in the field and figures prominently in Mazur's bounding of the
number of rational torsion points on an elliptic curve over Q [Maz1], as well as in
the recent work of Ribet [Rib4] and Wiles [Wil2].

The other development was the beginning of the Langlands program. The work
of Jacquet and Langlands [JaLa] on automorphic representations placed the theory
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40 F. DIAMOND AND J. IM

in a broader context and added insight from representation theory. According to
Langlands’ conjectures, these representations should correspond in a natural way to
algebraic-geometric objects. Roughly speaking, class field theory is the special case
of the correspondence for GL;. The Eichler-Shimura construction and Deligne’s
generalization provide special cases of one direction for GLo; special cases of the
other direction were established by Langlands [Lngl2] and Tunnell [Tunn], and
now by Wiles [Wil2].

This article was intended to be a survey of results on modular forms and mod-
ular curves. In our attempt, and failure, to keep the work a reasonable length, we
chose to ignore many important aspects of the theory and instead to emphasize
those which play a role in the work of Ribet and Wiles. None of the results we
present here are ours, and we have no doubt often failed to properly attribute them.
We apologize in advance for these and other shortcomings, which are due largely
to our ignorance. We can hardly claim to be experts on many of the topics we
included; indeed we learned a great deal in preparing this article.

We have aimed the article at advanced or recent graduate students specializing
in the field, though we hope that others will find it a useful reference. Parts of
the paper vary in the amount of background assumed. Beginning with §8, we
usually take for granted graduate courses in number theory and algebraic geometry
based for example on the material found in Lang [Langl], Silverman [Sill] and
Hartshorne [Hart].

The article is divided into three parts.

Part I is a rapid introduction to modular forms, focusing on the theory of Hecke
operators and newforms. More detailed treatments of most of the topics we cover
can be found in a number of valuable texts, such as those of Shimura [Shil], Lang
[Lang2], Miyake [Miy2], Knapp [Kna2] and Hida [Hida3].

In Part 1I, we turn our attention to modular curves. We begin with their
description as Riemann surfaces and moduli-theoretic interpretation. Then we go
on to explain some of the algebraic geometric methods used to study their arithmetic
and that of their Jacobians. Much of the material can be found in Deligne-Rapoport
[DeRal, but much is scattered in the literature.

Part IIT returns to the subject of modular forms from a more sophisticated
point of view. We first give a brief introduction to modular forms in the context
of automorphic representations, mainly following Jacquet and Langlands [JaLa].
Then we approach from the perspective of the geometry of modular curves, often
following Shimura [Shil] and Deligne-Rapoport [DeRa).
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Part I. Modular forms
2. Definitions and examples

We begin by recalling the definition of a modular form and listing some exam-
ples.

2.1. Definitions.

PRIMARY REFERENCES:
[Shil, §2.1], [Lang2, §L.2, VIL1], [Miy2, §2.1, 43], [Kna2, §VIIL2, IX.2] and
[Hida3, §5.1].

Let ) denote the complex upper half-plane, and GL} (R) the subgroup of
GL2(R) consisting of elements with positive determinant. Then GL} (R) acts on
£ via Mobius transformations. For any integer k, any C-valued function f on §
and o € GLJ (R), we define a new function f|[a]x on $ by

(flldk)(2) = det(@)*~}(cz +d)* f(a(2)), z€9
where a = ( : :; ) A subgroup I of SLy(Z) is a congruence subgroup if it
contains I'(IV) for some positive integer N, where

I‘(N):{'yeSLg(Z) I'yz ( 50 ) (mod N)} :
['(N) itself is called the principal congruence subgroup (of level N). For example,
{’yESLZ(Z) ’75 (5:) (modn) } :

{'yesFO(N)"yz([l] ‘;) (modN)}

are congruence subgroups of SLy(Z) containing T'(N).
Let k be a non-negative integer, and I' a congruence subgroup. By a modular
form of weight k with respect to I, we mean a function f : § — C satisfying
(i) f is holomorphic on §;
(i) fli = f for all y € T
(iif) f is holomorphic at the cusps.

To(N)

Il

Ty(N)

‘We need to explain (iii). The group I' contains a matrix ( (1) ’1’ ) for some positive

integer h. Hence f(z+h) = f(2) for all z € $, and thus f has a Fourier expansion
at 0o of the form

o0
J@= 3 angiy gy=emm
n=-00
To say that f is holomorphic (resp. vanishes) at oo, we must have a,, = 0 for all
n <0 (resp. n < 0); this condition is independent of the choice of h. If & € SLy(Z)
then f|[a]k|[v]k = flla]x for all ¥ € @ 'Ta, so that for any a € SLy(Z), f|[a]x also
has a Fourier expansion at co. We say that f is holomorphic (resp. vanishes) at
the cusps if f|[a]; is holomorphic (resp. vanishes) at oo for all a € SLy(Z).

The space (over C) of all such functions will be denoted M (T'); its dimension
is finite for any congruence subgroup T of SLy(Z). If an element f, in addition
to being a modular form, vanishes at (all) the cusps then it is called a cusp form;
the space of cusp forms on I' of weight k will be denoted Si(I'). The finite set
I'\(Q U {co}) can be viewed as the set of cusps of the modular curve associated to
I', whence the terminology holomorphic at the cusps and vanishing at the cusps.
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We will discuss this in greater detail below in §12.1. We will also return there to
the topic of the dimensions of the spaces My (T') and S, (T).

Now, let £ : (Z/NZ)* — C* be a Dirichlet character mod N; we also write
¢ for the (completely) multiplicative map on Z where, by convention, £(m) = 0
for m not prime to N. A modular form of weight k, level N, character &, or
simply of type (k, N, ¢), is a modular form of weight k with respect to I'y (V) which
transforms under the bigger group I'o(/N) by the character ¢, i.e., it is an element
f € Mp(I'1(N)) satisfying

() (2) = e(dy)f(2), Vv €To(N)

where d,; denotes the d-entry of . Such a modular form has the g-expansion at oo
of the form

(2.11) f@) =3 ang, g=eie
n=0

o 1
noted My(N, ) or Mg (I'g(N),e). The Dirichlet character £ mod N is called the
Nebentypus of any element in this space.

Equivalently, consider the action of d € (Z/NZ)* on M,(T(N)) given by
(d)x : f + fl[oalx, where o4 is any element of SLy(Z) such that

since ( Y ) € Ty (N). The space of all modular forms of type (k, N, ) is de-

(2.1.2) o= ( g o ) (mod N);

here, d is the multiplicative inverse of d mod N. The action depends only on d
(mod N) and not on the choice of defining matrix 4. The space M (N, g) is then

the e-eigenspace with respect to this action. In particular, we have a direct sum
decomposition

My (T3(N @Mk(N €)

where e runs over all Dirichlet characters mod N such that e(—1) = (—1)*. Letting
Sk(N, €) denote the space of cusp forms in M (N, €),we obtain a similar decomposi-
tion of Si(I'1(N)).

2.2. Examples.
PRIMARY REFERENCES:
[Shil, §2.2], [Serl, Ch. VII], [Kobl, Ch. III], [Miy2, Ch. VII], [Kna2, §VIIL2,
IX.3] and [Hida3, §5.1].

Note that for weight k = 0, Mg(T') = C for any congruence subgroup of SLy(Z)
and Mg(N,e) = 0 unless ¢ is the trivial character. We list here an assortment of
examples of modular forms of positive weight.

EXAMPLE 2.2.1. Let k be an even integer > 2. For z € ), consider the function

@2.2.1) Gr(x)= D

(rmm)

(mz + )k

where / denotes that the sum is over pairs of integers (m,n) not equal to (0,0).
The reader can check that it is a modular form on SL;(Z) of weight &, and that its
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g-expansion is given by
Gi(2) = (k) (1 - %i“k (n)g"), g=¢€""
Bk n=1 o ’

where 03 _1(n) = de d%=1 and By, are the Bernoulli numbers defined by

ct,l Z‘Bk

see e.g. [Serl, §VIL4]. Restricting the double sum in (2.2.1) over relatively prime
pairs (m,n) we obtain the normalized Eisenstein series

(2.2.2) Ew(z) = % ¥, (Tnﬁ_ Z ox-1(n)q"

where the first sum is over the integers m, n with (m, n)=1

Before proceeding with more examples, let us introduce some notation and
recall a few facts about Dirichlet L-functions and generalized Bernoulli numbers.

For a Dirichlet character £ modulo N its L-function is defined as usual by the
analytic continuation of the series

Ln(s,e)=Y s =[] (- p)p) s
n=1 pYN

here the subscript N is written only to emphasize the modulus of the character,
and will be dropped if it is clear from the context. If ¢ mod N is primitive, then
its functional equation can be given (e.g. [Lang2, §XIV, Theorem 2. 2(ii)]) in the
form

(22.3) L(1 — 5,8) = L(s,e)(N/27)*T(s)(e™*/? +£(~1)e “mis/2) IW (€)

where W(e) = Z ! £(7)e2m/N denotes the Gauss sum of e.
For a Dmchlet chara,cter ¢ mod N (not necessarily primitive) the generalized
Bernoulli numbers B, . are defined by the formula

N
Z - Z Bk 5
a=1
It is known (e.g. [Lang2, §XIV, Theorem 2.3] that we have By . = —kLn(1—k,£)
for k > 1.

ExAMPLE 2.2.2. For an integer k& > 0 and a Dirichlet character ¢ mod N such
that e(—1) = (=1)*, consider the series (in two variables z € 9, s € C)

(22.4) Eenelas)= 3, &d)ily2) *li(n )™
€T\ o(N)
where we have put j(v,2) = cyz + dy for any v = ( :y d‘: ) € GLy(R) and
e =t ( i ) |!m € Z} is the stabilizer of oo in To(N). This series is

uniformly and absolutely convergent for %(2s) > 2 -k + ¢ (for any ¢ > 0) and
satisfies the transformation property

Ek,N.E(a(z)v S) = E(d)j(ai Z)klj(av Z)lhEk,N,E(Zv S)
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under o = e

) in Tg(N) (whenever the series converges uniformly). The
function
T(s+k)Ln(2s+ k,&)Ep N (2,5)

can be continued to a meromorphice function on the whole s-plane which is entire
except when k = 0 and ¢ is trivial. If k = 0 and N = 1, then it is analytic
everywhere except for simple poles at s = 0 and 1;if k=0, N > 1 and € is trivial,
then there is only one simple pole at s = 1; see [Hec1, §1,2], and also [Miy2, §7.2],
where the series (2.2.4) is denoted E} v(z,8;€). We discuss its functional equation
in Remark 2.2.3 below.

Put, for £ > 1,

Ein.e(2) = By ne(2,0).

Then, as Hecke [Hecl] showed, Fj v belongs to My (N, €) except when k = 2
and ¢ is trivial.

In the case that e is primitive, the Fourier expansion of Ey n,c is given by

o0
(2.2.5) Eene(z)=1+A1-3" (3 e(a)d*")q",
n=1 djn
where ¢ = e*™** and
L(k,&)N*(k —1)!
W(e)(—2mi)*

sce [Hecl, §1,2], [Shi5, (3.4)]. For N = 1 (s0 ¢ is trivial) and k even > 2, note that
Ej N is the normalized Eisenstein series Ej, introduced in Example 2.2.1. This
can be seen either from their definitions or by comparing their g-expansions (2.2.2)
and (2.2.5).

If e mod N is not primitive, then Ej x.(z) can be written as a linear combi-
nation of the forms Ej, ¢ ¢, (dz) over divisors d of N/C, where € is the conductor
of £, the primitive character associated to . (See [Hec1], also [Shi5, (3.3)].)

A= =72LN(l—k,E):—2kBk‘;;

REMARK 2.2.3. We digress briefly to discuss the functional equation for the
series By y.(z,s) of (2.2.4).

In the case of N = 1 (k even, £ = 1), the Eisenstein serics Ey(z,8) = Br1,1(z,s)
satisfies the functional equation

Y EBk(z,5) = Qp(s)y' T Ep(2,1 -k —s)
sending s to 1 — k — s, where

_(_1\h/292-k—2s_ U(2s+k—-2)¢(2s+k—1)
B = GG+ e 1 1)
see e.g. [Kubo]. It follows from the functional equation that Dy (s)Pr(1—k—s) =1,
which can also be checked directly.

For general B}, ., the functional equation is more complicated. We give here
only a vague indication of its general shape and refer the reader to [Kubo], [Huxl]|
and [Shi7] for more details. One can consider instead a vector-valued function
&(s) whose components include the series Ej v,y for characters y mod N (satisfying
x(=1) = (—=1)*). The components also include certain “companion series” for which
the stabilizers in the defining sums (cf. (2.2.4)) are those of cusps inequivalent to co.
The functional equation then relates the values of £ () and £(1 — s) (with suitable
normalization in s). See also [Hida3, §9.3] for an adelic version.
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EXAMPLE 2.2.4. The following are special cases of Example 2.2.2 and deal
explicitly with weights one and two for which the defining series (2.2.4) do not
converge absolutely at s = 0. The weight one case also provides an Eiscnstein series
which is important in studying congruences between modular forms (see Remark
2.2.5 below).

Let £ be an odd character mod N, i.e., £(—1) = —1; we shall assume that it is
primitive. Then

Gie(2)=B1. -2y (3 eld)q

n=1 d|n
defines a modular form of type (1, N,¢). Its constant term
N-1
Bie= Z g(a)a/N = —L(0,¢)
a=1
is non-zero, and the normalized Eisenstein series Fy . = G . /B . is precisely By y .
of (2.2.5) in view of the fact that the values L(0,£) and L(1,£) are related via the
functional equation (2.2.3) with s = 1 and £ in place of .
Similarly, in the case of weight k = 2, take ¢ to be a primitive non-trivial even
character. Consider the serics defined by

Gae(2) = %Bz,s = 2i (Zs(d)d)q".

n=1 djn

Its constant term Bj /2 = —L(—1,¢€) is non-zero, and again from the functional
equation (2.2.3) relating L(—1,¢) and L(2,&) (with s = 2), we see that the normal-
ized function Ey . = 2G5 /By is precisely Es v, of (2.2.5). Thus G> . belongs to
M2 (N HE. ) .

REMARK 2.2.5. Now, take N to be an odd prime ¢ and fix a prime divisor
A of Q(ue—1) lying above (£) where pp_; denotes the set of (¢ — 1)-th roots of
unity. Let € be the Dirichlet character mod £ such that €(a)a = 1 (mod A) for
a € (Z/¢Z)*. Here, £(a) belongs to pe_1 and the congruence is in the ring of
integers O of Q(u¢—1). We have that E, . satisfies the congruence [Koike, §1]

Ej.=1 (mod\);

indeed, all the coeflicients of E . (except of course the constant term) are in bO
where b = £/( 5_1 £(a)a), and the denominator 3" e(a)a does not belong to the
prime A so that 5= 0 (mod ).

We remark here that the Eisenstein series E;_; of weight £ — 1 and level 1 (see
Example 2.2.1) satisfies the similar congruence

Ep 1=1 (modé) if£>5

which is essentially the von Staudt congruence; see e.g. [Lang2, §X.2].

Both F; . and E;_; play important roles in the theory of congruences between
modular forms, for they provide congruences between modular forms of different
weights. For example, if we take £ = 3 (and so ¢ is the non-trivial character mod
3) then E) . has integer Fourier coefficients and satisfies B, . = 1 (mod 3). If f
is a modular form of type (1, M,¢’) for some M > 0 and character £, then fE; .
is of type (2,3M,e¢’). Moreover if f has coefficients in the ring of integers O of
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some number field, then so does fE; . and the Fourier expansions of f and fE; .
are congruent mod 30.

EXAMPLE 2.2.6. When k = 2 and ¢ is the trivial character mod N , there is a
well known trick of Hecke to construct such modular forms (e.g. [Hecl, §2], [Kna2,
§IX.3]). Note that the right-hand side of (2.2.2) makes sense even for k = 2. Let
us denote it by Fy, ie.,

e =}
Ey(z)=1- 242 o1(n)g"
n=1
(B2 = 1/6); it is obtained by choosing the order of summation in (2.2.1) to be
(32 ...). Then By is holomorphic on $ and at 0o, but fails to have the (weight
2) modularity property with respect to SL (Z) (in fact M3 (SLa(Z)) = 0). Let

Fy(z) = lim Ey(z,s),
s—0t
where F,(z, s) is the Eisenstein series in Example 2.2.2 with N = 1 (and so ¢ is the
trivial character). This time F,(z) is not holomorphic, for
Fa(2) = Ey(2) +c(my) !
with some ¢ # 0, but this nearly holomorphic function has the modularity property
of weight 2 under SLy(Z). Therefore, for any integer N > 0, the function
F3(2) — NFy(Nz) = By(2) — NE3(Nz)

belongs to My(Tg(N)). More generally, given numbers cg € C for d|N such that
Y4 €d/d =0, the function Ly caFa(dz) = Y ain caFa(dz) is a modular form of

weight 2 on Ty(N).
In particular, if N = p is a prime then

Ba(e) ~ pEa(p) = (1 ) - 243 (T e()d)q”

n=1 djn
is a weight 2 modular form of level p with trivial character.

EXAMPLE 2.2.7. Let 1
— 3 2
A= TZS(E“ —E3).

Then A is a modular form on T'y (1) = SLy(Z) of weight 12. Tt vanishes at oo since
the constant term in its g-expansion is 0, as can be seen from the g-expansions of
Ey4 and Eg. As Al[a]iz = A for all a € SLy(Z), we have that A vanishes at all the
cusps. Hence, A € §15(T"y(1)). Its g-expansion is given by

A(z) =g [[(1 - )
n=1

(e.g. [Serl, §VIL4]), and the coefficients define the Ramanujan function 7(n).
There are no cusp forms on SLy(Z) with weight smaller than 12; see e.g. [Serl,
§VIL3], [Shil, §2.6] (and also §12.1).

EXAMPLE 2.2.8. On smaller congruence subgroups of SL3(Z) there may be
cusp forms of low weight. For example, S, (To(11)) = Cf, where

12) = (A@)A012) " = ¢ T 11 - ¢)(1 - g™,

n=1
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In the terminology of §6.3, f is a newform of level or conductor 11 with trivial (or
10) character. For more of such examples, let N be one of the integers {2,3,5,11}
and let k = 24/(N + 1). Then (A(z)A(N2))/(V+1) is a cusp form on I4(N) and
spans Si(To(N)); see [Shil, Example 2.28], and also [Birch].

3. Hecke operators

Hecke operators [Hec3)] arise in many contexts. They give risc to modular cor-
respondences, they act on modular forms and on the integral homology of modular
curves; roughly speaking, they act on objects arising from GL; by certain natural
representation-theoretic and algebro-geometric constructions. Though they can be
realized in various ways, it is the consistency with which they act that makes them
s0 useful to study. We begin with a description, following [Shil], of the abstract
Hecke ring using double cosets. Then we explain how these double cosets give rise
to modular correspondences, a subject to which we return in Part II. Then, as an
important and concrete instance of how Hecke operators act in a particular setting,
we shall discuss the representation of the Hecke ring on the space of modular forms.
In particular, we consider the eigenforms, eigenvalucs and eigenspaces for the Hecke
operators, a subject to which we return in §6 and Part ITL

Throughout this section, we shall fix a positive integer N.

3.1. Double coset description.
PRIMARY REFERENCES:
[Shil, §3.1-3.3] and [Miy?2, §2.7, 4.5].
With N as above, let

Ao(N) {( a :)EMZ(Z)‘dctoO,cEO (mod N), (a,N)=1},

a = {( g)eMg(Z)’det>0,cEa—150 (mod N) }.

Put T'=T';(N) and A = A;(N); though the notation (T, A) will be reserved for
this pair in this section, our discussion is valid for (I'g(N), Ao(NV )) verbatim.

Let R(I',A) denote the Z-module generated by the double cosets Tal', a € A,
Note that A = (J,cn A", where A" = {a € A| det &:=n}. This can be made into
a ring by defining multiplication between two double cosets u = Tal and v =16
as follows. Consider their coset decompositions Tal' = [[; Te; and T'AT = L1, T8;.
Then Fal'AL = |J; ; Taif; (not necessarily disjoint), and so I'al'8T is a finite union
of double cosets of the form I'yT". Define

u = Zm(u, vyw)w
w

where the sum is extended over all double cosets w = I'yI' C al'AT, and
(3.1.1) m(u, v; w) = #{(i,§)Ta;B; =T}

for w = [T. One can check that these definitions depend only on u, v and w, and
not on the choices of representatives {}, {4;}, 7.

Equipped with the above multiplication law extended linearly, R(T', A) becomes
an associative, and in fact commutative, ring with I' = I":1.T" as the unit clement.
It is called the Hecke ring with respect to (T, A).
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3.2. Modular correspondences.
PRIMARY REFERENCES:

[Shi1, §3.4, §7.2] and [Miy2, §2.8].

Now we explain how the double cosets we have defined give rise to correspon-
dences on modular curves. Though modular curves and correspondences will be
one of the central topics of Part II, we give a brief introduction here.

For a congruence subgroup I we call the quotient space I'\$ the modular curve
associated to I'. We are especially interested in the modular curves

Yo(N) = To(N\%
nN) = i(N\H

associated to T'g(V) and T'y(N) respectively.

For a pair of modular curves X and Y, it will suffice for the moment to view a
“correspondence on X x Y as a homomorphism Div (X) — Div (Y) where Div X
denotes the frec abelian group generated by the elements of X. In particular, a
function f : X — Y extends to a correspondence which we denote by the same
symbol. Note that the the correspondences on X x X form an associative ring,
where multiplication is given by composition of correspondences.

Let I be the congruence subgroup I'g(N) or 'y (N), let ¥ be the curve Yo(N)
or Y1(N), and let A be Ay(N) or A;(N), respectively. For any « such that o 'T'a
and I' are commensurable, e.g. for a € A, put

Lo =T'Na ‘T and ¥y =TA\E,

Let o : § = Y and ¢, : § — Y, be the canonical projections, and consider
the (possibly branched) coverings m, 7® : ¥, — Y defined by mo s = ¢ and
T 0 o = poa. These are induced from the obvious maps id and & on 9, i
m is the natural projection, and 7 is the composition of the natural projection
Ta\H — a 'Ta\$ followed by the isomorphism a~'Ta\$H —» T'\$ obtained from
# +— afz). Using these coverings, we get a correspondence 7, = 7@ o ‘7 from Y
to itself where ', the transpose of , is defined as follows: If I' = 11 Taes is
a (finite) coset decomposition of T,\T' then r sends a point p(2) €Y, z€h,
to the formal sum Y7, p,(€;2) of points in its preimage 7 (p(z)) (counted with
multiplicity). Thus, 7,(p(2)) is the divisor 2= plaei(2)). Since p(3(2)) depends
only on the coset T'3, we have: 7,(p(2)) = 3, ¢(as(2)) if TaT = II;Ta;. (The
coset decomposition I' = [ [, Tn€; gives a disjoint union Tal' = 11; Pae;, so that the
divisor is recovered with a; = ae;.) One can check that To depends only on the
double coset I'al, and that Tal’ — 7, defines a homomorphism from the Hecke
ring R(T, A) to the ring of correspondences on (I'\$) x (T'\#).

3.3. Hecke rings.
PRIMARY REFERENCES:

[Shil, §3.1-3.3] and [Miy2, §4.5].

For each positive integer n, denote by T'(n) the formal sum of all double cosets
Pal’ with a € A™ in R(T,A). For example, T(p) = F( . 2 )F for every prime
p. Further, for two positive integers a, d such that a|d and (d, N) = 1, let T(a,d)
denote the double coset I‘a,l( & 2 )I‘, where 0, is asin (2.1.2). Note that T'(1,p) =
T'(p). Let us write m|N°® if every prime factor of m divides N. The structure of
R(T, A) in terms of the Hecke operators T'(a, d) and T(m) is given by the following
[Shil, Theorem 3.34]
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PROPOSITION 3.3.1. 1. R(T,A) is a polynomial ring over Z in the vari-
ables T(p, p) for all primes pyN and T(p) for all primes p.
2. Every element I'al’ with o € A is uniquely ezpressed as a product

T(m)T'(a,d) = T(a,d)T(m),

where m|N*°, ald and (d,N) = 1.
3. If (myn) =1 or m|N> or n|N*°, then T'(mn) = T(m)T(n).
4. R(T',A) ®z Q is generated over Q by T'(n) for all n.

REMARK 3.3.2. The last assertion follows from the first assertion together with
the equation

pI(p,p) =T(p)* - T(p*),
which is valid for every prime p not dividing N.

Let T(1), A(1) be T, A with N = 1, iie.,, (1) = SLy(Z) and A(1) the set
of 2 x 2 integral matrices with positive determinant. Let T(n), T(a,d) with a|d
temporarily denote the Hecke operators of level 1, i.e., with respect to (T'(1),A(1)).
Then R(I'(1),A(1)) is Z[T(p), T(p, p); ¥p] and R(T,A) is its homomorphic image
via the map

T(p) ~ T(  Vprimep,
T(p,p) +~ T(p,p) VprimepfN ,
T(p,p) +~ 0 V prime p|N .

Thus, any algebraic relation amongst the Hecke operators of R(T(1), A(1)) can be
translated to the corresponding relation for the Hecke operators in R(T', A), where
the only change is that we put 0 in place of f‘(p, p) for p|N. An example of such a
relation is

T(m)T(n) =" dT(d,d)T (mn/d?)
d

where the sum is over positive divisors d of (m, n) which are relatively prime to N.
The element T'(p, p) for pJN, p prime, is often denoted S(p) in literature; if N
is the level, we put S(p) = 0 for p|N.

3.4. Action on modular forms.
PRIMARY REFERENCES:
[Shil, §3.4, 3.5], [Serl, §VIL5], [Lang2, §VIIL.2, VIL3] and [Miy2, §2.8, 4.5].

Thus far, we have discussed the Hecke operators as elements in an abstract
ring. We now turn to considering how they are realized on the space of modular
forms. For this we first describe the action of a double coset on modular forms on
i

For f € Mi(T) and @ € A, the action of the double coset Tal is

fIfally = Zf,[aika

where {a;} is the set of representatives for I'\T'aT. This gives a well-defined action
of [Calx on My (T") which preserves the subspace Si(T'). Extending by linearity
gives an action of R(T', A) on M(T') and S;(T"). To make this action more explicit,
we use the following ([Shil, Proposition 3.36]).
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LEMMA 3.4.1. For every (a,N) = 1, fiz an element o, of SL2(Z) as defined
by (2.1.2). Then for every n € N, we have

&= I1Ire( 5 £),

a b

where the disjoint union is over a > 0 with ad = n, (a, N) =1 and over b (mod d).

Recall that A™ = {a € A|deta = n}. From this coset decomposition, we
have the action of the n-th Hecke operator on My (T), denoted T'(n), given by

(3.4.1) AT =Y flloa & 5 e,
a, b

the sum being over a, b as in Lemma 3.4.1.

Put Ty = T'o(N), Ag = Ag(N). The above discussion and the lemma are also
valid when (T, A) = (T, Ag).

More generally, the Hecke operators act on the space of modular forms of
type (k,N,e). Observe that the operators 7'(n); and T'(n,n); = n*~%(n); on
M (T'1(N)) preserve the subspaces My (N,e) as they commute with the opera-
tions of d € (Z/NZ)* via (d)«. (Recall that (d); was defined before (2.1.2).) The
map AT +— TPl defines a surjective homomorphism R(T,A) — R(To, Ao) and
the restriction of [TAT], to M (IV, &) depends only on T'y8T,. Therefore R(Ty, Ag)
acts on M (N, ) and the action is given by

fllCooTolke = > e(ala) fllewls,  f € Mi(N,e)

where a € Ag, I'oal's = [[, Toa, and a(c) denotes the e-entry of the matrix
a. Using this and Lemma 3.4.1, the action of the Hecke operators can be made
explicit. The lemma gives I'al' = [], I'a,, with a, of the form U,,( g ; )7 which
yields I'galy = ]I, Toe, with the same a,’s. Also, for f € My(N,e) we have
flloalk = e(a) f for every integer a prime to N. Thus, if we denote by T'(n)i . and
T(a,d)x,. the corresponding restricted actions of T'(n); and T'(a,d), on Mk(N,e)
as above, then

(3.4.2) fIT(n)g,e = n*? ng(a)d_kf(wTM) (a>0, ad =n).

a b=0
(Recall that e(a) = 0 for (a, N) # 1.) Also,
fIT(d, d)c = d*?e(d)f
for f € My(N, &) and (d, N) = 1. This yields
(3.4.3) T(m)keT(n)ke= 9 d* 'e(d)T(mn/d®).
d|(m,n)

For n with (n, N) = 1 we may also view T'(n)j . as an operator on My (I') by setting
it equal to 0 on the eigenspaces My (N,¢’) for €’ # ¢, ie.,, T(n)x = T(n)k o pr,,
where 3
pr,= ——r—o— % &(a)(a)k
«= HENT) 2

is the projection of M (") onto My(N,e).
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REMARK 3.4.2. Let k and N be fixed. We have encountered, for each n €
N, several actions of the n-th Hecke operator T(n). One is the action T'(n); on
M(T'1(N)) where T(n) is viewed as an element of the ring R(T'1(N), Ay(N));
another is the action of T'(n)y . on the space M.(N,e); yet another is the action
To(n)x on My (To(N)) where T(n) is viewed as an element of R(Ty(N), Ag(N)).
But whenever a modular form f lies in the intersection of any two of these spaces
these Hecke actions on f are exactly the same. In addition to all previous notation,
we shall therefore use a looser notation 7), to denote any of these actions and write
Twf or f|T, whenever the action on f is defined and k and NV are clear from the
context. Similarly, we write (n)f or f|(n) in such a situation. Moreover, we shall
occasionally restrict our attention to the operators acting on a space of forms of
type (k, N,e) with a given Nebentypus ¢, because the forms on T o(N) yield such a
space (with ¢ the trivial character mod N) while the space Sg(I'|(N)) is a direct
sum of the space Sg(N,¢), where € ranges over all characters mod N satisfying
e(-1) = (-1)k.

Returning to the Hecke actions on modular forms, equation (3.4.3) can be
summarized by the formal identity

s, =)
2 Tan™ = [[(1 - o~ +e(@)pt" 2)!

n=1 P
on the space of modular forms of type (kyN,¢). Also, if formula (3.4.2) for the
action of T'(n)y . is unravelled in terms of the g-expansion of f at co we obtain (e.g.
[Shil, (3.5.11)]):

PROPOSITION 3.4.3. Let 3 0¥ anq™ be the g-ezpansion of f € My(N,¢), and
let 30" bug™ be the g-ezpansion of T,,f. Then the coefficients b, are given by

ba= D e(d)d* apma.
d|(m,n)

This formula provides a characterization of the Hecke operators which is quite
practical from a computational point of view.
Consider the opcrators U, V;, defined on C|[g]] by

Um (Z anqn) = Zamnqns Vm(z anqn) = Z anqmn .

They satisfy oissirg = Wiy © Ul Vinim, = Vin, 0V, and Up, oV = Vs 0 Up,
for primes p; # p,. Also, Uy, o V,,, is the identity, while V,,, o U,,, is the projection
on the part of the power series with powers of q divisible by m. In terms of these
operators, we have
T, =) eld)d*WVyol,,.
din

Equivalently, this is captured in the formal identity

i T,n™* = (i g(n)nk! Van™) (i Gan®).
n=1 n=I1 n=1

(See Chapter VII, Theorem 3.2 of [Lang2].) Note that T, = U, for primes p
dividing N, since £(p) = 0 for such p by convention.
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3.5. Hecke eigenforms, eigenvalues and eigenspaces.
PRIMARY REFERENCES:

[Shil, §3.5], [Serl, §VIL5], [Lang2, §VIL.3] and [Kna2, §IX.6].

Let N be a positive integer, and denote by T the polynomial ring over Z gen-
erated by indeterminates T}, for all primes p and indeterminates S, for all primes
p not dividing N. It is the full Hecke algebra of level NV, and is isomorphic to the
Hecke ring R(I', A) by the first assertion of Proposition 3.3.1. Also, denote by TV)
the subring generated by T}, S, for all. primes p not dividing N. Then the spaces of
modular or cusp forms we have discussed previously, such as My (I'1 (N)), Sk(N,€),
etc., are modules over Ty and T(V) via the usual Hecke action of these indeter-
minates. To study the Hecke action on a space of modular forms, we need only
consider the images of Ty and T(") in End M,(T'; (N)), the ring of endomorphisms
of My(I'1(N)). We remark that in the literature, slightly different sets of Hecke
operators are often chosen, but they yield the same subring of End My (I';(N)).

