UM10858

PN7462 HW user manual

Rev. 1.2 — 08 September 2017 314512

User manual COMPANY PUBLIC

Document information

Info	Content
Keywords	PN7462AU, NFC reader
Abstract	This document describes how to use the PN7462AU.

PN7462 HW user manual

Revision history

Rev	Date	Description
1.2	20170908	GPIO wakeup condition corrected Pull-up and pull-down configuration for SPIM pins corrected CRC polynomial appointed
1.1	20170216	CRC polynomial specified Max enhanced ESD protection changed to 12 kV Dynamic Power Control (DPC) added
1.0	20160225	Initial version

Contact information

For more information, please visit: http://www.nxp.com

PN7462 HW user manual

1. Introduction

1.1 General description

The PN7462AU is an ARM Cortex-M0 based, low-cost 32-bit NFC micro controller offering performance, low power, simple instruction set and memory addressing, together with reduced code size compared to existing architectures. It operates at CPU frequencies up to 20 MHz.

The peripheral complement of the PN7462AU includes 160 K of flash memory, 12 kB of SRAM data memory, 4 kB EEPROM, and host interfaces. High Speed UART, SPI, I²C and 2.0 USB interface, I²C and SPI master interfaces, four general-purpose counter/timers, a Random Number Generator, one CRC coprocessor and up to 21 general-purpose I/O pins.

Equipped with a highly integrated high power output NFC-IC for contactless communication at 13.56 MHz, the PN7462AU NFC micro controller is extending NXP portfolio to offer a one chip solution to build contactless application, everywhere NFC interface is required. Its high-power transceiver allows to achieve EMV compliance on RF level without additional external active components.

It supports the following operating modes:

- ISO/IEC 14443-A & B, MIFARE
- JIS X 6319-4 (comparable with FeliCa scheme)
- ISO/IEC 15693, ISO/IEC 18000-3 Mode 3
- NFC protocols tag Reader/ Writer, P2P
- ISO/IEC 14443-type A card emulation
- EMVCo compliance

By integrating an ISO/IEC 7816 interface on the same silicon, it is also the first product on the market to propose a solution for Dual Interface smart card readers. PN7462AU contact interface offers a high level of security for the card by performing current limitation, short-circuit detection, ESD protection as well as supply supervision. An additional UART output is also implemented to address applications where more than one contact card slot is need, which enable an easy connection to multiple smart-card slot interfaces like NXP's TDA8026.

- Vcc regulation at 5 V, 3 V, and 1.8 V
- · Thermal and short-circuit protection on all card contacts
- Automatic activation and deactivation sequences initiated by software, or by hardware in the event of a short-circuit, card take-off, and overheating
- EMVCo compliance

PN7462 HW user manual

1.2 Features and benefits

1.2.1 Integrated contact interface front-end

- Class A, B and C cards support (1.8 V, 3 V, and 5 V)
- DC-to-DC converter for Class A support starting at 3 V, Class B support starting 2.7 V
- · Thermal and short-circuit protection on all contact cards
- Automatic activation and deactivation sequence: initiated by software or by hardware in case of short-circuit, card take-off, overheating, VDD or VDD drop-out.
- Enhanced ESD protection (> 12 kV)
- ISO/IEC 7816 compliance
- EMVCo 4.3 compliance
- · Clock generation up to 10 MHz
- · Synchronous card support
- Possibility to extend the number of contact interface thanks to the addition of slot extender like TDA8026

1.2.2 Integrated contactless interface front end

- High RF output power frontend IC for transfer speeds up to 848 kbit/s
- NFC IP1 and NPFC IP2 support
- Full NFC Tag support (Type 1, Type 2, Type 3, Type 4 A and B)
- P2P active and passive, target and initiator
- Card emulation ISO14443 type A
- ISO/IEC 14443 Type A and B
- · MIFARE Classic card
- ISO/IEC 15693 and ISO/IEC 18000-3 mode 3
- · iClass serial number support
- Low power card detection function
- Compliance with EMV Contactless protocol specification
- · Compliance with NFC standard

1.2.3 Cortex M0 microcontroller

- Processor core
 - 32-bit ARM cortex M0 processor
 - Built-in Nested Vectored Interrupt Controller (NVIC)
 - Non-maskable interrupt
 - System Tick Timer 24 bits
 - Running frequency up to 20 MHz
 - Clock management to enable low power consumption
- Memory

PN7462 HW user manual

Flash: 160 kBRAM: 12 kBEEPROM: 4 kB

- 40 K boot ROM included, including USB mass storage primary boot loader for code download.
- Debug Option
 - Serial Wire Debug interface (SWD)
- Master Interfaces:
 - SPI half-duplex, up to 6.78 Mbit/s
 - I²C supporting fast mode plus, and clock stretching
- Host Interfaces
 - HSUART for serial communication, supporting standards speeds from 9600 to 115200 bds, and faster speed up to 1.288 Mbit/s
 - SPI half-duplex and full duplex, up to 7 Mbit/s
 - I²C Host supporting standard, fast and high speed mode with multiple address support
 - USB 2.0 full speed, with USB 3.0 hub connection capability
- Up to 21 General-Purpose I/O (GPIO) with configurable pull-up/pull-down resistors
- GPIOs 1 to 12 can be used as edge and level sensitive interrupt sources
- Power
 - Two reduced power modes: Sleep mode and hard power down mode
 - Suspend mode for USB host interface
 - Processor wake-up from hard power down mode, stand-by mode, suspend mode via: host interface, contact card interface, GPIOs, RF field detection
 - Integrated PMU to automatically adjust internal regulators, to minimize the power consumption during all possible power modes.
 - Power-on reset
 - RF supply; external, or using an integrated LDO (TXLDO configurable with 3 V, 3.3 V, 3.6 V, 4.5 V, and 4.75 V)
 - Pad voltage supply: external 3.3 V or 1.8 V, or using an integrated LDO (3.3 V supply)
 - Integrated contact interface voltage regulation for 1.8 V, 3 V, and 5 V card supply, including a DC-to-DC converter for support of Class A and Class B cards
- Timers
 - Four general-purpose timers
 - Programmable WatchDog Timer (WDT)
- CRC coprocessor
- · Random number generator
- Clocks

PN7462 HW user manual

- Crystal oscillator 27.12 MHz
- Dedicated PLL 48 MHz for the USB
- Integrated HFO 20 MHz and LFO 380 kHz
- General
 - HVQFN64 packaging
 - Temperature range: -40 °C to 85 °C

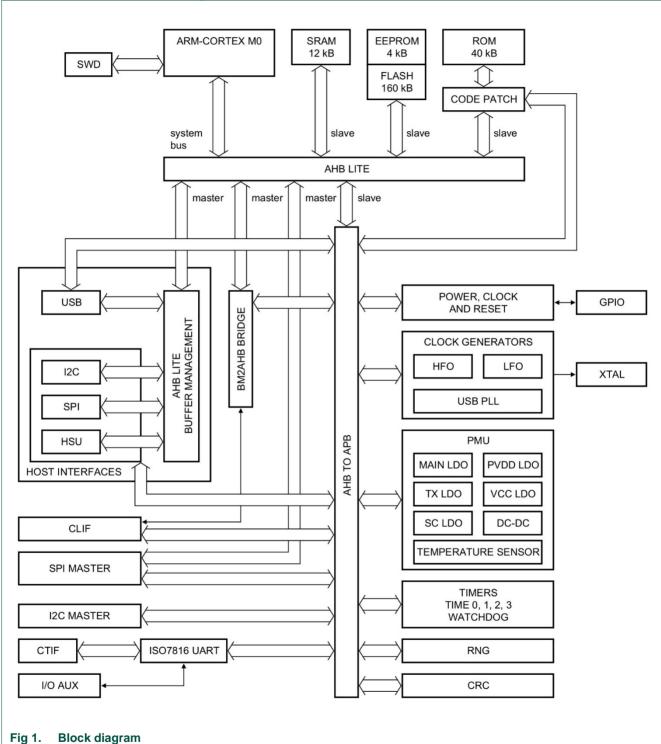
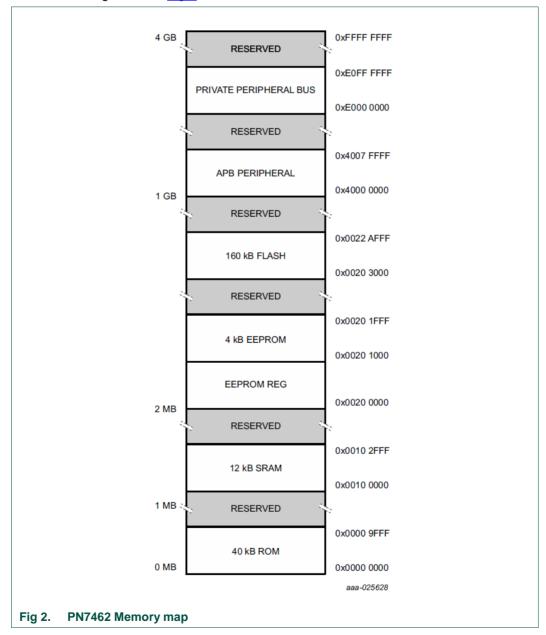

1.3 Ordering information

Table 1. Ordering information

Type Number	Package		
	Name	Description	Version
PN7462AU	HVQFN64	Plastic thermal enhanced very thin quad flat package; no leads; 64 terminals; body $9 \times 9 \times 0.85$ mm	SOT804-1

PN7462 HW user manual

1.4 Block diagram



PN7462 HW user manual

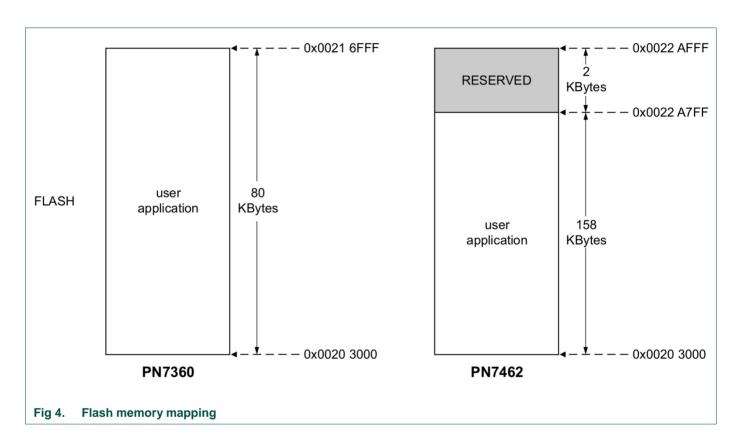
2. PN7462AU memory

2.1 Memory mapping

The PN7462AU incorporates several distinct memory regions. Fig 2 shows the overall map of the entire address space from user program viewpoint following reset. The APB peripheral area is 512 K in size, and is divided to allow for up to 32 peripherals. Only peripheral from 0 to 15 are accessible, and each one is allocated 16 kB of space, in order to simplify the address decoding for each peripheral. The APB peripheral memory map is shown on the right side of Fig 2.

PN7462 HW user manual

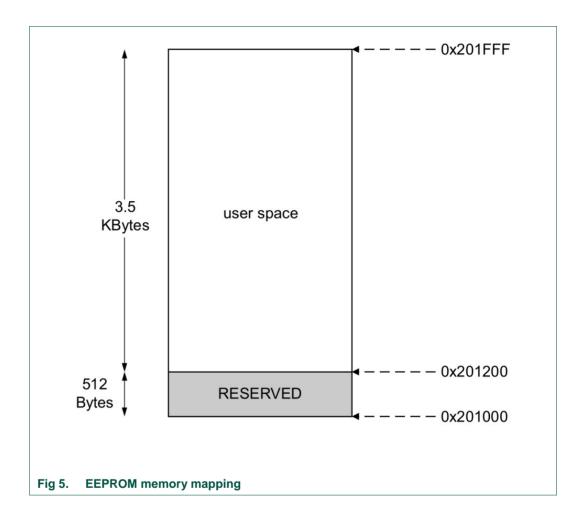
APB ID	APB IF name	APB IF name Connected IP			
16 to 31	Rese	0x4004 8000 0x4004 0000			
15	Rese	erved	0x4003 C000		
14	Rese	erved	0x4003 8000		
13	SPIMASTER_APB	SPI Master IF	0x4003 4000		
12	I2CMASTER_APB	I2C Master IF	0x4003 0000		
11	Rese	erved	0x4002 C000		
10	USB_APB	HostIF (USB) IP	0x4002 8000		
9	PCR_APB	PowerClockResetModule IP	0x4002 4000		
8	HOST_APB	HostIF (I2C/SPI/HSU/BufMgt) IP	0x4002 0000		
7	TIMERS_APB	Timer IP	0x4001 C000		
6	RNG_APB	RNG IP	0x4001 8000		
5	CTUART_APB	Contact UART IP	0x4001 4000		
4	CLOCKGEN_APB	Clock Gen module	0x4001 0000		
3	CRC_APB	0x4000 C000			
2	PMU_APB	0x4000 8000			
1	CL_APB	0x4000 4000			
0	Rese	erved	0x4000 0000		


Fig 3. APB memory map

PN7462 HW user manual

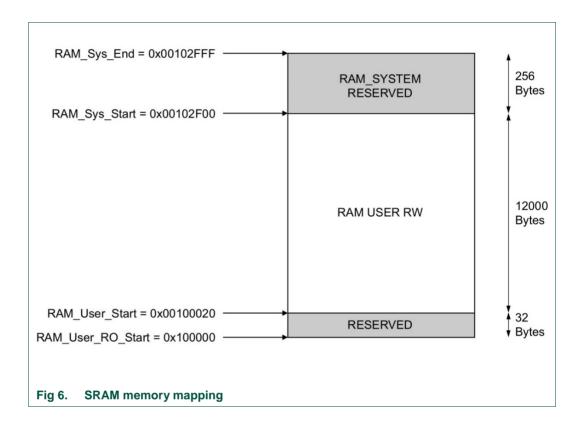
2.2 On-chip flash memory map

The PN7462AU contains 160 kB on-chip flash program memory. The flash can be programmed using In-System Programming (ISP) or In-Application Programming (IAP) via the on-chip boot-loader software.


The flash memory is divided into two instances of 80 kB, with each sector consisting of individual pages of 64 Bytes. The flash memory map is described in Fig 4.

PN7462 HW user manual

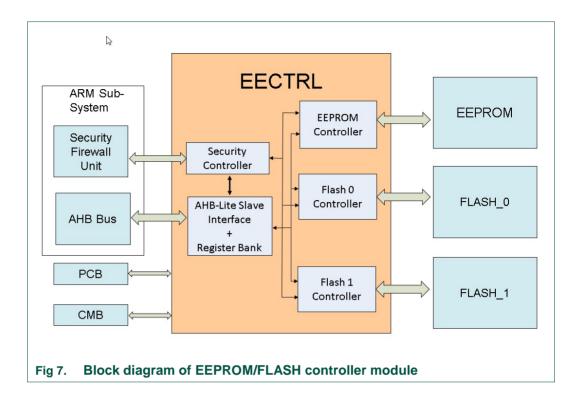
2.3 EEPROM memory map


The PN7462AU embeds 4 kB of on-chip EEPROM data memory. The EEPROM memory map is shown in $\underline{\text{Fig 5}}$.

PN7462 HW user manual

2.4 SRAM memory map

The PN7462AU contains a total of 12 kB on-chip static RAM memory. The SRAM memory map is presented in Fig 6.



3. EEPROM CTRL module

The EEPROM controller module controls the access to 4 kB EEPROM and 160 kB Onchip Flash memories. This comprises:

- Reading the content of an EEPROM or Flash word in response to a read-transfer coming from the CPU
- Writing a word (8,16 and 32-bit word length transfer allowed for EEPROM, only 32-bit allowed for flash) in page file upon a write-transfer coming from the CPU (Full page has to be written for flash)
- Programming the Flash, meaning copying the content of the page into the relevant EEPROM/flash
- Implementing security bits (at boot time the EEPROM first word is read. Part of those bits are controlling the Flash access and the CMB enabling. These bits are available in a register). Fig 7 shows the block diagram EEPROM/flash controller module

PN7462 HW user manual

3.1 EEPROM/Flash controller features

- Three non-volatile memory ports: two for 80 x 2 kB of flash and one for a 4 kB of EEPROM
- 32-bit AHB-Lite slave interface with the CPU
- Read prefetching for flash memory to speed up reading from flash.
- Interrupt Request Device
- · Register bank for control and status with user mode protection
- 2.8 ms maximum to write a page on the EEPROM, with a max. power consumption of 2 mA
- 2.5 ms to write a page on the Flash in typical condition
- 1.03 ms to write a page on the Flash with maximum clock speed, with a max. power consumption of 3 mA
- Test support Unit with CRC computation of the EEPROM and flash content

3.2 AHB interface

AMBA 3 AHB Lite slave interface is implemented to connect the CPU to the EECTRL. The wait states are inserted with individual length for a read or write access.

3.3 Memory map

The memory map for the EECTRL module is divided into four parts:

0x0020_0000 - 0x0020_0FFF - EECTRL registers area

PN7462 HW user manual

- 0x0020_1000 0x0020_1FFF 4 kBytes DATA EEPROM Area
- 0x0020 2000 0x0020 2FFF UNDEFINED area
- 0x0020_3000 0x0022_AFFF 160 kBytes flash area

3.4 EEPROM controller

3.4.1 Write operation

Write operation cannot be handled within one AHB clock cycle, therefore wait states are inserted by the AHB Slave Interface during page register write phase. The following table gives an overview of minimum idle time for a write operation. The EEPROM controller programs the data page by page. A page register for write access is used to internally store the data in a quick way and then a programming cycle can start. The targeted EEPROM is 16-bit oriented so 32-bit write access need additional processing to combine two 16-bit access leading to additional wait states.

Table 2. Wait states for write access on EEPROM

Address width	Wait states FA	ST mode	Wait states SLOW mode		
	AHB clock cycles	20 MHz Clock	AHB clock cycles	20 MHz Clock	
32-bit	5	250 ns	7	350 ns	
8/16-bit	2	100 ns	3	150 ns	

The Write operation to the EEPROM has to be done in two steps:

- 1. Write the 64-Byte short term storage page register.
- 2. Program the page register in one row of the EEPROM matrix.

3.4.2 Read operation

A read request cannot be handled within one AHB clock cycle, therefore wait states are inserted by the AHB Slave Interface. The targeted EEPROM is 16-bit oriented so 32-bit Read access need additional processing leading to additional wait states. <u>Table 3</u> gives an overview of minimum idle time for a read operation.

Table 3. Wait states for read access on EEPROM

Address Width	Wait states I	FAST mode	Wait states SLOW mode		
	AHB clock 20 MH cycles		AHB clock cycles	20 MHz clock	
32-bit	5	250 ns	7	350 ns	
8/16-bit	2	100 ns	3	150 ns	

3.5 Flash controller

The Flash is composed of two memory devices respectively controlled by one Flash controller integrated twice in the EECTRL module. The main difference to the EEPROM is a faster read access and a full-page programming.

PN7462 HW user manual

3.5.1 Write operation

Write Access is done only with 32-bit access. A write operation cannot be handled within one AHB clock cycle, therefore wait states are inserted by the AHB Slave Interface during page register write phase. The following table gives an overview of minimum idle time for a write operation. The Flash controllers program the Flash_0 and Flash_1 data page by page.

A page register for write access is used to internally store the data in a quick way and then a programming cycle is necessary to store the data.

Flash_0 stores data corresponding to «even» AHB addresses with bit [2] = '0' and

Flash_1 stores data corresponding to «odd» AHB addresses with bit [2] = '1'.

Table 4. Wait states for write access on EEPROM

Address Width	Wait states F	AST mode	Wait states SLOW mode		
	AHB clock cycles	ns (20 MHz clock)	AHB clock cycles	ns (20 MHz clock)	
32-bit access	2	100	3	150	

A write operation to the Flash has to be done in two steps:

- 1. Write the 64-Byte short term storage page register.
- 2. Program the page register in one row of the Flash matrix.

3.5.2 Read Operation

Even if 32-bit, 16-bit and 8-bit Read Access are supported at system level, read access is only done with 32-bit accesses at memory level because the Flash is 32-bit oriented. The read access is similar as for the EEPROM.

The following table gives idle time with AHB wait states insertion for a read operation

Table 5. Wait states for read access on EEPROM

Address Width	Wait states FAS	T mode	Wait states SLOW mode		
	AHB clock cycles	ns (20 MHz Clock)	AHB clock cycles	ns (20 MHz Clock)	
32- bit access	2	100	3	150	

3.6 Register overview

Table 6. Clock generator register overview

Name	Address offset	Width (bits)	Access	Reset value	Description
EE_CTRL	0000h	32	R/W	001F_0000h	EECTRL general control register
EE_DYN	0004h	32	W	0000_0000h	EECTRL dynamic control register
EE_STAT_DAT	0008h	32	R	0X00_0000h	EEPROM status register
EE_STAT_COD	000Ch	32	R	0000_0000h	FLASH status register
EE_CRC_DAT	0010h	32	R	FFFF_FFFFh	EEPROM CRC value

PN7462 HW user manual

Name	Address offset	Width (bits)	Access	Reset value	Description
EE_CRC_DAT_ADDR	0014h	32	R/W	0FFF_0000h	EEPROM CRC start/end Addresses
EE_CRC_1_COD_INIT	0018h	32	R/W	FFFF_FFFFh	FLASH_1 CRC init value
EE_CRC_1_COD	001Ch	32	R	FFFF_FFFFh	FLASH_1 CRC value
EE_CRC_1_COD_ADDR	0020h	32	R/W	4FFF_0000h	FLASH_1 CRC start/end address
EE_CRC_0_COD_INIT	0024h	32	R/W	FFFF_FFFFh	FLAH_0 CRC Init value
EE_CRC_0_COD	0028h	32	R	FFFF_FFFFh	FLASH_0 CRC value
EE_CRC_0_COD_ADDR	002Ch	32	R/W	4FFF_0000h	FLASH_0 CRC start/end Addresses
RESERVED	0030h	32	R/W	0000_0000h	Reserved
RESERVED	0034h	32	R/W	0000_0000h	Reserved
RESERVED	0038h	32	R/W	0000_0000h	Reserved
EE_TRIMM	003Ch	32	R/W	0000_0000h	EEPROM/PFLASH trimming values
RESERVED	0040h	32	R	6000_01ACh	Reserved
EE_ECC_PF_AHB_ERROR_ADD R	0044h	32	R	0000_0000h	FLASH ECC Error address
Unused	0048h - 0FD4h	32	-	-	Unused
EE_INT_CLR_ENABLE	0FD8h	32	W	0000_0000h	Interrupt CLR_ENABLE commands
EE_INT_SET_ENABLE	0FDCh	32	W	0000_0000h	Interrupt SET_ENABLE commands
EE_INT_STATUS	0FE0h	32	R	0000_0000h	Interrupt STATUS commands
EE_INT_ENABLE	0FE4h	32	R	0000_0000h	Interrupt ENABLE commands
EE_INT_CLR_STATUS	0FE8h	32	W	0000_0000h	Interrupt CLR_STATUS commands
EE_INT_SET_STATUS	0FECh	32	W	0000_0000h	Interrupt SET_STATUS commands

3.7 Register description

Table 7. EE_CTRL (address offset 0x0000h)

Bit	Symbol	Access	Value	Description
31:16	RESERVED	-	0	Reserved
15	ECC_PF_AHB_ERROR_ENABLE	R/W	0	when '1' enables the AHB error generation when FLASH read data cannot be corrected by the ECC mechanism and automatically set the FAST_COD bit to '0' to put the FLASH in slow mode.

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
14	PFLASH_READ_PREFETCH_DI S	R/W	0	When '1' disables read prefetching for the Flash memories
13	BLOCK_1_COD	R/W	0	Block mode for FLASH_1
12	BNWSENS_1_COD	R/W	0	voltage drop sensor enable for FLASH_1
11	SKIPPRG_1_COD	R/W	0	skip program if erase fails for FLASH_1
10	STOP_1_COD	R/W	0	stop ramp-up at low power for FLASH_1
9	PFLASH_DOUT_SYNCHRO_DI S	R/W	0	when '0' output PAGEFLASH data is synchronized with the system clock to ensure that following ECC calculation is made on stable data. It is automatically set to '1' if FAST_COD = '1'.
8	POWER_DOWN_1_COD	R/W	0	power down FLASH_1 block
7	BLOCK_0_COD	R/W	0	block mode for FLASH_0
6	BNWSENS_0_COD	R/W	0	voltage drop sensor enable for FLASH_0
5	SKIPPRG_0_COD	R/W	0	skip program if erase fails for FLASH_0
4	STOP_0_COD	R/W	0	stop ramp-up at low power for FLASH_0
3	FAST_COD	R/W	0	fast access for both FLASH_0 and FLASH_1. It is automatically set to '0' if EE_CTRL.ECC_PF_AHB_ERROR_ENAB LE register is set to '1'
2	POWER_DOWN_0_COD	R/W	0	power down FLASH block
1	FAST_DAT	R/W	0	fast EEPROM data access
0	power_down_dat	R/W	0	power down EEPROM block

Table 8. EE_DYN (address offset 0x0004h)

Bit	Symbol	Access	Value	Description
31:24	RESERVED	-	0	Reserved
23	EE_RST_1_COD	W	0	resets the FLASH controller
22	CRC_CLEAR_1_COD	W	0	CRC clear function for FLASH
21	FULL_DUMP_READ_1_COD	W	0	performs a full or partial read of FLASH with CRC Calculation
20	PROG_1_COD	W	0	start programming data from the page register for FLASH_1
19	EE_RST_0_COD	W	0	resets the FLASH Controller
18	CRC_CLEAR_0_COD	W	0	CRC clear function for EFLASH
17	FULL_DUMP_READ_0_COD	W	0	performs a full or partial read of FLASH with CRC calculation
16	PROG_0_COD	W	0	start programming data from the page register for FLASH_0
15:5	RESERVED	-	0	Reserved
4	RESERVED	W	0	always write 0
3	ee_rst_dat	W	0	resets the EEPROM Controller

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
2	crc_clear_dat	W	0	CRC Clear Function for the EEPROM
1	full_dump_read_dat	W	0	performs a full or partial read of the EEPROM with CRC calculation
0	prog_dat	W	0	start programming data from the page register for the EEPROM

Table 9. EE_STAT_DAT (address offset 0x0008h)

	rable 9.	EE_STAT_DAT (a	duress onset	UNUUUUII)	
Bit	Symbol		Access	Value	Description
31:23	RESERVED		-	0	Reserved
22	ALL1_DAT		R	0	Single Fault Injection (SFI) detection flag for the EEPROM
21	ALL0_DAT		R	0	Single Fault Injection (SFI) detection flag for the EEPROM
20	BNWDROP_0	DAT	R	0	BNW sensor signal for the EEPROM
19	TMANALOG_	DAT	R	0	analog test mode active, analog level at analog IO for the EEPROM
18:3	ee_edo_dat		R	0	EDO parity lines for EEPROM EE_EDO_DAT[15:12]: parity bits corresponding to data[31:24] EE_EDO_DAT[11:8]: parity bits corresponding to data[23:16] EE_EDO_DAT[7:4]: parity bits corresponding to data[15:8] EE_EDO_DAT[3:0]: parity bits corresponding to data[7:0]
2	readout_ongo	ing_dat	R	0	full or partial dump readout ongoing for the EEPROM
1	prog_dat		R	0	indicator if programming is ongoing for the EEPROM
0	hverr_dat		R	0	HV error signal for the EEPROM

Table 10. EE_STAT_COD (address offset 0x000Ch)

Bit	Symbol	Access	Value	Description
31:26	RESERVED	-	0	Reserved
25	ECC_READ_INVALID_1_COD	R	0	1 means that read access can't be corrected, there is more than one bit error
24	ECC_READ_CORRECT_1_CO D	R	1	0 means that there is at least one bit error, check the ECC_READ_INVALID_1_COD to confirm if it has been corrected or not 1 means that no bit error occurred
23:18	EE_EDO_1_COD	R	X	EDO parity lines of the FLASH_1 32-bit data
17	readout_ongoing_1_COD	R	0	full or partial dump readout ongoing for the entire FLASH_1
16	DROPSENS_1_COD	R	0	drop sensor output signal for FLASH_1

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
15	VMPOK_1_COD	R	0	margin voltage flag for FLASH_1
14	prog_1_COD	R	0	indicator if programming is ongoing for the FLASH_1
13	hverr_1_COD	R	0	HV error signal for the FLASH_1
12	ECC_READ_INVALID_0_COD	R	0	1 means that read access can't be corrected, there is more than one bit error
11	ECC_READ_CORRECT_0_COD	R	1	0 means that there is at least one bit error, check the ECC_READ_INVALID_0_COD to confirm if it has been corrected or not 1 means that no bit error occurred
10:5	EE_EDO_0_COD	R	X	EDO parity lines of the FLASH_0 32-bit data
4	readout_ongoing_0_COD	R	0	full or partial dump readout ongoing for the entire FLASH_0
3	DROPSENS_0_COD	R	0	drop sensor output signal for FLASH_0
2	VMPOK_0_COD	R	0	margin voltage flag for FLASH_0
1	prog_0_COD	R	0	indicator if programming is ongoing for the FLASH_0
0	hverr_0_COD	R	0	HV error signal for the FLASH_0

Table 11. EE_CRC_DAT (address offset 0x0010h)

Bit	Symbol	Access	Value	Description
31:0	ee_crc_DAT	R	FFFFh	EEPROM CRC value

Table 12. EE_CRC_DAT_ADDR (address offset 0x0014h)

Bit	Symbol	Access	Value	Description
31:28	RESERVED	-	0	Reserved
27:16	ee_CRC_DAT_ADDR_END	R/W	7FFh	EEPROM CRC calculation end address corresponding to a native 16-bit data access (AHB memory map divided by 2)
15:12	RESERVED	-	0	Reserved
11:0	ee_CRC_DAT_ADDR_START	R/W	000h	EEPROM CRC calculation start address corresponding to a native 16-bit data access (AHB memory map divided by 2)

Table 13. EE_CRC_1_COD_INIT (address offset 0x0018h)

Bit	Symbol	Access	Value	Description
31:0	ee_crc_1_COD_INIT	R/W	FFFFh	FLASH_1 CRC Init Value loaded as soon as CRC_CLEAR_1_COD is high, meaning that FLASH_1 CRC must be set before CRC_CLEAR_1_COD.

Table 14. EE_CRC_1_COD (address offset 0x001Ch)

Bit	Symbol	Access	Value	Description
31:0	ee_crc_1_COD	R	FFFFh	FLASH_1 CRC value

PN7462 HW user manual

Table 15. EE CRC 1 COD ADDR (address offset

Bit	Symbol	Access	Value	Description
31:16	ee_CRC_1_COD_ADDR_END	R/W	4FFFh	FLASH_1 CRC calculation end address corresponding to a native 32-bit data access (AHB Memory Map divided by 8)
15:0	ee_CRC_1_COD_ADDR_START	R/W	0000h	FLASH_1 CRC calculation start address corresponding to a native 32-bit data access (AHB memory map divided by 8)

Table 16. EE_CRC_0_COD_INIT (address offset 0x0024h)

Bit	Symbol	Access	Value	Description
31:0	ee_crc_0_COD_INIT	R/W	FFFFh	FLASH_0 CRC Init value loaded as soon as CRC_CLEAR_0_COD is high, meaning that FLASH_0 CRC must be set before CRC_CLEAR_0_COD.

Table 17. EE_CRC_0_COD (address offset 0x0028h)

Bit	Symbol	Access	Value	Description
31:0	ee_crc_0_COD	R	FFFFh	FLASH_0 CRC value

Table 18. EE CRC 0 COD ADDR (address offset 0x002Ch)

Bit	Symbol	Access	Value	Description
31:16	ee_CRC_0_COD_ADDR_END	R/W	4FFFh	FLASH_0 CRC calculation end address corresponding to a native 32-bit data access (AHB memory map divided by 8)
15:0	ee_CRC_0_COD_ADDR_START	R/W	0000h	FLASH_0 CRC Calculation start address corresponding to a native 32-bit data access (AHB memory map divided by 8)

Table 19. EE CRC 0 COD ADDR (address offset 0x002Ch)

Bit	Symbol	Access	Value	Description
31:16	ee_CRC_0_COD_ADDR_END	R/W	4FFFh	FLASH_0 CRC calculation end address corresponding to a native 32-bit data access (AHB memory map divided by 8)
15:0	ee_CRC_0_COD_ADDR_START	R/W	0000h	FLASH_0 CRC calculation start address corresponding to a native 32-bit data access (AHB memory map divided by 8)

Table 20. EE_TRIMM (address offset 0x003Ch)

Bit	Symbol	Access	Value	Description
31:24	RESERVED	-	0	Reserved
23:20	hvtrimw_1_COD	R/W	0	HV trimming value program for the FLASH_1

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
19:16	hvtrime_1_COD	R/W	0	HV trimming value Erase for the FLASH_1
15:12	hvtrimw_0_COD	R/W	0	HV trimming value Program for the FLASH_0
11:8	hvtrime_0_COD	R/W	0	HV trimming value Erase for the FLASH_0
7:4	hvtrimw_dat	R/W	0	HV trimming value Program for the EEPROM
3:0	hvtrime_dat	R/W	0	HV trimming value Erase for the EEPROM

Table 21. EE_ECC_PF_AHB_ERROR_ADDR (address offset 0x0044h)

Bit	Symbol	Access	Value	Description
31:18	RESERVED	-	0	Reserved
17:0	ECC_PF_AHB_ERROR_ADDR	R	0	AHB address for which a flash read data was detected as invalid or corrected by the ECC module.

Table 22. EE_INT_CLR_ENABLE (address offset 0x0FD8h)

Bit	Symbol	Access	Value	Description
31:10	RESERVED	-	0	Reserved
9	EE_ECC_READ_NOT_CORRE CT_1_COD_INT_CLR_ENABLE	W	0	FLASH_1 not correct ECC read interrupt clear enable command
8	EE_ECC_READ_INVALID_1_C OD_INT_CLR_ENABLE	W	0	FLASH_1 Invalid ECC Read interrupt clear enable command
7	EE_ECC_READ_NOT_CORRE CT_0_COD_INT_CLR_ENABLE	W	0	FLASH_0 Not Correct ECC Read interrupt clear enable command
6	EE_ECC_READ_INVALID_0_C OD_INT_CLR_ENABLE	W	0	FLASH_0 Invalid ECC Read interrupt clear enable command
5	ee_hverr_1_cod_int_clr_enable	W	0	FLASH_1 High Voltage Error interrupt clear enable command
4	ee_hverr_0_cod_int_clr_enable	W	0	FLASH_0 High Voltage Error interrupt clear enable command
3	ee_hverr_dat_int_clr_enable	W	0	EEPROM High Voltage Error interrupt clear enable command
2	ee_prog_1_cod_completed_int_c lr_enable	W	0	FLASH_1 Programming Completed interrupt clear enable command
1	ee_prog_0_cod_completed_int_c lr_enable	W	0	FLASH_0 Programming Completed interrupt clear enable command
0	ee_prog_dat_completed_int_clr_ enable	W	0	EEPROM Programming Completed interrupt clear enable command

Table 23. EE_INT_SET_ENABLE (address offset 0x0FDCh)

Bit	Symbol	Access	Value	Description
31:10	Reserved	-	0	Reserved
9	EE_ECC_READ_NOT_CORRE CT_1_COD_INT_SET_ENABLE	W	0	FLASH_1 not correct ECC read interrupt set enable command

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
8	EE_ECC_READ_INVALID_1_C OD_INT_SET_ENABLE	W	0	FLASH_1 Invalid ECC read interrupt set enable command
7	EE_ECC_READ_NOT_CORRE CT_0_COD_INT_SET_ENABLE	W	0	FLASH_0 not correct ECC read interrupt set enable command
6	EE_ECC_READ_INVALID_0_C OD_INT_SET_ENABLE	W	0	FLASH_0 invalid ECC read interrupt set enable command
5	ee_hverr_1_cod_int_SET_enable	W	0	FLASH_1 high voltage error interrupt set enable command
4	ee_hverr_0_cod_int_SET_enable	W	0	FLASH_0 high voltage error interrupt set enable command
3	ee_hverr_dat_int_SET_enable	W	0	EEPROM high voltage error interrupt set enable command
2	ee_prog_1_cod_completed_int_ SET_enable	W	0	FLASH_1 programming completed interrupt set enable command
1	ee_prog_0_cod_completed_int_ SET_enable	W	0	FLASH_0 programming completed interrupt set enable command
0	ee_prog_dat_completed_int_SE T_enable	W	0	EEPROM programming completed interrupt set enable command

Table 24. EE_INT_STATUS (address offset 0x0FE0h)

Bit	Symbol	Access	Value	Description
31:10	Reserved	-	0	Reserved
9	EE_ECC_READ_NOT_CORRE CT_1_COD_INT_STATUS	R	0	FLASH_1 not correct ECC read interrupt status variable
8	EE_ECC_READ_INVALID_1_C OD_INT_STATUS	R	0	FLASH_1 Invalid ECC read interrupt status variable
7	EE_ECC_READ_NOT_CORRE CT_0_COD_INT_STATUS	R	0	FLASH_0 not correct ECC read interrupt status variable
6	EE_ECC_READ_INVALID_0_C OD_INT_STATUS	R	0	FLASH_0 Invalid ECC read interrupt status variable
5	ee_hverr_1_cod_int_STATUS	R	0	FLASH_1 high voltage error interrupt status variable
4	ee_hverr_0_cod_int_STATUS	R	0	PFLASH_0 high voltage error interrupt status variable
3	ee_hverr_dat_int_STATUS	R	0	EEPROM high voltage error interrupt status variable
2	ee_prog_1_cod_completed_int_ STATUS	R	0	FLASH_1 programming completed interrupt status variable
1	ee_prog_0_cod_completed_int_ STATUS	R	0	FLASH_0 programming completed interrupt status variable
0	ee_prog_dat_completed_int_ST ATUS	R	0	EEPROM programming completed interrupt status variable

PN7462 HW user manual

Table 25. EE_INT_ENABLE (address offset 0x0FE4h)

Bit	Symbol	Access	Value	Description
31:10	RESERVED	-	0	Reserved
9	EE_ECC_READ_NOT_CORRE CT_1_COD_INT_ENABLE	R	0	FLASH_1 not correct ECC read interrupt enable variable
8	EE_ECC_READ_INVALID_1_C OD_INT_ENABLE	R	0	FLASH_1 Invalid ECC read interrupt enable variable
7	EE_ECC_READ_NOT_CORRE CT_0_COD_INT_ENABLE	R	0	FLASH_0 Not Correct ECC read interrupt enable variable
6	EE_ECC_READ_INVALID_0_C OD_INT_ENABLE	R	0	FLASH_0 invalid ECC read interrupt enable variable
5	ee_hverr_1_cod_int_SENABLE	R	0	FLASH_1 high voltage error interrupt enable variable
4	ee_hverr_0_cod_int_ENABLE	R	0	PFLASH_0 high voltage error interrupt enable variable
3	ee_hverr_dat_int_ENABLE	R	0	EEPROM high voltage error interrupt enable variable
2	ee_prog_1_cod_completed_int_ ENABLE	R	0	FLASH_1 programming completed Interrupt Enable Variable
1	ee_prog_0_cod_completed_int_ ENABLE	R	0	FLASH_0 programming completed interrupt enable variable
0	ee_prog_dat_completed_int_EN ABLE	R	0	EEPROM programming completed interrupt enable variable

Table 26. EE_INT_CLR_STATUS (address offset 0x0FE8h)

Bit	Symbol	Access	Value	Description
31:10	RESERVED	-	0	Reserved
9	EE_ECC_READ_NOT_CORRE CT_1_COD_INT_CLR_STATUS	W	0	FLASH_1 not correct ECC read interrupt clear status command
8	EE_ECC_READ_INVALID_1_C OD_INT_CLR_STATUS	W	0	FLASH_1 Invalid ECC read interrupt clear status command
7	EE_ECC_READ_NOT_CORRE CT_0_COD_INT_CLR_STATUS	W	0	FLASH_0 Not Correct ECC read interrupt clear status command
6	EE_ECC_READ_INVALID_0_C OD_INT_CLR_STATUS	W	0	FLASH_0 Invalid ECC read interrupt clear status command
5	ee_hverr_1_cod_int_CLR_STAT US	W	0	FLASH_1 high voltage error interrupt clear status command
4	ee_hverr_0_cod_int_CLR_STAT US	W	0	FLASH_0 high voltage error interrupt clear status command
3	ee_hverr_dat_int_CLR_STATUS	W	0	EEPROM high voltage error interrupt clear status command
2	ee_prog_1_cod_completed_int_ CLR_STATUS	W	0	FLASH_1 programming completed interrupt clear status command
1	ee_prog_0_cod_completed_int_ CLR_STATUS	W	0	FLASH_0 programming completed interrupt clear status command

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
0	ee_prog_dat_completed_int_CL R_STATUS	W	0	EEPROM programming completed interrupt clear status command

Table 27. EE_INT_SET_STATUS (address offset 0x0FECh)

Bit	Symbol	Access	Value	Description
31:10	Reserved	-	0	Reserved
9	EE_ECC_READ_NOT_CORRE CT_1_COD_INT_SET_STATUS	W	0	FLASH_1 not correct ECC read interrupt set status command
8	EE_ECC_READ_INVALID_1_C OD_INT_SET_STATUS	W	0	PFLASH_1 Invalid ECC read interrupt set status command
7	EE_ECC_READ_NOT_CORRE CT_0_COD_INT_SET_STATUS	W	0	FLASH_0 not correct ECC read interrupt set status command
6	EE_ECC_READ_INVALID_0_C OD_INT_SET_STATUS	W	0	FLASH_0 invalid ECC read interrupt set status command
5	ee_hverr_1_cod_int_SET_STAT US	W	0	FLASH_1 high voltage error interrupt set status command
4	ee_hverr_0_cod_int_SET_STAT US	W	0	PFLASH_0 high voltage error interrupt set status command
3	ee_hverr_dat_int_SET_STATUS	W	0	EEPROM high voltage error interrupt set status command
2	ee_prog_1_cod_completed_int_ SET_STATUS	W	0	FLASH_1 programming completed interrupt set status command
1	ee_prog_0_cod_completed_int_ SET_STATUS	W	0	FLASH_0 programming completed interrupt set status command
0	ee_prog_dat_completed_int_SE T_STATUS	W	0	EEPROM programming completed interrupt set status command

4. Nested Vectored Interrupt Controller (NVIC)

The NVIC is an integral part of the Cortex-M0. The tight coupling to the CPU allows for a low interrupt latency and efficient processing of late arriving interrupts. The NVIC controls system exceptions and peripheral interrupts. Its control registers are accessible as memory-mapped devices.

4.1 NVIC features

- Controls system exceptions and peripheral interrupts
- Supports 32 vectored interrupts
- Four interrupt priority levels, with hardware priority level masking
- Non-mask able interrupt (NMI) connected to the watchdog interrupt.
- Software interrupt generation

PN7462 HW user manual

4.2 Interrupt sources

The following table lists the interrupt sources available in the PN7462AU microcontroller

Table 28. External interrupt sources

able 28.						
EIRQ#	Source	Description				
0	Timer 0/1/2/3	general-purpose timer 0/1/2/3 interrupt				
1	-	Reserved				
2	CLIF	contactless interface module interrupt				
3	EECTRL	EEPROM controller				
4	-	Reserved				
5	-	Reserved				
6	Host IF	TX or RX buffer from I2C, SPI, HSU, or USB module				
7	Contact IF	ISO7816 contact module interrupt				
8	-	Reserved				
9	PMU/ TXLDO	power management unit (temperature sensor, TXLDO overcurrent detection, overload, VBUS level)				
10	SPIMaster	TX or RX buffer from SPI master module				
11	I2CMaster	TX or RX buffer from I2C master module				
12	PCR	high temperature from temperature sensor 0 and 1, interrupt to CPU from PCR to indicate wakeup from suspend mode, out of standby, out of suspend, event on GPIO's configured as inputs.				
13	PCR	interrupt common GPIO 1 to 12				
14	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO 1				
15	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO 2				
16	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO 3				
17	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO 4				
18	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO 5				
19	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO 6				
20	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO 7				
21	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO 8				
22	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO 9				
23	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO 10				
24	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO 11				

PN7462 HW user manual

EIRQ#	Source	Description
25	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO 12
26	-	Reserved
27	-	Reserved
28	-	Reserved
29	-	Reserved
30	-	Reserved
31	-	Reserved
NMI	WDT	the watchdog Interrupt is connected on the non-maskable interrupt

4.3 NVIC register support in the SCS

The system control region includes status and configuration registers that apply to the NVIC as part of the general exception model.

All other external interrupt specific registers reside within the NVIC region of the SCS. <u>Table 29</u> summarizes the NVIC specific registers in the SCS. <u>Table 30</u> shows the NVIC_IPR bit assignments. In the table, N = 4n, where n is the NVIC_IPR register number. For example, for NVIC_IPR2, n is 2 and N is 8.

For more details, refer to DDI0419C_arm_architecture_v6m_reference_manual which can be found on the ARM webpage.

Table 29. NVIC register overview

0xE000E100 NVIC_ISER RW 0x00000000 enables, or reads the enabled state of one or more interrupts 0xE000E104-0xE000E17F Reserved Reserved 0xE000E180 NVIC_ICER RW 0x00000000 disables, or reads the enabled state of one or more interrupts 0xE000E184-0xE000E1FF RESERVED Reserved 0xE000E200 NVIC_ISPR RW 0x00000000 on writes, sets the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. 0xE000E204-0xE000E280 NVIC_ICPR RW 0x00000000 On writes, clears the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. 0xE000E300-0xE000E3FC Reserved 0xE000E400- NVIC_IPRn RW 0x00000000 sets or reads interrupt priorities	Address	Name	Type	Reset	Description
0xE000E17F 0xE000E180 NVIC_ICER RW 0x00000000 disables, or reads the enabled state of one or more interrupts 0xE000E184- 0xE000E1FF Reserved 0xE000E200 NVIC_ISPR RW 0x00000000 on writes, sets the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. 0xE000E204- 0xE000E27F RW 0x00000000 On writes, clears the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. 0xE000E300- 0xE000E3FC Reserved	0xE000E100	NVIC_ISER	RW	0x00000000	•
0xE000E180 NVIC_ICER RW 0x00000000 disables, or reads the enabled state of one or more interrupts 0xE000E184- 0xE000E1FF Reserved Reserved 0xE000E200 NVIC_ISPR RW 0x00000000 on writes, sets the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. 0xE000E204- 0xE000E280 NVIC_ICPR RW 0x00000000 On writes, clears the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. 0xE000E300- 0xE000E3FC Reserved	0xE000E104-				Reserved
OxE000E184- OxE000E200 NVIC_ISPR RW Ox00000000 on writes, sets the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. OxE000E204- OxE000E27F OxE000E280 NVIC_ICPR RW Ox00000000 On writes, clears the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. OxE000E280 NVIC_ICPR RW Ox00000000 On writes, clears the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. OxE000E300- OxE000E3FC	0xE000E17F				
0xE000E1FF 0xE000E200 NVIC_ISPR RW 0x00000000 on writes, sets the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. 0xE000E204- 0xE000E27F Reserved 0xE000E280 NVIC_ICPR RW 0x00000000 On writes, clears the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. 0xE000E300- 0xE000E3FC Reserved	0xE000E180	NVIC_ICER	RW	0x00000000	•
0xE000E200 NVIC_ISPR RW 0x00000000 on writes, sets the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. 0xE000E204- 0xE000E27F Reserved 0xE000E280 NVIC_ICPR RW 0x00000000 On writes, clears the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. 0xE000E300- 0xE000E3FC Reserved	0xE000E184-				Reserved
more interrupts to pending. On reads, shows the pending status of the interrupts. OxE000E204- 0xE000E27F OxE000E280	0xE000E1FF				
0xE000E27F 0xE000E280 NVIC_ICPR RW 0x00000000 On writes, clears the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. 0xE000E300- 0xE000E3FC Reserved	0xE000E200	NVIC_ISPR	RW	0x00000000	more interrupts to pending. On reads, shows the pending status of the
0xE000E280 NVIC_ICPR RW 0x00000000 On writes, clears the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts. 0xE000E300- 0xE000E3FC Reserved	0xE000E204-				Reserved
more interrupts to pending. On reads, shows the pending status of the interrupts. 0xE000E300- 0xE000E3FC Reserved	0xE000E27F				
0xE000E3FC	0xE000E280	NVIC_ICPR	RW	0x00000000	more interrupts to pending. On reads, shows the pending status of the
	0xE000E300-				Reserved
0xE000E400- NVIC_IPRn RW 0x00000000 sets or reads interrupt priorities	0xE000E3FC				
	0xE000E400-	NVIC_IPRn	RW	0x00000000	sets or reads interrupt priorities

PN7462 HW user manual

Address	Name	Туре	Reset	Description
0xE000E41C				
0xE000E420-				Reserved
0xE000E43C				

Table 30. NVIC IPRn bit assignments

Bits	Name	Function
[31:30]	PRI_N3	enables, or reads the enabled state of one or more interrupts
[29:24]	-	Reserved
[23:22]	PRI_N2	disables, or reads the enabled state of one or more interrupts
[21:16]	-	Reserved
[15:14]	PRI_N1	on writes, sets the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts.
[13:8]	-	Reserved
[7:6]	PRI_N0	on writes, clears the status of one or more interrupts to pending. On reads, shows the pending status of the interrupts.
[5:0]	-	Reserved

4.4 SWD

Cortex-M0 processor-based devices use the Serial Wire ARM CoreSight™ debug technology. The Serial Wire Debug (SWD) signals are connected to the pads via the PCR (Power, Clock & Reset) described in <u>Section 8</u>. The SWD interface can be disabled in order to have code (or data) read/write access protection.

4.4.1 SWD features

- Run Control of the processor allowing to start and stop programs
- Single Step one source or assembler line
- · Set breakpoints while the processor is running
- Write memory contents and peripheral registers on-the-fly
- "Printf" like debug messages through the SWD.

4.4.2 SWD limitations

The Pn7462AU does not allow breakpoint or single step debugging of ROM service APIs and boot code. Breakpoint or single step debugging of ROM service APIs and Boot code results into System reset.

Breakpoint and single step debugging is only allowed in the customer Application area.

PN7462 HW user manual

4.4.3 Hardware connection of SWD

For using SWD it is recommended to connect an external pull-up from SWDCLK and SWDIO to PVDD_IN supply (see <u>Table 31</u>).

Table 31. SWD pinning

Pin Number	Pin Name	Comment
14	SWDCLK	SWD clock
15	SWDIO	SWD I/O

5. SysTick Timer (SysTick)

The SysTick timer is a 24-bit timer that counts down to zero and generates an interrupt. The SysTick timer is clocked from the system clock or from the reference clock, which is fixed to half the frequency of the system clock. In order to generate recurring interrupts at a specific interval, the SYST_RVR register must be initialized with the correct value for the desired interval. A default value is provided in the SYST_CALIB register and may be changed by software.

Table 32. SysTick timer (base address 0xE000 E000)

Address	Name	Type	Reset	Description
0xE000E010	SYST_CSR	RW	0x000 0000	System Timer Control and status register
0xE000E014	SYST_RVR	RW	0	System Timer Reload value register
0xE000E018	SYST_CVR	RW	0	System Timer Current value register
0xE000E1C	SYST_CALIB	RW	0x4	System Timer Calibration value register

For more details, refer to DDI0419C_arm_architecture_v6m_reference_manual which can be found on the ARM webpage.

Example timer calculation

To use the system tick timer, do the following:

- a. Program the SYST_RVR register with the reload value RELOAD to obtain the desired time interval.
- Clear the SYST_CVR register by writing to it. This ensures that the timer will count from the SYST_RVR value rather than an arbitrary value when the timer is enabled.
- c. Program the SYST_SCR register with the value 0x7 which enables the SysTick timer and the SysTick timer interrupt.

The following example illustrates selecting the SysTick timer reload value to obtain a 10 ms time interval with the system clock set to 20 MHz.

Example (system clock = 20 MHz)

The system tick clock = system clock = 20 MHz. Bit CLKSOURCE in the SYST_CSR register set to 1 (system clock).

PN7462 HW user manual

RELOAD = (system tick clock frequency * 10 ms) -1 = (20 MHz * 10 ms) -1 = 200000-1 = 199999 = 0x00030D3F.

6. PN7462AU Power management

6.1 Power supply

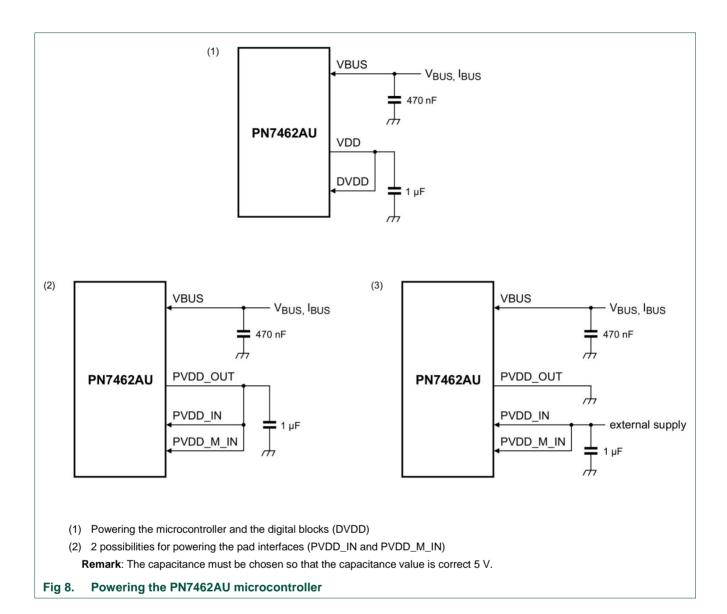
The PN7462AU is using following supply voltages:

- VBUS: Main supply voltage for internal analog modules, digital logic and memories
- VBUSP: Supply voltage for the contact interface
- TVDD_IN: Supply voltage for the contactless interface
- PVDD_IN: Pad voltage reference and supply voltage for the host interfaces (HSUART, USB, I2C and SPI) and the GPIOs
- PVDD_M_IN: Pad voltage reference and supply voltage for the master interfaces (SPI, I2C)
- DVDD: Supply voltage for the internal digital blocks
- VUP TX: External supply voltage for the transmitter LDO (TXLDO)

6.1.1 Microcontroller supply

In order to use the PN7462AU as microcontroller with host interface following voltages (minimum requirements) need to be supplied:

- VBUS
- PVDD_IN (if PVDD_OUT is not used, it needs to be shorted to GND)
- DVDD pin must be connected to VDD and buffered with 1 µF capacitor to GND


The SPI/ I²C master interface requires additional supply:

• PVDD M IN

Fig 8 shows the power supply of the chip (VBUS), including the supply of the digital blocks (DVDD). The host interface pads are supplied using PVDD_IN and master interface pads are supplied using PVDD_M_IN. The pads can be supplied using an internal LDO, or using an external supply. The internal LDO requires that VBUS > 4 V. When PVDD_LDO is used, the maximum total current available from PVDD_OUT for the pads supply is 30 mA.

When an external source is used for PVDD_IN and PVDD_IN_M, PVDD_OUT must be connected to the ground with a ground resistance of less than 10 Ω .

PN7462 HW user manual

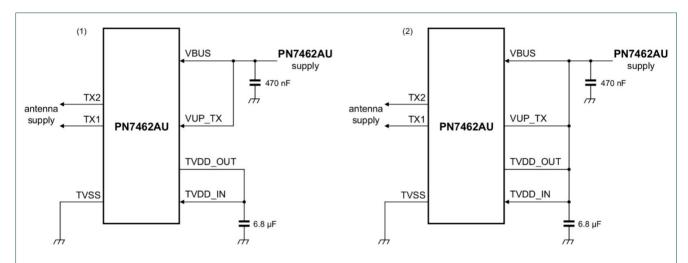
6.1.2 Contactless reader supply

In order to use the PN7462AU as contactless reader the following voltages need to be supplied:

- VBUS
- PVDD_IN (if PVDD_OUT is not used, it needs to be shorted to GND)
- TVDD_IN (If supplied by TVDD_OUT, VUP_TX needs to be supplied)
- DVDD pin must be connected to VDD and buffered with 1µF capacitor to GND

For SPI/ I²C master following supply is also needed:

PVDD_M_IN

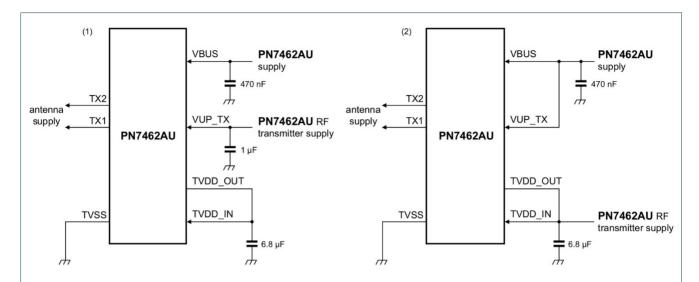

PN7462 HW user manual

The contactless interface is powered through TVDD_IN. This pin can be supplied either externally or by using TVDD_OUT.

In case TVDD_OUT is used

• VUP_TX needs to be supplied.

Remark: The TVDD_OUT pin must not be left floating, and needs to be at the same voltage as the TVDD_IN pin.



- (1) Using the PN7462AU's TXLDO
- (2) Without using PN7462AU's TXLDO

The capacitance value must be chosen so that the capacitance value is correct at 5 V

Fig 9. Powering the contactless interface – using a single power supply

PN7462 HW user manual

- (1) Using the PN7462AU's TXLDO
- (2) Without using PN7462AU's TXLDO

The capacitance value must be chosen so that the capacitance value is correct at 5 V

Fig 10. Powering the contactless interface – using an external RF transmitter supply

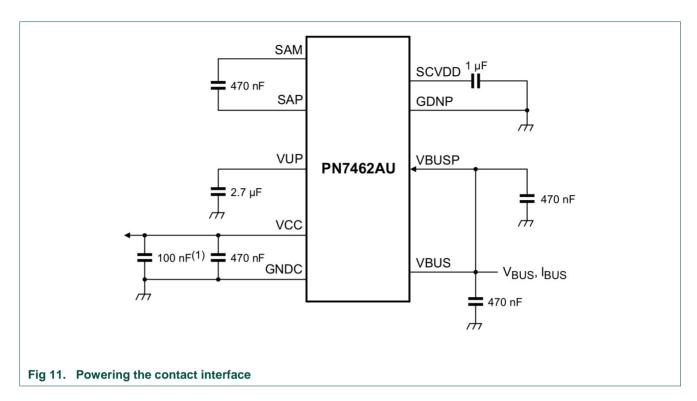
6.1.3 Contact reader supply

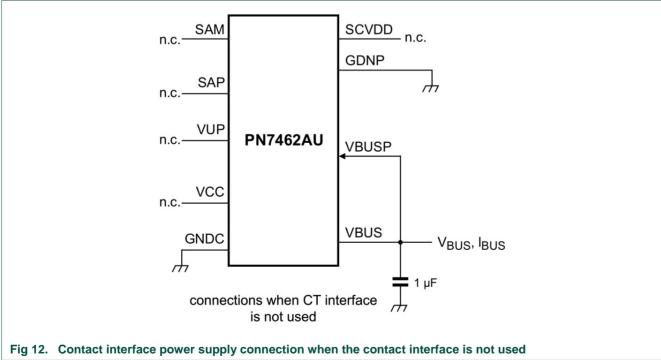
In order to use the contact reader functionality of the PN7462AU following voltages need to be supplied:

- VBUS
- PVDD_IN (if PVDD_OUT is not used needs to be shorted to GND)
- VBUSP
- DVDD pin must be connected to VDD and buffered with 1 µF capacitor to GND

For SPI/ I²C master interface following supply is also needed

• PVDD_M_IN


The contact interface is powered through VBUSP which is connected to VBUS, as shown on the schematic in Fig 11.


The various ISO 7816 contact card classes (A, B, or C) require different voltages:

- VBUSP > 2.7 V: support of class B and class C contact cards
- VBUSP > 3 V: support of class A contact cards

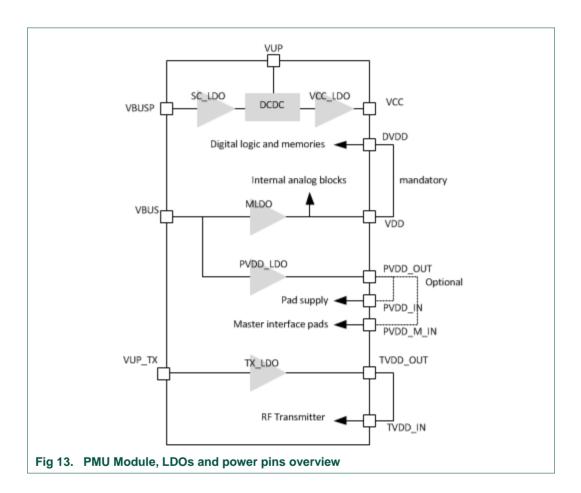
Remark: To support Class A cards, DC-to-DC converter has to be used. To support Class B cards with VBUSP < 3.9 V, DC-to-DC converter also has to be used. The <u>Fig</u> <u>11</u>.shows how to connect the contact interface related pins, when no contact interface is used.

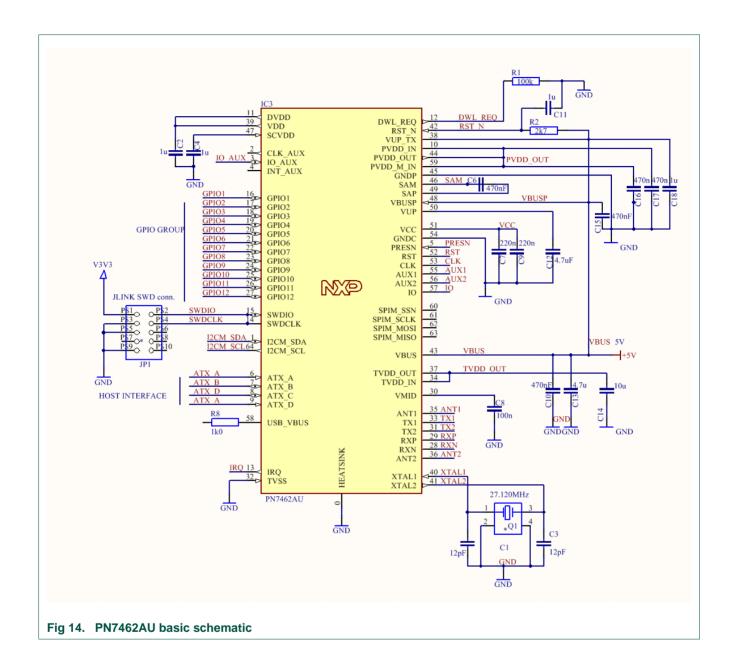
PN7462 HW user manual

PN7462 HW user manual

6.2 Power Management Unit

The Integrated Power Management Unit (PMU) supplies internal analog modules, internal digital logic, memories and pads. It also provides regulated voltages for the contactless and the contact interfaces. The PMU automatically adjusts the internal regulators to minimize the power consumption during all possible power modes. The power management unit embeds also mechanisms to prevent the IC from overheat, current overconsumption and overloading the DC-to-DC converter. For the RF transmitter stage a separated low-drop output regulator is embedded. This module also integrates a temperature sensor and Power On Reset generator. The PMU is made of analog modules and digital control unit embedding the registers




Table 33. Voltage and Supply pins connection overview

Pin No	Pin Name	IN(I)/Out(O)	Connection	Comment
10	PVDD_IN	I	externally powered or PVDD_OUT	pad supply for host interfaces (1.8 V or 3.3 V)
11	DVDD	I	connected to VDD	

PN7462 HW user manual

Pin No	Pin Name	IN(I)/Out(O)	Connection	Comment
30	VMID	0	blocking capacitor to GND	recommended 100nF
34	TVDD_IN	I	externally powered or TVDD_OUT	
37	TVDD_OUT	0		can be set in PMU_TXLDO_CONTROL_ REG
38	VUP_TX	I	externally powered or VBUS	
39	VDD	0		1.8 V output for DVDD
43	VBUS	I	Externally powered	
44	PVDD_OUT	0		3.3V output; If connected to GND, PVDD_IN is externally supplied
46	SAM	I/O	470 nF to SAP	
47	SCVDD	0	blocking capacitor to GND	Recommended 1 μF
48	VBUSP	I	connected to VBUS	Input for contact interface
49	SAP	I/O	470 nF to SAM	
50	VUP	0	blocking capacitor to GND	Recommended 4,7µF
51	VCC	0	contact card supply	
55	USB_VBUS	I		USB detection; If pulled high USB is connected
59	PVDD_M_IN	I	externally powered or PVDD_OUT	Pad supply for master interfaces (1.8V or 3.3V)

PN7462 HW user manual

6.2.1 Low Drop-Out regulators

The PMU embeds several Low Drop-Out regulators (LDO) in order to ensure the stability of the power supply.

6.2.1.1 Main LDO

The Main LDO (MLDO) provides 1.8 V for all internal analog, digital and memory modules. It draws its power from VBUS. It includes a current limiter to prevent damage of output transistors. The output supply is available on the VDD pin, which must be connected externally to the DVDD pin.

PN7462 HW user manual

6.2.1.2 PVDD LDO

The PVDD_LDO provides 3.3 V for all digital pads. It is supplied by VBUS, and requires a minimum voltage of 4 V to be functional. It delivers a maximum current of 30 mA. The output of the PVDD_LDO is PVDD_OUT pin. This LDO is used to provide the necessary supply to PVDD_IN (pad supply for host interface) and PVDD_M_IN (pad supply for master interfaces). When an external power supply is used, the PVDD_OUT must be connected to the ground. The ROM boot detects automatically that the LDO output is connected to the ground, and switches it off. The PVDD LDO has a low power mode, which is used automatically by the PN7462AU when the chip is in Stand-by mode or Suspend mode. This enables to supply host pads and GPIOs, and to detect wake-up signals coming from these interfaces.

6.2.1.3 TXLDO Transmitter supply

The PN7462AU integrates an internal transmitter LDO. The TXLDO can be used to maintain a constant output voltage for the RF interface. The TXLDO is designed to protect the chip from voltage ripple introduced by the power supply on the VUP_TX pin. It is powered through VUP_TX pin. The programmable output voltages are: 3.0 V, 3.3 V, 3.6 V, 4.5 V, and 4.75 V. For a given output voltage, VUP_TX shall always been higher of 0.3 V (i.e. to supply a 3 V output, the minimum voltage to be applied on VUP_TX is 3.3 V). If the voltage is no sufficient, then TVDD_OUT follows VUP_TX, lowered of 0.3 V. When it is not used, TVDD_OUT shall be connected to TVDD_IN, and TX_LDO shall be turned off. The TXLDO can be used in one of the following power modes

- Full power mode
- Low power mode
- Low power 2 mode
- Shutdown mode
- Standby mode

For corresponding register settings, please refer to Section 6.7.2.

6.2.1.4 VCC LDO

The VCC LDO provides contact interface supply VCC.

6.2.1.5 SCLDO

The SCLDO provides a regulated voltage to the DC-to-DC converter, to enable class B operation when 2.7 < VBUS < 3.9 V and class A operation.

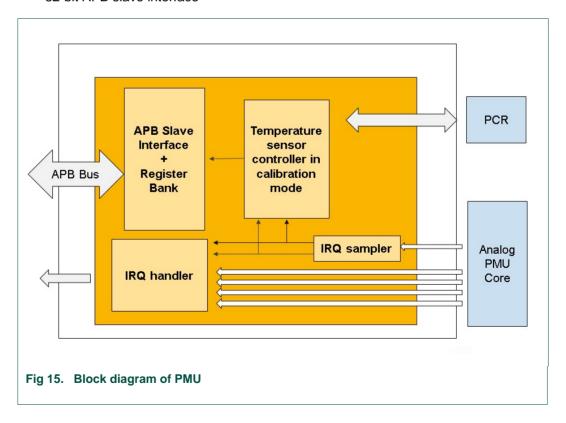
6.2.1.6 DC-to-DC converter

The PN7462AU includes a DC-to-DC converter, in order to support Class A and Class B cards, when the input voltage VBUSP is not sufficient. The DC-to-DC converter is a capacitance voltage doubler. It takes its power from the SCLDO. The DC-to-DC converter can be bypassed. Its output (VUP) is regulated from 3.3 to 5.5 V.

PN7462 HW user manual

6.2.1.7 Start-up times of LDOs

Table 34. Start-up times of LDOs


LDO	Max Startup Time
PVDDLDO	1.5 ms
TXLDO	200 μs
VCC LDO	22 ms (including DC-to-DC converter, SCLDO and VCCLDO startup times) 500 μs (excluding DC-to-DC and SCLDO)

6.3 PN7462AU PMU digital control unit

The PMU digital control unit of the PN7462AU is used in the system as the gateway to configure all modes of supply for the product using the control registers. Note that additional registers related to PMU control are located in the power clock and reset (PCR) Unit for they need to be always powered up. The PMU digital control unit consists of the AMBA 3.0 APB interface and the associated register bank to drive the analog part of PMU, plus additional glue logic related to controlling the temperature, overcurrent, pad voltage, interrupts and calibration of temperature sensors.

Main blocks (see Fig 15) are:

- Register bank for PMU analog block (detailed description in <u>Section 6.7</u>)
- Temperature sensor controller
- 32-bit APB slave interface

PN7462 HW user manual

6.4 Interrupts

Interrupt signals are generated in the analog part of the PMU as a result of:

- TXLDO 5 V monitoring
- VCC current limiter
- DC-to-DC converter current overload
- SCVDD current overload
- TXLDO current overload
- · Temperature sensor

All interrupts are "ORed" in the digital part of the PMU to output one unique PMU interrupt line. The software has to analyze the content of the PMU_INTERRUPT_STATUS_REG register to know which of the seven conditions caused the interrupt. All interrupts can be enabled or disabled (masked) separately using the PMU_INTERRUPT_ENABLE_REG register. Clearing the status bit field of one interrupt is performed by setting the corresponding bit field in the PMU_INTERRUPT_CLR_STATUS_REG register high. All bit fields of all PMU_INTERRUPT_CLR_STATUS_REG and PMU_INTERRUPT_SET_STATUS_REG registers are automatically cleared if set high after two system clock cycles.

6.5 Temperature sensors

The Power Management Unit of PN7462AU comprises two temperature sensors associated with the contactless TXLDO and the contact DC-to-DC converter interfaces. The main purpose of these sensors is to monitor the temperature and prevent the overheating, which could potentially cause the damage of the chip and the customer device. The triggering levels are configurable. Following temperatures can be chosen: 135°C, 130°C, 125°C or 120°C. By default, the temperature sensor is set to 120°C. When one of the sensors detects a temperature issue, an interrupt is generated and the PN7462AU will be put by software into the standby mode or the suspend mode if the USB interface is used. The PN7462 registers indicate which of the two temperature sensors (contact interface, or contactless interface) generated the interrupt. When the temperature goes below the configured threshold temperature, the PN7462AU wakes up automatically. For a detailed description of the corresponding registers refer to PCR_TEMP_REG.

6.6 Voltage monitoring

The voltage monitoring is used to check if the voltages are within the appropriate range specified for a proper operation of the IC. The following power supplies are monitored: VBUS (2 voltage monitors) and VBUSP (1 voltage monitor). <u>Table 35</u> summarizes the voltage monitors with the selectable thresholds values.

Table 35. Voltage monitor - possible threshold configuration

Voltage Monitor	Threshold 1	Threshold 2	Threshold 3
VBUS1	2.3 V	2.7 V	N/A

PN7462 HW user manual

Voltage Monitor	Threshold 1	Threshold 2	Threshold 3
VBUS2	2.7 V	4 V	N/A
VBUSP	2.7 V	3 V	3.9 V

6.6.1 VBUS monitor

The PN7462AU offers two selectable thresholds (2.3 V or 2.7 V) for monitoring the voltage on the VBUS pin. When VBUS voltage falls below the selected threshold and Auto Hard Power Down (HPD) feature is enabled in the Power, Clock and Reset unit (described in Section 8), the IC will enter the HPD mode. Alternatively, the software can monitor the signal by reading a dedicated status register and decide to put the IC into the HPD mode. The signal can be enabled for interrupt in Interrupt Enable register in the PCR to cause a CPU interrupt. By default the VBUS monitor is disabled during the power-up.

6.6.2 PVDD LDO (VBUS2) monitor

The PN7462AU offers two selectable thresholds (VBUS2: 2.7 V or 4.0 V) for monitoring the voltage of the PVDD LDO supply. The status of the VBUS2 monitor is available in the status register. The software has to check whether the voltage is sufficient before enabling the LDO. The PVDD LDO can be enabled when the input supply VBUS2 > 4.0 V.

6.6.3 VBUSP monitor

VBUSP monitor is used for the Contact interface supply. Three levels (2.7, 3.0, and 3.9 V) can be selected for monitoring the voltage on the VBUSP pin. The threshold is configured by firmware depending on the card type selected. (Class A, Class B, Class C)

When VBUSP < 2.7 V, no functionality is possible.

When VBUSP > 2.7 V, Class C type can be supported.

When VBUSP > 3.0 V, Class A type can be supported with DC-to-DC converter configured in the doubler mode.

When VBUSP > 2.7 V and VBUSP < 3.9 V, Class B type is supported with DC-to-DC converter configured in the doubler mode.

When VBUSP > 3.9 V, Class B type of card is supported with DC-to-DC converter configured in the follower mode.

When the voltage falls below the selected threshold value and CT automatic deactivation is enabled in the PCR System Register, the hardware automatically de-activates the CT interface. The signal can be enabled for interrupt in Interrupt Enable register in the PCR to cause a CPU interrupt. The software must check VBUSP monitor levels by reading dedicated status registers before starting card activation sequence.

PN7462 HW user manual

6.6.4 Latency of voltage monitors

Table 36. Latency of voltage monitors

Voltage Monitor	Latency
VBUS1	10 µs
VBUS2	10 µs
VBUSP	75 µs

6.7 Register overview and description

Table 37. PMU register overview (base address 0x4000 8000)

Name	Address offset	Access	Reset value	Description
PMU_STATUS_REG	0000h	R	0000_0000h	Global PMU status register. To be used for observing signals in system mode.
PMU_BG_MON_CONTROL_REG	0004h	R/W	0000_040Eh	Used to enable comparators and set thresholds for the monitors
PMU_TXLDO_CONTROL_REG	0008h	R/W	0400_0000h	TXLDO control register
PMU_LDO_CONTR OL_REG	000Ch	R/W	0000_0000h	DC-to-DC converter control register
INTERNAL_USE[1]	00010h	R/W	0000_0000h	For internal use
INTERNAL_USE[1]	0014h	R/W	0000_0000h	For internal use
PMU_INTERRUPT_CLR_ENABLE_REG	3FD8h	W	0000_0000h	PMU interrupt clear enable register with automatic clear if set by software.
PMU_INTERRUPT_SET_ENABLE_REG	3FDCh	W	0000_0000h	PMU interrupt set enable register with automatic clear if set by software
PMU_INTERRUPT_STATUS_REG	3FE0h	R	0000_0000h	PMU interrupt status register
PMU_INTERRUPT_ENABLE_REG	3FE4h	R/W	0000_0000h	PMU interrupt enable register
PMU_INTERRUPT_CLR_STATUS_REG	3FE8h	W	0000_0000h	PMU interrupt clear status register with automatic clear if set by software
PMU_INTERRUPT_SET_STATUS_REG	3FECh	W	0000_0000h	PMU interrupt set status register with automatic clear if set by software

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

PN7462 HW user manual

6.7.1 Detailed register description

6.7.1.1 PMU_STATUS_REG

This register is used to observe signals in system mode.

Table 38. PMU_STATUS_REG (address offset 0x0000)

Bit	Symbol	Access	Value	Description
31:25	RESERVED	R-	0x00	Reserved
24	MLDO_LOWPOWER_VBATBUF	R-	0x00	1: Indicates that the VBAT LDO is in low power
23	INTERNAL_USE[1]	R-	0x00	For internal use
22	TXLDO_5VMON_OK	R-	0x00	TXLDO 5V monitor output
				1: TXLDO 5V monitor output is set TVDD/VUP_TX value is greater than 5V. Source is selected in PMU_TXLDO register
21	POK_VBUSP	R-	0x00	Output of VBUSP monitor
				1: VBUSP value is greater than threshold
20	POK_VBUSMON2	R-	0x00	Output of VBUS monitor2
				1: VBUS2 value is greater than threshold
19	POK_PVDDOUT	R-	0x00	Output of PVDD monitor
				1: PVDDOUT is ok (above 3.3 V)
18	RESERVED	R-	0x00	Reserved
17	RESERVED	R-	0x00	Reserved
16:12	RESERVED	R-	0x00	Reserved
11	SCVDD_OVERLOAD	R-	0x00	1: SCLDO overload error
				0: No SCLDO overload error
10	DCDC_OVERLOAD	R-	0x00	1: DC-to-DC converter overload error
				0: No DC-to-DC converter overload error
9:3	TXLDO_DET_OUT	R-	0x00	[6:0] - Output of State Machine detection
2	TXLDO_DET_SM_OK	R-	0x00	Signal that indicates to Digital & SW that State Machine work is done for automatic current measurement (automatic mode) and current value is valid in TXLDO_DET_OUT
1	TXLDO_TVDD_OK	R-	0x00	Signal that indicates State Machine work is done
0	TXLDO_DET	R-	0x00	Indicates that the detection threshold for current measurement is reached

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

PN7462 HW user manual

6.7.1.2 PMU BG MON CONTROL REG

This register is used to enable comparators and set thresholds for the monitors.

Table 39. PMU BG MON CONTROL REG (address offset 0x0004)

Bit	Symbol	Access	Value	Description
31:11	RESERVED	R/W	0x00	Reserved
10				Activates 1.8 V comparator for PVDD_M
				1: Enable 1.8 V comparator for PVDD_M
	ENABLE_PVDD_M_1V8_COMP	R/W	0x01	0: Disable 1.8 V comparator for PVDD_M
9				Sets threshold for VBUSPMON
				00: 2.7 V
				01: 3 V
	VBUSPMON_THRESHOLD	R/W	0x00	10: 3.9 V
7				Sets threshold for VBUS MON2
				0: 2.5 V
	VBUSMON2_THRESHOLD	R/W	0x00	1: 4 V
6				Activates VBUSP monitor
				1: Enable VBUSP monitor
	ENABLE_VBUSPMON	R/W	0x00	0: Disable VBUSP monitor
5				Activates VBUS monitor 2
				1: Enable VBUS monitor 2
	ENABLE_VBUSMON2	R/W	0x00	0: Disable VBUS monitor 2
4				Activates PVDDOUT monitor
				1: Enable PVDDOUT monitor
	ENABLE_PVDDOUTMON	R/W	0x00	0: Disable PVDDOUT monitor
3				Activates 3 V comparator for PVDD_M
				1: Enable 3 V comparator for PVDD_M
	ENABLE_PVDD_M_3V_COMP	rw	0x01	0: Disable 3 V comparator for PVDD_M
2				Activates 3 V comparator for PVDD
				1: Enable 3 V comparator for PVDD
	ENABLE_PVDD_3V_COMP	rw	0x01	0: Disable 3 V comparator for PVDD
1	RESERVED	R/W	0x01	Reserved
0	RESERVED	R/W	0x00	reserved

6.7.1.3 PMU_TXLDO_CONTROL_REG

This register is used to control the TXLDO.

Table 40. PMU_TXLDO_CONTROL_REG (address offset 0x0008)

Bit	Symbol	Access	Value	Description
31:29	RESERVED	R/W	0x00	Reserved
28	TXLDO_ENABLE_LP2	R/W	0x00	1: Enable 2nd regulator

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				0: Disable 2nd regulator
27:25	RESERVED	R/W	0x02	Do not modify value
24	TXLDO_RSTN_SOURCE_SEL	R/W	0x00	Source selection bit of TXLDO_digi resetn.
				0: resetn source = rst_pcr_system_n
				1: resetn source = (~rst_pcr_system_n or TXLDO_enable)
23	TXLDO_OVERCURRENT_EN	R/W	0x00	1: Enable overcurrent detection
				0: Disable overcurrent detection
22:21	TXLDO_SELECT_ANT	R/W	0x00	Offset selection for detection range of the TXLDO_DET_OUT
				0 20mA
				1 50mA
				2 70mA
				3 100mA
				Measurement range of the 7 bit DAC with corresponding offset
				20 to 70mA, 50 to 100mA, 70 to 120mA & 100 to 150mA
20	RESERVED	R/W	0x00	Always set to 0
19:15	RESERVED	R/W	0x00	Do not modify value
14:8	TXLDO_DET_IN	R/W	0x00	Selection of Current Detection value for manual current measurement. if value is reached TXLDO_DET is set to 1

TXLDO_det_in[6:0]	Cur (mA)
0000000	0
0000001	0.39
0000010	0.78
0000100	1.56
0001000	3.12
0010000	6.24
0100000	12.48
1000000	24.96
1111111	50

				Minimum offset in TXLDO_SELECT_ANT is 20 mA (so 0 means minimum is 20 mA for the current threshold)
7:5	TXLDO_SELECT	R/W	0x00	Selection of Tvdd supply
				0 = 3 V
				1 = 3.3 V

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				2 = 3.6 V
				3 = 4.5 V
				4 and others=4.7 V
				Activates current limiter
				1: Enable current limiter
4	TXLDO_LIMITER_EN	R/W	0x00	0: Disable current limiter
3	TXLDO_LOW_POWER_EN	R/W	0x00	Activates the low-power mode
				1: Enable low power mode
				0: Disable low power mode
2	TXLDO_EN_DAC_SM	R/W	0x00	Enables the current measurement using the state machine (automatic mode)
1	TXLDO_DETECTOR_EN	R/W	0x00	Activates the Current Detection for DAC current measurement (manual mode)
				1: Enable current detection for TXLDO
				0: Disable current detection for TXLDO
0	TXLDO_ENABLE	R/W	0x00	Enable the whole TXLDO block
				1: Enable TXLDO
				0: Disable TXLDO

6.7.1.4 PMU_LDO_CONTROL_REG

This register is used to control the DC-to-DC converter.

Table 41. PMU_LDO_CONTROL_REG (address offset 0x000C)

Bit	Symbol	Access	Value	Description
31:12	RESERVED	R/W	0x00	Reserved
11:7	RESERVED	R/W	0x00	Reserved
6	RESERVED	R/W	0x00	Reserved
5	VBUSP_HI	R/W	0x00	CT channel detects the presence and starts the CT sequence. 1: VBUSP > 3.9 V.
				0: VBUSP < = 3.9 V.
4	RESERVED	R/W	0x00	Reserved
3	DISABLE_VCC_IPROT	R/W	0x00	If set to 1, the VCC LDO current limit is disabled
2	CT_VCC_IPROT	R-	0x00	If set to 1 the VCC LDO current limit has been triggered
1	RESERVED	R/W	0x00	Reserved

45 of 341

PN7462 HW user manual

6.7.1.5 PMU_INTERRUPT_CLR_ENABLE_REG

This register is a collection of Clear Interrupt Enable commands with automatic clear if set by software.

Table 42. PMU_INTERRUPT_CLR_ENABLE_REG (address offset 0x3FD8)

Bit	Symbol	Access	Value	Description
31:9	RESERVED	-X	0x00	Reserved
8	VBUSMON2_LOW_IRQ_CLEAR_ ENABLE	-X	0x00	clears enable state of Vbus monitor 2 going low interrupt
7	TXLDO_5V_MON_IRQ_CLEAR_ ENABLE	-X	0x00	clears enable state of TXLDO 5 V monitor interrupt
6	VCC_ILIM_ACT_IRQ_CLEAR_E NABLE	-X	0x00	clears enable state of VCC current limiter. Automatically cleared after 2 cycles if set by software
5	RESERVED	-X	0x00	Reserved
4	PVDD_IRQ_CLEAR_ENABLE	-X	0x00	clears enable state of PVDD interrupt. Automatically cleared after 2 cycles if set by software
3	DCDC_OVERLOAD_IRQ_CLEAR _ENABLE	-X	0x00	clears enable state of DC-to-DC converter overload. Automatically cleared after 2 cycles if set by software
2	SCVDD_OVERLOAD_IRQ_CLEA R_ENABLE	-X	0x00	clears enable state of SCVDD overload. Automatically cleared after 2 cycles if set by software
1	TXLDO_OVERCURRENT_IRQ_C LEAR_ENABLE	-X	0x00	clears enable state of TXLDO overcurrent interrupt. Automatically cleared after 2 cycles if set by software
0	TEMPSENS_ERROR_IRQ_CLEA R_ENABLE	-X	0x00	clears enable state of Temperature sensor calibration interrupt. Automatically cleared after 2 cycles if set by software

6.7.1.6 PMU_INTERRUPT_SET_ENABLE_REG

This register is a collection of Set Interrupt Enable commands with automatic clear if set by software.

Table 43. PMU_INTERRUPT_SET_ENABLE_REG (address offset 0x3FDC)

Bit	Symbol	Access	Value	Description
31:9	RESERVED	-X	0x00	Reserved
8	VBUSMON2_LOW_IRQ_SET_EN ABLE	-X	0x00	enables Vbus monitor 2 going low interrupt
7	TXLDO_5V_MON_IRQ_SET_EN ABLE	-X	0x00	Enables TXLDO 5 V monitor interrupt
6	VCC_ILIM_ACT_IRQ_SET_ENAB LE	-X	0x00	Enables VCC current limiter. Automatically cleared after 2 cycles if set by software

Bit	Symbol	Access	Value	Description
5	RESERVED	-X	0x00	Reserved
4	PVDD_IRQ_SET_ENABLE	-X	0x00	Enables PVDD interrupt. Automatically cleared after 2 cycles if set by software
3	DCDC_OVERLOAD_IRQ_SET_E NABLE	-X	0x00	Enables DC-to-DC converter overload. Automatically cleared after 2 cycles if set by software
2	SCVDD_OVERLOAD_IRQ_SET_ ENABLE	-X	0x00	Enables SCVDD overload. Automatically cleared after 2 cycles if set by software
1	TXLDO_OVERCURRENT_IRQ_S ET_ENABLE	-X	0x00	Enables TXLDO overcurrent interrupt. Automatically cleared after 2 cycles if set by software
0	TEMPSENS_ERROR_IRQ_SET_ ENABLE	-X	0x00	Enables Temperature sensor calibration interrupt. Automatically cleared after 2 cycles if set by software

6.7.1.7 PMU_INTERRUPT_STATUS_REG

This register is a collection of Interrupt Status commands.

Table 44. PMU_INTERRUPT_STATUS_REG (address offset 0x3FE0)

Bit	Symbol	Access	Value	Description
31:9	RESERVED	R-	0x00	Reserved
8	VBUSMON2_LOW_IRQ_STATUS	R-	0x00	Indicates Vbus monitor 2 going low interrupt is set
7	TXLDO_5V_MON_IRQ_STATUS	R-	0x00	Indicates TXLDO 5 V monitor interrupt is set. Automatically cleared after 2 cycles if set by software
6	VCC_ILIM_ACT_IRQ_STATUS	R-	0x00	Indicates VCC current limiter active interrupt is set. Automatically cleared after 2 cycles if by software
5	RESERVED	R-	0x00	Reserved
4	PVDD_IRQ_STATUS	R-	0x00	Indicates PVDD interrupt is set. Automatically cleared after 2 cycles if by software
3	DCDC_OVERLOAD_IRQ_STATU S	R-	0x00	Indicates DC-to-DC converter overload interrupt is set. Automatically cleared after 2 cycles if by software
2	SCVDD_OVERLOAD_IRQ_STAT US	R-	0x00	Indicates SCVDD overload interrupt is set. Automatically cleared after 2 cycles if by software
1	TXLDO_OVERCURRENT_IRQ_S TATUS	R-	0x00	Indicates TXLDO overcurrent interrupt is set. Automatically cleared after 2 cycles if by software
0	TEMPSENS_ERROR_IRQ_STAT US	R-	0x00	Indicates temperature sensor interrupt is set. Automatically cleared after 2 cycles if by software

47 of 341

PN7462 HW user manual

PN7462 HW user manual

6.7.1.8 PMU_INTERRUPT_ENABLE_REG

This register is a collection of Interrupt Enable commands.

