

Contents lists available at SciVerse ScienceDirect

Comptes Rendus Biologies

www.sciencedirect.com

Taxonomy/Taxinomie

Genus-level taxonomic changes implied by the mitochondrial phylogeny of grey mullets (Teleostei: Mugilidae)

Révision des genres chez les mulets (Teleostei : Mugilidae), consécutive à la phylogénie mitochondriale des espèces de la famille

Jean-Dominique Durand ^{a,*}, Wei-Jen Chen ^b, Kang-Ning Shen ^{c,d}, Cuizhang Fu ^e, Philippe Borsa ^f

^a Institut de recherche pour le développement (IRD), UMR 5119 ECOSYM, bâtiment 24, Cc.093, université Montpellier 2, place E.-Bataillon, 34095 Montpellier cedex 5, France

^b Institute of Oceanography, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei 10617, Taiwan

^c Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung 20224, Taiwan

^d Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan

^e Institute of Biodiversity Science, Fudan University, Handan Road 220, Shanghai 200433, China

^f IRD, UR 227 CoReUs, 34394 Montpellier cedex, France

ARTICLE INFO

Article history: Received 14 May 2012 Accepted after revision 14 September 2012 Available online 15 October 2012

Keywords: Paraphyly Polyphyly Taxonomy Systematics Nomenclature

ABSTRACT

A comprehensive mitochondrial phylogeny of the family Mugilidae (Durand et al., Mol. Phylogenet. Evol. 64 (2012) 73-92 [1]) demonstrated the polyphyly or paraphyly of a proportion of the 20 genera in the family. Based on these results, here we propose a revised classification with 25 genera, including 15 genera currently recognized as valid (Agonostomus, Aldrichetta, Cestraeus, Chaenomugil, Chelon, Crenimugil, Ellochelon, Joturus, Mugil, Myxus, Neomyxus, Oedalechilus, Rhinomugil, Sicamugil and Trachystoma), 7 resurrected genera [Dajaus (for Agonostomus monticola), Gracilimugil (for Liza argentea), Minimugil (for Sicamugil cascasia), Osteomugil (for several species currently under Moolgarda and Valamugil, including M. cunnesius, M. engeli, M. perusii, and V. robustus), Planiliza (for Indo-Pacific Chelon spp., Indo-Pacific Liza spp., and Paramugil parmatus), Plicomugil (for Oedalechilus labiosus), and Squalomugil (for Rhinomugil nasutus)] and 3 new genera: Neochelon gen. nov. (for Liza falcipinnis), Parachelon gen. nov. (for L. grandisquamis) and Pseudomyxus gen. nov. (for Myxus capensis). Genus Chelon was shown to include exclusively Chelon spp. and Liza spp. from the Atlantic and the Mediterranean, and Liza spp. species endemic to eastern southern Africa. Genus Crenimugil should now include C. crenilabis, Moolgarda seheli and V. buchanani. Genus names Liza, Moolgarda, Paramugil, Valamugil and Xenomugil should be abandoned because they are no longer valid. Further genetic evidence is required to confirm or infirm the validity of the genus Paracrenimugil Senou 1988. The mitochondrial phylogeny of the 25 genera from the present revision is the following: [(Sicamugil, (Minimugil, Rhinomugil)); Trachystoma; ((Myxus, Neomyxus), (Cestraeus, Chaenomugil, (Agonostomus, Dajaus, Joturus), Mugil)); (Aldrichetta, Gracilimugil); Neochelon gen. nov.; (Pseudomyxus gen. nov., (Chelon, Oedalechilus, Planiliza, Parachelon gen. nov.)); ((Squalomugil, (Ellochelon, Plicomugil)), (Crenimugil, Osteomugil))]. Agonostomus monticola and several species with large distribution ranges (including Moolgarda seheli, Mugil cephalus and M. curema) consist of separate lineages whose geographic distribution suggests they are cryptic species, thus warranting further taxonomic work in the Mugilidae at the infra-generic level.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

* Corresponding author.

1631-0691/\$ - see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crvi.2012.09.005

E-mail address: jean-dominique.durand@ird.fr (J.-D. Durand).

688

Mots clés : Paraphylie Polyphylie Taxinomie Systématique Nomenclature

RÉSUMÉ

Une phylogénie mitochondriale complète des Mugilidae (Durand et al., Mol. Phylogenet. Evol. 64 (2012) 73–92 [1]) a démontré la polyphylie ou la paraphylie d'une partie des 20 genres de cette famille. D'après ces résultats, nous proposons ici une classification révisée avec 25 genres, qui comprend 15 genres actuellement reconnus comme valides (Agonostomus, Aldrichetta, Cestraeus, Chaenomugil, Chelon, Crenimugil, Ellochelon, Joturus, Mugil, Myxus, Neomyxus, Oedalechilus, Rhinomugil, Sicamugil et Trachystoma), 7 genres réhabilités [Dajaus (pour Agonostomus monticola), Gracilimugil (pour Liza argentea), Minimugil (pour Sicamugil cascasia), Osteomugil (pour plusieurs espèces des genres Moolgarda et Valamugil, dont M. cunnesius, M. engeli, M. perusii et V. robustus), Planiliza (pour les espèces indo-pacifiques des genres Chelon et Liza ainsi que Paramugil parmatus), Plicomugil (pour Oedalechilus labiosus) et Squalomugil (pour Rhinomugil nasutus)] et 3 nouveaux genres : Neochelon gen, nov. (pour Liza falcipinnis). Parachelon gen. nov. (pour L. grandisquamis) et Pseudomyxus gen. nov. (pour Myxus capensis). Nous proposons que le genre Chelon comprenne désormais C. labrosus et tous les Liza spp. de l'Atlantique et de la Méditerranée ainsi que les Liza spp. endémiques de l'Afrique du Sud. Le genre Crenimugil doit désormais inclure C. crenilabis, Moolgarda seheli et V. buchanani. Les noms de genres Liza, Moolgarda, Paramugil, Valamugil et Xenomugil, non valides, doivent être abandonnés. Des analyses génétiques supplémentaires sont requises pour confirmer ou infirmer la validité du genre Paracrenimugil Senou 1988. La phylogénie mitochondriale des 25 genres ainsi proposés est la suivante : [(Sicamugil, (Minimugil, Rhinomugil)); Trachystoma; ((Myxus, Neomyxus), (Cestraeus, Chaenomugil, (Agonostomus, Dajaus, Joturus), Mugil)) ; (Aldrichetta, Gracilimugil); Neochelon gen. nov.; (Pseudomyxus gen. nov., (Chelon, Oedalechilus, Planiliza, Parachelon gen. nov.)); ((Squalomugil, (Ellochelon, Plicomugil)), (Crenimugil, Osteomugil))]. Agonostomus monticola et plusieurs espèces à large distribution géographique (y compris les espèces Moolgarda seheli, Mugil cephalus et M. curema) se composent de lignées distinctes dont la répartition géographique suggère l'existence d'espèces cryptiques, justifiant ainsi de nouvelles recherches sur la taxonomie des Mugilidae au niveau infra-générique.