PROPOSITION 3.5.1. L. Let T be the subring of End My (T1(N)) generated
by {T,} for alln € N, and T’ the subring generated by {Tp, (@)x} for all
primes p and all primes gJN. Then, T=T"

2. For k > 2, this ring is precisely the image of Ty in End My (I'1(N)). For
k=1, T(=T') is contained in the image, and we have equality after ten-
soring with Q. For k = 0, all these rings are just Z with all primes not
dividing N inverted.

3. Simalar statements hold for T!N) (with the corresponding subrings generated
by the elements “away from N7 ).

Indeed, the formula
PN =T - Ty
shows that for k > 1, {T,} and {7}, (¢)«} generate the same subrings of endomor-
phisms. One inclusion is obvious and for the other, apply the formula with two
primes g and r congruent mod N (noticing that ¢®~1, 75~1 are relatively prime and
(@)k = (r)k). A similar argument using

qk_2<q>k = Sq

shows that this ring is precisely the image of Tx if kK > 2. For k& = 1 this formula
reads (g); = ¢S, yielding only one inclusion of the subrings, but an equality after
tensoring with Q. The same argument is valid for T(Y). For k = 0, we have Ty=1
if p is a prime dividing N; for primes p not dividing N, we have 1T, = 1 + Tl
(p)o =1 and S, = p~2. The formula p~! = T}, — 1 (when pN) shows that T =T,
and this ring is as described in the assertion. Similarly, as S, = (p™!)% = (T, — 1)?,
it coincides with the image of Ty in the endomorphism ring; it is also the image
of T™) in this case.

For T = Ty or TV, we call an element of M(T'1(NV)) a T-eigenform if it
is a common eigenvector under all T € T. A TV )-eigenform is not necessarily a
T y-eigenform. For instance, the Ramanujan A € S12(I'3(N)) of Example 2.2.7 is
a T(M_gigenform, but never a T y-eigenform for N > 1.

REMARK 3.5.2. All of the examples given in §2.2 are T(M)-eigenforms. They
are even T y-eigenforms, provided in Example 2.2.2 that the character ¢ is primitive,
and in Example 2.2.6 that N is prime.
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Observe that a (non-zero) TN)-eigenform in M (T'; (N)) has to have a (unique)
character, i.e., it is necessarily of type (k, N, ) for some Nebentypus e mod N. This
is because the image of (Z/NZ)* in the endomorphism ring is contained in that of
T by Proposition 3.5.1. Also, the subring generated by {(g)} for all primes ¢ not
dividing NN is precisely the image of (Z/NZ)* (under d — (d)). In fact Proposition
3.5.1 yields several cquivalent definitions of a T-eigenform. For instance, a modular
form on I'y(N) is a TV -cigenform if and only if it is of type (k, N,e) for some
¢ and is a common eigenvector under T}, for all primes p not dividing N; it is a
T y-eigenform if and only if it is a simultaneous eigenvector under all T,,.

For each non-zero T-eigenform f, we may consider the T-eigenspace consisting
of T-eigenforms g with the same eigenvalue as f under each operator in T. Note
that by commutativity of the operators involved, a T)_gigenform will be a Tx-
cigenform if the T(™)-eigenspace to which it belongs is one-dimensional. While
this fails in general, we shall see in §6.3 that this holds for certain forms called
newforms.

Let us next observe that every T y-eigenspace is (at most) one-dimensional:
Suppose f € Mi(N,e) is a (non-zero) T n-eigenform and let Y07 a,g™ be the g-
expansion of f. Then its Fourier coefficients a, can be read off in terms of the
eigenvalues. If )\, denotes the n-th eigenvalue, ie., f|T, = A.f, then it follows
from Proposition 3.4.3 that

e a, = \,a; foralln € N;

e a; #0ifk#0 (s0,a1=0=k=0and f = ap);

o if ag # 0 then A, = 3, e(d)d* 1.

Thus, if two forms of type (k, N, ) are common eigenforms of T}, for all n with the
same system {\,} of eigenvalues then one is a scalar multiple of the other. Such a
form is said to be normalised if a; = 1.

REMARK 3.5.3. Let f be such an eigenform of weight ¥ > 1. Then Tf =
8¢(T)f defines a homomorphism ¢ : Ty — C. The image is in fact contained in a
number field, and the eigenvalues A, lie in its ring of integers; see Corollary 12.4.5
below. This was proved by Shimura [Shil, Theorem 3.48] for k > 2; for k > 1, see
[Shi6, Propositions 1.3 and 2.2] and references therein, and also [Ser3, §2.5].

3.6.. Petersson inner product.
PRIMARY REFERENCES:
[Shil, §3.4, 3.5], [Lang2, §IIL4] and [Miy2, §2.1, 4.5].

Let T' be an arbitrary congruence subgroup of SLy(Z), and denote by T its
projectivization, i.e., its image in PSLy(Z) = SLy(Z)/{%1}. On the space Si(T) of
cusp forms, define the Petersson inner product of two elements f and g by

1 —— . dzdy
3.6.1 i =_—_f 2)g9(2) i !
(3.6.1) (f,9) OB Df( )9(2)y 7
where D is a fundamental domain for I' (see Remark 7.1.1). The convergence of
the integral can be deduced from the following growth proprty (e.g. [Shil, Lemma
3.61]) for cusp forms.

LEMMA 3.6.1. If f 45 a cusp form in Sg(T) then f(2)y*/? is bounded on §
(here, y is the imaginary part of 2).

Moreover the integral is independent of the choice of the fundamental domain
D, and of the choice of the congruence subgroup I' with respect to which f, g are
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modular. For the latter independence one uses that if I” is another congruence
subgroup, say contained in I, then a fundamental domain for T" can be chosen
which consists of [T : I] translates of a fundamental domain for I'. The Petersson
inner product is positive definite on the space of cusp forms.

REMARK 3.6.2. The notation { , ) is also used whencver the integral (3.6.1)
converges. For instance, if f, g are weight k modular forms of which at least one
is a cusp form then fg is a cusp form of weight 2k, so that F(2)g(2)y* is bounded
on §) by Lemma 3.6.1. Hence the integral (3.6.1) defining (f,g) is meaningful and
finite in this case as well.

With respect to the Petersson product, the operation [efk of @ € GLF(Q) is
unitary and its adjoint is given by [a]x where o is the main involution of a, e,
o'a = (deta)l. For example, on Sk(T'1(N)) the adjoint of (a); for (a, N)=1%
(@)k, where @ is an integer such that @ =1 (mod N 1s

On Si(I'o(N)) the Hecke operators T, for (n, N) = 1 are self-adjoint with
respect to the Petersson product; see [Shil]. In fact, on Sk (N, €) we have for all n
prime to N

(Tnf,9) = (n){f,Tg),
i.e., the adjoint of 7,, with respect to ( , ) is T, = &(n)T,. On S(I'y(N)), the
adjoint T3} of T, for (n,N) = 1is T, o (A). Thus the operators of the form T,
and (n) for n relatively prime to N form a mutually commutative set of normal
operators on Sg(I'1(N)). (Those operators T, with (n, N) # 1 on Sx(N,¢) need
not be normal.) Applying the spectral decomposition theorem for normal operators
(e.g. [Hers, Theorem 6.10.4]), we deduce that there is an orthogonal decomposition

SuT1(N) = P Sk (N, e)

(where ¢ runs over all Dirichlet characters mod N such that e(—1) = (~1)¥), and
that each Sx(NV, ) decomposes orthogonally into a direct sum of TV )-eigenspaces
[Miy2, Theorem 4.5.4].

4. W-operators

PRIMARY REFERENCES:
[Shil, §3.5], [Lang2, §VIL6], [AtLi], [LiOe, §5] and [Kna2, §IX .4, IX.7].

We now discuss the W-operators, which form another uscful class of operators
on modular forms. On the space of forms on T (N), these are involutions and they
commute with the Hecke operators T}, for p not dividing N.

LetT'=T(N), and wy = ( s ) On M (T), the linear operator [wy]y =
[Twn Tk satisfies [wy]; = (—N)*~2 and preserves the subspace Sk (") of cusp forms.
We let Wiy be the operator on M,,(T') defined by W (f) = N'=*/2f|[wy]x. Thus
W% = (~1)%, and Wy maps modular forms of type (k, N,e) to those of type
(k, V, ) since

(@klwnlk = fon]x (@)
for every a € (Z/NZ)*, where aa = 1 (mod N). Also, from the fact that

(Pa'T)(DwT) = (TwyT)(Tal)
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for every a € A with (det @, N) = 1, it follows that
FIT()kclwnle = ) fllwnlcT(R)ee, [ € Mi(Nye)
for every n such that (n, N) = 1. For such n we have
Wn(n)f = (n)""Wnf and WyT.f= n)T,WyFf

for f in My(T).

We also find that Wy and WA}I are adjoint with respect to the Petersson inner
product on Sk(T). Moreover T;, is adjoint to WI;ITTLWN for all integers n, and if
(n,N) = 1, then (n) is adjoint to Wy "(n)Wy. If a cusp form f is a simultaneous
eigenform away from N with eigenvalues Ay, (n,N) = 1, then so is Wy f with
the corresponding eigenvalues X, (n, N) = 1. However, suppose for some prime p
dividing N that f is an eigenvector under 1},. It need not be the case that Wy f
is an eigenvector under T},. (See Remark 3.59 of [Shil].) Indeed, if the condition
“away from N7 in the above statement is replaced by “for all n € N” the new
statement is no longer true in general. The obstruction is due to the existence
of the so-called “old” or “non-primitive” forms which come from lower levels (see
§6.3).

More generally, we can associate an operator W to each positive divisor @ of
N such that @ and N/Q are relatively prime. Consider any matrix

Qa b
il ( N Qd )

of determinant Q with a, b and d integers and d = 1 mod NV, /Q; such a ma-
trix normalizes T = T;(N). The map [wglx on My(T) is independent of the
choice of defining matrix wg and is consistent with the old definition in the case
N = Q. Moreover, the automorphism v — wgyw, 1 induces the involution
of To(N)/T1(N) = (Z/NZ)* (~ (Z/QZ)* x (Z/(N/Q)Z)*) which is given by
d — d~! mod Q and the identity mod N/Q on the respective factors. From this
we deduce that if eq and ey/q are Dirichlet characters mod @ and N /@ respec-
tively, then [wo|; maps modular forms of type (k, N,eqeny)q) to those of type
(k,N,eqensq). We let Wq denote the aperator f = QU2 f|[wglk on Mi(T).
Note that it is not the case in general that W3 = (—1)* on My(I'), but that W
preserves M. (Io(N)) and satisfies W3 = 1 on this subspace. (Recall that this
subspace is trivial unless k is even.)

For the remainder of this section, we restrict our attention to the I'g(V) situ-
ation and consider the involution of M (Ty(NV)) defined by Wgo. We find that it
commutes with all the Hecke operators T}, with (n, N) = 1. If Q and Q" are divi-
sors of N as above with (Q, Q') = 1 then the operators W and Wy commute and
WyWqy = Wgg:. Hence, Wy = leN Wq(p) where, for a prime p|N, Q(p) =p"
denotes the highest power of p dividing N.

Returning to the case ) = N, we find that the involution Wy on Sk(T'o(N)) is
self-adjoint relative to the Petersson product and commutes with all T, such that
(n,N) = 1. The decomposition of Sx(I'o(/N)) into simultaneous eigenspaces away
from N is therefore compatible with its decomposition into Wy -eigenspaces. More
precisely, if B+ denote the latter eigenspaces (under Wy) with eigenvalues +1 so
that Sx(To(N)) = E* @ E~ then this decomposition is T")-equivariant, i.., we
have this decomposition as T")-modules. It is in general not equivariant under the
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full Hecke algebra since T,'s with (n, N) # 1 do not commute with the involution
Wi.

5. L-function and functional equation

PRIMARY REFERENCES:
[Miy2, §4.3, 4.7], [Ogg, 81, IV], [Shi1, §3.6] and [KnaZ2, §VIIL5, IX.4].

In this section we define Dirichlet series attached to modular forms and briefly
discuss the main results of Hecke’s theory [Hec2], [Hec3] of such series. They
admit analytic continuations, satisfy functional equations and, in certain cases,
have FEuler products.

Let

f(Z) - Za"qn , g= ez'm'z
=0

be the g-expansion of a modular form on I'y (N) of weight k. Tts coefficients satisfy
a, = O(n") for some constant ¢ € R. For example, the Eisenstein series Ej
(k =4,6,...) have this property with ¢ = k — 1 since ok—1(n) < 2n*L for k > 2.
For cusp forms f on T'y(N) of weight k£ > 1 (the case k = 0 is trivial), ¢ may be
taken to be k/2 from the fact that |f(z + iy)|y*/? is bounded on %. Tn general, if f
is in Mg (T1(N)), the value ¢ = k—1 will suffice if k is at least 3. In the cases where
k=2or=1, wemay take c=1+¢candc=1 /2, respectively. This follows from
the fact that modular forms of weight k > 1 are spanned by the cusp forms and the
“Eisenstein series”. The definition of Eisenstein series in this context is that given
in [Hecl], and includes those appearing in Examples 2.2.2 2.2.6. (In fact, it can
be shown that the space spanned by Eisenstein series is the orthogonal complement
of the space of cusp forms under the Petersson inner product of Remark 3.6.2; see
e.g. [Ogg, §1V] and Theorem 4.7.2 or §7.2 of [Miy2].) That their coefficients have
the growth property stated above follows from Satz 9 of [Hecl]; see also Theorem
4.7.3 of [Miy2] or Theorem 7 of [Schn, Ch. IX].

REMARK 5.0.1. The Ramanujan-Petersson conjecture asserts that for p not
dividing N, the eigenvalues of T, on Sy (', (N)) have absolute value bounded by
2p(k=1)/2 This was proved by Deligne [Dell, §5], [Del5] (see [DeSe, 9.1, 9.2] for
k =1). As a consequence, one can even take ¢ = (k —1)/2 + € (for any € > 0) for
[ in §x(T'1(N)), and ¢ = € for [ in M, (T (N)).

The L-function of f is defined initially as the Dirichlet series
Ble. = Z (F 5%
n—1

it is sometimes written L(f,s) as well. Since a, = O(n°) this series converges
absolutely and uniformly in the region R(s) > ¢+ 1+ § (for any 6 > 0) and thus
defines a holomorphic function in some right half-plane, at least in R(s) > ¢ + 1.
The completed L-function defined by

A(s, ) = N*72(2m)*L(s)L(s, f)

is essentially the Mellin transform of f; the reader can verify that

Ms.f) =82 [ " (i) — ao)y* e
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whenever the integral is convergent.

In the case when f is a cusp form on I'o(N) and an eigenfunction of the invo-
lution Wy, the L-function of f can be extended to the whole s-plane as an entire
function with functional equation
(50‘1) A(S,f) =E’ikA(k—5,f),
where ¢ = %1 is the eigenvalue of Wy. More generally, if f is a modular form of
type (k, N,¢) then A(s, f) extends to a meromorphic [unction with the functional
equation

A(s, f) = A(k — s, Wn ).
For details, see [Miy2, Theorem 4.3.5], [Shil, Theorem 3.66] or [Ogg, §1]. Note
that Wy f is a modular form of the same weight and level, but with character .
The only possible poles of A(s, f) are simple ones at s =0, k, and A(s, f) is entire
if f is a cusp form.

REMARK 5.0.2. Later (see §6.3), we shall discuss the notion of newforms. If
[ is a newform of level N' which is also a common eigenform under all the Hecke
operators T, (including p|N), then Wi f =¢ f where f = 5" @,q" is the contragre-
dient of f and c a scalar. In particular, the functional equation may be rewritten
as
A(s, f) = ci*A(k - s, ),
which is analogous to that for Artin L-functions.

REMARK 5.0.3. A “converse theorem” due to Weil [Weil] (see also [Ogg, §Vv],
[Miy2, §4.3] and [JaLa]) provides sufficient conditions for a Dirichlet series to be
the L-function of a modular form. We will not state the conditions here, but only
stress that they include functional equations.

Let f be a normalised T y-eigenform of type (k,N,¢). Then its L-function has
an Euler product (see e.g. [Shil, Theorem 3.43], [Miy2, Theorem 4.5.16]): if f has
g-expansion Y Ang" with A; =1 we have formally
(5.0.2) L(s, ) = [T (1 - X~ + 2o 7)

P
Conversely if f is a modular form of type (k,N,e) whose g-expansion coefficients
are given by such an Euler product, then f is a Tn-eigenform with A, as the
eigenvalue of the n-th Hecke operator T, for all n.€ N.

ExAMPLE 5.0.4. Tet A be as in Example 2.2.7. It is a cuspidal T, -eigenform
of weight 12 (of level 1 with trivial character). Its L-function is

L(s,8) = [[ (1 =@~ +p" %)~
4
and A(s,A) = (2m)~°T(s)L(s,A) is entire and satisfies the functional equation
which is invariant under s — 12 — s. Note that W1 A = A since wy € SLy(Z), so
that e = 1.

EXAMPLE 5.0.5. Let f be the weight 2 cusp form of conductor 11 as in Ex-
ample 2.2.8. One verifies that Wi f = — f. Hence, the completed L-function
A(s, f) = (2r/V/11)°T(s)L(s, f) is entire and satisfies the functional equation

A(S»I)ZA(Z—svf)'
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ExXAMPLE 5.0.6. Take an Eisenstein series of weight two with prime conductor,
say H(z) = E»(2) — pEs(pz) of Example 2.2.6 where p is a prime. Then, its L-
function is —24 times

3 (X cold)d)n= = ¢(s)L(s — 1,0)

n=1 d|n
where &g is the trivial character mod p; recall that eo(d) = 0 if pld. There are
simple poles of A(s, H) = (2m/,/p)*I'(s)L(s, H) at s = 0 and s = 2(= k), owing
respectively to the presence of I'(s) and

L(s—1e0) = (1 -1/p"1)((s - 1).
There are no other poles, e.g. the pole of ((s) at s = 1 is cancelled by the zero of
L(s —1,ep) there (at s = 1, the Euler factor (1 — 1/p*~1) is zero while ((s—1)is
finite).
Similarly, if we take the weight one Eisenstein series E, . with an odd character

¢ mod p (with p prime) as in Example 2.2.4 then L(s, E, ;) is essentially ((s)L(s, ).

6. Newforms and multiplicity one

In this section we explain some of the relationships between cusp forms, espe-
cially Hecke eigenforms, of different levels. The main result is the multiplicity one
theorem of Atkin and Lehner [AtLe]. They consider only modular forms on To(N),
but here we follow [Lang2, Chapter VIII] for exposition of the theorem in 'y (N)
case. We shall return to the notion of multiplicity one from the point of view of
automorphic representations in §11.

6.1. Old and new subspaces.
PRIMARY REFERENCES:
[Lang2, §VIIL1], [Miy2, §4.6] and [AtLe]

We consider the action of Ty and T™) on Sy (I, (IV)), the space of cusp forms
of weight & and level N. We shall fix the weight k(> 1) throughout the section,
but consider different levels.

Let d, M be positive integers such that dM divides N and let 1y = ( g (1’ )

If f(2) is a modular form on I'y (M), then f|[ea]x(z) = d¥~1f(dz) is a modular form
on 'y (N) since ¢ 'T' (M)iq contains T (N). Moreover if f is a cusp form then so
is f|[talk; s0 f — f|[ta)x defines an injective map

(6.1.1) ti v : Sk(T1(M)) — Sk(T1(N))

which we will denote ¢ when M and N are fixed.
Let us examine the extent to which ¢} is compatible with the action of the
Hecke operators. Using (3.4.2) we find that if p is a prime not dividing N, then

f|[5d]ka(P)k = fIT(p)x|[alx

where T'(p)y. in the left side of the equation is relative to level N while that in the
right side is relative to level M. A similar statement holds for T'(p,p) if p does not
divide N. Thus ¢ is a homomorphism of T")-modules where we regard Sy (T, (M))
as a module for ) using the obvious inclusion T™V) ¢ T) . In particular, if [
in 8;(T'1(M)) is a T*)-eigenform then f|[t4]y in S(T'1(IV)), for d dividing N/M,
is a T(V)-eigenform with the same eigenvalues away from N.
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REMARK 6.1.1. The map (6.1.1) commutes with T'(n) if (n,d) = 1, but gen-
erally fails to commute otherwise.

For a fixed N, the linear span of the images of the maps ¢ ,, , over all d,
M with dM|N, M # N, is called the old subspace of S;(T;(N)), and is denoted
Si(T1(IN))2'd. We define the new subspace of S(T'1(N)), denoted Sy (T'y(N))"ew,
as the orthogonal complement of Si.(I'y(N))°d in 8.(T';(N)) with respect to the
Petersson inner product. One checks that the space Si(I';(N))° is stable under
the action of T™V) on S, (I'1(V)), and it follows that so is S (I (N))"*¥. Moreover
we can write

(6.1.2) Se(Ty(N) = >~ (Se(T1(M))™)|[talk

dMIN
as a TW)-module with the space Si(I'1(N))*'¢ of oldforms given by

Y SEmDkde = Y (SeTu(M))™)|[ealk-

dM|N,MAN dM|N,M#£N

For each M, the T™™)-module Sy, (' (M))"*" admits a basis consisting of T()-
eigenforms. Thus Si(T'1(IV)) has a basis consisting of T(M-eigenforms {f}, where
each f is of the following form: f = g;|[¢q]r with g; € Si(T1(M))"*" for some
positive integers d, M such that dM|N and g; is a T(*)-eigenform.

REMARK 6.1.2. One can check directly that the space Sy(I';(V))°' is stable
under the action of the bigger ring T . We shall see later that the same is true for
Sk(T1(N))™*"; moreover this space is spanned by T y-eigenforms called “newforms”
or “primitive” forms. We shall also see that the sum in (6.1.2) is actually a direct
sum decomposition. See the discussion following Corollary 6.3.1, especially Remark
6.3.4.

The maps ¢} 5,  commute with the action of (Z/NZ)* where we define the ac-
tion of (Z/NZ)* on S(I'1(M)) via the natural projection (Z/NZ)* — (Z/MZ)*.
It follows that we have a T(N)-equivariant decomposition

Sk(T1(N))* = @Sk(N e

over Dirichlet characters £ mod N where Sp(N, €)% = Si.(N,&)NSk(T'1(N))4. We
have an analogous decomposition of the new subspace into eigenspaces Sk(N, €)™Y,
and these satisfy

Si(N,€) = Sk(N,£) @ Si (N, e)™™.

We can replace I'; by I'g in the appropriate definitions above to obtain maps ¢}
and old and new subspaces S;(Ty(V))°d and Si.(Ty(N))*¥ of S (Ty(N)). These
spaces coincide with S (N,£)°d and Si(N,£) ¢V where ¢ is the trivial character.
In fact, for the space of cusp forms of type (k,N,£) we may define the old and
new subspaces intrinsically as follows. Given M|N, a Dirichlet character x mod M
gives rise to a Dirichlet character mod N via the natural projection (Z/NZ)*
(Z/MZ)*; denote it by x. Moreover given a Dirichlet character ¢ mod N, there
is at most one character ¥ mod M such that xyy = . Indeed, if £y denotes the
primitive character associated to € and C its conductor, then x exists only if C|M,
in which case x = (€0)a. Since ¢, respects the action of (Z/NZ)* for dM|N, we see
that f+ f|[eq]x defines a map Sk(M,x) — Sk(N, x) which we again denote ¢}
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Then Si(N,£)° is simply the linear span of the images of 1} : Sk(M, x) — Sk(N, )
over all integers M and d such that M # N, C|M|N, x is the Dirichlet character
mod M with xy = ¢ and d divides N/M. The orthogonal complement of Sy (N, £)°ld
in S(N, ¢) relative to the Petersson product is S (N, £)"¥. In particular, if ¢ mod
N is primitive then S (N, &)™ = Sy, (N, ¢).

REMARK 6.1.3. The maps ¢ are essentially pullback homomorphisms induced
by the degeneracy maps Yy(N) — Yy(M) defined in §7.3 (with the roles of M and
N reversed).

ExAMPLE 6.1.4. We describe the decomposition of Sy(T'; (33)) into its old and
uew subspaces. By the dimension formulas in §12.1, we find that Sy(I';(33)) is 21-
dimensional. We also find that $,(T'1(3)) = 0 and that S»(T'1(11)) = S»(To(11)) is
one-dimensional and therefore generated by a normalized T;i-eigenform f. There-
fore S5(T'1(33))°! = 8,(I'g(33))°! is spanned by the linearly independent forms
f(2) and f(3z). The space S5(T';(33))"" decomposes as

D Sa(33,¢)",

where ¢ runs over the 10 Dirichlet characters mod 33 which are “even” in the
sense that (—1) = 1. For the trivial character €, we have that S,(33,¢) =
S3(L'9(33))"*™ is one-dimensional generated by a T3s-eigenform. Applying the
dimension formulas to groups intermediate to T';(33) and I'g(33), and using the
second part of Proposition 12.3.11, we find that S5(33,)"" = 8,(33,¢) is two-
dimensional for each non-trivial even . We shall see from the theory of new-
forms that each is spanned by Tj3-eigenforms. Moreover, while f(2) and f(32) are
not Tyz-eigenforms, suitable linear combinations will be, so that in this example,
82(I'1(N)) is spanned by T y-eigenforms. This is not the case in general. For ex-
ample, the reader may check that the subspace of Sp(I';(297)) spanned by f (2),
f(32), f(92) and f(272) is stable under T3 but does not have a basis of eigenforms
for T3.

Let us also note how the W-operators behave with respect to the maps ¢;. We

find that
9lledlkllwanlic = d*2clfwnle  for g € Sy(T1(M)),
or equivalently,
Fllwar]e = fllwarlelleali  for f € Si(T1 (M)
since [wy]} = (—N)*~? on Si(T's(N)). Thus Wy = (—N)1~*/2[uy];, preserves the
spaces S (I'1 (V)™ and Si(T1(N))°, and gives an isomorphism
Sk(N, E)new o Sk(Ny 6—_)new

and an analogous isomorphism for the old subspaces.

6.2. Multiplicity one theorem.
PRIMARY REFERENCES:
[Lang?2, §VIIL3, VIIL4], [Miy2, §4.6] and [AtLe].

Let T™) be as before. In addition to T™)-eigenforms in S(T'1(N)), we shall
consider forms which are simultancous eigenvectors under T, for almost all primes
p. For this, we introduce an auxilliary positive integer D and consider the action of

TWD), Then, for f € S(T1(N)) the following are equivalent by arguments similar
to those used for Proposition 3.5.1:



62 F. DIAMOND AND J. IM

e f is of type (k, N,¢) for some ¢ mod N and is a T™WP)-cigenform;

e fis a TWD) gigenform;

e f is a common eigenform under T, for all (n, ND) = 1.
A form f € §;(T'1(N)) is a common eigenform under T}, for almost all (i.e., all but
finitely many) primes p if and only if there exists D such that f is a TWP-eigenform.

Let [ be such an eigenform of weight k > 1. We can associate to f a homomor-
phism 8, : TV — C defined by T'f = 04(T) f; we call §; the eigencharacter of f.
Since the T(V)-eigenspace to which f belongs contains a non-zero T y-eigenform
whose eigenvalues away from N are the same as those of f, the image 05( TOD) is a
subring of the ring generated by the eigenvalues of the T y-eigenform and therefore
(see Remark 3.5.3 and Corollary 12.4.5) contained in the ring of integers of an al-
gebraic number field (of finite degree over Q). Note that the values of ¢ associated
to f already lie in 8 (TWD).

Now, the main result of Atkin-Lehner theory is the multiplicity one theo-
rem, which essentially says that an eigencharacter occurring in the new subspace
Sk(T'1(N))"* does so with multiplicity one. This is a consequence of the following
key fact in the theory whose proof we omit. (See e.g. [Lang2, §VIIL.4].)

PROPOSITION 6.2.1. Let f = Y 7% ang™ be a cusp form on T1(N) and suppose
there is an integer D > 1 such that for all (n, ND) = 1 we have a, = 0. Then
there exists a cusp form g, on T'1(N/p) for each prime p|N such that

f:ZL;gpi

pIN
i.e., f € Sk(Ty(N)).
This implies the following

COROLLARY 6.2.2. Let f = 3 a,q™ be a cusp form on T'y(N) which is a si-
mullaneous eigenfunction under T, for almost all primes pJN. If a; =0 then f is
in the old subspace.

Indeed, with an auxilliary integer D chosen in an obvious way so that T,,f = A, f
for all pJN D, if a; = 0 then from a,+£(p)p*~a,/, = Aya, we get that a,w = 0 for
such p for all v by induction. (Recall that f of the proposition is necessarily of type
(N,¢) for some Dirichlet character ¢ mod N.) Hence, a,, = 0 for all (n, ND) = 1.
By Proposition 6.2.1, f is then in the old subspace.

In view of this, any (non-zero) T™-eigenform f in Si(I';1(N))™* can be
normalised to have the first coefficient @; = 1. The multiplicity one theorem is

THEOREM 6.2.3. Let f, g € Sk(T1(N)) be TWVD -eigenforms with the same
eigencharacters, i.e., 85(Tp) = 04(Ty) for all pYND. If f € Sp(T1(N))"ev, f
normalized, then g is a scalar multiple of f. (In particular, if g is in the old
subspace, then g =0.)

Proof: 1f g # 0 is in the new subspace, then we may assume that it is normalised,
so that f — g is a TWP)_gigenform in the new subspace with the first coefficient
0. So f — g is also in the old subspace by Proposition 6.2.2, hence g — f = 0.
If g is in the old subspace then it is a lincar combination of functions ¢jg; where
gi € Sp(T(M))"™¥, M # N, dM|N, and where each g; is an eigenform under
TWD) = TMD') with ND = MD' for some D'. Note that 6,,(T,) = 0,(T,) for p
not dividing N.D. Unless g = 0, there is some i such that a;(g;) # 0 by Proposition
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6.2.2 (at level M instead of N), and so there is a constant c such that a; (f—cg;) = 0.
As f—cg; € Si(I'1(N)) is a TWP)-eigenform, Proposition 6.2.2 implies that f —cg;
is old at level N, which in turn means that f is old at level N (because g; is already
old at that level). But f # 0 is also new of level N' by assumption, and we have a
contradiction, unless g = 0. Finally, if g = g"*¥ + ¢°!d then each component has the
same eigencharacter as g (or f), and so the above argument shows that g°'¢ = 0,
while g = g"*¥ is a multiple of f.

6.3. Newforms.
PRIMARY REFERENCES:
[Lang2, §VIIL3], [Miy2, §4.6] and [AtLe].

We have already noted that for a TWD)-eigenform g on I'y (M) (with M # N,
M|N), the two forms g(= t7g) and }g (with d > 1, dM|N) have the same TVD).
eigencharacter. If in addition g(# 0) is in the new subspace of level M, then
these two forms are linearly independent. Thus, we have the following corollary to
Theorem 6.2.3.

COROLLARY 6.3.1. The subspace S(I'y(N))"* (respectively, Sx(I'1(N))°'9) of
Si(T1(N)) is the orthogonal sum of the T™P)_eigenspaces in Si(T1(N)) whose
eigencharacters occur with multiplicity one (respectively, > 1).

The same is true of course if we consider eigenforms under T2 in the old and
new subspaces of Si(N,¢), since an eigencharacter determines the Nebentypus.
The corollary implies that Sy (I';(/V))™¥ is stable under the action of the full
Hecke ring Ty . In fact, a TWP)-eigenspace in Si.(T'1 (N))"¥ or Sk (N, &)™ is one-
dimensional and is therefore stable under T since the Hecke operators all com-
mute. Therefore a T®WP)-eigenform in Sy (' (V)™ is necessarily a T y-eigenform.
Thus the following are equivalent in the new subspace of level N:
(i) fis a T y-eigenform;
(i) f is a T(M)-eigenform;
(iii) fis a TWP eigenform for some D.
Recall also that such a form f can be normalized so that a; = 1. A normalized
eigenform in Sy (I';(N))"*™ is called a newform (or a primitive cusp form) of level
N.

REMARK 6.3.2. Conditions (ii) and (iii) are equivalent for f in S(I';(N)), but
they do not imply (i).

REMARK 6.3.3. The multiplicity one theorem holds also for forms of different
levels. Let f; € Sp(T1(N;))™™ (i = 1,2) be two normalized Hecke eigenforms
with eigenvalues a:, under T, for primes p. Suppose a}l, = af, for all but finitely
many primes p. Then we must have f; = f,. This follows from the multiplicity
one Theorem 6.2.3 once the equality N; = N, of their levels is established by
considering their functional equations (Remark 5.0.2); see e.g. [Miy2, §4.6]. Thus
for a TWD-eigenspace of Si(T1(N)), there is a unique pair (f, M) such that f is
in the eigenspace and is a newform of level M.

