Ansible

Comment demarrer rapidement

Benoit MAROLLEAU — Cloud Architect
IBM Client Engineering, Montpellier, France
benoit.marolleau@fr.ibm.com &8

s~Ea,

Lo

\
m&gc’f’

https://ibm.biz/bma-wiki
mailto:benoit.marolleau@fr.ibm.com

Agenda @

ANSIBLE

Introduction
Ansible Overview
* Architecture, Engine, Tower
* Ansible for IBM i
Terminology — How Ansible works
* |Inventory
« Configuration file
 Modules
* Playbooks and Roles
Next Steps : LABS

Ansible Overview @

ANSIBLE

“Ansible is an open source automation tool for provisioning,
orchestration, system configuration and patching”

First developed by Michael DeHaan and acquired by Red Hat in 2015.

APPLICATION : -~ MULTI-TIER
DEPLOYMENT Cafj;fr';no P Mo ORCHESTRATION
i “hef Metal

bbbbbb
pppppp
CONFIGURATION ez

PROVISIONING
MANAGEMENT

Ansible Overview

Free

Datical m Paid
Sv

Subversion

En (21 Os |22
Dp |Jn [Cs
Delphix Jenkins
Fm 39
Rg
Artifactory Redgate Bamboo
Travis Cl
73

Bb Pf

BitBucket Perforce

[xL] XebiaLabs

Enterprise DevOps

¥ Follow @xebialabs Hs

Sw

ServiceNow

Freemium
@ Enterprise

XebialLabs
XL Impact

PERIODIC TABLE OF DEVOPS TOOLS (v3)

Open Source

Fn

FitNesse

Se

Selenium

59

Ga

Gatling

77

Cu

Cucumber

Ki

Kibana

. Source Control Mgm 27 28
. Database Automatic
. Continuous Integrati

ANSIBLE

10

Sg

Sumo Logic

Tf

Terraform

XebiaLabs
XL Release

UrbanCode

46

Ru

Rudder

Kubernetes

TestNG

78

Mc

Mocha 5 i :
Enterprise

93 100 101

Nr Zn |Cx Sr Hv

Checkmarx HashiCorp
WECALLS SAST Vault

CFEngine

Zenoss SonarQube

1 115
Cn Pd
CollabNet

VersionOne Pagerduty

Veracode Fortify SCA

Ansible Overview

ANSIBLE

Network Lln?s of Security
business

A0
* Operations Infrastructure Developers

Ansible SaaS: Engage users with an automation focused experience

=

Create Ansible Engine: Universal language of automation

Fueled by an open source community

G ET CERTIFIED INTEGRATION:
LUSISE Ansible and IBM Power Systems

https://www.ansible.com/integrations/infrastructure/ibm-power-systems

O Cloud modules:

IBM, OpenStack (PowerVC), AWS,
Google, Azure, Alibaba, etc.

Ansible Endpoints
CLOUD

What is Red Hat 1

ANSIBLE AUTOMATION ENGINE @

. . J - 5y
Ansible Engine: R \ —

Ansible Engine provides the core, agentless USE\F{S e e HOSTS
functionality of Ansible that everything else
builds upon INVENTORY PLUGINS
Includes the basic building blocks of Ansible— S | Y
the control node, managed nodes (endpoints), - -
inventory, modules, tasks and playbooks < > '
E
Commercial form of Ansible technology PLAYBOOK MODULES AP NETWORK
RED HAT
ANSIBLE
ngine

Red Hat Ansible Engine supported
on x86 Linux only — manages to endpoints

https://www.ansible.com/integrations/infrastructure/ibm-power-systems

Introduction to Ansible

ANSIBLE

Ansible is a radically simple IT automation platform
that makes your applications and systems easier to

deploy. ﬁ:fcl)?#;tion @ Dev
— Free open source application Engine /
— Agent-less — No need for agent installation .
and management Q \
"\ =

- Python/YAML based

— Highly flexible and configuration management T m
of systems.

— Configuration roll-back in case of error s 2desmonl @

10.58.121.53 Prod

FIGURE 1: HOW ANSIBLE WORKS

@QA

°
g
for Business

Introduction to Ansible

ANSIBLE

Control node — any machine with Ansible installed and is used to run playbooks

Managed node (a.k.a. endpoints) — endpoint devices (e.g., AlX, IBM i, Linux, Windows,
etc.) that are managed with Ansible

Inventory — a list of managed nodes so that Ansible understands the overall IT
landscape

Modules — units of code that Ansible executes;
thousands of community modules available

Tasks — units of action in Ansible
(invoke a set of modules to do something useful)

Playbooks — ordered list of tasks and written in YAML

Ansible and IBM i Q

Write your first “playbook” in YAML format to describe what you want on your managed node
inventory and Ansible will , for example :

v

v

Deploy or clone a new environment on an IBM i VM on either a private or public cloud

Install a new licensed program product or application version containing libraries,
database and IFS artifacts

Save or restore objects, manage servers or jobs and check and install PTFs

Control your security settings, like managing user profiles and authorities, or check IFS
rights. Ansible gathers facts and can remediate any security deviations.

Orchestrate all of the above or a subset of these tasks

https://developer.ibm.com/tutorials/ansible-automation-for-power/

o

g
for Business

Ansible and IBM i A,

Core modules in PASE + IBM i Specific Modules ANSIBLE

Core Maintained modules are maintained by the Ansible Engineering Team.
« Core modules are owned by RedHat and ship with Ansible installation.

» Many of these modules work for IBM i PASE environment.

» Support PASE but not native IBM .

ecommand *ping

*raw reboot
*script *setup
*shell syser

*pip cassemble
*yum *blockinfile
*pause *copy
*wait_for_connection «fetch

st «file
«authorized_key *find
«gather_facts *lineinfile
~SFOHp estat
+Mount *synchronize

o git

Ansible and IBM |

Core modules in PASE + IBM i Specific Modules

CL Commands
Executes CL commands and return general and
detail job logs
- SQLs executions
Executes SQL statements and return the results
Queries — compare the returned single value result
Inserts / Updates / Deletes
Functions & Procedures
- Gathering facts and setup changes for IBM i
- Securities — authorization list, user profiles, grant
object authorities
- Copy Objects, Fetch Objects, Find Objects
- Reply Message — query and reply
- Reboot system
- Network configurations
- Device configurations and management
- IASP configuration
- System Values, Environment variables, Etc.
- Submit / Schedule Jobs
- Manage fixes / PTFs / LPPs

.... More to come!!! Check out

https://github.com/IBM/ansible-for-1i

ibmi_at

Schedule a batch job on a remote IBMi node.
ibmi_cl command

Executes a CL command.

ibmi_copy

Copy a save file from local to a remote IBMi node.

ibmi display subsystem

Display all currently active subsystems or currently active jobs in a subsystem.
ibmi end subsystem

End a subsystem.

ibmi_fetch

Fetch objects or a library from a remote IBMi node and store on local.

ibmi install product from savf

Install the the licensed program(product) from a save file.

ibmi_lib_restore

Restore one library on a remote IBMi node.
ibmi_lib_save

Save one libary on a remote IBMi node.
ibmi object authority

Grant, Revoke and Display the Object
Authority.

ibmi object restore

Restore one or more objects

on a remote IBMi node.