Table 45. PMU INTERRUPT ENABLE REG (address offset 0x3FE4)

Bit	Symbol	Access	Value	Description
31:9	RESERVED	R-	0x00	Reserved
8	VBUSMON2_LOW_IRQ_ENABL E	R-	0x00	Indicates enabled VBUS monitor 2 going low interrupt
7	TXLDO_5V_MON_IRQ_ENABL E	R-	0x00	Indicates enabled TXLDO 5 V monitor interrupt. Automatically cleared after 2 cycles if set by software
6	VCC_ILIM_ACT_IRQ_ENABLE	R-	0x00	Indicates enabled VCC current limiter active interrupt. Automatically cleared after 2 cycles if by software
5	RESERVED	R-	0x00	Reserved
4	PVDD_IRQ_ENABLE	R-	0x00	Indicates enabled PVDD interrupt. Automatically cleared after 2 cycles if by software
3	DCDC_OVERLOAD_IRQ_ENAB LE	R-	0x00	Indicates enabled DC-to-DC converter overload interrupt. Automatically cleared after 2 cycles if by software
2	SCVDD_OVERLOAD_IRQ_ENA BLE	R-	0x00	Indicates enabled SCVD overload interrupt. Automatically cleared after 2 cycles if by software
1	TXLDO_OVERCURRENT_IRQ_ ENABLE	R-	0x00	Indicates enabled TXLDO overcurrent interrupt. Automatically cleared after 2 cycles if by software
0	TEMPSENS_ERROR_IRQ_ENA BLE	R-	0x00	Indicates enabled temperature sensor interrupt. Automatically cleared after 2 cycles if by software

6.7.1.9 PMU_INTERRUPT_CLR_STATUS_REG

This register is a collection of Clear Interrupt Status commands with automatic clear if set by software.

Table 46. PMU INTERRUPT CLR STATUS REG (address offset 0x3FE8)

Bit	Symbol	Access	Value	Description
31:9	RESERVED	-X	0x00	Reserved
8	VBUSMON2_LOW_IRQ_CLEAR_S TATUS	-X	0x00	Clears status of Vbus monitor 2 going low interrupt
7	TXLDO_5V_MON_IRQ_CLEAR_S TATUS	-X	0x00	Clears status of TXLDO 5 V monitor interrupt. Automatically cleared after 2 cycles if set by software

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
6	VCC_ILIM_ACT_IRQ_CLEAR_STA TUS	-X	0x00	Clears status of VCC current limiter active interrupt. Automatically cleared after 2 cycles if clear by software
5	RESERVED	-X	0x00	Reserved
4	PVDD_IRQ_CLEAR_STATUS	-X	0x00	Clears status of PVDD interrupt. Automatically cleared after 2 cycles if clear by software
3	DCDC_OVERLOAD_IRQ_CLEAR_ STATUS	-X	0x00	Clears status of DC-to-DC converter overload interrupt. Automatically cleared after 2 cycles if clear by software
2	SCVDD_OVERLOAD_IRQ_CLEAR _STATUS	-X	0x00	Clears status of SCVD overload interrupt. Automatically cleared after 2 cycles if clear by software
1	TXLDO_OVERCURRENT_IRQ_CL EAR_STATUS	-X	0x00	Clears status of TXLDO overcurrent interrupt. Automatically cleared after 2 cycles if set by software
0	TEMPSENS_ERROR_IRQ_CLEAR _STATUS	-X	0x00	Clears status of temperature sensor interrupt. Automatically cleared after 2 cycles if set by software

6.7.1.10 PMU_INTERRUPT_SET_STATUS_REG

This register is a collection of Set Interrupt Status commands with automatic clear if set by software.

Table 47. PMU_INTERRUPT_SET_STATUS_REG (address offset 0x3FEC)

Bit	Symbol	Access	Value	Description
31:9	RESERVED	-X	0x00	Reserved
8	VBUSMON2_LOW_IRQ_SET_ST ATUS	-X	0x00	Sets status of Vbus monitor 2 going low interrupt
7	TXLDO_5V_MON_IRQ_SET_ST ATUS	-X	0x00	Sets status of TXLDO 5 V monitor interrupt. Automatically cleared after 2 cycles if set by software
6	VCC_ILIM_ACT_IRQ_SET_STAT US	-X	0x00	Sets status of VCC current limiter active interrupt. Automatically cleared after 2 cycles if clear by software
5	RESERVED	-X	0x00	Reserved
4	PVDD_IRQ_SET_STATUS	-X	0x00	Sets status of PVDD interrupt. Automatically cleared after 2 cycles if clear by software
3	DCDC_OVERLOAD_IRQ_SET_S TATUS	-X	0x00	Sets status of DC-to-DC converter overload interrupt. Automatically cleared after 2 cycles if clear by software
2	SCVDD_OVERLOAD_IRQ_SET_ STATUS	-X	0x00	Sets status of SCVD overload interrupt. Automatically cleared after 2 cycles if clear by software
1	TXLDO_OVERCURRENT_IRQ_S ET_STATUS	-X	0x00	Sets status of TXLDO overcurrent interrupt. Automatically cleared after 2 cycles if set by software

49 of 341

Bit	Symbol	Access	Value	Description
0	TEMPSENS_ERROR_IRQ_SET_ STATUS	-X	0x00	Sets status of temperature sensor interrupt. Automatically cleared after 2 cycles if set by software

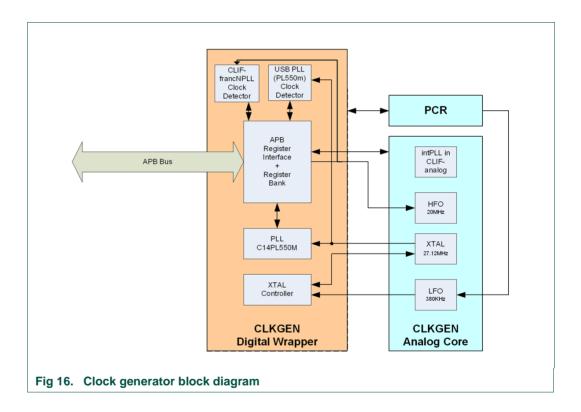
6.7.2 TXLDO Register settings

Table 48. TXLDO Register

Mode	Register	Bit Field
full power	PMU_TXLDO_CONTROL_REG	TXLDO_ENABLE =1
		TXLDO_LOW_POWER_EN =0
		TXLDO_ENABLE_LP2=0
low Power	PMU_TXLDO_CONTROL_REG	TXLDO_ENABLE =0
		TXLDO_LOW_POWER_EN =1
		TXLDO_ENABLE_LP2=0
low Power2	PMU_TXLDO_CONTROL_REG	TXLDO_ENABLE =0
		TXLDO_LOW_POWER_EN =0
		TXLDO_ENABLE_LP2=1
shutdown	PMU_TXLDO_CONTROL_REG	TXLDO_ENABLE =0
		TXLDO_LOW_POWER_EN =0
		TXLDO_ENABLE_LP2=0
standby	PCR_PMU_REG	TXLDO_ENABLE_STANDBY

50 of 341

PN7462 HW user manual


PN7462 HW user manual

7. Clock generator

The PN7462AU uses following clock sources:

- External 27.12 MHz crystal oscillator
- Internal 20 MHz HFO (High Frequency Oscillator)
- Internal 380 kHz LFO (Low Frequency Oscillator)
- Internal 48 MHz USB PLL (Phase Lock Loop)
- Internal CLIF PLL (Phase Lock Loop)

In addition to the clock sources, the clock generator comprises a digital control unit, which controls and monitors the signals coming from the clocks and integrated PLL. The registers are accessed using an APB register interface.

7.1 Oscillators

The PN7462AU includes three independent oscillators. Each oscillator can be used for more than one purpose. Upon reset, the PN7462AU will operate from the Internal HFO until it is switched to a different clock source. This allows systems to operate without any external crystal and the boot loader code to operate at a known frequency.

PN7462 HW user manual

7.1.1 27.12 MHz Crystal oscillator (XTAL)

The 27.12 MHz crystal oscillator is used as a reference for all operations requiring high stability of the clock frequency. This includes: contactless interface, contact interface, SPI and I2C master interfaces, HSUART and USB PLL for the USB interface.

To ensure the stability of the clock frequency, it is recommended to adopt the circuit with the external quartz and the trimming capacitors shown in <u>Fig 17</u>. <u>Table 49</u> summarizes the requirements for the crystals.

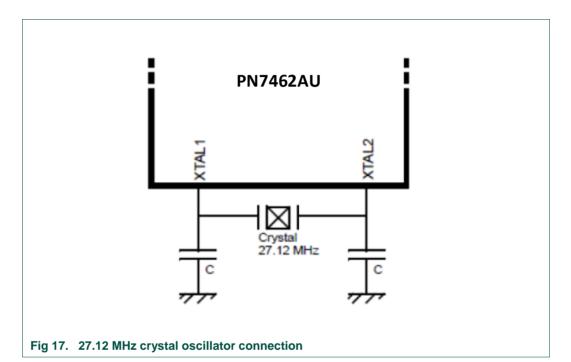


Table 49. Crystal requirements

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fclk	CLK frequency	ISO/ IEC and FCC compliancy		27.12		MHz
fclk_acc	CLK frequency accuracy	[1]	-50		+50	Ppm
ESR	Equivalent series resistance			50	100	Ohm
CLOAD	Load capacitance			10		pF
Pclk	Drive level				100	μW

^[1] This requirement is according FCC regulations requirements. To meet only ISO/IEC 14443 and ISO/IEC 18092 then +/14 kHz apply.

7.1.1.1 XTAL activation sequence

The XTAL is automatically activated by the digital control unit as soon as the system reset is released. The LFO needs to be activated to start the XTAL Oscillator.

XTAL activation sequence description:

PN7462 HW user manual

- Wait for system reset release
- Wait for 4 clk_lfo clock cycles (4x(1/380 KHz) ~ 10.53 us)
- Set XTAL_ENABLE_KICK to '1'
- Wait for 4 clk_lfo clock cycles (4x(1/380 KHz) ~ 10.53 us)
- Set XTAL_ENABLE_KICK to '1'

In case of error, the PCR can try to restart the XTAL activation sequence by activating the system reset again or switching to another system clock source.

The XTAL can also be controlled by software when CLKGEN_HFO_XTAL_REG.XTAL_CONTROL_SW is set to '1'. Before activating the XTAL software control, the system clock should be switched from the XTAL to another clock. The following sequence must be followed step by step in order to activate XTAL by SW.

- 1. Set CLKGEN_HFO_XTAL_REG.XTAL_CONTROL_SW is set to '1'.
- 2. Clear CLK_HFO_XTAL_REG.XTAL_SPARE0 to '0'
- 3. Wait for 4 clk_lfo clock cycles $(4x(1/380 \text{ KHz}) \sim 10.53 \text{ us})$
- Clear CLKGEN_HFO_XTAL_REG.XTALI_BYPASS to '0'
- Clear CLKGEN_HFO_XTAL_REG.XTAL_SELECT_EXTERNAL_CLOCK to '0'
- 6. Set XTAL ENABLE KICK to '1'
- 7. Wait for 4 clk Ifo clock cycles $(4x(1/380 \text{ KHz}) \sim 10.53 \text{ us})$
- 8. Set XTAL_ENABLE_KICK to '1'

7.1.2 High Frequency Oscillator (HFO)

The PN7462AU integrates an internal low power High Frequency Oscillator (HFO), generating a 20 MHz clock without using the PLL. The HFO can be used as a system clock. The HFO is activated by default with the

CLKGEN_HFO_XTAL_REG.HFO_ENABLE register bit as soon as the system reset is released.

7.1.3 Low Frequency Oscillator (LFO)

The PN7462AU integrates an internal low power Low Frequency Oscillator working at 380 kHz. The LFO is used by the EEPROM, POR sequencer, Contactless interface, timers and watchdog. The LFO needs to be activated to start the XTAL Oscillator

7.2 Phase Locked Loop (USB PLL)

The PN7462AU integrates a dedicated USB PLL to generate a low-noise 48 MHz clock signal from the 27.12 MHz input signal coming from the external crystal (XTAL). The 48 MHz clock signal is used as the main clock for the USB interface.

UM10858 **NXP Semiconductors**

PN7462 HW user manual

USB PLL features:

- Low-skew, Peak-peak cycle-to-cycle jitter 48 MHz output clock (100 ps typical)
- Low Power in active more, low power-down current
- On-Chip loop filter, no external RC components needed

7.2.1 USB PLL Clock source selection

The USB PLL input can be selected between:

· Crystal oscillator output (default)

CLKGEN HFO XTAL REG.XTAL BYPASS = '0'

CLKGEN_CLIF_PLL_GLOBAL_CONTROL_REG.PLL_INPUT_BUFFER_BYPASS = '0'

· External clock input

CLKGEN HFO XTAL REG. XTAL BYPASS = '1'

CLKGEN CLIF PLL GLOBAL CONTROL REG.PLL INPUT BUFFER BYPASS = '0'

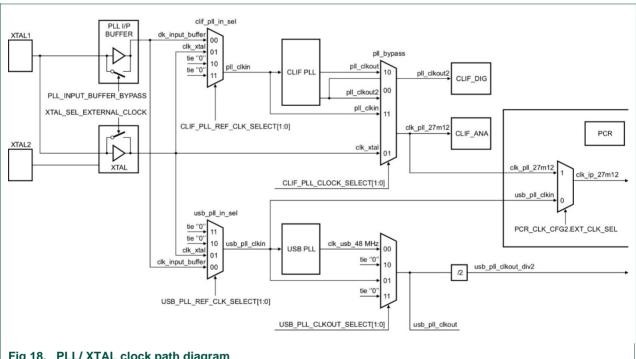


Fig 18. PLL/ XTAL clock path diagram

7.2.2 USB clock selection

The USB PLL output can be configured as:

USB PLL Clock

PN7462 HW user manual

CLKGEN_USB_PLL_CONTROL_REG.USB_PLL_CLKOUT_SELECT = '00'

Crystal Oscillator or External clock
 CLKGEN_USB_PLL_CONTROL_REG.USB_PLL_CLKOUT_SELECT = '01'

USB Clock Disable

CLKGEN_USB_PLL_CONTROL_REG.USB_PLL_CLKOUT_SELECT = '10' or '11'

7.2.3 USB PLL frequency calculation

The USB PLL soft decoder selects pre-defined divider ratios and corresponding bandwidth of the PLL to guarantee stability. The soft decoder can only select two sets of divider parameters in order to have a ~48 MHz output clock from a 27.12 MHz input clock (Clkout=Clkinx(M/(NxP))).

CLKGEN_USB_PLL_CONTROL_REG.usb_pll_mnp_sel = '0' : M=69, N=13,P=3 Clkout=Clkinx(M/N.P) = 27.12 MHz × (69/(13 × 3)) = 48 MHz

CLKGEN_USB_PLL_CONTROL_REG.usb_pll_mnp_sel = '1' : M=92, N=13,P=4. Clkout=Clkinx(M/N.P) = 27.12 MHz × $(92/(13 \times 4)) \sim 47.9815$ MHz

The Soft Decoder can be bypassed in order to have the full control of the divider ratios. When CLKGEN_USB_PLL_CONTROL_REG.usb_pll_mnp_dec_selection is set to '1' M,N,P divider ratios are coming from CLKGEN_USB_PLL_MDEC_WO_SOFTDEC and CLKGEN_USB_PLL_NDEC_PDEC_WO_SOFTDEC registers.

7.2.4 USB PLL Activation Sequence

The Activation Sequence with default MNP parameters comprises following steps:

- Put the PLL in Power Down Mode
 CLKGEN_USB_PLL_CONTROL_REG.USB_PLL_PD = '1'
- Enable the PLL input buffer CLKGEN_USB_PLL_CONTROL_REG.USB_PLL_INPUT_BUFFER_ENABLE = '1'
- Set the expected PLL input clock frequency for the clock detector by setting the
 detection window length and the amount of expected detected input clock rising
 edges in this detection window respectively defined by the following registers
 CLKGEN_INPUT_CLOCK_DETECTOR_CONTROL_REG.

By default, these register are set to detect a 27.12 MHz input clock.

PN7462 HW user manual

- 4. Enable Input Clock Detector CLKGEN_INPUT_CLOCK_DETECTOR_CONTROL_REG.USB_CLK_DETECT_EN ABLE = '1'.
- 5. Poll for CLKGEN_STATUS_REG.CLK_IN_DETECT_DONE = '1' (after ~5.2 us by default). This will only indicate that the detection procedure is finished, not that there is clock and/or the frequency is the expected one.
- 6. Check that CLKGEN STATUS REG.CLK IN OK = '1'.

This will indicate if there is a clock of a frequency higher or equals to the expected one (27.12 MHz by default) at the input of the PLL. If this bit is 0 while CLK_IN_DETECT_DONE is high, this means either that there is no clock or that the clock has a frequency lower than the expected one (27.12 MHz), which will hamper the PLL functionality or give an unwanted PLL output frequency value.

- 7. Disable the Input Clock Detector CLKGEN_USB_PLL_CONTROL_REG. USB_CLK_DETECT_ENABLE = '0'.
- 8. Exit the PLL from the Power Down Mode CLKGEN_USB_PLL_CONTROL_REG.PLL_PD = '0'
- 9. Enable the PLL CLKGEN USB PLL CONTROL REG.PLL CLKEN = '1'
- 10. Poll for CLKGEN_STATUS_REG.PLL_LOCK = '1' to confirm the lock status of the PLL.

Software can start a new PLL input clock detection at any time by generating a low to high transition on the

CLKGEN_INPUT_CLOCK_DETECTOR_CONTROL_REG.USB_CLK_DETECT_ENA BLE register.

7.3 CLIF PLL

The integrated CLIF PLL is designed to generate a low-noise 27.12 MHz clock, which is used as time reference for the Contactless Interface when PN7462AU is in reader mode or acting as ISO/IEC 18092 initiator.

The frequency value of the reference clock that is fed, can be selected using CLKGEN_CLIF_PLL_GLOBAL_CONTROL_REG register between:

- 1. Crystal oscillator output (default)
- 2. External clock input

The CLIF PLL output can be configured using CLKGEN_CLIF_PLL_GLOBAL_CONTROL_REG registers as:

- 1. Fractional PLL output
- 2. XTAL oscillator output Clock
- 3. Regular PLL output
- 4. PLL input

The clock generator module provides a PLL/XTAL clock presence indicator signal to the CLIF. This signal is active when the clock coming from the PLL or XTAL, or a

PN7462 HW user manual

combination of both (depending on the clock settings), is available. This signal can be overridden using CLIF_PLL_CLK_IN_OK_BYPASS register.

7.3.1 Optimum divider settings for CLIF PLL

Table 50. Optimum divider settings for PLL1 and PLL2

Fin [MHz]	n1	m1	p1	m2	p2	Fref1 (MHz)	Fcco1 (MHz)	Fref2 (MHz)	Fcco2 (MHz)	FpII_clk out (MHz)	FpII_clk out2 (MHz)
27.12	4	68	46	44	32.522	13.56	922.1	20.05	881.99	13.56	27.12

7.4 Register overview and description

7.4.1 Clock generator register overview

Table 51. Clock generator register overview (base address 0x4001 0000)

Name	Address offset	Width (bits)	Access	Reset value	Description
CLKGEN_STATUS_REG	0000h	32	R	00000000h	CLKGEN status register
CLKGEN_HFO_XTAL_REG	0004h	32	R/W	00FFF001h	HFO and XTAL control register
CLKGEN_HFO_TRIM_REG	0008h	32	R/W	00000000h	HFO trimming value register
CLKGEN_USB_PLL_CONTROL_ REG	000Ch	32	R/W	00F90001h	PLL Global Control Register
CLKGEN_USB_PLL_MDEC_WO_ SOFTDEC_REG	0010h	32	R/W	00000000h	PLL M decoded divider ratio when the soft decoder is not used
CLKGEN_USB_PLL_NDEC_PDE C_WO_SOFTDEC_REG	0014h	32	R/W	00000000h	PLL N and P decoded divider ratio when the soft decoder is not used
CLKGEN_CLIF_PLL1_CONTROL_ REG	0018h	32	R/W	02E3B190h	CLIF PLL usage configurations
CLKGEN_CLIF_PLL2_CONTROL_ REG	001Ch	32	R/W	02E121E0h	CLF PLL usage configurations
CLKGEN_CLIF_PLL_GLOBAL_C ONTROL_REG	0020h	32	R/W	000000C8h	CLIF PLL integration configurations
CLKGEN_INPUT_CLOCK_DETEC TOR_CONTROL_REG	0024h	32	R/W	0000100Dh	Input clock detector control
RESERVED	0028h	32	R/W	0000000Fh	Reserved
CLKGEN_CLOCK_PRESENCE_B YPASS_REG	002Ch	32	R/W	00000000h	clock presence for CLIF PLL
Unused	0030h - 3FFFh	32	-	-	unused

PN7462 HW user manual

7.5 Clock Status Register description

Table 52. CLKGEN_STATUS_REG (address 0000h)

Table 52	CLKGEN_STATUS_REG (addr	ess 0000h)		
Bit	Symbol	Access	Value	Description
31:27	RESERVED	-	0	Reserved
26	CLIF_CLOCK_PRESENCE_OK	R	0	Indicates the status of clkgen_clif_pll_lock2_o signal. 1: CLIF PLL2 lock signal set 0: CLIF PLL2 lock signal not set
25	XTAL_ACTIVATION_TIME OUT_ERROR	R	0	high if timeout for XTAL Activation is reached 1: Xtal activation has timed-out
24	XTAL_DETECT_OK	R	0	Indicates the presence of clock signal on clk_xtal if xtal_detect_enable is set. 1: Xtal detection done
23	XTAL_OSC_OK	R	0	high to indicate the clock is ready 1: Xtal osc clock is ready
22	CLIF_PLL_LOCK_OVERRIDEN	R	0	1: pll_lock2 OR pll_bypass_lock2 is set 0: pll_lock2 OR pll_bypass_lock2 is not set
21	CLIF_CLK_IN_DETECT_DONE	R	0	CLIF PLL detection status 1: CLIF PLL clk_in detection done
20	CLIF_CLK_IN_OK	R	0	PLL input clock detector ok signal. 1: clk_in is present and correct 0: clk_in not ok
19	CLIF_PLL_LOCK2	R	0	Lock detector Output for 2nd PLL 1: PLL2 lock is set 0: PLL2 lock is not set
18	CLIF_PLL_LOCK1	R	0	Lock detector Output for 1st PLL. 1: PLL1 lock is set 0: PLL1 lock is not set
17	XTAL_OK	R	0	1: XTAL oscillator is activated
16	XTAL_ENABLED	R	0	XTAL oscillator is enabled XTAL oscillator disabled
15:8	CLK_IN_EDGES_COUNTER	R	0	input clock edges counter value when the USB_PLL_CLK_IN detection completes successfully
7	CLK_IN_DETECT_DONE	R	0	USB_PLL input clock detection status 1: USB PLL input clock detection completed
6	CLK_IN_OK	R	0	USB_PLL input clock detector OK Status. 1: CLK_IN is present and the frequency matches expected frequency
5	USB_PLL_FR	R	0	USB_PLL free running detector status 1: USB PLL is in free running mode
4	USB_PLL_PACK	R	0	USB_PLL post-divider ratio change acknowledge 1: USB_PLL post-divider ratio change has been Acknowledged 0: No post-divider ratio change
3	USB_PLL_NACK	R	0	USB_PLL pre-divider ratio change acknowledge 1: USB_PLL pre-divider ratio change has been Acknowledged 0: No pre-divider ratio change
2	USB_PLL_MACK	R	0	USB_PLL feedback divider ratio change acknowledge 1: USB_PLL feedback divider ratio change has been

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				Acknowledged 0: No feedback divider ratio change
1	USB_PLL_LOCK_OVERRIDEN	R	0	USB_PLL lock overriden status 1: CLKGEN_STATUS_REG.USB_PLL_lock or CLKGEN_USB_PLL_GLOBAL_CONTROL_REG.USB_ PLL_lock_bypass is high. 0: USB PLL Lock is not set
0	USB_PLL_LOCK	R	0	USB_PLL lock status 1: USB PLL lock set 0: USB PLL lock is not set

7.5.1 Oscillators register description

Oscillators are controlled by the registers shown in <u>Table 53</u>. More detailed descriptions follow. Writes to any unused bits are ignored.

Table 53. Oscillators Registers

Name	Address offset	Width (bits)	Access	Reset value	Description
CLKGEN_HFO_XTAL_REG	0004h	32	R/W	00FFF001h	HFO and XTAL control register
CLKGEN_HFO_TRIM_REG	0008h	32	R/W	00000000h	HFO trimming value register

7.5.1.1 HFO and XTAL control register

The CLKGEN_HFO_XTAL_REG register contains the bits that Activate/Enable XTAL, enable HFO.

Table 54. CLKGEN_HFO_XTAL_REG (address 0004h)

Bit	Symbol	Access	Value	Description
31:24	RESERVED	R/W	0x00	Reserved
23:12	XTAL_ACTIVATION_TIMEOUT	R/W	0xFFF	Set the XTAL activation timeout value (in LFO Clock Cycles + 8); Default value > 10 ms
11	XTAL_DETECT_ENABLE	R/W	0x00	Enables the XTAL output clock presence detection if clk_in_detect_enable is low. 1: Enable XTAL clk detection 0: Disable XTAL clk detection
10	XTAL_SPARE3	R/W	0x00	controls XTAL Spare3
9	XTAL_SPARE2	R/W	0x00	controls XTAL Spare2
8	XTAL_SPARE1	R/W	0x00	controls XTAL Spare1
7	XTAL_SPARE0	R/W	0x00	controls XTAL Pull Down
				1: enable strong pull-down on clk_xtal port of clkgen_ana sub-block
				0: disable pull-down on clk_xtal port of clkgen_ana sub-block

Bit	Symbol	Access	Value	Description
DIL	Зушьог	ACCESS	value	Description
6	XTAL_VOLTAGE_MUX_CLOC	R/W	0x00	
	K			controls XTAL voltage Mux
5	XTAL_SEL_EXTERNAL_CLOC K	R/W	0x00	Controls XTAL external clock selection if XTAL_CONTROL_SW='1' 1: Select External clock 0: Select XTAL Oscillator clock
4	XTAL_ENABLE	R/W	0x00	controls XTAL Enable if XTAL_CONTROL_SW='1' 1: Enable for XTAL oscillator 0: Disable XTAL Oscillator
3	XTAL_ENABLE_KICK	R/W	0x00	Controls XTAL Enable Kick if XTAL_CONTROL_SW='1' 1: Enable Kick of XTAL Oscillator
2	XTAL_BYPASS	R/W	0x00	controls XTAL Bypass if XTAL_CONTROL_SW='1' 1: Bypass XTAL
				0: XTAL not Bypassed
1	XTAL_CONTROL_SW	R/W	0x00	high to control the XTAL oscillator by SW 1: Enable software control of XTAL oscillator 0: Disable software control of XTAL oscillator
0	HFO_ENABLE	R/W	0x01	enables the HFO (activated by default)

7.5.1.2 HFO Trimming Value Register

Table 55. CLKGEN_HFO_TRIMM_REG (address 0008h)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	R/W	0x00	Reserved
4:0	HFO_TRIMM	R/W	0x00	HFO trimming values

7.6 USB PLL register description

The USB PLL is controlled by the registers shown in <u>Table 56</u>. Writes to any unused bits are ignored.

1: Enable HFO 0: Disable HFO

Warning: Improper setting of USB PLL values may result in incorrect operation of the USB.

Table 56. USB PLL Registers

Name	Address offset	Width (bits)	Access	Reset value	Description
CLKGEN_USB_PLL_CONTROL_ REG	000Ch	32	R/W	00F90001h	PLL global control register
CLKGEN_USB_PLL_MDEC_WO_ SOFTDEC_REG	0010h	32	R/W	00000000h	PLL M decoded divider ratio when the soft decoder is not used

60 of 341

PN7462 HW user manual

PN7462 HW user manual

Name	Address offset	Width (bits)	Access	Reset value	Description
CLKGEN_USB_PLL_NDEC_PDE C_WO_SOFTDEC_REG	0014h	32	R/W	00000000h	PLL N and P decoded divider ratio when the soft decoder is not used

7.6.1 PLL Control Register (CLKGEN_USB_PLL_CONTROL_REG - 000Ch)

The CLKGEN_USB_PLL_CONTROL_REG register contains the bits that enable and connect PLL1. Enabling USB PLL allows it to attempt to lock to the current settings of the multiplier and divider values. Connecting USB PLL causes the USB subsystem to run from the USB PLL output clock. The USB PLL must be set up, enabled, and lock established before it may be used as a clock source for the USB.

Table 57. CLKGEN_USB_PLL_CONTROL_REG (address 000Ch)

Bit	Symbol	Access	Value	Description
31	RESERVED	R/W	0x00	Reserved
30	USB_PLL_MNPSEL	R/W	0x00	M,N,P selection values for the Soft Decoder
				0: M=600,N=113,P=3
				1: M=92,N=13,P=4
29:28	USB_PLL_CLKOUT_SELECT	R/W	0x00	00: USB_PLL output clock 2
				01: USB_PLL_clkin
				10: tie '0'
				11: tie '0'
27:26	USB_PLL_REF_CLK_SELECT	R/W	0x00	Selects the reference clock for USB PLL
				00: clk_input_buffer
				01: clk_xtal
				10: tie '0'
				11: tie '0'
25	USB_PLL_LOCK_BYPASS	R/W	0x00	1: Bypass the USB_PLL lock output
24	USB_PLL_MNP_DEC_SELECTIO	R/W	0x00	1: M,N,P divider ratio are not coming from the soft
	N			decoder but from the CLKGEN_USB_PLL_MDEC_WO_SOFTDEC and
				CLKGEN_USB_PLL_NDEC_PDEC_WO_SOFTDEC and CLKGEN_USB_PLL_NDEC_PDEC_WO_SOFTDEC
				registers
				0: M, N, P divider ratio are taken from the Soft Decoder
23:19	USB_PLL_INSELP	R/W	0x1F	select the bandwidth (don't care if
				USB_PLL_BANDSEL='0')
18:15	USB_PLL_INSELI	R/W	0x02	select the bandwidth (don't care if
4444	LIOD DIL INICELD	DAM	0.00	USB_PLL_BANDSEL='0')
14:11	USB_PLL_INSELR	R/W	0x00	select the bandwidth (don't care if USB_PLL_BANDSEL='0')
10	USB_PLL_BANDSEL	R/W	0x00	bandwidth adjustment (to modify externally the
				bandwidth of the USB_PLL)

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
9	USB_PLL_PREQ	R/W	0x00	USB_PLL post-divider ratio change request 1: Request change of USB_PLL post-divider ratio (ratio taken from register)
8	USB_PLL_NREQ	R/W	0x00	USB_PLL pre-divider ratio change request 1: Request change of USB_PLL pre-divider ratio (ratio taken from register)
7	USB_PLL_MREQ	R/W	0x00	USB_PLL feedback divider ratio change request 1: Request change of USB_PLL feedback divider ratio (ratio taken from register)
6	USB_PLL_FRM	R/W	0x00	USB_PLL free running mode 1: Enable free running mode of USB PLL
5	USB_PLL_SKEW_EN	R/W	0x00	USB_PLL skew mode 1: Enable skew mode of USB_PLL
4	USB_PLL_DIRECTO	R/W	0x00	Bypass of the USB_PLL post-divider 1: Enable Bypass of USB_PLL post-divider 0: USB_PLL post-divider Bypass disable
3	USB_PLL_DIRECTI	R/W	0x00	Bypass of the USB_PLL pre-divider 1: Enable Bypass of USB_PLL pre-divider 0: USB_PLL pre-divider Bypass disable
2	USB_PLL_BYPASS	R/W	0x00	Bypass of the USB_PLL (clkout=clkin) 1: Enable Bypass of USB_PLL 0: USB_PLL Bypass disable
1	USB_PLL_CLKEN	R/W	0x00	Enable the USB_PLL output clock 1: Enable output clock from USB PLL 0: Disable output clock from USB PLL
0	USB_PLL_PD	R/W	0x01	USB_PLL Into power down 1: USB PLL powered down 0: USB PLL powered up

7.6.2 PLL M decoded divider ratio

The CLKGEN_USB_PLL_MDEC_WO_SOFTDEC_REG register contains the USB PLL multiplier and divider values. Changes to CLKGEN_USB_PLL_MDEC_WO_SOFTDEC_REG register do not take effect until a

correct USB feed sequence has been given (see Section 7.2). Calculations for the USB PLL frequency, and multiplier and divider values are found in Section 7.2.

Table 58. CLKGEN_USB_PLL_MDEC_WO_SOFTDEC_REG (address 0010h)

Bit	Symbol	Access	Value	Description
31:17	RESERVED	R/W	0x00	Reserved
16:0	USB_MDEC_WO_SOFTDEC	R/W	0x00	divider ratio code for M-divider when soft decoder is not used

PN7462 HW user manual

7.6.3 PLL N and P decoded divider ratio

The CLKGEN_USB_PLL_NDEC_PDEC_WO_SOFTDEC_REG register contains the USB PLL multiplier and divider values. Changes to

CLKGEN_USB_PLL_NDEC_PDEC_WO_SOFTDEC register do not take effect until a correct USB feed sequence has been given (see <u>Section 7.2</u>). Calculations for the USB PLL frequency, and multiplier and divider values are found in <u>Section 7.2</u>.

Table 59. CLKGEN_USB_PLL_NDEC_PDEC_WO_SOFTDEC_REG (address 0014h)

Bit	Symbol	Access	Value	Description
31:16	RESERVED	R/W	0x00	Reserved
15:10	USB_PDEC_WO_SOFTDEC	R/W	0x00	divider ratio code for P-divider when soft decoder is not used
9:0	USB_NDEC_WO_SOFTDEC	R/W	0x00	divider ratio code for N-divider when soft decoder is not used

7.7 CLIF PLL register description

CLIF PLL is controlled by the registers shown in <u>Table 60</u>. More detailed descriptions follow. Writes to any unused bits are ignored. A read of any unused bits will return a logic zero.

Warning: Improper setting of CLIF PLL values may result in incorrect operation of the Contactless System!

Table 60. CLIF PLL register overview

Name	Address offset	Width (bits)	Access	Reset value	Description
CLKGEN_CLIF_PLL1_CONTRO L_REG	0018h	32	R/W	02E3B190h	Clif pll usage configurations
CLKGEN_CLIF_PLL2_CONTRO L_REG	001Ch	32	R/W	02E121E0h	Clif pll usage configurations
CLKGEN_CLIF_PLL_GLOBAL_ CONTROL_REG	0020h	32	R/W	000000C0h	Clif pll integration configurations
CLKGEN_INPUT_CLOCK_DETE CTOR_CONTROL_REG	0024h	32	R/W	000011ADh	input clock detector control
CLKGEN_CLOCK_PRESENCE_ BYPASS_REG	002Ch	32	R/W	0000000Fh	yes clock presence for clif_pll

7.7.1 CLIF PLL CONTROL1 REG

The CLKGEN_CLIF_PLL1_CONTROL_REG register contains the CLIF PLL multiplier and divider values. Changes to CLKGEN_CLIF_PLL1_CONTROL_REG register do not take effect until a correct CLIF PLL feed sequence has been given. Calculations for the USB PLL frequency, and multiplier and divider values are found in Section 7.2.

PN7462 HW user manual

Table 61. CLKGEN_CLIF_PLL1_CONTROL_REG (address 0018h)

Bit	Symbol	Access	Value	Description
31:28	RESERVED	R/W	0x00	Reserved
27	CLIF_PLL_LIMUP_OFF1	R/W	0x00	pulse limiter for CLIF_PLL 1
26	CLIF_PLL_FREQ_LIM1	R/W	0x00	frequency limiter for CLIF_PLL 1
25:24	CLIF_PLL_SELP1	R/W	0x02	Pins to select the BW of CLIF_PLL 1
23:22	CLIF_PLL_SELI1	R/W	0x03	Pins to select the BW of CLIF_PLL 1
21:20	CLIF_PLL_SELR1	R/W	0x02	Pins to select the BW of CLIF_PLL 1
19	CLIF_PLL_FUNC_TEST2_P1	R/W	0x00	1: Enable functional CLIF_PLL chain test of divider P1
18	CLIF_PLL_FUNC_TEST1_P1	R/W	0x00	1: Enable functional divider test of divider P1
17:12	CLIF_PLL_DIVP1	R/W	0x3B	Feedback divider ratio P1
11	CLIF_PLL_FUNC_TEST2_M1	R/W	0x00	1: Enable functional CLIF_PLL test chain of divider M1
10	CLIF_PLL_FUNC_TEST1_M1	R/W	0x00	1: Enable functional divider test of divider M1
9:3	CLIF_PLL_DIVM1	R/W	0x32	Feedback divider ratio M1
2	CLIF_PLL_BYPASS_LOCK1	R/W	0x00	Bypass of Lock1
				1: Bypass clif_pll_lock1
1	CLIF_PLL_FUNC_TEST2_LOCK1	R/W	0x00	Enable functional CLIF_PLL test chain of lock detector
0	CLIF_PLL_FUNC_TEST1_LOCK1	R/W	0x00	1: Enable functional divider test of lock detector 1

7.7.2 CLIF PLL CONTROL2 REG

The CLKGEN_CLIF_PLL2_CONTROL_REG register contains the CLIF PLL multiplier and divider values. Changes to CLKGEN_CLIF_PLL2_CONTROL_REG register do not take effect until a correct CLIF PLL feed sequence has been given. Calculations for the USB PLL frequency, and multiplier and divider values are found <u>Section 7.2</u>.

Table 62. CLKGEN CLIF PLL2 CONTROL REG (address 001Ch)

Bit	Symbol	Access	Value	Description
31:28	RESERVED	R/W	0x00	Reserved
27	CLIF_PLL_LIMUP_OFF2	R/W	0x00	pulse limiter for CLIF_PLL 2
26	CLIF_PLL_FREQ_LIM2	R/W	0x00	frequency limiter for CLIF_PLL 2
25:24	CLIF_PLL_SELP2	R/W	0x02	Pins to select the BW of CLIF_PLL 2
23:22	CLIF_PLL_SELI2	R/W	0x03	Pins to select the BW of CLIF_PLL 2
21:20	CLIF_PLL_SELR2	R/W	0x02	Pins to select the BW of CLIF_PLL 2
19	CLIF_PLL_FUNC_TEST2_P2	R/W	0x00	1: Enable functional CLIF_PLL chain test of divider P2
18	CLIF_PLL_FUNC_TEST1_P2	R/W	0x00	1: Enable functional divider test of divider P2
17:12	CLIF_PLL_DIVP2	R/W	0x12	Feedback divider ratio P2
11	CLIF_PLL_FUNC_TEST2_M2	R/W	0x00	1: Enable functional CLIF_PLL test chain of divider M2
10	CLIF_PLL_FUNC_TEST1_M2	R/W	0x00	1: Enable functional divider test of divider M2
9:3	CLIF_PLL_DIVM2	R/W	0x3C	feedback divider ratio M2
2	CLIF_PLL_BYPASS_LOCK2	R/W	0x00	Bypass of Lock2

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				1: Bypass clif_pll_lock2
1	CLIF_PLL_FUNC_TEST2_LOCK2	R/W	0x00	1: Enable functional CLIF_PLL test chain of lock detector 2
0	CLIF_PLL_FUNC_TEST1_LOCK2	R/W	0x00	1: Enable functional divider test of lock detector 2

7.7.3 CLIF PLL GLOBAL CONTROL REG

The CLIF PLL GLOBAL CONTROL REG register contains the bits that enable and connect CLIF PLL. Enabling CLIF PLL allows it to attempt to lock to the current settings of the multiplier and divider values.

Table 63. CLKGEN CLIF PLL GLOBAL CONTROL REG (address 0020h)

Bit	Symbol	Access	Value	Description
31:15	RESERVED	R/W	0x00	Reserved
14	CLIF_PLL_CLK_IN_OK_BYPASS	R/W	0x00	CLIF PLL clk_in detection override
				1: Override pll_clk_in detection
13:12	CLIF_PLL_REF_CLK_SELECT	R/W	0x00	Select the reference clock for CLIF PLL
				00: Clk_input_buffer
				01: clk_xtal
				10: tie '0'
				11: tie '0'
11	RESERVED	R/W	0x00	Reserved
10	CLIF_CLK_DETECT_ENABLE	R/W	0x00	1: Enable CLIF_PLL input clock detector (clk_in).
				Higher prior than xtal_detect_enable.
9:7	CLIF_PLL_INPUT_FREQ_SEL	R/W	0x01	Select input frequency for the CLIF_PLL: 13, 19.2, 24, 26, 38.4 or 52 MHz
6:5	CLIF_PLL_CLOCK_SELECT	R/W	0x02	Selects output clock from CLIF_PLL
				00: CLIF_PLL clockout2
				01: clk_xtal
				10: CLIF_PLL clockout
				11: CLIF_PLL input clock
4	PLL_INPUT_BUFFER_BYPASS	R/W	0x00	Bypass PLL input buffer (the buffer for clock going into USB PLL and intPLL)
				1: Bypass the PLL input buffer
3	PLL_INPUT_BUFFER_ENABLE	R/W	0x01	Enable the PLL Input Buffer (the buffer for clock going into USB PLL and intPLL) Disable the PLL input Buffer
2	CLIF_PLL_FUNC_TEST_N1	R/W	0x00	Enable functional divider test and CLIF_PLL test chain of divider M1
				Disable functional divider test and CLIF_PLL test chain of divider M1
1	CLIF_PLL_DIVN1	R/W	0x00	Pre-divider selection for CLIF PLL1
0	CLIF_PLL_ENABLE	R/W	0x00	1: Enable the CLIF_PLL

Bit	Symbol	Access V	/alue	Description
				0. Disable the CLIF PLI

7.7.4 INPUT CLOCK DETECTOR CONTROL REGISTER

Table 64. CLKGEN_INPUT_CLOCK_DETECTOR_CONTROL_REG (address 0024h)

Bit	Symbol	Access	Value	Description
31:14	RESERVED	R/W	0x0	Reserved
14	USB_PLL_CLK_IN_OK_BYPASS	R/W	0x0	usb pll clk_in detection override 1: usb_pll_clk_in detection overridden. Clk_in_ok set to '1'
13	USB_CLK_DETECT_ENABLE	R/W	0x0	Enable usb_pll_clk_in detect 1: Enable usb_pll_clk_in detection
12:5	INPUT_USB_CLOCK_EDGES_NUM BER	R/W	0x80	Defines the expected amount of input clock edges during the detection window length. Default value is set to detect a 27.12 MHz input clock.
4:0	DETECTION_WINDOW_LENGTH	R/W	0x0D	Defines the detection window length (in HFO/8 clock cycles). Default value is set to detect a 27.12 MHz input clock.

7.7.5 CLOCK PRESENCE BYPASS REG

Table 65. CLKGEN_CLOCK_PRESENCE_BYPASS_REG (address 002Ch)

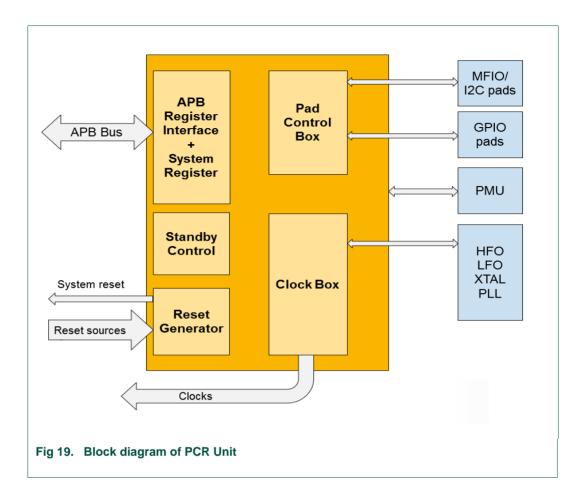
Bit	Symbol	Access	Value	Description
31:2	RESERVED	R/W	0x0	Reserved
1	CLOCK_PRESENCE_BYPASS_V AL	R/W	0x0	Value to apply to clif_pll_lock2_o signal when corresponding enable bit is set 0: set clif_pll_lock2_o signal to 0 1: set clif_pll_lock2_o signal to 1
0	CLOCK_PRESENCE_BYPASS_E NABLE	R/W	0x0	Enable bypass of the clif_pll_lock2_o signal to the value stored in clock_presence_bypass_val Disable Bypass of the clif_pll_lock2_o signal

PN7462 HW user manual

PN7462 HW user manual

8. Power clock and reset (PCR)

The Power, Clock & Reset Unit (PCR) handles the digital startup of the PN7462AU and manages the behavior of the system in low power and active modes. The PCR unit is the only digital block that is powered in the standby mode.


The PCR unit provides following functionalities:

- · Reset management
- Power on, standby, USB suspend and power off management
- · Wake-up management
- Clock gating management for power consumption reduction
- I/O pad management

Fig 19 shows the block diagram of the PCR Unit with its main blocks:

- · Reset Generator
- · Standby Control
- Clock Box
- Pad Control

PN7462 HW user manual

8.1 Reset sources

The PN7462AU has 6 possible rest sources. These are described in detail in Table 66.

Table 66. Reset sources

Source	Description
Software - PCR	Software reset from the PCR peripheral; Resets the whole chip except the PCR and the ARM debug interface
Software - ARM	Software reset from the ARM processor; Resets the whole chip except the PCR and the ARM debug interface
I2C interface	I2C Standard 3.0 defines a method to reset the chip via an I2C command; This feature can be disabled; Resets the whole chip except the PCR and the ARM debug interface
Watchdog	Reset the chip if the watchdog threshold is not periodically reloaded; Resets the whole chip except the PCR and the ARM debug interface
VBUS - PMU	Power-on reset sequence; Resets the complete chip when the voltage is above 2.3 V
RST_N pin	External reset triggered via reset pin; Resets the complete chip when the RST_N pin is set to low

68 of 341

PN7462 HW user manual

These reset sources trigger the reset generator that generates a global reset pulse. The Reset Generator is active high level sensitive to the reset sources. As long as one reset source is high, the global reset will be active. After releasing the reset source the reset pulse will be prolonged to at least one cycle. The power-on reset sequence is asserted when the device is powered up. It is used to keep the system in reset state until proper supply conditions are established. This point is achieved when the internal supply voltage reaches 1.55 V.

When the internal reset is removed, the processor begins executing at address 0, which is initially the reset vector mapped from the boot block. At that point, all of the processor and peripheral registers have been initialized to predetermined values.

8.2 Boot reason decoding

Table 67. Boot reason decoding

PCR_STATUS.boot_reason	Values reflected in register	Description
startup_por	0	Analog Reset Sources (Startup Por or leave from HPD or VEN)
Rfld	1	RF Level Detector wakeup
wuc_cnt	2	Wakeup Timer
int_aux	3	Contact uart int_aux pad gives an interrupt
Ct	4	Contact card presence is detected
i2c	5	I2C address detected
RESERVED	6	Reserved
Spi	7	SPI slave received transaction
usb_resume	8	USB Resume signaling from Host
soft_reset	9	Soft reset given by software
Wdog	10	Watch dog timer timeout or ARM reset
Tvddmon	11	5V detected by TVDD monitor
hif_reset	12	VEN from low to high back (only for test purpose) li2c slave or smb slave requested for reset
temp0	13	Neg-edge detected for Temperature error from temperature sensor 0
temp1	14	Neg-edge detected for Temperature error from temperature sensor 1
no_pvdd	15	PVDD dropped
pvdd_ilim	16	Pvdd current limiter input has become 0→1
gpio	17	Gpio interrupt
hsu	18	HSUART transaction detected

PN7462 HW user manual

8.3 Power modes

The PN7462AU offers four different power modes allowing customer to optimize its energy consumption. These are:

- Active mode
- Standby mode
- USB suspend mode
- Hard Power Down mode

8.3.1 Full Power Mode (Active Mode)

In the active mode, all functionalities are available and all blocks are accessible. The PN7462AU is powered from the VBUS supply.

8.3.2 Standby Mode

In this mode, only small part of the IC is powered to maintain operation of the Power Control Unit, the LFO and a small set of registers for storing data during the standby operation. The MLDO is set to the low power mode. The possible wake-up sources are still powered. Depending on the application requirements, it is possible to put PVDDL_LDO into active mode, low power mode (default) or shut down mode. The standby mode is triggered by the application firmware. Before entering the standby mode, the PN7462 executes automatically the deactivation of the contact card. An internal mechanism prevents from entering into the standby mode either when no relevant wake up source is activated, or when conditions for a corresponding wakeup source are not present. The IC goes to power on mode again when a wake up is asserted.

8.3.2.1 Entering Standby Mode

To enter standby mode, the firmware needs to operate in an infinite while loop of:

- 1. Programming the standby bit in the PCR_CTRL_REG.
- 2. Checking if there is any standby prevention reason.
- If any reason found, then cater to the reason preventing entry of standby Go back to step 1.

This loop will be automatically broken when PN7462AU enters standby and comes out. As this will reset PN7462AU and restart the boot.

8.3.2.2 Standby prevention root causes

Table below summarizes conditions preventing PN7462AU from entering the standby mode.

Table 68. Standby prevention root causes

No.	Root cause description
1	A host communication is ongoing
2	If wake-up timer is enabled and its value is 0

PN7462 HW user manual

No.	Root cause description
3	Either RF level detector is activated as wakeup source and RF level detector is not enabled or RF field is already present
4	Host Interface is selected as wakeup source and no PVDD is available
5	PVDD current limiter input has seen a 0→1
6	Negative-edge found on temperature error for temperature sensor 0, considering temperature sensor 0 is enabled for wakeup
7	Negative-edge found on temperature error for temperature sensor 1, considering temperature sensor 1 is enabled for wake-up
8	No host interface is selected
9	GPIO interrupt found
10	TVDD voltage has risen above 5 V
11	Card insertion or removal detected
12	Contact unart int_aux pin has given an interrupt
13	Contact deactivation is ongoing.

8.3.3 USB suspend mode

In this mode, only a few parts of USB are still active but not clocked. All clock sources except LFO are stopped. PN7462AU will go into suspend state if there is no activity on the USB bus for more than 3 ms.

8.3.3.1 Entering suspend mode

To enter suspend mode, the firmware needs to operate in an infinite while loop of:

- 1. Programming the suspend bit in the PCR_CTRL_REG
- 2. Wait for interrupt.
- 3. If the interrupt is SUSPEND_DEFAULTED then check for the standby prevention reason (same register used for standby).
- 4. If any reason found, then cater to the prevention reason.
- 5. Now go back to step 1

If the interrupt is SUSPEND, then it means P7462AU has entered and come out of suspend.

PN7462 HW user manual

8.3.4 Wake-up from Standby/Suspend Mode

Standby/suspend mode is left if one of the following conditions is met:

- <u>Host activity</u> (SPI, I2C, HSU) for standby mode and USB Resume for suspend mode with following pre-conditions:
 - PVDD is available
 - One of interfaces is selected (hif_selection is != 0)
 - In case of SPI being selected NSS==1
- Contact card insertion/removal detection
- Wake-up timer using a 6 bit counter and a match register with programmable standby/suspend mode duration from 50ms to 2.5s; Used to timely check for any contact or contactless card presence
- Active Reset Source: e.g. current overconsumption on the PVDD_OUT, voltage above 5V on TVDD_IN
- Disappearance of PVDD: Voltage drop below 1.8 V triggers wake-up; Always active
- <u>RF level detection</u> caused by activity on the CLIF interface e.g. by bringing card near to CLIF
- <u>Temperature sensor threshold reached:</u> when the temperature goes below the configured value, PN7462 wakes-up automatically; Each temperature sensor can be configured individually
- GPIO: transition from 0 to 1 on input GPIO pads can be used to wakeup

8.3.5 Hard Power Down Mode

This is the lowest power mode allowing for the highest reduction of the power consumption. All clocks are turned off, all LDOs are turned off, except the MLDO which is set to the low power mode

The PN7462AU enters the Hard Power Down mode when RST_N is set to zero or the VBUS voltage is going below 2.3 V.

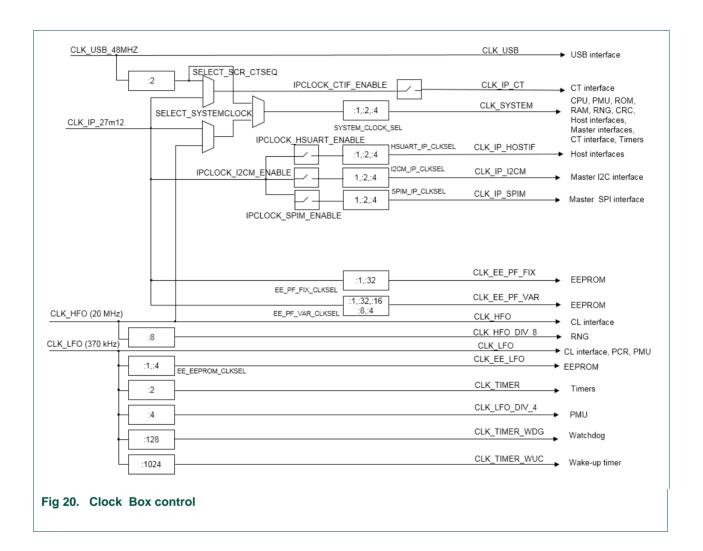
The PN7462AU exits the Hard Power Down mode, when RST_N pin is set to high level and VBUS voltage goes above 2.3 V.

8.3.6 LDOs/PLLs in different power modes

Table 69. LDOs/PLLs in power modes

LDO/PLL	Active	Standby	Suspend	HPD	Hardware/Software
LDOs					
MLDO	full power	low power	low power	low power	hardware
PVDDLDO	Full/Low power/OFF	Low power mode	Operational mode	Power down by hardware	software

PN7462 HW user manual


LDO/PLL	Active	Standby	Suspend	HPD	Hardware/Software
DCDC/SCLDO/ VCCLDO	Full/Low power/OFF	OFF	OFF	enabling power switches.	software
TXLDO	Full/Low power/OFF	Standby-LDO mode	Standby-LDO mode		software
PLLs and oscillators					
					OFF: hardware
USB PLL	ON/OFF	OFF	OFF	OFF	ON: software
CLIF PLL	ON/OFF	OFF	OFF	OFF	software
XTAL	ON	OFF	OFF	OFF	hardware
HFO	ON	OFF	OFF	OFF	hardware
LFO	ON	ON	ON	OFF	hardware

73 of 341

PN7462 HW user manual

8.4 Clock box

The Clock Box is responsible for generating all clock signals for the system. The PCR_CLK_CFG_REG and PCR_CLK_CFG2_REG are used by firmware to gate system and IP clocks going to different modules.

The system clock source can be one among:

HFO→ 20 MHz

XTAL → 27.12 MHz (internal test purpose)

CLK_USB/2 → 24 Mhz. (only internal test purpose)

System clock must be always 20 MHz

PN7462 HW user manual

The selection is done using the PCR_SELECT_SYSTEMCLOCK [2:0]:

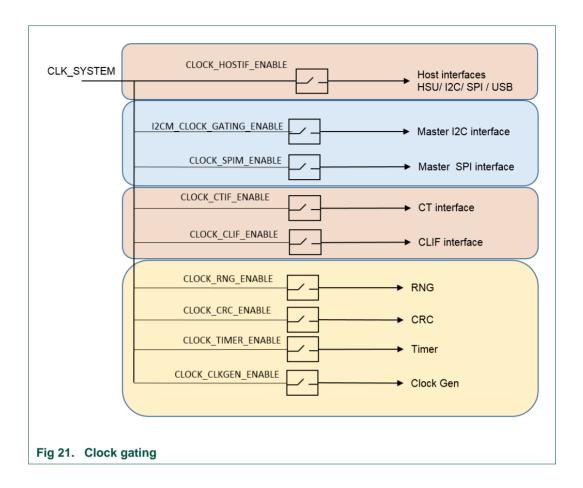
001 ... 20 MHz clkHFO (default)

010 ... 24 MHz clkUSBPLL/2 (internal test purpose)

100 ... 27.12 MHz clkXtal (internal test purpose)

Others ... INVALID, should not be programmed

8.5 Clock Gating


In order to reduce the overall power consumption, the PN7462AU enables adjusting the system clock and integrates clock gating mechanisms.

The clocks of the following blocks can be activated or deactivated, depending on the peripherals used (see Fig 21):

- · Contactless interface
- Contact interface
- · Host interfaces
- I2C master interface
- · SPI master interface
- · CRC engine
- Timers
- · Random generator
- · System Clock
- EEPROM
- Flash memory

To enable the clock for this part, the corresponding bit in PCR_CLK_CFG_REG and PCR_CLK_CFG2_REG needs to be set.

PN7462 HW user manual

8.6 I/O Pad Management

I/O Pad Management allows:

- Connecting the GPIO/I2C/SPI to a peripheral IO for device pins that are not connected to a specific peripheral function
- Dynamic configuration as inputs or outputs or analog by FW
- Pull up, pull down or tri-state configuration

The GPIO read/write are made by the firmware using separate registers that allow reading, setting or clearing outputs. The value of the output register may be read back as well as the current state of the port pins. The pads controlled by the Pad Control Block are summarized in Table 70.

Table 70. All digital controlled pads

PAD Name	Power Supply
DWL_REQ	PVDD_IN
ATX_A, ATX_B, ATC_C, ATX_D	PVDD_IN
CLK_AUX, INT_AUX, IO_AUX	PVDD_IN_M
D+, D-	PVDD_IN

PN7462 HW user manual

PAD Name	Power Supply
MISO_M, MOSI_M, SCLK_M, NSS_M	PVDD_IN_M
SCL_M, SDA_M	PVDD_IN_M
GPIO1 to GPIO12	PVDD_IN
SWDIO, SWDCLK	PVDD_IN
IRQ	PVDD_IN

8.6.1 Hard Power Down (HPD) State of Pads

In the Hard Power Down mode, all digital pad signals will be masked.

8.6.2 Pad state in absence of PVDD

In absence of PVDD all input and output drivers will be disabled with a gate and all input signals from the PAD will be clamped.

8.6.3 Selecting host interface

The PN7462AU connects to host through four pads: ATX_A/ATX_B/ATX_C/ATX_D. There are three protocols by which PN7462AU connects to host through pads: I2C/high-speed-UART/SPI. The selection of which protocol to connect with is done by using configuration of PCR_SYS_REG.hif_selection bits in PCR_SYS_REG register described in Table 75.

8.7 Register overview

Table 71. Register overview (base address 0x4002 4000)

Name	Address Offset	Width (bits)	Access	Reset value	Description
PCR_GPREG0_REG	0x0000	32	rw-	0x00000000	General-purpose register 0 for SW
PCR_GPREG1_REG	0x0004	32	rw-	0x00000000	General-purpose register 1 for SW
PCR_GPREG2_REG	8000x0	32	rw-	0x00000000	General-purpose register 2 for SW
PCR_SYS_REG	0x000c	32	rw-	0x00000100	system configuration like Hostif selection and CT enabling
PCR_PMU_REG	0x0010	32	rw-	0x0217010C	PMU interface. For LDO, bandgap, DC-to-DC converter configuration and sequences
PCR_RFLD_REG	0x0014	32	rw-	0x00004032	CLIF configuration
PCR_TEMP_REG	0x0018	32	rw-	0x00058888	temperature sensor calibration information
PCR_HOSTIF_WAKEUP_CF G_REG	0x001c	32	rw-	0x00000000	configuring wake-up source for standby and Suspend
PCR_WAKEUP_CFG_REG	0x0020	32	rw-	0x00000000	configuring wake-up source for standby and Suspend
PCR_GPIO_WAKEUP_CFG_ REG	0x0024	32	rw-	0x000000FF	configuring wake-up source for standby and suspend

77 of 341

PN7462 HW user manual

Offset (bits) PCR_BOOT_REG 0x0028 32 r 0x00000000 be checked during bootup Control register to enable standby/suspend/soft-restart/control register to enable standby/suspend/soft-restart/control register to enable standby/suspend/soft-restart/control register	t values to
PCR_BOOT_REG 0x0028 32 r 0x00000000 be checked during bootup Control register to enable standby/suspend/soft-restart/c	t values to
standby/suspend/soft-restart/o	
	clearing
PCR_CLK_CFG_REG 0x0030 32 rw- 0x0087FE08 Enable, gating, division value for clocks going to different lp:	
Select lines for clock muxes, to different frequencies or betwee PCR_CLK_CFG2_REG 0x0034 32 rw- 0x00000B00 division values	
PCR_PADIN_REG 0x0038 32 r 0x00000000 register	this
PCR_PADOUT_REG 0x003C 32 rw- 0x00000000 pads stored here	output
host if pad: PCR_PAD_ATX_A_REG 0x0040 32 rw- 0x00000000 i2c_scl/spi_nss/hsu_rx/usb_d	p/smb_cl
host if pad: i2c_sda/spi_mosi/hsu_tx/usb_ PCR_PAD_ATX_B_REG 0x0044 32 rw- 0x00000000 a	_dm/smb_d
host if pad: i2c_adr0/spi_miso/hsu_rts_n/v PCR_PAD_ATX_C_REG 0x0048 32 rw- 0x00000000 N.A/smbalert	usb-
host if pad: i2cadr1/spi_sck/hsu_cts_n/usl PCR_PAD_ATX_D_REG	b-N.A/smb-
PCR_PADDWL_REQ_REG 0x0050 32 rw- 0x00000001 DWL_REQ pad configuration	
PCR_PAD_INT_AUX_REG 0x0054 32 rw- 0x00000001 INT_AUX pad configuration	
PCR_PAD_IO_AUX_REG 0x0058 32 rw- 0x00000001 IO_AUX pad configuration	
PCR_PAD_CLK_AUX_REG 0x005C 32 rw- 0x00000002 CLK_AUX pad configuration	
PCR_PADIRQ_REG 0x0060 32 rw- 0x00000002 IRQ pad configuration	
PCR_PADGPIO1_REG 0x0064 32 rw- 0x00000001 GPIO1 pad configuration	
PCR_PADGPIO2_REG 0x0068 32 rw- 0x00000001 GPIO2 pad configuration	
PCR_PADGPIO3_REG 0x006C 32 rw- 0x00000001 GPIO3 pad configuration	
PCR_PADGPIO4_REG 0x0070 32 rw- 0x00000001 GPIO4 pad configuration	
PCR_PADGPIO5_REG 0x0074 32 rw- 0x00000001 GPIO5 pad configuration	
PCR_PADGPIO6_REG 0x0078 32 rw- 0x00000001 GPIO6 pad configuration	
PCR_PADGPIO7_REG 0x007C 32 rw- 0x00000001 GPIO7 pad configuration	
PCR_PADGPIO8_REG 0x0080 32 rw- 0x00000001 GPIO8 pad configuration	
PCR_PADGPIO9_REG 0x0084 32 rw- 0x00000001 GPIO9 pad configuration	
PCR_PADGPIO10_REG 0x0088 32 rw- 0x00000001 GPIO10 pad configuration	
PCR_PADGPIO11_REG 0x008C 32 rw- 0x00000001 GPIO11 pad configuration	
PCR_PADGPIO12_REG 0x0090 32 rw- 0x00000001 GPIO12 pad configuration	

PN7462 HW user manual

Name	Address Offset	Width (bits)	Access	Reset value	Description
PCR_PADSWDIO_REG	0x0094	32	rw-	0x00000006	SWDIO pad slew rate configuration
INTERNAL_USE	0x0098	32	rw-	0x00000006	For internal use
RESERVED	0x009C	32	rw-	0x0000020C	Reserved
RESERVED	0x00A0	32	rw-	0x00000008	Reserved
PCR_PADIICM_REG	0x00A4	32	rw-	0x00000280	I2C master pad configuration
PCR_ANA_TX_STANDBY_R EG	0x00A8	32	rw-	0x00000000	CLIF standby GSN value selection
PCR_ANA_TXPROT_REG	0x00AC	32	rw-	0x00000001	CLIF configuration related to power down
INTERNAL_USE	0x00B0	32	rw-	0x00000041	For internal use
PCR_SPIM_REG	0x00B4	32	rw-	0x00000040	SPIM master pad configuration
PCR_CTIF_REG	0x00B8	32	rw-	0x00000000	CTIF presense detection pull-up
PCR_HOSTIF_SAVE1_REG	0x00BC	32	rw-	0x00000000	host interface Tx/RX divider value storage during standby
PCR_HOSTIF_SAVE2_REG	0x00C0	32	rw-	0x00000000	host interface clock value storage during standby
PCR_TXLDO_MON_REG	0x00C4	32	rw-	0x00000008	TXLDO sequence management
PCR_BOOT2_REG	0x00C8	32	rw-	0x00000000	BOOT reason register extention.
PCR_GPREG3_REG	0x00CC	32	rw-	0x00000000	general-purpose register 3 for SW
PCR_GPREG4_REG	0x00D0	32	rw-	0x00000000	general-purpose register 4 for SW
PCR_GPREG5_REG	0x00D4	32	rw-	0x00000000	general-purpose register 5 for SW
PCR_GPREG6_REG	0x00D8	32	rw-	0x00000000	general-purpose register 6 for SW
PCR_GPREG7_REG	0x00DC	32	rw-	0x00000000	general-purpose register 7 for SW
PCR_GPIO_INT_ACTIVE_L OW_REG	0x00E0	32	rw-	0x00000000	register to program is GPIO interrupts are active low level/ falling edge sensitive
PCR_GPIO_INT_LEVEL_SE NSE_REG	0x00E4	32	rw-	0x00000000	register to program if GPIO interrupts are level sensitive.
PCR_GPIO_INT_ACTIVE_B OH_EDGE_REG	0x00E8	32	rw-	0x00000000	register to program if GPIO interrupts are both edge sensitive
PCR_SELECT_SYSTEMCLO CK	0x00EC	32	rw-	0x00000001	register to program the source for system clock.
PCR_ADV_RFLD_REG	0x00F0	32	rw-	0x00000000	register for configuring advanced RFLD detection FSM
PCR_ADV_RFLD_TEST_RE G	0x00F4	32	rw-	0x00000000	configuration bits for testing advanced RFLD detection FSM
PCR_INT_CLR_ENABLE_RE G	0x3FD8	32	-wm	0x00000000	interrupt clear enable
PCR_INT_SET_ENABLE_RE G	0x3FDC	32	-wm	0x00000000	interrupt set enable
PCR_INT_STATUS_REG	0x3FE0	32	r-m	0x0000000	interrupt status

PN7462 HW user manual

Name	Address Offset	Width (bits)	Access	Reset value	Description
PCR_INT_ENABLE_REG	0x3FE4	32	r-m	0x00000000	interrupt enable
PCR_INT_CLR_STATUS_RE G	0x3FE8	32	-wm	0x00000000	interrupt clear status
PCR_INT_SET_STATUS_RE G	0x3FEC	32	-wm	0x00000000	interrupt set status

8.8 Register description

Table 72. PCR_GPREG0_REG (address offset 0x00)

Bit	Symbol	Access	Value	Description
31:0	PCR_GPREG0	R/W	0	general-purpose register 0 for SW

Table 73. PCR_GPREG1_REG (address offset 0x04)

Bit	Symbol	Access	Value	Description
31:0	PCR_GPREG1	R/W	0	general-purpose register 1 for SW

Table 74. PCR_GPREG2_REG (address offset 0x08)

Bit	Symbol	Access	Value	Description
31:0	PCR_GPREG2	R/W	0	general-purpose register 2 for SW

Table 75. PCR_SYS_REG (address offset 0x0C)

Bit	Symbol	Access	Value	Description
31:12	RESERVED	rw	0x00	Reserved
11	AUTOMATIC_CT_DEACT	rw	0x00	Enables automatic initiation of CT deactivation sequence when VBUSP voltage goes below programmed range.
10	AUTOMATIC_HPD	rw	0x00	1: Enables PCR to go automatically into HPD state when the VBUS voltage goes below programmed voltage of 2.3 V/2.7 V 0: PCR stays in operating state even if VBUS goes below threshold voltage
9				Indicates that PVDD is being supplied using internal PVDD LDO
	PVDD_INT	rw	0x00	1: Enable Internal PVDD LDO
8				1: Enable the Contact interface.
	ENABLE_CT	rw	0x01	0: Disable Contact Interface
7				Selects the PVDD_M voltage trigger level
				0: PVDD_M voltage trigger level 1.8 V
	PVDD_M_IRQ_VAL	rw	0x00	1: PVDD_M voltage trigger level 3.3 V
6	PVDD_M_IRQ_EN	rw	0x00	Enables the PVDD_M IRQ

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				1: Enable PVDD_M IRQ
				0: Disable PVDD_M IRQ
5				Selects the PVDD voltage trigger level
				0: PVDD voltage trigger level 1.8 V
	PVDD_IRQ_VAL	rw	0x00	1: PVDD voltage trigger level 3.3 V
4				Enables the PVDD IRQ
				1: Enable PVDD IRQ
	PVDD_IRQ_EN	rw	0x00	0: Disable PVDD IRQ
3	HOSTIF_SW_REGCONTR OL_EN	rw	0x00	1: Enabled control of USB D+,D- from ATX_A/B registers
2:0				host interface selection
				000: No Host interface selected
				001: I2C selected as host interface
				010: SPI selected as host interface
				011: HSU selected as host interface
				100 -USB selected as host interface
	HIF_SELECTION	rw	0x00	others - Invalid

Table 76. PCR_PMU_REG (address offset 0x10)

Bit	Symbol	Access	Value	Description
31:29	PBF_CONST_LOAD_VA L	rw	0x00	configuration bits for constant load on vdhf
	<u> </u>	I VV	0,000	
28	PBF_EN_CONST_LOAD	rw	0x00	Power down signal to connect/disconnect a constant load to vdhf
27				VBUS monitor override value
	VBATMON_OVERRIDE_VA			0: for 2.7 V
	L	rw	0x00	1: for 2.3 V
26				VBUS monitor override enable
				1: Enable for VBUS monitor
	VBATMON_OVERRIDE_EN	rw	0x00	0: Disable VBUS monitor
25	PD_PBF_FIELDSENS	rw	0x01	1- Enable for pbf_pd_fieldsens
24	BG_TRIM_A	rw	0x00	bandgap trim bit
23	BG_TRIM_B	rw	0x00	bandgap trim bit
22	BG_TRIM_C	rw	0x00	bandgap trim bit
21	BG_TRIM_D	rw	0x00	bandgap trim bit
17:20	RESERVED	rw	0x00	Reserved
16	MLDO_LOWPOWER_BG_			
	EN	rw	0x01	Controls mldo bandgap low power signals.
15	MLDO_LOWPOWER_VAL	rw	0x00	Value of mldo_low power signal
14	MLDO_LOWPOWER_EN	rw	0x00	Controls mldo low power signals

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				1: Enable low power mode of MLDO
				0: Disable low power mode of MLDO
13				To set the DC-to-DC converter in high impedance state enabling the testing of VCCLDO. VUP will be forced from outside.
	DCDC_OFF	rw	0x00	1: Bypass DC-to-DC converter if DC-to-DC_off is low
12	RESERVED	rw	0x00	Reserved
11				TXLDO clear standby mode
	TXLDO_STANDBY_CLEAR	rw	0x00	1: Disable standby mode of TXLDO
10				TXLDO enable standby mode
	TXLDO_ENABLE_STANDB Y	rw	0x00	Enable standby mode for low power consumption during standby/suspend
9	RESERVED	rw	0x00	Reserved
8:4	IBIAS_TRIMM	rw	0x10	IBIAS trim value
3:2				Selects pvddldo mode normal/low power/soft start/power down
				11: power down
				10: soft start
				01: low power mode
	PVDDLDO_MODE	rw	0x03	00: normal mode
1:0	RESERVED	rw	0x00	Reserved

Table 77. PCR_RFLD_REG (address offset 0x14)

Bit	Symbol	Access	Value	Description
31:16	RESERVED	rw	0x00	Reserved
15				HIGHER bias current for the env-detector
	RFLD_ENVDET_BOOST	rw	0x00	1: Enable Higher bias current for the env-detector
14				Higher bias current for comparator
	RFLD_COMP_BOOST	rw	0x01	1: Enable Higher current for comparator
13				Enable of automatic bias current regulation
	RFLD_BIAS_ADPT_ENABL			1: Enable of automatic bias current regulation
	E	rw	0x00	0: Disable of automatic bias current regulation
12				Enable the chopper clock driver for the RF Level Detector.
				1: Enable the chopper clock driver for the RF Level Detector.
				0: Disable the chopper clock driver for the RF Level
	RFLD_DRV_ENABLE	rw	0x00	Detector.
11				Enable the chopper filter for RF Level Detector
	RFLD_FILTER_ENABLE	rw	0x00	1: Enable the chopper filter for RF Level Detector

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				0: Disable the chopper filter for RF Level Detector
10				Enable of RFLD comparator
				0: Disable RFLD comparator
	RFLD_COMP_ENABLE	rw	0x00	1: Enable RFLD comparator
9				Enable of RFLD envelope detector
				1: Enable RFLD envelope detector
	RFLD_ENVDET_ENABLE	rw	0x00	0: Disable RFLD envelope detector
8				Enable for RFLD reference voltage generator
				1: Enable RFLD reference voltage generator
	RFLD_VREF_ENABLE	rw	0x00	0: Disable RFLD reference voltage generator
7:4	RFLD_REF_LO	rw	0x03	Higher reference value for RF level detector
3:0	RFLD_REF_HI	rw	0x02	Lower reference value for RF level detector

Table 78. PCR_TEMP_REG (address offset 0x18)

Bit	Symbol Symbol	Access	Value	Description
31:26	RESERVED	rw	0x00	Reserved
25				Enable calibration of temperature sensor 1
				1: Enable calibration of temperature sensor 1
	TEMP_ENABLE_CAL_1	rw	0x00	0: Disable calibration of temperature sensor 1
24				Enable calibration of temperature sensor 0
				1: Enable calibration of temperature sensor 0
	TEMP_ENABLE_CAL_0	rw	0x00	0: Disable calibration of temperature sensor 0
23				Enable Hystere of temperature sensor 1
				1: Enable Hystere of temperature sensor 1
	TEMP_ENABLE_HYST_1	rw	0x00	0: Disable Hystere of temperature sensor 1
22				Enable Hystere of temperature sensor 0
				1: Enable Hystere of temperature sensor 0
	TEMP_ENABLE_HYST_0	rw	0x00	0: Disable Hystere of temperature sensor 0
21				Enable Temp Sensor 1
				1: Enable Temp Sensor 1
	TEMP_ENABLE_1	rw	0x00	0: Disable Temp Sensor 1
20				Enable Temp Sensor 0
				1: Enable Temp Sensor 0
	TEMP_ENABLE_0	rw	0x00	0: Disable Temp Sensor 0
19:18				Selects temperature threshold detection for temperature
	TEMP_DELTA_1	rw	0x01	sensor 1

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
17:16	TEMP DELTA 0	rw	0x01	Selects temperature threshold detection for temperature sensor 0
15:12	TEMP_CAL_FINE_1	rw	0x08	Trim value fine for temperature sensor 1
11:8	TEMP_CAL_COURSE_1	rw	0x08	Trim value course for temperature sensor 1
7:4	TEMP_CAL_FINE_0	rw	0x08	Trim value fine for temperature sensor 0
3:0	TEMP_CAL_COURSE_0	rw	0x08	Trim value course for temperature sensor 0

Table 79. PCR_HOSTIF_WAKEUP_CFG_REG (address offset 0x1C)

Bit	Symbol	Access	Value	Description
31:9	RESERVED	rw	0x00	Reserved
8:2	I2C_ADDR	rw	0x00	I2C address for wake-up
1	RESERVED	rw	0x00	Reserved
0	EN_INTERFACE	rw	0x00	1- Enable Wake-up host interface

Table 80. PCR_WAKEUP_CFG_REG (address offset 0x20)

Bit	Symbol	Access	Value	Description
31:23	RESERVED	rw	0x00	Reserved
22	EN_ADV_RFLD	rw	0x00	1: Enable advanced RFLD level detector FSM.
21	EN_VBUS_LOW	rw	0x00	1: Enable wake-up when vbus goes low
20:11	WUC_VALUE	rw	0x00	Wake-up timer value
10	EN_TVDD_MON	rw	0x00	1: Enable wake-up from TVDD 5 V monitor
9	EN_INT_AUX	rw	0x00	1: Enable wake-up is TDA (CTUART) gives a level high interrupt
8	EN_CT_PR	rw	0x00	1: Enables wake-up if card is detected.
7	RESERVED	rw	0x00	Reserved
6	EN_PVDD_LIMITER	rw	0x00	1: Enables wake-up if PVDD current limiter is risen
5	EN_GPIO_INT	rw	0x00	1: Enables wake-up if GPIO gives any input
4	EN_TEMP1	rw	0x00	1: Enable temperature 1 error Wake-up
3	EN_TEMP0	rw	0x00	1: Enable temperature 0 error Wake-up
2	EN_RFLDT	rw	0x00	1: Enable Wake-up RF level detector
1	RESERVED	rw	0x00	Set to "0"
0	EN_WUC	rw	0x00	1: Enable Wake-up timer

Table 81. PCR_GPIO_WAKEUP_CFG_REG (address offset 0x24)

Bit	Symbol	Access	Value	Description
31:12	RESERVED	rw	0x00	Reserved

UM10858 NXP Semiconductors

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
11:0				Enables wake-up by the corresponding GPIO
				0: gpio1
				1: GPIO2
	GPIO_WAKEUP_ENABLE	rw	0x0FF	e.t.c

Table 82.	PCR_BOOT_REG (address	s offset 0x2	8)	
Bit	Symbol	Access	Value	Description
31	RESERVED	rw	0x00	Reserved
30				Indicator for USB_VBUS is ok
	USB_VBUS_OK	r-	0x00	1: USB_VBUS is available
29				Indicator when VBUS > VBUSCritical when VBUSMonitor is enabled
				1: VBUS > VBUSCritical
	POK_VBUS	r-	0x00	0: VBUS < VBUSCritical
28				Indicator for more than 3 V at PVDD_M pin
				1: PVDD_M is available and over 3.3 V
	POK_PVDD_M_3V	r-	0x00	0: PVDD_M is not over 3.3 V
27				Indicator for more than 3V at PVDD pin
				1: PVDD is available and over 3.3 V
	POK_PVDD_3V	r-	0x00	0: PVDD is not over 3.3 V
26	RESERVED	r-	0x00	Reserved
25:22	STBY_PREV_REASON	r-	0x00	Standby prevention reason
21:2	BOOT_REASON	r-	0x00	Boot up reason
1				Indicator if PVDD_m is available
				1: PVDD_m is available and over 1.8 V
	POK_PVDD_M	r-	0x00	0: PVDD_m is not available
0				Indicator if PVDD is available
				1: PVDD is available and over 1.8 V
	POK_PVDD	r-	0x00	0: PVDD is not available
-				

Table 83. PCR_CTLR_REG (address offset 0x2C)

Bit	Symbol	Access	Value	Description
31:6	RESERVED	rw	0x00	Reserved
5	USB_VBUS_PULLDOWN	rw	0x00	1: Enables the internal pulldown resistance to pulldown the USB_VBUS
4	CLR_BOOT_REGS	-x	0x00	Clearing Standby Prevention and Boot up register values in the PCR_BOOT_REG register

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				1: Clear the boot register
3	RESERVED	-X	0x00	Reserved
2				Enables entering suspend mode
	SUSPEND	-X	0x00	1: Enter suspend mode
1				entering standby mode
	STANDBY	-x	0x00	1: Enter standby mode
0				Trigger Soft Reset Source
	SOFT_RESET	-x	0x00	1: Provide soft reset to the device

Table 84. PCR_CLK_CFG_REG (address offset 0x30)

Bit	Symbol	Access	Value	Description
31	RESERVED	rw	0x00	Reserved
30	EECTRL_SYS_GATING_E	rw	0x00	1: EEPROM controller system clock gating enable
	NABLE			0: EEPROM controller system clock gating disable
29	EECTRL_PF_GATING_EN	rw	0x00	1: EEPROM controller page flash clock gating enable
	ABLE			0: EEPROM controller page flash clock gating disable
28	EECTRL_EEPROM_GATIN	rw	0x00	1: EEPROM controller automatic clock gating enable
	G_ENABLE			0: EEPROM controller automatic clock gating disable
27	IPCLOCK_CTIF_ENABLE	rw	0x00	1: Enable contact interface IP clock
				0: Disable contact interface IP clock
26	IPCLOCK_HSUART_ENAB	rw	0x00	1- Enable high speed UART IP clock
	LE			0: Disable high speed UART IP clock
25	IPCLOCK_SPIM_ENABLE	rw	0x00	1: Enable SPI master UART IP clock
				0: Disable SPI master UART IP clock
24	IPCLOCK_I2CM_ENABLE	rw	0x00	1: Enable I2C master UART IP clock
				0: Disable I2C master UART IP clock
23	CLOCK_CTIF_ENABLE	rw		1: Enable contact source for Contact interface
			0x01	0: Disable contact source for Contact interface
22	I2CM_CLOCK_GATING_EN	rw		1: Enable clock source for I2C master
	ABLE		0x00	0: Disable clock source for I2C master
21	CPU_CLKREQ_ENABLE	rw	0x00	1: Enable the automatic clock request for ROM and RAM via the CPU
20	AUTOMATIC_CLOCKSTOP _AT_IDLE_ENABLE	rw	0x00	1: Enable automatic clock gating for CRC, EECTRL, RNG and ROM when cpu is in idle mode
19	CLOCK_SPIM_ENABLE	rw		1: Enable clock source for SPIM
			0x01	0: Disable clock source for SPIM
18	RESERVED	rw	0x00	Reserved
17	CLOCK_HOSTIF_ENABLE	rw		1: Enable clock source for HOSTIF
			0x01	0: Disable clock source for HOSTIF

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
16	CLOCK_TIMER_ENABLE	rw		1: Enable clock source for TIMER
			0x01	0: Disable clock source for TIMER
15	CLOCK_CRC_ENABLE	rw		1: Enable clock source for CRC
			0x01	0: Disable clock source for CRC
14	CLOCK_CLKGEN_ENABLE	rw		1: Enable clock source for CLKGEN
			0x01	0: Disable clock source for CLKGEN
13	RESERVED	rw	0x01	Set to "0"
12	CLOCK_RNG_ENABLE	rw		1: Enable clock source for RNG
			0x01	0: Disable clock source for RNG
11	CLOCK_CLIF_ENABLE	rw		1: Enable clock source for CLIF
			0x01	0: Disable clock source for CLIF
10	LFO_EN	rw		1: Enable LFO
			0x01	0 -Disable LFO
9:4	LFO_TRIMM	rw	0x20	Trim value for LFO
3	EN_SWIO_CLK	rw	0x01	1: Enables the SWIO clock
2	SELECT_SCR_CTSEQ	rw		Selects the clock source for the system clock generation 0 - clkXTAL (27.12 MHz)
			0x00	1 - clkPLL/2 (24 MHz)
1:0	RESERVED	rw	0x00	Reserved

PN7462 HW user manual

Table 85. PCR_CLK_CFG2_REG (address offset 0x34)

Table 85.	,				
Bit	Symbol	Access	Value	Description	
31:18	RESERVED	rw	0x00	Reserved	
19	CTRL_TXLDO_CLK	rw	0x00	TXLDO clock division select. 0->LFO/2 , 1-> LFO	
18		rw		Selects between XTAL clock and external clock.	
				0 - XTAL	
	EXT_CLK_SEL		0x00	1: external clock	
17:16		rw		Selects ip clock divider value for hsuart.	
				00: xtal/1	
				01: xtal/2	
				10: xtal/4	
	HSUART_IP_CLKSEL		0x00	11: RESERVED	
15:14		rw		Selects ip clock divider value for spim.	
				00: xtal/1	
				01: xtal/2	
				10: xtal/4	
	SPIM_IP_CLKSEL		0x00	11: RESERVED	
13:12		rw		Selects ip clock divider value for spim.	
				00: xtal/1	
				01xtal/2	
				10: xtal/4	
	I2CM_IP_CLKSEL		0x00	11: RESERVED	
11	CTSEQ_CLKSEL	rw	0x01	0: +10	
				1: +82	
10	EE_EEPROM_CLKSEL	rw	0x01	Selects the divider value for the Ifo clock for the	
				EEPROM module	
				0: LFO/1	
				1: lfo/4	
9	EE_PF_FIX_CLKSEL	rw	0x01	Selects between divided xtal value	
				0: No clock	
				1: xtal-clk/32	
8:6	EE_PF_VAR_CLKSEL	rw	0x04	Selects between and xtal divided clocks for page flash module.	
				0: No clock	
				1: Xtal-clk/4	
				2: Xtal-clk/8	
				3: Xtal-clk/16	
				4: Xtal-clk/32	
				5: 7 RESERVED	
5:4	SPARE_CELL_CLK_CFGL	rw	0x00	Spare cells to be used for clock config.	
3:2	RESERVED	rw	0x00	Reserved	
1:0	SYSTEM_CLOCK_SEL		0x00	Selects the divider for the system clock.	
1.0	STOTEW_OLUCK_SEL	rw	UXUU	00: Divby1	
				OO. DIVDY I	

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				01: DIVby2
				10: DIVby4
				11: Reserved

Table 86. PCR_PADIN_REG (address offset 0x38)

Table 86.					
Bit	Symbol	Access	Value	Description	
31:28	RESERVED	-	0x00	Reserved	
27	RESERVED	r-	0x00	Reserved	
26	PADIN_CLK_AUX	r-	0x00	input value for CLK_AUX	
25	PADIN_IO_AUX	r-	0x00	input value for IO_AUX	
24	PADIN_INT_AUX	r-	0x00	input value for INT_AUX	
23	PADIN_GPIO12	r-	0x00	input value for GPIO12	
22	PADIN_GPIO11	r-	0x00	input value for GPIO11	
21	PADIN_GPIO10	r-	0x00	input value for GPIO10	
20	PADIN_GPIO9	r-	0x00	input value for GPIO9	
19	PADIN_GPIO8	r-	0x00	input value for GPIO8	
18	PADIN_GPIO7	r-	0x00	input value for GPIO7	
17	PADIN_GPIO6	r-	0x00	input value for GPIO6	
16	PADIN_GPIO5	r-	0x00	input value for GPIO5	
15	PADIN_GPIO4	r-	0x00	input value for GPIO4	
14	PADIN_GPIO3	r-	0x00	input value for GPIO3	
13	PADIN_GPIO2	r-	0x00	input value for GPIO2	
12	PADIN_GPIO1	r-	0x00	input value for GPIO1	
11	PADIN_DWL_REQ	r-	0x00	input value for DWL_REQ	
10	PADIN_MISO_M	r-	0x00	input value for MISO_M	
9	PADIN_MOSI_M	r-	0x00	input value for MOSI_M	
8	PADIN_SCLK_M	r-	0x00	input value for SCLK_M	
7	PADIN_NSS_M	r-	0x00	input value for NSS_M	
6	PADIN_SDA_M	r-	0x00	input Value SDA_M	
5	PADIN_SCL_M	r-	0x00	input Value SCL_M	
4	PADIN_IRQ	r-	0x00	input value for IRQ	
3	PADIN_ATX_D	r-	0x00	input Value ATX_D	
2	PADIN_ATX_C	r-	0x00	input Value ATX_C	
1	PADIN_ATX_B	r-	0x00	input Value ATX_B	
0	PADIN_ATX_A	r-	0x00	input Value ATX_A	

PN7462 HW user manual

Table 87. PCR_PADOUT_REG (address offset 0x3C)