REMARK 6.3.4. We have mentioned, in Remark 6.1.2, that the decomposition
(6.1.2) is actually a direct sum. This can be seen as follows: First, note that
Sk(T'1(N)) is an orthogonal sum of T(Y)-eigenspaces. Let g be a newform of level
M, and suppose M divides N. Then for every positive integer d dividing N/M,
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¢49 is a T(™)_gigenform belonging to the same T )-eigensubspace of Sp(T1(N)) to
which g belongs. In this eigenspace, we have a direct sum @®4Cug, d over divisors
of N/M, because the set {g(z), g(22), 9(32),...} is linearly independent over C for
such a form g. Now, for each M|N, let {g}, ... 192} be the set of newforms of
level M, and let 0;"4 (1 <j < ju) denote the corresponding eigencharacters. Note
that the set is actually a basis for Sx(T'y(M))"**. Now by multiplicity one (Theorem
6.2.3) and Remark 6.3.3 these 0}, over all M|N and 1 < j < ju, are distinct as
eigencharacters of T(™). Hence, the forms 9} € Si(T'i(N)) belong to mutually
distinct T(V)-eigenspaces. These arguments thus yield the following direct sum

M
DD D cug)
M|N j=1 d:dM|N
in 8(T'1(N)). Interchanging the two inner sums gives precisely the sum appearing
in (6.1.2), but with @ in place of ¥.

Let f =3 Ang™ be the newform in a T(V)-eigenspace of Sk(T1(N)) (or equiv-
alently a TWD)_cigenspace for some D). Since f is a Ty-eigenform for some M
dividing N, its L-function L(s, f) has an Euler product (5.0.2) where ¢ is a char-
acter mod M. The L-functions of the Ty-eigenforms in the T(V) eigenspace are
obtained by simple modifications of the Euler factors of L(s, f) at primes dividing
N/M.

EXAMPLE 6.3.5. Returning to Example 6.1.4, we see that 82(T1(33)) decom-
poses into 20 T**)-eigenspaces, two for each even Dirichlet character mod 33. One
of those is two-dimensional, but the rest are one-dimensional, generated by a new-
form of level 33. The two-dimensional T"*)-eigenspace is generated by f(2) and
f(3z) where f (Example 2.2.8) is a newform of level 11 with trivial N ebentypus and
A3 = —1. Letting a;; and 33 denote the roots of X2+ X +3 = 0, one finds that this
T®%)-eigenspace is generated by the Tss-eigenforms f; = f — a3f(32) and f, =
f=Bsf(3z). The L-function L(s, f) (Example 5.0.5) has an Euler product for which
the Buler factor at 3 is L3(s, f) = (1+37°+3'"2)~" = [(1—33~*)(1 - 353 N
The L-function L(s, fi) (resp. L(s, f;)) are obtained from L(s, f) by replacing
Ls(s, f) with (1 — 337°)7" (resp. (1 — a33~%)"1).

Let us also consider N = 297. One finds that the 4-dimensional TV )-eigenspace
of 53(I'1(N)) generated by f(z), f(3z2), f(92) and f(272) contains only three nor-
malized Ty-eigenforms and that their L-functions are obtained from L(s, f) by
replacing Ls(s, f) by (1 —3337%)"1, (1 — a33~*)~! and 1.

Let us now consider the Ty(N) situation. The involution Wy commutes with
the Hecke operators T,, for all pjN (p prime) so that a newform f of level N is
also an eigenvector for Wy (with eigenvalue ¢ = +1); similarly it is an eigenvector
for W) for all p|N, with corresponding cigenvalues €(Q(p)) = +1. Consequently,
L(s, f) satisfies the functional equation (5.0.1) with e = L, n €(@(p)). Moreover,
Ap = 0 if p?|N, while \, = —p*/2=1¢(p) if p||N. This last assertion is obtained
using the following fact (sce [AtLe, Lemma 7)): For f in Sk(To(N)), Tpf is a cusp
form on T'o(N/p) if p|N, while T, f + p*/2= W, f is on Ty(N/p) if p||N. Indeed,
in either case, the given form of level N/p is in Sy(Ty(N))* and so, having the
same T(N)_eigencharacter as the newform f, must be 0. Since T,f = Apf, while
Wpf = €(p)f in the second case, we obtain the desired values for Ap when p|N.
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Part II. Modular curves
7. Elementary theory

Recall that in §3.2 we defined the modular curve associated to a congruence
subgroup I of SLy(Z) as the quotient space I'\$) where the action of SLy(Z) on the
complex upper-half plane ) is given by lincar fractional transformations. We have
thus defined a modular curve simply as a topological space, but we shall interpret
it in §7.2 as a moduli space for elliptic curves. This interpretation will yield in §8
a natural algebraic-geometric description of the curve as the set of complex points
of a “moduli scheme.”

7.1. Topological structure.
PRIMARY REFERENCES:
[Shi1, §1.3-1.5], [Serl, §VIL1], [Lang2, §II1.1, 1I1.2] and [Miy2, Ch. 1].

We first describe the topological structure of the modular curve ¥ = SLy(Z)\§
by giving a convenicnt set of representatives in § for this quotient. (See [Ser1,
§VIL1] and [Shil, §14].) As the diagonal matrix —1 acts trivially, we have ¥ =
PSLy(Z)\$. The group PSLy(Z) = SLy(Z)/{+£1} is generated by the clements

. a8 ~1 9 -1
*""*(1 0) T'i(l 1)

with relations S? = T% = 1. Every element z of § can be written in the form v(2')
for some y € PSLy(Z) and some 2z’ in the set

D={z+iyeh|z®+y* > 1, <1/2}.

Letting D’ denote the interior of D together with the subset of the boundary
satisfying = > 0, we find that for every z there is a unique z’ in 7 such that z
is in PSL2(Z)2". The element v of PSLy(Z) such that z = 4(2') is not necessarily
unique, but the only points of D" with nontrivial stabilizers are i and ¢ = e™/3,
Their stabilizers are the groups (S) and (7'} respectively. Observe that the points of
D' are in one-to-one correspondence with the points of ¥, but the two topological
spaces are not homeomorphic. Rather the topological space Y can be constructed
from D as the quotient space obtained by identifying z with —% for boundary points
of D; thus Y is homeomorphic to R2.

REMARK 7.1.1. A “nice” set of representatives in § (or for some authors, its
closure, and for others, its interior) for the modular curve I'\$ is called a “fun-
damental domain” for I'. We shall not give a precise definition here, but remark
only that D is a fundamental domain for SLy(Z) and that for any T' there is a
fundamental domain of the form UyD where ~ runs over a suitable set of cosct
representatives for I'\SLy(Z). (See [Shil, §1.4] and [Miy2, §1.6].)

The spaces T'\$ are Hausdorff and inherit from $ the structure of a one-
dimensional complex manifold [Shil, §1.5]. I the image T of T in PSL,(Z) has no
elements of finite order, then T acts without fixed points on 9. This is the case for
example if I' = I'y (N) with N' > 3, and then the local homeomorphism § — I'\$
fully describes the complex structure on the quotient. Slightly more care is re-
quired if I'\$ has elliptic points. These are points for which a preimage in $ has a
non-trivial stabilizer, necessarily of finite order, in T. Note that there are only two
elliptic points on Y = SLy(Z)\$; they are PSLy(Z)i and PSLy(Z)(. The function
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f(z) = ((z—i)/(2+4))? defines a homeomorphism from a neighborhood of PSL(Z)i
in Y to a neighborhood of the origin in C. The complex structure at PSLo(Z)i
is then given by f and a similar function works in a neighborhood of PSLy(Z)(.
The resulting complex manifold Y is biholomorphic to the complex plane. For an
arbitrary congruence subgroup I', the natural projection I'\fH — SLo(Z)\$ maps
the finite set of elliptic points to SLy(Z)i U SLy(Z)¢. To complete the description
of the complex structure of ['\f), one can use the fact that this projection is a
homeomorphism in a neighborhood of each elliptic point.

Note that the curves I'\$) are not compact. We shall explain in §9.1 how they
are compactified by the addition of “cusps” to obtain a Riemann surface.

7.2. Moduli spaces.
PRIMARY REFERENCES:
[Huse, §11.1, 11.2] and [Sil1, Appendix C §13]

We are especially interested in the curves associated to I'o(N) and T'y(N) for
positive integers N, and we denote these curves Yy(N) and Y3 (N) respectively. We
always wish to bear in mind their interpretation as “moduli spaces.”

We begin with Y;(N), whose points are naturally in bijection with isomorphism
classes of pairs (E, C') where FE is an elliptic curve over C and C is a cyclic subgroup
of F of order N. (We consider the pairs (E,C) and (E’,C") to be isomorphic if
there is an isomorphism ¢ : E — E' such that ¢(C) = C'.) To establish the
bijection, simply associate to T € ) the pair

1
E, = (C/Ar, 52/Z)

where A, is the lattice Z+Z7. One checks that any pair (£, C) is isomorphic to E,
for some 7 € §, and that E is isomorphic to E if and only if 7/ € I'o(N)7. Note
that if N = 1 then Y;(NN) is simply the set of isomorphism classes of elliptic curves.
As an elliptic curve over C is determined up to isomorphism by its j-invariant, the
map 7 — j(E,) defines a bijection ¥5(1) — C.

Similarly the points of ¥;(NN) are in bijection with isomorphism classes of pairs
(E, P) where E is an elliptic curve and P is a point of £ of order N. (For 7 € 9, use
E =C/A, and P =1/N mod A,.) The action of I'y(N) on $ induces an action of
I'o(N)/T1(N) on Yi(N). Using the isomorphism I'o(N)/T'1(N) = (Z/NZ)* defined
by ( i g ) — dmod N, we view (Z/NZ)* as acting on Y;(N) as well. The
corresponding automorphism (d) of Y;(N) has the moduli-theoretic interpretation
(E,P) — (E,dP). Note that (—1) is the identity, so the action of (Z/NZ)*
factors through (Z/NZ)*/{£1}. Note also that Y5(N) is naturally the quotient
of Y1(N) by the action of this group and the natural projection Y;(N) — Yo(N)
has the simple moduli-theoretic interpretation (E, P) — (E, (P)) where (P) is the
subgroup of E generated by P.

7.3. Modular correspondences revisited.
PRIMARY REFERENCES:
[Serl, §VIL5], [Sil2, §1.9], [Kna2, §VIIL7| and [Kobl, §IIL5].

We have already considered in §3.2 certain natural projection maps or “degener-
acy maps” between modular curves and used these maps to define correspondences.
Let us return to this matter from a more moduli-theoretic point of view.
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If M is a multiple of N, then Ty(M) is contained in To(N) and there is a
natural projection from Y5(M) to Yy(IV). There are in fact a number of natural
degeneracy maps from Yy(M) to Yy(N); for any divisor d of M/N, we have that
talo(M)i7" € T'o(N) so that 7 +— dr induces a map from Yp(M) to Yp(N). Here
0 (1) as introduced in §3.2. We are especially interested
in the case where M = Np for a prime p, and we denote by @ and 3 the degeneracy
maps defined, respectively, by 7 +— 7 and 7 — pr. These have the moduli-theoretic
interpretations a(E, C) = (E, Cy) where Cly is the subgroup of C of order N, and
B(B,C) = (BE/C,, C/C,) where C,, is the subgroup of C of order p. The coverings

L4 denotes the matrix

Yo(Np)
B8 e
Yo(N) Yo(NV),

possibly branched, give rise to a correspondence (see §3.2) T, = @0 *8 on Yy(N) x
Yo(N). If p does not divide N, then T,(T'g(N)7) is the divisor 3 T'o(N)y(7) where
v runs through the set

e {(55)(05) (%5 ) (2D}

Identifying points of ¥p(N) with pairs (E,C), we find that T}, has the following
natural characterization

TP(EVC) :Z(E/D1(0+D)/D)
D

where D runs over cyclic subgroups of E of order p. If p divides N, then T}, (in this
case frequently denoted U, in the literature) has similar descriptions, except that
we omit the last element from the above set of matrices and require that D ¢ C.
It follows directly from this description that T,T, = T, T, for all primes p and g.

REMARK 7.3.1. In §3.4 the symbol T}, is used to denote the endomorphism of
82(To(N)) induced by the double coset T'(p) = I'o(N)yIL'o(N) where vy = ( L )

0 p
We have also explained in §3.2 how T'(p) gives rise to a correspondence on
Yu(N) x Yp(N). There 7., is defined as B o ‘A where the maps 4 and B to

Yo(IV) are not from Yy(Np), but from G\ where G is conjugate to I'o(Np) by 7.
However, the correspondences 7, and T}, on Y(V) are the same, as can be seen by
composing A and B with the isomorphism between Xo(Np) and G\$ to obtain the
degeneracy maps [ and @, respectively.

More generally, to any positive integer n we can associate a modular correspon-
dence 7}, on Y5(N) x Y5(N) by the formula

(7.3.2) T.(E,C) =) (E/D,(C + D)/D)
D

where D runs over subgroups of E of order n satisfying C' N D = 0. Then 7,
coincides with the correspondence which arises from T'(n) by the construction of
§3.2. In particular, having set T} = 1 and defined T}, for all primes p, the T, are
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characterized by the equations (see Proposition 3.3.1)

Tyr = Ty 1Tp—pT— if 1> 2 and pis a prime not dividing N;
(733) Ty = T; if p is a prime dividing N;
Tom = T=Th if (m,n) =1.

One can similarly define and describe modular correspondences on Y, (N) x
Y1(N). In particular, suppose that p is a prime not dividing N and consider the
curve Y =T, (N, p)\$, where I'; (N, p) denotes T'1(N)NTo(p). The modular corre-
spondence T}, is defined by a0 *3 where o and 3 are the degeneracy maps from Y
to Y1 (V) defined, respectively, by 7 — 7 and 7 +— p7. The effect of T}, on a point
T'1(N)7 of ¥4 (N) is given by the formal sum 3T (N)v(r) where 7 runs through
the set in (7.3.1), except that the last matrix requires a slight modification. We
now have the moduli-theoretic interpretation:

T,(E,P) = (E/D, P mod D)
D

where D runs over subgroups of E of order p. One can again define T}, for inte-
gers n. 2> 1 with a moduli-theoretic interpretation analogous to the one in (1.3.2),
and again these coincide with the correspondences which arise from T(n) via the
construction of §3.2. They satisfy the equations listed in (7.3.3) except that now
Tpr = Tyr-1T, — (p)pTpr—2 for primes p not dividing N. Note also that the corre-
spondence T, commutes with the action of (Z /NZ)* and the natural projection
Yi(N) — Yo(N).

REMARK 7.3.2. One can also give a simple moduli-theoretic interpretation of
the involution of Y1 (N) induced by the matrix wy defined in §4. The pair (E,P)is
sent to (E/(P), P’ mod (P)) where P is a poiut of E[N] satisfying (P, Py =N
where ( , ) is the Weil pairing on E[N]. Denoting the involution again by wy
we have the identities wyT,,wnx = *T), for all n > 1 and wy(d)wy = (d)~! for
all integers d relatively prime to N. Similarly, for Q dividing N and satisfying
(@ N/Q) = 1, the involution wg of Y5(N) defined in 84 has the interpretation
(E,C) — (E/CIQ), (E[Q] + C)/C[Q)).

8. Canonical models

The aim of this section is to explain how the interpretation of the modular
curves as moduli spaces can be used to define canonical models for these curves.
We will also discuss the Eichler-Shimura congruence relation in this context. The
main reference will be [DeRa, but see also [Shil], [KaMa] and [MaWi]. We
assume some background in algebraic geometry, as can be found for example in
[Hart].

By a model for a modular curve Y over a subring R of C, we mean a pair (Y, ¢)
where ) is a scheme over Spec R with one-dimensional fibers, and ¢ is an analytic
isomorphism ¥ 2 J(C).

ExampLE 8.0.1. Consider the scheme Y = Spec (Z[j]) over SpecZ and the
isomorphism ¢ : ¥3(1) — Y(C) which sends SL»(Z)7 to the clement of Y(C)
defined by j — j(7). The pair (Y, ¢) is a model for Y, (1) over Z.

Shimura’s theory of canonical models [Shil, §6.7] provides a compatible sys-
tem of models over number fields for modular curves associated to congruence
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subgroups. In particular, he shows that ¥3(IV) and Y;(N) can be viewed as quasi-
projective varieties defined over Q so that the projections, degeneracy maps and
correspondences discussed above can be defined over Q. We will adopt the point
of view of Deligne-Rapoport [DeRa] in order to define models over rings of the
form Z[1/N]. These models are an important tool in the study of the arithmetic
of modular curves and our discussion will barely scratch the surface. In addition
to [DeRal, the reader can consult [Igul], [Igu2], [Igu3], [Drin], [KaMa] and
[MaWi].

8.1. Families of elliptic curves.
PRIMARY REFERENCES:
[KaMa, Chapter2], [Gross, §1] and [Sil2, Chapters III,IV].

Recall first that the points of Y7 () correspond to pairs (E, P) where E is an
elliptic curve over C and P is a point of E of order N. We will now rephrase the
definition of a pair (E, P) so that it makes sense with C replaced by a scheme §
over Z[1/N]. By a family of elliptic curves over S, often simply called “an elliptic
curve over S,” we mean a smooth, proper group scheme over S whose geometric
fibers are elliptic curves.

EXAMPLE 8.1.1. Let S = SpecZ[1/11] and let £ be the closed subscheme of
P? defined projectively by

Y27+ ¥ 2 =X X7 10X 7" —207%.

Then &£ can be given the structure of an elliptic curve over S with zero section
S — £ defined by “the point at 00,” X +— 0, Z — 0.

EXAMPLE 8.1.2. Let § = Spec (Z[f,j71(j — 1728)7!]). Let £ be the “generic”
elliptic curve over 9, i.e., the closed subscheme of P% defined by

Y2Z+ XYZ=X?—36(5 —1728)"1x2% — (j — 1728) " 12°.

At a geometric point Spec k — S defined by j — jpo (where jp € k with jo # 0,1728),
the fiber of £ has Weierstrass equation obtained by replacing j by jo in the equation
above (see [Sil1, §IIL1]).

ExampPLE 8.1.3. The Tate curve [Del4, §8] over S = Spec(Z((q))) is defined
by Y2Z + XY Z = X® + a1 X Z? + agZ? in P% where

a=-5) n’¢"/(1—q"); ag= —% > (7 + 5n®)gm /(1 — ).

n>1 n>1

8.2. Moduli problems.
PRIMARY REFERENCES:
[DeRa, Chapters IILIV], [KaMa, Chapters 3,4], [Shil, Chapter 6] and [MaWi,
§2.3].

Now define a contravariant functor 7;(N) from Z[1/N]-schemes to sets as fol-
lows: For a scheme S over Z[1/N]|, F1(N)(S) is the set of isomorphism classes
of pairs (£,P) where £ is an elliptic curve over S and P is an element of £(5)
of exact order N. A section P : § — £ is said to have exact order N if for all
geometric points s : Speck — S, P os has order N in (k). If f: S — T is a mor-
phism of schemes, we define F, (V) (f) : F1(N)(T) — F1(N)(S) by “base-change”
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(E,P) — (Es,Ps) where £ and Pg are defined so the squares in the following
diagram are cartesian:

S - T

|l Ps P
ES - &

d il
S — T.

It follows formally from standard properties of base-change that (£g, Ps) defines
an element of F,(N)(S) and that F;(N) is a functor.
In this language, the substantive statement is the following:

THEOREM 8.2.1. If N > 3, then there is a scheme Y, (N) which represents the
functor F1(N). Moreover Y1(N) is smooth of relative dimension one over Z[1/N]
with irreducible geometric fibers.

The proof is essentially due to Igusa [Igul], but the statement in this form is
most easily deduced from (2.7.3), (3.7.1) and (4.7.1) of Katz-Mazur [KaMa]. See
also [DeRa] for a sketch of Igusa’s method and statements similar to the one above.
The meaning of “Y(N) represents F; (V)" is that for any scheme S over Z[1/N],
there is a bijection, functorial in S, between the set of maps § — Y1(N) and the set
of isomorphism classes of pairs (£, P) over S. It follows formally that the scheme
Yi(N) with this property is unique up to canonical isomorphism. Note also that
corresponding to the identity map in the case S = Y;(N) is a pair (Euntv s Puniv )
which can be considered the “universal elliptic curve with a point of order N.”
Indeed any pair (£, P) over a Z[1/N]-scheme T is obtained from (Cunivs Pusiv.) BY
base-change for a unique morphism T — Yi(N). Considering the case § = C,
we find a natural bijection ¢ between ¥;(N) and Y;(N)(C). This bijection is an
analytic isomorphism, so (V1 (N), ¢) is indeed a model for ¥; ().

VARIANT 8.2.2. Tt will be convenient at times to use models defined using a
different set of conventions. Giving a section P : § — £ of exact order N amounts to
giving a closed immersion (Z/NZ)s < £ of group schemes over S, where (Z/NZ)g
denotes the constant group scheme Z/NZ over S (([KaMa, (1.4.4)]). Some authors,
Gross [Gross| and Katz [Katzl], [Katz2] for example, use a model for Yi(N)
which instead parametrizes pairs (£,1) where i is a closed immersion (uy)s — E.
The resulting moduli problem is represented over Z by a smooth affine scheme we
denote ), (N). We thus obtain a model for ¥;(N) over Z, (Vu(N), ¢,), with ¢,
defined by 7 — (E/A.,i,) for 7 € §. Here i, denotes the embedding defined by
i-({x) = 1/N mod A, where {y = €2™/N¥. Note that the models are isomorphic
when tensored with Z[1/N,(y]. We caution that there is an isomorphism of schemes
YV1(N) = Yu(N)zp /) over Z[1/N], but such an isomorphism does not respect the
maps ¢ and ¢, and thus is not an isomorphism of models over Z[1/N].

Consider now the situation for ¥5(N), which is complicated slightly by torsion
in Io(N). Let us continue to assume that N > 3 and return later to the case
N < 3. We can define a functor F,(N) on Z[1/N]-schemes where Fo(N)(S) is the
set of isomorphism classes of pairs (£,C) where £ is an elliptic curve over S and
C is a finite flat subgroup scheme of £ whose geometric fibers are cyclic groups
of order N. It is tempting to ask for a model for Y;(N) which represents Fo(N).
The fact that a pair (£,C) has non-trivial automorphisms, multiplication by —1
for example, makes the issue of representability a subtler one. We can nonetheless
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proceed as follows. For an integer d relatively prime to N, the pair (Eumiy dPasise )
over Y1 (N) defines a morphism Y, (N) — ¥;(N) which we call (d). Then d — (d)
defines a homomorphism G — Aut (Y (N)) where G = (Z/NZ)*, or in other
words, an action of G on Y;(N). Equivalently, we can view (d) as the natural
transformation 71 (N) — F;(N) defined by (£,P) ~— (£,dP). Note that (d) is
a model for the automorphism of ¥;(N), which we also denoted (d), in the sense
that (d) o ¢(2) = (d)(2) for all z € Y;(N). We can then consider the quotient
scheme Yo(N) = G\V1(N). We mention some of its properties, proved in [DeRa,
Ch. VI] and [KaMa, Ch. 8]. It is a smooth scheme over Z[1 /N], and the natural
projection Y1 (N) — Yo(N) is finite and flat, but not necessarily etale. There
are also maps ¢g : Fo(N)(S) — Wo(N)(S), functorial in Z[1/N]-schemes S, and
bijective if S = Speck for an algebraically closed field k. Applying this for k = C,
we find that Jy(N) is a model for Yy(N). As ¢s is not necessarily a bijection,
Yo(N) need not represent Fy(N). In any case Yo(N) has an interpretation as a
“coarse moduli scheme” ([DeRa, §1.8], [KaMa, §8.1]), but we will not define the
term here. We mention only that for a field k, Yy(N)(k) can be identified with
the set of equivalence classes of pairs (£,C) over k, where two pairs are deemed
equivalent if they are isomorphic over the algebraic closure of k.

In the case N < 3, a similar construction yields a model over Z[1/N] for
Yy(N) = Yi(N). Again the scheme Vy(N) = V;(N) can be interpreted as a coarse
moduli scheme and it has the properties listed above for Yo(N) in the case N > 3.
For N =1, we recover the model in Example 8.0.1. We find also that the map
Fo(1)(k) — Yo(1)(k) for a field k is described by sending an elliptic curve to its
J-invariant. Note that this is not a bijection in the case k = Q; quadratic twists of
an elliptic curve have the same j-invariant, but are not necessarily isomorphic over

Q.

8.3. Models for modular correspondences.
PRIMARY REFERENCES:
[DeRa, §V.1], [MaWi, §2.5] and [KaMa, Chapters 5,6].

We now turn to the problem of defining models for the degeneracy maps and
modular correspondences considered in §7.3. For this we will need a model over
Z[1/N] for the curve Y =T\, where I' = I'i (N, p) = T';(N) N T'o(p). We are now
working in a situation of bad reduction at the prime P, in the sense that the “best”
model turns out to be regular if N > 3, but the fiber over p is not smooth. The
moduli-theoretic construction and analysis of this model is due to Deligne-Rapoport
[DeRal], but for a more general construction of such models using Drinfeld’s notion
of “elliptic modules,” see [KaMa).

First note that we can interpret Y as the space parametrizing triples (E, P,C)
where E is an elliptic curve over C, P is a point of order N and C'is a cyclic subgroup
of order p. To be more explicit, and consistent with our description of ¥;(Np), we
associate to 7 € § the triple (E, P,C) where E = C/A,, P = dN~! mod A, with
dp=1mod N, and C is generated by p—.

Mimicking the above definition for F,(N), we define a corresponding functor
F on Z[1/N]-schemes which assigns to such a scheme § the set of isomorphism
classes of triples (£, P,C) over S, where £ is an elliptic curve over S, P is a point,
of order N and C is a finite flat subgroup scheme of £ with geometric fibers of rank
p. Note that if § = F,, then the group scheme C cannot adequately be described
as “the cyclic group of order p.” Indeed C may be isomorphic to ppot Z/pZif £ is
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ordinary, and it must be isomorphic to o, if £, is supersingular. (See [Sill, §V.3]
for the definitions of ordinary and supersingular and [Shatz, §2| for definitions of
i, and o)

The following is a consequence of the work of Deligne and Rapoport. (See
[DeRa, V.1.20] and [KaMa, §5.1].)

THeOREM 8.3.1. If N > 3, then F is representable by a scheme ) which
provides a model for Y over Z[1/N]. Moreover Y is reqular and Yz|1/ny| is smooth
over Z[1/Np| with irreducible geometric fibers.

We will return in §8.4 to consider the behavior of ) at p if p does not divide N,
for it is closely related to the Eichler-Shimura relation and plays an important role
in the work of Ribet [Rib4]. First let us give another description of the functor
and define models for the degeneracy maps and modular correspondences.

By an isogeny 7 : (€,P) — (&',P’), we mean a finite flat homomorphism
7 : & — & such that moP = P’. If £ is an elliptic curve over a scheme S and C
is a finite flat subgroup scheme of £, then there is an elliptic curve £ = £/C over
S and an isogeny 7 : £ — £’ with kernel C. Moreover F is naturally isomorphic to
the functor which assigns to a Z[1/N]-scheme S the set of isomorphism classes of
isogenies (€,P) — (&', P’) over S of degree p.

The definition of models o, 3’ : Y — Y;(N) for the degeneracy maps «, 3 :
Y — Yi(N) is now as formal as that of (d) in §8.2. We define a model o' for
« using the natural transformation F — F;(N) defined by sending an isogeny
(E,P) — (£,P’) to the pair (£,pP). (Note that it is necessary to use pP in
order to have o' o ¢(z) = a(z) for z € Y, where ¢ is the isomorphism ¥ — Y(C)
corresponding to our parametrization by Y of triples (E, P,C) over C.) We define
#' by sending the isogeny to its target (£',P’). We can now describe a “model”
over Z[1/N] for the correspondence T}, as the mapping

T = (ﬁ’,a’) ' ﬁyl(N) X yl(N)

To see how this gives rise to T}, consider 7 as a morphism of schemes over J;(N)
via the projection m; : Y1(N)x V1 (N) — Y1 (N). Identifying Y7 (N) with Y3 (N)(C),
we find that the geometric fiber

T : Yo — Spec C x Y1 (N) 2 i(N)

of T over a point £ € Y;(N) defines the divisor T,(z). Indeed on points, 7; is
simply the restriction to 371 (z) of a : ¥ — Y7(N).

REMARK 8.3.2. If X and Y are varieties over a field k, then a correspondence
on X x Y, or from X to Y, is usually defined as a divisor on X x Y (see [Shil,
§7.2]). We have defined 7 as a morphism rather than as a divisor in order to avoid
complications which arise when considering relative divisors over more general base
schemes than S = Speck.

8.4. Bad reduction.
PRIMARY REFERENCES:
[DeRa, §V.1] and [KaMa, Chapter 13].

We now return to the analysis by Deligne and Rapoport of the “bad reduction”
Yp, = YV x F,, of the model in Theorem 8.3.1. We will define two natural maps
Yi(N)r, — Vr, Consider first the elliptic curve & = (Euniv )F,, over Vi(N )r, and
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the commutative diagram

&o — &o

1 l

o
N(Np, — N(Ne,

where the horizontal maps are the absolute Frobenius endomorphisms. The diagram
gives rise to Frob : £; — Eép ) where Eé"' ) is the elliptic curve over Y; (N )pp defined
as the base-change of £ relative to ®. The map Frob is called the relative Frobenius
of &; it is an isogeny of degree p of elliptic curves over Vi(N)g,. Writing P, for

(Puniv ), and Pép ) for Frob o Py, we get an isogeny
Frob : (£, Po) — (65", P)
which defines an element of F(¥; (N )F,) and thus a map
iy Vi(N)F, — Vr,.

For a more concrete description, recall that a point x : Spec F,, — Vi(N) corre-
sponds to an elliptic curve E, over k = Fp together with a point P, of order N. Tts
image i o z is the point Speck — )’ which corresponds to the triple (Ey, Py, C)
where C' is the kernel of the Frobenius E, — E% . Note that EP is the ellip-
tic curve obtained by composing = with the absolute Frobenius antomorphism of
Speck, or equivalently, by applying the Frobenius of k to the coefficients of an
equation defining E. over k.

To define a second natural map Y, (N )F, — Yr,, we use the dual isogeny
Ver : 5[5" ) _» €. This isogeny, often called the Verschiebung, is characterized by
the fact that Ver o Frob is multiplication by p on &. Thus

Ver : (8,§p),d'Pép)) — (€0, Po)
defines a map
iy : N1 (N)p, — Vr,,
where dp = 1mod N. For a point z as above, the image iy o x corresponds
(B, dP{), D) where D is the kernel of the isogeny E) — E, dual to the Frobe-
nius.

From their effect on pairs (€, P), we can read off the composites of a},’ and
ﬂﬁp with 7:F and 1:\/. ‘We find that

o, oir = (p)p,

ap odly = @
(8.4.1) 5{,:02';- — i

ﬁi;,poiv = jd.

In particular, it follows that iz and iy are closed immersions. Using thesc immer-
sions, we can give a complete description of Yr, in terms of Yy (N )pp. First consider
the non-empty finite set of points on Y (N )e, over which the geometric fiber of
& is a supersingular elliptic curve. These form a closed subscheme of Vi(N )F,
whose complement we denote Yy (N)*. Define Y°¢ similarly and consider the
restrictions i, iy : Y1(N)°"d — Yord . A point Speck — Y° corresponding
to a triple (E,P,C) over k is in the image of ix if and only if C is connected,
and in the image of iy if and only if C is etale. Tt follows that 1% [[i%r¢ is an
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isomorphism. On the other hand, the finite set of points corresponding to super-
singular elliptic curves lie in the intersection of the images of ix and iy, and this
forms the singular locus of Yp,. We conclude that Yp, consists of two irreducible
components, each isomorphic to Y; (N )Fr’ one via iy, the other via 7yy. A more
careful analysis shows that the components cross transversally at the supersingular
points, identifying i o z with iy o @ oz for the points z : Speck — V1 (N) with E.
supersingular.