© 2012 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

1. Introduction

The potential input of molecular phylogenies to modern taxonomy is considerable [2–5], to the extent that a DNAbased approach to taxonomy is being envisaged [6–8]. It is arguable that molecular phylogenies should provide the basis to taxonomy in the cases where conflicts or uncertainty persist from classifications based on morphology, morpho-anatomy, and other phenotypic characters. Unlike molecular phylogenies, traditional taxonomy based on morphological characters can for instance be misled by phenotypic plasticity, morphological convergence, and arbitrary character weighting [8,9].

In the last 130 years, up to 281 nominal species and 43 nominal genera (Table 1) have been proposed for the Mugilidae [11]. The first thorough taxonomic revision of the Mugilidae was produced by Schultz [38], who mainly used mouth anatomy to define species and genera. Schultz [38] validated only ten previously defined mugilid genera and described three new ones, a revision that was subsequently questioned (review in [43]). The taxonomy and nomenclature of Mugilidae have still not been finalized [44], with between 14 and 20 genera being recognized as valid according to the most recent revisions [11,12,45]. The Integrated Taxonomic Information System (http://www.itis.gov/; information retrieved on 16 August 2011) recognizes 16 valid genera, while Eschmeyer and Fricke [13] list 20 valid genera. Two genera, Liza and Mugil, currently represent 40% of the species richness of the family Mugilidae [13]. While the taxonomy and nomenclature of species in the genus *Mugil* are mostly stable, those in the genus *Liza* have undergone changes since [38] (Table 1), reflecting disagreement among authors regarding the taxonomic placement of some of the species currently under this genus.

Molecular phylogenetic investigations of the Mugilidae have been mostly regional in scope, with a majority of studies concerning mugilid species sampled from the Mediterranean region, and a few other studies concerned with species from the Atlantic waters of South America, or from India, or from eastern Asia (reviewed in [1]). More recent studies have attempted to expand taxonomic sampling by including species and genera from various locations worldwide in addition to their initial treatment of Mediterranean Mugilidae [46,47]. The most comprehensive phylogenetic survey of Mugilidae published thus far concerned 55 species representing 19 of the 20 currently recognized genera [1] (Fig. 1). A substantial proportion of the species in particularly speciose genera Chelon (5/7 of currently recognized species), Liza (14/19), Mugil (9/12), Moolgarda (4/5) and Valamugil (3/4) were included. Broad geographic sampling was undertaken for the ubiquitous genera Chelon, Liza, and Mugil. Emphasis was also put on sampling several widely-distributed species of these and other genera, including C. macrolepis, Crenimugil crenilabis, Moolgarda cunnesius, M. seheli, Mugil cephalus, M. curema and Valamugil buchanani.

Table 1

Nominal genera of the Mugilidae in chronological order of appearance, with their status according to Senou [10], Thomson [11], Ghasemzadeh [12], Eschmeyer and Fricke [13] and this study.

Genus	Author and date	Ref.	Type species	Genus assigned by author (date)				
				Senou (1988)	Thomson (1997)	Ghasemzadeh (1998)	Eschmeyer and Fricke (2011)	This study
Mugil	Linnaeus 1758	[14]	Mugil cephalus Linnaeus 1758	Mugil	Mugil	Mugil	Mugil	Mugil
Chelon	Artedi 1793	[15]	Mugil chelo Cuvier 1829	Chelon	Chelon	Chelon	Chelon	Chelon
Cephalus	Lacepède 1799	[16]	Mugil cephalus Linnaeus 1758	Mugil	Mugil	Mugil	Mugil	Mugil
Agonostomus	Bennett 1832	[17]	Agonostomus telfairii Bennett 1832	Agonostomus	Agonostomus	Agonostomus	Agonostomus	Agonostomus
Cestraeus	Valenciennes 1836	[18]	Cestraeus plicatilis Valenciennes 1836	Cestraeus	Cestraeus	Cestraeus	Cestraeus	Cestraeus
Dajaus	Valenciennes 1836	[18]	Mugil monticola Bancroft 1834	Agonostomus	Agonostomus	Agonostomus	Agonostomus	Dajaus
Vestis	Valenciennes 1836	[18]	Nestis cyprinoides Valenciennes 1836	Agonostomus	Agonostomus	Agonostomus	Agonostomus	Agonostomus
Arnion	Gistel 1848	[19]	Mugil cephalus Linnaeus 1758	Mugil	Mugil	Mugil	Mugil	Mugil
Ello	Gistel 1848	[19]	Mugil cephalus Linnaeus 1758	Mugil	Mugil	Mugil	Mugil	Mugil
oturus	Poey 1860	[20]	Joturus pichardi Poey 1860	Joturus	Joturus	Joturus	Joturus	Joturus
Лухиs	Günther 1861	[21]	Myxus elongatus Günther 1861	Chelon	Myxus	Myxus	Myxus	Myxus
Thaenomugil	Gill 1863	[22]	Mugil proboscideus Günther 1861	Chaenomugil	Chaenomugil	Chaenomugil	Chaenomugil	Chaenomugil
Rhinomugil	Gill 1863	[22]	Mugil corsula Hamilton 1822	Rhinomugil	Rhinomugil	Rhinomugil	Rhinomugil	Rhinomugil
Gonostomyxus	Macdonald 1869	[23]	Gonostomyxus loaloa Macdonald 1869	Cestraeus	Cestraeus	Cestraeus	Cestraeus	Cestraeus
Neomyxus	Steindachner 1878	[24]	Myxus (Neomyxus) sclateri Steindachner 1878	Neomyxus	Chaenomugil	Neomyxus	Neomyxus	Neomyxus
Duerimana	Jordan and Gilbert 1883	[25]	Myxus harengus Günther 1861	Mugil	Mugil	Mugil	Mugil	Mugil
Aeschrichthys	Macleay 1883	[26]	Aeschrichthys goldiei Macleay 1883	Cestraeus	Cestraeus	Cestraeus	Cestraeus	Cestraeus
.iza	Jordan and Swain 1884	[27]	Mugil capito Cuvier 1829	Chelon	Liza	Liza	Liza	Chelon
rachystoma	Ogilby 1888	[28]	Trachystoma multidens Ogilby 1888	Chelon	Myxus	Trachystoma	Trachystoma	Trachystoma
Neomugil	Vaillant 1894	[29]	Neomugil digueti Vaillant 1894	Agonostomus	Agonostomus	Agonostomus	Agonostomus	Dajaus
Dedalechilus	Fowler 1903	[30]	Mugil labeo Cuvier 1829	Oedalechilus	Oedalechilus	Oedalechilus	Oedalechilus	Oedalechilus
Squalomugil	Ogilby 1908	[31]	Mugil nasutus de Vis 1883	Rhinomugil	Rhinomugil	Rhinomugil	Rhinomugil	Squalomugil
Kenorhynchichthys	Regan 1908	[32]	Joturus stipes Jordan and Gilbert 1882	Joturus	Joturus	Joturus	Ioturus	Joturus
llochelon	Whitley 1930	[33]	Mugil vaigiensis Quoy and Gaimard 1825	Ellochelon	Liza	Ellochelon	Ellochelon	Ellochelon
rotomugil	Popov 1930	[34]	Mugil valgiensis Quoy and Gamara 1025 Mugil saliens Risso 1810	Chelon	Liza	Liza	Liza	Chelon
Ticamugil	Fowler 1939	[35]	Mugil hamiltoni Day 1869	Sicamugil	Sicamugil	Sicamugil	Sicamugil	Sicamugil
Gracilimugil	Whitley 1941	[36]	Mugil ramsayi Macleay 1883	Chelon	Liza	Gracilimugil	Liza	Gracilimugil
Noolgarda	Whitley 1945	[37]	Moolgarda pura Whitley 1945	Moolgarda	Valamugil	Valamugil	Moolgarda	-
Planiliza	Whitley 1945	[37]	Moolgarda (Planiliza) ordensis Whitley 1945	Chelon	Liza	Liza	Liza	Planiliza
Aldrichetta	Whitley 1945	[37]	Mugil forsteri Valenciennes 1836	Aldrichetta	Aldrichetta	Aldrichetta	Aldrichetta	Aldrichetta
Kenomugil	Schultz 1946	[37]	Mugil thoburni Jordan and Starks 1896	Mugil	Mugil	Mugil	Xenomugil	Mugil
Crenimugil	Schultz 1946	[38]	Mugil crenilabis Forsskål 1775	Crenimugil	Crenimugil	Crenimugil	Crenimugil	Crenimugil
Heteromugil	Schultz 1946	[38]	Mugil tricuspidens Smith 1935	Chelon	Liza	Liza	Liza	Chelon
Dxymugil	Whitley 1948	[39]	Mugil acutus Valenciennes 1836	Chelon	Liza	Liza	Liza	Planiliza
Pteromugil	Smith 1948	[39]	Mugil diadema Gilchrist and Thompson 1911	Chelon	Liza	Liza	Liza	Planiliza
Strializa	Smith 1948	[40]	Mugil canaliculatus Smith 1935	Chelon	Liza	Liza	Liza	Chelon
		[40]	•					
/alamugil Plicomugil	Smith 1948 Schultz 1953	[40]	Mugil seheli Forsskål 1775 Mugil labiosus Valenciennes 1836	Moolgarda Oedalechilus	Valamugil Oedalechilus	Valamugil Oedalechilus	Valamugil Oedalechilus	Crenimugil Plicomugil
U	Lüther 1977	[41]	Mugil cunnesius Valenciennes 1836				Valamugil	Osteomugil
Osteomugil Ainimugil			8	Moolgarda Minimuril	Valamugil	Valamugil	0	U
Ainimugil	Senou 1988	[10]	Mugil cascasia Hamilton 1822	Minimugil	Sicamugil	Sicamugil Creminumit	Sicamugil	Minimugil
Paracrenimugil	Senou 1988	[10]	Mugil heterocheilos Bleeker 1855	Paracrenimugil	Crenimugil	Crenimugil	Crenimugil	ND
seudoliza	Senou 1988	[10]	Mugil parmatus Cantator 1849	Pseudoliza	Liza	Paramugil	Paramugil	Planiliza
Paramugil	Ghasemzadeh 1998	[12]	Mugil parmatus Cantator 1849	Pseudoliza	Valamugil	Paramugil	Paramugil	Planiliza
-	-	-	Mugil falcipinnis Valenciennes 1836	Chelon	Liza	-	Liza	Neochelon gen. nov
-	-	-	Mugil grandisquamis Valenciennes 1836	Chelon	Liza	Liza	Liza	Parachelon gen. nov
-	-	-	Mugil capensis Valenciennes 1836	Chelon	Myxus	Myxus	Myxus	Pseudomyxus gen. r

