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Abstract—Tactile Internet (TI) enables the transfer of human
skills over the Internet, enabling teleoperation with force feed-
back. Advancements are being made rapidly at several fronts
to realize a functional TI soon. Generally, TI is expected to
faithfully reproduce operator’s actions at the other end, where
a robotic arm emulates it while providing force feedback to
the operator. Performance of TI is usually characterized using
objective metrics such as network delay, packet losses, and
RMSE. Pari passu, subjective evaluations are used as additional
validation, and performance evaluation itself is not primarily
based on user experience. Hence objective evaluation, which
generally minimizes error (signal mismatch), is oblivious to
subjective experience.

In this paper, we argue that user-centric designs of TI solutions
are necessary. We first consider a few common TI errors and
examine their perceivability. The idea is to reduce the impact
of perceivable errors and exploit the imperceivable errors to
our advantage, while the objective metrics may indicate that
the errors are high. To harness the imperceivable errors, we
design Adaptive Offset Framework (AOF) to improve the TI signal
reconstruction under realistic network settings. We use AOF to
highlight the contradictory inferences drawn by objective and
subjective evaluations while realizing that subjective evaluations
are closer to ground truth. This strongly suggests the existence of
‘blind spots of objective measures’. Further, we show that AOF
significantly improves the user grade, up to 3 points (on a scale
of 10) compared to the standard reconstruction method.

Index Terms—Tactile internet, user experience, QoS, teleoper-
ation

I. INTRODUCTION

Through seamless audio-visual communication, today’s

Internet has transcended the physical barriers between re-

motely located humans. The pioneering idea of Tactile Internet
(TI) envisions to further diminish this physical separation

by enabling transfer of skills [1]. The cornerstone of TI is

the fast and accurate replication of human operator’s actions

by a robotic teleoperator in the remote environment and the

transmission of haptic (force) feedback generated thereof to

the operator. Such an ability to teleoperate will undoubtedly

empower us to perform complicated tasks, especially in hard-

to-reach remote locations, as if we are present there.

Due to its vision of carrying human skills anywhere, TI

has the potential to completely revolutionize several domains

such as healthcare, disaster response, edutainment, and e-

commerce. The most celebrated applications are telesurgery,

where a surgeon conducts medical operations on a remote

patient, and remote disaster management, such as cleaning up

the Fukushima nuclear disaster site. In such human-in-the-loop

Tactile
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Fig. 1: Depiction of a typical Tactile Internet system highlight-

ing the master and controlled domains and data communica-

tion between them. In light blue the pen is indicated in the

master domain to be present only through haptic and visual

feedback, while the real pen is only present in the controlled

domain.

applications, the master domain comprising of the operator

transmits kinematic signals (position and velocity) for teleop-

erating the robot in the controlled domain. Haptic sensation

generated due to the physical interaction is transmitted back

to the operator along with audio-visual feedback. A simple

depiction of TI is in Fig. 1, where both the operator and the

teleoperator (robotic arm) are shown.

Challenges: Realizing a functional TI necessitates address-

ing a plethora of challenges. Firstly, for effective teleoper-

ation, the transmission of kinematics and haptic feedback

requires ultra-reliable low latency communication (URLLC);

the widely prescribed requirements being sub-10ms latency

and 99.999% reliability [2]. Achieving URLLC is extremely

challenging. Secondly, the human-in-the-loop nature of TI

applications poses additional complexities. Due to the safety-

critical nature of TI applications, accuracy in task execution

and user (operator) experience are of paramount importance.

The operator’s perception and response dictate these factors,

which are increasingly complicated to model due to the

subjectivity involved. Hence, quantification of TI performance

is challenging, and we now list some of the issues.

In a realistic teleoperation scenario, signal errors (devi-

ations from the expected signal trajectory) are inevitable.

Some example causes of errors include delay, information

loss, and heterogeneous workspaces and capabilities between

master and controlled domains. These could be added by

sensing, actuation, compression, communication, and other

processing modules. Existing TI solutions have leveraged

several conventional objective metrics for directly or indirectly

indicating/measuring/estimating these errors [3], [4], [5], [6].

Such metrics include network delay, packet losses, throughput,
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and Root Mean Square Error (RMSE). Existing methods in

the literature indirectly strive to minimize the error (mismatch

between sensed and reconstructed signals) as a whole based on

the above objective metrics. Going by the literature, there is a

heavy reliance on objective metrics as the key performance in-

dicators (KPIs), while subjective evaluations (user grades) are,

most often, used only for additional validation of the objective

results. The rationale for such a notion is reasonable and, to

a large extent, justified as objective studies are controllable

and repeatable, and they work well for humans in open-loop

systems. However, some crucial limitations surface when we

work with human-in-the-loop TI systems.

Issues with TI performance characterization. There are

two major limitations of above performance characterization

techniques.

1 Existing works implicitly assume that users are equally
sensitive to all kinds of errors without distinguishing dif-

ferent types of errors. In other words, there is a lack

of understanding of how humans perceive and respond to

different types of error. This has led to a counterproductive

effect – some TI solutions attempt to rapidly minimize error

at the expense of introducing perceptual artifacts that further

hampers performance (demonstrated in detail in Sec. V-A).