REMARK 8.4.1. We may also define models for the maps defined in Remark
7.3.2 by the matrices wy of §4 (see [MaWi, §2.5]). For a positive integer N
and an elliptic curve £ over S we can regard the Weil pairing as a morphism
E|N| x5 E[N] = pygs. If §is a Z[1/N]-scheme and P is a point in £(S) of
exact order N, then pairing with P defines a surjective morphism of group schemes
E[N] — py,s whose kernel is C = (P), the subgroup scheme generated by P.
Now let § = SpecZ[1/N, e2"*/N]. Then e2"*/" defines a point of uy(S) and thus
gives rise to a point P’ of (E[N]/C)(S) C &'(S) of exact order N where &£’ is the
elliptic curve £/C. We can then naturally define a model for wy on Y;(N)g by
(€,P) = (&, P).

For a prime p not dividing N, we can define a model w for w, on Y by sending an
isogeny (€£,P) — (£',P’) to its dual isogeny (£',P') — (£,pP). Note the relation
w? = (p) on Y and the relations wr,ir = (p)r,iv and wr, iy = ip in characteristic
p. In particular, w interchanges the two irreducible components of Vg,.

Similarly, for suitable divisors ) of N we can define models for the involutions
wg on the coarse moduli schemes Yy (V). Furthermore, we can define a model for
wy on Y5(Np) which interchanges ir and iy .

8.5. The Eichler-Shimura relation.
PRIMARY REFERENCES:
[Shil, Chapter 7], [Dell, §4] and [DeRa, §VL.6]

Note that our computation of the four composites in (8.4.1) describes the com-
posite of the normalization i = iy [[iy with the modular correspondence T, in
characteristic p:

N(N)e, I (N)r,
l
Yr,
1
Vi(N)r, x V1i(N)F,.
We have
(8.5.1) T, 0i = (2, (p)r,) [1(id, @).

This formula can be viewed as a form of the Eichler-Shimura congruence relation
|Eich|, [Shil, Theorem 7.9] (see also [Dell, §4]), which essentially says that the
correspondence T, in characteristic p is generically the sum of the correspondences
defined by the maps (@, (p)r,) and (id, ®). For a precise statement, again consider
T as a morphism of schemes over Y, (N) via m;. Taking fibers over an ordinary
point x : SpecE; = V1(N)p, = J1(N), we have

DN = Ve
% Speck x i (N).
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The composite agrees with the one obtained from the fiber over z of the morphism
(®, (p)r,) [1(id, ®). Note that the divisor image of the resulting morphism is simply
(8.5.2) 2.(z) + (p)F, 2" ().

The situation for Y(N) for N > 1 is much the same, except that instead of
we use a model J,(Np) for Yo(Np) over Z[1/N] defined as a coarse moduli scheme.
Again Yy (Np)zp/np) = Yo(Np) is smooth over Z[1/Np]. If p does not divide N,
then YV (Np) may not be regular, but Yo(Np)r, can still be described as the union
of two copies of Yo(N) crossing transversally at supersingular points. The FEichler-
Shimura relation takes the same form as in (8.5.1) or (8.5.2), except that (p) is
replaced by the identity. For N = 1, the image of 7p, in

Yo(1)F, x Yo(1)F, = Spec (Fp[j1, ja))
is defined by
(G = 38)GF = 42),
a form of the Eichler-Shimura relation already known to Kronecker.
9. Compactification

We will now explain how to adjoin cusps to compactify the modular curve I'\
and obtain a Riemann surface [Shil, Chapter 1]. Following Deligne and Rapoport
[DeRa] we give the moduli-theoretic interpretation for this compactification in the
case I' = I'g(N) or T'1(N) and discuss the propertics of the resulting canonical
models.

9.1. The cusps.
PRIMARY REFERENCES:
[Shil, §1.3-1.6] and [Miy2, §1.7,1.8,4.2].
Let 5" = HUQU {co} and let I" be a congruence subgroup of SLy(Z). Using
the natural action of GL2(Q) on P'(Q) = QU {cc} defined by
a b m _am+bn
¢c d)n em+dn’
we extend the action of I' on § to one on $H*. We now consider the quotient
T'\$H*. We write Xo(N) for [o(N)\H* and X, (N) for T'; (N)\*. Before defining a
topology on * and making the quotient a Riemann surface, note that SLy(Z) acts
transitively on P!(Q) and in general ['\P!(Q) is finite. The elements of this finite
set, which is the complement of I'\$ in I'\H*, are called the cusps of T\,

EXAMPLE 9.1.1. There is a unique cusp SLy(Z) - co = QU {oo} on Xy(1).
EXAMPLE 9.1.2. Let B denote the subgroup {i( ¥ )} of PSL,(Z/NZ)
and let U denote the subgroup {:I:( o L )} Then the set of cusps of X,(N) is in
bijection with the double coset space
B\PSL»(Z/NZ)/U.
The bijection is defined by
Lo(N) - = = Lo(N) - y(00) = BFU

where v = ( - ) is in SLy(Z) and 7 is the image of 4 in PSLy(Z/NZ). In

particular, Xo(p) has two cusps I'y(p) - 0 and I'y(p) - 0.
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EXAMPLE 9.1.3. Similarly there is a hijection between the set of cusps of
X1(N) and U\PSLy(Z/NZ)/U. Note also that this is in bijection with the set

(9.1.1) {(c,d)| c€ Z/NZ,d € (Z/(c, N)Z)*} /{1}.

Explicitly, the cusp T'; (V) - ¢ corresponds to the pair (c,d) where d is chosen so
that ad = 1 mod (¢, V). The determination of the number of cusps on X, (N) is
then straightforward (see [Miy2, Theorem 4.2.9]); one finds that X;(1) has one
cusp, X;(2) has 2, X;(4) has 3 and that if N # 1, 2 or 4, then the number of cusps
on Xl (N) is

3 3 s(d)o(N/d) = X T1 - 572 + wp (V) = 51y,
2 2

pIN
where the first sum is over positive divisors d of N.

Let us now define a topology on $H*. As a basc of open neighborhoods of §*
we use the open subsets of § (with its usual topology) and the sets

Y({z +iy|y > C} U {c0})

for v € SL2(Z) and 0 < €' € R. Thus § is an open subspace of $* and QU {o0}
is discrete. The quotient space I'\$)* is compact and connected. It is the union
of the open subspace I'\$) and the finite set of cusps. We have already defined
a complex structure on I'\$) and we shall now define a complex structure in a
neighborhood of each cusp. For v € SLy(Z), let A be the positive integer such that

i:( = o ) generates the stabilizer of co in the image of v~ 'T'y in PSLy(Z). The

map ¥(7) — e*™7/%, y(00) + 0 defines a homeomorphism from a neighborhood of
Ty(e0) in I'\$H* to the unit disk in C. The homeomorphism depends only on the
cusp and not on the choice of v and the resulting complex structure is compatible
with the one we have alrcady defined on T\$. We may now regard '\$* as a
Riemann surface.

ExampLE 9.1.4. Recall that ¥(1) is biholomorphic to C via 7 — j (E;). Map-
ping SL2(Z) - 0o to oo extends this to an isomorphism of Xo(1) with the Ricmann
sphere P1(C).

We find also that if I' and I' are congruence subgroups of SL;(Z) and v is an
element of GL3 (Q) such that I' C v~ 'I"y, then 7 — 4(r) for 7 in %* induces a
holomorphic map I'\$* — I'"\$*. The only possible ramification occurs over the
cusps and elliptic points of I\ H*.

Now let T" = SL;(Z) and let y be the identity. The resulting map to SL,(Z)\$H*
may be ramified only over the points SLo(Z)i, SL2(Z)e™/® and SLy(Z) - 0o, which
correspond via j (see Example 9.1.4) to the points 1728, 0 and oo in P!(C). Apply-
ing the Hurwitz formula to this covering of the Riemann sphere yields the formula
[Shil, Prop. 1.40]

for the genus g of I'\f)*. Here 4 is the index of the image of T in PSLy(Z), vo is
the number of cusps and v, (respectively v3) is the number of elliptic points over
7 = 1728 (respectively 7 = 0).
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EXAMPLE 9.1.5. As X(11) has no elliptic points and two cusps, and To(11)
has index 12 in SLj(Z), we see that X,(11) has genus one. We find also that X (11)
has genus one and the cover X;(11) — Xo(11) is cyclic of degree 5, with Galois
group (Z/11Z)* /{=£1}.

ExAMPLE 9.1.6. By the formula of Example 9.1.3 together with the fact that
X (N) has no elliptic points for N > 3, we see that the genus of X; (N) for N > 4
is given by
N2 = N 1 g .
g=1+ o | Ja-5~— - TT—p* +ulm—=p 1
BN pIN
For N < 4 the genus of X;(N) is 0; in fact, this is the case for N < 10. To compute
the genus of Xo(N), see [Shil, Prop. 1.43].

Letting I' = I" = I'y(N) and taking ¥ in Ty(N), we obtain the action of
(Z/NZ)* 2= To(N)/T1(N) on X1(N) extending the one on Y;(N). The quotient
of Xi(N) by this action is naturally identified with X,(N). Note also that the
degeneracy maps Yo(M) — Yo(N) defined by v = 14 (see §7.3) for divisors d of
M/N extend to maps Xq(M) — Xo(N). In particular for M = Np we denote the
extensions of @ and /3 by the same symbols and a3 gives rise to a correspondence
on Xo(N) which we again denote 7},. Similarly using " = T';(N) and I' = ry(N)N
I'o(Np) we define the modular correspondence 7, on X;(N).

9.2. Generalized elliptic curves.
PRIMARY REFERENCES:
[DeRa, Chapter 1I] and [Deld].

Our next task is to explain the modular interpretation of the cusps as general-
ized elliptic curves. This interpretation was introduced by Deligne and Rapoport
[DeRa] in their construction of smooth, proper models over Z[1/N] for Xy(N) and
X1(N).

To motivate the definition of a generalized elliptic curve, let us first recall that
we identify the point SLa(Z)7 of Yy(1) with the elliptic curve E, = C/(Z © Zr)
(up to isomorphism). Observe that as a complex Lie group, E. is isomorphic to
C* /{e*™"7} via the exponential map z — €72, Morcover if 7 = z+iy with y > 0,
then an equation for the curve E, over C is obtained by substituting g = €277 in
the power series that appear in the definition of the Tate curve (Example 8.1.3).
This provides the following intuitive description of the behavior of E., as SLy(Z)7
tends to the cusp SLy(Z) - 0o; the real number y tends to oo, g tends to 0 and the
equation for E. degenerates to

(9.2.1) Y24 XV =5

So the modular interpretation of the cusp of X(1) should be provided by the
“degenerate elliptic curve” C, the projective variety over C defined by (9.2.1).
Note that the only singularity of C is the ordinary double point X = Y = 0.
Writing C™ for the smooth locus of C, we can define an “addition” morphism + :
C™& x C' — C by substituting ¢ = 0 in the group law for the Tate curve. Moreover
the isomorphism Gp, = SpecC[Z,Z7'] — C™& defined by X — Z(Z — 1) 2,
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Y — Z(Z — 1)7* extends to a normalization P! — G and the diagram
GumxP! — P!

4 1
Ce xC — C

commutes, where the upper arrow is given by the natural action of G,, on P!,
The pair (C, +) we have just described is called the Néron 1-gon over C. To
interpret the cusps of other modular curves, we shall need to consider Néron poly-
gons [DeRa, §I1.1]. We define the Néron N-gon (Cn,+) over an algebraically
closed field k as follows. The scheme Cy over k has N irreducible components,
each isomorphic to the projective line P!, and N ordinary double points. To com-
plete the characterization of Cy up to isomorphism, we index the components with
elements of Z/NZ and require the normalization r : icz/nzP' — Cy to send
(00)i and (0);4; to the same point for each i. Thus r restricts to an isomorphism
HieZ/NZ Gm — O, and the dual graph of Cy is an N-gon. We let + be the
morphism Cy* x Cy — Oy characterized by the commutativity of the diagram

Iicz/nz Gm x HiEZ/NZ Pl icz/nz P!
l d

Cﬁg x Cn = Chn,
where the vertical arrows are given by r and the top arrow is defined by

((Z)il (y)j) L (Iy)ﬂ»]
on closed points. In particular, + extends the addition on the group scheme Cy* =
Gm x Z/NZ to an action of Ciy® on Cly, and the induced action on the dual graph
is via rotations.

We are now ready Lo generalize the notion of an elliptic curve so as to include
schemes whose geometric fibers are clliptic curves or Néron polygons. A generalized
elliptic curve ([DeRa, 11.1.4]) over S is a pair (E, +) where E is a scheme of curves
over § and + is an S-morphism E*€ x g E — E. We require that + makes E&
a commutative group scheme over S acting on E and that the geometric fibers of
(E,+) are elliptic curves or Néron polygons. Two elementary observations are that
a generalized elliptic curve over S is smooth if and only if it is an elliptic curve and
that a generalized elliptic curve over an algebraically closed field is either an elliptic
curve or a Néron polygon. The key example is the following (see [DeRa, Chapter
VII] and [Del4, §7]:

EXAMPLE 9.2.1. Define the Tate curve E, as in Example 8.1.3, but working
over S = Spec (Z[[g]]) rather than Spec(Z((g))). Then E°8 is the complement of
the closed subscheme defined by X = ¥ = g = 0. The group law on the elliptic
curve E, x sSpec (Z((g))) extends to a morphism + : E® xsEy — E, making %
& commutative group scheme acting on F,. Suppose that s : Z[[q]] — k defines a
geometric point of S. If s(q) = 0, then (E, &, +4) is isomorphic to the Néron 1-gon
over k. On the other hand if s(q) # 0, then E, . is an elliptic curve. In particular
if k = C and s(g) = €™ with 7 = 2 + iy and y > 0, then this elliptic curve is
isomorphic to C* /{e*""7} = E_,

9.3. Canonical models revisited.
PRIMARY REFERENCES:
[DeRa] and [KaMa, Chapter 8].
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We can now regard the Riemann surface X;(N) as a moduli space. Its points
are naturally in bijection with the isomorphism classes of pairs (E, P) where E is a
generalized elliptic curve over C and P is a point of E™2 of order N such that the
subgroup generated by P meets every component. Indeed we shall now complement
the bijection defined in §7.2 by a natural one-to-one correspondence between the
set of cusps of X (N) and the set of isomorphism classes of pairs (E, P) where E is
a Néron polygon. To a pair of integers (¢, d) we associate the pair (E, P) where E is
the N/(c, N)-gon over C and P is the point (ez"i“/N)c/(csN). The group generated
by P meets cvery component, and if d is relatively prime to (¢, N), then P has order
N. The image of the pair (c,d) in (9.1.1) determines (E, P) up to isomorphism,
and the resulting map from the set of cusps is the desired bijection.

To define canonical models for the curves X;(N), we proceed as we did for
Y1(N) in §8.2, but using generalized elliptic curves. More precisely, for a Z[1/N]-
scheme § we define G;(V)(S) to be the set of isomorphism classes of pairs (£, P)
where £ is a generalized elliptic curve and P is a section § — £7°€ of exact order N.
We further require that for all geometric points s : Speck — S, the image of the
resulting immersion (Z/NZ); < & meets every component [DeRa, IV.4.14].
By the results of Deligne and Rapoport [DeRa, Chapter IV] (see [Gross, Propo-
sition 2.1]), if N > 4, then Gi(N) is representable by a smooth curve X, (N) over
SpecZ[1/N]

The bijection X, (N) — &;(N)(C) we defined above is holomorphic and we now
have a smooth, proper model for X1(N) over Z[1/N]. One can define an analogous
functor Go(XV) and a smooth, proper model for Xqo(N) over Z[1/N] is provided by
a scheme Xy(N) which can be interpreted as a coarse moduli scheme. (This is
also the case for X;(N) = X(N) for N < 4.) We also have a natural action of
(Z/NZ)* on X1(N) and Xy(N) can be identified with the quotient scheme. There
is a tautological natural transformation F;(N) — G;(N) which identifies J; (V)
with an open subscheme of X (W), and similarly Y5(N) can be identified with an
open subscheme of Xy (). '

EXAMPLE 9.3.1. The isomorphism Y5(1) £ A} = Spec (Z[j]) in §8 extends to
an isomorphism Ap(1) & P}. The resulting bijection Gy(N)(k) — P1(k) for an
algebraically closed field k sends an elliptic curve to its j-invariant and the 1-gon
to oco.

EXAMPLE 9.3.2. The curve &(11)q is of genus one (see Example 9.1.5) and
has a rational point, the cusp at co for instance. Therefore Xy(11)q can be given
the structure of an elliptic curve over Q. It is known to be isomorphic over Q to
the curve £q where £ is the elliptic curve of Example 8.1.1 (see the tables of [Ant4]
for example).

By [DeRa, §VIL2| (see also [MaWi, §2.10]), a formal neighborhood of the
complement of F4(N) in Gy(N), or Fi(N) in G;(N), can be described using Tate
curves.

EXAMPLE 9.3.3. The Tate curve E, of Example 9.2.1 is a generalized elliptic
curve over Z[[g]]. It therefore defines an element of Gy(1)(Z[[g]]) and thus gives rise
to a morphism

¢ : Spec Z[[q]] — SpecZ[j '] — Ay(1).
The morphism can be made explicit by writing j~! as a formal power series in
q. The complement of Yo(1) in Ap(1) is defined by j~' = 0 and is the image
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of the immersion SpecZ — A;(1) defined by the reduction mod g of the Tate
curve (which can be considered a Néron 1-gon over Z). Moreover ¢ induces an
isomorphism between the formal scheme Spf Z[[g]] and the completion of Ao(1)
along the complement of Yy (1).

EXAMPLE 9.3.4. The two cusps, I'y(p)-co and I'y(p)-0, of X, () = X(p)(C) =
Go(p)(C) are given by the pairs (C, D) and (C’, D') respectively, where C is the
1-gon over C and D is the image of 1, — Gy, = C™8, and €' is the p-gon over
C and D' is any subgroup of C"™& of order p which meets every component. Let
€ be the Tate curve £, 5 over § = Z[1/p][[q]]. Then £ has a subgroup scheme
D canonically isomorphic to #,- The pair (€, D) defines a morphism ¢ : Spec.S —
Ao(p) and the cusp ['y(p) - co corresponds to the complex point of Xy(p) given by
g+~ 0. The Tate curve over Z[1/p]((q'/?)) extends to a generalized elliptic curve &’
over §' = Z[1/p][[g"/?]] whose geometric fibers are clliptic curves or p-gons [DeRa,
§VIL1]. (There is a map £ — £, s which is an isomorphism over Z[1/p]((g*/?)) but
contracts those components of the singular geometric fibers of £ which do not meet
the unit section.) Furthermore, £ has a finite flat subgroup scheme D’ of degree
p which meets every component. The pair (€', D’) defines ¢’ : Spec §’ — Xo(p) and
mapping q to 0 yields the complex point corresponding to I'y(p) -0. The completion
of Xy(p) along the complement of Y(p) is isomorphic to Spf STISpf S'. A similar
construction, but involving more cusps, describes a formal neighborhood of the
complement of Yy(N) in Ay (N) for composite N.

EXAMPLE 9.3.5. Note that the cusp I',(N) - 0o of X (N) = X (N)(C) is usu-
ally not defined over Q, as it corresponds to C; together with a generating section
of py C Gy = O7°®. Rather the closure in X;(N) of the image of this complex
point is isomorphic to Spec Z[1/N, e*™/V 4 ¢=27i/N] Moreover a formal neighbor-
hood of this closed subscheme can be described as in Example 9.3.4 but now using
the Tate curve over Z[1/N, e*™/N][[q]] (see §12.3). Tn fact, one can give an explicit
description of the completion of X; () along the complement of ); (N) as a disjoint
union of formal spectra of power series rings in one variable over etale extensions
of Z[1/N].

VARIANT 9.3.6. Recall that the alternate convention of Variant 8.2.2 provides
a model Y, (N) for ¥1(N) over Z. Using immersions (ly)s — E™F instead of
sections § — £7°8, onc obtains a model X, (N) over Z for X1(N) (assuming N > 4).
Then &),(N) contains Y, () as an open subscheme and the cusp I'; (N)-00 is defined
over Q with respect to this model. This convention will be more convenient for
discussing the g-expansion principle in §12.3.

Although &), (N) is not proper, we have the following [Katz2, §I1.2.5].

THEOREM 9.3.7. The scheme X,,(N) is smooth over Z with geometrically ir-
reducible fibers, and Xu(N)zi/n) is proper over Z[1/N].

We can proceed as in §8.3-§8.5, but now using proper models for the compact-
ified modular curves (see [DeRa, §V.1]). Suppose p is a prime not dividing N and
assume that N > 4. Let I' = T';(N) N To(p) and let X = I'\H*. We first define a
proper model X for X over Z[1/N] which parametrizes triples (£, P, D) where now
£ is a generalized elliptic curve over S and for each geometric point Speck — § the
image of the fiber (Z/NZ);, x Dy — £;° meets every component. We then define
models as in §8.3 for the degeneracy maps o, 3 : X — X, (N) and consequently the
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modular correspondence Ty : X — X;(N) x X 1(N). We remark only on a slight
complication in the case of a. The pair (£,pP) does not necessarily satisfy the
condition on the geometric fibers (Z/NZ);, — £;°*. There is however a generalized
elliptic curve £ over S and a morphlsm 7 : & — € which induces on geometric
fibers an isomorphism Gy, — £ where Gy, is the open subgroup scheme of &,
consisting of the components which meet the image of (Z/NZ),. (Thus those wluch
do not are contracted to points on the singular locus. See [DeRa, §IV.1] and Ex-
ample 9.3.4 above.) We define a model for o using (£, pr o P) where (£, P, D) is
the universal triple over X.
We can analyze Af, just as we did Yr, in §8.4. The definition of

ip: X1 (N)p, — AF,

is essenmally as in §8.4, but slightly more care is required to define i,. In particular,
g ") must be replaced by a generalized elliptic curve (&, % )) so that the number of
components on each singular fiber is divisible by p. (Sce Example 9.3.4.) We
then obtain (8.4.1), but now for endomorphisms of X1 (N)p,. We find that X is
regular and that A, has two irreducible components, each isomorphic to X; (Mg,
crossing transversally at points where the geometric fiber of & is a supersmgular
elliptic curve. Thus the map

(9.3.1) ipHiv :Xl(N)F?HX1(N)FP ”"’XFP
identifies X3 (N)r, [ A1(N)r, with the normalization of Xp,, which we denote
A, )™

A consequence of this description is the formula [DeRa, VI (6.11.2)]
(9.3.2) g =29+s5—1

where ¢’ is the genus of X, g is the genus of X; (V) and s is the number of super-
singular points (E, P) in X;(N)(F,). Combined with the Hurwitz formula (recall
we assume NN > 4 so there are no elliptic elements), this yields

5= (o~ DIPSLa(Z) : Ty (N)].
Note also that the Eichler-Shimura relation, (8.5.1) or (8.5.2), remains valid for the
correspondence X, — X1 (N)g, x X, (N)e,.
One finds a similar description in terms of X5(N) for a coarse moduli scheme
X3(Np) which is a proper model for Xo(Np) over Z[1/N] (see [DeRa, §VL.6]). In
particular Xg(Np)g, can be described in terms of Xy(p)r, and the Eichler-Shimura
relation holds. (The only changes are that &X}(Np) is not necessarily regular and
the formula for the number of supersingular points is slightly more complicated.) In
particular, X} (p)p, has two irreducible components, each isomorphic to Xp(1 )E, =
P}?a. A formal neighborhood of the complement of Y;(p) in X(p) is described
exactly as in Example 9.3.4. Note that there is a “cuspidal section” in X}(p)(Z)
whose image in A (p)(C) = Xo(p) is [o(p) - co (respectively, Ty(p) - 0) and whose
image in Xj(p)(F,) factors through iy (respectively, iy/).
Finally, we remark that the models for the various w-operators defined in Re-
mark 8.4.1 can be extended to the proper models considered above.
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10. Jacobians of modular curves

In this section we will examine the Jacobians of modular curves, their reduction
modulo primes, and the endomorphisms induced by Hecke operators.

10.1. Abelian varieties and Jacobians.
PRIMARY REFERENCES:
[Mum1], [Rosen|, [Mil2], [Mil3] and [BLRa, Chapters 8,9].

We now review some generalities concerning abelian varieties and Jacobians of
algebraic curves.

We first recall that an abelian variety A over an algebraically closed field & is a
proper group variety over k. It is necessarily smooth, projective and commutative
[Mil2, §1,2]. One can consider more generally abelian schemes, or families of
abelian varieties, over an arbitrary base scheme S. An abelian scheme over S is
a smooth proper group scheme over S whose geometric fibers are abelian varieties
[Mil2, §20].

If kK =C and A is a g-dimensional abelian variety, then the complex manifold
A(C) is isomorphic to a complex torus V/L where V is a g-dimensional vector space
and L is a discrete subgroup of rank 2g [Rosen, §1]. An arbitrary complex torus
V/L can be identified with the set of complex points of an abelian variety over C
if and only if V/L possesses a non-degeneratc Ricmann form [Rosen, §3], i.e., a
positive definite Hermitian form on V whose imaginary part is integer valued on L.
In this case, the same is true for the complex torus V*/L* where V* C Homg (V, C)
is the space of conjugate linear functions on V' (i.e., additive functions ¢ satisfying
é(z2v) = Z(v) for all z € C, v € V), and L* = {¢p € V*|¢(L) C R+iZ}. If A
and A* are abelian varieties satisfying A(C) = V/L and A*(C) 2 V*/L*, then A*
is called the dual abelian variety of A [Rosen, §4]. Note that A is isomorphic to
(A%

Now let C' be a Riemann surface and let W denote the complex vector space
of holomorphic differentials on C. Consider the complex torus V/L where V =
Hom(W, C) and L is the image of the map H:(C,Z) — Hom(W,C) defined by
integration. Note that the cotangent space of V/L at the origin may be naturally
identified with W. The intersection pairing on H;(C,Z) can be uscd to define a
nondegenerate Riemann form on V/L, and the resulting abelian variety J is called
the Jacobian of C' [Mil3, §2]. Moreover this Riemann form gives rise to a canonical
isomorphism J = J*.

Another interpretation of the Jacobian of C is provided by the Picard functor
Pic? (see [Mil3, §1]). Let Div'(C) denote the group of divisors on C of degree
zero, and let Pic’(C) denote Div?(C) modulo the group of principal divisors. In-
tegration then defines a natural map Div®(C) — V/L which, according to the
Abel-Jacobi theorem, induces a natural isomorphism of groups Pic®(C) = J(C).
Now choose a base-point P in C' and define a mapping C' — Pic®(C) by sending
Q to the divisor @ — P. The resulting map C — V/L is analytic and induces an
isomorphism H°(J(C),Q') — H°(C,Q') = W which is independent of the base-
point. Moreover the isomorphism is compatible with the natural identification of
W with the cotangent space of J(C) = V/L at the origin.

To describe the Jacobian of a curve over any field, or indeed an arbitrary
base scheme S, we use the Picard functor [Mil3, §8], [BLRa, Chapter 8]. For a
morphism of schemes s : X — S, Grothendieck [Grol] defines a relative Picard
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functor Pic x/g on S-schemes by “sheafifying” the functor which sends T to the
group of isomorphism classes of invertible sheaves on X; = X xg T. Under quite
general hypotheses (see Chapters 8 and 9 of [BLRa]) this contravariant functor
is represented by a group scheme over S, and we denote its identity component
Pic% ss- The definition is functorial in X, so that a morphism Y — X of S-
schemes gives rise to a natural transformation Pic /s — Picy,s and consequently a
morphism Pic% g — Pic 2,/ 5- We remark also that formation of Pic% /5 commutes
with base change, meaning that Pic ?X-r) 7 is naturally isomorphic to Pic % 15 xsT.

If X — § is a relative curve, meaning that it is smooth and proper and its
geometric fibers are curves, then Pic% /s 1s an abelian scheme which we denote
Jx/s and call the Jacobian of X (over S), [BLRa, §9.2]. If also § = Speck for
an algebraically closed field k, then Pic x/5(S) may be identified with the group
of invertible sheaves on X, or equivalently, with Div (X) modulo the group of
principal divisors. Then Pic ”X/S(S) may be identified with Pic?(X), the group
Div°(X) modulo the group of principal divisors. Moreover if k — C, then the
isomorphism V/L = J(C) = Jx,c(C) is analytic, so our two descriptions of the
Jacobian in this case are equivalent.

The relative Picard functor also provides a general construction of the dual of
an abelian scheme. If A is an abelian scheme over S, then Pic 4 /s is Tepresentable
by a scheme, and Pic% /s is an abelian scheme, [BLRa, §8.4, Theorem 5|, [FaCh,
L1]. We write A* for Pic% /s and call it the dual abelian scheme of A. Again there is
a natural isomorphism A = (A*)*. For a relative curve X over S there is a general
construction of a “©-divisor” on Jx/s which gives rise to an isomorphism ¢ X/8
of Jx;s with Jy 150 [BLRa, §9.4]. The constructions of the dual abelian scheme,
its biduality and the autoduality of the Jacobian are compatible with base-change.
They are also compatible with the descriptions given above in the case S = Spec C.

A morphism 7 : ¥ — X of relative curves over S induces by Picard functo-
riality a homomorphism of abelian schemes 7* : Jx/s — Jyss. We obtain also
a homomorphism 7., : Jy/s — Jxs defined by the composite ¢W13 o (m*)*dx/s
where (7*)* . J3 s = Jx /s Is again defined by Picard functoriality. We thus have
two functors from the category of relative curves over S to the category of abelian
schemes over S; the contravariant Picard functor Pic® defined by Pic 0(X )=Jx/s
and Pic’(m) = n*, and the covariant Albanese functor Alb defined by Alb (X) =
Jx;s and Alb (7)) = m,, [Mil3, §6]. If S = Speck for an algebraically closed field
k, then 7* on Jx/g(S) is induced by the map Div (X) — Div(Y) defined by pull-
back of divisors; a point x € X(5) is sent t0 X e.-1(s)€y/2y Where €y/z is the
ramification degree. On the other hand, =, on .Jy,5(S) is induced by the map
Div(Y) — Div(X) which sends y € Y(S5) to m(y). Note that =, o 7 is simply
multiplication by the degree of .

There is in general a natural isomorphism of 5.0} /5 With the cotangent sheaf
i“ﬂb}us/s along the zero section i : § — Jx;g5. For S = Speck, this can be
viewed as an isomorphism H°(X, 2} ,4) 2 Coto(Jx,s) (see [Mil3, Proposition
2.2]). Consider now the maps induced by 7* and 7, on the cotangent spaces at
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zero of the Jacobians. We get a commutative diagram
HOOX, 0% ) — HOY,0))5)

Coto(Jxss) — Coto(Jyys)
where the upper arrow is obtained by Serre duality from the natural map
H'(Y,0y) — H'(X,0x)

and the lower arrow is induced by 7*. The description of the map induced by . on
cotangent spaces is even simpler, for it is given by pull-back of differentials Wy =
HO(X,9%,s) — Wy = H(Y,Qj, ;). For k = C, the isomorphism H(X, Q% o)
Coto(Jx/s) is simply the identification of W with the cotangent space at zero of
V/L. We find also that the map . is given on complex tori by Vy /Ly — Vx/Lx
where Vy — Vix is dual to the natural pull-back Wx — Wy and Ly — Lx is
defined by H,(Y(C),Z) — H,(X(C),Z).

10.2. Models for Jacobians.
PRIMARY REFERENCES:
[Shil, Chapter 7], [MaWi, §2.1,2.5], [BLRa, Chapter 1] and [Ray3].

Let us consider the Jacobian of the curve Xy(N), denoted Jy(N). The mod-
ular correspondence T, regarded as an endomorphism of Div (X((N)) induces an
endomorphism of Jy(N), which we also denote T),. We have that 7, = a, o §*
where o and 3 are the degeneracy maps Xo(Np) — Xo(N) defined in §9.1 (see e.g.
[MaWi, §2.5]). Since the curve X,(N) is defined over Q, so is the abelian variety
Jo(N). Moreover, since o and 3 are defined over Q, so is T,. More generally we can
define endomorphisms T,, of Jy(N) and of J;(N), the Jacobian of X1(N). These
are defined over Q as is the action of (Z/NZ)* on J;(N) defined by the operators
(d) -

REMARK 10.2.1. Some authors, for example Ribet [Rib4], use T}, to denote
the endomorphism f, o a*, which we shall call T;;. More generally, we can consider
endomorphisms 177 of Jo(N) and Ji(NN). For n relatively prime to N, these are
related by T7: = (n)*T}, on J;1(N) and Tt = T}, on Jo(N) coincide.