Ibmi object save

Save one or more objects on a remote IBMi node.
ibmi_reboot

Reboot IBMi machine.

ibmi save product to savf

Save the the licensed program(product) to a save file.
ibmi_script

Execute a local cl/sql script file on a remote ibm i node.
ibmi script execute

Execute a cl/sql script file on a remote ibm i node.

ibmi_sgl_execute
Executes a SQL non-DQL(Data Query Language) statement.

ibmi_sgl guery

Executes a SQL DQL(Data Query Language) statement.

ibmi start subsystem

Start a subsystem.

ibmi_sync

Synchronize a save file from current ibm i node A to another ibm i node B.
ibmi_synchronize

Synchronize a save file from ibm i node A to another ibm i node B.
ibmi uninstall product

Delete the objects that make up the licensed program(product).
ibmi user and group

Create, Change and Display a user(or group) profile.

https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_at.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_cl_command.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_copy.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_display_subsystem.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_end_subsystem.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_fetch.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_install_product_from_savf.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_lib_restore.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_lib_save.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_object_authority.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_object_restore.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_reboot.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_save_product_to_savf.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_script.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_script_execute.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_sql_execute.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_sql_query.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_start_subsystem.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_sync.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_synchronize.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_uninstall_product.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_user_and_group.py
https://github.com/IBM/ansible-for-i

Ansible and IBM |

Playbooks Examples ANSIBLE

= enable-ansible-for-i

o dibmi-install-rpm.yml

o dibm-install-yum.yml

o setup.yml
= 1bmi-install-nodejs
o 1bmi-install-nodejs.yml
1bmi-check-default-passwords.yml
1bmi-cl-command-sample.yml
1bmi-fix-group-check.yml
ibmi-fix-repo-cum-package.yml
1bmi-sysval-sample.yml
query-iasp-sample.yml
ibmi-sql-sample.yml

O O O O O O O

https://github.com/IBM/ansible-for-1i

https://github.com/IBM/ansible-for-i/tree/devel/playbooks/enable-ansible-for-i
https://github.com/IBM/ansible-for-i/tree/devel/playbooks/ibmi-install-nodejs
https://github.com/IBM/ansible-for-i/blob/devel/playbooks/ibmi-check-default-passwords.yml
https://github.com/IBM/ansible-for-i/blob/devel/playbooks/ibmi-cl-command-sample.yml
https://github.com/IBM/ansible-for-i/blob/devel/playbooks/ibmi-fix-group-check.yml
https://github.com/IBM/ansible-for-i/blob/devel/playbooks/ibmi-sysval-sample.yml
https://github.com/IBM/ansible-for-i/blob/devel/playbooks/query-iasp-sample.yml
https://github.com/IBM/ansible-for-i

Galaxy — power_ibmi

Community

% Community Authors> ibm> power_ibmi

" power_ibmi

Ansible Content for IBM Power Systems - IBM i provides Ansible action

plugins, modules, roles and sample playbooks to automate tasks on
IBM i systems.

m Read Me Content

®About @Help M Documentation =) Login

©4.3/5 Score &3302 Downloads

&+ Login to Follow | | ¥ Issue Tracker | | T Repo | | &' Docs Site

0 Info

Installation $ ansible-galaxy collection install ibm.power_ibmi | ¢
NOTE: Installing collections with ansible-galaxy is only supported in ansible 2.9+
& Download tarball

Install Version 1.1.2 released a day ago (latest) a

nrsrucure o | power J o)

Ansible Content for IBM Power Systems - IBM i

The Ansible Content for IBM Power Systems - IBM i provides modules, action plugins, roles and sample playbooks to automate
tasks on IBM i, such as command execution, system and application configuration, work management, fix management,
application deployment, etc.

Ansible Content for IBM Power Systems

IBM Power Systems is a family of enterprise servers that helps transform your organization by delivering industry leading
resilience, scalability and accelerated performance for the most sensitive, mission critical workloads and next-generation Al and
edge solutions. The Power platform also leverages open source technologies that enable you to run these workloads in a hybrid
cloud environment with consistent tools, processes and skills.

Load full Read Me

O Content Score

Community Score _ 43/5C

Based on 1 survey. Show Details
Tell us about this collection
Quality of docs?
Ease of use?
Does what it promises?
Works without change?

Ready for production?

Galaxy — power_ibmi

@ criaxy

Home <

Search

Community

Details

check_ptf_groups

load_apply_ptfs

retrun status

Afficher un menu

apply_all_loaded_ptfs

Ansible role for applying all loaded ptfs

Ansible role for checking ptf groups

fix_repo_check_ptf group

Ansible role for getting the latest PTF group information,
and check if the latest PTF group is alre...

Ansible role of load and apply a list of individual ptfs, and

Community Authors> ibm> power_ibmi

= power_ibmi

Ansible Content for IBM Power Systems - IBM i provides Ansible action
plugins, modules, roles and sample playbooks to automate tasks on
IBM i systems.

Show: @Roles @ Modules @@ Playbooks @ Plugins

2] apply_ptf [1]

Ansible role for applying all loaded ptfs or a list of ptfs.

check_ptfs_by product

Ansible role for checking product ptf

Ansible role for downloading a ptf group and then add

fix_repo_download_add_ptf_group

download information into download_status tabl...

Ansible role for loading a set of ptfs according to given ptfs

load_ptf

list, and returned ptfs loaded status

®About @ Help [l Documentation
©4.3/5 Score %3302 Downloads
&+ Login to Follow | | ¥k Issue Tracker | | % Repo | | (£ Docs Site

Ansible role for checking ptfs status according to given ptfs
list

check_ptf

Ansible role for downloading a list of individual ptfs using

download_individual_ptfs

ibmi_download_fix module, and return st...

fix_repo_extract_ptf group_info

Ansible role for extracting and update ptf group's
information into ptf_group_image_info table in ca...

Ansible role of tranfer a list of ptfs to an ibm i system, then

sync_apply_individual_ptfs

load and apply. And return the statu...

%) Login

Ansible Support & Installation

https://ibm.qgithub.io/ansible-for-i/installation.html

» Ansible on Linux (x86/Power) : Community + Possible Red Hat Subscription and support

» Ansible on IBM i : Community + Possible IBM TSS Support (Open Source package)

» Ansible can be installed via your Linux distribution package manager
» yum install ansible or apt install ansible
» If not available, just install python-pip and dependencies and install it with “pip”

» pip install ansible

» Clone the repository to your Ansible server (or install IBM i Galaxy)
» https://github.com/IBM/ansible-for-i

» Create your inventory file
» example can be found in file examples/ibmi/host_ibmi.ini

https://www.ansible.com/integrations/infrastructure/ibm-power-systems
https://www.ibm.com/support/pages/open-source-support-ibm-i
https://github.com/IBM/ansible-for-i
https://ibm.github.io/ansible-for-i/installation.html

Ansible Overview — key points @

ANSIBLE

Ansible Engine can manage a large number of clients (via an inventory)

It does not require an agent on the clients

Uses SSH to communicate with the clients

The clients can be AIX, IBM i, RHEL, Ubuntu, SLES, Centos, Fedora,

network switches, storage controllers etc.....

