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Abstract

In recent years, penalized models have gained considerable importance on deal-

ing with variable selection and estimation problems under high dimensional settings.

Of all the candidates, the l1 penalized, or the LASSO model retains popular applica-

tion in diverse fields with sophisticated methodology and mature algorithms. However,

as a promising alternative of the LASSO, non-convex penalized methods, such as the

smoothly clipped absolute deviation (SCAD) and minimax concave penalty (MCP)

methods, produce asymptotically unbiased shrinkage estimates and owns attractive ad-

vantages over the LASSO. In this thesis, we propose intact methodology and theory for

multiple non-convex penalized models. The proposed theoretical framework includes

estimator’s error bounds, oracle property and variable selection behaviors. Instead of

common least square models, we focus on quantile regression and support vector ma-

chines (SVMs) for exploration of heterogeneity and binary classification. Though we

demonstrate current local linear approximation (LLA) optimization algorithm possesses

those nice theoretical properties to achieve the oracle estimator in two iterations, the

computation issue is highly challenging when p is large due to the non-smoothness of

the loss function and the non-convexity of the penalty function. Hence, we also explore

the potential of coordinate descent algorithms for fitting selected models, establishing

convergence properties and presenting significant speed increase on current approaches.

Simulated and real data analysis are carried out to examine the performance of non-

convex penalized models and illustrate the outperformance of our algorithm in compu-

tational speed.
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Chapter 1

Introduction

1.1 Background

High dimensional data are frequently collected in a large variety of research areas such as

genomics, functional magnetic resonance imaging, tomography, economics and finance.

Analysis of high-dimensional data poses many challenges for statisticians and calls for

new statistical methodologies and theories [1, 2]. We consider the ultra-high dimensional

regression setting in which the number of covariates p grows at an exponential rate of

the sample size n.

When the primary goal is to identify the underlying model structure, a popular

approach for analyzing ultra-high dimensional data is to use the regularized regression.

For example, [3] proposed the Dantzig selector; [4] proposed weighted l1-minimization

to enhance the sparsity of the Dantzig selector; [5] considered the adaptive lasso when

a zero-consistent initial estimator is available; [6] demonstrated the smoothly clipped

absolute deviation (SCAD) penalty and investigated non-concave penalized likelihood

with ultra-high dimensionality; and [7] proposed a minimax concave penalty (MCP) for

penalized regression.

The LASSO penalized regression is computationally attractive and enjoys great per-

formance in prediction. However, it is known that LASSO requires rather stringent

conditions on the design matrix to be variable selection consistent [8, 9]. Focusing on

identifying the unknown sparsity pattern, non-convex penalized high-dimensional re-

gression has recently received considerable attention. [6] first systematically studied
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non-convex penalized likelihood for fixed finite dimension p. In particular, they rec-

ommended the SCAD penalty which enjoys the oracle property for variable selection.

That is, it can estimate the zero coefficients as exact zero with probability approaching

one, and estimate the nonzero coefficients as efficiently as if the true sparsity pattern

is known in advance. [10] extended these results by allowing p to grow with n at the

rate p = o(n1/5) or p = o(n1/3). For high dimensional non-convex penalized regression

with p � n, [11] proved that the oracle estimator itself is a local minimum of SCAD

penalized least squares regression under very relaxed conditions; [7] devised a novel

PLUS algorithm which when used together with MCP can achieve the oracle property

under certain regularity conditions. Important insight has also been gained through the

recent work on theoretical analysis of the global solution [12, 13].

Although non-convex penalized least square approach is useful, researchers try to

extend this methodology to other regression or learning models for specific problem solv-

ing. [14] regularized the quantile regression with a non-convex penalty function to deal

with ultra-high dimensionality; [6] demonstrated the non-convex penalty can ameliorate

the bias problems of LASSO in general linear models; [15] considered the information

bound of the oracle estimator by using non-convex regularized Cox’s proportional haz-

ard model; [16] also dealt with the Fisher consistency and the oracle property of support

vector machines (SVMs) with the SCAD penalty for fixed p case. In my Ph.D. research,

I focus on the two models amongst the above all: quantile regression and support vector

machine, whose loss functions share similar convexity and non-smoothness properties.

Hence it becomes natural to employ the non-convex penalty methodology to these two

models and establish theoretical frameworks under ultra-high dimensional settings.

The computation for non-convex penalized methods is much more complicated than

the LASSO, because the resulting optimization problem is usually non-convex and will

even become non-smooth when the loss function is quantile or hinge loss, respectively in

quantile regression and SVMs. Several algorithms have been developed for computing

the non-convex penalized estimators. [2] worked out the local quadratic approximation

(LQA) algorithm as a unified method for computing the non-convex penalized maximum

likelihood. [17] proposed the local linear approximation (LLA) algorithm which turns a

concave penalized problem into a series of reweighed l1 penalized problems. Both LQA

and LLA are related to the MM principle [18, 19]. However, the computational speed is
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considerably slow when p � n even with the algorithm advances aforementioned. For

non-convex penalized least squares regression, the coordinate descent algorithm, which

are commonly accepted as a much faster alternative for other competing methods, were

recently investigated by [20, 21]. [22] proposed a new coordinate descent algorithm for

non-convex penalized generalized linear models which enjoys the appealing property of

avoiding the computation of a scaling factor in each update of the solutions. These

algorithms are very effective in large-scale problems but do not apply to non-convex

penalized quantile regression or SVMs.

Here we outline a complete theoretical framework for non-convex penalty method-

ology in both quantile regression and SVMs models. Variable selection consistency and

oracle property are studied under weak regular conditions. Estimation of error bounds

of l1 penalized models offers an effective searching for good initial values in LLA algo-

rithms to solve these non-convex optimization problems. Generally, the LLA algorithm

can find the oracle estimator in two iterations even under ultra-high dimensional settings

for both two non-convex penalized models. Furthermore, a new improved coordinate de-

scent algorithm is invented to solve the non-convex penalized quantile regression model

and owns overwhelming speed advantage in simulated and real data cases. Extension

of this algorithm to other models will stay active in my future research works.

1.2 Sparse penalized models

We present a general introduction to sparse penalized models and display necessary

notations in this article.

The inputs we have are:

• A random sample {Yi,Xi}ni=1 from an unknown distribution P (X, Y ). We write

Xi = (Xi1, . . . , Xip)
ᵀ ∈ Rp+1, where Xi0 = 1 corresponds to the intercept term

and Y = (Y1, . . . , Yn)ᵀ with Yi ∈ R, for two-class classification Yi ∈ {±1}.

• Let X = (X1,X2, . . . ,Xn)ᵀ denote the feature design matrix.

• A convex nonnegative loss functional L : Rn × Rn → R.

• A nonnegative penalty functional P : Rp → R, with p(0) = 0.
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Consider estimating a sparse vector of coefficients β = (β0, (β−)T )T with β− = (β1, β2, . . . , βp)
ᵀ

based on training data, through penalized empirical loss minimization

β̂(λ) = argmin
β−∈Rp

[L(y,Xβ) + λP (β)] (1.1)

where λ > 0 is the regularization parameter; λ = 0 corresponds to no regularization and

limλ→∞ β̂−(λ) = 0. Generally for a given vector e, we use e− to denote the subvector

with the first entry of e omitted. In what follows, for any set A ⊂ {1, 2, . . . , p} and

vector e ∈ Rp, let eA denote the p dimensional vector such that we only keep the

coordinates of e when their indices are in A and replace others by 0. One often needs

to compute the solution at a fine grid of λ’s in order to pick a data-driven optimal λ for

fitting a ’best’ final model.

P (β) is a sparsity-inducing penalty to produce a sparse estimator, which is especially

preferred when p � n. Some widely used regularization methods include the LASSO,

the elastic net and the grouped LASSO penalty.

The LASSO [23] is a very popular technique for high-dimensional modeling

λP (β) = λ||β−||1.

LASSO yields sparse estimates of β because it shrinks small lease squares estimates

β̂olsj ’s toward exact zero. [24] proposed the elastic net penalty as an improved variant of

the LASSO for high-dimensional data when predictors are highly correlated. It connects

the LASSO penalty and the ridge penalty

λP (β) = λ||β−||1 +
1

2
λ2||β−||2 (λ2 > 0).

As mentioned above, two commonly used non-convex penalties are the SCAD penalty

and the MCP. The SCAD penalty function [2] is defined by

pλ(|β|) = λ|β|I(0 ≤ |β| < λ) +
aλ|β| − (β2 + λ2)/2

a− 1
I(λ ≤ |β| ≤ aλ)

+
(a+ 1)λ2

2
I(|β| > aλ), for some a > 2.

The MCP [7] function has the form

pλ(|β|) = λ
(
|β| − β2

2aλ

)
I(0 ≤ |β| < aλ) +

aλ2

2
I(|β| ≥ aλ), for some a > 1.
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Figure 1.1: (a) SCAD penalty function with λ = 0.7,a = 2.2; (b) MCP penalty function with

λ = 0.3, a = 2.2.

See Figure 1.2 for an illustration of the shape of the two penalty functions. In such a

case, we have λP (β) =
∑p

j=1 pλ(|βj |).
Many “modern” machine learning methods can be cast in the framework of penalized

optimization [25]. In penalized regression problems, the loss function takes the form

L(y,Xβ) =
∑
i

l(Yi −Xᵀiβ)

where the residuals Yi−Xᵀiβ quantifies the discrepancy between an observation Yi and

a linear predictor Xᵀiβ. An example is the lasso penalized least squares:

Least Squares : β̂(λ) = argmin
β

[
1

2n

n∑
i=1

(Yi −Xᵀiβ) + λ||β−||1

]

In classification problems,

L(Y,Xβ) =
∑
i

l(YiX
ᵀ
iβ)

where (YiX
ᵀ
iβ) are margins for classification. Examples are the lasso penalized logis-

tic regression and support vector machine using hinge loss or squared hinge loss or
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Huberized squared hinge loss with the lasso penalty.

Logistic : β̂(λ) = argmin
β

1

n

n∑
i=1

log
(

1 + e−YiX
ᵀ
i β
)

+ λ||β−||1

l1 norm SVM : β̂(λ) = argmin
β

1

n

n∑
i=1

(1− YiXᵀiβ)+ + λ||β−||1

Squared SVM : β̂(λ) = argmin
β

1

n

n∑
i=1

(1− YiXᵀiβ)2
+ + λ||β−||1

Huberized SVM : β̂(λ) = argmin
β

1

n

n∑
i=1

Hc(YiX
ᵀ
iβ) + λ||β−||1

where Hc(t) =


0

(1− t)2/2δ

1− t− δ/2

t > 1

1− δ < t ≤ 1

t ≤ 1− δ

1.3 Thesis outline

This thesis consists of preliminary research achievements in Chapter 2 and our two

papers to be found in Chapters 3-4.

In Chapter 2, we consider the penalized quantile regression model under ultra-high

dimensional settings. In this framework, we demonstrate the fundamental methodology

and theory for non-convex penalty in [14, 26]. [27] provide an error bound estimation

of l1 penalized quantile regression estimator with given regular conditions . Similar

estimation is also displayed in [28, 29]. Meanwhile, [14] prove that the oracle estimator

is among the local minima of non-convex penalized quantile objective function even

for ultra-high dimensional cases. Furthermore, [26] show that LLA algorithm initiated

by l1 penalized quantile regression estimator is able to obtain oracle estimator in two

iterations with proper λ selected. In this section, a complete theoretical framework

and computation methodology has been established for non-convex penalized quantile

regression model.

In Chapter 3, we still work on the non-convex penalized quantile regression model

but focus on its real application . To tackle the computational difficulty of LLA algo-

rithm for high dimensional data, we introduce the QICD (iterative coordinate descent

algorithm) as an alternative with high computational speed. QICD algorithm combines
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the idea of MM (majorization and minimization) to transform the non-convex optimiza-

tion problem to a series of convex ones and the potential of coordinate descent algorithm

to increase the iteration speed. Under regular conditions, QICD are proved to converge

to local minima for non-convex penalized quantile regression model. Simulation and

real data examples are presented for comparison with LLA algorithm.

In Chapter 4, we extend the complete theory and methodology framework built

before to non-convex penalized SVMs. Some shared properties of quantile regression

and SVMs motivate us to explore the error bounds and oracle property under ultra-

high dimensional settings. The effectiveness of LLA algorithm for non-convex penalized

SVMs is studied to achieve oracle estimator in practice. Again, numerical experiments

are presented in the end.

Finally, Chapter 5 discusses some potential future work in other different research

fields.



Chapter 2

Non-convex Penalized Quantile

Regression Model

2.1 Chapter Overview

In this chapter, we outline the theoretical framework of non-convex penalized quantile

regression model in [26, 28]. Respectively, [28] provide a tight estimation of error bounds

for l1 penalized quantile regression estimator; and [26] show explicitly how the LLA

algorithm can achieve the oracle estimator for non-convex penalized quantile regression

model. Their efforts inspire us to explore the possibility of popularizing this framework

to other non-convex penalized models and the development of potential on suitable

algorithms in practice. Numerical results illustrate the advantage of non-convex penalty

on both variable selection consistency and oracle estimator solution over LASSO.

2.2 Introduction

It is common to observe that real life ultra-high dimensional data displays heterogene-

ity due to either heteroscedastic variance or other forms of non-location-scale covariate

effects. This type of heterogeneity is often of scientific importance but tends to be

overlooked by exiting procedures which mostly focus on the mean of the conditional

distribution. Furthermore, despite significant recent developments in ultra-high dimen-

sional regularized regression, the statistical theory of the existing methods generally

8
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requires conditions substantially stronger than those usually imposed in the classical

p < n framework. These conditions include homoscedastic random errors, Gaussian or

near Gaussian distributions, and often hard-to-check conditions on the design matrix,

among others. These two main concerns motivate us to study nonconvex penalized

quantile regression in ultra-high dimension.

Quantile regression [30] has become a popular alternative to least squares regression

for modeling heterogeneous data. [31, 32, 33] established nice asymptotic theory for

high-dimensional M -regression with possibly nonsmooth objective functions. Their re-

sults apply to quantile regression (without the sparseness assumption) but require that

p = o(n).

To deal with the ultra high dimensionality, we regularize quantile regression with a

non-convex penalty function, such as the SCAD penalty and the MCP. The choice of

non-convex penalty is motivated by the well-known fact that directly applying the l1

penalty tends to include inactive variables and to introduce bias. We advocate a more

general interpretation of sparsity which assumes that only a small number of covari-

ates influence the conditional distribution of the response variable given all candidate

covariates; however, the sets of relevant covariates may be different when we consider

different segments of the conditional distribution. By considering different quantiles,

this framework enables us to explore the entire conditional distribution of the response

variable given the ultra-high dimensional covariates. In particular, it can provide a more

realistic picture of the sparsity patterns, which may differ at different quantiles.

Regularized quantile regression with fixed p was recently studied by [34, 35, 36,

37]. Their asymptotic techniques, however, are difficult to extend to the ultra-high

dimension. For high dimensional p, [27] recently derived a nice error bound for quantile

regression with the l1-penalty. They also showed that a post-l1-quantile regression

procedure can further reduce the bias. However, in general post-l1-quantile regression

does not possess the oracle property.

The main technical challenge of our work is to deal with both the non-smooth loss

function and the non-convex penalty function in ultra-high dimension. This non-convex

optimization problem usually contains multiple local minimizers. [17] has proposed

the LLA algorithm to at least compute a local solution of the non-convex penalized

problem. However, before declaring that the non-convex penalty is superior to LASSO,
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we need to solve a missing puzzle in this picture. The oracle property of non-convex

penalized quantile regression is established on a theoretical local solution. We need to

prove that the employment of LLA algorithm is able to find such a local optimal solution

possessing desired theoretical properties. Many have tried to address this issue [7, 6, 13].

The basic idea is to find conditions under which the non-convex penalized problem has

a unique minimizer and hence eliminate the difficulty of multiple minimizers. Though

this method is natural and intuitive, the imposed conditions for unique minimizer are

always too stringent to be realistic.

In this chapter, we illustrate a direct approach in [26] to tackle the multiple local

minimizers issue. We present a general procedure based on LLA algorithm for computing

non-convex penalized quantile regression problem and derive a lower bound on the

probability that this specific solution is equal to the oracle estimator. This probability

lower bound equals to 1−δ0−δ1−δ2 where δ0 corresponds to the exception probability of

the localizability of the underlying model, δ1 and δ2 represent the exception probability

of the regularity of the oracle estimator and they are irrelevant to any actual estimation

method. Explicit expressions of δ0, δ1 and δ2 are demonstrated in Section 2.3. Under

weak regular conditions, δ1 and δ2 are very small. In a sense, if δ0 goes to zero then the

LLA algorithm can find the oracle estimator with overwhelming probability. Hence, this

theory suggests that as long as a reasonable initial estimator is given, the LLA algorithm

is able to deliver an oracle estimator for non-convex penalized quantile regression model.

In addition, once the oracle estimator is obtained, the LLA algorithm converges in the

next iteration. Furthermore, we also display how to prove all exception probabilities

δ0, δ1 and δ2 go to zero at a fast rate under the ultra-high dimensional setting where

log p = O(nη) for some η ∈ (0, 1).

Throughout this chapter the following notations are used. For U = (uij)k×l, denote

||U||min = min(i,j) |uij | as its minimal absolute value, and let λmin(U) and λmax(U)

be its smallest and largest eigenvalues respectively. We also use some matrix norm:

the l1 norm ||U||l1 = maxj
∑

i |uij |, the l2 norm ||U||l2 = λ
1/2
max(UᵀU), the l∞ norm

||U||l∞ = maxi
∑

j |uij |, the entrywise l1 norm ||U||1 =
∑

(i,j) |uij | and the entrywise

l∞ norm ||U||∞ = max(i,j) |uij |.
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2.3 Oracle Property of Non-convex Penalized Quantile Re-

gression Estimator

2.3.1 The Methodology

Let us begin with the notation and statistical setup. Suppose that we have a random

sample {Yi, Xi1, . . . , Xip}, i = 1, . . . , n, from the following model:

Yi = β0 + β1Xi1 + . . .+ βpxip + εi
∆
= Xᵀiβ + εi, (2.1)

where β = (β0, β1, . . . , βp)
T is a (p+1)-dimensional vector of parameters, Xi = (Xi0, Xi1,

. . . , Xip)
ᵀ with Xi0 = 1, and the random errors εi satisfy P (εi ≤ 0|xi) = τ for some

specified 0 < τ < 1. Let fi(·) be the density function and Fi(·) be the density function

and distribution function of εi respectively. The case τ = 1/2 corresponds to median

regression. The number of covariates p = pn is allowed to increase with the sample size

n. It is possible that pn is much larger than n. Moreover, in this thesis we use the

following notation for vector norms: for x ∈ Rk and q ≥ 1 is a real number, we define

||x||q =
(∑k

i=1 |xi|q
)1/q

, ||x||∞ = max(|x1|, . . . , |xk|) and ||x||0 =
∑k

i=1 I(xi 6= 0).

The true parameter value β∗ = (β∗0 , β
∗
1 . . . , β

∗
pn)ᵀ is assumed to be sparse; that is,

the majority of its components are exactly zero. Let A = {1 ≤ j ≤ pn : β0j 6= 0} be the

index set of the nonzero coefficients. Let |A| = qn = q be the cardinality of the set A,

which is allowed to increase with n. The sparsity assumption means that q � p.

We consider the following penalized quantile regression model

Q(β) =
1

n

n∑
i=1

ρτ (Yi − xTi β) +

p∑
j=1

pλ(|βj |), (2.2)

where ρτ (u) = u {τ − I(u < 0)} is the quantile loss function (or check loss function),

and pλ(·) is a penalty function with a tuning parameter λ. For convenience, we denote

ln(β) = 1
n

∑n
i=1 ρτ (Yi − Xᵀiβ) and Pλ(|β|) =

∑p
j=1 pλ(|βj |). The tuning parameter λ

controls the model complexity and goes to zero at an appropriate rate. The penalty

function pλ(t) is assumed to be nondecreasing and concave for t ∈ [0,+∞), with a

continuous derivative p′λ(t) on (0,+∞).

Assume that an oracle knows knows the true support set A of the underlying model,
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and the oracle estimator is defined as

β̃ = (β̃A,0) = argmin
β:βAc=0

ln(β) (2.3)

We assume throughout the thesis that the problem is regular such that the oracle

solution is unique, satisfying

∇jln(β̃) = 0, ∀j ∈ A (2.4)

where ∇j is the subgradient with respect to the j−th component of β. The oracle

estimator is not a feasible estimator as A is always unknown in practice but it can be

used as a theoretical benchmark for other estimators to compare with. An estimator is

said to have the oracle property if it has the same asymptotic properties as the oracle

estimator [2, 10]. In addition, an estimator is said to have the strong oracle property if

the estimator equals the oracle estimator with overwhelming probability [6].

It is well known that penalized regression with the convex l1 penalty tends to over-

penalize large coefficients and to include spurious variables in the selected model. This

may not be of much concern for predicting future observations, but is nonetheless un-

desirable when the purpose of the data analysis is to gain insights into the relationship

between the response variable and the set of covariates. Non-convex penalty has been

put on board to overcome those issues of l1 penalty. However, we still need impose some

general conditions on our non-convex penalty function Pλ(|t|).