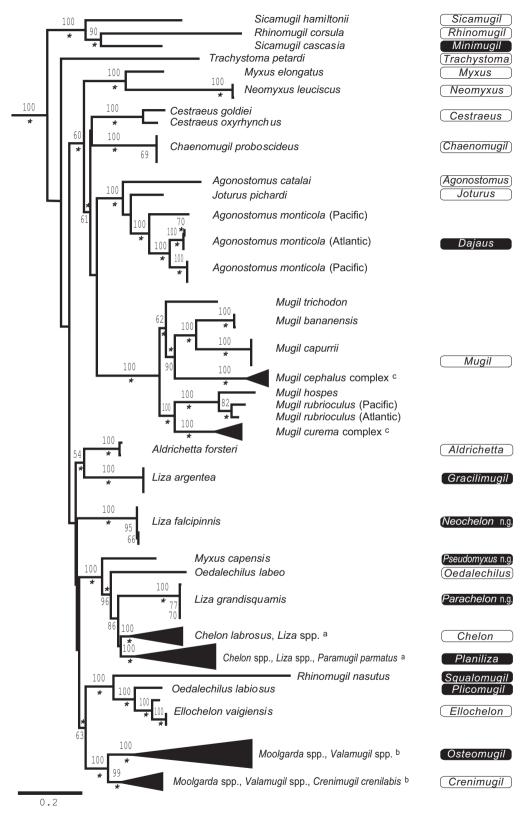


Fig. 1. Revised genus names in Mugilidae, superimposed on the phylogenetic tree of Mugilidae (55 species from 19 genera) inferred using partitioned maximum-likelihood analysis of 3885 aligned nucleotides from three mitochondrial gene loci (modified from [1]). Taxon names at extremity of branches according to the current nomenclature [13]; when species identification was uncertain, an unknown species or "sp." was assigned to the recognized genus

Durand et al.'s [1] phylogeny allowed one to test previous phylogenetic hypotheses based on morphology and morphoanatomy, themselves in contradiction with one another (Fig. 1A–E of [1]). It was found that several genera in the Mugilidae actually were polyphyletic or paraphyletic and that the molecular phylogeny matches no one of the previous, morphology-based classifications. Here, we propose a revised classification based on these results.

2. Methods

We thus examined the phylogenetic placement of each of the 19 mugilid genera in the mitochondrial phylogeny of Mugilidae produced by [1] (Fig. 1). In addition, we determined the phylogenetic placement of the genus *Xenomugil* (represented by its single species *X. thoburni*).

A partial phylogeny of Mugilidae based on all available nucleotide sequences of a 300-bp fragment of the cytochrome *b* (*cytb*) gene had initially shown X. thoburni haplotypes to be embedded within the Mugil curema lineage (Appendix A). Consequently, here we run a new phylogenetic analysis (following procedures described in [1]) of the genera Mugil and Xenomugil, using a new matrix of sequences that comprised representatives from all *Mugil* spp. lineages of [1], the new sequences of two X. thoburni individuals, and the additional sequences of two M. cephalus individuals from the Galapagos Islands. Both X. thoburni and additional M. cephalus from the Galapagos Islands were collected at Bahia Divine, Isla Santa Cruz on 15 June 2011 by T. Ballesteros. Their partial nucleotide sequences at the 16S rRNA (16S), cytochromeoxidase I (COI) and cytb loci [GENBANK (http:// www.ncbi.nlm.nih.gov) accession numbers JX559523 to JX559535] were obtained using the same experimental protocols as [1].

For the present revision, a genus name was conserved if the topology of the tree supported the monophyly of the genus. When a genus currently considered valid was paraphyletic or polyphyletic, we split it into the minimum necessary number of genera according to the topology of the tree. The current genus name was conserved for the type species (Table 1) and, when applicable, its sister species in the same genus. For the other monophyletic groups under the same genus, former genus names were resurrected whenever applicable. For this, we considered the history of genus nomenclature in Mugilidae and the validity of the 43 genera proposed thus far (Table 1). The principle of priority [51] was followed when a previously proposed genus name was available. When no genus name was available for a given lineage, we proposed a new genus name.