Bit	Symbol	Access	Value	Description
31:29	RESERVED	-	0x00	Reserved
28	RESERVED	rw	0x00	Reserved
27	RESERVED	rw	0x00	Reserved
26	PADOUT_CLK_AUX	rw	0x00	output value for CLK_AUX
25	PADOUT_IO_AUX	rw	0x00	output value for IO_AUX
24	PADOUT_INT_AUX	rw	0x00	output value for INT_AUX
23	PADOUT_GPIO12	rw	0x00	output value for GPIO12
22	PADOUT_GPIO11	rw	0x00	output value for GPIO11
21	PADOUT_GPIO10	rw	0x00	output value for GPIO10
20	PADOUT_GPIO9	rw	0x00	output value for GPIO9
19	PADOUT_GPIO8	rw	0x00	output value for GPIO8
18	PADOUT_GPIO7	rw	0x00	output value for GPIO7
17	PADOUT_GPIO6	rw	0x00	output value for GPIO6
16	PADOUT_GPIO5	rw	0x00	output value for GPIO5
15	PADOUT_GPIO4	rw	0x00	output value for GPIO4
14	PADOUT_GPIO3	rw	0x00	output value for GPIO3
13	PADOUT_GPIO2	rw	0x00	output value for GPIO2
12	PADOUT_GPIO1	rw	0x00	output value for GPIO1
11	PADOUT_DWL_REQ	rw	0x00	output value for DWL_REQ
10	PADOUT_MISO_M	rw	0x00	output value for MISO_M
9	PADOUT_MOSI_M	rw	0x00	output value for MOSI_M
8	PADOUT_SCLK_M	rw	0x00	output value for SCLK_M
7	PADOUT_NSS_M	rw	0x00	output value for NSS_M
6	PADOUT_SDA_M	rw	0x00	output Value SDA_M
5	PADOUT_SCL_M	rw	0x00	output Value SCL_M
4	PADOUT_IRQ	rw	0x00	output value for IRQ
3	PADOUT_ATX_D	rw	0x00	output Value ATX_D
2	PADOUT_ATX_C	rw	0x00	output Value ATX_C
1	PADOUT_ATX_B	rw	0x00	output Value ATX_B
0	PADOUT_ATX_A	rw	0x00	output Value ATX_A
	·		· · · · · · · · · · · · · · · · · · ·	

Table 88. PCR_PAD_ATX_A_REG (address offset 0x40)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4				Select driver strength for ATX_A
	ATX_A_SLEW_RATE	rw	0x00	1: Enable slew for ATX_A
3:2	ATX_A_PUPD	rw	0x00	Enable PullUp/Down on ATX_A

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				10: Enable pull up
				11: Enable pull down
1	ATX_A_EN_OUT	rw	0x00	1: Enables output driver for ATX_A
0	ATX_A_EN_IN	rw	0x00	1: Enables input driver for ATX_A

Table 89. PCR_PAD_ATX_B_REG (address offset 0x44)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4				Select driver strength for ATX_B
	ATX_B_SLEW_RATE	rw	0x00	1: Enable slew for ATX_B
3:2				Enable Pull Up/Down on ATX_B
				10: Enable pull up
	ATX_B_PUPD	rw	0x00	11: Enable pull down
1	ATX_B_EN_OUT	rw	0x00	1: Enables output driver for ATX_B
0	ATX_B_EN_IN	rw	0x00	1: Enables input driver for ATX_B

Table 90. PCR_PAD_ATX_C_REG (address offset 0x48)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4				Select driver strength for ATX_C
	ATX_C_SLEW_RATE	rw	0x00	1: Enable slew for ATX_C
3:2				Enable pull Up/Down on ATX_C
				10: Enable pull up
	ATX_C_PUPD	rw	0x00	11: Enable pull down
1	ATX_C_EN_OUT	rw	0x00	1: Enables output driver for ATX_C
0	ATX_C_EN_IN	rw	0x00	1: Enables input driver for ATX_C

Table 91. PCR_PAD_ATX_D_REG (address offset 0x4C)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4	ATX_D_SLEW_RATE	rw	0x00	Select driver strength for ATX_D
3:2				Enable pull Up/Down on ATX_D
				10: Enable pull up
	ATX_D_PUPD	rw	0x00	11: Enable pull down
1	ATX_D_EN_OUT	rw	0x00	1: Enables output driver for ATX_D
0	ATX_D_EN_IN	rw	0x00	1: Enables input driver for ATX_D

PN7462 HW user manual

Table 92. PCR_PADDWL_REQ_REG (address offset 0x50)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4				Select driver strength for DWLREQ
	DWLREQ_SLEW_RATE	rw	0x00	1: Enable slew for DWL_REQ
3:2				Enable pull Up/Down on DWLREQ
				10: Enable pull up
	DWLREQ_PUPD	rw	0x00	11: Enable pull down
1	DWLREQ_EN_OUT	rw	0x00	1: Enables output driver for DWLREQ
0	DWLREQ_EN_IN	rw	0x01	1: Enables input driver for DWLREQ

Table 93. PCR_PAD_INT_AUX_REG (address offset 0x54)

Bit	Symbol	Access	Value	Description
31:8	RESERVED	rw	0x00	Reserved
7				Configures INT_AUX to be interpreted as active low signal
	INT_AUX_ACTIVE_LOW_E			1: INT_AUX is active low
	N	rw	0x00	0: INT_AUX active high
6				Puts the INT_AUX PAD in GPIO mode (By default in I2C mode)
				1: Enable GPIO mode for INT_AUX pads
	INT_AUX_GPIOMODE_EN	rw	0x00	0: INT_AUX pad in functional mode
5				Enabling software register control for INT_AUX
	INT_AUX_SW_ENABLE	rw	0x00	1: Enable software control for INT_AUX pad
4				Select Driver Strength for INT_AUX
	INT_AUX_SLEW_RATE	rw	0x00	1: Enable slew for INT_AUX pad
3:2				Enable PullUp/Down on INT_AUX
				10: Enable Pull up
	INT_AUX_PUPD	rw	0x00	11: Enable Pull down
1	INT_AUX_EN_OUT	rw	0x00	1: Enables output driver for INT_AUX
0	INT_AUX_EN_IN	rw	0x01	1: Enables input driver for INT_AUX

Table 94. PCR_PAD_IO_AUX_REG (address offset 0x58)

Bit	Symbol	Access	Value	Description
31:7	RESERVED	rw	0x00	Reserved
6				Puts the IO_AUX PAD in GPIO mode (By default in I2C mode)
				1: IO_AUX pad in GPIO mode
	IO_AUX_GPIOMODE_EN	rw	0x00	0: IO_AUX pad in functional mode
5	IO_AUX_SW_ENABLE	rw	0x00	1: Enabling software register control for IO_AUX
4	IO_AUX_SLEW_RATE	rw	0x00	Select Driver Strength for IO_AUX

92 of 341

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				1: Enable Slew for IO_AUX
3:2				Enable pull Up/Down on IO_AUX
				10: Enable pull up
	IO_AUX_PUPD	rw	0x00	11: Enable pull down
1	IO_AUX_EN_OUT	rw	0x00	1: Enables output driver for IO_AUX
0	IO_AUX_EN_IN	rw	0x01	1: Enables input driver for IO_AUX

Table 95. PCR_PAD_CLK_AUX_REG (address offset 0x5C)

Table 33.	FCN_FAD_CEN_AUX_NEG	(additess o	iisci uxuu)	
Bit	Symbol	Access	Value	Description
31:7	RESERVED	rw	0x00	Reserved
6				Enabling CLK_AUX pad in GPIO mode (By default in I2C mode)
				1: CLK_AUX pad in GPIO mode
	CLK_AUX_GPIOMODE_EN	rw	0x00	0: CLK_AUX pad in functional mode
5	CLK_AUX_SW_ENABLE	rw	0x00	1: Enabling software register control for CLK_AUX
4				Select driver strength for CLK_AUX
	CLK_AUX_SLEW_RATE	rw	0x00	1: Enable Slew for CLK_AUX
3:2				Enable pull Up/Down on CLK_AUX
				10: Enable pull up
	CLK_AUX_PUPD	rw	0x00	11: Enable pull down
1	CLK_AUX_EN_OUT	rw	0x01	1: Enables output driver for CLK_AUX
0	CLK_AUX_EN_IN	rw	0x00	1: Enables input driver for CLK_AUX

Table 96. PCR_PADIRQ_REG (address offset 0x60)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4				Select driver strength for IRQ
	IRQ_SLEW_RATE	rw	0x00	1: Enable slew for IRQ
3:2				Enable Pull Up/Down on IRQ
				10: Enable pull up
	IRQ_PUPD	rw	0x00	11: Enable pull down
1	IRQ_EN_OUT	rw	0x01	1: Enables output driver for IRQ
0	IRQ_EN_IN	Rw	0x00	1: Enables input driver for IRQ

Table 97. PCR_PADGPIO1_REG (address offset 0x64)

Bit	Symbol	Access	Value	Description
31:6	RESERVED	Rw	0x00	Reserved
5	RESERVED	Rw	0x00	Always set to "0"

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
4				Select driver strength for GPIO1
	GPIO1_SLEW_RATE	Rw	0x00	1: Enable Slew for GPIO1
3:2				Enable pull Up/Down on GPIO1
				01: Enable pull up
	GPIO1_PUPD	Rw	0x00	11: Enable pull down
1	GPIO1_EN_OUT	Rw	0x00	1: Enables output driver for GPIO1
0	GPIO1_EN_IN	Rw	0x01	1: Enables input driver for GPIO1

Table 98. PCR_PADGPIO2_REG (address offset 0x68)

. 45.0 00		uu. 000 00	J. 07.00)	
Bit	Symbol	Access	Value	Description
31:6	RESERVED	Rw	0x00	Reserved
5	RESERVED	Rw	0x00	Always set to "0"
4				Select driver strength for GPIO2
	GPIO2_SLEW_RATE	Rw	0x00	1: Enable slew for GPIO2
3:2				Enable pull Up/Down on GPIO2
				10: Enable pull up
	GPIO2_PUPD	Rw	0x00	11: Enable pull down
1	GPIO2_EN_OUT	Rw	0x00	1: Enables output driver for GPIO2
0	GPIO2_EN_IN	Rw	0x01	1: Enables input driver for GPIO2

Table 99. PCR_PADGPIO3_REG (address offset 0x6C)

Bit	Symbol	Access	Value	Description
31:6	RESERVED	Rw	0x00	Reserved
5	RESERVED	Rw	0x00	Always set to "0"
4				Select Driver Strength for GPIO3
	GPIO3_SLEW_RATE	Rw	0x00	1: Enable slew for GPIO3
3:2				Enable pull Up/Down on GPIO3
				10: Enable pull up
	GPIO3_PUPD	Rw	0x00	11: Enable pull down
1	GPIO3_EN_OUT	Rw	0x00	1: Enables output driver for GPIO3
0	GPIO3_EN_IN	Rw	0x01	1: Enables input driver for GPIO3

Table 100. PCR_PADGPIO4_REG (address offset 0x70)

Bit	Symbol	Access	Value	Description
31:6	RESERVED	Rw	0x00	Reserved
5	RESERVED	Rw	0x00	Always set to "0"
4				Select driver strength for GPIO4
	GPIO4_SLEW_RATE	Rw	0x00	1: Enable slew for GPIO4

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
3:2				Enable pull Up/Down on GPIO4
				10: Enable pull up
	GPIO4_PUPD	rw	0x00	11: Enable pull down
1	GPIO4_EN_OUT	rw	0x00	1: Enables output driver for GPIO4
0	GPIO4_EN_IN	rw	0x01	1: Enables input driver for GPIO4

Table 101. PCR_PADGPIO5_REG (address offset 0x74)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	Rw	0x00	Reserved
4				Select driver strength for GPIO5
	GPIO5_SLEW_RATE	Rw	0x00	1: Enable slew for GPIO5
3:2				Enable pull Up/Down on GPIO5
				10: Enable pull up
	GPIO5_PUPD	rw	0x00	11: Enable pull down
1	GPIO5_EN_OUT	rw	0x00	1: Enables output driver for GPIO5
0	GPIO5_EN_IN	rw	0x01	1: Enables input driver for GPIO5

Table 102. PCR_PADGPIO6_REG (address offset 0x78)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4				Select driver strength for GPIO6
	GPIO6_SLEW_RATE	rw	0x00	1: Enable slew for GPIO6
3:2				Enable Pull Up/Down on GPIO6
				10: Enable pull up
	GPIO6_PUPD	rw	0x00	11: Enable pull down
1	GPIO6_EN_OUT	rw	0x00	1: Enables output driver for GPIO6
0	GPIO6_EN_IN	rw	0x01	1: Enables input driver for GPIO6

Table 103. PCR PADGPIO7 REG (address offset 0x7C)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4				Select driver strength for GPIO7
	GPIO7_SLEW_RATE	rw	0x00	1: Enable Slew for GPIO7
3:2				Enable Pull Up/Down on GPIO7
				10: Enable Pull up
	GPIO7_PUPD	rw	0x00	11: Enable Pull down
1	GPIO7_EN_OUT	rw	0x00	1: Enables output DRIVER for GPIO7
0	GPIO7_EN_IN	rw	0x01	1: Enables input driver for GPIO7

PN7462 HW user manual

Table 104. PCR_PADGPIO8_REG (address offset 0x80)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4				Select driver strength for GPIO8
	GPIO8_SLEW_RATE	rw	0x00	1: Enable slew for GPIO8
3:2				Enable pull Up/Down on GPIO8
				10: Enable pull up
	GPIO8_PUPD	rw	0x00	11: Enable pull down
1	GPIO8_EN_OUT	rw	0x00	1: Enables output driver for GPIO8
0	GPIO8_EN_IN	rw	0x01	1: Enables input driver for GPIO8

Table 105. PCR_PADGPIO9_REG (address offset 0x84)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4				Select driver strength for GPIO9
	GPIO9_SLEW_RATE	rw	0x00	1: Enable slew for GPIO9
3:2				Enable pull Up/Down on GPIO9
				10: Enable pull up
	GPIO9_PUPD	rw	0x00	11: Enable pull down
1	GPIO9_EN_OUT	rw	0x00	1: Enables output driver for GPIO9
0	GPIO9_EN_IN	rw	0x01	1: Enables input driver for GPIO9

Table 106. PCR_PADGPIO10_REG (address offset 0x88)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4				Select driver strength for GPIO10
	GPIO10_SLEW_RATE	rw	0x00	1: Enable slew for GPIO10
3:2				Enable pull Up/Down on GPIO10
				10: Enable pull up
	GPIO10_PUPD	rw	0x00	11: Enable pull down
1	GPIO10_EN_OUT	rw	0x00	1: Enables output driver for GPIO10
0	GPIO10_EN_IN	rw	0x01	1: Enables input driver for GPIO10

Table 107. PCR_PADGPIO11_REG (address offset 0x8C)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4	GPIO11_SLEW_RATE	rw	0x00	Select driver strength for GPIO11

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				1: Enable Slew for GPIO11
3:2				Enable Pull Up/Down on GPIO11
				10: Enable pull up
	GPIO11_PUPD	rw	0x00	11: Enable pull down
1	GPIO11_EN_OUT	rw	0x00	1: Enables output driver for GPIO11
0	GPIO11_EN_IN	rw	0x01	1: Enables input driver for GPIO11

Table 108. PCR_PADGPIO12_REG (address offset 0x90)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4				Select driver strength for GPIO12
	GPIO12_SLEW_RATE	rw	0x00	1: Enable slew for GPIO12
3:2				Enable pull Up/Down on GPIO12
				10: Enable pull up
	GPIO12_PUPD	rw	0x00	11: Enable pull down
1	GPIO12_EN_OUT	rw	0x00	1: Enables output driver for GPIO12
0	GPIO12_EN_IN	rw	0x01	1: Enables input driver for GPIO12

Table 109. PCR_PADSWDIO_REG (address offset 0x94)

Bit	Symbol	Access	Value	Description
31:1	RESERVED	rw	0x00	Reserved
0				Select driver strength for SWDIO
	SWDIO_SLEW_RATE	rw	0x00	1: Enable slew rate for SWDIO

Table 110. PCR PADICM REG (address offset 0xA4)

Bit	Symbol	Access	Value	Description
31:12	RESERVED	rw	0x00	Reserved
11				1: Enable I2C master
	IICM_ENABLE	rw	0x00	0: disable I2C Master. This allows programming I2C master pads as GPIO if IICM_SW_ENABLE =1 (software control mode)
10	IICM_SW_ENABLE	rw	0x00	1: Enables register control of I2C pads
9	SDA_EN_IN	rw	0x01	1: Enables input driver for SDA
8	SDA_EN_OUT	rw	0x00	1: Enables output driver for SDA
7	SCL_EN_IN	rw	0x01	1: Enables input driver for SCL
6	SCL_EN_OUT	rw	0x00	1: Enables output driver for SCL
5:4				Enables pull up/down functionality on SDA
	SDA_PUPD	rw	0x00	10: Enable pull up

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				11: Enable pull down
3:2				Enables pull up/down functionality on SCL
				10: Enable pull up
	SCL_PUPD	rw	0x00	11: Enable pull down
1	SDA_SLEW	rw	0x00	1: Enables SDA slew rate
0	SCL_SLEW	rw	0x00	1: Enables SCL slew rate

Table 111. PCR_ANA_TX_STANDBY_REG (address offset 0xA8)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4	TX_GSN_SRC_SEL	rw	0x00	Source of GSN value (0 PCR, 1 CLIF)
3:0	TX_GSN_CW_SB	rw	0x00	GSN Value for standby mode

Table 112. PCR_ANA_TXPROT_REG (address offset 0xAC)

Bit	Symbol	Access	Value	Description
31:5	RESERVED	rw	0x00	Reserved
4	RX_PROT_IDDQ	rw	0x00	1: Set RX protection to power down for Iddq measurement
3	TXPROT_ENABLE_AUTO_ FREEZE	rw	0x00	Enable automatic freeze during typeB demodulation: typeB_det =1 -> freeze; else -> no freeze
2	TXPROT_LIM_FREEZE	rw	0x00	Freeze limiter impedance, active high
1	TXPROT_PD_VREF	rw	р	Power down reference voltage generation for tx-prot
0				1: Enables tx protection
	TXPROT_ENABLE	rw	0x01	0: Disables tx protection

Table 113. PCR SPIM REG (address offset 0xB4)

Bit	Symbol	Access	Value	Description
31:20	RESERVED	rw	0x00	Reserved
19				SPIM master second slave enabled: slave 1, slave 0 enabled by default.
				1: slave 1 enabled
	SPIM_NSS1_EN	rw	0x00	0: slave 0 enabled
18				SW control for SPIM_MOSI ECS when SPIM_SW_ENABLE='1'
	SPIM_MOSI_EN_OUT	rw	0x00	1: SPIM MOSI enabled as output
17				SW control for SPIM_MISO ECS when SPIM_SW_ENABLE='1'
	SPIM_MISO_EN_OUT	rw	0x00	1: SPIM MISO enabled as output

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
16	-			SW control for SPIM_NSS ECS when SPIM_SW_ENABLE='1'
	SPIM_NSS_EN_OUT	Rw	0x00	1: SPIM NSS enabled as output
15				SW control for SPIM_SCK ECS when SPIM_SW_ENABLE='1'
	SPIM_SCK_EN_OUT	rw	0x00	1: SPIM CLK enabled as output
14				SW control for SPIM_MOSI ENZI (ENZI = ~EN_IN) when SPIM_SW_ENABLE='1'
	SPIM_MOSI_EN_IN	rw	0x00	1: SPIM MOSI enabled as input
13				SW control for SPIM_MISO ENZI (ENZI = \sim EN_IN) when SPIM_SW_ENABLE='1'
	SPIM_MISO_EN_IN	rw	0x00	1: SPIM MISO enabled as input
12				SW control for SPIM_NSS ENZI (ENZI = \sim EN_IN) when SPIM_SW_ENABLE='1'
	SPIM_NSS_EN_IN	rw	0x00	1: SPIM NSS enabled as input
11				SW control for SPIM_SCK ENZI (ENZI = ~EN_IN) when SPIM_SW_ENABLE='1'
	SPIM_SCK_EN_IN	rw	0x00	1: SPIM CLK enabled as input
10:9				SW control for SPIM_MISO EPUD/EPD when SPIM_SW_ENABLE='1'
				10: SPIM MOSI enabled as pull up
	SPIM_MISO_EPUD	rw	0x00	11: SPIM MOSI enabled as pull down
8:7				SW control for SPIM_MOSI EPUD/EPD when SPIM_SW_ENABLE='1'
				10: SPIM MISO enabled as pull up
	SPIM_MOSI_EPUD	rw	0x00	11: SPIM MISO enabled as pull down
6:5				SW control for SPIM_NSS EPUD/EPD when SPIM_SW_ENABLE='1'
				10: SPIM NSS enabled as Pull up
	SPIM_NSS_EPUD	rw	0x02	11: SPIM NSS enabled as Pull down
4:3				SW control for SPIM_SCK EPUD/EPD when SPIM_SW_ENABLE='1'
				10: SPIM CLK enabled as pull up
	SPIM_SCK_EPUD	rw	0x00	11: SPIM CLK enabled as pull down
2				Select driver strength for SPIM pads
	EHS	rw	0x00	1: Enable slew (for high speed modes) for SPIM pads
1	SSUP	rw	0x00	supply voltage for SPIM pads
0	SPIM_SW_ENABLE	rw	0x00	1: Enables Pad configuration for SPI master

Table 114. PCR_CTIF_REG (address offset 0xB8)

Bit	Symbol	Access	Value	Description
31:1	RESERVED	rw	0x00	Reserved

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
0				Value of ct_pres_enable_pup_i coming from CTIF is latched and is used to detect card activity during standby and suspend modes if CTIF is enabled as wakeup source
	CT_ENABLE_PUP	r-	0x00	1: CT pres pull up enabled

Table 115. PCR_HOSTIF_SAVE1_REG (address offset 0xBC)

Bit	Symbol	Access	Value	Description
31:11	RESERVED	rw	0x00	Reserved
10	HSU_TX_DIVIDER	rw	0x00	TX divider save (only save reg for stby)
9:0	HSU_RX_DIVIDER	rw	0x00	RX Divider save (only save reg for stby)

Table 116. PCR_HOSTIF_SAVE2_REG (address offset 0xC0)

Bit	Symbol	Access	Value	Description
31:24	RESERVED	rw	0x00	Reserved
23:11	HSU_TX_CLK_CORRECT	rw	0x00	clock correction for TX (only save reg for stby)
10:0	HSU_RX_CLK_CORRECT	rw	0x00	Clock correction for RX (only save reg for stby)

Table 117. PCR TXLDO MON REG (address offset 0xC4)

Bit	Symbol	Access	Value	Description
31:4	RESERVED	rw	0x00	Reserved
3	WELL_MNGT	rw	0x01	TXLDO well mngt
2				Input of the 5 V monitor.
				1: TVDD is the source of 5 V monitor
	SRC_5V_MONITOR	rw	0x00	0: VUP_TX is the source of 5 V monitor
1				Comparator threshold selector
	THRES_5V_MONITOR	rw	0x00	1: Threshold of 5 V Monitor is 5 V
0				1: Enable the 5 V monitor on TVDD
	EN_5V_MONITOR	rw	0x00	0: Disable the 5 V monitor on TVDD

Table 118. PCR_BOOT2_REG (address offset 0xC8)

Bit	Symbol	Access	Value	Description
31:24	SPARE_CELL3	rw	0x00	Third set of spare cells.
23	BOOT_REASON_ACTIVE_ HPD	r-	0x00	1: Boot because of coming out of ACTIVE_HPD
22	BOOT_REASON_VBUS_L OW	r-	0x00	1: Boot because of VBUS going low in suspend or standby.
21:0	SPARE_CELL2	rw	0x00000	Second set of space cells

PN7462 HW user manual

Table 119. PCR_GPREG3_REG (address offset 0xCC)

Bit	Symbol	Access	Value	Description
31:0	PCR_GPREG3	rw	0x00	general-purpose register for SW

Table 120. PCR_GPREG4_REG (address offset 0xD0)

Bit	Symbol	Access	Value	Description
31:0	PCR_GPREG4	rw	0x00	general-purpose register for SW

Table 121. PCR_GPREG5_REG (address offset 0xD4)

Bit	Symbol	Access	Value	Description
31:0	PCR_GPREG5	rw	0x00	general-purpose register for SW

Table 122. PCR_GPREG6_REG (address offset 0xD8)

Bit	Symbol	Access	Value	Description
31:0	PCR_GPREG6	rw	0x00	general-purpose register for SW

Table 123. PCR GPREG7 REG (address offset 0xDC)

Bit	Symbol	Access	Value	Description
31:0	PCR_GPREG7	rw	0x00	general-purpose register for SW

Table 124. PCR_GPIO_INT_ACTIVE_LOW_REG (address offset 0xE0)

Bit	Symbol	Access	Value	Description
31:12	RESERVED	rw	0x00	Reserved
11	GPIO12_INTR_ACTIVE_LO			indicates if GPIO12 interrupts are active low/falling edge. 0 - Active_high/Rising edge
	W	rw	0x00	1 - Active_low/falling edge.
10	GPIO11_INTR_ACTIVE_LO			indicates if GPIO11 interrupts are active low/falling edge. 0 - Active_high/Rising edge;
	W	rw	0x00	1 - Active_low/falling edge.
9	GPIO10 INTR ACTIVE LO			indicates if GPIO10 interrupts are active low/falling edge. 0 - Active_high/Rising edge;
	W	rw	0x00	1: Active_low/falling edge.
8	GPIO9 INTR ACTIVE LO			indicates if GPIO9 interrupts are active low/falling edge. 0: Active_high/Rising edge;
	W	rw	0x00	1: Active_low/falling edge.
7	GPIO8_INTR_ACTIVE_LO W	rw	0x00	indicates if GPIO8 interrupts are active low/falling edge. 0 - Active_high/Rising edge; 1 - Active_low/falling edge.

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
6	GPIO7_INTR_ACTIVE_LO			indicates if GPIO7 interrupts are active low/falling edge. 0: Active_high/Rising edge;
	W	rw	0x00	1 - Active_low/falling edge.
5	GPIO6_INTR_ACTIVE_LO			indicates if GPIO6 interrupts are active low/falling edge. 0: Active_high/Rising edge;
	W	rw	0x00	1 - Active_low/falling edge.
4	GPIO5_INTR_ACTIVE_LO			indicates if GPIO5 interrupts are active low/falling edge. 0 - Active_high/Rising edge;
	W	rw	0x00	1: Active_low/falling edge.
3	GPIO4_INTR_ACTIVE_LO			indicates if GPIO4 interrupts are active low/falling edge. 0: Active_high/Rising edge;
	W – – –	rw	0x00	1: Active_low/falling edge.
2	GPIO3_INTR_ACTIVE_LO			indicates if GPIO3 interrupts are active low/falling edge. 0: Active_high/Rising edge;
	W	rw	0x00	1: Active_low/falling edge.
1	GPIO2_INTR_ACTIVE_LO			indicates if GPIO2 interrupts are active low/falling edge. 0: Active_high/Rising edge;
	W	rw	0x00	1Active_low/falling edge.
0	GPIO1_INTR_ACTIVE_LO			indicates if GPIO1 interrupts are active low/falling edge. 0: Active_high/Rising edge;
	W = = =	rw	0x00	1: Active_low/falling edge.

Table 125. PCR_GPIO_INT_LEVEL_SENSE_REG (address offset 0xE4)

Bit	Symbol	Access	Value	Description
31:12	RESERVED	rw	0x00	Reserved
11				indicates if GPIO12 interrupts are level sensitive/edge sensitive.
	GPIO12_INTR_LEVEL_SE			0: Edge sensitive;
	NSITIVE	rw	0x00	1: Level sensitive.
10				indicates if GPIO11 interrupts are level sensitive/edge sensitive.
	GPIO11_INTR_LEVEL_SE			0: Edge sensitive;
	NSITIVE	rw	0x00	1: Level sensitive.
9				indicates if GPIO10 interrupts are level sensitive/edge sensitive.
	GPIO10_INTR_LEVEL_SE			0: Edge sensitive;
	NSITIVE	rw	0x00	1: Level sensitive.
8				indicates if GPIO9 interrupts are level sensitive/edge sensitive.
	GPIO9 INTR LEVEL SEN			0: Edge sensitive;
	SITIVE	rw	0x00	1: Level sensitive.
7	GPIO8_INTR_LEVEL_SEN SITIVE	rw	0x00	indicates if GPIO8 interrupts are level sensitive/edge sensitive.

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				0: Edge sensitive;
				1 - Level sensitive.
6				indicates if GPIO7 interrupts are level sensitive/edge sensitive.
	GPIO7_INTR_LEVEL_SEN			0: Edge sensitive;
	SITIVE	rw	0x00	1: Level sensitive.
5				indicates if GPIO6 interrupts are level sensitive/edge sensitive.
	GPIO6_INTR_LEVEL_SEN			0: Edge sensitive;
	SITIVE	rw	0x00	1: Level sensitive.
4				indicates if GPIO5 interrupts are level sensitive/edge sensitive.
	GPIO5_INTR_LEVEL_SEN			0: Edge sensitive;
	SITIVE	rw	0x00	1: Level sensitive.
3				indicates if GPIO4 interrupts are level sensitive/edge sensitive.
	GPIO4_INTR_LEVEL_SEN			0: Edge sensitive;
	SITIVE	rw	0x00	1: Level sensitive.
2				indicates if GPIO3 interrupts are level sensitive/edge sensitive.
	GPIO3_INTR_LEVEL_SEN			0: Edge sensitive;
	SITIVE	rw	0x00	1: Level sensitive.
1				indicates if GPIO2 interrupts are level sensitive/edge sensitive.
	GPIO2_INTR_LEVEL_SEN			0: Edge sensitive;
	SITIVE	rw	0x00	1: Level sensitive.
0				indicates if GPIO1 interrupts are level sensitive/edge sensitive.
	GPIO1_INTR_LEVEL_SEN			0: Edge sensitive;
	SITIVE	rw	0x00	1: Level sensitive.

Table 126. PCR_GPIO_INT_ACTIVE_BOH_EDGE_REG (address offset 0xE8)

Bit	Symbol	Access	Value	Description
31:12	RESERVED	rw	0x00	Reserved
11				indicates if GPIO12 interrupts are both positive and negative edge triggered.
	GPIO12_INTR_BOTH_EDG			0: Not both edge triggered;
	E_SENSITIVE	rw	0x00	1: Both positive edge and negative edge triggered.
10				indicates if GPIO11 interrupts are both positive and negative edge triggered.
	GPIO11_INTR_BOTH_EDG			0: Not both edge triggered;
	E_SENSITIVE	rw	0x00	1: Both positive edge and negative edge triggered.

103 of 341

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
9				indicates if GPIO10 interrupts are both positive and negative edge triggered.
	GPIO10_INTR_BOTH_EDG			0: Not both edge triggered;
	E_SENSITIVE	rw	0x00	1: Both positive edge and negative edge triggered.
8				indicates if GPIO9 interrupts are both positive and negative edge triggered.
	GPIO9_INTR_BOTH_EDGE			0: Not both edge triggered;
	_SENSITIVE	rw	0x00	1: Both positive edge and negative edge triggered.
7				indicates if GPIO8 interrupts are both positive and negative edge triggered.
	GPIO8_INTR_BOTH_EDGE			0: Not both edge triggered;
	_SENSITIVE	rw	0x00	1: Both positive edge and negative edge triggered.
6				indicates if GPIO7 interrupts are both positive and negative edge triggered.
	GPIO7_INTR_BOTH_EDGE			0: Not both edge triggered;
	_SENSITIVE	rw	0x00	1: Both positive edge and negative edge triggered.
5				indicates if GPIO6 interrupts are both positive and negative edge triggered.
	GPIO6_INTR_BOTH_EDGE			0: Not both edge triggered;
	_SENSITIVE	rw	0x00	1: Both positive edge and negative edge triggered.
4				indicates if GPIO5 interrupts are both positive and negative edge triggered.
	GPIO5_INTR_BOTH_EDGE			0: Not both edge triggered;
	_SENSITIVE	rw	0x00	1: Both positive edge and negative edge triggered.
3				indicates if GPIO4 interrupts are both positive and negative edge triggered.
	GPIO4_INTR_BOTH_EDGE			0: Not both edge triggered;
	_SENSITIVE	rw	0x00	1: Both positive edge and negative edge triggered.
2				indicates if GPIO3 interrupts are both positive and negative edge triggered.
	GPIO3_INTR_BOTH_EDGE			0: Not both edge triggered;
	_SENSITIVE	rw	0x00	1: Both positive edge and negative edge triggered.
1				indicates if GPIO2 interrupts are both positive and negative edge triggered.
	GPIO2_INTR_BOTH_EDGE			0: Not both edge triggered;
	_SENSITIVE	rw	0x00	1: Both positive edge and negative edge triggered.
0				indicates if GPIO1 interrupts are both positive and negative edge triggered.
	GPIO1_INTR_BOTH_EDGE			0: Not both edge triggered;
	_SENSITIVE	rw	0x00	1: Both positive edge and negative edge triggered.

104 of 341

PN7462 HW user manual

Table 127. PCR_SELECT_SYSTEMCLOCK_REG (address offset 0xEC)

Bit	Symbol	Access	Value	Description
31:3	RESERVED	rw	0x00	Reserved
2:0				Selects the clock source
				001: clkHFO (20 MHz)
				010: clkUSBPLL/2 (24 MHz) (internal test purpose)
				100: clkXtal (27.12 MHz) (internal test purpose)
	SELECT_SYSTEMCLOCK	rw	0x01	Others: INVALID

Table 128. PCR_ADV_RFLD_REG (address offset 0xF0)

Bit	Symbol	Access	Value	Description
31:25	RESERVED	rw	0x00	Reserved
24:20	ADV_RFLD_IBIAS_TIME	rw	0x00	Ibias Boot up Time
19	ADV_RFLD_BYPASS_FRE			bypass the digital frequency check in case of malfunction of frequency check
	Q_CHECK	rw	0x00	1: Disable Frequency check during RF level detection
18				enable Bypass for pre-amplifier. To be set if normal RF Level detector is used for
	ADV_RFLD_BYPASS	rw	0x00	1: Disable Pre-Amplifier
17:16	ADV_RFLD_PREAMP_GAI			
	N	rw	0x00	gain setting for pre-amplifier
15:12	ADV_RFLD_CLKREC_TIM E	rw	0x00	boot up time for clock recovery. Defines time between switching on the clock recovery until frequency check is enabled
11:7				boot up time for advanced RF level detector. Defines time between switching on the RF level detector until
	ADV_RFLD_WAIT_TIME	rw	0x00	field is checked.
6:0				defines the sleep Time (# LFO cycles) in the polling circuit where the Advanced RF Level Detector is
	ADV_RFLD_SLEEP_TIME	rw	0x00	switched off.

Table 129. PCR_ADV_RFLD_TEST_REG (address offset 0xF4)

Symbol	Access	Value	Description
RESERVED	rw	0x00	Reserved
			bypass the field detection during SLEEP time
ADV RFLD TEST BYPAS			1: Bypass field detection during SLEEP time
S_FIELDDET	rw	0x00	0: Field detection enabled during SLEEP time
			Enables the advanced RF level detector during standby mode. The RF level detector as wake-up source must be enabled to use this feature.
ADV RFLD TEST PREAM			1: Enable Pre-amplifier
P_ENABLE	rw	0x00	0: Disable Pre-amplifier for RF level detection
	RESERVED ADV_RFLD_TEST_BYPAS S_FIELDDET ADV_RFLD_TEST_PREAM	RESERVED rw ADV_RFLD_TEST_BYPAS S_FIELDDET rw ADV_RFLD_TEST_PREAM	RESERVED rw 0x00 ADV_RFLD_TEST_BYPAS S_FIELDDET rw 0x00 ADV_RFLD_TEST_PREAM

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
0				Enable manual setting of advanced RF level detection.
	ADV_RFLD_TEST_ENABL			1: Enable manual setting of RF level detection
	E	rw	0x00	0: Disable Manual setting of RF level detection

Table 130. PCR_INT_CLR_ENABLE_REG (address offset 0x3FD8)

Bit	Symbol	Access	Value	Description
31:28	RESERVED	-x	0x00	Reserved
27	GPIO12_PAD_HIGH_INT_C LR_ENABLE	-x	0x00	GPIO12 pad going high interrupt clear enable 1: Disable GPIO12 interrupt
26	GPIO11_PAD_HIGH_INT_C LR_ENABLE	-x	0x00	GPIO11 pad going high interrupt clear enable 1: Disable GPIO11 interrupt
25	GPIO10_PAD_HIGH_INT_C LR_ENABLE	-x	0x00	GPIO10 pad going high interrupt clear enable 1: Disable GPIO10 interrupt
24	GPIO9_PAD_HIGH_INT_CL R_ENABLE	-x	0x00	GPIO9 pad going high interrupt clear enable 1: Disable GPIO9 interrupt
23	GPIO8_PAD_HIGH_INT_CL R_ENABLE	-x	0x00	GPIO8 pad going high interrupt clear enable 1: Disable GPIO8 interrupt
22	GPIO7_PAD_HIGH_INT_CL R_ENABLE	-x	0x00	GPIO7 pad going high interrupt clear enable 1: Disable GPIO7 interrupt
21	GPIO6_PAD_HIGH_INT_CL R_ENABLE	-x	0x00	GPIO6 pad going high interrupt clear enable 1: Disable GPIO6 interrupt
20	GPIO5_PAD_HIGH_INT_CL R_ENABLE	-x	0x00	GPIO5 pad going high interrupt clear enable 1: Disable GPIO5 interrupt
19	GPIO4_PAD_HIGH_INT_CL R_ENABLE	-x	0x00	GPIO4 pad going high interrupt clear enable 1: Disable GPIO4 interrupt
18	GPIO3_PAD_HIGH_INT_CL R_ENABLE	-x	0x00	GPIO3 pad going high interrupt clear enable 1: Disable GPIO3 interrupt
17	GPIO2_PAD_HIGH_INT_CL R_ENABLE	-x	0x00	GPIO2 pad going high interrupt clear enable 1: Disable GPIO2 interrupt
16	GPIO1_PAD_HIGH_INT_CL R_ENABLE	-x	0x00	GPIO1 pad going high interrupt clear enable 1: Disable GPIO1 interrupt
15:11	RESERVED	-X	0x00	Reserved
10	VBUSP_MON_HIGH_INT_ CLR_ENABLE	-x	0x00	VBUSP monitor going high interrupt clear enable 1: Disable VBUSP monitor high interrupt
9	CLIF_RFLD_ACT_INT_CLR _ENABLE	-x	0x00	Clif RF field activity observed interrupt clear enable 1: Disable RF Level detected interrupt
8	VBUS_MON_LOW_INT_CL R_ENABLE	-x	0x00	VBUS monitor going low interrupt clear enable 1: Disable VBUS monitor low interrupt
7	VBUSP_MON_LOW_INT_C LR_ENABLE	-x	0x00	VBUSP monitor going low interrupt clear enable

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				1: Disable VBUSP monitor low interrupt
6	PVDD_CURLIM_ACT_CLR			PVDD current limiter active interrupt clear enable.
	_ENABLE	-X	0x00	1: Disable PVDD current limiter interrupt
5	TEMPERROR1_INT_CLR_			Temperature error 1 interrupt clear enable
	ENABLE	-X	0x00	1: Disable temperature sensor 1 error interrupt
4	TEMPERROR0_INT_CLR_			Temperature error 0 interrupt clear enable
	ENABLE	-X	0x00	1: Disable temperature sensor 0 error interrupt
3	SUSPEND			Suspend defaulted interrupt clear enable
	_DEFAULTED_INT_CLR_E NABLE	V	0x00	·
	NADLE	-X	UXUU	1: Disable suspend prevented interrupt
2	RESERVED	-X	0x00	Reserved
1	SUSPEND_INT_CLR_ENA			suspend interrupt clear enable.
	BLE	-X	0x00	1: Disable suspend(exit) interrupt
0				GPIO interrupt clear enable
	GPIO_INT_CLR_ENABLE	-x	0x00	1: Disable GPIO interrupt

Table 131. PCR_INT_SET_ENABLE_REG (address offset 0x3FDC)

Bit	Symbol	Access	Value	Description
31:28	RESERVED	-X	0x00	Reserved
27	GPIO12_PAD_HIGH_INT_S			GPIO12 pad going high interrupt set enable
	ET_ENABLE	-X	0x00	1: Enable GPIO12 interrupt
26	GPIO11_PAD_HIGH_INT_S			GPIO11 pad going high interrupt set enable
	ET_ENABLE	-X	0x00	1: Enable GPIO11 interrupt
25	GPIO10_PAD_HIGH_INT_S			GPIO10 pad going high interrupt set enable
	ET_ENABLE	-X	0x00	1: Enable GPIO10 interrupt
24	GPIO9_PAD_HIGH_INT_S			GPIO9 pad going high interrupt set enable
	ET_ENABLE	-X	0x00	1: Enable GPIO9 interrupt
23	GPIO8_PAD_HIGH_INT_S			GPIO8 pad going high interrupt set enable
	ET_ENABLE	-X	0x00	1: Enable GPIO8 interrupt
22	GPIO7_PAD_HIGH_INT_S			GPIO7 pad going high interrupt set enable
	ET_ENABLE	-X	0x00	1: Enable GPIO7 interrupt
21	GPIO6_PAD_HIGH_INT_S			GPIO6 pad going high interrupt set enable
	ET_ENABLE	-X	0x00	1: Enable GPIO6 interrupt
20	GPIO5_PAD_HIGH_INT_S			GPIO5 pad going high interrupt set enable
	ET_ENABLE	-X	0x00	1: Enable GPIO5 interrupt
19	GPIO4_PAD_HIGH_INT_S			GPIO4 pad going high interrupt set enable
	ET_ENABLE	-X	0x00	1: Enable GPIO4 interrupt
18	GPIO3_PAD_HIGH_INT_S			GPIO3 pad going high interrupt set enable
	ET_ENABLE	-X	0x00	1: Enable GPIO3 interrupt

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
17	GPIO2_PAD_HIGH_INT_S			GPIO2 pad going high interrupt set enable
	ET_ENABLE	-X	0x00	1: Enable GPIO2 interrupt
16	GPIO1_PAD_HIGH_INT_S			GPIO1 pad going high interrupt set enable
	ET_ENABLE	-X	0x00	1: Enable GPIO1 interrupt
15:11	RESERVED	-X	0x00	Reserved
10	VBUSP_MON_HIGH_INT_S			VBUSP monitor going high interrupt set enable
	ET_ENABLE	-X	0x00	1: Enable VBUSP Monitor high interrupt
9	CLIF_RFLD_ACT_INT_SET			Clif RF field activity observed interrupt set enable
	_ENABLE	-X	0x00	1: Enable RF level detected interrupt
8	VBUS_MON_LOW_INT_SE			VBUS monitor going low interrupt set enable
	T_ENABLE	-X	0x00	1 - Enable VBUS monitor low interrupt
7	VBUSP MON LOW INT S			VBUSP monitor going low interrupt set enable
	ET_ENABLE	-X	0x00	1 - Enable VBUSP monitor low interrupt
6	PVDD_CURLIM_ACT_SET			PVDD current limiter active interrupt set enable.
	_ENABLE	-X	0x00	1 - Enable PVDD current limiter interrupt
5	TEMPERROR1_INT_SET_			Temperature error 1 interrupt set enable
	ENABLE	-X	0x00	1 - Enable temperature sensor 1 error interrupt
4	TEMPERROR0_INT_SET_			Temperature error 0 interrupt set enable
	ENABLE	-X	0x00	1 - Enable temperature sensor 0 error interrupt
3	SUSPEND_			Supposed defaulted interrupt act anable
	DEFAULTED_INT_SET_EN ABLE	v	0x00	Suspend defaulted interrupt set enable 1: Enable suspend prevented interrupt
2		-X	0x00	Reserved
	RESERVED	rw	UXUU	
1	SUSPEND_INT_SET_ENA	v	0.00	suspend interrupt set enable.
	BLE	-X	0x00	1: Enable suspend(exit) interrupt
0	ODIO INT OFT FNASLE		000	GPIO interrupt clear enable
	GPIO_INT_SET_ENABLE	-X	0x00	1: Enable GPIO interrupt

Table 132. PCR_INT_STATUS_REG (address offset 0x3FE0)

Bit	Symbol	Access	Value	Description
31:28	RESERVED	rw	0x00	Reserved
27	GPIO12 PAD HIGH INT S			GPIO12 pad going high interrupt status
	TATUS	r-	0x00	1: Indicates GPIO12 interrupt is set.
26	GPIO11_PAD_HIGH_INT_S			GPIO11 pad going high interrupt status
	TATUS	r-	0x00	1: Indicates GPIO11 interrupt is set.
25	GPIO10_PAD_HIGH_INT_S			GPIO10 pad going high interrupt status
	TATUS	r-	0x00	1: Indicates GPIO10 interrupt is set.
24	GPIO9_PAD_HIGH_INT_ST			GPIO9 pad going high interrupt status
	ATUS	r-	0x00	1: Indicates GPIO9 interrupt is set.

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
23	GPIO8_PAD_HIGH_INT_ST ATUS	r-	0x00	GPIO8 pad going high interrupt status 1: Indicates GPIO8 interrupt is set.
22	GPIO7_PAD_HIGH_INT_ST ATUS	r-	0x00	GPIO7 pad going high interrupt status 1: Indicates GPIO7 interrupt is set.
21	GPIO6_PAD_HIGH_INT_ST ATUS	r-	0x00	GPIO6 pad going high interrupt status 1: Indicates GPIO6 interrupt is set.
20	GPIO5_PAD_HIGH_INT_ST ATUS	r-	0x00	GPIO5 pad going high interrupt status 1: Indicates GPIO5 interrupt is set.
19	GPIO4_PAD_HIGH_INT_ST ATUS	r-	0x00	GPIO4 pad going high interrupt status 1: Indicates GPIO4 interrupt is set.
18	GPIO3_PAD_HIGH_INT_ST ATUS	r-	0x00	GPIO3 pad going high interrupt status 1: Indicates GPIO3 interrupt is set.
17	GPIO2_PAD_HIGH_INT_ST ATUS	r-	0x00	GPIO2 pad going high interrupt status 1: Indicates GPIO2 interrupt is set.
16	GPIO1_PAD_HIGH_INT_ST ATUS	r-	0x00	GPIO1 pad going high interrupt status 1: Indicates GPIO1 interrupt is set.
15:11	RESERVED	r-	0x00	Reserved
10	VBUSP_MON_HIGH_INT_S TATUS	r-	0x00	VBUSP monitor going high interrupt status 1: Indicates VBUSP monitor high interrupt is set.
9	CLIF_RFLD_ACT_INT_STA	r-	0x00	Clif RF field activity observed interrupt status 1: Indicates RF Level detected interrupt is set.
8	VBUS_MON_LOW_INT_ST ATUS	r-	0x00	VBUS monitor going low interrupt clear status 1: Indicates VBUS monitor low interrupt is set.
7	VBUSP_MON_LOW_INT_S TATUS	r-	0x00	VBUSP monitor going low interrupt clear status 1: Indicates VBUSP monitor low interrupt is set.
6	PVDD_CURLIM_ACT_INT_ STATUS	r-	0x00	PVDD current limiter active interrupt status 1: Indicates PVDD current limiter interrupt is set.
5	TEMPERROR1_INT_STAT US	r-	0x00	Temperature error 1 interrupt status 1: Indicates temperature sensor 1 error interrupt is set.
4	TEMPERRORO_INT_STAT	r-	0x00	Temperature error 0 interrupt status 1: Indicates temperature sensor 0 error interrupt is set.
3	SUSPEND_ DEFAULTED_INT_STATUS	r-	0x00	Suspend defaulted interrupt status 1: Indicates suspend prevented interrupt is set.
2	RESERVED	r-	0x00	Reserved
1	SUSPEND_INT_STATUS	r-	0x00	Suspend interrupt status. 1: Indicates suspend (exit) interrupt is set.
0	GPIO_INT_STATUS	r-	0x00	GPIO interrupt clear enable 1: Indicates GPIO interrupt is set.

PN7462 HW user manual

Table 133. PCR_INT_ENABLE_REG (address offset 0x3FE4)

27 GPIO12_PAD_HIGH_INT_E NABLE 26 GPIO11_PAD_HIGH_INT_E NABLE 25 GPIO10_PAD_HIGH_INT_E NABLE 24 GPIO9_PAD_HIGH_INT_E	r-	0x00 0x00 0x00	Reserved GPIO12 pad going high interrupt enable 1: Indicates GPIO12 interrupt enabled. GPIO11 pad going high interrupt enable 1: Indicates GPIO11 interrupt enabled.
NABLE 26 GPIO11_PAD_HIGH_INT_E NABLE 25 GPIO10_PAD_HIGH_INT_E NABLE 24 GPIO9_PAD_HIGH_INT_E	r-	0x00	1: Indicates GPIO12 interrupt enabled. GPIO11 pad going high interrupt enable
NABLE 26 GPIO11_PAD_HIGH_INT_E NABLE 25 GPIO10_PAD_HIGH_INT_E NABLE 24 GPIO9_PAD_HIGH_INT_E	r-	0x00	GPIO11 pad going high interrupt enable
NABLE 25 GPIO10_PAD_HIGH_INT_E NABLE 24 GPIO9_PAD_HIGH_INT_E			
25 GPIO10_PAD_HIGH_INT_E NABLE 24 GPIO9_PAD_HIGH_INT_E			1: Indicates GPIO11 interrupt enabled.
NABLE 24 GPIO9_PAD_HIGH_INT_E	r-		
24 GPIO9_PAD_HIGH_INT_E	r-		GPIO10 pad going high interrupt enable
01 100_1 /\D_111011_1111_E		0x00	1: Indicates GPIO10 interrupt enabled.
NABLE			GPIO9 pad going high interrupt enable
	r-	0x00	1: Indicates GPIO9 interrupt enabled.
23 GPIO8_PAD_HIGH_INT_E			GPIO8 pad going high interrupt enable
	r-	0x00	1: Indicates GPIO8 interrupt enabled.
22 GPIO7_PAD_HIGH_INT_E			GPIO7 pad going high interrupt enable
	r-	0x00	1: Indicates GPIO7 interrupt enabled.
21 GPIO6_PAD_HIGH_INT_E			GPIO6 pad going high interrupt enable
	r-	0x00	1: Indicates GPIO6 interrupt enabled.
20 GPIO5_PAD_HIGH_INT_E			GPIO5 pad going high interrupt enable
	r-	0x00	1: Indicates GPIO5 interrupt enabled.
19 GPIO4_PAD_HIGH_INT_E			GPIO4 pad going high interrupt enable
	r-	0x00	1: Indicates GPIO4 interrupt enabled.
18 GPIO3_PAD_HIGH_INT_E			GPIO3 pad going high interrupt enable
	r-	0x00	1: Indicates GPIO3 interrupt enabled.
17 GPIO2_PAD_HIGH_INT_E			GPIO2 pad going high interrupt enable
	r-	0x00	1: Indicates GPIO2 interrupt enabled.
16 GPIO1_PAD_HIGH_INT_E			GPIO1 pad going high interrupt enable
NABLE	r-	0x00	1: Indicates GPIO1 interrupt enabled.
15:11 RESERVED	r-	0x00	Reserved
10 VBUSP_MON_HIGH_INT_E			VBUSP monitor going high interrupt enable
NABLE	r-	0x00	1: Indicates VBUSP monitor high interrupt enabled.
9 CLIF_RFLD_ACT_INT_ENA			Clif RF field activity observed interrupt enable
BLE	r-	0x00	1: Indicates RF level detected interrupt enabled.
8 VBUS MON LOW INT EN			VBUS monitor going low interrupt enable
	r-	0x00	1: Indicates VBUS monitor low interrupt enabled.
7 VBUSP_MON_LOW_INT_E			VBUSP monitor going low interrupt enable
	r-	0x00	1: Indicates VBUSP monitor low interrupt enabled.
6 PVDD_CURLIM_ACT_INT_			PVDD current limiter active interrupt enable
	r-	0x00	1: Indicates PVDD current limiter interrupt enabled.
5			Temperature error 1 interrupt enable
TEMPERROR1_INT_ENAB			1: Indicates temperature sensor 1 error interrupt
LE	r-	0x00	enabled.

110 of 341

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
4				Temperature error 0 interrupt enable
	TEMPERROR0_INT_ENAB LE	r-	0x00	1: Indicates temperature sensor 0 error interrupt enabled.
3	SUSPEND_DEFAULTED_I			Suspend defaulted interrupt enable
	NT_ENABLE	r-	0x00	1: Indicates suspend prevented interrupt enabled.
2	RESERVED	r-	0x00	Reserved
1				Suspend interrupt enable.
	SUSPEND_INT_ENABLE	r-	0x00	1: Indicates suspend (exit) interrupt enabled.
0				GPIO interrupt clear enable
	GPIO_INT_ENABLE	r-	0x00	1: Indicates GPIO interrupt enabled.

Table 134. PCR_INT_CLR_STATUS_REG (address offset 0x3FE8)

Bit	Symbol	Access	Value	Description
31:28	RESERVED	-x	0x00	Reserved
27	GPIO12_PAD_HIGH_INT_C			GPIO12 pad going high interrupt clear status
	LR_STATUS	-X	0x00	1: Clear GPIO12 interrupt. Auto clear after 2 cycles.
26	GPIO11_PAD_HIGH_INT_C			GPIO11 pad going high interrupt clear status
	LR_STATUS	-X	0x00	1: Clear GPIO11 interrupt. Auto clear after 2 cycles.
25	GPIO10_PAD_HIGH_INT_C			GPIO10 pad going high interrupt clear status
	LR_STATUS	-X	0x00	1: Clear GPIO10 interrupt. Auto clear after 2 cycles.
24	GPIO9_PAD_HIGH_INT_CL			GPIO9 pad going high interrupt clear status
	R_STATUS	-X	0x00	1: Clear GPIO9 interrupt. Auto clear after 2 cycles.
23	GPIO8_PAD_HIGH_INT_CL			GPIO8 pad going high interrupt clear status
	R_STATUS	-X	0x00	1: Clear GPIO8 interrupt. Auto clear after 2 cycles.
22	GPIO7_PAD_HIGH_INT_CL			GPIO7 pad going high interrupt clear status
	R_STATUS	-X	0x00	1: Clear GPIO7 interrupt. Auto clear after 2 cycles.
21	GPIO6_PAD_HIGH_INT_CL			GPIO6 pad going high interrupt clear status
	R_STATUS	-X	0x00	1: Clear GPIO6 interrupt. Auto clear after 2 cycles.
20	GPIO5_PAD_HIGH_INT_CL			GPIO5 pad going high interrupt clear status
	R_STATUS	-X	0x00	1: Clear GPIO5 interrupt. Auto clear after 2 cycles.
19	GPIO4_PAD_HIGH_INT_CL			GPIO4 pad going high interrupt clear status
	R_STATUS	-X	0x00	1: Clear GPIO4 interrupt. Auto clear after 2 cycles.
18	GPIO3_PAD_HIGH_INT_CL			GPIO3 pad going high interrupt clear status
	R_STATUS	-x	0x00	1: Clear GPIO3 interrupt. Auto clear after 2 cycles.
17	GPIO2_PAD_HIGH_INT_CL			GPIO2 pad going high interrupt clear status
	R_STATUS	-x	0x00	1: Clear GPIO2 interrupt. Auto clear after 2 cycles.
16	GPIO1_PAD_HIGH_INT_CL			GPIO1 pad going high interrupt clear status
	R_STATUS	-x	0x00	1: Clear GPIO1 interrupt. Auto clear after 2 cycles.
15:11	RESERVED	-X	0x00	Reserved

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
10				VBUSP monitor going high interrupt clear status
	VBUSP_MON_HIGH_INT_		000	1: Clear VBUSP monitor high interrupt. Auto clear after 2
	CLR_STATUS	-X	0x00	cycles.
9				Clif RF field activity observed interrupt clear status
	CLIF_RFLD_ACT_INT_CLR _STATUS	-x	0x00	1: Clear RF level detected interrupt. Auto clear after 2 cycles.
8				VBUS monitor going low interrupt clear status
	VBUS_MON_LOW_INT_CL R_STATUS	-x	0x00	1: Clear VBUS monitor low interrupt. Auto clear after 2 cycles.
7				VBUSP monitor going low interrupt clear status
	VBUSP_MON_LOW_INT_C LR_STATUS	-x	0x00	1: Clear VBUSP monitor low interrupt. Auto clear after 2 cycles.
6				PVDD current limiter active interrupt clear status
	PVDD_CURLIM_ACT_CLR _STATUS	-x	0x00	1: Clear PVDD current limiter interrupt. Auto clear after 2 cycles.
5				Temperature error 1 interrupt clear status
	TEMPERROR1_INT_CLR_ STATUS	-x	0x00	1: Clear temperature sensor 1 error interrupt. Auto clear after 2 cycles.
4				Temperature error 0 interrupt clear status
	TEMPERROR0_INT_CLR_ STATUS	-x	0x00	1: Clear temperature sensor 0 error interrupt. Auto clear after 2 cycles.
3				Suspend defaulted interrupt clear status
	SUSPEND_DEFAULTED_I			1: Clear suspend prevented interrupt. Auto clear after 2
	NT_CLR_STATUS	-X	0x00	cycles.
2	RESERVED	-x	0x00	Reserved
1				Suspend interrupt clear status.
	SUSPEND_INT_CLR_STAT US	-x	0x00	1: Clear suspend (exit) interrupt. Auto clear after 2 cycles.
0				GPIO interrupt clear clear status
	GPIO_INT_CLR_STATUS	-x	0x00	1: Clear GPIO interrupt. Auto clear after 2 cycles.

Table 135. PCR_INT_SET_STATUS_REG (address offset 0x3FEC)

Bit	Symbol	Access	Value	Description
31:28	RESERVED	-x	0x00	Reserved
27	GPIO12_PAD_HIGH_INT_S			GPIO12 pad going high interrupt set status
	ET_STATUS	-x	0x00	1: Set GPIO12 interrupt. Auto clear after 2 cycles.
26	GPIO11_PAD_HIGH_INT_S			GPIO11 pad going high interrupt set status
	ET_STATUS	-x	0x00	1: Set GPIO11 interrupt. Auto clear after 2 cycles.
25	GPIO10_PAD_HIGH_INT_S			GPIO10 pad going high interrupt set status
	ET_STATUS	-x	0x00	1: Set GPIO10 interrupt. Auto clear after 2 cycles.
24	GPIO9_PAD_HIGH_INT_S			GPIO9 pad going high interrupt set status
	ET_STATUS	-x	0x00	1: Set GPIO9 interrupt. Auto clear after 2 cycles.

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
23	GPIO8_PAD_HIGH_INT_S			GPIO8 pad going high interrupt set status
	ET_STATUS	-X	0x00	1: Set GPIO8 interrupt. Auto clear after 2 cycles.
22	GPIO7_PAD_HIGH_INT_S			GPIO7 pad going high interrupt set status
	ET_STATUS	-X	0x00	1: Set GPIO7 interrupt. Auto clear after 2 cycles.
21	GPIO6_PAD_HIGH_INT_S			GPIO6 pad going high interrupt set status
	ET_STATUS	-X	0x00	1: Set GPIO6 interrupt. Auto clear after 2 cycles.
20	GPIO5_PAD_HIGH_INT_S			GPIO5 pad going high interrupt set status
	ET_STATUS	-X	0x00	1: Set GPIO5 interrupt. Auto clear after 2 cycles.
19	GPIO4_PAD_HIGH_INT_S			GPIO4 pad going high interrupt set status
	ET_STATUS	-X	0x00	1: Set GPIO4 Interrupt. Auto clear after 2 cycles.
18	GPIO3_PAD_HIGH_INT_S			GPIO3 pad going high interrupt set status
	ET_STATUS	-X	0x00	1: Set GPIO3 interrupt. Auto clear after 2 cycles.
17	GPIO2_PAD_HIGH_INT_S			GPIO2 pad going high interrupt set status
	ET_STATUS	-X	0x00	1: Set GPIO2 interrupt. Auto clear after 2 cycles.
16	GPIO1_PAD_HIGH_INT_S			GPIO1 pad going high interrupt set status
	ET_STATUS	-X	0x00	1: Set GPIO1 interrupt. Auto clear after 2 cycles.
15:11	RESERVED	-X	0x00	Reserved
10				VBUSP monitor going high interrupt set status
	VBUSP_MON_HIGH_INT_S ET_STATUS	-x	0x00	1: Set VBUSP monitor high interrupt. Auto clear after 2 cycles.
9				Clif RF field activity observed interrupt set status
	CLIF_RFLD_ACT_INT_SET			1: Set RF level detected interrupt. Auto clear after 2
	_STATUS	-X	0x00	cycles.
8	VD110 14011 1 014 11T 05			VBUS monitor going low interrupt set status
	VBUS_MON_LOW_INT_SE T_STATUS	-x	0x00	1: Set VBUS monitor low interrupt. Auto clear after 2 cycles.
7				VBUSP monitor going low interrupt set status
	VBUSP_MON_LOW_INT_S			1: Set VBUSP monitor low interrupt. Auto clear after 2
	ET_STATUS	-X	0x00	cycles.
6				PVDD current limiter active interrupt set status.
	PVDD_CURLIM_ACT_SET	v	0x00	1: Set PVDD current limiter interrupt. Auto clear after 2
	_STATUS	-X	UXUU	Cycles.
5	TEMDEDDOD4 INT OFT			Temperature error 1 interrupt set status
	TEMPERROR1_INT_SET_ STATUS	-x	0x00	1: Set temperature sensor 1 error interrupt. Auto clear after 2 cycles.
4				Temperature error 0 interrupt set status
	TEMPERROR0_INT_SET_ STATUS	-x	0x00	1: Set temperature sensor 0 error interrupt. Auto clear after 2 cycles.
3	SUSPEND_			Suspend defaulted interrupt set status
	DEFAULTED_INT_SET_ST			1: Set suspend prevented interrupt. Auto clear after 2
	ATUS	-X	0x00	cycles.
2	RESERVED	-X	0x00	Reserved

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
1	SUSPEND INT SET STAT			Suspend interrupt set status.
	US	-X	0x00	1: Set suspend (exit) interrupt. Auto clear after 2 cycles.
0				GPIO interrupt clear status
	GPIO_INT_SET_STATUS	-x	0x00	1: Set GPIO interrupt. Auto clear after 2 cycles.

9. CRC

This block implements a configurable 16/32-bit parallel CRC.

The 16-bit CRC is compliant to X.25 (CRC-CCITT, ISO/IEC13239) standard with a generator polynomial of:

$$g(x) = x^{16} + x^{12} + x^5 + 1 {1}$$

The 32-bit CRC is compliant to the Ethernet / AAL5 (IEEE 802.3) standard with a generator polynomial of:

$$g(x) = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$$
 (2)

Note: No final XOR is performed.

CRC calculation is performed in parallel, meaning that one CRC calculation is performed in one clock cycle.

The standard CRC32 polynomial passes the fips140-2 tests.

9.1 CRC features

- Configurable CRC preset value
- · Selectable LSB or MSB first
- · Calculation based on 32 bits, 16 bits, 8 bits words

9.2 Parallel CRC

In parallel CRC calculation, each bit of the new CRC depends on the previous bits of the CRC and current bits of the input data. Using mathematical assumptions, one equation can be calculated for each bit of the new CRC which are derived from the serial CRC implementation. Using these equations, a CRC can be calculated in one clock cycle whereas serial CRC takes as many clock cycles as the number of bits in the CRC.

PN7462 HW user manual

The method used to generate the equations for each bit of the new CRC requires 4 steps and depends on the input data width (W) and polynomial width (C). Therefore, each CRC configuration (polynomial width and input data width) requires dedicated equations.

Below is one simple example to generate the equations for CRC4-ITU (x4+x+1; C=4) and input data width W=4. The same method applies to any values of P and W.

Let's call C_new(n) the nth bit of the new CRC value, C_prev(n) the nth bit of the previous calculated CRC value (e.g. preloaded value) and W(n) the nth bit of the input data.

Step1: Implement a standard serial CRC calculation:

C_new(0)=C_prev(3) xor W;

C_new(1)=C_prev(0) xor C_prev(3) xor W;

 $C_new(2)=C_prev(1);$

 $C_new(3)=C_prev(2);$

A full C_new value can be calculated running 4 times these equations.

<u>Step2</u>: Parallel CRC calculation is a function of input data (W(n)) and previous CRC value (C_prev). Calculate C_new using the previous serial equations as a function of W(n) for each one hot encoded value of W(n):

C_prev=0x0;

W is one hot encoded: W=4 so the values are 0x1, 0x2, 0x4, 0x8.

C_new(W=0x1;C_prev=0x0)=4'b0011

C_new(W=0x2;C_prev=0x0)=4'b0110

C new(W=0x4;C prev=0x0)=4'b1100

C_new(W=0x8;C_prev=0x0)=4'b1011

The hereabove results lead to the matrix M1 shown in table below

Table 136, CRC4 M1

	C_prev(0)	C_prev(1)	C_prev(2)	C_prev(3)
W(0)	0	0	1	1
W(1)	0	1	1	0
W(2)	1	1	0	0
W(3)	1	0	1	1

Step3: Parallel CRC calculation is a function of input data (W(n)) and previous CRC

PN7462 HW user manual

value (C_prev). Calculate C_new using the previous serial equations as a function of W(n) for each one hot encoded value of $C_prev(n)$:

W=0x0;

C_prev is one hot encoded: C=4 so the values are 0x1,0x2,0x4,0x8.

C_new(W=0x0;C_prev=0x1)=4'b0011

C new(W=0x0;C prev=0x4)=4'b1100

C_new(W=0x0;C_prev=0x8)=4'b1011

The hereabove results give the matrix M2 shown in table below

Table 137, CRC4 M2

	C_prev(0)	C_prev(1)	C_prev(2)	C_prev(3)
W(0)	0	0	1	1
W(1)	0	1	1	0
W(2)	1	1	0	0
W(3)	1	0	1	1

Step 4: Compute the two matrices to generate the four equations for each CRC_new bit:

 $C_{new}(0)=W(0)$ xor W(3) xor $C_{prev}(0)$ xor $C_{prev}(3)$

 $C_{new}(1)=W(0)$ xor W(1) xor W(3) xor $C_{prev}(0)$ xor $C_{prev}(1)$ xor $C_{prev}(3)$

 $C_{new}(2)=W(1) \text{ xor } W(2) \text{ xor } C_{prev}(1) \text{ xor } C_{prev}(2)$

 $C_{new}(3)=W(2) \text{ xor } W(3) \text{ xor } C_{prev}(2) \text{ xor } C_{prev}(3)$

Now these equations are used to calculate the parallel CRC in only one clock cycle.

9.3 LSB and MSB first functionality

In MSB first mode:

- Input data is written in CRCDAT_xx MSB first
- CRCDAT_xx is pushed LSB first in the internal LFSR
- CRC preset value is written in CRCDAT_PRELOAD MSB first
- CRCDAT PRELOAD is pushed MSB first in the internal LFSR
- CRC value is read MSB first on the APB interface.

In LSB first mode:

- Input data is written in CRCDAT_xx MSB first
- CRCDAT_xx is pushed LSB first in the internal LFSR
- CRC preset value is written in CRCDAT PRELOAD MSB first
- CRCDAT_PRELOAD is pushed LSB first in the internal LFSR

PN7462 HW user manual

CRC value is read MSB first on the APB interface

Note: The same equations are used for LSB first and for MSB first. A simple serial shift is performed on the input data, preset value and calculated CRC to output the correct CRC value.

9.4 Typical Usage Example

For an input buffer size of 7 bytes and required output of 32-bit CRC with LSB first input, the CRC_CONTROL_REG is configured with 0x00000015. The first 4 bytes of the buffer is written to CRC_DAT32, the next 2 bytes is written to CRC_DAT16 and the last byte is written to CRC_DAT8. The CRCDAT_CALC is returned that contains the computed CRC

Alternatively, after writing 4 bytes of buffer to CRC_DAT32 and the next 3 bytes can be recursively written to CRC_DAT8 also.

CRC-16 set-up

Polynomial = $x^{16} + x^{15} + x^2 + 1$

Seed Value = 0xFFFF

Bit order reverse for data input: YES

1's complement for data input: NO

Bit order reverse for CRC sum: YES

1's complement for CRC sum: NO

 $CRC_MODE = 0x0000 0015$

 $CRC_SEED = 0x0000 0000$

CRC-32 set-up

Polynomial = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1

Seed Value = 0xFFFF FFFF

Bit order reverse for data input: YES

1's complement for data input: NO

Bit order reverse for CRC sum: YES

1's complement for CRC sum: YES

 $CRC_CONTROL_REG = 0x00000015$

 $CRC_SEED = 0xFFFF FFFF$

PN7462 HW user manual

9.5 Register overview and description

9.5.1 Register overview

Table 138. CRC register overview (base address 0x4000 C000)

Name	Address offset	Width (bits)	Access	Reset value	Description
CRC_CONTROL_REG	00h	32	R/W	00000000h	CRC configuration register
CRC_DAT32_REG	04h	32	R/W	00000000h	CRC data register for 32 AMBA bitstream
CRC_DAT16_REG	08h	32	R/W	00000000h	CRC data register for 16 AMBA bitstream
CRC_DAT8_REG	0Ch	32	R/W	00000000h	CRC data register for 8 AMBA bitstream
CRC_DAT_CALC_REG	10h	32	R	0000FFFFh	CRC calculated value for CRC16, CRC32
CRC_DAT_PRELOAD_REG	14h	32	R/W	00000000h	CRC preload value of CRC data
INTERNAL_USE	18h	8	R/W	00h	For internal use

9.5.2 Register description

Table 139. CRC_CONTROL_REG (address offset 0x00)

Bit	Symbol	Access	Value	Description
31:7	RESERVED	-	0	Reserved
6:4	CRCMOD	R/W	0,1 for each	Defines which type of CRC (CRC16 or CRC32) should be calculated:
			bit	0: CRC16
				1: CRC32
				2: Reserved
				3: Reserved
				4: Reserved
				5: Reserved
				6: Reserved
				7: Reserved
3	-	-	-	Reserved
2	CRCINV	R/W	0,1	Inverted input data
				0: MSB first
				0: MSB first 1: LSB first
1	RESERVED	-	-	
1 0	RESERVED CRC_ENABLE	- R/W	- 0,1	1: LSB first

PN7462 HW user manual

Table 140. CRC_DAT32_REG (address offset 0x04)

Bit	Symbol	Access	Value	Description
31:0	CRCDAT32	R/W	0, 1 for each	32 bits CRC value.
			bit	Writing to CRCDAT32 triggers a new CRC calculation over a 32 bits written word. Reading from CRCDAT32 returns the currently addressed CRC byte (see CRCCON).

Table 141. CRC_DAT16_REG (address offset 0x08)

Bit	Symbol	Access	Value	Description
31:16	RESERVED	-	0	Reserved
15:0	CRCDAT16	R/W	0,1 for each bit	16 bits CRC value. Writing to CRCDAT16 triggers a new CRC calculation over the 16 bits written word. Reading from CRCDAT16 returns the currently addressed CRC byte (see CRCCON).

Table 142. CRC_DAT8_REG (address offset 0x0C)

Bit	Symbol	Access	Value	Description
31:8	RESERVED	-	0	Reserved
7:0	CRCDAT8	R/W	0,1 for each bit	8 bits CRC value. Writing to CRCDAT8 triggers a new CRC calculation over the 8 bits written word. Reading from CRCDAT8 returns the currently addressed CRC byte (see CRCCON).

Table 143. CRC_DAT_CALC_REG (address offset 0x10)

Bit	Symbol	Access	Value	Description
31:0	CRCDAT_CALC	R	0,1 for each bit	CRCDAT_CALC[31:0]: 32bits CRC calculated value in CRC32 mode.
			Dit	CRCDAT_CALC[15:0]: 16bits CRC calculated value in CRC16 mode.

Table 144. CRC_DAT_PRELOAD_REG (address offset 0x14)

Bit	Symbol	Access	Value	Description
31:0	CRCDAT_PRELOAD	R/W	0,1 for each bit	32bits CRC preload value.
				Writing to CRCDAT_PRELOAD automatically preloads the CRC data register with the 32 bits written word. Reading from CRCDAT_PRELOAD returns the previously written preload value. Preloading the internal CRC shift register takes one clock cycle.

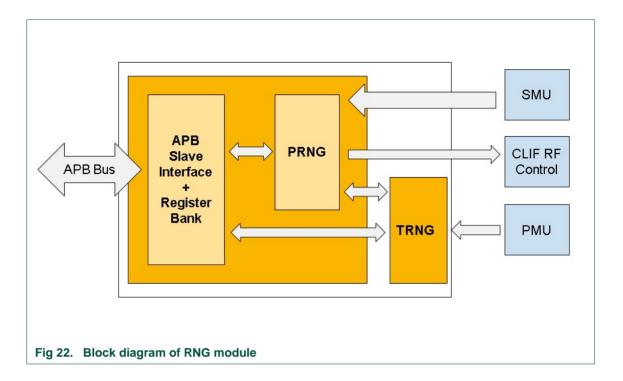
PN7462 HW user manual

10. Random number generator

The integrated RNG consists of two main parts: an analog True Random Number Generator (TRNG) connected to a digital Pseudo Random Number Generator (PRNG). The analog TRNG is used to load a new seed into the PRNG.

10.1 RNG features

- · Combination of an analog TRNG and a digital PRNG
- 80-bit LFSR + Substitution-Box
- Dedicated clock for TRNG, PRNG runs on system clock.
- · Data Ready Indicator bit
- Compliant to BSI AIS20 and SP800-22 (includes FIPS 140-2) RNG tests
- Connected to the CPU via an APB 3.0 bus


10.2 Functional description

The RNG module generates random numbers continuously at HFO speed. The RNG module can be stopped for lower consumption by disabling the HFO clock in the PCR or resetting the RNG_CONTROL_REG.rng_enable bit.

Main blocks (shown in Fig 22):

- · RNG digital core (PRNG)
- RNG analog core (TRNG)
- · APB Slave Interface and Register Bank

PN7462 HW user manual

10.2.1 PRNG digital core

The module delivers an 8-bit random number. The Pseudo Random Number Generator consists of an 80-bit LFSR with a feedback polynomial and an S-Box substitution for the output of the PRNG.

The feedback polynomial of the LFSR is:

$$x^{80} + x^{12} + x^7 + x^5 + 1 ag{3}$$

The feedback polynomial is XOR with the TRNG input when a new seed is loaded. Some bits in the LFSR feeds an S-BOX lookup-table, taken from the DES Specification and the output of the SBOX is XOR with the feedback value from the LFSR.

10.2.2 RNG analog core (TRNG)

The basic function of TRNG is to provide a seed for the PRNG. The TRNG needs supply and references from the PMU. The TRNG consists of 2 comparators which monitor an analog signal to choose which offset has to be applied to this signal. The outputs of these 2 comparators are combined to generate the random number.

The TRNG generates an input random bit stream, which is xored to avoid continuous 0's or 1's as PRNG seed value.

121 of 341

PN7462 HW user manual

10.3 Register overview and description

10.3.1 Random number generator register overview

Table 145. Random number generator register overview (base address 0x4001 8000)

Name	Address	Width (bits)	Access	Reset value	Description
RNG_STATUS_REG	00h	16	R	8F00h	random number status register
RNG_CONTROL_REG	04h	16	R/W	2600h	random number control register
RESERVED	08h	4	R/W	0h	Reserved

10.3.2 Register description

Table 146. RNG STATUS REG

Bit	Symbol	Access	Value	Description
31:16	RESERVED	-	0x00.	Reserved
15:8	rng	R	Ox8F	RNG number. Updated at each clock cycle but only considered random if rng_ready is high
7:3	RESERVED	-	0x00.	Reserved
2	rng_ready	R	0.	1: a new RNG value is available.
				0: the current value of RNG_STATUS_REG.rng is not random
1	rng_seed_error	R	0	1: TRNG did not provide the random stream in time. Cleared with rng_enable rising edge.
				0: If rng_seed_ready is high, TRNG is providing a random stream. If rng_seed_ready is low and rng_enable is high, TRNG is starting up.
0	Rng_seed_ready	R	0	1: seeding process is done and PRNG is providing a new RNG value every cycle.
				0: seeding process is ongoing

Table 147. RNG_CONTROL_REG

Bit	Symbol	Access	Value	Description
31:16	RESERVED	-	0x00.	Reserved
15:8	trng_startup_time	R/W	0x26	Programmable wait time to release gated clocks feeding TRNG.An internal counter is started when RNG_CONTROL_REG.rng_enable is set, increments at the speed of clkHFO_div8, stops when it reaches the RNG_CONTROL_REG.trng_startup_time value and resets when RNG_CONTROL_REG.rng_enable is set low. Default value is 15.2us.
7:1	RESERVED	-	0x00	reserved
0	rng_enable	R/W	0	1: enable PRNG (clkHFO is released)
				0: disable PRNG (clkHFO is gated)

PN7462 HW user manual

11. General-purpose timers and watchdog timers

The PN7462AU includes two 12-bit general purpose timers (on LFO clock domain) with match capabilities two 32-bit general purpose timers (on HFO clock domain) and a Watch Dog Timer (WDT).

The purpose of the watchdog is to reset the microcontroller within a reasonable amount of time if it enters an erroneous state. When enabled, the watchdog will generate a system reset if the user program fails to 'feed' (or reload) the watchdog within a predetermined amount of time.

The timers and watchdog are software configurable via a 32-bit APB slave interface.

Table 148. Timer characteristics

Name	Clock source	Frequency	Counter length (bit)	Resolution (ms)	Max delay(s)	Chaining possible
Timer 0	LFO/2	190 KHz	12	300 us	1.2	no
Timer 1	LFO/2	190 KHz	12	300 us	1.2	yes
Timer 2	HFO	20 MHz	32	50 ns	214	no
Timer 3	HFO	20 MHz	32	50 ns	214	no
Watchdog	LFO/128	2.96 KHz	10	21.5 ms	22	no

11.1 Timers features (Timers 0 and 1)

- Two 12-bit counters
- 1 match register per timer, no capture registers and capture trigger pins are needed
- 1 common output line gathering the four timer (Timer0, Timer1, Timer2, Timer3) Interrupts
- Timer0 and Timer1 can be concatenated (multiplied)
- Timer0 and Timer1 have two count modes: single-shot or free-running
- Timer0 and Timer1 timeout interrupts can be individually masked
- Timer0 and Timer1 Clock source is LFO clock

11.2 Timers features (Timer 2 and 3)

- Two 32-bit counters
- match register per timer, no capture registers and capture trigger pins are needed
- 1 common output line gathering the four timer (Timer0, Timer1, Timer2, Timer3) Interrupts
- Timer2 and Timer3 have two count modes: single-shot or free-running
- Timer2 and Timer3 timeout interrupts can be individually masked
- Timer2 and Timer3 clock source is HFO Clock

11.3 Watchdog features

• The watchdog has 10-bit counter

PN7462 HW user manual

- The watchdog interrupt is connected to the ARM subsystem NMI (non-mask able Interrupt).
- The watchdog eventually sends a reset signal to the PCR to reset the chip if the threshold setting is not periodically reloaded by the FW.
- The watchdog reset is enabled by software, requires a system reset or a Watchdog reset/interrupt to be disabled. When enabled, The CPU must pulse the kick bit to reload the watchdog counter before it expires.

11.4 Register overview and description

11.4.1 Register overview

Table 149. Timer register overview (base address 0x4001 C000)

Name	Address	Width	Access	Reset value	Description
	offset	(bits)			
TIMERS_TIMER0_CONTROL_REG	0000h	32	R/W	0000000h	Control of Timer 0
TIMERS_TIMER0_TIMEOUT_REG	0004h	32	R/W	0000000h	Timeout value of Timer0
TIMERS_TIMER0_COUNT_REG	0008h	32	R	0000000h	Current count value of Timer0
TIMERS_TIMER1_CONTROL_REG	000Ch	32	R/W	0000000h	Control of Timer1
TIMERS_TIMER1_TIMEOUT_REG	0010h	32	R/W	0000000h	Timeout value of Timer1
TIMERS_TIMER1_COUNT_REG	0014h	32	R	0000000h	Current count value of Timer1
TIMERS_TIMER2_CONTROL_REG	0018h	32	R/W	0000000h	Control of Timer 2
TIMERS_TIMER2_TIMEOUT_REG	001Ch	32	R/W	0000000h	Timeout value of Timer2
TIMERS_TIMER2_COUNT_REG	0020h	32	R	0000000h	Current count value of Timer2
TIMERS_TIMER3_CONTROL_REG	0024h	32	R/W	0000000h	Control of Timer3
TIMERS_TIMER3_TIMEOUT_REG	0028h	32	R/W	0000000h	Timeout value of Timer3
TIMERS_TIMER3_COUNT_REG	002Ch	32	R	0000000h	Current count value of Timer3
TIMERS_WDOG_CONTROL_REG	0030h	32	R/W	0000000h	Control of Watchdog Timer
TIMERS_WDOG_TIMEOUT_REG	0034h	32	R/W	0000000h	Timeout value of Watchdog Timer
TIMERS_WDOG_TRIGGER_INT_REG	0038h	32	R/W	0000000h	Count value of Watchdog Timer which triggers interrupt
TIMERS_WDOG_COUNT_REG	003Ch	32	R	0000000h	Current count value of Watchdog Timer
RESERVED	0040h	32	R/W	00000000h	Reserved
RESERVED	0044h	32	R	00000000h	Reserved
RESERVED	0048h - 3FC8h	32	R	00000000h	Reserved
TIMERS_WDOG_INT_STATUS_REG	3FCCh	32	R	00000000h	Watchdog interrupt status
TIMERS_WDOG_INT_CLR_STATUS_REG	3FD0h	32	W	00000000h	Watchdog clear interrupt

PN7462 HW user manual

Name	Address offset	Width (bits)	Access	Reset value	Description
TIMERS_WDOG_INT_SET_STATUS_REG	3FD4h	32	W	00000000h	Watchdog set interrupt
TIMERS_INT_CLR_ENABLE_REG	3FD8h	32	W	00000000h	Timer clear interrupt enable
TIMERS_INT_SET_ENABLE_REG	3FDCh	32	W	00000000h	Timer set interrupt enable
TIMERS_INT_STATUS_REG	3FE0h	32	R	00000000h	Timer interrupt status
TIMERS_INT_ENABLE_REG	3FE4h	32	R	00000000h	Timer interrupt enable
TIMERS_INT_CLR_STATUS_REG	3FE8h	32	W	00000000h	Timer clear interrupt
TIMERS_INT_SET_STATUS_REG	3FECh	32	W	00000000h	Timer set interrupt
RESERVED	3FF0h - 3FFCh	32	R	00000000h	Reserved

11.4.2 Register description

Table 150. TIMERS_TIMER0_CONTROL_REG (address offset 0x0000)

Bit	Symbol	Reset Value	Access Type	Description
31:1	RESERVED	0	R	Reserved
0	TIMER0_MODE	0	R/W	0 – single shot
				1 – free running

Table 151. TIMERS_TIMER0_TIMEOUT_REG (address offset 0x0004)

Bit	Symbol	Reset Value	Access Type	Description
31:12	RESERVED	0	R	Reserved
11:0	TIMER0_TIMEOUT	0	R/W	Initial count value of Timer0 in step size of 0.30 ms ^[2] . If set to 0, this feature is disabled.

Table 152. TIMERS_TIMERO_COUNT_REG (address offset 0x0008)

Bit	Symbol	Reset Value	Access Type	Description
31:12	RESERVED	0	R	Reserved
11:0	TIMER0_COUNT	0	R	Current count value of Timer0 in step size of 0.30ms

Table 153. TIMERS_TIMER1_CONTROL_REG (address offset 0x000C)

Bit	Symbol	Reset Value	Access Type	Description
31:2	RESERVED	0	R	Reserved
1	ENABLE_TIMER0_TRIGGER	0	R/W	1- Timer1 will decrement once when Timer0 reaches its terminal count (assuming that field TIMER1_TIMEOUT is non-zero in register TIMERS_TIMER1_TIMEOUT)
				0: Timer1 counts independently

PN7462 HW user manual

Bit	Symbol	Reset Value	Access Type	Description
0	TIMER1_MODE	0	R/W	0: single shot 1 - free-running

Table 154. TIMERS TIMER1 TIMEOUT REG (address offset 0x0010)

Bit	Symbol	Reset Value	Access Type	Description
31:12	RESERVED	0	R	Reserved
11:0	TIMER1_TIMEOUT	0	R/W	Initial count value of Timer1 in step size of 0.30 ms ^[2] . If set to 0, this feature is disabled.

Table 155. TIMERS_TIMER1_COUNT_REG (address offset 0x0014)

Bit	Symbol	Reset Value	Access Type	Description
31:12	RESERVED	0	R	Reserved
11:0	TIMER1_COUNT	0	R	Current count value of Timer1 in step size of 0.30 ms

Table 156. TIMERS_TIMER2_CONTROL_REG (address offset 0x0018)

Bit	Symbol	Reset Value	Access Type	Description
31:1	RESERVED	0	R	Reserved
0	TIMER2_MODE	0	R/W	0 – single shot
				1 – free running

Table 157. TIMERS_TIMER2_TIMEOUT_REG (address offset 0x001C)

Bit	Symbol	Reset Value	Access Type	Description
31:0	TIMER2_TIMEOUT	0	R/W	Initial count value of Timer2 in step size of 0.30 ms ^[2] . If set to 0, this feature is disabled.

Table 158. TIMERS_TIMER2_COUNT_REG (address offset 0x0020)

Bit	Symbol	Reset Value	Access Type	Description
31:0	TIMER2_COUNT	0	R	Current count value of Timer2 in step size of 50 ns

Table 159. TIMERS TIMER3 CONTROL REG (address offset 0x0024)

Bit	Symbol	Reset Value	Access Type	Description
31:1	RESERVED	0	R	Reserved
0	TIMER3_MODE	0	R/W	0: single shot 1: free running

PN7462 HW user manual

Table 160. TIMERS_TIMER3_TIMEOUT_REG (address offset 0x0028)

Bit	Symbol	Reset Value	Access Type	Description
31:0	TIMER3_TIMEOUT	0	R/W	Initial count value of Timer3 in step size of 0.30 ms ^[2] . If set to 0, this feature is disabled.

Table 161. TIMERS_TIMER3_COUNT_REG (address offset 0x002C)

Bit	Symbol	Reset Value	Access Type	Description
31:0	TIMER3_COUNT	0	R	Current count value of Timer3 in step size of 50 ns

Table 162. TIMERS_WDOG_CONTROL_REG (address offset 0x0030)

Bit	Symbol	Reset Value	Access Type	Description
31:1	RESERVED	0	R	reserved
0	WDOG_KICK	0	D	1: re-initialize the Watchdog Timer to value WDOG_TIMEOUT 0: no effect

Table 163. TIMERS_WDOG_TIMEOUT_REG (address offset 0x0034)

Bit	Symbol	Reset Value	Access Type	Description
31:10	RESERVED	0	R	reserved
9:0	WDOG_TIMEOUT	0	R/W	Initial count value of Watchdog Timer in step size of 21.5 ms If set to 0, this feature is disabled.

