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Abstract

The rapid growth of data volume has promoted development of advanced computational

methods, particularly machine learning (ML) and deep learning (DL) algorithms, to address

challenges emerged in various fields. A key step to solve ML/DL tasks is to find a good

data representation by mapping input data into a feature space where representations can

entangle or disentangle the different explanatory factors of variation behind the data, and

predictive modeling can be more accurate and reliable. In this thesis, we focus on the study

of representation learning methods in neuroscience and healthcare, and propose algorithms

based on recent ML/DL developments to address both critical and practical challenges in

neural signal processing and healthcare predictive modeling.

For neural signal processing, we first strive to bridge the gap of the fast-increasing scale of

data acquisition in neural recording and the limited bandwidth of data links for transmission.

We propose two unsupervised compression algorithms to reduce the bandwidth of neural

signals without sacrificing their utilities in downstream tasks. This is mainly achieved by

leveraging the morphological consistency of neural signals across geometrically adjacent

recording sites to capture common data variations. Next, we propose a semi-automatic

spike sorting algorithm to decompose multi-unit recordings into single-unit activities based

on adversarial representation learning that can sort spikes from a small number of labeled

examples, thereby mitigating the data-hungry limitation of DL-based classification models.

For healthcare predictive modeling, we propose to represent the hierarchical and rela-

tional structures of medical entities (patients, doctors, and medical services) in patients

electronic health records (EHR) using a collection of graph-based network embedding al-

gorithms. The proposed framework can bring a number of advantages such as enhanced

clinical outcome prediction accuracies and more interpretable modeling of patient medical

profiles and treatment history, which suggest the potential of being used as a comprehensive

and general-purpose solution for representation learning of EHR data.
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Chapter 1

Introduction

1.1 Big Data in Neuroscience and Healthcare

We are entering an era of big data thanks to the fast advancements of information tech-

nologies in computation and storage. This has impacted many research areas. In this

dissertation, we focus on neuroscience and healthcare that are undergoing unprecedented

transformations in terms of scales and machine-enabled autonomy [8, 9]. In the rest of the

section, we take a closer look at two aspects from neuroscience and healthcare, respectively:

the massive scale of neural data recorded from human nervous systems, and the extensive

adoption of electronic health record in healthcare systems.

1.1.1 Electrophysiological Recording

In electrophysiological studies of brains, the fast advancements in manufacturing and fabri-

cation technologies of microelectrodes and electronics have allowed the development of data

acquisition systems that can record neural activities of animal or human subjects from hun-

dreds to thousands of channels simultaneously [10]. For instance, one notable development

of high-density, large-scale microelectrodes recently is Neuropixels, which is 10-mm long,

70×20-µm cross-section per shank, and integrates 384 recording channels within one silicon

probe [11]. More follow-up works have appeared in recent years and pushed the limits of

channel count and density of recording sites even further [12, 13, 14].

For in vivo recording, current microelectrode technologies typically capture ∼0.5 neuron

per channel on average [15]. We can fit a curve using the data reported in publications on

1
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neural recordings over the years, and derive a trajectory of the number of simultaneously

recorded neurons, which is approximately doubling every 6.3 years, similar to Moore’s law

[16]. By 2020, we can already record the activities of over one thousand neurons at the

same time, which is also in line with the recent progress [17, 18]. However, this is nowhere

near the amount of neurons that we aim to record from concurrently with single-cell reso-

lution to understand how the brain represents, transforms, and communicates information

[19]. For example, it is estimated that a brain-machine interface (BMI) aimed at restor-

ing dexterous limb movements would require 5,000–10,000 neurons recorded simultaneously

from the motor cortex [20]. As another example, the Neural Engineering System Design

(NESD) program announced by DARPA aimed to design neural interfaces that “can read

106 neurons, write to 105 neurons, and interact with 103 neurons full-duplex”1 to “help

deepen our understanding of that organ’s underlying biology, complexity, and function”.2

Reading 106 neurons simultaneously would generate 700–800 gigabyte bits per second

(Gbps) with a sampling rate of 32 kHz and a 12-bit analog-to-digital precision. The demand

for recording large populations of neurons presents challenges not only for electrode micro-

fabrication technologies that must increase channel count dramatically while maintaining

a reasonable device size, but also for data processing techniques that must scale well with

the data volume and uncover hidden knowledge essential to downstream tasks.

1.1.2 Electronic Health Record

Healthcare, according to Wikipedia, has been defined as “the maintenance or improvement

of health via the prevention, diagnosis, treatment, recovery, or cure of disease, illness,

injury, and other physical and mental impairments in people. Healthcare is delivered by

health professionals in allied health fields. Physicians and physician associates are a part of

these health professionals. Dentistry, pharmacy, midwifery, nursing, medicine, optometry,

audiology, psychology, occupational therapy, physical therapy and other health professions

are all part of healthcare. It includes work done in providing primary care, secondary care,

and tertiary care, as well as in public health.”.3

A plethora of health data are generated, collected, and used when patients or subjects

interact with healthcare systems, which come from a wide and diverse range of sources,

1 https://www.darpa.mil/program/neural-engineering-system-design
2 https://www.darpa.mil/news-events/2017-07-10
3 https://en.wikipedia.org/wiki/Health care
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including clinics/physician offices, pharmacies, payers/insurance companies, hospitals, and

laboratories, as well as participation in clinical trials, health agency surveys, medical devices,

and genomic testing. Reports said that in 2011, there were about 150 exabytes of health

data generated in the United States [21]. The volume of health data is expected to increase

dramatically, to the level of about 2,314 exabytes in 2020.4

Electronic health record (EHR) is the systematized collection of patient and population

electronically-stored health information in a digital format [22]. EHR data comprise vari-

ous data types, including patient demographics, medical history, medication and allergies,

immunization status, laboratory test results, radiology images, vital signs, and billing infor-

mation. Thanks to initiates like the US$19 billion HITEC act [23] in the United States and

the e2 billion public-private partnership Innovative Medicine Initiative (IMI) [24] in the

European Union, the adoption of EHR in healthcare systems has skyrocketed over the past

10 years. According to the report from the Office of the National Coordinator for Health

Information Technology (ONC) in 2016, nearly 84% of US hospitals have adopted at least

a basic EHR system, a 9-fold increase since 2008 [25, 26].

1.2 Machine Learning in Neuroscience and Healthcare

The rapid growth of data volume has necessitated and promoted development of advanced

computational methods, particularly machine learning (ML) algorithms, to address various

challenges emerged in neuroscience and healthcare. In this section, we first discuss some

basics of representation learning and its contrast to traditional feature engineering, then

survey several representative applications of ML algorithms in neuroscience and healthcare

with a special emphasis on how representation learning (or feature extraction in general)

contributes to information extraction and outcomes prediction in each task.

1.2.1 Representation Learning

In general, successful application of ML algorithms is heavily dependent upon finding a

good representation of input data through data preprocessing and transformations, based

on which predictive modeling can be more effective and reliable than using the raw inputs.

In the past, such feature engineering has been mostly done manually to leverage human

4 https://www.visualcapitalist.com/big-data-healthcare/
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Figure 1.1: Schematic diagram of an multilayer perceptron. Figure courtesy of [5].

understanding and prior knowledge, hence is labor-intensive and also subject to human

biases. In order to overcome these limitations and expand the scope of applicability of ML

algorithms to tasks where manual feature engineering is difficult, data-driven representa-

tion learning approaches have been developed and become an indispensable and critical

component in modern ML algorithms, in particular, deep learning (DL) [27].

What is data-driven representation learning? Take multilayer perceptron (MLP), a basic

feed-forward neural network, as an example. Figure 1.1 shows the schematic diagram of an

MLP that comprises three layers: input layer, hidden layer, and output layer. Each layer

consists of a varied number of perceptrons (or neurons), each of which implements a linear

weighted summation of outputs of neurons in the previous layer, followed by a nonlinear

activation function. More formally, the operation of one neuron f(·) can be described as

f(x) = σ(w>x + b), (1.1)

where {x,w} ∈ Rn are the n-dimensional input vector and weight vector of the neuron,

respectively, b is the bias coefficient, and σ(·) represents a nonlinear activation function,

such as logistic function. To determine w and b, we acquire a sufficient amount of ground

truth data {(xi, yi)}Ni=1 (note: xi here refers to the MLP inputs) to train the MLP function

fMLP (·) via backpropagation [28] and stochastic gradient descent (SGD) [29], an optimiza-

tion process that computes the loss function L(·), i.e., a distance measure between each pair

(yi, fMLP (xi)), and updates the MLP’s parameters by the amount proportional to the gradi-

ent of the loss function with respect to the weights until the total loss
∑N

i=1 L(yi, fMLP (xi))

is minimized. This type of training is also termed supervised learning, since ground truth
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Figure 1.2: Feature engineering versus representation learning. Figure courtesy of [6].

data are required to compute and propagate the loss backward through the network. In

contrast, unsupervised learning and semi-supervised learning (SSL) require none and partial

ground truth data, respectively.

The idea of representation learning and its distinction from feature engineering are

rooted in the comparison between ML and DL, which is illustrated in Figure 1.2 that shows

two paradigms for the same task, a binary classification to recognize if the input image is a

car or not. Although both the paradigms employ an MLP-like model, DL does not include

a separate feature engineering or extraction prior to classification; instead, it employs a

deeper MLP with extra hidden layers to “shoot two birds with one stone”. In contrast

to feature engineering that uses predefined, fixed mathematical rules, in representation

learning (or more broadly, DL), we identify a problem space by specifying a neural network

architecture (e.g., MLP) as well as an objective (e.g., reducing the misclassification rate of

recognizing car images), and use computational resources to search this problem space via

backpropagation and SGD for a working solution defined by the model structure and all

the network parameters (weights, activation functions, etc.) [30].

The most predominant advantage of representation learning over feature engineering is

computational homogeneity. For many real-world applications of ML, it is significantly easier

to collect large amounts of data than to write explicit rules for prediction. For example,

in the car image recognition task shown in Figure 1.2, defining features from images that

can reliably differentiate cars from anything else is a nontrivial job, and would take many

rounds of trial and error. Now what if one is asked again to recognize faces of Asian males
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from photos covering different gender and racial groups? Obviously the features used for

car recognition do not apply for the new task, and new rounds of feature engineering are

required. Hence, feature engineering is task-specific, heterogeneous, and labor-intensive.

Meanwhile for data-driven representation, as long as we are dealing with the same type

of tasks (e.g., image recognition, no matter for cars or faces), we could stick to the same

model structure and objective, and train the model using corresponding data that can

automatically find the features that are most effective for the task at hand.

Data-driven representation learning also has its own disadvantages. One apparent short-

coming is the requirement of large amounts of ground truth data for training. In many cases,

this is not critical since it is fairly easy to collect and label large amounts of data at low

or acceptable cost. However, there are scenarios where data collection and labeling poses

great difficulties that can limit the application of data-driven representation learning at

scale. Another disadvantage of representation learning that has probably received the most

criticism is the lack of interpretability due to the black-box nature of DL models that un-

derpin representation learning [31]. Interpretability is especially valued and demanded for

ML applications in high-stakes scenarios such as healthcare [32], where healthcare providers

want to gain insights on why a certain prediction was made for a patient, instead of just

accurate predictions [33]. According to the universal approximation theorem [34], a simple

DL model such an MLP with at least one hidden layer containing a finite number of neurons

can approximate any continuous functions on Rn, under mild assumptions on the activation

function. Given the supreme ability of approximation, a DL model would strive to learn any

arbitrary forms of representations from data that can lead to the most accurate predictions,

regardless of whether the learned representations are interpretable or not.

For data-driven representation learning, interpretability and prediction accuracy are not

always a conflicting pair of metrics for trade-off. For example, it has been found by several

studies that deep convolutional neural networks (CNN) trained on object classification

task using large-scale image databases (e.g., ImageNet [35], CIFAR-10 [36]) can achieve

super-human performance and at the same time show a good agreement between hidden-

layer features learned inside the model and neural activities in biological visual networks

[37, 38, 39]. As CNN was initially inspired by biological processes of the primate visual

cortex [40, 41, 42], there lies great hope in bio-inspired deep neural networks (DNN) trained

on high-level abstraction tasks (e.g., object recognition) that can reveal biologically plausible
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and interpretable features without compromising performance.

1.2.2 Neural Signal Processing

Recent years have seen a surge of ML/DL applications in neural signal processing, thanks

to both the substantial theoretical progress and the availability of high-performance and

massively-parallelable computational resources (e.g., graphics processing units), that jointly

provide the capability to handle large volume of neural data in both offline and online modes

with minimal or even no human supervisions. In the rest of this subsection, we discuss neural

decoding for prostheses control, a major category of neural signal processing.

Neural decoding for prostheses control The development of neural interface has been

an effective channel through which patterns of neural activities are interpreted to interact

with off-body assistive devices. Here neural decoding refers to the process of understand-

ing and translating recorded neural signals into commands to actuate prosthetic devices.

We limit the discussion of prostheses to those for restoring upper extremity functions for

subjects with hand or trans-radial amputations. There are two major sources of signal

acquisition, or modalities, for upper limb prostheses, which are electromyography (EMG)

signals that are recorded from muscles with surface or intramuscular electrodes [43], and

signals directly recorded from the peripheral nerve system (PNS) with epineural (e.g., cuff

[44] and FINE [45]) or intraneural (e.g., LIFE [46, 47] and TIME [48]) electrodes.

EMG-based decoding EMG-based prostheses are the most commonly used type of

prostheses in clinical settings because of the noninvasiveness and low risks to human bodies.

The general flow of EMG-based decoding is similar to a typical ML prediction task, in which

features are first extracted from recorded EMG data (usually also filtered to attenuate noise

and artifacts), and then used to train a classification or regression model that predicts the

category or trajectory of the intended movements. One major limitation of EMG-based

decoding is the low resolution of EMG signals (the potential to isolate independent signal

sources coming from different muscles), which is mainly caused by the inadequate remaining

musculature, signal cross-talk contamination, and attenuation of deep muscle signals at the

skin level. As a result, amputees can only utilize the EMG-based interfaces to control

gross motions including forearm rotation, wrist flexion and extension, and digit flexion and

extension, all of which have a degree-of-freedom (DoF) rarely greater than 2 [49, 50].
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Table 1.1: Types of EMG features and examples. Table modified from Table 2 in [1].

Feature Types Examples

Time Linear envelope [56], mean absolute value, root mean square
[57], zero crossings, slope sign changes, waveform length [58],
wave complexity [59], Willison amplitude [60], log-detector
[61], histogram [62]

Frequency Power spectral moments [63], power spectral density [64],
spectral magnitude averages [65], short time Fourier trans-
form, median frequency [66], cepstrum [67], short time
Thompson transform [65]

Time-frequency Wavelet packet transform [68, 69, 70], discrete wavelet trans-
form [52, 71]

Synergy NMF [72], PCA [66], ICA, fuzzy clustering [73], LDA, or-
thogonal fuzzy neighborhood discriminant analysis [74], self
organizing feature maps, Common spatio-spectral pattern
[75], multiresolution muscle synergy analysis [76]

To address this challenge, tremendous research efforts have been devoted in feature

engineering for EMG-based decoding that leverages a wide range of mathematical transfor-

mations to extract useful information content that correlates accurately and robustly with

movements. Features can be roughly categorized into four groups: time domain, frequency

domain, time-frequency domain, and synergy features. Time-domain features are based on

signal amplitudes, which are believed to reflect the number and rate of motor unit acti-

vations [51]; frequency-domain features mainly concern the information of rate and shape

of motor unit action potentials (MUAPs); features from the time-frequency domain repre-

sent transient as well as steady-state patterns from dynamic muscle contractions [52, 53];

synergy features extract information from multiple EMG recoding sites simultaneously to

depict time-invariant synergies representing underlying muscle coordination while perform-

ing various tasks [54, 55]. Table 1.1 gives examples for each of the categories that have been

explored in previous works, which is far from being exhaustive.

There have been several attempts of EMG-based decoding that leverages DL techniques

in recent years, which either perform data-driven feature learning or still do conventional

feature engineering and simply use DL models for enhanced prediction [77, 78, 79]. This line

of research is drastically outnumbered by EMG-based decoding based on feature engineering.

The heavy reliance on feature engineering is attributed to the difficulty of obtaining ground

truth data, i.e., the kinematics of hand movement, which are essential for the success of
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data-driven representation learning. To obtain hand kinematics, subjects are often asked to

do contralateral mirror movements, where the actual trajectory information are measured

from the intact hand, since the kinematics of the hand and wrist cannot be recorded from the

missing limb. This process is time-consuming, and also presents both mental and physical

burdens to the subjects if lasting for a prolonged period of time to collect sufficient ground

truth data. As a result, data-driven representation learning methods that normally require

a substantial amount of training data are not suitable here.

PNS-based decoding In comparison, neural decoding from PNS signals for prostheses

control is much more challenging, and also rare, than EMG-based decoding. It requires sens-

ing, understanding, and manipulation of neural signals at fascicular, or even sub-fascicular

precision for functionally “connecting” the nerves system and the robotic hand. It poses

multiple challenges, including (1) to develop high-fidelity neural recording capability, and

(2) to design dedicated, effective ML algorithms for analyzing and decoding nerve data.

The first challenge is perhaps the most difficult and critical step in designing PNS-based

interfaces: A human peripheral nerve is an enclosed, cable-like bundle of myelinated nerve

fibers and fascicles, structured and isolated by sheaths. Spike trains originated from primary

motor cortex (M1) and encoding movement intents are propagated along axons of motor

neurons that are further wrapped deep inside nerve fibers. Due to these multiple layers of

lamination around an axon, the amplitude of a peripheral nerve signal is usually very small,

can be around 5–20 µV [80]. PNS signals can also be contaminated by noises generated

from muscle contractions and motion artifacts. Hence it is extremely difficult to record

high-fidelity PNS signals with high signal-to-noise ratios (SNRs).

Regarding the second challenge, the development of PNS-based decoding for prosthe-

ses control has been closely following the decoding procedures commonly used for central

nerves system (CNS) based prostheses [81, 82, 83, 84]. Intracortically recorded signals with

penetrating electrodes or microelectrode arrays (MEA) are usually multi-unit, meaning that

the recorded signals from one electrode are the mixture of the activities of several nearby

neurons plus background noise. However, it is oftentimes desired to obtain single-unit elec-

trical activities of individual neurons, which permits the analysis of human cognition and

cortical mapping, and can also be applied to brain-machine interfaces (BMI) for brain con-

trol of prosthetic devices [85]. The process of obtaining single-unit activities of individual

neurons from multi-unit recordings is called spike sorting, which typically consists of the
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following steps: filtering, spike detection and alignment, dimensionality reduction, feature

extraction, and classification [86]. With spike sorting, we can estimate the spike train of

each individual neuron, which is further used to compute firing rate, i.e., the frequency of

a neuron “firing” spikes, that has been commonly used in BMI systems for patients with

tetraplegia to predict kinematics of prosthetic devices via Kalman filter or multivariate lin-

ear regression [87, 88, 89]. From the perspective of ML, the firing rates of sorted neurons

are treated as features engineered from the original PNS recordings, which are essentially

the same as the EMG features listed in Table 1.1.

Despite the made progress, it is questionable whether following the same decoding pro-

cedures as in CNS-based decoding is the best practice for feature extraction in PNS-based

decoding. One primary concern stems from the observation that the characteristics of the

CNS recording and PNS recording differ drastically from each other in terms of noise level,

electrode configuration, spatial resolution, recording selectivity, etc., all of which can impact

the quality and morphology of recorded signals, and hence the choice of feature extraction

approaches. For example, the amplitude of spikes from CNS recordings can be as large

as several hundred microvolts to a few millivolts, whereas the amplitude of recorded PNS

signals is much weaker. Furthermore, unlike CNS recordings where successful capture of

action potentials fired by individual neurons is not unusual, it is extremely difficult to record

single fiber action potentials in PNS recording with epineural or even intraneural electrodes.

Signals recorded from PNS are either compound action potentials, a synchronized response

generated by a group of electrically activated nerve fibers [90], or simply the superposition

of many extracellular potential fields generated by single fiber action potentials [91]. Either

way, the composition of “spikes” in PNS recording differs significantly from that in CNS

recording, which could render the classic decoding procedure in CNS based on spike sorting

and single-unit firing rate estimation not only ineffective but fundamentally invalid.

Another major concern is about the neural code for motor control, i.e., how neural

activities (sequence of spikes) control muscles. It has been found in several neurophysi-

ological and computational studies that the motor cortex exhibits neuronal redundancy,

which refers to the facts that the number of motor cortex neurons far exceeds the number

of muscles, and that many different combinations of neural activities can generate identical

muscle movements [92, 93, 94]. In practice, this provides relaxation for CNS-based decod-

ing over the choice of electrode placement and the amount of motor cortex neurons to be
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monitored. Furthermore, as firing rate is essentially a type of rate coding, it is not sensitive

to occasional missing or false-alarmed spike detections. In comparison, each skeletal muscle

fiber is innervated by a single motor axon and the same motor axon can also innervate

other muscle fibers, leaving no space for redundancy on motor neurons innervating muscles.