This may be catastrophic for safety-critical TI applications.2
There could exist several insensitivities of humans to spe-

cific errors. Not studying them may cause us to miss out

on promising opportunities that could significantly boost

TI performance and relax the stringent URLLC constraints,

which are mostly unnecessary. Hence, substantial efforts

are necessary to understand human perception, thereby

designing user-centric TI solutions that leverage this knowl-

edge rather than just treating the user as a black box.

The above observations lead us to the following crucial ques-

tions. 1 How impactful are different types of errors from the

standpoint of user experience? 2 If there exist imperceivable

errors, how can we uncover and exploit them to enhance TI

communication? 3 Are standard objective metrics holistic

and sufficient to capture these effects and characterize overall

performance? We believe that answering these questions opens

new directions in characterizing and building systems that

support TI communication.

Our approach: We take a radically different approach from

the existing works to seek answers to the above questions.

We analyze the impact of certain types of errors through a

user-centric study. To leverage these insights for enhancing TI

performance, we come up with the design of Adaptive Offset
Framework (AOF) – a novel TI signal reconstruction technique

for intelligently handling errors introduced in a TI system.

Contributions. Our contributions in the process are listed

below.

1 Motivated by the need of a user-centric approach, we

examine a few common errors that occur in TI scenarios. We

develop the concept of ‘perceivability of errors to indicate

the perceptual significance of errors.

2 To leverage the insights gained, we propose Adaptive Offset
Framework (AOF) that dynamically adjusts the position

offset between master and controlled domains for producing

a smooth reconstruction signal without introducing any

perceptual impairments (Sec. III). By implementing AOF

in a realistic TI setup involving human subjects, we present

examples to illustrate the working of AOF.

3 We measure the TI performance both objectively and sub-

jectively over a wide range of network settings. As per the

objective measurements, AOF performs worse than standard

reconstruction methods. However, the subjective measure-

ments suggest otherwise, revealing that AOF significantly

improves the user experience (Sec. V-C).

4 The glaring contrast between subjective and objective mea-

sures expose ‘blind spots’ of objective measures. Further,

the subjective measurements indicate that AOF significantly

improves the overall TI performance. (Sec. V-B).

II. ERRORS IN TI AND THEIR PERCEIVABILITY

Several types of mismatch (error) can exist while reproduc-

ing a sensed signal in a TI system that could heavily influence

the performance. To interpret these errors, we introduce the

notion of decomposition of errors in a TI system. We consider

the most common TI errors between master and controlled

domains and examine their impact on user performance.

A. Typical TI Setup
We begin by first describing a typical TI setup. A haptic

device resides in the master domain. A teleoperator, often

a robotic arm, resides in the controlled domain in a remote

physical environment. We use a Novint Falcon in the master

domain and a virtual environment (VE) in the controlled

domain for our experiments. The TI setup in our laboratory

is shown in Fig. 2(a). When a point on the haptic device is

moved (from white to red location), the corresponding part of

the teleoperator in the VE, known as haptic interaction point
(HIP), moves accordingly [7]. If a rigid object in the VE is at

a distance of x1 from the HIP, then the HIP applies a force

F proportional to penetration depth (xtotal − x1), when the

device displacement is xtotal, i.e., F − k(xtotal − x1) where

k is the spring constant. This is illustrated in Fig. 2(b). The

experienced force is measured with sensors and fed back to

the operator through the haptic device. We opt to use a virtual

physics environment to represent the controlled domain. The

key advantages of using a virtual physics environment are the

complete access of all information in the controlled domain

and repeatable experimentation that provides all participants

a consistent and reproducible experience. Note that physics

interaction calculations in the VE reflect the general behavior

in a physical environment.
Currently, a TI application cannot be facilitated by a net-

work with ideal performance. We investigate these errors to

better understand their impact on the overall performance.

B. Decomposition of Error
An ideal TI system must not generate any error, i.e., sensed

signals in one domain are reproduced with neither temporal
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Fig. 2: (a) Tactile Internet setup in our lab showing the the

user interacting with a virtual environment. The monitor on

the left and right correspond to master and controlled domains,

respectively. (b) Conceptual illustration of generation of haptic

feedback. HIP is the white circle in the controlled domain.

Fig. 3: Illustration of decomposition of errors on two estimated

signals Y1 and Y2.

error (zero delay) nor spatial (position) error. Such a TI system

can be described as,

Y [k] = X[k],

where X[k] is the sensed sample in one domain at time k
and Y [k] is the estimated value at the other domain at time k.

However, in practice, signal reproduction is prone to errors.

Therefore, a practical TI system can be represented by,

Y [k] = X[k + l[k]] + E[k], (1)

where E[k] represents the position error at time k, and l[k]
is the temporal error at time k. Note that these errors are

themselves dependent on k. Although in Eq. (1) we repre-

sented the error conceptually as a whole, we can improve

the analysis by considering temporal and position errors as

multiple components acting simultaneously. In other words,

E[k] and l[k] can be decomposed as,

E[k] =
∑
m

Em[k] , and l[k] =
∑
n

ln[k], (2)

where Em[k] is the mth component of E[k] and ln[k] is the

nth component of l[k]. It should be noted that in Eq. (2) we

do not define any correlation between errors for the sake of

simplicity. However, error components can be correlated with

the sensed signal or other error components. Therefore, there is

an unlimited number of ways to decompose E[k]. We illustrate

this concept in Fig. 3. Here, two estimations Y1 and Y2 of

sensed signal X are shown. Y1 appears to be identical to X
apart from a stationary offset, while Y2 has multiple deviations.