(i) Pλ(t) is increasing and concave in t ∈ [0,+∞) with Pλ(0) = 0;

(ii) Pλ(t) is differentiable in t ∈ (0,∞) with P ′λ(0) := P ′λ(0+) ≥ a1λ;

(iii) P ′λ(t) ≥ a1λ for t ∈ (0, a2λ];

(iv) P ′λ(t) = 0 for t ∈ [aλ,∞) with the pre-specified constant a > a2.

where a1 and a2 are two fixed positive constants. The above definition contains the

well-know SCAD and MCP penalties. The derivative of the SCAD penalty is

P ′λ(t) = λI(t ≤ λ) +
(aλ− t)+

a− 1
I(t > λ), for some a > 2,

and the derivative of the MCP is

P ′λ(t) = (λ− t

a
)+, for some a > 1.
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Algorithm 1 The local linear approximation (LLA) algorithm

1. Initialize β̂
(0)

= β̂
initial

and compute the adaptive weight

ŵ(0) = (ŵ
(0)
1 , . . . , ŵ(0)

p ) = (P ′λ(|β̂(0)
1 |), . . . , P

′
λ(|β̂(0)

1 |))
′.

2. For m = 1, 2, . . ., repeat the LLA iteration till convergence

2.1. Obtain β̂
(m)

by solving the following optimization problem

β̂
(m)

= min
β
ln(β) +

∑
j

ŵm−1
j · βj ,

2.2. Update the adaptive weight vector ŵ(m) = P ′λ(|β̂(m)
j |).

It is easy to see that a1 = a2 = 1 for the SCAD, and a1 = 1− a−1, a2 = 1 for the MCP.

Till now, we confront the major problem: whether non-convex penalized estimator

owns the oracle property, or even strong oracle property for quantile regression model?

As a response, we claim in the following, although the estimator is defined via non-

convex penalized problem, the computed estimator will possess oracle property even it

is just a local solution. In a sense, it is absolutely fine that the computed local solution

is not a global minimizer, which is not in most cases, as long as it has the optimal or

desired statistical properties. We focus on one typical solution which is achieved by

LLA algorithm [17]. Basically, the LLA algorithm takes advantage of the special non-

convex structure of penalty functions and utilizes the majorization and minimization

(MM) trick to transform non-convex optimization problem to a sequence of weighted

l1 penalized problems. In each iteration of LLA algorithm, the underlying local linear

approximation is the best convex majorization of the non-convex penalty function (see

Theorem 2 of [17]). Furthermore, the MM trick also provides theoretical guarantee to

the convergence of the LLA algorithm to a stationary point of non-convex penalized

problem (2.2).

Here, we display the details of the LLA algorithm as in Algorithm 1.
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2.3.2 Asymptotic Properties

In the following section, we demonstrate the asymptotic analysis of the LLA algorithm

for obtaining the oracle estimator in the non-convex penalized quantile regression prob-

lem if it is initiated by some appropriate initial estimator. Note that the check loss

function ρτ (·) is convex but non-differentiable. Thus we need to handle the subgradient

∇ln(β) = (∇1ln(β), . . . ,∇pln(β)), where

∇jln(β) =
1

n

∑
i

Xij · ((1− τ)I(Yi−Xᵀiβ > 0)−zjI(Yi−Xᵀiβ = 0)− τI(Yi−Xᵀiβ < 0))

with zj ∈ [τ−1, τ ] is the subgradient of ρτ (u) when u = 0. Denote MA = maxi
1
q ||XiA||2

and mAc = max(i,j):j∈Ac |Xij |. Define δ0 = Pr(||β̂
initial

− β∗||2 > a0λ), where a0 =

min(1, a2). We have the following theorem in [26].

Theorem 2.3.1. Suppose

(1) there exist constant u0 and 0 < fmin ≤ fmax < ∞ such that for any u satisfying

|u| ≤ u0, fmin ≤ mini fi(u) ≤ maxi fi(u) ≤ fmax.

If λ = o( 1
n) such that log p = o(nλ2), (MAq)

1/2(||β∗A||min − aλ) ≤ u0, and mAcMAq =

o( n1/2λ
log1/2 n

), the LLA algorithm initiated by β̂
iniital

converges to β̃ after two iterations

with probability at least 1− δ0 − δ1 − δ2, where

δ1 = 4n−
1
2 + C1(p− q) · exp(− a1nλ

104mAc
) + 2(p− q) · exp(− a

2
1nλ

2

32m2
Ac

), and

δ2 = 4 exp(−λ
2
minf

2
min

72MA
· n
q

(
||β∗A||min − aλ)2

)
with λmin = λmin( 1

nX
ᵀ
AX ) and C1 > 0 that does not depend on n, p or q.

Under fairly weak assumptions, both δ1 and δ2 go to zero very quickly. To bound

δ0, we need to search for an appropriate initial estimator in practice to activate the

LLA algorithm even under ultra high dimensional settings. As we mentioned before,

we recommend the l1 penalized quantile regression estimator as the initial value, i.e., a

proper bound for δ0. We will discuss this topic and summarize the main results in the

following chapter.
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2.4 l1 Penalized Quantile Regression

In the above section, we have confirmed that the LLA algorithm successfully capture the

oracle estimator in non-convex penalized quantile regression model if a proper bound for

δ0 is given. For simplification, we propose the following l1 penalized quantile regression

estimator when τ = 0.5,

β̂ = argmin
β

1

n
||Y −Xβ||1 + λ||β−||1 (2.5)

Since our theory can be easily extended to all other quantile, we will use τ = 0.5 in this

section. Our purpose is to explore the properties of the estimator β̂ whether a good error

bound can be estimated. [28] presents the analysis of the penalized median regression

estimator and discuss the selection of the penalty level λ, which does not depend on any

unknown parameters or the noise distribution. This feature inherits the similar property

of λ in our oracle property discussion hence the l1 penalized quantile regression estimator

is able to seal the theoretical gap smoothly for ultra high dimensional data. Actually,

we will show that the estimator β̂ owns surprisingly good properties. The major results

contains two parts:

1. We propose a penalty level, it is simply

λ = c

√
2A(α) log p

n

where c > 1 is a constant, α is a chosen small probability, and A(α) is a constant

such that 2p−(A(α)−1) ≤ α. In practice, we choose λ =
√

q log p
n , which matches

the one we used in the above analysis. This choice of penalty is universal and we

only assume that the noises have median 0 and P (ε = 0) = 0 for all i.

2. We show that with high probability, the estimator has the error bound with high

probability

||β̂ − β̃||2 = O(

√
q log p

n
)

It is important to notice that we do not have any assumptions on the moments of

the noise, we only need a scale parameter to control the tail probability of the noise.

Actually, even for Cauchy distributed noise, where the first moment does not exist, the

results still hold.
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2.4.1 Choice of Penalty

In this section, we discuss the penalty level for the l1 penalized estimator and answer

the motivation to choose this λ for this problem. Still, we use ln(β) = 1
n ||Y −Xβ||1. An

important quantity to determine the penalty level is the sub-differential of ln evaluated

at the point of true coefficient β̃. Here we just assume the error εi satisfying P (ε = 0) = 0

and the median of εi is 0 for i = 1, 2, . . . , n. Assume that εi 6= 0 for all i, then the sub-

differential of ln(β) at point β = β̃ can be written as

S =
1

n
X ᵀ(sign(ε1), sign(ε2), . . . , sign(εn))ᵀ

where sign(x) denote the sign of x, i.e. sign(x) = 1 if x > 0, sign(x) = −1 if x < 0

and sign(0) = 0. Let I = sign(ε), then I = (I1, I2, . . . , In)ᵀ where Ii = sign(εi). Since

εs are independent and have median 0, we have that P (Ii = 1) = P (Ii = −1) = 0.5 and

Iis are independent.

The sub-differential of ln(β) at the point of β̃, S = X ᵀI, summarizes the estimation

error in the setting of the linear regression model. We will choose a penalty λ that

dominates the estimation error with large probability. The principle of selecting the

penalty λ is motivated by [27, 29, 38]. The intuition of this choice is that when the

true coeffients β̃ is a vector of 0, then the estimator should also be 0 with a given high

probability. This is a general principle of choosing the penalty and can be applied to

many other problems. Specifically, we choose a penalty λ such that it is greater than

the maximum absolute value of S with high probability, i.e. we need to find a penalty

level λ satisfying

P (λ ≥ c||S||∞) ≥ 1− α (2.6)

for a given constant c > 1 and a given small probability α. Since the distribution of I

is known, the distribution of ||S||∞ is known for any given X and does not depend on

any unknown parameters.

Now for any random variable x let qτ (x) denote the 1− τ quantile of x. Then if we

choose λ = cqτ (||S||∞), inequality (2.6) is satisfied. Note that this penalty is provided

and discussed in [27]. To approximate this quantity, we propose the following choice of

penalty

λ = c

√
2A(α) log p

n
(2.7)
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where A(α) > 0 is a constant such that 2p−(A(α)−1) ≤ α.

To show that the above choice of penalty satisfies (2.6), we need to bound the tail

probability of
∑n

i XijIi for j = 1, 2, . . . , p. This can be done by using the Hoeffding’s

inequality [39] and union bounds. We have the following lemma.

Lemma 2.4.1. The choice of penalty λ = c

√
2A(α) log p

n as in (2.7) satisfies

P (λ ≥ c||S||∞) ≥ 1− α

From the proof of the previous lemma, we can see that if we use the following special

choice of λ,

λ = c

√
2 log p

n
(2.8)

Then we have that

P (λ ≥ c||S||∞) ≥ 1− 2

p
. (2.9)

The above penalties are simple and have good theoretical properties. Moreover, they

do not require any conditions on design matrix X or value of p and n. Note that these

choices are based on union bound and concentration inequalities. Thus when the sample

size n is relatively small, these inequalities are not very tight. Hence in practice, these

penalty levels tend to be relatively large and can cause additional bias to the estimator.

From practical point of view, we suggest to use a smaller penalty level when the sample

size is not large.

To simplify our arguments, we will use (2.8) as our default choice of penalty in this

chapter. It can be seen that the above choices of penalty levels do not depend on the

distribution of random errors ε or unknown coefficient β̃. As long as εis are independent

random variables with median 0 and P (εi = 0) = 0, the choices satisfy our requirement.

This is a big advantage over the traditional lasso method, which significantly relies on

the Gaussian assumption and the variance of the errors.

2.4.2 Properties of the l1 Penalized Estimator

In this section, we present the analysis of the error bound of l1 penalized quantile

regression estimator. We need to state the upper bound for the estimation error h =

β̂ − β̃ under l2 norm ||h||2. As the choice of penalty is described in the above section,
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we assume throughout this chapter, the penalty λ satisfies λ > c||S||∞ for some fixed

constant c > 1.

At first, we introduce some conditions on design matrix X . Recall that we assume

λ > c||S||∞, this implies the following event, namely h = β̂ − β̃ belongs to ∆C̄ , where

∆C̄ = {γ ∈ Rp+1 : ||γT+ ||1 ≥ C̄||γT c+ ||1, where T+ = T
⋃
{0} and T ⊂ {1, 2, . . . , p} and |T | ≤ q}

and C̄ = (c− 1)/(c+ 1). To prove this, recall that β̂ minimize 1
n ||Y −Xβ||1 + λ||β−||1.

Hence
1

n
||Xh + ε||1 + λ||β̂−||1 ≤

1

n
||ε||1 + λ||β̃||1

Let T denote the set of significant coefficients. Then we have

1

n
(||Xh + ε||1 − ||ε||1) ≤ λ(||hT+ ||1 − ||hT c+ ||).

Since the sub-differential of ln(β) at the point of β̃ is X ᵀI,

1

n
(||Xh+ε||1−||ε||1) ≥ 1

n
(Xh)ᵀI ≥ 1

n
hᵀX ᵀI 1

n
≥ −||h||1||X ᵀI||∞ ≥ −

λ

c
(||hT+ ||1−||hT c+ ||1)

Thus,

||hT+ ||1 ≥ C̄||hT c+ ||1

where C̄ = c−1
c+1 .

Now we define some quantities for the design matrix X . Let λuq be the smallest

number such that for any q + 1 sparse vector d ∈ Rp+1,

||Xd||22 ≤ nλuq ||d||22.

Here the q+ 1 sparse vector d means that the vector d has at most q+ 1 nonzero coor-

dinates, or ||d||0 ≤ q + 1. Based on matrix theory, we know that λuq = λmax( 1
nX
ᵀ
AXA).

Similarly, we have λlq to be the largest number such that for any q+ 1 sparse vector

d ∈ Rp+1,

||Xd||22 ≥ nλlq||d||22.

and λlq = λmin( 1
nX
ᵀ
AXA).

Let θq1,q2 be the smallest number such that for any q1 and q2 sparse vector d1 and

d2 with disjoint support,



19

|〈Xd1,Xd2〉| ≤ nθq1,q2 ||d1||2||d2||2.

The definition of the above constants is essentially the Restricted Isometry Constants

[40, 41].

We also need to define the following restricted eigenvalue of design matrix X . These

conditions are motivated by [29]. Let

κlq(C̄) = min
h∈∆C̄

||Xh||1
n||hT+ ||2

To show the error bound for our l1 penalized estimator, we need κlq(C̄) to be bounded

away from 0 or goes to 0 slow enough. To simplify the notations, we will write κlq(C̄)

as κlq.

Before presenting the main theorem in [28], we need to state the scale assumptions

on εi. Suppose there exists a constant a > 0 such that

P (εi ≥ x) ≤ 1

2 + ax
for all x ≥ 0

P (εi ≤ x) ≤ 1

2 + a|x|
for all x ≤ 0 (2.10)

Here a serves as a scale parameter of the distribution of εi. This is a very weak con-

dition and even Cauchy distribution satisfies it. Furthermore, we require another two

conditions on design matrix X
λlq > θq,q(

1

C̄
+

1

4
) (2.11)

and
3
√
n

16
κlq > λ

√
qn+ C1

√
2q log p

(
5

4
+

1

C̄

)
, (2.12)

for some constant C1 such that C1 > 1 + 2
√
λuq . We formulate the main theorem in [28]

here

Theorem 2.4.2. Consider the model (2.5), assume ε1, ε2, . . . , εn are independent and

identically distributed random variables satisfying (2.10). Suppose (2.11) and (2.12)

hold, the l1 penalized quantile regression estimator β̂ satisfies with probability at least

1− 2p−4q(C2
2−1)+1

||β̂ − β̃||2 ≤
√

2q log p

n

16(c
√

2 + 1.25C1 + C1/C̄)

a(λlq − θq,q( 1
C̄

+ 1
4))2/λuq

√
1 +

1

C̄



20

where C1 = 1 + 2C2
√
λuq and C2 > 1 is a constant.

From the theorem above, we can see that with high probability,

||β̂ − β̃||2 = Op(
2q log p

n
).

This means that asymptotically we have our error bound for l1 penalized estimator to

go to zero. Till now, we can combine the results with Theorem 2.3.1 and have the

following corollary.

Corollary 2.4.3. Under assumptions in Theorem 2.4.2 and λ also satisfies the condi-

tions in Theorem 2.3.1, the LLA algorithm initiated by β̂ converge to β̂
oracle

after two

iterations with probability at least 1− 2p−4q(C2
2−1)+1 − δ1 − δ2.

2.5 Numerical Results

In this chapter, we use simulation and real data in [14] to examine the finite sample prop-

erties of our non-convex penalized quantile regression model. We consider both SCAD

and MCP in the study (denoted by Q-SCAD and Q-MCP, respectively). Generally, we

fix a = 3.7 in the SCAD and a = 2 in the MCP as suggested in [2] and [7] respectively.

We compare these two procedures with least-squares based high-dimensional procedures,

including LASSO, adaptive LASSO, SCAD and MCP penalized least squares regression

(denoted by LS-Lasso, LS-ALasso, LS-SCAD and LS-MCP, respectively). We also com-

pare the proposed procedures with LASSO penalized and adaptive-LASSO penalized

quantile regression (denoted by Q-Lasso and Q-ALasso, respectively). Our main interest

is the performance of various procedures when p > n and the ability of the nonconvex

penalized quantile regression to identify signature variables that are overlooked by the

least-squares based procedures.

2.5.1 Simulation Study

PredictorsX1, X2, · · · , Xp are generated in two steps. We first generate (X̃1, X̃2, · · · , X̃p)
T

from the multivariate normal distribution Np(0,Σ) with Σ = (σjk)p×p and σjk =

0.5|j−k|. The next step is to set X1 = Φ(X̃1) and Xj = X̃j for j = 2, 3, · · · , p. The
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scalar response is generated according to the heteroscedastic location-scale model

Y = X6 +X12 +X15 +X20 + 0.7X1ε,

where ε ∼ N(0, 1) is independent of the covariates. In this simulation experiment, X1

plays an essential role in the conditional distribution of Y given the covariates; but does

not directly influence the center (mean or median) of the conditional distribution.

We consider sample size n = 300 and covariate dimension p = 400 and 600. For

quantile regression, we consider three different quantiles τ = 0.3, 0.5 and 0.7. We gener-

ate an independent tuning data set of size 10n to select the regularization parameter by

minimizing the estimated prediction error (based on either the squared error loss or the

check function loss, depending on which loss function is used for estimation) calculated

over the tuning data set; similarly as in [21]. In the real data analysis in section 2.5.2,

we use cross-validation for tuning parameter selection.

For a given method, we denote the resulted estimate by β̂ = (β̂0, β̂1, · · · , β̂p)T . Based

on simulation of 100 repetitions, we compare the performance of the aforementioned

different methods in terms of the following criteria.

Size: the average number of non-zero regression coefficients β̂j 6= 0 for j = 1, 2, · · · , p;

P1: the proportion of simulation runs including all true important predictors, namely

β̂j 6= 0 for any j ≥ 1 satisfying βj 6= 0. For the LS-based procedures and condi-

tional median regression, this means the percentage of times including X5, X12,

X15 and X20; for conditional quantile regression at τ = 0.3 and τ = 0.7, X1 should

also be included.

P2: the proportion of simulation runs X1 is selected.

AE: the absolute estimation error defined by
∑p

j=0 |β̂j − βj |.

Tables 2.1 and 2.2 depict the simulation results for p = 400 and p = 600, respectively.

In these two tables, the numbers in the parentheses in the columns labeled ‘Size’ and

‘AE’ are the corresponding sample standard deviations based on the 100 simulations.

The simulation results confirm satisfactory performance of the nonconvex penalized

quantile regression when p > n for selecting and estimating relevant covariates. In

this example, the signature variable X1 is often missed by least-squares based methods,
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but has high probability of being included when several different quantiles are examined

together. This demonstrates that by considering several different quantiles, it is likely to

gain a more complete picture of the underlying structure of the conditional distribution.

From Tables 2.1 and 2.2, it can be seen that the penalized quantile median regression

improves the corresponding penalized least squares methods in terms of AE due to

the heteoscedastic error. Furthermore, it is observed that LASSO-penalized quantile

regression tends to select a much larger model; on the other hand, the adaptive-Lasso

penalized quantile regression tends to select a sparser model but with substantially

higher estimation error for τ = 0.3 and 0.7.

Table 2.1: Simulation results for penalized quantile regression models (p = 400)

Method Size P1 P2 AE

LS-Lasso 25.08 (0.60) 100% 6% 1.37(0.03)

Q-Lasso (τ = 0.5) 24.43 (0.97) 100% 6% 0.95 (0.03)

Q-Lasso (τ = 0.3) 29.83 (0.97) 99% 99% 1.67 (0.05)

Q-Lasso (τ = 0.7) 29.65 (0.90) 98% 98% 1.58 (0.05)

LS-ALASSO 5.02 (0.08) 100% 0% 0.38 (0.02)

Q-Alasso (τ = 0.5) 4.66 (0.09) 100% 1% 0.18 (0.01)

Q-Alasso (τ = 0.3) 6.98 (0.20) 100% 92% 0.63 (0.02)

Q-Alasso (τ = 0.7) 6.43 (0.15) 100% 98% 0.61 (0.02)

LS-SCAD 5.83 (0.20) 100% 0% 0.37 (0.01)

Q-SCAD (τ = 0.5) 5.86 (0.24) 100% 0% 0.19 (0.01)

Q-SCAD (τ = 0.3) 8.29 (0.34) 99% 99% 0.32 (0.02)

Q-SCAD (τ = 0.7) 7.96 (0.30) 97% 97% 0.30 (0.02)

LS-MCP 5.43 (0.17) 100% 0% 0.37 (0.01)

Q-MCP (τ = 0.5) 5.33 (0.18) 100% 1% 0.19 (0.01)

Q-MCP (τ = 0.3) 6.76 (0.25) 99% 99% 0.31 (0.02)

Q-MCP (τ = 0.7) 6.66 (0.20) 97% 97% 0.29 (0.02)
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Table 2.2: Simulation results for penalized quantile regression models (p = 600)

Method Size P1 P2 AE

LS-Lasso 24.30 (0.61) 100% 7% 1.40 (0.03)

Q-Lasso (τ = 0.5) 25.76 (0.94) 100% 10% 1.05 (0.03)

Q-Lasso (τ = 0.3) 34.02 (1.27) 93% 93% 1.82 (0.06)

Q-Lasso (τ = 0.7) 32.74 (1.22) 90% 90% 1.78 (0.05)

LS-ALASSO 4.68 (0.08) 100% 0% 0.37(0.02)

Q-Alasso (τ = 0.5) 4.53 (0.09) 100% 0% 0.18 (0.01)

Q-Alasso (τ = 0.3) 6.58 (0.21) 100% 86% 0.67 (0.02)

Q-Alasso (τ = 0.7) 6.19 (0.16) 100% 86% 0.62 (0.01)

LS-SCAD 6.04 (0.25) 100% 0% 0.38 (0.02)

Q-SCAD (τ = 0.5) 6.14 (0.36) 100% 7% 0.19 (0.01)

Q-SCAD (τ = 0.3) 9.02 (0.45) 94% 94% 0.40 (0.03)

Q-SCAD (τ = 0.7) 9.97 (0.54) 100% 100% 0.38 (0.03)

LS-MCP 5.56 (0.19) 100% 0% 0.38 (0.02)

Q-MCP (τ = 0.5) 5.33 (0.23) 100% 3% 0.18 (0.01)

Q-MCP (τ = 0.3) 6.98 (0.28) 94% 94% 0.38 (0.03)

Q-MCP (τ = 0.7) 7.56 (0.32) 98% 98% 0.37 (0.03)

2.5.2 Real Data Analysis

We now illustrate the proposed methods by an empirical analysis of a real data set.