In addition, recent research studies have shown that the precise timing of spikes on the

resolution of millisecond (i.e., timing code), rather than just the rate, plays a crucial role in

predicting and causally controlling motion behaviors [95, 96]. These findings indicate that

compared to CNS-based decoding, PNS-based decoding has more stringent requirements on

the quality of recording as well as the accuracy of spike detection, if we rely on spike trains

for feature extraction. However, developing recording electronics capable of high-fidelity

nerve signal acquisition is extremely difficult due to the tight constraints on the power con-

sumption and size of the electronics, the weak signal amplitude on the surface of nerves

(intraneural electrodes are invasive thus not preferred), the heterogeneous types of noises

that can be picked up by the electrodes and the electronics, including bioelectric noise,

chemoelectric noise, motion artefacts, electromagnetic pickup of radio-frequency sources,

and electrical power lines, etc. On the one hand, alternative feature extraction approaches

that are less dependent on spike train analysis are in great demand to push forward the

effectiveness and practicality of PNS-based decoding for prostheses control. It would be

sensible and worthwhile to explore data-driven representation learning to extract features

directly from recorded nerve signals and completely avoid spike detection and timing or

rate estimation, albeit still facing the difficulty of obtaining ground truth data. On the

other hand, more in-depth theoretical investigation and experimental exploration of the

mechanism of the neural code for motor control can significantly contribute to the design

of feature extraction frameworks for PNS-based decoding by introducing more biologically

plausible inductive biases to relax the demand of representation learning for large amounts

of training data and improve its generalization capability.

1.2.3 Predictive Analytics in Healthcare

EHRs have provided a rich source for researchers from various backgrounds (statistics, com-

puter science, health informatics, etc.) to study phenotypes and treatment of patients and

reveal unnoticed disease correlations, which can ultimately improve the quality of patient

care, enable cost-effectiveness, and reduce readmission and mortality rates [97, 98]. In
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clinical studies, major efforts have been made to leverage vast amounts of EHR data as

real-world evidence (RWE) to complement the knowledge gained from traditional random-

ized controlled trials (RCTs) and improve regulatory decision making [99, 100, 101, 102].

A number of research topics based on EHR have been developed and under active studies

in ML communities, including information extraction [103, 104, 105, 106], representation

learning [107, 108, 109, 110, 111, 112], outcome prediction [113, 114, 115, 116, 117], compu-

tational phenotyping [118, 119, 120, 121, 122], and more. A search result on Google Scholar

for studies that include topics of EHR and ML indicates that the annual number of publica-

tions relating to ML in EHR has increased by 8-fold from 2012 to 2017 [26]. In fact, mining

useful medical or clinical insights from related literatures using automated data mining/ML

approaches has become an active research direction, thanks to the booming publications in

EHR related studies [123, 124, 125]. In this section, we discuss key aspects about ML in

EHRs that are closely related to representation learning.

Word embedding In the 10th version of the International Statistical Classification

of Disease and Related Health Problems (ICD-10), there are more than 70,000 codes for

diseases, signs and symptoms, abnormal findings, complaints, social circumstances, and

external causes of injury or diseases [126]. Now consider the following situation: We want

to predict the diagnostic result of a certain disease based on a patient’s medical history

that typically consists of tens to hundreds of different ICD codes. If we simply use multi-

hot encoding, the feature vector that indicates the patient’s medical history would be very

high-dimensional (over 70,000) and extremely sparse (over 99% of the dimensions are zero).

This would result in severely inefficient computations as well as the inability to capture the

semantic relations between any medically related codes.

Here the technique of word embedding comes to the rescue by transforming sparse, high-

dimensional features into dense and low-dimensional representations. Word embedding

refers to the collection of a set of language modeling and feature learning in natural lan-

guage processing (NLP), a major subfield of computer science and and artificial intelligence

focusing on how to program computers to process and analyze large amounts of natural

language data. The motivation of word embedding is illustrated in Figure 1.3, which shows

that after embedding, the geometric distance between words should be consistent with their

semantic relations. This further suggests that we can perform arithmetic computation on
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Figure 1.3: Illustration of the motivation of word embedding. Figure courtesy of [7]

the embedding vectors of words that are also semantically plausible. For example, as in-

dicated in Figure 1.3, Embed(king) − Embed(queen) ≈ Embed(man) − Embed(woman),

and Embed(architect)− Embed(building) ≈ Embed(programmer)− Embed(software).

In its original form (Word2Vec [127, 128]), the word embedding algorithm first randomly

initializes the embedding vectors of all the words in the text inputs, then optimizes the

embedding of each word by maximizing the accuracy of predicting the neighbors of the

word in the text inputs, where the probabilistic distributions on the predicted neighbors

are computed using the estimated embedding vectors (usually through a softmax function).

The underlying idea is straightforward: If two words frequently appear together, then they

should also be close to each other in the embedding space. Though effective, Word2Vec

suffers from a shortcoming that it only considers the local information (i.e. neighbors)

of each word, and completely ignores the global information of each word relative to all

other words in the dictionary, which could lead to issues such as misinterpretation and

ambiguity. To resolve this issue, GloVe leverages both local and global statistics of a text

corpus through global matrix factorization and local context windowing, and can produce

a vector space with meaningful substructure and improved performance on a word analogy

task [129]. Another work that was based on and improved upon Word2Vec is FastText,

which proposed a different scoring function than Word2Vec when computing the distance

between two embedding vectors by treating each word as a bag of character n-gram, i.e. a

subword model [130]. In doing so, FastText can learn embedding vectors for words that

are rare or absent in the training data.

Generalized language model So far all the introduced word embeddings are context-

independent – they are learned from word concurrency but not actual context, and each
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word has a fixed embedding vector. This can be problematic as the same word can have

drastically different interpretations depending on its context. For example, in the two

sentences “I have an Apple phone” and “my phone is placed next to an apple ”, the word

“apple” clearly refers to two different things but would share the same embedding vector.

To address this limitation, generalized language models are proposed in recent years that

allow for contextualized embedding of words by passing sentences either uni-directionally

or bidirectionally through a sequential model that normally consists of either multilayer

long short-term memories (LSTMs) [131] or Transformers [132]. Recent developments of

generalized language models include CoVe [133], ELMo [134], ULMFiT [135], GPT [136], GPT-2

[137], BERT [138], and more.

One new era in NLP opened up by the recent generalized language models is the un-

supervised pre-training of large-volume models (containing millions to even billions of pa-

rameters) on text corpora. Such pre-trained language models have shown unprecedented

performance in many NLP tasks, such as question answering, commonsense reasoning, nat-

ural language inference, named entity recognition, sentiment analysis, sentence similarity,

and many more. For example, BERT was pre-trained using the BookCorpus (800M words)

[139] and the English Wikipedia (2,500M words), and contains 340M parameters. At the

time of release, BERT broke several records of NLP benchmarks. The success of BERT is

primarily attributed to the following two features: First, BERT is built completely upon

the Transformer architecture, which solely relies on the self-attention mechanism instead of

more conventional sequential modeling (e.g. LSTMs) to learn contextual relations between

words. In this sense, it is more accurate to say that BERT is non-directional rather than

bidirectional. Second, BERT is trained in a “fill-in-the-blank” way by randomly masking

words in sentences and trying to predict them. In this way, BERT can take both the previ-

ous and next words surrounding the masked words into account simultaneously, as opposed

to other bidirectional language models (e.g. ELMo) that can only do either left-to-right or

right-to-left modeling, but not both at the same time.

As a result of the superior capabilities of BERT in extracting contextual relations be-

tween words (or phrases) form large text corpus, researchers from biomedical and health-

care informatics have been inspired to pre-train BERT on large-scale biomedical corpora

and use it as a domain-specific language presentation model, and have achieved state-

of-the-art performance on a number of biomedical text mining tasks such as biomedical
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named entity recognition, biomedical relation extraction, and biomedical question answer-

ing [140, 141, 142, 143, 144].

Graph embedding In discrete mathematics, graph is a structure that uses vertices (or

nodes) and edges (or links) to represent objects and their relations, respectively. Real-world

data often exhibit non-Euclidean, irregular organizational structures that are suitable for

graph-based representation. For example, a molecule can be represented as a small, sparse,

and static graph, whereas a social network could be represented by a large, dense, and

dynamic graph. These real-world graphs represent important and rich information which

cannot be fully captured by individual entities alone. Therefore, representation learning of

nodes in graphs that aims to extract high-level features from a node as well as its neighbors

has proved extremely valuable for many tasks, such as node classification and link prediction

that can find a wide range of real-world applications [145].

A major branch of graph embedding algorithms is based on random walks, including

DeepWalk [146], node2vec [147], and others. To obtain embedding vectors of nodes, random

walks are performed for each node in a graph to explore its neighborhood structure and

generate node sequences which are analogous to sentences that consist of words. Then

word embedding techniques can be applied to node sequences to derive node embeddings

that encode their neighborhood information. There are different strategies to guide random

walks on graphs: some strike to balance the depth and width of neighborhood search (e.g.,

node2vec), and some focus on visiting nodes with different properties in pre-defined orders

to encode node type heterogeneity (e.g., metapath2vec [148]). Similar to the random-walk

based methods, there are other graph embedding algorithms that strive to preserve the first

(one-hop) and second (two-hop) order neighborhood structures of nodes in the embedded

space, such as LINE [149] and PTE [150]. Though they are not based on random walks, the

optimization process to derive embedding vectors are essentially the same as DeepWalk and

node2vec by using network training tricks from Word2Vec such as negative sampling [127].

One common issue of the above graph embedding methods is that they are all inher-

ently transductive and do not naturally generalize to unseen nodes. They focus on embed-

ding nodes from a fixed graph; however, many real-world applications require generating

embeddings quickly for newly added nodes or new subgraphs, which is essential for high-

throughput, production machine learning systems. Hence, an inductive learning paradigm

is highly desired for graph embedding to generate embeddings for new nodes without an
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exhaustive optimization of all nodes from scratch. The first work that addresses this is-

sue by leveraging the advanced generalization capability of neural network is GraphSAGE

[151], which learns a set of aggregator functions to aggregate feature information from a

node’s local neighborhood. At test or inference phase, we can use the trained aggregator

functions to generate embeddings for entirely unseen nodes based on the features of the

new nodes’ neighbors in the existing graph. GraphSAGE allows several types of aggregation,

including mean, LSTM, and pooling through a fully connected neural network. In a similar

fashion, Graph Attention Network (GAT) learns a set of aggregator functions based on the

self-attention mechanism that allows for variable sized inputs, as opposed to GraphSAGE

that only searches for a fixed number of neighbors of a node.

Patients, doctors, and medical code embedding Let us revisit the scenario discussed

at the beginning of this subsection: We are about to predict the diagnostic results for

patients from their history medical records that consist of hundreds to thousands of medical

codes that represent different diagnoses, prescriptions, and procedures. With the help

of the embedding techniques introduced above, we could represent each original medical

code (e.g., from ICD-10) as a low-dimensional dense vector, upon which we could do not

only diagnosis prediction, but also many other important medical data mining tasks such

as hospital readmission prediction, physician targeting, disease phenotype extraction, and

many more. It is then clear to us that as the first step of many healthcare informatics tasks,

representation learning is critical that turns heterogeneous medical records into structured

and actionable information, therefore has received increasing attentions in recent years from

researchers in the area of medical data mining.

Medical records data are organized in a hierarchical, multilevel structure, which can

be leveraged to improve learning efficiency, interpretability, and prediction accuracy. The

hierarchical structure starts from patients, followed by visits, then diagnosis codes within

visits, which are further linked to treatment codes including prescriptions and procedures.

For a patient, visits happen in a sequential order; each level of the hierarchy is also linked

to a doctor with a specific primary specialty. All the doctors can be grouped as a set, which

is linked to the set of patients as a bipartite graph, where each edge indicates interactions

between the corresponding patient and the doctor.

Given such a complex topology and the vast quantity of patient medical records, there is

a rich amount of information and knowledge that can be uncovered and leveraged for various
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applications. For medical code embedding, Choi et al. proposed MiME [152], a multilevel

medical embedding scheme of EHR that leveraged the visits-diagnoses-treatments hierarchy

as auxiliary prediction tasks to enhance performance of predictive healthcare applications

such as heart failure prediction and sequential disease prediction. In a follow-up work [153],

Choi et al. proposed Graph Convolutional Transformer (GCT) to address the situation when

the complete hierarchical structure information is not or partially available by utilizing

the implicit structure of EHR. Patient embeddings have also found important applications

in prediction of medical events and next visit time from their medical codes [154, 155,

156, 157, 158]. Doctor embeddings, in comparison, are less studied than medical code and

patient embeddings, and have started to attract research attentions recently because of its

importance in clinical trial recruitment to identify the right doctors to help conduct the

trials based on trial description and patient medical records [159].

1.3 Summary

In this chapter, we first discussed the impact of the growth of big data in neuroscience

and healthcare studies. To properly handle the complexity of big data and the challenge

it brings, we discussed the solution of adopting ML approaches and their wide applications

in neuroscience and healthcare researches, with a special focus on representation learning

regarding its core position in ML-based data processing pipelines as well as its significant

impact on the overall performance in various tasks. In greater details, we analyzed the

encountered challenges and existing solutions for two specific areas: neural signal processing

and predictive healthcare analytics.

For neural signal processing, we focused on the discussion of decoding from recorded

neural signals for prostheses control. We compared the pros and cons of CNS-based decoding

and PNS-based decoding, and discussed their technical difficulties from the perspective of

representation learning, such as spike sorting and the estimation of neural codes, and how

techniques from representation learning in ML can be leveraged to gain more accurate and

interpretable insights of the neural decoding process and also improve the performance of

prostheses control.

For predictive healthcare analytics, we started from word embedding, the most widely
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adopted representation learning methods in NLP, by explaining its mechanism and demon-

strating its critical importance in various biomedical data mining tasks. We then moved to

the discussion of contextualized embedding using generalized language models pre-trained

on large text corpora that overcome the “fixed embedding regardless of contexts” issue of

word embedding techniques. We further introduced graph embedding, an effective graph-

based representation learning framework, and emphasized on how graph embedding tech-

niques can model the multilevel, hierarchical structure of patient medical records.

As the main contributions of this dissertation, we (me and other collaborators in each

work) present the design of several representation learning algorithms and their applications

in three carefully chosen topics: neural data compression, spike sorting, and medical entity

embedding in EHR. In each topic, we show that how the proposed representation learning

algorithm can effectively address the “pain point” unique to the specific application without

losing the trait of being generalizable and applicable to similar problems, which echoes with

the phrase in the title “a practitioner’s perspective”. It is therefore our utmost aspiration

that researchers especially those in the areas of neural signal processing and healthcare

informatics can benefit from our works by using our proposed algorithms as tools in their

own studies, or developing more advanced and effective methods based on our inventions.

The rest of the dissertation is organized as follows:

• In Chapter 2 we present two unsupervised neural data compression algorithms that

leverage representation learning methods from ML to address the challenge of real-

time compression of large-scale neural data for wireless recording.

• In Chapter 3, we present a semi-supervised, or “few-shot” spike sorting algorithm to

obtain single-unit activities from both synthetic dataset (with ground truth informa-

tion) and real neural data from in-vitro recordings.

• In Chapter 4, we present a medical entity embedding algorithm (ME2Vec) to encode

all major components in EHR data: patients, doctors, and medical services. ME2Vec

is intended to serve as a general-purpose representation learning solution for EHR

data to facilitate both accurate and interpretable predictions.

• Chapter 5 concludes the dissertation.



Chapter 2

Unsupervised Representation

Learning for Neural Data

Compression

2.1 Background

Understanding the coordinated activity underlying brain computations requires large-scale,

simultaneous electrophysiological recordings from distributed neuronal structures at a cellular-

level resolution. There is a recent trend to develop high-density neural interfaces that in-

clude tens of thousands and even hundreds of thousands channels [160]. For example, mul-

tiple studies have been proposed that developed high-channel-count, high-precision neural

recorders [161, 162] and high-density microelectrode arrays [11, 163]. Given the successful

development of high-density arrays, it requires streaming the data to a remote computer

for processing, which can be challenging: large-scale recording experiments can produce

data at tens of hundreds of Gbps [10], which would require hundreds to thousands of I/O

pads on the recorder chip and power consumption on the order of Watts for data streaming

alone. To solve the problem, it requires to compress the neural data in the recorder chip

before transmission, and reconstruct the data or directly utilize the compressed signals on

the remote computer.

Extracellularly recorded neural data are mainly comprised of two types of signals – action

potentials (or “spikes”) and local field potentials (LFPs). The functional role of spikes in

19
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neural coding of information representation and propagation in multiple brain regions has

been studied for decades. For example, in [164], spiking activities recorded from human

motor cortex are used to develop assistive devices to improve lost functions in patients

with paralysis. LFPs are also widely used to study cortical network mechanisms involved

in sensory processing, motor planning, higher cognitive processing, etc. [165, 166, 167].

Compared with scalp electroencephalography (EEG) signals, LFPs have better signal-to-

noise ratios and cover a wider frequency bandwidth; compared with spikes, LFPs have

better chronic stability, but do not report single-unit activities. As a result, both spikes

and LFPs are popular choices in neuroscience experiments and clinical treatments.

In this chapter, we present two neural data compression algorithms distinct features

and thus different emphases on functionalities and applications. The first algorithm is

based on streaming PCA, and can compress both spikes and LFPs simultaneously for real-

time multichannel recording and data transmission [2, 168]. The second algorithm is based

on autoencoder and neural network, and is dedicated for high-quality spike compression

that pushes the rate-distortion trade-off to extreme [3, 169]. Both of the algorithms are

unsupervised, meaning that users need nothing more than the neural data to be compressed

to run the algorithms. In addition to the algorithmic details, we discuss the design (or

feasibility) of on-chip hardware implementation of the algorithms, which is essential for

real-time and large-scale neural recording and signal processing.

2.2 Related Works

2.2.1 Spike Compression

In the literatures of neural signal processing, spikes and LFPs are often separately processed.

Spike compression is closely related to spike sorting, which is an important procedure to

isolate single-unit activity from the large amount of raw data [170]. Spikes are obtained

through detection, a crucial step in spike sorting that can offer significant data rate reduction

[171, 172, 173, 174, 175, 176]. After spike sorting, neural activities are coded with a few

low-rate binary streams that can be easily transferred to computing devices for further

processing. Hence it is advantageous to implement part of spike sorting into the recording

chip for data rate reduction [177, 178, 179]. An important issue in data compression is

the trade-off between data compression ratio (CR) and data distortion. Highest CR is
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achieved by treating spikes as binary trains while waveforms are not transmitted. However,

in applications where informations of spike shapes are useful, it is crucial to compress spikes

with minimum signal distortion. Feature extraction can be used for this purpose [180, 181,

182]. Principal component analysis (PCA) is a popularly used feature extraction algorithm

to compress spikes by facilitating dimensionality reduction with low signal distortion [183,

184, 185, 186, 187, 188, 189]. In addition to PCA, compressive sensing and wavelet methods

are also widely used in compressing spikes [190, 191, 192, 193, 194, 195, 196, 197, 198].

Another type of approaches that can potentially boost CR is learning-based compression,

such as vector quantization (VQ), where a signal-dependent codebook is learned from data

and only the indexes of individual codeword in the codebook are transmitted [199]. This

is different from conventional compression techniques that exploit efficient coding of the

bit patterns of data after quantization; rather, it seeks “distilled” representations of the

information content of signals, which could be more advantageous to achieving higher CR

for data subject to certain statistical distributions. However, distributions of real-world

data are usually in high-dimensional space, and are difficult or even intractable to estimate

analytically. Furthermore, learned codebooks often “overfit” training data and do not

generalize well, which leads to the requirement of frequent re-training and transmitting the

entire codebook or uncompressed data that may interrupt data transmission and deteriorate

CR. To make the learning-based compression approach effective and practical in large-scale

neural recording, we need to address the following issues: (i) The size of the codebook cannot

grow arbitrarily large to maintain good signal reconstruction accuracy in situations of low

SNRs and/or diverse spike waveforms; (ii) The codebook must represent inherent spike

features, such that the compression algorithm can be robust to non-stationarity of neural

activities, e.g., waveform variations. These requirements entail the search of the “optimal

codebook” that best characterizes the statistics of spikes by sampling a reasonable amount

of spikes in a low-dimensional feature space.

2.2.2 LFP Compression

In comparison, LFP compression is not as extensively studied as spike compression. This

is due to the low bandwidth requirement of LFPs for recording systems with relatively

low channel counts. However, with the fast advancement of high-density microelectrodes

and large-scale recording systems, the bandwidth required for transmitting LFPs is linearly
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scaling with channel count and can easily reach several Mbps for systems with thousands

of recording channels. Current low-power wireless technology can only transmit raw data

on a small amount of LFP channels, which is insufficient to support data transmission from

a large number of channels and simultaneous recording from multiple brain regions and

structures. Given the importance of LFPs in neuroscience studies and clinical applications,

we need a method that can effectively compress multichannel LFPs and is also suitable for

hardware implementation.

2.3 Algorithm 1: Streaming PCA

2.3.1 Overview

We aim to develop a data compression method that can compress both spikes and LFPs

with low signal distortions, support simultaneous processing of multichannel data, and con-

sume as few hardware resources as possible. This will allow for an unified and scalable

hardware architecture for neural data compression, which is beneficial to efficient chip im-

plementation. However, spikes are transient and localized [200], while LFPs are widespread

in extracellular medium, for example, 600∼1000µm parallel [201] and centimeter scales ven-

tral to the cortical surface [202]. The spatial propagation and variation of LFPs recorded

using a 32-channel microelectrode are demonstrated in Figure 2.1. The distinctions between

spikes and LFPs in both temporal and spatial scales make it challenging to compress them

using the same computational structure.

Given the strong correlations of LFP signals across multiple channels, a straightforward

way for LFP compression/information extraction is selecting a few number of channels

without going for any compression schemes. Although attractive for its simplicity, this

practice suffers two main concerns: First, it is questionable if a small portions of channels

can fully represent the high dynamics of LFP activities; second, it bears the risk of loss of

useful information when the selected channels are corrupted by artifacts/interferences due

to electrode drift or other environmental changes. Furthermore, it is difficult to ensure that

the selected channels are optimal for feature extractions in decoding experiments.