An example of how the error in Y2 can be decomposed into

multiple components is shown with E0, E1, E2, and E3. Any

decomposition can be considered as long as their sum matches

the total.

This notion of error decomposition allows us to isolate

errors and examine their impact on the operator separately. The

objective of this work is not to extract error components from

the signal but to consider some common errors that provide a

scope for improving TI performance. We now consider some

common errors that occur in TI communication and examine

their impact on the user experience.

C. Perceivability of errors

We now consider a few types of errors that offer us the

most interesting opportunities to improve the TI performance.

We examine the perceivability of errors which is the impact

of an error on the user experience. To this end, we consider

three specific types of errors.

1) Stationary offset: A mapping between the master and

controlled domains is defined for reproducing the operator’s

actions. This causes any unique location in the master domain

to point to a unique location in the controlled domain. The

choice of this mapping is heavily dependent on the application.

There can be an application where the operator spans the

entire workspace of the teleoperator and another application

where the operator is interested in fine-grained movements in

a limited portion of the workspace. In any case, the operator

learns the deployed mapping by interacting with the TI setup.

Let us consider the former scenario in which each point in the

teleoperator’s workspace is uniquely mapped to a point in the

operator’s workspace and vice-versa. Let us suppose there is

a stationary offset of 2 cms in the mapping, and the operator

intends to pick and place an object in the controlled domain.

If the operator can perform all actions as intended, the offset

does not pose any issues. On the other hand, if the teleoperator

(HIP in case of VE) is a few centimeters away from the object

while the operator has reached the workspace edge and can

not move any further, then the offset starts to make a negative

impact, and this is undesirable.

The operator realizes the offset only due to the presence

of reference points. In the above example, the workspace

edge acts as the reference point. This is illustrated in Fig. 4.

Here, the blue cube indicates the workspace of the haptic

device. An example of a good map from the operator to the

teleoperator’s workspace is the green cube in the controlled

domain. However, a stationary offset results in the red cube

being the teleoperator’s workspace. If the operator intends to

touch the remote object (vase), the teleoperator can never

really allow that since it can access only a portion of the

object. However, the interaction would have been satisfactory

if the object resided in the green and red cubes’ overlapping

regions. The reference point, in this case, is a combination of

the workspace and the desired area of operation.

From the above examples, it can be observed that reference

points play a significant role in governing the perceivability of

stationary offsets. If the offset is small with respect to the ref-

erence points, then the offset can be considered imperceivable

to the operator. However, the same offset can be a significant

error for objective metrics.
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Master Domain Controlled Domain

Fig. 4: Illustration of the notion of reference points. The blue

cube indicates the operator’s workspace, whereas the green and

red cubes indicate the desired workspace and stationary offset

workspace of the teleoperator, respectively. In the offset case,

the object (blue vase) can never be fully accessed, leading to

performance issues.

2) Velocity Scaling error: When the operator performs

an action, if the teleoperator moves considerably faster or

slower than the operator, then it becomes perceivable. For

example, if the operator moves the hand, and the teleoperator

barely moves, this will be highly perceivable. However, small

variations in the scale of the velocity of the teleoperator’s

movements will be imperceivable.

3) Delay-induced position errors: Due to the inherent TI

delay (network, processing, among others), there would be a

lag in replicating the operator’s actions, leading to position

errors. The presence of haptic feedback strongly determines

how perceivable these position errors are. When the HIP

is distant from the objects in the VE, there is no haptic

feedback. Hence, position errors corresponding to even a few

milliseconds between master and controlled domains will not

cause any disturbances in the operator’s ability to teleoperate.

On the other hand, if the HIP is in the vicinity of or in contact

with VE objects, these position errors could create undesirable

haptic feedback. For example, there is a sharp transition

between free space and hard object since the force rises rapidly

from zero (free space) to a considerable value (on the object’s

surface). Hence, even minor position errors can harm the user

experience. Suppose the operator is transitioning from free

space to hard object. If the force feedback is delayed, then the

operator would have applied a large force to the object before

force feedback is experienced. The large penetration generates

a high force that could impair the operator’s teleoperation

ability. Hence, minor delay-induced position errors could be

highly detrimental.

D. Blind spots in objective measures

So far, we have explored multiple errors and their perceiv-

ability for a human operator. To find opportunities that are

not explored in the state-of-the-art in TI, we focus on errors

that either have (i) a large impact on objective measures but a
small impact on the user experience or (ii) a small impact on
objective measures but a large impact on the user experience.

Stationary offset and velocity scaling error belong to the

former category, and delay-induced position error belongs to

the latter. Clearly, in these cases, contradictory inferences are

drawn by objective measures and user experience. Since user

experience is the KPI in TI systems, any measure that does

not agree with it manifests severe shortcomings with respect

to performance characterization. Hence, we argue that there

exist blind spots in objective measures, which is their inability

to characterize TI performance properly. As an example, we

take the stationary offset discussed in Sec. II-C1. Objective

measures based on network parameters are agnostic to the un-

derlying data. Therefore, there is no way to identify any error

term. However, that does not mean those network parameters

are not useful. An increased delay and increased information

loss will undoubtedly deteriorate the system’s performance.

However, it does have blind spots to pinpoint the performance

more accurately.

A simple objective measure that is signal-aware is RMSE.