The data set came from a study that used expression quantitative trait locus (eQTL)

mapping in laboratory rats to investigate gene regulation in the mammalian eye and to

identify genetic variation relevant to human eye disease [42].

This microarray data set has expression values of 31042 probe sets on 120 twelve-

week-old male offspring of rats. We carried out the following two preprocessing steps:

remove each probe for which the maximum expression among the 120 rats is less than the

25th percentile of the entire expression values; and remove any probe for which the range

of the expression among 120 rats is less than 2. After these two preprocessing steps, there

are 18958 probes left. As in [5, 11], we study how expression of gene TRIM32 (a gene
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identified to be associated with human hereditary diseases of the retina), corresponding

to probe 1389163 at, depends on expressions at other probes. As pointed out in [42],

”Any genetic element that can be shown to alter the expression of a specific gene or

gene family known to be involved in a specific disease is itself an excellent candidate for

involvement in the disease, either primarily or as a genetic modifier.” We rank all other

probes according to the absolute value of the correlation of their expression and the

expression corresponding to 1389163 at and select the top 300 probes. Then we apply

several methods on these 300 probes.

First, we analyze the complete data set of 120 rats. The penalized least squares

procedures and the penalized quantile regression procedures studied in Section 3.1 were

applied. We use five-fold cross validation to select the tuning parameter for each method.

In the second column of Table 3, we report the number of nonzero coefficients (#

nonzero) selected by each method.

There are two interesting findings. First, the sizes of the models selected by penalized

least squares methods are different from that of models selected by penalized quantile

regression. In particular, both LS-SCAD and LS-MCP, which focus on the mean of the

conditional distribution, select sparser models compared to Q-SCAD and Q-MCP. A

sensible interpretation is that a probe may display strong association with the target

probe only at the upper tail or lower tail of the conditional distribution; it is also likely

that a probe may display associations in opposite directions at the two tails. The least-

squares based methods are likely to miss such heterogeneous signals. Second, a more

detailed story is revealed when we compare the probes selected at different quantiles τ =

0.3, 0.5, 0.7. The probes selected by Q-SCAD(0.3), Q-SCAD(0.5), and Q-SCAD(0.7) are

reported in the first column of the left, center and right panels, respectively, of Table

2.4. Although Q-SCAD selects 23 probes at both τ = 0.5 and τ = 0.3, only 7 of the

23 overlap, and only 2 probes (1382835 at and 1393382 at) are selected at all three

quantiles. We observe similar phenomenon with Q-MCP. This further demonstrates the

heterogeneity in the data.

We then conduct 50 random partitions. For each partition, we randomly select

80 rats as the training data and the other 40 as the testing data. A five-fold cross-

validation is applied to the training data to select the tuning parameters. We report

the average number of nonzero regression coefficients (ave # nonzero), where numbers in
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Table 2.3: Analysis of microarray data set

all data random partition

Method # nonzero ave # nonzero prediction error

LS-Lasso 24 21.66(1.67) 1.57(0.03)

Q-Lasso (τ = 0.5) 23 18.36(0.83) 1.51(0.03)

Q-Lasso (τ = 0.3) 23 19.34(1.69) 1.54(0.04)

Q-Lasso (τ = 0.7) 17 15.54(0.71) 1.29(0.02)

LS-ALASSO 16 15.22(10.72) 1.65(0.27)

Q-ALasso (τ = 0.5) 13 11.28(0.65) 1.53(0.03)

Q-ALasso (τ = 0.3) 19 12.52(1.38) 1.57(0.03)

Q-ALasso (τ = 0.7) 10 9.16(0.48) 1.32(0.03)

LS-SCAD 10 11.32(1.16) 1.72(0.04)

Q-SCAD (τ = 0.5) 23 18.32(0.82) 1.51(0.03)

Q-SCAD (τ = 0.3) 23 17.66(1.52) 1.56(0.04)

Q-SCAD (τ = 0.7) 19 15.72(0.72) 1.30(0.03)

LS-MCP 5 9.08(1.68) 1.82(0.04)

Q-MCP (τ = 0.5) 23 17.64(0.82) 1.52(0.03)

Q-MCP (τ = 0.3) 15 16.36(1.53) 1.57(0.04)

Q-MCP (τ = 0.7) 16 13.92(0.72) 1.31(0.03)

the parentheses are the corresponding standard errors across 50 partitions, in the third

column of Table 3. We evaluate the performance over the test set for each partition. For

Q-SCAD and Q-MCP, we evaluate the loss using the check function at the corresponding

τ . As the squared loss is not directly comparable with the check loss function, we use the

check loss with τ = 0.5 (i.e. l1 loss) for the LS-based methods. The results are reported

in the last column of Table 3, where the prediction error is defined as
∑40

i=1 ρτ (Yi −
Ŷi) and the numbers in the parentheses are the corresponding standard errors across

50 partitions. We observe similar patterns as when the methods are applied to the

whole data set. Furthermore, the penalized quantile regression procedures improves the

corresponding penalized least squares in terms of prediction error. The performance
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of Q-Lasso, Q-ALasso, Q-SCAD and Q-MCP are similar in terms of prediction error,

although the Q-Lasso tends to select less sparse models and the Q-ALasso tends to

select sparser model, compared with Q-SCAD and Q-MCP.

As with every variable selection method, different repetitions may select different

subsets of important predictors. In Table 2.4, we report in the left column the probes

selected using the complete data set and in the right column the frequency these probes

appear in the final model of these 50 random partitions for Q-SCAD(0.3), Q-SCAD(0.5),

and Q-SCAD(0.7) in the left, middle and right panels, respectively. The probes are

ordered such that the frequency is decreasing. From Table 2.4, we observe that some

probes such as 1383996−at and 1382835−at have high frequencies across different τ ’s,

while some other probes such as 1383901−at do not. This implies that some probes are

important across all τ , while some probes might be important only for certain τ .

Wei and He (2006) proposed a simulation based graphical method to evaluate the

overall lack-of-fit of the quantile regression process. We apply their graphical diagnosis

method using the SCAD penalized quantile regression. More explicitly, we first generate

a random τ̃ from the uniform (0,1) distribution. We then fit the SCAD-penalized quan-

tile regression model at the quantile τ̃ , where the regularization parameter is selected

by five-fold cross-validation. Denote the penalized estimator by β̂(τ̃), and we generate

a response Y = X ᵀβ̂(τ̃), where X is randomly sampled from the set of observed vector

of covariates. We repeat this process 200 times and produce a sample of 200 simulated

responses from the postulated linear model. The QQ plot of the simulated sample vs

the observed sample is given in Figure 2.1. The QQ plot is close to 45 degree line and

thus indicates a reasonable fit.
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Table 2.4: Frequency table for the real data

Q-SCAD(0.3)

Probe Frequency

1383996 at 31

1389584 at 26

1393382 at 24

1397865 at 24

1370429 at 23

1382835 at 23

1380033 at 22

1383749 at 20

1378935 at 18

1383604 at 15

1379920 at 13

1383673 at 12

1383522 at 11

1384466 at 10

1374126 at 10

1382585 at 10

1394596 at 10

1383849 at 10

1380884 at 7

1369353 at 5

1377944 at 5

1370655 a at 4

1379567 at 1

Q-SCAD(0.5)

Probe Frequency

1383996 at 43

1382835 at 40

1390401 at 27

1383673 at 24

1393382 at 24

1395342 at 23

1389584 at 21

1393543 at 20

1390569 at 20

1374106 at 18

1383901 at 18

1393684 at 16

1390788 a at 16

1394399 at 14

1383749 at 14

1395415 at 13

1385043 at 12

1374131 at 10

1394596 at 10

1385944 at 9

1378935 at 9

1371242 at 8

1379004 at 8

Q-SCAD(0.7)

Probe Frequency

1379597 at 38

1383901 at 34

1382835 at 34

1383996 at 34

1393543 at 30

1393684 at 27

1379971 at 23

1382263 at 22

1393033 at 19

1385043 at 18

1393382 at 17

1371194 at 16

1383110 at 12

1395415 at 6

1383502 at 6

1383254 at 5

1387713 a at 5

1374953 at 3

1382517 at 1
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Figure 2.1: Lack-of-fit diagnosis QQ plot for the real data.



Chapter 3

A Iterative Coordinate Descent

Algorithm for High-dimensional

Non-convex Penalized Quantile

Regression

3.1 Chapter Overview

In last chapter, we have solved the final puzzle on non-convex penalized quantile regres-

sion on searching for oracle estimator via the LLA algorithm. However, the computation

for non-convex optimization is highly challenging when p � n. Specifically, the LLA

algorithm can be exceedingly slow on solving non-convex penalized quantile regression

model, which pluses a non-smooth loss function. In this chapter, we propose and study

a new iterative coordinate descent algorithm (QICD) for solving this problem in ul-

tra high dimension. Existing coordinate descent algorithms for least squares regression

cannot be directly applied, hence we imbed the majorization-minimization (MM) idea

in our method to tackle the non-convexity. We establish the convergence property of

the proposed algorithm under some regular conditions for a general class of non-convex

penalty functions including popular choices such as SCAD and MCP. Our simulation

study confirms that QICD substantially improves the computational speed in the p� n

29
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setting. We further illustrate the application by analyzing a microarray data set. More

details can be found in [43].

3.2 Introduction

In the setting p � n, the theory for penalized quantile regression has been systemati-

cally studies in the last chapter, we switch to work on the breakthrough on increasing

the computational speed for this problem. For unpenalized quantile regression, [44] pro-

posed a useful interior point algorithm; and [45] developed an effective MM algorithm

which majorizes the quantile loss function by a quadratic function. Several algorithms

have also been developed for penalized quantile regression. For Lasso penalized quan-

tile regression, [34] proposed an algorithm that computes the entire solution path; [46]

includes a fast greedy coordinate descent algorithm for median regression. However,

neither algorithm applies to non-convex penalties. A linear programming based mod-

ified LLA algorithm [17] was used in [14] for nonconvex penalized quantile regression,

but its computation slows noticeably when p is large. Moreover, the aforementioned

work have not studied the convergence theory of the proposed algorithm.

To tackle the computational challenges caused by the nonsmooth quantile loss func-

tion and the nonconvex penalty function, we propose a new iterative coordinate descent

algorithm and study its convergence property. The new algorithm achieves fast com-

putation by successively solving a sequence of univariate minimization subproblems. It

combines the idea of the MM algorithm [18, 19, 47] with that of the coordinate descent

algorithm. We refer to this new iterative coordinate descent algorithm as QICD, where

Q stands for quantile. We consider a general class of nonconvex penalty functions and

establish the convergence property of the QICD algorithm by extending [48]’s theory

for the convergence of the coordinate descent algorithm. It is noteworthy that [48] re-

quires a quasiconvexity condition, which is not met by nonconvex penalized quantile

regression.

The coordinate descent algorithm was systematically investigated for convex prob-

lems, such as Lasso, in the independent work of [46, 49], the idea of which can be traced

back to [50, 51]. For nonconvex penalized least squares regression, coordinate descent
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algorithms and their convergence theory were recently investigated by [20, 21]. [22] pro-

posed a new coordinate descent algorithm for non-convex penalized generalized linear

models which enjoys the appealing property of avoiding the computation of a scaling

factor in each update of the solutions. These algorithms are very effective in large-scale

problems but do not apply to non-convex penalized quantile regression.

In this chapter, we describe the new QICD algorithm and establish the conver-

gence property. Furthermore, we investigate the performance of the proposed algorithm

through Monte Carlo studies and demonstrate its application using a real data example.

The technical details are presented in the Appendix.

3.3 The QICD Algorithm

The QICD algorithm combines the idea of the MM algorithm with that of the coordinate

descent algorithm. More specifically, we first replace the non-convex penalty function

by its majorization function to create a surrogate objective function. Then we mini-

mize the surrogate objective function with respect to a single parameter at each time

and cycle through all parameters until convergence. For each univariate minimization

problem, we only need to compute a one-dimensional weighted median, which ensures

fast computation.

3.3.1 The Majorization Minimization step

We consider a majorization function φβ0(β), which majorizes pλ(|β|) at β0 in the sense

that

φβ0(β) ≥ pλ(|β|) for all β with equality when β = β0. (3.1)

Let β(k) denote the value of β after the kth iteration, k = 1, 2, . . .. Let p′λ(|β|+)

denotes the limit of p′λ(x) as x→ |β| from the above. Furthermore, we assume that pλ(·)
is piecewise differentiable so that p′λ(|β|+) exists for all β. Then in the kth iteration,

φ
β

(k−1)
j

(|βj |) = p′λ(|β(k−1)
j |+)|βj | − p′λ(|β(k−1)

j |+)|β(k−1)
j |+ pλ(|β(k−1)

j |) (3.2)

majorizes the penalty function pλ(|βj |), k = 1, 2, . . . ; j = 1, 2, . . . , p; that is,

φ
β

(k−1)
j

(|βj |) ≥ pλ(|βj |) for all βj with equality when βj = β
(k−1)
j , (3.3)
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see Proposition 3.4.1 below. Figure 2 illustrates the SCAD penalty function and its

majorization function; the figure for the MCP penalty looks similar and is thus omitted.
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Figure 3.1: SCAD penalty function (solid line) and its majorization function (dotted line)

φβ0(β) with λ = 0.7,a = 2.2.

Subsequently, the penalized objective function Q(β) defined in (2.2) is majorized by

Q
β(k−1)(β) = n−1

n∑
i=1

ρτ (Yi − xTi β) +

p∑
j=1

φ
β

(k−1)
j

(|βj |) (3.4)

at the kth iteration. It can be shown that any decrease of the value of Q
β(k−1)(β)

results in a decrease of the value of Q(β). Hence, we minimize the majorization function

Q
βk−1(β) at iteration k to update the value of β:

β(k) = argmin
β

Q
β(k−1)(β) (3.5)

The above iterative scheme decreases the value of Q(β) monotonically in each itera-

tion. This property is summarized in Proposition 3.4.1. We note that when considering

nonconvex penalized generalized linear models, [22] applied a majorization step on the
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loss function to avoid the computation of a scaling factor in each update of the solution.

Different from their approach, our majorization step is applied on the nonconvex penalty

function. The majorization step solves two problems at once. First, it transforms the

problem of minimizing a nonconvex objective function to a sequence of convex mini-

mization problems, for which the coordinate descent algorithm can be applied. Second,

the majorized penalized quantile loss function is quasiconvex, which allows us to apply

the results in [48] to further study the convergence property of the proposed algorithm.

3.3.2 The Coordinate Descent Step

To solve the minimization problem in (3.5), we employ the idea of the ”one-at-a-time”

coordinate descent algorithm; that is, to update the jth coordinate, we treat the other

coordinates as fixed. We would incorporate the sub-iteration of the coordinate descent

minimization within each iteration of the majorization minimization step.

Assume that at the beginning of the kth iteration, the value of β is β(k−1). To

minimize Q
β(k−1)(β), we apply the coordinate descent algorithm, which at each sub-

iteration cycles through all the (p + 1) covariates. Consider the rth sub-iteration of

the kth iteration. Suppose we have finished updating the estimates of the coefficients

for xi0, xi1, . . . , xi(j−1) and obtain β
(k)(r)
j−1 = (β

(k)(r+1)
0 , . . . , β

(k)(r+1)
j−1 , β

(k)(r)
j , . . . , β

(k)(r)
p )ᵀ.

Next, we update the estimate for the coefficient of xij by

β
(k)(r+1)
j = argmin

βj

Q
β(k−1)(β

(k)(r)
j−1 )

= argmin
βj

{
n−1

[ n∑
i=1

ρτ
(
Yi −

∑
s<j

xisβ
(k)(r+1)
s − xijβj

−
∑
s>j

xisβ
(k)(r)
s

)]
+
[∑
s<j

φ
β

(k−1)
s

(|β(k)(r+1)
s |) + φ

β
(k−1)
j

(|βj |)

+
∑
s>j

φ
β

(k−1)
s

(
|β(k)(r)
s |

)]}
= argmin

βj

{
n−1

[ n∑
i=1

ρτ
(
Yi −

∑
s<j

xisβ
(k)(r+1)
s − xijβj

−
∑
s>j

xisβ
(k)(r)
s

)]
+ p′λ(|β(k−1)

j |+)|βj |
}
. (3.6)

It is noteworthy that in the above minimization β(k−1) and all the other coordinates
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in β
(k)(r)
j−1 are held fixed. An important observation is that (3.6) can be equivalently

expressed as a minimization problem for weighted median regression. To see the con-

nection, we rewrite (3.6) as

min
βj

{
(n+ 1)−1

n+1∑
i=1

ωij |uij |
}
, (3.7)

where

uij =


Yi−

∑
s<j xisβ

(k)(r+1)
s −

∑
s>j xisβ

(k)(r)
s

xij
− βj , i = 1, 2, · · · , n,

βj , i = n+ 1,

and

ωij =

{
n−1|xij(τ − I(uijxij < 0))|, i = 1, 2, · · · , n,
p′λ(|β(k−1)

j |+), i = n+ 1.

Therefore, β
(k)(r+1)
j can be obtained by solving a single parameter quantile regression

model using the above n+ 1 pseudo-observations, j > 1 with τ = 0.5. In practice, after

the rth sub-iteration of the kth iteration of this algorithm, we have the weights ω
(k)(r)
ij

ω
(k)(r)
ij =

{
n−1|xij(τ − I(u

(k)(r)
ij xij < 0))|, i = 1, 2, · · · , n,

p′λ(|β(k−1)
j |+), i = n+ 1.

where

u
(k)(r)
ij =


Yi−

∑
s<j xisβ

(k)(r+1)
s −

∑
s>j xisβ

(k)(r)
s

xij
− β(k)(r)

j , i = 1, 2, · · · , n,
βj , i = n+ 1,

Hence we can calculate β
(k)(r+1)
j by using weighted median searching in (3.7).

When j = 0, β
(k)(r+1)
0 can be calculated by using only n pseudo-observations since

no penalty is given to β
(k)(r+1)
0 . A similar observation was made for the Lasso penalized

median regression by [46]. The weighted median can be computed quickly by many

statistical software packages such as the quantreg package in R. Actually, quicksort,

also known as partition-exchange sort, is utilized in this algorithm to find the weighted

median, ensuring the high speed in each update of β
(k)(r+1)
j .

The above computation yields

β
(k)(r)
j = (β

(k)(r+1)
0 , . . . , β

(k)(r+1)
j , β

(k)(r)
j+1 , . . . , β(k)(r)

p )T .

This process is repeated for r = 1, 2, . . . , until convergence. Then we update β(k−1) to

β(k).
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3.3.3 Choice of the Tuning Parameter

Algorithm 3.3.1 summarizes the details of the QICD algorithm. for a given tuning

parameter λ. In real applications, the choice of λ is important. Cross-validation is

popular but is observed to often result in overfitting [52]. Moreover, cross-validation is

time-consuming when p is notably large.

High-dimensional BIC-type criterion for nonconvex penalized least-squares regres-

sion with diverging p has been recently investigated by [53, 54, 55, 56], among others.

[57] recently proposed high-dimensional BIC for quantile regression when p is much

larger than n. Motivated by their work, we consider the following high-dimensional

BIC criterion. Let βλ = (βλ,1, ..., βλ,p)
T be the penalized estimator obtained with the

tuning parameter λ, and let Sλ ≡ {j : βλ,j 6= 0, 1 ≤ j ≤ p} be the index set of covariates

with nonzero coefficients. Define

HBIC(λ) = log
( n∑
i=1

ρτ (Yi − xTi βλ)
)

+ |Sλ|
log(log n)

n
Cn, (3.8)

where |Sλ| is the cardinality of the set Sλ, and Cn is a sequence of positive constants

diverging to infinity as n increases. We select the value of λ that minimizes HBIC(λ). In

practice, we recommend to take Cn = O(log p), which we find to work well in a variety
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of settings.