REMARK 10.2.2. The Atkin-Lehner involutions wg give rise to involutions
wg,« of Jo(N) defined over Q. Similarly, for p not dividing N, the endomorphism
Wy, of the Jacobian of 'y (N, p)\$H* is defined over Q and satisfies w} , = (p),. The
involution wy,, of Ji(IV) is defined over Q(e2"/") and satisfies wy ,Thwy . =
T for all positive integers n. Thus wy , intertwines the operators defined us-
ing our conventions and those mentioned in Remark 10.2.1. We find also that
wi «{d)swn « = (d)* for all d relatively prime to N.

As we did for the modular curves, we would like to construct “good” integral
models for their Jacobians and study their reduction modulo primes. We will then
examine the effect of the Hecke operators. To begin, recall that we have defined
a model for Xo(N) over Z[1/N]. It is obtained from the relative curve X,(N)
over Z[1/N| which is a coarse moduli scheme parametrizing pairs (£,C) where £
is a generalized elliptic curve and C is a “cyclic subgroup scheme” of order N. Its
Jacobian Jx,(n)/z1/n = Pic ?YD(N)/Z[I/N] is an abelian scheme which can be viewed
as a model for Jy(V) using the isomorphism of Jx,(n)/z(1/n) X C with Jo(N). Now
consider a geometric fiber Jx,(n)/z1/n) X k where k is an algebraic closure of Q or
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of F, where ¢ is a prime not dividing N. The group of closed points of this abelian
variety is naturally isomorphic to Pic®(X,(N)y).

To obtain a model for the endomorphism T}, using the Picard functor, let us
first work over Z[1/Np|. For then we can consider the two natural degeneracy maps
o, 3"+ Xo(Np) — Ao(N)zj1/np of relative curves over Z[1/Np]. The endomor-
phism 7] = o, o (8')* of Jx,(n)/z{1/n % Z[1/Np] is in an obvious sense a model for
T}, For a prime ¢ not dividing Np, (7,))r, is given by the composite (aF,)-o(Bg,)*
We can also describe the effect of 7, on Jx,(ny/zj1/n (k) = Pic° (X, (N)}) for al-
gebraically closed k of characteristic not dividing Np. It is gotten from the endo-
morphism of Div (Xp(N),) which sends (E, C) to the divisor 3 (E/D, (C+ D)/D)
where the sum is over cyclic subgroups D of E where D has order p and is not
contained in C. The formula assumes that E is an elliptic curve, but it extends in
a natural way to Néron polygons.

We would next like to extend 7, to an endomorphism of Jx,(ny/z;1/n) and
describe its reduction modulo p for a prime p not dividing N. More care is needed
in this case since X(/Np) does not have a smooth and proper model over Z[1/N];
the resulting description will be another manifestation of the Eichler-Shimura con-
gruence relation.

We shall use the theory of Néron models for abelian varieties and begin by
recalling some of the facts we need; see [BLRa, Chapter 1] or [Artin, §1]. Let R
be a Dedekind domain and K its field of fractions. A smooth scheme .4 over R
is said to have the Néron mapping property if for each smooth scheme B over R,
the natural map Hompg(B,.4) — Homg (Bxk, Ak) is a bijection. If A is an abelian
scheme over K, then a smooth scheme A over R is called a Néron model for A
if A has the Néron mapping property and there is an isomorphism ¢ : Ax — A.
The existence of such a model for A follows from the work of Néron. One checks
formally that the pair (A, ¢) is unique up to canonical isomorphism, and also that
A naturally inherits the structure of a commutative group scheme over R. If A
is also proper over R, then A is an abelian scheme over R. Furthermore it is a
consequence of a theorem of Weil that an abelian scheme over R has the Néron
mapping property, so it is necessarily the Néron model of its generic fiber [BLRa,
§1.2, Proposition 8].

EXAMPLE 10.2.3. Viewing Ap(11)q as an elliptic curve over Q (see Example
9.3.2), we see that its Néron model over Z[1/11] is Xy(11), the elliptic curve of
Example 8.1.1.

If A is an elliptic curve, then the possible types of reduction A xz R/m of a
Néron model A at a maximal ideal m of R are classified by Néron [Neron]; see
also [Sil2, §IV.8] and [BLRa, §1.5].

ExampLE 10.2.4. For an example of a Néron model which is not an abelian
scheme, let R = C|[g]] and consider B, r = E, x sSpec R where F, is the Tate curve
over S = Spec Z[[q]] (Example 9.2.1). Then the smooth commutative group scheme
A = E°} turns out to be the Néron model for its generic fiber Ax = E, i where
K = C((g)). Recall from §9.2 that Ag/,p is isomorphic to G, over R/gR = C.

Although the formation of a Néron model does not commute with arbitrary
base change, it does commute with etale base change, as well as localization and
completion at a maximal ideal of R [BLRa, §7.2]. In particular, if A is a Néron
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model over Z for an abelian variety A over Q, then Az s is a Néron model over

Z[1/M] for A, and Az, is a Néron model over Z, for Aq,.

ExaMPLE 10.2.5. For an example of the failure to commute with base change,
let R’ = SpecC[[g'/?]] and K’ = Spec C((¢'/?)) and consider E, x» = Eq x Xz K'.
By Hensel's lemma or the general theory of the Tate curve, we find that E, y (K”)
has a point of order 2 with coordinates (z,y) satisfying z = y = 0 mod ¢*/2R’. As
these points do not extend to elements of A(R’) (with A as in Example 10.2.4), we
see that Ap: = Ax rR' cannot be the Néron model of E, i over R'. Rather, in this
case, the Néron model A’ can be constructed by gluing two copies of Ag: along the
automorphism of its generic fiber defined by translation by this point of order 2. The
cxample also illustrates that the fibers of the Néron model need not be connected,
for A’ X g (R'/q'/?R') is isomorphic to the product of G, with the constant group
scheme of order 2. More generally, let R’ = k[[¢'/?]] and K' = k((¢'/*)) for a field
k and a prime p and consider the generalized elliptic curve £ over R’ defined as in
Example 9.3.4. Then A" = (£’)™¢ is the Néron model of its generic fiber E, - and
its reduction mod ¢'/? is isomorphic to Gm x Z/pZ.

ExAMPLE 10.2.6. Consider J = Jy,(27)q/q Which is an elliptic curve over Q
with conductor 27. Its minimal Weierstrass equation Y? + Y = X3 — 7 produces
a scheme 7 over Z such that 72[1 /3 an elliptic curve over Z[1/3], but Jr, is not
smooth. The smooth locus of 7 is the identity component J° of the Néron model
J, which is obtained by gluing three copies of J° along translations of Jzj1/5]
by a point of order 3. We find that Jg, is isomorphic to the product of G, with
the constant group scheme of order 3. On the other hand, J' = J; extends to an
elliptic curve J' over @ where L is the Galois extension of Q gotten by adjoining
the coordinates of all points of J of order 4. Therefore J' is the Néron model of
J" over @, so unlike Example 10.2.5, even formation of the identity component of
the Néron model does not commute with base change.

Now let us return to the case of Jy(IV) or, to be more precise, its model
Jxp(N)q/Q Over Q. We let Jp(N) denote its Néron model over Z. Then T}, ex-
tends uniquely to an endomorphism 7, of the Néron model. As Jx,(ny/zp/n) 18
an abelian scheme, it is naturally isomorphic to the Néron model Jy(N)z(1/n| over
Z[1/N]. Moreover the endomorphism we have denoted 7, is simply 7, z[1/ny], SO
we have already described 7;, g, for primes g not dividing Np. Using for example
the compatibility criterion in [MaWi, Section 2.1] we find that the description ex-
tends to 7, F, on Pic 9(Xy(N)x) where k is an algebraic closure of F, and p does not
divide N. Namely it is given by the endomorphism of Div (Ay(N),) which sends
the pair (E,C) over k to
¢ (E/Dy,(C+ Dg)/Dg) +p-(E/Dy,(C+ D,)/D,) if E is ordinary, Dy is the
connected subgroup scheme of E[p] and D is the etale subgroup scheme of
Elpl;

. (p@l) -(E/D,(C+D)/D) if E is supersingular and D is the unique subgroup
scheme of order p.

(Again this assumes that E is an elliptic curve, but the description in the ordinary
case can be extended to Néron polygons.) We thus find that

(10.2.1) Top, = B + &
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where @ is the Frobenius endomorphism of the curve X3(N )F,. This is the Eichler-
Shimura congruence relation (see §8.5) on the Jacobian of Ap(N )F,; it can also be
written as

(10.2.2) Tp.F, = Frob + Ver

where Frob is the Frobenius endomorphism of J,(N) F, and Ver is the Verschiebung
endomorphism.

The situation is quite similar on the Jacobian J;(INV) of X;(N). We can again
consider the Néron model J;(N) over Z of J. #:(N)q/q and define Hecke operators
T,- Then J1(N)gj1/n) can be identified with the Jacobian of X;(N) over Z[1/N]
and 7, z(1/ny can be described as a composite o, o (8')* where o' and 3’ are
degeneracy maps from the curve Xz(1/np)- Recall from §9.3 that X is a model over
Z[1/N] for the modular curve associated to the group I'y(N,p) = T';(N) N Ty(p).
This gives a description of 7, z1 /5 on divisors as (E, P) — > p(E/D, P mod D)
which takes the form

(10.2.3) %,Fp =9, + (p)pw.‘b* = Frob + (p)F,“,.Ver
in characteristic p if p does not divide N.

REMARK 10.2.7. As noted in Remark 10.2.1, some authors use 17 in terms of
which (10.2.3) becomes

Tyr, = ®* + (p)§, B. = Ver + (p)j, Frob.

VARIANT 10.2.8. Recall from Variant 9.3.6 the aliernate model X, (N) for
X1(N). Then Jy, (n)q/q is a model over Q for J;(N) and we let Ju(N) denote
its Néron model over Z. Then T, is defined over Q and we again write 7, for its
extension to J,(N). In this context the Eichler-Shimura relation is

%»Fp =" 1 (p)Fpr*Q* i F:Fn =2+ (IJ);‘P(P’

10.3. Bad reduction of Jacobians.
PRIMARY REFERENCES:
[Rib4, §2,3], [BLRa, Chapters 7,9] and [DeRa, Chapter V).

Now let us briefly discuss the structure of Jacobians of modular curves in some
situations of bad reduction.

We first recall how some of the terminology used to describe the reduction of
elliptic curves extends to the setting of abelian varieties [BLRa, §7.4]. If m is a
maximal ideal of R, A is a Néron model over R and Ap /m is an abelian scheme,
then A = Ay is said to have good reduction at m. If the identity component of
Ap/m is a torus, meaning that it is isomorphic over the algebraic closure of R/m
to a product of copies of G, then A is said to have multiplicative reduction at
m. For example, the Tate curve over k((¢*/?)) (Example 10.2.5) has multiplicative
reduction at the prime ¢'/?k[[g]] of k[[g]]. On the other hand, J = Jxy2m)0/Q
(Example 10.2.6) has neither good nor multiplicative reduction at m = 3Z; it is
said to have potentially good reduction at m since J' = Jy has good reduction at
the primes lying over m in the integral closure of R in a finite Galois extension L
of K.

Assume now that N > 4 and that p is a prime not dividing N. Recall from §9.3
that the model &' for X = 'y (N, p)\H" is not smooth over Z[1/N] but it is regular
and the irreducible components of Ay, are smooth. The Néron model 7 over Z
of Jxq/q is naturally a model for the Jacobian of X and we can apply results of
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Raynaud [Ray2] (see [BLRa, §9.5] and [Rib4, §2,3]) to describe Jz, using the

Picard functor. Raynaud proves that in such a situation the identity component of

Jz,, is naturally isomorphic to Pic ?Yz /2, the identity component of the algebraic
P

space which represents Pic Xy, /2, Thus J,_.Qp is isomorphic to Pic ‘)Yr /F,» Which
r
maps by Picard functoriality to the abelian scheme Pic ?XF )~ /F,» Where A, is the
P
normalization of Ar,. In fact there is an exact sequence of smooth group schemes
over F,,

(10.3.1) 1-T—J8 +B—1

where BB = Pic ?Xr,,)* JF, and 7 is a torus which can be described explicitly in terms
of the singularities of A,. Using the description of (A, )™ provided by (9.3.1), we
see that B is isomorphic to two copies of J3(N)g,. The dimension of the torus T
is s — 1 where s is the number of supersingular points on &1 (N)r, (see 9.3.2). We
mention also that the component group Jr, / JFUP can be computed as in [Rib4, §2]
using a Picard-Lefschetz formula [Gro2, Exp.IX, §12] (see also [Edil] and [BLRa,
§9.6]).

Suppose that G is a smooth commutative group scheme over a field k and that
there is an exact sequence 1 — T'— G — B — | where B is an abelian scheme
and T is a torus. Then G is uniquely such an extension and is called a semiabelian
scheme ([BLRa, §7.4]). Thus (10.3.1) shows that Jg is a semiabelian scheme
and we say that Jq has semiabelian (or semistable) reduction at p. The situation
for Jo(Np)g, with p not dividing N is quite similar to that for Jr,, but slightly
complicated by the fact that Jy(Np) may not be regular. One still finds that
Jo(Np)q has semiabelian reduction at p, now with B isomorphic to two copies of
Jo(N)r, and T described by the supersingular points of Xo(N)g,. For more details
in this case we refer to [Rib4, §3] and D. Prasad’s article in this volume.

It is a general fact that an abclian scheme A over K, the field of fractions
of a Dedekind ring R, has “potentially semiabelian reduction” at all primes in R
[BLRa, §7.4]. This means that there is a finite Galois extension K’ of K such
that A has semiabelian reduction at all primes in the integral closure of R in
K'. Consider for example .71 (Np)q with p not dividing N. This does not usually
have semiabelian reduction at p, but it follows from the properties of the model
for X1(Np) constructed by Deligne and Rapoport that Ji(Np)q(c,) has semia-
belian reduction at the prime over p, where (, is a primitive pth root of unity.
In fact, the results of [DeRa, §V.3] provide the following natural description of
J = Jx(vpq/@ = J1(Np)q (which is valid without the hypothesis NV > 4).

THEOREM 10.3.1. Let m be the natural projection X,(Np)q — Xq and con-
sider the filtration
0Cc A CcAyCJ

where Ay is the image of m* and A is the image of ™ composed with
v=((eq)" (Bg)") : Ji(N)g — J.

Then Ay has good reduction at p, A2/A; has multiplicative reduction at p and J/As

acquires good reduction at the prime over p in Q((p).

REMARK 10.3.2. That n* and - have finite kernels follows from the fact that
the dual maps induce injections on cotangent spaces. A deeper result of Ribet
[Rib3, Corollary 4.2] based on work of [hara [Thara] is that v is actually injective.
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In the case N = 1, the kernel of 7* is the Shimura subgroup of level p (see [Maz1,
§IL.11], [LiOe]).

EXAMPLE 10.3.3. Let N = 11 and p = 3. By Example 9.1.6, X (33) has genus
21 and X(11) has genus one. Appealing to the Hurwitz formula, we find also that
T'1(11,3)\9* has genus 11. Thus the dimensions of J, A, and A; are respectively
21, 11 and 2. Note that we can also interchange the roles of the primes 3 and 11
and define abelian subvarieties A| C A} C J. We find then that A} = 0 and A}
coincides with the image of 75(33)q — J1(33)q. Therefore A} is 3-dimensional
and there is a filtration
(10.3‘2) 0cA cC AIQ C Ay C J.
We conclude that
e A, is two-dimensional and has multiplicative reduction at 11 and good re-
duction at 3. In fact it is isogenous to two copies of Jy(11)q, an elliptic
curve of conductor 11.
e Aj/A; is one-dimensional and has multiplicative reduction at 3 and 11. It
is an elliptic curve of conductor 33.
e A, /Aj is 8-dimensional, has multiplicative reduction at 3 and acquires good
reduction at the prime over 11 in Q(¢y1).
¢ .J/Ay is 10-dimensional and acquires everywhere good reduction over Q((s3).

The description of suitable models for the curves X,(M) and X;(M), and
consequently of the behavior of Néron models for Jy(M) and J; (M), naturally
becomes more complicated at a prime p when higher powers of p divide M. We will
not pursue this here, but we refer the reader to [KaMa, Chapter 14] and [MaWi,
Chapter 3] for more on the matter. We shall discuss in §12.5 the related problem
of describing the natural Galois action on the Tate modules of these Jacobians.

Finally let us recover the Eichler-Shimura congruence relation from the descrip-
tion of JIQP given by (10.3.1). We first observe that the endomorphism 7}, of J; (N)
is the composite of the homomorphisms of Néron models J,(N) — J extending
(8')* and J — J1(N) extending of,. Thus 7, g, can be computed as the composite

T (N)g, = TIr, = i(N)g,.
Since J1(N)y, is an abelian scheme, the first map factors through the connected
component of the identity, Jgp. For the same reason, the second map restricted
to Jl‘?p factors through the projection in (10.3.1) to the abelian scheme B =
Pic ?&.Fp).ﬂ/!-_‘p. Using ip [[iv to identify B with Jl(N)f,p, we are reduced to com-
puting the composite
T(N)g, = Ti(N)g, = Ti(N)E,.

The endomorphisms of 7,(N)g, which come into play arise from the endomor-
phisms of X(N)r, considered in the analysis of Af, in §9.3. Indeed the first
map arises by Picard functoriality from ﬁi-‘,, and sends a point z in J1(N)g,(5) to
(®"(z),z) in J1(N)r,(S5)*. We have used here the extension of (8.4.1) to Xp, and
the evident compatibility of Raynaud’s description with Picard functoriality. Sim-
ilarly using the compatibility with Albanese functoriality (see [Ray3]), we deduce
that the second map, which arises from o/, sends a point (y, z) to (p)r, .« (y) +®.(z).
Computing the composite we recover (10.2.3). The situation is similar for J5(N )
but (p) is replaced by the identity.
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Part III. Modular forms revisited
11. Automorphic representations

Let A be the ring of adeles of Q. We will write Ay for the ring of finite adeles.
For cach positive integer N, let Uy denote the open compact subgroup of Af
consisting of elements of Z* = I1,Z; which are congruent to 1 mod N Z.

Recall that a Hecke character is a continuous homomorphism A* — C* trivial
on Q*. To a Dirichlet character e : (Z/NZ)* — C*, we associate a Hecke character
ea as follows. We write A* = Q"R;oz.", and let e (axu) = ¢(u~' mod N) for
aeQ*, zeRS,and u € Z*. Recall that every Hecke character of finite order
arises this way. More generally, every continuous quasi-character of AX/Q* can
be written as ea| |* for some Dirichlet character ¢ and some s € C. We will
usually omit the subscript A. We will also use “character” to mean a continuous
homomorphism to C* and call a character unitary if the values have norm 1.

In this section we discuss how modular forms can be regarded as functions on
GLg(A). These in turn give rise to (infinite-dimensional) automorphic representa-
tions of GL(A) which are, in some sense, generalizations of the Hecke characters
of GL;(A) we have just defined. We will also discuss how these automorphic
representations are described in terms of local factors. The primary reference is
Jacquet-Langlands [JaLa], but see also the expositions of their work by Godement
[Gode] and Gelbart [Gelb].

Before proceeding, we give a word of motivation for this translation to the
adelic language. Recall that it is the language in which class field theory most
naturally describes abelian extensions of number fields. In the same spirit, Lang-
lands’ conjectures are expressed in this language, providing even deeper arithmetic
information from the theory of modular forms.

11.1. The adelic setting.
PRIMARY REFERENCES:

[Cas2, §3], [Gelb, §3] and [Casl, §1].

Write Gq, Ga, G and G, respectively, for GL2(Q), GL2(A), GL2(R) and
GLy(Ag). Put * = C—R. We let U,, = SO2(R)R¥, the stabilizer of i = /—1 €
C in Gs. We identify Go/Us with % by g — gi, and define j : Goo ¥ Q@
by j(v,2z) = cz + d where v = ( iy ) Let Sy be the space of functions ¢ :
Gq\Ga — C such that

(1) é(gu) = ¢(g) for all u in some open compact subgroup U of Gy;
(2) #lguss) = j(uocvi)_k(d':‘t'"'oo)qf’(g) for all teo € Usoy g € Ga;
(3) for all g € G¢ the map
st - C
hi > p(gh)j(h,i)*(deth)~*,
where h € G, is holomorphic (the map is well-defined by (2));
(4) ¢ is slowly increasing, i.e., for every ¢ > 0 and every compact subset K C
G A, there exist constants A, B such that

lo((& 9 )h)|< Alal®

for all h € K and a € A* with |a| > ¢
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(5) ¢ is cuspidal, i.e., for all g € Ga

L o((5 1)s) a0,

where dz is a non-trivial Haar measure.
We regard Sy as a Ge-module where the action is given by right translation.

For an open compact subgroup U of Gf, we write S, (U) for the space of U-
invariant functions in &y, i.e., those ¢ € S such that ¢(gu) = ¢(g) for all u € U,
g € Ga. Note that §; = (J;; Sx(U) over all such U.

For N > 0, let Up(N) (respectively, U;(N), Vi) be the subgroup of GLy(Z)

consisting of matrices congruent to ( B ) (respectively, ( e 1 ), the identity)

modulo NM;(Z). For an element ¢ of Si(U1(N)), we define a function f, : §§ — C
by

f(hi) = ¢(h)j(h,i)*¥(deth)™*  for h € GLF (R).
(See e.g. [Cas2, Theorem 3] or [Gelb, Proposition 3.1].) Then fj is in Sg(T'1(N))
and ¢ — f, in fact defines an isomorphism

(11.1.1) Se(U1(N)) = Si(T1(N)).

Moreover for a mod N Dirichlet character ¢, we find that Sx(N,e) corresponds
to the subspace of Sk(U1(N)) consisting of ¢ such that u¢ = ea(detu)¢ for all
u € Up(N). In particular, S,(Up(NN)) corresponds to Si(To(N)).

REMARK 11.1.1. One can formulate the definition of a modular curve adeli-
cally as well. For an open compact subgroup U of Gt, define

Xu =Gq\Ga/UUx.

(Note that X;; need not be connected.) One then has a system of canonical mod-
els defined over Q [Shil, §6.7], [Del2, §1,2] admitting a natural moduli-theoretic
interpretation in terms of elliptic curves with level structure [Del2, §4,5], [Mill,

§2].

We also find that the Hecke action on the spaces Si(U) has a very simple
description. If U, U’ are open compact subgroups in Gs, then for g € G¢ we define
the operator [UgU’] : Sp(U') — Si(U) by

(11.1.2) ([UgU"18)(9) = > (hid)(g) = D b(ghs)

i i
where UglU'’ = [[h;U’. Note that if Ug,U’ = UgsU’ as double cosets, then the
operators coincide as well. To recover the classical Hecke operators from this, let
w, € Af be the element such that (w,), = ¢ if v = g and (@), = 1 if v # q.
Define endomorphisms of Si(U) by

(11.1.3) Ty=[UnU],  Sy=[Uwm,U]

where 7, = ( % ? ) € Gg. For U = Uy(N) (or Up(N)), these are compatible

under (11.1.1) with the operators denoted Ty and S; on Sg(I'1(N)) (or Sk(To(N)))
in §3.4; see [Casl, Theorem 1.1] and the example following it.

We find also that if U contains Vi, then all the operators T, and S, commute
for ¢ not dividing N, thus making Sy (U) a T(¥)-module. For each eigencharacter
6 of T = T, we can form the union Sk 4 of the eigenspaces in Si(U) for the
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restriction of 8 to T(N), where the union is over pairs (U, N) such that Viy c U.
Then Sy g is stable under the action of G¢, and we write Sy o(U) for S ¢ N Sk(U).

THEOREM 11.1.2. Let 8 be a homomorphism T — C such that Sy g is nontriv-
tal. Then Sk p is an irreducible Ge-module, and there is a unique integer N = Ny
such that Sk g(U1(N)) is one-dimensional. Conversely, each irreducible constituent
of Sk is of the form Sy ¢ for some 8.

We shall explain in §11.5 how the theorem is deduced from representation-
theoretic results, but first we review some of the theory of irreducible admissible
representations. We begin by describing the possible local “factors” of such a
representation in the next two subsections and then deal with the global theory in
§11.4. In §11.5 we relate the representations S ¢ to weight k cuspidal automorphic
representations of G o and apply a representation-theoretic multiplicity one theorem
to obtain Theorem 11.1.2.

REMARK 11.1.3. Note that 0 is only determined up to equivalence by Sk,
where #, and #; are deemed equivalent if their restriction to TM) coincides for
some M. However we shall see that for each multiple M of Ny, T*) acts via an
eigencharacter on Sk,o(Vir)-

REMARK 11.1.4. Recalling the theory of newforms §6.3, we see that the space
Sk,0(U1(N)) of Theorem 11.1.2 is spanned by ¢ where f is the newform of level N
with T(V)-eigencharacter determined by the equivalence class of . We therefore
have natural bijections among the following three sets:

1. equivalence classes of eigencharacters f such that Sy ¢ is nontrivial;

2. irreducible constituents of S;

3. newforms of weight k.

In fact, the theory of newforms can be recovered from the analysis of the structure
of Sy as a Gg-module provided by the theory of Jacquet and Langlands; see [Cas2,
§3].

11.2. Admissible representations; p-adic case.

PRIMARY REFERENCES:
[JaLa, §2-4], [Gode, §1] and [Gelb, §4B].

Let p be a finite prime. In this subsection only, G denotes the group GL2(Qy),
K its standard maximal compact open subgroup GL2(Z;) and Z the set of scalar
matrices in G.

Let 7 : G — GL(V) be a representation of G on a complex vector space V.
The representation 7 is said to be admissible if (i) every vector v € V is fixed by
some open subgroup of G, and (ii) for every open compact subgroup U of G, the
subspace of vectors in V fixed by U is finite-dimensional. (See [JaLa, §2| or [Gelb,
Definition 4.9].)

If U is an open compact subgroup of G, we write V' for the subspace of vectors
in V fixed by U. For open compact subgroups U and U/’ and an element g of G,
we define the double coset operator [UgU’] : VY — V¥ by

(11.2.1) [UgU]¢ = hit

where UgU’ = [[ h:U’. (See (11.1.2).)
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REMARK 11.2.1. A finite-dimensional admissible representation is continuous
and the only continuous irreducible finite-dimensional representations of G are of
the form g — w(det(g)) where w is a character of Q7, [JaLa, Proposition 2.7].

The classification of irreducible infinite-dimensional admissible representations
of G is carried out in [JaLa, §2,3]. (See also [Gode, §1.1-1.11].) We begin with
certain induced representations defined as follows ([JaLa, (3.1)], [Gelb, (4.9)],
[Gode, §1.8].) Let u;, us be any two characters of Q) and consider the space of
all locally constant functions ¢ on G'satisfying

1/2
(11.2.2) qﬁ(( Y o )g) = p1(ay)pa(as) Z—;l #(9), Vai,az € Q);

here | | denotes the usual p-adic metric. The group G acts on the space by right
translation, and this representation is denoted p(ui,s). The representation is
reducible if and only if u = pip; ' = | [¥1. (See [JaLa, Lemma 3.2.3], also [Gode,
§1, Theorem 6] or [Gelb, Theorem 4.8]). When it is irreducible it is called a
principal series representation.

If p(z) = |2|~*, then p(py, y1) has a one-dimensional subrepresentation. Indeed
putting w = 1| |2 = py| |~2/2 we see that the function g — w(det(g)) spans a
subspace stable under G. If u(z) = |z|, then therc is a one-dimensional quotient,
and in either of these cases the infinite-dimensional subquotient of p(p1,us) is
irreducible, [JaLa, Lemma 3.2.3]. This subquotient is called the special or Steinberg
representation, and is sometimes denoted sp(py, uo).

In all of the above cases we let 7(y;, H2) denote the unique infinite dimensional
irreducible subquotient of p(gy, u2). Then m(1, p2) and m(u}, pb) are equivalent if
and only if {1, uo} = {p7, pb}. (See [Gode, §1, Theorem 4.7], also [Gelb, Remark
4.19)).

The admissible representations of G which are not of the form (1, p2) are
called supercuspidal. (See [JaLa, Proposition 2.17], [Gode, §1, Theorems 3.4].)
These are characterized by the property that for all v € V and all ¥in V of V,
the functions g — w(r(g)v), called matriz coefficients, are compactly supported
modulo the centre Z. Here V' denotes the admissible dual of V/, the space of linear
functionals 9 : V — C invariant under some open compact subgroup.

We also note that any irreducible admissible representation of G defines (by
Schur’s lemma) a character of the centre Z of G, called the central character of
m. We denote by w, the corresponding character of Q) = Z. For example, if
™= m(p1, p2), then wy = ppo.

We sometimes further restrict our attention to unitarizible representations, i.e.,
the admissible representations on which there is a G-invariant positive-definite Her-
mitian form. The irreducible ones are precisely (see [Gode])

e Principal series (1, u2) with g and po unitary (called continuous series).

e Principal series 7y, i~1) with pf = || for some real ¢ with 0 < lo| < 1
(called complementary series).

e Special or supercuspidal representations with unitary central character.

EXAMPLE 11.2.2. The unitarizible special representations are those of the
form sp(x| |/2, x| |~/2) with x a unitary character.
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REMARK 11.2.3. Special and supercuspidal representations are said to belong
to the discrete series. Unitarizible discrete series representations are square inte-
grable in the sense that their matrix coefficients are square integrable modulo the
centre [JaLa, Lemma 15.2], [Roga, Proposition 2.6].

REMARK 11.2.4. For unitarizible 7, we can form the completion of V' with
respect to the norm defined by the positive-definite Hermitian form (see [Gode,
§1.17]). This determines a unitary representation 7 of G on a Hilbert space V from
which 7 can be recovered as the representation on K-finite vectors in V. (A vector
v is called K -finite if the span of #(K)v is finite-dimensional, or equivalently if v is
fixed by some open compact subgroup of G.) Moreover 7 is irreducible if and only
if # is topologically irreducible, [Gode, §1, Lemma 10]. We remark also that every
topologically irreducible unitary representation of G arises in this way, i.e., as the
completion of an irreducible unitarizible representation [Cart, Corollary 2.3].

The conductor ¢, of an infinite-dimensional irreducible admissible representa-
tion 7 is defined to be the largest ideal ¢ of Z, such that VU3¢ 3£ 0, where

(11.2.3) Ul(c)={( x 2 )EK|c,d—1€c}.

For ¢ = ¢, this space of fixed vectors is in fact one-dimensional. (See [Cas2,
Theorem 1]; the reader can check that our definition of the conductor is equivalent
to the one given by Casselman.) Note that ¢ is divisible by the conductor of w,;, and
that v is fixed by Uz (c) if and only if w(g)v = w,(d)v for all g = ( “ g ) € Uy(e),
where Up(c) is defined as the group of matrices in K with ¢ € c. Note also that cr
is determined by the restriction of 7 to K. We have the following list of possible
conductors (see the proof of Theorem 1 in [Cas2]; [Gelb, Remark 4.25]):
e If 7w = (1, p2) is principal series then ¢, = fif, where f; (i = 1,2) denotes
the conductor of y;.
o If m = sp(x| |2, x| |7/?) is special, then ¢, = {2 N pZ,, where f is the
conductor of x;
o If 7 is supercuspidal then ¢, = p"Z, for some n > 2.

ExXAMPLE 11.2.5. An infinite-dimensional irreducible admissible representa-
tion 7 of G is called unramified (or class 1 or spherical ) if ¢x = Zj, or equivalently
if the subspace VK of V fixed by m(K) is one-dimensional. (See [Gelb, §4.B.3].)
The unramified representations play an important role in global theory; see section
11.4. Note that according to the list above, these are precisely the principal series
representations (1, u2) for unramified characters i, pa (with pyj, ' # | [*1).
We find that V¥ is spanned by the function on G defined by

1/2
to(( g % )0 = ml@m(d) ||
Applying the double coset operators

T,=K(% ()& S=K(} )K

y kEK,

to ¢o, we find

(11.2.4) Tyd0 =p* (11 (p) + H2(p))po;  PSpdo = pita(p) 2 (p)o.

So the characters p; and u, are determined by the eigenvalues of T}, and S, on a
nonzero vector fixed by K; therefore so is the isomorphism class of the unramified
representation (j1, fiz).
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11.3. Admissible representations; real case.
PRIMARY REFERENCES:
[JaLa, §5], [Gode, §2], [Gelb, §4A], [Wal2, Chapters 3,5] and [Wall, §2, 8].

In this subsection, we put G = G = GL2(R), denote by K its maximal
compact subgroup Oz (R.), and let g be the complexification gl,(C) of the Lie algebra
of G.