A stationary offset will cause a significant increase in the

RMSE, which can marginalize other deterioration like high-

frequency noise. This is a blind spot within RMSE, causing

it to significantly drop in effectiveness when any form of sta-

tionary offset is present. Another example is the delay-induced

position errors described in Sec. II-C3. Here we identify that

force feedback significantly impacts the consequence of an

error. Objective measures based on network parameters or

RMSE can identify a delay or an error but do not consider their

effect on the physical environment. This concept is another

blind spot in objective measures.

We now leverage the insights gained on perceivability of

errors to improve user experience. To this end, we propose

Adaptive Offset Framework (AOF) for reconstructing a smooth

kinematics signal in the controlled domain.

III. ADAPTIVE OFFSET FRAMEWORK (AOF)

In Sec. II, a small stationary offset was deemed almost

imperceivable, with the caveat that the offset should be suffi-

ciently small with respect to potential reference points. This

observation provides us with a range of stationary offsets

that can be maintained indefinitely without affecting the user

experience. This range can be deployed as an adaptive offset.
The adaptive offset can be deployed just before the estimation

is used. With this, we get

Z[k] = Y [k] +A[k], (3)

where Z[k] is the reconstructed value at time k and A[k] the

state of the adaptive offset at time k. Y [k] is the estimation

as defined in Eq. (1). Whenever errors are identified in the

system, they can be absorbed into the adaptive offset instead

of correcting for them directly. The error can then be handled

at a later time. This enables us to address these errors at the

opportune moment.

The adaptive offset by itself does not provide an improve-

ment to the user experience. We introduce shaping functions
that modify the adaptive offset to improve the user experi-

ence. Their intended purpose is to mask errors with a small
impact on objective measures but a large impact on the user
experience so that with minimal dependence on the adaptive

offset, they improve the user experience. At the same time,

we need to prevent the offset from ever-increasing. To this

end, we introduce decay functions whose primary goal is to
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Fig. 5: Block diagram representation of the proposed AOF so-

lution. Also shown is the contrast with standard reconstruction

methods in TI literature.

shrink and contain the offset, by utilizing errors with a large
impact on objective measures but a small impact on the user
experience. Multiple shaping and decay functions can be active

simultaneously. We define the adaptive offset as

A[k] = A[k − 1] +
∑
p

Sp[k] +
∑
q

Dq[k], (4)

where Sp[k] is the contribution of the pth shaping function at

time k, and Dq[k] the contribution of the qth decay function

at time k. The interconnection between the different modules

of AOF is shown in Fig. 5.

A. Shaping function for one-shot correction error

An offset can be built up when new information is not

received at the controlled domain. When new information

eventually arrives, the standard method is to adjust to the

new information as soon as possible, causing all offset to be

removed in one shot. We define this change as a correction.

The benefit of the correction is clear. It removes all of the

position offset in the system by going to the intended position.

However, the problem is that these corrections can result in

short spikes in the velocity that were not present in the original

signal. We call this spike in velocity a one-shot correction
error. The one-shot correction error is experienced as an

impulse by the user. If this happens in the vicinity of a physical

object, a large spike in force feedback can be experienced.

These effects are highly perceivable, especially when the spike

in force feedback is sufficiently large. When the corrections

are sufficiently large, these can be perceived even visually. The

effects are even more pronounced in the presence of delay and

packet losses.

The one-shot correction error can be removed entirely by

subtracting an equal amount of the offset from the buffer

when the correction is performed. Instead of a high spike in

velocity, the adaptive offset is altered. To do this, the correction

needs to be calculated before it can be committed to the

buffer. When calculating a new reconstruction after a new

packet was received, one should not calculate the correction

for the upcoming step but the correction needed in the previous

step. That way, the signal maintains its velocity correctly.

Scorr[k] = Y [k − 1] − X[k − 1], where k − 1 indicates the

time of the previous estimation and the arrival of the latest

packet. Scorr is the shaping function that targets the correction

error.

Depending on the quality of the network, removing the

corrections can create a large amount of pressure on the

adaptive offset. Therefore an option to tune the aggressiveness

of the shaping function is useful. One way to use the same

concept less aggressively is to introduce a threshold τcorr.

Any corrections smaller than a certain amount are deemed

acceptable, but anything larger could hurt the user experience.

This also potentially works well when packet loss is present,

which can sometimes cause potentially harmful corrections.

The resulting shaping function is defined as,

Scorr[k, τ ] =

{
0 if ‖Scorr[k, 0]‖ < τcorr,

Scorr[k]− τcorrŜcorr[k] otherwise,
(5)

where τcorr is the threshold and Ŝcorr the unit vector of Scorr.

B. Shaping function for delay

Inevitably there exists a delay between the master and

controlled domain. This delay can be caused by the Round

Trip Time (RTT), information loss, or other methods. Multiple

ways can be considered to decrease this problem. For example,

future predictions can be considered. However, prediction does

not come for free and runs the risk of instability. For this work,

we will consider a different approach to suppress the effects

of delay.

In order to decrease the adverse effects of delay on the

user experience, a more specific error needs to be found. We

can use a concept discussed previously, where position errors

are more perceivable when interacting with physics objects. A

delay allows the operator to move through solid objects like

walls without feeling force feedback for a short period. When

the force feedback does arrive, the operator has already moved

deep into the object, causing the device in the controlled

domain to apply a lot more force to the physical object than

the operator intended.