To solve the challenges, we propose a streaming PCA algorithm as well as its microchip

implementation to compress both multichannel spikes and LFPs. We extend the original

PCA algorithm by exploiting the commonality between temporal correlation of spikes and
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Figure 2.1: Left: a segment of waveforms of 32-channel LFPs from an in-vivo preparation.
Right: color encoded magnitude map that indicates a repetitive spatial pattern in every 8
adjacent channels. Reproduced from [2], c©2017 IEEE.

spatial correlation of LFPs. PCA is a batch method that can only adapt to new data

by re-computing data covariance matrix through eigenvector decomposition. We refer to

the original PCA as batch PCA hereafter. We circumvent this limitation by introducing

stochastic approximation into batch PCA to incrementally update principal components

without training an expensive covariance matrix. After the modification, the streaming

PCA algorithm can process neural data in real-time at low computational cost. We im-

plement the proposed algorithm into a microchip designed in a 65 nm CMOS technology,

supporting up to 100 recording channels and occupying a silicon area of 240×260 µm2.

2.3.2 Methods

Denote as x(t) = [xt,1, xt,2, ..., xt,p]
T a vector of neural data sampled at time t, where p is

the dimension of the data vector. With N data vectors sampled at time t1, t2, ..., tN , we

have a p ×N data matrix X = [x1,x2, ...,xN ]. Our goal is to find k feature vectors for X

(k � p), and by projecting X onto the k directions, the data dimension can be significantly

reduced while data precision can be much preserved.

Schemes of PCA-based feature extraction for multichannel LFPs and spikes

Figure 2.2(a) shows the formulation of the p×N spike data matrix for PCA-based feature
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Figure 2.2: Schemes of PCA-based feature extraction for multichannel LFPs and spikes.
(a) In spike compression, p is the number of samples per spike, N is the spike count. (b) In
LFP compression, p is the number of recording electrodes, N is the number of cross-channel
LFP vectors. Reproduced from [2], c©2017 IEEE.

extraction, where p is the number of samples per spike and N is the spike count. Spikes

are collected from one channel. It has been shown that single neurons can be observed

up to 50 µm away from the cell body [203]. Hence it is difficult for spike waveforms

to propagate across multiple channels. One exception is for spikes recorded with closely

spaced electrodes, such as tetrode, with a typical separation of 25–50 µm. For tetrodes, the

cross-channel correlation is strong, yet limited to the four channels in a tetrode. In short,

single-unit activity shows poor spatial correlations (if not considering network properties,

e.g., neuronal ensemble synchrony [204]). On the other hand, as each neuron exhibits a

distinct shape due to the differences in current path between the neuron and the electrode

[205], single-unit activity has strong temporal correlations, which is beneficial to PCA-based

feature extraction that seeks an ordered set of feature vectors capturing directions of largest

variations in the data set.

The characteristic spatiotemporal profile of LFP data can be utilized in a similar fashion

to facilitate PCA-based feature extraction. As shown in Figure 2.2(b), each column of the

p×N data matrix is composed of LFP data sampled from all the electrodes in a probe at

the same time. Grouping data samples from many electrodes into a single LFP vector is

inspired by the idea of vector quantization, which is a high-dimensional generalization of

scalar quantization and can be viewed as a form of pattern recognition to reveal efficient

coding structure of data chunks [206]. In this way, the spatial correlation of LFPs as
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suggested in Figure 2.1 is inherently encapsulated in each cross-channel LFP vector, which

is similar to single-unit activities demonstrating temporal correlations and hence suitable for

PCA-based feature extraction. Another difficulty of applying PCA-based feature extraction

to compress multichannel LFPs is how to determine the dimensions of the feature space, i.e.,

the choice of the values of k and p. Unlike in spike compression where it is more a trade-off

between accuracy and compression ratio, in LFP compression it is also closely related to

electrode geometries, which significantly affect the validity of LFP spatial correlations.

Mathematical formulation With p and N defined, we are looking for a linear trans-

formation matrix W to achieve dimensionality reduction

Y = WTX, (2.1)

where W is a p × k linear transformation matrix with k � p, and Y = [y1,y2, ...,yN ]

represents k-dimensional neural data after compression. To maintain signal quality, the

transformation matrix W should minimize the reconstruction error defined as the normal-

ized squared distance

arg min
W

{
N∑
n=1

||xn −WWTxn||2/
N∑
n=1

||xn||
}
. (2.2)

It has been shown that the reconstruction error is minimized when the column variables in

W are the first k eigenvectors of the covariance matrix of neural data. It is a formulation

under batch PCA. The compression ratio is close to p/k.

Streaming PCA Batch PCA is unable to process streaming neural data. In this paper,

we apply the expectation-maximization (EM)-PCA proposed in [207] to compress high-

dimensional neural data. However, the EM algorithm presented in [207] requires multiple

iterations over the same data set, which is difficult to process streaming data. Inspired from

the modifications introduced in [208] on the general EM algorithm, we introduce a stepwise

EM-PCA (SEM-PCA) to incrementally update parameters in the EM-PCA and make the

method fully incremental and adaptive.

In EM-PCA, the linear transformation matrix that maps a latent variable to observed

data is defined as

x = Ŵy + ε, (2.3)

where the k-dimensional compressed data y is a latent variable to the observed neural signal

x, and ε is assumed an additive noise. In a Gaussian latent variable model, both y and ε
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are assumed Gaussian, i.e., y ∼ N (0, I) and ε ∼ N (0, σ2I). The conditional distribution of

x over the latent variable y is given by

p(x|y) = N (x|Ŵy, σ2I). (2.4)

The EM algorithm is applied to obtain the maximum likelihood estimation of Ŵ. To

do that, the complete-data log-likelihood function is defined as

lnp(X,Y|Ŵ, σ2) =
N∑
n=1

{lnp(xn|yn) + lnp(yn)}. (2.5)

Substitute equation (2.4) into (2.5), and take the expectation with respect to the posterior

distribution over the latent variables

E[lnp(X,Y|Ŵ, σ2)] =−
N∑
n=1

{
p

2
ln(2πσ2) +

1

2
Tr(E[yny

T
n ]) +

1

2σ2
||xn||2

− 1

σ2 E[yn]TŴTxn +
1

2σ2
Tr(E[yny

T
n ]ŴTŴ)

}
,

(2.6)

where E[yn] is the only sufficient statistics. E[yn] can be derived from the conditional

distribution of yn over xn

p(yn|xn) = N (yn|M̂−1WTxn, σ
2M−1), (2.7)

where

M = ŴŴT + σ2I. (2.8)

To approximate batch PCA, we let σ2 → 0, then the E-step in the EM algorithm

becomes

E[yn] = (ŴŴT )−1ŴTxn. (2.9)

In the M-step we maximize equation (2.6) with respect to Ŵ

Ŵnew =

[
N∑
n=1

xn E[yn]T

][
N∑
n=1

E[yny
T
n ]

]−1

. (2.10)

In batch EM, the expectations of sufficient statistics are computed over the entire data

set

Sl =
1

N

N∑
n=1

Eθl−1
[s(xn,yn)|yn] , (2.11)

where s(·) is a sufficient statistics, Sl is the current collection of sufficient statistics, and

θl−1 represents the guess of unknown parameters from last iteration.
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Algorithm 1 Streaming PCA

Require: Data dimension p, number of principal components k, current step n, input data
sample xn ∈ Rp, Sn,1 ∈ Rk, Sn,2 ∈ Rp, transformation matrix Ŵ ∈ Rp×k

Initialize: Ŵ← rand, Sn,1 ← 0, Sn,2 ← 0
Ensure: Compressed data sample yn ∈ Rk

1: ηn ← n−α

2: yn ← ŴT
n−1xn

3: Eθn−1 ← (ŴT
n−1Ŵn−1)−1yn

4: Sn,1 ← (1− ηn)Sn−1,1 + ηnEθn−1 [s(xn,yn)|yn]
5: Sn,2 ← (1− ηn)Sn−1,2 + ηnxn
6: Ŵn ← Sn,2S

T
n,1(Sn,1S

T
n,1)−1

7: return yn

In SEM-PCA, instead of calculating the expectation across all examples, only one data

sample is used. To alleviate the poor approximation caused by using one sample, we inter-

polate between the current sufficient statistics and the inferred expectations by introducing

a learning factor η, which can also accelerate parameter convergence. After including η, the

parameter update becomes

Sl,n = (1− ηn)Sl,n−1 + ηnEθl,n−1
[s(xn,yn)|yn]. (2.12)

In this formation, we assume that data streams are infinitely long and the iteration index

l thus stays unchanged and can be removed from (2.12).

Applying the stepwise EM to EM-PCA, we have SEM-PCA as stated in Algorithm 1.

The learning factor should satisfy
∑

n ηn = ∞,
∑

n η
2
n < ∞ to ensure the convergence of

parameter estimation. Parameter α can be chosen arbitrarily within 0.6 to 0.9 [208]. The

M-step is a natural expansion of (2.10), which is the same as in batch EM since the required

computation is trivial in low dimensions (k � p). One variant of SEM-PCA is mini-batch,

which updates on multiple observations in one time to improve computational stability at

the expense of more storage requirement. Compared with EM-PCA, the proposed method

is fully adaptive, does not require excessive on-chip memories, and can on-the-fly process

data streams.

2.3.3 Low-Power Chip Implementation

We have implemented the streaming PCA algorithm into a microchip fabricated in a 65

nm CMOS technology. This design is part of a system technology for closed-loop neural
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Figure 2.3: System schematic of the streaming PCA chip. Reproduced from [2], c©2017
IEEE.

recording and electrical microstimulation [162]. The chip is able to process up to 100-channel

LFPs simultaneously or multiple channels of spikes in real-time.

System architecture The system architecture of the streaming PCA chip is shown

in Figure 2.3. The mapping of the SEM-PCA algorithm into a hardware architecture is

accomplished by re-structuring the algorithm into a scheduling finite state machine (FSM), a

computational unit that provides frequently used arithmetic operations, and memory buffers

to store intermediate computational results. In addition, a serial peripheral interface (SPI)

module is included for data communication with off-chip peripherals as well as parameter

programming.

The scheduling FSM translates each step of SEM-PCA into commands of operations and

operands. The operation commands are decoded into arithmetic computations through

a decoding interface before execution. The arithmetic computations are implemented in

floating-point representations to provide sufficient dynamic ranges and avoid overflow, and

are interconnected through a routing logic that receives instructions from the decoding

interface to assemble into requested computations. During the computations, operands

are fetched from the memory buffers under the control of the scheduling FSM. Both the

outputs of the decoding interface and the routing logic are pipelined to support a variety of
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Figure 2.5: Structure of the 19-bit LFSR. Reproduced from [2], c©2017 IEEE.

arithmetic operations efficiently at a scalable speed, which also simplifies the synchronization

with the memory buffers.

The memory buffers are realized in register banks which are flexible and easy to access

at the cost of relatively large circuit area and high power dissipation. Major memory space

is consumed by the p× k elements of the transformation matrix Ŵ, each of which is a cus-

tomized 19-bit floating-point variable. The purposes of the 19-bit floating point structure

are to ensure computational accuracy and avoid data overflow. We verify that each step of

the computation on hardware is sufficiently close to the result obtained from a MATLAB

version. When testing the algorithm implementation with various inputs, we found that

floating-point structures less than 18-bit would occasionally result in data overflow or non-

trivial deviations from software versions. This might be caused by the insufficient accuracy

of data representation when performing matrix inversion. To fix this problem and leave

some margins, we empirically determined the 19-bit floating-point structure. The detailed

format of the floating-point representation is given in Figure 2.4. Dedicated memory tech-

nologies, such as SRAM, are to be explored in future developments to achieve higher area

density and power efficiency of the memory buffers.

In this implementation, parameters k, p, and α are programmable through the SPI

module. The initial randomization of Ŵ is achieved by implementing a 19-bit linear-

feedback shift register (LFSR). The structure of the LFSR is shown in Figure 2.5, which
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Figure 2.6: (a) Die photo of the streaming PCA microchip. (b) Chip specifications. (c)
Power & area breakdown. Misc. includes clock trees, SPI module, reset circuits, and etc.
Reproduced from [2], c©2017 IEEE.

is cost-effective and can provide needed randomness. Due to limited on-chip resources, the

values of k and p are upper bounded at 4 and 100, respectively. It has been argued that

the first two or three principal components (k = 2 or 3) is sufficient to accurately describe

neural data [209]. The available choices of p and k can accommodate a wide range of

experiment setups and recording configurations. These parameters are to balance storage

consumptions, reconstruction accuracies, and compression ratios.

System prototyping As shown in Figure 2.6(a), the streaming PCA microchip occupies

a silicon area of 240×260 µm2 in a 65 nm CMOS technology. The nominal voltage of the

process is 1.2 V. In order to achieve low-power operations favored by implantable biomedical

electronics [162], we have re-characterized the digital synthesis library with a reduced supply

voltage at 0.5 V to provide more accurate timing and power analysis [210].

The minimum working clock frequency of the system is determined as follows: In the

worst case when k and p are 4 and 100, our system requires slightly less than 1000 clock

cycles to process one spike or LFP vector. To process 100-channel LFPs with a base

sampling rate of 1 kHz per channel, a 1 MHz system clock is needed. The measured peak

power consumption in this case is 144 nW/channel. To process spikes at a firing rate of 100

Hz with 100 samples/spike, a 100 kHz clock frequency is needed, and the measured peak

power consumption is 3.05 µW/channel. The significant difference on power consumption

per channel of the chip processing LFPs and spikes results from the comparison that a LFP
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Table 2.1: Comparisons between the proposed streaming PCA chip with previous works.
Reproduced from [2], c©2017 IEEE.

Ref. Process
Signal
type

Signal
Dimen-
sion

No. of
Channels

Area Power Methods

[189] 90nm Spike 64 1 0.255mm2/ch 521µW/ch PCA

[186] 350nm Spike 16 N/A 1.77mm2/ch 256.9µW/ch PCA

[211]-
1

90nm Spike 64 32 0.083mm2/ch 78.7µW/ch GHA

[211]-
2

90nm Spike 64 64 0.08mm2/ch 85.8µW/ch GHA

[212] 90nm Spike 64 32 0.021mm2/ch 20µW/ch
Peak

Search

[185] 130nm Spike 64 1 0.268mm2/ch 8.6µW/ch SPIRIT

[176] 130nm Spike N/A 1 0.16mm2/ch 200nW/ch PWL

[181] 65nm Spike N/A 1 0.03mm2/ch 8µW/ch
Pulse-
based

Ours 65nm Spike; LFP Up to 100
LFP: 100

LFP:
0.0006mm2/ch

LFP:
144nW/ch SEM-PCA

Spike: 1
Spike:

0.06mm2/ch
Spike:

3.05µW/ch

vector is constructed from multiple channels, while a spike comes from only one channel.

Lowering the supply voltage from 1.2 V to 0.5 V reduces the overall power consumption by

over 85% at an area overhead of merely 0.02 mm2. The increased area is due to the resizing

of digital gates in low-voltage synthesis to compensate for timing degenerations.

Figure 2.6 shows the chip die photo with the streaming PCA module highlighted. The

memory buffers consume the major power and chip area, which calls for more advanced

technologies to improve memory circuits. Comparison of the designed chip with previous

works is given in Table 2.1. We can see that our design outperforms other feature extraction

hardwares in many aspects. To our best knowledge, this work is so far the first hardware

that applies PCA-based feature extraction to compress both LFPs and spikes with high

area-power efficiency.

2.3.4 Experiments

We present the testing results of the streaming PCA chip on two data sets recorded from

different in-vivo preparations. In one data set, neural data were recorded using a 4-shank,

32-channel NeuroNexus probe. The other data set was recorded using a 100-channel Mi-

croProbes microelectrode array (MEA) organized in 10 lines. We also discuss a strategy to

determine the dimensions of feature spaces when compressing multichannel LFPs, and how

this strategy will lead to a better rate-distortion trade-off.
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Figure 2.7: Inter-channel correlation map of 32-channel LFPs. Higher correlations are
observed for channels in the same shank or adjacent shanks. Channels from two adjacent
shanks correlate more if they are at the same vertical depth. Reproduced from [2], c©2017
IEEE.

Compression of LFP data recorded with a 4-shank, 32-channel NeuroNexus

probe The recording experiments were conducted with a 4-shank, 32-site NeuroNexus

probe with pitch size of 200 µm and shank-to-shank distance of 400 µm. The raw data

were recorded with 24 kHz sampling rate and digitized with 16-bit precision. The recorded

data were low-pass filtered and downsampled by 32× to remove high-frequency activities,

leading to a sampling rate of 750 Hz per channel. There were 14 sessions of recordings with

each session including 100 trials, resulting in 1400 trials in total.

We first run a correlation analysis of LFP amplitude between every electrode pairs from

32 channels and averaged over 1400 trials. This is to study the similarities among different

channels and shanks, which helps to determine the number of latent variables (the value of

k) in SEM-PCA. As shown in Figure 2.7, higher correlations appear if electrodes are situated

on the same or adjacent shanks. Channels from two adjacent shanks correlate more if they

are at the same vertical depth. As expected, correlation decreases with increasing distances

between electrodes.

The number of latent variables can be updated in real-time by constraining how closely

the energy of reconstructed signals tracks that of original signals. Nevertheless, we need to

upper bound k due to limited on-chip hardware resources as the spatial complexity for Ŵ
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Figure 2.8: Number of trials corresponding to the needed number of latent variables to
achieve > 90% reconstruction accuracy. Left panel: using 3-shank LFPs; Right panel:
using 4-shank LFPs. Reproduced from [2], c©2017 IEEE.

is O(kp). It has been shown that the maximum likelihood estimation of Ŵ converges to

eigenvectors in batch PCA multiplied with an arbitrary linear transformation [213]. As a

result, the column vectors of Ŵ can be non-orthogonal and not in any orders. From the

experiment data, however, we find they have more close correspondence with the number

of shanks and their locations. For example, we have tested the streaming PCA chip on

LFPs recorded from 3 adjacent shanks compared with those from all 4 shanks. Figure 2.8

shows the distributions of k needed to achieve >90% reconstruction accuracies over all 1400

trials. For 3-shank and 4-shank recordings, k peaks at 3 and 4, respectively. We will discuss

this empirical approximation of latent variables using the number of shanks in more detail.

With k = 4 and p = 32, a nearly 8× compression ratio of LFPs can be achieved for this

4-shank, 32-channel probe.

Next we examine the reconstruction accuracy of LFPs using the streaming PCA chip

in both temporal and frequency domains. As shown in the top panel of Figure 2.9, the

reconstruction errors of all 32 channels are less than 8%. The reconstruction in temporal

domain is illustrated in the bottom panel of Figure 2.9. In frequency domain, we calculate

the power spectrum density (PSD) of LFP sequences from all 1400 trials as well as their

reconstructed versions, and plot their averages and spans into the top panel of Figure 2.10.

The result suggests that the streaming PCA chip can enable accurate LFP reconstruction.

The discrepancies are mostly situated in higher frequencies (>150 Hz), which also appear in

the spectrograms in the bottom panel of Figure 2.10. The discrepancies are mainly caused

by the nature of PCA-based method that tries to capture the largest variations of data using

a few leading principal components, thus unable to represent accurately the relatively small
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Channel 17

Recon. Accu. = 96.15%

Figure 2.9: LFP reconstruction in time domain. The original and reconstructed LFP wave-
forms of Channel 17 are shown as an example. Reproduced from [2], c©2017 IEEE.
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Figure 2.10: LFP reconstruction in frequency domain. Reproduced from [2], c©2017 IEEE.

fluctuations at the same time. One workaround is high-pass filtering of LFPs to attenuate

the variations contributed by low-frequency contents, if high-frequency contents of LFPs

are of more interest.

Compression of LFP Data Recorded With A 100-channel MicroProbes MEA

The 100 channels of the MircoProbes MEA are organized in 10 lines. The distance between

two adjacent contacts in one line is 200µm. Intracortical neural signals were sampled at

12.5 kHz. There were in total 11 recording sessions. In each session, neural data were low-

pass filtered at 300 Hz and downsampled by 16×. The sampling rate of LFPs was 780 Hz.

Again we construct the correlation map of the 100-channel LFP data as shown in Figure
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Figure 2.11: Inter-channel correlation map of 100-channel LFPs. The results are averaged
over all 11 sessions. Channels from the same line correlate closely with each other; channels
from different lines correlate poorly, or even reversely. Reproduced from [2], c©2017 IEEE.

2.11. It shows clearly that only channels from the same line correlate closely with each

other. Channels from different lines correlate poorly, or even reversely.

Following the empirical approximation from last experiment that the number of latent

variables should equal the number of shanks in a probe to ensure reconstruction accuracy,

10 latent variables are needed for a 10-line MEA. However, due to the limited on-chip

resources, k is no more than 4 in the streaming PCA chip. With k = 4, p is limited to be

no more than 40 for such a MEA with 10 contacts per line. Therefore, to simultaneously

compress all the 100-channel LFP data from this MEA, 3 copies of the streaming PCA chip

are needed as a multi-chip solution.