Thus, our concern was to minimize disruption to the existing nomenclature. This accords with the principles of the PhyloCode [52].

3. Results and discussion

A summary of Durand et al.'s [1] phylogenetic results (Fig. 1) and their taxonomic implications at the genus level are examined in the following. We added information on the distribution of each genus. Genera are listed in alphabetical order.

3.1. Agonostomus

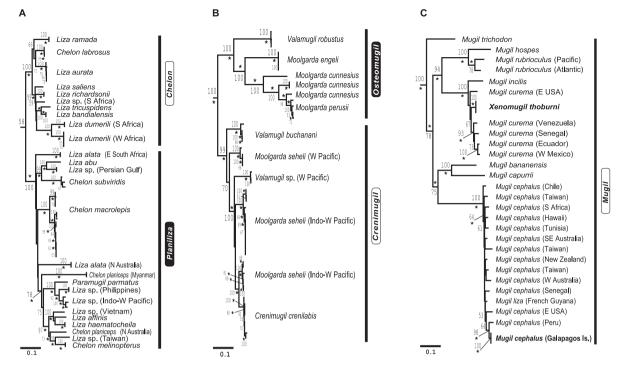
Agonostomus was paraphyletic with respect to Joturus; A. monticola was phylogenetically closer to J. pichardi than both were from A. catalai (Fig. 1). At locus 16S, the nucleotide divergence between A. monticola (GENBANK JQ060644–JQ060652) and A. catalai (GENBANK JQ060643) was 13.3–13.5% (Kimura 2-parameter; MEGA 5 [49]) while the estimated divergence between A. telfairii (GENBANK DQ532834) and A. catalai was 0.2%. Since A. telfairii, which is the type-species of the genus, is genetically closer to A. catalai than A. monticola, it is the latter that should be placed under a different genus name, namely Dajaus which is the earliest genus name available for A. monticola (Table 1). The genus Agonostomus under its present, revised definition exclusively occurs in the South-West Indian Ocean [11].

3.2. Aldrichetta

Aldrichetta was found it to be the sister subclade of *Liza* argentea; no taxonomic change is needed for Aldrichetta, which is monotypic [13]. The distribution of this genus is restricted to the temperate coastal waters of Australia and New Zealand [11].

3.3. Cestraeus

The genus *Cestraeus*, represented by two species (*C. goldiei* and *C. oxyrhinchus*) in [1] was found to be monophyletic and a brother genus to *Chaenomugil, Mugil,* and (*Agonostomus+Joturus*); no taxonomic change is needed regarding *Cestraeus* because of its monophyly. The genus *Cestraeus* is present in the Indo-Malay-Papua archipelago, in New Caledonia and in Fiji [11].

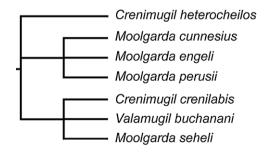

3.4. Chaenomugil

This genus was found to be a brother genus to *Cestraeus*, *Mugil* and (*Agonostomus* + *Joturus*). No taxonomic change is needed for *Chaenomugil*, which is monotypic [13]. *C. proboscideus*, the only species in the genus, occurs in the eastern Pacific, from Baja California to Peru [11].

3.5. Chelon

Chelon labrosus grouped with L. aurata, L. ramada, L. saliens, L. richardsonii, L. bandialensis, L. dumerili, Liza sp.

for the taxon. Proposed new genus designations are shown on the right-hand side of the figure; *black background*: resurrected genera or newly proposed genera ('n.g.'); *open*: genera maintained in their current name. Numbers on the branches are ML bootstrap values, with those below 50% not shown. *Asterisks* indicate nodes with *a posteriori* probability from partitioned Bayesian analysis \geq 0.95 [1]; *scale bar*: 0.1 inferred nucleotide substitution/site under (GTR + G + I) model. ^a Details in Fig. 2A; ^b details in Fig. 2b; ^c details in Fig. 2C.


Fig. 2. Details of the tree presented in Fig. 1. Taxon names at extremity of branches are given according to the current nomenclature [13]; when species identification was uncertain, an unknown species or "sp." was assigned to the recognized genus for the taxon. Proposed new genus designations are shown on the right-hand side of each figure; *black background*: resurrected genera; *open*: genera maintained in their current name. Numbers on the branches are ML bootstrap values, with those below 50% not shown. *Asterisks* indicate nodes with *a posteriori* probability from partitioned Bayesian analysis ≥ 0.95 [1]; *scale bars*: 0.1 inferred nucleotide substitution/site. A. Revised genus names proposed for species in the current genera *Chelon, Liza* and *Paramugil*. B. Revised genus names proposed for the current genera *Creinmugil, Moolgarda* and *Valamugil*. C. Phylogenetic tree depicting relationships of *Mugil* spp. and *Xenomugil thoburni*. Relationships were inferred using partitioned maximum-likelihood (RAxML [53]) analysis of 2,385 aligned nucleotides from partial *16S, COI* and *cytb* genes (ML score - 13535.1). *Myxus elongatus* and *Agonostomus catalai* were selected as outgroup taxa following the mugilid phylogeny of [1] (Fig. 1). Branch lengths are proportional to number of substitutions under the (GTR + G) model. *Bold*; taxa not included in [1].

(S. Africa) and *L. tricuspidens* to form a subclade (Fig. 2A), which turned out to exclusively comprise species distributed in Atlantic and Mediterranean waters or species apparently endemic to eastern southern Africa (*L. tricuspidens, L. richardsonii* and an apparently undescribed *Liza* sp. [1]). The other *Chelon* species sampled, all from the Indo-Pacific, formed a distinct subclade together with Indo-Pacific *Liza* spp. and *Paramugil parmatus*. All species in the 'Atlantic' subclade (Fig. 5A of [1]), which includes *Chelon labrosus* (the type species of the genus *Chelon*) should be placed under *Chelon* by the principle of priority (Table 1). The other *Liza* and *Chelon* species sampled should be placed under different genera (see below).

3.6. Crenimugil

Crenimugil crenilabis (the type species of the genus *Crenimugil*; Table 1) grouped with *Moolgarda seheli* and *Valamugil buchanani* to form a distinct cluster within the (*Crenimugil, Moolgarda, Valamugil*) subclade (Fig. 2B). This well-supported lineage should be named *Crenimugil* because of the priority of the latter to *Valamugil* (Table 1), and because *Moolgarda* is both a nomen nudum and a nomen dubium [11]. The close evolutionary affinity of

C. crenilabis with *M. seheli* and *V. buchanani* has previously been highlighted on the basis of shared morpho-anatomical characters ([10]; Fig. 3). We were unable to obtain a sample of *C. heterocheilos*, designated by Senou [10] as the type species of his genus *Paracrenimugil*. Based on the accuracy of the rest of Senou's [10] cladistic tree (Fig. 3), resurrecting the genus *Paracrenimugil* for *C. heterocheilos* is an eventuality that deserves consideration. The genus *Crenimugil* has a wide Indo-West Pacific distribution.