Table 164. TIMERS_WDOG_TRIGGER_INT_REG (address offset 0x0038)

Bit	Symbol	Reset Value	Access Type	Description
31:10	RESERVED	0	R	reserved
9:0	WDOG_INT_THRESHOLD	0	R/W	Count value of Watchdog Timer which triggers interrupt intreq_wdog_o

Table 165. TIMERS_WDOG_COUNT_REG (address offset 0x003C)

Bit	Symbol	Reset Value	Access Type	Description
31:10	RESERVED	0	R	reserved
9:0	WDOG_COUNT	0	R	Current count value of Watchdog Timer in step size of 21.5 ms

PN7462 HW user manual

Table 166. TIMERS_WDOG_INT_STATUS_REG (address offset 0x3FCC)

Bit	Symbol	Reset Value	Access Type	Description
31:1	RESERVED	0	R	reserved
0	WDOG_TIMEOUT_ STATUS	0	R	Watchdog timeout interrupt status

Table 167. TIMERS_WDOG_INT_CLR_STATUS_REG (address offset 0x3FD0)

Bit	Symbol	Reset Value	Access Type	Description
31:1	RESERVED	0	W	reserved
0	WDOG_TIMEOUT_CLR_STATUS	0	W	1: clear Watchdog timeout interrupt
				0: no effect

Table 168. TIMERS_WDOG_INT_SET_STATUS_REG (address offset 0x3FD4)

Bit	Symbol	Reset Value	Access Type	Description
31:1	RESERVED	0	W	reserved
0	WDOG_TIMEOUT_SET_STATUS	0	W	1: set Watchdog timeout interrupt 0: no effect

Table 169. TIMERS_INT_CLR_ENABLE_REG (address offset 0x3FD8)

Bit	Symbol	Reset Value	Access Type	Description
31:4	RESERVED	0	W	reserved
3	TIMER3_TIMEOUT_CLR_ENABLE	0	W	1: clear enable for Timer3 timeout interrupt 0: no effect
2	TIMER2_TIMEOUT_CLR_ENABLE	0	W	1: clear enable for Timer2 timeout interrupt 0: no effect
1	TIMER1_TIMEOUT_CLR_ENABLE	0	W	1: clear enable for Timer1 timeout interrupt 0: no effect
0	TIMER0_TIMEOUT_CLR_ENABLE	0	W	1: clear enable for Timer0 timeout interrupt 0: no effect

Table 170. TIMERS INT SET ENABLE REG (address offset 0x3FDC)

Bit	Symbol	Reset Value	Access Type	Description
31:4	RESERVED	0	W	reserved
3	TIMER3_TIMEOUT_SET_ENABLE	0	W	1: set enable for Timer3 timeout interrupt 0: no effect
2	TIMER2_TIMEOUT_SET_ENABLE	0	W	set enable for Timer2 timeout interrupt o: no effect
1	TIMER1_TIMEOUT_SET_ENABLE	0	W	1: set enable for Timer1 timeout interrupt

PN7462 HW user manual

Bit	Symbol	Reset Value	Access Type	Description
				0: no effect
0	TIMER0_TIMEOUT_SET_ENABLE	0	W	set enable for Timer0 timeout interrupt o: no effect

Table 171. TIMERS_INT_STATUS_REG (address offset 0x3FE0)

Bit	Symbol	Reset Value	Access Type	Description
31:4	RESERVED	0	R	reserved
3	TIMER3_TIMEOUT_STATUS	0	R	Timer3 timeout interrupt status
2	TIMER2_TIMEOUT_STATUS	0	R	Timer2 timeout interrupt status
1	TIMER1_TIMEOUT_STATUS	0	R	Timer1 timeout interrupt status
0	TIMER0_TIMEOUT_STATUS	0	R	Timer0 timeout interrupt status

Table 172. TIMERS_INT_ENABLE_REG (address offset 0x3FE4)

Bit	Symbol	Reset Value	Access Type	Description
31:4	RESERVED	0	R	Reserved
3	TIMER3_TIMEOUT_ENABLE	0	R	Timer3 timeout interrupt enable
2	TIMER2_TIMEOUT_ENABLE	0	R	Timer2 timeout interrupt enable
1	TIMER1_TIMEOUT_ENABLE	0	R	Timer1 timeout interrupt enable
0	TIMER0_TIMEOUT_ENABLE	0	R	Timer0 timeout interrupt enable

Table 173. TIMERS_INT_CLR_STATUS_REG (address offset 0x3FE8)

Bit	Symbol	Reset Value	Access Type	Description
31:4	RESERVED	0	W	reserved
3	TIMER3_TIMEOUT_CLR_STATUS	0	W	clear Timer3 timeout interrupt o: no effect
2	TIMER2_TIMEOUT_CLR_STATUS	0	W	clear Timer2 timeout interrupt o: no effect
1	TIMER1_TIMEOUT_CLR_STATUS	0	W	1: clear Timer1 timeout interrupt 0: no effect
0	TIMER0_TIMEOUT_CLR_STATUS	0	W	1: clear Timer0 timeout interrupt 0: no effect

PN7462 HW user manual

Table 174. TIMERS_INT_SET_STATUS_REG (address offset 0x3FEC)

Bit	Symbol	Reset Value	Access Type	Description
31:4	RESERVED	0	W	reserved
3	TIMER3_TIMEOUT_SET_STATUS	0	W	1: set Timer3 timeout interrupt 0: no effect
2	TIMER2_TIMEOUT_SET_STATUS	0	W	1: set Timer2 timeout interrupt 0: no effect
1	TIMER1_TIMEOUT_SET_STATUS	0	W	1: set Timer1 timeout interrupt 0: no effect
0	TIMER0_TIMEOUT_SET_STATUS	0	W	1: set Timer0 timeout interrupt 0: no effect

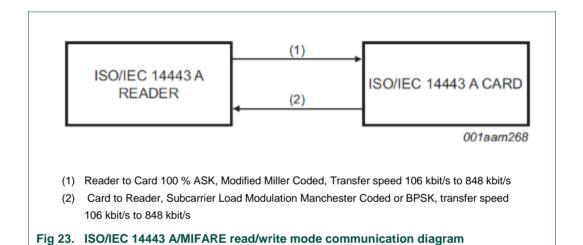
12. PN7462AU Contactless interface

The PN7462AU embeds a high power 13.56 RF front end. The RF interface implements the RF functionality, like antenna driving, and the receiver circuitry and all the low-level functionalities, to enable to realize an NFC forum or an EMV Co compliant reader. The PN7462AU allows different voltages for the RF drivers. The PN7462AU uses an external oscillator, working at 27.12 MHz, as a clock source for generating the RF field and its internal operation.

12.1 Contactless interface features

- ISO/IEC 14443 type A & B compliant
- MIFARE functionality, including MIFARE Classic encryption in read/write mode
- ISO/IEC 15693 compliant
- ICLASS UID
- NC Forum NFCIP-1 & NFC IP2 compliant
- P2P, active and passive mode
- Reading of NF C Forum Tag Types 1,2,3,4,5
- FeliCa
- ISO/IEC18000-3 Mode 3
- EPC UID
- EMVCo contactless
 - RF level can be achieved without the need of booster circuitry (for some antenna topologies the EMV
 - o RF-level compliance might physically not be achievable)
- Card mode enabling the emulation of an ISO14443 Type A card
 - Supports PLM (Passive Load Modulation) and ALM (Active Load Modulation)
- LPCD Low Power Card Detection
- Adjustable Rx-Voltage level

PN7462 HW user manual


A minimum voltage of 2.3 V enable to use card emulation, and P2P passive target functionality - in passive load modulation. A voltage above 2.7 V enables the complete contactless functionality.

12.2 Reader/Writer modes

12.2.1 ISO/ IEC14443 A/ MIFARE and Jewel/Topaz PCD modes

The ISO/IEC 14443A/MIFARE PCD mode is the general reader to card communication scheme according to the ISO/IEC 14443A specification. This modulation scheme is as well used for communications with Jewel/Topaz cards.

The physical level of the communication is shown in Fig 23.

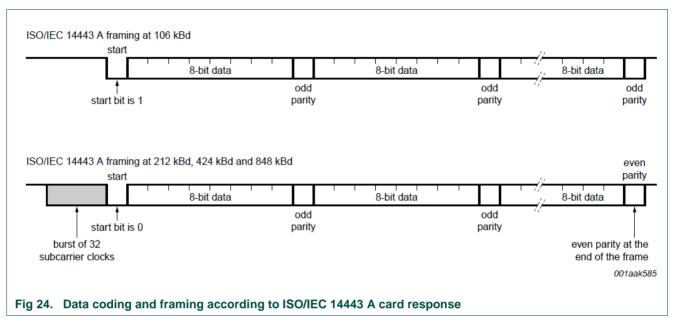
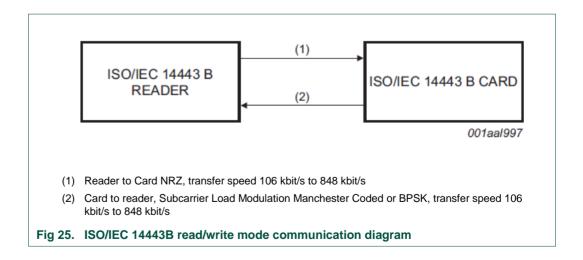

The physical parameters are described in Table 175

Table 175. Communication overview for ISO/IEC 14443 A/MIFARE reader/ writer

Communication	Signal type	Transfer speed			
direction		106 kbit/s	212 kbit/s	424 kbit/s	848 kbit/s
Reader to card fc = 13.56 MHz	Reader side modulation	100 % ASK	100 % ASK	100 % ASK	100 % ASK
	Bit encoding	Modified Miller encoding	Modified Miller encoding	Modified Miller encoding	Modified Miller encoding
	Bit rate [kbit/s]	f _c /128	f _c /64	f _c /32	f _c /16
Card to reader	Card side modulation	Subcarrier load modulation	Subcarrier load modulation	Subcarrier load modulation	Subcarrier load modulation
	Subcarrier frequency	f₀/16	f _c /16	f _c /16	f₀/16
	Bit encoding	Manchester encoding	BPSK	BPSK	BPSK

PN7462 HW user manual


No connection to a host is required to manage the complete ISO/IEC 14443 A/MIFARE protocol. Fig 24 shows the data coding and framing according to ISO/IEC 14443 A/MIFARE.

The internal CRC coprocessor calculates the CRC value based on the selected protocol. In card mode for higher baud rates, the parity is automatically inverted as end of communication indicator.

12.2.2 ISO/IEC14443 B PCD mode

The physical level of the communication is shown in Fig 25

PN7462 HW user manual

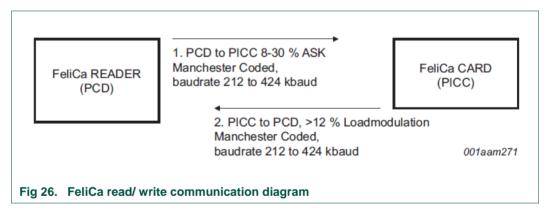

The physical parameters are described in <u>Table 176</u>.

Table 176. Communication overview for ISO/IEC 14443 B reader/ writer

Communication	Signal type	Transfer speed			
direction		106 kbit/s	212 kbit/s	424kbit/s	848 kbit/s
Reader to card	Reader side modulation	10 % ASK	10 % ASK	10 % ASK	10 % ASK
	Bit encoding	NRZ	NRZ	NRZ	NRZ
	Bit rate [kbit/s]	f _c /128	f _c /64	f _c /32	f _c /16
Card to reader	Card side modulation	Subcarrier load modulation	Subcarrier load modulation	Subcarrier load modulation	Subcarrier load modulation
	Subcarrier frequency	f _c /16	f _c /16	f _c /16	f _c /16
	Bit encoding	BPSK	BPSK	BPSK	BPSK

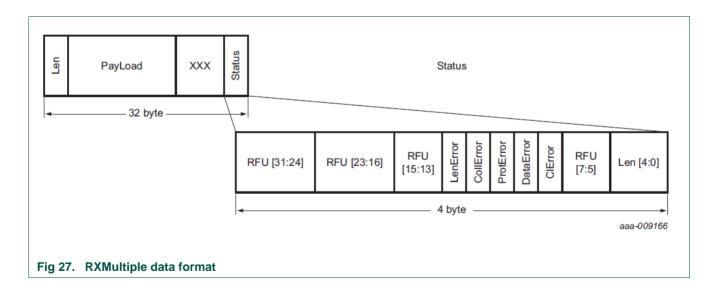
12.2.3 FeliCa PCD mode

The FeliCa mode is the general reader/ writer to card communication scheme according to the FeliCa specification. The communication on a physical level is shown in Fig 26

The physical parameters are described in Table 177

Table 177. Communication overview for FeliCa reader/ writer

Communication direction	Signal type	Transfer speed FeliCa	FeliCa higher transfer speed
		212 kbit/s	424 kbit/s
Reader to card	Reader side modulation	8 to 30 % ASK	8 to 30 % ASK
	Bit encoding	Manchester encoding	Manchester encoding
	Bit rate	f _c /64	fc/32
Card to reader	Card side modulation	Load modulation	Load modulation
	Bit encoding	Manchester encoding	Manchester encoding


PN7462 HW user manual

12.2.3.1 Multiple reception cycles (RXMultiple)

For FeliCa timeslot handling in PCD mode PN7462AU implements multiple reception cycles. The feature is enabled by setting the control bit RX_MULTIPLE_ENABLE in the register TRANSCEIVE_CONTROL_REG in combination with the transceive or the receive command.

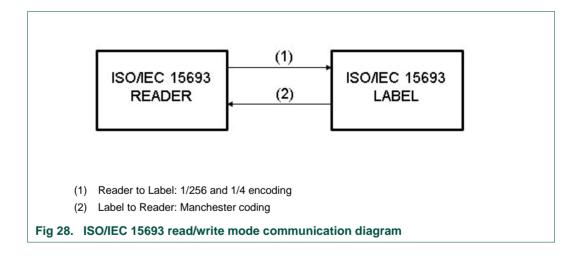
Unlike for normal operation the receiver is enabled again after a reception is finished. It is necessary to issue the IDLE command in order to leave the RXMultiple cycle. As there is only one receive buffer available but several responses are expected the buffer is split into sub buffers of 32-byte length. Hence, the maximum number of responses which can be handled is limited to 8. As the maximum length defined for a FeliCa response is 20 bytes the buffer size defined does fulfill the requirements for that use-case. The first data frame received is copied onto buffer address 0. The subsequent frames will be copied to the buffer address 32 * NumberOfReceivedFrames. The maximum number of data bytes allowed per frame is limited to 28.

All bytes in the buffer between the payload and the status byte are un-initialized and therefore invalid. FW has to take care that these bytes are not used. The last word of the sub buffer (position 28 to 31) contains a status word. The status word contains the number of received bytes (may vary from the FeliCa length in case of an error), the CLError flag indicating any error in the reception (which is a combination of 3 individual error flags DATA_INTEGRITY_ERROR || PROTOCOL_ERROR || COLLISION_DETECTED) the individual error flags and the LenError flag indicating an incorrect length byte (either length byte is greater than 28 or the number of received bytes is shorter than indicated by the length byte). All unused bits (RESERVED) are masked to 0.

There are 4 different scenarios possible for reception:

 Correct reception - Data integrity is correct (no CRC error), and additionally the number of bytes received is equal to the length byte. Data is written to the buffer. No error set in status byte.

134 of 341


PN7462 HW user manual

- Erroneous reception Data is incorrect (data integrity error CRC wrong) but frame length is correct. Data is written to buffer and the bits CLError and DataError in the status byte are set.
- 3. Erroneous reception the length byte received indicates a frame length greater than 28. No data is copied to buffer but status byte with LenError bit set is written.
- 4. Erroneous reception the length byte is larger than the number of data bytes, which have been received. Data received is written to buffer and the ProtocolError bit in the status byte is set.

For each reception, the RX_IRQ in the GENERAL_IRQ_STATUS_REG is set. FW can disable the IRQ and use a timer for time-out after the last time slot to avoid excessive interaction with the hardware. At the end of the reception additionally the bit field RX_NUM_FRAMES_RECEIVED in the register RX_STATUS_REG is updated to indicate the number of received frames. After the reception of the 8th frame (which is the maximum supported) a state change to next expected state is executed (IDLE for Receive command and WaitTransmit for transceive command). Consequently, the reception is stopped. Upon start of a new reception cycle the flag RX_NUM_FRAMES_RECEIVED is cleared. The duration between deactivate and reactivate is at minimum 2 RF cycles and can last up to 2 us.

12.2.4 ISO/IEC 15693 PCD mode

The physical level of the communication is shown in Fig 28.

The physical parameters are described in <u>Table 178</u>.

PN7462 HW user manual

Table 178. ISO/IEC 15693 reader/writer to label communication overview

Communication	Signal type		Tran	sfer speed	
direction		fc/8192 kbit/s		fc/512 kbit/s	
Reader to card	Reader side modulation		% ASK or % ASK	10 to 30 % ASK 90 % to 100 % ASK	
	Bit encoding	1/	256		1/4
	Bit length	4.83	33 ms	30	2.08 us
		6.62 (6.67) kbit/s	13.24 kbit/s	26.48 (26.69) kbit/s	52.96 kbit/s
Card to reader	Card side modulation	Not supported	Not supported	single (dual) subcarrier load modulation ASK	single subcarrier load modulation ASK
	Bit length	-	-	37.76(3.746) us	18.88 us
	Bit encoding	-	-	Manchester coding	Manchester coding
	Sub-carrier frequency	-	-	fc /32 (fc /28) MHz	fc /32 MHz

12.2.5 ISO/IEC18000-3 Mode 3 VCD mode

The ISO/IEC 18000-3 mode 3 is not described in this document. For a detailed explanation of the protocol, refer to the ISO/IEC 18000-3 standard.

12.3 NFC modes

12.3.1 NFCIP - 1 modes

12.3.1.1 Overview

The NFCIP-1 communication differentiates between an Active and a Passive Communication Mode.

Active Communication mode means both the initiator and the target are using their own RF field to transmit data.

- Passive Communication mode means that the target answers to an initiator command in a load modulation scheme. The initiator is active in terms of generating the RF field.
- Initiator: generates RF field at 13.56 MHz and starts the NFCIP-1 communication
- Target: responds to initiator command either in a load modulation scheme in Passive Communication mode or using a self-generated and self-modulated RF field for Active Communication mode.

In order to fully support the NFCIP-1 standard the PN7462AU supports the Active and Passive Communication mode at the transfer speeds 106 kbit/s, 212 kbit/s and 424 kbit/s as defined in the NFCIP-1 standard.

PN7462 HW user manual

12.3.1.2 Active communication mode

Active communication mode means both the initiator and the target are using their own RF field to transmit data.

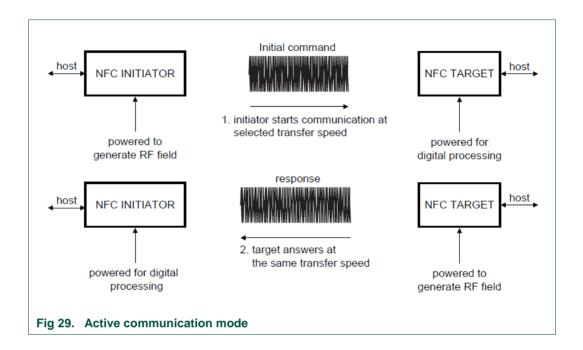


Table 179. Communication overview for active communication mode

Communication direction	106 kbit/s	212 kbit/s	424 kbit/s
Initiator → Target	According to ISO/IEC	According to FeliCa	8 – 30 % ASK
Target → Initiator	14443A 100% ASK, modified Miller Coded	Manchester Coded	

A dedicated host controller firmware is required to handle the NFCIP-1 protocol.

Note: Transfer Speeds above 424 kbit/s are not defined in the NFCIP-1 standard.

12.3.1.3 Passive communication mode

Passive Communication mode means that the target answers to an initiator command in a load modulation scheme. The initiator is active (powered) to generate the RF field.

PN7462 HW user manual

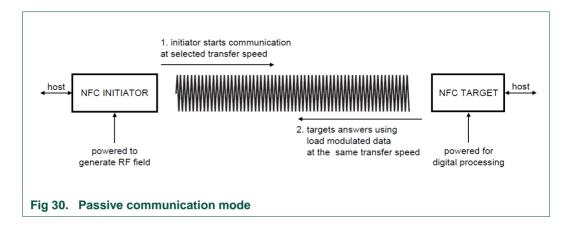


Table 180. Communication overview for active communication mode

Communication direction	106 kbit/s	212 kbit/s	424 kbit/s
Initiator → Target	According to ISO/IEC 14443A 100% ASK, modified Miller Coded	According to FeliCa Manchester Coded	8 – 30 % ASK
Target → Initiator	According to ISO/IEC 14443A @ 106 kbit/s modified Miller Coded	According to FeliCa Manchester Coded	>12 % ASK

A dedicated host controller firmware is required to handle the NFCIP-1 protocol.

Note: Transfer Speeds above 424 kbit/s are not defined in the NFCIP-1 standard.

12.3.1.4 ISO/IEC14443 A/MIFARE Card operation mode

PN7462AU can be addressed as a ISO/IEC 14443 A card.

This means that PN7462AU can generate an answer in a load modulation scheme according to the ISO/IEC 14443 A interface description.

The following tables describes the physical parameters of an ISO/IEC14443 A card mode:

Table 181. ISO/IEC14443 A Card operation mode

Communication	Signal type	Transfer speed		
direction		106 kbit/s	212 kbit/s	424 kbit/s
Reader/ writer to PN7462AU	Reader side modulation	100 % ASK	>25 % ASK	>25 % ASK
	Bit encoding	Modified Miller e	Modified Miller	Modified Miller
	Bit length	128/f _c us	64/f _c us	32/f _c us
PN7462AU to reader/ writer	Card side modulation	Subcarrier load modulation	Subcarrier load modulation	Subcarrier load modulation
	Subcarrier frequency	f₀/16	f _c /16	f√16
	Bit coding	Manchester	BPSK	BPSK

PN7462 HW user manual

Communication	Signal type	Transfer speed		
direction		106 kbit/s	212 kbit/s	424 kbit/s
	Bit encoding	Manchester encoding	BPSK	BPSK

12.3.1.5 ISO/IEC14443 B Card operation mode

PN7462AU can be also addressed as an ISO/IEC 14443 B card. The following table describes the physical parameters of an ISO/IEC14443 B card mode:

Table 182. ISO/IEC1443 B Card operation mode

Communication	Signal type	Transfer speed		
direction		106 kbit/s	212 kbit/s	424 kbit/s
Reader/ writer to PN7462AU	Reader side modulation	8-14 % ASK	8-14 % ASK	8-14 % ASK
	Bit encoding	NRZ	NRZ	NRZ
	Bit length	128/f _c us	64/f _c us	32/f _c us
PN7462AU to reader/ writer	Card side modulation	Subcarrier load modulation	Subcarrier load modulation	Subcarrier load modulation
	Subcarrier frequency	f _c /16	f _c /16	f _c /16
	Bit coding	Manchester	BPSK	BPSK
	Bit encoding	BPSK	BPSK	BPSK

12.3.1.6 NFCIP-1 framing and coding

The NFCIP-1 framing and coding in Active and Passive Communication mode is defined in the NFCIP-1 standard. The following data rates are supported by the PN7462AU:

Table 183. Framing and coding

Transfer speed	Framing and Coding
106 kbit/s	According to the ISO/IEC 1443 A/ MIFARE scheme
212 kbit/s	According to the FeliCa scheme
424 kbit/s	According to the FeliCa scheme

12.3.1.7 NFCIP-1 protocol support

The NFCIP-1 protocol is not completely described in this document. The PN7462AU does not implement any of the high-level protocol functions. This higher level protocol function need to be provided by the host. For detailed explanation of the protocol refer to the NFCIP-1 standard. However, the data link layer is according to the following policy:

- Speed shall not be changed while continuous data exchange in a transaction.
- Transaction includes initialization, anti-collision methods and data exchange (in continuous way, meaning no interruption by another transaction).

In order not to disturb current infrastructure based on 13.56 MHz, the following general rules to start a NFCIP-1 communication are defined:

PN7462 HW user manual

- 1. Per default a NFCIP-1 device is in Target mode meaning its RF field is switched off.
- 2. The RF level detector is active.
- 3. Only if it is required by the application the NFCIP-1 device shall switches to Initiator mode.
- 4. An initiator shall only switch on its RF field if no external RF field is detected by the RF Level detector during a time of TIDT.
- 5. The initiator performs initialization according to the selected mode.

12.3.2 NFC Configuration

The NFC protocol defines for 106kbps mode an additional Sync-Byte (0xF0 + parity) after the normal start bit transmitted. As this Sync-Byte has a parity it can be handled by a host FW as a normal data byte. The PN7462AU however, provides all means to automatically handle the Sync-Byte.

There are four different areas where adaptations in respect to the default configuration can be done:

- Reader mode signal processing to remove the Sync-Byte for NFC-Passive-Initiator
- mode
- Card mode signal processing configuration for removal of the Sync-Byte for all other
- NFC-modes (Passive-Target, Active-Target and Initiator)
- Transmitter settings to automatically add the Sync-Byte for transmission
- Adapted CRC preset value to correctly calculate the CRC

12.3.3 Card mode detection

The PN7462AU provides the functionality of automatic mode detection for the card mode. If activated and as soon as the receiver is enabled the signal processing module does permanently check for an incoming communication at one of the supported protocols (Type A, B, F). As soon as a Start-of-Frame for one protocol is detected all reception based CLIF registers are configured automatically to allow reception of the incoming frame. This includes all Rx protocol framing configuration (data-rate, parity, CRC, start-/stop-bit, EoF-detection, tx_wait guard time, miller-synchronization).

It is not allowed that FW modifies any of the registers set by the mode-detector while communication is ongoing. Of course, if necessary setting can be changed later on (e.g. for changing baudrates). But as all relevant configuration is done by the mode-detector for the ongoing reception any change made by FW can lead to a fail of the reception.

All transmission related configuration must be set-up by FW. As Type A is the most timing critical protocol and additionally the activation is done in hardware by the CMA the default configuration for the mode-detection is Type A.

Consequently, FW needs to set all TX registers according to Type A protocol up-front. The CRC however needs to be disabled because it is not used for the activation.

PN7462 HW user manual

12.3.3.1 General target mode configuration (GTM)

Depending on the configuration a certain protocol can be selected/disabled for the card mode detection:

- Miller decoder is enabled > TypeA/NFC 106kbps is detected
- NRZ decoder is enabled > TypeB 106kbps is detected
- Manchester decoder is enabled > Felica / NFC 212/424kbps is detected

It is not possible to enable only one baudrate for the Felica protocol.

12.3.3.2 Card mode detection - CMA active

Usually, in the card mode the CMA is enabled to handle the Type A activation automatically. In case a Type A command is detected, the CMA takes over the activation process including the transceive flow control. In such a case after the initial MODE_DETECTED_IRQ all subsequent IRQs are disabled until either the Type A activation is complete (indicated by an CARD_ACTIVATED_IRQ) or a different protocol is detected. For the later scenario, the MODE_DETECTED_IRQ is set and all IRQs are unmasked again.

12.3.3.3 Card mode detection - FW handling

In case a protocol different to Type A (Type B or Felica) is detected FW needs to handle the complete activation process. In such a case CMA is inactive and all IRQs are passed to FW.

12.3.4 Active Load Modulation

When PN7462AU is used in the card emulation mode, or P2P passive target mode, it has to modulate the field emitted by the external reader or NFC passive initiator.

To modulate the field, PN7462AU has two possibilities:

- Passive Load Modulation (PLM): the reader modifies its antenna characteristics, which will be detecting by the reader through the antenna coupling.
- Active Load Modulation (ALM): the reader generates a small field, in phase opposition with the reader's emitted field, which will be detected by the reader reception stage.

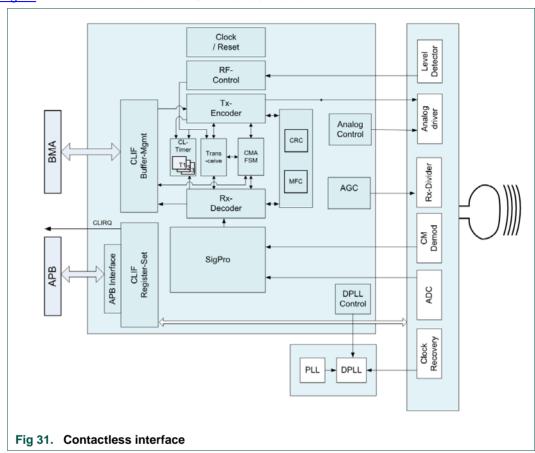
The modulation type to use depends on the external reader and PN7462AU antenna, and must be chosen depending on the application.

12.3.5 Low Power Card Detection

If a card is moved into the RF field of the reader, then in many cases the antenna is detuned and the voltage value at the reader changes. This fact is exploited for low power card detection, where the AGC is used to detect small changes of the RF field. The AGC is used in fast-mode in order to keep the operational time to a minimum.

The following steps are performed in a loop:

 Write the Rx-Divider nominal value into the CLIF_AGC_VALUE_REG.AGC_VALUE_RM


PN7462 HW user manual

- 2. Activate Fast-tracking mode
 - a. Set AGC FAST MODE ENABLE = 1
 - b. Set AGC_FAST_MODE_STEP
 - c. Set AGC_FAST_MODE_DURATION
- 3. Configure to load the Rx-Divider to nominal value
 - a. Disable the AGC operation by writing "0" to CLIF_AGC_CONFIGO_REG.AGC_MODE_ENABLE.
 - b. Configure the AGC to manual mode by writing "0" to CLIF_AGC_CONFIG0_REG.AGC_MODE_SEL.
 - c. Configure the AGC input to card-mode by writing "1" to CLIF_AGC_CONFIG0_REG.AGC_INPUT_SEL.
 - d. Configure the AGC time constant and the CLIF_AGC_CONFIG0_REG.AGC_TIME_CONSTANT (value to be added) and CLIF_AGC_CONFIG0_REG.AGC_THRESHOLD (value to be added)
- 4. Load the Rx-Divider to nominal value (first four steps match 3.)
 - a. Disable the AGC operation by writing "0" to CLIF_AGC_CONFIGO_REG.AGC_MODE_ENABLE.
 - b. Configure the AGC to manual mode by writing "0" to CLIF_AGC_CONFIG0_REG.AGC_MODE_SEL.
 - c. Configure the AGC input to card-mode by writing "1" to CLIF_AGC_CONFIGO_REG.AGC_INPUT_SEL.
 - d. Configure the AGC time constant and the CLIF_AGC_CONFIG0_REG.AGC_TIME_CONSTANT (value to be added) and CLIF_AGC_CONFIG0_REG.AGC_THRESHOLD (value to be added)
 - e. Load the CM value CLIF_AGC_VALUE_REG.AGC_VALUE_RM into the AGC register by writing "1" to CLIF_AGC_CONFIG_REG.AGC_LOAD.
- 5. Start AGC feedback operation
 - a. Enable the AGC by writing "1" to
 CLIF AGC CONFIG REG.AGC MODE ENABLE.
 - b. Configure the AGC to feedback mode by writing "1" to CLIF_AGC_CONFIGO_REG.AGC_MODE_SEL.
- 6. Wait a certain time for AGC to settle.
- 7. Card detection:
 - a. Compare AGC control value with nominal value. If the change exceeds a certain threshold, then a card is detected.
 - b. Perform protocol check using Reader Mode configuration for the AGC.
 - c. If no card responds to the request, then the actual AGC value is stored as nominal value for the next comparison.

PN7462 HW user manual

12.4 Functional Description

Fig 31 shows an overview of the Contactless interface.

12.4.1 Clock/Reset Block

The Clock/Reset module is the source of all clocks and reset used in the CLIF.

Table 184 summarized the input clocks of the CLIF module.

Table 184. Input clocks of CLIF

Symbol	Source	Frequency	Description
clk_pll_27m12	PCR	27.12 MHz	IP clock for active contactless communication.
clk_rf_27m12	Clock Recovery	27.12 MHz	Clock recovered from the RF-Field by the analog CLIF clock recovery
clk_pcr_lfo	PCR	380 KHz	Low frequency oscillator clock
clk_pcr_hfo	PCR	20 MHz	High frequency oscillator clock

The main clock for the contactless interface is the clk13 - a 13.5 6MHz clock derived from 27.12 MHz clock either from PLL or the analog RF clock recovery. The RF clock is only

PN7462 HW user manual

present when the device is within the RF-Field. PLL clock is available as soon as the CLIF PLL is enabled and locked to the input clock.

The HFO (high frequency oscillator – 20 MHz nominal) clock is always available as soon systems is active. Some functional blocks use this clock as the functionality must be available even if the main contactless clock is not available. Modules interfacing the ARM sub-system (APB register interface and Buffer Manager) also operate at system clock (nominal 20 MHz).

12.4.2 Digital PLL (DPLL) Control

For Active Load Modulation (ALM) with a single loop antenna the PLL is extended by a digital PLL (DPLL), which is controlled by this module. For ALM with a single loop antenna the generated frequency by the PLL must be aligned with the field clock in phase and frequency. During transmission, the frequency is kept constant (as close as possible to the frequency of the reader) such that the phase drift between the RF signal generated by the reader and the transmitted signal by the card (ALM) is kept to a minimum.

12.4.3 CLIF Signal Processing (SigPro) Block

This SigPro module performs digital signal processing. The input is the demodulated envelope signal and the output is a digital data signal, which is further processed in the

Rx-Decoder. The SigPro module consists of three modes i.e., reader-mode, card-mode, and ADC based card-mode. The SigPro is the interface between the analog frontend and the Rx-Decoder. The SigPro generates a bit stream out of the input signal (analog demodulator signal or ADC data signal). The output data is further processed in the Rx-Decoder for protocol handling.

12.4.3.1 Functional features

- Decode card-mode ISO14443 Type A (106 kBd, 212 kBd, 424 kBd, 848 kBd: MIFARE): Miller decoder (100 % ASK modulation)
- Decode card-mode ISO14443 Type B (106 kBd, 212 kBd, 424 kBd, 848 kBd): NRZ decoder (10 % ASK modulation)
- Decode card-mode ISO18092 (106kBd): A: Miller decoder (100 % ASK modulation)
- Decode card-mode ISO18092 (212kBd, 424kBd: Felica): Manchester decoder (10 % ASK Modulation)
- Target mode detection (Type A / Type B / FeliCa)
- Decode reader-mode ISO14443 Type A (106 kBd: MIFARE): Manchester decoder (848kHz subcarrier with load modulation)
- Decode reader-mode ISO14443 Type A (212 kBd, 424 kBd, 848 kBd: MIFARE): BPSK decoder (848 kHz subcarrier with load modulation)
- Decode reader-mode ISO14443 Type B BPSK decoder (848 kHz subcarrier with load modulation).

PN7462 HW user manual

- Decode reader-mode ISO18092 (106 kBd): Manchester decoder (848 kHz subcarrier with load modulation)
- Decode reader-mode ISO18092 (212 kBd, 424 kBd: Felica): Manchester decoder (848 kHz subcarrier with load modulation
- Decode Felica (212 kBd, 424 kBd): Manchester decoder
- Decode ISO15693 (SSC, DSC (FSK))
- Decode ISO 18000-3 Mode 3 (M=10, M=11 only, no PJM)
- Decode active-mode ISO18092 (106 kBd, 212 kBd, 424 kBd): Miller decoder (100 % ASK modulation) for 106 kBd

12.4.4 TX-Encoder

The TX-Encoder handles all kinds of data processing for data transmission via the contactless interface. This includes character encoding, comprising parallel-serial conversion, start- and stop bit generation, calculation and appending of parity bits, byte adjustments for bit-oriented frames and MIFARE encryption, and on the other hand frame generation, which covers creation of start-of-frame, end-of-frame and special protocol symbols as well as appending of CRC values.

12.4.4.1 Functional features

- Encoder for ISO14443 type A (PICC & PCD
- Encoder for ISO14443 type B (PICC & PCD)
- Encoder for ISO18092 (PICC & PCD)
- Encoder for FeliCa (PICC & PCD)
- Encoder for I-Code EPC-V2 (only PCD)
- Encoder for I-Code ISO15693 (only PCD)
- Encoder for Jewel (only PCS)
- Parallel-to-serial conversion
- "1 out of 4", "1 out of 256", NRZ, PIE code generation
- · Start bit, stop bit, EGT generation
- · Parity calculation and appending
- · Byte adjustment for bit-oriented frames
- MIFARE encryption
- Bitwise CRC (5-bit and 16-bit) appending
- CRC extension for Jewel (extend 7bit frames to 8bits => emulates byte-wise CRC)
- 16-bit to define protocol symbols (e.g., SOF and EOF)
- Flexible baudrate and subcarrier selection
- Modulation width and type adjustable
- Special envelope combinations selectable
- · Frame-Step mode

PN7462 HW user manual

12.4.5 RX-Decoder

The Rx-Decoder decodes the bit stream from the signal processing block CLIF SigPro) and performs serial-to-parallel conversion, frame checking (including stop-bit check as well as EOF check) and collision detection. Additionally, the Rx-Decoder handles data integrity checking which means it performs a parity check and hands the received data to the CRC coprocessor for CRC check.

12.4.5.1 Functional features

- · Serial-parallel conversion
- Stop bit detection and check
- Data integrity check (Parity and CRC)
- · Byte alignment and bit count for bit oriented frames
- Collision detection
- MIFARE decryption
- · Configurable EOF detection
- ISO 14443B EOF detection
- · Configurable stop conditions
- Frame check

12.4.6 Contactless Transceive module

The Transceive module is handling the overall flow for contactless communication (transmission and reception) by controlling the Tx-Encoder and the Rx-Decoder. It also has a timer to accurately control FDT as well as FWT.

12.4.6.1 Functional features

- Automatic switching between transmission and reception
- Accurate control of FDT and FWT
- Firmware controlled start of transmission

12.4.7 Buffer Management

The CLIF buffer manager handles data transfer between RAM and the CLIF for transmission and reception. It manages two 32 bit buffers which are used to synchronize data between the CLIF clock domain and the System clock. On CLIF side the Rx-Decoder and the Tx-Encoder provide/request data byte wise so the buffer manager and it handle word to byte conversion or vice versa.

12.4.8 Contactless CRC module

The contactless CRC module performs the CRC calculation for data transmission and reception. It is used by the TX-Encoder and the RX-Decoder. The CRC is configurable to

PN7462 HW user manual

comply with ISO14443 Type A and B, ISO18092, FeliCa, ISO15693, Jewel, and I-Code EPC-V2 (ISO18000).

12.4.8.1 Functional features

- Supports different preset values of the CRC register
- Supports 5-bit and 16-bit CRC calculation
- · Supports inverted CRC output

12.4.9 Analog Control Block

The Analog Control block is responsible for switching correctly analog control signals depending on the actual system state.

12.4.10 RF Control Block

The RF Control block is responsible for switching on/off of the analog drivers. To be compliant with the ISO18092 specification for peer-to-peer communication special guard times (TIDT/TADT) are handled. Collision avoidance - variation of the guard waiting time – is handled as well if enabled by software.

RF Control block contain analog Level detector. Status indication for external field detection is performed by analog Level detector. This is necessary on the one hand to know whenever an external field is present in card mode and other hand to avoid overlapping with an external field when the ICs driver shall be activated. The external field indication includes masking a self-generated RF-Field (which is detected by analog level detector too) as well as RF clock frequency checking. As the analog level detector has a latency of approximately 15 us. It is necessary to mask the analog level detect signal to avoid external field indication after a detected RF-Field disappeared. A period of 25 us is implemented in the RFControl module for masking to level detector signal. This corresponds to 512 HFO clock cycles (nominal 20 MHz).

12.4.11 Automatic Gain Control (AGC) block

The AGC is used to control the analog Rx-Divider in order to keep the RX-voltage level constant, i.e., ideally independent of the field strength. Consequently, the full dynamic range of the ADC can be exploit and also the performance of the analog demodulators is increased.

12.4.12 Card Mode Activation (CMA) Block

The CMA module manages the Type-A activation flow including all state transitions from **IDLE** state to **ACTIVE** state. If enabled, it interacts with all necessary modules to handle the activation process fully automated. When reaching the **ACTIVE** state an IRQ flag is set and the control is handed over to software. After reaching the **ACTIVE** state, the firmware disables the CMA.

PN7462 HW user manual

12.4.13 MFC Block

The MFC (MIFARE Crypto) block generates the cryptographic data to encipher and decipher data for communication with MIFARE cards. It is supported by a dedicated PRNG.

12.4.13.1 Functional features

- MIFARE authentication for PCD and PICC
- MIFARE encryption and decryption
- MIFARE pseudo random number generation (PRNG)

12.4.14 Timers

There are three general purpose timers T0, T1 and T2 running with the CLIF clock and one additional timer, T3, operating on HFO (~ 20MHz) or LFO (~ 375 kHz).

RF Timers: Timers T0, T1 and T2 have 20 bits and may be operated at clock frequencies derived from the 13.56MHz system clock.

Additional Timer: Timer T3 has 20 bits and can be operated with the LFO (~375 kHz) or the HFO (~20MHz) clock. Note that this timer requires the RF clock (clk13) to be functional.

At expiration of the timer a flag is raised and an IRQ is triggered. Refer to the Register-Set specifications for details on the IRQ handling.

12.4.14.1 Functional features

Timers T0, T1 and T2

- 20-bit
- · Runs on RF clock
- The 13.56 MHz RF clock may be divided by 2, 4, 8, 16, 32, 64, 128, and 256
- Several Start events: Start now, Start on external RF field on/off, Start on Rx/Tx started/ended, Start on timer T3 running,
- Reload
- IRQ is triggered at expiration

Timer T3 for oscillator trimming

- 20-bit
- · Start -event: Start now
- Runs on HFO or LFO clock

PN7462 HW user manual

12.5 CLIF register overview

Table 185. CLIF Register overview (base address 0x4000 4000)

Name	Address offset	Width (bits)	Access	Reset value	Description
CLIF_CONTROL_REG	0000h	32	R/W	00000000h	Main control register for CLIF digital
CLIF_CLOCK_CONTROL_REG	0004h	32	R/W	00000000h	CLIF digital clock control register
CLIF_STATUS_REG	0008h	32	R	10000000h	CLIF digital status register
CLIF_TRANSCEIVE_CONTROL_REG	000Ch	32	R/W	00000000h	Transceiver control register
CLIF_TX_WAIT_REG	0010h	32	R/W	00000000h	Transceive TxWait register
INTERNAL_USE	0014h	32	R/W	00000000h	For internal use
CLIF_RX_WAIT_REG	0018h	32	R/W	00000000h	Transceive RxWait register
INTERNAL_USE	001Ch	32	R/W	00000000h	For internal use
INTERNAL_USE	0020h	32	R/W	00000000h	For internal use
CLIF_TX_WATERLEVEL_REG	0024h	32	R/W	00000000h	Buffer manager TX water level register
CLIF_RX_WATERLEVEL_REG	0028h	32	R/W	00000000h	Buffer Manager RX water level register
CLIF_RF_CONTROL_REG	002Ch	32	R/W	00000000h	RFControl control register
CLIF_TX_DATA_CONFIG_REG	0030h	32	R/W	00000000h	TxEncoder config register
CLIF_TX_DATA_MOD_REG	0034h	32	R/W	00000000h	TXEncoder config register
CLIF_TX_FRAME_CONFIG_REG	0038h	32	R/W	00000200h	TxEncoder config register
INTERNAL_USE	003Ch	32	R/W	00000000h	For internal use
CLIF_TX_SYMBOL0_DEF_REG	0040h	32	R/W	00000000h	TxEncoder config register
CLIF_TX_SYMBOL1_DEF_REG	0044h	32	R/W	00000000h	TxEncoder config register
CLIF_TX_SYMBOL23_DEF_REG	0048h	32	R/W	00000000h	TxEncoder config register
CLIF_TX_SYMBOL01_MOD_REG	004Ch	32	R/W	00000000h	TxEncoder config register
CLIF_TX_SYMBOL23_MOD_REG	0050h	32	R/W	00000000h	TXEncoder config register
CLIF_TX_OVERSHOOT_CONFIG	0054h	32	R/W	00000000h	TXEncoder overshot prevention
_REG					config register
CLIF_TX_UNDERSHOOT_CONFIG	0058h	32	R/W	0000000h	TXEncoder undershot prevention
_REG					config register
CLIF_RX_CONFIG_REG	005Ch	32	R/W	00000002h	RXDecoder registers
CLIF_RX_STATUS_REG	0060h	32	R	00000000h	RXDecoder registers
INTERNAL_USE	0064h	32	R/W	00000000h	For internal use
INTERNAL_USE	0068h	32	R/W	00000000h	For internal use
CLIF_CRC_RX_CONFIG_REG	006Ch	32	R/W	00000000h	CRC registers
CLIF_CRC_TX_CONFIG_REG	0070h	32	R/W	00000000h	CRC registers
INTERNAL_USE	0074h	32	R/W	00000000h	For internal use
CLIF_TIMER0_CONFIG_REG	0078h	32	R/W	0000000h	CLTimer register
CLIF_TIMER1_CONFIG_REG	007Ch	32	R/W	0000000h	CLTimer register
CLIF_TIMER2_CONFIG_REG	0080h	32	R/W	0000000h	CLTimer register
CLIF_TIMER0_RELOAD_REG	0084h	32	R/W	0000000h	CLTimer register

149 of 341

PN7462 HW user manual

Name	Address	Width	Access	Reset value	Description
Name	offset	(bits)	Access	Neset value	Description
CLIF_TIMER1_RELOAD_REG	0088h	32	R/W	00000000h	CLTimer register
CLIF_TIMER2_RELOAD_REG	008Ch	32	R/W	00000000h	CLTimer register
CLIF_TIMER0_OUTPUT_REG	0090h	32	R	00000000h	CLTimer register
CLIF_TIMER1_OUTPUT_REG	0094h	32	R	00000000h	CLTimer register
CLIF_TIMER2_OUTPUT_REG	0098h	32	R	00000000h	CLTimer register
CLIF_TIMER3_CONFIG_REG	009Ch	32	R/W	00000000h	CLTimer register
INTERNAL_USE	00A0h	32	R/W	00000000h	For internal use
INTERNAL_USE	00A4h	32	R	00000000h	For internal use
INTERNAL_USE	00A8h	32	R/W	00000000h	For internal use
INTERNAL_USE	00ACh	32	R/W	00000000h	For internal use
INTERNAL_USE	00B0h	32	R/W	00000000h	For internal use
CLIF_SIGPRO_RM_CONFIG1_REG	00B4h	32	R/W	00000000h	SigPro register
INTERNAL_USE	00B8h	32	R/W	00000004h	For internal use
INTERNAL_USE	00BCh	32	R/W	01000000h	For internal use
CLIF_SIGPRO_ADCBCM	00C0h	32	R/W	00000000h	SigPro register
_THRESHOLD_REG					
INTERNAL_USE	00C4h	32	R/W	00000000h	For internal use
INTERNAL_USE	00C8h	32	R/W	00000000h	For internal use
CLIF_AGC_CONFIG0_REG	00CCh	32	R/W	00000000h	AGC register
INTERNAL_USE	00D0h	32	R/W	00000000h	For internal use
CLIF_AGC_INPUT_REG	00D4h	32	R/W	00000000h	AGC register
CLIF_RSSI_REG	00D8h	32	R/W	00000000h	AGC register
CLIF_TX_CONTROL_REG	00DCh	32	R/W	00000000h	TX control register
INTERNAL_USE	00E0h	32	R/W	00000000h	For internal use
INTERNAL_USE	00E4h	32	R/W	00000000h	For internal use
INTERNAL_USE	00E8h	32	R	00000000h	For internal use
CLIF_RX_DATA_BUFFER_REG	00ECh	32	R	00000000h	BufferManager Rx data register
CLIF_TEST_CONTROL_REG	00FCh	32	R/W	00000000h	Digital test control register
CLIF_ANA_NFCLD_REG	0100h	32	R/W	00000011h	NFC Level Detector control register
CLIF_ANA_TX_CLK_CONTROL_REG	0104h	32	R/W	00000083h	Analog TX clock control register
CLIF_ANA_TX_AMPLITUDE_REG	0108h	32	R/W	00000003h	Analog TX amplitude control register
INTERNAL_USE	010Ch	32	R/W	000000A0h	For internal use
CLIF_ANA_RX_REG	0110h	32	R/W	0003D820h	Analog RM receiver control register
CLIF_ANA_CM_CONFIG_REG	0114h	32	R/W	0000C080h	Analog CM control register
INTERNAL_USE	0118h	32	R/W	00010200h	For internal use
CLIF_ANA_AGC_REG	011Ch	32	R/W	00000004h	Analog AGC control register
CLIF_ANA_CLK_MAN_REG	0120h	32	R/W	00000000h	Analog clock management control
<u>-</u>					register

PN7462 HW user manual

Name	Address offset	Width (bits)	Access	Reset value	Description
INTERNAL_USE	0124h	32	R/W	00000000h	For internal use
CLIF_ANA_TX_SHAPE_CONTROL _REG	0128h	32	R/W	00000000h	Analog TX shaping control register
INTERNAL_USE	012Ch	32	R/W	00000000h	For internal use
CLIF_ANA_TEST_REG	01FCh	32	R/W	0050004Ah	Analog test control register
INTERNAL_USE	0200h	32	R/W	FF000000h	For internal use
INTERNAL_USE	0204h	32	R/W	00000000h	For internal use
CLIF_DPLL_INIT_REG	0208h	32	R/W	00000000h	DPLL Configuration Register
INTERNAL_USE	020Ch	32	R/W	00000000h	For internal use
INTERNAL_USE	0210h	32	R/W	00000000h	For internal use
INTERNAL_USE	0214h	32	R/W	00000000h	For internal use
INTERNAL_USE	0218h	32	R/W	00000000h	For internal use
CLIF_INT_CLR_ENABLE_REG	3FD8h	32	W	00000000h	Interrupt register
CLIF_INT_SET_ENABLE_REG	3FDCh	32	W	00000000h	Interrupt register
CLIF_INT_STATUS_REG	3FE0h	32	R	00000000h	Interrupt register
CLIF_INT_ENABLE_REG	3FE4h	32	R	00000000h	Interrupt register
CLIF_INT_CLR_STATUS_REG	3FE8h	32	W	00000000h	Interrupt register
CLIF_INT_SET_STATUS_REG	3FECh	32	W	00000000h	Interrupt register

12.6 Register description

Table 186. CLIF_CONTROL_REG register (address 0000h)

Bit	Symbol	Access	Value	Description
31:4	RESERVED	R	0	Reserved
3	START_SEND	D	0*, 1	Set to logic 1, the data transmission is started.
			Note: This bit is only valid in combination with the transceive command	
				Note: If TXWait is set to a value other than zero the TXWait period configured must be expired as well that the transmission starts
				As soon as the transmission started this bit is cleared by hardware.
2:0	2:0 COMMAND D 0 - 5	0 - 5	This registers hold the command bits	
			0*	IDLE/StopCom Command; stops all ongoing communication and set the CLIF to IDLE mode; reset value
			1	Transmit command; starts a transmission immediately
			2	Receive command; enables the receiver. After end of reception the bits are clear and IDLE
			3	Transceive command; initiates a transceive cycle.
				Note: Depending on the value of the Initiator bit a transmission is started or the receiver is enabled

Bit **Symbol** Access Value Description Note: The transceive command does not finish automatically. It stays in the transceive cycle until stopped via the IDLE/ StopCom command 4 KeepCommand command; This command does not change the content of the command register and might be used in case other bits in the register are to be changed 5 LoopBack command; This command is for test purposes only. It starts a transmission and at the same enables the receiver. 6 PRBS command: This command will start a transmission with the given protocol settings, transmitting a predefined pseudo-random data stream. The command will not return automatically. 7 Reserved: Do not use this setting

Table 187. CLIF_CLOCK_CONTROL_REG register (address 0004h)

* = reset value

	et value	A	V/-1	December 1997
Bit	Symbol	Access	Value	Description
31:3	RESERVED	R	0	reserved
5	FORCE_TEMP_CLK_ ON_RFOFF	R/W	0*, 1	If set, to 1, upon RFOFF event the clock is always switched to temporary-clock, no matter if pll-clock is available.
4	FORCE_PLL_CLOCK_ ON_TXACTIVE	R/W	0*, 1	If set, to 1, clock is automatically switched to DPLL clock for transmission
3	RESERVED	R	0	reserved
2	RELEASE_TEMP_CLOCK	W	0*, 1	Setting this register bit to 1 will release the temporary clock and switch back to functional mode.
				Note: In normal operation, this bit must not be set.
1:0	1:0 CLIF_CLOCK_SELECT R/M	R/W	0* - 3	This register controls the source of the CLIF clock (13.56 MHz contactless frequency clock)
			0*	Automatic clock selection. The source of the clock is automatically chosen depending on the RF-Field status. If an external RF-Field is detected the
				RF-clock is chosen otherwise the PLL-clock (independent if it is available)
			1	Force RF-clock. RF-clock is chosen as source, no automatic switching is performed.
			2	Force PLL-clock. PLL-clock is chosen as source, no automatic switching is performed.
			3	Force Temporary-clock. Temp-clock is chosen as source, no automatic switching is performed

PN7462 HW user manual

UM10858 NXP Semiconductors

PN7462 HW user manual

Table 188. CLIF_STATUS_REG register (address 0008h)

	et value			
Bit	Symbol	Access	Value	Description
31	RESERVED	R	0	reserved
30	DPLL_ENABLE	R	0*, 1	This bit indicates that the DPLL controller has enabled the DPLL
29	AGC_RFOFF_DET	R	0*, 1	This bit indicates than the AGC has detected the external RF- Field was switched off while transmitting in SL-ALM mode. Note : Only valid if the detection mode is enabled with the
				register bit-field AGC_RF_DETECT_SEL.
28	CRC_OK	R	0, 1	This bit indicates the status of the actual CRC calculation. If 1 the CRC is correct, meaning the CRC register has the value 0 or the residue value if inverted CRC is used.
				Note : This flag should only by evaluated at the end of a communication
27	SC_DETECTED	R	0*, 1	Status signal indicating that a subcarrier is detected
26	SOF_DETECTED	R	0*, 1	Status signal indicating that a SOF has been detected
25	TX_RF_STATUS	R	0*, 1	If set to 1 this bit indicates that the drivers are turned on, meaning an RF-Field is created by the device itself
24	RF_DET_STATUS	R	0*, 1	If set to 1 this bit indicates that an external RF-Field is detected by the rf level detectors (after digital filtering)
23:1 6	RESERVED	R	0	reserved
15	CLOCK_ERROR	R	0, 1	If set to 1 CLIF is operating on the temporary clock.
14	BMA_TRANSFER_ONGO ING	R	0, 1	Status signal from Buffer Manager to indicate that a transfer is actually ongoing.
13	TX_READ_ERROR	R	0*, 1	
12	TX_LATENCY_ERROR	R	0*, 1	
11	TX_NO_DATA_ERROR	R	0*, 1	
10:8	RF_ACTIVE_ERROR_CA	R	0* - 5	
	USE		0*	No Error; reset value
			1	External field was detected on within TIDT timing
			2	External field was detected on within TADT timing
			3	No external field was detected within TADT timings
			4	Peer did switch off RF Field without but no Rx event was raised (no data received)
			5 - 7	Reserved
7:6	RESERVED	R	0	Reserved
5	RX_ENABLE	R	0*, 1	This bit indicates if the RXDecoder is enabled. If 1 the RXDecoder was enabled by the Transceive Unit and is now ready for data reception.
4	TX_ACTIVE	R	0*, 1	This bit indicates activity of the TXEncoder. If 1 a transmission is ongoing, otherwise the TXEncoder is in idle state.

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
3	RX_ACTIVE	R	0*, 1	This bit indicates activity of the RXDecoder. If 1 a data reception is ongoing, otherwise the RXDecoder is in idle state.
2:0	2:0 TRANSCEIVE_STATE R	R	0* - 5	This registers hold the command bits
		0*	IDLE state	
			1	WaitTransmit state
			2	Transmitting state
			3	WaitReceive state
			4	WaitForData state
			5	Receiving state
			6	WaitLoopBack state
			7	LoopBack state

Table 189. CLIF_TRANSCEIVE_CONTROL_REG register (address 000Ch)

Bit	Symbol	Access	Value	Description
31:30	RESERVED	R	0	reserved
29:24	29:24 INTERNAL_USE ^[1]	R/W	0* - 111111b	for internal use
			xxxxx1	IDLE state enabled to trigger IRQ
		xxxx1x	WaitTransmit state enabled to trigger IRQ	
		xxx1xx	Transmitting state enabled to trigger IRQ	
		xx1xxx	WaitReceive state enabled to trigger IRQ	
			x1xxxx	WaitForData state enabled to trigger IRQ
			1xxxxx	Receiving state enabled to trigger IRQ
23:18	RESERVED	R	0	Reserved
17	INTERNAL_USE[1]	R/W	0*, 1	for internal use
16	INTERNAL_USE[1]	R/W	0*, 1	for internal use
15:8	TX_BITPHASE	R/W	0* - FFh	Defines the number of 13.56 MHz cycles used for adjustment of TX_wait to meet the FDT.
7	RESERVED	R	0	reserved
6	INTERNAL_USE[1]	R/W	0*, 1	for internal use
5	INTERNAL_USE[1]	D	0*, 1	for internal use
4	INTERNAL_USE[1]	R/W	0*, 1	for internal use
3	INTERNAL_USE[1]	R/W	0*, 1	for internal use
2	RX_MULTIPLE_ENABLE	R/W	0*, 1	If this bit is set to 1, the receiver is re-activated after the end of a reception. A status byte is written to the RAM containing all relevant status information of the frame.
				Note: Data in RAM is word aligned therefore empty bytes of a data Word in RAM are padded with 0x00 bytes. SW has to calculate the correct address for the following frame.

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
1	INTERNAL_USE[1]	D	0*, 1	for internal use
0	INITIATOR	R/W	0*, 1	Set to 1, the CLIF is configured for initiator mode. Depending on this setting the behavior of the transceive command is different

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

Table 190. CLIF_TX_WAIT_REG register (address 0010h)

^{* =} reset value

Bit	Symbol	Access	Value	Description
31:28	RESERVED	R	0	Reserved
27:8	TX_WAIT_VALUE	D	0* - FFFFFh	Defines the tx_wait timer reload value. Note: If set to 00000h the tx_wait guard time is Disabled Note: This bit is set by HW a protocol is detected in automatic mode detection
7:0	TX_WAIT- PRESCALER	D	0*-FFh	Defines the prescaler reload value for the tx_wait timer. Note: This bit is set by HW a protocol is detected in automatic mode detection

Table 191. CLIF_RX_WAIT_REG register (address 0018h)

^{* =} reset value

- 1000	· varao			
Bit	Symbol	Access	Value	Description
31:28	RESERVED	R	0	Reserved
27:8	RX_WAIT_VALUE	R/W	0* - FFFFFh	Defines the rx_wait timer reload value. Note: If set to 00000h the rx_wait guard time is Disabled
7:0	RX_WAIT- PRESCALER	R/W	0*-FFh	Defines the prescaler reload value for the Rx_wait timer.

Table 192. CLIF_TX_WATERLEVEL_REG register (address 0024h)

Bit	Symbol	Access	Value	Description
31:8	RESERVED	R	0	Reserved
7:0	TX_WATERLEVEL	R/W	0* - 0xFF	Defines a warning level to indicate that TX_WATERLEVEL number of words were already transmitted in the actual frame. When this level is reached the corresponding IRQ is set.
				Note: 0 disables the water level
				Note : In case a header byte offset is set the water level refers to word fetched from RAM

PN7462 HW user manual

Table 193. CLIF_RX_WATERLEVEL_REG register (address 0028h)

* = reset value

Bit	Symbol	Access	Value	Description
31:8	RESERVED	R	0	Reserved
7:0	RX_WATERLEVEL	R/W	0* - 0xFF	Defines a warning level to indicate that RX_WATERLEVEL number of words were already received in the actual frame. When this level is reached the corresponding IRQ is set. Note: 0 disables the water level

Table 194. CLIF_RF_CONTROL_REG register (address 002Ch)

* = reset value

Bit	Symbol	Access	Value	Description
31:5	RESERVED	R	0	Reserved
4	TX_RF_ENABLE	D	0*, 1	Set to 1, turning on the driver in reader or active mode is requested.
				Note : According to the setting of InitialRFOn, AutoRFOn and CAOn the driver is turned after a defined time and depended on the presence of an external RF field.
				Note : In case of an RFActiveError this bit is cleared by hardware
3	TX_COLL_AV_ENA BLE	R/W	0*, 1	Set to 1, enables automatic collision avoidance. See ISO18092 for more details.
2	TX_INITIAL_RFON	D	0*, 1	Set to 1, the drivers are automatically turned on when no external field is present. In the case an external field is detected, the turning on the drivers is delay until the external field vanishes.
				Note : The driver on procedure must be triggered by setting TX_RF_ENABLE.
				Note : This bit is reset to 0 as soon as the drivers turned on.
1	TX_AUTO_RFON	R/W	0*, 1	Set to 1, the drivers are automatically turned on after a before present external field vanished.
				Note : The driver on procedure must be triggered by setting TX_RF_ENABLE.
0	TX_AUTO_RFOFF	R/W	0*, 1	Set to 1, the drivers are automatically turned off after data is transmitted

Table 195. CLIF_TX_DATA_CONFIG_REG register (address 0030h)

-,000	raido			
Bit	Symbol	Access	Value	Description
31:25	RESERVED	R	0	Reserved
24:16	RESERVED	R/W	0 - 104h	Reserved
15	RESERVED	R	0	Reserved
14:12	TX_LAST_BITS	R/W	0*- 7	Defines how many bits of the last data byte to be sent. If set to 000b all bits of the last data byte are sent.

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				Note: Bits are skipped at the end of the byte
11:9	TX_FIRST_BITS	R/W	0*- 7	Defines how many bits of the first data byte to be sent.
				If set to 000b all bits of the last data byte are sent.
				Note: Bits are skipped at the beginning of the byte
8:0	TX_NUM_BYTES_2 _SEND	R/W	0 - 104h	Defines the number of bytes to be transmit. The maximum number of bytes is 260 (0x104).
				If the Transmission Of Data Is Enabled (TX_DATA_ENABLE) and TX_NUM_BYTES_2_SEND is zero, then a NO_DATA_ERROR occurs.

Table 196. CLIF_TX_DATA_MOD_REG register (address 0034h)

* = rese				
Bit	Symbol	Access	Value	Description
31:24	RESERVED	R	0	Reserved
23:16	TX_DATA_MOD_WIDT H	R/W	0* - FFh	Specifies the length of a pulse for sending data with miller pulse modulation enabled. The length is given by the number of carrier clocks + 1.
15:9	RESERVED	R	0	Reserved
8	TX_DATA_MILLER_EN ABLE	R/W	0*, 1	If set to 1, pulse modulation is applied according to modified miller coding
7	TX_DATA_INV_ENV	R/W	0*, 1	If set to 1, the output envelope is inverted
6:4	TX_DATA_ENV_TYPE	R/W	0*, 7h	Specifies the type of envelope used for transmission of data packets. The selected envelope type is applied to the pseudo bit stream.
			000	Direct output
			001	Manchester code
			010	Manchester code with subcarrier
			011	BPSK
			100	RZ (pulse of half bit length at beginning of second half of bit)
			101	RZ (pulse of half bit length at beginning of bit)
			110	Manchester tuple coding
			111	Reserved
3	TX_DATA_SC_FREQ	R/W	0*, 1	Specifies the frequency of the subcarrier.
			0	424 kHz
			1	848 kHz
2:0	TX_DATA_BIT_FREQ	R/W	0* - 7h	Specifies the frequency of the bit-stream.
			000	1.695 MHz
			001	3.39 MHz
			010	26 kHz
			011	53 kHz
			100	106 kHz

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
			101	212 kHz
			110	424 kHz
			111	848 kHz

Table 197. CLIF_TX_FRAME_CONFIG_REG register (address 0038h)

Bit	Symbol	Access	Value	Description
31:19	RESERVED	R	0	Reserved
18:16	TX_DATA_CODE_T	R/W	0*- 7	Specifies the type of encoding of data to be used
	YPE		000b	No special code
			001b	1 out of 4 code [I-Code SLI]
			010b	1 out of 256 code [I-Code SLI]
			011b	Pulse interval encoding (PIE) [I-Code EPC-V2]
			100b	2-bit tuple code (intended only for test purposes)
			101-111b	Reserved
15:13	TX_STOPBIT_TYPE	R/W	0*- 7	Enables the stop bit (logic "1") and extra guard time (logic "1"). The value 0 disables transmission of stop-bits.
			000b	no stop-bit, no EGT
			001b	stop-bit, no EGT
			010b	stop-bit + 1 EGT
			011b	stop-bit + 2 EGT
			100b	stop-bit + 3 EGT
			101b	stop-bit + 4 EGT
			110b	stop-bit + 5 EGT
			111b	stop-bit + 6 EGT
12	TX_STARTBIT_ENA BLE	R/W	0*- 1	If set to 1, a start-bit (logic "0") will be send
11	TX_MSB_FIRST	R/W	0*	If set to 1, data bytes are interpreted MSB first for data transmission
10	TX_PARITY_LAST_I NV _ENABLE	R/W	0*	If set to 1, the parity bit of last byte (data or crc) is inverted
9	TX_PARITY_TYPE	R/W	0*- 1	Defines the type of the parity bit
			0	Even Parity is calculated
			1	Odd parity is calculated
8	TX_PARITY_ENABL E	R/W	0*- 1	If set to 1, a parity bit is calculated and appended to each byte transmitted.
				If the Transmission Of Data Is Enabled and TX_NUM_BYTES_2_SEND is zero, then a NO_DATA_ERROR occurs.
7:5	RESERVED	R	0	Reserved

158 of 341

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
4	TX_DATA_ENABLE	R/W	0*	If set to 1, transmission of data is enabled otherwise only symbols are transmitted.
3:2	TX_STOP_SYMBOL	R/W	0*- 3h	Defines which pattern symbol is sent as frame stop-symbol
			00b	No symbol is sent
			01b	Symbol 1 is sent
			10b	Symbol 2 is sent
			11b	Symbol 3 is sent
1:0	1:0 TX_START_SYMBO R/W	R/W	0*-3h	Defines which symbol pattern is sent as frame start-symbol
	L		00b	No symbol is sent
			01b	Symbol 1 is sent
			10b	Symbol 2 is sent
			11b	Symbol 3 is sent

Table 198. CLIF_TX_SYMBOL0_DEF_REG register (address 0040h)

^{* =} reset value

Bit	Symbol	Access	Value	Description
31:28	RESERVED	R	0	Reserved
27:0	TX_SYMBOL0_DEF	R/W	0* - FFFFFFFh	Pattern definition for Symbol0

Table 199. CLIF_TX_SYMBOL1_DEF_REG register (address 0044h)

* = reset value

- 1000	t value			
Bit	Symbol	Access	Value	Description
31:28	RESERVED	R	0	Reserved
27:0	TX_SYMBOL1_DEF	R/W	0* - FFFFFFFh	Pattern definition for Symbol1

Table 200. CLIF_TX_SYMBOL23_DEF_REG register (address 0048h)

* = reset value

ption
ed
definition for Symbol3
RVED
definition for Symbol2

Table 201. CLIF_TX_SYMBOL01_MOD_REG register (address 004Ch)

Bit	Symbol	Access	Value	Description
31:24	RESERVED	R	0	Reserved
23:16	TX_SYMBOL3_DEF	R/W	0* - FFh	Pattern definition for Symbol3
15:9	RESERVED	R	0	Reserved
8	TX_S01_MILLER_E NABLE	R/W	0*, 1	If set to 1, pulse modulation is applied according to modified miller coding. Note: Modified miller coding may be used only for direct envelope output (TX_S01_ENV_TYPE == 0)

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
7	TX_S01_INV_ENV	R/W	0*, 1	If set to 1, the output envelope is inverted.
6:4	TX_S01_ENV_TYPE		0*, 7	Specifies the type of envelope used for transmission of data packets. The selected envelope type is applied to the pseudo bit stream.
			000b	Direct output
			001b	Manchester code
			010b	Manchester code with subcarrier
			011b	BPSK
			100b	RZ (pulse of half bit length at beginning of second half of bit)
			101b	RZ (pulse of half bit length at beginning of bit)
			110b	Manchester tupple
			111b	Reserved
3	TX_S01_SC_FREQ	R/W	0*, 1	Specifies the frequency of the subcarrier.
			0	424 kHz
			1	848 kHz
2:0	TX_S01_BIT_FREQ	R/W	000*-111	Specifies the frequency of the bit-stream.
			000*	1.695 MHz
			001	Reserved for test
			010	26 kHz
			011	53 kHz
			100	106 kHz
			101	212 kHz
			110	424 kHz
			111	848 kHz

Table 202. CLIF_TX_SYMBOL23_MOD_REG register (address 0050h)

Bit	Symbol	Access	Value	Description
31:24	RESERVED	R	0	Reserved
23:16	TX_S23_MODWIDT H	R/W	0*-FFh	Specifies the length of a pulse for sending data of symbol 2/3. The length is given by the number of carrier clocks + 1.
15:9	RESERVED	R	0	Reserved
8	TX_S23_MILLER_E NABLE	R/W	0*, 1	If set to 1, pulse modulation is applied according to modified miller coding.
				Note: Modified miller coding may be used for direct envelope output (TX_S23_ENV_TYPE ==0)
7	TX_S23_INV_ENV	R/W	0*, 1	If set to 1, the output envelope is inverted.
6:4	TX_S23_ENV_TYPE	R/W	0* - 7h	Specifies the type of envelope used for transmission of data packets. The selected envelope type is applied to the pseudo bit stream.

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
			000	Direct output
			001	Manchester code
			010	Manchester code with subcarrier
			011	BPSK
			100	RZ (pulse of half bit length at beginning of second half of bit)
			101	RZ (pulse of half bit length at beginning of bit)
			110	Manchester tuple
			111	Reserved
3	TX_S23_SC_FREQ	R/W	0*, 1	Specifies the frequency of the subcarrier.
			0	424 kHz
			1	848 kHz
2:0	TX_S23_BIT_FREQ	R/W	000* - 111	Specifies the frequency of the bit-stream.
			000*	1.695 MHz
			001	3.39 MHz
			010	26 kHz
			011	53 kHz
			100	106 kHz
			101	212 kHz
			110	424 kHz
			111	848 kHz

Table 203. CLIF_TX_OVERSHOOT_CONFIG_REG register (address 0054h)

* = reset value

- 1030	= reset value					
Bit	Symbol	Access	Value	Description		
31:16	TX_OVERSHOOT_P ATTERN	R/W	0* - FFFFh	Overshoot pattern which is transmitted after each rising edge.		
15:5	RESERVED	R	0	Reserved		
4:1	TX_OVERSHOOT_P ATTERN_LEN	R/"	0* - Fh	Defines length of the overshoot prevention pattern (value +1). The pattern is applied starting from the MSB of the defined pattern, all other bits are ignored.		
0	TX_OVERSHOOT_P ROT_ENABLE	R/W	0*, 1	If set to 1, the overshoot protection is enabled.		

Table 204. CLIF_TX_UNDERSHOOT_CONFIG_REG register (address 0058h)

Bit	Symbol	Access	Value	Description
31:16	TX_UNDERSHOOT_ PATTERN	R/W	0* - FFFFh	Undershoot pattern which is transmitted after each rising edge.
15:6	RESERVED	R	0	Reserved

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
5	TX_UNDERSHOOT_ PROT_LAST_SC_E	R/W	0* - 1	This mode activates the undershoot prevention circuit only for the last sub-carrier cycle for card-mode transmission.
	NABLE			Note: The bit TX_UNDERSHOOT_PROT_ENABLE must not be set for this mode.
4:1	TX_UNDERSHOOT_ PATTERN_LEN	R/"	0* - Fh	Defines length of the undershoot prevention pattern (value +1). The pattern is applied starting from the MSB of the defined pattern, all other bits are ignored.
0	TX_UNDERSHOOT_ PROT_ENABLE	R/W	0*, 1	If set to 1, the undershoot protection is enabled.

Table 205. CLIF_RX_CONFIG_REG register (address 005Ch)

Bit	Symbol	Access	Value	Description
31	RX_PARITY_EMD_ ON_SO VER	R/W	0*,1	If set, decision if EMD due to parity error is taken at saver
30	RX_MISSING_PARI TY_IS_EMD	R/W	0*,1	If set, a missing parity bit in the 4th byte is treated as - EMD (for EMD option $3/4$
29	RX_ADVANCED_EM D_ENABLE	R/W	0*,1	If set, new EMD options for PN7462AU are enabled
28	RX_PARITY_ERRO R_IS_EMD	R/W	0*, 1	If set to 1 a parity error in the 3rd/4th byte (depending on RX_EMD_SUP setting) is interpreted as an EMD error. Otherwise it is interpreted as a parity error.
27:25	RX_EMD_SUP	R/W	0*- 7h	Defines EMD suppression mechanism
			000	Off
			001	EMD suppression according to ISO14443
			010	EMD suppression according to NFC Forum (with respect to the first 3 characters)
			011	EMD suppression according to NFC Forum (with respect to the first 4characters)
			100	EMD suppression according to NFC Forum (with respect to the first 4characters, all valid frames <4 bytes are ignored)
			101 - 111	reserved
24	RX_COLL_IS_DATA _ERROR	R/W	0*, 1	If set to 1, a collision is treated as a data integrity error (especially for ISO14443-4)
23	VALUES_AFTER_C OLLISION	R/W	0*, 1	This bit defined the value of bits received after a collision occurred.
			0	All received bits after a collision will be cleared.
			1	All received bits after a collision keep their value.
22	RX_CRC_ALLOW_B ITS	R/W	0*, 1	Set to 1, a frame with less than one byte length is written to ram, when the CRC is enabled otherwise it is discarded.
21	RX_FORCE_CRC_ WRITE	R/W	0*, 1	Set to 1, the received CRC byte(s) are written to ram. In normal operation (if this bit is set to 0) CRC bytes are only checked and removed from the data stream.

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
19	RX_PARITY_ERR_8 BITS_E NABLE	R/W	0*, 1	If set, parity error is detected when only 8 bits in last byte received
18:16	RX_BIT_ALIGN	R/W	0* - 7h	RxAlign defines the bit position within the byte for the first bit received. Further received bits are stored at the following bit positions.
15:8	RX_EOF_SYMBOL	D	0* - FFh	This value defines the pattern of the EOF symbol. Note: All bits are clear upon enabling of the receiver if the automatic mode detection is enabled. If in such a case an ISO14443A communication is detected bit0 is set by the mod-detector.
7	RESERVED	R	0	Reserved
6	RX_EOF_TYPE	D	0*, 1	Defines the EOF handling, modified by the mode-detector
			0	EOF as defined in the register field RX_EOF_SYMBOL is expected.
			1	EOF as defined in ISO14443B is expected.
5:4	RX_STOP_CONDITI	D	00b*-11b	This bit field defines the condition to stop a reception.
	ON			Note : This bit is set by the mod-detector if automatic mode detection is enabled and the corresponding communication is detected.
			00b	Reception is stopped only if end of data communication is detected by the signal processing Note: This value is set by the mode-detector if a ISO14443A communication is detected
			01b	Reception is stopped upon reception of the EOF pattern selected by the register field RX_EOF_TYPE and RX_EOF_SYMBOL
				Note : This value is set by the mode-detector if an ISO14443B communication is detected
			10b	Reception is stopped on detection of an incorrect parity bit.
			11b	Reception is stopped if the number of received bytes reaches the defined frame length (which extracted from the first data-byte received).
				Note : This value is set by the mod-detector if a FeliCa communication is detected
3	RX_MSB_FIRST	D	0*, 1	If set to 1, data bytes are interpreted MSB first for reception
2	RX_STOPBIT_ENAB LE	D	0*, 1	Set to 1, a stop-bit is expected and will be checked and extracted from data stream.
				Note: The stop-bit is not configurable and fixed to a logic 1.
				Note : This bit is set by the mod-detector if automatic mode detection is enabled and ISO14443B communication is detected.
1	RX_PARITY_TYPE	D	0, 1*	Defines which type of the parity-bit is used
				Note : This bit is set by the mod-detector if automatic mode detection is enabled and ISO14443A communication is detected.
			0	Even parity calculation is used

163 of 341

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
			1	Odd parity calculation is used
0	RX_PARITY_ENABL E	D	0*, 1	If set to 1, a parity-bit for each byte is expected, will be extracted from data stream and checked for correctness. In case the parity-bit is incorrect, the RX_DATA_INTEGRITY_ERROR flag is set.
				Nevertheless, the reception is continued.
				Note : This bit is set by the mod-detector if automatic mode detection is enabled and ISO14443A communication is detected.

Table 206. CLIF_RX_STATUS_REG register (address 0060h)

* = rese		A	W-l	Description
Bit	Symbol	Access	Value	Description
31	RESERVED	R	0	Reserved
30:24	RX_COLL_POS	R	0* - 7Fh	These bits show the bit position of the first detected collision in a received frame (only data bits are interpreted).
				Note : These bits shall only be interpreted in passive communication mode at 106 kbit/s or ISO14443A /MIFARE® reader / writer or ICODE SLIX reader/ writer mode if bit CollPosValid is set to 1.
				Note : If RX_ALIGN is set to a value different to 0, this value is included in the RX_COLL_POS.
23	RX_WRITE_ERROR	R	0*, 1	This error flag is set to 1, if for an ongoing reception data is not copied to RAM in time (BMA encountered write error) and therefor the reception is aborted
22	RX_LATENCY_ERR OR	R	0*, 1	This error flag is set to 1, if for an ongoing reception data is not copied to RAM in time (BMA latency to big) and therefor the reception is aborted
21	RX_BUFFER_OVFL_ ERROR	R	0*, 1	This flag is set to 1 when the number of received bytes exceeds the size of the RXBuffer
20	RX_CL_ERROR	R	0*, 1	General contactless error, is a combination of data integrity, protocol and collision error
19	RX_LEN_ERROR	R	0*, 1	This flag is set to 1, if RXMultiple is activate and the LEN byte indicates more than 28 bytes
18	RX_COLLISION_DET ECTED	R	0*, 1	This flag is set to 1, when a collision has accrued. The position of the first collision is shown in the register RX_COLLPOS
17	RX_PROTOCOL_ER ROR	R	0*, 1	This flag is set to 1, when a protocol error has accrued. A protocol error can be a wrong stop bit, a missing or wrong ISO14443B EOF or SOF or a wrong number of received data bytes.
				Note : When a protocol error is detected, data reception is stopped.
				Note : The flag is automatically cleared at start of next reception.

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
16	RX_DATA_INTEGRI TY_ERROR	R	0*, 1	This flag is set to 1, if a data integrity error has been detected. Possible caused can be a wrong parity or a wrong CRC.
				Note: On a data integrity error the reception is continued
				Note : The flag is automatically cleared at start of next reception.
				Note : If a reversed parity bit is a stop criteria, the flag is not set to 1 in case of a wrong parity.
15:13	RX_NUM_LAST_BIT S	R	0* - 7h	Defines the number of valid bits of the last data byte received in bit-oriented communications. If zero, the whole byte is valid.
12:9	RX_NUM_FRAMES_ RECEIVED	R	0* - 8h	Indicates the number of frames received. The value is updated when the RxIRQ is raised.
				Note : This bit field is only valid when the RxMultiple is active (bit RX_MULTIPLE_ENABLE set)
8:0	RX_NUM_BYTES_R ECEIVED	R	0* - 104h	Indicates the number of bytes received. The value is valid when the RxIRQ is raised until the receiver is enabled again.

Table 207. CLIF_CRC_RX_ CONFIG_REG register (address 006Ch)

- 7000	i value			
Bit	Symbol	Access	Value	Description
31:16	RX_CRC_PRESET_ VALUE	R/W	0*- FFFFh	Arbitrary preset value for the Rx-Decoder CRC calculation.
15:6	RESERVED	R	0	Reserved
5:3	RX_CRC_PRESET_ SEL	D	000-101b	Preset value of the CRC register for the Rx-Decoder. For a CRC calculation using 5-bits, only the LSByte is used.
			000b*	0000h, reset value
				Note: That this configuration is set by the Mode detector for FeliCa.
			001b	6363h
				Note : That this configuration is set by the Mode detector for ISO14443 type A.
			010b	A671h
			011b	FFFFh
				Note : That this configuration is set by the Mode detector for ISO14443 type B.
			100b	0012h
			101b	E012h
			110b	Reserved
			111b	Use arbitrary preset value RX_CRC_PRESET_VALUE
2	RX_CRC_TYPE	R/W	0, 1	Controls the type of CRC calculation for the Rx-Decoder.
			0*	16-bit CRC calculation, reset value
			1	5-bit CRC calculation

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
1	RX_CRC_INV	D	0, 1	Controls the comparison of the CRC checksum for the
				Rx-Decoder
			0*	Not inverted CRC value: 0000h, reset value
				Note : That this nit is cleared by the Mode detector for ISO14443 type A and FeliCa.
			1	Inverted CRC value: F0B8h
				Note : That this bit is set by the Mode detector for ISO14443 type B.
0	RX_CRC_ENABLE	D	0*, 1	If set, the Rx-Decoder will check the CRC for correctness.
				Note : That this bit is set by the Mode Detector, when ISO14443 type B, or FeliCa (212 or 424kBd) is detected.

Table 208. CLIF_CRC_TX_ CONFIG_REG register (address 0070h)

= 1636	i vaiue			
Bit	Symbol	Access	Value	Description
31:16	TX_CRC_PRESET_ VALUE	R/W	0*- FFFFh	Arbitrary preset value for the Tx-Encoder CRC calculation.
15:7	RESERVED	R	0	Reserved
6	TX_CRC_BYTE2_E NABLE	R/W	0*, 1	If set, the CRC is calculated from the 2nd byte onwards (intended for HID). Note: That this option is used in the Tx-Encoder.
5:3	TX_CRC_PRESET_ SEL	R/W	000-101b	Preset value of the CRC register for the Tx-Encoder. For a CRC calculation using 5bits, only the LSByte is used.
			000b*	0000h, reset value
			001b	6363h
			010b	A671h
			011b	FFFFh
			100b	0012h
			101b	E012h
			110b	reserved
			111b	Use arbitrary preset value TX_CRC_PRESET_VALUE
2	TX_CRC_TYPE	R/W	0, 1	Controls the type of CRC calculation for the Tx-Encoder
			0*	16-bit CRC calculation, reset value
			1	5-bit CRC calculation
1	TX_CRC_INV	R/W	0, 1	Controls the sending of an inverted CRC value by the Tx- Encoder
			0*	Controls the sending of an inverted CRC value by the Tx- Encoder
			1	Inverted CRC checksum
0	TX_CRC_ENABLE	R/W	0*, 1	If set to one, the Tx-Encoder will compute and transmit a CRC.

PN7462 HW user manual

Table 209. CLIF_TIMER0_CONFIG_REG register (address 0078h)

* = rese	t value			
Bit	Symbol	Access	Value	Description
31	T0_STOP_ON_T3_E XPIRED	R/W	0*, 1	T0_STOP_EVENT: If set the timer T0 is stopped when timer T3 raises its expiration flag.
30	T0_STOP_ON_RX_ STARTED	R/W	0*, 1	T0_STOP_EVENT: If set the timer T0 is stopped when a data reception begins (1st bit is received).
29	T0_STOP_ON_TX_S TARTED	R/W	0*, 1	T0_STOP_EVENT: If set the timer T0 is stopped when a data transmission begins.
28	T0_STOP_ON_RF_ ON_EXT	R/W	0*, 1	T0_STOP_EVENT: If set the timer T0 is stopped when the external RF field is detected.
27	T0_STOP_ON_RF_O FF_EXT	R/W	0*, 1	T0_STOP_EVENT: If set the timer T0 is stopped when the external RF field vanishes.
26	T0_STOP_ON_RF_ ON_INT	R/W	0*,1	T0_STOP_EVENT: If set, the timer T0 is stopped when the internal RF field is turned on.
25	T0_STOP_ON_RF_ OFF_INT	R/W	0*,1	T0_STOP_EVENT: If set, the timer T0 is stopped when the internal RF field is turned off.
24	T0_STOP_ON_SIGI N_ACT	R/W	0*,1	T0_STOP_EVENT: If set, the timer T0 is stopped when an activity on SigIn is detected.
23:19	RESERVED	R	0	Reserved
18	T0_START_ON_T3_ RUNNING	R/W	0*, 1	T0_START_EVENT: If set, the timer T0 is started when the timer T3 starts running.
17	T0_START_ON_RX_ STARTED	R/W	0*, 1	T0_START_EVENT: If set, the timer T0 is started when a data reception begins (1st bit is received).
16	T0_START_ON_RX_ ENDED	R/W	0*, 1	T0_START_EVENT: If set, the timer T0 is started when a data reception ends.
15	T0_START_ON_TX_ STARTED	R/W	0*, 1	T0_START_EVENT: If set, the timer T0 is started when a data transmission begins.
14	T0_START_ON_TX_ ENDED	R/W	0*, 1	T0_START_EVENT: If set, the timer T0 is started when a data transmission ends.
13	T0_START_ON_RF_ ON_EXT	R/W	0*, 1	T0_START_EVENT: If set, the timer T0 is started when the external RF field is detected.
12	T0_START_ON_RF_ OFF_EXT	R/W	0*, 1	T0_START_EVENT: If set, the timer T0 is started when the external RF field is not detected any more.
11	T0_START_ON_RF_ ON_INT	R/W	0*, 1	T0_START_EVENT: If set, the timer T0 is started when an internal RF field is turned on.
10	T0_START_ON_RF_ OFF_INT	R/W	0*, 1	T0_START_EVENT: If set, the timer T0 is started when an internal RF field is turned off.
9	T0_START_ON_SIG IN_ACT	R/W	0*, 1	T0_START_EVENT: If set, the timer T0 is started when an activity on SigIn is detected.
8	T0_START_NOW	D	0*, 1	T0_START_EVENT: If set, the timer T0 is started immediately.
7:6	RESERVED	R	0	Reserved
5:3	T0_PRESCALE_SEL	R/W	0h-7h	Controls frequency/period of the timer T0 when the prescaler is activated in T0_MODE_SEL.
			000	6.78 MHz counter

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
			001	3.39 MHz counter
			010	1.70 MHz counter
			011	848 kHz counter
			100	424 kHz counter
			101	212 kHz counter
			110	106 kHz counter
			111	53 kHz counter
2	T0_MODE_SEL	L R/W	0 – 1	Configuration of the timer T0 clock.
			0*	Prescaler is disabled: the timer frequency matches CLIF clock frequency (13.56 MHz).
			1	Prescaler is enabled: the timer operates on the prescaler signal frequency (chosen by T0_PRESCALE_SEL).
1	T0_RELOAD_ENAB	R/W	0*, 1	If set to 0, the timer T0 will stop on expiration.
	LE		0*	After expiration, the timer T0 will stop counting, i.e., remain zero, reset value.
			1	After expiration, the timer T0 will reload its preset value and continue counting down.
0	T0_ENABLE	R/W	0*, 1	Enables the timer T0

Table 210. CLIF_TIMER1_CONFIG_REG register (address 007Ch)

Bit	Symbol	Access	Value	Description
31	T1_STOP_ON_T3_E XPIRED	R/W	0*, 1	T1_STOP_EVENT: If set the timer T1 is stopped when timer T3 raises its expiration flag.
30	T1_STOP_ON_RX_ STARTED	R/W	0*, 1	T1_STOP_EVENT: If set the timer T1 is stopped when a data reception begins (1st bit is received).
29	T1_STOP_ON_TX_S TARTED	R/W	0*, 1	T1_STOP_EVENT: If set the timer T1 is stopped when a data transmission begins.
28	T1_STOP_ON_RF_ ON_EXT	R/W	0*, 1	T1_STOP_EVENT: If set the timer T1 is stopped when the external RF field is detected.
27	T1_STOP_ON_RF_O FF_EXT	R/W	0*, 1	T1_STOP_EVENT: If set the timer T1 is stopped when the external RF field vanishes.
26	T1_STOP_ON_RF_ ON_INT	R/W	0*,1	T1_STOP_EVENT: If set, the timer T1 is stopped when the internal RF field is turned on.
25	T1_STOP_ON_RF_ OFF_INT	R/W	0*,1	T1_STOP_EVENT: If set, the timer T1 is stopped when the internal RF field is turned off.
24	T1_STOP_ON_SIGI N_ACT	R/W	0*,1	T1_STOP_EVENT: If set, the timer T1 is stopped when an activity on SigIn is detected.
23:19	RESERVED	R	0	Reserved
18	T1_START_ON_T3_ RUNNING	R/W	0*, 1	T1_START_EVENT: If set, the timer T1 is started when the timer T3 starts running.