Next we validate the empirical approximation on this 100-channel MEA. To simplify the

validation, we simulate the streaming PCA chip in Verilog HDL with equivalent functions

except that k can be as large as 10. A RTL simulation also allows us to probe and monitor

internal variables with much higher flexibility. Throughout the experiment, p is kept 10

times of k. For each recording session, we select neural data recorded from k out of 10 lines

and compress the data using the simulated streaming PCA chip, with k varied from 1 to

10. The data selection in each session is repeated by Ck10 = 10!
(10−k)!k! times to allow different

combinations of k lines of data. The data reconstruction accuracies corresponding to k =
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Figure 2.12: Reconstruction accuracies of LFPs with k varied from 1 to 10. X-axis denotes
the number of lines (k) in the 100-channel MEA used in the simulation. Error bars denote
the variations from Ck10 combinations of lines and 11 recording sessions. Reproduced from
[2], c©2017 IEEE.

1 to 10 are shown in Figure 2.12. We can see that the empirical approximation of k works

generally well, achieving ∼90% reconstruction accuracies except for k = 2. An interesting

phenomenon in Figure 2.12 is the monotonically increasing accuracy from k = 2 to k = 9,

suggesting an optimal range where the approximation applies. In general, the streaming

PCA chip performs slightly worse on the 100-channel MEA than the 32-channel probe. This

is because that the pitch size of the MEA (200 µm) is much larger than that of the probe

(50 µm), resulting in poorer correlations of LFPs among adjacent electrodes. Again, this

experiment illustrates the importance of taking electrode geometries into consideration for

LFP compression. As p is always kept as 10 times of k regardless of the value of k, a nearly

10× compression ratio of LFPs can be achieved for the 10-line, 100-channel MicroProbes

MEA.

Spike compression Unlike LFPs, spike compression is much less susceptible to electrode

geometries. In addition to compression ratio and reconstruction accuracy, we are particu-

larly interested in two aspects regarding spike compression. First, how fast the streaming

PCA chip can converge in estimating Ŵ when processing spikes from one channel. Con-

vergence speed is measured in spike count. Second, how fast the streaming PCA chip can

adapt to nonstationary spiking activities by updating Ŵ, for example, when switching the

chip among multiple channels. By studying these problems, we can estimate the process-

ing delay of the chip, which is an important parameter for applications that require fast
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responses. For example, in closed-loop neuromodulation, accurate control of individual neu-

rons requires the information of single-unit activity, and the time delay between recording

and data-dependent stimulation should be kept as small as possible. Therefore, it is helpful

to evaluate the processing delay of the chip performing feature extraction in an effort to

reduce the overall system time delay.

The convergence of the streaming PCA algorithm is closely related to the qualities of

neural recording and spike detection. With a high threshold in spike detection, ambigu-

ous spikes which are confused with background noise are much excluded. The remaining

spikes tend to have large amplitudes and more regular shapes, possibly making it faster

for the streaming PCA algorithm to converge in parameter training. However, high detec-

tion thresholds may not reduce the overall processing delay of both detection and feature

extraction, because it takes longer time to detect large spikes that exceed high thresholds.

First we investigate the relation between detection threshold and convergence speed

of the streaming PCA chip. As mentioned in Section III, this design is part of a system

technology [162], which implements an exponent component–polynomial component (EC-

PC) algorithm for spike detection [214, 215, 216, 217]. The EC-PC method features a

probabilistic threshold which quantifies the likelihood of recorded signals being real spikes

[218, 219]. Using the EC-PC algorithm, we detect spikes from all 11 sessions with a range

of probabilistic thresholds, including 60%, 70%, 80%, 90%, 95%, and 100%. We process

each group of spikes detected with the same threshold using the streaming PCA chip and

study how many spikes are needed for the transformation matrix Ŵ to converge. We define

that convergence is met when the mean squared error of estimated principal components

relative to batch PCA values stabilizes (for at least 3 consecutive instances). The spike

counts needed for convergence for each detection threshold are averaged over 1100 trials

(100 channels × 11 sessions). Figure 2.13 shows that the streaming PCA chip can converge

within 200∼250 spikes on average and with similar variations for a wide range of detection

thresholds. Higher thresholds indeed require less spikes for convergence, but not much.

For example, the streaming PCA chip converges faster for 100% threshold than 60% by

less than 50 spikes. The small difference indicates that in processing spikes, convergence

of feature extraction parameters is less sensitive to detection thresholds. It normally takes

much longer time to detect 50 large spikes than to process the same amount of spikes by the
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Figure 2.13: How many spikes are needed for the streaming PCA chip to converge in
calculating Ŵ. X-axis denotes the probabilistic thresholds. Y -axis denotes the spike counts.
Spike count for each threshold is averaged over 1100 trials. Higher thresholds require slightly
less spikes for convergence. Reproduced from [2], c©2017 IEEE.

streaming PCA chip. This suggests that spike detection is more critical in reducing pro-

cessing delays compared with feature extraction. Therefore in closed-loop operations such

as neuromodulation or brain-machine interface where processing delay is critical, lowering

detection thresholds could be an effective measure.

Next we examine how the streaming PCA chip adapts to nonstationary spiking activi-

ties. We prepare two distinct clusters of spikes, A and B, extracted from one session of the

second data. Each cluster contains 500 spikes. We feed the spikes into the streaming PCA

chip in the following sequence: The first 500 spikes are all from Cluster A to ensure that Ŵ

is fully converged and trained for Cluster A. The next 500 spikes are from Cluster B, during

which we monitor the normalized instantaneous power of both original spikes and recon-

structed spikes. As shown in Figure 2.14(a), the streaming PCA chip converges after ∼300

spikes. During the transition from Cluster A to B, the instantaneous power of reconstructed

spikes tracks that of original spikes stably, indicating a smooth and swift adaptation of the

chip between two distinct spike clusters. In processing the most recent ∼700 spikes after

convergence, the streaming PCA chip achieves a robust reconstruction accuracy over 92%

with k = 4 and p = 100. The compression ratio of spikes is therefore roughly 25×. The

chip adaptation is further validated in Figure 2.14(b). By projecting compressed spikes

onto a 2-D plane defined by the first two columns of Ŵ (after orthogonalization) calcu-

lated in real-time, we find that Cluster B gradually emerges while Cluster A stays almost

unchanged. The chip’s ability in adapting to nonstationary spike data both smoothly and
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Figure 2.14: Adaptation of the streaming PCA chip to changing spiking activities. First
500 spikes are from Cluster A, and the next 500 spikes are from Cluster B. (a) Tracking of
the normalized instantaneous spike power. Red curves denote power of original spikes. Blue
curves denote power of reconstructed spikes. Y -axis is the instantaneous power of spikes
normalized to current spike count. (b) Tracking of 2-D representation of compressed spikes.
X-axis and Y -axis denote the first two columns of Ŵ. The axis vectors are orthogonalized
for visualization purpose. Reproduced from [2], c©2017 IEEE.

swiftly shows great potentials to process multichannel spikes for feature extraction and data

compression.

2.4 Algorithm 2: Deep Compressive Autoencoder

2.4.1 Overview

We propose to construct high-quality codebooks using deep neural network (DNN) to facil-

itate effective learning-based compression. DNN-based feature extraction relies heavily on

carefully designed network architectures and well tuned hyperparameters that are tailored

for specific types of data. Hence it is crucial to design DNN structures that are suitable
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to extract representative features from multichannel spikes. Another challenge is the inte-

gration of a DNN model, normally with millions of parameters, into a neural recorder chip

with limited hardware resources and power budgets. This requires hardware-aware design

optimizations to obtain an extremely efficient and compact DNN model that is feasible for

on-chip implementation without compromising performance.

In this work, we tackle these challenges by proposing a lightweight DNN model – com-

pressive autoencoder (CAE) – that can compress thousands of spikes simultaneously by

20–500× with signal quality comparable to or better than that of existing approaches. Our

main contributions include: (i) Instead of hand-crafted features or signal-agnostic trans-

formations, we use convolutional neural network (CNN) along with vector quantization to

extract and sample hierarchical features, which exhibit strong representational capability

and generalize well to unseen spikes; (ii) We show that CAE is capable of leveraging geomet-

rical information of spikes from multichannel recording, which is useful to expose localized

features and improve qualities of reconstructed signals; (iii) We demonstrate that CAE can

allow for high compression ratios without noticeably compromising spike sorting accuracy;

(iv) CAE features an asymmetric model structure for signal encoding and decoding, where

the encoding part (along with quantization) requires fewer than 20K parameters, which is

over 40× smaller than the decoding and suitable for efficient on-chip implementation into

large-scale neural recording systems.

2.4.2 Methods

Compressive autoencoder for neural data compression At the core of the proposed

model is autoencoder [220], a neural network structure widely used to learn compact data

representations by forcing outputs to be identical as inputs and imposing constraints in the

latent space. Mathematically, the general operation of an autoencoder can be described as

x̂ = gs(ga(x;φ); θ), where x and x̂ are input and output data; ga and gs denote analysis and

synthesis, respectively, or are commonly referred to as encoder and decoder (parameterized

by φ and θ).
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Figure 2.15: Conceptual diagram of deploying CAE in wireless neural recording system. For
simplicity, microelectrodes are omitted from the figure. Spike snapshots are from synthetic
datasets Wave Clus [4]. Reproduced from [3].

In the context of lossy data compression, the operation of CAE becomes:

φ, θ = arg min
φ,θ

‖x− x̂‖22,

subject to


y = ga(x;φ)

ŷ = quantize(y)

x̂ = gs(ŷ; θ)

(2.13)

where the quantize function discretizes encoder outputs and introduces quantization error.

Conventionally, the loss function of a CAE that optimizes both bit rates and distortion is:

LCAE = −log2Q(ŷ)︸ ︷︷ ︸
Number of bits

+ α · d(x, x̂)︸ ︷︷ ︸
Distortion

, (2.14)

where Q(·) is the operation to estimate the discrete probability distribution of discretized

data, and α is used to adjust the rate-distortion trade-off.

The conceptual diagram of deploying CAE into wireless neural recording systems is

illustrated in Figure 2.15. After recorded from analog front-end circuitry and digitized,

spikes are extracted from raw recording data and aligned. For CAE, only the encoder and

the quantization block need to be on-chip implemented; the decoder can run on a remote

computer. θ and φ are programmable to allow flexible choices of rate-distortion trade-offs.

The indexes of VQ codebook corresponding to encoder outputs are coded and transmitted,

leading to significant data rate reduction.

In practice, direct optimization of CAE using equation (2.14) proves difficult, because

(i) Q(·) and quantize are typically non-differentiable thus cannot be updated via back-

propagation, and (ii) joint optimization of both rate and distortion requires complex com-

putations and carefully designed training schedules. For example, in [221] an extra Gaussian
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scale mixture model is used to model distribution of coefficients and estimate bit rates, as

well as the requirement of fine-tuning a pre-trained autoencoder for different bit rates. On

top of that, [221] needs an incremental training that gradually “releases” coefficients for

updates and takes up to 106 iterations to achieve good performance. The first difficulty

can be solved by directly copying the gradient of decoder inputs to the encoder outputs

during training, bypassing the quantization block [222, 221, 223]. To address the second

difficulty, we remove the rate penalty from equation (2.14) and leave the size of VQ code-

book programmable by the users. The advantage of this modification is two-fold: (i) We

found that penalizing only distortions can lead to fast convergence of training (typically

∼200 epochs) with good performance. This is beneficial to fast and simplified deployment

of the model onto mobile hardware platform for real-time spike compression; (ii) It allows

straightforward optimization towards lower distortion. To update VQ codebook, we add

the Euclidean distance between encoder outputs and corresponding VQ codewords into the

overall loss function. After the modification, the loss function of the proposed CAE is:

LCAE = d(x, x̂) + d(y, ŷ). (2.15)

Compared with Equation (2.14), the rate penalty is removed and another Euclidean loss to

optimize VQ codewords is added. Thus the VQ codewords can be updated in the same way

as other parameters via back-propagation, which simplifies the network training.

Encoder and decoder networks Fusing spatial and temporal information by stacking a

set of convolutional filters interleaved with non-linearity and pooling is essential to enhance

the representational power of DNN [224]. The extraction and fusion of spatial features

is realized within the computation of each CNN layer. For a CNN layer with Cin input

channels and Cout output channels, the value of the jth output channel can be described as

out(Ni, Coutj ) =

Cin−1∑
k=0

weight(Coutj , k) ? input(Ni, k), (2.16)

where N is the batch size, weight is the coefficients of a CNN filter, ? denotes cross-

convolution, i.e., I ? K(i, j) =
∑

m

∑
n I(i + m, j + n)K(m,n). Thus it is clear that to

compute one channel output of a CNN layer requires all Cin input channels, which essentially

realizes fusion of spatial features from previous layers and propagation of the features to

subsequent layers.
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Figure 2.16: Structural diagram of the proposed spike compression model. Activation layers
and normalization layers are skipped from the diagram for simplicity. Reproduced from [3].

In general, deep networks are representationally superior to shallow ones to allow for suf-

ficient information fusion and propagation [225]. However, there are two major constraints

with deeper networks in our application. First, with more layers, the amount of network pa-

rameters (weights of convolutional filters, etc.) increases drastically, making it more difficult

for on-chip implementation in the neural recorder chip. Second, as in large-scale recording

the probes can span a relatively large brain area or a long range of vertical structures, the

underlying signal characteristics of neural data from adjacent recording sites in one local

region will be different from that of other regions due to the differences in current path

between the neurons and the electrodes. Therefore, features learned by the convolutional

filters from all channels may not be optimally representative for each distributed recording

regions, especially when one cannot afford sufficiently deep networks on-chip.

To circumvent the first limitation, the main structures of the encoder and decoder are

based on ResNet, i.e., residual network with identity-mapping shortcut connections [226]. It

has the capability of representing a richer set of complex features compared with other net-

work structures with the same or even larger model size, presumably thanks to its behavior

like ensembles of relatively shallow networks by introducing the shortcut connection [227].

To resolve the second constraint, more effective ways of organizing convolutional filters are

explored. One promising configuration is grouped convolution [228]. In vanilla convolution,



44

a total number of Cin × Cout filters are required for a convolutional layer as evidenced in

equation (2.16). With grouped convolution, the input and output channels are evenly split

into C groups, thus the number of filters is reduced C-fold. By restricting the “receptive

fields” of convolutional filters, local features can be preserved within each group and are

more representative of neural spikes recorded from corresponding physical channels. More-

over, the amount of parameters can be significantly reduced thus more hardware efficient.

In this work, 32 groups are used in all ResNeXt modules (following the naming in [229], i.e.,

ResNet with grouped convolution).

The detailed diagram of the proposed spike compression network is shown in Figure

2.16. In the encoder network, the input convolutional layer with kernel size 1×1 maps de-

tected spikes organized in Mspk channels to a 256-channel feature space. Following the first

channel-expansion layer, we cascade two stages of ResNeXt to enhance the feature extraction

capability. The main pathway of each ResNeXt is configured in bottleneck connection [226],

consisting of a stack of 3 layers with 1×1, 1×3, and 1×1 convolutional kernels, respectively,

where the 1×1 layers are responsible for reducing and restoring dimensions, and the 1×3

layer extracts features with halved input/output dimensions. Each ResNeXt is followed by

a 2× downsampling along the temporal dimension. The last stage of the encoder network is

a vanilla 1×1 convolutional layer that aggregates the features learned from previous stages

and reduces the channel dimension from 256 to Nfeat. The decoder network is a reverse

implementation of its encoder counterpart, where convolution and downsampling are re-

placed by transposed convolution (deconvolution) and upsampling. As the decoder network

is implemented on a remote computer with abundant computational resources and is pri-

marily used to reconstruct the inputs, we stack two 1×3 deconvolutional layers in the main

pathway of each ResNet instead of using grouped convolution to enhance the reconstruction

capability.

Dimensionality reduction, vector quantization, and entropy coding For Mspk

input spikes in D-dimension, the encoder outputs Nfeat feature vectors in d-dimension.

The operation of quantize can be described as Rd → C that maps a feature vector in

d-dimensional space into a codebook C containing K codewords {Ci; i = 1, 2, ...,K}. Each

codeword requires log2K bits to represent in unsigned binary representation. Therefore,
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the overall data rate reduction without entropy coding is

CR =
Mspk ·D ·W
Nfeat · log2K

, (2.17)

where W is the original bit-length of spike sample, typically 10–16 bits; D is the original

spike dimension, typically 40–80. d is not involved in the denominator of CR as only the

codeword indexes need to be transmitted. Note that in the rest of paper, the reported CRs

are calculated using the entropy of codewords. The actual CR will be slightly decreased

due to the overhead of using a practical code (e.g., Huffman coding).

In this work, we adopt a Voronoi vector quantizer that partitions the CAE latent space

intoK cells, of which the centroids are the codewords. Each cell consists of all points y which

have less distortion when reproduced with codeword ŷ than with any other codeword. All

codewords are initialized from a uniform distribution and updated according to the distance

between the current values of codewords and the feature vectors output by the encoder.

Finally we discuss the distortion introduced by quantization in the CAE latent space.

Given a d-dimensional quantizer with a distortion measure ‖x−y‖r (r ≥ 1), we have a high

rate lower bound of the quantization distortion as ([230]):

Dist. ≥ d

d+ r
(Vd)

−r/de−
r
d

(H(Q(X))−h(X))

≈ d

d+ r
(Vd)

−r/de−
r
d

(log2K−h(X))

=
d

d+ r
(Vd ·K)−r/de

r
d
·h(X), (2.18)

where Q(X) is the entropy of quantizer output, h(X) is the differential entropy of quantizer

input X, Vd is the volume of unit sphere in d-dimensional space. In practice, the probability

density function of VQ codewords is approximately uniform, thus H(Q(X)) is very close

to log2K. Hence for a CAE model with d, r, and K fixed, the best performance (lowest

distortion) depends primarily on the complexity of input, which is approximated as h(X).

Parameter configuration and model training As suggested in equation (2.17), pa-

rameters Mspk, Nfeat, and K jointly determine the achievable CR (D and W are determined

by the recording specification thus excluded from discussion).

The choices of these parameters require careful trade-offs between CR, signal quality,

and hardware cost. In general, a larger codebook is needed for the compression of noisier

spikes or spikes recorded from many channels and with more diverse waveforms to ensure
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the reconstruction accuracy, as evidenced in equation (6). The ratio Mspk/Nfeat affects the

trade-off between CR and reconstruction accuracy, and their actual values have little impact

on the performance. However, larger Mspk and Nfeat would lead to increased hardware cost.

Mspk is empirically set as 4 in all the experiments (except for Section 3.3.4). For recordings

from more than 4 channels, spikes from adjacent channels are grouped together and sent

into one of the Mspk ports.

The design and testing environment is Intel i7-6800K@3.40GHz, NVIDIA GeForce Ti-

tan Xp 12GB, 32GB memory, 256GB SSD, and Ubuntu 16.04 LTS. The proposed CAE

model is implemented using the deep learning framework PyTorch 0.4.1 (with CUDA 9.0)

[231]. We used the ADAM optimizer [232] with learning rate 1e-3 and evaluated the model

performance after 500 epochs with batch-size 48 in all the experiments.

Datasets preparation The synthetic dataset we have chosen is Wave Clus from Univer-

sity of Leicester [4], which has been widely used in the evaluation of spike sorting algorithms.

The dataset is generated by adding several spike waveform templates to background noise

of various levels, thus realizing different SNRs. We used four datasets C Easy1 noise01,

C Easy2 noise01, C Difficult1 noise01, C Difficult2 noise01, each of which was gen-

erated using different spike templates. We used the ground truth spike times included in

the datasets to extract spikes from the continuous data. Spikes from the four datasets

were grouped together, presenting more challenge for compression due to combined spike

templates. All spikes were aligned to their maximum peaks with 64 samples per spike.

The first in vivo dataset we used is the data recorded from the rat CA1 hippocampal

region using tetrodes that are publicly available as HC1 [233, 203]. The tetrodes consist of

four 13µm nichrome wires bound together by twisting them and melting their insulation

[234]. The dataset d53301 was used for evaluation, which contains four extracellular chan-

nels from tetrodes and one intracellular channel from a micropipette. Extracellular signals

were high-pass filtered at 300 Hz. Spikes were extracted from the four extracellular channels

with the spike times determined by the occurrences of intracellular action potentials on the

micropipette. All extracted spikes were aligned to their maximum peaks with 48 samples

per spike.

To test the performance of the proposed method in compressing neural signals from

more recent large-scale, high-density recording setups, we used the in-vivo data recorded

from an awake, head-fixed mouse using the Neuropixels probe [235]. Neuropixels has 384
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recording sites with 70×20 µm2 per site. The neural data are band-pass filtered at 300–5000

Hz. Spikes were detected from each channel by amplitude thresholding. The threshold was

set at

Threshold = 5×median{ |X|
0.6745

} (2.19)

where X is the band-pass filtered signal [4]. All detected spikes were aligned to their

maximum peaks with 48 samples per spike. All channels used the same parameter setting

for detection and no further fine-tuning was performed. Therefore the detected spikes

contain a large number of false alarms contributed by various noise sources. The existence

of many non-spike activities would significantly increase the difficulty of spike compression

due to the diverse signal and noise characteristics. A successful compressor should reduce

the bandwidth of both spikes and non-spike activities at the same time and shift the burden

of carefully differentiating spikes from noise to a remote computer.

We used the mean squared error (MSE) to optimize the neural network. To measure the

signal reconstruction accuracy and also allow for comparison with other works, we reported

accuracy in average signal to noise and distortion ratio (SNDR) defined as:

SNDR = 20 · log10

‖X‖2
‖X − X̂‖2

. (2.20)

The bit-length of all spike data is assumed 16-bit, which is a common setting adopted

in commercial neural recording devices.

Methods for comparison We have chosen three transformation-based methods for com-

parison, including PCA, DCT, and discrete wavelet transform (DWT). We also compared

with a recent work based on compressive sensing, group weighted analysis l1-minimization

(GWALM) [236], that showed better performance compared with other compressive sensing-

based approaches.