Fig. 3. Parsimony tree of *Moolgarda* spp., *Valamugil buchanani* and *Crenimugil* spp. based on a cladistic analysis of 46 morphological characters (redrawn from [10]).

3.7. Ellochelon

The genus *Ellochelon* was found to be the sister lineage of *Oedalechilus labiosus*. No taxonomic change is needed for *Ellochelon*, which is monotypic [13]. *E. vaigiensis* has a wide Indo-West Pacific distribution, from Natal to Tahiti [11].

3.8. Joturus

The genus *Joturus* was the sister lineage of *Agonostomus monticola*. No taxonomic change is needed for *Joturus*, which is monotypic [13]. This genus is present on both the Pacific and the Atlantic coasts of the American continent, from Mexico to Panama, and in the Caribbean Sea [11].

3.9. Liza

The type species of the genus *Liza* is *Mugil capito* (currently *L. ramada*; [13]). The phylogenetic results of [1] imply that *L. ramada* be placed under genus *Chelon*, which in turn implies that *Liza* is a junior synonym of *Chelon*. Hence, the name *Liza* is now unavailable.

Liza argentea and L. falcipinnis were each distinct from the other Liza species, all of which clustered within a single clade (Fig. 1). The latter comprised Myxus capensis, Oedalechilus labeo, and three subclades: one that corresponds to L. grandisquamis, a second one that includes Chelon labrosus and all Liza spp. of the Atlantic and the Mediterranean (see above), and a third sub-clade that includes Chelon spp. and Liza spp. from the Indo-West Pacific only (namely, C. macrolepis, C. melinopterus, C. planiceps, C. subviridis, L. abu, L. affinis, L. alata, L. haematocheila, and Paramugil parmatus) (Fig. 2A). Liza argentea and L. falcipinnis each merit an individual genus name. Liza argentea was previously assigned to the genus Gracilimugil [36] and we here propose that this genus be resurrected for this species; L. falcipinnis should be assigned a new genus name since there does not seem to be any genus name available for that species (Table 1), and L. grandisquamis should similarly be assigned a new genus name [51]. The 'Indo-West Pacific' (Chelon spp. + Liza spp. + P. parmatus) subclade contains L. alata, a senior synonym of L. ordensis which is the type species of the subgenus Planiliza [37] (Table 1), hence it should be assigned genus name *Planiliza* by the principle of priority [51]. The genus Gracilimugil occurs in southwestern Australia.

3.10. Moolgarda

This genus was polyphyletic (Figs. 1 and 2B). The name *Moolgarda* predates both *Crenimugil* and *Valamugil* (Table 1) but the position of *M. pura*, the type species of the genus [37], is uncertain and the type specimen has been lost [11]. Therefore, *Moolgarda* should be considered a nomen dubium and no use can be made of this genus name in the present revision. The *Moolgarda* species that belong to the *Crenimugil crenilabis* subclade should be placed under *Crenimugil* (see above). The other species, including *M. cunnesius*, *M. engeli*, *M. perusii* and *Valamugil robustus* clustered into a distinct subclade (Fig. 2B), hence deserve a

different genus name. For this, we propose to use the name *Osteomugil* following Lüther [42], who described this genus from *M. cunnesius* (the type species), and who also suggested that it might include *M. engeli.*

3.11. Mugil

All 9 Mugil species examined by [1] (*M. bananensis*, *M. capurrii*, *M. cephalus*, *M. curema*, *M. hospes*, *M. incilis*, *M. liza*, *M. rubrioculus* and *M. trichodon*) clustered into a single, well-supported clade (Fig. 4A of [1]). *Mugil* was found to be paraphyletic with *Xenomugil* (Fig. 2C). The name *Mugil* remains valid by the principle of priority [51] (Table 1). This genus has a temperate-tropical circumglobal distribution [11].

3.12. Myxus

Myxus was polyphyletic, with *M. elongatus* (its typespecies) pairing with *Neomyxus leuciscus*, and *M. capensis* being part of the distinct clade external to *O. labeo* and the two (*Liza* spp. + *Chelon* spp.) subclades. The name *Myxus* should be maintained for *M. elongatus* (the type-species of the genus), while *M. capensis* deserves genus rank. As there is currently no genus name available for *M. capensis* (Table 1), a new genus name has to be proposed. The genus *Myxus* under its present, revised definition is restricted to the temperate waters of Australia.

3.13. Neomyxus

Neomyxus is the sister lineage of *M. elongatus*. No taxonomic change is needed for *Neomyxus*, which is monotypic [13]. The only representative of this genus, *N. leuciscus*, occurs around islands of the Central Pacific, from Southern Japanese and Hawaiian islands to Samoa [11].

3.14. Oedalechilus

The mitochondrial phylogeny (Fig. 1) revealed a polyphyletic *Oedalechilus*: *O. labeo*, its type species, clustered with *Myxus capensis*, *Chelon* spp., *Liza* spp. and *P. parmatus* to form a distinct subclade, while *O. labiosus* paired with *E. vaigiensis* within another subclade that also included *R. nasutus*. The genus name *Oedalechilus* should be maintained for *O. labeo* (its type-species; Table 1), *O. labiosus* should be reassigned to the genus *Plicomugil* following Schultz [41] and Harrison and Howes [54]. Therefore, under its present, revised definition, the genus *Oedalechilus* is monotypic. It occurs in the Western Mediterranean Sea and in the Azores archipelago [11]. The genus *Plicomugil* is distributed in the Indo-West Pacific, from the Red Sea to the Philippines [11].

3.15. Paramugil

Ghasemzadeh [12] defined the genus *Paramugil* for *P. parmatus*, which was embedded within the Indo-Pacific sub-clade of (*Liza* spp. + *Chelon* spp.) (Fig. 2A), for which we argued that the genus name *Planiliza* be resurrected (see

above). Hence, *Paramugil* should now be regarded as a junior synonym of *Planiliza*.

3.16. Rhinomugil

Rhinomugil was polyphyletic, with *R. corsula* being the sister lineage of *Sicamugil cascasia*, while *R. nasutus* paired with the lineage that includes *Ellochelon* and *O. labiosus* (Fig. 1). The name *Rhinomugil* should be maintained for *R. corsula*, its type species (Table 1) but *R. nasutus* should be assigned a different genus name, namely *Squalomugil* [31] (Table 1). *R. corsula* is a freshwater species from India; *R. nasutus* occurs in the estuarine waters and mangroves of New Guinea and tropical Australia [11].

3.17. Sicamugil

Sicamugil was paraphyletic, with *S. hamiltonii* being sister group to (*R. corsula* + *S. cascasia*) (Fig. 1). Sicamugil should be maintained for *S. hamiltonii*, the type species of the genus (Table 1), and *S. cascasia* should be re-assigned to Senou's [10] *Minimugil* (Table 1). *S. hamiltoni* occurs in Myanmar; *S. cascasia* is distributed in the Ganges River and its tributaries [11].

3.18. Trachystoma

Genus *Trachystoma* formed a distinct clade on its own. The mitochondrial phylogeny confirmed the peculiar systematic status of the monotypic genus *Trachystoma* (Fig. 1). *T. petardi*, the only species in the genus, inhabits the rivers of eastern Australia, from Queensland to New South Wales [11].

