

IDS Evasion Techniques

David D. Rude II and Jayson Jean

drude@idefense.com

jjean@idefense.com

Where it all comes together.

Contains VeriSign Confidential and Proprietary Information

Agenda

(*)

- + iDefense Overview
- + Introduction to IDS Evasion Techniques
- + Basic Evasion Techniques
- + Complex Evasion Techniques
- + Solutions
- + Conclusion
- + Q&A

- + iDefense, a VeriSign Company, is a leader in cyber threat intelligence.
- + Industry-Leading Service Offerings
 - Intelligence is all that iDefense does
- + Marquee Customer and Partner Base
 - Government, financial services, retail, telecom and others
- + Experienced Intelligence Teams
 - iDefense Labs
 - Vulnerability Aggregation Team (VAT)
 - Malicious Code Team (Malcode)
 - Threat Intelligence Team
 - Rapid Response Team
- In business since 1998, iDefense became a VeriSign Company in July 2005

Daily / Hourly Research Deliverables

- + Comprehensive Vulnerability Feed
 - Most comprehensive, timely, technical feed in the industry
- + iDefense Exclusive Vulnerabilities
 - More than 250 contributors around the globe
 - Released to vendor and iDefense customers only
 - More than 180 iDefense Exclusive vulnerabilities in 2005
- + Malicious Code Research and Reporting

Weekly / Semi-Monthly Research deliverables

- + Weekly Threat Report
 - Weekly compilation of worldwide threats
 - Critical Infrastructure, State of the Hack, Cyber Crime, Terrorism and Homeland Security, Global Threat
- + Bi-Weekly Malicious Code Review
 - Summary of previous two weeks malcode activity
 - In-depth analysis of specific malcode from the Malcode Lab
- + iDefense Topical Research Papers
 - Examples
 - Security of Enterprise Web-Based E-Mail Interfaces
 - Security Comparisons: Internet Explorer vs. Firefox
 - Phishing and Pharming: A Comparison
 - Mitigating the Threat from Keyloggers
- + Focused Threat Intelligence Reporting
 - Topics specific to individual customers

IDS Evasion Techniques - Introduction

- + History of IDS Technology
 - IDS became popular in the mid-to-late 1990's
 - Systems were developed that monitored network traffic and compared it to known attack signatures (still commonly used technique today)
 - Snort 0.96 was released in April 2003 as one of the first open-source IDS systems
- + History of IDS Evasion
 - Early evasion techniques were crude; these included generating numerous false positives and DoS attacks
 - Evasion techniques gradually became more complex and allowed little to no noise from the IDS
 - New shellcode techniques were created with the main goal being evasion of IDS
- + The Race Between Developers/System Administrators and Blackhats
 - With IDS evasion techniques improving, developers and system administrators had to take precautions to prevent evasions
 - Superior stream reassembly engines were created to analyze data from the wire more efficiently
 - Normalization and Unicode processing were other early improvements
 - IDS evasion techniques have continued to improve

(*)-

IDS Evasion Techniques – Basic Evasion

+ Pattern Matching Weaknesses

- Patterns are used to match common attacks against network traffic
- The input can change and an attack may still succeed
- Some vulnerabilities can be triggered in different ways
- Utilizing Unicode and URI encoding can create masked forms of webbased attacks
- Patterns may detect some attacks but also may miss variants of the same attack

+ Unicode Evasion Techniques

- Some IDS systems handle Unicode improperly
- There are two different versions of Unicode (one that is outdated)
- Unicode allows multiple representations of the same characters (old standard)

- + Denial of Service (DoS) Attacks
 - Many IDS systems log alerts to a central location
 - Central log servers may be a target for DoS attacks
 - Filling disk space with false positives (time consuming)
 - Slow down IDS processing time
- + False Positive Generation
 - Generating a large number of false positives may help mask the real attack
 - An attacker needs to have a general idea of rules used on the IDS
 - The more rules that are known, the better the chances of masking the real attack
 - Many IDS systems come with default rules that are similar from vendor to vendor