There is a way for the controlled domain to recognize

instances when the force feedback in the system and the force

feedback experienced by the operator have a mismatch. When

the force feedback changes, the controlled domain knows this

before the operator in the master domain. The system can keep

track of the information experienced by the operator, and with

that information available, a shaping function can be crafted.

Let Fcontrolled[k] be the sensed force in the controlled domain

at time k. Then we take Fmaster[k] as the force feedback

experienced by the operator in the master domain at time k.

The difference in force can be calculated as

Fdifference[k] = Fcontrolled[k]− Fmaster[k]. (6)

We now make the assumption that the effect of Fdifference

would result in an amount of velocity, would the operator have

experienced it. We can then proactively apply the effects of

that velocity by modifying the buffer. The resulting shaping

function becomes

Sdelay = fdelay(Fdifference), (7)

where Sdelay is the shaping function, and fdelay is a function

indicating the amount of velocity as a result of the force

difference.
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With the shaping function stated above, the kinematic data is

slowed down as it moves through a rigid object. Of course, this

”slowing down” only happens at the receiver. The operator is

not affected. The goal is to suppress a potentially unintended

spike in force. However, there is a high risk of a positive

feedback loop: the pressure is lessened because of the sensed

increase in force. Then the operator feels less force as a result

and slows down less. Once again, the sensed force is increased.

With this loop, the wall can appear very weak.

To make sure the effect of Sdelay is as desired, fdelay should

be chosen appropriately. Additionally there is a consideration

in how the Fcontrolled and Fmaster are obtained. We propose

to deploy a shift register at the receiver that keeps track

of recent force measurements. Through communication a

Round Trip Time (RTT) can be obtained. Based on the RTT,

Fmaster can be chosen from the shift register. We then choose

fdelay(Fdifference) = Cdelay ·Fdifference, where delayC is a constant

that linearly correlates the difference in force with a velocity.

For a fixed RTT, this naturally balances the offset created by

Sdelay. For an infinitely long session, if it ends with a period

of zero force, the cumulative effect of Sdelay will be zero. This

property reduces the pressure of Sdelay on the adaptive offset.

Still Cdelay needs to be chosen carefully so it has a noticeable

effect, but not so high that it makes the walls feel flimsy.

C. Decay functions

Besides shaping functions, we need adequate decay func-

tions to handle the pressure shaping functions apply to the

adaptive offset. The combined effort of all deployed decay

functions should handle the pressure provided by all deployed

shaping functions.
1) Velocity scaling Decay function: As shown in Sec. II, a

stationary scaling error is almost imperceivable. By extension,

slightly scaling the velocity at run-time is also hard to perceive.

This provides an excellent opportunity to shrink the adaptive

offset.

Any time the pointer moves, the component in the direction

of the adaptive offset can be slightly scaled, either increasing

or decreasing the movement slightly. When there is a non-

zero velocity in the system, this function provides a steady

shrinking of the adaptive offset. We first need to project the

movement and we can project the velocity onto the adaptive

offset.

Ẋprojection[k] =
Ẋ[k] ·A[k]
‖A[k]‖

A[k]

‖A[k]‖ (8)

where Ẋprojection[k] is the projected velocity. Now we scale the

projection depending on it matches or opposes the direction

of the adaptive offset.

Dscaling[k] =

{
C · Ẋprojection[k] if

Ẋ[k]·A[k]
‖A[k]‖ ≥ 0,

−C
1+C · Ẋprojection[k] otherwise.

(9)

Here Dscaling is the decay function based on scaling velocity,

and Cscaling a scalar indicating the strength. To choose a good

value for Cscaling we can use the same concept deployed

in Perceptual Deadband. A concept called Just Noticeable

Difference (JND) indicates how much a velocity can differ

before the operator notices it. Typically this value is stated as

10%. Here the same value can be used for Cscaling.

An alternative method is to make Cscaling dependent on the

size of the adaptive offset. The idea is that there is not a

strong need for the decay function to act for a small adaptive

offset, but when the size is relatively big, the offset should be

suppressed more strongly.

Cscaling[k] =
2‖A[k]‖
Bmax

, (10)

where Bmax is the maximum size of the buffer. A Cscaling = 2
means that all velocity in the direction of the offset will be

completely nullified. It is possible to choose different functions

for Cscaling, but exploring other options remains future work.

With the above described shaping and decay functions, we

arrive at a specific implementation of the Adaptive Offset

Framework, which can be expressed as

A[k] = A[k − 1] + Scorr[k, τ ] + Sdelay[k] +Dscaling[k]. (11)

There is sufficient scope to explore other functions to further

improve the user experience.

IV. EXPERIMENTATION

A. Experimental Setup

As explained in Sec. II-A, in this work, we use a VE

setup for our experimentation. Note that AOF’s working

and performance evaluation also applies to remote physical

environments. Virtual physics exist within conventional game

engines. Conventional game engines calculate physical param-

eters linked to the frame rate, typically 60Hz. This rate is

insufficient as haptic signal requires 1 kHz update rate. The TI

testbed proposed by Bhardwaj et al. [8] solves this problem.

The game engine used is Chai3D, which has a physics engine

detached from the frame rate, and runs physics calculations at

the required 1 kHz.