Algorithm 3.3.1: QICD algorithm(k, r, j, p,β,β(k))

comment: Input an initial value β(0)

for k ≥ 0

then



repeat

for r ≥ 0

then



for j ∈ {0, 1, 2, · · · , p}
repeat

comment: Calculate the weighted median in (3.7).

β
(k)(r)
j+1 ← β

(k)(r)
j

for j = p

then r ← r + 1

j ← j + 1 (mod p)

until β
(k)(r)
j converge to β∗

β(k) ← β∗

until β(k) converge to β̂

then return (β̂)

3.4 The Convergence Theory

The main result in this section establishes that under some regularity conditions, the

proposed QICD algorithm converges to a stationary point of the penalized objective

function in (2.2).

Proposition 3.4.1 below summarizes the properties of the majorization minimization

step.

Proposition 3.4.1. Assume that in the penalized quantile loss function Q(β) defined in

(2.2), pλ(·) is piecewise differentiable, nondecreasing and concave on (0,∞), and pλ(·)
is continuous at 0 with p′λ(0+) <∞. Then

(1) the function φ
β

(k−1)
j

(β) defined in (3.2) majorizes pλ(|β|) at the points ±|β(k−1)
j |;
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(2) the function Q
β(k−1)(β) defined in (3.4) majorizes Q(β) at the points ±|β(k−1)|;

(3) the majorization minimization step has the descent property, that is, for all k =

1, 2, , . . .

Q(β(k)) ≤ Q(β(k−1)). (3.9)

The general theory of [48] on the coordinate descent algorithm does not apply to

the penalized quantile objective function in (2.2). This is because non-convex penalized

quantile regression does not meet the quasiconvex condition. Lemma 3.4.2 below sug-

gests that if we consider the majorized loss function in Q
β(k−1)(β), then the coordinate

descent step yields a coordinate-wise minimum (see Appendix A for the definition), by

applying Tseng’s theory.

Lemma 3.4.2. If pλ(·)satisfies the conditions in Proposition 3.4.1, then the β(k) defined

in Section 3.3.2 is a coordinate-wise minimum point of Q
β(k−1)(β), k = 1, 2, . . ..

Lemma 3.4.3 below describes the convergence behavior of Q(β(k)). It indicates that

Q(β(k)) follows similar convergence behavior as its majorization function Q
β(k)(β(k+1))

under some weak conditions.

Lemma 3.4.3. If Q(β(0)) < +∞, then {Q
β(k)(β(k+1))} is a bounded and decreasing

sequence with respect to k. If we denote limk→∞Qβ(k)(β(k+1)) by A, then Q(β∗) = A,

where β∗ be an arbitrary cluster point of {β(k)}.

The convergence property of the QICD algorithm is established by combining the

results of the two preceding lemmas and utilizing a result in [58] (see Lemma B.0.1 in

Appendix B). Theorem 3.4.4 below states that every cluster point of the QICD algorithm

is a stationary point of the penalized quantile loss function Q(β).

Theorem 3.4.4. (Convergence property of QICD) Consider the penalized quantile

loss function Q(β) in (2.2), where the given data (Y,X) lie on a compact set and

Q(β(0)) < +∞ for an initial value β(0). Suppose that the penalty function pλ(·) satisfies

the conditions in Proposition 3.4.1 and p′λ(|θ|+) = p′λ(|θ|−) on (0,∞). Consider an

arbitrary cluster point β∗∗ of {β(k−1)}, that is, there exists a sequence {km} such that

lim
m→∞

β(km−1) = β∗∗. Let β∗ be an arbitrary cluster point of {β(km)}. Assume Qβ∗∗(β)
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is regular at β∗ and β∗∗. Then β∗∗ is a stationary point of Q(β). In particular, every

cluster point of the sequence generated by the QICD algorithm {β(k)} is a stationary

point of Q(β).

Note that the condition on (Y,X) is a mild assumption. And the conditions on the

penalty functions are satisfied by the popular nonconvex SCAD and MCP penalties.

The proof of Theorem 3.4.4 is provided in Appendix B.

3.5 Numerical Examples

3.5.1 Monte Carlo Simulations

To compare the QICD algorithm with existing methods, we use the same simulation

data settings as in Section 2.5.1 but increase the dimension p to even higher level. In

this study, we consider sample size n = 300, covariates dimension p = 1000 and 2000,

and three different quantiles τ = 0.3, 0.5 and 0.7. For each simulation scenario, we

have 100 simulation runs. Specifically, as the comparison of Lasso penalized quantile

regression and non-convex penalized quantile regression has been performed in [14],

we focus on comparing the performance of the QICD with that of LLA, with SCAD

and MCP penalty functions. For both procedures, the high-dimensional BIC defined in

Section 3.3.3 is applied to choose the tuning parameter.

The convergence criteria used in implementing the QICD algorithm are as follows:

(i) the coordinate descent minimization step in each iteration stops if the absolute dif-

ference of the successive sub-iterations is less than 10−6 (convergence of coefficients in

sub-iteration) and the number of sub-iterations exceeds p; (ii) the majoriaztion min-

imization step stops if the absolute difference of the successive iterations is less than

10−6 (convergence of coefficients in iteration)and the number of iterations exceeds 100.

We evaluate the two algorithms by the estimation error and the model selection

ability of the resulted estimators, and their respective computational speed. For a given

estimate β̂ = (β̂0, β̂1, · · · , β̂p)ᵀ, we consider the following five similar criteria as in 2.5.1:

Size: the average number of non-zero regression coefficients β̂j 6= 0 for j = 1, 2, · · · , p;

P1: the proportion of simulation runs including all true important predictors, namely
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β̂j 6= 0 satisfying βj 6= 0, j ≥ 1. Note that for τ = 0.5 the true model includes X6,

X12, X15 and X20; for τ = 0.3 and τ = 0.7, X1 should also be included.

P2: the proportion of simulation runs X1 is selected.

AE: the absolute estimation error defined by
∑p

j=0 |β̂j − βj |.

Time: the running times (CPU seconds) for each method in each repetition (the process

of calculating the estimate β̂).

Table 3.1: QICD Simulation results (p = 1000)

Method Size P1 P2 AE Time

QICD-SCAD (τ = 0.5) 5.15 (0.51) 100% 0% 0.04 (0.01) 1.53 (0.40)

QICD-SCAD (τ = 0.3) 7.53 (2.11) 100% 94% 0.11 (0.02) 1.57 (0.39)

QICD-SCAD (τ = 0.7) 8.02 (2.42) 100% 93% 0.11 (0.03) 1.56 (0.33)

LLA-SCAD (τ = 0.5) 5.00 (0.00) 100% 0% 0.04 (0.01) 24.78 (1.54)

LLA-SCAD (τ = 0.3) 7.68 (1.44) 100% 91% 0.11 (0.03) 39.43 (3.27)

LLA-SCAD (τ = 0.7) 10.86 (2.06) 100% 94% 0.13 (0.02) 28.59 (1.94)

QICD-MCP (τ = 0.5) 5.25 (0.72) 100% 0% 0.04 (0.01) 1.52 (0.41)

QICD-MCP (τ = 0.3) 7.57 (1.95) 100% 96% 0.12 (0.03) 1.94 (0.60)

QICD-MCP (τ = 0.7) 8.40 (2.78) 100% 96% 0.12 (0.03) 1.77 (0.36)

LLA-MCP (τ = 0.5) 5.00 (0.00) 100% 0% 0.04 (0.01) 29.88 (6.92)

LLA-MCP (τ = 0.3) 8.58 (1.68) 100% 93% 0.12 (0.03) 38.54 (8.50)

LLA-MCP (τ = 0.7) 9.89 (1.81) 100% 95 % 0.12 (0.02) 69.69 (19.70)

Tables 3.1 and 3.2 summarize the simulation results for p=1000 and 2000, respec-

tively. We observe that both the QICD algorithm and the LLA algorithm have sat-

isfactory performance in terms of estimation error and model selection accuracy. The

QICD algorithm is remarkably faster than the LLA algorithm. For p = 1000, the QICD

algorithm takes less than 2 seconds to finish a repetition, which is 1
15 of the runtime

of the LLA algorithm; for p = 2000 case, the LLA always needs 200 seconds or more

to finish one repetition, which is much longer than the runtime of the QICD algorithm
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Table 3.2: QICD Simulation results (p = 2000)

Method Size P1 P2 AE Time

QICD-SCAD (τ = 0.5) 5.23 (0.88) 100% 0% 0.04 (0.01) 3.37 (1.08)

QICD-SCAD (τ = 0.3) 8.00 (2.49) 100% 93% 0.11 (0.03) 2.96 (0.76)

QICD-SCAD (τ = 0.7) 8.52 (2.16) 100% 93% 0.12 (0.03) 3.19 (0.72)

LLA-SCAD (τ = 0.5) 13.48 (2.93) 100% 0% 0.07 (0.02) 235.17 (17.57)

LLA-SCAD (τ = 0.3) 8.41 (1.68) 100% 87% 0.11 (0.03) 148.94 (8.00)

LLA-SCAD (τ = 0.7) 9.67 (2.21) 100% 92% 0.12 (0.03) 214.23 (20.21)

QICD-SCAD (τ = 0.5) 5.33 (1.18) 100% 0% 0.04 (0.02) 3.05 (0.80)

QICD-SCAD (τ = 0.3) 8.21 (2.72) 100% 92% 0.12 (0.03) 3.20 (0.76)

QICD-SCAD (τ = 0.7) 8.48 (2.17) 100% 93% 0.12 (0.03) 3.72 (1.05)

LLA-MCP (τ = 0.5) 13.67 (2.97) 100% 0% 0.07 (0.02) 166.12 (38.98)

LLA-MCP (τ = 0.3) 8.45 (2.03) 100% 88% 0.12 (0.03) 219.03 (46.37)

LLA-MCP (τ = 0.7) 8.65 (1.77) 100% 92 % 0.12 (0.02) 354.01 (83.76)

(under 4 seconds). Furthermore, the LLA algorithm owns vast variation on running

time; especially in case p = 2000, the standard deviation of then running time when

τ = 0.7 could be as large as 80. However, the running time of QICD algorithm is much

stabler with standard deviation less than 1. In other words, the QICD algorithm can

keep high level running speed consistently in various situations.

The QICD algorithm tends to select a sparser model but with comparable estimation

error comparing with the model selected by the LLA algorithm. In particular, for

p = 2000, the estimation error associated the QICD algorithm is slightly smaller than

that of the LLA algorithm; meanwhile, the size of none zero coefficients for the QICD

algorithm when τ = 0.5, around 5, is also moderately smaller than that of the LLA

algorithm, around 13.

Furthermore, the QICD algorithm has a smaller error of selecting X1 at the median

comparing with the LLA algorithm. In summary, the fast computation of the QICD

algorithm does not come at the cost of sacrificing its performance.
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3.5.2 An Application

We next analyze the same microarray dataset of [42] in Section 2.5.2 for studying ex-

pression quantitative trait locus (eQTL) mapping in the laboratory rats. After the

same preprocessing, 18,958 probes remained. We are interested in how the expression

of gene TRIM32 (a gene identified to be associated with human hereditary diseases of

the retina), corresponding to probe 1389163 at, depends on expressions at other probes.

As pointed out by [42], ”Any genetic element that can be shown to alter the expres-

sion of a specific gene or gene family know to be involved in a specific disease is itself

an excellent candidate for involvement in the disease, either primarily or as a genetic

modifier.”

We rank all remaining 18,958 probes according to the absolute value of the corre-

lation of their expression and the expression corresponding to 1389163 at and select

the top 3000 probes. On this subset (n = 120, p = 3000), we applied the QICD al-

gorithm to study the relationships between the expression of TRIM32 and expression

of the 3000 genes. First, we analyze the data on all 120 rats using SCAD or MCP

penalized quantile regression and consider three quantiles τ = 0.3, 0.5 and 0.7. Still,

we use the HBIC to select the tuning parameter λ for each case. In the second column

of Table 3.3, we report the number of nonzero coefficients (# nonzero) selected in each

case. An interesting finding is that different sets of probes are selected at different

quantiles. Specifically, in the SCAD cases, though 18 and 21 probes have been selected

at τ = 0.3 and τ = 0.7 respectively, only 6 of them overlap (”1368887 at” ”1382291 at”

”1390048 at” ”1380371 at” ”1395973 at” ”1374786 at” ),but none of them is selected

at τ = 0.5. We could find the similar phenomenon on MCP case. This reveals the

heterogeneity of this dataset.

Then we randomly partition the 120 rats 50 times. In each partition, we randomly

select 80 rats for the training set and have the rest 40 as a test set. We fit penalized

quantile regression model and compute the tuning parameter on the training set. The

we the prediction error of the selected model using the test set. In the third column of

Table 3.3, we report the average number of nonzero regression coefficients of the selected

model and their associated robust standard deviations over the 50 repetitions. In the

last column of Table 3.3, we report the prediction error (and its standard deviation)

on the test data. the predication error is computed using the check function at the
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Table 3.3: Analysis of microarray data set

all data random partition

Method # nonzero ave # nonzero prediction error

QICD-SCAD (τ = 0.5) 18 16.53 (6.59) 1.72 (0.22)

QICD-SCAD (τ = 0.3) 21 18.08 (7.09) 1.57 (0.28)

QICD-SCAD (τ = 0.7) 13 12.06 (6.63) 1.53 (0.19)

QICD-MCP (τ = 0.5) 19 15.61 (6.32) 1.73 (0.22)

QICD-MCP (τ = 0.3) 23 16.86 (6.60) 1.56 (0.26)

QICD-MCP (τ = 0.7) 12 11.12 (4.87) 1.52 (0.18)

corresponding τ , that is,
40∑
i=1

ρτ (yi − ŷi). We observe that the performance of SCAD

penalty and MCP penalty is similar. At quantiles τ = 0.5 and 0.7, we tend to select

fewer probes than at τ = 0.3; however, at τ = 0.3 and 0.7, we have a smaller prediction

error than at τ = 0.5.

3.6 Discussion

The chapter describes two timely contributions to nonconvex penalized quantile regres-

sion analysis of high-dimensional data. It proposes a fast iterative coordinate descent

algorithm which is shown empirically to significantly improve the computational speed.

Furthermore, it extends [48]’s theory to establish the convergence properties.

We emphasize here the focus of this paper on extending the coordinate descent al-

gorithm for fast computation with high-dimensional data. Although the majorization

step is adopted, this step alone does not lead to the desirable computational efficiency

gain for nonconvex penalized quantile regression. We note that the LLA algorithm[17]

for penalized least squares regression also falls into the framework of MM algorithm.

A stable and versatile class of MM algorithms applicable to a wide variety of penal-

ization problems with non-convex penalty was given in [59]. They established a local

convergence theory but required a strict convexity condition, thus excluded the more

interesting p > n case which is under study in the current paper.



Chapter 4

Non-convex Penalized Support

Vector Machines

4.1 Chapter Overview

The support vector machine is a powerful binary classification tool with high accuracy

and great flexibility. It has achieved great success, but its performance can be seriously

impaired if many redundant covariates are included. Some efforts have been devoted to

studying variable selection for SVMs, but asymptotic properties, such as variable selec-

tion consistency, are largely unknown under high dimensional settings. Fortunately, the

hinge loss function in SVM owns quite similar properties as quantile regression model,

which stimulate us to try to extend our theory in Chapter 2 for non-convex penalized

SVM. In this chapter, we first demonstrate the results of [60], in ultrahigh dimensions,

there is one local minimizer to the objective function of non-convex penalized SVMs

having the desired oracle property. We further address the problem of non-unique local

minimizers by showing that the local linear approximation algorithm is guaranteed to

converge to the oracle estimator even in the ultrahigh dimensional setting if an appropri-

ate initial estimator is available. Then we illustrate that a l1 penalized SVM provides

a proper initial estimator even for ultra high dimensional data. Numerical examples

provide supportive evidence.

43
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4.2 Introduction

Support vector machines (SVMs), originally introduced by [61, 62] and subsequently

investigated by many others, are a popular and highly powerful technique for classi-

fication and have a solid mathematical foundation in statistical learning. In modern

applications, we often face the problem of classification at the presence of a very large

number of redundant features. For example, in genomics it is of fundamental impor-

tance to build a classifier using a small number of genes from thousands of candidate

genes for the purpose of disease diagnosis and drug discovery; in spam email classifi-

cation, it is desirable to build an accurate classier using a relatively small number of

words from a dictionary that contains a huge number of different words. For such appli-

cations, although the standard l2-norm SVM avoids overfitting to some extent, it does

not automatically have dimension reduction of feature space built in. Hence, it usually

does not yield an interpretable sparse decision rule. Furthermore, numerical evidence in

the literature (e.g.,[63]) suggests that including many redundant features may seriously

impair the generalization performance of l2-norm SVMs.

The standard l2-norm SVM has the well known hinge loss+l2 norm penalty formu-

lation. One effective way to preform simultaneous variable selection and classification

using SVM is to replace the l2 norm penalty with the l1 norm penalty, which results

in the l1-norm SVM. See the earlier work of [64, 65]. Important advancement on the

methodology and theory of l1-norm SVMs has been obtained in recent years. Inter-

ested readers may consult [63] who proposed a path-following algorithm and effectively

demonstrated the advantages of l1-norm SVMs in high-dimensional sparse scenario, [66]

who investigated the adaptivity of SVMs with l1 penalty and derived its adaptive rates,

[67] who obtained an oracle inequality involving both model complexity and margin

for l1-norm SVMs, [68] who extended the l1-norm SVM to multi-class classification

problems, [69] who proposed to use adaptive l1 penalty with the SVM, and [70] who

considered l1-norm SVMs with a built-in reject option, among others.

Though the convex l1 -penalty can also induce sparsity, it is well known that its

variable selection consistency in linear regression relies on the stringent irrepresentability

condition on the design matrix. This condition, however, can easily be violated in

practice; see the examples in [8, 71]. Moreover, the regularization parameter for model
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selection consistency in this case is not optimal for prediction accuracy [9, 72]. Hence

we still turn to consider the penalized SVM with a general class of non-convex penalties,

such as the SCAD penalty [2] or the minimax concave penalty (MCP) [7]. For the non-

convex penalty, [11] investigated the oracle property of SCAD-penalized least squares

regression in the high dimensions. However, a different set of proving techniques is

needed for the non-convex penalized SVMs because the hinge loss in the SVM is not a

smooth function. The Karush-Kuhn-Tucker local optimality condition is generally not

sufficient for the set-up of a non-smooth loss plus a non-convex penalty. A new sufficient

optimality condition based on subgradient calculation is used in the technical proof in

this paper. We prove that under some general conditions, with probability tending to

1, the oracle estimator is a local minimizer of the non-convex penalized SVM objective

function where the number of variables may grow exponentially with the sample size.

By oracle estimator, we mean an estimator obtained by minimizing the empirical hinge

loss with only relevant covariates. As one referee pointed out, with a finite sample,

the empirical hinge loss may have multiple minimizers because the objective function

is piecewise linear. This issue will vanish asymptotically because we assume that the

population hinge loss has a unique minimizer. Such an assumption on the population

hinge loss has been made in the existing literature [73].

Even though non-convex penalized SVMs are shown to enjoy the aforementioned

local oracle property, it is largely unknown whether numerical algorithms can identify

this local minimizer since the objective function involved is non-convex and typically

multiple local minimizers exist. Existing methods rely heavily on conditions that guar-

antee that the local minimizer is unique. In general, when the convexity of the hinge

loss function dominates the concavity of the penalty, the non-convex penalized SVM

actually has a unique minimizer due to global convexity. Recently [12] gave sufficient

conditions for a unique minimizer of the non-convex penalized least square regression

when global convexity is not satisfied. However, for ultrahigh dimensional cases, it

would be unrealistic to assume the existence of a unique local minimizer. See [56] for

relevant discussion and a possible solution to non-convex penalized regression.

In this chapter, we further address the non-uniqueness issue of local minimizers by

verifying that, with probability tending to 1, the LLA algorithm is guaranteed to yield
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an estimator with the desired oracle property in merely two iterations under the local-

izability condition [26]. This convergence result extends the work of [26] by relaxing the

differentiability assumption of the loss function and holds in the ultra high dimensional

setting with p = o(exp(nδ)) for some positive constant δ. We further show that the

localizability condition is automatically valid if an appropriate initial estimator is cho-

sen. Finally we prove that the l1 penalized SVM estimator is a proper initial estimator

to enable the LLA algorithm to find the oracle estimator under ultra high dimensional

settings.

4.3 Oracle Property of Non-convex Penalized Support Vec-

tor Machine

We begin with the basic set-up and notation. In binary classification, we are typically

given a random sample {(Yi,Xi)}i=1
n from an unknown population distribution P (X, Y ).