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
17	T1_START_ON_RX_ STARTED	R/W	0*, 1	T1_START_EVENT: If set, the timer T1 is started when a data reception begins (1st bit is received).
16	T1_START_ON_RX_ ENDED	R/W	0*, 1	T1_START_EVENT: If set, the timer T1 is started when a data reception ends.
15	T1_START_ON_TX_ STARTED	R/W	0*, 1	T1_START_EVENT: If set, the timer T1 is started when a data transmission begins.
14	T1_START_ON_TX_ ENDED	R/W	0*, 1	T1_START_EVENT: If set, the timer T1 is started when a data transmission ends.
13	T1_START_ON_RF_ ON_EXT	R/W	0*, 1	T1_START_EVENT: If set, the timer T1 is started when the external RF field is detected.
12	T1_START_ON_RF_ OFF_EXT	R/W	0*, 1	T1_START_EVENT: If set, the timer T1 is started when the external RF field is not detected any more.
11	T1_START_ON_RF_ ON_INT	R/W	0*, 1	T1_START_EVENT: If set, the timer T1 is started when an internal RF field is turned on.
10	T1_START_ON_RF_ OFF_INT	R/W	0*, 1	T1_START_EVENT: If set, the timer T1 is started when an internal RF field is turned off.
9	T1_START_ON_SIG IN_ACT	R/W	0*, 1	T1_START_EVENT: If set, the timer T1 is started when an activity on SigIn is detected.
8	T1_START_NOW	D	0*, 1	T1_START_EVENT: If set, the timer T1 is started immediately.
7:6	RESERVED	R	0	Reserved
5:3	T1_PRESCALE_SEL	R/W	0h-7h	Controls frequency/period of the timer T1 when the prescaler is activated in T1_MODE_SEL.
			000	6.78 MHz counter
			001	3.39 MHz counter
			010	1.70 MHz counter
			011	848 kHz counter
			100	424 kHz counter
			101	212 kHz counter
			110	106 kHz counter
			111	53 kHz counter
2	T1_MODE_SEL	R/W	0 – 1	Configuration of the timer T1 clock.
			0*	Prescaler is disabled: the timer frequency matches CLIF clock frequency (13.56MHz).
			1	Prescaler is enabled: the timer operates on the prescaler signal frequency (chosen by T1_PRESCALE_SEL).
1	T1_RELOAD_ENAB	R/W	0*, 1	If set to 0, the timer T1 will stop on expiration.
	LE		0*	After expiration, the timer T1 will stop counting, i.e., remain zero, reset value.
			1	After expiration, the timer T1 will reload its preset value and continue counting down.

169 of 341

PN7462 HW user manual

Table 211. CLIF_TIMER2_CONFIG_REG register (address 0080h)

* = rese	t value			
Bit	Symbol	Access	Value	Description
31	T2_STOP_ON_T3_E XPIRED	R/W	0*, 1	T2_STOP_EVENT: If set the timer T2 is stopped when timer T3 raises its expiration flag.
30	T2_STOP_ON_RX_ STARTED	R/W	0*, 1	T2_STOP_EVENT: If set the timer T2 is stopped when a data reception begins (1st bit is received).
29	T2_STOP_ON_TX_S TARTED	R/W	0*, 1	T2_STOP_EVENT: If set the timer T2 is stopped when a data transmission begins.
28	T2_STOP_ON_RF_ ON_EXT	R/W	0*, 1	T2_STOP_EVENT: If set the timer T2 is stopped when the external RF field is detected.
27	T2_STOP_ON_RF_O FF_EXT	R/W	0*, 1	T2_STOP_EVENT: If set the timer T2 is stopped when the external RF field vanishes.
26	T2_STOP_ON_RF_ ON_INT	R/W	0*,1	T2_STOP_EVENT: If set, the timer T2 is stopped when the internal RF field is turned on.
25	T2_STOP_ON_RF_ OFF_INT	R/W	0*,1	T2_STOP_EVENT: If set, the timer T2 is stopped when the internal RF field is turned off.
24	T2_STOP_ON_SIGI N_ACT	R/W	0*,1	T2_STOP_EVENT: If set, the timer T2 is stopped when an activity on SigIn is detected.
23:19	RESERVED	R	0	Reserved
18	T2_START_ON_T3_ RUNNING	R/W	0*, 1	T2_START_EVENT: If set, the timer T2 is started when the timer T3 starts running.
17	T2_START_ON_RX_ STARTED	R/W	0*, 1	T2_START_EVENT: If set, the timer T2 is started when a data reception begins (1st bit is received).
16	T2_START_ON_RX_ ENDED	R/W	0*, 1	T2_START_EVENT: If set, the timer T2 is started when a data reception ends.
15	T2_START_ON_TX_ STARTED	R/W	0*, 1	T2_START_EVENT: If set, the timer T2 is started when a data transmission begins.
14	T2_START_ON_TX_ ENDED	R/W	0*, 1	T2_START_EVENT: If set, the timer T2 is started when a data transmission ends.
13	T2_START_ON_RF_ ON_EXT	R/W	0*, 1	T2_START_EVENT: If set, the timer T2 is started when the external RF field is detected.
12	T2_START_ON_RF_ OFF_EXT	R/W	0*, 1	T2_START_EVENT: If set, the timer T2 is started when the external RF field is not detected any more.
11	T2_START_ON_RF_ ON_INT	R/W	0*, 1	T2_START_EVENT: If set, the timer T2 is started when an internal RF field is turned on.
10	T2_START_ON_RF_ OFF_INT	R/W	0*, 1	T2_START_EVENT: If set, the timer T2 is started when an internal RF field is turned off.
9	T2_START_ON_SIG IN_ACT	R/W	0*, 1	T2_START_EVENT: If set, the timer T2 is started when an activity on SigIn is detected.
8	T2_START_NOW	D	0*, 1	T2_START_EVENT: If set, the timer T2 is started immediately.
7:6	RESERVED	R	0	reserved
5:3	T2_PRESCALE_SEL	R/W	0h-7h	Controls frequency/period of the timer T2 when the prescaler is activated in T2_MODE_SEL.
			000	6.78 MHz counter

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
			001	3.39 MHz counter
			010	1.70 MHz counter
			011	848 kHz counter
			100	424 kHz counter
			101	212 kHz counter
			110	106 kHz counter
			111	53 kHz counter
2	T2_MODE_SEL	_ R/W	0 – 1	Configuration of the timer T2 clock.
			0*	Prescaler is disabled: the timer frequency matches CLIF clock frequency (13.56MHz).
			1	Prescaler is enabled: the timer operates on the prescaler signal frequency (chosen by T2_PRESCALE_SEL).
1	T2_RELOAD_ENAB	R/W	0*, 1	If set to 0, the timer T2 will stop on expiration.
	LE		0*	After expiration, the timer T2 will stop counting, i.e., remain zero, reset value.
			1	After expiration, the timer T2 will reload its preset value and continue counting down.
0	T2_ENABLE	R/W	0*, 1	Enables the timer T2

Table 212. CLIF_TIMERO_RELOAD_REG register (address 0084h)

^{* =} reset value

Bit	Symbol	Access	Value	Description
31:20	RESERVED	R	0	Reserved
19:0	T0_RELOAD_VALU	R/W	0000h - FFFFFh	Reload value of the timer T0.
	E		00h*	reset value

Table 213. CLIF_TIMER1_RELOAD_REG register (address 0088h)

* = reset value

Bit	Symbol	Access	Value	Description
31:20	RESERVED	R	0	Reserved
19:0	T1_RELOAD_VALU	R/W	0000h - FFFFFh	Reload value of the timer T1.
	E		00h*	reset value

Table 214. CLIF_TIMER2_RELOAD_REG register (address 008Ch)

Bit	Symbol	Access	Value	Description
31:20	RESERVED	R	0	Reserved
19:0	T2_RELOAD_VALU	R/W	0000h - FFFFFh	Reload value of the timer T2.
	E		00h*	reset value

PN7462 HW user manual

Table 215. CLIF_TIMER0_OUTPUT_REG register (address 0090h)

* = reset value

Bit	Symbol	Access	Value	Description
31:25	RESERVED	R	0	Reserved
24	T0_RUNNING	R	0*, 1	Indicates that timer T0 is running (busy)
23:20	RESERVED	R	0	Reserved
19:0	T0_VALUE	R	00000h - FFFFFh	Value of 20-bit counter in timer T0
			00h*	reset value

Table 216. CLIF_TIMER1_OUTPUT_REG register (address 0094h)

* = reset value

Bit	Symbol	Access	Value	Description
31:25	RESERVED	R	0	Reserved
24	T1_RUNNING	R	0*, 1	Indicates that timer T1 is running (busy)
23:20	RESERVED	R	0	Reserved
19:0	T1_VALUE	R	00000h - FFFFFh	Value of 20-bit counter in timer T1
			00h*	reset value

Table 217. CLIF_TIMER2_OUTPUT_REG register (address 0098h)

* = reset value

- 7000	t value			
Bit	Symbol	Access	Value	Description
31:25	RESERVED	R	0	Reserved
24	T2_RUNNING	R	0*, 1	Indicates that timer T2 is running (busy)
23:20	RESERVED	R	0	Reserved
19:0	T2_VALUE	R	00000h - FFFFFh	Value of 20-bit counter in timer T2
			00h*	reset value

Table 218. CLIF_TIMER3_CONFIG_REG register (address 009Ch)

Bit	Symbol	Access	Value	Description
31	T3_RUNNING	R	0*, 1	Indicates that timer T3 is running (busy)
30:28	RESERVED	R	0*, 1	Reserved
27:8	T3_START_VALUE	R/W	Oh*- FFFFFh	Start value of timer T3
7:3	RESERVED	R	0	Reserved
2	T3_START_NOW	D	0*, 1	Start value of timer T3
1	T3_CLOCK_SEL	R/W	0*, 1	Select the timer clock frequency
			0	HFO clock
			1	LFO clock
0	T3_ENABLE	R/W	0*, 1	Enables timer T3

UM10858 NXP Semiconductors

PN7462 HW user manual

Table 219. CLIF_SIGPRO_RM_CONFIG1_REG register (address 00B4h)

* = rese	* = reset value				
Bit	Symbol	Access	Value	Description	
31:25	RESERVED	R	0	Reserved	
24	DYNAMIC_BPSK_T H_ENABLE	R/W	0-1*	If set to 1 the threshold for BPSK demodulation is dynamically adapted while reception.	
				Note: This setting is only valid in BPSK modes – otherwise it is ignored	
23:21	BPSK_IQ_MODE	R/W	000*-111	Defines strategy of signal processing regarding I and Q channel	
			000*	Both channels (I and Q) are used for signal processing	
			001	Use only I channel	
			010	Use only Q channel	
			011	Reserved	
			100	Use the strongest channel	
			101	Use the first channel	
			110-111	Reserved	
20	BPSK_FILT6	R/W	0*-1	This bit changes the Spike filter for the Phase shift detection from order 5 to order 6 (default = order 6).	
19	RESYNC_EQ_ON	R/W	0-1*	Resynchronization during the SOF for an equal correlation value is done (default = activated).	
18	CORR_RESET_ON	R/W	0-1*	The correlator is reset at a reset (default = activated).	
17	VALID_FILT_OFF	R/W	0*-1	Disables a special filter in BPSK mode. If set to 0, the correlation of 0110 is filtered with the correlation of 1110 and 0111. Otherwise the demodulation is done using the correlation with 0110	
16	DATA_BEFORE_MI N	R/W	0*-1	Data is received even before the first minimum at the SOF (default: = deactivated).	
15:12	MIN_LEVEL	R/W	0*-Fh	Defines the MinLevel of the reception	
				Note : The MinLevel should be higher than the noise level in the system	
				Note: Used for BPSK and Manchester with Subcarrier	
11:8	MIN_LEVEL_P	R/W	0* - Fh	Defines the MinLevel for the phase shift detector unit	
7	USE_SMALL_EVAL	R/W	0* - 1	Defines the length of the even period for the correlator for Manchester subcarrier communication types	
6:5	COLL_LEVEL	R/W	00* - 11	Defines how strong a signal must be to be interpreted as a collision for Manchester subcarrier communication types.	
			00*	>12.5 %	
			01	>25 %	
			10	>50 %	
			11	No Collison	
4	PRE_FILTER	R/W	0* - 1	If set to 1 four samples are combined to one data. (average)	
3	RECT_FILTER	R/W	0* - 1	If set to one, the ADC-values are changed to a more rectangular wave shape.	

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
2	SYNC_HIGH	R/W	0* - 1	Defines if the bit grid is fixed at maximum (1) or at a minimum (0) value of the correlation.
1	FSK	R/W	0*-1	If set to 1, the demodulation scheme is FSK.
0	BPSK	R/W	0*-1	If set to 1, the demodulation scheme is BPSK.

Table 220. CLIF_SIGPRO_ADCBCM_THRESHOLD_REG register (address 00C0h)

* = reset value

Bit	Symbol	Access	Value	Description
31:29	RESERVED	R	0	Reserved
28:16	EDGE_DETECT_TH	R/W	0000h* - 1FFFFh	Threshold for the edge decision block of the ADCBCM
15:13	RESERVED	R	0	Reserved
12:0	BIT_DETECT_TH	R/W	0000h* - 1FFFFh	Threshold for the "bit" decision block of the ADCBCM.

Table 221. CLIF_AGC_CONFIG0_REG register (address 00CCh)

Bit	Symbol	Access	Value	Description
31	INTERNAL_USE[1]	R/W	0	For internal use
30:24	FOR INTERAL USE ^[1]	R/W	0*-7Fh	For internal use
23:15	INTERNAL_USE[1]	R/W	0*-1FFh	For internal use
14:5	AGC_TIME_CONST ANT	R/W	0*-3FFh	Time constant for the AGC update. An AGC period is given by (AGC_TIME_CONSTANT+1) * 13.56 MHz
4	INTERNAL_USE[1]	R/W	0*, 1	For internal use
3	AGC_INPUT_SEL	R/W	0*, 1	Selects the AGC value to be loaded into the AGC and the source for manual mode:
2	AGC_LOAD	W	0*, 1	If set, one AGC control value is loaded from
1	AGC_MODE_SEL	R/W	0*, 1	Selects the operation mode of the AGC:
			0*	Rx-Divider is controlled by the register CLIF_AGC_INPUT_REG.AGC_CM_VALUE or CLIF_AGC_INPUT_REG.AGC_RM_VALUE (Dependent on AGC_INPUT_SEL).
			1	Rx-Divider value is controlled by the AGC.
0	AGC_MODE_ENABL E	R/W	0*-1	If set, the AGC is enabled. If not set, the Rx-Divider is controlled by either the internal AGC register or a register value (dependent on AGC_MODE_SEL).
				value (dependent on AGC_MODE_SEL).

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

PN7462 HW user manual

Table 222. CLIF_AGC_INPUT_REG register (address 00D4h)

* = reset value

Bit	Symbol	Access	Value	Description
31:10	RESERVED	R	0	Reserved
25:16	AGC_RM_VALUE	CLIF_AGC_CONFIG0_REG.ACCCLIF_AGC_CONFIG0_REG.MC	Static AGC value used for reader mode CLIF_AGC_CONFIG0_REG.AGC_INPUT_SEL = 1 & CLIF_AGC_CONFIG0_REG.MODE_SEL = 0	
			0h*	Most sensitive: largest Rx-resistor, i.e., none of the switchable resistors is added in parallel
			3FFh	Most robust: smallest Rx-resistor, i.e., all switchable resistors are added in parallel
15:10	RESERVED	R	0	Reserved
9:0	AGC_CM_VALUE	R/W	0*-3FFh	Static AGC value used for card mode
				CLIF_AGC_CONFIG0_REG.AGC_INPUT_SEL = 0 & CLIF_AGC_CONFIG0_REG.MODE_SEL = 0.
				Note : That in reset CLIF_AGC_CONFIG0_REG = 0x00 and CLIF_AGC_INPUT_REG = 0x00 and therefore the AGC output is AGC_CM_VALUE = 0x00.
			0h*	Most sensitive: largest Rx-resistor, i.e., none of the switchable resistors is added in parallel
			3FFh	Most robust: smallest Rx-resistor, i.e., all switchable resistors are added in parallel

Table 223. CLIF_RSSI_REG register (address 00D8h)

^{* =} reset value

Bit	Symbol	Access	Value	Description
31:16	RESERVED	R	0	Reserved
15:6	AGC_VALUE	R	0*-3FFh	RSSI: Current value of the AGC
			0h*	Most sensitive: largest Rx-resistor, i.e., none of the switchable resistors are added in parallel
			3FFH	Most robust: smallest Rx-resistor, i.e., all switchable resistors are added in parallel
5:0	ADC_DATA_Q	R	0h* - 3Fh	RSSI: Q-channel ADC value (for RSSI DC coupling shall be used)

Table 224. CLIF_TX_CONTROL_REG register (address 00DCh)

^{* =} reset value

Bit	Symbol	Access	Value	Description
31:18	INTERNAL_USE[1]	R	0	For internal use
17	INTERNAL_USE[1]	R/W	0*, 1	For internal use
16	INTERNAL_USE ^[1]	R/W	0*, 1	For internal use

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
15	INTERNAL_USE[1]	R	0	For internal use
14:13	INTERNAL_USE ^[1]	R/W	0*, 3	For internal use
12	INTERNAL_USE ^[1]	R/W	0*, 1	For internal use
11	INTERNAL_USE ^[1]	R	0	For internal use
10	INTERNAL_USE[1]	R/W	0*, 1	For internal use
9	INTERNAL_USE[1]	R/W	0*, 1	For internal use
8	INTERNAL_USE ^[1]	R/W	0*, 1	For internal use
7	INTERNAL_USE ^[1]	R	0	For internal use
6	INTERNAL_USE ^[1]	R/W	0*, 1	For internal use
5	TX_ALM_TYPE_SELECT	R/W	0*, 1	Defines which ALM type is used. If set to 1 Dual-Loop-ALM is used, default (0) is Single-Loop-ALM.
4	INTERNAL_USE ^[1]	R/W	0*, 1	Selects the driver to be used for ALM.
				For internal use
3	TX_ALM_ENABLE	R/W	0*, 1	If set to 1 ALM is used for transmission in card mode
2	INTERNAL_USE ^[1]	R/W	0*, 1	For internal use
1:0	INTERNAL_USE ^[1]	R/W	0* - 3h	For internal use

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

Table 225. CLIF_RX_DATA_BUFFER_REG register (address 00ECh)

*	=	reset	value	
---	---	-------	-------	--

Bit	Symbol	Access	Value	Description
31:0	RX_DATA_BUFFER	R	0h-FFFFFFFh	Data buffer for APB based Buffer Manager data transfer.

Table 226. CLIF_TEST_CONTROL_REG register (address 00FCh)

Bit	Symbol	Access	Value	Description
31	INTERNAL_USE[1]	R/W	0*, 1	For internal use
30	INTERNAL_USE[1]	R/W	0*, 1	For internal use
29	INTERNAL_USE[1]	R/W	0*, 1	For internal use
28:27	INTERNAL_USE[1]	R	0	For internal use
26	INTERNAL_USE[1]	R/W	0*, 1	For internal use
25	INTERNAL_USE[1]	R/W	0*, 1	For internal use
24	INTERNAL_USE[1]	R/W	0*, 1	For internal use
23	INTERNAL_USE[1]	R/W	0*, 1	For internal use
22:21	TADT_EXTEND_SE LECT	R/W	0*, 3	By setting a value != 0 the minimum time for TADT can be increased
20	PRBS_TYPE	R/W	0*, 1	Defines the PRBS type; If set to 1, PRBS15 is selected, default value 0 selects PRBS9
19	LONG_LD_MASK_E NABLE	R/W	0*, 1	If set to 1, the masking time for the NFC-LD after TxRFOff is longer.
18	INTERNAL_USE[1]	R/W	0*, 1	For internal use

PN7462 HW user manual

			Value	Description
17	INTERNAL_USE[1]	R/W	0*, 1	For internal use
16	INTERNAL_USE[1]	R/W	0*, 1	For internal use
15	INTERNAL_USE[1]	R/W	0*, 1	For internal use
14	INTERNAL_USE[1]	R/W	0*, 1	For internal use
13	INTERNAL_USE[1]	R/W	0*, 1	For internal use
12	INTERNAL_USE[1]	R/W	0*, 1	For internal use
11	INTERNAL_USE[1]	R/W	0*, 1	For internal use
10	INTERNAL_USE[1]	R/W	0*, 1	For internal use
9:8		R/W	0*- 3	Select the source for RF-Field detection
EL		0*	NFC-Level detector indication signal is used	
			1	RF-Level detector indication signal is used
			2	NFC- and RF-Level detector indication signal is used
			3	Override - RF-Field detected is emulated
7	INTERNAL_USE[1]	R/W	0*, 1	For internal use
6	INTERNAL_USE[1]	R/W	0*, 1	For internal use
5	INTERNAL_USE[1]	R/W	0*, 1	For internal use
4	INTERNAL_USE[1]	R/W	0*, 1	For internal use
3	INTERNAL_USE[1]	R	0	For internal use
2	INTERNAL_USE[1]	R/W	0*, 1	For internal use
1	INTERNAL_USE[1]	R/W	0*, 1	For internal use
0	INTERNAL_USE[1]	R/W	0*, 1	For internal use

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

Table 227. CLIF_ANA_NFCLD_REG register (address 0100h)

^{* =} reset value

Bit	Symbol	Access	Value	Description
31:9	RESERVED	R	0	Reserved
8	CM_PD_NFC_DET	R/W	0 – 1*	Power Down NFC level detector
7:6	RESERVED	R	0	Reserved
5:0	CM_RFL_NFC	R/W	0h,4h* - Fh	Programming of detection level

Table 228. CLIF_ANA_TX_CLK_CONTROL_REG register (address 0104h)

- 7000	t varao			
Bit	Symbol	Access	Value	Description
31:11	RESERVED	R	0	Reserved
10:8	TX_CLK_MODE_OV UN_PREV	R/W	0*- 7	Defines the TX clockmode for the period the overshoot/undershoot prevention is active
7	TX2_INV_RM	R/W	0, 1*	if 1 -> TX output is inverted (clk_13m56_n is used); 0 -> clk_13m56 is used

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
6	TX2_INV_CM	R/W	0*, 1	if 1 -> TX output is inverted (clk_13m56_n is used); 0 -> clk_13m56 is used
5	TX1_INV_RM	R/W	0*, 1	if 1 -> TX output is inverted (clk_13m56_n is used); 0 -> clk_13m56 is used
4	TX1_INV_CM	R/W	0*, 1	if 1 -> TX output is inverted (clk_13m56_n is used); 0 -> clk_13m56 is used
3:1	TX_CLK_MODE_RM	R/W	0-7h,1*	TX clockmode
0	TX_PD_CLK_GEN	R/W	0, 1*	TX clock generation disabled and thus also envelope synchronization to clk is disabled. Only valid in combination with the corresponding override bit. In normal operation, the pd is controlled by HW.

Table 229. CLIF_ANA_TX_AMPLITUDE_REG register (address 0108h)

= rese	t value			
Bit	Symbol	Access	Value	Description
31:28 TX_GSN_CW_RM R	R/W	0* - Fh	gsn settings @ continuous wave in reader mode	
			0000: lowest power level	
				1111: highest power level
27:24	INTERNAL_USE[1]	R/W	0* - Fh	For internal use
23:20	INTERNAL_USE[1]	R/W	0* - Fh	For internal use
19:16	INTERNAL_USE[1]	R/W	0* - Fh	For internal use
15	RESERVED	R	0	Reserved
14	TX_ASKMODE_SEL ECT	R/W	0* - 1	Selects the output voltage mode if the transmitter. Default value is 1
		0	Setting used for ALM mode: TX output voltage is independent of the envelope and hence TX output amplitude can be adjusted by the bitfield TX_RESIDUAL_CARRIER (0X1F is maximum, 0x00	
				minimum amplitude)
			1	Setting used for standard modes (reader and active mode)
13:12	13:12 TX_CW_AMPLITUD E_RM	R/W	0* - 3h	sets amplitude of unmodulated carrier (continuous wave) @ reader mode
			0	Amplitude is set to TVDD - 150 mV
			1	Amplitude is set to TVDD - 250 mV
			2	Amplitude is set to TVDD - 500 mV
			3	Amplitude is set to TVDD - 1000 mV
11:10	RESERVED	R	0	Reserved
9:8	TX_CW_AMPLITUD E_ALM_CM	R/W	0* - 3h	Set amplitude of unmodulated carrier @ card mode
7:3	TX_RESIDUAL_CAR RIER	R/W	0* - 1Fh	Set residual carrier (0=100 %, 1F = 0 %)

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
2	TX_CW_TO_MAX_R M	R/W	0* - 1h	TX HI output is the maximum voltage obtainable from charge pump (RM setting); if set to 1 -> TX_CW_AMPLITUDE_RM is overruled.
1	TX_CW_TO_MAX_A LM_CM	R/W	0-1*h	TX HI output is the maximum voltage obtainable from charge pump (CM setting); if set to 1 -> TX_CW_AMPLITUDE_CM is overruled.
0	TX_PD	R/W	0-1h*	charge pumps clamped to tvdd

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

Table 230. CLIF_ANA_RX_REG register (address 0110h)

*	_	reset	val	مر را
	_	16261	vai	110

Bit	Symbol	Access	Value	Description
31:19	INTERNAL_USE[1]	R	0*	For internal use
18	INTERNAL_USE[1]	R/W	0*-1	For internal use
17	INTERNAL_USE[1]	R/W	0-1*	For internal use
16	INTERNAL_USE[1]	R/W	0-1*	For internal use
15	INTERNAL_USE[1]	R/W	0-1*	For internal use
14	INTERNAL_USE[1]	R/W	0-1*	For internal use
13	INTERNAL_USE[1]	R/W	0*-1	For internal use
12	INTERNAL_USE[1]	R/W	0-1*	For internal use
11	INTERNAL_USE[1]	R/W	0-1*	For internal use
10	INTERNAL_USE[1]	R/W	0*-1	For internal use
9:8	INTERNAL_USE[1]	R/W	0h*-3h	For internal use
7	INTERNAL_USE[1]	R/W	0*-1	For internal use
6	INTERNAL_USE[1]	R/W	0*-1	For internal use
5	INTERNAL_USE[1]	R/W	0-1*	For internal use
4	INTERNAL_USE[1]	R/W	0*-1	For internal use
3:2	RX_HPCF	R/W	0h*-3h	Lower Corner Frequency: 00->45 kHz, 01->85 kHz, 10->150 kHz, 11->250 kHz
1:0	RX_GAIN	R/W	0h*-3h	Gain Adjustment BBA: 00->33 dB, 01->40 dB, 10->50 dB, 11->57 dB

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

Table 231. CLIF_ANA_CM_CONFIG_REG register (address 0114h)

^{* =} reset value

Bit	Symbol	Access	Value	Description
31:17	RESERVED	R	0*	Reserved
16	INTERNAL_USE[1]	R/W	0-1*	For internal use
15	INTERNAL_USE[1]	R/W	0-1*	For internal use
14	INTERNAL_USE[1]	R/W	0-1*	For internal use
13:12	CM_MILLER_SENS	R/W	0h*-3h	Configuration bits for reference level of Miller demodulator (with respect to peak-peak input voltage)
			0*	30 %

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
			1	50 %
			2	65 %
			3	80 %
11:10	CM_MILLER_TAU	R/W	0h – 3h	Configuration bits for the time constant of the reference generation in Miller demodulator
			0*	8 µs (cap of 125 f)
			1	2 μs (cap of 500 f)
			2	5 µs (cap of 200 f)
			3	Not allowed
9	INTERNAL_USE[1]	R/W	0*-1	For internal use
8	INTERNAL_USE[1]	R/W	0*-1	For internal use
7	INTERNAL_USE[1]	R/W	0-1*	For internal use
6	INTERNAL_USE[1]	R/W	0*-1	For internal use
5	INTERNAL_USE[1]	R/W	0*-1	For internal use
4	INTERNAL_USE[1]	R/W	0*-1	For internal use
3	INTERNAL_USE[1]	R/W	0*-1	For internal use
2	INTERNAL_USE[1]	R/W	0*-1	For internal use
1:0	INTERNAL_USE[1]	R/W	0h*-3h	For internal use

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

Table 232. CLIF_ANA_AGC_REG register (address 011Ch)

* = reset value

Bit	Symbol	Access	Value	Description
31:4	RESERVED	R	0*	Reserved
3	RESERVED	R/W	0*, 1	Reserved always set to 0
2	AGC_PD	R/W	0*-1	AGC power down
1:0	AGC_VREF_SEL	R/W	0h*-3h	Select the comparison reference voltage
			0*	$V_{ref} = 1.15 \text{ V}$ which results in $V_{Rx} = 0.5 \text{ V}_{pp}$
			1*	$V_{ref} f = 1.4 V$ which results in $V_{Rx} = 1 V_{pp}$
			2*	V_{ref} = 1.5 V which results in V_{Rx} = 1.2 V_{pp}
			3*	$V_{ref} = 1.6 \text{ V}$ which results in $V_{Rx} = 1.4 \text{ V}_{pp}$

Table 233. CLIF_ANA_CLK_MAN_REG register (address 0120h)

Bit	Symbol	Access	Value	Description
31:7	RESERVED	R	0*	Reserved
6	INTERNAL_USE[1]	R/W	0*, 1	For internal use
5	INTERNAL_USE[1]	R/W	0*-1	For internal use
4	INTERNAL_USE[1]	R/W	0*-1	For internal use
3	INTERNAL_USE[1]	R/W	0*-1	For internal use
2:0	CLOCK_CONFIG_DLL_ALM	R/W	0h*-7h	Select DLL clock phase in 45°C steps.

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
				Note that the phase settings can be refined (on top of
				this configuration) in 5°C steps using
				CLIF_DPLL_INIT_REG.
				DPLL_CLOCK_CONFIG_ALM.
			0*	0 °C
			1	45 °C
			2	90 °C
			3	135 °C
			4	180 °C
			5	225 °C
			6	270 °C
			7	315 °C

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

Table 234. CLIF_ANA_TX_SHAPE_CONTROL_REG register (address 0128h)

* = reset value

Bit	Symbol	Access	Value	Description
31:29	RESERVED	R	0	Reserved
28:24	TX_RESIDUAL_CARRIER_O V_ PREV	R/W	0* - 1Fh	Defines the value for the residual carrier for the period the overshoot prevention pattern is active.
23:18	RESERVED	R	0	Reserved
17	TX _SET_BYPASS_SC_SHAPIN G	R/W	0*, 1	Bypasses switched capacitor shaping of the Transmitter Signal
16:12	RESERVED	R	0	Reserved
11:8	TX_SET_SLEW_SHUNTREG	R/W	0h*-Fh	Set slew rate for shunt regulator
7:4	TX_SET_TAU_MOD_FALLIN G	R/W	0h*-Fh	Transmitter TAU setting for falling edge of modulation shape. In AnalogControl module the output signal is switched with the tx_envelope.
				Only valid is TX_SET_BYPASS_SC_SHAPING is set
3:0	TX_SET_TAU_MOD_RISIN G	R/W	0h*-Fh	Transmitter TAU setting for rising edge of modulation shape. In AnalogControl module the output signal is switched with the tx_envelope.
				Only valid is TX_SET_BYPASS_SC_SHAPING is set

Table 235. CLIF_ANA_TEST_REG register (address 01FCh)

* = reset value

Bit	Symbol	Access	Value	Description
31:27	RESERVED	R	0*	Reserved
26	RESERVED	R/W	0*, 1	Reserved
25	RESERVED	R/W	0*, 1	Reserved
24	RESERVED	R/W	0*, 1	Reserved

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
23	RESERVED	R/W	0*, 1	Reserved
22:19	TX_SET_ILOAD	R/W	0h-Fh, Ah*	settings for set_iload and corresponding assumed load current in the output path
18:13	RESERVED	R/W	0h*-3Fh	Reserved
12:7	RESERVED	R/W	0h*-3Fh	Reserved
6	RESERVED	R/W	0*, 1	Reserved
5	RESERVED	R	0	Reserved
4:1	RESERVED	R/W	0h-Fh, 5h*	Reserved
0	TX_CW_AMP_REF2TVDD	R/W	0*, 1	If set to 1, the reference of the unmodulated carrier is defined relative to TVDD. Used for 5 V driver input

Table 236. CLIF_DPLL_INIT_REG register (address 0208h)

* = reset value

	l value			
Bit	Symbol	Access	Value	Description
31:28	RESERVED	R	0	Reserved
27	DPLL_CLOCK_CONFIG_AL M_SIGN	R/W	0*, 1	Defines the sign of the fine phase-changes
			0*	apply positive phase offset
			1	apply negative phase offset
26:24	DPLL_CLOCK_CONFIG_AL	R/W	0* - 7	Is the fine tuning of the phase configuration done on top of the coarse setting
	141			CLIF_ANA_CLK_MAN_REG.CLOCK_CONFIG_DLL_
				ALM
			0	0 °C (mode disabled)
			1	5 °C
			2	10 °C
			3	15 °C
			4	20 °C
			5	25 °C (not recommended)
			6	30 °C (not recommended)
			7	35 °C (not recommended)
23:22	RESERVED	R	0	Reserved
21:20	INTERNAL_USE[1]	R/W	0*-3h	For internal use
	_		0h*	Wakeup mode disabled
			1h	~37.8 us
			2h	~75.5 us
			3h	~113 us
19	RESERVED	R	0	Reserved
18	INTERNAL_USE ^[1]	R/W	0*,1	For internal use

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
17:16	INTERNAL_USE[1]	R/W	0*-3h	For internal use
	_		0*	Proportional: 2^(-3) and Integral: 2^(-20)
			1	Proportional: 2^(-4) and Integral: 2^(-21)
			2	Proportional: 2^(-5) and Integral: 2^(-22)
			3	Proportional: 2^(-6) and Integral: 2^(-23)
15:14	RESERVED	R	0	Reserved
13:12	INTERNAL_USE ^[1]	R/W	0*-3h	For internal use
	_		0*	~37.8 us
		1	~75.5 us	
			2	~151 us
			3	~300 us
11	RESERVED	R	0	Reserved
10:8	INTERNAL_USE ^[1]	R/W	0*-7h	For internal use
	_		0*	2^(-10)
			7	2^(-17)
7	RESERVED	R	0	Reserved
6:4	INTERNAL_USE ^[1]	R/W	0*-7h	For internal use
	_		0*	2^(-3)
			7	2^(-10)
3:2	RESERVED	R	0	Reserved
1:0	RESERVED	R/W	0*-3h	Reserved

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

Table 237. CLIF_INT_CLR_ENABLE_REG register (address 3FD8h)

* = reset value

Bit	Symbol	Access	Value	Description
31:30	RESERVED	W	0	Reserved
29	AGC_RFOFF_DET_ IRQ_CLR_ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
28	TX_DATA_REQ_IRQ_CLR_E NABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
27	RX_DATA_AV_IRQ_CLR_EN ABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
26	RX_BUFFER_OVERFLOW_I RQ_CLR_ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
25	TX_WATERLEVEL_IRQ_CLR _ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
24	RX_WATERLEVEL_IRQ_CLR _ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
23	RESERVED	W	0	Reserved

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
22	RX_SC_DET_IRQ_CLR_ENA BLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
21	RX_SOF_DET_IRQ_CLR_EN ABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
20	RX_EMD_IRQ_CLR_ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
19	TIMER3_IRQ_CLR_ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
18	TIMER2_IRQ_CLR_ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
17	TIMER1_IRQ_CLR_ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding
16	TIMER0_IRQ_CLR_ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE
15	CLOCK_ERROR_IRQ_CLR_ ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE
14	INTERNAL_USE[1]	W	0, 1	For internal use
13	INTERNAL_USE[1]	W	0, 1	For internal use
12	RF_ACTIVE_ERROR_IRQ_C LR_ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
11	TX_RFON_IRQ_CLR_ENABL E	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
10	TX_RFOFF_IRQ_CLR_ENAB LE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
9	RFON_DET_IRQ_CLR_ENAB LE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
8	RFOFF_DET_IRQ_CLR_ENA BLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
7:6	RESERVED	W	0	Reserved
5	STATE_CHANGE_IRQ_CLR_ ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
4	CARD_ACTIVATED_IRQ_CL R_ ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
3	MODE_DETECTED_IRQ_CL R_ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
2	IDLE_IRQ_CLR_ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
1	TX_IRQ_CLR_ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
0	RX_IRQ_CLR_ENABLE	W	0, 1	Writing 1 to this register does clear the corresponding IRQ ENABLE flag

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

PN7462 HW user manual

Table 238. CLIF_INT_SET_ENABLE_REG register (address 3FDCh)

* = reset value

* = rese	t value			
Bit	Symbol	Access	Value	Description
31:30	RESERVED	W	0	Reserved
29	AGC_RFOFF_DET_ IRQ_SET_ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
28	TX_DATA_REQ_IRQ_SET_E NABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
27	RX_DATA_AV_IRQ_SET_EN ABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
26	RX_BUFFER_OVERFLOW_I RQ_SET_ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
25	TX_WATERLEVEL_IRQ_SET _ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
24	RX_WATERLEVEL_IRQ_SET _ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
23	RESERVED	W	0	Reserved
22	RX_SC_DET_IRQ_SET_ENA BLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
21	RX_SOF_DET_IRQ_SET_EN ABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
20	RX_EMD_IRQ_SET_ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
19	TIMER3_IRQ_SET_ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
18	TIMER2_IRQ_SET_ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
17	TIMER1_IRQ_SET_ENABLE	W	0, 1	Writing 1 to this register does set the corresponding
16	TIMER0_IRQ_SET_ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE
15	CLOCK_ERROR_IRQ_SET_ ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE
14	INTERNAL_USE[1]	W	0, 1	For internal use
13	INTERNAL_USE[1]	W	0, 1	For internal use
12	RF_ACTIVE_ERROR_IRQ_S ET_ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
11	TX_RFON_IRQ_SET_ENABL E	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
10	TX_RFOFF_IRQ_SET_ENAB LE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
9	RFON_DET_IRQ_SET_ENAB LE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
8	RFOFF_DET_IRQ_SET_ENA BLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
7:6	RESERVED	W	0	Reserved

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
5	STATE_CHANGE_IRQ_SET_ ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
4	CARD_ACTIVATED_IRQ_SE T_ ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
3	MODE_DETECTED_IRQ_SE T_ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
2	IDLE_IRQ_SET_ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
1	TX_IRQ_SET_ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag
0	RX_IRQ_SET_ENABLE	W	0, 1	Writing 1 to this register does set the corresponding IRQ ENABLE flag

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

Table 239. CLIF_INT_STATUS_REG register (address 3FE0h)

* =	reset	val	lue

Bit	Symbol	Access	Value	Description
31:30	RESERVED	R	0	Reserved
29	AGC_RFOFF_DET_IRQ	R	0, 1	Set to 1 by hardware, when the AGC has detected the external RF-Field was switched off while transmitting in SL-ALM mode.
				Note : Only valid if the detection mode is enabled with the register bit-field AGC_RF_DETECT_SEL.
28	TX_DATA_REQ_IRQ	R	0*, 1	Set to 1 by hardware, when the Buffer Manager requests data for transmission from RAM.
				Note : Only valid if the bit DIRECT_DATA_ACCESS_ ENABLE is set to 1
27	RX_DATA_AV_IRQ	R	0*, 1	Set to 1 by hardware, when the Buffer Manager holds received data from reception to be written to RAM.
				Note : Only valid if the bit DIRECT_DATA_ACCESS_ ENABLE is set to 1
26	RX_BUFFER_OVERFLOW_I RQ	R	0*, 1	Set to 1 by hardware, when the number of bytes received exceeds the size of the RX buffer.
				Note: Reception is stopped in that case.
				Note : If RX_MULTIPLE is set to 1 this IRQ is raised when the sum of all frames exceed the RX buffer size
25	TX_WATERLEVEL_IRQ	R	0*, 1	Set to 1 by hardware, when the number of bytes transmitted is equal to the TX_WATERLEVEL
24	RX_WATERLEVEL_IRQ	R	0*, 1	Set to 1 by hardware, when the number of bytes received is equal to the RX_WATERLEVEL
23	RESERVED	R	0	Reserved
22	RX_SC_DET_IRQ	R	0*, 1	Set to 1 by hardware, when in reader mode a subcarrier is detected

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
21	RX_SOF_DET_IRQ	R	0*, 1	Set to 1 by hardware, when in reader mode an SOF is detected
20	RX_EMD_IRQ	R	0*, 1	Set to 1 by hardware, when an EMD event is detected
19	TIMER3_IRQ	R	0*, 1	Set to 1 by hardware, when the Timer3 is expired.
18	TIMER2_IRQ	R	0*, 1	Set to 1 by hardware, when the Timer2 is expired.
17	TIMER1_IRQ	R	0*, 1	Set to 1 by hardware, when the Timer1 is expired.
16	TIMER0_IRQ	R	0*, 1	Set to 1 by hardware, when the Timer0 is expired.
15	CLOCK_ERROR_IRQ	R	0*, 1	Set to 1 by hardware, when RF-Field vanished (and consequently the RF-Clock is not present) and the clock of the system PLL is not available
14	INTERNAL_USE[1]	R	0*, 1	For internal use
13	INTERNAL_USE[1]	R	0*, 1	For internal use
12	RF_ACTIVE_ERROR_IRQ	R	0*, 1	Set to 1 by hardware, when an RF error case occurred
11	TX_RFON_IRQ	R	0*, 1	Set to 1 by hardware, when the internally generated RF-field was switched on.
10	TX_RFOFF_IRQ	R	0*, 1	Set to 1 by hardware, when the internally generated RF-field was switched off.
9	RFON_DET_IRQ	R	0*, 1	Set to 1 by hardware, when an external RF-field is detected.
8	RFOFF_DET_IRQ	R	0*, 1	Set to 1 by hardware, when an external RF-field is switched off.
7:6	RESERVED	R	0	Reserved
5	STATE_CHANGE_IRQ	R	0*, 1	Set to 1 by hardware, when a transceive state is entered selected in the register field STATE_TRIGGER_SELECT
4	CARD_ACTIVATED_IRQ	R	0*, 1	Set to 1 by hardware, when TypeA card mode activation FSM reached the ACTIVATED or ACTIVATE_S state
3	MODE_DETECTED_IRQ	R	0*, 1	Set to 1 by hardware, when the card mode has been detected by the ModeDetector
				Note : While the TypeA activation FSM is active no IRQ is issued any more
2	IDLE_IRQ	R	0*, 1	Set to 1 by hardware, when the IDLE state is entered
1	TX_IRQ	R	0*, 1	Set to 1 by hardware, when an ongoing transmission is finished.
0	RX_IRQ	R	0*, 1	Set to 1 by hardware, when an ongoing reception is finished

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

Table 240. CLIF_INT_ENABLE_REG register (address 3FE4h)

* = reset value

Bit	Symbol	Access	Value	Description
31:30	RESERVED	R	0	Reserved
29	AGC_RFOFF_DET_ IRQ_ENABLE	R	0, 1	If this bit is 1 the corresponding IRQ can propagate to the CPUs IRQ controller
28	TX_DATA_REQ_IRQ_ENABL E	R	0*, 1	If this bit is 1 the corresponding IRQ can propagate to the CPUs IRQ controller

PN7462 HW user manual

Bit Symbol Access Value Description 27 RX_DATA_AV_IRQ_ENABLE R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller 26 RX_BUFFER_OVERFLOW_I RQ_ENABLE R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller 25 TX_WATERLEVEL_IRQ_ENA R BLE 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller 24 RX_WATERLEVEL_IRQ_EN R O*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller 20 RESERVER	e to the
CPUs IRQ controller 26 RX_BUFFER_OVERFLOW_I R Q_ENABLE CPUS IRQ controller 25 TX_WATERLEVEL_IRQ_ENA R BLE CPUS IRQ controller 26 RX_BUFFER_OVERFLOW_I R O*, 1 If this bit is 1 the corresponding IRQ can propagate CPUS IRQ controller 27 If this bit is 1 the corresponding IRQ can propagate CPUS IRQ controller 28 RX_WATERLEVEL_IRQ_EN R O*, 1 If this bit is 1 the corresponding IRQ can propagate CPUS IRQ controller	e to the
RQ_ENABLE CPUs IRQ controller TX_WATERLEVEL_IRQ_ENA R BLE 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller RX_WATERLEVEL_IRQ_EN R ABLE 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
BLE CPUs IRQ controller 24 RX_WATERLEVEL_IRQ_EN R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
ABLE CPUs IRQ controller	
OO DECEDIED D O December	to the
23 RESERVED R 0 Reserved	to the
22 RX_SC_DET_IRQ_ENABLE R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	
21 RX_SOF_DET_IRQ_ENABLE R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
20 RX_EMD_IRQ_ENABLE R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
19 TIMER3_IRQ_ENABLE R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
18 TIMER2_IRQ_ENABLE R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
17 TIMER1_IRQ_ENABLE R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
16 TIMER0_IRQ_ENABLE R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
15 CLOCK_ERROR_IRQ_ENAB R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
14 INTERNAL_USE ^[1] R 0*, 1 For internal use	
13 INTERNAL_USE ^[1] R 0*, 1 For internal use	
12 RF_ACTIVE_ERROR_IRQ_EN R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
11 TX_RFON_IRQ_ENABLE R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
10 TX_RFOFF_IRQ_ENABLE R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
9 RFON_DET_IRQ_ENABLE R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
8 RFOFF_DET_IRQ_ENABLE R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
7:6 RESERVED R 0 Reserved	
5 STATE_CHANGE_IRQ_ENAB R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
4 CARD_ACTIVATED_IRQ_ENA R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the
3 MODE_DETECTED_IRQ_EN R 0*, 1 If this bit is 1 the corresponding IRQ can propagate CPUs IRQ controller	to the

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
2	IDLE_IRQ_ENABLE	R	0*, 1	If this bit is 1 the corresponding IRQ can propagate to the CPUs IRQ controller
1	TX_IRQ_ENABLE	R	0*, 1	If this bit is 1 the corresponding IRQ can propagate to the CPUs IRQ controller
0	RX_IRQ_ENABLE	R	0*, 1	If this bit is 1 the corresponding IRQ can propagate to the CPUs IRQ controller

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

Table 241. CLIF_INT_CLR_STATUS_REG register (address 3FE8h)

* = reset value

Bit	Symbol	Access	Value	Description
31:30	RESERVED	R	0	Reserved
29	AGC_RFOFF_DET_ IRQ_CLR_STATUS	R	0, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
28	TX_DATA_REQ_IRQ_CLR_S TATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
27	RX_DATA_AV_IRQ_CLR_ST ATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
26	RX_BUFFER_OVERFLOW_I RQ_CLR_STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
25	TX_WATERLEVEL_IRQ_CLR _STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
24	RX_WATERLEVEL_IRQ_CLR _STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
23	RESERVED	R	0	Reserved
22	RX_SC_DET_IRQ_CLR_STA TUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRC STATUS flag
21	RX_SOF_DET_IRQ_CLR_ST ATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
20	RX_EMD_IRQ_CLR_STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
19	TIMER3_IRQ_CLR_STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
18	TIMER2_IRQ_CLR_STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
17	TIMER1_IRQ_CLR_STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
16	TIMER0_IRQ_CLR_STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
15	CLOCK_ERROR_IRQ_CLR_ STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRC STATUS flag
14	INTERNAL_USE[1]	R	0*, 1	For internal use
13	INTERNAL_USE[1]	R	0*, 1	For internal use
12	RF_ACTIVE_ERROR_IRQ_CL R_STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRC STATUS flag

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
	<u> </u>			•
11	TX_RFON_IRQ_CLR_STATU S	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
10	TX_RFOFF_IRQ_CLR_STATU S	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
9	RFON_DET_IRQ_CLR_STAT US	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
8	RFOFF_DET_IRQ_CLR_STAT US	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
7:6	RESERVED	R	0	Reserved
5	STATE_CHANGE_IRQ_CLR_ STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
4	CARD_ACTIVATED_IRQ_CLR _STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
3	MODE_DETECTED_IRQ_CL R_STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
2	IDLE_IRQ_CLR_STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
1	TX_IRQ_CLR_STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag
0	RX_IRQ_CLR_STATUS	R	0*, 1	Writing 1 to this register does clear the corresponding IRQ STATUS flag

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

Table 242. CLIF_INT_SET_STATUS_REG register (address 3FECh)

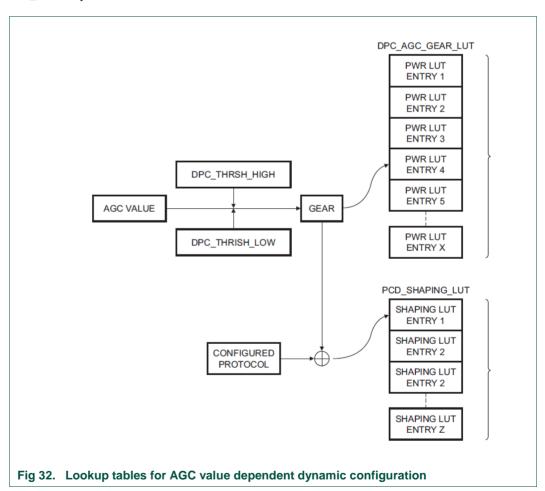
Bit	Symbol	Access	Value	Description
31:30	RESERVED	R	0	Reserved
29	AGC_RFOFF_DET_ IRQ_SET_STATUS	R	0, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
28	TX_DATA_REQ_IRQ_SET_S TATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
27	RX_DATA_AV_IRQ_SET_ST ATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
26	RX_BUFFER_OVERFLOW_I RQ_SET_STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
25	TX_WATERLEVEL_IRQ_SET _STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
24	RX_WATERLEVEL_IRQ_SET _STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
23	RESERVED	R	0	reserved
22	RX_SC_DET_IRQ_SET_STA TUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
21	RX_SOF_DET_IRQ_SET_ST ATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
20	RX_EMD_IRQ_SET_STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
19	TIMER3_IRQ_SET_STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
18	TIMER2_IRQ_SET_STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
17	TIMER1_IRQ_SET_STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
16	TIMER0_IRQ_SET_STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
15	CLOCK_ERROR_IRQ_SET_ STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
14	INTERNAL_USE[1]	R	0*, 1	For internal use
13	INTERNAL_USE[1]	R	0*, 1	For internal use
12	RF_ACTIVE_ERROR_IRQ_SE T_STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
11	TX_RFON_IRQ_SET_STATU S	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
10	TX_RFOFF_IRQ_SET_STATU S	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
9	RFON_DET_IRQ_SET_STAT US	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
8	RFOFF_DET_IRQ_SET_STAT US	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
7:6	RESERVED	R	0	Reserved
5	STATE_CHANGE_IRQ_SET_ STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
4	CARD_ACTIVATED_IRQ_SET _STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
3	MODE_DETECTED_IRQ_SE T_STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
2	IDLE_IRQ_SET_STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
1	TX_IRQ_SET_STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag
0	RX_IRQ_SET_STATUS	R	0*, 1	Writing 1 to this register does set the corresponding IRQ STATUS flag

^[1] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

PN7462 HW user manual

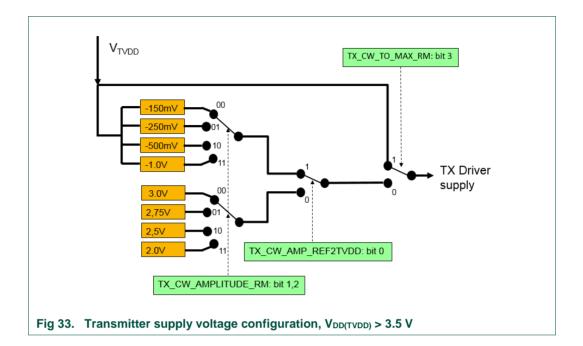

12.7 Dynamic Power Control (DPC)

12.7.1 DPC description

The Dynamic Power Control allows to adjust the Transmitter output current dependent on the loading condition of the antenna.

A lookup table (LUT) is used to configure the output voltage and by this control the transmitter current. In addition to the control of the transmitter current, wave shaping settings can be controlled as well dependent on the selected protocol and the measured antenna load.

The PN7462 allows to measure periodically the RX voltage. The RX voltage is used as indicator for the actual antenna current. The voltage measurement is done with the help of the AGC. The time interval between two measurements can be configured with the DPC_TIME byte in the EEPROM.



The AGC value is compared to a maximum and minimum threshold value which is stored in EEPROM.

If the AGC value is exceeding one of the thresholds, a new gear configuring another transmitter supply driver voltage will be activated. The number of gears - and by these

PN7462 HW user manual

transmitter supply voltage configurations - can be defined by the application, up to 15 gears are available.

12.7.2 DPC EEPROM values

Following table (Table 243) shows the EEPROM address, variable name as well as the description and access rights of all DPC values.

Table 243. DPC values

DPC related EEPROM values

Value	EEPROM	Variable	ACCE SS	Size (bytes)	Comment
DPC_CONTROL	0x201352	b0cProtControl	R/W	1	bit74 START_GEAR; binary definition of start gear,
					bit4=LSB of start gear number
					bit31 GEAR_STEP_SIZ E: binary definition of gear
					step size, bit1=LSB of gear step size
					bit0 DPC_ENABLE cleared: OFF; set: ENABLE

PN7462 HW user manual

DPC_TIME	0x201328	wControl Cycl e	R/W	2	Sets the value for the periodic regulation. Time base is 1/20 MHz. (Example: Value of 20000 is equal to 1 ms)
DPC_XI	0x201353	bAgcXi	R/W	1	Trim Value of the AGC value
AGC_CONTROL	0x20132A	wAgcFastModeConfig	R/W	2	Controls the AGC loop bit1514 RFU bit13 StepSize Enable bit1211 StepSize bit10 Duration Enable bit90 Duration
DPC_THRSH_HI GH	0x201334	wAgcTrshHi gh	R/W	30	Defines the AGC high threshold for each gear. Number of gears can be 115
DPC_THRSH_L OW	0x20132C	wAgcTrshLow	R/W	2	Defines the AGC low threshold for initial gear.
DPC_DEBUG	0x201354	bDebug	R/W	1	Enables the debug signals
DPC_AGC_SHIF T_VALUE	0x201355	bAgcShi ftVal ue	R/W	1	Shift Value for the AGC dynamic low adoption to prevent oscillation
DPC_AGC_GEA R_LUT_SIZE	0x201356	bSi ze0fLUT	R/W	1	Defines the number of gears for the lookup table (LUT, value can be between 115)
DPC_AGC_GEA R_LUT	0x201357	bConfi gLUT	R/W	15	Defines the Gear Setting for each step size starting with Gear0 up to 15 gears. Each entry contains a definition for the DPC_CONFIG register content. Bits

PN7462 HW user manual

		1			
					8:11 are not taken into account.
DPC_GUARD_F AST_MODE	0x20132E	wGuardTi meFastMode	R/W	2	Guard time after AGC fast mode has been triggered.
					This happens in the following scenarios:
					- End of Receive
					- End of Transmit
					- After a gear switch
					Time base is 1/20 MHz (Example: Value of 2000 is
					equal to 100us)
DPC_GUARD_S OF_DETECTED	0x201330	wGuardTimeSofDetected	R/W	2	Guard time after SoF or SC detection. This is to avoid any DPC regulation between SoF/SC and actual begin of reception. Time base is 1/20MHz (Example: Value of
					2000 is equal to 100us)
DPC_GUARD_FI ELD_ON	0x201332	wGuardTi meFi el d0n	R/W	2	Guard time after Gear Switch during FieldOn instruction. Time base is 1/20MHz (Example: Value of 2000 is equal to
					100us)
PCD_SHAPING_ LUT_SIZE	0x2013A8	bSi ze0fLUT	R/W	1	Number of elements for the PCD Shaping
PCD_SHAPING_ LUT	0x201368- 0x2013a7	dwConfi gurati on	R/W	64	PCD Shaping configuration lookup table: Each word contains the following information: 03: DPC Gear 47: TAU_MOD_FALLI NG (Sign bit + 3-bit value)

PN7462 HW user manual

	811: TAU_MOD_RISIN G (Sign bit + 3-bit value)
	1215: RESIDUAL_CARRI ER (Sign bit + 3-bit value)
	1631: Bitmask identifying technology and baud rate

PN7462 HW user manual

12.8 Adaptive Waveform Control (AWC)

Depending on the level of detected detuning of the antenna, RF wave shaping related register settings can be automatically updated. The shaping related register settings are stored in a lookup table located in EEPROM, and selected dependent on the actual gear. The gear numbers need to be provided as part of the lookup table entries and need to be provided in ascending order in the EEPROM. Each lookup table entry allows to configure not only a dedicated wave shaping configuration for the corresponding gear, but in additionally it is possible to configure for this gear the wave shaping configuration dependent on the different protocols.

Each lookup table item contains a bitmask of technology and baud rate (in order to use an entry for multiple technologies and baud rates), the DPC Gear and a relative value (change compared to actual setting of register

CLIF_ANA_TX_SHAPE_CONTROL_REG) for TX_SET_TAU_MOD_FALLING, TX_SET_TAU_MOD_RISING and TX_RESIDUAL_CARRIER.

Table 244. PCD Shaping entry definition

Each entry contains 32 bit.

bit #	Definition	
31 29	RFU, don't use.	Must be 0.
28	180003m3	Enabling a protocol enables the defined PCD shaping
27	15693 @ASK100%	setting changes, as defined in bit 15 4 for the defined gear as defined in bit 3 0.
26	15693 @ASK10%	One or more protocols can be enabled.
25	NFC type F @424	and a mare protection sail as an asia.
24	NFC type F @212	
23	14443 type B @848	
22	14443 type B @424	
21	14443 type B @212	
20	14443 type B @106	
19	14443 type A @848	
18	14443 type A @424	
17	14443 type A @212	
16	14443 type A @106	
1512	Residual carrier	Sign bit + 3 bit value
11 8	TAU_MOD_RISING	Sign bit + 3 bit value
7 4	TAU_MOD_FALLING	Sign bit + 3 bit value
3 0	Gear number	Gear number 1 14

In case of a gear switch, a EEPROM lookup is performed if the current gear (at current protocol and baud rate) has an assigned wave shaping configuration. In case of an execution of a LoadProtocol command, this lookup will be performed (example: switching from baud rate A106 to A424) as well. The change from the wave shaping configuration as configured by phhalRf_LoadProtocol is relative, which means that bits are added or

PN7462 HW user manual

subtracted from the existing configuration. For an increasing gear value, the defined change is cumulative.

The PCD shaping LUT (LookUp Table) value is stored beginning at EEPROM address 0x201368. Each value is stored LSB first.

PN7462 HW user manual

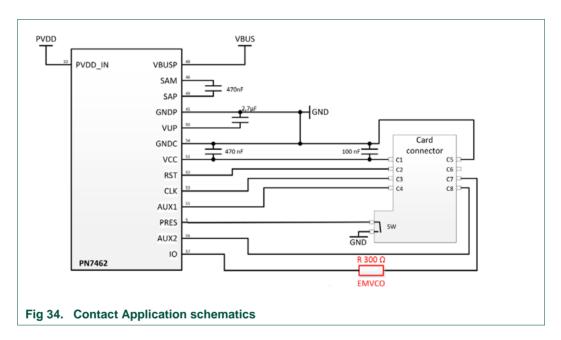
13. PN7462AU Contact interface

The PN7462AU integrates contact interface to enable communication with ISO7816 and EMVCo contact smart cards, without the need for an external contact front end. It offers a high level of security for the cards by performing current limitation, short-circuit detection, ESD protection as well as supply supervision.

PN7462AU also offer the possibility to extend the number of contact interfaces available, using an I/O Aux interface to connect a slot extension (TDA8007 - 2 slots, TDA8020 - 2 slots, TDA8026 - 5 slots).

13.1 Contact interface features

- Support of Class A (5), Class B (3 V) and Class C (1.8 V) contact smart cards
- · Compliant with ISO7816 and EMV Co 4.3 standards
- · Protection of the smart card
 - Thermal and current limitation in the event of short-circuit (pins I/O, VCC)
 - Vcc regulation: 5 V, 3 V, and 1.8 V
 - Automatic activation and deactivation sequences initiated by software, or by hardware in the event of a short-circuit, card take-off, overheating, falling of PN7462AU supply
 - Enhanced card-side Electro Static Discharge (ESD) protection of (>12 kV)
 - Supply supervisor for killing spikes during power on and off
- DC-to-DC converter for VCC generation to enable support of Class A and Class B cards with low input voltages
- Built-In debouncing on card presence contact
- Card Clock generation up to 13.56 MHz using the external crystal oscillator (27.12MHz) with synchronous frequency changes of fXTAL/2, fXTAL/3, fXTAL/4, fXTAL/5, fXTAL/6, fXTAL/8, fXTAL/16
- Specific ISO UART with APB access for automatic convention processing, variable baud rate through frequency or division ratio programming, error management at character level for T=0 and extra guard time register
- FIFO 1 to 32 characters in both reception and transmission mode
- Parity error counter in reception mode and transmission mode with automatic retransmission
- Cards clock stop (at HIGH or LOW level)
- · Automatic activation and deactivation sequence through a sequencer
- Supports the asynchronous protocols T=0 and T=1 in accordance with ISO7816 and EMV


PN7462 HW user manual

- Versatile 24-bit time-out counter for Answer To Reset (ATR) and waiting times processing
- Specific Elementary Time Unit (ETU) counter for Block Guard Time (BGT): 22 in T=1 and 16 in T=0
- Supports synchronous cards

13.2 Typical application schematics

The following figure shows the basic application schematics to use the embedded contact smart card controller.

For more details on how to connect a smart card interface, refer to the dedicated PN7462AU contact interface application note.

13.3 Pin description and power supply

In order to control one or several smart card, the PN7462AU has to be supplied with respect to the smart card needs. Then some pins are required to generate the right smart card power supply, and control the smart card activation and data exchange.

There are two sets of pins: one for the main smart card, controlled by the embedded smart card controller, one for the extra smart cards, electrically handled by an external TDA:

PN7462 HW user manual

Table 245. Contact Smart card pins – Main slot

Pins description for the main contact smart card slot

Pin name	Pin n°	Description	Specific requirement
VBUSP	48	PN7462AU for the contact smart card interface	Must be > 3 V for Class A cards
GNDP	45	Power supply main ground pin	Must be connected with a short and low resistive connection to the PCB main ground plane
SAM/SAP	46/49	DC-to-DC converter capacitor pins	Connected together through a 470 nF capacitor. Needed to generate a 5V power supply out of a > 3 V VBUSP
VUP	50	DC-to-DC converter power output pin	Must be connected to a capacitor, connected to GNDP. Connection to GNDP must be as short as possible
VCC	51	Smart card power supply	Must be decoupled through 2 capacitors
GNDC	54	Ground pin for the smart card	Must be connected to the smart card connector, and to the main PCB ground plane
RST	52	Reset pin for the smart card	
CLK	53	Clock output to the smart card	
Ю	57	Data pin to/from smart card	
AUX1	55	C4 smart card pin	
AUX2	56	C8 smart card pin	
PRESN	5	Presence detection for the smart card.	Referenced to PVDD_IN

Table 246. Contact Smart card pins - Auxiliary slots

Pins description for the auxiliary contact smart card slots

Pin name	Pin n°	Description	Specific requirement
CLK_AUX	2	Output clock to the external TDA device	
IO_AUX	3	Data pin to/from smart card	To be connected to the external TDA IOUC pin
INT_AUX	4	Interrupt input from the external TDA	To be connected to the interrupt output from the TDA (INT or OFFN, depending on the TDA type)
I2C MASTER_S DA	1	SDA Master line to control the TDA	Needed for a TDA8023 or TDA8026
I2C MASTER_S CL	64	SCL Master line to control the TDA	Needed for a TDA8023 or TDA8026
GPIOx	Х	GPIOs to control the TDA	Needed for TDA with GPIO interface as TDA8035/8034/8037

PN7462 HW user manual

For more details about the pins and power supply, refer to the PN7462AU datasheet. For deeper description of usage of each pin, please refer to the PN7462AU contact interface application note.

13.4 Specific blocks

13.4.1 ATR counter

The sequencer manages the activation and deactivation sequences. In addition to the sequencer, the ATR counter is used to manage RST and check the asynchronous card ATR on the full slot. In case of synchronous cards, RST is controlled via RSTIN bit (see the registers description) and the card ATR is not checked. The operating mode (asynchronous or synchronous) has to be selected by the application (see the registers description).

The ATR counter block is composed of two counters. One checks the early answer and the second checks if the card is mute.

The early answer counter is composed of a fixed part that counts up to 200d CLK cycles.

An additional part counts up to EC7-EC0 bits value CLK cycles (see the registers description). The default value of EC7-EC0 bits is 170d, which gives a total default count of 370d CLK cycles. The additional configurable count enables to follow a potential standard change.

The mute counter counts up to MCL15-MCL0 bits value CLK cycles when RST is LOW and up to MCH15-MCH0 bits value CLK cycles when RST is HIGH (see the registers description). The default value of MCL15-MCL0 & MCH15-MCH0 bits is 42100d, which gives a default count of 42100d CLK cycles. The value chosen for MCL15-MCL0 bits can be different from the one of MCH15-MCH0 bits. This configurable count enables to support ISO7816 and EMV compliant cards and to follow a potential standard change.

Let's have a look to an asynchronous card activation and ATR. First, the application starts the activation (START bit) after having configured the slot 1 (activation voltage). The sequencer performs the activation sequence. The DC-to-DC converter is started, then Vcc goes to logic level one, I/O is enabled and CLK starts. RST is at logic level zero.

Then the ATR counter checks the following steps:

- 1. If a start bit is detected on I/O during the first 200d CLK cycles, it is ignored and the count goes on.
- 2. If a start bit is detected whilst RST is at logic level zero between 200d and 42100d (or the value written in MCL15-MCL0 bits) CLK cycles, the bits EARLY and MUTE are set to logic level one. RST will remain at logic level zero, it is up to the application to decide whether accepting the card or not.
- 3. If no start bit has been detected until 42100d (or the value written in MCL15-MCL0 bits) CLK cycles, RST is set to logic level one.
- 4. If a start bit is detected within the first 370d (or 200d + the value written in EC7-EC0 bits) CLK cycles with RST at logic level one, the bit EARLY is set to logic level one.
- If the card does not answer before 42100d (or the value written in MCH15-MCH0 bits)

PN7462 HW user manual

- 6. CLK cycles with RST at logic level one, the bit MUTE is set to logic level one.
- 7. If the card answers within the correct time window, the CLK cycles count is stopped and the application may send commands to the card.

The picture below shows the timings checked by the ATR counter:

The bits EARLY and MUTE signal an interrupt when set to logic level one (see the registers description).

The sequence mentioned above relates to a cold reset (left part of Fig 35). If the card is mute (has not answered), the application may start a warm reset by setting WARM bit to logic level one (see the registers description). Then, the ATR counter set RST to logic level zero and performs the same timing checks (right part of Fig 35).

13.4.2 FIFO

The FIFO is used for both Reception and Transmission modes. This block receives characters from the card via the Reception block and provides characters written by the micro-controller to the Transmission block. Its depth is 32 bytes.

- Reception:
 - In reception mode, when a received character is correct (no parity error) at 10.5 ETUs (T=0), it is loaded into the FIFO which size pointer is incremented.
 - If the FIFO size pointer equals 32, no more character can be loaded into the FIFO. An Overrun interrupt will be generated by the ct_usr1_reg register to mean that at least one character will be lost.

PN7462 HW user manual

- When the micro-controller reads a character, the FIFO size pointer is decremented
- A read operation when the FIFO is empty will not cause any action for the FIFO (size pointer unchanged). In this case, 0 is read.

· Transmission:

- The micro-controller can write a character into the FIFO whilst the UART is in transmission mode and if the FIFO is not full. If the FIFO contains already 32 characters, the write operation is not taken into account.
- The FIFO commands the transmission. If its size pointer is one or more, the FIFO starts the transmission by loading the first character to transmit in the Transmission block. Then, the Transmission block will manage the transmission to the card. The FIFO size pointer is decremented at 9.5 ETUs.
- If a parity error interrupt occurs after one or more retransmission(s) (T=0), there are two cases:

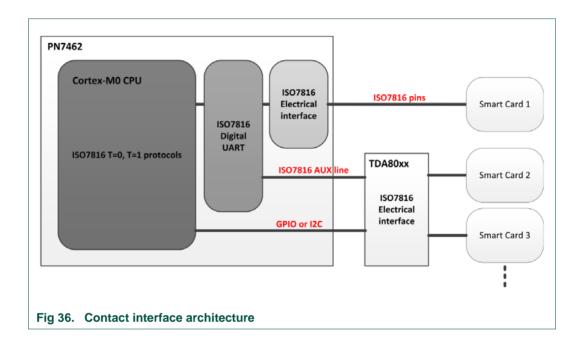
PEC=0: no action, the transmission doesn't stop.

PEC>0 (automatic mode): the transmission stops. The software will deactivate the card: the parity error counter will be reset by hardware when activating. If necessary, the firmware has the possibility to pursue the transmission. By reading the number of bytes present into the FIFO (ffl bits), it can determine which character has been naked PEC +1 times by the card. It will then flush the FIFO (FIFO flush bit). The next step consists in unlocking the transmission using dispe bit. By writing this bit at logic level one (and then at logic level zero if the firmware still wants to check parity errors), the transmission is unlocked. The firmware can now write bytes into the FIFO.

- Turnaround Reception -> Transmission:
 - There is a hardware protection when switching from reception to transmission mode. If the micro-controller sets to logic 1 the bit T/R for example between 10.5 (ft occurs) and 11.8 ETUs (reception finished), only the FIFO switches in transmission mode and not the rest of the UART which remains in reception mode. This allows the micro-controller to write characters into the FIFO. At 11.8 ETUs, the whole UART switches in transmission mode.
 - The FIFO is in transmission mode when the bit T/R is set to logic 1, else in reception mode. The transmission starts when the whole UART is in transmission mode, that is to say when the internal bit T/R in register ct_ucr1_reg is set to logic 1.

13.5 Connect an external TDA

The PN7462AU can handle more than one smart card by controlling an extra contact interface front-end (typically TDA product from NXP).

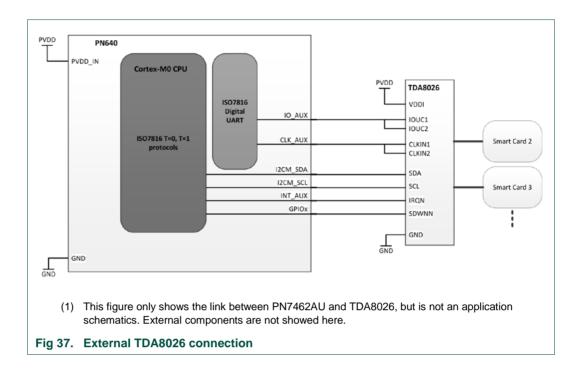

In this use case, the PN7462AU is the main controller for the electrical and protocol part for the main card slot, while the secondary slots are electrically controlled by an extra contact front-end interface (TDA), the PN7462AU being the protocol controller for these extra slots.

When such a design is used, several smart cards can be activated at the same time, but the communication with each smart card has to go sequentially: it is not possible to

PN7462 HW user manual

communicate with two smart cards at the same time as there is only one protocol control block for all cards.

The figure below shows an overview of the connections when PN7462AU is used to control several smart cards.



The external TDA is required to handle the smart card electrical interface. The connection between the PN7462AU and the TDA is composed of 2 parts:

- The host interface control, where the PN7462AU is the master, controlling the TDA behavior: card activation, deactivation, TDA configuration (voltage level, clock division, slew rates...)
- The ISO7816 link: the PN7462AU handles the ISO7816 communication protocol and uses the TDA as a level shifter for the clock and I/O signals.

The figure below summarizes this connection.

PN7462 HW user manual

The default PN7462AU FW embeds a SW controlling a TDA8026.

But it is also possible to connect other external contact interface, such as TDA8035. The difference is the number of slots (TDA8035 controls only 1 slot), and the host interface: on TDA8035, the host interface doesn't use I2C, but it uses a set of GPIOs. It is possible to control this TDA8035 by changing the connection between the PN7462AU and the TDA8035, and by updating the FW to control the TDA8035 through GPIOs, instead of the TDA8026 through I2C.

Here the SW modifications only apply to the TDA control part: configuration, and card activation/deactivation. The whole communication protocol remains unchanged, through IO_AUX and CLK_AUX.

13.6 Registers

13.6.1 Register overview

Table 247. Contact interface - Register overview (base address 0x4001 4000)

Name	Address offset	Width (bits)	Access	Reset Value	Description
ct_ssr_reg	0000h	5	R/W	00000001h	Slot Select Register
ct_pdr1_lsb_reg	0004h	8	R/W	00000074h	Programmable Divider Register (LSB) slot 1
ct_pdr2_lsb_reg	0004h	8	R/W	00000074h	Programmable Divider Register (LSB) slot 2
ct_pdr1_msb_reg	0008h	8	R/W	00000001h	Programmable Divider Register (MSB) slot 1
ct_pdr2_msb_reg	0008h	8	R/W	00000001h	Programmable Divider Register (MSB) slot 2
ct_fcr_reg	000Ch	8	R/W	00000001h	FIFO Control Register

PN7462 HW user manual

Name	Address offset	Width (bits)	Access	Reset Value	Description
ct_gtr1_reg	0010h	8	R/W	00000000h	Guard Time Register slot 1
ct_gtr2_reg	0010h	8	R/W	00000000h	Guard Time Register slot 2
ct_ucr11_reg	0014h	6	R/W	00000000h	UART Configuration Register 1 slot 1
ct_ucr12_reg	0014h	6	R/W	00000000h	UART Configuration Register 1 slot 2
ct_ucr21_reg	0018h	8	R/W	00000000h	UART Configuration Register 2 slot 1
ct_ucr22_reg	0018h	7	R/W	00000000h	UART Configuration Register 2 slot 2
ct_ccr1_reg	001Ch	6	R/W	00000000h	Clock Configuration Register slot 1
ct_ccr2_reg	001Ch	5	R/W	00000000h	Clock Configuration Register slot 2
ct_pcr_reg	0020h	7	R/W	000000C0h	Power Control Register
ct_ecr_reg	0024h	8	R/W	000000AAh	Early answer CounteR register
ct_mcrl_lsb_reg	0028h	8	R/W	00000074h	Mute card CounteR RST Low register (LSB)
ct_mcrl_msb_reg	002Ch	8	R/W	000000A4h	Mute card CounteR RST Low register (MSB)
ct_mcrh_lsb_reg	0030h	8	R/W	00000074h	Mute card CounteR RST High register (LSB)
ct_mcrh_msb_reg	0034h	8	R/W	000000A4h	Mute card CounteR RST High register (MSB)
ct_srr_reg	0038h	6	R/W	00000000h	Slew Rate configuration Register
ct_urr_reg	003Ch, 0040h 0044h, 0048h	32	R	00000000h	UART Receive Register
ct_utr_reg	003Ch, 0040h 0044h, 0048h	32	W	00000000h	UART Transmit Register
ct_tor1_reg	004Ch	8	W	00000000h	Time-Out Register 1
ct_tor2_reg	0050h	8	W	00000000h	Time-Out Register 2
ct_tor3_reg	0054h	8	W	00000000h	Time-Out Register 3
ct_toc_reg	0058h	8	R/W	00000000h	Time-Out Configuration register
ct_fsr_reg	005Ch	6	R	00000000h	FIFO Status register
ct_msr_reg	0060h	3	R	00000000h	Mixed Status register
ct_usr1_reg	0064h	6	R	00000000h	UART Status register 1
ct_usr2_reg	0068h	8	R	00000000h	UART Status register 2
INTERNAL_USE	006Ch	4	R/W	00000000h	For internal use
INTERNAL_USE	0070h	8	R	00000000h	For internal use
INTERNAL_USE	0074h	4	R/W	00000000h	For internal use

PN7462 HW user manual

Table 248. Register bit overview

	able 248. Register bit overview									
Name	Access	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset value
ssr	R/W	RESERV ED	RESERV ED	RESERV ED	pres con no	pres pup en	CLKAUX en	IOAUXen	softreset	XXXX 0001
pdr LSB[2]	R/W	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	0111 0100
pdr MSB[2]	R/W	PD15	PD14	PD13	PD12	PD11	PD10	PD9	PD8	0000 0001
Fcr	R/W	PEC2	PEC1	PEC0	ftc4	ftc3	ftc2	ftc1	ftc0	0000 0001
gtr[2]	R/W	GT7	GT6	GT5	GT4	GT3	GT2	GT1	GT0	0000 0000
ucr1[2]	R/W	RESERV ED	RESERV ED	FIP	FC	PROT	T/R	LCT	CONV	XX00 0000
ucr2[2]	R/W	wrdacc	FIFO flush	disintaux	disATR counter[4]	dispe	disft	MAN BGT	AUTO CONV	0000 0000
ccr[2]	R/W	RESERV ED	RESERV ED	SHL	CST[5]	SAN	ACC2	ACC1	ACC0	XX00 0000
pcr	R/W	C8	C4	RESERV ED	RSTIN	vccsel1	vccsel0	WARM	START	11X0 0000
ecr	R/W	EC7	EC6	EC5	EC4	EC3	EC2	EC1	EC0	1010 1010
mcrl LSB	R/W	MCL7	MCL6	MCL5	MCL4	MCL3	MCL2	MCL1	MCL0	0111 0100
mcrl MSB	R/W	MCL15	MCL14	MCL13	MCL12	MCL11	MCL10	MCL9	MCL8	1010 0100
mcrh LSB	R/W	MCH7	MCH6	MCH5	MCH4	MCH3	MCH2	MCH1	MCH0	0111 0100
mcrh MSB	R/W	MCH15	MCH14	MCH13	MCH12	MCH11	MCH10	MCH9	MCH8	1010 0100
srr	R/W	RESERV ED	RESERV ED	vcc rise sel1	vcc rise sel0	clk_sr1	clk_sr0	io_sr1	io_sr0	XX00 0000
urr[3]	R	UR7	UR6	UR5	UR4	UR3	UR2	UR1	UR0	0000 0000
utr[3]	W	UT7	UT6	UT5	UT4	UT3	UT2	UT1	Ut0	0000 0000
tor1	W	TOL7	TOL6	TOL5	TOL4	TOL3	TOL2	TOL1	TOL0	0000 0000
tor2	W	TOL15	TOL14	TOL13	TOL12	TOL11	TOL10	TOL9	TOL8	0000 0000
tor3	W	TOL23	TOL22	TOL21	TOL20	TOL19	TOL18	TOL17	TOL16	0000 0000
toc	R/W	TOC7	TOC6	TOC5	TOC4	TOC3	TOC2	TOC1	TOC0	0000 0000
fsr	R	RESERV ED	RESERV ED	ffl5	ffl4	ffl3	ffl2	ffl1	ffIO	XX00 0000

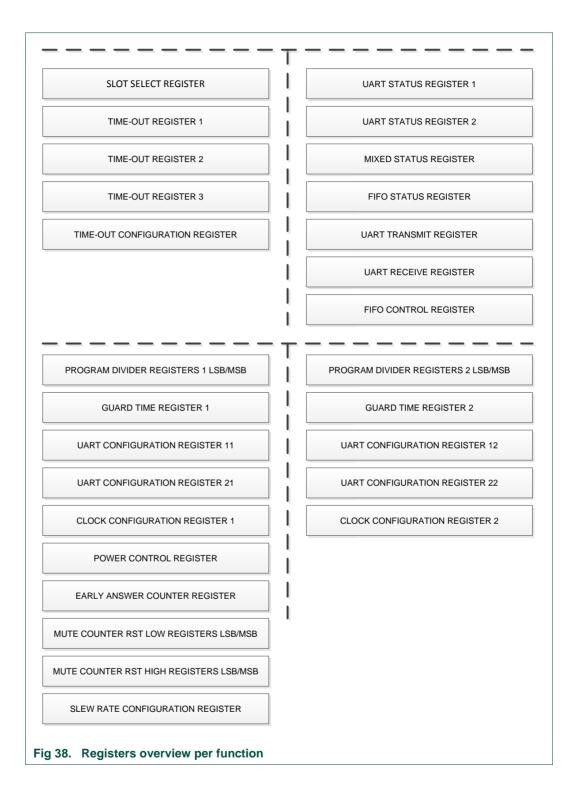
PN7462 HW user manual

Name	Access	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset value
msr	R	RESERV ED	RESERV ED	RESERV ED	RESERV ED	RESERV ED	INTAUX	BGT	PRES	XXXX X000
usr1	R	RESERV ED	RESERV ED	MUTE	EARLY	ре	ovr	fer	ft	XX00 0000
usr2	R	to3	to2	to1	wrdaccerr	INTAUXL	PROTL	PRESL	PTL	0000 0000

- [2] Configuration registers doubled (one by slot) and sharing the same address, selection is done with bit IOauxen in register ssr.
- [3] 32-bit FIFO access registers are shown here 8-bit for representation convenience.
- [4] disATRcounter bit is only available for slot 1 since ATR counter is dedicated to slot 1.
- [5] CST bit is only available for slot 1, this feature is ensured by CLKAUXen bit in ssr register for the auxiliary slot.

Another view of the registers can be obtained by looking to the functions they controlled.

We can form 4 groups: general, ISO UART, slot 1 and slot AUX (2).


The general register allows to perform a software reset of the Contact Interface, to select the slot used, to configure the time-out counters (used to process real-time tasks like WWT, CWT).

The ISO UART registers allows to control data reception and transmission through configuration and status registers.

Slot 1 and AUXiliary (2) have dedicated registers to control card power (only slot 1), card ATR (only slot 1), I/O and CLK pins slew rate (only slot 1), data baud rate, protocol and card clock configuration. Since each slot has its own registers and since these slot registers share the same addresses (grey rectangles on the following picture), the slot inherent registers are addressed when the slot is selected using general register.

This is depicted by the following picture:

PN7462 HW user manual

PN7462 HW user manual

13.6.2 Registers description

13.6.2.1 Register ct_ssr_reg (Slot Select Register)

This configuration register enables to select the I/O line used and also to reset the whole Contact UART.

Table 249. Ct_ssr_reg (address 0000h) bit description

Bit	249. Ct_ssr_reg	Access	Reset	Description
04.5	DE0ED) (ED		Value	
31:5	RESERVED	-	0	Reserved
4	pres_con_no	R/W	0	PRESN CONnector Normally Open
				When set to logic 0, the type of connector used for card detection is normally closed.
				When set to logic 1, the type of connector used for card detection is normally open.
				In conjunction with pres_pup_en bit, this enables to support the two types of connector (normally open and normally closed) for card detection.
				Remark: this bit has to be set to the value corresponding to the connector used before any activation.
3	pres_pup_en	R/W	0	PRESN internal Pull UP ENable
				When set to logic 0, an internal pull down resistance is connected to PRESN pin for card detection.
				When set to logic 1, an internal pull up resistance is connected to PRESN pin for card detection.
				In conjunction with pres_con_no bit, this enables to support the two types of connector (normally open and normally closed) for card detection.
				Remark: this bit has to be set to the value corresponding to the connector used before any activation.
2	CLKAUXen	R/W	0	CLK AUXiliary enable
				When set to logic 1, outputs CLKAUX clock on CLKAUX pin. This can be used also to perform clock stop; CST bit is therefore not available for the auxiliary slot in ct_ccr2_reg register.
1	IOAUXen	R/W	0	I/O AUXiliary enable
				Select the second (auxiliary) slot.
				Note: Changing the value of this bit (switching from one slot to the other one) resets the ISO UART block, the interrupt bits ft, fer, ovr, pe, EARLY, MUTE (ct_usr1_reg register), wrdaccerr, to1, to2 and to3 (ct_usr2_reg register), the Timers block and ct_toc_reg register.
0	softreset	R/W	1	When set to logic 0 this bit resets the whole Contact UART (software reset), sets to logic 1 automatically by hardware after after one clock cycle if slot 1 is not activated else after one clock cycle after slot 1 has been automatically deactivated. Software should check soft reset is finished by reading ct_ssr_reg register before any further action.

PN7462 HW user manual

13.6.2.2 Register ct_pdr1_lsb_reg/ct_pdr2_lsb_reg (Programmable Divider Register Least Significant Byte)

This configuration register is the least significant byte of a 16-bit counter used to define the ETU.

This register is doubled: ct_pdr1_lsb_reg is dedicated to the full slot and ct_pdr2_lsb_reg is dedicated to the auxiliary slot. Both registers share the same address, the selection is done via bit IOauxen of register ct_ssr_reg.

Table 250. ct_pdr1_lsb_reg/ct_pdr2_lsb_reg (address 0004h) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	Reserved
7:0	PD7 - PD0	R/W	0111 0100b	Least significant byte of a 16-bit counter defining the ETU. The ETU counter counts a number of cycles of the Contact Interface clock, this defines the ETU. The minimum acceptable value is 0001 0000b.

13.6.2.3 Register ct_pdr1_msb_reg/ct_pdr2_msb_reg (Programmable Divider Register Most Significant Byte)

This configuration register is the most significant byte of a 16-bit counter used to define the ETU.

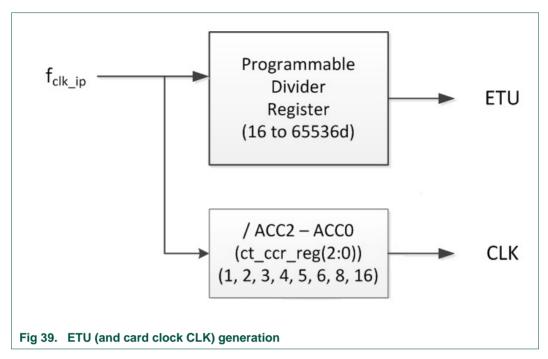

This register is doubled: ct_pdr1_msb_reg is dedicated to the full slot and ct_pdr2_msb_reg is dedicated to the auxiliary slot. Both registers share the same address, the selection is done via bit IOauxen of register ct_ssr_reg.

Table 251. ct_pdr1_msb_reg/ct_pdr2_msb_reg (address 000Ch) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	Reserved
7:0	PD15 – PD8	R/W	0000 0001b	Most significant byte of a 16-bit counter defining the ETU. The ETU counter counts a number of cycles of the Contact Interface clock, this defines the ETU.

The ETU (and also the card clock CLK) generation is shown by the following figure:

PN7462 HW user manual

13.6.2.4 Register ct_fcr_reg (FIFO Control Register)

This configuration register defines the FIFO threshold (interrupt signaled by the ft bit of register ct_usr1_reg) and the number of repetition of character in case of Parity Error (interrupt signaled by the pe bit of register ct_usr1_reg).

Table 252. ct fcr reg (address 000Ch) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	Reserved
7:5	PEC2 - PEC0	R/W	000b	Parity Error Count: - In protocol T = 0:
				Set the number of allowed repetitions in reception or transmission mode before setting pe in ct_usr1_reg. The value 000 indicates that, if only one parity error has occurred, bit pe is set at logic 1; the value 111 indicates that bit pe will be set at logic 1 after 8 parity errors.
				• If a correct character is received before the programmed error number is reached, the error counter will be reset.
				• If the programmed number of allowed parity errors is reached, bit pe in register ct_usr1_reg will be set at logic 1.
				• If a transmitted character has been nacked by the card, then the Contact UART will automatically retransmit it up to a number of times equal to the value programmed in bits PEC(2:0); the character will be resent at 15 ETU.
				 If a transmitted character is considered as correct by the card after having been naked a number of times less than the value programmed in bits PEC(2:0) +1, the error counter will be reset.
				• If a transmitted has been naked by the card a number of times equal to the value programmed in bits PEC(2:0) +1, the transmission stops and bit pe in register ct_usr1_reg is set at logic 1. The firmware is supposed to deactivate

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
				the card. If not, the firmware has the possibility to pursue the transmission. By reading the number of bytes present into the FIFO (ffl bits), it can determine which character has been naked PEC +1 times by the card. It will then flush the FIFO (FIFO flush bit). The next step consits in unlocking the transmission using dispe bit. By writing this bit at logic level one (and then at logic level zero if the firmware still wants to check parity errors), the transmission is unlocked. The firmware can now write bytes into the FIFO.
				• In transmission mode, if bits PEC(2:0) are at logic 0, then the automatic retransmission is invalidated. There is no retransmission; the transmission continues with the next character sent at 13 ETU.
				- In protocol T = 1:
				The error counter has no action: bit pe is set at logic 1 at the first wrong received character.
4:0	ftc(4:0)	R/W	0001b	FIFO Threshold Configuration
				Define the number of received or transmitted characters in the FIFO triggering the ft bit in ct_usr1_reg. The FIFO depth is 32 bytes.
				In reception mode, it enables to know that a number equals to ftc(4:0) + 1 bytes have been received. In transmission mode, ftc(4:0) equals to the number of remaining bytes into the FIFO.
				Be careful: in reception mode 00000 = length 1, and in transmission mode 00000 = length 0.