As shown in Fig. 2(a), in our the master domain houses the

haptic device and a monitor. The controlled domain houses the

VE, and the two domains are connected via a real network.

In the master domain, the force is fed to the haptic device.

The kinematic data of the dynamic objects are used to update

virtual copies of those dynamic objects stored locally. The

rendering engine then produces frames locally.

We develop a VE game that we call FollowMe where the

task is for the user to track a continuously moving target using

the haptic device. A snapshot of the FollowMe game is shown

in Fig. 6. The demo was designed with minimal VE objects

to ensure a consistent experience across different participants.

The only objects are a rigid, immovable surface (‘C’ in the

figure) and a slider (‘B’ in the figure) that can be moved using

the haptic device.

In order to test the efficacy of AOF, we perform experiments

under a wide variety of different network behaviors. We use

Netem – a standard network emulation tool to consistently

and precisely emulate various network conditions. A consistent

behavior is desirable as it helps reduce variance in performance
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Fig. 6: A snapshot of the FollowMe game used for the

performance evaluation of AFO. The target ‘A’ needs to be

tracked by moving the green object indicated as ‘B’ using the

haptic device. ‘C’ is a rigid surface like a table and ‘D’ is the

HIP.

and isolate the effects of AOF. We consider network delay,

uniform packet loss, and bursty packet loss settings. Bursty

packet loss is induced using the Gilbert-Elliot model.

We also deploy Perceptual Deadband (PD) [5] – a state-of-

the-art compression scheme for haptics signals. PD works by

estimating the perceptually insignificant samples. The trans-

mitter can avoid sending such samples leading to improvement

in application bandwidth requirement. For example, a PD of

15% implies that a sample is transmitted only if the percentage

change in magnitude with respect to the previous transmitted

sample is higher than 15%.

B. Experimental Procedure

The goal of the experiment is to investigate the effect

of different forms of performance degradation on the user

experience. In this regard, we consider three specific tasks:

1 Pushing the slider at a steady rate. This motion helps in

recognizing subtle disturbances due to PD and packet loss. 2
Dropping the HIP on the surface from a height as there is a

sharp transition in generated force. This motion is like resting

a hand on a table. 3 Rubbing the rigid surface. There is both

a steep transition in force and smooth motion. Participants

are requested to experiment with all three actions to get a

more inclusive idea of the user experience in a more realistic

scenario. Participants are given time to familiarize themselves

with the application, typically five minutes.

Participants are presented with ten sets of network settings

in random order. Once a setting is chosen, it is given twice

– once with AOF and the other with standard behavior in a

random order, as explained in Fig. 5. Hence, there are 20

different scenarios altogether. For every setting, the target

travels a predefined trajectory for 20 seconds. At the end

of each setting, the participant grades the experience as per

Table I. The subjective study involved fifteen participants in

the age group between 20 and 64 years, with an average of

32 years. No participant suffered from known neurological

disorders.

TABLE I: Description for subjective grading.

10 no perceivable impairment
8-9 slight impairment but no disturbance
6-7 perceivable impairment, slight disturbance
4-5 significant impairment, disturbing
1-3 extremely disturbing

V. PERFORMANCE EVALUATION

A. AOF behavior analysis

To illustrate the working of AOF, we first present some

examples, shown in Fig. 7 . Each data set is created within

the experimental setup. At 0 cm on the vertical axis, there

is a rigid surface extending downwards. We plot the tele-

operator position in the vertical axis while TI interaction is

being conducted. We measure the generated force based on

reconstructed position as explained in Sec. II-A. Figs. 7(a)

and 7(b) correspond to a dropping motion where the operator

attempts to put drop the device down on the rigid surface while

being subjected to 10ms of RTT. Figs. 7(c), 7(d), 7(e), and 7(f)

correspond to a rubbing motion where the operator attempts to

rub the device over the rigid surface. The difference between

AOF and standard behavior is described in Fig. 5. We will

explain some of the key performance benefits of AOF from

these examples.

1. Suppression of oscillations. In Fig. 7(a), one can see

that the dropping motion causes significant oscillations with

the standard reconstruction method. This effect is indicated

by marker 1 . Due to the delay, the user enters the surface

without feeling the force feedback, thus penetrating deeper

before the force feedback arrives. The force feedback is larger

than desired as the penetration depth is larger. This causes

the user to be pushed out of the surface quicker. When the

operator continuously applies downward force, this causes

oscillations. This is typical of TI because of the delay in the

network, which otherwise would not be physically possible.

Fig. 7(b) corresponds to AOF and the function Sdelay[k] is

active. Fdifference is linearly proportional to a velocity added

to the adaptive offset. The velocity slows down when the user

moves into the surface, and the force feedback has not yet been

experienced. Consequently, the surface is penetrated less deep

than before, and a lower force is generated. Consequently, the

operator is forced less aggressively out of the surface. When

the operator applies constant downward pressure, the forces in

opposite directions are identical. Therefore, the operator can

lay on the surface comfortably, as seen at marker 2 .

2. Suppression of large one-shot corrections. In Fig. 7(c)

and 7(d), there is 15% PD and 50% uniform packet loss.

The standard behavior, to always apply corrections in one

shot whenever new information is received, is demonstrated

by the marker 3 . The operator is immediately forced out of

the surface due to a one-shot correction. Since the delay is

negligible, oscillations are absent. The amount of information

loss is very high. Therefore the size of the corrections can

be so large that when canceled out by Scorr[k], the change in

adaptive offset does not go unnoticed. An example is shown by

the marker 4 . An upside of canceling the correction is that

no significant undesired force is generated onto the surface.