Here Yi ∈ {1,−1} denotes the categorical label and Xi = (Xi0, Xi1, . . . , Xip)
ᵀ =

(Xi0, (Xi−)ᵀ)ᵀ denotes the input covariates with Xi0 = 1 corresponding to the intercept

term. The goal is to estimate a classification rule that can be used to predict output

labels for future observations with input covariates only. With potentially varying mis-

classification cost specified by weight Wi = w if Yi = 1 and Wi = 1 − w if Yi = −1 for

some 0 < w < 1, the linear weighted SVM [74] estimates the classification boundary by

solving

min
β

1

n

n∑
i=1

Wi(1− YiXᵀiβ)+ + λβᵀ−β−

where (1 − u)+ = max{1 − u, 0} denotes the hinge loss, λ > 0 is a regularization

parameter and β = (β0, (β−)ᵀ)ᵀ with β− = (β1, β2, . . . , βp). The standard SVM is a

special case of the weighted SVM with weight parameter w = 0.5. In this chapter, we

consider the standard SVM without losing generaity. The problem becomes

min
β

1

n

n∑
i=1

(1− YiXᵀiβ)+ + λβᵀ−β−

In general, the corresponding decision rule, sign(Xᵀβ), uses all covariates and is not

capable of selecting relevant covariates.
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Towards variable selection for the linear weighted SVM, we consider the population

linear hinge loss E(1− YXᵀβ)+. Let β∗ = (β∗0 , β
∗
1 , . . . , β

∗
p)ᵀ = (β∗1 , (β

∗
−)ᵀ)ᵀ denote the

true parameter, which is defined as the minimizer of the population weighted hinge loss,

namely

β∗ = argmin
β

E(1− YXᵀβ)+ (4.1)

Still, the number of covariates p = pn is allowed to increase with the sample size n. It

is even possible that pn is much larger than n. Again, we assume the true parameter

β∗ is sparse. Let A = {1 ≤ j ≤ pn;β∗j 6= 0} be the index set of the nonzero coefficients.

Let q = qn = |A| be the cardinality of set A, which is also allowed to increase with

n. For convenience, we assume that pn − qn components of β∗ are 0, i.e. β∗ᵀ =

(β∗ᵀ1 ,0
ᵀ). Correspondingly, we write Xᵀi = (Zᵀi ,R

ᵀ
i ), where Zi = (Xi0, Xi1, . . . , Xiq)

ᵀ =

(1, (Zi−)ᵀ)ᵀ and Ri = (Xi[q+1], . . . , Xip)
ᵀ. Further we denote π+ and π− respectively to

be the marginal probability of the label Y = 1 and Y = −1.

To facilitate our theoretical analysis, we introduce the gradient vector and Hessian

matrix of the population linear weighted hinge loss. Let L(β1) = E(1 − Y Zᵀβ1)+ be

the population linear hinge loss by only relevant covariates. Define S(β1) = (S(β1)j)

to be the qn + 1-dimensional vector given by

S(β1) = −E(I(1− Y Zᵀβ1 ≥ 0)Y Z)

where I(·) is the indicator function. Also define H(β1) = (H(β1)jk) to be the (qn +

1)× (qn + 1) matrix given by

H(β1) = E(δ(1− Y Zᵀβ1)ZZᵀ),

where δ(·) is the Dirac delta function. It can be shown, S(β1) and H(β1) can be

considered to be the gradient vector and Hessian matrix of L(β1) respectively. See

Lemma 2 of [73] for details.

4.3.1 Non-convex Penalized Support Vector Machine

By acting as if the true sparsity structure is known in advance, the oracle estimator is

defined as β̃ = (β̃
ᵀ
1,0

ᵀ)ᵀ, where

β̃1 = argmin
β1

1

n

n∑
i=1

(1− YiZᵀiβ1)+. (4.2)
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Here the objective function is piecewise linear. With a finite sample, it may have mul-

tiple minimizers. In that case, β̃1 can be chosen to be any minimizer. Our forthcoming

theoretical results still hold. In the limit as n→∞, β̃1 minimizes the population version

of the objective function E(1 − Y Zᵀβ1)+. [75] shows that, when the misclassification

cost are equal, the minimizer of E(1−Y f(Z))+ over measurable f(Z) is the Bayes rule

sign(p(z)− 1
2), where p(z) = P (Y = 1|Z = z). This suggests that the oracle estimator

is aiming at approximating the Bayes rule. In practice, achieving an estimator with

the desired oracle property is very challenging, because the sparsity structure of the

true parameter β∗ is largely unknown. Later we shall show that, under some regularity

conditions, our proposed algorithm can find an estimator with oracle property and we

claim convergence with high probability. Indeed, the numerical examples in Section 4.5

demonstrate that the estimator selected by our proposed algorithm has performance

that is close to that of the Bayes rule. Note that the Bayes rule is unattainable here

because we assume no knowledge on the high dimensional conditional density P (X|Y ).

In this chapter, we consider the non-convex penalized hinge loss objective function

Q(β) =
1

n

n∑
i=1

(1− YiXᵀiβ)+ +

pn∑
j=1

pλ(|βj |), (4.3)

where pn(·) is a symmetric penalty function with tuning parameter λ. Let p′λ(t) be the

derivative of pλ(t) with respect to t. We consider a general class of non-convex penalties

that satisfy the following conditions.

(A1) The symmetric penalty pλ(t) is assumed to be non-decreasing and concave for

t ∈ [0,∞), with a continuous derivative p′λ(t) on (0,∞) and pλ(0) = 0.

(A2) There exists a > 1 such that limt→0+ p
′
λ(t) = λ, p′λ(t) ≥ λ − t/a for 0 < t < aλ

and p′λ(t) = 0 for t ≥ aλ

The motivation for such a non-convex penalty is that the convex l1 penalty lacks the

oracle property owing to the overpenalization of large coefficients in the model selected.

Consequently it is undesirable to use the l1 penalty when the purpose of the data analysis

is to select the relevant covariates among potentially high dimensional candidates in

classification. Note that p, q, λ and other related quantities are allowed to depend on

n, and we suppress the subscript n whenever there is no confusion. As expected, we
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will use the two common non-convex penalties which satisfy the assumptions (A1) and

(A2): SCAD and MCP.

4.3.2 Oracle Property

To facilitate our technical proofs, we impose the following regularity conditions.

(C1) The density of Z∗ given Y = 1 and Y = −1 are continuous and have common

support in Rq;

(C2) E(X2
j ) <∞ for 1 ≤ j ≤ q;

(C3) The true parameter β∗ is unique and a nonzero vector;

(C4) qn = O(nc1), namely limn→∞ qn/n
c1 <∞, for some 0 ≤ c1 <

1
3 ;

(C5) There is a constant M1 > 0 such that λmax( 1
nX
ᵀ
AXA) ≤M1, where XA is the first

qn + 1 columns of the design matrix and λmax denotes the largest eigenvalue. It

is further assumed that max1≤i≤n ||Zi|| = Op(
√
qn log n), (Zi, Yi) are in general

position [76, Section 2.2] and Xij are sub-Gaussian random variables for 1 ≤ i ≤
n, qn + 1 ≤ pn;

(C6) λmin(H(β∗1)) ≥ M2 for some constant M2 > 0, where λmin denotes the smallest

egienvalue;

(C7) n(1−c2)/2 min1≤j≤qn |β∗j | ≤M3 for some constant M3 > 0 and 2c1 < c2 ≤ 1;

(C8) Denote the conditional density of Zᵀβ∗1 given Y = 1 and Y = −1 as f and g

respectively. It is assumed that f is uniformly bounded away from 0 and ∞
in a neighborhood of 1 and g is uniformly bounded away from 0 and ∞ in a

neighborhood of −1.

Remark 1. Conditions (C1)-(C3) and (C6) were also assumed for fixed p in [73]. We

need these assumptions to ensure that the oracle estimator is consistent in the scenario

of diverging p. Condition (C3) states that the optimal classification decision function

is not constant, which is required to ensure that S(β) and H(β) are a well-defined

gradient vector and Hessian matrix of the hinge loss; see Lemma 2 and Lemma 3 of [73].
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Conditions (C4) and (C7) are common in the literature of high dimensional inference[11].

More specifically, condition (C4) states that the divergence rate of the number of nozero

coefficients cannot be faster than
√
n and condition (C7) simply states that the signals

cannot decay too quickly. The condition on the largest eigenvalues of the design matrix

in condition (C5) is similar to the sparse Riesz condition and was also assumed in [77],

[78] and [7]. Note that the bound on the smallest eigenvalue is not specified. The

condition on the maximum norm in condition (C5) holds when Z− given Y follows

a multivariate normal distribution. (Zi, Yi) are in general position if with probability

1 there are exactly qn + 1 elements in D = {i : 1 − YiZ
ᵀ
i β̃1 = 0} [76, Section 2.2].

The condition for general position is true with probability 1 with respect to Lebesgue

measure. Condition (C8) requires that there is enough information around the non-

differentiable point of the hinge loss, similarly to condition (C3) in [14] for quantile

regression.

For illustrative examples that satisfy all the above conditions, assume that 0 < π+ =

π− < 1 and let the number of signals be fixed. The first example is that the conditional

distributions of X− given Y have unbounded support Rp with sub-Gaussian tails. It can

be easily seen that the Fisher discriminant analysis is one special case when X− given

Y are Gaussian. C1-C4 and C7 are trivial. C5 holds by the properties of sub-Gaussian

random variables. [73] showed that C6 holds if the supports of the conditional densities

of Z− given Y are convex, which are naturally satisfied in Rq. C8 is trivially satisfied

by the unbounded support of the conditional distribution of Z− given Y . Another ex-

ample is the probit model that X− has unbounded support Rp with sub-Gaussian tails

and Pr(Y = 1|X−) = Φ(Xᵀβ) for some β 6= 0. It can be easily checked that the

conditional distributions of X− given Y also have unbounded supports Rp and hence

all the conditions are satisfied.

Now In this subsection, we establish the theory of the local oracle property for the

non-convex penalized SVMs, namely the oracle estimator is one of the local minimizers

of the objective function Q(β) defined in equation (4.3).

Theorem 4.3.1. Assume that conditions (C1)-(C8) hold. Let Bn(λ) be the set of local

minimizers of the objective function Q(β) with regularization parameter λ. The oracle
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estimator β̃ = (β̃
ᵀ
1,0

ᵀ)ᵀ satisfies

Pr(β̃ ∈ Bn(λ))→ 1

as n→ 1, if λ = o(n−(1−c1)/2), and log (p)q log (n)n−1/2 = o(λ).

It can be shown that, if we take λ = n−1/2+δ for some c1 < δ < c2/2, then the oracle

property holds even for p = o(exp(n(δ−c1)/2)). Therefore, the local oracle property

holds for the non- convex penalized SVM even when the number of covariates grows

exponentially with the sample size.

4.3.3 Implementation and Tuning

To solve the non-convex penalized SVMs, we use the LLA algorithm as discussed before.

In details, we start with an initial value β̂
(0)

. At each step t ≥ 1, we update by solving

min
β

 1

n

n∑
i=1

(1− YiXᵀiβ)+ +

p∑
j=1

p′λ(|β̂(t−1)
j |)|βj |

 , (4.4)

where p′λ(·) denotes the derivative of pλ(·). Following the literature, when β̂
(t−1)
j = 0,

we take p′λ(0) to be p′λ(0+) = λ . The LLA algorithm is an instance of the majorization-

minimization algorithm and converges to a local minimizer of the non-convex objective

function.

With slack variables, the convex optimization problem (4.4) can be easily recast as

a linear programming problem

min
ξ,η,β

 1

n

n∑
i=1

ξi +

p∑
j=1

p′λ(|β̂(t−1)
j |)ηj


subject to

ξi ≥ 0, i = 1, 2, . . . , n,

ξi ≥ 1− YiXᵀiβ, i = 1, 2, . . . , n,

ηj ≥ βj , ηj ≥ −βj , i = 1, 2, . . . , p.

We stop the algorithm when
∑p

j=1(p′λ(|β̂(t−1)
j |)− p′λ(|β̂(t)

j |))2 is sufficiently small.
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For the choice of tuning parameter λ, [79] suggested that the SVM information

criterion SVMIC which, for a subset S of {1, 2, . . . , p}, is defined as

SVMIC(S) =
n∑
i=1

ξi + log(n)|S|,

where |S| is the cardinality of S and ξi, i = 1, 2, . . . , n, denote the corresponding slack

variables. This criterion directly follows the spirit of the Bayesian information criterion

BIC by [80]. [54] showed that BIC can be too liberal when the model space is large and

proposed the extended BIC

EBICγ(S) = −2logLikelihood + log(n)|S|+ 2γ

(
p

|S|

)
, 0 ≤ γ ≤ 1.

By combining these ideas, [60] suggest the SVM-extended BIC

SVMICγ =
n∑
i=1

2ξi + log(n)|S|+ 2γ

(
p

|S|

)
, 0 ≤ γ ≤ 1.

We use γ = 0.5 as suggested by [54] and choose the λ that minimize SVMICγ .

4.3.4 The LLA Algorithm with Convergence to Oracle Estimator

In this subsection we need to verify the validity of the LLA algorithm in non-convex

penalized SVMs. Theorem 4.3.1 indicates that one of the local minimizers has the oracle

property. However, there can potentially be multiple local minimizers and it remains

challenging to identify the oracle estimator. In the high dimensional setting, assuming

that the local minimizer is unique would not be realistic.

In this subsection, instead of assuming the uniqueness of solutions, we work directly

on the conditions under which the oracle estimator can be identified by some numer-

ical algorithms that solve the non-convex penalized SVM objective function. As we

suggested in last section, the LLA algorithm remains to be a handy tool to solve our

problem. Recently the LLA has been shown to be capable of identifying the oracle

estimator in the set-up of folded concave penalized estimation with a differentiable loss

function [26, 56]. We generalize their results to non-differentiable loss functions, so that

they can fit in the framework of the non-convex penalized SVMs. Similarly to their

work, the main condition required is the existence of an appropriate initial estimator
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inputted in the iterations of the LLA algorithm. Denote the initial estimator as β̂
(0)

.

Intuitively, if the initial estimator β̂
(0)

lies in a small neighborhood of the true value

β∗, the algorithm should converge to the good local minimizer around β∗. This local-

izability will be formalized in terms of l∞ distance later. With such an appropriate

initial estimator, under the aforementioned regularity conditions, one can prove that

the LLA algorithm converges to the oracle estimator with probability tending to 1 even

in ultrahigh dimensions.

Let β̂
(0)

= (β̂
(0)
0 , . . . , β̂

(0)
p )ᵀ. Consider the following events:

(i) Fn1 = {|β̂(0)
j − β∗j | > λ, for some 1 ≤ j ≤ p};

(ii) Fn2 = {|β∗j < (a+ 1)λ|}, for some 1 ≤ j ≤ q};

(iii) Fn3 = {for all subgradients s(β̃), |sj(β̃)| > (1 − 1/a)λ for some q + 1 ≤ j ≤
p or |sj(β̃)| 6= 0 for some 0 ≤ j ≤ q}, where s(β̃) = (s0(β̃), . . . , sp(β̃)) with

sj(β̃) = − 1

n

n∑
i=1

YiXijI(1− YiXᵀi β̃ > 0)− 1

n

n∑
i=1

YiXijvj ,

where −1 ≤ vi ≤ 0 if 1− YiXᵀi β̃ = 0 and vi = 0 otherwise, j = 0, . . . , p;

(iv) Fn4 = {|β̃j | < aλ, for some 1 ≤ j ≤ q}.

Denote the corresponding probability as Pni = Pr(Fni), i = 1, 2, 3, 4. Pn1 represents

the localizability of the problem. When we have an appropriate initial estimator, we

expect Pn1 to converge to 0 as n→ +∞. Pn2 is the probability that the true signal is too

small to be detected by any method. Pn3 describes the behaviour of the subgradients

at the oracle estimator. Pn4 is concerned with the magnitude of the oracle estimator

on relevant variables. Under regularity conditions, the oracle estimator will detect the

true signals and hence Pn4 will be very small.

Now we can have the following theorem for the LLA algorithm to identify the oracle

estimator β̃ in the non-convex penalized SVMs based on Pn1, Pn2, Pn3 and Pn4.

Theorem 4.3.2. With probability at least 1 − Pn1 − Pn2 − Pn3 − Pn4, the LLA algo-

rithm initiated by β̂
(0)

finds the oracle estimator β̃ after two iterations. Furthermore,

if conditions (C1)-(C8) hold, λ = o(n−(1−c2)/2) and log(p)q log(n)n−1/2 = o(λ), then

Pn2 → 0, Pn3 → 0 and Pn4 → 0 as n→∞.
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The first part of Theorem 4.3.2 provides a non-asymptotic lower bound on the

probability that the LLA algorithm converges to the oracle estimator. As we shall show

in Appendix B, if none of the events Fni happen, the LLA algorithm initiated with β̂
(0)

will find the oracle estimator in the first iteration, and in the second iteration it will

find the oracle estimator again and thus claim convergence. Only a single correction is

required in the first iteration and the second iteration is needed to stop the algorithm.

Therefore, the LLA algorithm can identify the oracle estimator after two iterations and

this result holds generally without conditions (C1)-(C8).

The second part of Theorem 4.3.2 indicates that, under conditions (C1)-(C8), the

lower bound is determined only by the limiting behavior of the initial estimator. As

long as an appropriate initial estimator is available, the problem of selecting the oracle

estimator from potential multiple local minimizers is addressed.

4.4 Error Bound for l1 Penalized Support Vector Machine

In this section, we study the asymptotic behavior of the estimated l1-norm SVM co-

efficients in the ultra-high dimension and derive that the error bound is of near-oracle

rate O(
√
q log p/n), with q being the number of features with nonzero coefficients and

n is the sample size. As an important application, we show that this result helps

greatly extend the applicability of the recent algorithm and theory of high-dimensional

nonconvex-penalized SVM [60] by providing a statistically valid and computationally

convenient initial value. This will solve our final puzzle and validate the application of

the LLA algorithm on non-convex penalized SVMs.

Explicitly, the use of nonconvex penalty function aims to further reduce the bias

associated with the l1 penalty and accurately identify the set of relevant features for

classification. However, the presence of nonconvex penalty results in computational

complexity. [60] proposed an algorithm and showed that given an appropriate initial

value, in two iterative steps the algorithm is guaranteed to produce an estimator that

possesses the oracle property in the ultra-high dimension and consequently with proba-

bility approaching one the zero coefficients are estimated as exactly zero. However, the

availability of a qualified initial estimator is itself a challenging issue in high dimension.

[60] provided an initial estimator that would satisfy the requirement when p = o(
√
n).
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We shows that the l1-SVM can be a valid initial estimator under general conditions

when p grows at an exponential rate of n, which completes the algorithm and theory of

[60] in last section.

4.4.1 l1-norm support vector machine

We inherit the notations and definitions above. The standard linear SVM can be ex-

pressed as the following regularization problem

min
β

n−1
n∑
i=1

(1− YiXᵀiβ)+ + λ||β−||22, (4.5)

where (1 − u)+ = max{1 − u, 0} is often called the hinge loss function, λ is a tuning

parameter and β = (β0, (β−)ᵀ)ᵀ with β− = (β1, β2, . . . , βp)
ᵀ. Generally for a given

vector e, we use e− to denote the subvector with the first entry of e omitted. Actually,

optimization problem in (4.5) is known as the primal problem of the SVM, which can

be converted into an equivalent dual problem for further solution.

The l1-norm SVM replaces the l2 penalty in (4.5) by the l1 penalty. That is, we

consider the objective function

ln(β, λ) = n−1
n∑
i=1

(1− YiXᵀiβ)+ + λ||β−||1, (4.6)

and define

β̂(λ) = argmin
β

ln(β, λ). (4.7)

For a given data point Xi, it is classified into class + (corresponding to Ŷi = 1) if

Xᵀi β̂(λ) > 0 and into class − (corresponding to Ŷi = −1) if Xᵀi β̂(λ) < 0.

By introducing the slack variables, we can transform our optimization problem (4.7)

as a linear programming problem

min
ξ,ζ,β

 1

n

n∑
i=1

ξi + λ

p∑
j=1

ζj

 (4.8)

subject to ξi ≥ 0, i = 1, 2, . . . , n,

ξi ≥ 1− YiXᵀiβ, i = 1, 2, . . . , n,

ζj ≥ βj , ζj ≥ −βj , j = 1, 2, . . . , p.
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Same case as Section 4.3.3, we can utilize the LLA algorithm to solve this problem. Sev-

eral R packages have been designed to solve such a standard problem, such as lpSolve

in the core and linprog.

4.4.2 The Choice of the Tuning Parameter λ and a Fact About β̂

The key result in this section is an error bound of ||β̂(λ)−β∗||, where β∗ is the minimizer

of the population version of the hinge loss function, that is,

β∗ = argmin
β

L(β), (4.9)

where L(β) = E(1 − YXᵀβ)+. [75] suggested that there is a close connection between

the minimizer of the population hinge loss function and the Bayes rule. The definition

of β∗ above is also used in [16, 73], both of which only considered the fixed p case.