Let 7 be a unitary representation of G on a Hilbert space V such that the map
G x V — V is continuous. Let Vg be the subspace of K-finite vectors in V' (see
Remark 11.2.4). Though V; is stable under K it is not necessarily stable under
@, unlike the p-adic case. We assume that Homg (W, V;) is finite-dimensional for
every irreducible p : K — GL(W).

REMARK 11.3.1. By a theorem of Harish-Chandra [HaCh] (see [Wal2, Chap-
ter 3] and [Gode, §2.1]), this holds if 7 is topologically irreducible.

REMARK 11.3.2. Under our assumption, the vectors in V; are smooth in the
sense of [Wal2, 1.6.6]; see [Gode, §2.1], [Wall, Theorem 2.8].

To such a 7 one can associate, essentially by differentiation, a representation
of the Lie algebra g. For X in the Lie algebra of G and v € Vj, the derivative

d
(11.3.1) Efr(exp tX)v)i=—0 = }jnét_‘ (m(exptX)v —v)

exists and defines an element of V. (See [Wal2, 1.6.3], [Gelb, (4.5)].) Extending
linearly to g we obtain the desired homomorphism of complex Lie algebras

dr: g — gl(V).
We denote by mp the pair of representations dr and 7|k on Vp; this pair satisfies
certain continuity and compatibility conditions making Vy a (g, K)-module. (See
[Wal2, §3.3], for example, for the definition of a (g, K')-modnle.)

A (g, K)-module M is admissible if Homg (W, M) is finite-dimensional for every
irreducible p : K — GL(W); thus Vj is automatically admissible. There are natural
notions of homomorphisms and irreducibility for (g, K')-modules. We say that an
admissible (g, K )-module is unitarizible if it is isomorphic to V; for some unitary m
as above. The association of 7y to 7 is evidently functorial, but we have moreover
the following theorem of Harish-Chandra (see [Wall, §2], [Wal2, Theorem 3.4.11]).

THEOREM 11.3.3. Let m : G — GL(V) and ' : G — GL(V’) be unitary
representations as above. Then V is topologically irreducible if and only if Vo is
an irreducible (g, K)-module; in that case, V is isomorphic to V' as topological
G-modules if and only if Vo is isomorphic to Vg as (g, K)-modules.

Thus according to the theorem and Remark 11.3.1, the classification of irre-
ducible unitary representations of G is equivalent to that of irreducible, unitarizible,
admissible (g, K)-modules (cf. Remark 11.2.1). We have thus shifted our attention
to (g, K)-modules from representations of G.

REMARK 11.3.4. Here we have strayed somewhat from the formulation of
Jacquet-Langlands [JaLa, §5|, where the focus is instead shifted to the classifi-
cation of irreducible, admissible representations of a certain algebra Hg called the
Hecke algebra of G. See also [Gode, §2, (9)] and [Gelb, Definition 4.1] for a variant;
there Hpy is defined as the algebra

Hr = U(g) P(e-) Ulg),
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under convolution product of distributions, where {(g) denotes the universal en-
veloping algebra of g and ¢_ is the Dirac measure at the point ( =g ) of G.
(See also [Flath, §3] and [Cas3, §1.2.1].)

Recall that a character £ : R* — C* has the form £(t) = [t|*sgn(t)™ for some
s € C and m € Z/2Z. We say that ¢ is the central character of a (g, K)-module
if {+1} = K NR* acts via sgn™ and the center of g acts via multiplication by
s (where we have identified R* with the center of G and C with the center of g
in the obvious way). An analogue of Schur’s lemma [Wal2, Lemma 3.3.2] shows
that every irreducible (g, K)-module has a central character. Note also that if &
is the central character of , then it is also the central character of the associated
(g, K)-module.

Now we recall the classification of irreducible admissible (g, K')-modules. Anal-
ogous results in the context of admissible representations of the Hecke algebra (scc
Remark 11.3.4) are given in [JaLa, Theorem 5.11], [Gode, §2, Theorem 2] and
[Gelb, Theorems 4.4, 4.5]. The version given here can be deduced from the Lang-
lands classification [Wal2, Theorem 5.4.4], [Wall, §8.4].

Let f11, o be two characters of R*. As in [JaLa, §5] (also, [Gode, §2, (14)],
[Gelb, (4.2)]), consider the space B = By, ,, of all functions ¢ on G satisfying

1/2

s(( 5 5 )9 =mlta)maltz) #(9)

ty
ta

forall g € G, t1, ta € R* and which are right K-finite (i.c., the functions g — ¢(gk),
k € K, generate a finite dimensional space). The action of K is by right translation
and that of g is defined as in (11.3.1). Note that the central character of B is pu1pt2.
Let s be the character uipy ' and let n(t) = sgn(t).

o The (g, K)-module B is irreducible unless p(t) = t*n(t) for some nonzero
integer n.

o If u(t) = t"n(t) for some integer n > 0, then B contains exactly one proper
(g, K )-submadule B°. It is infinite dimensional; the quotient B/ = B/B* has
dimension n.

o If pu(t) = t"n(t) for some integer n < 0, then B contains exactly one proper
(g, K)-submodule Bf. It is |n|-dimensional; the quotient B* = B/ Bf is
infinite dimensional.

Let us denote by m(u1,ps) the (g, K)-module By, ,, if it is irreducible, but
the finite-dimensional Ef;’ .., otherwise. In the latter case, the infinite-dimensional
By, s is denoted a(p1, p2); it is defined only if u(t) = t™n(t) for some nonzero
integer 7.

The (g, K)-modules (1, u2) make up the principal series for G, the termi-
nology often being reserved for the case where p(t) is not of the form t"n(t) with
n € Z. The o(p1, p2) are called discrete series; m(py, p2) is called a limit of discrete
series if p=mn.

Every irreducible admissible (g, K)-module is isomorphic to either m(u1, p2) or
o (1, f12) for some characters ju; and py. Moreover, the only equivalences among
them are the following

o m(p1, pa) = w(ph, po) lf {111,.112} = {u1, ua};
o (1, p2) = o, ph) if {pn, pa} = {4, b} or {wim, pan}.
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Next we list those which are unitarizible ([Gelb, Remark 4.7], [Wall, §8.7],
[Knal)):
e Principal series 7(py, o) with p; and po unitary (continuous series).
¢ Principal series 7 (u, i~!) with i = |z|” for some real & with 0 < lo] <1
(complementary series).
e Discrete series o(u1, o) with unitary central character.

REMARK 11.3.5. Each (g, K)-module in the above list arises from an irre-
ducible unitary representation m of G. Moreover 7 is unique up to isomorphism,
and its central character is yjr;. Among these, il is precisely the unitarizible
discrete serics which arise from square-integrable 7 (see e.g. [Knal, §1], and also
Remark 11.2.3).

Finally, we distinguish the (g, K')-modules which arise in the consideration of
cusps forms of weight k for k > 2; see [Roga, Proposition 2.5]. Let

(11.3.2) oy =aff] VIR [,

These are precisely the unitarizible discrete series with central character 1 or 7.
There is a nonzero subspace of oy consisting of vectors v satisfying

cosf  sinf k6 5
(—sina cosdl g‘u ey forall # € R;

11.3:3 3

( ) —11 *; § = §
(where the first matrix is in K and the second in g). The subspace is unique and
its existence characterizes oy, among the irreducible admissible (g, K)-modules. We
fix such a nonzero vector vy, called a lowest weight vector.

11.4. The global theory.
PRIMARY REFERENCES:
[JaLa, §9], [Gode, §3.2], [Gelb, §4C] and [Flath].

Using the notion of a restricted tensor product enables us to describe global
admissible representations in terms of a factorization into loeal components. The
procedure is analogous to the description of a Hecke character in terms of its local
components.

Suppose that we are given, for each finite prime p, an irreducible admissible
representation m, : G — GL(V,) where G, = GL3(Q,). (Here V,, could be one or
infinite-dimensional.) Suppose also that 7, is unramified for all p not in a finite set
S. For each p ¢ S, choose a non-zero vector e, in the one-dimensional subspace of
Kp-fixed vectors in V,, where K, = GLy(Z,). Let W be the linear span of elements
of the form ®P vp such that v, = e, for all but finitely many p. Then we define
the action of G¢ componentwise on such elements and extend the action lincarly
to W. This yields an irreducible representation G — GL(W) which is called the
restricted tensor product of the m, and is denoted @, (sce [JaLa, §9], [Flath,
§2]). Up to isomorphism, @, is independent of the choice of {ep}. Moreover
the Gg-module W is admissible in the sensc that (i) every vector in W is fixed by
some open subgroup of Gy, and (ii) for every open compact subgroup U of Gy, the
subspace of vectors in W fixed by U is finite-dimensional.

Suppose that we are also given an irreducible admissible (9, Koo )-module Vo,
where g = gl,(C) and Ko = O2(R). We can then consider V = V., @ W: it is a
(9, Koo) x Ge-module, by which we simply mean that it is compatibly a (g, K. )-
module and a G¢-module. It is irreducible in the sense that it has no proper
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(g, Kx) % Gg-submodules. Moreover V is admissible in the sense that (i) every
vector in V is fixed by some open subgroup of G, and (ii) for every open compact
subgroup U of Gf, the subspace of vectors in V fixed by U is an admissible (g, K )-
module.

REMARK 11.4.1. If we suppose further that each 7, is unitarizible, then we
could require that e, be a unit vector for p ¢ S. The resulting Ge-module is then
endowed with an invariant positive-definite Hermitian form. We can then form the
Hilbert space completion Wof W and obtain a unitary representation of Gs. If Vi is
also unitarizible, then the construction yields an admissible unitary representation
of Ga from which V is recovered as a dense (g, Kx) X Ge-submodule satisfying
certain finiteness conditions (sce [Gode, §3.3]).

Conversely every irreducible, admissible (g, K) X Gg-module can be written
as a restricted tensor product; moreover the local factors V, and V,, are unique up
to isomorphism. (This follows from results of [JaLa, §9]; see also [Flath, Theorem
3], [Gode, §3.2] and [GGPS].)

In particular, suppose that we are given an irreducible, admissible represen-
tation 7 : G¢ — GL(W). Then 7 is isomorphic to @, for a collection of local
representations 7, : G, — GL(V,). Note also that 7 has a central character which
factors into the product of the central characters of the local representations.

Suppose now that each , is infinite-dimensional. We then define the conductor
of 7 to be N; = HP p™» where for each p, the conductor of m, is p"*Z,. Observe
that then N, is the least positive integer N such that there is a nonzero vector in
W fixed by U, (N); moreover the space of such vectors is one-dimensional.

Given a character £ : Af — C* and a Gg-module W, we let W (e o det) denote
its twist by eodet, i.e., the Gg-module W ® M where M is the one-dimensional G's-
module gotten from the representation £ odet. Then W is admissible (respectively,
irreducible) if and only if W (s odet) is admissible (respectively, irreducible). If W is
the restricted tensor product formed from local representations 7, : G, — GL(V,),
then V(¢ o det) is formed from the representations m, ® (g, o det).

11.5. Cuspidal representations.
PRIMARY REFERENCES:

[JaLa, §10], [Gode, §3], [Gelb, §5,6] and [Cas2].

Let X denote the space RX(Gq\Ga where we regard R, as contained in the
scalar matrices of G... We let dz be a G 4-invariant measure on X and we consider
the Hilbert space L2(X). Recall that this is the space of (equivalence classes of)
measurable functions ¢ : X — C such that

f |(z)|? dz < o0;
X
it is endowed with the inner product
(6.62) = [ or()ba(o)da.
Then G4 acts on L?(X) unitarily by right translation.

We shall consider here only the subspace L}(X) consisting of ¢ satisfying a
certain cuspidality condition. (We are thus ignoring the contribution of Eisenstein
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series; see [Gelb, §8] for example.) We let LZ(X) denote the set of ¢ such that the

function
— 1y d
g /Q\Acb((o v )9)dy

vanishes almost everywhere on G . Then L3(X) is a closed subspace stable under
the action of Ga. It decomposes into a Hilbert space direct sum

(115.1) L3(X) = DR,

where the sum is over (a countable set of) closed irreducible subspaces stable un-
der the action of Ga. The isomorphism classes of unitary representations G —
GL(R,,) which arise in this way are called cuspidal automorphic representations.
The existence of such a decomposition can be established by a method found in
[GGPS] (see also [Gode, §3.1] and [GeJa, §2)), along with the fact that each
isomorphism class occurs with only finite multiplicity. Using the existence and
umiqueness of Whittaker models, Jacquet-Langlands [JaLa, §10,11] prove that the
multiplicities are one.

The theory developed in [JaLa] in fact yields a strong multiplicily one theo-
rem which we state below. To do so, we first switch to the context of admissible
(9, Kx) x Gg-modules by further restricting our attention to the space of cuspidal
automorphic forms, denoted Ay. This is the space of smooth, K-finite, 3-finite,
slowly increasing functions in L3(X). Here “smooth” is as a function of G, K i8
the maximal compact KnGLy(Z) and 3 is the center of U(g) (Remark 11.3.4); we
have already discussed the notions of “finite” (Remark 11.4.1) and “slowly increas-
ing” (§11.1). Note that our 4, is the algebraic direct sum over finite order Hecke
characters £ of the spaces denoted 4q(¢) in [Gelb, Definition 3.3].

The space Ay is a dense subspace of L3 and an admissible (g, K =) X Gg-module.
It decomposes into an algebraic direct sum

(11.5.2) Ao~ PV,

where for each «, V, is an irreducible admissible (g, ) x Gp-module dense in
the space R, occurring in (11.5.1); see [Gelb, Theorem 5.1]. Now factor each
Vi as explained in §11.4 and denote the corresponding admissible Gp-modules (re-
spectively (g, Ko)-module) by V,, (respectively, Vi o). We can now state the
strong multiplicity one theorem as follows. (See [Gelb, §6], [Cas2, Theorem 2] and
(PSh2].)

THEOREM 11.5.1. Suppose V, and Vj are constituents of Ay such that Vo =
Vap as Gp-modules for all but finitely many primes p. Then V, = Vj.

Note that the theorem asserts not only that V, and Vs are isomorphic, but
that they coincide as subspaces of A4,.

The theorem also incorporates results about non-holomorphic automorphic
forms called Maass forms [Maass], but we will content ourselves with a discus-
sion of the transition back to the setting of §11.1 and the theory of newforms. (See
[Cas2, §3] and [Gelb, §5].)

Recall that for each k& > 2, we distinguished a unitarizible discrete series
(9, Koo )-module denoted oy. Let

Ag = Homg gy (0%, Ao).
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Then A x is an admissible Gg-module and decomposes as the direct sum of
Va,e = Hom(y k. y(ok, Vi),

over  such that V, « is isomorphic to . By Schur’s Lemma, V,, ¢ is an irreducible
admissible G¢-module isomorphic to the restricted tensor product of the V, ,. The
constituents in the decomposition of Ag x correspond to the irreducible constituents
of Sk, but the local factors Vi, , are unitarizible whereas the factors of S), are not.
To complete the transition, we twist Ay, by a Hecke character and define an
isomorphism

Ao (| det |'7%/2) 5 5,

of Ge-modules as follows. Recall that at the end of §11.3 we characterized o), by
the existence of a certain lowest weight vector vg. Now if 7 is a homomorphism
or — Ag of (g, Ko )-modules, then we define the function ¢, on Ga by

¢-(g) = | det(g)|"*/*(7(vx))(9).

Then ¢, is in S; the left invariance under Gg and right invariance under an open
compact subgroup of Gy are clear from the definitions; the cuspidality and slowly
increasing properties follow from those of 7(wv;); the transformation property with
respect to Uy, and the holomorphicity follow from the properties of vx. (see [Roga,
Proposition 2.13] and [Gelb, Proposition 2.1]). One can show that, conversely,
each function in S arises in this way.

Thus the Gg-module S decomposes as a direct sum of admissible irreducible

Wa = Varl] [472),
where o runs over the constituents of Ay with V, o~ = 0. Moreover, writing
Ta : G — GL(W,) as
& e
we find that
e For each pair (a,p), ma,p is an infinite-dimensional, admissible, irreducible
representation of G,. (See [JaLa, Proposition 9.3], also [Casl, §1].)
e For each «, T, , is unramified for all but finitely many p.
e I[ 7, , =~ mg, for all but finitely many p, then the constituents W, and Wj
coincide (by Theorem 11.5.1).
We can now deduce Theorem 11.1.2 from the results we have collected (see
[Cas2, §3]). Indeed each Sy p is a sum of constituents W,. If W, is such a con-

stituent, we see that for all but finitely many p, m,, is the unramified principal
series (11, o) characterized by

(11.5.3) P2 (1 (p) + p2(p)) = 0(T,);  ppa(p)palp) = 6(pSp)

as can be seen from (11.2.4). Therefore W, is unique, and conversely each Wy, is an
Sk with the equivalence class of # determined by the above formulas. Furthermore,
the conductor of 7, is the unique positive integer N such that Sy (U3 (N)) is one-
dimensional. We thus deduce the existence of a unique newform corresponding to
the (equivalence class) of the eigencharacter 0.

Note also that the Dirichlet character € of the newform is determined by the
central kcharacter of the corresponding 7.; to be precise, the central character is
6A| |2' 1



MODULAR FORMS AND MODULAR CURVES 101

REMARK 11.5.2. Note that for all p, m, , ® |det|'+*/2 is unitarizible, and
for all but finitely many p, it is an unramified principal series. That it is in fact
a continuous series representation for all but finitely many p is equivalent to the
Ramanujan-Petersson conjecture that

6(T,) < 2pt%-1)/2

for all but finitely many p (see [Sata, §4], [Gelb, Proposition 5.17], [Roga, Theorem
2.14] and Remark 5.0.1). By proving and applying the Weil conjectures, Deligne
[Del1], [Dels] shows that this holds for all primes p not dividing the conductor of
To (see Remark 12.5.10 below).

Whereas the unramified local representations Ta,p are completely determined
by the eigenvalues of 7}, and S, on the newform corresponding to «, this is not the
case in general. Let us consider some examples where we can at least determine
the type of ramified local representations occurring in the factorization.

ExXAMPLE 11.5.3. Counsider the 20 newforms of weight 2 and level dividing 33,
Le., the 20 o’s such that 7, has conductor dividing 33. (See Examples 6.1.4, 6.3.5
and 10.3.3.) Since 33 is square-free, it follows from the list of possible conductors
in §11.2 that no 7, is supercuspidal. Moreover if 7, , is ramified, but its central
character is not, then m, , = sp(x| |*/2, x| |~!/?) for some . (Note that since & = 2,
the central character has finite order and hence so does X.) On the other hand,
if both 7, and its central character are ramified, then m, , = 7(u;, up) for some
unitary u; and jo, exactly one of which is ramified. As there are two newforms of
level 33 for each of the 10 even Dirichlet characters, we find

e one 7 of conductor 11 with m; special;

e one 7 of conductor 33 with 73 and m;; special;

e eight 7 of conductor 33 with 73 special and 7y, principal series;
e ten 7 of conductor 33 with 73 and 7, principal series.

In the first two cases, the central character is trivial, so the special representa-
tions are of the form sp(y| [*/2,x| | ~'/2) where ¥ may be either the trivial or the
unramnified quadratic character.

EXAMPLE 11.5.4. As another example, consider the unique newform of weight
two, level 27 and trivial character. Since the central character is trivial and the
conductor of 73 is 27, we see that m; is supercuspidal. This follows again from the
list of possible conductors; the conductor of a principal series or special represen-
tation m, with unramified central character must be of the form p®Z, where § is
either even or 1.

REMARK 11.5.5. Recall that the L-function associated to a newform f has
an Euler product and satisfies a functional equation (sce Remark 5.0.2). The the-
ory of Jacquet-Langlands offers another interpretation of the Euler product. We
may view the L-function as being attached to the corresponding cuspidal automor-
phic representation and the Euler factor at a prime p can be described in terms
of the corresponding local representations , (see [JaLa, Theorem 2.18], [Gode,
§1.14], [Gelb, Theorem 6.15]). For example, if , is the unramified principal series
(1, 2), then the local factor is

L(y, 8) = L(p1, 8)L(pz, ) = (1 = p1 (p)p™*) 7 (1 — pa(p)p™*) %,
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which according to (11.5.3) is simply the value at s+ 1/2 of the Euler factor at p of
L(f,s). The analysis of L(mp, s) in [JaLa] (see also [Gode, §1.14,1.15] and [Gelb,
§6]) is in the spirit of Tate’s analysis of the Euler factors of an L-function associated
to a Hecke character [Tatel]. They define also an e-factor €(7,, s) which plays a
role in the local functional equation, and there is an analogous construction of L-
and e-factors at oo (see [Gode, §2.7,2.8], [Gelb, Theorem 6.16]). One feature of
this point of view is that by [JaLa, Corollary 2.19] (or [Gelb, Theorem 6.14]), m,
is determined by its central character together with the pair of functions

(x,8) — L(m, ® (xodet),s)
(x,8) = €(mp® (xodet),s)

where x runs over characters of Q.

12. Sheaves and cohomology

In this section we explain how modular forms can be viewed as sections of
line bundles on modular curves. We also discuss the Eichler-Shimura isomorphism
relating modular forms to the cohomology of modular curves ([Shil, Chapter 8]),
and the association of Galois representations to eigenforms for the Hecke operators
([Shi1, Chapter 7], [Dell], [DeSe]).

‘We shall usually try to state results for arbitrary weight, or weight k& > 1
when necessary. However the reader should be aware from the start that, as we
indicate below, many of the results are much simpler in the setting of cusp forms
of weight ¥ = 2. Then the relevant line bundle is simply the cotangent bundle,
the cohomology groups are defined using constant coefficients, and the associated
Galois representations are constructed from the Jacobian of the modular curve.

12.1. Line bundles.
PRIMARY REFERENCES:
[Shil, Chapter 2] and [Miy2, §2.2-2.5].

‘We now explain how modular forms may be viewed as holomorphic sections of
line bundles on modular curves. Much of the discussion is a reformulation in the
language of sheaves of results found in [Shil, §2.3-2.6], and we refer the reader
there for more details.

Let k be an integer and I" a congruence subgroup of SLy(Z). We let X denote
the modular curve I'\$)* and Y the open subspace I'\$). We shall say that T is k-
small (or simply small if k is fixed in the discussion), if the following two conditions
are satisfied:

e if k # 0, then the image of I" in PSLy(Z) has no nontrivial elements of finite

order; ;

e if k is odd, then —1 ¢ I" and the cusps of X are regular.
(If —1 € T, then the cusp I - y(o0) with v € SL2(Z) is regular if the stabilizer in I’
of ¥(o0) is contained in 'y{( o 1 )}r) For example, if N > 4, then I'y(N) is
k-small for all k. To prove this, note that if -y is an elliptic or parabolic element of
I’y (N), then [tr (7)| < 2 and tr () = 2 mod N, and therefore tr (y) = 2 (see [Miy2,
Theorem 4.2.9]).

Now define an action of SLy(Z) on $ x C by the formula

a (2,€) = (a(2), (cz + d)*¢)



MODULAR FORMS AND MODULAR CURVES 103

for a = 2 3 € SLy(Z), z € H and € € C. If T is small, then the quotient
I'\($x C), with the natural projection map to Y, has the structure of a complex line
bundle over Y. Moreover, it extends to a line bundle over X using the trivialization
over a neighborhood of the cusps (see §9.1) defined by

T-(z,8) — (T-9(2),€)
for v € SL2(Z) and 2z = z + iy with y > 0. We let G;. denote the resulting line
bundle and write ¢ : Gx — X for the projection map.

Next we consider the sheaf G, on X of holomorphic sections of Gx. Thus Gy
is an invertible sheaf of Ox-modules where @y = Gy is the sheaf of holomorphic
functions on X. If f is a modular form of weight k with respect to I, then we
can define an element of Gy(Y) by T'- z — I'- (2, f(2)). The condition that f
be holomorphic at the cusps translates to the condition that this extends to a
holomorphic section ¢5 : X — G;. We find that f — ¢y establishes a natural
bijection between the spaces My(T') and Gr(X) = HO(X, Gy).

If I' is not small, then choose a small congruence subgroup I'" normal in T and
let 7 denote the natural projection map from X’ = I"\%* to X. Replacing ' by I
in the definition of Gy, we obtain an invertible sheaf G, of Ox-modules on X’ and
an action of I on the sheaf .G, which factors through I'/T”. We also find that the
action of y on 7,G} (X) = G,(X") = M,(I") is simply the operator [y ]k defined
in §2.1. Thus My(I') = (7.G;)"(X) where (m.G},)" is the subsheaf of .G} given
by sections invariant under I'. Thus for arbitrary k and T, we can write

(12.1.1) M,(T) = H(X, Gy)

where Gy, is defined to be (r.G,)'. We find that Gy is an invertible sheaf of Ox-
modules on X (unless k is odd and —1 is in T, in which case My (") and G, are
both zero). Tt is independent of the choice of I" in the sense that a different choice
produces a sheaf canonically isomorphic to G.. Moreover in the case that I' = | G
this definition of G, coincides with the previous one.

We can proceed similarly to interpret the cusp forms of weight k with respect
to I' as global sections of a certain invertible sheaf on X. Assume first that T is
small. Let C; C Ox denote the sheaf of holomorphic functions on X which vanish
at the cusps. We define F to be the invertible sheaf Gy ®oy Cr of Ox-modules
on X. Then Fy is naturally a subsheaf of G, and we may identify F;(X) C Gi(X)
with Si(T') € Mg(T). For arbitrary I', we again choose a small normal subgroup
I, and consider the Ox/-sheaf F| C G, on X’. The action of T on 7.G}, restricts
to one on 7, F; and we let 7}, = (m,F)T. Then Fy is independent of the choice of
I' and the definition agrees with the earlier one if I' = I'". We now have

(12.1.2) Sk(T) = H(X, F)
where . is an invertible O x-subsheaf of Gi, and the identification is compatible
with (12.1.1). The equation
(12.1.3) Fi = Gk ®oy Ck
remains valid where Cy. is defined as the sheaf of holomorphic functions which vanish
at the regular cusps if k is odd, and at all cusps if k is even (see [Shil, §2.4] or
Miy2, §2.3)).

ExAMPLE 12.1.1. If k = 0, then Gy = Ox, Mo(I') = Ox(X) is the space of
constant functions C and Sy(T") = 0.
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EXAMPLE 12.1.2. More interesting, of course, is the case of k = 2. We find
that 7, is isomorphic to 02}, the Ox-sheaf of holomorphic differentials on X. For
an explicit description of the isomorphism, first suppose that I' is small and take
w € QL (U) for an open subset U of X. Write o*w = f(2)dz for a holomorphic
function f on ¢~ '(U) where g is the natural map § — X. For U° = UnNY,
the holomorphic map U® — G defined by I' - z + I' - (z, f(z)) is an element of
G5(U®) = F»(U°) which extends uniquely to an element ¢, of F5(U). Moreover
w > ¢, defines an Ox (U)-linear isomorphism Q% (U) — F»(U) compatible with
restriction, so
(12.1.4) QY = F,.

If I is not small, then we still obtain (12.1.4) by choosing a suitable I'V and checking
that Q%, = F} is compatible with the natural action of T'. In general, (12.1.4) to-
gether with (12.1.2) gives an isomorphism ([Shil, Corollary 2.17], [Miy2, Theorem
2.3.2])

D5 (X) = S(1)
which is simply w — f(z) where g*w = f(z)dz. In particular, note that the
dimension of S3(T") is just the genus of X which we recall is given by (9.1.2).

More generally, we can compute the dimension of M (T') and Sk (T) using the
Riemann-Roch formula, provided k& # 1. To do so, we first compute the degrees
of the invertible sheaves Gy and Fy. If T' is k-small for all k, then we find that
G‘lg’c is naturally isomorphic to G and hence (}{® oxk o Gr. Together with the
isomorphisms (12.1.4) and (12.1.3), this gives

Fr & G2 ®o, Ok
Moreover the formula (9.1.2) gives

degGr = (g — 1)k + uwg = %; deg Fy = (g — )k + ym(g —-1)= %‘ — Vsos

where g is the genus of X, p is the index of the image of T’ in PSLy(Z), and vs
is the number of cusps on X. Thus if k is negative, so is the degree of G, and
My(T) = 8(T) = 0. On the other hand, if k > 2 then the degree of Gy, is greater

than 2g — 2, so

. k [s @]
(12.1.5) dime Mi(T) = (9= Dk — 1) + Voo = %(k e “7
by the Riemann-Roch formula. Similarly, if k > 2 then
k .
(12.1.6) dime Sx(I) = (9= (k= 1) +vao(5 — 1) = 1—"2(km i "7

EXAMPLE 12.1.3. By Example 9.1.6, we see that if N > 4 and k > 2, then the
dimension of M (T'y(N)) is
N? gy N = =12
(k-1 TIA -7+ [J-p2 + w1 - Y.

pIN pIV
For the dimension of Sk(I'1(N)), change the “+” to a “—,” and if k¥ = 2 then add
1. One can write

M(T'1(N)) = Si(T1(N)) @ & (T1(N))
where £ (I'1(V)) is spanned by Eisenstein series (see §2.2) which can be described
explicitly.
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We shall briefly describe the situation when I' is not k-small. For more details,
see [Shil, §2.4,2.6] (especially Theorems 2.23 and 2.25) or [Miy2, §2.5). First
suppose that —1 & I'. Then we still have (12.1.4) and (12.1.3), but the natural map
Q’?o“‘ o Gi may fail to be an isomorphism at elliptic points and irregular cusps
of X. Computing on stalks at these points gives instead that

(12.1.7) Box* = G, ®ox Dk ®ox Ek

where Dy (respectively, &) is the sheaf of holomorphic functions with zeroes of
order at least k/2 (respectively, k/3 and k/4) at irregular cusps (respectively, elliptic
points over j = 0 and 1728). We find that if k > 2, then M has dimension
(k=05 + 6,002 + 60 + 60 G + 5

if k > 2, where u (respectively, u') is the number of regular (respectively, irregular)
cusps on X, 8,(k) = nlk/n] — k + 1 and the rest of the notation is as in §9.1. We
have a similar expression for the dimension of Sg(I'); replace “+" by “—" in the
terms involving u and u’, and add 1 if k = 2. If —1 is in T, then we assume k is even
and obtain the same dimension formulas using gf"’f“"*” = Gr ®oy &k instead of
(12.1.7); no distinction is needed between regular and irregular cusps in this case.

EXAMPLE 12.1.4. We shall now give a complete description of the modular
forms of level at most 4 in terms of the examples of §2.2.

First note that we have dim My (SL2(Z)) = [k/12]+1 for even positive k, unless
k = 2 mod 12 in which case the dimension is [k/12]. Similarly dim &y (SL2(2)) =
[k/12], unless k > 12 and k = 2 mod 12 in which case the dimension is [k/12] — 1.
One deduces that the Fisenstein series F4 and Eg of Example 2.2.1 are algebraically
independent and that &My (SL2(2)) is isomorphic to a polynomial ring in the
variables £y and Eg (see [Shil, Proposition 2.27] or [Serl, VIL3.2]).

For even positive k, My (T'1(2)) has dimension [k/4] + 1. Consider the algebra
homomorphism

¢: C[X,Y] — @eMi(T((2))
defined by X — F,, Y — E,, where F is the Eisenstein series Ey(z) — 2E»(22) of
Example 2.2.6. One can check from the explicit Fourier expansions that F# and Ey
are linearly independent. It follows that so arc F; $ and F»Ej; and therefore Eg is in
the image. The injectivity of ¢ then follows from the algebraic independence of £y
and Es, and comparing dimensions for each k we conclude that ¢ is an isomorphism.
Thus &xMy(T'1(2)) is generated as an algebra by F> and Eq.

Similarly we find that for N = 3 (respectively, 4) and any weight k £
My(I'1(N)) has dimension [k/3] + 1 (respectively, [k/2] +1). We also find that
@x(M,T1(N)) is a polynomial ring in two variables generated by the Eisenstein
series By v, and E3 n ¢ (respectively, By v . and F3), where ¢ is the quadratic char-
acter of conductor N (see Example 2.2.2 for the definition and Fourier expansion).

Finally, in each of the cases with N < 4, ©xSk (T';(N)) is a principal ideal in the
algebra of modular forms. The generators are A, (A(2)A(22))'/3, (A(2)A(32))Y/*
and Ej}.(A(22))'/2, respectively. (See Examples 2.2.7 and 2.2.8).

12.2. Cohomology.
PRIMARY REFERENCES:
[Shil, Chapter 8], [Hida3, §6.1, 6.2] and [Lang2, Chapter VI].
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‘We now turn to the Eichler-Shimura isomorphisms, which relate modular forms
to the cohomology of modular curves. We maintain the notation of the preceding
section. Again the results can be found in a somewhat different form in Shimura’s
text [Shil, §8.2]; we consider the cohomology of the curves X and Y as well as
that of the group I'. (See also [Hida3, §6.2] and [Dell, (2.10)].)