Human readable automation

No special coding skills needed

7. Uses modules to perform tasks, these tasks can be called from the
command line or playbooks

8. Itisidempotent

9. Simple to get started

= Wi

o U

Architecture

ANSIBLE
1. Ansible Engine L cMDB)
PUBLIC / PRIVATE y
CLOUD y
2. Inventory |
3. Modules ANSIBLE'S AUTOMATION ENGINE
4. Playbooks -
— —
5. Client hosts - INVENTORY o HOSTS
> —
MODULES PLUGINS
NETWORKING
ANSIBLE PLAYBOOK

How Ansible works @

ANSIBLE

1. Ansible Engine The Inventory (and
PUBLIC / PRIVATE . . .
configuration file)

CLOUD

2. Inventory

3. Modules ANSIBLE'S AUTZPATION ENGINE
4. Playbooks -
USERS S Y —p
5. Client hosts ll - INVENTORY o HOSTS

®
1 . —>
2 . >
3 .
MODULES PLUGINS

NETWORKING
ANSIBLE PLAYBOOK

How Ansible works — The Inventory @

ANSIBLE

1. The client inventory file is a configurable list of VMs/clients that ansible can control.
2. Itis written in an INI or YAML format, lists host and groups.

3. Can be static of dynamic.
Static Inventory example

cat /etc/ansible/hosts
[managedClients]

[RHEL_Dev] < Group Name

lab-rhel-1 _
lab-rhel-2 < Client Name

[IBMi_Dev]
lab-ibmi-1
lab-ibmi-2

[Dev:children] < Collection of groups
RHEL_Dev

IBMi_Dev

How Ansible works — The Inventory @

ANSIBLE

So we can list the files in the inventory by using ‘ansible-inventory’

ansible-inventory --graph

@all:
—-@Dev: < Collection of groups

—-@IBMi_Dev:
| - < Group Name

| |--lab-ibmi-1

|

|

|

| | |--lab-ibmi-2 = Client Name
| |--@RHEL Dev:
|
|
|
|

| |--lab-rhel-1

| |--lab-rhel-2
--@local:

| --localhost

How Ansible works — The Inventory

ANSIBLE

We can use the inventory file to configure some connection options to the clients.

Static Inventory example with connection variables

cat /etc/ansible/hosts
[managedClients]

[RHEL_Dev]

lab-rhel-1 ansible_user=ansible
lab-rhel-2 ansible_port=222

Client unique variables

[IBMi_Dev]
lab-ibmi-1 ansible_host=10.1.1.1
lab-ibmi-2

[Dev:children]
RHEL Dev
IBMi_Dev

How Ansible works — The Inventory

We can use the inventory file to configure some connection options to the clients.

ansible-inventory —list

"hostvars": {

"lab-ibmi-1": {
"ansible_host": "10.1.1.1"

b

"lab-rhel-1": {
"ansible_user": "ansible"

b

"lab-rhel-2": {
"ansible_port": 222

}

o

ANSIBLE

How Ansible works — The Inventory

ANSIBLE

We can use the inventory file to configure group connection options to the clients.

Static Inventory example with group connection variables

cat /etc/ansible/hosts
[managedClients]

[RHEL_Dev]

lab-rhel-1 ansible_user=ansible
lab-rhel-2 ansible_port=222

[IBMi_Dev]
lab-ibmi-1 ansible_host=10.1.1.1
lab-ibmi-2

[Dev:children]
RHEL Dev
IBMi_Dev

[IBMi_Dev:vars] D Variable applies to whole group
proxy=proxy.labs.uk.ibm.com

How Ansible works — The Inventory

We can use the inventory file to configure group connection options to the clients.

ansible-inventory —list

"hostvars": {

abibmi1" Both clients in the group have
"ansible_python_interpreter": "/QOpensys/pkgs/bin/python3",) plcked up the new Connection

n, n

"ansible_ssh_common_args": "-o StrictHostKeyChecking=no",)
"ansible_ssh_user": "benoit" variable

i)
"lab-ibmi-2": {
"ansible_python_interpreter": "/QOpensys/pkgs/bin/python3",

n, n

"ansible_ssh_common_args": "-o StrictHostKeyChecking=no",
"ansible_ssh_user": "benoit"
}
i)
"lab-rhel-1": {
"ansible_user": "ansible"
i)
"lab-rhel-2": {
"ansible_port": 222
}

ANSIBLE

How Ansible works — The Inventory @

ANSIBLE

We have a number of ways to tell Ansible which inventory file to use, in precedence:

1. the ‘-i’ flag on the command line (you can call more than one inventory file if needed)
2. The ANSIBLE_INVENTORY environment variable

3. Using “inventory=xxx" in the ansible configuration file

4. If all else fails, the default is /etc/ansible/hosts

Method to check which inventory file you are using

ansible -v -a "echo Inventory File is {{ inventory_file }}" localhost
Using /etc/ansible/ansible.cfg as config file

- Inventory
- File
- 1S
- [etc/ansible/hosts

How Ansible works — The ansible config file

ANSIBLE

Ansible looks for a configuration file to determine a number of parameters. As with the
inventory file, a number of configuration files can be defined for different projects.

Nearly all parameters in ansible.cfg can be overwritten in playbooks or during ansible calls.
Example ansible.cfg fie

cat /etc/ansible/ansible.cfg

[defaults]

inventory = /etc/ansible/hosts

library = /usr/share/ansible/plugins/modules
module_utils = /usr/share/my_module_utils/
remote_tmp = "~/.ansible/tmp

local_ tmp = ~/.ansible/tmp

sudo_user =root

ask_sudo _pass = True

ask_pass =True

remote_port =22

How Ansible works — The ansible config file

ANSIBLE

The active configuration files uses the following locations, in precedence:

1. The ANSIBLE_CONFIG environment variable

2. ./ansible.cfg - within the current directory
3. ~/.ansible.cfg. - home directory
4

If all else fails, the default is /etc/ansible/ansible.cfg

Method to check which configuration file you are using

ansible --version
ansible 2.9.6
config file = /etc/ansible/ansible.cfg
configured module search path = [u'/root/.ansible/plugins/modules’, u'/usr/share/ansible/plugins/modules']
ansible python module location = /usr/lib/python2.7/site-packages/ansible
executable location = /usr/bin/ansible
python version = 2.7.5 (default, Jun 11 2019, 14:33:56) [GCC 4.8.5 20150623 (Red Hat 4.8.5-39)]

How Ansible works

1. Ansible Engine
2. Inventory

3. Modules

4. Playbooks

5. Client hosts

PUBLIC / PRIVATE
CLOUD

ANSIBLE

USERS i

—

®
— >
3 .