We are interested in the error bound of ||β̂(λ) − β∗|| when p � n. In the ultra-high

dimensional settings, it is often reasonable to assume that β∗ = (β∗1 , . . . , β
∗
p)ᵀ is sparse

in the sense that most of its components are exactly zero. We define the index set of

active features as T = {1 ≤ j ≤ p : β∗j 6= 0}. We denote the cardinality of T by |T | = q.

To incorporate the intercept term, we also define T+ = T
⋃
{0}.

Next, we introduce the gradient vector and Hessian matrix of the population hinge

loss function L(β). We define

S(β) = −E(I(1− YXᵀβ ≥ 0)YX)

as the (p+ 1)-dimensional gradient vector and

H(β) = E(δ(1− YXᵀβ)XXᵀ)

as the (p+ 1)× (p+ 1)-dimensional Hessian matrix where I(·) is the indicator function

and δ(·) is the Dirac delta function. Section 6.1 of [73] has explained more details of

the explicit forms of S(β) and H(β) under certain conditions.

Throughout this section, we assume the following regularity condition.

(B1) The densities of X− given Y = ±1 are continuous and have common support in

Rp+1, and there exists a constant M > 0 such that |Xj | ≤M , j ∈ {1, . . . , p}.
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Remark 2. Condition (B1) ensures that H(β) is well defined and continuous in β. The

bound of X− can be relaxed with further technical complexity. More details can be

found in [16, 73].

The estimated l1-norm SVM parameter β̂(λ) defined in (4.7) depends on the tuning

parameter λ. We will first show that a universal choice

λ = c
√

2A(α) log p/n, (4.10)

where c is some given constant, α is a small probability and A(α) > 0 is a constant

such that 4p−
A(α)

M2 +1 ≤ α, can provide theoretical guarantee on the good performance

of β̂(λ).

The above choice of λ is motivated by a principle in the setting of penalized least

squares regression [29], which advocates to choose the penalty level λ to dominate the

subgradient of the loss function evaluated at the true value. Intuitively, the subgradient

evaluated at β∗ summaries the estimation noise. See also the application of the same

principle to choose the penalty level for quantile regression [28, 38]. Another more tech-

nical motivation of this principle comes from the KKT condition in convex optimization

theory. Let β̃ be the oracle estimator (formally defined the following section) that min-

imizes the sample hinge loss function when the index set T is known in advance. Define

the subgradient function

Ŝ(β) = −n−1
n∑
i=1

I(1− YiXᵀiβ ≥ 0)YiXi.

Then it follows from the argument as in Theorem 3.1 of [60] that under some weak

regularity conditions ||Ŝ(β̃)||∞ ≤ λ with probability approaching one. It follows from

[73] that the oracle estimator β̃ provides a consistent and asymptotic normal estimate

of β∗.

Hence, in the ideal case where the population parameter β∗ is known, an intuitive

choice of λ is to set its value to be larger than the supremum norm of Ŝ(β∗) with large

probability, that is

P (λ ≥ c||Ŝ(β∗)||∞) ≥ 1− α, (4.11)

where c > 1 is some given constant and α is a small probability. Lemma 4.4.1 below

shows that the choice of λ given in (4.10) satisfies this requirement.



58

Lemma 4.4.1. Assume that condition (B1) is satisfied. Suppose λ = c
√

2A(α) log p/n,

we have

P (λ ≥ c||Ŝ(β∗)||∞) ≥ 1− α

with α being a given small probability defined earlier in this section.

The proof of Lemma 4.4.1 is given in the Appendix B. The crux of the proof is

to bound the tail probability of
∑n

i−1 I(1 − YiXᵀiβ
∗ ≥ 0)YiXi by applying Hoeffding’s

inequality and the union bound. Later in this section, we will show that this choice of

λ warrants near-oracle rate performance of β̂(λ).

Let h = β∗ − β̂(λ). We state below an interesting fact on h.

Lemma 4.4.2. For λ ≥ c||Ŝ(β∗)||∞ and C̄ = c−1
c+1 , we have

h ∈ ∆C̄ ,

where

∆C̄ =
{
γ ∈ Rp+1 : ||γT+

||1 ≥ C̄||γT c+ ||1,where T+ = T∪{0}, T ⊂ {1, 2, . . . , p} and |T | ≤ q
}
,

with T c+ denoting the complement of T+, and γT+
denoting the (p + 1)-dimensional

vector that has the same coordinates as γ on T+ and zero coordinates on T c+.

We call ∆C̄ the restricted set. The proof of (4.4.2) is given in the Appendix B.

4.4.3 Regularity conditions

Let X = (X1,X2, . . . ,Xn) denote the feature design matrix. We define restricted eigen-

values as follows

λmax = max
d∈Rp+1:||d||0≤q+1

dTX TXd

n||d||22
(4.12)

and

λmin(H(β∗); q) = min
d∈∆C̄

dTH(β∗)d

||d||22
. (4.13)

These can be considered as extension of the sparse eigenvalue notion in [29] for analyzing

l1 penalized least squares regression and the Dantzig selector [3] and the restricted

isometry constants in [81].

In addition to condition (B1) introduced in Section 4.4.2, we require the following

regularity conditions for the main theory of this paper.
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(B2) q = O(nc1) for some 0 ≤ c1 < 1/2.

(B3) There exists a constant M1 such that λmax ≤M1 almost surely.

(B4) λmin(H(β)∗; q) ≥M2, for some constant M2 > 0.

(B5) n(1−c2)/2 min
j∈T
|β∗j | ≥M3 for some constants M3 > 0 and 2c1 < c2 ≤ 1.

(B6) Denote the conditional density of Xᵀβ∗ given Y = +1 and Y = −1 as f∗ and

g∗, respectively. It is assumed that f∗ is uniformly bounded away from 0 and

∞ in a neighborhood of 1 and g∗ is uniformly bounded away from 0 and ∞ in a

neighborhood of −1.

Remark 2. Conditions (B2) and (B5) are very common in high dimensional literatures.

Basically, condition (B2) states that the number of non-zero variables cannot diverge

at a rate larger than
√
n. Condition (B5) controls the decay rate of true parameter

β∗. Condition (B3) is one of the restricted eigenvalue (RE) assumptions in [28, 29]. In

our case, we only need an upper bound for this restricted eigenvalue. Condition (B4)

requires the positive-definiteness of H(β) around β∗. We provide a thorough discussion

of this condition in Appendix C, including an example that demonstrates the validity of

this condition. Condition (B6) warrants that there is sufficient information around the

non-differentiable point of the hinge loss, similarly to condition (C3) in [14] for quantile

regression.

4.4.4 An error bound of β̂(λ) in ultra-high dimension

Before stating the main theorem, we first present an important lemma, which has to do

with the empirical process behavior of the hinge loss function.

Lemma 4.4.3. Assume that conditions (B1)-(B2) and (B3) are satisfied. Let

B(h) =
1

n

∣∣∣ n∑
i=1

(1− YiXᵀiβ
∗ + YiX

ᵀ
ih)+ −

n∑
i=1

(1− YiXᵀiβ
∗)+

−E

(
n∑
i=1

(1− YiXᵀiβ
∗ + YiX

ᵀ
ih)+ −

n∑
i=1

(1− YiXᵀiβ
∗)+

)∣∣∣.



60

Assume p > n and p > C1
√
q, then

P

(
sup

||h||0=q+1,||h||2=1
B(h) ≥ (1 + 2C2

√
2M1)

√
2q log p

n

)
≤ 2p−4q(C2

2−1),

where C2 > 1 and C1 are constants.

Lemma 4.4.3 guarantees that n−1 (
∑n

i=1(1− YiXᵀiβ
∗ + YiX

ᵀ
ih)+ −

∑n
i=1(1− YiXᵀiβ

∗)+)

is close to its expected value with high probability. This provides an important tool to

handle the nonsmoothness of the hinge loss function in proving the main theory, which

is stated below.

Theorem 4.4.4. Suppose that conditions (B1)-(B6) hold, then the estimated l1-norm

SVM coefficients vector β̂(λ) satisfies

||β̂(λ)− β∗||2 ≤
√

1 +
1

C̄

(2λ
√
q

M2
+

2C

M2

√
2q log p

n

(5

4
+

1

C̄

))
with probability at least 1− 2p−4q(C2

2−1)+1, where C is a constant.

From this theorem, we can easily capture the nearly oracle property for l1 penalized

SVM estimator, such that with high probability,

||β̂(λ)− β∗||2 = Op

(√
q log p

n

)

when λ = c
√

2A(α) log p/n. Actually, in the inequality of Theorem 4.4.4, the first term

satisfies
λ
√
q

M2
= 2

M2

√
2A(α)q log p

n = O

(√
q log p
n

)
and it is also trivial to have the second

term of the same order. Hence the nearly oracle property of β̂(λ) will hold given λ

above.

To numerically evaluate the above error bound of the L1-norm SVM, we consider

the simulation setting in Model 4 of Section 4.5.1. We choose p = 0.1 ∗ n2, q = bn1/3c
and β∗− = ((1.1, . . . , 1.1)q, 0, . . . , 0)T , which allows p and q to vary with sample size n.

Figure 4.1 depicts the average of ||β̂(λ)− β∗||2 across 200 simulation runs for different

values of n for L1-norm SVM and compare the curve with the theoretical error bound

(
√

q log p
n ). We observe that these two curves display similar decreasing pattern and

approach each other as n gets larger.
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Figure 4.1: L2-norm estimation error comparison

As we discussed before, Theorem 4.3.2 shows that if an appropriate initial estimator

exists, i.e. Pn1 → 0, then under general regularity conditions, the LLA algorithm can

identify the oracle estimator with probability approaching one in just two iterative steps.

Now we have a complete systematic framework for non-convex penalized SVM in ultra

high dimension. As the error bound that we derived on l1 norm SVM ensures that the

β̂ is a qualified initial value, we states the following theorem for ultra high dimensional

cases.

Theorem 4.4.5. Assume β̂(λ) is the solution to the l1 penalized SVM with tuning

parameter λ = c
√

2A(α) log p/n defined above. Suppose that conditions (B1)-(B6) hold,

then we have P (|β̂j(λ) − β∗j | > λ, for some 1 ≤ j ≤ p) → 0 as n → ∞. Furthermore,

under the regular conditions stated in Theorem 4.3.2, the LLA algorithm initiated by

β̂(λ) finds the oracle estimator in two iterations with probability tending to 1, i.e.,

P (β̂nc(λ) = β̃), where β̂nc(λ) is the solution for non-convex penalized SVM with given

λ.

4.5 Numerical Results

In this section, we will investigate the finite sample performance of the l1-norm SVM.

We will also study its application to non-convex penalized SVM in high dimension.
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4.5.1 Monte Carlo results for l1-norm SVM

We generate random data from each of the following four models.

• Model 1: Pr(Y = 1) = Pr(Y = −1) = 0.5, X−|(Y = 1) ∼ MN(µ,Σ), X−|(Y =

−1) ∼ MN(−µ,Σ), q = 5, µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0, . . . , 0)T ∈ Rp,Σ = (σij)

with diagonal entries equal to 1, nonzero entries σij = −0.2 for 1 ≤ i 6= j ≤ q

and other entries equal to 0. The Bayes rule is sign(1.39X1 + 1.47X2 + 1.56X3 +

1.65X4 + 1.74X5) with Bayes error 6.3%.

• Model 2: Pr(Y = 1) = Pr(Y = −1) = 0.5, X−|(Y = 1) ∼ MN(µ,Σ), X−|(Y =

−1) ∼ MN(−µ,Σ), q = 5, µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0, . . . , 0)T ∈ Rp,Σ = (σij)

with σij = −0.4|i−j| for 1 ≤ i, j ≤ q and other entries equal to 0. The Bayes rule

is sign(3.09X1 + 4.45X2 + 5.06X3 + 4.77X4 + 3.58X5) with Bayes error 0.6%.

• Model 3: model stays the same as Model 2, but Σ = (σij) with nonzero elements

σij = −0.4|i−j| for 1 ≤ i, j ≤ q and σij = 0.4|i−j| for q < i, j ≤ p. The Bayes rule

is still sign(3.09X1 + 4.45X2 + 5.06X3 + 4.77X4 + 3.58X5) with Bayes error 0.6%.

• Model 4: X− ∼ MN(0p,Σ), Σ = (σij) with nonzero elements σij = 0.4|i−j| for

1 ≤ i, j ≤ p, Pr(Y = 1|X−) = Φ(XT
−β
∗
−), where Φ(·) is the cumulative density

function of the standard normal distribution, β∗− = (1.1, 1.1, 1.1, 1.1, 0, . . . , 0)T

and q = 4. The Bayes rule is sign(1.1X1 + 1.1X2 + 1.1X3 + 1.1X4) with Bayes

error 10.4%.

Model 1 and Model 4 are identical to the ones in [60]. In particular, Model 1

focuses on a standard linear discriminate analysis setting. On the other hand, Model

4 is a typical probit regression case. Models 2 and 3 are designed with autoregressive

covariance as correlation decaying off-diagonal-wise. We consider sample size n = 100

with p = 1000 and 1500, and n = 200 with p = 1500 and 2000. Similarly as in [82], we

use an independent tuning data set of size 2n to tune our λ by minimizing the prediction

error using five-fold cross validation. The tuning range spans from 2−6 to 2 as equally-

spaced sequence with 100 elements. For each simulation scenario, we conduct 200 runs.

Then we generate an independent test data set of size n to report the estimated test

error.
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We evaluate the performance of l1-norm SVM by its testing misclassification error

rate, estimator error and variable selection ability. In particular, we measure the esti-

mation accuracy by two criteria: the L2 estimation error ||β̂(λ)−β∗||2 where Appendix

C provides details on the calculation of β∗ and the absolute value of the sample corre-

lation c(·, ·) between XT β̂(λ) and XTβ∗. The absolute value of the sample correlation

(AAC) is also used as accuracy measure in [83]. To summarize, we will report

• Test error: The misclassification error rate.

• L2 error: ||β̂(λ)− β∗||2.

• AAC: Absolute absolute correlation corr(Xᵀβ̂(λ),Xᵀβ∗).

• Signal: the average of number of non-zero regression coefficients β̂i 6= 0 with

i = 1, 2, 3, 4, 5 for Model 1-3 and with i = 1, 2, 3, 4 for Model 4. This measures the

ability of l1-norm SVM selecting relevant features.

• Noise: the average of number of non-zero regression coefficients β̂i(λ) 6= 0 with

i 6∈ {1, 2, 3, 4, 5} for Model 1-3 and with i 6∈ {1, 2, 3, 4} for Model 4. This measures

the ability of l1-norm SVM not selecting noise features.

Table 1 summarizes the simulation results for all four models. The numbers in the

parentheses are the corresponding standard errors based on 200 replications. Overall,

the l1-norm SVM performs satisfactorily for classification with relatively low error rates

in all the models. It is also successful in eliminating the majority of the irrelevant

features. The performance increases with increased sample size. In terms of estimation

accuracy, the L2 error decreases as p decreases and n increases, which echoes the result

in the Theorem 4.4.4. The measurement AAC is greater than 0.9 in most cases, implying

the direction of β̂(λ) matching that of bayes rule.

It is worth noting that the earlier literature have already performed thorough nu-

merical analysis to compare the performance of the L1-norm SVM with L2-norm SVM

and logistic regression.For example, in a numerical experiment [63] observes that the

performance of L1-norm SVM and the L2-norm SVM when there is no redundant fea-

tures; however, the performance of L2-norm SVM can be adversely affected by the

presence of redundant features. From similar simulation study, [84] demonstrated that
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Table 4.1: Simulation results for L1-norm SVMs

Model n p Test error L2 error AAC Signal Noise

Model 1 100 1000 0.17(0.06) 0.53(0.14) 0.89(0.03) 4.84(0.41) 38.20(5.50)

100 1500 0.19(0.05) 0.59(0.14) 0.89(0.03) 4.75(0.47) 40.27(5.41)

200 1500 0.10(0.03) 0.27(0.07) 0.96(0.02) 5.00(0.07) 19.80(4.12)

200 2000 0.10(0.02) 0.27(0.06) 0.96(0.02) 5.00(0.00) 23.61(4.80)

Model 2 100 1000 0.06(0.04) 0.34(0.12) 0.95(0.02) 4.88(0.35) 21.25(4.22)

100 1500 0.07(0.04) 0.39(0.12) 0.95(0.02) 4.79(0.41) 28.80(4.61)

200 1500 0.02(0.01) 0.21(0.07) 0.97(0.01) 4.99(0.10) 5.41(2.25)

200 2000 0.02(0.02) 0.22(0.07) 0.97(0.01) 4.99(0.10) 6.88(2.50)

Model 3 100 1000 0.06(0.05) 0.36(0.14) 0.95(0.02) 4.8.(0.40) 19.93(3.87)

100 1500 0.06(0.04) 0.37(0.13) 0.95(0.02) 4.83(0.40) 27.55(4.85)

200 1500 0.02(0.02) 0.22(0.07) 0.97(0.02) 5.00(0.07) 5.18(2.19)

200 2000 0.02(0.02) 0.20(0.08) 0.97(0.02) 5.00(0.07) 6.72(2.67)

Model 4 100 1000 0.16(0.04) 0.52(0.13) 0.94(0.03) 3.88(0.33) 12.87(3.65)

100 1500 0.17(0.05) 0.55(0.14) 0.93(0.03) 3.81(0.42) 12.09(3.56)

200 1500 0.13(0.03) 0.33(0.09) 0.97(0.01) 4.00(0.00) 11.12(3.53)

200 2000 0.15(0.03) 0.43(0.07) 0.94(0.02) 4.00(0.00) 48.34(7.71)

L1-norm SVM did perform remarkably better than logistic regression for finite sample

sizes. While in most cases, the two methods are comparable on variable selection consis-

tency in large sample cases. See similar observation in [69], [?], among others. Although

L1-norm SVM can outperform regular L2-norm SVM when there are many redundant

features, it shares the drawback of L1 penalized least squares regression that it overpe-

nalizes large coefficients and tends to have larger false positives (including more noise

features) comparing with the non-convex penalized SVM, which will be investigated in

Section 4.5.2.
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4.5.2 Monte Carlo results for nonconvex penalized SVM

In this subsection, we consider the same four models as in Section 5.1. Instead of the

l1-norm SVM, we use it as the initial value for the nonconvex penalized SVM algorithm

proposed in [60]. We consider two popular choices of nonconvex penalty functions:

SCAD penalty (with a = 3.7) and MCP penalty (with a = 3). As suggested in [60],

we used the recently developed high-dimensional BIC criterion to choose the tuning

parameter for non-convex penalized SVMs. More specifically, the SVM-extended BIC

is defined as

SVMICγ(T ) =
n∑
i=1

2ξi + log(n)|T |+ 2γ

(
p

|T |

)
, 0 ≤ γ ≤ 1,

where in practice we can set γ = 0.5 as suggested by [54] and choose the λ that minimizes

the above SVMICγ for non-convex penalized SVMs.

Tables 4.2 and 4.3 summarize the simulation results for SCAD and MCP penalty

functions, respectively. We observe that the SCAD-penalized SVM and MCP-penalized

MCP have similar performance, both demonstrating a clear advantage of selecting the

relevant features and excluding irrelevant ones over l1-norm SVM. The Noise size de-

creases dramatically to less than 3 as the sample size gets larger. The Signal size is

almost 5 when n = 200 for Model 1-3 and 4 for Model 4, implying the success of

selecting the exact true model. We also observe that non-convex penalized SVM has

uniformly smaller L2 error and larger AAC than L1-norm SVM. This resonates with the

observation in the literature that eliminating irrelevant features enhances classification

performance. The Monte Carlo study confirms the effectiveness of the algorithm of [60]

for feature selection for SVM in high dimension when using l1-norm SVM as an initial

value.

4.6 Conclusions

We investigate the statistical properties of l1-norm SVM coefficients in ultra-high dimen-

sion. We proved that l1-norm SVM coefficients achieve a near-oracle rate of estimation

error. To deal with the nonsmoothness of the hinge loss function, we employ empirical

processes techniques to derive the theory. Furthermore, we showed that under some
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Table 4.2: Simulation results for SCAD penalized SVM

Model n p Test error L2 error AAC Signal Noise

Model 1 100 1000 0.10(0.05) 0.25(0.17) 0.95(0.04) 4.88(0.38) 4.92(5.82)

100 1500 0.12(0.06) 0.35(0.20) 0.93(0.05) 4.84(0.53) 9.31(8.89)

200 1500 0.08(0.03) 0.15(0.10) 0.98(0.03) 4.99(0.12) 0.48(0.51)

200 2000 0.07(0.02) 0.10(0.05) 0.99(0.01) 5.00(0.00) 0.66(0.80)

Model 2 100 1000 0.04(0.05) 0.25(0.17) 0.95(0.05) 4.73(0.51) 1.47(1.38)

100 1500 0.05(0.05) 0.28(0.18) 0.94(0.05) 4.64(0.55) 1.42(1.38)

200 1500 0.03(0.03) 0.19(0.10) 0.96(0.03) 4.91(0.29) 2.77(3.53)

200 2000 0.02(0.01) 0.15(0.06) 0.98(0.02) 5.00(0.07) 1.40(1.81)

Model 3 100 1000 0.05(0.04) 0.30(0.16) 0.94(0.04) 4.53(0.58) 0.58(0.84)

100 1500 0.04(0.04) 0.24(0.15) 0.95(0.04) 4.75(0.46) 1.08(1.15)

200 1500 0.02(0.01) 0.14(0.06) 0.98(0.01) 4.99(0.10) 1.30(1.53)

200 2000 0.02(0.01) 0.15(0.06) 0.98(0.02) 5.00(0.00) 1.32(1.83)

Model 4 100 1000 0.15(0.05) 0.51(0.20) 0.94(0.04) 3.50(0.59) 7.54(5.20)

100 1500 0.17(0.05) 0.61(0.18) 0.93(0.04) 3.57(0.71) 8.86(6.37)

200 1500 0.12(0.03) 0.19(0.10) 0.99(0.01) 3.98(0.14) 3.19(2.45)

200 2000 0.14(0.03) 0.39(0.19) 0.97(0.03) 3.69(0.51) 0.95(1.07)

general regularity conditions, the l1-norm SVM provides an appropriate initial value for

the recent algorithm developed by [60] for noncovex penalized SVM in high dimension.