• Proposed CAE For each dataset, spike data are randomly split into two parts for

training (50%) and testing (50%). The random training/testing partition was repeated

five times on each dataset and for each method we took the average performance as

the final results. We train the network using the training data and evaluate the model

performance on the testing data. The number of partitions K in VQ is assumed

powers of two. The CR is computed using equation (2.17) with the log2K replaced

by the entropy of the codeword indexes on the testing data.
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• PCA We apply PCA on the training spikes, and keep the leading m eigenvectors as

the transformation matrix. For compression, we multiply the transformation matrix

with the testing spikes to obtain principal components as the compressed signals. The

number of eigenvectors m is set as 2, 4, 6, 8, 10 for Neuropixels; 1, 2, 4, 6, 8 for HC1

and Wave Clus. Each principal component is represented using the same bit-length

as that of spikes. The CR can be computed as CR = D/m.

• DWT Spikes are first transformed into wavelet representation and the m most signif-

icant coefficients are kept (others are zeroed). The number of wavelet coefficient m is

set from 2 to 12 with an increment of 2 for all datasets. The Symmlet4 wavelet basis

is used as it is advantageous over other wavelet basis families for processing neural

signals [196]. Each wavelet coefficient is represented using the same bit-length as that

of spikes. The CR can be computed as CR = D ·W/(W ·m + D), where the D bits

in the denominator are used to denote the positions of the m non-zero coefficients.

• DCT We keep the m leading coefficients of each spike after transformed by DCT. m is

set from 8 to 16 with an increment of 2 for Wave Clus; 6, 8, 10, 11, 12 for Neuropixels;

from 6 to 10 with an increment of 1 for HC1. Each coefficient is represented using the

same bit-length as that of spikes. The CR can be computed as CR = D/m.

• GWALM First, an analysis model is adopted to enforce sparsity of spikes; second, a

multi-fractional-order difference matrix is constructed as the analysis operator;third,

by exploiting the statistical properties of the analysis coefficients, a group weighting

approach is developed to enhance the performance of analysis l1-minimization. Each

spike was compressed to a vector of length m. m is set from 8 to 16 with an increment

of 2 for Neuropixels; from 8 to 12 with an increment of 1 for HC1; from 12 to 17 with

an increment of 1 for Wave Clus. The CR can be computed as CR = D/m. More

details of the algorithm can be found in [236].

2.4.3 Experiments

Compression of synthetic and in vivo spikes We run CAE and other approaches on

each of the synthetic and in-vivo datasets. The rate-quality curves of all methods on each

dataset are plotted in Figure 2.17. Both horizontal and vertical axes are in logarithmic scale
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Figure 2.17: Rate-quality curves of all methods on Wave Clus, HC1, and Neuropixels

datasets. Vertical axis is signal reconstruction accuracy measured in SNDR. Horizontal axis
is compression ratio (also in logarithmic scale). Configuration of CAE: Mspk/Nfeat = 1/4,
K = 128, 32, 512 for Wave Clus, HC1, and Neuropixels datasets, respectively. SNDRs at
8dB, 11dB, and 14dB are highlighted in gray lines. Reproduced from [3].

to clearly distinguish curves corresponding to different methods. As shown in the figure,

CAE outperforms all other methods, primarily by extending CR into the range of 20–500×.

We also highlight three levels of reconstructed signal qualities measured in SNDR: 8 dB,

11 dB, and 14 dB. It is clear that CAE achieves much higher CRs on both synthetic and

in-vivo datasets than other methods especially at SNDR of 8 dB and 11 dB, e.g., up to

500× CR on HC1, which is 15× better than PCA and over 70× better than DWT, DCT,

and GWALM. The performance gap on Neuropixels at SNDR of 14 dB is small due to

the more complex signal characteristics of spikes from hundreds of recording channels. The

qualities of the reconstructed spikes using CAE are illustrated in Figure 2.18 and Figure

2.19, each of which shows 24 reconstructed spikes with various shapes randomly chosen

from each dataset.
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Figure 2.18: Reconstructed spikes using CAE. 24 spikes with various shapes are chosen and
shown for each dataset. Original and reconstructed spikes are drawn in blue and red colors,
respectively. Configuration of CAE: Mspk/Nfeat = 1/4 for all datasets; K = 128, 32, 512 for
Wave Clus, HC1, and Neuropixels datasets, respectively. The reported CR and SNDR on
top of each sub-figure are calculated over the entire testing part of corresponding dataset.
Reproduced from [3].
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Figure 2.19: Reconstructed spikes using CAE. 24 spikes with various shapes are chosen and
shown for each dataset. Original and reconstructed spikes are drawn in blue and red colors,
respectively. Configuration of CAE: Mspk/Nfeat = 2 for all datasets; K = 128, 16, 256 for
Wave Clus, HC1, and Neuropixels datasets, respectively. The reported CR and SNDR on
top of each sub-figure are calculated over the entire testing part of corresponding dataset.
Reproduced from [3].
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DWT, DCT, and GWALM have similar performances: their signal qualities decrease

radically to smaller than 5 dB when CR approaches 10×. PCA achieves better results

than other conventional methods, possibly due to that in all linear projections, PCA can

achieve the minimum reconstruction error given fixed input/output dimensions, which is

consistent with our previous research [2]. It is worth noting that PCA can be considered as

a type of linearized autoencoder optimized over MSE-based loss functions, which is similar

to CAE; however, PCA cannot take advantage of nonlinear features that are representative

for many high-dimensional data, thus its representation capability is inherently inferior to

CAE. Another limiting factor of PCA for compression is that its CR cannot exceed the

original spike dimension as at least one principal component is required to represent one

spike. The performance of GWALM is not as good as others.

Evaluation of generalization capability of CAE One common issue of learning-based

compression methods is the generalization capability of codebooks learned from training

data. The compression performance is largely dependent on the similarity of the statistics

of testing data relative to that of training data. Thus it is crucial to extract representative

features from training data that can capture the underlying statistical distributions as

accurately as possible. Such capability is of critical importance for a compression method

to stay robust against various non-stationarity of neural activities. For example, individual

spikes in a burst can have more than 50% amplitude variation according to simultaneous

intracellular and extracellular recordings [203]. Electrode drift is another common source

that causes systematic changes in the shape and amplitude of recorded spike waveforms

[237].

To demonstrate that CAE indeed learns representative features instead of simply “mem-

orizing” instances of training data, we used a synthetic dataset C Drift Easy2 noise015

from Wave Clus that simulates the effect of electrode drift and caused waveform variation.

The sequence contains 3444 spikes, and the shapes of spikes gradually change along the

temporal axis. We trained a CAE model using the first 500 spikes and tested the model

on the last 200 spikes in the sequence. Figure 2.20(a) shows clear differences between the

training and testing spikes, primarily including (i) decrease of average spike amplitude,

(ii) reduced noise in the non-polarization parts of spikes, and (iii) a newly emerged spike

cluster with much smaller amplitude, which jointly mimic the effects of waveform variation

and electrode drift. The results given in Figure 2.20(b) show that CAE can compress and
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Figure 2.20: (a) Left: the first 500 spikes in C Drift Easy2 noise015; right: the last
200 spikes in the same sequence. Blue curves in each sub-figure represent the mean of
all spikes. (b) Reconstruction of spikes in C Drift Easy2 noise015 using CAE. 28 spikes
are randomly chosen from the last 200 spikes. Blue and red waveforms are original and
reconstructed spikes, respectively. Configuration of CAE: Mspk/Nfeat = 1/8, K = 128.
Performance on testing dataset: CR=20.26, SNDR=11.32dB. Reproduced from [3].

reconstruct not only spikes similar to the training data with high fidelity, but also unseen

spikes exhibiting significant changes on amplitude and shape.

We have done another experiment to evaluate the generalization capability of CAE

by using different sequences for training and testing, including C Difficult1 with noise

levels 0.2 and 0.05, and C Difficult2 with noise levels 0.2 and 0.05, all of which are from

Wave Clus dataset. C Difficult1 and C Difficult2 are synthesized using different spike

templates. For each sequence, the first 50% of spikes are used for training and the rest 50%

for testing.

The results given in Table 2.2 shows that CAE can generalize well against different spike

templates and varied noise levels. Specifically, (i) when spike templates are the same in the

training and testing data, closer noise levels can lead to higher compression accuracies; (ii)
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Table 2.2: Evaluation of CAE performance by using different sequences for training and
testing. Reproduced from [3].

Training
Testing C Difficult1

Noise 0.05
C Difficult1

Noise 0.2
C Difficult2
Noise 0.05

C Difficult2
Noise 0.2

C Difficult1 Noise 0.05 13.8223 8.271 12.2762 8.0851
C Difficult1 Noise 0.2 13.0852 10.2059 14.4029 10.4476
C Difficult2 Noise 0.05 11.6319 8.4129 15.8518 9.1695
C Difficult2 Noise 0.2 12.3602 9.9329 15.2567 10.9564

Configuration of CAE: K = 128, Mspk/Nfeat = 1/4. Numbers are SNDR (dB).

Figure 2.21: Activation patterns of the VQ codewords in CAE trained on Wave Clus dataset.
From left to right, the numbers of codewords are 32, 64, and 128. The entropies of VQ
codewords are 4.84-bit, 5.82-bit, and 6.78-bit. Reproduced from [3].

when spike templates are different, higher noise levels can lead to better performance. In

the first case, VQ codewords learned from training data are closer to the spike components

in testing data than noise due to the same templates. In the second case, in the absence

of common spike templates, CAE can learn more diverse features from noisier waveforms

that better represent testing data in the latent space. Performance in the first case is

consistently better than in the second case. The results that CAE can generalize well over

different spike templates and background noises suggest the potential application of CAE in

chronic wireless recording experiments to reliably compress neural signals without frequent

re-training or parameter tuning.

Effects of different numbers of VQ codewords Another appealing feature of CAE

is that it can uncover a low-dimensional space from spikes where features naturally conform

to uniform distribution, which facilitates efficient and accurate vector quantization. To

understand this feature, we examine the activation patterns of VQ codewords. As shown

in Figure 2.21, after trained on the Wave Clus dataset, the VQ codewords tend to be

uniformly activated regardless of the number of codewords. In other words, the entropy of
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Figure 2.22: Effects of different Mspk/Nfeat ratios and numbers of codewords on reconstruc-
tion accuracy. K is varied from 16 to 128 for HC1 and from 256 to 2048 for Neuropixels.
(a) Rate-quality curves for both in-vivo dataset. (b) Comparison of accuracies at low and
high Mspk/Nfeat ratios. Error bars representing standard variations of SNDR are labeled.
Reproduced from [3].

VQ codewords is always close to log2K. The situation is similar on other datasets. It should

be noted that the uniformity is attained in the absence of any entropy regularization term in

the loss function of CAE, which is normally required to enforce certain output distributions

[238]. We hypothesize that CAE transforms spikes into a group of relatively invariant and

uniformly distributed features inherent to spikes in the low-dimensional latent space, and

VQ codewords converge to the grid-like spike features via nearest neighbor search. Due to

the uniform distribution of features, the convergence of VQ codewords can be fast, robust,

and accurate.

Under this hypothesis, achieving higher accuracy is bottlenecked by the amount and

quality of spike features output by the encoder, not VQ codewords. To demonstrate this,

we run CAE on the two in-vivo datasets (HC1 and Neuropixels) with different numbers of

codewords and plot their rate-quality curves. As shown in Figure 2.22(a), for each dataset

the number of codewords is varied by up to 8× while the reconstruction accuracy changes
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by only ∼1dB. In comparison, increasing Nfeat by 4× can lead to 3–4dB improvement on

SNDR, as shown in Figure 2.22(b). This feature is useful for hardware implementation,

since the indexing logic that searches the nearest VQ codewords of encoder outputs can be

simplified, thus reducing the processing delay and improving the throughput.

Figure 2.22(b) further shows that when spike morphologies are more complicated, the

accuracy is more insensitive to the number of codewords. Under this condition, it requires

a larger Nfeat to allow for fine-grained sampling from the spike feature space; however,

increasing Nfeat would decrease CR at the same time. To maintain decent CRs, the inherent

resolution of spike features is limited by the upper-bounded Nfeat and hence more codewords

in this case will not be effective in improving accuracy.

Effects of preserving spatial proximity of spikes CAE is capable of extracting

localized features from spikes recorded from channels that are geometrically closed to each

other. We have designed the following experiment to verify that CAE can leverage the

geometric information of spikes to achieve higher accuracies at no cost: simply preserving

their spatial proximity at the input to the network.

We picked 15 channels from the Neuropixels dataset along the longitudinal dimension

of the probe with a spacing of 400 µm. This is to ensure that spikes detected from different

channels are generated by different neurons and thus with independent waveform charac-

teristics. Two CAE models with the same configurations were created, where K = 512,

Mspk = 15, and Mspk/Nfeat is set as 1, 1/2, 1/4, and 1/8. The training and testing spikes

for the two models are the same, except that Model 1 was trained with spikes randomly

shuffled along the channel dimension; Model 2 was trained with spikes preserving their

spatial proximity, e.g., spikes detected from probe channel 1 are fed into CAE input port 1.

The testing performances of the two CAE models are given in Figure 2.23. With training

spikes shuffled along the channel dimension, the spatial proximity was disrupted. The

compression accuracy of Model 1 is consistently poorer than that of Model 2 by 1–2

dB across different Mspk/Nfeat ratios; meanwhile, their CRs are comparable (not shown in

Figure 2.23). Thus, preserving spatial proximity is important for CAE to extract localized

features from multichannel spikes and achieve higher accuracies.
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Figure 2.23: Effects of shuffling spikes along channel dimension on compression accuracies.
For both CAE models, K = 512, Mspk = 15, and Mspk/Nfeat is set as 1, 1/2, 1/4, and 1/8.
Error bars represent standard deviations of SNDR. Reproduced from [3].

Evaluation of clustering performance before and after compression An impor-

tant analysis in neural signal processing is to obtain single-unit activity from raw record-

ings, a process commonly known as spike sorting that classifies spikes to their originating

neurons [170]. Hence it is necessary to evaluate the distortions on spike sorting accuracy

introduced by compression. We used the following datasets from Wave Clus: C Easy1,

C Easy2, C Difficult1, and C Difficult2. From each dataset, we picked two sequences

with the lowest and highest background noise levels, respectively. Spikes were identified

according to the ground truth timestamps. In each sequence, the first 50% of spikes were

used to train the CAE model, and the rest were used for testing. For each spike, the first 3

principal components are extracted as features using PCA. We run K-Means 500 times on

the principal components of spikes from each sequence with randomized centroid initializa-

tions to ensure the best classification result. We repeated the spike sorting pipeline on each

sequence compressed by CAE with different compression ratios, and compared the results

with the ideal classification accuracies obtained from the uncompressed spikes.

In Figure 2.24, we visualize the testing spikes in the 2-dimensional PCA feature space

at different CRs. It shows that with smaller CRs (higher SNDR), compressed spikes tend

to be more “scattered” and resemble the distribution patterns of uncompressed spikes. The

spike sorting results are given in Figure 2.25. In each sub-figure, the two gray dashed
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Figure 2.24: Visualization of spikes in 2-dimensional PCA space. From top to bottom, the
four sequences are C Easy1 noise005, C Easy2 noise005, C Difficult1 noise005, and
C Difficult2 noise005. Sequences with higher noise levels are not plotted because of poor
separation in PCA feature space. Plots in the leftest column are the uncompressed spikes
with ground truth labels. Plots in the second to the sixth columns are compressed spikes
at different compression ratios classified with PCA + K-Means. In each row, compressed
spikes are plotted in the same feature directions as the uncompressed spikes. Reproduced
from [3].

lines represent the sorting accuracies using uncompressed spikes with low and high noise

levels, respectively. With low noise levels, the drop of classification accuracy caused by

CAE compression is less than 4% for up to 178× CR; with high noise levels, the drop of

classification accuracy is slightly larger than with low noise levels, mostly less than 5% except

for C Easy2 where the performance drops by 9% at 161× CR. In addition, on all sequences,

the sorting accuracy stays almost unchanged with respect to exponentially increased CR

(until CR is over 64×). The results suggest that CAE can allow for high CRs without

noticeably compromising spike sorting performance.
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Figure 2.25: Evaluation of clustering (PCA + K-Means) performance before and after
compression using CAE. For all datasets, K = 128, Mspk/Nfeat is varied from 1/1 to 1/16.
Feature dimension after PCA is 3. K-Means is run 500 times on each sequence after PCA
with randomized centroid initializations. In each sub-figure, the two gray dashed lines
represent the sorting accuracies before compression and correspond to the low and hight
noise levels, respectively. Reproduced from [3].

Evaluation of CAE performance in the presence of spike misalignment and over-

lapping For the purpose of reliable and accurate feature extraction, it is often required

that spikes are aligned to the peaks or maximum slopes. However, accurate spike alignment

is difficult in low-SNR recordings due to sampling jitter combined with noise effects [170],

and results in misaligned spikes.

One potential solution is to perform careful spike detection, which discerns “clean” spike

shapes that can be well aligned from noisy backgrounds. However, such operation is often

supervised and time-consuming, and also computationally unrealistic for on-chip and real-

time implementation. To overcome this difficulty, spike compressor is expected to perform

robustly against misalignment. To examine this capability of CAE, we chose a low-SNR

sequence from Wave Clus (C Difficult2 noise02). We added a small temporal jitter to

each ground truth timestamp and extracted spikes. The jitters were randomly sampled from
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Figure 2.26: Performance of CAE against spike misalignment. Each spike is temporally jit-
tered by up to 2, 4, 6, 8, 10 points. Compression accuracy is 10.95dB without misalignment
(gray dashed line). Compression accuracies w/o and w/ denoising CAE are drawn in blue
and gray bars, respectively. Reproduced from [3].

a centered uniform distribution spanning a width from 2 to 10 points with an increment of

2. CAE was trained using the jittered spikes and evaluated by attempting to reconstruct

clean spikes from jittered spikes.

As shown in Figure 2.26, the compression accuracies decrease by 1–6 dB at different ex-

tents of misalignment (blue bars). Here we present a technique to enhance the performance

by configuring CAE as a denoising autoencoder without modifying its structure. Referring

to equation (3), instead of using the jittered spikes x, we use the clean spikes xclean that

correspond to the jittered spikes to compute the loss as:

LCAE = d(xclean, x̂) + d(y, ŷ), (2.21)

where y and ŷ are still calculated from the jittered spikes x. The access to xclean is feasi-

ble since CAE needs to be trained off-line, where training spikes can always be accurately

aligned. Optimized with the new loss, CAE is encouraged to learn reconstructing clean

spikes from misaligned spikes – an essentially denoising process, thus can perform substan-

tially better on unseen spikes with similar misalignment (gray bars in Figure 2.26).

Another issue that will hurt compression performance is spike overlapping, which can

be frequent in high-density recordings, especially with high-rate spike activities. Resolving

overlapped spikes is a challenging task. In the recent spike sorting pipelines (e.g. KiloSort
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Figure 2.27: Performance of CAE against spike overlapping. Original and reconstructed
spikes are drawn in blue and red, respectively. Configuration of CAE: K = 128 and
Mspk/Nfeat = 1/4. Reproduced from [3].

[239]), it is approached by comparing overlapped spikes with an exhaustive search of linear

combinations of clean spike templates (typically two spikes with varied amplitudes and

phases), and requires iterative processing that can only be afforded off-line. In this work,

our design goal is to make CAE capable of compressing both clean and overlapped spikes as

accurately as possible, and leave the computationally expensive resolving overlapped spikes

to off-line processing. As shown in Figure 2.27, CAE shows a promising performance in

representing both clean and overlapped spikes at a reasonably good CR.

2.4.4 Feasibility of On-Chip Implementation

Deployment of deep learning models onto hardware platforms with limited resources and

constraints of power/heat dissipation is challenging due to the excessive amount of model

parameters and incurred computations. For example, ResNet-152, the first deep learning

model that won the ImageNet classification challenge by surpassing human-level accuracy,

contains 60 million weights and requires 11.3G multiply-accumulates (MAC) to process one

image [240]. Consequently, the model size of ResNet-152 is over 200MByte. It is imprac-

tical to implement compression models with similar sizes as application-specific integrated

circuit (ASIC) chips. Hence it is crucial to take into serious consideration the complexity

of compression models for on-chip integration with analog front-end recording circuitry.
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Table 2.3: Model parameters of encoder and VQ. Reproduced from [3].
Layers Output Size Parameters

Convolution Na, 256, 48 1024

Normalization N, 256, 48 512

ResNeXt (3×conv.) N, 256, 48 4608

Downsampling N, 256, 24 0

ResNeXt (3×conv.) N, 256, 24 4608

Downsampling N, 256, 12 0

Convolution N, 16, 12 4096

Normalization N, 16, 12 32

Vector Quantization (256
codewords) N×16, 12 3072

Total 17952
a N denotes batch size in Table 2.3 and 2.4.