ANSIBLE PLAYBOOK

ANSIBLE'S AUTOMA;

INVENTORY

MODULES

Modules

API

PLUGINS

HOSTS

—b

NETWORKING

How Ansible works — Modules @

ANSIBLE

Modules are the core of Ansible
1. They perform the real work by executing on the clients.
v Ansible engine connects to your clients
v' It pushes out the module along with parameters
v' The module is then executed on the client
v' The module is then removed from the client
Ansible comes with thousands of modules covering server, network, storage, files, DB etc.
Can be written in Python, Perl, Ruby, Bash, etc. —that return JSON format
You can write your own modules
Command line syntax: ‘ansible —m <module_name> -a <attributes>’
6. They are idempotent (that word again)....

LW

Dictionary definition:
“denoting an element of a set which is unchanged in value when multiplied or otherwise operated on by itself”

“For Ansible it means after 1 run of a playbook to set things to a desired state, further runs of the same playbook
should result in 0 changes. Idempotency means you can be sure of a consistent state in your environment.”

How Ansible works — Modules (idempotency)

. _ ANSIBLE
Add a logical volume —first run

ansible lab-aix-1 -m aix_lvol -a "lv=testlv size=10M vg=rootvg"
PLAY [Ansible Ad'HOC] 3k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k 3k sk 5k 3k 3k sk 3k 5k 3k 3k 3k 3k 5k 3k sk 3k 5k 3k sk 3k 5k 5k 3k 3k 5k 5k 3k sk 3k 5k 5k 3k 3k 5k 5k 3k sk 5k 3k 3k sk 3k 5k 5k 3k 3k 5k 5k 3k sk %k 5k ok %k %k 5k >k k %k k

TASK [aiX IVOl] %k 3k 5k 3k >k 3k 3k ok >k %k 5k 5k sk sk ok 5k 3k >k >k 5k 5k Sk %k >k 5k sk %k %k 5k 5k >k %k >k 5k Sk %k >k 5k %k >k %k >k 5k %k %k >k 5k >k %k %k 5k %k %k %k >k >k %k %k >k 5k %k %k %k >k 5k %k %k %k >k %k %k >k >k %k %k *k *k >k %k

changed: [lab-aix-1] < During the first run a change
occurs. The LV is created.

PLAY RECAP
3k 3k 3k 3k 3k 3k 3k 5k 3k 5k 3k 3k 3k 3k 3k Sk 3k sk 5k sk 5k 3k 5k 3k 5k 3k 3k 3k 3k 3k Sk 3k sk 5k sk 5k 3k 5k 3k 5k 3k 3k 3k 3k 3k 3k 5k sk 5k 3k 5k 3k 5k 3k 5k 3k 3k 3k 3k 3k %k 3k sk 5k 3k 5k 3k 5k 3k 5k 3k 3k >k 3k 5k sk 5k sk 5k %k 5k %k 5k %k %k %k %k k k ok k
lab-ibmi-1 : ok=1 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Add a logical volume — second run

ansible lab-aix-1 -m aix_lvol -a "lv=testlv size=10M vg=rootvg"
PLAY [AnSible Ad_HOC]***

TASK [aiX IVOI] %k 3k 3k 3k >k %k 3k 5k Sk >k >k 5k ok sk %k ok 5k 3k sk %k 3k 5k Sk %k >k 5k %k sk %k >k 5k 3k %k %k >k 5k %k %k >k 5k 5k >k %k >k 5k %k %k %k >k 5k %k %k %k >k >k %k %k >k 5k %k %k %k >k 5k %k %k %k >k >k %k %k >k >k %k %k %k *k %k %k

ok: [lab-aix-1] < During the second run a change does
NOT occur. The LV already exists.

PLAY RECAP

>k 3k 3k 3k sk sk ok ok 3k >k >k 5k ok Sk >k >k 5k ok sk %k ok 5k Sk >k >k 5k ok Sk >k >k 5k ok sk %k 5k 5k Sk %k >k 5k 5k >k %k >k 5k ok %k >k >k 5k >k %k >k 5k 5k %k %k 5k 5k >k %k %k >k 5k %k %k >k >k %k %k %k >k >k >k %k >k >k %k %k %k >k >k %k %k %k >k %k %k %k *k

lab-ibmi-1 : ok=1 changed=0 wunreachable=0 failed=0 skipped=0 rescued=0 ignored=0

How Ansible works — Modules Ad-hoc Execution

ANSIBLE
crtlib — first run
ansible IBMi_Dev -m ibmi_cl_command --args="cmd='crtlib ansiblei' asp_group=*SYSBAS"
lab-ibmi-1 | SUCCESS => { During the first run, lib created
"changed": false, e
"emd": "crtlib ansiblei",
"job_name": "402155/QUSER/QSQSRVR",
"stdout": "{'success': '+++ success crtlib ansiblei'}",
}
Conclusion : Module ibmi_cl_command not idempotent ,
Crtlib — second run
ansible IBMi_Dev -m ibmi_cl_command --args="cmd='crtlib ansiblei' asp_group=*SYSBAS"
lab-ibmi-1 | FAILED! => { . During the second run, lib not created
"changed": false,
&* but need to catch the error
job_log": [
{ "FROM_PROGRAM": "QLICRLIB", "FROM_USER": "BENOIT", "MESSAGE_ID": "CPF2111",
"MESSAGE_SECOND_LEVEL_TEXT": "&N Recovery ...: Before creating or renaming this library, change the new library name
or delete the existing library (DLTLIB command). &P -- Use DSPLIB ASPDEV(*ALLAVL) to search for the library.

How Ansible works — Modules

ANSIBLE

Ansible comes with thousands of ‘core” modules, divided into categories:
https://docs.ansible.com/ansible/latest/modules/modules by category.html#modules-by-category

Module Index

e Allmodules e Network modules

e Cloud modules e Notification modules

e Clustering modules o Packaging modules

e Commands modules e Remote Management modules
o Crypto modules e Source Control modules

e Database modules o Storage modules

o Files modules e System modules

e ldentity modules o Utilities modules

* Inventory modules e Web Infrastructure modules
* Messaging modules « Windows modules

e Monitoring modules

https://docs.ansible.com/ansible/latest/modules/modules_by_category.html

How Ansible works — Modules

ANSIBLE

As well as Anisble’s website we can also use the Ansible Engine server to show modules, how
they are supported, options available etc.

Using ‘ansible-doc’ to review a module

ansible-doc ibmi_cl_command
>IBMI_CL_COMMAND (/Users/Benoit2/.ansible/collections/ansible_collections/ibm/power_ibmi/plugins/modules/ibmi_cl_command.py)

\ Shows the location of the

The “ibmi_cl_command' module takes the CL command followed by a list of space-delimited arguments. module and support level.
For PASE(Portable Application Solutions Environment for i) or QSHELL(Unix/Linux-liked) commands,
like 'ls', 'chmod’', use the ‘command' module instead.