13.6.2.5 Register ct_gtr1_reg/ct_gtr2_reg (Guard Time Register)

This configuration register is used to store the guard time given by the card during ATR.

This register is doubled: ct_gtr1_reg is dedicated to the full slot and ct_gtr2_reg is dedicated to the auxiliary slot. Both registers share the same address, the selection is done via bit IOauxen of register ct_ssr_reg.

Table 253. ct_gtr1_reg/ct_gtr2_reg (address 0010h) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	Reserved
7:0	GT7-GT0	R/W	0000 0000b	Guard Time
				Value used by the Contact UART notably in transmission mode.
				The Contact UART will wait this number of ETUs before transmitting the character.
				In protocol T=1, gtr = FFh means operation at 11 ETUs.
				In protocol T=0, gtr = FFh means operation at 12 ETUs.

PN7462 HW user manual

13.6.2.6 Register ct_ucr11_reg/ct_ucr12_reg (UART Configuration Register 1)

This configuration register defines the reception and transmission settings.

This register is doubled: ct_ucr11_reg is dedicated to the full slot and ct_ucr12_reg is dedicated to the auxiliary slot. Both registers share the same address, the selection is done via bit IOauxen of register ct_ssr_reg.

Table 254. ct_ucr11_reg/ct_ucr12_reg (address 0014h) bit description

Bit	Symbol	Access	Reset Value	Description
31:6	RESERVED	-	0	Reserved
5	FIP	R/W	0b	Force Inverse Parity
				If bit FIP is set to logic 1, the Contact UART will NAK a correctly received character, and will transmit characters with wrong parity bits.
4	FC	R/W	0b	
3	PROT	R/W	0b	PROTocol
				Selects the protocol: logic 1 means T=1 and logic 0 T=0.
2	T/R	R/W	0b	Transmit/Receive
				Defines the mode: logic 1 means transmission and logic 0 reception.
				Bit T/R is set by software for transmission mode. Bit T/R is automatically reset to logic 0 by hardware, if bit LCT has been used before transmitting the last character.
				Note that when switching from/to reception to/from transmission mode, the FIFO is flushed. Any remaining bytes are lost.
1	LCT	R/W	0b	Last Character to Transmit
				Bit LCT is set to logic 1 by software before writing the last character to be transmitted in register ct_utr_reg. It allows automatic change to reception mode. It is reset to logic 0 by hardware at the end of a successful transmission after 11.75 ETUs in protocol T = 0 and after 10.75 ETUs in protocol T = 1. When bit LCT is being reset to logic 0, bit T/R is also reset to logic 0 and the UART is ready to receive a character.
				LCT bit can be set to logic 1 by software not only when writing the last character to be transmitted but also during the transmission or even at the beginning of the transmission. It will be taken into account when the FIFO becomes empty, which implies for the software to be able to regularly re-load the FIFO when transmitting more than 32 bytes to ensure there is at least one byte into the FIFO as long as the transmission is not finished. Else, a switch to reception mode will prematurely occur before having transmitted all the bytes.
0	CONV	R/W	0b	CONVention
				Bit CONV is set to logic 1 if the convention is direct. Bit CONV is either automatically written by hardware according to the convention detected during ATR, or by software if the bit AUTOCONV in register ct_ucr1_reg is set to logic 1.

PN7462 HW user manual

13.6.2.7 Register ct_ucr21_reg/ct_ucr22_reg (UART Configuration Register 2)

This configuration register defines the reception and transmission settings.

This register is doubled: ct_ucr21_reg is dedicated to the full slot and ct_ucr22_reg is dedicated to the auxiliary slot. Both registers share the same address, the selection is done via bit IOauxen of register ct_ssr_reg.

Table 255. ct ucr21 reg/ct ucr22 reg (address 0018h) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	Reserved
7	wrdacc	R/W	0b	FIFO WoRD ACCess When set to logic 1, the FIFO supports word (4 bytes) access (read and write), access failure is indicated by bit wrdaccerr in register ct_usr2_reg. When set to logic 0, the FIFO supports byte access (read and write).
6	FIFO flush	R/W	0b	FIFO flush When set to logic 1, the FIFO is flushed whatever the mode (reception or transmission) is. It can be used before any reception or transmission of characters but not while receiving or transmitting a character.
				It is reset to logic 0 by hardware after one <i>clk_ip</i> cycle.
5	disintaux	R/W	0b	DISable INTAUX When set to logic 1 the bit INTAUXL in register ct_usr2_reg will not generate interrupt.
4	disATRcounter	R/W	Ob	DISable ATR counter - Slot 1: When set to logic 1, the bits EARLY and MUTE in register ct_usr1_reg will not generate interrupt. This bit should be set before activating Slot AUX: This bit is not available for the auxiliary slot (ct_ucr22_reg) since ATR counter is dedicated to slot 1.
3	dispe	R/W	0b	DISable Parity Error interrupt bit When set to logic 1, the parity is not checked in both reception and transmission modes, the bit pe in register ct_usr1_reg will not generate interrupt.
2	disft	R/W	0b	DISable Fifo Threshold interrupt bit When set to logic 1 the bit ft in register ct_usr1_reg will not generate interrupt.
1	MAN BGT	R/W	0b	MANual BGT When set to logic 1, BGT is managed by software, else by hardware.

PN7462 HW user manual

13.6.2.8 Register ct_ccr1_reg/ct_ccr2_reg (Clock Configuration Register)

This configuration register defines the card clock frequency.

This register is doubled: ct_ccr1_reg is dedicated to the full slot (card 1) and ct_ccr2_reg is dedicated to the auxiliary slot (card 2). Both registers share the same address, the selection is done via bit IOauxen of register ct_ssr_reg.

Table 256. ct ccr1 reg/ct ccr2 reg (address 001Ch) bit description

Bit	Symbol	Access	Reset Value	Description
31:6	RESERVED	-	0	reserved
5	FIP	R/W	0b	Stop HIGH or LOW - Slot 1: If bits SAN = 0 and CST = 1, then the clock is stopped at LOW level if bit SHL = 0, and at HIGH level if bit SHL = 1. If bit SAN = 1, then contact CLK is the copy of the value of bit SHL.
				- Slot AUX:
				If bits SAN = 0 and CLKAUXen = 0, then the clock is stopped at LOW level if bit SHL = 0, and at HIGH level if bit SHL = 1 (CLKAUX output is inverted). SHL bit value should not change while CLKAUXen = 1: dynamic change is not supported. SHL bit value should be chosen before enabling CLKAUX clock with
				CLKAUXen bit.
	007	D 44/		If bit SAN = 1, then contact CLKAUX is the copy of the value of bit SHL.
4	CST	R/W	0b	Clock STop - Slot 1: In the case of an asynchronous card, bit CST defines whether the clock to the card is stopped or not; if bit CST is reset to logic 0, then the clock is determined
				by bits ACC0, ACC1 and ACC2.
				- Slot AUX: This bit is not available for the auxiliary slot (ct_ccr2_reg) since clock stop feature is supported using CLKAUXen bit in ct_ssr_reg register.
3	SAN	R/W	0b	Synchronous/Asynchronous Card - Slot 1: When set to logic 1, the Contact UART supports synchronous card. The Contact UART is then bypassed, only bit 0 of registers ct_urr_reg and ct_utr_reg is connected to pin I/O. In this case, the card clock is controlled by bit SHL and RST card is controlled by bit RSTIN in register ct_pcr_reg. When set to logic 0, the Contact UART supports asynchronous card. Dynamic change (while activated) is not supported. The choice should be done before activating the card.
				- Slot AUX: When set to logic 1, the Contact UART supports synchronous card. The Contact UART is then bypassed, only bit 0 of registers ct_urr_reg and ct_utr_reg is connected to pin I/O. In this case, the card clock is controlled by bit SHL. When set to logic 0, the Contact UART supports asynchronous card. Dynamic change (while CLKAUXen = 1) is not supported. The choice should be done before enabling CLKAUX clock.

217 of 341

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
2:0	ACC2 - ACC0	R/W	000b	Asynchronous Card Clock
				Defines the card clock frequency:
				• 000: card clock frequency = fclk_ip
				• 001: card clock frequency = fclk_ip /2
				• 010: card clock frequency = fclk_ip /3
				• 011: card clock frequency = fclk_ip /4
				• 100: card clock frequency = fclk_ip /5
				• 101: card clock frequency = fclk_ip /6
				• 110: card clock frequency = fclk_ip /8
				• 111: card clock frequency = fclk_ip /16
				All frequency changes are synchronous, thus ensuring that no spikes or unwanted pulse widths occur during changes.
				In conjunction with registers ct_etucr_lsb_reg and ct_etucr_msb_reg, the bits ACC2, ACC1 and ACC0 defines the baudrate used by the Contact UART.

13.6.2.9 Register ct_pcr_reg (Power Control Register)

This configuration register enables to start or stop card sessions, define the card supply voltage (5V, 3V, 1.8V) and manage the card contacts C4 and C8 (also known as AUX1 and AUX2).

Table 257. ct_pcr_reg (address 0020h) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	reserved
7	C8	R/W	1b	Contact 8 Writing C8 bit writes the corresponding value on C8 pin. Reading C8 bit reads the state of C8 pin.
6	C4	R/W	1b	Contact 4 Writing C4 bit writes the corresponding value on C4 pin. Reading C4 bit reads the state of C4 pin.
5	RESERVED	-	0	reserved
4	RSTIN			Reset bit Synchronous card: when set to logic 1, RST pin is set to logic 1; when set to logic 0, RST pin is set to logic 0. Asynchronous card: RST is controlled by hardware (ATR management).
3:2	vccsel1 - vccsel0	R/W	00b	"VCC selection Defines VCC voltage: • 00: VCC = 5 V • 01: VCC = 3 V • 10 or 11: VCC = 1.8 V Dynamic change (while activated) is not supported. The choice should be done before activating the card.

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
1	WARM	R/W	0b	When set to logic 1: a warm reset procedure is started. Set to logic 0 by hardware when a START bit is detected or when MUTE bit is set to logic 1.
0	START	R/W	0b	When set to logic 1: starts the activation sequence and cold reset procedure (only if the PTL and PROTL bits in register ct_usr2_reg are logic 0 and the PRES bit in register ct_msr_reg is logic 1). When set to logic 0: starts the deactivation sequence. Remark: the bits pres_pup_en and pres_con_no in ct_ssr_reg register should have been set prior to any activation.

13.6.2.10 Register ct_ecr_reg (Early answer CounteR)

This configuration register enables to program the value of an 8-bit counter used to check whether the card has answered too early.

Table 258. ct_ecr_reg (address 0024h) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	reserved
7:0	EC7 - EC0	R/W	1010 1010b	Early answer Counter Programmable 8-bit clock counter (see ATR counter Functional Description).

13.6.2.11 Register ct_mclr_lsb_reg (Mute card CounteR RST Low register Least Significant Byte)

This configuration register is the least significant byte of a 16-bit counter used to check whether the card answers when RST is logic 0.

Table 259. ct_mclr_lsb_reg (address 0028h) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	reserved
7:0	MCL7 - MCL0	R/W	0111 0100b	Least significant byte of a programmable 16-bit clock counter (see ATR counter Functional Description).

13.6.2.12 Register ct_mclr_msb_reg (Mute card CounteR RST Low register Most Significant Byte)

This configuration register is the most significant byte of a 16-bit counter used to check whether the card answers when RST is logic 0.

Table 260. ct_mclr_msb_reg (address 002Ch) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	reserved

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
7:0	MCL15 – MCL8	R/W	1010 0100b	Most significant byte of a programmable 16-bit clock counter (see ATR counter Functional Description).

13.6.2.13 Register ct_mchr_lsb_reg (Mute card CounteR RST High register Least Significant Byte)

This configuration register is the least significant byte of a 16-bit counter used to check whether the card is mute when RST is logic 1.

Table 261, ct mchr lsb reg (address 0030h) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	rReserved
7:0	MCH7 - MCH0	R/W	0111 0100b	Least significant byte of a programmable 16-bit clock counter (see ATR counter Functional Description).

13.6.2.14 Register ct_mchr_msb_reg (Mute card CounteR RST High register Most Significant Byte)

This configuration register is the most significant byte of a 16-bit counter used to check whether the card is mute when RST is logic 1.

Table 262. ct_mchr_msb_reg (address 0034h) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	reserved
7:0	MCH15 – MCH8	R/W	1010 0100b	Most significant byte of a programmable 16-bit clock counter (see ATR counter Functional Description).

13.6.2.15 Register ct_srr_reg (Slew Rate configuration Register)

This configuration register defines the slew rate values on the I/O and CLK lines.

Table 263, ct ssr reg (address 0038h) bit description

Bit	Symbol	Access	Reset Value	Description
31:6	RESERVED	-	0	reserved
5:4	vcc rise sel1 - vcc rise sel0	R/W	00b	VCC rise window selection To rise from 0 to its selected value (see ct_pcr_reg register), the" time needed by VCC depends on the capacitance. For more flexibility, it is possible to choose between 4 window time: • 00: t = 5T (~120 us) • 01: t = 10T (~240 us) • 10: t = 16T (~380 us) • 11: t = 21T (~500 us) - recommended "See the activation sequence description for T definition.

UM10858 NXP Semiconductors

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
				Dynamic change (while activated) is not supported. The choice" should be done before activating the card.
3:2	clk_sr1 - clk_sr0	R/W	00b	CLK slew rate Card clock slew rate selection.
1:0	io_sr1 - io_sr0	R/W	00b	I/O slew rate Card I/O slew rate selection.

13.6.2.16 Register ct_urr_reg/ct_utr_reg (UART Receive Register/UART Transmit Register)

These two data registers share the same address but the first one can only be read and the second only be written. They constitute the access to the Contact UART FIFO respectively in reception and transmission modes.

Table	264. ct_urr_reg/c	t_utr_reg	(address	s 003Ch, 0040h, 0044h, 0048h) bit description
Bit	Symbol	Access	Reset Value	Description
31:0	URR31 - URR0	R	0000	Uart Receive Register
			0000h	Asynchronous card:
				When the controller wants to read a character from the card stored into the FIFO, it reads it from this register in direct convention.
				- In case of byte access (bit wrdacc = 0 in register ct_ucr2_reg), the byte is read on the 8 least significant bits:
				URR31 - URR8: 000000h (unvalid bytes)
				URR7 - URR0: byte (received byte)
				- In case of word access (bit wrdacc = 1 in register ct_ucr2_reg), 4 characters are read:
				URR31 - URR24: byte 4 (last received byte)
				URR23 - URR16: byte 3
				URR15 - URR8: byte 2
				URR7 - URR0: byte 1 (first received byte)
				If less than 4 bytes are present into the FIFO, the missing bytes are read 00h or previous values and interrupt bit wdraccerr in register ct_usr2_reg is set to logic 1.
				Synchronous card:
				In reception mode, the data from the card is available to bit UR0 after a read operation of register ct_urr_reg; the FIFO is bypassed.
31:0	UTR31 - UTR0	W	0000	Uart Transmit Register
			0000h	Asynchronous card:
				When the micro-controller wants to transmit a character to the card, it writes the byte in direct convention in the utr register (this byte will be stored into the FIFO).
				 In case of byte access (bit wrdacc = 0 in register ct_ucr2_reg), 1 byte is written into the FIFO:
				UTR31 - UTR8: 000000h (unused bytes)
				UTR7 - UTR0 : byte (byte to transmit)

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
				- In case of word access (bit wrdacc = 1 in register ct_ucr2_reg), 4 bytes are written into the FIFO:
				UTR31 - UTR24: byte 4 (last byte to transmit)
				UTR23 - UTR16: byte 3
				UTR15 - UTR8 : byte 2
				UTR7 - UTR0 : byte 1 (first byte to transmit)
				Synchronous card:
				In transmission mode, the data (UTR0) is written on the I/O line of the card when register ct_utr_reg has been written to; the FIFO is bypassed.

13.6.2.17 Register ct_tor1_reg (Time-Out Register 1)

This configuration register enables to program the value of an 8-bit ETU counter used to check some timings (CWT, BWT...).

Table 265. ct_tor1_reg (address 004Ch) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	reserved
7:0	TOL7 - TOL0	W	0000	Time-Out Latched
			0000b	Programmable 8-bit ETU counter (see register ct_toc_reg).

13.6.2.18 Register ct_tor2_reg (Time-Out Register 2)

This configuration register enables to program the value of an 8-bit ETU counter used to check some timings (CWT, BWT...).

Table 266, ct tor2 reg (address 0050h) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	reserved
7:0	TOL15 - TOL8	W	0000 0000b	Time-Out Latched Programmable 8-bit ETU counter (see register ct_toc_reg).

13.6.2.19 Register ct_tor3_reg (Time-Out Register 3)

This configuration register enables to program the value of an 8-bit ETU counter used to check some timings (CWT, BWT...).

Table 267. ct_tor3_reg (address 0054h) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	reserved
7:0	TOL24 – TOL16	W	0000	Time-Out Latched:
			0000b	Programmable 8-bit ETU counter (see register ct_toc_reg).

PN7462 HW user manual

13.6.2.20 Register ct_toc_reg (Time-Out Configuration)

This configuration register is used for setting different configurations of the time-out counter as given in Table 269 "Timer settings"; all other configurations are undefined.

Table 268. ct_toc_reg (address 0058h) bit description

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	Reserved
7:0	TOC7 - TOC0	R/W	0000	Time-Out Configuration
			0000b	Time-out counter mode selection (see table below).

Table 269. Timer settings

TOC Value	Operating Mode					
00h	All counters are stopped					
05h	Counter 1 is an 8-bit auto-reload counter, and counters 3 and 2 form a 16-bit counter. Counte 2 and 3 are stopped; counter 1 continues to operate in auto-reload mode.					
07h	Counters 1, 2 and 3 are three independent 8-bit counters. Counters 2 and 3 are stopped; counter 1 continues to operate in auto-reload mode.					
61h	Counter 1 is stopped, and counters 3 and 2 form a 16-bit counter. Counting the value stored in registers ct_tor3_reg and ct_tor2_reg is started after 61h is written in register ct_toc_reg. An interrupt is given, and bit TO3 is set within register ct_usr2_reg when the terminal count is reached. The counter is stopped by writing 00h in register ct_toc_reg, and sHALI be stopped before reloading new values in registers ct_tor2_reg and ct_tor3_reg. In this configuration, registers ct_tor3_reg and ct_tor2_reg must not be all zero.					
65h	Counter 1 is an 8-bit auto-reload counter, and counters 3 and 2 form a 16-bit counter. Counter 1 starts counting the content of register ct_tor1_reg on the first start bit (reception or transmission) detected on pin I/O after 65h is written in register ct_toc_reg. When counter 1 reaches its terminal count, an interrupt is given, bit TO1 in register ct_usr2_reg is set, and the counter automatically restarts the same count until it is stopped. Changing the content of register ct_tor1_reg during a count is not allowed. Counting the value stored in registers ct_tor3_reg and ct_tor2_reg is started after 65H is written in register ct_toc_reg. When the counter reaches its terminal count, an interrupt is given and bit TO3 is set within register ct_usr2_reg. Both counters are stopped when 00H is written in register ct_toc_reg. Counters 3 and 2 sHALI be stopped by writing 05h in register ct_toc_reg before reloading new values in registers ct_tor2_reg and ct_tor3_reg. In this configuration, registers ct_tor3_reg, ct_tor2_reg and ct_tor1_reg must not be all zero.					
71h	Counter 1 is stopped, and counters 3 and 2 form a 16-bit counter. Counting the value stored in registers ct_tor3_reg and ct_tor2_reg is started on the first start bit detected on pin I/O (reception or transmission) after the value has been written, and then on each subsequent start bit. It is possible to change the content of registers ct_tor3_reg and ct_tor2_reg during a count; the current count will not be affected and the new count value will be taken into account at the next start bit. An interrupt is given, and bit TO3 is set within register ct_usr2_reg when the terminal count is reached. The counter is stopped by writing 00h in ct_toc_reg register. In this configuration, registers ct_tor3_reg and ct_tor2_reg must not be all zero.					
73h	Counters 1, 2 and 3 are three independent 8-bit counters. Counter 1 is stopped. Counter 2 starts counting the content of register ct_tor2_reg on the first start bit (reception or transmission) detected on pin I/O after 73h is written in register ct_toc_reg, and then on each subsequent start bit. It is possible to change the content of register ct_tor2_reg during a count; the current					

223 of 341

PN7462 HW user manual

TOC Value	Operating Mode
	count will not be affected and the new count value will be taken into account at the next start bit. An interrupt is given, and bit TO2 is set within register ct_usr2_reg when the terminal count is reached. Counting the value stored in register ct_tor3_reg is started after 73h is written in register ct_toc_reg. An interrupt is given, and bit TO3 is set within register ct_usr2_reg when the terminal count is reached. The counter sHALI be stopped before reloading new value in ct_tor3_reg register. The counters are stopped by writing 00h in register ct_toc_reg. In this configuration, registers ct_tor3_reg and ct_tor2_reg must not be all zero.
75h	Counter 1 is an 8-bit auto-reload counter, and counters 3 and 2 form a 16-bit counter. Counter 1 starts counting the content of register ct_tor1_reg on the first start bit (reception or transmission) detected on pin I/O after 75h is written in register ct_toc_reg. When counter 1 reaches its terminal count, an interrupt is given, bit TO1 in register ct_usr2_reg is set, and the counter automatically restarts the same count until it is stopped. Changing the content of register ct_tor1_reg during a count is not allowed. Counting the value stored in registers ct_tor3_reg and ct_tor2_reg is started on the first start bit detected on pin I/O (reception or transmission) after the value has been written, and then on each subsequent start bit. It is possible to change the content of registers ct_tor3_reg and ct_tor2_reg during a count; the current count will not be affected and the new count value will be taken into account at the next start bit. An interrupt is given, and bit TO3 is set within register ct_usr2_reg when the terminal count is reached. The counters are stopped by writing 00h in ct_toc_reg register. In this configuration, registers ct_tor3_reg, ct_tor2_reg and ct_tor1_reg must not be all zero.
77h	Counters 1, 2 and 3 are three independent 8-bit counters. Counter 1 is an 8-bit auto-reload counter which starts counting the content of register ct_tor1_reg on the first start bit (reception or transmission) detected on pin I/O after 77h is written in register ct_toc_reg. When counter 1 reaches its terminal count, an interrupt is given, bit TO1 in register ct_usr2_reg is set, and the counter automatically restarts the same count until it is stopped. Changing the content of register ct_tor1_reg during a count is not allowed. Counter 2 starts counting the content of register ct_tor2_reg on the first start bit (reception or transmission) detected on pin I/O after 77h is written in register ct_toc_reg, and then on each subsequent start bit. It is possible to change the content of register ct_tor2_reg during a count; the current count will not be affected and the new count value will be taken into account at the next start bit. An interrupt is given, and bit TO2 is set within register ct_usr2_reg when the terminal count is reached. Counting the value stored in register ct_tor3_reg is started after 77h is written in register ct_toc_reg. An interrupt is given, and bit TO3 is set within register ct_usr2_reg when the terminal count is reached. The counter sHALI be stopped before reloading new value in ct_tor3_reg register. The counters are stopped by writing 00h in register ct_toc_reg. In this configuration, registers ct_tor3_reg, ct_tor2_reg and ct_tor1_reg must not be all zero.
7Ch	Counters 3, 2 and 1 are wired as a single 24-bit counter. Counting the value stored in registers ct_tor3_reg, ct_tor2_reg and ct_tor1_reg is started on the first start bit detected on pin I/O (reception or transmission) after the value has been written, and then on each subsequent start bit. It is possible to change the content of registers ct_tor3_reg, ct_tor2_reg and ct_tor1_reg during a count; the current count will not be affected and the new count value will be taken into account at the next start bit. An interrupt is given, and bit TO3 is set within register ct_usr2_reg when the terminal count is reached. The counter is stopped by writing 00H in register ct_toc_reg. In this configuration, registers ct_tor3_reg, ct_tor2_reg and ct_tor1_reg must not be all zero.
F3h	Same configuration as value 73h, except that the 8-bit counters will be stopped at the end of the 12th ETU following the first start bit detected after F3h has been written in ct_toc_reg register.
F7h	Same configuration as value 77h, except that the 8-bit counters will be stopped at the end of the 12th ETU following the first start bit detected after F7h has been written in ct_toc_reg register.

224 of 341

PN7462 HW user manual

13.6.2.21 Register ct fsr reg (FIFO Status register)

This status register enables to know how many bytes are present into the FIFO; it doesn't generate any interrupt.

Table 270. ct_fsr_reg (address 005Ch) bit description

Bit	Symbol	Access	Reset Value	Description
31:6	RESERVED	-	0	reserved
5:0	ffl5 – ffl0	R	0 0000b	FIFO Fulfilment Level
				Gives the number of bytes present into the FIFO.

13.6.2.22 Register ct_msr_reg (Mixed Status Register)

This status register is intended for polling; it doesn't generate any interrupt.

Table 271. ct_msr_reg (address 0060h) bit description

Bit	Symbol	Access	Reset Value	Description
31:3	RESERVED	-	0	reserved
2	INTAUX	R	0b	Auxiliary interrupt
				Bit INTAUX is the copy of pin INTAUX.
1	BGT	R	0b	Block Guard Time
				In protocol T = 1, bit BGT is linked with a 22-ETU counter, which is started at every start bit on pin I/O. Bit BGT is set to logic level one, if the count is finished before the next start bit. This helps to verify that the card has not answered before 22 ETU after the last transmitted character, or that the reader is not transmitting a character before 22 ETU after the last received character.
				In protocol T = 0, bit BGT is linked with a 16-ETU counter, which is started at every start bit on pin I/O. Bit BGT is set to logic level one, if the count is finished before the next start bit. This helps to verify that the card has not answered before 16 ETU after the last transmitted character, or that the reader is not transmitting a character before 16 ETU after the last received character.
0	PRES	R	0b	PRESence
				Set to logic 1 when the card is present.
				Set to logic 0 when the card is not present or has been removed.
				Remark: the bits pres_pup_en and pres_con_no in ct_ssr_reg register should have been set prior to any check of card presence.

13.6.2.23 Register ct_usr1_reg (UART Status Register 1)

This register is an interrupt register (together with ct_usr2_reg register): these bits coming from the Contact UART core are used to manage the reception & transmission of characters. Read this register enables to know what the cause of the interrupt is. The bits are set to logic 1 by hardware and set to logic 0 by reading (with a hardware mechanism avoiding the loss of incoming interrupt while reading).

PN7462 HW user manual

Table 272. ct_usr1_reg (address 0064h) bit description

Bit	272. ct_usr1_reç Symbol	Access	Reset Value	Description
31:6	RESERVED	-	0	Reserved
5	MUTE	R	0b	During ATR, set to logic 1 when the card has not answered (it has not sent its ATR) within the time defined by the mute counter while RST was at logic 1 (see registers ct_mcrh_lsb_reg & ct_mcrh_msb_reg) or when the card has answered while RST was at logic 0 (see registers ct_mcrl_lsb_reg & ct_mcrl_lsb_reg).
	EADLY.		01	Set to logic 0 after reading the byte.
4	EARLY	R	0b	During ATR, set to logic 1 when the card has answered two early within the time defined by the early counter (see register ct_ecr_reg) while RST was at logic 1 or when the card has answered while RST was at logic 0.
				Set to logic 0 after reading the byte.
3	pe	R	0b	Parity Error
				- In protocol T=0, it is high if the character has been received with parity error a number of time equals to the number written in PEC(2:0) of register ct_fcr_reg +1 or if the transmitted character has been NAKed by the card a number of times equal to the value programmed in bits PEC(2:0) +1. It is set at 10.5 ETU in the reception mode and at 11.5 ETU in the transmission mode. A character received with a parity error is not stored into the FIFO and the card is supposed to repeat this character.
				- In protocol T=1, it is high when the parity error has been detected.
				A character with a parity error is stored into the FIFO and the parity error counter is not active.
				Set to logic 0 after reading the byte.
2	ovr	R	0b	OVerRun
				Set to logic 1 when a new character has been received whilst the FIFO was full. In this case, at least one character has been lost.
				Set to logic 0 after reading the byte.
1	fer	R	0b	Framing ERror
				Set to logic 1 when the I/O line was not in the high-impedance state at 10.25 ETUs after a start bit.
				Set to logic 0 after reading the byte.
0	Ft	R	0b	Fifo Threshold
				Set to logic 1 in reception mode if the number of received bytes in the FIFO equals to the number written in bits ft(4:0) + 1 of the register ct_fcr_reg. This bit goes high 10.5 ETUs after the start bit of the (ft(4:0) + 1)th received character. In transmission mode, it is set to logic 1 when the number of remaining bytes to transmit in the FIFO equals to the number written in bits ft(4:0) of the register ct_fcr_reg. This bit goes high 9.5 ETUs after the start bit of the (32 - ft(4:0))th transmitted character. Set to logic 0 after reading the byte.

Remark: When one of the bits ft, fer, ovr, pe, MUTE, EARLY is set at logic 1, then the interrupt line is set at logic 1.

UM10858 **NXP Semiconductors**

PN7462 HW user manual

Remark: When both bits EARLY and MUTE are high, it means that the card answered (sent its ATR) too early between 200 CLK periods after I/O line goes high and before RST goes high.

13.6.2.24 Register ct_usr2_reg (UART Status Register 2)

This register is an interrupt register (together with ct_usr1_reg register): these bits coming from the Contact UART core are used to manage the reception & transmission of characters. Read this register enables to know what the cause of the interrupt is. The bits are set to logic 1 by hardware and set to logic 0 by reading (with a hardware mechanism avoiding the loss of incoming interrupt while reading).

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	-	0	Reserved
7	to3	R	0b	Time Out counter3: Set to logic 1 when the timer counter 3 has reached its terminal count. Set to logic 0 after reading the byte.
6	to2	R	0b	Time Out counter2: Set to logic 1 when the timer counter 2 has reached its terminal count. Set to logic 0 after reading the byte.
5	to1	R	0b	Time Out counter1: Set to logic 1 when the timer counter 1 has reached its terminal count. Set to logic 0 after reading the byte.
4	wrdaccerr	R	0b	WoRD ACCess ERRor: Set to logic 1 if a word (bit wrdacc = 1 in register ct_ucr21_reg/ct_ucr22_reg) read access is attempted with less than 4 bytes present into the FIFO. Set to logic 0 after reading the byte.
3	INTAUXL	R	0b	AUXiliary INTerrupt Latched: Set to logic 1 if the level on pin INTAUX has been changed. Set to logic 0 after reading the byte.
2	PROTL	R	0b	PROTection Latched: Set to logic 1 when an overload occurs. Set to logic 0 after reading the byte.
1	PRESL	R	0b	PRESence Latched: Set to logic 1 when the card has been inserted or extracted. Set to logic 0 after reading the byte. Remark: the bits pres_pup_en and pres_con_no in ct_ssr_reg register should have been set prior to any check of card presence.
0	PTL	R	0b	Protection Temperature Latched: Set to logic 1 when an overheating occurs. Set to logic 0 after reading the byte.

PN7462 HW user manual

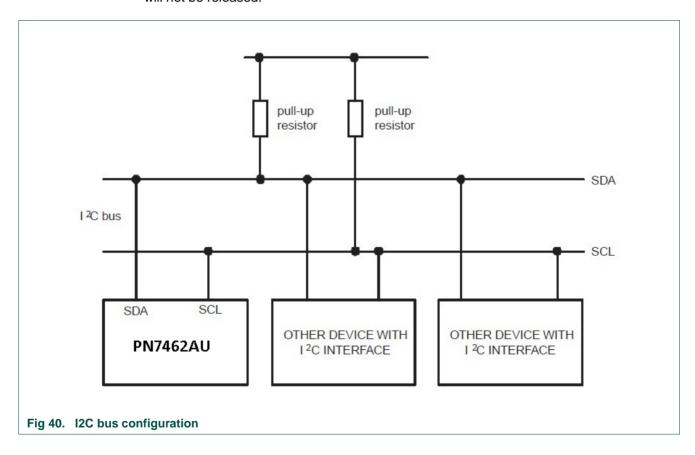
14. PN7462AU Interfaces

14.1 I2C Master Interface

The I2C bus is a simple two-wire bi-directional serial communication interface that is intended for inter-IC communication over short distances. The I2C-bus uses only two wires: a serial clock line (SCL) and a serial data line (SDA). Each device is recognized by a unique address. The I2C master controller is one of two I2C controllers supported by PN7462AU. The I2C slave controller is described in Section 14.3.1.

14.1.1 I2C Master features:

- Standard I2C compliant bus interface with open-drain pins.
- Supports standard-mode, fast mode and fast mode plus (up to 1 MBds)
- Supports I2C master mode only
- Programmable clocks allowing versatile rate control
- Clock stretching
- 7-bits and 10-bits I2C slave addressing
- LDM/STM instruction support
- Maximum data frame size up to 1024 bytes


PN7462 HW user manual

14.1.2 General description

A typical I ²C bus configuration is shown in <u>Fig 40</u>. The master device generates all of the serial clock pulses and the START and STOP conditions. Depending on the state of the direction bit (R/W), two types of data transfers are possible on the I2C-bus:

- Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the master is the slave address. Next follows a number of data bytes. The slave returns an acknowledge bit after each received byte.
- Data transfer from a slave transmitter to a master receiver. The first byte (the slave address) is transmitted by the master. The slave then returns an acknowledge bit. Next follows the data bytes transmitted by the slave to the master. The master returns an acknowledge bit after all received bytes other than the last byte. At the end of the last received byte, a "not acknowledge" is returned.

A transfer is ended with a STOP condition or with a Repeated START condition. Since a Repeated START condition is also the beginning of the next serial transfer, the I2C bus will not be released.

The I2C Master can operate in two modes: I2C Master Transmitter and I2C Master Receiver.

PN7462 HW user manual

In the master transmitter mode data is transmitted from master to slave. The first byte transmitted contains the slave address and Write bit. The data is transmitted 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. The I2C Master in Master Transmitter mode supports the automatic continuation of the I2C transmission without the need of altering the data in the FIFO or the register content. The Stop condition is generated when the byte sent is equal to the content of the byte count register. In case of error during the ongoing communication, the FIFO has to be cleared (corresponding register to clear FIFO based on interrupt error). When the FIFO is empty during the transmission, the block will automatically stretch the clock of the previous byte (after slave acknowledge) until a new byte is written.

The transfer in the master receiver mode is initiated in the same way as in the master transmitter mode. The number of bytes to receive must be specified in the byte count register. The I2C slave can always stretch the clock if it is not able to transmit any more data. The Stop condition is generated when the number of bytes received is equal to the byte count register content. When the FIFO is full, the clock is stretched before sending the bit acknowledge to the slave. An interrupt will be raised to indicate that some FIFO data need to be fetched.

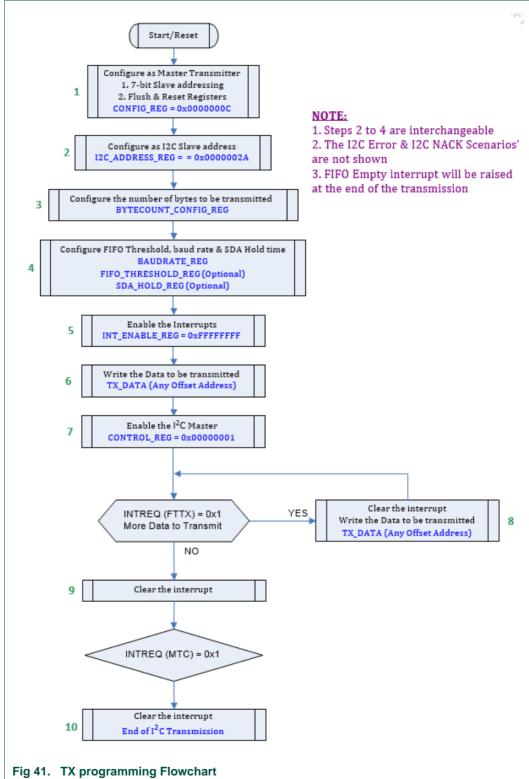
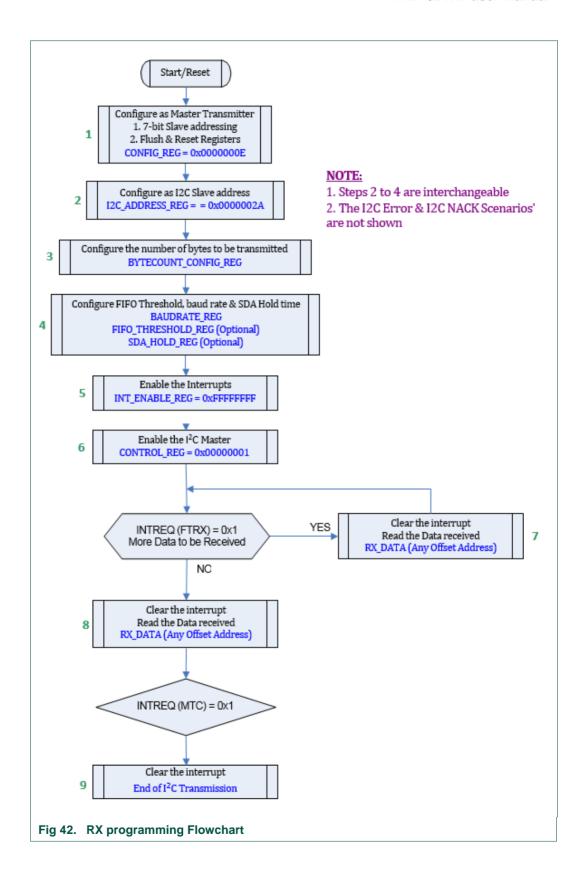

14.1.3 Pin description

Table 274. I2C-bus pin description


Pin Name	Pin description
SDA	I ² C Serial Data
SCL	I ² C Serial Clock

PN7462 HW user manual

14.1.4 TX/RX programming Flowcharts

PN7462 HW user manual

PN7462 HW user manual

14.1.5 Baud rate calculation

The SCL (serial clock line) frequency calculation is based on 27.12 MHz clock. The BAUDRATE_REG register (see <u>Table 277</u>) controls the speed of the I2C bus transmissions. The SCL (serial clock) line frequency is determined as follows.

$$SCL\ Frequency = \frac{27.12}{27 + BAUDRATE}\ MHz$$

The baud rate parameter can be calculated using the following equation.

Examples:

If BAUDRATE REG = 0x000000000 then SCL frequency = 1MHz (1 Mbit/s)

If BAUDRATE_REG = 0x000000029 then SCL frequency = 400kHz (400 kbit/s)

If BAUDRATE_REG = 0x0000006D then SCL frequency = 100kHz to 100 kbit/s

14.1.6 SDA Hold calculation

The I2C-Bus specification requires a hold time for the SDA signal of at least 300 ns to bridge the undefined region of the falling edge of SCL in Standard and Fast modes. This 300 ns hold time is computed based on the 27.12 MHz clock (27.12 MHz) and written to the SDA_HOLD_REG register (Table 278).

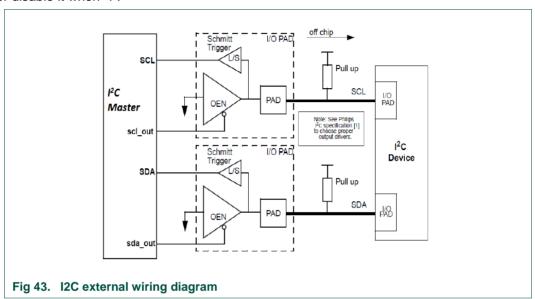
The SDA hold requirements in Fast-mode Plus show that this 300 ns window is no longer necessary to ensure a proper functionality of the controller. It is therefore recommended to set the SDA_HOLD to 0x00 when operating in Fast-mode Plus, in order for the data to change as early as possible after the falling edge of the SCL line.

Example:

If the SCL frequency is 339; then the BAUDRATE register bit field is 0x35.

So, the SDA_HOLD register bit field is would be:

Here, SDA_HOLD can be any integer value between 9 & 19.


Note:

- Setting the Value (Non-zero) for the SDA_HOLD register bit field is not mandatory. If the SDA_HOLD register bit field is 0x0, then the I2C Master IP will internal take care of 300 ns hold time for I2C standard and fast modes
- The SDA_HOLD register bit field is applicable only for I2C standard and fast modes.

PN7462 HW user manual

14.1.7 External wiring

The I2C controller operates on an external clock. For proper operation, external blocks must supply a clock signal to the apb_clk pin. Furthermore, as can be seen in <u>Fig 43</u>, the analog characteristics of the I2C bus (data and clock are connected to pull-up resistors) cause that the SCL and SDA lines must be driven by a pull-down circuit also called "I2C". The signals scl_out and sda_out are then used to enable the pull-down circuit (when '0') or disable it when '1'.

14.1.8 I2C Register overview

Table 275, I2CM Register overview (base address 0x4003 0000)

Name	Address offset	Width (bits)	Access	Reset value	Description
CONFIG_REG [1]	0x0000	32	RW	0x00000000	Register fields to configure the I2C Master & I2C (Transmission/Reception) mode of operation.
BAUDRATE_REG [1]	0x0004	32	RW	0x000000F4	Register field to generate the I2C Serial Clock Frequency. Default: 1 MHz Serial Clock Frequency at input system/IP Clock Frequency of 27 MHz
SDA_HOLD_REG [1]	0x0008	32	RW	0x00000009	Used to set the SDA hold time (SDA generation with respect to falling edge on SCL) - Must be set to 0x00 when operating in Fast-mode Plus (freq SCL> 400 kHz)
I2C_ADDRESS_REG [1]	0x000C	32	RW	0x0000002A	Contains the I2C Slave address of the device.
FIFO_THRESHOLD_REG	0x0010	32	RW	0x00000701	Register field to set the FIFO Threshold Level for the Interrupt Request Generation
BYTECOUNT_CONFIG_REG	0x0014	32	RW	0x00000000	Register bit field to configure the number of bytes to be transmitted or received

234 of 341

PN7462 HW user manual

Name	Address offset	(bits)	Access	Reset value	Description
BYTECOUNT_STATUS_REG	0x0018	32	R	0x00000000	Register bit field to indicate the status of number of bytes transmitted or received
STATUS_REG	0x001C	32	R	0x0000002C	Register bit fields to indicate the current status of the I2C master
CONTROL_REG [2]	0x0020	32	W	0x00000000	Register bit field to enable the I2C Transmission or reception.
INTERNAL_USE [3]	0x0024	32	RW	0x00000000	For internal use
INTERNAL_USE [3]	0x0028	32	R	0x00000000	For internal use
TX_DATA	0x0040	32	W	0x00000000	These register fields are used to fill the FIFO
		with the data to be transmitted & accessible as write only registers; if I2C Master is configured			
	0x0048	32	W	0x00000000	for I2C Transmission.
	0x004C	32	W	0x00000000	
RX_DATA	0x0050	32	R	0x00000000	These register fields are used to read the
	0x0054	32	R	0x00000000	received data from FIFO & accessible as read only registers; if I2C Master is configured for
	0x0058	32	R	0x00000000	I2C Reception.
	0x005C	32	R	0x00000000	
INT_CLR_ENABLE_REG	0x3FD8	32	W	0x00000000	Collection of Clear Interrupt Enable commands
INT_SET_ENABLE_REG	0x3FDC	32	W	0x00000000	Collection of Set Interrupt Enable commands
INT_STATUS_REG	0x3FE0	32	R	0x00000000	Collection of Interrupt Status
INT_ENABLE_REG	0x3FE4	32	R	0x00000000	Collection of Interrupt Enable
INT_CLR_STATUS_REG	0x3FE8	32	W	0x00000000	Collection of Clear Interrupt Status commands
INT_SET_STATUS_REG	0x3FEC	32	W	0x00000000	Collection of Set Interrupt Status commands

^[1] Read-Only Register Access during I2C Transmission/Reception is on-going.

^[2] Write Set Only Register Access: Once the bit is set, the I2C transmission or reception starts and once the I2C transmission or reception is completed the bit field is automatically cleared. Writing 1 to bit field during an active I2C transmission or reception has no effect.

^[3] Bit-field are either set by HAL or use default value from CLIF EEPROM default settings

PN7462 HW user manual

14.1.9 Register description

14.1.9.1 CONFIG REG

This register is used to configure the I2C master.

Table 276. CONFIG_REG (address offset 0x0000)

Legend: * reset value: <= mandatory value

Legena.	reset value, <= mandatory	varuc		
Bit	Symbol	Access	Value	Description
31:5	RESERVED	R	0x0000000*	reserved
4	RESET_I2C_CORE	-X	0x0*	Set Only (Pulse) Register Bit Field to Reset the I ² C Core Block.
3	RESET_REG	-X	0x0*	Set Only (Pulse) Register Bit Field to Reset Selected Registers of I ² C Master
2	FIFO_FLUSH	-X	0x0*	Set Only (Pulse) Register Bit Field to flush the FIFO irrespective of I ² C Master Mode of operation
1	SLV_ADDRESSING	R/W	0x0*	I ² C Slave 7/10 bit address selection
0	IP_MODE	R/W	0x0*	I ² C Master Mode selection

IP MODE

IP_MODE bit field determines the I2C master mode of operation.

- IP MODE = 0x0: I2Cmaster as transmitter
- IP MODE = 0x1: I2C master as receiver

SLV ADDRESSING

SLV_ADDRESSING bit field determines I2C master slave addressing.

- SLV_ADDRESSING = 0x0: 7-bit I2C slave addressing
- SLV_ADDRESSING = 0x1: 10-bit I2C slave addressing

FIFO_FLUSH

Writing 1 to the FIFO_FLUSH bit field will generate a pulse to flush the content of the FIFO irrespective of I2C master mode of operation.

RESET_REG

Writing 1 to the RESET_REG bit field will generate a pulse to reset the following registers to their default value.

- 1. BAUDRATE REG
- 2. SDAHOLD REG
- 3. I2C ADDRESS REG
- 4. FIFO_THRESHOLD_REG
- BYTECOUNT_CONFIG_REG

RESET_I2C_CORE

Writing 1 to the RESET_I2C_CORE bit field will generate a pulse to reset the I2C Core block/state-machine.

PN7462 HW user manual

14.1.9.2 BAUDRATE REG

This register is used to generate the I2C serial clock frequency. The default is 1MHz serial clock frequency at input system clock Frequency of 27 MHz

Table 277. BAUDRATE REG (address offset 0x0004)

Legend: * reset value; <= mandatory value

Bit	Symbol	Access	Value	Description
31:8	RESERVED	R	0x0000000*	reserved
7:0	BAUDRATE	R/W	0xF4*	BAUDRATE bit field is used for the I2C Serial Clock Frequency calculation. For a detailed calculation, refer to Section 14.1.5

14.1.9.3 SDA_HOLD_REG

This register is used to set the SDA hold time (SDA generation with respect to the falling edge on SCL). It must be set to 0x00 when operating in Fast-mode Plus (freq SCL> 400 kHz).

Table 278. SDA_HOLD_REG (address offset 0x0008)

Legend: * reset value; <= mandatory value

Bit	Symbol	Access	Value	Description
31:5	RESERVED	R	0x0000000*	reserved
4:0	SDA_HOLD	R/W	0x09*	SDA Hold time; For a detailed calculation refer to Section 14.1.6

14.1.9.4 I2C ADDRESS REG

This register contains the I2C slave address of the device.

Table 279. I2C_ADDRESS_REG (address offset 0x000C)

Legend: * reset value; <= mandatory value

Bit	Symbol	Access	Value	Description
31:10	RESERVED	R	0x0000000*	reserved
9:0	SLAVE_ADDRESS	R/W	0x2A*	I ² C Slave 7 bit or 10-bit address

14.1.9.5 FIFO_THRESHOLD_REG

This register is used to set the FIFO threshold level for interrupt request generation.

Table 280. FIFO_THRESHOLD_REG (address offset 0x0010)

Bit	Symbol	Access	Value	Description
31:11	RESERVED	R	0x0000000*	Reserved
10:8	RXMODE_THRESHOLD	R/W	0x7*	FIFO Threshold level for Interrupt Request generation when I ² C Master is configured for I ² C Reception mode.
7:3	RESERVED	R	0x0000000*	
2:0	TXMODE_THRESHOLD	R/W	0x1*	FIFO Threshold level for Interrupt Request generation when I ² C Master is configured for I ² C Transmission mode.

PN7462 HW user manual

TXMODE THRESHOLD

FIFO Threshold level for interrupt request generation when I2C master is configured for transmission mode.

- 1. TXMODE_THRESHOLD register field is valid only during I2C transmission.
- Interrupt request is generated when the TXMODE_THRESHOLD equals the I2C master internal FIFO.
- 3. Byte granularity will be interpreted by the BYTECOUNT_CONFIG_REG.

RXMODE THRESHOLD

FIFO threshold level for interrupt request generation when I2C master is configured for reception mode.

- 1. RXMODE_THRESHOLD register field is valid only during I2C transmission.
- 2. Interrupt request is generated when the RXMODE_THRESHOLD equals the I2C master internal FIFO.
- 3. Byte granularity must be interpreted by the BYTECOUNT_CONFIG_REG.

14.1.9.6 BYTECOUNT CONFIG REG

This register's function is to configure the number of bytes to be transmitted or received.

Table 281. BYTECOUNT_CONFIG_REG (address offset 0x0014)

Legend: * reset value; <= mandatory value

Bit	Symbol	Access	Value	Description
31:10	RESERVED	R	0x0000000*	reserved
9:0	BYTE_COUNT_CONFIG	R/W	0x000*	This register bit field is used to configure the number of byte to be Transmitted or Received. A maximum of 1023 byte can be transmitted or received in a frame.

14.1.9.7 BYTECOUNT STATUS REG

This register reflects the status of number of bytes being transmitted or received.

Table 282. BYTECOUNT STATUS REG (address offset 0x0018)

Bit	Symbol	Access	Value	Description
31:10	RESERVED	R	0x0000000*	reserved
9:0	BYTE_COUNT_CONFIG	R	0x000*	This register bit field is used to provide the status of number of byte currently Transmitted or Received. A maximum of 1023 byte can be transmitted or received in a frame.

PN7462 HW user manual

14.1.9.8 STATUS REG

This register indicates the current status of the I2C master.

Table 283. STATUS REG (address offset 0x001C)

Legend: * reset value: <= mandatory value

Bit	Symbol	Access	Value	Description
31:12	RESERVED	R	0x0000000*	reserved
11:8	FIFO_LEVEL	R	0x0*	Indicates the current FIFO level irrespective of I ² C Master Mode of operation
7:6	RESERVED	R	0x0000000*	Reserved
5	FIFO_EMPTY_STATUS	R	0x1*	Indicates the FIFO empty condition irrespective of $\ensuremath{\mathrm{I}}^2\ensuremath{\mathrm{C}}$ Master Mode of operation
4	FIFO_FULL_STATUS	R	0x0*	Indicates the FIFO full condition irrespective of I ² C Master Mode of operation
3	SCL	R	U*	Current Status of scl_a line
2	SDA	R	U*	Current Status of sda_a line
1	I2C_MASTER_MODE	R	0x0*	I ² C Mode of operation. Status from the IP_MODE bit field of CONFIG_REG register
0	I2C_BUS_ACTIVE	R	0x0*	Indicates I ² C Transmission or Reception is On-going

12C BUS ACTIVE

The I2C_BUS_ACTIVE bit field is set when I2C transmission or reception is enabled (I2C_ENABLE bit field in the CONTROL_REG register). The I2C_BUS_ACTIVE bit field is cleared when 2C stop condition is detected.

I2C_MASTER_MODE

The I2C_MASTER_MODE bit field is set when I2C master is configured for I2C reception. The I2C_MASTER_MODE bit field is cleared when I2C master is configured for I2C transmission.

SDA

The SDA bit field indicates the current status of sda_a line after 2 flops synchronization.

SCL

The SCL bit field indicates the current status of scl_a line after 2 flops synchronization.

14.1.9.9 CONTROL_REG

This register is used to enable the I2C transmission or reception.

Table 284. CONTROL_REG (address offset 0x0020)

Bit	Symbol	Access	Value	Description
31:10	RESERVED	R	0x0000000*	reserved
9:0	BYTE_COUNT_CONFIG	R	0x000*	This register bit field is used to provide the status of number of byte currently Transmitted or Received. A maximum of 1023 byte can be transmitted or received in a frame.

PN7462 HW user manual

14.1.9.10 TX DATA

This register is used to fill the FIFO with the data to be transmitted & accessible as write only registers, if the I2C Master is configured for transmission.

Table 285. TX_DATA (address offset 0x0040 to 0x004C)

Legend: * reset value; <= mandatory value

Bit	Symbol	Access	Value	Description
31:0	TX_DATA	W	0x0000000*	Data to be transmitted

- 1. The TX_DATA register fields are accessible as write-only during I2C master configured as I2C transmitter. (IP MODE = 0x0 in CONFIG REG)
- 2. The Data written to TX_DATA register fields are considered to be WORD size, however the byte granularity will be interpreted by the BYTECOUNT_CONFIG_REG register.
- 3. The TX_DATA from offset address 0x0040 to 0x004C, is order independent. The TX data can be written to any of these offset address 0x0040 or 0x0044 or 0x0048 or 0x004C in any order.

14.1.9.11 RX DATA

This register is used to read the received data from FIFO & accessible as read only registers if the I2C Master is configured for reception.

Table 286. RX_DATA (address offset 0x0050 to 0x005C)

Bit	Symbol	Access	Value	Description
31:0	RX_DATA	R	0x0000000*	Data received

- The RX_DATA register fields are accessible as read-only during I2C master configured as I2C receiver. (IP_MODE = 0x1 in CONFIG_REG)
- The Data from RX_DATA register fields are considered to be WORD size, however the byte granularity will be interpreted by the BYTECOUNT_CONFIG_REG register.
- The RX_DATA from offset address 0x0050 to 0x005C, is order independent. The RX data can be read in any of these offset address 0x0050 or 0x0054 or 0x0058 or 0x005C in any order.

PN7462 HW user manual

14.1.9.12 INT CLR ENABLE REG

This register is a collection of Clear Interrupt Enable commands. Writing 1 to this register does clear the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 287. INT_CLR_ENABLE_REG (address offset 0x3FD8)

Legend: * reset value; <= mandatory value

Bit	Symbol	Access	Value	Description
31:12	RESERVED	R	0x0*	reserved
11	CLR_ENABLE_TX_FIFO_ THRES	W	0x0*	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
10	CLR_ENABLE_RX_FIFO_ THRES	W	0x0*	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
9	CLR_ENABLE_FIFO_EM PTY	W	0x0*	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
8	CLR_ENABLE_FIFO_FUL L	W	0x0*	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
7:4	RESERVED	R	0x0*	reserved
3	CLR_ENABLE_I2C_BUS_ ERROR	W	0x0*	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
2	CLR_ENABLE_NACK	W	0x0*	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
1	CLR_ENABLE_ARB_FAIL URE	W	0x0*	Writing 1 to this register does clear the corresponding IRQ ENABLE flag
0	CLR_ENABLE_TRN_COM PLETED	W	0x0*	Writing 1 to this register does clear the corresponding IRQ ENABLE flag

14.1.9.13 INT SET ENABLE REG

This register is a collection of Set Interrupt Enable commands. Writing 1 to this register does set the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 288. INT_SET_ENABLE_REG (address offset 0x3FDC)

Bit	Symbol	Access	Value	Description
31:12	RESERVED	R	0x0*	reserved
11	SET_ENABLE_TX_FIFO_ THRES	W	0x0*	Writing 1 to this register does set the corresponding IRQ ENABLE flag
10	SET_ENABLE_RX_FIFO_ THRES	W	0x0*	Writing 1 to this register does set the corresponding IRQ ENABLE flag
9	SET_ENABLE_FIFO_EMP TY	W	0x0*	Writing 1 to this register does set the corresponding IRQ ENABLE flag
8	SET_ENABLE_FIFO_FUL L	W	0x0*	Writing 1 to this register does set the corresponding IRQ ENABLE flag
7:4	RESERVED	R	0x0*	reserved
3	SET_ENABLE_I2C_BUS_ ERROR	W	0x0*	Writing 1 to this register does set the corresponding IRQ ENABLE flag

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
2	SET_ENABLE_NACK	W	0x0*	Writing 1 to this register does set the corresponding IRQ ENABLE flag
1	SET_ENABLE_ARB_FAIL URE	W	0x0*	Writing 1 to this register does set the corresponding IRQ ENABLE flag
0	SET_ENABLE_TRN_COM PLETED	W	0x0*	Writing 1 to this register does set the corresponding IRQ ENABLE flag

14.1.9.14 INT_STATUS_REG

This register is a collection of Interrupt Status commands. Writing 1 to this register does set the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 289. INT_STATUS_REG (address offset 0x3FE0)

Legend: * reset value; <= mandatory value

Bit	Symbol	Access	Value	Description
31:12	RESERVED	R	0x0*	reserved
11	TX_FIFO_THRES	R	0x0*	Indicates that the FIFO threshold is reached while I2C transmission is on-going
10	RX_FIFO_THRES	R	0x0*	Indicates that the FIFO threshold is reached while I2C reception is on-going
9	FIFO_EMPTY	R	0x0*	Indicates that the FIFO empty condition is reached while I2C transmission is on-going
8	FIFO_FULL	R	0x0*	Indicates that the FIFO full condition is reached while I2C reception is on-going
7:4	RESERVED	R	0x0*	reserved
3	I2C_BUS_ERROR	R	0x0*	Indicates an I2C bus error occurred
2	NACK	R	0x0*	Indicates an I2C slave didn't acknowledge the I2C master request
1	ARB_FAILURE	R	0x0*	Indicates an I2C master arbitration failure
0	TRN_COMPLETED	R	0x0*	Indicates an I2C master completed the I2C transmission or I2C reception

14.1.9.15 INT ENABLE REG

This register is a collection of Interrupt Enable commands. Writing 1 to this register does set the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 290. INT_ENABLE_REG (address offset 0x3FE4)

Bit	Symbol	Access	Value	Description
31:12	RESERVED	R	0x0*	reserved
11	ENABLE_TX_FIFO_THRE S	R	0x0*	If this bit is 1 the corresponding IRQ can propagate to the CPUs IRQ controller
10	ENABLE_RX_FIFO_THRE S	R	0x0*	If this bit is 1 the corresponding IRQ can propagate to the CPUs IRQ controller

PN7462 HW user manual

Bit	Symbol	Access	Value	Description
Dit	- Cyllibol	ACCESS	Value	Description
9	ENABLE_FIFO_EMPTY	R	0x0*	If this bit is 1 the corresponding IRQ can propagate to the CPUs IRQ controller
8	ENABLE_FIFO_FULL	R	0x0*	If this bit is 1 the corresponding IRQ can propagate to the CPUs IRQ controller
7:4	RESERVED	R	0x0*	reserved
3	ENABLE_I2C_BUS_ERR OR	R	0x0*	If this bit is 1 the corresponding IRQ can propagate to the CPUs IRQ controller
2	ENABLE_NACK	R	0x0*	If this bit is 1 the corresponding IRQ can propagate to the CPUs IRQ controller
1	ENABLE_ARB_FAILURE	R	0x0*	If this bit is 1 the corresponding IRQ can propagate to the CPUs IRQ controller
0	ENABLE_TRN_COMPLET ED	R	0x0*	If this bit is 1 the corresponding IRQ can propagate to the CPUs IRQ controller

14.1.9.16 INT_CLR_STATUS_REG

This register is a collection of Clear Interrupt Status commands. Writing 1 to this register does set the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 291. INT_CLR_STATUS_REG (address offset 0x3FE8)

Bit	Symbol	Access	Value	Description
31:12	RESERVED	R	0x0*	reserved
11	CLR_STATUS_TX_FIFO_ THRES	W	0x0*	Writing 1 to this register does clear the corresponding IRQ STATUS flag
10	CLR_STATUS_RX_FIFO_ THRES	W	0x0*	Writing 1 to this register does clear the corresponding IRQ STATUS flag
9	CLR_STATUS_FIFO_EM PTY	W	0x0*	Writing 1 to this register does clear the corresponding IRQ STATUS flag
8	CLR_STATUS_FIFO_FUL L	W	0x0*	Writing 1 to this register does clear the corresponding IRQ STATUS flag
7:4	RESERVED	R	0x0*	reserved
3	CLR_STATUS_I2C_BUS_ ERROR	W	0x0*	Writing 1 to this register does clear the corresponding IRQ STATUS flag
2	CLR_STATUS_NACK	W	0x0*	Writing 1 to this register does clear the corresponding IRQ STATUS flag
1	CLR_STATUS_ARB_FAIL URE	W	0x0*	Writing 1 to this register does clear the corresponding IRQ STATUS flag
0	CLR_STATUS_TRN_COM PLETED	W	0x0*	Writing 1 to this register does clear the corresponding IRQ STATUS flag

PN7462 HW user manual

14.1.9.17 INT SET STATUS REG

This register is a collection of Set Interrupt Status commands. Writing 1 to this register does set the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 292. INT_SET_STATUS_REG (address offset 0x3FEC)

Legend: * reset value: <= mandatory value

Bit	Symbol	Access	Value	Description
31:12	RESERVED	R	0x0*	reserved
11	SET_STATUS_TX_FIFO_ THRES	W	0x0*	Writing 1 to this register does set the corresponding IRQ STATUS flag
10	SET_STATUS_RX_FIFO_ THRES	W	0x0*	Writing 1 to this register does set the corresponding IRQ STATUS flag
9	SET_STATUS_FIFO_EMP TY	W	0x0*	Writing 1 to this register does set the corresponding IRQ STATUS flag
8	SET_STATUS_FIFO_FUL L	W	0x0*	Writing 1 to this register does set the corresponding IRQ STATUS flag
7:4	RESERVED	R	0x0*	reserved
3	SET_STATUS_I2C_BUS_ ERROR	W	0x0*	Writing 1 to this register does set the corresponding IRQ STATUS flag
2	SET_STATUS_NACK	W	0x0*	Writing 1 to this register does set the corresponding IRQ STATUS flag
1	SET_STATUS_ARB_FAIL URE	W	0x0*	Writing 1 to this register does set the corresponding IRQ STATUS flag
0	SET_STATUS_TRN_COM PLETED	W	0x0*	Writing 1 to this register does set the corresponding IRQ STATUS flag

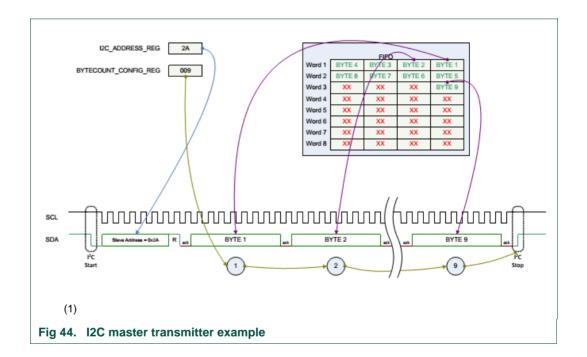
14.1.10 Using example

14.1.10.1 I2C master transmitter example

Example with:

- 1. Slave address = 0x2A
- 2. 9 bytes to be transmitted
- 3. I2C clock frequency = 1 MHz
- **Step 1**: Configure the I2C Master in Master Transmitter mode with an APB Write Transaction using write data 0x0000000C at offset address 0x00000 {CONFIG_REG}.
- **Step 2**: Configure the I2C slave address with an APB Write Transaction using write data 0x0000002A at offset address 0x0000C {I2C_ADDRESS_REG}.
- **Step 3**: Configure the I2C clock frequency with an APB Write Transaction using write data 0x00000000 at offset address 0x00004 {BAUDRATE REG}.
- **Step 4**: Configure the byte count with an APB Write Transaction using write data 0x00000009 at offset address 0x00014 {BYTECOUNT_CONFIG_REG}.

244 of 341


PN7462 HW user manual

Step 5: Configure the I2C data to be transmitted with three APB Write Transaction at offset address 0x00040 - 0x0004C {TX_DATA}.

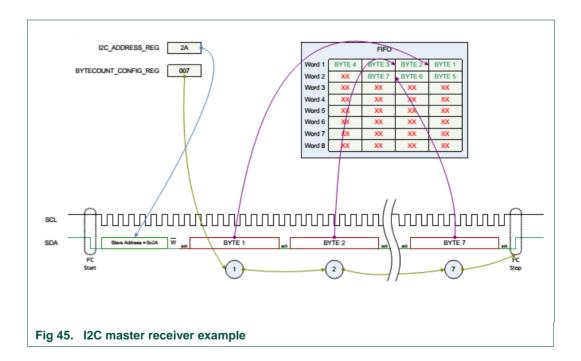
- 1. First APB Write Transaction using write data = {BYTE4, BYTE3, BYTE2, BYTE1}
- 2. Second APB Write Transaction using write data = {BYTE8, BYTE7, BYTE6, BYTE5}
- 3. Third APB Write Transaction using write data = {XX, XX, XX, BYTE9}

Step 6: Enable the I2C Master transmission with an APB Write Transaction using write data 0x00000001 at offset address 0x00020 {CONTROL_REG}.

Note: In the Example, the interrupts are not considered & targeted for the explanation of data integrity & programming procedure for I2C transmission.

14.1.10.2 I2C master receiver example

Example with:


- 1. Slave address = 0x2A
- 2. 7 bytes to be received
- 3. I2C clock frequency = 1 MHz

Step 1: Configure the I2C Master in Master Receiver mode with an APB Write Transaction using write data 0x0000000D at offset address 0x00000 {CONFIG_REG}.

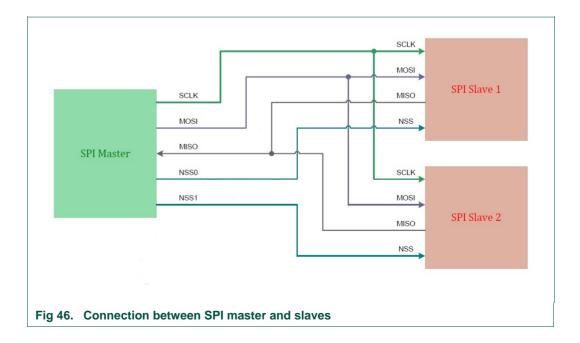
PN7462 HW user manual

- **Step 2**: Configure the I2C slave address with an APB Write Transaction using write data 0x0000002A at offset address 0x0000C {I2C_ADDRESS_REG}.
- **Step 3**: Configure the I2C clock frequency with an APB Write Transaction using write data 0x00000000 at offset address 0x00004 {BAUDRATE_REG}.
- **Step 4**: Configure the byte count with an APB Write Transaction using write data 0x00000007 at offset address 0x00014 {BYTECOUNT_CONFIG_REG}.
- **Step 5**: Enable the I2C Master reception with an APB Write Transaction using write data 0x00000001 at offset address 0x00020 {CONTROL_REG} & wait until the I2C reception is completed.
- **Step 6**: Read the I2C data received with an two APB Read Transaction at offset address 0x00050 0x0005C {RX DATA}.
- 1. First APB Read Transaction using read data = {BYTE4, BYTE3, BYTE2, BYTE1}
- 2. Second APB Read Transaction using read data = {XX, BYTE7, BYTE6, BYTE5}

Note: In the Example, the interrupts are not considered & targeted for the explanation of data integrity & the programming procedure for the I2C reception.

PN7462 HW user manual

14.2 SPI Master Interface


The SPI is a 4-wire serial interface designed to interface with a large range of serial peripheral or memory devices. The SPI master controller is one of two SPI controllers supported by PN7462AU. The SPI slave controller is described in <u>Section 11.3.3</u>.

14.2.1 SPI Master features

- Half-Duplex synchronous transfers
- Supports Motorola SPI frame formats only (SPI Block Guide V04.0114 (Freescale) specification)
- Multiple data rates -1, 1.51, 2.09, 2.47, 3.01, 4.52, 5.42 and 6.78 Mbit/s
- Up to two Slave Select, with selectable polarity
- · Programmable clock polarity and phase
- · Supports 8-bit transfers only
- Maximum frame size: 511 data bytes payload + 1 CRC Byte
- · AHB Master interface for data transfer
- Optional CRC calculation (1 byte) on all data of TX and RX buffer

14.2.2 General description

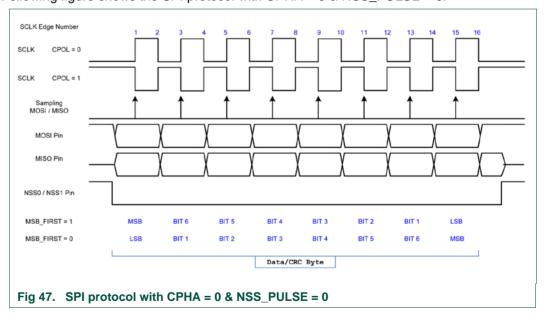
<u>Fig 46</u> shows the connection SPI master with two SPI slaves. Only a single master and a single slave can communicate on the bus during a given data transfer. Data transfers are in principle full duplex, with frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master.

PN7462 HW user manual

14.2.3 Pin description

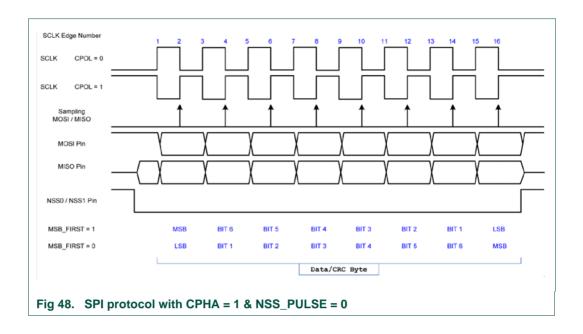
Table 293. SPI pin description

Pin Name	Pin description
SCK0/1	Serial Clock is clock signal, which is used to synchronize the transfer of data between master and slave. It can be programmed to be always active high or active low, and it will only switch during a data transfer.
SSEL0/1	Slave Select is used to wake up the slave or in case of multiple slaves and select the slave to talk to
MISO0/1	Master In Slave Out signal transfers serial data from the slave to the master and deals with different situation, depending on whether the SPI is a slave a master or not selected by the Slave Select.
MOSI0/1	Master Out Slave in signal transfers serial data from the master to the slave. And handles different cases, where the SPI is either the master or the slave

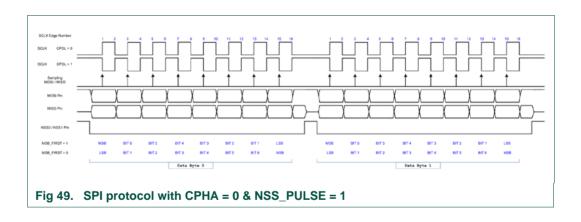

14.2.4 Configuring the SPI interface

The following parameters can be configured via the register SPIM_CONFIG_REG:

- NSS Polarity: defines the level of activity for NSS (0 by default for NSS active low)
- NSS Pulses: a 1 on this field (0 by default) means the SPI master will generate pulses between every byte.


These parameters are not allowed to be changed during an on-going SPI transmission.

Following figure shows the SPI protocol with CPHA = 0 & NSS_PULSE = 0:



Following Figure shows the SPI protocol CPHA = 1& NSS_PULSE = 0

PN7462 HW user manual

Following figure shows the SPI protocol CPHA = 0 & NSS_PULSE = 0.

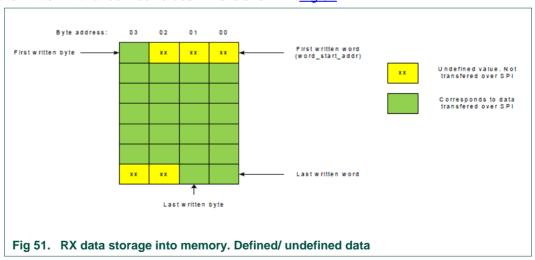
The SPI master automatically generates NSS signal. Its polarity can be configured, and it can be chosen to generate a pulse on NSS between each byte. If more flexibility is needed, then FW can program itself the value to output to NSS, using NSS_CTRL=1 (override internal value), and choosing the value to output to NSS_VAL.

14.2.5 Packet structure

The structure of the packet to be sent/received is described in <u>Fig 50</u>. The packet consists of:

- Payload: up to 511 bytes
- CRC: Redundancy code, computed on payload

PN7462 HW user manual


All data bytes are transferred from memory to SPI or from SPI to memory. An exception is CRC, which in case of TX can be automatically computed and appended to the sent frame.

14.2.6 Buffer initialization

14.2.6.1 RX buffers

Before reading data from the SPI slave, firmware should configure the receive buffer. This is done by using SPIM_BUFFER_MAPPING_REG, SPIM_RX_BUFFER_REG and SPIM_RX_BUFFER_CRC_REG registers. The SPIM_RX_BUFFER_REG specifies the buffer start address (inside System RAM address space), and length of the read access. The RX_LENGTH of 0 is not a valid buffer length. Special attention should be paid to the fact that the RX buffer should not exceed the maximum address size. RX_START_ADDR + RX_LENGTH must be kept in System RAM address range. The address is a byte address, which means that the data will be stored byte-aligned in the memory. Note that in case the address is not multiple of 4, all bytes of first word may be overwritten during data reception: content of first bytes (from word_start_addr to start_addr-1) is undefined. The same applies for the last byte written to memory: all bytes of the last word will be overwritten with undefined values. This is shown in Fig 51.

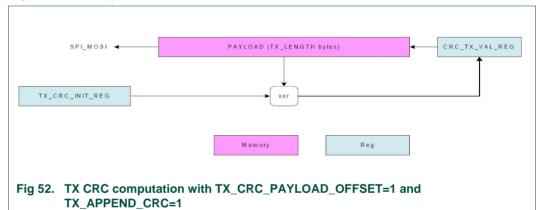
Second register defines the reset value of the CRC (Should be programmed to 0xff), and the number of bytes to skip from the CRC computation from the received packets: default value is 0. When FW wants to reset CRC, then RX_SET_CRC bit of SPIM_CONTROL_REG will have to be written. This can be done during same write access as writing RX_START.

250 of 341

PN7462 HW user manual

14.2.6.2 TX buffers

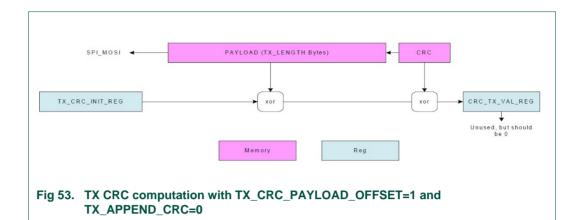
Before writing data to the SPI Slave, firmware should configure the transmit buffer. This is done by using SPIM_TX_BUFFER_REG and SPIM_TX_BUFFER_CRC_REG registers. Compared to the RX buffer, there is one more bit in SPIM_TX_BUFFER_CRC_REG, called TX_APPEND_CRC. If this bit is set, then the SPI Master will send an extra byte (after sending TX_LENGTH bytes over SPI) with the automatically computed CRC value. The TX_LENGTH can be programmed to 0 if TX_APPEND_CRC is 1 (in that case, SPIM would transfer CRC over SPI lines).


14.2.7 CRC

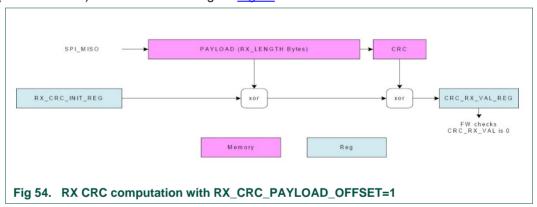
The CRC is computed for all data of a RX/TX buffer. RX/TX_CRC_PAYLOAD_OFFSET allows to define a number of bytes to be skipped from the CRC computation. The initial value is 0xFF, and the CRC is a xor of all data bytes: CRC = 0xFF xor (Payload bytes)

14.2.7.1 TX CRC automatically appended

For transmission, the CRC can be automatically computed and appended after payload (optional feature), when TX_APPEND_CRC is set. This is illustrated in Fig 52.


In that case, the number of sent bytes is TX_LENGTH + 1, and TX_LENGTH should be programmed to Payload_size.

14.2.7.2 TX CRC not appended


If for any reason, the CRC is already computed in memory (e.g. by firmware), then resetting TX_APPEND_CRC will prevent hardware from sending an extra CRC byte. This is shown in Fig 53. In that case, the number of sent bytes is TX_LENGTH, and TX_LENGTH should be programmed to Payload_size + 1 (CRC). Note that in that case, if CRC was correctly computed by firmware, CRC_TX_VAL_REG should be equal to 0, as result of CRC xor CRC.

PN7462 HW user manual

14.2.7.3 RX CRC

For reception, the CRC is considered as data, and is stored in the memory. Number of received data is RX_LENGTH, where RX_LENGTH is programmed to Payload_size + 1. As a result of the reception, the firmware can read back the received CRC byte in memory (last received byte), and can check in CRC register that CRC_RX_VAL is 0 (CRC xor CRC). This is shown on figure Fig 54.

14.2.8 SPI Register overview

Table 294. SPI master register overview (base address 0x4003 4000)

Name	Address offset	Width (bits)	Access	Reset value	Description
SPIM_STATUS_REG	0000h	32	R	00000000h	Status
SPIM_CONFIG_REG	0004h	32	R/W	00000002h	Configuration of SPI Master
SPIM_CONTROL_REG	0008h	32	W	00000000h	RX/TX control
SPIM_RX_BUFFER_REG	000Ch	32	R/W	00000000h	Configuration of RX buffer
SPIM_RX_BUFFER_CRC_REG	0010h	32	R/W	000001FFh	Configuration of RX CRC
SPIM_TX_BUFFER_REG	0014h	32	R/W	00000000h	Configuration of TX buffer
SPIM_TX_BUFFER_CRC_REG	0018h	32	R/W	000201FFh	Configuration of TX CRC

Name	Address offset	Width (bits)	Access	Reset value	Description
SPIM_CRC_STATUS_REG	001Ch	32	R	0000FFFFh	RX/TX CRC values
SPIM_WATERLEVEL_REG	0020h	32	R/W	00000000h	Water level
INTERNAL_USE	0024h	32	R/W	00000000h	For internal use
INTERNAL_USE	0028h	32	R	00000000h	For internal use
SPIM_BUFFER_MAPPING_REG RAM	002Ch	32	R/W	00002FFFh	Buffer Mapping
SPIM_INT_CLR_ENABLE_REG	3FD8h	32	W	00000000h	Clear interrupt enable
SPIM_INT_SET_ENABLE_REG	3FDCh	32	W	00000000h	Set interrupt enable
SPIM_INT_STATUS_REG	3FE0h	32	R	00000000h	Interrupt status
SPIM_INT_ENABLE_REG	3FE4h	32	R	00000000h	Interrupt enable
SPIM_INT_CLR_STATUS_REG	3FE8h	32	W	00000000h	Clear interrupt
SPIM_INT_SET_STATUS_REG	3FECh	32	W	00000000h	Set interrupt

^[1] The reserved address 0x30 is mapped to a spare register (8 bits). The value read from this location is 0x000000F0. Bits 7:4 are read-write; bits 3:0 are read-only.

14.2.9 Register description

14.2.9.1 SPIM_STATUS_REG

This register reflects the current status of the SPI master.

Table 295. SPIM_STATUS_REG (address offset 0000h) bit description

Bit	Symbol	Access	Reset Value	Description
31:2	RESERVED	R	0	Reserved
1	TX_ONGOING	R	0	1 - TX buffer is currently in use by the hardware. Any TX_START/RX_START command will be ignored while TX_ONGOING=1
0	RX_ONGOING	R	0	1 - RX buffer is currently in use by the hardware. Any TX_START/RX_START command will be ignored while RX_ONGOING=1

14.2.9.2 SPIM_CONFIG_REG

This register is used to configure the SPI Master.

Table 296. SPIM_CONFIG_REG (address offset 0004h) bit description

RVED	R		
	K	0	Reserved
RATE ^[1]	R/W	0	SCK frequency (Baudrate) Selection
RVED	R	0	Reserved
SELECT ^[1]	R/W	0	1: Slave 1 is selected (Pin: GPIO1) 0: Slave 0 is selected (Pin: SPIM_SSN).
	RVED	RVED R	RVED R 0

PN7462 HW user manual

PN7462 HW user manual

7 MSB_FIRST [1] R/W 0 If set, MS bit of a byte is transmit received first. If cleared, LS bit of a byte is transmit received first.	smitted & clock bort a
	clock bort a
Tootivod mot.	bort a
6 CPHA [1] R/W 0 This bit is used to select the SPI format. A change of this bit will al transmission in progress and force system into idle state.	ce the SF1
1 = Sampling of data occurs at every (2,4,6,,16) of the SCK clock	ven edges
0 = Sampling of data occurs at oc (1,3,5,,15) of the SCK clock	dd edges
5 CPOL [1] R/W 0 This bit selects an inverted or not SPI clock. To transmit data between modules, the SPI modules must identical CPOL values. A change will abort a transmission in progression force the SPI system into idle sta	een SPI have e of this bit ess and
1 = Active-low clocks selected. In SCK is high.	n idle state
0 = Active-high clocks selected. I SCK is low.	In idle state
4 NSS_VAL R/W 0 Value to output to nss for the selection if NSS_CTRL=1	ected slave
3 NSS_CTRL R/W 0 1: Override NSS value with NSS_	_VAL
2 RESERVED R 0 Reserved	
1 NSS_PULSE [1] R/W 1 1: a pulse on NSS is generated b bytes	etween 2
0 NSS_POLARITY [1] R/W 0 0: NSS active low	

^[1] The following Register bit fields are not updated during an on-going SPI communication.

- BAUDRATE
- SLAVE_SELECT
- MSB_FIRST
- CPHA
- CPOL
- NSS_PULSE
- NSS_POLARITY

PN7462 HW user manual

14.2.9.3 SPIM CONTROL REG

This register is used to control the SPI transmission or reception.

Table 297. SPIM_CONTROL_REG (address offset 0x0008)

Bit	Symbol	Access	Reset Value	Description
31:4	RESERVED	W	0	Reserved
3	TX_SET_CRC	W	0	Flag to init internal CRC to TX_CRC_INIT. Automatically returns to 0.
2	TX_START	W	0	1: Start TX. Automatically returns to 0
1	RX_SET_CRC	W	0	Flag to init internal CRC to RX_CRC_INIT. Automatically returns to 0
0	RX_START	W	0	1: Start RX. Automatically returns to 0

14.2.9.4 SPIM RX BUFFER REG

This register is used to configure the RX buffer.

Table 298. SPIM_RX_BUFFER_REG (address offset 0x000C)

Bit	Symbol	Access	Reset Value	Description
31:23	RESERVED	R	0	Reserved
22:14	RX_LENGTH	R/W	0	Size of RX transfer.
				RX_LENGTH = 0: RX transfer of size 0 is not allowed
				RX_LENGTH = 1: RX transfer payload of size 1 byte
				RX_LENGTH = 2: RX transfer payload of size 2 byte
				RX_LENGTH = 511: RX transfer payload of size 511 byte
13:0	RX_START_ADDR	R/W	0	Byte start address of RX buffer: start_addr+RX_length must not exceed maximum address range

14.2.9.5 SPIM_RX_BUFFER_CRC_REG

This register is used to configure the RX CRC.

Table 299. SPIM_RX_BUFFER_CRC_REG (address offset 0x0010)

Bit	Symbol	Access	Reset Value	Description
31:17	RESERVED	R	0	Reserved
16:8	RX_CRC_PAYLOAD_OFFSET	R/W	0x01	Number of bytes to skip for CRC computation

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
7:0	RX_CRC_INIT	R/W	0xFF	RX CRC init value. Only used if RX_SET_CRC is set

14.2.9.6 SPIM_TX_BUFFER_REG

This register is used to configure the TX buffer.

Table 300. SPIM TX BUFFER REG (address offset 0x0014)

Bit	Symbol	Access	Reset Value	Description
31:23	RESERVED	R	0	Reserved
22:14	TX_LENGTH	R	0	Size of TX transfer.
				TX_LENGTH = 0: TX transfer of size 0 is allowed only if TX_APPEND_CRC is set
				TX_LENGTH = 1: TX transfer payload of size 1 byte
				TX_LENGTH = 2: TX transfer payload of size 2 byte
				TX_LENGTH = 511: TX transfer payload of size 511 byte
13:0	TX_START_ADDR	R/W	0	Byte start address of TX buffer: start_addr+TX_length must not exceed maximum address range

14.2.9.7 SPIM_TX_BUFFER_CRC_REG

This register is used to configure TX CRC.

Table 301. SPIM_TX_BUFFER_CRC_REG (address offset 0x0018)

Bit	Symbol	Access	Reset Value	Description
31:18	RESERVED	R	0	Reserved
17	TX_APPEND_CRC	R/W	1	1: CRC is sent after transmission of TX_LENGTH bytes. If TX_LENGTH is 0, then only CRC will be sent.
16:8	TX_CRC_PAYLOAD_OFFSE T	R/W	0x01	Number of bytes to skip for CRC computation
7:0	TX_CRC_INIT	R/W	0xFF	TX CRC init value. Only used if TX_SET_CRC is set

PN7462 HW user manual

14.2.9.8 SPIM CRC STATUS REG

This register reflects the RX/TX CRC values.

Table 302. SPIM_CRC_STATUS_REG (address offset 0x001C)

Bit	Symbol	Access	Reset Value	Description
31:16	RESERVED	R	0	Reserved
15:8	CRC_TX_VAL	R	0xFF	Value of internal TX CRC
7:0	CRC_RX_VAL	R	0xFF	Value of internal RX CRC

14.2.9.9 SPIM_WATERLEVEL_REG

This register is used to indicate the water level.

Table 303. SPIM WATERLEVEL REG (address offset 0x0020)

Bit	Symbol	Access	Reset Value	Description
31:9	RESERVED	R	0	Reserved
8:0	WATERLEVEL	R/W	0	Number of bytes received in incoming frame, or sent in out coming frame before triggering an interrupt. If set to 0, this feature is disabled.

14.2.9.10 SPIM_BUFFER_MAPPING_REG

REGION_SIZE – Size of buffer region in system RAM. 0x1FFF (8K) is the current RAM size in PN7462U. Note that software need to initialize REGION_SIZE <= 0x1FFF always before using the Buffer.