This means that both the surface and the operator do not

experience a sudden spike in measured force. If there would

be a TI application with a delicate object, this is undoubtedly

an improvement over the standard method. A second example

of a correction being suppressed is shown at marker 5 .
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Fig. 7: Demonstration of the working of AOF. The rigid surface is placed at a height of 0 cm. The force feedback is inversely

proportional to the penetration depth below 0 cm, and zero otherwise. In (a) and (b) a dropping motion is performed and in

(c), (d), (e), and (f) a rubbing motion is performed.

0

2

4

6

8

10

R
M
S
E

(m
m
)

delay
uniform loss
bursty loss

perceptual deadband

5ms
0%
0%
0%
(a)

10ms
0%
0%
0%
(b)

0ms
50%
0%
0%
(c)

0ms
0%
50%
0%
(d)

5ms
50%
0%
0%
(e)

5ms
0%
50%
0%
(f)

0ms
0%
0%
15%
(g)

0ms
0%
0%
30%
(h)

0ms
50%
0%
15%
(i)

5ms
50%
0%
15%
(j)

standard

AOF

Fig. 8: RMSE is based on logged data for each experiment. The RMSE values are capped at 10mm, but the last two columns

values go higher than the limit. One can see that the proposed AOF consistently scores worse than the usual method of

immediate corrections as per the objective measure (RMSE).

3. Suppression of small one-shot corrections. In Fig. 7(e)

and 7(f), 30% PD is used. This scenario results in smaller and

more consistent corrections than in the previous scenario. In

Fig. 7(e), one can see that the estimation appears consistent.

However, there is a consistent high-frequency component. This

directly results in a noticeable high-frequency component in

the measured force and a distinctly recognizable deterioration

for the operator. The high-frequency force can push the

operator out of the surface completely, as is seen at the

marker 6 . In Fig. 7(f), a combination of Sdelay[k] and Scorr[k],
suppress the high frequency signal and produce a more smooth

experience. The reconstruction is consistently just below the

surface with a smaller variance than seen in 7(e). Here, AOF

helps the user move over the surface more smoothly without

clear downsides. Only a marginal amount of adaptive offset is

used to accomplish this feat.

B. Objective Analysis

There are multiple objective measures to consider, and

among these are multiple traditional network performance

parameters like packet loss or transmission delay. However,

in comparing AOF and the standard behavior, identical net-

work behavior is used. Therefore network parameters will not

provide an insight into the difference between AOF and the

standard behavior.

Alternatively, some methods look at the underlying data.

Multiple objective measures have been proposed over the

years, but none of the proposed methods address the blind

spots we highlight in this work. As a representative of these

methods, we use RMSE. The data is plotted in Fig. 8. One

can see that the reconstructions produced by AOF pose a

significant increase in RMSE for every network scenario. Note

that for the two rightmost columns, the displayed RMSE is

capped at 10mm, but some of the measured RMSE is well

over that value. We use this data to make several observations.

1. AOF creates an overall deterioration in RMSE. Based on

RMSE, AOF is outperformed by standard behavior for every

scenario tested. This is expected, as AOF actively maintains

an adaptive offset, which RMSE will take strong note of. We

elaborate further in Sec. II-D.

2. Delay overshadows effects from information loss.
Fig. 8(a), 8(e), and 8(f) have the same 5ms delay, but with no

loss, uniform loss and bursty loss, respectively. One can see

that the observed RMSE is consistent between these methods.

However, it is reasonable to expect that adding uniform and

burst loss would deteriorate the system performance.

3. Significant information loss dominates RMSE for AOF.
Fig. 8(i) and 8(j) both have a combination of PD and uniform

loss. This combination significantly impacts RMSE, especially

when AOF is included. Because PD removes most redundancy

in the communication, all network loss drops affect packets

of significant importance. Because of this, the number of

significant corrections is numerous. With the presence of

Scorr[k] this causes a significant impact on the adaptive offset
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Fig. 9: Subjective user grades showing that the proposed AOF provides a significantly higher user experience.

and thus the RMSE.

C. Subjective Analysis

1. AOF creates an across-the-board improvement. As per

Fig. 9, AOF improves the user grade significantly for every

network scenario compared to the standard method yielding an

average of up to three points (on a scale of ten). Note that we

expect more improvements by further tuning the shaping and

decay functions. A wider variety of tasks and a significantly

more extensive data set should give a more accurate view of

AOF’s improvements and limitations.

2. Significant improvement for delay. In Fig. 9(a) and 9(b),

the network is only affected by delay. Because there is no

information loss Scorr[k] is inactive, leaving Sdelay[k] as the

only active shaping function. One can see that the effect of

the user grade is significant, where a 10ms delay with AOF

scores better than 5ms delay with the standard method. This is

a significant result, as TI demands extremely low delay. This

suggests that AOF can potentially relax the stringent delay

requirement. However, more research is needed to verify this

conclusively.