3.19. Valamugil

Most Valamugil species, along with Moolgarda species, were split into two strongly supported lineages, one of which was paraphyletic with Crenimugil crenilabis. V. robustus belonged to another subclade, which also comprised Moolgarda spp. and Valamugil spp. Valamugil should now be considered as a junior synonym of Crenimugil since V. seheli (currently Moolgarda seheli), the type species of Valamugil, clusters with C. crenilabis (the type species of Crenimugil) into a single, well supported subclade. The subclade that includes M. cunnesius, M. engeli and M. perusii should now be assigned to Lüther's [42] Osteomugil. It is remarkable that Senou's [10] cladistic treatment, based on morphological characters, yielded the same result regarding the Crenimugil/Moolgarda/Valamugil group (Fig. 3) as the present molecular phylogeny (Fig. 2C). Senou [10] however fell short of proposing that M. seheli and V. buchanani be placed under Crenimugil, and that M. cunnesius, M. engeli and M. perusii be placed under Osteomugil. Valamugil robustus was the most externally branching species relative to the other species in our Osteomugil subclade. Therefore, although here we placed V. robustus, M. cunnesius, M. engeli and M. perusii under a single genus, it may be argued that V. robustus be assigned a different genus name because of the large nucleotide

distance that separates it from the other species in the sub-clade. The unique position of the first dorsal fin in *V. robustus* relative to all the other *Valamugil* spp. and *Moolgarda* spp. [11] would provide morphological support for this distinction. Nevertheless, we adopted a conservative approach and we leave this taxonomic problem to future research. The genus *Osteomugil* under its present, revised definition has a wide Indo-Pacific distribution, from South Africa to French Polynesia [11].

3.20. Xenomugil

The Xenomugil thoburni partial haplotypes were found to be embedded within the Mugil curema haplogroup (Fig. 2C). Therefore, there is no phylogenetic rationale to recognizing the genus Xenomugil as valid. The placement of X. thoburni haplotypes within the Mugil spp. subclade implies that Xenomugil is a synonym of Mugil. Further research is needed to clarify the systematics of the M. curema species complex and, in particular, whether X. thoburni is a distinct, biological species.

4. Conclusion

All phylogenetic hypotheses based on morphology and morpho-anatomy proposed within the last few decades for Mugilidae (review in [1]) were in contradiction with one another and the molecular phylogenetic results [1] supported no one. Here, we proposed a new classification that is consistent with the molecular phylogeny of [1], resurrecting genus names previously fallen into oblivion and eventually pointing out the need for new genus names in cases where no name is available [51]. The revised classification of the Mugilidae family proposed here recognizes 25 genera, including 15 genera currently considered as valid (Agonostomus, Aldrichetta, Cestraeus, Chaenomugil, Chelon, Crenimugil, Ellochelon, Joturus, Mugil, Myxus, Neomyxus, Oedalechilus, Rhinomugil, Sicamugil and Trachystoma) and 6 resurrected genera (Gracilimugil, Minimugil, Osteomugil, Planiliza, Plicomugil and Squalomugil). The mitochondrial phylogeny also singled out three isolated lineages (currently L. falcipinnis, Myxus capensis, and L. grandisquamis) for which no genus name is yet available. We here propose the following new genus names: Neochelon gen. nov. (type species: Mugil falcipinnis Valenciennes 1836); Parachelon gen. nov. (type species: M. grandisquamis Valenciennes 1836); and Pseudomyxus gen. nov. (type species: M. capensis Valenciennes 1836). Further genetic evidence is required to confirm or infirm the validity of genus Paracrenimugil proposed by Senou [10] for C. heterocheilos, as no genetic data are yet available for this species. Genus names Liza, Moolgarda, Paramugil, Valamugil and Xenomugil were shown to be invalid and they should now be abandoned.

More research is needed to address taxonomic issues at the infra-generic level. For instance, *Agonostomus monticola* and several species with large distribution ranges (including *Moolgarda seheli*, *Mugil cephalus* and *M. curema*) consisted of separate lineages whose geographic distribution suggests they are cryptic species (Figs. 1 and 2). Nuclear-DNA markers are powerful to detect reproductive isolation among cryptic species in sympatry. Nuclear genotyping has already led to identifying three biological species within *M. cephalus* from Taiwan [55] and two biological species within *M. curema* from the central western Atlantic [1]. Given the general helplessness of morphology and morpho-anatomy to reconstruct a consistent phylogeny of Mugilidae, a central role should now be assigned to molecular phylogenetics and population genetics in the taxonomy of species in this family.

5. Taxonomic description of three new mugilid genera

5.1. Neochelon, new genus

The new genus name Neochelon is here proposed for Mugil falcipinnis Valenciennes 1836 [18], here designated as its type species. The nucleotide sequences examined were those of the cytb gene (GENBANK accession No. JQ060212), the COI gene (GENBANK JQ060469), and the 16S gene (GENBANK JQ060716) of voucher specimen no. MNHN 2009-0730 (from Toubacouta, Saloum estuary, Senegal), and the homologous sequences of specimens collected in St Louis, Senegal (GENBANK JQ060213, JQ060470, and JQ060717; JQ060214, JQ060471, and JO060718) and at the fish market of Lome, Togo (GENBANK [O060215, [O060472, and [O060719] (Table 1 of [1]). The new genus is unique by the placement of its mitochondrial haplotypes on the phylogenetic tree of Mugilidae (Fig. 1), alone forming one of the seven major clades that stem from the common ancestor to all current mugilid species. The name of the genus is derived from Chelon, preceded by greek prefix "neo-" meaning "new". Distribution: West Africa, from Saint-Louis in northern Senegal to Congo [11].

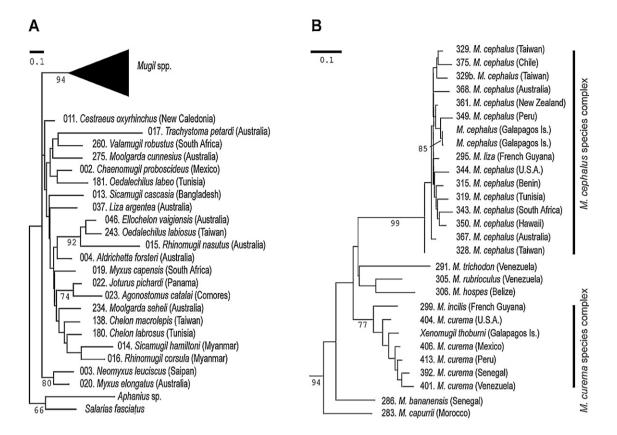
5.2. Parachelon, new genus

The new genus name *Parachelon* is here proposed for *Mugil grandisquamis* Valenciennes 1836 [18], here designated as its type species. The nucleotide sequences examined were those of the *cytb* gene (GENBANK accession nos. JQ060218 and JQ060219), the *COI* gene (GENBANK JQ060475 and JQ060476), and the *16S* gene (GENBANK JQ060722 and JQ060723) of voucher specimens nos. MNHN 2009-731 and SAIAB-83182 (both from Saloum

estuary, Senegal), and the homologous sequences of additional specimens collected in the Saloum estuary, Senegal (GENBANK JQ060216, JQ060473, and JQ060720) and at the fish market in Bissau, Guinea Bissau (GENBANK JQ060217, JQ060474, and JQ060721). This new genus is unique by the placement of its mitochondrial haplotypes on the phylogenetic tree of Mugilidae (Fig. 1), where it forms a subclade sister to *Chelon, Oedalechilus*, and *Planiliza* within the clade that also comprises *Pseudomyxus* gen. nov. The name of the genus is derived from *Chelon*, preceded by greek prefix "para-" meaning "beside". Distribution: West Africa, from Senegal to Nigeria [11].