Table 304. SPIM_BUFFER_MAPPING_REG (address offset 0x002C)

Bit	Symbol	Access	Reset Value	Description
31:30	RESERVED	R	0	Reserved
29:16	REGION_START_ADDR	R/W	0	Start address of buffer region in system RAM.
				Any AHB transaction address would be 0x00100000 (RAM address for PN7462AU) + REGION_START_ADDR.
				Also REGION_START_ADDR must be less than or equal to REGION_SIZE.
15:14	RESERVED	R	0	Reserved
13:0	REGION_SIZE	R/W	0x2FFF	Size of buffer region in system RAM 0x2FFF is the Current RAM Size in PN7462AU

PN7462 HW user manual

14.2.9.11 SPIM INT CLR ENABLE REG

This register is a collection of Clear Interrupt Enable commands. Writing 1 to this register does set the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 305. SPIM INT CLR ENABLE REG (address offset 0x3FD8)

Bit	Symbol	Access	Reset Value	Description
31:10	RESERVED	W	0	Reserved
9	AHB_ADDR_ERROR_CLR_ ENABLE	W	0	1 - clear enable for AHB address overflow interrupt
8	AHB_ERROR_CLR_ENABLE	W	0	1 - clear enable for AHB Slave error interrupt
				0 - no effect
7:3	RESERVED	W	0	Reserved
2	WATERLEVEL_REACHED_ CLR_ENABLE	W	0	1 - clear enable for water level reached interrupt0 - no effect
1	EOT_CLR_ENABLE	W	0	1 - clear enable for EOT interrupt0 - no effect
0	EOR_CLR_ENABLE	W	0	1 - clear enable for EOR interrupt0 - no effect

14.2.9.12 SPIM_INT_SET_ENABLE_REG

This register is a collection of Set Interrupt Enable commands. Writing 1 to this register does set the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 306. SPIM_INT_SET_ENABLE_REG (address offset 0x3FDC)

Bit	Symbol	Access	Reset Value	Description
31:10	RESERVED	W	0	Reserved
9	AHB_ADDR_ERROR_SET_ ENABLE	W	0	1 - set enable for AHB address overflow interrupt
8	AHB_ERROR_SET_ENABLE	W	0	1 - set enable for AHB Slave error interrupt0 - no effect
7:3	RESERVED	W	0	Reserved
2	WATERLEVEL_REACHED_S ET_ENABLE	W	0	1 - set enable for water level reached interrupt0 - no effect
1	EOT_SET_ENABLE	W	0	1 - set enable for EOT interrupt0 - no effect
0	EOR_SET_ENABLE	W	0	1 - set enable for EOR interrupt0 - no effect

PN7462 HW user manual

14.2.9.13 SPIM INT STATUS REG

This register is a collection of Interrupt Status commands. Writing 1 to this register does set the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 307. SPIM INT STATUS REG (address offset 0x3FE0)

Bit	Symbol	Access	Reset Value	Description
31:10	RESERVED	R	0	Reserved
9	AHB_ADDR_ERROR_STAT US	R	0	AHB address overflow Error interrupt status
8	AHB_ERROR_STATUS	R	0	AHB Slave Error interrupt status
7:3	RESERVED	R	0	Reserved
2	WATERLEVEL_REACHED_S TATUS	R	0	Water level reached interrupt status
1	EOT_STATUS	R	0	EOT interrupt status
0	EOR_STATUS	R	0	EOR interrupt status

14.2.9.14 SPIM INT ENABLE REG

This register is a collection of Interrupt Enable commands. Writing 1 to this register does set the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 308, SPIM INT ENABLE REG (address offset 0x3FE4)

Bit	Symbol	Access	Reset Value	Description
31:10	RESERVED	R	0	Reserved
9	AHB_ADDR_ERROR_ENAB LE	R	0	AHB address overflow Error interrupt enable
8	AHB_ERROR_ENABLE	R	0	AHB Slave Error interrupt enable
7:3	RESERVED	R	0	Reserved
2	WATERLEVEL_REACHED_E NABLE	R	0	Water level reached interrupt enable
1	EOT_ENABLE	R	0	EOT interrupt enable
0	EOR_ENABLE	R	0	EOR interrupt enable

14.2.9.15 SPIM_INT_CLR_STATUS_REG

This register is a collection of Clear Interrupt Status commands. Writing 1 to this register does set the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 309. SPIM_INT_CLR_STATUS_REG (address offset 0x3FE8)

Bit	Symbol	Access	Reset Value	Description
31:10	RESERVED	W	0	Reserved

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
9	AHB_ADDR_ERROR_CLR_ STATUS	W	0	1 - clear AHB address overflow Error interrupt 0 - no effect
8	AHB ERROR CLR STATUS	۱۸/	0	
0	AND_ERROR_CLR_STATUS	VV	U	1 - clear AHB Slave Error interrupt 0 - no effect
7:3	RESERVED	W	0	Reserved
2	WATERLEVEL_REACHED_	W	0	1 - clear water level reached interrupt
	CLR_STATUS			0 – no effect
1	EOT_CLR_STATUS	W	0	1 - clear EOT interrupt
				0 – no effect
0	EOR_CLR_STATUS	W	0	1 - clear EOR interrupt
				0 – no effect

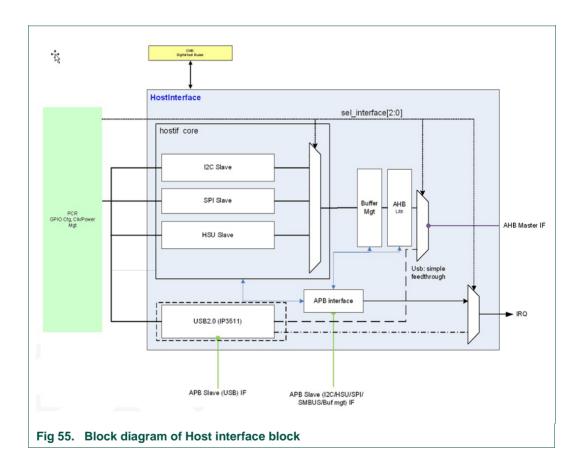
14.2.9.16 SPIM_INT_SET_STATUS_REG

This register is a collection of Set Interrupt Status commands. Writing 1 to this register does set the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 310. SPIM_INT_SET_STATUS_REG (address offset 0x3FEC)

Bit	Symbol	Access	Reset Value	Description
31:10	RESERVED	W	0	Reserved
9	AHB_ADDR_ERROR_SET_ STATUS	W	0	1 - set AHB address overflow Error interrupt0 - no effect
8	AHB_ERROR_SET_STATUS	W	0	1 - set AHB Slave Error interrupt 0 – no effect
7:3	RESERVED	W	0	Reserved
2	WATERLEVEL_REACHED_S ET_STATUS	W	0	1 - set water level reached interrupt0 - no effect
1	EOT_SET_STATUS	W	0	1 - set EOT interrupt 0 – no effect
0	EOR_SET_STATUS	W	0	1 - set EOR interrupt 0 – no effect

260 of 341


PN7462 HW user manual

14.3 Host interfaces

The Host interface block comprises four sub-blocks shown in Fig 55 .These are:

- 1. I2C Slave
- 2. SPI Slave
- 3. HSU Slave
- 4. USB

The host interface block selects the interface according to the input port *HIF_SELECTION* [3:1] (all listed in <u>Table 311</u>) from the PCR, and connects this interface to the buffer manager. Only one interface is active at a time.

PN7462 HW user manual

Table 311. Interface selection

HIF_Selection	Host interface type
000	no interface selected
001	I2C
100	SPI
011	HSU
100	USB

The Host Interface selection is done by FW/Application program by writing into register in PCR --> PCR_SYS_REG bits [2:0]. It's the responsibility of application developer to correctly select the Host Interface.

14.3.1 I2C Slave interface

The host interface of PN7462AU can be also used as I2C slave interface. This is the second of the two I2C controllers supported by PN7462AU. For more details on the I2C master controller please refer to Section 14.1. The I2C interface is compliant with the I2C Bus Specification V3.0.

14.3.1.1 I2C Slave features

- · Supports slave I2C bus
- Standard mode, Fast mode (extended to 1Mbds) and High speed mode
- · Supports 7-bit addressing mode only
- · Selection of I2C address done by 2 pins
 - Support multiple addresses
 - The upper bits of address are hard coded; The value (01010XXb) corresponds to NXP identifier for I2C blocks
- General call (Software reset only)
- · Software reset (in Standard and Fast mode only)

14.3.1.2 Pin description

Table 312. I²C pinning and signal assignments

Pin Number	Pin Name	I ² C slave
6	ATX_A	SCL
7	ATX_B	SDA
8	ATX_C	Adress0
9	ATX_D	Adress1

PN7462 HW user manual

14.3.1.3 Configuring the I2C interface

The following parameters can be configured via the register HOSTIF I2C CONTROL REG (see Table 323):

- I2C slave address (2 LSBs)
- High-speed mode (will select high speed mode of pads). Fast mode and standard mode are both enabled by default
- I2C soft reset enable
- I2C Device ID enable

The Host Interface ensures that changes to these parameters will not take effect while output from the Host Interface is BUSY (logic high).

14.3.1.4 Clock requirements

The I2C block uses the system clock to generate the request lines for data exchange. The main I2C functionality is done with the clock supported via the SCL pin. Two 25 ns filters are needed: one each for Start and Stop bit detection.

14.3.1.5 Transfer speed

The host interface supports Standard-mode (Sm), Fast-mode (Fm) and High-speed mode (Hs-mode). Each mode is half-duplex only. The bitrate speeds for each mode are listed in the following table.

Table 313. I2C Mode Maximum Bitrates

Table 515. 120 Wode Waxiiiuiii Ditrates		
Mode	Max Bitrate	
Standard-mode (Sm)	100 kbit/s	
Fast-mode (Fm)	400 kbit/s	
High-speed mode (Hs-mode)	3.4 Mbit/s	

There is no difference in functionality between Standard-mode and Fast-mode; only the frequency of SCL changes. To enable High-speed mode, set bit I2C_HS_ENABLE in register HOSTIF_I2C_CONTROL_REG. With this bit set, the Host Interface responds with an ACK to the slave address following the High-speed mode, Master Code and Repeated Start sequence. In addition, the output port is set logic high to drive the I2C pads in the correct configuration. The I2C interface does not support clock stretching.

14.3.1.6 I2C address

The upper bits of the I2C slave address are hardcoded. The value corresponds to the NXP identifier for I2C blocks. The value is 01010XXb. The lower two bits are defined via field I2C_ADDR in register HOSTIF_I2C_CONTROL_REG. The 10-bit addressing is not supported.

14.3.1.7 ACK/NACK behavior

The following sections describe the conditions under which the I2C block generates a NACK/ACK.

Host write to I2C:

The slave address+W will be ACKed provided that:

· Selected host interface is I2C

PN7462 HW user manual

- I2C address matches the value stored in the Host IF
- RX buffer is available
- No frame overflow
- No buffer overflow

Otherwise, the Host Interface will return a NACK in response to the address phase.

The Host Interface will send an ACK back to the Host for each data byte, provided the following conditions are met:

- RX buffer is available
- No frame overflow
- No buffer overflow

Under all other conditions, the Host Interface sends a NACK back to the Host and the frame is discarded.

Note that in Native mode, frame overflow is not applicable.

Host read from I2C:

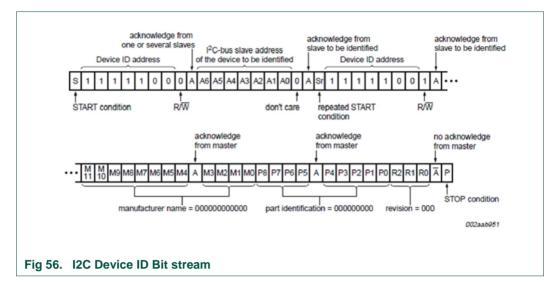
The Slave Address+R will be ACKed when:

- · Selected host interface is I2C.
- I2C address matches the value stored in the Host IF
- TX buffer contains a frame.

Otherwise, the Host Interface will return a NACK in response to the address phase.

14.3.1.8 **IDLE byte generation**

IDLE Bytes are defined in the I2C standard by setting the SDA line high. The Host receives 0xFF bytes. An IDLE byte will be transmitted if one of the following conditions occurs:


- No frame for transmission is available
- This can also occur if during transmission the buffer becomes empty
- If a NACK is sent without a following stop or restart condition, even when data are available

14.3.1.9 Special modes

Device ID: The I2C interface supports the Device ID feature. This can be enabled by setting bit I2C_DEVID_ENABLE in register HOSTIF_I2C_CONTROL_REG.

If HOSTIF_I2C_CONTROL_REG.I2C_DEVID_ENABLE is logic high and the Host sends a Device ID request, the Host Interface Core asserts the corresponding output simultaneously with the Data Request. The Buffer Manager responds to the next 3 byte reads with the Device ID. The Device ID bit stream is shown in Fig 56.

PN7462 HW user manual

If HOSTIF_I2C_CONTROL_REG.I2C_DEVID_ENABLE is logic low, the Host Interface will respond to the Device ID Address and the I2C Slave Address with NACK.

The Device ID sequence only operates in Standard-mode or Fast-mode.

Soft Reset via I2C: The I2C interface can reset the IC in response to a Software reset from the I2C master (Host). This feature can be enabled by setting bit I2C_RESET_ENABLE logic high in register HOSTIF_I2C_CONTROL_REG. When the Host then issues a General Call (00h) followed by 06h, the I2C interface asserts logic high to the corresponding reset output. This will remain logic high until either the PCR responds by asserting the system reset or an *EOF* is detected. As a result, the I2C reset output signal will be driven logic low.

Following the assertion of system reset,

HOSTIF_I2C_CONTROL_REG.I2C_RESET_ENABLE is cleared to logic low. This means that any subsequent request by the Host to perform an I2C Soft Reset will be NACKed by the Host Interface.

Note: Since the I2C Soft Reset is the only type of General Call address supported by the Host Interface, when I2C_RESET_ENABLE is logic low, the Host Interface responds with to the General Call address (0x00) itself, as well as the I2C Soft Reset command (0x06). The Soft Reset sequence only operates in Standard-mode or Fast-mode.

14.3.1.10 Pads and pad control

In order to be compliant with Fast-mode and High-speed mode, the SCL and SDA pads have spike suppression (50 ns in Standard and Fast-mode and 10ns in High-speed mode) and a Schmitt trigger (100 mV hysteresis) on the input stage. The output stage has a slope control. For High-speed mode only, the rise time of the SCL pulse is shortened using a current-source pull-up circuit within the pad. The pad data and control signals pass through the PCR unit.

PN7462 HW user manual

14.3.2 SPI Slave interface

The host interface of PN7462 can be also used as SPI slave interface. The SPI slave controller is the second of the two SPI controllers supported by PN7462. For more details on the I2C master controller please refer to Section 14.2.

14.3.2.1 SPI Slave features

- Speed up to 7 Mbit/s
- Slave mode only
- 8-bit data format only
- · Programmable clock polarity and phase
- Slave selection fixed to positive polarity
- Supports all 4 modes of SPI (CPOL and CPHA)
- Half duplex in HDLL Mode
- Full duplex mode in native mode

14.3.2.2 SPI Slave pin description

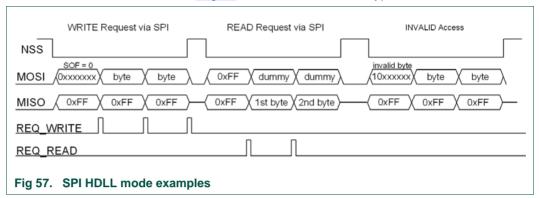
Table 314. SPI pinning

Pin Number	Pin Name	SPI slave	Description
6	ATX_A	NSS	SPI active-low Slave Select (NSS)
7	ATX_B	MOSI	SPI Master Output Slave Input (MOSI)
8	ATX_C	MISO	SPI Master Input Slave Output (MISO)
9	ATX_D	SCK	SPI Serial clock (SCK)

14.3.2.3 Configuring the SPI interface

The following parameters can be configured via the register HOSTIF_SPI_CONTROL_REG:

- SPI_CPOL: polarity of SPI clock
- SPI_CPHA: phase of SPIO clock


The Host Interface Core ensures that changes to these parameters will not take effect while the interface core is BUSY (logic high).

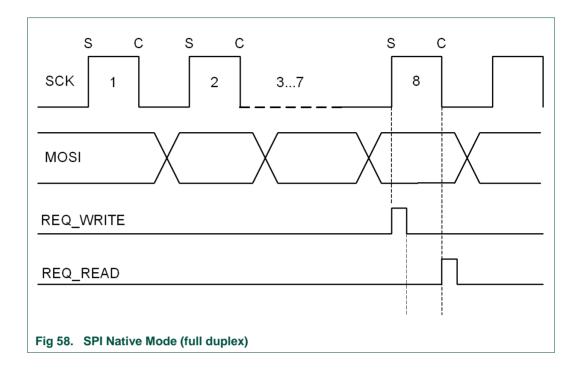
14.3.2.4 HDLL Mode

The HDLL mode requires a transfer direction detector, because only half duplex is supported. For this reason, the first byte is evaluated. If the first bit of the first byte is logic low (SOF true), the SPI frame is treated as a Host Write. The Host Interface transmits FFh on MISO. If this bit and all other bits in the byte are logic high, the SPI frame is

PN7462 HW user manual

treated as a Host Read and the Host Interface transmits the required data bytes on MISO. All other values of the first byte are treated as an invalid access and the Host Interface transmits FFh on MISO. Fig 57 illustrates these three types of accesses.

14.3.2.5 NCI Mode


The NCI mode described in this section is a low-level protocol not to be confused with the NFC Controller Interface (NCI). The SPI can support NCI with and without CRC, which determines the format of the transport bytes. When the CRC is not being used (fields NCI_CRC_DISABLE and NCI_LENGTH_MODE both logic low in register HOSTIF_CONTROL_REG), the same transport direction detector bytes are used (e.g. if the first bit is logic low then it is a Host Write; otherwise for a Host Read, the MISO is set to 0xFF. If the CRC is included in the protocol (fields NCI_CRC_DISABLE and NCI_LENGTH_MODE both logic high in register HOSTIF_CONTROL_REG), then there is no transport direction detector byte for a Host Write. The Host Read is indicated by the first byte on MISO being 0xFF.

14.3.2.6 **Native Mode**

The Native mode supports full duplex transfer. Therefore, a Data Request and Data Ready pulse can occur after a short time. Please refer to the timing diagram in Fig 58.

Note that the host, which is always the master, is responsible for ensuring that the length of the TX frame is exactly equal to the RX frame. If this is not the case, then the rising edge of SPI Slave Select in response to the shorter frame (or fragment) would truncate the longer frame.

PN7462 HW user manual

14.3.2.7 Response to SPI Host Write

The Host Interface does not assert Data Ready to the Buffer Manager and discards the frame in response to a Host Write unless all of the following conditions are met:

- · Selected host interface is SPI
- Input port go is logic high
- RX buffer is available
- No frame overflow
- No buffer overflow

Note that in Native mode, frame overflow is not applicable.

14.3.2.8 Response to SPI Host Read

The Host Interface returns 0xFF back to the Host and does not assert Data Request to the Buffer Manager in response to a Host Read unless all the following conditions are met:

- · Selected host interface is SPI
- · TX buffer contains a frame

14.3.2.9 SPI protocol detection

The SPI protocol is synchronous with the SCK clock based on the system clock, which is fixed at 27.12 MHz.

Data Request: Signal Data Request is asserted after the changing edge of the last bit. **Data Ready:** Signal Data Ready is asserted after the sampling edge of the last bit.

268 of 341

PN7462 HW user manual

End of Frame: Signal *EOF* is generated on the rising edge of SPI Slave Select since a Host must write the frame in a single write access.

14.3.2.10 Pads and pad control

The SPI interface signals are routed to the pads via the PCR.

14.3.3 High speed UART

The High Speed Asynchronous Receiver/Transmitter (HS UART) is another host interface supported by PN7462. The HSUART is designed to support bit rates up to 1.288 Mbit/s. The HSUART can operate only in slave mode.

14.3.3.1 HS UART features

- Standard bit-rates 9600, 19200, 38400, 57600, 115200, and faster speed rate up to 1.288 Mbit/s
- Full Duplex supported
- Supports only one operational mode: Start bit, 8 data bits (LSB), Stop bit(s)
- Number of "stop bits" programmable for RX and TX (1 or 2)
- Configurable length of EOF (1 to 122 bits)

14.3.3.2 HS UART pin description

Table 315. HS UART pinning and signal assignments

Pin Number	Pin Name	HSU	Description
6	ATX_A	HSUART RX	High Speed UART - Reception Line
7	ATX_B	HSUART TX	High Speed UART - Transmission Line
8	ATX_C	HSUART RTS	High Speed UART – Host interface is ready to receive
9	ATX_D	HSUART CTS	High Speed UART - Host is ready to receive

14.3.3.3 HS UART transmission

This interface comprises four wires connected to pads via the PCR:

- Transmit Data (HSU_TX)
- Receive Data (HSU_RX)
- Clear to Send (HSU_CTS_n)
- Request to Send (HSU_RTS_n)

The HS UART takes bytes of data and transmits the individual bits in a sequential fashion. At the destination, a second UART re-assembles the bits into complete bytes. The term "Asynchronous" means no clock being transferred over the line (both the transmitter and the receiver know the baud rate before transmission). The frame is made of several independent bytes. In the receive mode the HS UART works as a slave, while

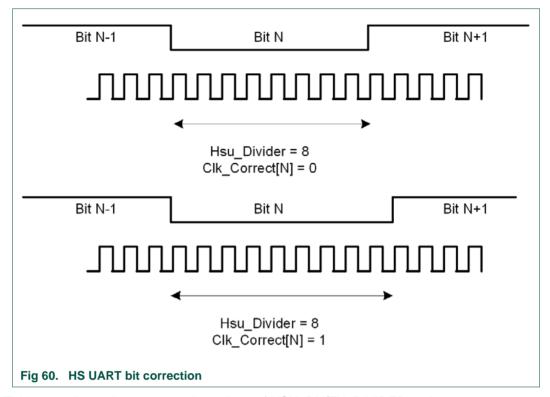
PN7462 HW user manual

in transmit mode it will act as a master. The flow control is performed using CTS/RTS. When CTS is low, the PN7462AU HS UART is allowed to send data to the host. PN7462AU will drive RTS low when a non-empty receive buffer is available.

14.3.3.4 HS UART operational mode

The HSUART supports only one operational mode with following characteristics:

- Start bit: The start bit detected when a 0 is asserted on the RX line
- 8 data bits: The data bits are sent/received in the LSB first order
- Stop bit:
 - During reception, the stop bit values are checked (should be equal to 1. If this is not the case, RX_fer interrupt is raised). The number of stop bits is programmable. It can be 1 or 2 (recommended value is 1)
 - During transmission, after the complete data bit transmission, some '1' are transmitted. The number of stop bits is programmable. It varies from 1 to 2 (recommended value is 1).
- EOF: length of EOF is programmable (in bit number). The EOF can vary from 1 to 122 bits. The EOF is sampled at reception side before raising EOR interrupt, and EOF is sent at the end of transmission before sending EOT interrupt.


This is shown in Fig 61.

14.3.3.5 HS UART Baud rate generator

To reach the high-speed transfer rate, the HS UART has its own baud rate generator based on sample clock (27.12 MHz). The baud rate generator uses an integer division of this clock, using the division factor defined in register HSU_RX_DIVIDER. The divided clock is used for both RX sampler and TX generator, and can be corrected for both RX and TX, by adding if needed one cycle of sample clock to each bit duration. This is necessary because an integer division of sample clock would not be accurate enough to receive/transmit data over HSU. The clock correction is done using HOSTIF_SAMPLE_REG (fields HSU_RX_CLK_CORRECT and HSU_TX_CLK_CORRECT). See Fig 60 for more details. The RX/TX_CLK_CORRECT fields are 11 bits long. The RX_CLK_CORRECT[0] corrects start bit duration, the RX_CLK_CORRECT[1..8] corrects data bit [0 to 7], and the RX_CLK_CORRECT[9..10] correct the one or two stop bits. Note that RX baud rate generator aims at measuring precisely start time + 1.5bit, 2.5 bit, ... up to 8.5 bit, while TX baud rate generator aims at measuring 1-bit, 2-bit, 3-bit ... Hence a small difference in RX/TX baud rate generators, and in the proposed CLK_CORRECT parameter values.

PN7462 HW user manual

<u>Table 316</u> shows the programming values of HSU_RX/TX_DIVIDER and HSU_RX/TX_CORRECT for various baud rates when sample clock is 27.12 MHz.

Table 316. HSU baud rates for 27.12 MHz+/-1.5 % sample clock

Bit rate (kBaud)	HSU_RX_DIVIDE R	HSU_TX_DIVIDE R	HSU_RX_CLK_C ORRECT	HSU_TX_CLK_C ORRECT
9.6	2825	0	000_0000_0000	000_0000_0000
19.2	1412	0	000_0000_0000	001_0101_0101
38.4	706	0	000_0000_0000	010_0010_0010
57.6	470	0	000_0110_1001	001_1111_0111
115.2	235	0	000_0000_0011	001_0010_1010
230.4	117	0	011_0110_0101	010_1101_1101
460.8	58	0	000_1011_1111	011_1111_0111
921.6	29	0	000_0001_1101	001_0010_1010
1288	21	0	000_0000_0000	001_0000_0000
2400	11	0	000_0000_0111	001_0001_0010
3500 ^[1]	7	0	011_0011_0111	001_1101_1101
3750 ^[1]	7	0	000_0000_0011	000_0100_0100
4000 [1]	6	0	011_1100_1011	011_1011_1011
5000 [1]	5	0	001_0001_0011	001_0010_1010

^[1] Baud rates above 3.4 Mbit/s depend on the clock accuracy. It is suggested to use only baud rates with a ratio between sample clock and UART clock greater than 8.

PN7462 HW user manual

14.3.3.6 **EOF detection**

For HS UART, the EOF is determined by the sampling of EOF_SIZE bits of value one. To prevent the race condition between EOF detection and retransmission from the host, an additional time of 5 bits is required before retransmitting the data. The EOF_size defines the maximum inter-byte duration in a frame, while the EOF_size+5 defines the minimum inter-frame duration between 2 frames.

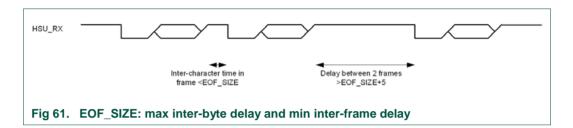


Table 317. EOF duration in us

Bit rate (kBaud)	EOF_SIZE=10	EOF_SIZE=50	EOF_SIZE=100
57.6	174	869	1737
115.2	87	434	869
921.6	11	55	109
1288	8	39	78
3500	2.9	14.3	28.6
3750	2.7	13.4	26.7
4000	2.5	12.5	25
5000	2	10	20

14.3.3.7 Baud rate estimation

In order to be independent of clock ratio between HS UART baud rate and host interface sample clock, a baud rate estimator was implemented. The principle of this estimator is that the host sends a calibration byte of value 0x00 at beginning of each frame. First transmission from the host interface to the host must occur after previous reception of such a frame when HSU_BR_ESTIMATOR_MODE is 1 (Hence using baud rate estimator in automatic mode is not possible if full-duplex HSU is used). This byte is used to measure sample clock for reception of next bytes and transmission of next frame. Usage of this baud rate estimator assumes that no important clock frequency deviation will happen from reception of this first byte until the last byte to be sent by host interface. Hence, this is well adapted to receive a message and answer to this message after firmware processing. But if the host interface wants to transmit data with no prior data reception (or with a long time since prior reception), then clock frequency may have changed and an accurate clock will be needed.

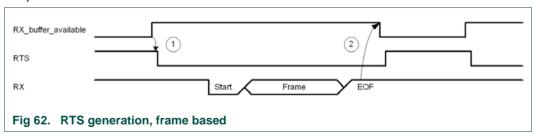
The baud rate estimator is active when bit HSU_BR_ESTIMATOR_MODE of HSU_CONTROL_REG is set to 1 or 2. When active, the first received byte must be 0x00, which will be sent as 9 consecutive '0' bits on RX line. Then the number of edges of sample clock are counted and divided by 9: The result of this division is used to

272 of 341

PN7462 HW user manual

compute HSU_RX_DIVIDER and HSU_TX_DIVDER, and the remainder of this division is used to compute HSU_RX_CORRECT and HSU_TX_CORRECT. The computed value is sent to registers for reading/checking by firmware.

If HSU_BR_ESTIMATOR_MODE is 1, then the computed values (RX/TX_CLK_DIVIDER and RX/TX_CLK_CORRECT) are automatically used for any further data sampling or data sending. If HSU_BR_ESTIMATOR_MODE is 2, then data sampling and data sending is still performed using programmed values. In case the baud rate estimator is active in automatic mode, and TX happens BEFORE RX (should not be done anyway), then the parameters used for clock divider/clock correction are the one programmed in HSU_CONTROL_REG/HSU_SAMPLE_REG. Once a reception occurs, the TX parameters will be taken from HSU_EST_xx registers.


Note that the first calibration byte can be stored in memory by setting HSU_STORE_BR_BYTE to 1. This must not be used for HDLL (since no extra byte is expected before header for payload length analysis).

If the baud rate estimator overflows (duration of first received 0x00 byte is too long), then RX_FER interrupt will be raised, and the value of HSU_EST_RX_DIVIDER_REG is set to 1023.

14.3.3.8 RTS/CTS flow control

The CTS input is used to indicate that the host can (CTS=0) or cannot (CTS=1) receive the data. Before sending a byte, the host interface will sample the value of CTS. If the value is 0, then the whole byte to send will be sent over TX line. If not, then the host interface will wait for CTS to be 0 before sending the byte.

The RTS is used to signal to the host that at least one buffer is ready to receive data (RTS=0). This is shown in Fig 62. Once one RX buffer is available (programmed by firmware), the RTS changes from 1 to 0, allowing the host to send a frame. At the end of the frame reception, the buffer becomes unavailable and the RTS changes to 1 if no other buffer is available, until firmware programs a new buffer. Note that after reset, all buffers are enabled, so by default RTS is '0' and the host can send data. The firmware should ensure that the buffers are correctly configured, or disabled, before enabling the RTS pad.

Note that in case the host sends a frame longer than buffer size, a buffer_overflow interrupt will be sent to the firmware. The RTS will not toggle to high. Data received after the error are not stored into memory. The error is signaled to the firmware by an interrupt.

PN7462 HW user manual

14.3.3.9 Data sampling

Basically, the RX sampler will detect a falling edge on HSU RX input signal, resynchronize it to sampling clock, then will start counting a number of sample clock cycles before sampling each data bit. The RX data sampling is based on the ratio between the sampling clock (27.12 MHz) and the communication baud rate: integer part of this ratio is stored in HSU RX DIVIDER, and the decimal part of this ratio will be reflected in HSU_RX_CORRECT, by distributing '1' in this register with a proportion equivalent to the decimal part of the ratio. The RX sampler will count up to this value to determine the bit length. The sampled time (ideally at the middle of bit length) is determined as HSU RX DIVIDER/2 (this is an integer). When the ratio between the sampling clock frequency and the baud rate is not an integer, then HSU RX CORRECT provides a mean to extend individually the duration of each sampled bit of one sample clock cycle: the proportion of '1' in this register should reflect the decimal part of the ratio between sampling clock and baud rate. At start bit detection, the counter starts with value 3 to compensate for the start bit detection and re synchronization which consumed 2 to 3 clock cycles (not deterministic due to asynchronicity between RX and sampling clock). Due to clock uncertainty given by start bit detection, average sample time for first bit is HSU RX DIVIDER/2+0.5 clock cycles when HSU RX DIVIDER is even, and HSU RX DIVIDER/2 clock cycles when HSU RX DIVIDER is odd. Table 318 shows the duration of each sampled bit. If we only consider 1 stop bit, and we call the number of '1' in RX_correct[9:0], we can compute the average bit duration: (RX divider+d/10+0.05)xsample clock period. This is why d should approximately

reflect the decimal part of sample_clock_frequency/baud rate.

Table 318. Bit duration in sample clock cycle

Bit	Duration (# of sample clock cycles)
Start bit	RX_divider+0.5+RX correct[0]
Bit 0	RX_divider+RX_correct[1]
Bit 1	RX_divider+RX_correct[2]
Bit 2	RX_divider+RX_correct[3]
Bit 3	RX_divider+RX_correct[4]
Bit 4	RX_divider+RX_correc[5]
Bit 5	RX_divider+RX_correct[6]
Bit 6	RX_divider+RX_correct[7]
Bit 7	RX_divider+RX_correct[8]
Stop Bit 0	RX_divider+RX_correct[9]
Stop Bit 1	RX_divider+RX_correct[10]

As a conclusion, RX_DIVIDER will be programmed to the integer part of 27.12/baud rate. RX_CORRECT will be programmed with an evenly distributed proportion of 1 equal to the decimal part of this ratio (for example, if ratio if 8.25, then RX_correct will have 1/4 of '1' bits, for example: 01000100). A script is provided which can give one of the best values for RX_correct (best sampling results for given clock accuracy of both the host and the hostif).

PN7462 HW user manual

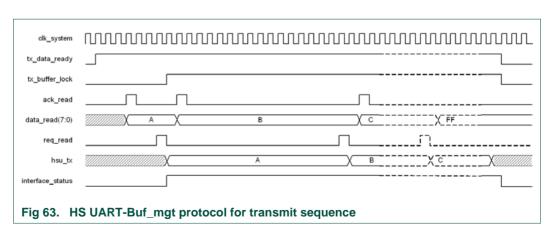
14.3.3.10 HS UART reception from host to host interface

The UART reception should be programmed in the following order:

- Program HSU_RX_DIVIDER and HSU_RX_CLK_CORRECT for the expected reception baud rates. Or program HSU_USE_BR_ESTIMATOR to 1
- Program host interface RX_DATA_READY to free a buffer for reception, which will have the effect of driving RTS low, and allow the host to send data
- · Wait for End of Reception Interrupt.

At the end of data reception, CPU can read back memory to analyze received data like for other interface.

14.3.3.11 HS UART interrupt


The HS UART can provide an interrupt HSU_RX_FER, (which is not the case for all other interfaces). When this interrupt is set, this means that stop bit was not correctly sampled for one byte. The HSU_RX_FER interrupt does not stop receiving the frame.

14.3.3.12 HS UART transmission from host interface to host

The TX transmission should be performed in the following order:

- Program HSU_RX_DIVIDER and HSU_TX_CLK_CORRECT for the transmission baud rate (if HSU_USE_BR_ESTIMATOR is not already set by previous Reception)
- Program the TX frame in memory
- Program TX_BUFFER_READY to start the buffer manager state machine
- Wait for End Of Transmission Interrupt

The HS UART transmit state machine is a slave to buffer manager state machine: it waits for data from the buffer manager, then sends them to HSU_TX, so the protocol between HS UART and the buffer manager is a bit different from the one used for SPI or I2C. The buffer manager sends a signal that a new data is available. The HS UART acknowledges the received data (at the end of transmission). This can be seen on picture Fig 63. At the end of transmission, the HS UART with generate the EOF signal, by sending as many '1' on TX line as specified by EOF_SIZE. The end of transmission will only be sent to firmware after this EOF transmission, thus allowing firmware to directly send a new frame without any wait time.

PN7462 HW user manual

The TX_DIVIDER will be programmed to 0 (RX_DIVIDER value is used), and a provided script will be used to compute TX_CORRECT.

14.3.3.13 Data generation

The data generation is a bit easier than data sampling, since there is no need to compute when the middle of a bit happens. Also there is nothing to resynchronize. The output data will be in sync with the sample clock. The TX generator is a simple clock counter, using HSU_DIVIDER registers and HSU_TX_CORRECT for each bit to send. For TX, HSU_DIVIDER = HSU_RX_DIVIDER + HSU_TX_DIVIDER, with TX_DIVIDER=0 or 1 only. This is due to the fact that for optimization, the RX_divider is sometimes decreased by 1 to finely tune when sampling happens. At the end of each period, next bit is sent over HSU_TX.

14.3.3.14 HS UART and HDLL mode

In HDLL mode, the host is expected to send HDLL frames starting with the 2 bytes HDLL header, followed by payload then 2 bytes CRC) with NO extra bytes. All data except CRC will be stored in the memory. No difference to I2C/SPI is expected.

14.3.3.15 HS UART and NCI mode

In NCI mode, the host may start each frame with 1 to 3 dummy bytes. This dummy byte will be always stored in the memory. The reason why these dummy bytes are transferred is due to the fact that during the standby, the host interface is inactive and may not be waken fast enough to sample the first bytes sent by the host. In case the host communicates during the standby, the PCR will raise the RTS to 1 to prevent the host from sending other data, and we assume that no more than 3 bytes will be sent. These 3 bytes will be lost. The host cannot determine when PN7462AU is in the standby. Therefore, we recommend sending always 3 dummy bytes at beginning of frames in the NCI mode.

14.3.3.16 Wake-up from standby

In NCI mode, it is expected that up to dummy 3 bytes are lost when the host wakes-up the PN7462AU from the standby. Reception of these bytes can be simulated in order to ease writing of the firmware. For this reason, there is a control bit (WAKEUP_STANDY in HSU_CONTROL_REG) which can be used only once. When this bit is set, the HSUART will simulate reception of 1 to 3 dummy bytes (number configured by WAKEUP_BYTES) at first address of reception buffer. Next frames will be stored in memory without any byte addition.

In HDLL mode, WAKEUP_STANDY should not be programmed. The message sent by the host to wake-up the PN7462AU can be a simple byte which will be discarded by PCR and not seen by the host interface.

14.3.3.17 Pads and pad control

The UART interface signals are routed to the pads via the PCR.

14.3.4 Buffer Manager

The buffer manager transfers data between the host interface and the SRAM. It is shared between High-Speed UART, I2C and SPI interfaces whereas USB has its own buffer management. It processes the incoming frames (extracts the packet length, verifies the

PN7462 HW user manual

HDLL CRC) and checks for frame over/underflow and inter-character timeout. For outgoing frames, the buffer manager monitors the delay between bytes. Exceeding a threshold will trigger an interrupt. It supports up to 4 receive buffers and 1 transmit buffer listed in Table 319.

Table 319. Buffer ID assignment

Buffer Name	Buffer ID
RX0	0
RX1	1
RX2	2
RX3	3
TX	4

The buffer manager supports various transport streams (HDLL, native, NCI) which are not supported equally for each interface (depending on physical/logical difference in protocols).

Table 320. ed format per interface

Interface	HDLL	Native	NCU,	NCI,	NCI,	NCI,
		(debug	No Header,	No Header,	Header,	Header,
		only)	No CRC	CRC	No CRC	CRC
I2C	Yes	Yes	Yes	Yes	Yes	Yes
SPI	Yes	Yes	Yes	Yes	Yes	Yes
HSU	Yes	Yes	Yes	Yes	Yes	Yes

14.3.4.1 Buffer initialization

RX buffers

Each of the RX buffers may be independently disabled by setting bit RX<n> BUFFER DISABLE logic high in register HOSTIF BUFFER RX<n> CFG REG.

Each of the RX buffers must be configured with the following parameters, which are defined in HOSTIF_BUFFER_RX<n>_CFG_REG:

- · Maximum buffer size
- Start address
- · Normal or short frame assignment
- Header offset

The maximum buffer size should be set to be greater than or equal to the sum of:

- HOSTIF_BUFFER_RX<n>_CFG_REG.RX<n>_HEADER_OFFSET
- · Number of header bytes
- Payload

It is used to detect an RX buffer overflow (described in Section 14.3.4.11).

The start address is defined in field

PN7462 HW user manual

HOSTIF_BUFFER_RX<n>_CFG_REG.RX<n>_START_ADDR. The memory address is incremented after a word has been received. The address is only incremented internally meaning that the memory start address is not changed.

The RX buffers can be labelled to receive either non-short frames or short frames depending on the value of bit

HOSTIF_BUFFER_RX<n>_CFG_REG.RX<n>_SHORT_FRAME_BUFFER. This is not applicable to the Native Mode.

HOSTIF_BUFFER_RX<n>_CFG_REG.RX<n>_HEADER_OFFSET defines the number of padding bytes to add to the frame header before writing the first word to the RX buffer.

By default, this value is set to 2 since the standard HDLL header is 2 bytes long. Since the minimum length of the header is 2 bytes, an offset of 3 is not permitted since this would result in the header being stored across the first two words in the buffer.

TX buffer

There is no explicit disable field in register HOSTIF_BUFFER_TX_CFG_REG since the TX buffer is effectively disabled when

HOSTIF_DATA_READY_STATUS_REG.TX_DATA_READY is cleared to logic low.

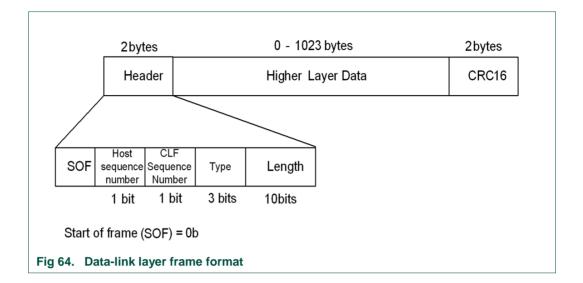
The TX buffer must be configured with the following parameters, which are defined in HOSTIF BUFFER TX CFG REG:

- Start address
- · Header offset
- Empty payload enable

The start address bit 0-14 is defined in field HOSTIF_BUFFER_TX_CFG_REG.TX_START_ADDR. Base address is fix in SRAM (address 0x100000).

The header offset is defined in field

HOSTIF_BUFFER_TX_CFG_REG.TX_HEADER_OFFSET. It states the number of bytes to skip before sending them to the Host Interface Core


To configure the buffer manager to send only the header and its calculated CRC, set HOSTIF_BUFFER_TX_CFG_REG.TX_EMPTY_PAYLOAD_ENABLE to logic high.

This is not applicable to native mode.

14.3.4.2 HDLL format

The HDLL frame format is shown in Fig 64. Both the HDLL header and payload are written to SRAM. The CRC is not written.

PN7462 HW user manual

Frame reception

The buffer manager extracts the frame length from the header. This gives the number of bytes in the payload. It is compared with the length of a short frame as defined by the field SHORT_FRAME_LEN in register HOSTIF_CONTROL_REG. If the frame length is equal to or less than SHORT_FRAME_LEN, the buffer manager will try to find an available RX buffer, which has been labelled as a "short frame buffer". Otherwise it will search for an available non-short RX buffer. The frame header is stored in the first word of the selected RX buffer (with the number of padding bytes defined by

HOSTIF_BUFFER_RX<n>_CFG_REG.RX<n>_HEADER_OFFSET). The payload is stored from the second word onwards. The CRC is extracted by the CRC checker for verification; it is not stored in the RX buffer.

Frame transmission

The buffer manager reads the first word from the TX buffer and removes the m most significant bytes (where m = HOSTIF_BUFFER_TX_CFG_REG.TX_HEADER_OFFSET) to get the header, from which it extracts the frame length. It then reads out the number of bytes corresponding to this frame length. Once the payload has been read out, the CRC

Generator appends the CRC to the end of the TX frame.

14.3.4.3 Native format

The Native frame format has neither a header nor a CRC: it is a free-format payload.

Frame reception

The payload is stored from the second word of the RX buffer onwards. When the buffer manager sees that EOF is asserted, it writes the number of received bytes into the first word of the buffer. The format to write this number of bytes is similar to HDLL header with offset 0: byte at address 0 is Counter MSB (3 bits), byte at address 1 is Counter LSB (8 bits), 16 MSB of 1st word are 0.

Frame transmission

PN7462 HW user manual

The buffer manager reads the first word from the TX buffer to get the number of bytes to send. It then reads out this number of payload bytes, starting from the second word in the buffer. The contents of the first word (number of bytes) is not sent.

14.3.4.4 NCI modes

The possible NCI modes with corresponding register settings are summarized in <u>Table</u> 321.

Table 321. Summary of possible NCI modes

Mode Name	Option	s	Description				
	CRC	Length Info	BUFFER_ FORMAT	NCI_MODE	NCI_CRC_ DISABLE	NCI_LENGTH_ MODE	
NCI over I2C (no	N	N	0	1	1	1	No additional transport layer specified by NCI
CRC)							Number of received bytes stored in RX Length register
							Number of transmitted bytes stored in TX Length register
NCI over I2C (with CRC)	Y	Υ	0	1	0	0	Supported but not required for NCI
NCI over SPI (no	N	N	0	1	1	1	Uses HDLL (half-duplex) implementation
CRC)							Transport mapping:
							Existing 1-byte header as used in HDLL mode in Tx mode
							New extra byte in Rx mode
							Number of bytes received stored in RX Length register
							Number of bytes to transmit stored in TX Length register
NCI over SPI (with	Υ	Υ	0	1	0	0	Uses HDLL (half-duplex) implementation
CRC)							Transport mapping:
							Existing 1-byte header as used in HDLL mode in Tx mode
							No extra byte in Rx mode
NCI over HSU (no	N	N	0	1	1	1	No additional transport layer specified by NCI
CRC)							Number of bytes received stored in RX Length register
							Number of bytes to transmit stored in TX Length register
							Special attention to the fact that all wake-up bytes are stored into memory and counted in length register.

PN7462 HW user manual

Mode Name	Options HOSTIF_CONTROL_REG					EG .	Description
	CRC	Length Info	BUFFER_ FORMAT	NCI_MODE	NCI_CRC_ DISABLE	NCI_LENGTH_ MODE	_
							Baudrate estimator byte can also be stored in memory
NCI over HSU (with	Υ	Y	0	1	0	0	Supported but not required for NCI.
CRC)							In this case, extra wake-up bytes should not be sent by the host

14.3.4.5 Buffer handshaking

Each of the four receive buffers, as well as the transmit buffer, has an associated status bit in the HOSTIF_DATA_READY_STATUS_REG register. In the case of an RX buffer, the buffer manager sets bit

HOSTIF_DATA_READY_STATUS_REG.RX<n>_DATA_READY to indicate to the firmware that the buffer contains an error-free frame received from the Host. For TX, the buffer manager clears HOSTIF_DATA_READY_STATUS_REG.TX_DATA_READY bit to indicate to the firmware that it has sent the entire frame to the host which is in the TX buffer.

The firmware access to these bits is via the registers HOSTIF_SET_DATA_READY_REG and HOSTIF_CLR_DATA_READY_REG.

Receiving frames

The Buffer Manager examines the Frame Length in the header and searches the next available buffer by checking that all the following conditions are true:

- HOSTIF BUFFER RX<n> CFG REG.RX<n> BUFFER DISABLE = 0
- HOSTIF_DATA_READY_STATUS_REG.RX<n>_DATA_READY = 0;
 HOSTIF_BUFFER_RX<n>_CFG_REG.RX<n>_MAX_SIZE >= (Frame Length+2)

If the frame is a short frame (Frame Length = HOSTIF_CONTROL_REG.SHORT_FRAME_LEN) then the Buffer Manager also checks:

- HOSTIF_BUFFER_RX<n>_CFG_REG.RX<n>_SHORT_FRAME_BUFFER = 1. Else it looks for a buffer dedicated to receive non-short frames:
- HOSTIF_BUFFER_RX<n>_CFG_REG.RX<n>_SHORT_FRAME_BUFFER = 0

The buffer manager indicates that it has locked the selected RX buffer for its own use by setting bit RX<n>_BUFFER_LOCK in register HOSTIF_STATUS_REG. When the buffer manager signals an EOR event, indicating that the complete frame has been transferred to the selected RX buffer, it sets bit

HOSTIF_DATA_READY_STATUS_REG.RX<n>_DATA_READY logic high and clears HOSTIF_STATUS_REG.RX<n>_BUFFER_LOCK logic low.

Note that the search order when checking for an available RX buffer is incremental and circular. For example, assume that RX buffers with Buffer ID=0, 1 and 2 have been assigned to store non-short frames and that RX buffer with Buffer ID=3 will store short frames. If the previous non-short frame was stored in RX buffer with Buffer ID=0, then the

PN7462 HW user manual

Buffer Manager will first check if the RX buffer with Buffer ID=1 is available. If it is not available, it will check RX buffer with Buffer ID=2 and failing that the search will wrap around and check RX buffer with Buffer ID=0.

If there are no suitable RX buffers available, the buffer manager sets RX_BUFFER_NOT_AVAILABLE_STATUS in register HOSTIF_INT_STATUS_REG and asserts the corresponding outputs logic high. The output will remain high until the firmware sets RX_BUFFER_NOT_AVAILABLE_CLR_STATUS bit in register HOSTIF_INT_CLR_STATUS_REG.

NOTES:

- The buffer manager can only set HOSTIF_DATA_READY_STATUS_REG.RX<n>_DATA_READY bit.
- Setting HOSTIF_SET_DATA_READY_REG.SET_RX<n>_DATA_READY bit by the firmware will only cause
 HOSTIF_DATA_READY_STATUS_REG.RX<n>_DATA_READY bit to be set if the Buffer Manager is not using the RX<n> buffer
 (HOSTIF_STATUS_REG.RX<n>_BUFFER_LOCK bit is 0). This bit is only intended for debugging purposes.
- Setting HOSTIF_CLR_DATA_READY_REG.CLR_RX_DATA_READY bit by the firmware will only cause HOSTIF_DATA_READY_STATUS_REG.RX<n>_DATA_READY bit to be cleared if the buffer manager is not using the RX<n> buffer (HOSTIF_STATUS_REG.RX<n> BUFFER_LOCK bit is 0).

Transmitting frames

Once the firmware has loaded the TX buffer with a frame, it should set bit HOSTIF_SET_DATA_READY_REG.SET_TX_DATA_READY logic high to indicate to the buffer manager that the frame is ready for sending. This causes bit HOSTIF_DATA_READY_STATUS_REG.TX_DATA_READY to go logic high. When the buffer manager receives the first read request, it checks that the following conditions are satisfied:

- HOSTIF_DATA_READY_STATUS_REG.TX_DATA_READY = 1
- HOSTIF STATUS REG.TX BUFFER PREFETCH OK = 1

If both are true, the buffer manager locks the TX buffer for its own use by setting bit HOSTIF_STATUS_REG.TX_BUFFER_LOCK and starts to send bytes. If it is not set, it will set TX_FRAME_NOT_AVAILABLE_STATUS flag in HOSTIF_INT_STATUS_REG register. Once the entire frame has been sent, the buffer manager performs the following actions:

- generates an EOT event
- clears bit HOSTIF_DATA_READY_STATUS_REG.TX_DATA_READY logic low
- clears bit HOSTIF_STATUS_REG.TX_BUFFER_LOCK logic low
- clears bit HOSTIF_STATUS_REG.TX_BUFFER_PREFETCH_OK logic low

PN7462 HW user manual

NOTES

- The buffer manager can only clear bit HOSTIF DATA READY STATUS REG.TX DATA READY.
- 2. Setting bit HOSTIF_SET_DATA_READY_REG.SET_TX_DATA_READY by the firmware will only cause bit HOSTIF_DATA_READY_STATUS_REG.TX_DATA_READY to be set if the buffer manager is not using the TX buffer (bit HOSTIF_STATUS_REGTX_BUFFER_LOCK is 0). Setting bit HOSTIF_CLR_DATA_READY_REG.CLR_TX_DATA_READY by the firmware will only cause bit HOSTIF_DATA_READY_STATUS_REG.TX_DATA_READY to be cleared if the buffer manager is not using the TX buffer (bit HOSTIF_STATUS_REGTX_BUFFER_LOCK is 0).

14.3.4.6 EOR

When the EOF logic is asserted high and the Buffer Manager has written the last word to the buffer, an EOR event is generated. The EOR_STATUS field in register HOSTIF_INT_STATUS_REG is set.

14.3.4.7 EOT

When the EOF logic is asserted high and the last word has been sent from the TX buffer, the Buffer Manager generates an EOT event. The EOT_STATUS field in register HOSTIF_INT_STATUS_REG is set and bit HOSTIF_STATUS_REG.TX_BUFFER_LOCK is cleared logic low.

14.3.4.8 Waterlevel reached

If the field WATERLEVEL in register HOSTIF_WATERLEVEL_REG is non-zero, then the Buffer Manager generates a Waterlevel Reached event when the number of bytes received is equal to WATERLEVEL. The field WATERLEVEL_REACHED_STATUS in register HOSTIF_INT_STATUS_REG is set. An EOR event is not generated until the end of the frame as normal.

14.3.4.9 RX frame underflow

If fewer bytes have been received than indicated in the Frame Length of the Data-link header when the EOF logic is asserted high, the buffer manager sets RX_FRAME_UNDERFLOW_STATUS in register HOSTIF_INT_STATUS_REG. The frame is discarded by not setting

HOSTIF_DATA_READY_STATUS_REG.RX<n>_DATA_READY. An EOR event is not generated. The EOR_STATUS flag in register HOSTIF_INT_STATUS_REG maintains logic low.

Note that there is no RX Frame Underflow detection in native mode.

14.3.4.10 RX frame overflow

If a byte is received after a correct CRC, the buffer manager sets RX_FRAME_OVERFLOW_STATUS in register HOSTIF_INT_STATUS_REG. No bytes beyond the frame length limit are stored and the frame is discarded by not setting HOSTIF_DATA_READY_STATUS_REG.RX<n>_DATA_READY. The corresponding output will remain high until the firmware sets RX BUFFER FRAME OVERFLOW CLR STATUS in register

283 of 341

PN7462 HW user manual

HOSTIF_INT_CLR_STATUS_REG. An EOR event is not generated. The EOR_STATUS flag in register HOSTIF_INT_STATUS_REG maintains logic low.

Note that there is no RX Frame Overflow detection in native mode.

Note that extra bytes received before the expected CRC bytes will result in a CRC error and not a RX frame overflow error.

14.3.4.11 RX buffer overflow

If the number of bytes received exceeds the maximum size of the buffer (defined in HOSTIF_BUFFER_RX<n>_CFG_REG.RX<n>_MAX_SIZE) then the Buffer Manager will set RX_BUFFER_OVERFLOW_STATUS in register HOSTIF_INT_STATUS_REG and assert the corresponding output. In the Native Mode, if the number of bytes received exceeds (MAX_SIZE - 4) where MAX_SIZE is defined in

HOSTIF_BUFFER_RX<n>_CFG_REG.RX<n>_MAX_SIZE, then the Buffer Manager will set RX_BUFFER_OVERFLOW_STATUS in HOSTIF_INT_STATUS_REG register and assert the corresponding output to the Host Interface Core. Note that the threshold is (MAX_SIZE - 4) because the first word in the buffer is reserved for storing the number of bytes received. The output will remain high until the firmware sets

RX_BUFFER_OVERFLOW_CLR_STATUS in register
HOSTIF_INT_CLR_STATUS_REG_An FOR event is not de-

HOSTIF_INT_CLR_STATUS_REG. An EOR event is not generated. The EOR_STATUS flag in register HOSTIF_INT_STATUS_REG maintains logic low. The frame is discarded by not setting HOSTIF_DATA_READY_STATUS_REG.RX<n>_DATA_READY.

14.3.4.12 CRC verification and generation

The 2-byte data-link CRC is appended to the end of the data-link frame as shown in and is described by the CRC-16-CCITT polynomial:

$$x^{16}+x^{12}+x^5+1$$

This is implemented using the polynomial (1)1021, operating on the bit sequence MSB first. It has an initial value of 0xFFFF and is calculated over the entire data-link frame (header and payload). For received frames from the Host Interface Core, the Buffer Manager continually calculates the CRC. At the end of the frame, it extracts the sent CRC and compares it with its internally calculated CRC. If there is a mismatch, the Buffer Manager sets CRC_NOK_STATUS in register HOSTIF_INT_STATUS_REG. The frame is discarded by not setting

HOSTIF DATA READY STATUS REG.RX<n> DATA READY.

An EOR event is not generated. The EOR_STATUS flag in register HOSTIF_INT_STATUS_REG maintains logic low.

For transmitted frames, the buffer manager calculates the 2-byte CRC and appends it to the end of the frame.

Note that there is no CRC in native mode.

PN7462 HW user manual

14.3.4.13 TX frame not available

If there is no data ready to be sent in the transmit buffer (bit TX_DATA_READY in register HOSTIF_DATA_READY_STATUS_REG is logic low) when the Host Interface Core Asserts *Data Request*, the Buffer Manager sets

TX_FRAME_NOT_AVAILABLE_STATUS in register HOSTIF_INT_STATUS_REG and asserts the corresponding output logic high. The output will remain logic high until the firmware sets TX_FRAME_NOT_AVAILABLE_CLR_STATUS in register HOSTIF_INT_CLR_STATUS_REG.

For I2C: if the host reads a 1st data while no buffer is available, data will be NACKed and no IRQ will be raised.

For SPI: if the host reads a 1st data while no buffer is available, 0xff will be sent and no IRQ will be raised.

For HSUART: not applicable since the host interface is master of HSUART TX transaction.

14.3.4.14 TX Inter-Character (TIC) timeout

The TX Inter-Character (TIC) timer is used to measure the delay between sending characters. The following features are implemented:

- Programmable timeout
- Timer is reloaded with the value in
- HOSTIF_TIC_TIMEOUT_REG.TX_TIMEOUT_VALUE after the transmission of each character
- Automatic start of timer after first character has been transmitted
- Automatic stop of timer after number of transmitted bytes is equal to the frame length.
- Timeout range 200 ms with a granularity of 5 us

A divide-by-100 prescaler divides down the high frequency oscillator clock in order to generate a 3.6us tick. This tick clocks the 16-bit TIC timer, whose initial value is specified in field TX_TIMEOUT_VALUE of register HOSTIF_TIC_TIMER_REG.

This field must be loaded with a non-zero value. Since the power-on-reset value is zero, the TIC timer is disabled by default.

The TIC counter will only start decrementing when HOSTIF_DATA_READY_STATUS_REG.TX_DATA_READY=1 (this is to avoid the case where the host attempts to read an empty buffer).

If the TIC timer expires during transmission, the buffer manager sets TX_TIMEOUT_STATUS in register HOSTIF_INT_STATUS_REG. The buffer manager also clears bit HOSTIF_DATA_READY_STATUS_REG.TX_DATA_READY logic low to abort the frame transmission

The firmware is responsible for re-sending the frame in the event of a TIC timeout by setting once again HOSTIF_SET_DATA_READY_REG.SET_TX_DATA_READY. This will cause the Buffer Manager to initiate a new read prefetch sequence. An EOT event is not generated. The EOT_STATUS flag in register HOSTIF_INT_STATUS_REG

PN7462 HW user manual

maintains logic low. The HOSTIF_STATUS_REG.TX_BUFFER_LOCK bit is cleared logic low.

14.3.4.15 Storing erroneous RX frames

By default, the incoming frames are discarded by the buffer manager if it detects an error. This is achieved by *not* setting bit RX<n>_DATA_READY in register HOSTIF_DATA_READY_STATUS_REG. In parallel, the buffer manager sets the bit associated with the error event in register HOSTIF_INT_STATUS in order to signal an interrupt to the CPU. If one of the following errors occurs when a frame is received, it may still be stored in the RX buffer such that they may be analyzed for debug.

- Frame underflow
- Frame overflow
- CRC error

This mode is enabled by setting bit STORE_RX_ERROR_FRAMES in register HOSTIF CONTROL REG.

HOSTIF_DATA_READY_STATUS_REG.RX<n>_DATA_READY will be set logic high even when the received frame contains an error. The interrupt associated with the error type is also still generated. An EOR event is not generated. The EOR_STATUS flag in register HOSTIF_INT_STATUS_REG maintains logic low. This feature is not applicable in native mode since none of the above error conditions can be detected.

14.3.4.16 Sending frames directly from the CLIF RX buffer ("direct copy")

Due to the fact that the HDLL frame payload is stored word-aligned in the buffers, with the first word in buffer reserved for the header bytes, the frame data can be transferred directly from one interface to another without an intermediate copy.

In order to send out a frame via host interface whose payload is that of a frame previously received via the CLIF, the firmware must configure the start address of the host interface TX buffer to be the same as the CLIF RX buffer. Once the frame has been received, the firmware only needs to update the first word in the buffer to convert the CLIF frame header to the HDLL header for host interface communication. The direct copy is not applicable in native mode since the frame format is unknown a priori.

14.3.5 Host Interface register overview and description

14.3.5.1 Register overview

Table 322. Register overview (base address 0x4002 0000)

Name	Address offset	Width (bits)	Access	Reset value	Description
HOSTIF_STATUS_REG	0000h	32	R	00000000	Status
HOSTIF_CONTROL_REG	0004h	32	R/W	0017ff80	Buffer manager control
HOSTIF_HEADER_CONTRO L_REG	0008h	32	R/W	00000520	Header description control

PN7462 HW user manual

Name	Address	Width	Access	Reset	Description
	offset	(bits)		value	
HOSTIF_I2C_CONTROL_RE G	000Ch	32	R/W	00000000	I2C interface control
HOSTIF_SPI_CONTROL_RE G	0010h	32	R/W	00000000	SPI interface control
HOSTIF_HSU_CONTROL_R EG	0014h	32	R/W	01410000	HSU control register
HOSTIF_HSU_SAMPLE_RE G	0018h	32	R/W	00000000	HSU register for sample clock
HOSTIF_HSU_EST_CLOCK_ DIVIDER_ REG	001Ch	32	R	00000000	HSU estimated clock dividers
HOSTIF_HSU_EST_CLOCK_ CORREC T_REG	0020h	32	R	00000000	HSU estimated clock correction parameters
INTERNAL_USE	0024h	32	R/W	00061000	For internal use
INTERNAL_USE	0028h	32	R/W	00000000	For internal use
INTERNAL_USE	002Ch	32	R/W	00000000	For internal use
INTERNAL_USE	0030h	32	R/W	00000000	For internal use
INTERNAL_USE	0034h	32	R/W	00000000	For internal use
HOSTIF_BUFFER_RX0_CFG _REG	0038h	32	R/W	08000000	Configuration of RX buffer 0
HOSTIF_BUFFER_RX1_CFG _REG	003Ch	32	R/W	08000000	Configuration of RX buffer 1
HOSTIF_BUFFER_RX2_CFG _REG	0040h	32	R/W	08000000	Configuration of RX buffer 2
HOSTIF_BUFFER_RX3_CFG _REG	0044h	32	R/W	08000000	Configuration of RX buffer 3
HOSTIF_BUFFER_TX_CFG_ REG	0048h	32	R/W	0008000	Configuration of TX buffer
HOSTIF_BUFFER_RX0_LEN _REG	004Ch	32	R	00000000	Number of bytes stored in RX buffer 0
HOSTIF_BUFFER_RX1_LEN _REG	0050h	32	R	00000000	Number of bytes stored in RX buffer 1
HOSTIF_BUFFER_RX2_LEN _REG	0054h	32	R	00000000	Number of bytes stored in RX buffer 2
HOSTIF_BUFFER_RX3_LEN _REG	0058h	32	R	00000000	Number of bytes stored in RX buffer 3
HOSTIF_BUFFER_TX_LEN_ REG	005Ch	32	R/W	00000000	Number of bytes stored in TX buffer
HOSTIF_TIC_TIMEOUT_RE	0060h	32	R/W	00000000	Inter-character timeout
HOSTIF_WATERLEVEL_RE	0064h	32	R/W	00000000	Water level
HOSTIF_SET_DATA_READY _REG	0068h	32	W	00000000	Set data ready flags for buffers

PN7462 HW user manual

Name	Address offset	Width (bits)	Access	Reset value	Description
HOSTIF_CLR_DATA_READY _REG	006Ch	32	W	00000000	Clear data ready flags for buffers
HOSTIF_DATA_READY_STA TUS_REG	0070h	32	R	00000000	Status of data ready flags for buffers
HOSTIF_DBG_RX_REG	0074h	32	R	00000000	Debug Received data
HOSTIF_DBG_RX_ADDR_R EG	0078h	32	R	00000000	Debug receive address
INTERNAL_USE	007Ch	32	R/W	00000000	For internal use
INTERNAL_USE	0080h	32	R	00000000	For internal use
INTERNAL_USE	0084h	32	R/W	000000Fh	For internal use
HOSTIF_INT_CLR_ENABLE_ REG	3FD8h	32	W	00000000	Clear interrupt enable
HOSTIF_INT_SET_ENABLE _REG	3FDCh	32	W	00000000	Set interrupt enable
HOSTIF_INT_STATUS_REG	3FE0h	32	R	00000000	Interrupt status
HOSTIF_INT_ENABLE_REG	3FE4h	32	R	00000000	Interrupt enable
HOSTIF_INT_CLR_STATUS _REG	3FE8h	32	W	00000000	Clear interrupt

14.3.5.2 Register description

HOSTIF_STATUS_REG

This register reflects the current status of the host Interface.

Table 323. HOSTIF STATUS REG (address offset 0x0000)

Bit	Symbol	Access	Value	Description
31:6	RESERVED	R	0	Reserved
5	TX_BUFFER_PREFET CH_OK	R	0	1 - Read prefetch of TX buffer completed.
4	TX_BUFFER_LOCK	R	0	1 - TX buffer is currently in use by the hardware.
3	RX3_BUFFER_LOCK	R	0	1 - RX buffer 3 is currently in use by the hardware.
2	RX2_BUFFER_LOCK	R	0	1 - RX buffer 2 is currently in use by the hardware.
1	RX1_BUFFER_LOCK	R	0	1 - RX buffer 1 is currently in use by the hardware.
0	RX0_BUFFER_LOCK	R	0	1 - RX buffer 0 is currently in use by the hardware.

HOSTIF_CONTROL_REG

This register is used to control the buffer manager.

PN7462 HW user manual

Table 324. HOSTIF_CONTROL_REG (address offset 0x0004)

Bit	Symbol	Access	Value	Description
31:21	RESERVED	R	0	Reserved
20:7	BUFFERS_SIZE	R/W	0x2FFF	RAM aperture size
6	HIF_ENABLE	R/W	0	0- All inputs disabled. Should be programmed to 1 when host if is fully configured only. Includes USB.
5	NCI_LENGTH_MODE [2]	R/W	0	0 - Length in memory and transferred over HDLL header
				1 - Length in register. Not transferred over physical interface
4	NCI_CRC_DISABLE	R/W	0	0 - CRC active
	[2]			1 – No CRC
3	NCI_MODE	R/W	0	0 - NCI not used
				1 – NCI mode active
2	SHORT_FRAME_LEN	R/W	0	Maximum number of payload bytes in a short frame
				0 – 2 bytes
				1 – 3 bytes
1	STORE_RX_ERROR_	R/W	0	Store erroneous RX frames.
	FRAMES			HOSTIF_DATA_READY_STATUS_REG.
				RX <n>_DATA_READY is set by Host IF as if frame were received error-free.</n>
0	BUFFER_FORMAT	R/W	0	0 - HDLL Frames
				1 - Native format

^[2] This bit only has effect if NCI_MODE = 1; For NCI mode description see chapter 14.3.2.5

HOSTIF_HEADER_CONTROL_REG

This register is used control the header description.

Table 325. HOSTIF_HEADER_CONTROL_REG (address offset 0x0008)

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	R	0	Reserved
11:10	HEADER_SIZE	W	1	Number of bytes -1 of header. Default is for HDLL header.
9:8	LENGTH_MSB_BYTE _POS	W	0	Byte position of Length MSB (in reception order). Default is for HDLL header.
7:5	LENGTH_MSB_BIT_P OS	W	1	Bit position of Length MSB. Default is for HDLL header.
4:3	LENGTH_LSB_BYTE_ POS	W	1	Byte position of Length LSB (in reception order). Default is for HDLL header.
2:0	LENGTH_LSB_BIT_P OS	W	0	Bit position of Length LSB. Default is for HDLL header.

PN7462 HW user manual

HOSTIF_I2C_CONTROL_REG

This register is used is to control the I²C host interface.

Table 326. HOSTIF_I2C_CONTROL_REG (address offset 0x000C)

Bit	Symbol	Access	Reset Value	Description
31:8	RESERVED	R	0	Reserved
7:5	I2C_REV_ID	R/W	0	Die Revision of Device ID
4	I2C_DEVID_ENABLE	R/W	0	1 - Enable Device ID defined in the I2C standard
3	I2C_RESET_ENABLE	R/W	0	1 - Enable Soft Reset sequence defined in the I2C standard
2	I2C_HS_ENABLE	R/W	0	1 - Enable High-speed mode
1:0	I2C_ADDR	R/W	0	Set two LSBs of the I2C address

HOSTIF_SPI_CONTROL_REG

This register is used to control the SPI host interface.

Table 327. HOSTIF_SPI_CONTROL_REG (address offset 0x0010)

Bit	Symbol	Access	Reset Value	Description
31:2	RESERVED	R	0	Reserved
1	SPI_CPHA	R/W	0	SPI clock phase
0	SPI_CPOL	R/W	0	SPI clock polarity

HOSTIF_HSU_CONTROL_REG

This register is used to control the High-speed UART host interface

Table 328. HOSTIF_HSU_CONTROL_REG (address offset 0x0014)

Bit	Symbol	Access	Reset Value	Description
31:28	RESERVED	R	0	Reserved
27:21	HSU_EOF_SIZE	R/W	0x10	EOF duration in bit number - 1 (1-122)
20	HSU_STORE_BR_BY TE	R/W	0	1: the first 0 used to estimate baud rate is stored in memory
19:18	HSU_BR_ESTIMATOR _MODE	R/W	0	00: Baud rate estimator inactive 01: Baud rate estimator active with automatic clock setting
				10: Baud rate estimator active without clock setting11: Reserved
17:16	HSU_WAKEUP_BYTE S	R/W	1	Number of bytes lost during wakeup at RTS rising edge

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
15	HSU_WAKEUP_STAN DBY	R/W	0	1: simulate reception of bytes lost during wakeup from standby phase (number of bytes specified in HSU_WAKEUP_BYTES). Can only be used once
14	HSU_STOPBIT	R/W	0	0: 1 stop bit 1: 2 stop bits
13	HSU_TX_DIVIDER	R/W	0	0: use HSU_RX_DIVIDER 1: use HSU_RX_DIVIDER+1
12:0	HSU_RX_DIVIDER	R/W	0	Clock divider for RX sampling

HOSTIF_HSU_CONTROL_REG

This register is used for the HSU Sample Clock.

Table 329. HOSTIF_HSU_SAMPLE_REG (address offset 0x0018)

Bit	Symbol	Access	Reset Value	Description
31:22	RESERVED	R	0	Reserved
21:11	HSU_TX_CLK_CORR ECT	R/W	0	Used to correct clock division. If TX_CLK_CORRECT[i]=1, then duration of bit[i] will be extended of one clock cycle
10:0	HSU_RX_CLK_CORR ECT	R/W	0	Used to correct clock division. If RX_CLK_CORRECT[i]=1, then duration of bit[i] will be extended of one clock cycle

HOSTIF_HSU_CONTROL_REG

This register is used for the HSU estimated clock dividers.

Table 330. HOSTIF_HSU_EST_CLOCK_DIVIDER_REG (address offset 0x001C)

Bit	Symbol	Access	Reset Value	Description
31:14	RESERVED	R	0	Reserved
13	HSU_EST_TX_DIVIDER	R	0	Estimated clock divider for TX sampling: 0: use HSU_EST_RX_DIVIDER 1: use HSU_EST_RX_DIVIDER + 1
12:0	HSU_EST_RX_DIVIDER	R	0	Estimated clock divider for RX sampling

HOSTIF_HSU_EST_CLOCK_CORRECT_REG

This register is used for the HSU estimated clock correction.

PN7462 HW user manual

Table 331. HOSTIF_HSU_EST_CLOCK_CORRECT_REG (address offset 0x0020)

Bit	Symbol	Access	Reset Value	Description
31:20	RESERVED	R	0	Reserved
21:11	HSU_EST_TX_CLK_C ORRECT	R	0	Estimated value for HSU_TX_CLK_CORRECT
10:0	HSU_EST_RX_CLK_C ORRECT	R	0	Estimated value for HSU_RX_CLK_CORRECT

HOSTIF_BUFFER_RX0_CFG_REG

This register is used to configure the RX buffer 0

Table 332. HOSTIF_BUFFER_RX0_CFG_REG (address offset 0x0038)

Bit	Symbol	Access	Reset Value	Description
31:29	RESERVED	R	0	Reserved
28	RX0_BUFFER_DISAB LE [1]	R/W	0	1 - buffer is disabled
27:26	RX0_HEADER_OFFS ET [1][5][6]	R/W	0x02	Number of padding bytes to add before writing frame header to first word of RX buffer 0. Not applicable to Native Mode.
25	RX0_SHORT_FRAME _BUFFER [1][2][3][5]	R/W	0	1 - buffer assigned to short frames0 - buffer assigned to non-short framesNot applicable to Native Mode.
24:14	RX0_MAX_SIZE [1][2][4][5]	R/W	0	Maximum size (bytes) of RX buffer 0
13:0	RX0_START_ADDR [1][5]	R/W	0	Word start address of RX buffer 0. Bits [1:0] are unused.

- [1] Any change to this register, is only taken into account if the buffer is not in use (RX0_BUFFER_LOCK = 0). However, the register itself is updated.
- [3] The frame length of a short frame is defined in field SHORT_FRAME_LEN of HOSTIF_CONTROL_REG
- [4] Value must be greater than or equal to RX0_HEADER_OFFSET + + header + largest payload expected (rounded up to the next word).
- [5] Attempting to change this field when the buffer is in use (RX0_BUFFER_LOCK = 1) will generate a System Error.
- [6] Only values 0,1 or 2 are permitted

PN7462 HW user manual

HOSTIF BUFFER RX1 CFG REG

This register is used to configure the RX buffer 1

Table 333. HOSTIF_BUFFER_RX1_CFG_REG (address offset 0x003C)

Bit	Symbol	Access	Reset Value	Description
31:29	RESERVED	R	0	Reserved
28	RX1_BUFFER_DISAB LE [1]	R/W	0	1 - buffer is disabled
27:26	RX1_HEADER_OFFS ET [1][5][6]	R/W	0x02	Number of padding bytes to add before writing frame header to first word of RX buffer 1.Not applicable to Native Mode.
25	RX1_SHORT_FRAME _BUFFER [1][3][5]	R/W	0	1 - buffer assigned to short frames0 - buffer assigned to non-short framesNot applicable to Native Mode.
24:14	RX1_MAX_SIZE [1][4][5]	R/W	0	Maximum size (bytes) of RX buffer 1
13:0	RX1_START_ADDR [1][5]	R/W	0	Word start address of RX buffer 1. Bits [1:0] are unused.

- [1] Any change to this register, is only taken into account if the buffer is not in use (RX1_BUFFER_LOCK = 0). However, the register itself is updated.
- [3] The frame length of a short frame is defined in field SHORT_FRAME_LEN of HOSTIF_CONTROL_REG
- [4] Value must be greater than or equal to RX1_HEADER_OFFSET + + header + largest payload expected (rounded up to the next word).
- [5] Attempting to change this field when the buffer is in use (RX1_BUFFER_LOCK = 1) will generate a System Error.
- [6] Only values 0,1 or 2 are permitted

HOSTIF_BUFFER_RX2_CFG_REG

This register is used to configure the RX buffer 2

Table 334. HOSTIF_BUFFER_RX2_CFG_REG (address offset 0x0040)

Bit	Symbol	Access	Reset Value	Description
31:29	RESERVED	R	0	Reserved
28	RX2_BUFFER_DISAB LE [1]	R/W	0	1 - buffer is disabled
27:26	RX2_HEADER_OFFS ET [1][5][6]	R/W	0x02	Number of padding bytes to add before writing frame header to first word of RX buffer 2. Not applicable to Native Mode.
25	RX2_SHORT_FRAME _BUFFER [1][3][5]	R/W	0	1 - buffer assigned to short frames0 - buffer assigned to non-short framesNot applicable to Native Mode.

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
24:14	RX2_MAX_SIZE [1][4][5]	R/W	0	Maximum size (bytes) of RX buffer 2
13:0	RX2_START_ADDR [1][5]	R/W	0	Word start address of RX buffer 2. Bits [1:0] are unused.

- [1] Any change to this register, is only taken into account if the buffer is not in use (RX<n>_BUFFER_LOCK = 0). However, the register itself is updated.
- [3] The frame length of a short frame is defined in field SHORT_FRAME_LEN of HOSTIF_CONTROL_REG
- [4] Value must be greater than or equal to RX<n>_HEADER_OFFSET + + header + largest payload expected (rounded up to the next word).
- [5] Attempting to change this field when the buffer is in use (RX<n>_BUFFER_LOCK = 1) will generate a System Error.
- [6] Only values 0,1 or 2 are permitted

HOSTIF_BUFFER_RX3_CFG_REG

This register is used to configure the RX buffer 3.

Table 335. HOSTIF_BUFFER_RX3_CFG_REG (address offset 0x0044)

Bit	Symbol	Access	Reset Value	Description
31:29	RESERVED	R	0	Reserved
28	RX3_BUFFER_DISAB LE [1]	R/W	0	1 - buffer is disabled
27:26	RX3_HEADER_OFFS ET [1][5][6]	R/W	0x02	Number of padding bytes to add before writing frame header to first word of RX buffer 3.Not applicable to Native Mode.
25	RX3_SHORT_FRAME _BUFFER [1][3][5]	R/W	0	1 - buffer assigned to short frames0 - buffer assigned to non-short framesNot applicable to Native Mode.
24:14	RX3_MAX_SIZE [1][4][5]	R/W	0	Maximum size (bytes) of RX buffer 3
13:0	RX3_START_ADDR [1][5]	R/W	0	Word start address of RX buffer 3. Bits [1:0] are unused.

- [1] Any change to this register, is only taken into account if the buffer is not in use (RX3_BUFFER_LOCK = 0). However, the register itself is updated.
- [3] The frame length of a short frame is defined in field SHORT_FRAME_LEN of HOSTIF_CONTROL_REG
- [4] Value must be greater than or equal to RX3_HEADER_OFFSET + + header + largest payload expected (rounded up to the next word).
- [5] Attempting to change this field when the buffer is in use (RX3_BUFFER_LOCK = 1) will generate a System Error.

PN7462 HW user manual

[6] Only values 0,1 or 2 are permitted

HOSTIF_BUFFER_TX_CFG_REG

This register is used to configure the TX buffer

Table 336. HOSTIF BUFFER TX CFG REG (address offset 0x0048)

Bit	Symbol	Access	Reset Value	Description
31:17	RESERVED	R	0	Reserved
16	TX_EMPTY_PAYLOA D_ENABLE ^[]]	R/W	0	1 - send empty payload packets (header and CRC only).Not applicable to Native Mode.
15:14	TX_HEADER_OFFSE T [1][2]	R/W	0x02	Number of bytes to skip in first word of buffer before sending to Host. Not applicable to Native Mode.
13:0	TX_START_ADDR [1]	R/W	0	Word start address of TX buffer. Bits [1:0] are unused.

^[1] Any change to this register, is only taken into account if the buffer is not in use (TX_BUFFER_LOCK = 0). However, the register itself is updated.

HOSTIF_BUFFER_RX0_LEN_REG

This register is used to indicate the number of bytes stored in RX buffer 0

HOSTIF_BUFFER_RX0_LEN_REG (address offset 0x004C)

Bit	Symbol	Access	Reset Value	Description
31:13	RESERVED	R	0	Reserved
12	RX0_PEC_OK	R	0	1 - Last byte received matched computed PEC. Only valid if RX0_PEC_RECEIVED is 1
11	RX0_PEC_RECEIVED	R	0	1 - Last received was a PEC. 0- hardware could not detected if last received byte was a PEC, payload analysis required.
10:0	RX0_LENGTH	R	0	Number of bytes received in buffer RX0 (active when HOSTIF_CONTROL_REG.NCI_LENGTH_M ODE=1)

^[2] Only values 0,1 or 2 are permitted

PN7462 HW user manual

HOSTIF_BUFFER_RX1_LEN_REG

This register is used to indicate the number of bytes stored in RX buffer 1

Table 337. HOSTIF_BUFFER_RX1_LEN_REG (address offset 0x0050)

Bit	Symbol	Access	Reset Value	Description
31:13	RESERVED	R	0	Reserved
12	RX1_PEC_OK	R	0	1 - Last byte received matched computed PEC. Only valid if RX1_PEC_RECEIVED is 1
11	RX1_PEC_RECEIVED	R	0	1 - Last received was a PEC. 0- hardware could not detected if last received byte was a PEC, payload analysis required.
10:0	RX1_LENGTH	R	0	Number of bytes received in buffer RX1 (active when HOSTIF_CONTROL_REG.NCI_LENGTH_M ODE=1)

HOSTIF_BUFFER_RX2_LEN_REG

This register is used to indicate the number of bytes stored in RX buffer 2

Table 338. HOSTIF BUFFER RX2 LEN REG (address offset 0x0054)

Bit	Symbol	Access	Reset Value	Description
31:13	RESERVED	R	0	Reserved
12	RX2_PEC_OK	R	0	1 - Last byte received matched computed PEC. Only valid if RX2_PEC_RECEIVED is 1
11	RX2_PEC_RECEIVED	R	0	1 - Last received was a PEC. 0- hardware could not detected if last received byte was a PEC, payload analysis required.
10:0	RX2_LENGTH	R	0	Number of bytes received in buffer RX2 (active when HOSTIF_CONTROL_REG.NCI_LENGTH_M ODE=1)

HOSTIF_BUFFER_RX3_LEN_REG

This register is used to indicate the number of bytes stored in RX buffer 3

Table 339. HOSTIF_BUFFER_RX3_LEN_REG (address offset 0x0058)

Bit	Symbol	Access	Reset Value	Description
31:13	RESERVED	R	0	Reserved
12	RX3_PEC_OK	R	0	1 - Last byte received matched computed PEC. Only valid if RX3_PEC_RECEIVED is 1

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
11	RX3_PEC_RECEIVED	R	0	1 - Last received was a PEC. 0- hardware could not detected if last received byte was a PEC, payload analysis required.
10:0	RX3_LENGTH	R	0	Number of bytes received in buffer RX3 (active when HOSTIF_CONTROL_REG.NCI_LENGTH_M ODE=1)

HOSTIF_BUFFER_TX_LEN_REG

This register is used to indicate the number of bytes stored in the TX buffer

Table 340. HOSTIF BUFFER TX LEN REG (address offset 0x005C)

Bit	Symbol	Access	Reset Value	Description
31:11	RESERVED	R	0	Reserved
10:0	TX_LENGTH	R/W	0	Number of bytes to send from buffer TX (active when HOSTIF_CONTROL_REG.NCI_LENGTH_MODE=1)

HOSTIF_TIC_TIMEOUT_REG

This register is used to configure the inter-character timeout.

Table 341. HOSTIF_TIC_TIMEOUT_REG (address offset 0x0060)

Bit	Symbol	Access	Reset Value	Description
31:16	RESERVED	R	0	Reserved
15:0	TX_TIMEOUT_VALUE	R/W	0	Inter-character timeout in 3.6us steps (max delay 200ms). If set to 0, this feature is disabled.

PN7462 HW user manual

HOSTIF WATERLEVEL REG

This register is to used indicate the water level.

Table 342. HOSTIF_WATERLEVEL_REG (address offset 0x0064)

Bit	Symbol	Access	Reset Value	Description
31:11	RESERVED	R	0	Reserved
10:0	WATERLEVEL	R/W	0	Number of bytes received in incoming frame before triggering an interrupt (preempting EOR). If set to 0, this feature is disabled.

HOSTIF SET DATA READY REG

This register is used to set data ready flags for buffers.

Table 343. HOSTIF SET DATA READY REG (address offset 0x0068)

Bit	Symbol	Access	Reset value	Description
31:5	RESERVED	R	0	Reserved
4	SET_TX_DATA_READ Y ^[1]	W	0	Set TX_DATA_READY
3	SET_RX3_DATA_REA DY ^[2]	W	0	Set RX3_DATA_READY
2	SET_RX2_DATA_REA DY ^[2]	W	0	Set RX2_DATA_READY
1	SET_RX1_DATA_REA DY ^[2]	W	0	Set RX1_DATA_READY
0	SET_RX0_DATA_REA DY [2]	W	0	Set RX0_DATA_READY

^[1] Setting this bit will only cause bit HOSTIF_DATA_READY_STATUS_REG.TX_DATA_READY to be set if the buffer is not in use by the buffer manager (HOSTIF_STATUS_REG.TX_BUFFER_LOCK = 0).

HOSTIF_CLR_DATA_READY_REG

This register is used to clear data ready flags for buffers.

Table 344. HOSTIF_CLR_DATA_READY_REG (address offset 0x006C)

Bit	Symbol	Access	Reset value	Description
31:5	RESERVED	R	0	Reserved
4	CLR_TX_DATA_READ Y [1]	W	0	Clear TX_DATA_READY
3	CLR_RX3_DATA_REA DY ^[2]	W	0	Clear RX3_DATA_READY

^{2]} Setting this bit will only cause bit HOSTIF_DATA_READY_STATUS_REG.RX<n>_DATA_READY to be set if the buffer is not in use by the buffer manager (HOSTIF_STATUS_REG.RX<n>_BUFFER_LOCK = 0).

PN7462 HW user manual

Bit	Symbol	Access	Reset value	Description
2	CLR_RX2_DATA_REA DY ^[2]	W	0	Clear RX2_DATA_READY
1	CLR_RX1_DATA_REA DY ^[2]	W	0	Clear RX1_DATA_READY
0	CLR_RX0_DATA_REA	W	0	Clear RX0_DATA_READY

^[1] Setting this bit will only cause bit HOSTIF_DATA_READY_STATUS_REG.TX_DATA_READY to be cleared if the buffer is not in use by the Buffer Manager (HOSTIF_STATUS_REG.TX_BUFFER_LOCK = 0).

HOSTIF DATA READY STATUS REG

This register is used to indicate the status of data ready flags for buffers.

Table 345. HOSTIF_DATA_READY_STATUS_REG (address offset 0x0070)

Bit	Symbol	Access	Reset Value	Description
31:5	RESERVED	R	0	Reserved
4	TX_DATA_READY [1][2]	R	0	Frame valid bit for TX buffer.
				1 - buffer loaded with frame by FW to be sent to Host
				0 - frame successfully sent to Host.
3	RX3_DATA_READY	R	0	Frame valid bit for RX buffer 3.
	<u> </u>		1 - buffer contains an error-free frame received from Host	
				0 - frame has been processed by FW and buffer is free to receive a new frame.
2	RX2_DATA_READY	R	0	Frame valid bit for RX buffer 2.
				1 - buffer contains an error-free frame received from Host
				0 - frame has been processed by FW and buffer is free to receive a new frame.
1	RX1_DATA_READY	R	0	Frame valid bit for RX buffer 1.
	[1][3]			1 - buffer contains an error-free frame received from Host
				0 - frame has been processed by FW and buffer is free to receive a new frame.
0	RX0_DATA_READY	R	0	Frame valid bit for RX buffer 0.
	[1][3]			1 - buffer contains an error-free frame received from Host
				0 - frame has been processed by FW and buffer is free to receive a new frame.

^[2] Setting this bit will only cause bit HOSTIF_DATA_READY_STATUS_REG.RX<n>_DATA_READY to be cleared if the buffer is not in use by the Buffer Manager (HOSTIF_STATUS_REG.RX<n>_BUFFER_LOCK = 0)

PN7462 HW user manual

- [1] Can be overwritten by FW using either register HOSTIF_SET_DATA_READY_REG or register HOSTIF_CLR_DATA_READY_REG.
- [2] The buffer manager can only clear this bit.
- [3] The buffer manager can only set this bit.

HOSTIF_DBG_RX_REG

This register is used for the debug received data.

Table 346. HOSTIF_DBG_RX_REG (address offset 0x0074)

Bit	Symbol	Access	Reset Value	Description
31:5	RX_REG	R	0	Contains byte the last received bytes to be written into memory as one word

HOSTIF DBG RX REG

This register is used to indicate the debug receive address.