3. Comparing shaping functions. We consider different sce-

narios in Fig. 9(c), 9(d), 9(g), 9(h), and 9(i) where no delay is

added to the network. In these scenarios, Sdelay[k] is marginally

active, leaving Scorr[k] as the main shaping function. While for

each scenario the inclusion of AOF poses an improvement, the

benefits are smaller than any of the scenarios where delay is

present. This suggests that, while Scorr[k] is beneficial, Sdelay[k]
is even more so. This can be partly explained, because the

effect of Scorr[k] has the same irregular and one-shot nature,

as the correction errors it targets. This also puts pressure on

the adaptive offset and the decay functions at play.

4. Uniform versus Bursty loss. Fig. 9(c), 9(d) have uniform

loss and bursty loss respectively. The average packet loss is

identical, which means that the number of packets dropped

is identical between the methods. The only difference is the

distribution. A bursty loss distribution causes an average differ-

ence in user grade of three points. This significant difference il-

lustrates the disruptive effect of bursty loss on TI applications.

The observation is in line with the expectations. A bursty loss

model risks longer periods without transmissions, causing the

performance to take a large dip at irregular intervals. Uniform

loss is fundamentally more consistent and provides a more

convincing user experience.
5. Uncovering blind spots of objective results. When consid-

ering RMSE as a measure for performance, it would seem that

AOF is a deterioration of standard behavior. However, when

considering the user grades shown in Fig. 9, AOF provides

across-the-board improvement. There are several blind spots

at play for this result to happen. First, the concept that a

stationary offset is almost imperceivable is not being con-

sidered. Instead, the adaptive offset has a massive impact on

RMSE. Secondly, the concept that velocity scaling is almost

imperceivable is similarly not considered. Causing all efforts

by Dscaling[k] to increase RMSE. In both these cases, the blind

spots are the lack of consideration for the imperceivability of

these errors. Secondly, RMSE does not notice that the high-

frequency corrections are mostly nullified. The intentional

compensation in velocity, which leads to less unstable force

feedback, is not considered either. RMSE does not consider

force feedback or any additional information related to the

environment. In both these cases, the blind spots are the lack

of understanding that specific differences improve the user

experience significantly. This is further explained in Sec. II-D.

With this, we demonstrate the blind spots present in RMSE

and currently available objective measures. Additionally, we

demonstrate how we successfully exploit this underutilized

potential from the perceivability of errors with AOF to improve

the user experience.

VI. RELATED WORKS

A. Standard reconstruction methods
It is important to maintain a steady refresh rate for TI

signals. However, due to network imperfections such as delay,

jitter, and packet losses, irregularities in packet arrivals are

inevitable despite having a steady transmission at the source.

Further, signal compression techniques, such as PD (explained

in Sec. IV-A), deliberately drop samples for reducing the data

rate. Hence, existing works employ standard reconstruction

methods at the receiver. The works in [6], [9], [4] employ

zero-order-hold reconstruction, whereas the works in [10],

[11], [12] employ linear extrapolation based on the last two

received samples. In these works, while extrapolation is done

between sample arrivals, the samples are played out with one-

shot corrections when received. We showed in Sec. V-C that

one-shot correction introduces perceivable impairments.
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B. Performance metrics in TI

1) Objective Metrics: These include conventional metrics

for network performance such as network delay, jitter, packet

loss, and bandwidth. While the work in [10] uses application

bandwidth, [4] uses bandwidth and delay, and [3] consider

all the delay, packet loss, and bandwidth. The authors in

[13] focus on delay and jitter. Another common indicator of

teleoperation quality is the position error. The works in [6],

[9], [14] use RMSE as the objective metric. Recently, another

work [15] proposed using both temporal and position errors

for characterizing the quality of TI interaction. We showed

blind spots for RMSE (Sec. V-B). However, a similar analysis

can be performed for all other objective metrics currently used

for TI.

2) Subjective Metrics: Literature provides many works that

have conducted a subjective evaluation of TI experiments.

Collecting subjective grades by including human subjects in

the is the most commonly used metric [5], [16], [9], [15]. How-

ever, this approach is often cumbersome and time-consuming.

As a workaround, people have come up with several metrics

for indicating subjective experience. Some examples of such

metrics are Perceptual Mean Square Error (PMSE) [17],

Haptic Structure SIMilarity (HSSIM) [18], Haptic Perceptually

Weighted Peak Signal to Noise Ratio (HPW-PSNR) [19]. All

of these works use variants of RMSE. Hence the inherent

problems that exist with RMSE also apply here.

VII. CONCLUSIONS

Tactile Internet (TI) presents fresh challenges due to the

presence of a human-in-the-loop with haptic feedback in

teleoperation. Generally, stringent requirements in terms of

latency and reliability are often stated. However, by curating

the experience tailor-made for a human operator and exploiting

the limited human perception, we can significantly relax the

stringent requirements for TI while maintaining a satisfying

performance. In this work, we examined how errors can be

classified based on their perceivability and their impact on the

user experience. We proposed the Adaptive Offset Framework

(AOF) to exploit perceivable and imperceivable errors by

modifying the adaptive offset to improve the user experience.

Subjective experiments confirmed that AOF provides an im-

provement in user experience in every network configuration.

Specifically, we show that AOF significantly improves the user

grade, up to 3 points (on a scale of 10) in comparison with

the standard reconstruction method. We compared these results

with objective analysis and demonstrated multiple blind spots

in objective measures that lead to an incorrect characterization

of the performance of the TI application. We believe that

the concepts explored in this work can provide numerous

additional opportunities to improve the user experience, further

relaxing the TI system requirements.
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