- become_user
The name of the user profile that the IBM i task will run under.
Use this option to set a user with desired privileges to run the task.
[Default: (null)]

type: str
o“__u s .
I) The “=“ indicates mandatory
The CL command to run. parameters.
type: str
- joblog

If set to “true’, output the available job log even the rc is O(success).

How Ansible works — Modules

ANSIBLE

What happens if we call an invalid module? Calling an IBM i module

ansible lab-ibmi-1 -m ibmi_lib_save --args="lib_name=ansiblei format=*SAVF"

lab-ibmi-1 | FAILED! => {

"changed": false, Module with missing

"msg": "missing required arguments: savefile_lib, savefile_name"

} “~ parameters

ansible lab-ibmi-1 -m ibmi_lib_save --args="lib_name=ansiblei format=*SAVF savefile_lib=QGPL savefile_name=ansiblei"

lab-ibmi-1 | SUCCESS => {
"changed": false,
"command": "QSYS/SAVLIB LIB(ansiblei) DEV(*SAVF) SAVF(QGPL/ansiblei) TGTRLS(*CURRENT)", "format": "*SAVF",
"stdout": "{'success': '+++ success QSYS/SAVLIB LIB(ansiblei) DEV(*SAVF) SAVF(QGPL/ansiblei) TGTRLS(*CURRENT)'}",

How Ansible works — Modules

ANSIBLE

v' script module — Runs a local script on a remote node after transferring it

Simple ‘script’ module example

cat ./show_date.sh

#1/bin/sh < Script on the Ansible Engine
date
ansible lab-ibmi-1 -m script -a "./date.sh" . :
lab-ibmi-1 | CHANGED => { > Script is copied over and
"changed": true, executed on the client
"rc": 0,

"stderr": "Shared connection to lab-ibmi-1 closed.\r\n",
"stderr_lines": [
"Shared connection to lab-ibmi-1 closed."
A
"stdout": "Wed Sep 21 16:40:47 CEST 2022\r\n",
"stdout lines": [
"Wed Sep 21 16:40:47 CEST 2022"
/
}

How Ansible works — Modules (setup and facts)

ANSIBLE

v’ setup module — Gathers facts about remote hosts (~100 lines for a IBM i LPAR)

Setup module

ansible lab-ibmi-1 -m setup
lab-ibmi-1 | SUCCESS => {
"ansible facts": {

"ansible_distribution”: "05400", Thousands of facts about h/w, OS,
"ansible_distribution_release": "3", .
"ansible_distribution_version": "7", network and storage devices etc.
"ansible_dns": {}, can be gathered.

"ansible_domain": "dcry.iccmop",
"ansible_effective_group_id": O,

anslele vty skl s 120 These can be used to filter which

"ansible_env": { . . .
"HOME": "/home/BENOIT". clients to run a task againstin a
"LOGIN": "benoit", p|aybook_

"USER": "benoit",

" " "/QOpensys/pkgs/bin/python3"
b
"ansible_machine": "00100002BABV",
"ansible_nodename": "BENOIT",
"ansible_os_family": "0S400",

How Ansible works

ANSIBLE
1. Ansible Engine
PUBLIC / PRIVATE P|aYbOOkS
CLOUD
2. Inventory
3. Modules ANSIBLE'S 22
_>

4. Playbooks

USERS > —
5. Client hosts ll / INVENTORY API nigals

®

— > —t

2 - MODULES PLUGINS

NETWORKING

ANSIBLE PLAYBOOK

How Ansible works — Playbooks @

ANSIBLE

Modules might be the core, but Playbooks are how we drive Ansible

v’ Playbooks are Ansible’s configuration, deployment, and orchestration language.
v They are the instruction manual describing the configuration you want your remote clients

to enforce.
v" Written in YAML format, so should be readable.

Basic playbooks:
Used to manage configurations of and deployments to remote machines.

Advanced playbooks:
They can sequence multi-tier rollouts involving rolling updates, and can delegate actions to
other hosts, interacting with monitoring servers and load balancers along the way.

How Ansible works — Playbooks @

ANSIBLE

A playbook consists of ‘plays’, which in turn consist of “tasks’, which contain ‘'modules’.
Simple playbook

cat ibmi-cl-command-sample.yml

- name: Sample CL Commands
gather_facts: no
hosts: IBMi_Dev

— Play ~— Playbook

- name: run the CL command to create a library
ibmi_cl_command:
cmd: crtlib lib(ansiblei)
joblog: true

> Task

How Ansible works — Playbooks

ANSIBLE

A playbook consists of ‘plays’, which in turn consist of “tasks’, which contain ‘'modules’.
Simple playbook

cat ibmi-cl-command-sample.yml

_— Define the ‘play’

- name: Sample CL Commands <€

gather facts: no — Do not gather facts

hosts: IBMi_Dev - i i)
collections: — Which hosts to run the play against. ‘All” will

- ibm.power_ibmi

run it against all clients in the inventory
tasks:
- name: run the CL command to create a library Define the ‘task’
ibmi_cl_command: —

cmd: crtlib lib(ansiblei) The name of the module to call for this task
joblog: true /

- name: save the library in a SAVF

ibmi_lib_save: Module parameters to use for this task
lib_name: ansiblei
format: '*SAVF'

savefile_lib: QGPL
savefile_name: ansiblei

force_save: true

How Ansible works — Playbooks

ANSIBLE

A playbook consists of ‘plays’, which in turn consist of “tasks’, which contain ‘'modules’.
Simple playbook

ansible-playbook ibmi-cl-command-sample2.yml

PLAY [Sample CL Commands] < The name of the play

>k 3k 3k 3k sk >k ok ok ok >k >k 5k 5k Sk >k >k 5k ok sk >k ok 5k Sk >k >k 5k 5k Sk %k >k 5k ok sk %k 5k 5k Sk %k >k 5k ok >k %k >k 5k ok >k %k >k 5k >k %k >k 5k 5k %k %k >k 5k %k %k >k >k 5k %k %k >k 5k %k %k %k >k >k %k %k *k >k %k %k %k *k >k %k k *k

TASK [run the CL command to create a library] < The name of the ‘task’
3k 3k 3k 3k 3k 5k 3k 5k 3k 5k 3k 5k 3k 3k 3k Sk 3k sk 3k sk 5k sk 5k 3k 5k 3k 5k 3k 3k 3k 3k 3k sk 3k sk 5k sk 5k 3k 5k 3k 5k sk 5k 3k 3k 3k 3k 5k sk 5k 3k 5k 3k 5k 3k 5k 3k 3k 3k %k 3k %k 3k %k 5k %k 5k 3k 5k 3k 5k %k %k %k 3k >k sk >k %k >k %k 5k %k k

ok: [lab-ibmi-1]

ok: [lab-ibmi-2] < Completed on 2 clients

TASK [save the library in a SAVF]