Table 347. HOSTIF_DBG_RX_ADDR_REG (address offset 0x0078)

Bit	Symbol	Access	Reset Value	Description
31:16	RESERVED	R	0	Reserved
15:14	WR_PTR	R	0	Pointer to next byte to write into RX_REG (next byte inside word to write to memory)
13:0	WR_ADDR	R	0	Next AHB write address

HOSTIF_INT_CLR_ENABLE_REG

This register is a collection of clear interrupt enable commands. Writing 1 to this register does set the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 348. HOSTIF_INT_CLR_ENABLE_REG (address offset 0x3FD8)

Bit	Symbol	Access	Reset Value	Description
31:27	RESERVED	W	0	Reserved
26	HSU_RX_FER_CLR_ ENABLE	W	0	1 - clear enable for HSU RX frame error interrupt0 - no effect
25	BUFFER_CFG_CHAN GED_ERROR_CLR_E NABLE	W	0	1 - clear enable for buffer config changed during use interrupt0 - no effect
24	AHB_WR_SLOW_CLR _ENABLE	W	0	1 - clear enable for slow AHB during write operation interrupt0 - no effect
23	AHB_RD_SLOW_CLR _ENABLE	W	0	1 - clear enable for slow AHB during read operation interrupt0 - no effect

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
22	AHB_ERROR_CLR_E NABLE	W	0	1 - clear enable for ahb_error (hresp=1, oraddress overflow) interrupt 0 - no effect
21	WATERLEVEL_REAC HED_CLR_ENABLE	W	0	- clear enable for water level reached interrupt - no effect
20:17	RX_BUFFER_OVERF LOW_CLR_ENABLE	W	0	0001 - clear enable for max buffer size interrupt for RX buffer 0 0010 - clear enable for max buffer size interrupt for RX buffer 1 0100 - clear enable for max buffer size interrupt for RX buffer 2 1000 - clear enable for max buffer size interrupt for RX buffer 3 0000 - no effect
16	CRC_NOK_CLR_ENA BLE	W	0	1 - clear enable for data-link Layer CRC error interrupt0 - no effect
15	TX_TIMEOUT_CLR_E NABLE	W	0	- clear enable for inter-character timeout (TIC) exceeded on transmitted frame interrupt - no effect
14:11	RX_FRAME_OVERFL OW_CLR_ENABLE	W	0	0001 - clear enable for frame overflow interrupt for RX buffer 0 0010 - clear enable for frame overflow interrupt for RX buffer 1 0100 - clear enable for frame overflow interrupt for RX buffer 2 1000 - clear enable for frame overflow interrupt for RX buffer 3 0000 - no effect
10:7	RX_FRAME_UNDERF LOW_CLR_ENABLE	W	0	0001 - clear enable for frame underflow interrupt for RX buffer 0 0010 - clear enable for frame underflow interrupt for RX buffer 1 0100 - clear enable for frame underflow interrupt for RX buffer 2 1000 - clear enable for frame underflow interrupt for RX buffer 3 0000 - no effect
6	TX_FRAME_NOT_AV AILABLE_CLR_ENAB LE	W	0	1 - clear enable for TX frame not available interrupt0 - no effect

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
5	RX_BUFFER_NOT_A VAILABLE_CLR_ENA BLE	W	0	clear enable for no receive buffers available interrupt
	DLE			0 - no effect
4	EOT_CLR_ENABLE	W	0	1 - clear enable for EOT interrupt
				0 - no effect
3:0	EOR_CLR_ENABLE	W	0	1 - clear enable for End of Reception (EOR) in buffer N (0<=N<=3) interrupt
				0001 - clear enable for EOR interrupt for RX buffer 0
				0010 - clear enable for EOR interrupt for RX buffer 1
				0100 - clear enable for EOR interrupt for RX buffer 2
				1000 - clear enable for EOR interrupt for RX buffer 3
				0000 - no effect

^[1] An interrupt event which has its clear enable bit set simply means that the external interrupt is not asserted. However, the event itself is still triggered. Thus, even if the CPU is using a polling mechanism instead of being interrupt-driven, the firmware must still ensure that the event is cleared by setting the associated bit in register HOSTIF_INT_CLR_STATUS_REG.

HOSTIF_INT_SET_ENABLE_REG

This register is a collection of set interrupt enable commands. Writing 1 to this register does set the corresponding interrupt request enable flag. Writing 0 to this register has no effect.

Table 349. HOSTIF_INT_SET_ENABLE_REG (address offset 0x3FDC)

Bit	Symbol	Access	Reset Value	Description
31:27	RESERVED	W	0	Reserved
26	HSU_RX_FER_SET_E NABLE	W	0	1 - set enable for HSU RX frame error interrupt0 - no effect
25	BUFFER_CFG_CHAN GED_ERROR_SET_E NABLE	W	0	1 - set enable for buffer configuration changed during use interrupt0 - no effect
24	AHB_WR_SLOW_SET _ENABLE	W	0	1 - set enable for slow AHB during write operation interrupt0 - no effect
23	AHB_RD_SLOW_SET _ENABLE	W	0	1 - set enable for slow AHB during read operation interrupt0 - no effect
22	AHB_ERROR_SET_E NABLE	W	0	1 - set enable for ahb_error (hresp=1, oraddress overflow) interrupt0 - no effect

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
21	WATERLEVEL_REAC HED_SET_ENABLE	W	0	1 - set enable for water level reached interrupt
				0 - no effect
20:17	RX_BUFFER_OVERF LOW_SET_ENABLE	W	0	0001 - set enable for max buffer size interrupt for RX buffer 0
				0010 - set enable for max buffer size interrupt for RX buffer 1
				0100 - set enable for max buffer size interrupt for RX buffer 2
				1000 - set enable for max buffer size interrupt for RX buffer 3
				0000 - no effect
16	CRC_NOK_SET_ENAB LE	W	0	1 - set enable for data-link Layer CRC error interrupt
				0 - no effect
15	TX_TIMEOUT_SET_E NABLE	W	0	1 - set enable for inter-character timeout (TIC) exceeded on transmitted frame interrupt
				0 - no effect
14:11	RX_FRAME_OVERFL OW_SET_ENABLE	W	0	0001 - set enable for frame overflow interrupt for RX buffer 0
				0010 - set enable for frame overflow interrupt for RX buffer 1
				0100 - set enable for frame overflow interrupt for RX buffer 2
				1000 - set enable for frame overflow interrupt for RX buffer 3
				0000 - no effect
10:7	RX_FRAME_UNDERF LOW_SET_ENABLE	W	0	0001 - set enable for frame underflow interrupt for RX buffer 0
				0010 - set enable for frame underflow interrupt for RX buffer 1
				0100 - set enable for frame underflow interrupt for RX buffer 2
				1000 - set enable for frame underflow interrupt for RX buffer 3
				0000 - no effect
6	TX_FRAME_NOT_AVAI LABLE_SET_ENABLE	W	0	1 - set enable for TX frame not available interrupt
				0 - no effect
5	RX_BUFFER_NOT_A VAILABLE_SET_ENA	W	0	1 - set enable for no receive buffers available interrupt
	BLE			0 - no effect
4	EOT_SET_ENABLE	W	0	1 - set enable for EOT interrupt
				0 - no effect

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
3:0	EOR_SET_ENABLE	W	0	1 - set enable for End of Reception in buffer N (0<=N<=3) interrupt
				0001 - set enable for EOR interrupt for RX buffer 0
				0010 - set enable for EOR interrupt for RX buffer 1
				0100 - set enable for EOR interrupt for RX buffer 2
				1000 - set enable for EOR interrupt for RX buffer 3
				0000 - no effect

HOSTIF_INT_STATUS_REG

This register is a collection of interrupt status commands. Writing 1 to this register does set the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 350. HOSTIF_INT_STATUS_REG (address offset 0x3FE0)

Bit	Symbol	Access	Reset Value	Description
31:27	RESERVED	W	0	Reserved
26	HSU_RX_FER_STATU S	W	0	HSU RX frame error interrupt
25	BUFFER_CFG_CHAN GED_ERROR_STATU S	W	0	Buffer configuration changed during use interrupt
24	AHB_WR_SLOW_STA TUS	W	0	Slow AHB during write operation interrupt
23	AHB_RD_SLOW_STA TUS	W	0	Slow AHB during read operation interrupt
22	AHB_ERROR_STATU S	W	0	Ahb_error (hresp=1, or address overflow) interrupt
21	WATERLEVEL_REAC HED_STATUS	W	0	Water level reached interrupt status
20:17	RX_BUFFER_OVERF LOW_STATUS	W	0	0001 - maximum buffer size exceeded interrupt status for RX buffer 0
				0010 - maximum buffer size exceeded interrupt status for RX buffer 1
				0100 - maximum buffer size exceeded interrupt status for RX buffer 2
				1000 - maximum buffer size exceeded interrupt status for RX buffer 3
16	CRC_NOK_STATUS	W	0	Data-link layer CRC error interrupt status

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
15	TX_TIMEOUT_STATU S	W	0	Inter-character timeout (TIC) exceeded on transmitted frame interrupt status
14:11	RX_FRAME_OVERFL OW_STATUS	W	0	0001 - Frame overflow interrupt status for RX buffer 0
				0010 - Frame overflow interrupt status for RX buffer 1
				0100 - Frame overflow interrupt status for RX buffer 2
				1000 - Frame overflow interrupt status for RX buffer 3
10:7	RX_FRAME_UNDERF LOW_STATUS	W	0	0001 - Frame underflow interrupt status for RX buffer 0
				0010 - Frame underflow interrupt status for RX buffer 1
				0100 - Frame underflow interrupt status for RX buffer 2
				1000 - Frame underflow interrupt status for RX buffer 3
6	TX_FRAME_NOT_AVAI LABLE_STATUS	W	0	HOSTIF_DATA_READY_STATUS_REG.T X_DATA_READY=0 when Host read request interrupt status
5	RX_BUFFER_NOT_A VAILABLE_STATUS	W	0	No receive buffers available interrupt status
4	EOT_STATUS	W	0	EOT interrupt status
3:0	EOR_STATUS	W	0	0001 - EOR interrupt status for RX buffer 0
				0010 - EOR interrupt status for RX buffer 1
				0100 - EOR interrupt status for RX buffer 2
				1000 - EOR interrupt status for RX buffer 3

HOSTIF_INT_ENABLE_REG

This register is a collection of interrupt enable commands. Writing 1 to this register does set the corresponding interrupt request enable flag. Writing 0 to this register has no effect.

Table 351. HOSTIF_INT_ENABLE_REG (address offset 0x3FE4)

Bit	Symbol	Access	Reset Value	Description
31:27	RESERVED	W	0	Reserved
26	HSU_RX_FER_ENABL E	W	0	HSU RX frame error interrupt enable
25	BUFFER_CFG_CHAN GED_ERROR_ENABL E	W	0	Buffer configuration changed during use interrupt enable

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
24	AHB_WR_SLOW_EN ABLE	W	0	Slow AHB during write operation interrupt enable
23	AHB_RD_SLOW_ENA BLE	W	0	Slow AHB during read operation interrupt enable
22	AHB_ERROR_ENABL E	W	0	Ahb_error (hresp=1, or address overflow) interrupt enable
21	WATERLEVEL_REAC HED_ENABLE	W	0	Water level reached interrupt enable
20:17	RX_BUFFER_OVERF LOW_ENABLE	W	0	0001 - Maximum buffer size exceeded interrupt enable for RX buffer 0
				0010 - Maximum buffer size exceeded interrupt enable for RX buffer 1
				0100 - Maximum buffer size exceeded interrupt enable for RX buffer 2
				1000 - Maximum buffer size exceeded interrupt enable for RX buffer 3
16	CRC_NOK_ENABLE	W	0	Data-link layer CRC error interrupt enable
15	TX_TIMEOUT_ENABL E	W	0	Inter-character timeout (TIC) exceeded on transmitted frame interrupt status
14:11	RX_FRAME_OVERFL OW_ENABLE	W	0	0001 - Frame overflow interrupt enable for RX buffer 0
				0010 - Frame overflow interrupt enable for RX buffer 1
				0100 - Frame overflow interrupt enable for RX buffer 2
				1000 - Frame overflow interrupt enable for RX buffer 3
10:7	RX_FRAME_UNDERF LOW_ENABLE	W	0	0001 - Frame underflow interrupt enable for RX buffer 0
				0010 - Frame underflow interrupt enable for RX buffer 1
				0100 - Frame underflow interrupt enable for RX buffer 2
				1000 - Frame underflow interrupt enable for RX buffer 3
6	TX_FRAME_NOT_AVAI LABLE_ENABLE	W	0	HOSTIF_DATA_READY_STATUS_REG.T X_DATA_READY=0 when host read request interrupt enable
5	RX_BUFFER_NOT_A VAILABLE_ENABLE	W	0	No receive buffers available interrupt enable
4	EOT_ENABLE	W	0	EOT interrupt enable
3:0	EOR_ENABLE	W	0	0001 - EOR interrupt enable for RX buffer 0
				0010 - EOR interrupt enable for RX buffer 1

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
				0100 - EOR interrupt enable for RX buffer 2
				1000 - EOR interrupt enable for RX buffer 3

HOSTIF_INT_CLR_STATUS_REG

This register is a collection of clear interrupt status commands. Writing 1 to this register does set the corresponding interrupt request enable flag. Writing 0 to this register has no effect.

Table 352. HOSTIF_INT_CLR_STATUS_REG (address offset 0x3FE8)

Bit	Symbol	Access	Reset Value	Description
31:27	RESERVED	W	0	Reserved
26	HSU_RX_FER_CLR_S TATUS	W	0	1 - Clear HSU RX frame error interrupt status
				0 - no effect
25	BUFFER_CFG_CHAN GED_ERROR_CLR_S	W	0	1 - Clear buffer config changed during use interrupt status
	TATUS			0 - no effect
24	AHB_WR_SLOW_CLR _STATUS	W	0	1 - Clear slow AHB during write operation interrupt status
				0 - no effect
23	AHB_RD_SLOW_CLR _STATUS	W	0	1 - Clear slow AHB during read operation interrupt status
				0 - no effect
22	AHB_ERROR_CLR_S TATUS	W	0	1- Clear ahb_error (hresp=1, or address overflow) interrupt status
				0 - no effect
21	WATERLEVEL_REAC	W	0	1 - clear water level reached interrupt
	HED_CLR_STATUS			0 - no effect
20:17	RX_BUFFER_OVERF LOW_CLR_STATUS	W	0	0001 - clear max buffer size interrupt for RX buffer 0
				0010 - clear max buffer size interrupt for RX buffer 1
				0100 - clear max buffer size interrupt for RX buffer 2
				1000 - clear max buffer size interrupt for RX buffer 30000 - no effect
16	CRC_NOK_CLR_STAT US	W	0	1 - clear data-link Layer CRC error interrupt
				0 - no effect

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
15	TX_TIMEOUT_CLR_S TATUS	W	0	1 - clear inter-character timeout (TIC) exceeded on transmitted frame interrupt
				0 - no effect
14:11	RX_FRAME_OVERFL OW_CLR_STATUS	W	0	0001 - clear frame overflow interrupt for RX buffer 0
				0010 - clear frame overflow interrupt for RX buffer 1
				0100 - clear frame overflow interrupt for RX buffer 2
				1000 - clear frame overflow interrupt for RX buffer 3
				0000 - no effect
10:7	RX_FRAME_UNDERF LOW_CLR_STATUS	W	0	0001 - clear frame underflow interrupt for RX buffer 0
				0010 - clear frame underflow interrupt for RX buffer 1
				0100 - clear frame underflow interrupt for RX buffer 2
				1000 - clear frame underflow interrupt for RX buffer 3
				0000 - no effect
6	TX_FRAME_NOT_AVAI LABLE_CLR_STATUS	W	0	1 - clear TX frame not available interrupt0 - no effect
5	RX_BUFFER_NOT_A VAILABLE_CLR_STAT	W	0	1 - clear no receive buffers available interrupt
	US			0 - no effect
4	EOT_CLR_STATUS	W	0	1 - clear EOT interrupt
				0 - no effect
3:0	EOR_CLR_STATUS	W	0	0001 - clear EOR interrupt for RX buffer 0
				0010 - clear EOR interrupt for RX buffer 1
				0100 - clear EOR interrupt for RX buffer 2
				1000 - clear EOR interrupt for RX buffer 3
				0000 - no effect

HOSTIF_INT_SET_STATUS_REG

This register is a collection of Set Interrupt Status commands. Writing 1 to this register does set the corresponding Interrupt Request ENABLE flag. Writing 0 to this register has no effect.

Table 353. HOSTIF_INT_SET_STATUS_REG (address offset 0x3FEC)

Bit	Symbol	Access	Reset Value	Description
31:27	RESERVED	W	0	Reserved

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
26	HSU_RX_FER_SET_S TATUS	W	0	1 - Set HSU RX frame error interrupt status 0 - no effect
25	BUFFER_CFG_CHAN GED_ERROR_SET_S TATUS	W	0	Set buffer config changed during use interrupt status no effect
24	AHB_WR_SLOW_SET _STATUS	W	0	Set slow AHB during write operation interrupt status o - no effect
23	AHB_RD_SLOW_SET _STATUS	W	0	Set slow AHB during read operation interrupt status o - no effect
22	AHB_ERROR_SET_S TATUS	W	0	1- Set ahb_error (hresp=1, or address overflow) interrupt status 0 - no effect
21	WATERLEVEL_REAC HED_SET_STATUS	W	0	1 - set water level reached interrupt 0 - no effect
20:17	RX_BUFFER_OVERF LOW_SET_STATUS	W	0	0001 - set max buffer size interrupt for RX buffer 0 0010 - set max buffer size interrupt for RX buffer 1 0100 - set max buffer size interrupt for RX buffer 2 1000 - set max buffer size interrupt for RX buffer 30000 - no effect
16	CRC_NOK_SET_STAT US	W	0	1 - set data-link Layer CRC error interrupt 0 - no effect
15	TX_TIMEOUT_SET_S TATUS	W	0	- set inter-character timeout (TIC) exceeded on transmitted frame interrupt 0 - no effect
14:11	RX_FRAME_OVERFL OW_SET_STATUS	W	0	0001 - set frame overflow interrupt for RX buffer 0 0010 - set frame overflow interrupt for RX buffer 1 0100 - set frame overflow interrupt for RX buffer 2 1000 - set frame overflow interrupt for RX buffer 3 0000 - no effect
10:7	RX_FRAME_UNDERF LOW_SET_STATUS	W	0	0001 - set frame underflow interrupt for RX buffer 0 0010 - set frame underflow interrupt for RX buffer 1

PN7462 HW user manual

Bit	Symbol	Access	Reset Value	Description
				0100 - set frame underflow interrupt for RX buffer 2
				1000 - set frame underflow interrupt for RX buffer 3
				0000 - no effect
6	TX_FRAME_NOT_AVAI	W	0	1 - set TX frame not available interrupt
	LABLE_SET_STATUS			0 - no effect
5	RX_BUFFER_NOT_A VAILABLE_SET_STAT	W	0	1 - set no receive buffers available interrupt
	US			0 - no effect
4	EOT_SET_STATUS	W	0	1 - set EOT interrupt
				0 - no effect
3:0	EOR_SET_STATUS	W	0	0001 - set EOR interrupt for RX buffer 0
				0010 - set EOR interrupt for RX buffer 1
				0100 - set EOR interrupt for RX buffer 2
				1000 - set EOR interrupt for RX buffer 3
				0000 - no effect

15. PN7462AU USB

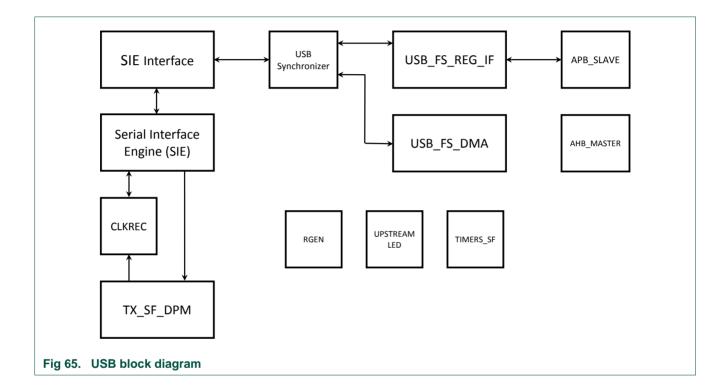
The Universal Serial Bus (USB) is a four-wire bus that supports communication between a host and one or more (up to 127) peripherals. The host controller allocates the USB bandwidth to attached devices through a token-based protocol. The bus supports hot plugging and dynamic configuration of the devices. All transactions are initiated by the host controller.

15.1 USB features

- Fully compliant with USB 2.0 specification (full speed)
- Dedicated USB PLL available
- Supports 14 physical (7 logical) endpoints including one control endpoint
- Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types.
- Single or double buffering allowed
- Support wake-up from Suspend mode on USB activity and remote wake-up
- Soft connect supported

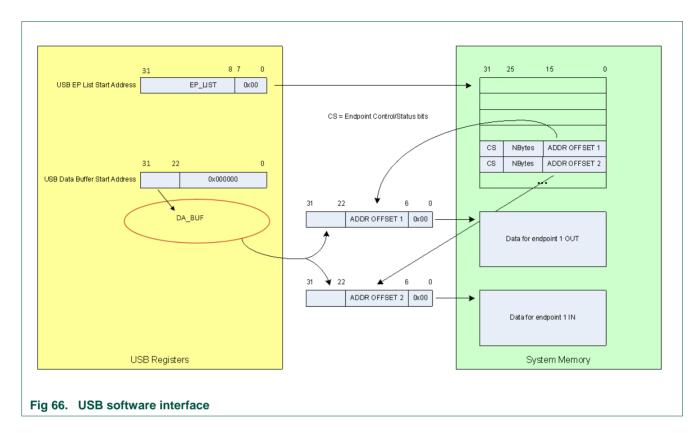
15.2 General description

The host schedules transactions in 1 ms frames. Each frame contains a Start-Of-Frame (SOF) marker and transactions that transfer data to or from device endpoints.


PN7462 HW user manual

There are four types of transfers defined for the endpoints. Control transfers are used to configure the device.

Interrupt transfers are used for periodic data transfer. Bulk transfers are used when the latency of transfer is not critical. Isochronous transfers have guaranteed delivery time but no error correction.


The USB device controller on the PN7462AU enables full-speed (12 Mbit/s) data exchange with a USB host controller.

The picture below shows the block diagram of the USB device controller.

PN7462 HW user manual

15.2.1 USB software interface

15.3 Functional description

15.3.1 Endpoint command/status list

The picture below gives an overview on how the endpoint list is organized in the memory. The USB EP Command/Status List start register points to the start of the list that contains all the endpoint information in the memory. The order of the endpoints is fixed as shown in the picture.

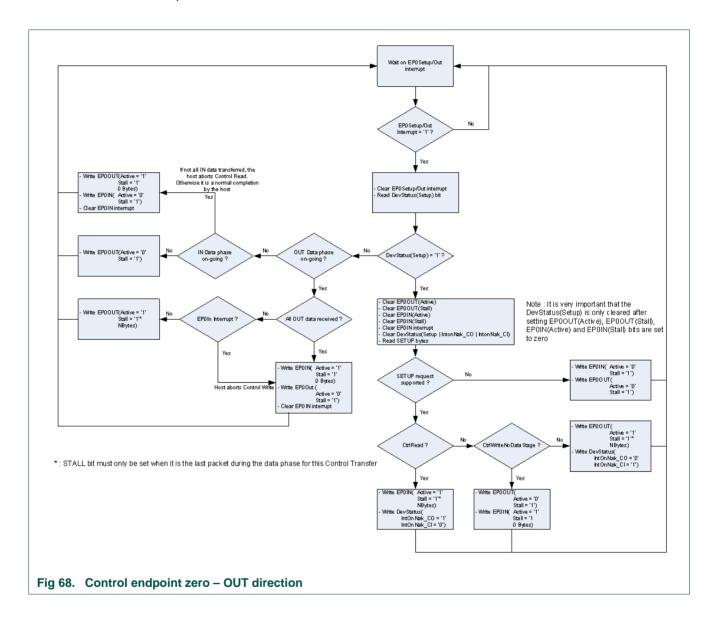
PN7462 HW user manual

Fig 67. Endpoint command/status list

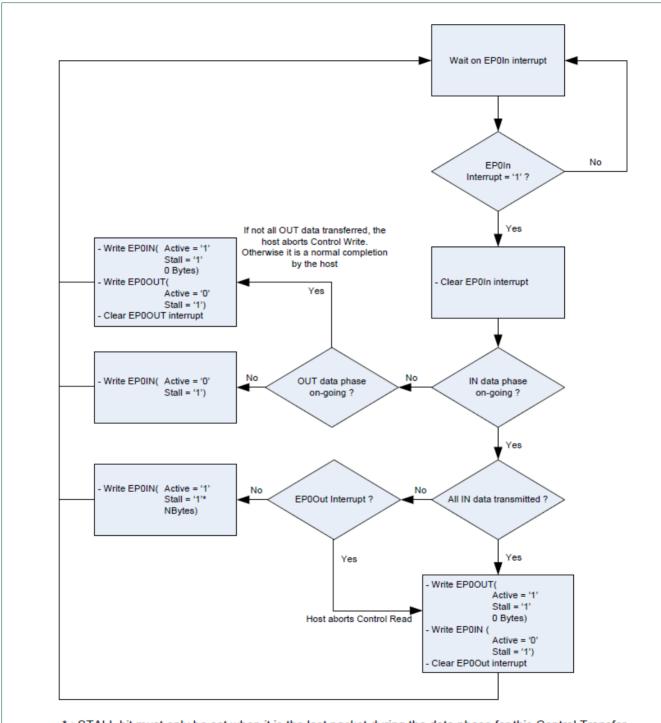
Table 354. Endpoint Commands

Symbol	Access	Description
Α	R/W	Active
		The buffer is enabled. hardware can use the buffer to store received OUT data or to transmit data on the IN endpoint.
		Firmware can only set this bit to "1". As long as this bit is set to one, firmware is not allowed to update any of the values in this 32-bit word. In case firmware wants to deactivate the buffer, it must write a one to the corresponding "skip" bit in the USB Endpoint skip register. Hardware can only write this bit to zero. It will do this when it receives a short packet or when the NBytes field transitions to zero or when firmware has written a one to the "skip" bit.
D	R/W	Disabled
		"0": The selected endpoint is enabled.
		"1": The selected endpoint is disabled.
		When a bus reset is received, firmware must set the disable bit of all endpoints to "1".
		Firmware can only modify this bit when the active bit is zero.
S	R/W	Stall
		"0": The selected endpoint is not stalled
		"1": The selected endpoint is stalled
		The Active bit has always higher priority than the Stall bit. This means that a Stall handshake is only sent when the active bit is zero.
		Firmware can only modify this bit when the active bit is zero.
TR	R/W	Toggle reset
		When firmware set this bit to one, the hardware will set the toggle value equal to the value indicated in the "toggle value" (TV) bit.
		For the control endpoint zero, this is not needed to be used because the hardware resets the endpoint toggle to one for both directions when a setup token is received.

PN7462 HW user manual


Symbol	Access	Description
		For the other endpoints, the toggle can only be reset to zero when the endpoint is reset.
RF/TV	R/W	Rate feedback mode / toggle value
		For bulk endpoints and isochronous endpoints this bit is reserved and must be set to zero.
		For the control endpoint zero this bit is used as the toggle value. When the toggle reset bit is set, the data toggle is updated with the value programmed in this bit.
		When the endpoint is used as an interrupt endpoint, it can be set to the following values.
		"0": Interrupt endpoint in "toggle mode"
		"1": Interrupt endpoint in "rate feedback mode". This means that the data toggle is fixed to zero for all data packets.
		When the interrupt endpoint is in "rate feedback mode", the TR bit must always be set to zero.
Т	R/W	Endpoint type
		"0": Generic endpoint. The endpoint is configured as a bulk or interrupt endpoint
		"1": Isochronous endpoint
NBytes	R/W	For OUT endpoints this is the number of bytes that can be received in this buffer.
		For IN endpoints this is the number of bytes that must be transmitted.
		Hardware decrements this value with the packet size every time when a packet is successfully transferred.
		Note: If a short packet is received on an OUT endpoint, the active bit will be cleared and the NBytes value indicates the remaining buffer space that is not used. Firmware calculates the received number of bytes by subtracting the remaining NBytes from the programmed value.
Address		Bits 21 down to 6 of the buffer start address.
Offset		This address offset is updated by hardware after each successful reception/transmission of a packet. Hardware increments the original value with the rounded up integer value when the packet size is divided by 64.

Note: When receiving a SETUP token for endpoint zero, the hardware will only read the SETUP bytes buffer address offset to know where it has to store the received SETUP bytes. Hardware will ignore all other fields. In case the SETUP stage contains more than 8 bytes, it will only write the first 8 bytes to memory. A USB compliant host must never send more than 8 bytes during the SETUP stage.


PN7462 HW user manual

15.3.2 Control endpoint zero

The flow charts in this section indicate how the firmware can handle the different endpoints.

PN7462 HW user manual

^{*:} STALL bit must only be set when it is the last packet during the data phase for this Control Transfer

Fig 69. Control endpoint 0 - IN direction

PN7462 HW user manual

15.3.3 Generic endpoint

15.3.3.1 Generic endpoint - single buffering

To enable single buffering, firmware must set the corresponding "USB EP Buffer Config" bit to zero. In the "USB EP Buffer in use" register, firmware can indicate which buffer is used in this case.

When firmware wants to transfer data, it programs the different bits in the endpoint command/status entry and sets the active bits. Hardware will transmit/receive multiple packets for this endpoint until the NBytes value is equal to zero. When NBytes goes to zero, hardware clears the active bit and sets the corresponding interrupt status bit.

Firmware must wait until hardware has cleared the active bit to change some of the command/status bits. This prevents that hardware will overwrite a new value programmed by firmware with some old values that were still cached.

If firmware wants to disable the active bit before the hardware has finished handling complete buffer, it can do this by setting the corresponding endpoint skip bit in USB endpoint skip register.

15.3.3.2 Generic endpoint - double buffering

To enable double buffering, firmware must set the corresponding "USB EP Buffer Config" bit to one. The "USB EP Buffer in use" register indicates which buffer will be used by hardware when the next token is received.

When hardware clears the active bit of the current buffer in use, it will switch the buffer in use. Firmware can also force hardware to use a certain buffer by writing to the "USB EP Buffer in use" bit.

15.3.4 Special cases

15.3.4.1 Usage of the Active bit

The use of active bit is a different between OUT and IN endpoints.

When data must be received for the OUT endpoint, the firmware will set the Active bit to one and program the NBytes field to the maximum number of bytes it can receive.

When data must be transmitted for an IN endpoint, the firmware sets the Active bit to one and programs the NBytes field to the number of bytes that must be transmitted.

15.3.4.2 Generation of a STALL handshake

Special care must be taken in programming the endpoint to send a STALL handshake. A STALL handshake is only sent in the following situations:

- The endpoint is enabled (Disabled bit = "0")
- The active bit of the endpoint is set to zero (No packet needs to be received/transmitted for that endpoint)

15.3.4.3 Clear feature (Endpoint HALt)

When a non-control endpoint has returned a STALL handshake, the host will send a Clear Feature (Endpoint HALt) for that endpoint. When the device receives this request, the endpoint must be unstalled and the toggle bit for that endpoint must be reset back to zero. In order to do that the firmware must program the following items for the endpoint that is indicated.

PN7462 HW user manual

If the endpoint is used in single buffer mode, program the following:

- Set STALL bit (S) to zero
- Set toggle reset bit (TR) to one and set toggle value bit (TV) to zero

If the endpoint is used in double buffer mode, program the following:

- Set the STALL bit of buffer 0 and buffer 1 to 0.
- · Read the buffer in use bit for this endpoint
- Set the toggle reset bit (TR) to 1 and set the toggle value bit (TV) to 0 for the buffer indicated by the buffer in use bit.

15.3.4.4 Set configuration

When a set configuration request is received with a configuration value different from zero, the device firmware must enable all endpoints that will be used in this configuration and reset all the toggle values. To do so, it must generate the procedure explained in clear feature (endpoint HALT) for every endpoint that will be used in this configuration.

For all endpoints that are not used in this configuration, it must set the disabled bit (D) to one.

15.3.4.5 Suspend and resume

The USB suspend mode has been introduced in <u>Section 8.2</u>. The USB protocol enforces power management by the USB device. This becomes even more important if the device draws power from the bus (bus-powered device). The following constraints should be met by the bus-powered device:

- A device in the non-configured state should draw only a maximum of 100mA from the USB bus.
- A configured device can draw only up to what is specified in the Max Power field of the configuration descriptor. The maximum value is 500 mA
- A suspended device should draw only a maximum of 500 uA.

A device will go into the suspend mode if there is no activity on the USB bus for more than 3 ms. A suspended device wakes up, if there is transmission from the host (host-initiated wake up). The USB interface also supports software initiated remote wake up. To initiate this, software on the device must enable all clocks and clear the suspend bit. This will cause the hardware to generate a remote wake up signal upstream.

The assertion of the output signal indicates that there was no activity on the USB bus for the last 3 ms. At this time an interrupt is sent to the processor on which the software can start preparing the device for suspend.

If there is no activity for the next 2 ms, the signal indicating need for the clock will go low. This means that the main clock can be switched off. When activity is detected on the USB bus, USB suspend is deactivated and the signal indicating signal indicating need for the clock is activated.

PN7462 HW user manual

15.4 Register overview and functions

This section gives an overview of the register set used to control the hardware functionalities of the USB full speed device controller.

15.4.1 Register overview

Table 355. Register overview (base address 0x4002 8000)

Table 355.	Register overview (base address 0x4002 8000)				
Address offset	Register name	Access	Description		
0x00	USB device Command/Status register	R/W (C)	This register contains all the fields to control the behavior of the USB device		
0x04	USB Info register	RO	This register contains the frame number of the last received SOF, the ChipID and the error code		
0x08	USB Endpoint List start address	R/W	This register contains the start address of the endpoint list that are stored in memory.		
0x0C	USB Data Buffer start address	R/W	This register contains the start address of the endpoint data buffers in memory		
0x10	USB Link Power Management	R/W	This register contains the fields for the link power management support		
0x14	USB EP skip	R/W	This register is used to indicate to hardware that it has to deactivate the corresponding endpoint (set active bit to zero)		
0x18	USB EP Buffer in use	R/W	This bit is used for double buffering. It indicates which buffer is in-use for each endpoint		
0x1C	USB EP Buffer configuration register	R/W	This bit indicates if the endpoint has single buffering or double buffering		
0x20	USB Interrupt status register	R/W	This register contains the status bits of the different interrupts		
0x24	USB Interrupt enable register	R/W	This register contains the enable bits of the different interrupts. If this bit is set and the corresponding interrupt status bit is set a hardware interrupt is generated		
0x28	USB Set Interrupt status register	R/W	If '1' is written to one of the bits of this register, the corresponding interrupt status bit is set to one. When this register is read, it returns the same value as the USB Interrupt status register		
0x2C	USB Interrupt routing register	R/W	Each interrupt bit has a corresponding interrupt routing bit. If the interrupt routing bit is set to zero, a hardware interrupt will be generated on the IRQ line if both the corresponding interrupt status and interrupt enable bits are set.		
			If the interrupt routing bit is set to one, a hardware interrupt is generated on the FIQ line if both the corresponding interrupt status and interrupt enable bits are set		
0x30	USB configuration	RO	This contains the configuration values as specified in section 6 (R&D document)		
0x34	USB EP toggle	RO	This debug register is used to indicate the current data toggle value of the corresponding endpoint		

PN7462 HW user manual

15.4.2 Register description

The following chapter describes the register on a bit level.

15.4.2.1 USB device command/ Status register

Table 356. USB device command/ Status register (address offset = 0x00)

Reset value: 0x00000800

Bit	Symbol	Value	Description	Reset Value	Access
6:0	DEV_ADDR		USB device address. After bus reset, the address is reset to 0x00. If the enable bit is set, the device will respond on packets for function address DEV_ADDR. When receiving a SetAddress Control Request from the USB host, firmware must program the new address before completing the status phase of the SetAddress control request.	0	R/W
7	DEV_EN		USB device enable. If this bit is set, the hardware will start responding on packets for function address DEV_ADDR	0	R/W
8	SETUP		SETUP token received. If a SETUP token is received and acknowledged by the device, this bit is set. As long as this bit is set all received IN and OUT tokens will be NAKed by hardware. SW must clear this bit by writing a one. If this bit is zero, hardware will handle the tokens to the CTRL EP0 as indicated by the CTRL EP0 IN and OUT data information programmed by SW.	0	R/W/C
9	PLL_ON		Always PLL Clock on:	0	R/W
		0	USB_NeedClk functional		
		1	USB_NeedClk always "1". Clock will not be stopped in case of suspend		
10	RESERVED		Reserved	0	RO
11	LPM_SUP		1	R/W	
		0	LPM not supported. hardware returns no handshake when receiving an LPM token		
		1	LPM supported		
12	IntOnNAK_AO		Interrupt on NAK for interrupt and bulk OUT EP	0	R/W
		0	Only acknowledged packets generate an interrupt		
		1	Both acknowledged and NAKed packets generate interrupts		
13	IntOnNAK_AI		Interrupt on NAK for interrupt and bulk IN EP	0	R/W
		0	Only acknowledged packets generate an interrupt		
		1	Both acknowledged and NAKed packets generate interrupts		
14	IntOnNAK_CO		Interrupt on NAK for control OUT EP	0	R/W
		0	Only acknowledged packets generate an interrupt		
		1	Both acknowledged and NAKed packets generate interrupts		
15	IntOnNAK_CI		Interrupt on NAK for control IN EP	0	R/W
		0	Only acknowledged packets generate an interrupt		
		1	Both acknowledged and NAKed packets generate interrupts		

PN7462 HW user manual

Bit	Symbol	Value	Description	Reset Value	Access
16	DCON		Device status – connect. The connect bit must be set by SW to indicate that the device must signal connect. The pull-up resistor on D+ will be enabled when this bit is set and the VbusDebounced bit is one.	0	R/W
17	DSUS		Device status – suspend. The suspend bit indicates the current suspend state. It is set to 1 when the device hasn't seen any activity on its upstream port for more than 3 milliseconds. It is reset to 0 on any activity. When the device is suspended (Suspend bit = 1) and the firmware writes a 0 to it, the device will generate a remote wakeup. This will only happen when the device is connected (Connect bit = 1). When the device is not connected or not suspended, a writing a 0 has no effect. Writing a 1 has never an effect.	0	R/W
18	RESERVED		Reserved	0	RO
19	LPM_SUS		Device status – LPM Suspend. This bit represents the current LPM suspend state. It is set to 1 by hardware when the device has acknowledged the LPM request from the USB host and the Token Retry Time of 10 µs has elapsed. When the device is in the LPM suspended state (LPM suspend bit = 1) and the firmware writes a zero to this bit, the device will generate a remote wakeup. Firmware can only write a zero to this bit when the LPM_REWP bit is set to 1. Hardware resets this bit when it receives a host initiated resume. Hardware only updates the LPM_SUS bit when the LPM_SUPP bit is equal to one.	0	R/W
20	LPM_REWP		LPM Remote Wakeup Enabled by USB host. Hardware sets this bit to one when the bRemoteWake bit in the LPM extended token is set to 1. Hardware will reset this bit to 0 when it receives the host initiated LPM resume, when a remote wakeup is sent by the device or when a USB bus reset is received. Firmware can use this bit to check if the remote wake up feature is enabled by the host for the LPM transaction.	0	R/W
23:21	RESERVED		Reserved	0	RO
24	DCON_C		Device status – connect change. The connect change bit is set when the devices pull-up resistor is disconnected because VBus disappeared. The bit is reset by firmware writing a one to it.	0	R/W/C
25	DSUS_C		Device status – suspend change. The suspend change bit is set to 1 when the suspend bit toggles. The suspend bit can toggle because: - The device goes in the suspended state - The device is disconnected - The device receives resume signaling on its upstream port The bit is reset by firmware writing a one to it.	0	R/W/C
26	DRES_C		Device status – reset change. This bit is set when the device received a bus reset. On a bus reset the device will automatically go to the default state (unconfigured and responding to address 0). The bit is reset by firmware writing a one to it.	0	R/W/C

UM10858 NXP Semiconductors

PN7462 HW user manual

Bit	Symbol	Value	Description	Reset Value	Access
28	VbusDebounced		This bit indicates if Vbus is detected or not. The bit raises immediately when Vbus becomes high. It drops to zero if Vbus is low for at least 3 ms. If this bit is high and the DCon bit is set, the hardware will enable the pull-up resistor to signal a connect.	0	RO
31:29	RESERVED		Reserved	0	RO

15.4.2.2 USB info register

Table 357. USB info register (address offset = 0x04) Reset value: depends on the CHIP ID value

Bit	Symbol	Value	Description	Reset Value	Access
10:0	FRAME_NR		Frame number. It contains the frame number of the last successfully received SOF. In case no SOF was received by the device at the beginning of a frame, the frame number returned is that of the last successfully received SOF. In case the SOF frame number contained a CRC error, the frame number returned will be the corrupted frame number as received by the device.	0	RO
14:11	ERR_CODE		error code which last occurred:	0	R/W
		0x0	No error		
		0x1	PID encoding error		
		0x2	PID unknown		
		0x3	Packet unexpected		
		0x4	Token CRC error		
		0x5	Data CRC error		
		0x6	Time out		
		0x7	Babble		
		0x8	Truncated EOP		
		0x9	Sent/receive NAK		
		0xA	Sent stall		
		0xB	Overrun		
		0xC	Sent empty packet		
		0xD	Bitstuff error		
		0xE	Sync error		
		0xF	Wrong data toggle		
15	RESERVED		Reserved	0	RO
31:16	CHIP_ID		Chip identification: indicates major and minor revision of the IP	0	RO
			- [31:24] = Major revision		
			- [23:16] = Minor revision		

PN7462 HW user manual

15.4.2.3 USB EP command/ Status list start address

This 32-bit register indicates the start address of the USB EP command/ status list. Only a subset of these bits is programmable by software. The 8 least-significant bits are hardcoded to zero because the list must start on a 256 byte boundary. Bits 31 to 8 can be programmed by software.

Table 358. USB EP command/status list address (address offset = 0x08)

Reset value: see configuration values

Bit	Symbol	Description	Reset value	Access
7:0	RESERVED	Reserved		RO
31:8	EP_LIST	These are the programmable bits for firmware to indicate the start address of the USB EP Command/Status List.		R/W

15.4.2.4 USB data buffer start address

This 32-bit register indicates the page of the AHB address where the endpoint data can be located

Table 359. USB data buffer start address (address offset = 0x0C)

Reset value: see configuration values

Bit	Symbol	Description	Reset Value	Access
21:0	RESERVED	Reserved		RO
31:22	DA_BUF	These are the programmable bits for firmware to indicate the buffer pointer page where all endpoint data buffers are located.		R/W

15.4.2.5 Link Power Management register

Table 360. Link Power Management register (address offset = 0x10)

Reset value: 0x00000000

Bit	Symbol	Description	Reset Value	Access
3:0	HIRD_HW	Host initiated resume duration - hardware This is the HIRD value from the last received LPM token	0	RO
7:4	HIRD_SW	Host initiated resume duration - software This is the time duration required by the USB device system to come out of LPM initiated suspend after receiving the host initiated LPM resume.	0	R/W
8	Data Pending	As long as this bit is set to one and LPM supported bit is set to one, hardware will return a NYET handshake on every LPM token it receives. If LPM supported bit is set to one and this bit is zero, hardware will return an ACK handshake on every LPM token it receives. If SW has still data pending and LPM is supported, it must set this bit to "1".		R/W
31:9	RESERVED	Reserved	0	RO

PN7462 HW user manual

15.4.2.6 USB Endpoint skip

Table 361. USB Endpoint skip (address offset = 0x14)

Reset value: 0x00000000

Bit	Symbol	Description	Reset Value	Access
29:0	SKIP	Endpoint skip: Writing "1 to one of these bits, will indicate to hardware that it must deactivate the buffer assigned to this endpoint and return control back to firmware. When hardware has deactivated the endpoint it will clear this bit. But it will not modify the "Buffer in use" bit. An interrupt will be generated when the Active bit goes from "1" to "0".	0	R/W
		Note: In case of double buffering, hardware will only clear the Active bit of the buffer indicated by the "Buffer in use" bit.		
31:30	RESERVE D	Reserved	0	RO

15.4.2.7 USB Endpoint Buffer in use

Table 362. USB Endpoint Buffer in use (address offset = 0x18)

Reset value: 0x00000000

Bit	Symbol	Value	Description	Reset Value	Access
1:0	-		Reserved	0	RO
29:2	BUF		Buffer in use – This bit has one bit per physical endpoint	0	R/W
		0	hardware is accessing buffer 0		
		1	hardware is accessing buffer 1		
31:30	RESERVED		Reserved	0	RO

15.4.2.8 USB Endpoint Buffer Configuration

Table 363. USB Endpoint Buffer Configuration (address offset = 0x1C)

Reset value: 0x00000000

Bit	Symbol	Value	Description	Reset Value	Access
1:0	RESERVED	0	Reserved. Fixed to zero because the control endpoint zero is fixed to single buffering for each physical endpoint.	0	RO
29:2	BUF_SB		Buffer usage – This bit has one bit per physical endpoint. If the bit is set to single buffer ("0"), it will not toggle the corresponding "USB EP Buffer in use" bit when it clears the active bit.	0	R/W
			If the bit is set to double buffer ("1"), hardware will toggle the "USB EP Buffer in use" bit when it clears the Active bit for the buffer.		
		0	Single buffer		
		1	Double buffer		
31:30	RESERVED		Reserved	0	RO

PN7462 HW user manual

15.4.2.9 USB Interrupt status register

Table 364. USB Interrupt status register (address offset = 0x20)

Bit	Symbol	Description	Reset	Access
			Value	
0	EP0OUT	Interrupt status register bit for the Control EP0 OUT direction. This bit will be set if NBytes transitions to zero or the skip bit is set by firmware or a SETUP packet is successfully received for the control EP0. If the IntOnNAK_CO is set, this bit will also be set when a NAK is transmitted for the Control EP0 OUT direction. Firmware can clear this bit by writing a one to it.	0	R/W/C
1	EP0IN	Interrupt status register bit for the Control EP0 IN direction. This bit will be set if NBytes transitions to zero or the skip bit is set by firmware. If the IntOnNAK_CI is set, this bit will also be set when a NAK is transmitted for the Control EP0 IN direction. Firmware can clear this bit by writing a one to it.	0	R/W/C
2	EP1OUT	Interrupt status register bit for the EP1 OUT direction. This bit will be set if the corresponding Active bit is cleared by hardware. This is done in case the programmed NBytes transitions to zero or the skip bit is set by firmware. If the IntOnNAK_AO is set, this bit will also be set when a NAK is transmitted for the EP1 OUT direction. Firmware can clear this bit by writing a one to it.	0	R/W/C
3	EP1IN	Interrupt status register bit for the EP1 IN direction. This bit will be set if the corresponding Active bit is cleared by hardware. This is done in case the programmed NBytes transitions to zero or the skip bit is set by firmware. If the IntOnNAK_AI is set, this bit will also be set when a NAK is transmitted for the EP1 IN direction. Firmware can clear this bit by writing a one to it.	0	R/W/C
28	EP14OUT	Interrupt status register bit for the EP14 OUT direction. This bit will be set if the corresponding Active bit is cleared by hardware. This is done in case the programmed NBytes transitions to zero or the corresponding skip bit is set by firmware. If the IntOnNAK_AO is set, this bit will also be set when a NAK is transmitted for the EP14 OUT direction. Firmware can clear this bit by writing a one to it.	0	R/W/C
29	EP14IN	Interrupt status register bit for the EP14 IN direction. This bit will be set if the corresponding Active bit is cleared by hardware. This is done in case the programmed NBytes transitions to zero or the corresponding skip bit is set by firmware. If the IntOnNAK_AI is set, this bit will also be set when a NAK is transmitted for the EP14 IN direction. Firmware can clear this bit by writing a one to it.	0	R/W/C
30	FRAME_INT	Frame interrupt. This bit is set to one every millisecond when the VbusDebounced bit and the DCON bit are set. This bit can be used by software when handling the isochronous endpoints. Firmware can clear this bit by writing a one to it.	0	R/W/C
31	DEV_INT	Device status interrupt. This bit is set by hardware when one of the device status change bits is set. Firmware can clear this bit by writing a one to it.	0	R/W/C

PN7462 HW user manual

15.4.2.10 USB Interrupt enable register

Table 365. USB Interrupt enable register (address offset = 0x24)

Reset value: 0x00000000

Bit	Symbol	Value	Description	Reset Value	Access
31:0	INT_EN		If this bit is set and the corresponding USB interrupt status bit is set a hardware interrupt is generated on the interrupt line indicated by the corresponding USB interrupt routing bit.	0	R/W

15.4.2.11 USB set interrupt status register

Table 366. USB set interrupt status register (address offset = 0x28)

Reset value: 0x00000000

Bit	Symbol	Value	Description	Reset Value	Access
31:0	SET_EN		If firmware writes a one to one of these bits, the corresponding USB interrupt status bit is set. When this register is read, the same value as the USB interrupt status register is returned.	0	R/W

15.4.2.12 USB interrupt routing register

Table 367. USB interrupt routing register (address offset = 0x2C)

Reset value: 0x00000000

Bit	Symbol	Value	Description	Reset Value	Access
31:0	ROUTE_INT		This bit can control on which hardware interrupt line the interrupt will be generated:	0 R/V	R/W
		0	IRQ interrupt line is selected for this interrupt bit		
		1	FIQ interrupt line is selected for this interrupt bit		

15.4.2.13 USB configuration

Table 368. USB configuration (address offset = 0x30)

Reset value: see configuration values

Bit	Symbol	Value	Description	Reset Value	Access
4:0	PHYSEP		Number of physical endpoints implemented in this design (excluding the default control endpoint). E.g. a value of 2 in this field indicates that the design contains the default control endpoint plus one IN endpoint (EP1 – IN) and one OUT endpoint (EP1 – OUT)		RO
5	SB		EP single buffer supported		RO
6	DB		EP double buffer supported		RO

PN7462 HW user manual

Bit	Symbol	Value	Description	Reset Value	Access
7	TREG		Toggle register available This indicates if the Data Toggle debug register is reserved or not.		RO
31:8	RESERVED		Reserved		RO

15.4.2.14 USB endpoint toggle

Table 369. USB endpoint toggle (address offset = 0x34)

Reset value: 0x00000000

Bit	Symbol	Value	Description	Reset Value	Access
29:0	TOGGLE		Endpoint data toggle: This field indicates the current value of the data toggle for the corresponding endpoint.		RO
31:30	RESERVED		Reserved		RO

15.4.2.15 USB internal PLL

Table 370. USB internal PLL (address offset = 0x38)

Reset value: 0x00000000

Bit	Symbol	Value	Description	Reset Value	Access
0	SEL_EXT_CLK		Select external crystal clock.	0	R/W
			Internal PLL and RC circuit is selected as input clock for the USB block		
		1	External clock input pin is selected as input clock for USB block. The input clock must be 48MHz in this case.		
31:3	RESERVED		Reserved	0	R/W

PN7462 HW user manual

16. Abbreviations

Table 371.	Abbreviations
------------	---------------

Abbreviatio	ns
Acronym	Description
AL	Application Layer
ACK	Acknowledgement
AFI	Application family identifiers
ATQA	Answer To Request, type A
BAL	Bus Abstraction Layer
СВ	Callback
CC	Connection Complete (in LLCP)
CRC	Cyclic Redundancy Check
DEP	Data Exchange Protocol
DID	Device Identifier
DISC	Disconnect (in LLCP)
DM	Disconnected Mode (in LLCP)
EEPROM	Electrically Erasable Programmable Read-Only Memory
FRI	Forum reference implementation
FRMR	Frame Reject (in LLCP)
GPIO	General Purpose Input Output
HAL	Hardware Abstraction Layer
I	Information (in LLCP)
I2C	Inter-Interchanged Circuit
IC	Integrated Circuit
LLC	Logical Link Control
LLCP	Logical Link Control Protocol
LRI	Long range interface
LTO	Link Timeout (in LLCP)
LUT	Lookup Table
MAC	Medium Access Control (in LLCP)
MCU	MicroController Unit
MF	MIFARE
MIU	Maximum Information Unit
MIUX	Maximum Information Unit Extension
NAD	Node ADdress
NAK	Negative AcKnowledgement
NDEF	NFC Data Exchange Format
NFC	Near Field Communication
NFCIP	NFC Interface and Protocol
OPT	Option link Parameter

PN7462 HW user manual

Acronym	Description
PAL	Protocol Abstraction Layer
PAX	PArameter eXchange
PCD	Proximity Coupling Device
PICC	Proximity Integrated Circuit Card
PDU	Protocol Data Unit
PTYPE	PDU TYPE
RNR	Receive Not Ready
RR	Receive Ready
RW	Receive window size
SAM	Secure Access Module
SAP	Service Access Point
DSAP	Destination Service Access Point
SSAP	Source Service Access Point
SNEP	Simple NDEF Exchange Protocol
SPI	Serial Peripheral Interface
SYMM	SYMMetry token
UID	Unnumbered Information
UID	Unique IDentifier
WKS	Well Known Services

PN7462 HW user manual

17. Legal information

17.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

17.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party

customer(s). NXP does not accept any liability in this respect. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

17.3 Licenses

Purchase of NXP ICs with NFC technology

Purchase of an NXP Semiconductors IC that complies with one of the Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481 does not convey an implied license under any patent right infringed by implementation of any of those standards. Purchase of NXP Semiconductors IC does not include a license to any NXP patent (or other IP right) covering combinations of those products with other products, whether hardware or software.

Purchase of NXP ICs with ISO 14443 type B functionality

This NXP Semiconductors IC is ISO/IEC 14443 Type B software enabled and is licensed under Innovatron's Contactless Card patents license for ISO/IEC 14443 B.

The license includes the right to use the IC in systems and/or end-user equipment.

RATP/Innovatron Technology

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

MIFARE — is a trademark of NXP B.V.

I2C-bus logo — is a trademark of NXP B.V

ICODE — is trademark of NXP B.V.

18. List of figures

Fig 1.	Block diagram7	Fig 35.	ATR counter timings checked (with default	
Fig 2.	PN7462 Memory map8		values)	203
Fig 3.	APB memory map9	Fig 36.	Contact interface architecture	205
Fig 4.	Flash memory mapping10	Fig 37.	External TDA8026 connection	206
Fig 5.	EEPROM memory mapping11	Fig 38.	Registers overview per function	210
Fig 6.	SRAM memory mapping12	Fig 39.	ETU (and card clock CLK) generation	213
Fig 7.	Block diagram of EEPROM/FLASH controller	Fig 40.	I2C bus configuration	229
	module13	Fig 41.	TX programming Flowchart	231
Fig 8.	Powering the PN7462AU microcontroller30	Fig 42.	RX programming Flowchart	232
Fig 9.	Powering the contactless interface – using a	Fig 43.	I2C external wiring diagram	234
	single power supply31	Fig 44.	I2C master transmitter example	245
Fig 10.	Powering the contactless interface – using an	Fig 45.	I2C master receiver example	246
	external RF transmitter supply32	Fig 46.	Connection between SPI master and slaves	s.247
Fig 11.	Powering the contact interface33	Fig 47.	SPI protocol with CPHA = 0 & NSS_PULSE	$\dot{\Xi} = 0$
Fig 12.	Contact interface power supply connection	_		248
	when the contact interface is not used33	Fig 48.	SPI protocol with CPHA = 1 & NSS_PULSE	= 0
Fig 13.	PMU Module, LDOs and power pins overview 34			249
Fig 14.	PN7462AU basic schematic36	Fig 49.	SPI protocol with CPHA = 0 & NSS_PULSE	
Fig 15.	Block diagram of PMU38			
Fig 16.	Clock generator block diagram51	Fig 50.	SPI packed structure	250
Fig 17.	27.12 MHz crystal oscillator connection52	Fig 51.	RX data storage into memory. Defined/	
Fig 18.	PLL/ XTAL clock path diagram54	F: 50	undefined data	250
Fig 19.	Block diagram of PCR Unit68	Fig 52.	TX CRC computation with	
Fig 20.	Clock Box control74		TX_CRC_PAYLOAD_OFFSET=1 and TX_APPEND_CRC=1	251
Fig 21.	Clock gating76	Fig 53.	TX CRC computation with	201
Fig 22.	Block diagram of RNG module121	1 lg 55.	TX_CRC_PAYLOAD_OFFSET=1 and	
Fig 23.	ISO/IEC 14443 A/MIFARE read/write mode		TX_APPEND_CRC=0	252
	communication diagram131	Fig 54.	RX CRC computation with	
Fig 24.	Data coding and framing according to ISO/IEC	Ü	RX_CRC_PAYLOAD_OFFSET=1	252
- : 0-	14443 A card response132	Fig 55.	Block diagram of Host interface block	261
Fig 25.	ISO/IEC 14443B read/write mode	Fig 56.	I2C Device ID Bit stream	265
Eig 26	communication diagram	Fig 57.	SPI HDLL mode examples	267
Fig 26.	FeliCa read/ write communication diagram133	Fig 58.	SPI Native Mode (full duplex)	268
Fig 27.	RXMultiple data format	Fig 59.	HSU byte transmission	270
Fig 28.	ISO/IEC 15693 read/write mode communication diagram135	Fig 60.	HS UART bit correction	
Fig 29.	Active communication mode	Fig 61.	EOF_SIZE: max inter-byte delay and min in	
Fig 30.	Passive communication mode	· ·	frame delay	
-	Contactless interface	Fig 62.	RTS generation, frame based	273
Fig 31.		Fig 63.	HS UART-Buf_mgt protocol for transmit	
Fig 32.	Lookup tables for AGC value dependent dynamic configuration192		sequence	275
Fig 33.	Transmitter supply voltage configuration,	Fig 64.	Data-link layer frame format	279
ı ıy 33.	V _{DD(TVDD)} > 3.5 V193	Fig 65.	USB block diagram	311
Fig 34.	Contact Application schematics200	Fig 66.	USB software interface	312
		Fig 67.	Endpoint command/status list	313

NXP Semiconductors

UM10858

PN7462 HW user manual

Fig 68.	Control endpoint zero – OUT direction	315
Fig 69.	Control endpoint 0 - IN direction	316

PN7462 HW user manual

19. List of tables

Table 1.	Ordering information6	Table 35.	Voltage monitor - possible threshold
Table 2.	Wait states for write access on EEPROM14		configuration39
Table 3.	Wait states for read access on EEPROM14		Latency of voltage monitors41
Table 4.	Wait states for write access on EEPROM15	Table 37.	PMU register overview (base address 0x4000
Table 5.	Wait states for read access on EEPROM15	T 11 00	8000)41
Table 6.	Clock generator register overview15		PMU_STATUS_REG (address offset 0x0000)42
Table 7.	EE_CTRL (address offset 0x0000h)16	Table 39.	PMU_BG_MON_CONTROL_REG (address
Table 8.	EE_DYN (address offset 0x0004h)17	Table 40	offset 0x0004)
Table 9.	EE_STAT_DAT (address offset 0x0008h)18	rable 40.	PMU_TXLDO_CONTROL_REG (address offset 0x0008)43
Table 10.	EE_STAT_COD (address offset 0x000Ch)18	Table 41.	
Table 11.	EE_CRC_DAT (address offset 0x0010h)19	Table +1.	0x000C)45
Table 12.	EE_CRC_DAT_ADDR (address offset 0x0014h)19	Table 42.	PMU_INTERRUPT_CLR_ENABLE_REG (address offset 0x3FD8)46
Table 13.	EE_CRC_1_COD_INIT (address offset 0x0018h)19	Table 43.	PMU_INTERRUPT_SET_ENABLE_REG (address offset 0x3FDC)46
Table 14.	EE_CRC_1_COD (address offset 0x001Ch) 19	Table 44	PMU_INTERRUPT_STATUS_REG (address
Table 15.	EE_CRC_1_COD_ADDR (address offset	Table 11.	offset 0x3FE0)47
	0x0020h)20	Table 45.	PMU_INTERRUPT_ENABLE_REG (address
Table 16.	EE_CRC_0_COD_INIT (address offset		offset 0x3FE4)48
	0x0024h)20	Table 46.	PMU_INTERRUPT_CLR_STATUS_REG
	EE_CRC_0_COD (address offset 0x0028h)20		(address offset 0x3FE8)48
Table 18.	EE_CRC_0_COD_ADDR (address offset	Table 47.	PMU_INTERRUPT_SET_STATUS_REG
Table 10	0x002Ch)20 EE_CRC_0_COD_ADDR (address offset	T-1-1- 40	(address offset 0x3FEC)
Table 19.	0x002Ch)20		TXLDO Register
Table 20	EE_TRIMM (address offset 0x003Ch)20		Crystal requirements
	EE_ECC_PF_AHB_ERROR_ADDR (address		Optimum divider settings for PLL1 and PLL257
14510 21.	offset 0x0044h)21	Table 51.	Clock generator register overview (base address 0x4001 0000)57
Table 22.	EE_INT_CLR_ENABLE (address offset	Table 52.	CLKGEN_STATUS_REG (address 0000h)58
	0x0FD8h)21		Oscillators Registers59
Table 23.	EE_INT_SET_ENABLE (address offset		CLKGEN_HFO_XTAL_REG (address 0004h) 59
	0x0FDCh)		CLKGEN_HFO_TRIMM_REG (address 0008h)
	EE_INT_STATUS (address offset 0x0FE0h)22		60
	EE_INT_ENABLE (address offset 0x0FE4h)23	Table 56.	USB PLL Registers60
	EE_INT_CLR_STATUS (address offset 0x0FE8h)23		CLKGEN_USB_PLL_CONTROL_REG (address 000Ch)61
Table 27.	EE_INT_SET_STATUS (address offset 0x0FECh)24	Table 58.	CLKGEN_USB_PLL_MDEC_WO_SOFTDEC_R
Table 28.	External interrupt sources25		EG (address 0010h)62
Table 29.	NVIC register overview26	Table 59.	
Table 30.	NVIC_IPRn bit assignments27		CLKGEN_USB_PLL_NDEC_PDEC_WO_SOFT
	SWD pinning28		DEC_REG (address 0014h)63
	SysTick timer (base address 0xE000 E000) 28	Table 60.	CLIF PLL register overview63
	Voltage and Supply pins connection overview 34	Table 61.	CLKGEN_CLIF_PLL1_CONTROL_REG
	Start-up times of LDOs38		(address 0018h)64

Table 62.	CLKGEN_CLIF_PLL2_CONTROL_REG (address 001Ch)64
Table 63.	
	CLKGEN_CLIF_PLL_GLOBAL_CONTROL_RE
	G (address 0020h)65
Table 64.	
	CLKGEN_INPUT_CLOCK_DETECTOR_CONT
	ROL_REG (address 0024h)66
Table 65.	CLKGEN_CLOCK_PRESENCE_BYPASS_REG
	(address 002Ch)66
Table 66.	Reset sources68
Table 67.	Boot reason decoding69
Table 68.	Standby prevention root causes70
Table 69.	LDOs/PLLs in power modes72
Table 70.	All digital controlled pads76
Table 71.	Register overview (base address 0x4002 4000)
	77
Table 72.	PCR_GPREG0_REG (address offset 0x00) 80
Table 73.	PCR_GPREG1_REG (address offset 0x04) 80
Table 74.	PCR_GPREG2_REG (address offset 0x08) 80
Table 75.	PCR_SYS_REG (address offset 0x0C)80
Table 76.	PCR_PMU_REG (address offset 0x10)81
Table 77.	PCR_RFLD_REG (address offset 0x14)82
Table 78.	PCR_TEMP_REG (address offset 0x18)83
Table 79.	PCR_HOSTIF_WAKEUP_CFG_REG (address
	offset 0x1C)84
Table 80.	PCR_WAKEUP_CFG_REG (address offset 0x20)84
Table 81.	PCR_GPIO_WAKEUP_CFG_REG (address
	offset 0x24)84
Table 82.	PCR_BOOT_REG (address offset 0x28)85
Table 83.	PCR_CTLR_REG (address offset 0x2C)85
Table 84.	PCR_CLK_CFG_REG (address offset 0x30)86
Table 85.	PCR_CLK_CFG2_REG (address offset 0x34)88
Table 86.	PCR_PADIN_REG (address offset 0x38) 89
Table 87.	PCR_PADOUT_REG (address offset 0x3C)90
Table 88.	PCR_PAD_ATX_A_REG (address offset 0x40)
T 11 00	90
Table 89.	PCR_PAD_ATX_B_REG (address offset 0x44)
T-bl- 00	91 DOD DAD ATY C DEC (address affect 0:40)
Table 90.	PCR_PAD_ATX_C_REG (address offset 0x48)
Table 04	91 DOD DAD ATV D DEC (address affect 0:40)
Table 91.	PCR_PAD_ATX_D_REG (address offset 0x4C)91
Table 92.	PCR_PADDWL_REQ_REG (address offset
I ADIE 92.	0x50)92
Table 93.	PCR_PAD_INT_AUX_REG (address offset
. abic 30.	0x54)92
	/

Table 94.	PCR_PAD_IO_AUX_REG (address offset 0x58)
Table 95.	PCR_PAD_CLK_AUX_REG (address offset 0x5C)93
Table 96.	PCR_PADIRQ_REG (address offset 0x60)93
Table 97.	PCR_PADGPIO1_REG (address offset 0x64) 93
Table 98.	PCR_PADGPIO2_REG (address offset 0x68) 94
Table 99.	PCR_PADGPIO3_REG (address offset 0x6C)94
	PCR_PADGPIO4_REG (address offset 0x70) 94
	PCR_PADGPIO5_REG (address offset 0x74) 95
	PCR_PADGPIO6_REG (address offset 0x78) 95
	PCR_PADGPIO7_REG (address offset 0x7C)95
Table 104.	PCR_PADGPIO8_REG (address offset 0x80) 96
	PCR_PADGPIO9_REG (address offset 0x84) 96
	PCR_PADGPIO10_REG (address offset 0x88)96
Table 107.	PCR_PADGPIO11_REG (address offset 0x8C)96
Table 108.	PCR_PADGPIO12_REG (address offset 0x90)
Table 109.	PCR_PADSWDIO_REG (address offset 0x94)
Table 110	PCR_PADIICM_REG (address offset 0xA4)97
	PCR_ANA_TX_STANDBY_REG (address offset
	0xA8)98
Table 112.	PCR_ANA_TXPROT_REG (address offset
	0xAC)98
Table 113.	PCR_SPIM_REG (address offset 0xB4)98
Table 114.	PCR_CTIF_REG (address offset 0xB8)99
Table 115.	PCR_HOSTIF_SAVE1_REG (address offset
	0xBC)100
Table 116.	PCR_HOSTIF_SAVE2_REG (address offset 0xC0)100
Table 117.	PCR_TXLDO_MON_REG (address offset 0xC4)
	PCR_BOOT2_REG (address offset 0xC8)100
	PCR_GPREG3_REG (address offset 0xCC) 101
	PCR_GPREG4_REG (address offset 0xD0).101
	PCR_GPREG5_REG (address offset 0xD4).101
Table 122.	PCR_GPREG6_REG (address offset 0xD8).101
	PCR_GPREG7_REG (address offset 0xDC) 101
Table 124.	PCR_GPIO_INT_ACTIVE_LOW_REG (address offset 0xE0)101
Table 125.	PCR_GPIO_INT_LEVEL_SENSE_REG (address offset 0xE4)102
Table 126.	PCR_GPIO_INT_ACTIVE_BOH_EDGE_REG
	(address offset 0xE8)103
Table 127.	PCR_SELECT_SYSTEMCLOCK_REG (address offset 0xEC)105

Table 128.	PCR_ADV_RFLD_REG (address offset 0xF0)105	Table 157.	TIMERS_TIMER2_TIMEOUT_REG (address offset 0x001C)126
Table 129.	PCR_ADV_RFLD_TEST_REG (address offset 0xF4)105	Table 158.	TIMERS_TIMER2_COUNT_REG (address offset 0x0020)126
Table 130.	PCR_INT_CLR_ENABLE_REG (address offset 0x3FD8)106	Table 159.	TIMERS_TIMER3_CONTROL_REG (address offset 0x0024)126
Table 131.	PCR_INT_SET_ENABLE_REG (address offset 0x3FDC)107	Table 160.	TIMERS_TIMER3_TIMEOUT_REG (address offset 0x0028)127
Table 132.	PCR_INT_STATUS_REG (address offset 0x3FE0)108	Table 161.	TIMERS_TIMER3_COUNT_REG (address offset 0x002C)127
Table 133.	PCR_INT_ENABLE_REG (address offset 0x3FE4)110	Table 162.	TIMERS_WDOG_CONTROL_REG (address offset 0x0030)127
Table 134.	PCR_INT_CLR_STATUS_REG (address offset 0x3FE8)111	Table 163.	TIMERS_WDOG_TIMEOUT_REG (address offset 0x0034)127
Table 135.	PCR_INT_SET_STATUS_REG (address offset 0x3FEC)112	Table 164.	TIMERS_WDOG_TRIGGER_INT_REG (address offset 0x0038)127
	CRC4 M1115	Table 165.	TIMERS_WDOG_COUNT_REG (address offset
	CRC4 M2116		0x003C)127
Table 138.	CRC register overview (base address 0x4000 C000)118		TIMERS_WDOG_INT_STATUS_REG (address offset 0x3FCC)128
Table 139.	CRC_CONTROL_REG (address offset 0x00)118	Table 167.	TIMERS_WDOG_INT_CLR_STATUS_REG (address offset 0x3FD0)128
Table 140.	CRC_DAT32_REG (address offset 0x04)119	Table 168.	TIMERS_WDOG_INT_SET_STATUS_REG
Table 141.	CRC_DAT16_REG (address offset 0x08)119		(address offset 0x3FD4)128
Table 142.	CRC_DAT8_REG (address offset 0x0C)119	Table 169.	TIMERS_INT_CLR_ENABLE_REG (address
	CRC_DAT_CALC_REG (address offset 0x10)		offset 0x3FD8)128
	CRC_DAT_PRELOAD_REG (address offset	Table 170.	TIMERS_INT_SET_ENABLE_REG (address offset 0x3FDC)128
	0x14)119	Table 171.	TIMERS_INT_STATUS_REG (address offset 0x3FE0)129
	Random number generator register overview (base address 0x4001 8000)122	Table 172.	TIMERS_INT_ENABLE_REG (address offset 0x3FE4)129
	RNG_STATUS_REG122	Table 173.	TIMERS_INT_CLR_STATUS_REG (address
	RNG_CONTROL_REG122		offset 0x3FE8)129
	Timer characteristics	Table 174.	TIMERS_INT_SET_STATUS_REG (address offset 0x3FEC)130
	C000)124	Table 175.	Communication overview for ISO/IEC 14443
Table 150.	TIMERS_TIMERO_CONTROL_REG (address offset 0x0000)125	Table 176	A/MIFARE reader/ writer131 Communication overview for ISO/IEC 14443 B
Table 151.	TIMERS_TIMERO_TIMEOUT_REG (address offset 0x0004)125		reader/ writer133
Table 152.	TIMERS_TIMERO_COUNT_REG (address offset 0x0008)125		Communication overview for FeliCa reader/ writer133
Table 153.	TIMERS_TIMER1_CONTROL_REG (address offset 0x000C)125		ISO/IEC 15693 reader/writer to label communication overview136
Table 154.	TIMERS_TIMER1_TIMEOUT_REG (address	Table 179.	Communication overview for active communication mode137
Table 155	offset 0x0010)126 TIMERS_TIMER1_COUNT_REG (address	Table 180.	Communication overview for active
	offset 0x0014)126	Table 191	communication mode138 ISO/IEC14443 A Card operation mode138
Table 156.	TIMERS_TIMER2_CONTROL_REG (address		
	offset 0x0018)126	1 abie 182.	ISO/IEC1443 B Card operation mode139

Table 183	. Framing and coding	139 T		CLIF_TIMER0_CONFIG_REG register (address
Γable 184	. Input clocks of CLIF			0078h)167
Table 185	. CLIF Register overview (base address 0x400 4000)	149		CLIF_TIMER1_CONFIG_REG register (address 007Ch)168
Table 186	. CLIF_CONTROL_REG register (address 0000h)			CLIF_TIMER2_CONFIG_REG register (address 0080h)170
Γable 187	. CLIF_CLOCK_CONTROL_REG register (address 0004h)	Т		CLIF_TIMER0_RELOAD_REG register (address 0084h)171
Table 188	. CLIF_STATUS_REG register (address 0008h	n) T		CLIF_TIMER1_RELOAD_REG register (address 0088h)171
Table 189	. CLIF_TRANSCEIVE_CONTROL_REG regist (address 000Ch)	ter T	able 214.	CLIF_TIMER2_RELOAD_REG register (address 008Ch)171
Γable 190	. CLIF_TX_WAIT_REG register (address 0010	h) T	able 215.	CLIF_TIMER0_OUTPUT_REG register (address 0090h)172
Γable 191	. CLIF_RX_WAIT_REG register (address 0018	3h) T	able 216.	CLIF_TIMER1_OUTPUT_REG register (address 0094h)172
Γable 192	. CLIF_TX_WATERLEVEL_REG register (address 0024h)	Т	able 217.	CLIF_TIMER2_OUTPUT_REG register (address 0098h)172
Table 193	. CLIF_RX_WATERLEVEL_REG register	Т	able 218.	CLIF_TIMER3_CONFIG_REG register (address 009Ch)172
Γable 194	(address 0028h)	, Т	able 219.	CLIF_SIGPRO_RM_CONFIG1_REG register (address 00B4h)173
Γable 195	. CLIF_TX_DATA_CONFIG_REG register	Т	able 220.	CLIF_SIGPRO_ADCBCM_THRESHOLD_REG register (address 00C0h)174
Γable 196	(address 0030h)	ss T	able 221.	CLIF_AGC_CONFIG0_REG register (address 00CCh)174
Гable 197	. CLIF_TX_FRAME_CONFIG_REG register (address 0038h)	Т	able 222.	CLIF_AGC_INPUT_REG register (address 00D4h)175
Tahle 198	. CLIF_TX_SYMBOL0_DEF_REG register			CLIF_RSSI_REG register (address 00D8h)175
	(address 0040h)		able 224.	CLIF_TX_CONTROL_REG register (address 00DCh)175
	(address 0044h)	159 T	able 225.	CLIF_RX_DATA_BUFFER_REG register (address 00ECh)176
	. CLIF_TX_SYMBOL23_DEF_REG register (address 0048h)	159 T	able 226.	CLIF_TEST_CONTROL_REG register (address
	. CLIF_TX_SYMBOL01_MOD_REG register (address 004Ch)	159 T	able 227.	00FCh)176 CLIF_ANA_NFCLD_REG register (address
	. CLIF_TX_SYMBOL23_MOD_REG register (address 0050h)	160 T	able 228.	0100h)177 CLIF_ANA_TX_CLK_CONTROL_REG register
Table 203	. CLIF_TX_OVERSHOOT_CONFIG_REG register (address 0054h)	161 T	able 229.	(address 0104h)177 CLIF_ANA_TX_AMPLITUDE_REG register
Table 204	. CLIF_TX_UNDERSHOOT_CONFIG_REG register (address 0058h)	161 T		(address 0108h)178 CLIF_ANA_RX_REG register (address 0110h)
Table 205	. CLIF_RX_CONFIG_REG register (address 005Ch)	162 T	able 231.	179 CLIF_ANA_CM_CONFIG_REG register
Γable 206	. CLIF_RX_STATUS_REG register (address 0060h)	164 T		(address 0114h)179 CLIF_ANA_AGC_REG register (address
Γable 207	. CLIF_CRC_RX_ CONFIG_REG register (address 006Ch)			011Ch)180 CLIF_ANA_CLK_MAN_REG register (address
Γable 208	. CLIF_CRC_TX_ CONFIG_REG register	.50 1		0120h)180
	(address 0070h)	166 T		CLIF_ANA_TX_SHAPE_CONTROL_REG register (address 0128h)181

Table 235	CLIF_ANA_TEST_REG register (address
Table 236	01FCh)181 CLIF_DPLL_INIT_REG register (address
	0208h)182
Table 237	CLIF_INT_CLR_ENABLE_REG register (address 3FD8h)183
Table 238	CLIF_INT_SET_ENABLE_REG register (address 3FDCh)185
Table 239	CLIF_INT_STATUS_REG register (address 3FE0h)186
Table 240	CLIF_INT_ENABLE_REG register (address
Table 241	3FE4h)
T-1-1- 040	(address 3FE8h)
Table 242	CLIF_INT_SET_STATUS_REG register (address 3FECh)190
Table 243	DPC values
	PCD Shaping entry definition
	Contact Smart card pins – Main slot201
	Contact Smart card pins – Auxiliary slots201
	Contact interface – Register overview (base
	address 0x4001 4000)206
Table 248	Register bit overview208
Table 249	Ct_ssr_reg (address 0000h) bit description 211
Table 250	ct_pdr1_lsb_reg/ct_pdr2_lsb_reg (address 0004h) bit description212
Table 251	ct_pdr1_msb_reg/ct_pdr2_msb_reg (address 000Ch) bit description212
Table 252	ct_fcr_reg (address 000Ch) bit description 213
Table 253	ct_gtr1_reg/ct_gtr2_reg (address 0010h) bit description
Table 254	ct_ucr11_reg/ct_ucr12_reg (address 0014h) bit description
Table 255	ct_ucr21_reg/ct_ucr22_reg (address 0018h) bit description
Table 256	ct_ccr1_reg/ct_ccr2_reg (address 001Ch) bit
	description217
Table 257	ct_pcr_reg (address 0020h) bit description218
	ct_ecr_reg (address 0024h) bit description219
Table 259	ct_mclr_lsb_reg (address 0028h) bit description
	219
Table 260	ct_mclr_msb_reg (address 002Ch) bit description219
Table 261	ct_mchr_lsb_reg (address 0030h) bit description
	220
Table 262	ct_mchr_msb_reg (address 0034h) bit description220
Table 263	ct_ssr_reg (address 0038h) bit description220
	ct_urr_reg/ct_utr_reg (address 003Ch, 0040h,
	0044h, 0048h) bit description221

-
Table 265. ct_tor1_reg (address 004Ch) bit description .222
Table 266. ct_tor2_reg (address 0050h) bit description222
Table 267. ct_tor3_reg (address 0054h) bit description222
Table 268. ct_toc_reg (address 0058h) bit description223
Table 269. Timer settings223
Table 270. ct_fsr_reg (address 005Ch) bit description225
Table 271. ct_msr_reg (address 0060h) bit description225
Table 272. ct_usr1_reg (address 0064h) bit description .226
Table 273. ct_usr2_reg (address 0068h) bit description .227
Table 274. I ² C-bus pin description230
Table 275. I2CM Register overview (base address 0x4003
0000)234
Table 276. CONFIG_REG (address offset 0x0000)236
Table 277. BAUDRATE_REG (address offset 0x0004)237
Table 278. SDA_HOLD_REG (address offset 0x0008)237
Table 279. I2C_ADDRESS_REG (address offset 0x0000)257
237
Table 280. FIFO_THRESHOLD_REG (address offset
0x0010)237
Table 281. BYTECOUNT_CONFIG_REG (address offset
0x0014)238
Table 282. BYTECOUNT_STATUS_REG (address offset
0x0018)238
Table 283. STATUS_REG (address offset 0x001C)239
Table 284. CONTROL_REG (address offset 0x0020)239
Table 285. TX_DATA (address offset 0x0040 to 0x004C)240
Table 286. RX_DATA (address offset 0x0050 to 0x005C)240
Table 287. INT_CLR_ENABLE_REG (address offset
0x3FD8)241
Table 288. INT_SET_ENABLE_REG (address offset
0x3FDC)241
Table 289. INT_STATUS_REG (address offset 0x3FE0)242
· · · · · · · · · · · · · · · · · · ·
Table 290. INT_ENABLE_REG (address offset 0x3FE4)242
Table 291. INT_CLR_STATUS_REG (address offset
0x3FE8)
Table 292. INT_SET_STATUS_REG (address offset
0x3FEC)
Table 293. SPI pin description
Table 294. SPI master register overview (base address
0x4003 4000)
Table 295. SPIM_STATUS_REG (address offset 0000h) bit description253
Table 296. SPIM_CONFIG_REG (address offset 0004h) bit
description253
Table 297. SPIM_CONTROL_REG (address offset 0x0008)
255

Table 298.	SPIM_RX_BUFFER_REG (address offset 0x000C)255	Table 328.	HOSTIF_HSU_CONTROL_REG (address offset 0x0014)290
Table 299.	SPIM_RX_BUFFER_CRC_REG (address offset 0x0010)255	Table 329.	HOSTIF_HSU_SAMPLE_REG (address offset 0x0018)291
Table 300.	SPIM_TX_BUFFER_REG (address offset 0x0014)256	Table 330.	HOSTIF_HSU_EST_CLOCK_DIVIDER_REG (address offset 0x001C)291
Table 301.	SPIM_TX_BUFFER_CRC_REG (address offset 0x0018)256	Table 331.	HOSTIF_HSU_EST_CLOCK_CORRECT_REG (address offset 0x0020)292
Table 302.	SPIM_CRC_STATUS_REG (address offset 0x001C)257	Table 332.	HOSTIF_BUFFER_RX0_CFG_REG (address offset 0x0038)292
Table 303.	SPIM_WATERLEVEL_REG (address offset 0x0020)257	Table 333.	HOSTIF_BUFFER_RX1_CFG_REG (address offset 0x003C)293
Table 304.	SPIM_BUFFER_MAPPING_REG (address offset 0x002C)257	Table 334.	HOSTIF_BUFFER_RX2_CFG_REG (address offset 0x0040)293
Table 305.	SPIM_INT_CLR_ENABLE_REG (address offset 0x3FD8)258	Table 335.	HOSTIF_BUFFER_RX3_CFG_REG (address offset 0x0044)294
Table 306.	SPIM_INT_SET_ENABLE_REG (address offset 0x3FDC)258	Table 336.	HOSTIF_BUFFER_TX_CFG_REG (address offset 0x0048)295
Table 307.	SPIM_INT_STATUS_REG (address offset 0x3FE0)259	HOSTIF_B	UFFER_RX0_LEN_REG (address offset 0x004C)295
Table 308.	SPIM_INT_ENABLE_REG (address offset 0x3FE4)259	Table 337.	HOSTIF_BUFFER_RX1_LEN_REG (address offset 0x0050)296
Table 309.	SPIM_INT_CLR_STATUS_REG (address offset 0x3FE8)259	Table 338.	HOSTIF_BUFFER_RX2_LEN_REG (address offset 0x0054)296
Table 310.	SPIM_INT_SET_STATUS_REG (address offset 0x3FEC)260	Table 339.	HOSTIF_BUFFER_RX3_LEN_REG (address offset 0x0058)296
Table 311.	Interface selection	Table 340.	HOSTIF_BUFFER_TX_LEN_REG (address
Table 312.	I ² C pinning and signal assignments262		offset 0x005C)297
	I2C Mode Maximum Bitrates263	Table 341.	HOSTIF_TIC_TIMEOUT_REG (address offset
	SPI pinning266		0x0060)297
Table 315.	HS UART pinning and signal assignments 269	Table 342.	HOSTIF_WATERLEVEL_REG (address offset 0x0064)298
	HSU baud rates for 27.12 MHz+/-1.5 % sample clock	Table 343.	HOSTIF_SET_DATA_READY_REG (address offset 0x0068)298
	EOF duration in us272	Table 344.	HOSTIF_CLR_DATA_READY_REG (address
	Bit duration in sample clock cycle274		offset 0x006C)298
	Buffer ID assignment277	Table 345.	HOSTIF_DATA_READY_STATUS_REG
	ed format per interface277		(address offset 0x0070)299
Table 321.	Summary of possible NCI modes280	Table 346.	HOSTIF_DBG_RX_REG (address offset
Table 322.	Register overview (base address 0x4002 0000)		0x0074)300
Table 323.	HOSTIF_STATUS_REG (address offset	Table 347.	HOSTIF_DBG_RX_ADDR_REG (address offset 0x0078)300
	0x0000)288	Table 348.	HOSTIF_INT_CLR_ENABLE_REG (address
	HOSTIF_CONTROL_REG (address offset 0x0004)289	Table 349.	offset 0x3FD8)300 HOSTIF_INT_SET_ENABLE_REG (address
Table 325.	HOSTIF_HEADER_CONTROL_REG (address offset 0x0008)289		offset 0x3FDC)302 HOSTIF_INT_STATUS_REG (address offset
Table 326.	HOSTIF_I2C_CONTROL_REG (address offset 0x000C)290		0x3FE0)304
Table 327.	HOSTIF_SPI_CONTROL_REG (address offset 0x0010)290		0x3FE4)305

Table 352.	HOSTIF_INT_CLR_STATUS_REG (address offset 0x3FE8)307
Table 353.	HOSTIF_INT_SET_STATUS_REG (address offset 0x3FEC)308
Table 354.	Endpoint Commands313
	Register overview (base address 0x4002 8000)
	319
Table 356.	USB device command/ Status register (address offset = 0x00)320
Table 357.	USB info register (address offset = 0x04) 322
Table 358.	USB EP command/status list address (address offset = 0x08)323
Table 359.	USB data buffer start address (address offset = 0x0C)323
Table 360.	Link Power Management register (address offset = 0x10)
Table 361.	USB Endpoint skip (address offset = 0x14)324
Table 362.	USB Endpoint Buffer in use (address offset = 0x18)324
Table 363.	USB Endpoint Buffer Configuration (address offset = 0x1C)324
Table 364.	USB Interrupt status register (address offset = 0x20)325
Table 365.	USB Interrupt enable register (address offset = 0x24)326
Table 366.	USB set interrupt status register (address offset = 0x28)326
Table 367.	USB interrupt routing register (address offset = 0x2C)
Table 368.	USB configuration (address offset = 0x30) 326
	USB endpoint toggle (address offset = 0x34)327
	USB internal PLL (address offset = 0x38)327
Table 371.	Abbreviations328

PN7462 HW user manual

20. Contents

1.	Introduction	3	8.3	Power modes	70
1.1	General description	3	8.4	Clock box	74
1.2	Features and benefits		8.5	Clock Gating	75
1.3	Ordering information	6	8.6	I/O Pad Management	76
1.4	Block diagram		8.7	Register overview	77
2.	PN7462AU memory		8.8	Register description	80
2.1	Memory mapping		9.	CRC	114
2.2	On-chip flash memory map		9.1	CRC features	114
2.3	EEPROM memory map		9.2	Parallel CRC	114
2.4	SRAM memory map		9.3	LSB and MSB first functionality	116
3.	EEPROM CTRL module		9.4	Typical Usage Example	117
3.1	EEPROM/Flash controller features		9.5	Register overview and description	118
3.2	AHB interface		10.	Random number generator	120
3.3	Memory map	_	10.1	RNG features	
3.4	EEPROM controller		10.2	Functional description	
3.5	Flash controller		10.3	Register overview and description	122
3.6	Register overview		11.	General-purpose timers and watchdog	timers
3.7	Register description				
4.	Nested Vectored Interrupt Controller (NVI		11.1	Timers features (Timers 0 and 1)	
4.1	NVIC features	•	11.2	Timers features (Timer 2 and 3)	123
4.2	Interrupt sources		11.3	Watchdog features	
4.3	NVIC register support in the SCS		11.4	Register overview and description	124
4.4	SWD		12.	PN7462AU Contactless interface	130
5.	SysTick Timer (SysTick)	28	12.1	Contactless interface features	130
6.	PN7462AU Power management		12.2	Reader/Writer modes	
6.1	Power supply		12.3	NFC modes	136
6.2	Power Management Unit		12.4	Functional Description	143
6.3	PN7462AU PMU digital control unit		12.5	CLIF register overview	149
6.4	Interrupts		12.6	Register description	151
6.5	Temperature sensors		12.7	Dynamic Power Control (DPC)	
6.6	Voltage monitoring		12.8	Adaptive Waveform Control (AWC)	197
6.7	Register overview and description		13.	PN7462AU Contact interface	199
7.	Clock generator		13.1	Contact interface features	199
7.1	Oscillators		13.2	Typical application schematics	200
7.2	Phase Locked Loop (USB PLL)		13.3	Pin description and power supply	
7.3	CLIF PLL		13.4	Specific blocks	
7.4	Register overview and description		13.5	Connect an external TDA	
7.5	Clock Status Register description		13.6	Registers	206
7.6	USB PLL register description		14.	PN7462AU Interfaces	228
7.7	CLIF PLL register description		14.1	I2C Master Interface	228
8.	Power clock and reset (PCR)		14.2	SPI Master Interface	247
8.1	Reset sources		14.3	Host interfaces	261
8.2	Boot reason decoding		15.	PN7462AU USB	310
	=				

PN7462 HW user manual

15.1	USB features	310
15.2	General description	310
15.3	Functional description	312
15.4	Register overview and functions	319
16.	Abbreviations	328
17.	Legal information	330
17.1	Definitions	330
17.2	Disclaimers	330
17.3	Licenses	330
17.4	Trademarks	330
18.	List of figures	331
19.	List of tables	333
20.	Contents	340

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.

© NXP B.V. 2017.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Document identifier: UM10858