REMARK 12.2.1. We postpone until §12.4 discussion of the Hecke action on
cohomology, and we also restrict our attention for the moment to cohomology with
complex coefficients.

We begin with the case of weight two, and explain later how the results are
generalized to higher weight. Let us first consider H*(X, C) defined using singular
cohomology or, equivalently, the cohomology of the constant sheaf C on X. By
the de Rham theorem, H'(X,C) is naturally isomorphic to H},; (X). Recall that
H},y, (X) is the i*" cohomology group of the complex

0 —+ E%X) — EM(X) —E3(X) =0

where C™ denotes the sheaf of smooth complex-valued differential n-forms on X and
the map C™ — C™*! is differentiation. In particular H'(X, C) can be identified with
the space of closed 1-forms on X modulo the space of exact 1-forms. Furthermore,
according to the Hodge decomposition theorem, the natural map

HY(X) @ H*'(X) — Hpg (X)

is an isomorphism where H'?(X) (respectively, H"!(X)) is the space of holo-
morphic (respectively, antiholomorphic) 1-forms on X. Next recall that we have
identified H'(X) = H%(X, Q%) with S5(T). Note also that f ~— f(z) dz defines a
conjugate linear isomorphism S>(I') — H%!(X) and thus a C-linear isomorphism
S2(T) = H'(X) where So(T') denotes the complex vector space C ®c Sa(T), the
map C — C being complex conjugation. Thus we have a natural isomorphism

(12.2.1) S(T) @ S(T) = HY(X, C).

Moreover the cup product can be expressed in terms of the Petersson inner product
(see (12.2.6) below).

Next we consider the cohomology of the non-compact curve Y. Let U be the
intersection of ¥ with a sufficiently small neighborhood of the cusps of X. We find
that the sequence

0— HY(X,C) — H(Y,C) —» H'(U,C)

is exact, and the spaces have dimension 2g, 29 + v, — 1 and v,. We find also that
the image of H'(X,C) in H'(Y,C) coincides with that of H}(Y,C) — H(Y,C)
where H! (Y, C) is the cohomology with compact support. Note that this map is
neither injective nor surjective if ¥ > 1; we denote the image H;(Y, C).

Again we have a de Rham isomorphism H'(Y,C) = Hg (Y), but now the
natural map H%(Y, Q) ) — Hlp (Y) is not injective. (Indeed H°(Y,{}) is infinite-
dimensional over C and H'(Y, C) is finite-dimensional.) Consider instead the com-
posite

(12.2.2) My(T) = HY(X,G,y) — HO(Y,0}) — H'(Y,C)
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where the middle injection is defined using the isomorphism Gy|y = Q3 given by
(12.1.3) and (12.1.4). We thus obtain a commutative diagram

0 - &I — M) — My(l)/Sy(D)

1 d Il
0 — HYX,C) —» HY(Y,C) — HYU,C)

with exact rows. The map M3(T) — H(U, C) can be described explicitly in terms
of residues at the cusps and we find the kernel is precisely Sp(T'). Thus the last
vertical map is injective, and since the first map is injective by (12.2.1), we see
that so is (12.2.2). Comparing dimensions we conclude that we have produced an
isomorphism
(12.2.3) M) & Sa(T) = H'(Y,C)

We can also relate the cohomology of X and Y to that of the group I'. If I is

small, then ) — Y is the universal cover and hence I is the fundamental group of
Y. We therefore have a natural isomorphism
(12.2.4) HY(Y,C) = HY(T', C) = Hom(T', C).
We check that (12.2.4) holds for arbitrary I’ by passing to a small normal subgroup
I. The isomorphism H'(Y’,C) = H'(I", C) is compatible with the natural action
of I' and one checks that H'(Y, C) (respectively, II'(I', C)) maps isomorphically to
H'(Y',C)" (vespectively, H'(I",C)'). As in [Shil, §8.2] or [Hidal, §3] (but note
that we are working with coefficients in C), one can give a very explicit description
of the composite

M3(T) ®8,(T) = H'(T, C).
The form f € My(T) is sent to the homomorphism I' — C defined by

y(20)
¥ / f(2)d=

for a fixed choice of base point zy € ), and the map on S3(I') is described similarly
by integrating antiholomorphic differentials. We can also identify the image of
H)(Y,C), or equivalently of Sy(I') & Sa(I'), in H(T,C) as H(T',C), the group
of parabolic cohomology classes. If M is a -module, then we say that a class in
HY(T, M) is parabolic if its image under restriction in H'(Ty, M) is trivial for each
s € QU {oo} (or equivalently, for each s in a set of representatives for the cusps
of X), where T, denotes the stabilizer in T' of s (see [Shil, §8.1], [Hida2, §4]).
Note that HIE (T',C) can be identified with Hom(T'/N, C) where N is the normal
subgroup generated by the I';.

Next we briefly explain how this generalizes to weight k > 2 by replacing C
with a certain (k— 1)-dimensional representation of SLy(Z). (See [Shil, §8.2].) We
let Vi, = Symm %2(C?) with an action of SLy(Z) gotten from the standard one on
C2. For f in My (T) we define a class in H(T', V&) by the cocycle

(1225) e [ (1)

Here 2 is a basepoint, v*~? denotes the image of v ® --- ® v in Symm *~%(C?)
and the integral is that of a vector-valued differential. Together with a similar
construction for antiholomorphic differentials, we obtain a C-linear map

B : Mi(T) & 8i(T) — H' (T, Vi)
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which restricts to
By : Si(I) ® Sk (L) — H (T, Vi)

THEOREM 12.2.2. B and 3, are isomorphisms.

We have already covered the case k = 2; for k > 2 we sketch a proof which
is a variant of the one presented in [Shil, §8.2]; see also [Hida3, §6.2]. First one
reduces to the case where I is small. Then 7 : § — Y is the universal cover, and
the covering group I' acts naturally on (7*V})($) = Vi where V. is the locally
constant sheaf of continuous sections from ¥ to T'\() x V4), where V4 is given the
discrete topology. Since § is contractible, the natural maps

Hi(I‘,Vk) 5 H“(Y,Vk)
are isomorphisms [Mum1, §2, Appendix]. These groups vanish for 7 # 1 assuming
k>2 Let
a: M(T) & Sk(D) — HY (Y, Vy)
denote the composite of 3 with H'(T, Vi) = H'(Y, V).

Now consider the restriction map r : H}(Y, Vi) — H (U NY,Vy) where U is
again a suitable neighborhood of the cusps of X. We find that r is surjective with
kernel H} (Y, V}) (the image of H} (Y, Vj)) and that the kernel of 7o & is precisely
Si(T") ® Sk(T'). (See [Hida2, §5] for such an argument in the context of group
cohomology.) Thus « restricts to a homomorphism

ap : Sk(D) @ Si(T) — Hy (Y, Vi)

That a and ¢, are isomorphisms follows on combining the assertions

e a, is injective;

e dimg H! (Y,Vh) = dimc Mk(l“) + dimg Sk(l“).

To prove the first assertion, we use the cup product to construct a pairing
on H}(Y,Vy) which is compatible with the Petersson inner product discussed in
§3.6. First note that I' acts trivially on Ag(V3), so the standard alternating pairing
v ®w — det(v, w) defines a [-linear map 7 : V3 ®¢ V3 — C, where C has trivial
I-action. Next one checks that there is a unique I'-linear map

e Vi® Vi = C

such that 7 (v 2 @ wk—2) = m(v ®w)*~? (using the notation introduced following
(12.2.5)). This then defines a homomorphism Vi ®c Vi — C of sheaves on Y.
The composite

H(Y, Vi) ®c H'(Y, Vi) S HX(Y, Vi @c Vi) 5 H3(Y,C) = C
induces the desired pairing ¢. Taking fi, g; € Sk(T) for i = 1,2, we find (see [Shil,
(8.2.18)])
(]2'2'6) (bk(a;o(flvgl) ® ap(f?»?z)) = Ck((fh g'l) A ('l)k‘l <f2= gl))a

where Cj # 0 depends only on k and we have written g, for 1® g; € Sk(T).
(This formula holds also for k = 2.) The injectivity of a, then follows from the
nondegeneracy of the Petersson inner product.

To prove the second assertion, note that by (12.1.5) and (12.1.6) we have

dimg My(T) + dime Sx(T) = (29 — 2 + vee) (k — 1) = =x(Y) dime(Vi)
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where x(Y) = 3" (—1)*dimec H*(Y, C) is the Euler characteristic of ¥. We can then
appeal to the Mayer-Vietoris sequence for sheaf cohomology to check that

S (=1) dime Hi(Y, Vi) = x(Y) dime (V).
and we are done since H*(Y, V) =0 for i # 1.

REMARK 12.2.3. Note that we may also regard the quotient T'\(% x V;) as a
vector bundle over Y and consider the Oy-sheaf V, = V; ®c Oy of holomorphic
sections. The map $ x C — § x Vj, defined by

(2,6~ (z6( 1))

induces a morphism (Gx_2)|y — Vj of Oy-sheaves on Y. Tensoring with Galy =
QL (see (12.1.4)), we obtain Okly — Vi @0, 0}. The restriction of a to M (T)
can then be described as the composite

Mi(T) = Ge(Y) = (Vi ®0, 0 )(Y) — H (Y, Vy),
the last map coming from the de Rham isomorphism.

12.3. The g-expansion principle.
PRIMARY REFERENCES:
[DeRa, §VIL3|, [Katzl, Chapter 1] and [Maz1, §I1.4,11.5].

We now discuss some of the theory of modular forms with coefficients in rings
other than C. Such a theory is useful, for example, in the study of congruences
between eigenvalues of Hecke operators.

Let T' = I'g(N) or 'y (N) and consider the injective map
(12.3.1) M;(T) — C[lg]]
sending a modular form to its g-expansion, i.e., its Fourier expansion at oo as
in (2.1.1). Tet M(T;Z) denote the preimage of Z[[g]|, i.e., set of elements of
M(I') with Fourier coefficients in Z. For an arbitrary ring A, we write M(T; A)
for Mg(I';Z) ® A. Since My(I';Z) — Z[[g]] has torsion-free cokernel, the map
My (T; A) — A[[g]] obtained by tensoring with A is also injective. We define
S(I'; A) similarly using cusp forms, and we identify it with an A-submodule of
Mg(T; A). (Note that Sk(T;Z) = My (I; Z2) N Si(1).)

Let us naively call M(T'; A) (respectively, S¢(T'; A)) the A-module of modular
forms (respectively, cusp forms) with coefficients in A. The definition is naive in
that we have not shown that M (I'; Z) contains bases for M, (T') and S, (T"), and we
need this in order to identify My (I'; C) with M (T'). The existence of such bases is
due to Shimura; see [Shil, Theorem 3.52] for the case of Si(I") with k > 2. Here,
however, we shall explain how to deduce the general result from the g-expansion
principle of Deligne-Rapoport [DeRa, §VIL3] and Katz [Katzl, Chapter 1] (sce
also [Katz2, Chapter 2]).

The injectivity of M(T; A) — A[[¢]] may be viewed as a naive version of the g-
expansion principle. To state a more powerful version, we need an algebraic notion
of a modular form with coefficients in an arbitrary ring A. We begin by regarding
the sheaves Gy (see §12.1) as arising naturally in the context of the moduli problems
discussed in §7.2 and §8.

For simplicity, we restrict our attention for the moment to I'y(N) with N > 4.
Recall from §8.2 that there is a universal elliptic curve with a point of order N
over the model Y, (N) for ¥1(N) = I'1(N)\£. In the consideration of g-expansions
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it is more convenient to use the model Y, (N) of Variant 8.2.2. Let £univ now
denote the universal elliptic curve (over Y, (N)), and éuniy the canonical immersion
(@ N))F,l (&) = Euniv- We let Eyyiy denote the complex points of Euniy ; thus Euyniy
is a complex analytic family of elliptic curves over Y3 (N). We choose ¢*™/Y as our
Nth root of unity and let Pyniv : Yi(IN) — FEuniv be the corresponding family of
points of order N given by tyniv -

We can describe E,,iv and Pu,. concretely as follows. Define a right action
of ZxZ on H x C by

(z,¢) - (myn) = (2, + mz +n)

for m,n € Z, z € § and ( € C. The quotient is naturally a family of elliptic curves
over 9, and z +— (z,1/N) defines a family of points of order N. Now define a left
action of T';1(N) on the quotient so that v = ( 4 4 ) sends the orbit of (z, () to

d
that of (y(2), (cz +d)~'¢). The quotient
Li(NV\((9 x C)/(Z x 7)),

viewed as an elliptic curve over Y; (/) can be identified with £,,,;, , and the section
defined by z — 1/N can be identified with P,;, .

The line bundle Gily,(n) on Yi(N) (see §12.1) can now be identified with
restriction along the zero-section of the relative cotangent bundle of E.,. over
Y1(INV). To make this identification precise, note that the latter bundle is canonically
(12.3:2) T (N\(H x V),
where V' is the cotangent space of C at the origin and the action of y = ( ! 3 )
on $ x V is given by (z,d() — (¥(z), (cz + d)d¢). We identify this with G1|y, (v
via

(2,€) & (z,2migd().

We can extend the moduli-theoretic description of G; to the cusps by consid-
ering the universal generalized elliptic curve with an immersion of p, (see Variant
9.3.6). Again denote the universal curve £,niy (now over X, (N)) and consider its
complex points; these form a complex analytic family of generalized elliptic curves
Eyuniv over X1(N). We can again give a concrete description of E,.;, ; in partic-
ular, its fiber over the cusp I';(NN) - oo is simply C/Z, the point of order N being
1/N mod Z. The description of Euniv in these terms near other cusps is slightly
more complicated (see §9.3 and [DeRa, VII.4]), and we will not go into detail here.
However, the cotangent bundle of E,;, over X;(N) restricted to the zero section
depends only on the identity component, and can again be identified with G;.

An advantage of the moduli-theoretic description of G is that the base need not
be C. Indeed we can construct an invertible sheaf on &),(IV) which is a “canonical
model” for the line bundle G,. Let w denote the pull-back along the zero section
X, (N) — Euniv of the sheaf Q}T.m-w 1R, (N)" Then w is an invertible sheaf on &, (N),
and the complex analytic sheaf on X; (V) associated to we can be identified with
the sheaf we denoted G; in §12.1. We also have w®* as a model for Gx. The
Gauss-Manin connection yields an isomorphism

(12.3.3) w2y, ) = By, vz

(see [DeRa, §V1.4.5], [Katzl, Al.3] and [Schl, 2.4]). Moreover the complement
of Yu(IN) in X, (N) defines a divisor Z,(N) and we write £ for the corresponding
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invertible sheaf on &),(/V). Then (12.3.3) extends to an isomorphism
@2 1
(12.3.4) W20 ®L

The isomorphism is compatible with that of (12.1.4) and allows us to regard
w2 @ O, (n)/z a5 a model for F.

For an ar%itra.ry ring A, we define a modular form over A (of weight k with
respect to I'y(NV)) to be an clement of

HO(X,(N)a,w3").
Similarly, we define a cusp form over A as an element of
HY(X,(N) 4,052 @ D, (N)a/a)-

We write M (T';(N); A) for the A-module of modular forms over A. We write
Sk(I'1(IV); A) for the cusp forms which we regard as a submodule of M, (T'; (N); 4)
via (12.3.4).

REMARK 12.3.1. Note the terminology over A to distinguish this from the
naive definition of modular forms with coefficients in A.

Identifying Gr. with the complex analytic sheaf associated to wE*, we obtain
natural isomorphisms

(12.35)  My([1(N);C) 2 My(T1(N));  Sk(T1(N); C) & Si(T4(N)).

Base change arguments (see [Katz1, §1.7] and [Maz1, I1.3]) together with Theorem
9.3.7 yield the following result.

THEOREM 12.3.2. If B is an A-algebra and either of the following hold
s B is flat over A;
e k> 1 and N is invertible in B,
then the natural maps
Mp(I'1(N); A) @4 B — My (T1(N); B);
Si(T1(N); A) @4 B — Si(T1(N); B)

are isomorphisms.

REMARK 12.3.3. The definition we have given for a modular form over A is
most convenient for the applications below. However it is not necessarily the most
suitable if, for example, A is a field of characteristic p dividing N. Moreover we
have restricted our attention here to I'y (N) with N > 4. For discussion of various
notions of modular forms over a ring A, base-change and g-expansion in a more
gencral context, see [DeRa, VIL3], [Katzl, §1.7, 1.8], [Katz2, §I1.2.2], [Maz1,
I1.4] and [Gross, §10].

We now explain how Deligne and Rapoport’s algebraic description of the cusps
allows us to define the g-expansion of a modular form over A. More details can be
found in [DeRa, VIL3] and [Katz1, A.1.3]. See also [Gross, §2] for statements in
the context of modular forms with respect to 'y ().

In our discussion in §9.3 of the work of Deligne-Rapoport, [DeRa], we described
how the cusps of X;(N) correspond to degenerate elliptic curves. Moreover we
indicated how Tate curves can be used to describe the completion of X; (N) along
D, the cuspidal divisor. However in the present discussion we shall continue to use
the models discussed in Variant 9.3.6.
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Now consider the point s, of A, (N)(Z) arising from the generalized ellip-
tic curve P! (over Z) with its canonical embedding of fz)y. The image of s in
Xu(N)(C) = Xy(N) is the cusp we have identified with I';(N) - co. The map
SpecZ — X),(N) is a closed immersion, and we write X,,(N) for the completion of
X, (N) along the image. The Tate curve E, over Z[[g]] has a canonical immersion
of pp so that the composite

SpecZ — Spec Z[[q]] — &, (N)

is $o0, where the first map is the closed immersion defined by g ~— 0. This gives
rise to a morphism of formal schemes
Joo : SPEZ[[g]] — Xu(N),

which is in fact an isomorphism (see [DeRa, VIL.2|). Moreover the isomorphism
identifies the completion of w with the sheal on Spf Z[[g]] corresponding to the
Z[[q]}-module e*QlEq /zijq» Where e is the zero section of E,. But this is a free
Z[[q]]-module with a canonical generator denoted we,, in [Katz1, A.1.3]. Using
w@h as a generator for the completion of w®* and working over an arbitrary ring
A, one obtains the g-expansion homomorphism

(12.3.6) $oo,4 : Mi(T1(N); A) — Allg]].

The restriction to Si(T'1(N); A) maps to gA[[g]]. The maps ¢, 4 are functorial in
A, and in the case A = C, this becomes the usual g-expansion at 0o in (2.1.1):

We now state the g-expansion principle of [DeRa, Theorem VIL3.9] in our
context. It is proved using Theorem 9.3.7 and the arguments of Deligne-Rapoport
or Katz, [Katzl, §1.6].

THEOREM 12.3.4. 1. The g-ezpansion homomorphism ¢4 . is injective
for every ring A.
2. If A is a subring of B, then the commutative diagram

Mk(rlfN),A) g A[l[qn
Mi(Ty(N),B) *% B[q]

is Cartesian; i.e., the image of My(T'1(N); A) in My.(T1(N); B) is precisely
the set of modular forms whose q-ezpansions at co have coefficients in A.
3. The above assertions hold with M, replaced by Sy.

The first part of the theorem states that a modular form over A is deter-
mined by its g-expansion at co. The second part of the theorem shows in par-
ticular that the image of M (T'1(N);Z) in Mg (I'1(N); C) = Mi(T1(N)) is pre-
cisely My(T'1(N);Z). More generally if R is a subring of C, we may identify
M (T'1(N); R) with the set of modular forms whose Fourier coefficients at oo lie in
R. Analogous statements hold for cusp forms by the third part of the theorem.

REMARK 12.3.5. For each cusp s of X;(N) and Z[1/N, e™/N]-algcbra A, one
can define a corresponding g-expansion homomorphism ¢; 4 with values in A[[g"/"]]
(for suitable h). One then obtains the analogue of Theorem 12.3.4 (see [DeRa,
§VIL3]). In particular, if f is in Mg(T1(N), A), then its g-expansion ¢, 4(f) is
identically zero for some cusp s if and only if it is identically zero for all cusps s.
We have also that if the g-expansion at one cusp has coefficients in a Z[1/N, €27/~ -
subalgebra B of A, then so does it at all cusps.
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An element of M (I'1(N); A) is in Sg(T'y(V); A) if and only if the constant
term of the g-expansion vanishes at all cusps.

For f € My(I'(N);Z) C My (I'1(N)), it need not be the case that the Fourier
expansions have integer coefficients at cusps other than I'; (N) - co. One can show
however that the denominators of the coefficients of ¢, a(f) € Z[1/N, e*"/N][[q]]
are bounded. (See [DeRa, Corollary VII.3.11], [Katzl, A.1.2].)

REMARK 12.3.6. Had we used the model &1 (N) for X (N) of §9.3 rather than
that of Variant 9.3.6, the cusp I'1 (V) - co would not be defined over Q. We would
then have had to restrict our attention throughout to algebras over Z[1/N, e2™/N|,

We now record some consequences of the g-expansion principle. First, we com-
bine Theorem 12.3 4 with Theorem 12.3.2 {o obtain the following.

THEOREM 12.3.7. The natural maps

Mi(Ty(N); A) —  Me(T1(N); A);
Sk(T1(N);A) —  Sp(T1(N); A)

are wmjective, and are isomorphisms provided one of the following holds

o A is flat over Z;
e k> 1 and N 1is invertible in A.

Note especially that this holds if £ > 1 and A is a field of characteristic prime
to N. (Recall that we are assuming N > 4.)
Note also that Theorem 12.3.7 holds if A = C yielding the following corollary.

COROLLARY 12.3.8. For all positive integers N and k, the space My(T'1(N))
(respectively, Si.(T'1(N))) has a basis in My (T'1(N); Z) (respectively, Si(T1(N); Z)).

Note that we have removed the assumption that N > 4. Indeed Example 12.1.4
shows that for N < 4, the spaces are spanned by monomials in forms with integer
Fourier coefficients (see (2.2.5) and Example 2.2.7).

COROLLARY 12.3.9. Suppose that f =3 a,q" is in My(T1(N)) (respectively,
Sk(T'1(N))) and o is an automorphism of C. Then there is a form f7 in My (T (N))
(respectively, Sk(C1(N))) with Fourier expansion ¥ a%q™.

This follows from Corollary 12.3.8, or in case N > 4 directly from the g-
expansion principle Theorem 12.3.4 applied to o : A — B with A = B =C.

COROLLARY 12.3.10. Suppose that k > 0 and f = 3" ang™ is in My(I'1(N)).
Let K be the the subfield of C generated by {an |n > 0}. Then ap is in K.

The proof is as follows ([Shi6, Proposition 1.3]). If ¢ is a field automorphism
of C fixing K, then the constant a§ — ag = f” — f is in M (T'1(N)) and hence is
equal to 0.

Again assume that N > 4 and let £,,;, denote the universal generalized elliptic
curve over X, (N) with immersion iyny of py. For d in (Z/NZ)*, we denote by
(d) the automorphism of &),(N) corresponding to the pair (Euniv , @iuniv ). Then {(d)
is a model over Z for (d) : X,(N) — X;(N). Moreover we may identify (d)*w with
w and thus obtain an action of (Z/NZ)* on

Mi(T1(N); Z) = HO(AL(NV), w®*).

More generally we can define in this way actions of (Z/NZ)* on My(T1(N); A)
and S;(I';(N); A) for arbitrary A. The action is functorial in A and respects the
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inclusion of Sg(T';(N); A) in Mg(T1(N); A). Moreover it is compatible via (12.3.5)
with the action of (Z/NZ)* on My (T (N)) of the opcrators denoted (d)x in §2.1.
In particular, it follows that

ProposiTiON 12.3.11. 1. The subsets My(I'1(N);Z) and Si(I'(N); Z)
are preserved by the operators (d) for d € (Z/NZ)*.

2. If f is in My(N,€), then f° is in My(N,e%), where f¢ is defined in Corol-
lary 12.3.9 and €° denotes g oe.

The second assertion follows from the fact that (d)x commutes with f — f7.
Note that both assertions hold for all N > 1, since for N < 4 each (d) acts by +1
on My (T';(N)).

Now consider the “trace” map

3 (dhe s Me(T2 (V) = My(To(IV).
de(Z/NZ)*
The map is surjective as its restriction to My (I'o(N)) is multiplication by ¢(N) =
|(Z/NZ)*|. By Proposition 12.3.11, we see that M(I';(N):Z) is mapped to
M, (To(N); Z) = My (T1(N); Z) N Mg (To(N)). The same assertions hold for cusp
forms and we deduce the following from Corollary 12.3.8.

COROLLARY 12.3.12. Let T' = I'¢(N) or I'y(N) with N > 1. Then M(T)
(respectively, S.(T')) has a basis in My(T;Z) (respectively, Si(1; Z)).

This holds also for T' satisfying I'1(N) € I' C I's(N). One also finds that
the spaces M, (N,e) and S;, (NN, ) are spanned by forms with g-expansions in Ze]
where Z[g] denotes the ring generated by the values of .

12.4. Hecke action.
PRIMARY REFERENCES:
[Shil, Chapters 3,8], [Dell, §3] and [Hida3, §6.3].

For f in My (T1(N)) and n > 0, let us write a,, (f) for the nth Fourier coefficient
in the g-expansion of f at co. For each positive integer m, Proposition 3.4.3 gives

(124.1) an(Tmf) = Y 8"ty () 1),

the sum being over positive divisors d of (m,n) which are relatively prime to N.
So by Proposition 12.3.11, we have

PROPOSITION 12.4.1. Lel k, N and m be positive integers, and let T' = To(N)
or Ty(N). If f is in My(T; Z), then so is T,,.f, and similarly for Si(T; Z).

REMARK 12.4.2. Note that we do not need to appeal to Proposition 12.3.11
in the case of I' = I'y(N); indeed Proposition 12.4.1 is immediate from (12.4.1).

Let T be as in Proposition 3.5.1, i.e., the subring of End M, (I") generated by
the Hecke operators T}, for all m > 1, or equivalently by the {T},(g)x} for all
primes p and all primes q /N. By Proposition 12.4.1 we may regard M (I'; Z) as a
T-module. Thus for an arbitrary ring A, we may regard

Mi(L'; 4) = My(T32) © A
as a T @ A-module.

Appealing to Corollary 12.3.12, we see that the map T — End M (I;2) is
injective. Therefore
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COROLLARY 12.4.3. The ring T is a finitely generated free Z-module.

REMARK 12.4.4. See the discussion following Proposition 12.4.10 for an alter-
nate proof in the case k > 2 using the Eichler-Shimura isomorphism.

The result has the following application to Hecke eigenvalues. (See for example
[Shi1, §3.5] or [Shi3, §1].) Suppose that f € My (L") is a simultaneous eigenform
for the operators in T and consider the eigencharacter  : T — C defined by
fIT = 0(T)f. The image of the ring T in C is finitely gencrated as a Z-module,
hence is contained in the ring of algebraic integers of a number field. Moreover, for
o € Gal(Q/Q) and d € (Z/NZ)*, it follows from (12.4.1) and the compatibility of
[ f7 with f — (d) f that T,,,f7 = (T;,.f)°.

COROLLARY 12.4.5. Let k and N be positive integers and & a mod N Dirich-
let character. Suppose that f = Y ang™ is a normalized eigenform in M;.(N,e)
(respectively, Sx(N,¢)) for the Hecke operators Ty, for all n > 1. Then there is
a number field whose ring of integers contains the Fourier coefficients a, for all
n> 1. For o € Gal(Q/Q), the form f° is a normalized eigenform in M(N,e°)
(respectively, Sk(N,&%)) for the operators T, for all n > 1. Moreover if fisa
newform, then so is f°.

REMARK 12.4.6. If f is a newform then the field K generated by the eigen-
values a,, is either totally real or CM (i.e., a totally imaginary quadratic extension
of a totally real field). This follows from [Shil, Proposition 3.56] (see [Shi8, §1] or
[Shi5, Lemma 2]).

REMARK 12.4.7. If I is an ideal of a ring A, we say that two forms f and
g in M(T; A) are congruent mod [ if their images in My (I; A/I) coincide, or
equivalently, if the coefficients of the associated g-expansions 3 650" D bag™
Al[q]] satisty a,, = b, mod I for all n > 0.

Most interesting is the case where A is the ring of integers of a number field
and f and g are eigenforms for the action of the Hecke operators. The study of such
congruences arises naturally in the context of the associated Galois representations
(see Remark 12.5.5) in the recent work of Ribet [Rib4] and Wiles [Wil2]. For
earlier work on the subject, see for example [Ser2], [SwDy|, [Katz1], [DoOh],
[Hidal] and [Rib3].

‘We shall now describe the natural action of the Hecke operators on some of the
objects we related to modular forms in the preceding sections.

Let us first consider the case of cusp forms of weight two with respect to I' =
T'y(N) or To(N). Let A denote the corresponding semigroup A;(N) or Ag(N)
in the notation of §3.1. Let X = I'\®*. For § in A, we write I'* for [' N 676!
and X% for X = I'"\$*. (Recall from §3.2 that Ts denotes §~'T6 N I.) Let
m: X% — X be the canonical projection. and let 75 : X* — X be the map induced
by z + §~'2. Recall that the isomorphism (12.1.4) identifies ; with the sheaf 0
of holomorphic differentials and hence S3(T") with H(X, 2}). The Hecke operator
T4T on the space Sy(T) is then given by

(12.4.2) HO(X, Q%) — HY(X?, QL) = HY(X, QL)

the first map being the pullback 7, the second being the trace 7., on differentials.
(See [Shil, (7.2.6)].)
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REMARK 12.4.8. Recall that for I' = I';(N) with N > 4, we gave in §12.3 an
algebraic definition of the A-module of modular forms over A, denoted My (T'; A).
According to theorem 12.3.7, the natural inclusion M (T; A) — M (T; A) is an
isomorphism under suitable hypotheses. Hence M (T'; A) inherits an action of the
Hecke operators.

Recall that we have already given a geometric description of the action of the
operators (d) on My(I'; A), and it is compatible with the one on My(I'; A). One
can do this also for the operators T}, at least if p is invertible in A; see [Katz1,
§1.11].

Now we discuss the Hecke action on the cohomology groups considered in §12.2
(see [Shil, §8.3]).

Recall that in the case of weight k = 2, (12.2.3) and (12.2.4) related H'(T', C)
to the space of modular forms with respect to I'. We now consider H' (', Z) and
define on it an action of the abstract Hecke ring R(T', A). For § € A, we define an
endomorphism of H'(T,Z) as the composite

(12.4.3) H\(T,Z) — HY(T%,Z) - H'('5,Z) » HYT, Z)

where the first map is restriction, the second is gotten from conjugation by § and
the last is the transfer (or trace) map. The map depends only on the double coset
T'éT, and the image of a class z is denoted z|(T'6T) (see [Shil, §8.3], [Hidal, §3]).
Extending linearly, we obtain the desired action of R(I', A).

Recall that for & > 2, we let V,. denote the I-module Symm E‘Q(Cz). Now
consider My = Symm Ji'fz(Zg) with its action not only of I', but also of A. Tor
a double coset 6T in R(T', A), we define an endomorphism of H'(T', M) by a
composition generalizing (12.4.3), but let us instead give a more explicit description
of the endomorphism

HYT,My) — HYT, M)

(244) % —  x|(T6T)

following [Shil, §8.3]. We let u be a cocycle representing = and we decompose ['al’
as a disjoint union of I'é; withi=1,... ,r. Now for v € T and for each i, we have
Ei'yéjf(}) €T for some j(i). We then define a map v : ' — M by

o] = 25 u(®:yé(;),

where ¢ is the main involution of M3(2), i.e., the anti-involution defined by 3+ 3 =
(tr B)I. Then v is a cocycle and its cohomology class depends only x and the double
coset T'6T; we define z|(I'6T) to be this class.

One finds that the action of the double cosets extends linearly to define an
action of the Hecke ring R(T',A), and that H}(T, M) is preserved by R(T,A).
(See §12.2 for the definition of the parabolic cohomology groups H;(I‘,Mk).)

REMARK 12.4.9. In the situations where the group cohomology can be identi-
fied with a cohomology group for the modular curve, the double coset operator has
a description analogous to (12.4.3). (See [Hidal, §3}

In particular, for k = 2 we may identify (12.4.3) with the composite

7"6‘

(12.4.5) HY(Y,2) 5 H\(Y®,Z) ™ H\(Y,Z)
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where ¥ =T'\§ and Y% =I'*\#. This works also using the compactified curves to
describe the action on H}(T,Z).