Table 2.4: Model parameters of decoder. Reproduced from [3].
Layers Output Size Parameters

Deconvolution N, 256, 12 4096

Normalization N, 256, 12 512

Upsampling N, 256, 24 0

ResNet (2×deconv.) N, 256, 24 394240

Upsampling N, 256, 48 0

ResNet (2×deconv.) N, 256, 48 394240

Deconvolution N, 4, 48 1028

Total 794116

We first examine the model size of CAE. CAE contains 8 convolutional layers in the

encoder network interleaved with pooling and normalization layers which require none or

trivial amount of parameters. Table 2.3 and 2.4 give detailed information of a CAE model

trained on Neuropixels dataset for the on-chip and off-chip parts, respectively. The out-

put size of each layer follows the format of {batch size, channel dimension, feature

dimension}. The parameters of the encoder and VQ are counted together as they are to be

on-chip implemented. The total amount of parameters is 812 K, which is a minor fraction

of that of ResNet-152; furthermore, the encoder (including VQ) is over 44× smaller than

the decoder, thanks to the grouped convolution technique employed for the ResNeXt mod-

ule, resulting in fewer than 18 K parameters. Assuming an 8-bit weight precision (which

has been used successfully in several commercial products such as Tensor Processing Unit),
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it would require 18KByte memory to store the CAE on-chip. Taking Eyeriss [241] as a

reference design (one of the state-of-the-art deep learning chips), it has 181.5 KByte on-chip

SRAM and 108 KByte global buffers, both of which are sufficient to load the on-chip part

of CAE.

Next we examine the computational complexity and power efficiency of the on-chip part

of the CAE model reported in Table 2.3. On average, it takes 79.25 K MACs to process

one spike for on-chip computation. To estimate the power efficiency, again we refer to

Eyeriss as a reference design, which has an energy efficiency of 83.1 GMACs per Watt

[241]. Therefore, the on-chip part of CAE would consume 0.95 µW to process one spike

if implemented on Eyeriss. Assuming an average firing rate of 20 Hz per channel, the

power consumption of spike compression using CAE would be 19 µW/channel, which is

comparable to that of analog recording circuitry (10–50 µW/channel [242]).

Regarding the processing speed of the CAE model, Eyeriss has a throughput of at

least 16.8 GMACs. Referring to the requirement of 79.25 KMACs/spike derived earlier,

the on-chip CAE model has a theoretical peak throughput of 0.22 M spikes. However, this

astonishing processing capability cannot be achieved, because the power density of invasive

neural implants that conduct brain signal sensing, processing, and transmission must adhere

to rigid regulations, that is smaller than 400 µW/mm2, to prevent from damaging brain

tissues caused by increased temperatures as a result of heat dissipation [243]. The power

density of Eyeriss is 22.67 mW/mm2 at a throughput of 23.1 GMACs. Constraining the

power density to 400 µW/mm2, the highest throughput is 0.4 GMACs, which translates

to processing around 5000 spikes simultaneously. As neuronal firing is in general sparse

and concurrent firing of multiple nearby neurons is infrequent, the 5000 spikes throughput

should be able to support thousands of recording channels simultaneously.

2.5 Summary

In this chapter, we discussed two unsupervised neural data compression algorithms about

their mathematical details, hardware implementation feasibility, and applications to differ-

ent types of neural data recorded with various models of electrodes.

Streaming PCA is originally motivated from the observation that in the full spectrum

of neural data processing, LFP compression has long been a missing piece in literatures.
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We found that by properly arranging the recording data matrix, it is feasible to compress

multichannel LFPs using the same computational structure of PCA-based feature extraction

as that of spikes. Streaming PCA is fully adaptive, autonomous, and suitable to process

streaming data without training an expensive data covariance matrix. We developed a

streaming PCA chip, that is fabricated in a 65nm CMOS technology, and features an ultra-

low-power design, consuming only 144nW/channel for LFPs and 3.05µW/channel for spikes.

In compressing LFPs recorded with a 4-shank, 32-channel probe, the chip is configured as

k = 4 and p = 32, achieving an 8× compression ratio and 1∼7% reconstruction errors;

in compressing LFPs recorded with a 10-line, 100-channel MEA, the chip is configured as

k = 4 and p = 40, achieving a 10× compression ratio and ∼10% reconstruction errors; in

compressing spikes, the chip is configured as k = 4 and p = 100, achieving a 25× compression

ratio and ∼8% reconstruction errors. The chip can also adapt to nonstationary spike data

both smoothly and swiftly without compromising reconstruction accuracy.

CAE, on the other hand, is a DNN-based spike compression model to significantly reduce

the data rate of spikes in large-scale neural recording experiments. Compared with existing

methods, CAE can raise the CR to 20–500× while provides comparable or better signal

qualities. There are several advantageous features of CAE:

• CAE can extract representative features from spikes, which are robust to non-stationarity

of neural activities (waveform variation and electrode drift) and recording imperfec-

tions (spike misalignment and overlapping).

• CAE is capable of leveraging the spatial proximity of spikes from multiple channels

to improve compression performance.

• CAE allows for high compression ratios while retaining spike sorting accuracy.

• CAE features an asymmetric model structure, in which the encoder can be designed in

a way that requires much less hardware resources than the decoder without undermin-

ing feature extraction capability, thus making CAE very suitable for hardware-efficient

deployment into implantable neural recording systems.

We also provided quantitative evaluation of implementing CAE on a recent state-of-the-

art deep learning acceleration chip Eyeriss, and demonstrated the potential to support

thousands of recording channels simultaneously for spike compression.
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Essentially, streaming PCA and CAE each represents a type of methods operating in

a distinctive feature space. Streaming PCA converts signals into an orthogonal space with

the directions of axes capturing the data variance in the descending order (orthogonal

domain). In comparison, the hierarchical features extracted by CAE in the latent space

are trained to optimize the reconstruction quality thus accuracy is guaranteed; meanwhile,

compression is gained from the dimensionality reduction achieved by the encoder and the

bottleneck structure of the network (low-dimensional latent space) as well as the entropy

coding based on VQ results. Furthermore, CAE features can be trained end-to-end, which

avoids any heuristic constructions that may limit performance.



Chapter 3

Semi-Supervised Representation

Learning for Spike Sorting

3.1 Overview

Understanding the coordinated activity underlying brain computations requires large-scale,

simultaneous electrophysiological recordings from distributed neuronal structures at a cellular-

level resolution. A key step in interpreting the multi-unit neural activities is spike sorting,

the process of detecting spiking events from continuously sampled extracellular voltages and

assigning the events to putative neurons [170, 244]. Spike sorting consists of three main

steps: detection, feature extraction, and clustering. Spike sorting is important for many

downstream investigations, for instance, individual neurons’ tuning properties, firing char-

acteristics, as well as the lateral inhibition and excitatory-inhibitory competition between

nearby neurons [86].

Recent works of spike sorting are mainly based on three fundamental types of algorithms

(oftentimes a mixture of them): template matching [239, 245, 237], density-based clustering

[245, 246, 247], and model-based clustering [248, 237]. Template matching assumes that

extracellularly recorded signals can be decomposed into a weighted sum of spike templates

plus noise. Identifying and clustering spikes usually requires solving a customized opti-

mization problem through iterative computations to infer spike times and waveforms. In

density-based clustering, spikes are grouped into regions of higher densities than the rest

in a feature space, requiring little or no prior knowledge about the data. In practice, the

66
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number of clusters is often sensitive to the parameter that determines the radius of neigh-

borhood to estimate densities. Furthermore, calculating the distance between every pair of

data points in each iteration could drastically slow down the processing. Model-based clus-

tering classifies spikes by fitting assumed model structures (e.g., Gaussian mixture model,

t-distribution) to the empirical data distribution. It also allows incorporating prior informa-

tion or assumptions into modeling. However, the learning and inference of such probabilistic

models often incur high computational costs.

One important commonality of the recent spike sorting methods is the request for hu-

man knowledge to improve sorting performance. Human supervision is necessitated due

to the lack of ground truth information (e.g., the number and the identities of neurons)

and that even well designed spike sorting algorithms cannot exhaustively cover all possible

situations. For example, in [237], an interactive clustering is designed to allow users to

merge or split clusters for model re-fitting. There are attempts to design fully unsuper-

vised, automated spike sorting algorithms [249, 250, 247, 251]. Despite these efforts, in

practice semi-automatic spike sorting is still widely adopted to ensure sorting performance.

In general, human supervision is used primarily as a step of post-processing in existing spike

sorting algorithms for correcting the erroneous or suboptimal decisions made by the auto-

mated clustering routines. There are shortfalls of this “cluster-refine-cluster” arrangement:

1) It requires a suitable feature space for visualizing and manipulating spikes, of which the

design is difficult and mostly heuristic; 2) Human supervision can only happen after the

collection and automated clustering of a vast quantity of spikes, making it less suitable for

online decoding experiments that require minimum processing delay.

In recent years deep learning has made rapid advancements in various applications such

as computer vision and natural language processing [252, 138, 253]. On some specific tasks,

e.g. image classification [226], the performance of deep learning models has already sur-

passed human-level accuracy. As sorting spikes is similar to classifying images by nature, it

is tempting to leverage deep learning for spike sorting and achieve human-like performance

or even beyond. There has been a few works along this direction with some preliminary

results being made [248, 254, 255]. However, there are several important issues about apply-

ing deep learning for spike sorting that remain unaddressed. First, the deep learning models

presented in these works target only spike detection, which is the first step of spike sorting,

leaving the rest steps, especially clustering, still handled by conventional approaches that
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suffer the aforementioned limitations. Second, these works did not propose a principled ap-

proach to mitigate the data-hungry limitation of deep learning that is particularly critical

in spike sorting. Deep learning models normally requires a large number of labeled training

examples to learn an accurate mathematical mapping from inputs to targets, whereas hu-

mans can learn abstract relationships in a few trials, a capability commonly referred to as

few-shot learning. Meanwhile, it is impractical and labor-intensive to ask domain experts in

neurophysiology to manually label sufficient amount of spikes (e.g., hundreds to thousands)

for training deep learning models. These limitations, especially the second one, severely im-

pede effective utilization of deep learning models in spike sorting, and, in a broader sense,

neural signal processing.

In this work, we propose a Few-Shot Spike Sorting (FSSS) deep learning model for semi-

automatic spike clustering. The proposed work is not intended to be a complete solution

of spike sorting, instead it focuses on feature extraction and clustering, and can be used

together with recent works such as SpikeDeeptector [255] to provide a complete flow of

spike sorting. FSSS has a number of desirable properties. First, it can learn how to sort

spikes from a small number of examples labeled by human operators (manually or semi-

manually), thereby mitigating the data-hungry limitation of deep learning models. This few-

shot learning capability is achieved primarily through an adversarial representation learning

process, which is inspired by the meta-learning theory from machine learning community

[256, 257]. Second, thanks to the end-to-end training of the deep learning model, it avoids

the handcrafted design of a suitable feature space for visualizing and manipulating spikes,

and thus can better imitate the way human operators sort spikes and avoid problematic

clustering decisions that might be made by automated routines. Third, thanks to the layer-

wise structures with no loops, it can be significantly accelerated by dedicated hardwares

such as graphics processing units (GPUs) and has the potential to process spikes from

hundreds of thousands of recording channels in real-time.

In addition to FSSS, we propose a lightweight clustering routine termed DidacticSort

to aid users in labeling spikes semi-manually. DidacticSort processes spikes in a rudimen-

tary yet robust way: Spikes are progressively assigned to the closest clusters based on the

Euclidean distances between the discriminative part of spikes and cluster templates. A new

cluster is created if a spike is too distant from all exiting clusters. Despite the simplicity,

it performs robustly and can generate high-quality candidate clusters from typically a few
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Figure 3.1: Spikes are from an MEA recording dataset. Original spikes versus spikes filtered
by a Hanning window. Each spikes contains 48 samples. The figure shows that the noisy
parts on the two sides of spike peaks are significantly attenuated, while the central parts of
spikes are left almost intact.

hundred spikes.

3.2 Methods

3.2.1 DidacticSort

We designed a simple and effective spike sorting routine, DidacticSort, to aid users in

labeling spikes semi-manually. Detected spikes are first aligned to their absolute peaks.

Next, spikes are windowed by a customized Hanning filter Spk Hann to attenuate the

spike waveforms on the two sides of the peak, with stronger attenuations if farther away

from the peak. Spk Hann is created by concatenating the head and the tail parts of two

conventional Hanning windows, as detailed by (3.1):

whead(n) =
1

2
(1− cos(

2πn

2×Nhead − 1
)),

wtail(n) =
1

2
(1− cos(

2πn

2×Ntail − 1
)),

Spk Hann = {whead[1 : Nhead], wtail[−Ntail : end]}.

(3.1)

Windowing spikes is motivated by the heuristic that spikes belonging to different clusters

can be mainly differentiated by the shapes of depolarization and repolarization; the rest are

more random and susceptible to noise, which should be considered with less importance.

The effect of windowing spikes is illustrated in Figure 3.1, showing that the noisy parts of

spikes on the two ends are significantly attenuated while the central parts are almost intact.

DidacticSort works as follows: It processes spikes sequentially. At the beginning, a

spike template is initialized as the first spike. A spike is first compared to all templates
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Algorithm 2 DidacticSort

Require: Spike events X ∈ RN×p, distance threshold dist thr
Ensure: Number of clusters k, spike IDs I ∈ RN , spike templates S ∈ Rk×p

1: X̃← Spk Hann ◦X
2: repeat
3: k ← 1, I← 1, S← X̃(1,:)

4: Set dist thr manually
5: for i← 2 to N do
6: x← X̃(i,:)

7: d1:k ← L2 dist(x,S)
8: if min(d1:k) > dist thr then
9: k ← k + 1, I(i) ← k

10: S← concatenate(S,x)
11: else
12: min loc← argmin(d1:k)
13: I(i) ← min loc

14: S(min loc,:) ← mean(X̃(I==min loc,:))
15: until kmin ≤ k ≤ kmax
16: return k, I1:N ,S

(only one at the beginning) to find the smallest Euclidean distance. If the distance is greater

than a pre-defined threshold dist thr, this spike is considered as the first member of a new

cluster and also initializes the corresponding template; otherwise, the spike is assigned to

the closest cluster, and the template of that cluster is updated by taking the average of

all assigned spikes. After processing all spikes, it is up to the users to evaluate the quality

of clustering, and decide which clusters to keep or start a new round of clustering with a

different dist thr. It should be noted that dist thr is the only tunable parameter to achieve

satisfying results, similar to the bandwidth parameter in Mean Shift [258]. Intuitively, a

large dist thr would lead to a small number of “loosened” clusters, whereas a small dist thr

would lead to many “condensed” clusters. Experimental results show that the number of

spike clusters is much less sensitive to dist thr than the bandwidth parameter. The details

of DidacticSort are given in Algorithm 2, where “◦” denotes element-wise multiplication.

3.2.2 Few-Shot Spike Sorting (FSSS)

At the core of the proposed model is an autoencoder [220], a neural network structure

widely used to learn compact data representations by forcing outputs to be identical to

inputs and imposing constraints over the latent space. More formally, the operations of a

vanilla autoencoder can be described as x̂ = gs(ga(x;φ);θ), where x and x̂ are input and
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output data; ga and gs denote analysis and synthesis, respectively, or are more commonly

referred to as encoder and decoder (parameterized by φ and θ).

A deficiency of vanilla autoencoder if used as a generative model is that it can only

map a fixed input x to a fixed low-dimensional vector z. In other words, the only source of

stochasticity of the latent variables z comes from the input x, which restricts the generative

capability of the encoder network. We therefore propose to use variational autoencoder

(VAE) [259] that formulates the encoder as a generative function pφ(z|x) and the decoder

as a likelihood function pθ(x|z). As direct computations of the true posterior pφ(z|x) =

pφ(x|z)pφ(z)/pφ(x) is intractable, we approximate it with an isotropic Gaussian qφ(z|x) =

N (z;µ,σ2I). To facilitate the representation of qφ(z|x) through the encoder network ga

and the training of ga with back-propagation, the latent variable z can be reparameterized

as z̃ = µ + σε, where the noise variable ε ∼ N (0, I), and both µ and σ can be derived by

the encoder function ga from input x. In so doing, the stochasticity of the latent variable z

comes not only from x, but also from the random Gaussian noise ε, thereby overcoming the

limitation of fixed mapping. The VAE parameters {φ,θ} can be updated by minimizing

the following loss function:

LV AE = DKL(qφ(z|x)||pθ(z))− Eqφ(z|x)(log pθ(x|z)), (3.2)

where pθ(z) is the prior of z, conveniently assumed Gaussian z ∼ N (0, I); the KL-divergence

can be computed in closed-form as both qφ(z|x) and pθ(z) are Gaussian distributions; the

second term is equivalent to the Euclidean reconstruction loss. In this work, we adopt a

smoothed L1 loss defined as follows:

Loss(x,x′) =
1

N

∑
i

zi,

zi =


1
2(xi − x′i)2, if |xi − x′i| < 1.

|xi − x′i| − 1
2 , otherwise.

(3.3)

as a replacement of the Euclidean distance, which can provide more appropriate amount of

gradient during back-propagation and is more robust to outliers.

In this work, one central task of the VAE model is to infer the label information y from

spikes along with µ and σ. As shown in Figure 3.2, the VAE encoder qφ(y, z|x) takes

spikes x as inputs and outputs 1) a one-hot vector y through a softmax layer that predicts

cluster labels, and 2) µ and σ that specify the Gaussian distribution of z. The decoder
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Figure 3.2: Diagram of the proposed FSSS model based on adversarial autoencoder. The
two discriminators are implemented as feed-forward neural networks, both of which output
a probability through a sigmoid unit.

pθ(x|y, z) takes both y and z as inputs and is practically a replication of the encoder in the

reverse order to reconstruct the original spikes x. Our objective is to disentangle y from z

such that we could use the limited label information to regularize and derive the posterior

distribution qφ(y|x).

To do that, we resort to the generative adversarial networks (GAN), a framework that

establishes a min-max adversarial game between a generative model G and a discriminative

model D [260]. G generates data from random samples z subject to a prior p(z), and D

estimates the probability that a sample comes from the actual data distribution x ∼ pdata

instead of G. The purpose is to train G to maximize the probability of D making mistakes:

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼p(z)[log(1−D(G(z)))]. (3.4)

In the context of spike sorting, the encoder qφ(y, z|x) is the generator G that maps

spikes x to the labels y, as well as the mean µ and the variance σ. Two discriminative

networks, Dy and Dz, are optimized to differentiate y and z from the true samplings yD

drawn from a categorical distribution, and zD from a d-dimensional Gaussian distribution:

yD ∼ Cat(p1, p2, . . . , pk) and zD ∼ N (0, I), (3.5)

where k is the number of clusters obtained from performing DidacticSort, and p1, p2, . . . , pk

denote the event probabilities of the categorical distribution, representing the proportions of
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Algorithm 3 FSSS

Require: Labeled spikes X̂ ∈ RN1×p and IDs Î ∈ RN1 , unlabeled spikes X ∈ RN2×p

Ensure: IDs of unlabeled spikes I ∈ RN2

1: repeat
2: // Reconstruction
3: Sample Xn2×p randomly from XN2×p
4: X

′
n2×p ← gs(ga(Xn2×p;φ); θ)

5: Lrecon ← Smooth L1 dist(X
′
n2×p,Xn2×p)

6: Update ga and gs with ∇φLrecon and ∇θLrecon
7: // Regularization
8: Draw Zn2×d ∼ N (0, I), and Y1:n2 ∼ Cat(y)
9: Z

′
n2×d, Y

′
1:n2
← ga(Xn2×p;φ)

10: Lgauss ← −mean(log(Dz(Zn2×d)) + log(1−Dz(Z
′
n2×d)))

11: Lcat ← −mean(log(Dy(Y1:n2)) + log(1−Dy(Y
′
1:n2

)))
12: Update Dz and Dy with ∇Lgauss and ∇Lcat
13: Lreg ← −mean(log(Dz(Z

′
n2×d)))−mean(log(Dy(Y

′
1:n2

)))
14: Update ga with ∇φLreg
15: // Semi− supervision
16: Sample X̂n1×p randomly from X̂N1×p
17: Ẑ

′
n1×d, Ŷ

′
1:n1
← ga(X̂n1×p;φ)

18: Update ga with ∇φCross Entropy(Ŷ
′
1:n1

, Î1:n1)

19: until Ŷ
′
1:N1
≈ Î1:N1

20: ZN2×d, I1:N2 ← ga(XN2×p;φ)
21: return I1:N2

each cluster among the total labeled spikes. We should also note that samples zD ∼ N (0, I)

are independent to ε ∼ N (0, I).

Therefore, the key to successful spike sorting using the model structure given in Figure

3.2 is to first train the encoder qφ(y, z|x) (also the decoder pθ) with unlabeled spikes such

that it can generate y and z that are sufficiently close to yD and zD, respectively, followed by

using a small amount of spikes labeled by DidacticSort to guide the parameter updating of

the encoder qφ(y, z|x) hence it can correctly predict labels of input spikes. The algorithmic

procedure of FSSS can be split into three phases:

• Reconstruction: The autoencoder is trained with an unlabeled mini-batch to update

the encoder and the decoder by minimizing the reconstruction error measured in

smoothed L1 distance.

• Regularization: Dy and Dz are updated by differentiating true samples generated

by the categorical and Gaussian distributions from the fake samples generated by
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Figure 3.3: Structural diagram of the encoder and the decoder networks. Activation layers
and normalization layers are skipped from the diagram for simplicity. M is the dimension
of input channels, which is by default 1.

the encoder. This is followed by updating the encoder to confuse the discriminative

networks.

• Semi-supervision: The encoder qφ(y, z|x) is updated by minimizing the cross-entropy

cost on the mini-batch of spikes labeled by DidacticSort.

The detailed mathematical description of FSSS is given in Algorithm 3.

3.2.3 Encoder and Decoder Networks

The detailed diagram of the proposed autoencoder is shown in Figure 3.3. The design of

the encoder and decoder is almost identical to that for CAE discussed in Chapter 2.4. The

last stage of the encoder network contains three separate dense layers that maps the current

latent feature to the labels y, the mean µ, and the variance σ. The decoder network is

a reverse implementation of its encoder counterpart, where convolution and downsampling

are replaced by transposed convolution (deconvolution) and upsampling.
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3.3 Experiments

3.3.1 Baselines

We prepared two baseline methods to compare with the proposed spike sorting algorithm.