+ Session Splicing

- IDS Systems did not always reconstruct sessions before doing pattern matching on the traffic
- Splitting data among several packets to make sure each packet does not match any patterns will bypass detection
- Reassembly timeouts may also come into play
- If an application will wait for input longer than the IDS is willing to reassemble, detection may be avoided

IDS Evasion Techniques – Complex Evasion

- + Fragmentation
 - Two methods are commonly used to evade IDS:
 - Method One: overwrite a section of a previous fragment.
 - Method Two: overwrite the complete fragment previously transmitted.
 - Methods that are used can be intermixed
 - Modern IDS are able to handle this type of attack
- + Time to Live
 - Relies upon knowing distances between the end host and the network IDS
 - Injects packets into the IDS stream without letting these packets reach the end host
 - The IDS may not realize that this particular packet did not reach the end host
- + Invalid RST Packets
 - By sending an invalid RST packet, the IDS may stop processing the stream and the end host will ignore it
 - Uses invalid checksums (there may be other ways)

IDS Evasion Techniques – Complex Evasion

- + Urgency Flag
 - RFC 1122 "1 Byte data, next to Urgent data, will be lost, when Urgent data and normal data are combined."
 - Similar to Fragmentation Method One (Overlap)
 - Insertion of one byte within a pattern may bypass IDS detection
 - IDS systems may improperly handle the urgency flag
- + Polymorphic Shellcode
 - Is dynamic, as it uses a different encryption key each time this shellcode is used
 - Hides the content of shellcode
 - Many IDS systems have rules that look for common strings within shellcode
- + ASCII Shellcode
 - Similar to polymorphic shellcode
 - Does not change dynamically
 - Hides shellcode content

(*)-

+ Application-Layer Attacks

- Application-Layer data is often compressed (zipped)
- Attacks can be sent within compressed data
- Sometimes there are multiple triggers for a vulnerability
- Integer overflows can use different values to reach the same goal
- Shellcode can be hidden in different ways

IDS Evasion Techniques – Solutions

- + Solutions
 - There is very little that users can do to limit evasion
 - The best approach is to maintain security awareness and patch regularly
 - Choose an IDS system wisely based on network topology and network traffic
 - Look for features within an IDS that will help prevent as many evasion techniques as possible
- + Normalization
 - Translates obfuscated input into what the end host will eventually see
 - Usually applied to Unicode, UTF8, URI encodings
 - Attempts being made to normalize polymorphic shellcode
 - Normalizing polymorphic shellcode decreases performance
 - Normalization of fragmented packets
 - Time-To-Live field ensures end host delivery

IDS Evasion Techniques – Solutions

- + Packet Interpretation Based on Target Host
 - IDS tries to recreate what the end host will see
 - Many different ways that operating systems handle standards
 - Target Host TCP/IP stacks would be more accurate in detection of attacks
 - Modular TCP/IP stacks could be useful to separate end host from IDS
 - Research into this field is required to accurately write the modular TCP/IP stacks
 - May prove to be very effective in mitigating network-level evasion techniques

+ Time-To-Live Problem

- Two potential methods of dealing with this issue:
 - Method One: Increment TTL Field to a large value for every packet
 - Method Two: Actually trace the network topology by mapping MAC addresses to distance and using this map to detect packets that will not reach the end host

IDS Evasion Techniques – Solutions

- + Dealing With The Shellcode Problem
 - Polymorphic shellcode detection based on a nop opcode count threshold
 - Numerous nop codes are used within polymorphic shellcode to mask it from the IDS
 - Known to create false positives

+ Conclusion

- IDS technology needs to detect all attacks and mitigate evasion techniques in order to be truly effective
- IDS has it's limitations, but can be a powerful tool
- Reinforce IDS with other technologies that compliment it
- Limit the avenues of attack with sound security practices
- When deploying IDS, consider things like network topology, network traffic, number of hosts on the network and points on the network that will require monitoring
- Remember to choose an IDS system wisely based on its features and abilities to mitigate evasion techniques

David D. Rude II and Jayson Jean

iDefense Intelligence Operations

iDefense, a VeriSign Company

Where it all comes together.

Contains VeriSign Confidential and Proprietary Information