>k 3k 3k 3k sk >k ok ok ok >k >k 5k 5k Sk >k >k 5k ok sk >k 5k 5k Sk >k >k 5k 5k Sk %k >k 5k ok sk %k >k 5k Sk %k >k 5k 5k >k >k >k 5k 3k >k %k >k 5k >k %k %k 5k 5k %k %k >k 5k %k %k >k >k 5k %k %k *k 5k %k %k %k >k >k %k %k %k >k %k %k %k *k >k %k k %

ok: [lab-ibmi-1]
ok: [lab-ibmi-2]

PLAW'RECAP=h**

lab-ibmi-1 :0k=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
lab-ibmi-2 :0k=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

How Ansible works — Playbooks (tasks and tags) @

ANSIBLE

We can list the tasks in a playbook without actually running it:
Task in a playbook

ansible-playbook ./ibmi-cl-command-sample2.yml --list-tasks

playbook: ibmi-cl-command-sample2.yml

play #1 (IBMi_Dev): Sample CL Commands TAGS: []
tasks:
run the CL command to create a library TAGS: []

save the library in a SAVF TAGS: [] <= All the tasks are listed
but not executed

How Ansible works — Playbooks (tasks and tags)

ANSIBLE

We can also ‘tag’ tasks with identifiers :
Task and tags in a playbook

cat ./ibmi-cl-command-sample2.yml

tasks:
- name: run the CL command to create a library
ibmi_cl_command:
cmd: crtlib lib(ansiblei)

joblog: t.rue
tags: crtlib
- name: save the library in a SAVF We can add ’tag’

ibmi_lib_save:
lib_name: ansiblei names to eaCh task.
format: '"*SAVF'
savefile_lib: QGPL
savefile_name: ansiblei
force_save: true

tags: savefile

How Ansible works — Playbooks (tasks and tags)

ANSIBLE

We can also ‘tag’ tasks with identifiers, and list them:
Task and tags in a playbook

ansible-playbook ./ibmi-cl-command-sample2.yml --list-tasks

playbook: ibmi-cl-command-sample2.yml

play #1 (IBMi_Dev): Sample CL Commands TAGS: []
tasks:
run the CL command to create a library TAGS: [crtlib]
save the library in a SAVF TAGS: [savefile]

How Ansible works — Playbooks (tasks and tags)

ANSIBLE

We can then just run certain tasks, by giving a tag:
List savefile tasks only

ansible-playbook ibmi-cl-command-sample2.yml --list-tasks -t savefile
playbook: ./ibmi-cl-command-sample2.yml
play #1 (IBMi_Dev): Sample CL Commands TAGS: []
tasks:
save the library in a SAVF TAGS: [savefile]

Run ‘savefile’ tasks only

ansible-playbook ibmi-cl-command-sample2.yml -t savefile
PLAY [Sample CL Commands]

>k 3k 3k 3k sk >k ok 5k 3k >k >k 5k 5k Sk >k >k 5k ok sk %k 5k 5k Sk %k >k 5k ok >k %k 5k 5k ok %k %k 5k 5k sk %k 3k 5k 3k >k >k 5k 5k >k %k >k >k 3k %k %k >k 5k %k %k >k 5k >k %k %k >k >k %k %k %k >k %k %k %k %k >k %k %k *k *k

TASK [save the library in a SAVF]

>k 3k 3k 3k sk >k 3k 5k 3k >k >k 5k 5k Sk >k ok 5k ok sk %k 5k 5k Sk >k >k 5k ok >k %k 5k 5k ok >k >k 5k 5k sk %k >k 5k 3k %k %k >k 5k >k %k >k 5k 3k %k %k >k 5k %k %k %k 5k >k %k %k >k >k %k %k %k >k >k %k %k %k >k %k %k *k *k

ok: [lab-ibmi-1]
ok: [lab-ibmi-2]

lab-ibmi-1 : ok=1 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
lab-ibmi-2 : ok=1 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

How Ansible works — Playbooks (variables) @

ANSIBLE

We can define variables from within the playbook
Playbook variables example

cat Install VMRM _agent_v1.0.yml
vars:
source_dir: /root/VMRM_Code
target_dir: /tmp
aix_code: ksys.vmmon.rte
rhel_code: vmagent-1.3.0-1.0.el7.ppc64dle.rpm

Variable defined in the playbook

- name: Copy VM agent code - AlX

copy: < Copy module called
src="{{ source_dir }}/{{ aix_code }}"

dest="{{ target_dir }}/{{ aix_code }}" \
- name: Copy VM agent code - RHEL Different variables used
copy:
src="{{ source_dir }}/{{ rhel_code }}" /

dest="{{ target_dir }}/{{ rhel_code }}"

How Ansible works — Playbooks (variables)

ANSIBLE

We can ‘include’ variables from an external file. There is a ‘priority’ order of var definition
Imported variables example

cat OSlevel check.yml

- hosts: all
tasks:
- name: Load IBMi specific variables
include_vars: IBMi.yml <

We include an external variables file

- name: Check OS
command: "{{ os_check_command }}" < The command modules needs a

variable called ‘os_check_command’

cat IBMi.yml|
;Variaues for script The ‘os_check_command’ is defined
os_check_command: "oslevel -s" > in this variable file and passed back

args_variable_name: "IBMi_0OS"

to the main playbook.

How Ansible works — Playbooks (conditions)

ANSIBLE

We can run tasks against ‘facts’ gathered from the clients, for example OS type
Playbook ‘when’ example

cat OSlevel_check.yml

- hosts: Dev
tasks:
- name: Load AIX specific variables
include_vars: AlX.yml

when: ansible_distribution == "AIX"
- name: Load RHEL specific variables \
include_vars: RHEL.yml Include a different variable file

hen: ansible_distribution == "RedHat” . .
When: ansibie_dISTHbAton == Rechs depending on the clients OS type

<
- name: Load IBM i specific variables
include_vars: IBMi.yml|
when: ansible_distribution == "05400"

- name: Check OS
command: "{{ os_check_command }}" < The relevant OS command is passed back
register: os_check_result
args:
creates: "{{ args_variable_name }}"

How Ansible works — Playbooks (Roles) @

ANSIBLE

As we start out with Ansible we tend to create one or two large playbooks
Although this is a good start we may want to reuse file and avoid repeating code.

Roles, import and includes are a good way to do this.

Roles allow us to automatically load certain variables, tasks and handlers based on a know file
structure. These can then be shared amongst other uses and projects.