Combined with the theory in Section 4.3, we extended the applicability and validity of

their result to the ultra-high dimension.
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Table 4.3: Simulation results for MCP penalized SVM

Model n p Test error L2 error AAC Signal Noise

Model 1 100 1000 0.11(0.05) 0.28(0.17) 0.95(0.04) 4.87(0.42) 5.46(5.45)

100 1500 0.13(0.07) 0.36(0.20) 0.93(0.05) 4.84(0.47) 9.00(8.49)

200 1500 0.07(0.02) 0.11(0.07) 0.99(0.02) 4.99(0.10) 0.48(0.51)

200 2000 0.07(0.02) 0.10(0.04) 0.99(0.01) 5.00(0.00) 0.83(0.83)

Model 2 100 1000 0.03(0.03) 0.20(0.12) 0.96(0.03) 4.84(0.38) 0.88(0.97)

100 1500 0.11(0.10) 0.47(0.27) 0.89(0.08) 4.08(0.85) 3.56(2.65)

200 1500 0.02(0.01) 0.14(0.05) 0.98(0.01) 5.00(0.00) 1.50(2.22)

200 2000 0.02(0.01) 0.14(0.06) 0.98(0.02) 5.00(0.07) 1.38(1.80)

Model 3 100 1000 0.04(0.04) 0.26(0.15) 0.95(0.04) 4.67(0.54) 0.60(0.82)

100 1500 0.04(0.04) 0.24(0.15) 0.95(0.04) 4.75(0.46) 1.01(1.07)

200 1500 0.02(0.01) 0.14(0.06) 0.98(0.01) 5.00(0.07) 1.27(1.72)

200 2000 0.02(0.01) 0.15(0.06) 0.98(0.02) 5.00(0.00) 1.47(2.04)

Model 4 100 1000 0.15(0.05) 0.50(0.20) 0.94(0.04) 3.66(0.52) 7.20(4.49)

100 1500 0.17(0.05) 0.62(0.16) 0.92(0.04) 3.35(0.68) 4.96(3.58)

200 1500 0.12(0.03) 0.20(0.12) 0.99(0.01) 3.98(0.12) 1.99(1.72)

200 2000 0.13(0.03) 0.34(0.17) 0.97(0.02) 3.83(0.43) 0.86(0.80)



Chapter 5

Conclusion

5.1 Discussion

In this thesis we have built up a complete theoretical framework for non-convex penalties

on a general class of models.

To choose a proper model automatically, researchers tend to utilized penalized re-

gression model to analyze ultra-high dimensional data. Though LASSO penalized re-

gression is computationally efficient and owns attractive theoretical properties, it re-

quires very stringent conditions on design matrix to ensure variable selection consistency.

Hence, we select non-convex penalty as a promising alternative to identify sparsity pat-

tern for popular models. We investigate non-convex penalized quantile regression model

and support vector machines to solve heterogeneity issue and fulfill classification tasks

respectively. We establish the theory for proposed models under very relaxed condi-

tions. In particularly, the theory claims that non-convex penalized quantile regression

model and SVMs have the oracle property even under ultra high dimensional settings.

This framework consists of two indispensable components. First, the LASSO penal-

ized model is able to create an estimator to sufficiently approach to the true parameter

when an appropriate tuning parameter λ is chosen. This gives us a significant upper

bound for the estimation error of LASSO penalized model. Then, we propose the LLA

algorithm to solve the non-convex penalized model by transforming this non-convex

problem to a series of convex optimization sub problems. Under rather weak condi-

tions, the LLA algorithm is capable to find the oracle estimator in two iterations if

68
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using the LASSO estimator as initial value. This theory not only points out the oracle

estimator is a local minimum to the non-convex penalized model, but also validate the

LLA algorithm to identify it among all those potential minima.

However, the LLA algorithm faces inevitable computational difficulties when it

comes to ultra-high dimensions. To tackle this computing speed issue, we also propose

a brand new QICD algorithm to solve non-convex penalized quantile regression model.

By combining the MM technique and coordinate descent procedures, we demonstrate

the considerable increase on computational speed and a local convergence theory for our

QICD algorithm. Basically, the QICD algorithm owns fast iterative speed over the LLA

algorithm at little cost of sacrificing its performance. The extension of this algorithm

to other general models is quite promising and valuable to explore.

5.2 Future Works

This thesis provides an inspiring start for non-convex penalty research from theoretical

and computational perspective simultaneously. We can extend our framework to cen-

sored quantile regression model, which is becoming rather attractive on biological area.

As medical and gene sets data are commonly censored, censored quantile regression

model becomes more and more popular on consistent variable selection and accurate

prediction. Generally, censored case may require more stringent regular conditions for

penalized model to achieve oracle property, but still maintain similar properties as usual

quantile regression models. It is potentially to build up a modified theoretical framework

based on our results.

Another vision is to create a unified algorithm for the application of non-convex

penalty on a general class of models. QICD algorithm provides a novel mixture of

coordinate descent algorithm and majorization-minimization idea to guarantee the fast

speed and proper convergence at the same time. To apply this algorithm on other

models, such as SVMs and grouping penalized models, we need to search for an efficient

method to solve each sub problem in each iteration. Fast weight sorting for median in

QICD offers a good insight into this exploration and versatile iterative algorithms are

needed for each specific model.
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Appendix A

Useful Definitions and Notations

Let Rm denote the m-dimensional real space. For any h : Rm 7→ R
⋃
∞, we denote by

dom h the effective domain of h, i.e.,

dom h = {x ∈ Rm|h(x) <∞}

For any x ∈ dom h and any d ∈ Rm, we denote the (lower) directional derivative of h

at x in the direction d by

h ′(x; d) = lim inf
λ↓0

[h(x + λd)− h(x)]/λ.

We say that h is quasiconvex if

h(x + λd) ≤ max{h(x), h(x + d)},

and that h is hemivariate if h is not constant on any line segment belonging to dom h.

A function f is said to be lower semicontinuous (lsc) on dom f if

lim inf
x→x0

f (x) ≥ f (x0), for each x0 ∈ dom f.

We define z as a stationary point of f if z ∈ dom f and

f ′(z; d) ≥ 0, ∀ d .

We say that z is a coordinate-wise minimum point of f if z ∈ dom f and

f (z + (0, . . . , dk, . . . , 0)) ≥ f (z), ∀ dk ∈ R.
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for all k = 1, . . . , N . Here, we denote by (0, . . . , dk, . . . , 0) the vector in RN whose kth

coordinate is dk and whose other coordinates are zero. We say that f is regular at z ∈
dom f if

f ′(z; d) ≥ 0, ∀d = (d1, . . . , dN ),

if f ′(z; (0, . . . , dk, . . . , 0)) ≥ 0, k = 1, . . . , N. (A.1)

We consider a generalized penalized loss function of the form

f (x1, . . . , xN ) = f0(x1, . . . , xN ) +
N∑
k=1

fk(xk) (A.2)

where f0 : RN 7→ R
⋃
∞ and fk : R 7→ R

⋃
∞, k = 1, 2, . . . , N , with We assume that f is

proper, i.e., f 6≡ ∞. We adopt the following assumptions on f , f0, f1, . . . , fN .

(D1) f0 is continuous on dom f0.

(D2) For each k ∈ {1, . . . , N} and (xj)j 6=k, the function xk 7→ f(x1, . . . , xN ) is quasicon-

vex and hemivariate.

(D3) f0, f1, . . . , fN is lower semicontinuous.

(D4) dom f0 is open and f0 tends to ∞ at every boundary point of dom f0.

(D5) dom f0 = Y1 × · · · × YN , for some Yk ⊆ R, k = 1, . . . , N .

In the following, we state a useful result of [48].

Proposition A.0.1. [48] Consider an objective function of the form (A.2). Assume

that f , f0, f1, . . . , fN satisfy conditions (D1)-(D3) and that f0 satisfies either condition

(D4) or (D5). Let xr = (xr1, . . . , x
r
N )r=0,1,... be a sequence generated by the coordinate

descent algorithm for minimizing (A.2) using the cyclic rule such as the one in (3.6).

Then, either {f (xr)} ↓ −∞, or every cluster point z of {xr} is a coordinatewise mini-

mum point of f.
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Technical Proofs

Proof of Theorem 2.3.1. It follows by the result of Theorem 7 in [26]. �

Proof of Lemma 2.4.1. It follows by the result of Lemma 1 in [28]. �

Proof of Theorem 2.4.2. It follows by the result of Theorem 1 in [28]. �

Proof of Corollary 2.4.3. It follows by combining the result of Theorem 1 in [28] and

Theorem 7 in [26] . �

Proof of Proposition 3.4.1. (1) It is easy to show that φ
β

(k−1)
j

(β
(k−1)
j ) = pλ(|β(k−1)

j |).

If |β| > |β(k−1)
j |, by the mean value theorem, we have

pλ(|β|)− pλ(|β(k−1)
j |) = p′λ(ξ+)(|β| − |β(k−1)

j |)

for some ξ ∈ [|β(k−1)
j |, |β|]. Since pλ(·) is concave, we have pλ

′(|β(k−1)
j |+) ≥ pλ

′(ξ+).

Hence,

pλ(|β|) = pλ(|β(k−1)
j |) + p′λ(ξ+)(|β| − |β(k−1)

j |)

≤ pλ(|β(k−1)
j |) + p′λ(|β(k−1)

j |+)(|β| − |β(k−1)
j |)

= φ
β

(k−1)
j

(β).

Similarly, we can show that if |β| < |β(k−1)
j |, then pλ(|β|) ≤ φ

β
(k−1)
j

(β). Therefore,

φ
β

(k−1)
j

(β) majorizes pλ(β) at the points ±|β(k−1)
j |.
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(2) It follows from (1) that

Q(β) = n−1
n∑
i=1

ρτ (Yi − xᵀiβ) +

p∑
j=1

pλ(|βj |)

≤ n−1
n∑
i=1

ρτ (Yi − xᵀiβ) +

p∑
j=1

φ
β

(k−1)
j

(|βj |)

= Q
β(k−1)(β)

Hence, Q
β(k−1)(β) majorizes Q(β) at the points ±|β(k−1)|.

(3) We have

Q(β(k)) ≤ Q
β(k−1)(β(k)) ≤ Q

β(k−1)(β(k−1)) = Q(β(k−1)),

where the first inequality and the last equality follow from the property of the majoriza-

tion function in (3.1), while the second inequality follows from (3.5). This proves the

descent property. �

Proof of Lemma 3.4.2. The result follows directly from Proposition A.0.1. It is easy

to check that Q
β(k−1)(β) has the form (A.2) with components f0 = n−1

∑n
i=1 ρτ (Yi −

xᵀiβ) and fj = φ
β

(k−1)
j

(|βj |) for i ≥ 1 and j ≥ 1, which satisfy conditions (D1)-(D5).

Our algorithm implies that β(k) is a cluster point of β
(k)(r)
j . In addition, Q(β(k)) ≤

Q(β(0)) < +∞, and Q
β(k−1)(β) ≥ 0, {Q

β(k−1)(β
(k)(r)
j )} 6→ −∞ as r → ∞. Hence, by

Proposition A.0.1, β(k) is a coordinatewise minimum point of Q
β(k−1)(β). �

Proof of Lemma 3.4.3. We have

lim
k→+∞

Q
β(k−1)(β(k)) ≥ lim

k→+∞
Q(β(k)) (due to majorization).

= lim
k→+∞

Q
β(k)(β(k))

≥ lim
k→+∞

Q
β(k)(β(k+1)),

where the last inequality follows because β(k) is a coordinate minimum point. Hence

Q(β∗) = A. �

To prove Theorem 3.4.4, we state below a useful result from Bazaraa, Sherali and

Shetty (2006, Theorem 3.3.10).
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Lemma B.0.1. (Bazaraa, Sherali and Shetty, 2006) Given a function f: Rn 7→ R, let

F(x̄;d)(λ) = f (x̄+λd), where x̄ is some point in Rn and d ∈ Rn is a nonezero direction.

Then f is (strictly) convex if and only if F(x̄;d)(·) is a (strictly) convex function of λ for

all x̄ and d 6= 0 in Rn.

Proof. We include the proof here for completeness, Given any x̄ and d 6= 0 in Rn, we

write F(x̄;d)(λ) as F (λ) for notational simplicity. If f is convex, then for any λ1 and λ2

in R and for any 0 ≤ α ≤ 1, we have

F (αλ1 + (1− α)λ2) = f (α[x̄ + λ1d] + (1− α)[x̄ + λ2d])

≤ αf (x̄ + λ1d) + (1− α)f (x̄ + λ2d)

= αF (λ1) + (1− α)F (λ2)

Hence, F is convex. Conversely, suppose that F(x̄;d)(λ), λ ∈ R, convex for all x̄ and

d 6= 0 in Rn. Then, for any x1 and x2 and 0 ≤ λ ≤ 1, we have

λf (x1) + (1− λ)f (x2) = λf [x1 + 0(x2 − x1)] + (1− λ)f [x1 + 1(x2 − x1)]

= λF[x1;(x2−x1)](0) + (1− λ)F[x1;(x2−x1)](1)

≥ F[x1;(x2−x1)](1− λ)

= f [x1 + (1− λ)(x2 − x1)]

= f [λx1 + (1− λ)x2].

So f is convex. The argument for the strictly convex case is similar. �

Proof of Theorem 3.4.4. Let {rm} be a subsequence of {km} such that lim
m→+∞

β(rm) =

β∗ and lim
m→+∞

β(rm−1) = β∗∗. Denote lim
k→+∞

Q
β(k−1)(β(k)) by A. By Lemma 3.4.3, we

have

Q(β∗) = Q(β∗∗) = lim
m→+∞

Q
β(rm−1)(β(rm))

= Qβ∗∗(β
∗) = A.

Note that Qβ∗∗(β) is convex in β. By Lemma B.0.1, R(λ) = Qβ∗∗(β + λd) is con-

vex in λ for all β and d 6= 0. Moreover, by Lemma 3.4.2, β(rm) is the coordinate-

wise minimum point of Q
β(rm−1)(β) for m = 1, 2, . . .. Since lim

m→+∞
β(rm) = β∗ and
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lim
m→+∞

β(rm−1) = β∗∗, β∗ is a coordinatewise minimum point of Qβ∗∗(β) by the conti-

nuity of Q
β(rm−1)(β(rm)) and Qβ∗∗(β). Since Qβ∗∗(β) is regular at β∗, β∗ is a stationary

point as well by (A.1). Hence, we have

Q′β∗∗(β
∗; d) ≥ 0, ∀ d,

which is equivalent to

R′(λ;β∗,d)|λ=0 ≥ 0, ∀ d. (B.1)

If β∗∗ is not a coordinatewise minimum point of Qβ∗∗(β), then ∀ a > 0, ∃ d(1) =

(0, . . . , di, . . . , 0), with |di| < a, such that

Qβ∗∗(β
∗∗ + d(1)) < Qβ∗∗(β

∗∗) = Qβ∗∗(β
∗) (B.2)

Let d(2) = β∗∗ + d(1) − β∗. Then we have, ∀ λ ∈ (0, 1),

Qβ∗∗(β
∗ + λd(2)) = Qβ∗∗((1− λ)β∗ + λ(β∗∗ + d(1)))

≤ (1− λ)Qβ∗∗(β
∗) + λQβ∗∗(β

∗∗ + d(1))

< Qβ∗∗(β
∗),

where the last inequality follows from (B.2). Note that although R(λ;β∗) is not dif-

ferentiable everywhere, it is non-differentiable at only a finite number of points; hence,

there exits a constant λ, R(λ;β∗) is differentiable in (0, λ). Then, by the mean value

theorem there exits λ1 ∈ (0, λ) such that

R′(λ1;β∗,d(2)) =
R(λ;β∗,d(2))−R(0;β∗,d(2))

λ

=
Qβ∗∗(β

∗ + λd(2))−Qβ∗∗(β
∗)

λ
< 0.

However, R(·;β∗,d(2)) is convex. Hence, R′(0;β∗,d(2)) ≤ R′(λ1;β∗,d(2)) < 0. This

contradicts (B.1). Therefore, β∗∗ is a coordinatewise minimum point of Qβ∗∗(β).

Similarly, β∗∗ is a stationary point of Qβ∗∗(β). Furthermore, since p′λ(|θ|+) = p′λ(|θ|−)

on (0,∞), we have

Q′(β∗∗; d) = Q′β∗∗(β
∗∗; d) ≥ 0, ∀ d.
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Hence, β∗∗ is a stationary point of Q(β). Since β∗∗ is an arbitrary cluster point of

{β(k−1)}, we conclude that every cluster point of the sequence generated by the QICD

algorithm is a stationary point of Q(β). �

Proof of Theorem 4.3.1. It follows by the result of Theorem 2 in [60]. �

Proof of Theorem 4.3.2. It follows by the result of Theorem 3 in [60]. �

Proof of Lemma 4.4.1. By the union bound, we have

P
(
c
√

2A(α) log p/n ≤ c||Ŝ(β∗)||∞
)
≤

p∑
j=0

P
(√

2A(α) log p/n ≤ 1

n

∣∣ n∑
i=1

I(1−YiXᵀiβ
∗ ≥ 0)YiXij

∣∣)
Notice that we have S(β∗) = 0 because of minimizer β∗ and the definition of gradi-

ent vector. Then, for each i and j, E(YiXijI(1 − YiXᵀiβ
∗ ≥ 0)) = 0, by Hoeffding’s

inequality,

P
(√

2A(α) log p/n ≤ n−1
∣∣ n∑
i=1

I(1− YiXᵀiβ
∗ ≥ 0)YiXij

∣∣)
≤ 2 exp(−4A(α)n log p

4nM2
) = 2p−

A(α)

M2 .

Thus,

P
(
c
√

2A(α) log p/n ≤ c||Ŝ(β∗)||∞
)
≤ (p+ 1) · 2p−

A(α)

M2 ≤ α.

�

Lemma 4.4.2 For λ ≥ c||Ŝ(β∗)||∞ and C̄ = c−1
c+1 , we have

h ∈ ∆C̄ ,

where

∆C̄ =
{
γ ∈ Rp+1 : ||γT+

||1 ≥ C̄||γT c+ ||1,where T+ = T∪{0}, T ⊂ {1, 2, . . . , p} and |T | ≤ q
}
,

with T c+ denoting the complement of T+, and γT+
denoting the (p + 1)-dimensional

vector that has the same coordinates as γ on T+ and zero coordinates on T c+.
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Proof of Lemma 4.4.2. Since β̂ minimizes ln(β), we have

1

n

n∑
i=1

(1− YiXᵀi β̂)+ + λ||β̂−||1 ≤
1

n

n∑
i=1

(1− YiXᵀiβ
∗)+ + λ||β∗−||1,

1

n

n∑
i=1

(1− YiXᵀiβ
∗ + YiX

ᵀ
ih)+ −

1

n

n∑
i=1

(1− YiXᵀiβ
∗)+ ≤ λ||β∗−||1 − λ||β̂−||1.

Let T denote the set of significant coefficients, i.e., non-zero coefficients, we have

||β∗−||1 − ||β̂−||1 ≤ ||β∗T+
||1 − |β̂−||1

≤ ||hT+ ||1 − ||hT c+ ||1.

This implies

1

n

n∑
i=1

(1− YiXᵀiβ
∗ + YiX

ᵀ
ih)+ −

1

n

n∑
i=1

(1− YiXᵀiβ
∗)+ ≤ λ(||hT+ ||1 − ||hT c+ ||1).

Since the sub-differential of ln(β) at the point of β∗ is Ŝ(β∗) and recall the assumption

λ ≥ c||Ŝ(β∗)||∞, we have

1

n

n∑
i=1

(1− YiXᵀiβ
∗ + YiX

ᵀ
ih)+ −

1

n

n∑
i=1

(1− YiXᵀiβ
∗)+

≥ Ŝᵀ(β∗)h

≥ −||h||1 · ||Ŝ(β∗)||∞

≥ −λ
c

(||hT+ ||1 + ||hT c+ ||1).