5.3. Pseudomyxus, new genus

The new genus name *Pseudomyxus* is here proposed for Mugil capensis Valenciennes 1836 [18], here designated as its type species. The nucleotide sequences examined were those of the cytb gene (GENBANK JQ060366), the COI gene (GENBANK JO060615) and the 16S gene (GENBANK JO060867) of a specimen collected in the East Kleinemonde estuary, South Africa (sampling details in Table 1 of [1]). The new genus is unique by the placement of its mitochondrial haplotypes on the phylogenetic tree of Mugilidae (Fig. 1): Pseudomyxus gen. nov., together with Chelon, Oedalechilus, Parachelon gen. nov. and Planiliza, forms one of the seven major clades of the Mugilidae family. Pseudomyxus gen. nov. represents the most external lineage within this clade (Fig. 1). The name of the genus is derived from Myxus, preceded by greek prefix "pseudo-" meaning "false". Distribution: South Africa [11].


Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

Acknowledgements

We are grateful to T. Ballesteros, S. Banks, F. Bungartz and N. Tirado from the Charles Darwin Foundation for collecting *Mugil cephalus* and *Xenomugil thoburni* tissue samples. We thank J.-F. Trape and S. Trape (IRD, Dakar) for stimulating discussions.

Appendix A

Molecular phylogenetic analysis of Mugilidae partial sequences (300 bp) of the *cytb* gene, inferred by using the Maximum Likelihood method from Tamura and Nei's [48] model as implemented in MEGA 5 [49]. A. Entire tree with the highest log-likelihood [In(L) = -5162.2]. Sequences for outgroups *Arcos* sp. (Gobiesocidae) and *Salarias fasciatus* (Blenniidae) [50] are from GENBANK (http://www.ncbi.nlm.nih.gov/; accession nos. AP004452 and AP004451, respectively). B. Detail of the *Mugil* subtree; sequences of *Xenomugil thoburni* and two *M. cephalus* from the Galapagos Islands were kindly provided by S. Livi (pers. comm.). The percentage of pseudotrees generated by bootstrap resampling (500 runs), in which the associated individuals clustered together is shown next to the branches (bootstrap scores below 70% not shown). Branch length is proportional to the number of substitutions per site. Specimen numbers refer to Table 1 of [1].

References

- [1] J.-D. Durand, K.-N. Shen, W.-J. Chen, B.W. Jamandre, H. Blel, K. Diop, M. Nirchio, F.J. García de León, A.K. Whitfield, C.-W. Chang, P. Borsa, Systematics of the Mugilidae (Teleostei: Mugiliormes): Molecular phylogenetic evidence challenges two centuries of morphology-based taxonomy, Mol. Phylogenet. Evol. 64 (2012) 73–92.
- [2] J. Pons, T.G. Barraclough, J. Gomez-Zurita, A. Cardoso, D.P. Duran, S. Hazell, S. Kamoun, W.D. Sumlin, A.P. Vogler, Sequence-based species delimitation for the DNA taxonomy of undescribed insects, Syst. Biol. 55 (2006) 595–609.
- [3] M.T. Craig, P.A. Hastings, A molecular phylogeny of the groupers of the subfamily Epinephelinae (Serranidae) with a revised classification of the Epinephelini, Ichthyol. Res. 54 (2007) 1–17.
- [4] D.S. Rogers, M.W. González, Phylogenetic relationships among spiny pocket mice (*Heteromys*) inferred from mitochondrial and nuclear sequence data, J. Mammal. 91 (2010) 914–930.
- [5] J.T. Ladner, S.R. Palumbi, Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes, Mol. Ecol. 21 (2012) 2224–2238.
- [6] D. Tautz, P. Arctander, A. Minelli, R.H. Thomas, A.P. Vogle, A plea for DNA taxonomy, Trends Ecol. Evol. 18 (2003) 70–74.
- [7] L. Packer, J. Gibbs, C. Sheffield, R. Hanner, DNA barcoding and the mediocrity of morphology, Mol. Ecol. Resour. 9 (2009) 42–50.
- [8] L.G. Cook, R.D. Edwards, M.D. Crisp, N.B. Hardy, Need morphology always be required for new species descriptions, Invertebrate Syst. 24 (2010) 322–326.

- [9] D. Bickford, D.J. Lohman, N.S. Sodhi, P.K.L. Ng, R. Meier, K. Winker, K.K. Ingram, I. Das, Cryptic species as a window on diversity and conservation, Trends Ecol. Evol. 22 (2007) 148–155.
- [10] H. Senou, Phylogenetic interrelationships of the mullets (Pisces: Mugilidae), Ph.D. dissertation, Tokyo University, Tokyo, 1988.
- [11] J.M. Thomson, The Mugilidae of the world, Mem. Queensl. Mus. 43 (1997) 457–562.
- [12] J. Ghasemzadeh, Phylogeny and systematics of Indo-Pacific mullets (Teleostei: Mugilidae) with special reference to the mullets of Australia, Ph.D. dissertation, Macquarie University, Sydney, 1998.
- [13] W.N. Eschmeyer, R. Fricke (Eds.), Catalog of fishes electronic version, 2011 (http://research.calacademy.org/research/ichthyology/catalog/ fishcatmain.asp; 5 May 2011).
- [14] C. Linnaeus, Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, Tomus I, editio decima, reformata, Holmiae, Stockholm, 1758, ii+824 p.
- [15] A.F. Röse, Petri Artedi Angermannia–Sueci synonymia nominum piscium fere omnium; in qua recensio fit nominum piscium, omnium facile authorum, qui umquam de piscibus scripsere: uti graecorum, romanorum, barbarorum; nec non omnium insequentium ichthyologorum, una cum nominibus inquilinis variarum nationum, Ichthyologiae pars IV, editio II, A.F. Röse, Grypeswald (Greifswald), 1793, ii + 140 p.
- [16] B.G.E. Lacepède, Histoire naturelle des poissons, tome second, Plassan, Paris, 1799, lxiv + 632 p., 20 pls.
- [17] E.T. Bennett, Observations on a collection of fishes from Mauritius, presented by Mr. Telfair, with characters of new genera and species,

Proc. Gen. Meetings Sci. Business Zool. Soc. Lond. 1830-31 (1832) 165-169.