How Ansible works — Playbooks (Roles)

ANSIBLE

Creating a role:

ansible-galaxy init db-server-role
- Role db-server-role was created successfully

Directory structure of a role:

tree

L— db-server-role

|F_|_dff,aa‘i’r',t;m| If main.yml playbooks exist within the role, the

tﬁlae:mers tasks, handlers, variable etc. listed within will

|k L— main.ym| be added to the play that called it.
— meta

| L— main.yml
— README.md
F— tasks

| L— main.yml
— templates
F— tests

| |—inventory
| L—test.yml
L—vars

L— main.yml

How Ansible works — Playbooks (Roles)

ANSIBLE
Why do we need roles?? If we look at our OpenStack playbook that creates AlX, Linux or IBMi VMs, its complex:

tasks:

VM_
VM_
VM_
VM_
VM_

ansible-playbook playbooks/VM_build.yml --list-tasks
play #1 (localhost): Build new VM via PowerVC/OpenStack TAGS: []

Prompt for new VM Name TAGS:

Set VM Variables TAGS:

Display VM Name TAGS:

VM _network_list : Retrieve list of all networks TAGS:
VM_network_list : Generate Network list TAGS:
VM_network_list : Debug - Output Network list TAGS:
VM

network_list : Display Network list TAGS:

VM_image_list : Retrieve list of all OS Distributions TAGS:
VM_image_list : Filter OS Distribution list TAGS:

flavor_list : Retrieve list of all public flavors TAGS:

name_list : Retrieve list of all VMs TAGS:
name_list : Retrieve VM list TAGS:

create_vm : Create a new VM instance TAGS:
create_vm : Print VM's public IP address TAGS:

[VM_Create]
[VM_Create]
[VM_Create]
[VM_Create, VM_Network]
[VM_Create, VM_Network]
[VM_Create, VM_Network]
[VM_Create, VM_Network]

S—

[VM_Create, VM_Images]
[VM_Create, VM_Images]

[VM_Flavor, always, never]

[VM_Create, VM_ List]
[VM_Create, VM_ List]

[VM_Create]
[VM_Create]

Each group
of tasks is in
its own role

65 tasks in total

How Ansible works — Playbooks (Roles)

These roles can be used multiple times from other playbooks, other users or other projects:
cat playbooks/VM_build.yml

- name: Build new VM via PowerVC/OpenStack

ANSIBLE

tasks:
- name: List Available Networks
import_role:
name: VM_network_list
tags: VM_Create, VM _Network

- name: Pick Network for VM
import_role:
name: VM_network_pick < Within the tasks we import each role
tags: VM_Create

- name: List VM images
import_role:
name: VM_image_list
tags: VM_Create, VM_Images

How Ansible works — Other features

ANSIBLE

Handlers
Handlers are lists of tasks, that are referenced by a globally unique name, and are notified by notifiers. If nothing notifies a
handler, it will not run. Regardless of how many tasks notify a handler, it will run only once, after all of the tasks complete in

a particular play.

Blocks
Blocks allow for logical grouping of tasks and in play error handling. Most of what you can apply to a single task can be
applied at the block level, which also makes it much easier to set data or directives common to the tasks.

Vaults
Ansible Vault is a feature of ansible that allows you to keep sensitive data such as passwords or keys in encrypted files, rather
than as plaintext in playbooks or roles. These vault files can then be distributed or placed in source control.

Galaxy
Ansible Galaxy refers to the Galaxy website, a free site for finding, downloading, and sharing community developed roles.
https://galaxy.ansible.com/home

You don’t like putty and ssh screen ?

* Ansible tower helps to launch ansible playbook using a GUI

@ Ansible Tower | DASHBOARD X Linux Tutoriak

<« ¢ @ 10.3.44.44/#/home o @ | Q synopsis > yiINn@D ® =
Ve IBMCloud % Most Visited @ timeanddate.com @ Client Authentication @ Faces F5COM 5 Oracle B DemoUtile F5 Cisco B CSI @ Lesson 2 Mathematic.. I YourLearning « Searc.. © Hydrofoiling: The best... [Zigbee @ Serial Communication... @ Zigbee Rain Sensor, Zi... »
@ rover as= AG@ O & O
= DASHBOARD (]
VIEWS
@ Dashboard 7 3 3 O 2 O
- Jobs HOSTS FAILED HOSTS INVENTORIES INVENTORY SYNC FAILURES PROJECTS PROJECT SYNC FAILURES
M8 schedules
JOB STATUS PERIOD | pastmoNTH v | JOBTYRE | AL T ovew (aw v
M ™y view
22
RESOURCES 20|
(@ Templates -
1
@& Credentials 2
= 10)
B rroje
5
&% Inventories
</> Inventory Scripts
Mar 24 Mar 26 Mar 28 Mar 30 Apr2 Aprd Apr6 Apr9 Apr 11 Apri3 Apr 16 Aprig Apr20 Apr23 Apr2a
ACCESS TIME
B orzanizations
RECENTLY USED TEMPLATES VIEW ALL RECENT JOB RUNS
& Users
& Teams NAME ACTIVITY ACTIONS NAME TIME
0SS No Prompt =] =] 4 @ 0SS No Prompt 4/24/2020 11:57:01 AM
Add SN key - - 4 @ 055 No Prompt 4/22/2020 9:05:16 PM
o - - 138:
05S mkvm - - L4 © 0SS No Prompt 4/22/2020 7:38:26 PM
sshdx11 Confi == - 19:
g - - .4 © 055 No Prompt 4/22/2020 7:19:30 PM
0ss o o ™ r 4

@ 0SS No Prompt 4/22/2020 7:18:08 PM

But still running ansible playbooks |

@ Ansible Tower | 312 - 0SS No P X
& C :sync e« @ ¢ Q synopsis -> vy IN @D ®

Ved IBM Cloud %¥ Most Visited () timeanddate.com @) Client Authentication @) Faces F51CDM 5 Oracle B DemoUtile B Cisco B CSI @ Lesson 2: Mathematic... [l YourLearning » Searc.. @ Hydrofoiling: The best...] Zigbee) Serial Communication... @& Zigbee Rain Sensor, Zi... »

Q rower &t AO@ O & O

arch=page_

JOBS / 312 - 0SS No Prompt

VIEWS
@ Dashboard DETAILS £ 0SS No Prompt
Jobs craTUs °s ol PLAYS @) TASKS @ED HOSTS @B ELAPSHD UEE £ X
A uccesstul
ﬁ Schedules STARTED 4/24/2020 10:35:37 AM -
SEARCH . KEY
FINISHED 4/24/2020 11:57:01 AM
m My View
JOB TEMPLATE 0SS No Prompt - AV A ¥
RESOURCI
JOBTYPE Run 487 -
@ Templates 488
LAUNCHED BY ste p—
@ Credentials INVENTORY pvctarget Vv 490 | TASK [oracle createdb : set database at autostart] *wwdwikikdbbiihiokdiiikikikik 11:56:56
8
491
& Projects PROJECT pvc_ansible oo
&% Inventories PLAYBOOK ossia/main.mvm.yml| 493
v 494 | TASK [oracle createdb : generating startup shutodwn script] %Whwiwiwbsikikwkwiws 11:56:57
CREDENTIAL
, . 496
ACCESS ENVIRONMENT Ivar/lib/awx/venv/ansible 4o7
. Organizations EXECUTION NODE localhost v 498 | TASK [oracle_createdb : Create symbolic links to the dbora script] ¥¥¥¥wwwwwwwiw 11:56:59
INSTANCE GROUP tower <D
‘ Users 500
extravAriaeLtes @ (RN EXPAND 501
* UEE 1| host ~ v 502 TASK [oracle_createdb : Create symbolic links to the dbora script] ¥w¥wiwwiwwiwsw 11:57:00
ostnames : -
2 - vmname: powerS B
3 number: 3 Hu
4 sizeGB: 3@ 505
- prefix: powers 506 | DLAY RECZD e s s kel e e s e e el s e e e e e e el e e e e e e e e e e el e e e e e e e ek 11157201
5 3
6 - vmname: power6 . 507 : ok=103 unreachable=0 failed=0
- - - rescued=0 ignored=0
508 : ok=103 unreachable=0 failed=0
rescued=0 ignored=0
509 : ok=18 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