For k > 2, assume I' = T'y(N) with N > 4. Then the maps 7 and ms are
covering maps and there is a canonical isomorphism

HY(T, M) = H'(Y,M)

where M is the locally constant sheaf of continuous sections ¥ — T'\(§ x M;).
Writing M? for the corresponding sheaf on Y%, x — z|(Tal') becomes

(12.4.6) HY(Y,M) - H(Y*,M?) — H'(Y?,m;M?®) — H'(Y, M),

where the maps are defined as follows. The first map is just 7* together with the
canonical identification of 7*M with M®. The second map is given by a map on
sheaves defined by 6. The last is a trace. Combined with a similar construc-
tion for cohomology with compact support, one obtains also a description of the
endomorphism T6T" on H} (T, Mj,).

We can similarly define an action of R(T', A) on H!(T, V;) preserving H; (T, V&)
(and indeed on H'(T, M; ® A) for any abelian group A). The action is compatible
with the canonical maps

HI(P:MIC) =3 Hl(rka)®C = Hl(Fvvk)
H) (T, M) — HYD,Mp)®C = HL(T, V).

More importantly, we have (see [Shil, Proposition 8.5])

PROPOSITION 12.4.10. The Eichler-Shimura isomorphisms 8 and Bp of The-
orem 12.2.2 are compatible with the action of R(T, A).

This gives another proof, due to Shimura [Shil, §3.5], of Corollary 12.4.3 in )
the case k > 2. Indeed H'(T, My,) is finitely generated (using for example that T
has a subgroup of finite index which is a finitely generated free group). Thus the
image of R(I',A) in End H(T', M) is finitely generated. Now observe that T is a
quotient of that image.

REMARK 12.4.11. We note a variant in the case k = 2 which makes use of an
important observation. Recall that the Jacobian J = J;(N) (respectively, Jy(N))
of X = X;(N) (respectively, Xo(N)) can be identified with Hom(W, C)/L, where
W = H°(X, Q}(/c) and L is the image of H, (X, Z) in Hom(W, C) under the canon-
ical map defined by integration (see §10). We have explained how the modular cor-
respondences on the curve X give rise to endomorphisms of .J; in fact they define
an action of R(T', A) =2 Ty on J. This in turn defines an action of Ty on Cot o(J),
the cotangent space of J at the origin, and this space is canonically isomorphic to

HO(J, Q}I) = HD(Xv Qﬁ() = SZ(F)
(see §12.1). The action of Ty on S(I') is precisely the one we first considered in
§3.4. Moreover, the map End J — End (Cot oJ) is injective. We may thus identify
the image T of Ty in End 8(I") with the image of Ty in End J. As the latter is
finitely generated over Z (indeed it can be identified with a subring of End L), so
T is also finitely generated.

REMARK 12.4.12. The description of the Hecke action on the cohomology of
modular curves extends to the adelic setting (see Remark 11.1.1). It is then natural
to consider the direct limit of cohomology groups of X over all open compact
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U c Gf. Using coefficients in compatible systems of sheaves, the direct limit is
an admissible Gg-module which can be related to the ones considered in §11. See
[Del1, §3].

We next consider the structure of some of the Hecke modules we have been
discussing. We restrict our attention to the context of cusp forms, fix a weight k > 0
and group T' = I'o(N) or I';(N). We let T denote the image of T in End Si(T).
(Recall from Proposition 3.5.1 that if £ > 1, this coincides with the image of Ty,
and is thus consistent with the notation of Remark 12.4.11.) Now regard Sk(I'; A)
as a module for T ® A using Proposition 12.4.1.

PROPOSITION 12.4.13. For every A, Si(T'; A) is isomorphic to Hom4(T, A).

This is proved in the case A = Z by showing that (f,T) — a;(f|T) is a perfect
pairing; the general case follows on extending scalars. (See [Shil, §3.5] and [Rib2,
§2.)

Recall that we use Si(I') to denote the complex vector space Si(I') @ C where
the map C — C is complex conjugation. For g € Si(I') we write g for g® 1 in
Si(T"). Then the C-linear pairing (f,g) — (f,Wng) defines an isomorphism of
T ® C-modules

Si(T') = Homg(8x(T), C)
(see §4).

Moreover S (T') is isomorphic to Sk(T') as a module for T ® C as each is iso-
morphic to Si(I'; Z) ® C. Hence Si(T') is also free of rank one over T ® C. In fact,
an explicit generator is given by

M
M
2D thumds
M|N j=1
in the notation of Remark 6.3.4.
We thus have

PROPOSITION 12.4.14. If A is a field of characteristic 0, then Si(T'; A) is free
of rank ane over T® A. If k > 2, then HY(T, M;) ® A is free of rank two over
T® A.

In the case A = C, this follows from the above discussion together with the
Eichler-Shimura isomorphism (Theorem 12.2.2) and its Hecke compatibility (Propo-
sition 12.4.10). The general case then follows from that of A = C.

We close the section with a brief discussion of the structure of the Hecke ring
T. Since T ® Q is a finitely generated Q-algebra, it canonically decomposes as the
product

(12.4.7) TeQ=][[T
P

of its localizations at minimal prime ideals p. These are the primes ideals p of T
such that p N Z = 0. Writing Q for the field of algebraic numbers in C, each such
p is the kernel of a homomorphism T — @, determined up to Galois conjugacy. In
turn, each such homomorphism is realized as an eigencharacter 8¢ for a unique nor-
malized eigenform f in Si(I') (see [Shil, Chapter 3]). Thus the factors in (12.4.7)
correspond to Galois conjugacy classes of normalized eigenforms (see Proposition
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12.4.5). Proposition 12.4.13 provides more information about the structure. Tt
implies the existence of a (non-canonical) isomorphism

(12.4.8) T ® Q = Homg(T, Q)
and hence
(12.4.9) Ty = Homg(T,, Q).

Similarly T ® Z, is a product of local rings (T ® Z;)n, where m runs through
the maximal ideals of T containing £. These maximal ideals are in one-to-one
correspondence with Gal (F;/F,)-conjugacy classes of normalized T-eigenforms in
Si(I';Fy). (Recall that S (T;Fe) is defined as Si(I';Z) @ Fp. We thus obtain a
natural action of Gal (F¢/F¢) as well as a g-expansion map to Fy[[g]]. As usual,
normalized means that the coefficient of ¢ is 1.)

The factor (T ® Z¢)m, may be identified with Ty, the completion of T at m.
It is a finite flat Z,-algebra and T, ® Q, can be identified with the product of
T, ®q Q¢ where p runs over the minimal primes contained in m. Two minimal
primes p; and py are contained in the same m if and only if the corresponding
eigenforms are, up to Gal (Q/Q) conjugacy, congruent modulo a prime over £ (in
the sense of Remark 12.4.7).

REMARK 12.4.15. The rings Ty, thus contain information about congruences
between modular forms. Their structure, much finer than that of the rings Ty, plays
an important role in the work of Wiles [Wil2]. Ienceforth in this remark we restrict
our attention to the case k = 2; this is the case with which Wiles is concerned and
in which the structure is best understood. Combining the g-expansion principle
with properties of the Jacobian, Mazur [Maz1, §9,14,15] proves the analogue of
(12.4.9),

(12.4.10) Tm = Homgz, (Tm, Z¢),

under certain hypotheses. The result has since been generalized by several authors;
see Remark 12.5.7 for a brief discussion of Mazur’s method and the hypotheses
required. The existence of such an isomorphism (12.4.10) is known to be equivalent
to the ring Ty, being Gorenstein. An even stronger ring-theoretic property of Ty,
is established by Taylor and Wiles [TaWi] under certain hypotheses. This stronger
property, that Ty, be a complete intersection, was a crucial ingredient in Wiles’
proof of the Shimura-Taniyama-Weil conjecture for semistable elliptic curves.

12.5. f-adic representations.
PRIMARY REFERENCES:
[Shil, Chapter 7], [Dell], [Ser3, Part I] and [Cara, §0].
In this subsection we discuss how Galois representations are attached to mod-
ular forms.
Let k and N be positive integers. Let f be an element of S;(I';(/N)) which is
a normalized eigenform for the Hecke operators in Ty . Recall that this is the ring
generated by the operators T, for all primes p, and S}, for all primes p not dividing
N. Let K be a number field containing Ky (the field generated by the eigenvalues
of these Hecke operators acting on f), and let O be its ring of integers. Let ¢ be
the Nebentypus character, and write 8 for the eigencharacter Ty — K defined by
the action on Cf, Le.,
I, — ap(f)
S, — pF2e(p).
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A construction due to Shimura [Shil, Chapter 7] for k = 2, Deligne [Dell] for
k > 2, and Deligne and Serre [DeSe] for k = 1, attaches to f a certain compatible
family of /-adic Galois representations. This family consists of representations

(12.5.1) p : Gal (Q/Q) — GLy(K))

indexed by the primes A of K. Each py is characterized up (o isomorphism by the
following

® p, is continuous and unramified at primes p not dividing N where /£ is the
rational prime which \ divides;

e for each prime p not dividing NZ, the characteristic polynomial of py (Frob )
is

(12:5.2) X2 - 6(T,)X + pb(S,).

The determinant of py is thus ex;f’l, where x; denotes the fth cyclotomic
character. (We have used e to denote the finite order character of Gal(Q/Q)
corresponding to the Dirichlet character €.) In particular, py is odd in the sense

that det px (¢) = —1 for any complex conjugation c.

REMARK 12.5.1. Our convention here is that Frob , is an arithmetic Frobenius
element at p. To obtain such an element, choose a preimage in o, € Gal (QP /Qp)
of the Frobenius automorphism of the residue field F,. Now choose an embedding

Q — Q, and let Frob, be the image of o, under the inclusion

(1253) Gal (Q,/Q;) — Gal (Q/Q)-
The conjugacy class of py(Frob,) is independent of the choice of such an element.

REMARK 12.5.2. The term “compatible” refers to the fact that for primes p
not dividing N, the characteristic polynomial of p)(Frob,) for A is independent of
the prime A not dividing p. (See [Del3, §9].)

REMARK 12.5.3. The representation depends only on the newform associated
to f, and thus can be viewed as arising from the corresponding automorphic rep-
resentation.

Using the continuity of py and the compactness of Gal (Q/Q) we find that
there is a lattice in K} stable under the action of Gal (Q/Q). This lattice yields a
representation

Gal (Q/Q) — GL2(0);

reducing mod A, we obtain
Gal (Q/Q) — GLa(F)

where F is an algebraic closure of @/). The isomorphism class of the representa-
tion so defined is not necessarily independent of the choice of lattice. However its
semi-simplification is independent of the choice, and we denote it py. It may be
characterized as the unique continuous semisimple representation unramified out-
side N such that for all p /IN¥, the characteristic polynomial of f(Frob p) is given
by (12.5.2) mod A.
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REMARK 12.5.4. The representations py are known to be irreducible [Rib1,
Theorem 2.3], but p) may be reducible. One is particularly interested in the ir-
reducible p). Serre has conjectured [Ser4] that all continuous, odd, irreducible
representations

Gal (Q/Q) — GLy(F;)
arise from modular forms by the above construction. See H. Darmon’s article in
this volume.

REMARK 12.5.5. Consider two eigenforms f; and f2 as above, with weights k;
and k2 and levels N; and N», and let X be a prime of a field K containing Ky, Ky, .
From the above characterization of 7, we see that the associated representations
p1,x and pa 5 are isomorphic if and only if a,(f1) = a,(fz) mod A for all integers
n relatively prime to Ny Nof.

Now we briefly explain the construction of the representations P in the case k =
2 (see [Shil, §7.6]). The construction proceeds by considering the Jacobian J1(N)
of the modular curve X;(N). Let J;(N)[£"] denote the kernel of multiplication by
£ in J1(N), and let Tas(J;(N)) denote the f-adic Tate module of J1(N), i.e.,

lim J, (N)[£"]
where the maps used to define the inverse limit are multiplication by £. Then
Tag(J1(N)) is a free Zy-module of rank 2g where g is the genus of X1(N). The
action of T on J1(N) induces an action of Ty on Tas(J;(N)). Moreover the
action factors through T, which acts faithfully on J; (V) and hence on Ta(J; (N )
(see Remark 12.4.11). One checks also that
Wi(J1(N)) = Tay(J:(N)) @z, Q¢

is free of rank two over T ® Q. Indeed this is a variant of Proposition 12.4.14
provided by the canonical isomorphism between H;(X;(N), Z;) and Tag(J1(N)).

Next we consider the Galois action on J; (V). Recall that X, (N) has a canon-
ical model over Z[1/N] which we denoted A;(N). Its Jacobian J = J; (NMz/n
is an abelian scheme over Z[1/N], and is a model for J;(N). We may thus iden-
tify J1(NV)[¢"] with J(Q)[£"] and obtain an action of Q on J1(N)[€"], hence on
Tay(J1(N)) and hence on W,(J;(N)). Moreover, the existence of models for T,
and (g) as endomorphisms of .7 shows that the action of Gal (Q/Q) on W;(J;(N))
is compatible with that of T.

We are now ready to define py as the representation on the K,[Gal (Q/Q)]-
module

We(J1(N)) ®13q, Ka,

where the map T ® Q; — K, is defined by the eigencharacter 6.

To see that px has the desired properties, we use the Eichler-Shimura relation.
If p is a prime not dividing N, then Jg has good reduction at p. Moreover we can
consider the finite flat group scheme J[¢"]z,, the kernel of multiplication by £ on
Jz,. If p # £, then this finite flat group scheme over Z, is etale, and the natural
maps

TENQE™) — Te|(Z3) — TE|(F,)

are isomorphisms ([SeTa, Lemma 2]). The isomorphisms respect the action of
Gal (-Qp/ Q,), which factors through that of Gal (F,/F,). Moreover the isomor-
phisms and Galois action are compatible with the action of the Hecke operators.
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Now recall the Eichler-Shimura relation (10.2.3)

(12.5.4) T, ¥, = Frob + (p)r,, . Ver,
which we presented as an identity of endomorphisms of Jr,. Since the endo-
morphism Frob induces Frob, on points, and since Ver Frob = p, we obtain the
equation

T, = Frob,, + (p)pFrob
on J[t*|(Fp) = J[£"](Q,). The equation

Frob 2 — T,Frob , + p(p)
follows, and then so does the formula

px(Frob,)? — 0(Z;)pa(Frob ) + pA(S}).

One can use the Weil pairing to show that Frob, and (p)pFrob ;' have the same
trace and deduce that this in fact the characteristic polynomial.

REMARK 12.5.6. As a variant (see [Shid, Theorem 1]), we could let p = ker 8
and consider the quotient A = J;(N)/pJ1(N). Then A is an abelian variety defined
over Q and the action of T on Ji(N) induces onc of T/p on A. Let K = K and
identify T/p ® Q with K via #. Then we find that; the dimension of A is [K : Q].
Moreover Ta;(A)®z, Q¢ is free of rank two over K ® Q. Thus it can be written as a
product over the primes A of K dividing £. The factors, viewed as K, [Gal (Q/Q)]-
modules, give rise to the representations pa.

Note that in the case that f has rational coefficients, K equals Q and A is an
clliptic curve.

REMARK 12.5.7. We can now say a little more about the hypotheses and proof
for (12.4.10). First assume that ¢ does not divide 2N, and that py is irreducible.
Let m be the the preimage of A under § : T — O, and let F = T/m. Consider
J1(N)[m], where [m] denotes the intersection of the kernels of elements of m. An
analysis of the action of F[Gal (Q/Q)] shows that J;(N) [m] is a direct sum of copies
of a model over F for py. (See [BLRi].)

In short, Mazur’s argument in [Maz1, §14] uses Dieudonné theory to compare
Jr, 1) with S5(T'1(N); F). One obtains

dimp So(I'(N); Fe) @ F = %djml“ J1(N)[m] = dimp S3(T1(N); Fe) [m],

which by the g-expansion principle is one (see Proposition 12.4.13). Applying
Nakayama’s lemma, one deduces that Sy(T'1(N); Z¢)m is free over Tpy,, and (12.4.10)
follows. This proves also the “multiplicity one” result that Ji(N)[m] is a model
over F for px. It gives also an integral version of Proposition 12.4.14, namely that
Hi(X1(N),Z)m is free of rank two over Tp,.

Though technically more difficult, the generalizations to many cases in which
¢ divides 2N are based on the same principle (see [Edi2, §9] and [Wil2, §2.1]).

REMARK 12.5.8. For weight k > 2, the representations p) were constructed by
Deligne [Dell] using £-adic cohomology groups in the place of W;. The definition
of the f-adic sheaf used, call it V}, mirrors that of the sheaves Vi and V which
appeared in §12.2. Very roughly speaking, Vi (respectively, Vi, V) comes from
Symm*~? of the f-adic Tate module, (respectively, de Rham complex, singular
cohomology) of the universal elliptic curve.
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REMARK 12.5.9. The case of k = 1 is of a somewhat different nature. Deligne
and Serre [DeSe| (see also [Ser3, §3]) construct a representation using the rep-
resentations associated to congruent eigenforms of higher weight. However in this
case, one actually obtains a continuous, odd, irreducible representation

p:Gal(Q/Q) — GL,(C),
unramified outside N. The characteristic polynomial of p(Frob ) for p not dividing
N is then X2 — §(T,)X + 6((p)) (cf. (12.5.2)). The image of p is finite and a basis
can be chosen so that the image of p is in GLa(0). (So there is again a “compatible
family” of py, each being p itself.)

An important feature of the case k = 1 is the existence of converse results
due to Langlands [Lngl2] and Tunnell [Tunn]. If p is as above, and its image is
solvable, then p arises from a cusp form of weight one.

REMARK 12.5.10. The Ramanujan-Petersson conjecture (see Remarks 5.0.1
and 11.5.2) follows from the fact that the roots of (12.5.2) have absolute value
pE=1/2_ In the case k = 2, this follows from the Eichler-Shimura theory on applying
the Weil conjectures to the abelian variety 7, (N )F, (see [Shil, Theorem 7.12]).
For k > 2, one uses Deligne’s cohomological version of the Weil conjectures (see
[Dell, §5]) and for k£ = 1, one uses that p has finite image, [Ser3, §5].

From now on, let us assume that f is a newform (see Remark 12.5.3).

Let p be a prime not dividing N¢ and consider the the restriction of pA to a
decomposition group D,,, meaning the image of an embedding as in (12.5.3). This
restriction is completely determined by py (Frob »), whose characteristic polynomiial
is determined by the eigenvalues of S, and T,. We may view this relationship as
an equality of local factors of L-functions. The local factor at p of the L-function
attached to the representation py is defined as

(12.5.5) det(I' — py(Frob,)p~) 71,

(see [Del3, §9]), and this is the same as the local factor at p of L(f, s). Moreover in
the case k = 2, this is related to the L-function of the abelian variety A in Remark
12.5.6, see [Shil, §7.5].

REMARK 12.5.11. Note that the characteristic polynomial of p, (Frob ) only
determines the semisimplification of o] p,- In the case k = 1, the restriction is
semisimple as its image is finite. In the case k = 2, the restriction is semisimple
because this is known, by work of Tate (see [Mil1, Theorem 5.1]), to hold in general
for the representation of Gal (F,,/F,) on the f-adic Tate module of an abelian variety
over Fp. It is not known whether the representations oa D, are semisimple for k > 2
(where p is a prime not dividing N¢).

Let 7 be the automorphic representation corresponding to f. Recall that each
local factor 7, is determined by the eigenvalues of T, and Sp, provided p does not
divide the conductor N (see Example 11.2.5). The representation Palp, is thus re-
lated to the representation 7,. It is via such a relationship that one also describes
the representations px|p, at ramified primes p # £. (See [Cara, §0.5], [PSh1]
and the discussion at the end of §4 of [Lngl1].) This relationship is expressed by
the local Langlands correspondence; the proof of the existence of this correspon-
dence was completed by Kutzko, [Kutz]. The local Langlands correspondence is
a bijection between irreducible, admissible representations of GL2(Q,) and two-
dimensional F-semisimple complex representations of the Weil-Deligne group at
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p. (See [Tate2] and [Del3, §8] for the definitions of the Weil-Deligne group and
F-semi-simplicity; see [Kudla] and [Kna3] for further discussion of the local Lang-
lands correspondence.) If the representation of the Weil-Deligne group is defined
over K, one can then associate a continuous representation

Gal(Q,/Qp) — GL2(Kn).

We shall only vaguely describe the local Langlands correspondence by saying that
it respects L and e factors, the L-factor of the Galois representation being as in
(12.5.5) (but restricted to the coinvariants under inertia).

REMARK 12.5.12. With our choices of conventions for the automorphic rep-
resentations in §11 and Galois representations above, we are implicitly choosing
different conventions for the local Langlands correspondence than usually used in
the literature.

REMARK 12.5.13. The analogue of the local Langlands correspondence in the
context of GL; is provided by local class field theory. Moreover, the central charac-
ter of an irreducible, admissible representation of GL2(Q,) corresponds via class-
field theory to the determinant of the corresponding Galois representation. If
x is a character of Q) with values in K>, we will write y* for the character
D, ¥ Gal(Q,/Q,) — K, corresponding to x via local class field theory.

Given a newform f, a rational prime p and a prime A of K not dividing p, the
local Langlands correspondence associates (via the factor 7, of the automorphic
representation) a continuous representation

Gal(Q,/Q,) — GLa(K)).

Work of Deligne, Langlands [Lingll, §7] and Carayol [Cara] establishes that this
representation is isomorphic to the F-semisimplification of pa|p,. The result,
[Cara, Théoreme (A)], has the following corollary.

THEOREM 12.5.14. For each prime A not dividing p,

o the Artin conductor of p\|p, is the power of p dividing N;
e the Euler factor at p of L(f,s) coincides with
L(palp,, s)-

The first assertion follows from the fact that the local Langlands correspondence
respects conductors, the second from its compatibility with the formation of L-
functions. (A similar statement holds for e-factors.)

‘We now discuss the meaning of the Deligne-Langlands-Carayol theorem in spe-
cific cases.

o If m, is the principal series m(ui1| |'/2, u2| |'/2), then the semisimplification

of px|p, is isomorphic to 1 @ pd (extending scalars if necessary).

o If 7, is the special representation sp(x| [*/2,x| |~*/2), then pi|p, is iso-

morphic to x* ® o where & can be characterized up to isomorphism as the
ramified representation of the form

(% 1)

e If 7, is supercuspidal, then we will only remark that pa|p, is irreducible.
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Note that if p does not divide N, the description of palp, is just a reformu-
lation of the fact that the representation is unramified and that pa(Frob ,) has
characteristic polynomial (12.5.2).

Now we examine the situation when k = 2 and the conductor of [ is divisible by
p but not p? (see [Cas1]). We have seen then that there are two types of possibilities
for m,. We give an indication of the proof in each case that the representation pi|p,
is as described by the local Langlands correspondence.

If the central character of 7 is unramified at p, then , = sp(x| |*/2,x| | 1/2)
for some unramified character x of finite order. One can then apply the results
of Deligne-Rapoport and Raynaud discussed in §10.3. In particular, the abelian
variety A of Remark 12.5.6 must have multiplicative reduction at pasitisa
subquotient, of 4;/A, in the notation of Theorem 10.3.1. An analysis of the ac-
tion of Gal (F/Fy) on the character group of the torus T in (10.3.1) shows that
Frob, = p(p) =T, on T'(F,). Applying general results about abelian varieties with
multiplicative reduction ([Ray1] or [Mumz2]), one deduces that the invariants un-
der inertia at p of Tay(4) ®z, Qq, viewed as a (K 1.0)[Gal (QP/QP)]-mudule, are
free of rank one over Ky, and that Frob, acts via p8((p) 'T,). Combined with
the knowledge of the determinant and the formula G(sz) = 6(({p}), it follows that
| p, has the desired form.

On the other hand, suppose that the central character is ramified at p. Then
mp = w(pa| [M%, po| |V/2) with p; unramified and pp of conductor p. In this case,
the abelian variety A is a subquotient of J;(Np)/A, and acquires good reduction
over Qp(¢p). One deduces from this that (py)] D, is a sum of two characters, each
of conductor dividing p. One knows also that the determinant is as predicted, so it
suffices to identify one of these characters as the unramified character 4. This was
carried out using the methods described by Langlands in |Lngl1].

REMARK 12.5.15. The restriction of py to a decomposition group Dy is more
difficult to describe. If k¥ = 2 and ¢ does not divide N, then pxlp, arises from
an {-divisible group over Z;. This follows from the fact that J;(N)q has good
reduction at £, and hence its £-divisible group extends to one over Z.

For arbitrary k and W, if #(T}) is a unit mod A, then py|p, is “ordinary” in the
sense that it is of the form

(% 2)
0 xa

where X3 is unramified (see [Will, Theorem 2.2]). Moreover x(Frob ¢) is O(Ty) if
£ divides N, and is the unit root of the polynomial

X2 — 8(Ty) X + £6(S¢)
if ¢ does not divide N.

13. Shimura-Taniyama-Weil Conjecture

PRIMARY REFERENCES:
[SDBi], [Maz2], [Kna2, Chapter XIII] and [Wil2].

Given an elliptic curve E over Q, we say that it is modular if there is a non-
constant map Xy(N)q — F for some positive integer N.

The Shimura-Taniyama-Weil conjecture asserts
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CONJECTURE 13.0.1. Every elliptic curve E defined over Q is modular.

Through work of Wiles and Taylor [Wil2], [TaWi], [Diam)], this is now known
for a large class of elliptic curves, including all those with semistable reduction
at the primes 3 and 5. As their methods and resulls are discussed elsewhere in
this volume, we content oursclves here with a discussion of a number of equivalent
conditions for E to be modular. Before listing them in Theorem 13.0.5, we recall in
the form of remarks several definitions and results, some of them discussed earlier
in the paper.

REMARK 13.0.2. Let E be an elliptic curve defined over Q, and let N denote
its conductor. For each prime p let A, = p + 1 — B, where B, is the number of
projective solutions over F, of the minimal Weierstrass equation for E. Let &(p) = 1

or 0 according to whether or not £ has good reduction at p. The Hasse-Weil L-
function L(E, ) is defined by the Kuler product [Sil2, §II.10]

H(l _ App—s +E(p)P1_2s)71-
P
The local factor at p, L,(E, s) can be described as follows:
o if F has good reduction at p, then B, = #&(F,) where £ is the Néron model
of E over Z, p does not divide N and L,y(E,s) = (1 — App~° +p' 7)Y
e if E has split (respectively, non-split) multiplicative reduction at p, then
pl| N and Ly(E,5) = (1— p=*)~1 (respectively, (1+p *) )
o if E has additive reduction at p, then p?|Ng and L,(E,s) = 1.
For primes £ # p, the local factor L,(E,s) coincides with L,(pg,,s) where pg ¢ is
the representation of Gal (Q/Q) on Ta(E) ®z, Q¢. In particular, for primes p not
dividing Np¥, pp¢(Frob ) has characteristic polynomial

Xz — A X +p.

REMARK 13.0.3. Given a newform [ of weight 2, level NV, trivial character and
rational g-expansion, we have seen how the theory of Eichler and Shimura associates
to f an elliptic curve over Q. This is the elliptic curve denoted A in Remark 12.5.6,
and it may be regarded as a quotient of Jy(N)q, as well as of J3(N)q, via the
natural maps

Jo(N)q = Fi(N)q — A
Writing py,¢ for the representation denoted py in (12.5.1), we have py ¢ = pg, for all
£ by construction. Moreover by the Deligne-Langlands-Carayol Theorem 12.5.14,
we have L(s, E) = L(s, f) and Ng = N.

REMARK 13.0.4. Suppose E/Q is a modular elliptic curve with a nonconstant
morphism ¢ : X(N)q — E where p(ico) = O. Then E has good reduction at
primes p not dividing N. Let w be a Néron differential for E, i.e., one of the two
generators of HO(E, Q}g) = 7 where £ is the Néron model of E over Z. Its pullback
©*w defines an element h of S(Fo(/N)). One can deduce from the Eichler-Shimura
relation that A is a T(V)-eigenform with eigenvalues ), € Z of T, satisfying A, = A,
for all p not dividing N. (See [SDB, §3].)

We now list several equivalent conditions for an elliptic curve over Q to be
modular.

THEOREM 13.0.5. For an elliptic curve E over Q of conductor Ng, the fol-
lowing are equivalent.
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Xw There exist a positive integer N and a non-constant holomorphic mapping
Xi1(N) — E(C).

Jw There exist a positive integer N and a non-constant holomorphic mapping
Ji(N) — E(C).

Ry, There ezist positive integers N and D, and a TP -eigenform f in 8»(T';(N))
with coefficients in a number field K such that

PE O, Kx = psa,

for some prime A of K.
Ly There emist positive integers N and D and a T™VD -eigenform f in Sy(T'1(N))
such that

LP(51 f) = -Lp(sv E) ]
for all primes p not dividing ND.
Xs There erists a surjective morphism

A(Ne)g — E

of curves over Q.
Js There ezists a surjective homomorphism

Jo(Ng)q — E

of abelian varieties over Q.
R, There exists a newform f in Sy(To(Ng); Z) such that

PELZ Py

Jor all primes £.
Ls There exists a newform f in S2(Ty(Ng); Z) such that

L(s, f) = L(s, E).

In cach case, it is clear that the strong assertion (s) implies the corresponding
weak assertion (w). We discuss the remaining equivalences.

If X, holds for E, then Albanese functoriality (see §10.1) defines a surjective
morphism of Jacobians. Conversely, if J holds, one chooses a basepoint to define
amap i : X(N)q — Jo(N)q and checks that the composite with Jo(N)q — E is
nonconstant and hence surjective. The equivalence between J,, and X, is similar.

If Ls holds, then for p not dividing Ng#, the characteristic polynomials of the
images of Frob, coincide under pp¢ and py, (see (12.5.2) and Remark 13.0.2).
Applying the Cebotarev density theorem and continuity of the representations, it
follows that the characteristic polynomials coincide for all elements of Gal (Q/Q).
Then R, follows from the irreducibility of the representations. The proof that Ly,
implies R, is similar. Moreover the converse holds, and we may replace “some
prime A" with “all primes A" in the statement of R.,.

By Remark 13.0.4, X, provides a T™W_gigenform A for which Ly, is satis-
fied. Replacing h with the associated newform f and applying the results of
Deligne, Langlands and Carayol (see Remark 13.0.3), we find that R., implies
L(E,s) = L(f,s). Moreover f has trivial character, conductor N and integer
Fourier coefficients, so we conclude that Ly holds.
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We now have
b o X = Xy & J,
4
R & L. ¢ L, & R,

That R, implies J; follows from Faltings’ isogeny theorem [Falt, §5, Corollary
2. Indeed E is isogenous to the elliptic curve A associated to the newform f by
Eichler-Shimura (see Remark 13.0.3).

Finally, we sketch the proof that X, implies Ly, (see also [Maz2], especially
the appendix). If £ has complex multiplication, then L, is known by work of
Deuring [Deur| and Hecke (see [Shi2]). So we may assume that E does not have
complex multiplication. One shows first that the map X, (V) — E(C) is algebraic
and in fact defined over some number field F. We thus obtain a surjective map
Ji(N)r — Ep, and hence Ap — Ep where A is the abelian variety associated
(by a construction as in Remark 12.5.6) to some T(N)_eigenform [ = S ang" in
83(T'1(N)). Replacing N by a divisor, we can assume that f is a newform. We now
have (for any ¢) a surjection

Tay(A) @z, Q; — Tae(E) ®z, Q,
of Q[Gal (F/F)]-modules. The representation of Gal (Q/Q) on Ta,(A) ®z, Q,
decomposes as a direct sum of pyx ®x, Q,, indexed by pairs (\,¢) where A is a
prime of K = K over £ and ¢ is an embedding K < Q,. Using that F does not
have complex multiplication, one finds that pg ¢ ®q, Q, restricted to Gal (F/F)
is irreducible. We then deduce that the restrictions to Gal (F/F) of pg,e ®q, Q,
and psa ®x, Qp are isomorphic (for some A and ¢). One next shows that the
representations of Gal (Q/Q) are isomorphic, but with p;. , replaced by a twist by
some finite order character  : Gal (Q/Q) — Q, . Thus for all but finitely many
primes by
Ly(E,s) = (1~ x(p)arp™ + x(p)*s(p)p*~>) '

where we use y also to denote the corresponding Dirichlet character (which in fact
takes values in K*). Now Ly, follows from the fact that 5 x(n)a,q" is a TX'D).
eigenform in S;(T'1(N")) for some N’ and D; see [Shil, Proposition 3.64].
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