- [18] A. Valenciennes, Livre XIII : mugiloïdes, in: G. Cuvier, A. Valenciennes (Eds.), Histoire naturelle des poissons, tome onzième, F.G. Levrault, Paris, 1836, 186 p.
- [19] J. Gistel, Naturgeschichte des Thierreichs f
 ür h
 öhere Schulen, Hoffman'sche Verlags-Buchhandlung, Stuttgart, 1848, xvi + 216 pp, 32 pls.
- [20] F. Poey, Memorias sobre la historia natural de la Isla de Cuba, acompañadas de sumarios latinos y extractos en francés, Tomo 2, Barcina, La Habana, 1861, 442 p., 19 pls.
- [21] A. Günther, Catalogue of the acanthopterygian fishes in the collection of the British Museum, 3. Gobiidae, Discoboli, Pediculati, Blenniidae, Labyrinthici, Mugilidae, Notacanthi, Cat. Fish. Brit. Mus. 3 (1861), ixxv + 1-586 + i-x.
- [22] T.N. Gill, Descriptive enumeration of a collection of fishes from the western coast of Central America, presented to the Smithsonian Institution by Captain John M. Dow, Proc. Acad. Nat. Sci. Philadelphia 15 (1863) 162–174.
- [23] J.D. Macdonald, On the characters of a type of a proposed new genus of Mugilidae inhabiting the fresh waters of Viti Levu, Feejee group; with a brief account of the native mode of capturing it, Proc. Gen. Meetings Sci. Business Zool. Soc. Lond. 1869 (1869) 38–40, 1 pl.
- [24] F. Steindachner, Ichthyologische Beiträge (VII), Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe 78 (1878) 377–400.
- [25] D.S. Jordan, C.H. Gilbert, List of fishes collected at Panama by Captain John M. Dow, now in the United States National Museum, Proc. U. S. Natl. Mus. 5 (1882) 373–378.
- [26] W. Macleay, On a new and remarkable fish of the family Mugilidae from the interior of New Guinea, Proc. Linn. Soc. New South Wales 8 (1883)2–6.
- [27] D.S. Jordan, J. Swain, A review of the American species of marine Mugilidae, Proc. U. S. Natl. Mus. 7 (1884) 261–275.
- [28] J.D. Ogilby, On a new genus and species of Australian Mugilidae, Proc. Gen. Meetings Sci. Business Zool. Soc. Lond. 4 (1888) 614–616.
- [29] L.L. Vaillant, Sur une collection de poissons recueillie en Basse-Californie et dans le Golfe par M. Léon Diguet, Bull. Soc. Philomatique Paris 6 (1894) 69–75.
- [30] H.W. Fowler, New and little known Muglidae and Sphyraenidae, Proc. Acad. Nat. Sci. Philadelphia 55 (1903) 743–752, pls. 45–46.
- [31] J.D. Ogilby, New or little known fishes in the Queensland Museum, Ann. Queensl. Mus. 9 (1908) 1-41.
- [32] C.T. Regan, A collection of freshwater fishes made by Mr. C.F. Underwood in Costa Rica, Ann. Magazine Nat. Hist. 2 (1908) 455–464.
- [33] G.P. Whitley, Five new generic names for Australian fishes, Austr. Zool. 6 (1930) 250–251.
- [34] A.M. Popov, Kefali (Mugilidae) ebropi s opisaniem novogo bida iz Tichookeanoskich vod SSSR [Mullets of Europe (Mugilidae) with descriptions of a new species from the Pacific Ocean], Trudy Sevastopoľskoi Biologicheskoi Stantii Akademii nauk SSSR 2 (1930) 47–125.
- [35] H.W. Fowler, A small collection of fishes from Rangoon, Burma, Notulae Naturae Acad. Nat. Sci. Philadelphia 17 (1939) 1–12.
- [36] G.P. Whitley, Ichthyological notes and illustrations, Austr. Zool. 10 (1941) 1-52.
- [37] G.P. Whitley, New sharks and fishes from Western Australia, Part 2, Austr. Zool. 11 (1945) 1–43.

- [38] L.P. Schultz, A revision of the genera of mullets, fishes of the family Mugilidae, with descriptions of three new genera, Proc. U. S. Natl. Mus. 96 (1946) 377–395.
- [39] G.P. Whitley, New sharks and fishes from Western Australia Part 4, Austr. Zool. 11 (1948) 259–276, pls. 24–25.
- [40] J.L.B. Smith, A generic revision of the mugilid fishes of South Africa, Ann. Mag. Nat. Hist. 14 (1948) 833–843.
- [41] L.P. Schultz, Family Mugilidae, in; L.P. Schultz, E.S. Herald, E.A. Lachner, A.D. Welander, L.P. Woods (Eds.), Fishes of the Marshall and Marianas islands, Vol. I: Families from Asymmetrontidae through Siganidae, Bull. U. S. Natl Mus. 202 (1953) 310–322.
- [42] G. Lüther, New characters for consideration in the taxonomy appraisal of grey mullets, J. Mar. Biol. Ass. India 169 (1982) 1–9.
- [43] J. Ghasemzadeh, W. Ivantsoff, Aarn, Historical overview of mugilid systematics, with descriptions of *Paramugil* (Teleostei: Mugiliformes: Mugilidae), new genus, Aqua J. Ichthyol. Aquat. Biol. 8 (2004) 9–22.
- [44] I.J. Harrison, M. Nirchio, C. Oliveira, E. Ron, J. Gaviria, A new species of mullet (Teleostei: Mugilidae) from Venezuela, with a discussion on the taxonomy of *Mugil gaimardianus*, J. Fish Biol. 71 (Supplement A) (2007) 76–97.
- [45] J.S. Nelson, Fishes of the World, John Wiley & Sons, New York, 2006.
- [46] D. Aurelle, R.-M. Barthelemy, J.-P. Quignard, M. Trabelsi, E. Faure, Molecular phylogeny of Mugilidae (Teleostei: Perciformes), Open Mar. Biol. J. 2 (2008) 29–37.
- [47] S. Heras, M.I. Roldán, M. Gonzalez Castro, Molecular phylogeny of Mugilidae fishes revised, Rev. Fish Biol. Fisheries 19 (2009) 217–231.
- [48] K. Tamura, M. Nei, Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol. 10 (1993) 512–526.
- [49] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28 (2011) 2731–2739.
- [50] M. Miya, H. Takeshima, H. Endo, N.B. Ishiguro, J.G. Inoue, T. Mukai, T.P. Satoh, M. Yamaguchi, A. Kawaguchi, K. Mabuchi, S.M. Shirai, M. Nishida, Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences, Mol. Phylogenet. Evol. 26 (2003) 121–138.
- [51] International Commission on Zoological Nomenclature, International code of zoological nomenclature, fourth ed., International Trust for Zoological Nomenclature, London, 1999, 306 pp.
- [52] P.D. Cantino, K. de Queiroz, International code of phylogenetic nomenclature, version 4c, Ohio University, 2010, 102 p. (available from http:// www.ohio.edu/PhyloCode/PhyloCode4c.pdf).
- [53] A. Stamatakis, RAXML-VI-HPC. Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics 22 (2006) 2688–2690.
- [54] I.J. Harrison, G.J. Howes, The pharyngobranchial organ of mugilid fishes; its structure, variability, ontogeny, possible function and taxonomic utility, Bull. Br. Mus. Nat. Hist. (Zool.) 57 (1991) 111–132.
- [55] K.-N. Shen, B.W. Jamandre, C.-C. Hsu, W.-N. Tzeng, J.-D. Durand, Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet *Mugil cephalus*, BMC Evol. Biol. 11 (2011) 83.