510 v

Ansible Tower

ANSIBLE

Ansible Tower is a Ul and RESTful API allowing you to scale IT automation, manage complex
deployments and speed productivity.

e Role-based access control

e Deploy entire applications with push-button deployment access

e All automations are centrally logged
e Powerful workflows match your IT processes

83 3 0 3 0

---------- « © Rollback deployment 1/23/2019 4:38:35 PM

&
<S>
il
&
=
(=)
y
=
&

Ansible Tower - Projects

Project

A project is a logical collection of Ansible Playbooks, represented in Ansible Tower.

You can manage Ansible Playbooks and playbook
directories by placing them in a source code @TOWER
management system supported by Ansible Tower, g

including Git, Subversion, and Mercurial.

PROJECTS

@® Dashboard PROJECTS @D

2*% Jobs
@ Schedules

(O My View

AIX MANUAL
RESOURCES

(&' Templates Azhar_Project MANUAL

Q, Credentials

General MANUAL
& Projects

ANSIBLE

Ansible Tower - Credentials

ANSIBLE

Credentials

Credentials are utilized by Ansible Tower for authentication with various external resources:

e Connecting to remote machines to run jobs

e Syncing with inventory sources

® Importing project content from version control systems

e Connecting to and managing devices @ rove

CREDENTIALS

VIEWS

@ Dashboard CREDENTIALS @B

2*% Jobs
Q KEY
@ Schedules
NAME “ KIND
M My View OWNERS
azhar,
RESOURCES Ansible_Tower_localhost Machine L
Azhar_Organization
(& Templates))
Azhar_LPAR_Credential Machine azhar
&, Credentials i
admin,
git-hub Source Control)
B Projects Lab Services UK&I
. azhar,
é%a Inventories PowerVC_Credential OpenStack o
Azhar_Organization
<[> Inventory Scripts admin
PowerVC (ibm-default) OpenStack !

Lab Services UK&I

ACCESS

B organizations root Machine admin

Ansible Tower - Inventory

Inventory

ANSIBLE

Inventory is a collection of hosts clients (just like the with the engine) with associated data
and groupings that Ansible Tower can connect to and manage.

® Hosts (nodes)

® Groups

® Inventory-specific data (variables)
e Static or dynamic sources

@ TOWER

@® Dashboard
2°% Jobs

@ Schedules
ED My View
RESOURCES

(& Templates

Q®, Credentials

& Projects
ita Inventories
</> Inventory Scripts

ACCESS

INVENTORIES

INVENTORIES HOSTS

NAME #

Ansible_PowerVC_Inventory

inventory_localhost

Old domain VMs

PowerVC_Inventory

VUG_demo

Q KEY

TYPE =

Inventory

Inventory

Smart Inventory

Inventory

Inventory

ORGANIZATION =

Azhar_Organization

Azhar_Organization

Lab Services UK&

Lab Services UK&

Lab Services UK&

ANSIBLE

Ansible for i Labs
©@PowerVC

LAB 1
Ansible fori 101

https://ibm.box.com/v/ansible-for-i-lab1

IBMi modules Ansible e

reate user profile, copy a savf, install a product

—
for Business

PTF Repository
0ps SQlite PTF db

LAB 2

Orchestrator
(CloudForms, IBM

PTF Management advanced Gloud ok . P

! Ansible
?nsnble Management
ower

Ansible AWX / Redhat Ansible Tower 2 / s

Visual Studio Code

https://ibm.box.com/v/ansible-for-i-lab?2 O e p'ay"°°"J "“’e“‘°"’J openstack.
—— fgroup A]] |
Dev host 1 .
[group B]
host 2 Anything with an IP address

host N and Python/ssh installed

https://ibm.box.com/v/ansible-for-i-lab2
https://ibm.box.com/v/ansible-for-i-lab1

ibmi-savelib.yml

Ansible for i - Example

Sequential save on all IBM i systems in the myibmisystems group
serial :1 for sequential execution (single tape drive)

Q: How do | automate a backup on multiple systems - hosts: myibmisystems
with a single tape drive? serial: 1
collections:
- ibm.power_ibmi
tasks:
Ansyver: . . . - name: Vary on TAPE
ansible-playbook playbooks/ibmi-savelib.yml ibmi_device vary:
device_list: ['TAPVRTO1']
status: "*ON'

- name: LODIMGCLG
ibm.power_ibmi.ibmi_cl_command:
cmd: 'LODIMGCLG IMGCLG(VIRTUALTAP) DEV(TAPVRTO01)'
become_user: '<userprofile>'
become_user_password: '<userprofilepwd>'
- name: SAVLIB
ibm.power_ibmi.ibmi_cl_command:
cmd: 'SAVLIB LIB(TOTO) ACCPTH(*YES) DEV(TAPVRTO1)'
become_user: '<userprofile>'

[myibmisystems]
10.7.19.71 ansible_ssh_user=benoit

10.7.19.72 ansible_ssh_user=benoit o become_user_password: '<userprofilepwd>'
10.7.19.73 ansible_ssh_user=benoit[ibmi:vars] _name: Vary off TAPE
ansible_python_interpreter="/QOpensys/pkgs/bin/python3" ibm.power_ibmi.ibmi_device_vary:
ansible_ssh_common_args="-o StrictHostKeyChecking=no' device_list: ['TAPVRTO1']

status: '"*OFF'

Ansible for i Demo

https://github.com/bmarolleau/ansible-for-i

emoO0-list-inventory.sh

emol-ptferoup-check.sh

emo?2-disable-usrprf-CL.sh

emo3-fix-imgclg.sh

emo4-sync-apply-ptferp.sh

https://github.com/bmarolleau/ansible-for-i
https://github.com/bmarolleau/ansible-for-i/blob/main/demo0-list-inventory.sh
https://github.com/bmarolleau/ansible-for-i/blob/main/demo1-ptfgroup-check.sh
https://github.com/bmarolleau/ansible-for-i/blob/main/demo2-disable-usrprf-CL.sh
https://github.com/bmarolleau/ansible-for-i/blob/main/demo3-fix-imgclg.sh
https://github.com/bmarolleau/ansible-for-i/blob/main/demo4-sync-apply-ptfgrp.sh