The first is the classic, unsupervised, wavelet-based clustering algorithm Wave Clus from [4];

the second is a DNN-based model, which is essentially the encoding network of the model

structure of FSSS and termed Base NN. When using the encoder as a stand-alone classifier,

we ignore the encoder outputs µ and σ, and take y as the predicted labels. Training of the

classifier is the same as the semi-supervision step as shown in Algorithm 3. The motivation

for comparing with Base NN is to demonstrate the advantage of the adversarial learning

built upon the VAE structure that enables high-quality few-shot learning.

We run all experiments on a system equipped with Intel i7-6800K@3.40 GHz, NVIDIA

GeForce Titan Xp 12GB, 32GB memory, and 256GB SSD. Both FSSS and Base NN are

implemented using the deep learning framework PyTorch 1.0.1 (with CUDA 10.0) [231].

We used the ADAM optimizer [232] with a learning rate 1e-4, and evaluated the model

performance after 150 epochs with a batch-size 64.

3.3.2 Sorting Synthetic Neural Data

The synthetic dataset we used is Wave Clus [4]. This collection of datasets is generated

by inserting multiple instances of several spike templates to continuous background noise

of various levels, thus realizing different signal-to-noise ratios (SNRs). Wave Clus consists

of four groups of datasets, with each group synthesized using a unique set of spike tem-

plates and a number of different background noise levels. We chose datasets with relatively

high background noise levels from each of the four groups to more clearly differentiate

the performance of tested methods, resulting in seven datasets: C easy1 (0.3, 0.35, 0.4),

C easy2 (0.15, 0.2), C difficult1 (0.15, 0.2), and C difficult2 (0.15, 0.2). All the se-

lected datasets contain overlapping spikes, which makes spike sorting more challenging.

Spikes were extracted using the ground truth timestamps included in the datasets, with

64 samples per spike. As the spike labels and number of clusters are known a priori, we

skipped the step of DidacticSort on the selected datasets. For each dataset, we first

excluded overlapping spikes, and compared the spike sorting performance of Wave Clus,

Base NN, and FSSS; we then re-run the comparison between Base NN and FSSS on the
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Table 3.1: Comparison of spike sorting performance between Wave Clus, a baseline neural
network, and the proposed FSSS on the Wave Clus dataset (w/ and w/o overlapping spikes).
The performance of Wave Clus is from [4]. Both Base NN and FSSS used 100 labeled spikes
that are randomly chosen.

noise
level

No. of spikes
(w/o o.l.)

Wave Clus Base NN FSSS
No. of spikes
(w/ o.l.)

Base NN FSSS

C easy1 0.3 2629 89.50% 97.23% 99.96% 3475 94.13% 99.29%
0.35 2702 82.12% 95.42% 99.44% 3534 95.22% 98.84%
0.4 2645 71.98% 92.43% 98.07% 3386 91.51% 98.78%

C easy2 0.15 2648 98.30% 96.42% 99.77% 3411 95.77% 98.40%
0.2 2715 88.73% 96.13% 99.57% 3526 88.24% 98.98%

C difficult1 0.15 2660 96.95% 83.78% 97.33% 3472 82.03% 93.21%
0.2 2624 75.19% 71.60% 91.55% 3414 66.45% 90.59%

C difficult2 0.15 2631 83.16% 94.58% 99.61% 3440 94.40% 99.13%
0.2 2716 46.17% 85.03% 99.81% 3493 85.76% 99.17%

complete dataset that includes overlapping spikes. We used the same 100 labeled spikes

that were randomly chosen from the dataset to supervise the training of Base NN and FSSS.

The results are given in Table 3.1. When processing non-overlapping spikes, FSSS out-

performed both Wave Clus and Base NN by large margins especially on more challenging

datasets. For example, FSSS was over 50% better than Wave Clus on C difficult2 (0.2),

and nearly 20% better than Base NN on C difficult1 (0.2). Base NN achieved better per-

formance than Wave Clus in general, except for C easy2 (0.15) and C difficult1 (0.15,

0.2). When processing a mixture of both overlapping and non-overlapping spikes, FSSS

achieved consistently better results than Base NN by 2.6∼24.1%.

3.3.3 Improvements of FSSS over Base NN

Here we are interested in quantifying the improvement of FSSS over Base NN for sorting

spikes in a different way than that used in Table 3.1. Specifically, we investigate how many

more labeled spikes, in addition to the 100 common spikes, Base NN needs to achieve sorting

performance on par with FSSS. This measurement can give a more intuitive estimation of

the effort saved by FSSS on collecting and labeling training data.

We chose the dataset with the highest background noise level from each of the four

groups. For each dataset, we started from 100 labeled spikes for training Base NN and

recorded the classification accuracy; we then repeated the following step, by expanding the

training dataset with another 100 randomly selected labeled spikes (different from existing

training spikes) and re-training Base NN, until the testing performance of Base NN exceeded

that of FSSS obtained on the very first 100 labeled spikes.
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Figure 3.4: Number of additional labeled spikes required by Base NN to catch up with FSSS

on classification accuracy. For each dataset, the volume of training spikes increments by
100 spikes each time.

The results are given in Figure 3.4. In general, FSSS needs much less labeled spikes to

achieve the same level of classification accuracy. Specifically, Base NN took additional over

400 spikes to catch up with FSSS on C easy1 and C difficult2, and around 200 spikes

on C easy2 and C difficult1. On all datasets, the first additional 100 spikes contributed

the most significant raise of classification accuracy. It should be noted that the actual

amount of additional labeled spikes required by Base NN to catch up with FSSS could be

more. A recent study [261] suggests that there exists forgettable events in the training

dataset, defined as those whose predicted labels fluctuate during training, that determine

the classification margin in a way similar to the role of support vectors in support vector

machine. For a relatively simple, small-scale dataset like Wave Clus, its forgettable events

may constitute a small proportion of the entire dataset, and thus might be insufficient to

gauge the difference between FSSS and Base NN on this regard.



78

Figure 3.5: DidacticSort on 300 spikes from MEA data (dist thr = 4). The numbers
in parentheses are the spike count of each cluster. Each spike contains 48 samples. The
vertical axis of each sub-figure is in µV. Ten clusters (1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12) are
kept.

3.3.4 Sorting Neural Data Recorded with MEA

We also tested the proposed algorithm on in vitro data recorded with a multielectrode

array (MEA). Mouse hippocampal neurons were cultivated on transparent commercial MEA

arrays. Neurophysiological data recordings were carried out on DIV11 and DIV12 with 20

kHz sampling rate. The MEA arrays were mounted on the recording hardware located

outside of the incubator. The recording was maximized to be 10 minutes to prevent pH

changes.

We selected one channel data with active spiking activities from a 10-minute recording

for demonstration. 3064 spikes were detected from this data sequence using a median-based

spike detection method [262], with 48 samples per spike. Figure 3.5 shows the 18 clusters

found by DidacticSort from 300 randomly chosen spikes with dist thr set as 4. We chose

the 10 clusters (292 spikes in total) that contain 5 spikes or more, and kept these labeled

spikes for next-step processing. The criterion of choosing clusters is at the user’s choice. The

proportions of the spike counts of these clusters are used to initialize the event probability of

the categorical distribution in FSSS, which can in practice accelerate convergence of model

training compared with a uniform initialization.

Next we trained the deep learning model of FSSS. We found the resulting model quite

robust to the latent dimension of the autoencoder, which can be arbitrary from 3 to 10.
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Figure 3.6: Ten sorted clusters on all the unlabeled spikes processed by FSSS. The vertical
axis of each sub-figure is in µV. A few clusters contain several outliers that are not labeled
by DidacticSort.

With ∼300 labeled spikes, the training requires around 2 minutes on a server with one

Intel i7-6800K, one GeForce Titan Xp 12 GB, and 32 GB memory. Deployed in inference

mode, the model can sort spikes at a speed of over 200,000 spikes/second on one GPU,

which could support hundreds of thousands of channels at the same time, and facilitate

large-scale neural signal processing.

Figure 3.6 shows the ten clusters found by FSSS from all the unlabeled spikes, which

correspond to the sample clusters in Figure 3.5 identified by DidacticSort. Some of the

sample clusters contain very few spikes, yet FSSS can reliably recognize and classify similar

unseen spikes by exploiting the limited supervised information. It should be noted that

this is fundamentally different from template matching in which a new spike is exhaustively

compared with every template to find the nearest cluster; instead, FSSS learns a parametric

function that characterizes the statistical distributions of clusters, thereby encoding the

label information of spikes analytically. It should also be noted that there are a few outliers

in some of the clusters, which mostly came from the left-out spikes by DidacticSort. Given

the rare occurrences of the outliers, their impact on the downstream tasks such as decoding

is minimal. Figure 3.7 shows the spike templates of the 10 identified clusters.

3.4 Summary

In this chapter, we propose a new spike sorting paradigm that consists of two algorithms,

DidacticSort and FSSS. DidacticSort is a simple classification routine with only one

tunable parameter that can quickly generate candidate clusters using a small number of
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Figure 3.7: Spike templates of the ten clusters.

spike samples. It keeps a minimum level of pre-processing of spikes and so as the influence of

users’ decision making. FSSS features the learning capability from a small amount of labeled

samples and generalizing the learned knowledge to many unseen events for unsupervised

clustering. Combined together, FSSS can imitate the way DidacticSort clusters spikes

that encompasses human’s decision making. The proposed paradigm brings several useful

features to the development of spike sorting: 1) Human knowledge can be better utilized as

guiding (prior instructive information) instead of merely intervention (post-processing) to

achieve more reasonable spike sorting results; 2) FSSS can learn a parametric function that

encodes the categorical distribution of spike clusters analytically, thus can avoid iterative

computations and easily be accelerated by GPUs to facilitate online, large-scale neural

signal processing in real time; 3) The paradigm only requires a small number of spikes for

labeling & model training, and can perform robustly on large amounts of unseen data.



Chapter 4

Graph-Based Hierarchical

Representation Learning of EHR

4.1 Overview

Recent years have seen an explosion in the growth of electronic health record (EHR) data,

which has motivated extensive use of machine learning methods, in particular deep learning,

in tasks such as diagnosis prediction [263, 155], risk prediction [113, 264], and patient

subtyping [122, 265]. Under the hood, all these tasks involve some form of neural networks

that first learn features or patterns from data, and then make predictions.

One major challenge of representation learning in EHR comes from the heterogeneity of

the various medical entities that compose EHR data, including diagnoses, prescriptions, lab

test results, medical procedures, doctor profiles, and patient demographics, etc., that are a

mixture of tabular values, text notes, and medical codes. Furthermore, the relational and

longitudinal structure of organizing medical entities in patient medical records (or patient

journeys) makes it more challenging to design effective and scalable representation learning

algorithms: as illustrated in Table 4.1, a patient may visit one or more clinical sites multiple

times with irregular time intervals, with each visit generating a varying number of medical

service records (diagnoses, prescriptions, or procedures) from possibly different doctors.

In addition, hospitals or clinical institutes may use different or in-house medical coding

systems. As a result, one medical service could have multiple codes, which challenges the

transferability of representations learned from individual systems.

81
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Table 4.1: Snippet of a patient journey. ‘dx’ and ‘px’ represent diagnosis and medical
procedure, respectively.

Day Doctor Medical Service

1 A dx-Iron Deficiency Anemias

15 A px-Chemotherapy
A px-Infusions
B px-Injectable Chemotherapy Drugs
B dx-Antineoplastic Chemotherapy
A dx-Antineoplastic Chemotherapy

55 A px-Chemotherapy
A px-Infusions
A px-Injectable Chemotherapy Drugs
A dx-Antineoplastic Chemotherapy
A dx-Neutropenia

To address the above challenges, several related works have been proposed. Choi et al.

leveraged the multilevel structure of EHR data where diagnosis codes categorize treatment

codes within each visit and learned a multilevel medical embedding for predictive health-

care [152, 153]. Though being effective, their approaches do not consider the temporal

characteristics unique to individual medical services, hence cannot address the irregular

time intervals of visits that are pervasive in patient journeys. To incorporate temporal fea-

tures into EHR-based representation learning, some recent works treated medical services

in patient journeys as words in documents [157, 266], and since similar words (medical ser-

vices) tend to share similar contexts, word embedding techniques such as Word2Vec [127]

can be adopted to train the embedding vectors of medical services. In this approach, a key

design choice is the length of context window, or temporal scope, which should preferably

vary for different medical services (for example, the influence of acute diseases has shorter

time spans compared with that of chronic conditions). As manually specifying the temporal

scope for each service is infeasible, an attention mechanism is proposed in [266] to derive

a “soft” temporal scope for each service, where the attention coefficients can be trained

jointly with the parameters in Word2Vec. A caveat of this approach is that the context

window has to be sufficiently large for medical services with long time spans of influence,

which would significantly elevate the computational overheads for all services.

In this work, we propose a unified and hierarchical medical entity embedding framework
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ME2Vec that can simultaneously address all the aforementioned challenges. At the service

level, we make two improvements over the recent works. First, we use the actual timestamps

in patient journeys to choose a single temporal scope (no need to be excessively large) for all

medical services, which drastically reduces computational loads without loss of specificity

for individual services (thanks to the second improvement); Second, instead of learning

medical service embeddings directly from patient journeys, we create a graph from patient

journeys with each vertex being a service and each edge weight indicating the co-occurrence

frequency of the two services. This allows us to estimate temporal distances between any

pair of medical services in a probabilistic manner even if they are remote in patient journeys.

The time-aware medical service embedding also improves transferability: while the specific

code of a service might change in different systems, its temporal position relative to other

services is primarily governed by disease progression and treatment decisions, which stays

more robust to cross-system migration.

The other unique features of ME2Vec are the capabilities of embedding doctors and pa-

tients, motivated by the need to investigate patient similarity that is believed to be an

enabling technique for various healthcare applications such as cohort analysis and person-

alized medicine [157, 267, 268]. A fundamental principle that we adhere to in designing

the doctor and patient embedding is “It’s what you do that defines you”, which empowers

the interpretability of embeddings. For example, the embedding vector of a doctor is solely

calculated from the doctor’s conducted medical services; similarly, the embedding vector

of a patient is jointly determined by the embeddings of both visited doctors and received

medical services. To preserve the network proximities of patient vertices with both doctor

and service vertices, we develop a method called duplication & annotation that can convert

an attributed multigraph to a simple graph without loss of structural information, on which

efficient and scalable graph embedding techniques can be applied at ease.

Our contributions in this work include: (i) We proposed a hierarchical medical entity

embedding framework as a comprehensive and general-purpose solution for representation

learning of EHR data; (ii) We designed a time-aware service embedding that turns the irreg-

ular time intervals of medical services into their temporal characteristics through random-

walk-based graph embedding; (iii) We proposed a duplication & annotation method to

convert a multigraph with attributed edges to a simple graph, which facilitates learning

patient embeddings from doctor and service embeddings.
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4.2 Methods

4.2.1 Service Embedding

Insights We evaluate the design criteria of service embedding from the perspective of

patient similarity. Intuitively, patients who have received the same medical services should

be more similar. However, it must be used with caution. For example, two patients are

not necessarily similar simply because they all have the diagnosis of hypertension, as their

hypertension could be possibly caused by different and more severe medical conditions.

In other words, routine services (e.g., hypertension or blood counts measurement) should

be considered with less importance for evaluating patient similarity compared with more

complicated services which are often infrequent in patient journeys.

In Word2Vec, the distance between two word embeddings reflects their co-occurrence

frequency derived from a text corpus. Similarly, we can count the co-occurrence frequency

of every pair of medical services by using a fixed-size context window from patient journeys.

In analogy to words in a document following a semantic and grammatical order, the se-

quence of medical services in a patient journey is jointly determined by the patient’s disease

progression and doctors’ treatment decisions. By applying Word2Vec or other contextual

learning approaches, we can derive service embeddings that preserve the inter-service dis-

tances, wherein a small co-occurrence frequency corresponds to long distance, and vice

versa. Therefore, we posit that in the embedding space, complicated services should be

distant from routine services, and also from each other.

Medical service graph We first create the graph of medical services Gsvc = (S, Esvc),
where S = {s1, s2, . . . , s|S|} is the set of medical services, and Esvc is the set of edges

connecting medical services. The weight of eij denotes the co-occurrence frequency of

services si and sj . The co-occurrence frequencies of every pair of services are exactly the

elements of the adjacency matrix Asvc ∈ R|S|×|S| of the service graph. To obtain Asvc,

we use a T -day context window to traverse all patient journeys with no overlap. At each

location, we update Asvc with the count of the occurrence of each unique pair of medical

services appeared within the T days of the current window by adding the count to the

corresponding element of Asvc.

Note that (i) the co-occurrence frequencies of services from different patients are summed
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together, thus reflecting a generalized knowledge of the time intervals between medical ser-

vices, which can enhance the transferability of the learned service embedding; (ii) the choice

of T serves as prior knowledge of scheduling various types of medical services, suggesting that

we could choose different values of T for different diseases in need of learning disease-specific

service embeddings; (iii) the choice of T also serves as a proxy to control the sparseness of

Asvc: a smaller T will lead to a sparser Asvc, and vice versa.

Algorithmic details As we are interested in preserving temporal distances between

medical services, a biased-random-walk-based embedding scheme such as node2vec [147] is

a better choice than Word2Vec. In a biased random walk, the probability of jumping from

node si to sj is proportional to the edge weight between the two nodes. Formally, we have

P (sj |si) =
esi,sj∑

k∈Ni
esi,sk

, (4.1)

if node si and sj are connected. A biased-random-walk-based embedding can allow for more

accurate estimation of a node’s location in a graph through biased random walks by gen-

erating “pseudo sequences” wherein service nodes of higher degree appear more frequently.

In this work, we adopted node2vec in service embedding as it can provide extra tunable pa-

rameters to adjust redundant node sampling and also balance breadth-first and depth-first

search.

The details of learning medical service embedding vectors are given in Algorithm 4. The

combinations function lists all pairs of medical services within the segment J (i)
seg. To embed

medical services, we first obtain the adjacency matrix Asvc from patient journeys and use

it to generate biased random walks, then optimize the embeddings of medical services by

maximizing the probability of each service “seeing” its neighbors in the walks via stochastic

gradient descent (SGD).

4.2.2 Doctor Embedding

Insights We observe that medical services conducted by a doctor exhibit patterns that

are consistent with the doctor’s primary specialty. For example, medications and/or medical

procedures administered by an obstetrician (or gynecologist) are in general different from

those of an oncologist. This suggests that a doctor embedding should not only reflect the

specific medical services the doctor has conducted, but also inform the doctor’s primary

specialty.
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Algorithm 4 Medical service embedding

Require: Patient journeys {J (i)}Pi=1, context window length T , dimension p, walks per
node r, walk length l, context size k

Ensure: Service embedding S ∈ R|S|×p
1: Asvc ← 0 ∈ R|S|×|S|
2: for i = 1 to P do
3: for j = 1 to d |J (i)|

T e do

4: J (i)
seg ← J (i)[(j − 1)T : jT ]

5: for sx, sy in combinations(J (i)
seg, 2) do

6: Asvc[sx, sy] += 1
7: Asvc[sy, sx] += 1
8: Esvc ← Asvc, Gsvc ← {S, Esvc}
9: walks← {}

10: for iter = 1 to r do
11: for all nodes s ∈ S do
12: walk ← BiasedRandomWalk(Gsvc, s, l)
13: Append walk to walks
14: S← SGD(k, p, walks)
15: return S

Instead of training doctor embedding in an unsupervised fashion as is the case for

service embedding, we propose to train the embedding of a doctor in an auxiliary task by

predicting the doctor’s primary specialty from his or her conducted medical services. It is

worth noting that this auxiliary task is a type of supervised learning as we can leverage

the available knowledge of doctor primary specialty that is normally included in patient

journeys. Another practical benefit of the supervised learning formulation is that we can

reuse the learned mapping functions to predict missing doctor specialties (which is pervasive

in many medical databases) according to their conducted medical services.

To account for that doctor embedding should reflect the specific medical services of

each doctor, we initialize the embedding of a doctor as the weighted average of the embed-

ding vectors of the medical services conducted by the doctor, such that the trained doctor

embedding can be close to its associated medical services in the embedding space.

Graph attention network As the amount and type of unique medical services vary

significantly for different doctors, we propose to use Graph Attention Network [269] to

predict doctor specialties from services, as the attention mechanism naturally supports the

mapping from a varying number of inputs to the output.

For a doctor dj whose conducted medical services are {si}(dj), the attention coefficient
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Figure 4.1: Structural diagram of a 2-level attention-based doctor embedding model. The
embedding vectors of the medical services conducted by doctor dj are pre-trained in the
step of service embedding.

eij between the doctor embedding dj and each of the service embeddings {si}(dj) conducted

by doctor dj is

eij = LeakyReLU
(
aT [Wdj ||Wsi]

)
, (4.2)

where {d, s} ∈ Rp, a ∈ R2p′ , W ∈ Rp′×p, LeakyReLU is the Leaky Rectified Linear Unit with

a negative input slope of 0.2 [270], ·T represents transposition, and ‖ is the concatenation

operation. {W,a} are parameters of the aggregation functions that “aggregate” the infor-

mation of neighboring service vertices into the targeted doctor vertex. After normalizing

the attention coefficient through a softmax layer, we obtain the final expression:

αij =
exp

(
LeakyReLU(aT [Wdj ||Wsi])

)∑
sk∈Ndj

exp (LeakyReLU(aT [Wdj ||Wsk]))
. (4.3)

The updated embedding vector of doctor dj can then be obtained as a linear combination

of the associated service embeddings weighted by corresponding attention coefficients. To

stabilize the learning process, we adopt a multi-head attention comprising K heads, such

that the output dimension of the attention layer is Kp′ instead of p′. The operation of the

multi-head attention layer can be described as

d′j =

K

‖
k=1

σ

 ∑
si∈Ndj

αkijW
ksi

 , (4.4)

where ‖ denotes concatenation. Note that we have already obtained si, thus making the

doctor embedding a simper task than ordinary graph embedding wherein the embeddings

of all nodes are unknown and to be learned.