Hence, we have

λ(||hT+ ||1 − ||hT c+ ||1) ≥ −λ
c

(||hT+ ||1 + ||hT c+ ||1),

||hT+ ||1 ≥ C̄||hT c+ ||1,

where C̄ = c−1
c+1 . We have thus proved that h ∈ ∆C̄ . �

Proof of Lemma 4.4.3. We have∣∣(1− YiXᵀiβ∗ + YiX
ᵀ
ih)+ − (1− YiXᵀiβ

∗)+

∣∣ ≤ |Xᵀih|.
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By Hoeffding’s inequality, we have

P

(
B(h) ≥ t√

n

∣∣X) ≤ 2 exp
(
− 2nt2

4||Xh||22

)
.

By the definition of λmax,

P

(
B(h) ≥ t√

n

∣∣X) ≤ 2 exp
(
− t2

2λmax||h||22

)
.

Hence,

P

(
B(h) ≥ t√

n

)
≤ 2 exp

(
− t2

2M1||h||22

)
.

Let t = C
√

2q log p||h||2, then

P
(
B(h) ≥ C

√
2q log p

n
||h||2

)
≤ 2 exp

(
− C22q log p||h||22

2M1||h||22

)
≤ 2p−qC

2/M1

≤ 2p−(q+1)C2/2M1

for all C > 0. Next we will derive an upper bound for sup
||h||0=q+1,||h||2=1

B(h). Consider

the ε-Net of the set {h ∈ Rp+1, ||h||0 = q + 1, ||h||2 = 1}. We know that the covering

number of {h ∈ Rq+1, ||h||2 = 1} by balls of radius ε is at most (C1/ε)
q+1 for ε < 1,

see for example [85] and [86]. Therefore, the covering number of {h ∈ Rp+1, ||h||0 =

q + 1, ||h||2 = 1} by ε balls is at most (C1p/ε)
q+1 for ε < 1. Suppose N is such a ε-Net

of {h ∈ Rp+1, ||h||0 = q + 1, ||h||2 = 1}. By union bound,

P

(
sup
h∈N

B(h) ≥ C
√

2q log p

n

)
≤ 2
(C1

ε

)q+1
pq+1p−qC

2/M1 .

And we have

sup
h1,h2∈Rp+1,||h1−h2||0≤2q+2,||h1−h2||2≤ε

|B(h1)−B(h2)|

≤ 2

n
||X (h1 − h2)||1

≤ 2

n
max

j=0,1,2,...,p
(||X·j ||1)||h1 − h2||1

≤ 2

n
nM

√
2q + 2ε

= 2
√

2q + 2Mε,
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where X·j denotes the jth column vector of X . Therefore,

sup
||h||0=q+1,||h||2=1

B(h) ≤ sup
h∈N

B(h) + 2
√

2q + 2Mε

Let ε =
√

2q log p 1

2
√

(2q+2)nM
=
√

log p
2M
√
n

√
q
q+1 , we have

P

(
sup

||h||0=q+1,||h||2=1
B(h) ≥ C

√
2q log p

n

)

≤ P

(
sup
h∈N

B(h) ≥ (C − 1)

√
2q log p

n

)

≤ 2
(C1

ε

)q+1
pq+1p−(q+1)(C−1)2/2M1

≤ 2
( C1p

√
nq

p(C−1)2/2M1

)q+1

Since p > n and p > C1
√
q,

P
(

sup
||h||0=q+1,||h||2=1

B(h) ≥ (1 + 2C2

√
2M1)

√
2q log p

n

)
≤ 2p−4q(C2

2−1).

�

Lemma B.0.2. For any x ∈ Rn,

||x||2 −
||x||1√
n
≤
√
n

4

(
max

1≤i≤n
|xi| − min

1≤i≤n
|xi
∣∣).

Proof of Lemma B.0.2. This proof is given in [81]. We include it here for complete-

ness and easy reference. It is obvious that the result holds when |x1| = |x2| = . . . = |xn|.
Without loss of generality, we now assume that x1 ≥ x2 ≥ . . . ≥ xn ≥ 0 and not all xi

are equal. Let

f(x) = ||x||2 −
||x||1√
n
.

Note that for any i ∈ {2, 3, . . . , n− 1}

∂f

∂xi
=

xi
||x||2

− 1√
n
.

This implies that when xi ≤ ||x||2√n , f(x) is decreasing w.r.t xi; otherwise f(x) is increasing

w.r.t xi. Hence, if we fix x1 and xn, when f(x) achieves its maximum, x must be of the
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form that x1 = x2 = . . . = xk and xk+1 = . . . = xn for some 1 ≤ k ≤ n. Now,

f(x) =
√
k(x2

1 − x2
n) + nx2

n −
k√
n

(x1 − xn)−
√
nxn.

Treat this as a function of k for k ∈ (0, n).

g(x) =
√
k(x2

1 − x2
n) + nx2

n −
k√
n

(x1 − xn)−
√
nxn.

By taking the derivatives, it is easy to see that

g(k) ≤ g

(
n

(x1+xn
2 )2 − x2

n

x2
1 − x2

n

)

=
√
n(x1 − xn)

(
1

2
− x1 + 3xn

4(x1 + xn)

)
.

Since 1
2 −

x1+3xn
4(x1+xn) ≥

1
4 , we have

||x||2 ≤
||x||1√
n

+

√
n

4
(x1 − xn).

We can also see that the above inequality becomes an equality if and only if xk+1 =

. . . = xn = 0 and k = n
4 . �

Proof of Theorem 4.4.4. Suppose h ∈ ∆C̄ , then assume |h0| ≥ |h1| ≥ . . . ≥ |hp|.
Create a trivial partition of {0, 1, 2, . . . , p} as

S0 = {0, 1, 2, . . . , q}, S1 = {q + 1, q + 2 . . . , 2q}, . . . ,

where each set has the cardinality to be q+1. Easy to prove that ||hS0 ||1 ≥ ||hT+ ||1 ≥
C̄||hTC+ ||1 ≥ C̄||hSC0 ||1. According to the Lemma B.0.2, we have

∑
i≥1

||hSi ||2 ≤
∑
i≥1

||hSi ||1√
q + 1

+

√
q + 1

4
|hq|

≤
||hSC0 ||1√
q + 1

+
||hS0 ||1
4
√
q + 1

≤ (
1√

q + 1C̄
+

1

4
√
q + 1

)||hS0 ||1

≤ (
1

4
+

1

C̄
)||hS0 ||2, (B.3)
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and

1

n

n∑
i=1

(1− YiXᵀiβ
∗ + YiX

ᵀ
ih)+ −

1

n

n∑
i=1

(1− YiXᵀiβ
∗)+

=
1

n

n∑
i=1

(1− YiXᵀiβ
∗ + YiX

ᵀ
ihS0)+ −

1

n

n∑
i=1

(1− YiXᵀiβ
∗)+

+
∑
j≥1

1

n
(
n∑
i=1

(1− YiXᵀiβ
∗ + YiX

ᵀ
i

j∑
k=1

hSk)+

−
n∑
i=1

(1− YiXᵀiβ
∗ + YiX

ᵀ
i

j−1∑
k=1

hSk)+).

By the Lemma 4.4.3, with probability at least 1− 2p−4q(C2
2−1),

1

n
(

n∑
i=1

(1− YiXᵀiβ
∗ + YiX

ᵀ
i

j∑
k=1

hSk)+ −
n∑
i=1

(1− YiXᵀiβ
∗ + YiX

ᵀ
i

j−1∑
k=1

hSk)+)

≥ 1

n
E(

n∑
i=1

(1− YiXᵀiβ
∗ + YiX

ᵀ
i

j∑
k=1

hSk)+ −
n∑
i=1

(1− YiXᵀiβ
∗ + YiX

ᵀ
i

j−1∑
k=1

hSk)+)

−C
√

2q log p

n
||hSj ||2.

The above inequality holds for each j. Hence with probability at least 1−2p−4q(C2
2−1)+1,

1

n

( n∑
i=1

(1− YiXᵀiβ
∗ + YiX

ᵀ
ih)+ −

n∑
i=1

(1− YiXᵀiβ
∗)+

)
≥ M(h)− C

√
2q log p

n

∑
j≥0

||hSj ||2

where M(h) = 1
nE(

∑n
i=1(1− YiXᵀiβ

∗ + YiX
ᵀ
ih)+ −

∑n
i=1(1− YiXᵀiβ

∗)+).

By the definition of h and (B.3), we have

M(h) ≤ λ(||hT+ ||1 − ||hTC+ ||1) + (
1

4
+

1

C̄
)C

√
2q log p

n
||hS0 ||2 + C

√
2q log p

n
||hS0 ||2

≤ λ
√
q||hS0 ||2 + C

√
2q log p

n
(
5

4
+

1

C̄
)||hS0 ||2. (B.4)

By Taylor series expansion of L(β) around β∗, we have

M(h) =
1

2
hᵀH(β∗)h + op(||h||22).
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By the condition (A5), we have

hᵀH(β∗)h ≥M2||h||22.

Substitute it in (B.4), we have

1

2
M2||h||22 + op(||h||22) ≤ λ

√
q||hS0 ||2 + C

√
2q log p

n

(5

4
+

1

C̄

)
||hS0 ||2

Next we establish an inequality between ||h||22 and ||hS0 ||22. Actually, we have ||h||22 =

||hS0 ||22 +
∑

j≥1 ||hSj ||22 ≥ ||hS0 ||22, and∑
j≥1

||hSj ||22 ≤ |hq|
∑
j≥1

||hSj ||1

≤ 1

C̄
|hq|||hS0 ||1

≤ 1

C̄
||hS0 ||22.

So ||h||22 ≤ (1 + 1
C̄

)||hS0 ||22, and then op(||h||22) = op(||hS0 ||22).

To wrap up, we have

||hS0 ||2 + op(||h||2) ≤
2λ
√
q

M2
+

2C

M2

√
2q log p

n
(
5

4
+

1

C̄
).

Hence,

||h||2 + op(||h||2) ≤
√

1 +
1

C̄

(
2λ
√
q

M2
+

2C

M2

√
2q log p

n
(
5

4
+

1

C̄
)

)
. (B.5)

Let h = β∗ − β̂ ∈ ∆C̄ , we have

||β̂ − β∗||2 ≤
√

1 +
1

C̄

(2λ
√
q

M2
+

2C

M2

√
2q log p

n

(5

4
+

1

C̄

))
with probability at least 1− 2p−4q(C2

2−1)+1. �

Proof of Theorem 4.4.5. It follows by combining the result of Theorem 4.4.4 with

that of Theorem 4 in of [60]. �



Appendix C

Discussions of Condition (B4)

Condition (B4) requires the lower bound of the eigenvalues of H(β) to be positive

around β∗. In the following, we provide a set of sufficient conditions for (B4).

(B1∗) For some 1 ≤ k ≤ p,∫
S
I(Xk ≥ V −k )Xig(X)dX <

∫
S
I(Xk ≤ U+

k )Xif(X)dX

or ∫
S
I(Xk ≤ V +

k )Xig(X)dX >

∫
S
I(Xk ≥ U−k )Xif(X)dX

Here U+
k , V +

k ∈ [−∞,+∞] are upper bounds such that
∫
S I(Xk ≤ U+

k )f(X)dX =

min(1, π−π+
) and

∫
S I(Xk ≤ V +

k )f(X)dX = min(1, π+

π−
). Similarly, lower bounds

U−k , V −k ∈ [−∞,+∞] and are defined as
∫
S I(Xk ≥ U−k )f(X)dX = min(1, π−π+

)

and
∫
S I(Xk ≥ V −k )g(X)dX = min(1, π+

π−
).

(B2∗) For an orthogonal transformation Aj that maps
β∗−
||β∗−||2

to the j-th unit vector ej

for some j ∈ {1, 2, 3, . . . , p}, there exists rectangles

D+ = {x ∈M+ : li ≤ (Ajx)i ≤ vi with li < vi for i 6= j}

and

D− = {x ∈M− : li ≤ (Ajx)i ≤ vi with li < vi for i 6= j}

such that f(x) ≥ B1 > 0 on D+, and g(x) ≥ B2 > 0 on D−, where M+ = {x ∈
Rp|xTβ∗− + β∗0 = 1} and M− = {x ∈ Rp|xTβ∗− + β∗0 = −1}.
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Moreover, Condition (B1) can be further relaxed and no bound restriction is needed on

Xj . We refer the modified Condition (B1) as

(B3∗) The densities f and g are continuous with common support S ⊂ Rp and have

finite second moments.

As a side result, Lemma 5 in [73] showed that Condition (B4) holds under (B1∗)-

(B3∗). Although their paper’s results on the Bahadur representation of L1-norm SVM

coefficients are restricted to the classical fixed p case, a careful examination of the

derivation showed that this particular lemma holds irrespective of the dimension of p.

We refer to [73] for more discussions on the implications for these two conditions.

In the following, we demonstrate that Conditions (B1∗)-(B3∗) hold in a nontrivial

example where we have two multivariate normal distributions in Rp. The marginal

distribution of Y is given by π+ = π− = 1/2. Let f and g be the density functions of

X− given Y = 1 and −1, respectively. Here, we assume f and g are multivariate normal

densities with different mean vectors µ and ν and a common covariance matrix Σ. This

setup was also considered in [73] but we will provide more details to show condition

(B4) is satisfied in our high-dimensional setting. In particular, we will provide some

details for deriving the analytic forms of β∗ and H(β∗), which complements the results

in [73].

For normal density functions f and g, it is straightforward to check Condition (B3∗)

is satisfied. While U+
k = V +

k = +∞ and U−k = V −k = −∞, Condition (B1∗) also holds.

Since D+ and D− are bounded rectangles in Rp, the normal densities f and g are always

bounded away from zero on D+ and D−. Thus (B2∗) is satisfied. Denote the density

and cumulative distribution function of standard normal distribution N(0, 1) as φ and

Φ, respectively. Then we have S(β∗) = 0, where S(·) is defined in (??), that is

Ef (I(1−XTβ∗ ≥ 0)) = Eg(I(1 + XTβ∗ ≥ 0)) (C.1)

and

Ef (I(1−XTβ∗ ≥ 0)X−) = Eg(I(1 + XTβ∗ ≥ 0)X−) (C.2)

For left hand of equation (C.1), we have XT
−β
∗
− ∼ N(µTβ∗−,β

∗T
− Σβ∗−), thus

Ef (I(1−XTβ∗ ≥ 0)) = Pf (1− β∗0 −XT
−β
∗
− ≥ 0) = Φ(cf ), (C.3)
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where cf =
1−β∗0−µTβ∗−
||Σ1/2β∗−||2

. Similarly, Eg(I(1 + XTβ∗ ≥ 0)) = Φ(cg). where cg =

1+β∗0+νTβ∗−
||Σ1/2β∗−||2

.

To obtain an analytic expression of Ef (I(1−XTβ∗ ≥ 0)), we consider an orthogonal

matrix P that satisfies
PΣ1/2β∗−
||Σ1/2β∗−||2

= (1, 0, 0, . . . , 0)T . Such a matrix P can always be

constructed. Actually, let P = (P1,P2, . . . ,Pp)
T and P1 =

Σ1/2β∗−
||Σ1/2β∗−||2

. By using

Gram-Schmidt process, we can generate other orthogonal vectors Pi based on P1 with

i = 2, 3, . . . , p. Since PΣ−1/2(X− − µ) = Z, a standard multivariate normal random

vector, we have I −XTβ∗ = cf ||Σ1/2β∗−||2 − ZTPΣ1/2β∗−. Thus

Ef (I(1−XTβ∗ ≥ 0)X−) = Eφ(I(cf − Z1 ≥ 0)(Σ1/2PTZ + µ))

= Eφ(I(cf − Z1 ≥ 0)µ) + Eφ(I(cf − Z1 ≥ 0)Σ1/2PTZ).

where φ is the joint probability density function of a p-dimensional standard multivariate

normal distribution. We will compute the above expectation componentwise. Without

loss of generality, we consider Ef (I(1 − XTβ∗ ≥ 0)X−). As we discussed before, we

just need to solve one entry of Ef (I(1−XTβ∗ ≥ 0)X−). Without loss of generality, we

calculate Let Σ1/2 = Λ = (Λ1,Λ2, . . . ,Λp)
T . For k = 1, . . . , p, we have by (C.4),

Ef (I(1−XTβ∗ ≥ 0)Xk) = Eφ(I(cf − Z1 ≥ 0)µ1) + Eφ(I(cf − Z1 ≥ 0)Σ1/2PTZ)

= µkΦ(cf ) + Eφ
(
I(cf − Z1 ≥ 0)ΛTk

p∑
i=1

PiZi
)

= µ1Φ(cf ) + Eφ(I(cf − Z1 ≥ 0)ΛT1 P1Z1)

where. Since Z2, . . . , Zp have mean zero and are independent of Z1,

Eφ
(
I(cf − Z1 ≥ 0)ΛTk

p∑
i=1

(PiZi)
)

= Eφ
(
I(cf − Z1 ≥ 0)ΛTk P1Z1

)
= ΛTk

Σ1/2β∗−

||Σ1/2β∗−||2
Eφ
(
I(cf − Z1 ≥ 0)Z1

)
= ΛTk

Σ1/2β∗−

||Σ1/2β∗−||2

∫ +∞

−∞
I
(
cf − x ≥ 0

)
xφ(x)dx

= ΛTk
Σ1/2β∗−

||Σ1/2β∗−||2

∫ cf

−∞
xφ(x)dx
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Since xφ(x) is an odd function and φ(x) is symmetric, we have∫ cf

−∞
xφ(x)dx =

∫ |cf |
−∞

xφ(x)dx = − 1√
2π

∫ +∞

c2f

1

2
exp(−z

2
)dz = −φ(cf ).

Therefore, for k = 1, . . . , p, Ef
(
I(1 −XTβ∗ ≥ 0)Xk

)
= µkΦ(cf ) − ΛTk

Σ1/2β∗−
||Σ1/2β∗−||2

φ(cf ).

By following the same procedure, we can obtain Hence

Ef (I(1−XTβ∗ ≥ 0)X−) = µΦ(cf )− φ(cf )Σ1/2P1.

Similarly,

Eg(I(1 + XTβ∗ ≥ 0)X−) = νΦ(cg) + φ(cg)Σ
1/2P1

Then, we have

Φ(cf ) = Φ(cg) (C.4)

and

µΦ(cf )− φ(cf )Σ1/2P1 = νΦ(cg) + φ(cg)Σ
1/2P1 (C.5)

From (C.4), we have c̃ = cf = cg, which implies

β∗T− (µ + ν) = −2β∗0 (C.6)

From (C.5),
β∗−

||Σ1/2β∗−||2
=

Φ(c̃)

2φ(c̃)
Σ−1(µ− ν) (C.7)

Let dΣ(µ,ν) = ((µ−ν)TΣ−1(µ−ν))1/2 be the Mahalanobis distance between µ and ν

and R(x) = φ(x)
Φ(x) . As Σ1/2 β∗−

||Σ1/2β∗−||2
has l2 norm equal to 1, we have || Φ(c̃)

2φ(c̃)Σ
−1/2(µ−

ν)||2 = 1, i.e., R(c̃) =
dΣ(µ,ν)

2 . R(x) is a monotonically decreasing function, thus we

have c̃ = R−1
(dΣ(µ,ν)

2

)
. Meanwhile, c̃ = cf =

1−β∗0−µTβ∗−
||Σ1/2β∗−||2

, we can solve the problem

based on (C.6) and (C.7),

β∗0 = − (µ− ν)TΣ−1(µ + ν)

2c̃dΣ(µ,ν) + d2
Σ(µ,ν)

(C.8)

From (C.5),

β∗− =
2Σ−1(µ− ν)

2c̃dΣ(µ,ν) + d2
Σ(µ,ν)

(C.9)
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By plugging (C.8) and (C.9) into (??), we can calculate H(β∗) as

H(β∗) =
φ(c̃)

4
(2c̃+ dΣ(µ,ν))

(
2 (µ + ν)T

µ + ν H22(β∗)

)
(C.10)

where

H22(β∗) = µµT +ννT +2Σ+2

((
c̃

dΣ(µ,ν)

)2

+
c̃

dΣ(µ,ν)
− 1

d2
Σ(µ,ν)

)
(µ−ν)(µ−ν)T

As we have obtained the analytic form of H(β∗), we consider Model 1 in Section

5.1 as an example. In Model 1, q = 5, µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0, . . . , 0)T and ν =

(−0.1,−0.2,−0.3,−0.4,−0.5, 0, . . . , 0)T ∈ Rp and π+ = π− = 1/2. The covariance ma-

trix Σ = (σij) consists of nonzero entries σij = −0.2 for 1 ≤ i 6= j ≤ q and other entries

equal to 0. From (C.8) and (C.9), we have β∗ = (0, 1.39, 1.47, 1.56, 1.65, 1.74, 0, . . . , 0)T .

Based on (C.10), we can derive theH(β∗) and numerically validate its positive-definiteness.
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