The structure of the two-level attention-based doctor embedding model is shown in

Figure 4.1. As the proposed auxiliary task is a supervised classification, we configure the
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Algorithm 5 Doctor embedding

Require: Patient journeys {J (i)}Pi=1, service embedding S, number of attention heads K,
learning rate η

Ensure: Doctor embedding D ∈ R|D|×p′ , aggregation functions {Wk,ak}Kk=1

1: Lgt ← D ← Gdoc ← {J (i)}Pi=1

2: for all node d ∈ D do
3: dinit ← 1

|Nd|
∑|Nd|

i=1 si (si ∈ Nd)
4: D′ ← GraphAttenNet-2L(Dinit,S)
5: Lpred ← softmax(D′)
6: while CrossEnt(Lpred, Lgt) is large do
7: D′ ← GraphAttenNet-2L(Dinit,S)
8: Lpred ← softmax(D′)
9: {Wk,ak} ← {Wk,ak} − η∇(CrossEnt(Lpred, Lgt))

10: D← GraphAttenNet(Dinit,S)
11: return D, {Wk,ak}Kk=1

final layer of the attention-based doctor embedding model as a softmax. In addition,

following the practice proposed in [269], the output embedding from each of the K attention

heads of the second GraphAttenNet are averaged instead of concatenated, followed by the

final nonlinearity transformation, as shown in Eq. 4.5

d′j = σ

 1

K

K∑
k=1

∑
si∈Ndj

αkijW
ksi

 . (4.5)

Algorithmic details We first create a bipartite graph Gdoc consisting of two sets of

vertices, doctors D = {d1, d2, . . . , d|D|} and S = {s1, s2, . . . , s|S|}, from patient journeys.

Edoc is the set of edges connecting the two sets of vertices, where the weight of each edge

represents the number of times that doctor dj has conducted service si.

Next, we initialize the embedding vector of each doctor vertex as the weighted average

of the embedding vectors of its connected service vertices. After that, we update the doctor

embeddings using Eqs. (4.3)-(4.5) by predicting the primary specialty of each doctor.

Finally, we obtain the aggregation functions parameterized by {Wk,ak}Kk=1 that can be

used to derive embeddings of not only doctor vertices already in the patient journeys,

but also new doctor vertices that might be added in the future. We summarize the steps

for doctor embedding in Algorithm 5, where GraphAttenNet-2L denotes the operations of

two GraphAttenNet stacked together; CrossEnt denotes cross-entropy loss; Lgt and Lpred

represent the ground-truth and the predicted doctor specialties, respectively.
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Figure 4.2: A toy example showcasing the complex similarity relations of patients with both
doctors and medical services. An edge denotes the patient has received the service the edge
connects to. The color of an edge denotes the particular doctor who has conducted that
service.

4.2.3 Patient Embedding

Insights The similarity between patients can be defined from the perspectives of shared

doctors and/or shared services. In general, we expect the patient embedding can facilitate

that patients are more similar to each other if they receive the same medical services from

the same doctors.

Following this guideline, patient similarity can be categorized into: (i) different patients

receive the same services from the same doctor; (ii) different patients receive the same

services from different doctors; (iii) different patients receive different services from the same

doctor; (iv) one patient receives the same service multiple times from different doctors. We

illustrate these scenarios in Figure 4.2, where an arrow indicates a patient (starting node)

has received a service (ending node) from a doctor (the color of the arrow).

The versatile forms of patient similarity can be formalized as a bipartite multigraph

Gpat, where the two disjoint sets of vertices (P and S) represent the patients and services,

respectively. A multigraph allows multiple edges connecting a node pair, which precisely

models the scenario that a patient may have received the same service multiple times from

different doctors. An edge connecting patient pk and service si carries two attributes: the

doctor dj who treated pk with si, and the weight wpk→dj→si denoting the count of the

service. So far, there are no known methods that explicitly address the node embedding of

attributed multigraph.
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Figure 4.3: A toy example showcasing the duplication & annotation in patient embedding.
After duplication, one new ECG service node is generated; after annotation, all service
nodes are annotated with their edge attributes, and edges have no doctor attributes but
weights.

Algorithmic details The challenge of embedding patient vertices in a bipartite multi-

graph comes mainly from the attributed edges. In an attributed network, the node or edge

attributes are often heterogeneous with respect to the network structure, thus creating

difficulty in joint information extraction. A common practice of recent efforts to address

this challenge is to generate heterogeneous “meta-paths” that consist of both entity nodes

and their attribute nodes by random walks, followed by complex deep learning models to

learn the node embeddings [271, 272]. Though being effective, it raises a concern about

the efficiency of a stochastic random walker exploring the network structure, especially in a

multigraph where multiple edges with different attributes connect a node pair that demands

more extensive localized searches of a node’s neighborhood. Furthermore, random-walk-

based embeddings generalize node connections beyond existing network topologies, which

would potentially result in more false alarm predictions and hence must be used with extra

cautions on the patient level.

In this work, we propose a simple and scalable node embedding algorithm tailored for

attributed multigraph. Our algorithm is an extension of the network embedding algorithm

LINE [149]. First, we develop a simple approach called duplication & annotation to convert

Gpat into a simple graph with no attributes:

• Duplication: We duplicate each of the service nodes by the number of unique attributes

of edges linked to the node. A service node will not be duplicated if all its edges are

of the same attribute. For example, as shown in Figure 4.3, the electrocardiography

(ECG) service has two edges with two different doctor attributes, thus was duplicated

into two new ECG nodes, whereas the gene service has two edges with the same doctor
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attribute, and was not duplicated. After duplication, a service node must connect to

either multiple edges with the same attribute or a single attributed edge.

• Annotation: We annotate each service node with the doctor attribute of its edges into

a “hybrid node”, and remove the doctor attribute from its edges, thereby converting

a multigraph into a simple graph with no attributed edges.

Annotation can be implemented as a linear transformation of the concatenation of the

doctor and service embedding vectors, as at this point we have already obtained the doctor

and service embedding vectors:

hsi,dj = Wa[si||dj ] + ba, (4.6)

where Wa ∈ Rp′′×(p+p′), ba ∈ Rp′′ , and hsi,dj ∈ Rp′′ is the embedding of the hybrid node

created from si and dj .

In LINE, node embeddings are optimized by preserving nodes’ first-order and second-

order proximities defined in the network structure. As in patient embedding, we are dealing

with a bipartite graph, and that the embedding vectors of the hybrid nodes are already

known (except for the transformation parameters), we can skip the first-order part and

focus on optimizing the second-order proximities of patient nodes only. For a patient pk, its

second-order proximity relative to other patients is defined over the “context” probability

of seeing a hybrid node hsi,dj :

p2(hsi,dj |pk) =
exp(hsi,dj · pk)∑
l∈{h} exp(hl · pk)

, (4.7)

where pk ∈ Rp′′ and {h} is the collection of all hybrid nodes. Meanwhile, each context

probability p2 corresponds to an empirical distribution defined by the edge weights:

p̂2(hsi,dj |pk) =
wpk→hsi,dj∑
l∈Npk

wpk→hl
, (4.8)

where Npk represents the collection of all hybrid node neighbors of patient pk.

Then we can optimize {pk}Pk=1, Wa, and ba by minimizing the following loss function

Lpat =
P∑
k=1

d (p̂2(·|pk), p2(·|pk)) , (4.9)

where d is the Kullback–Leibler (KL) distance. Plugging Eq. (4.8) into (4.9) and expanding

the KL distance, we have

Lpat = −
∑

(i,j,k)∈Epat

wpk→hsi,dj∑
l∈Npk

wpk→hl
log(p2(hsi,dj |pk)), (4.10)
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Algorithm 6 Patient embedding

Require: Patient journeys {J (i)}Pi=1, service embedding S, doctor embedding D, learning
rate η

Ensure: Patient embedding P ∈ RP×p′′ , linear transformation parameters {Wa,ba}
1: Gpat ← {J (i)}Pi=1

2: Gpat ← Duplication Annotation(Gpat,S,D)
3: for all node p ∈ P do
4: p2(·|p)← Eq. (4.7)
5: p̂2(·|p)← Eq. (4.8)
6: while KLDist(p̂2, p2) is large do
7: (Algorithmic steps in rows 3–5)
8: {P,Wa,ba} ← {P,Wa,ba} − η∇(KLDist(p̂2, p2))
9: return P, {Wa,ba}

Table 4.2: Statistics of dataset.

Number of total patients 8,942
Number of CLL patients 1,241

Number of non-CLL patients 7,701
Number of doctors 8,170

Number of unique doctor primary specialty 114
Number of unique medical services 394

Average number of services per patient 111
Maximum number of different doctors for a patient 15

Average number of different doctors per patient 1.54

where Epat is the set of all edges of the patient-service bipartite graph after duplication &

annotation. We summarize the steps for patient embedding in Algorithm 6.

4.3 Experiments

4.3.1 Setup

Data preparation We test the proposed method on a proprietary clinical dataset from

IQVIA Inc. that consists of medical records for patients who are either diagnosed as chronic

lymphocytic leukemia (CLL) or undiagnosed as CLL but with related risk factors and/or

symptoms. The CLL-related risk factors and symptoms are pre-specified by a medical

expert. For CLL patients, we pulled their one-year medical records backward from six

months before the date of diagnosis. Some vital statistics of the dataset are listed in Table

4.2. It should be noted that there is no restriction on the diseases for which ME2Vec is
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Figure 4.4: 2-dimensional visualization of service embeddings from ME2Vec after PCA. Each
red dot represents a medical service with its ID labeled. Each blue line connecting two dots
indicates that the two services co-occur as least once.

applicable. We choose CLL-related patient journeys simply for demonstration purposes.

Baselines We compare ME2Vec with the following baselines for medical entity embed-

ding: node2vec [147], LINE [149], spectral clustering (SC) [273], and non-negative matrix

factorization (NMF) [274].

In all experiments, we use the Adam optimizer [232] to update the parameters of ME2Vec

and LINE for 150 epochs with a batch-size of 512 and learning rate of 2.5e–3. Also, the

amount of negative samples in training the graph embedding based methods is set as 10.

For ME2Vec, the context window length T is set as 8 days, and the number of attention

heads K is 4. The dimensions of embeddings for all entities are set as 128. The remaining

parameter settings for all baselines are as default.

4.3.2 Embedding Visualization

We examine some intermediate steps of ME2Vec to showcase the learning process happened

along the hierarchy.
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Figure 4.5: 2-dimensional visualization of a portion of doctor embeddings from ME2Vec

after t-SNE. Each dot represents a doctor, with its color indicating the doctor’s primary
specialty. Doctors with five different primary specialties are displayed for illustration.

Service embedding We visualize the trained embedding vectors of 394 medical services

in Figure 4.4. The 128-dimensional vectors are projected to a 2-dimensional space via

principal component analysis (PCA). Figure 4.4 shows clearly that infrequent services (with

larger IDs) spread out in the embedding space, whereas routine services (with smaller IDs)

aggregate themselves closely in the centering area, which is consistent with our posit.

Doctor embedding We also visualize the trained embedding vectors of some of the

doctors in Figure 4.5, where we can see a clear separation of doctors with different pri-

mary specialties. For example, nephrology doctors are far away from cardiovascular disease

doctors, while radiation oncology doctors are even further away from the rest.

Together with the service embedding, these results from ME2Vec offer great potentials for

enhancing the interpretability of models that leverage ME2Vec as the first step of vectorizing

medical entities for further analysis.

4.3.3 Node Classification

In node classification, we first train ME2Vec and the baselines on the entire dataset to

obtain patient embeddings for each of the methods. Unlike ME2Vec, the baseline methods
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Table 4.3: Performance of node classification in micro-F1 and macro-F1.

Algorithms
Micro-F1 Macro-F1

20% 40% 60% 80% 20% 40% 60% 80%

ME2Vec 0.869 0.877 0.878 0.879 0.664 0.679 0.682 0.676

node2vec (service) 0.865 0.875 0.876 0.878 0.613 0.630 0.632 0.640
node2vec (doctor) 0.850 0.862 0.860 0.861 0.474 0.466 0.462 0.463

LINE (service) 0.855 0.864 0.866 0.866 0.587 0.592 0.592 0.586
LINE (doctor) 0.854 0.863 0.860 0.861 0.470 0.465 0.462 0.463

SC (service) 0.862 0.861 0.861 0.868 0.463 0.463 0.463 0.465
SC (doctor) 0.862 0.861 0.861 0.868 0.463 0.463 0.463 0.465

NMF (service) 0.868 0.870 0.869 0.879 0.584 0.586 0.589 0.600
NMF (doctor) 0.861 0.860 0.860 0.867 0.469 0.472 0.470 0.469

cannot integrate information from both doctors and services at the same time. To address

this, we create two bipartite graphs from the dataset that model the patient-doctor and

patient-service relations, respectively. Therefore each baseline has two versions of patient

embeddings, with one derived from the patient-service graph, and the other derived from

the patient-doctor graph.

Next, we use the patient embeddings in the training set as well as their diagnostic labels

to train a logistic regression (LR) classifier with L2 regularization. After that, we predict

the diagnostic labels of patients in the testing set from their embeddings using the trained

LR classifier. We vary the training ratio from 20% to 80%, and under each training ratio

we repeat the experiment for 10 times with randomized train/test split and report the

average micro-F1 and macro-F1 in Table 4.3. The results show that ME2Vec outperforms all

baselines. It is worth noting that all baselines achieve consistently poorer performance from

the patient-doctor graph than from the patient-service graph, suggesting their common

weakness of extracting useful information from the patient-doctor relation. Additionally,

for each baseline, we tried a simple integration by concatenating the two versions of patient

embeddings, which, however, did not lead to consistent performance improvement over both

of the two versions, and thus was not reported.

4.3.4 Link Prediction

In link prediction, we predict if a patient should visit a doctor or receive a medical service.

This task has a direct real-world significance that we can leverage the trained medical entity

embeddings for personalized medical service recommendation or physician targeting.
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Table 4.4: Performance of link prediction in AUC.

Patient-Service Patient-Doctor

ME2Vec 0.894 0.736
node2vec 0.918 0.608
LINE 0.919 0.552
SC 0.914 0.508
NMF 0.913 0.521

We first randomly remove 10% of the edges from both the patient-doctor graph and

the patient-service graph as the positive edges, while ensuring that the residual graphs are

connected. For the negative edges, we randomly sample an equal amount of node pairs

from the original patient-service and patient-doctor graphs, respectively, which have no

edges connecting them. We then obtain the embeddings of patients, doctors, and services

using ME2Vec and the baselines from the residual graphs, and train an LR classifier for

each method to predict edge existence between a patient-service or a patient-doctor node

pair. The input to the LR is simply the concatenation of two embeddings. We report the

performance in area-under-the-curve (AUC) as shown in Table 4.4.

4.3.5 Using ME2Vec as Pretrained Embeddings for Recurrent Models

In this experiment, we evaluate the effectiveness of service embedding from ME2Vec in a

sequential learning task that predicts the probabilities of patients diagnosed as CLL from

their longitudinal EHR records.

Recurrent neural networks (e.g., GRU and LSTM) have been widely adopted to model

the long-range dependencies and nonlinear dynamics of sequential data. It has been the

de facto approach to embed the individual tokens in a sequence into low-dimensional dense

vectors before feeding them into recurrent models for enhanced performance, as embedding

can better capture the relationship between input tokens than one-hot or multi-hot encod-

ing. The weights of the input embedding layer can be randomly initialized and optimized

together with the recurrent model in an end-to-end training, or initialized using pretrained

embedding vectors and fine-tuned along with the recurrent model.

Data preparation and model training. For each patient, we prepared a sequence

that tracks the patient’s received medical services in the temporal order to predict CLL
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Figure 4.6: Structure of the recurrent model for predicting diagnosis results from patients’
service sequences.

diagnosis. Each sequence is either truncated or padded to be 400 in length. Firstly, we

randomly divided all the patients into three groups for training (80%), validating (10%),

and testing (10%), respectively. The ratio of the positive (w/ CLL) versus negative (w/o

CLL) is kept the same across the three groups through stratified split. We also ensured that

the training dataset contains all the unique medical services in the validating and testing

datasets. Secondly, we run ME2Vec and Word2Vec on the training dataset and obtained the

service embeddings. Thirdly, for each patient, we trained three sequential models, with one

whose input embedding layer was randomly initialized and the others initialized using the

pretrained ME2Vec and Word2Vec embeddings, respectively. The models were tuned on the

validating datasets. Finally, we evaluated the models with the best validating performance

on the testing datasets. We repeated the above procedures for 10 times and reported the

average prediction accuracy in precision-recall AUC (PR-AUC) since the cohort is highly

imbalanced.

Recurrent model. As shown in Figure 4.6, the recurrent model we used for this exper-

iment is a two-layer LSTM with 256-dimensional hidden units and a 128-dimensional input

embedding layer. The hidden outputs of the LSTM enter a global max-pooling layer that for

each of the 256 dimensions, keeps the maximum value from all the time steps. The outputs

of the global max-pooling layer are further processed by an multilayer perceptron (MLP)

ended with a sigmoid activation function to make the final prediction. In this experiment,

the recurrent model is trained for 30 epochs using an Adam optimizer with a batch size of

64 and learning rate of 1e-4.
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Table 4.5: Averaged performance of the recurrent model predicting CLL diagnoses from
patients’ service sequences.

PR-AUC Improvement

Input embedding initialized with pretrained ME2Vec 0.823 0%
Input embedding initialized with pretrained Word2Vec 0.759 +8.4%
Input embedding randomly initialized 0.753 +9.3%

Results. As shown in Table 4.5, pretrained service embeddings using ME2Vec can sub-

stantially improve the prediction accuracy than random initialization (9.3%) and Word2Vec

(8.4%).

It is worth noting that in many NLP tasks, the performance improvement brought by

using pretrained embeddings (or pretrained language models) is conditioned upon the access

to large-scale, cheap, and unlabeled text corpora (e.g., Wikipedia or millions of web pages).

However, such abundant data sources are usually not available in medical data analysis due

to the legal and regulatory barriers to sharing patient-level data across different institutions.

In this experiment, we show that the service embeddings given by ME2Vec can improve the

performance of downstream tasks without requiring extra patient-level data. This advan-

tage is primarily ascribed to that in the service embedding of ME2Vec, the original patient

journeys are only used to construct the service graph and generate pseudo journeys via bi-

ased random walk instead of for the actual contextualized embedding learning process like

in Word2Vec. Therefore, service embeddings from ME2Vec can generalize robustly to unseen

patient journeys as long as the new patient journeys follow similar transition probabilities

of medical services, which is a fundamental presumption in contextualized embedding and

works well in practice.

4.4 Summary

In this chapter, we propose ME2Vec, a graph-based, hierarchical medical entity embedding

framework. ME2Vec offers a comprehensive set of functionalities for embedding medical

services, doctors, and patients. We design a time-aware service embedding that can leverage

the temporal profiles of medical services to characterize their importance through random-

walk based node embedding. We also adapt a recent state-of-the-art graph embedding

algorithm, Graph Attention Network, to learning doctor embeddings in an auxiliary task
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that can reflect their administered services and primary specialties. Moreover, we develop an

effective and scalable approach of node embedding for attributed multigraph that uniquely

addressed the difficulty of patient embedding learning from both doctors and services.

Although overall medical entities in EHR are heterogeneous, we make the embedding

learning process homogeneous in each hierarchy by carefully designing entity-specific train-

ing paradigms tailored to the structural properties and statistical characteristics of entities.

An alternative solution is to learn their embeddings altogether in one graph. One advan-

tage of this approach is that the learned embeddings of heterogeneous nodes are in the

same space, therefore their distances or similarities can be more easily evaluated. However,

this is at the cost of restricted flexibility of designing entity-specific training paradigms

where ME2Vec prevails. For example, for medical services we employ random walk based

contextualized embedding to characterize their temporal profiles, whereas for doctor em-

beddings, we are not interested in the temporal information of administered services but

their relations to primary specialties. These two types of learning are distinct in nature (un-

supervised versus supervised) and data structures (one-dimensional context window versus

non-Euclidean neighborhood over graphs), and thus difficult to be replaced by one unified

paradigm without performance degradation.

We conduct three experiments on a real-world clinical dataset, including node classifica-

tion, link prediction, and pretraining input embeddings for sequential learning. The results

show consistent performance improvements of ME2Vec compared with strong baselines on

different tasks, suggesting the potentials of ME2Vec as a comprehensive and general-purpose

solution for representation learning of EHR data.



Chapter 5

Conclusion and Future Work

In this dissertation, we proposed to develop deep learning based representation learning

methods that can learn automatically effective features from input data to facilitate various

downstream tasks. We motivated our works by describing the implication and challenge of

handling big data in neuroscience and healthcare, and the necessity and benefits of employ-

ing advanced representation learning methods to properly tackle with the ever increasing

data complexity by “understanding” the data.

Using neural signal processing as one of the main applications, we discussed two ma-

jor learning paradigms (unsupervised and semi-supervised) with three novel algorithms

(streaming PCA, CAE, and FSSS) based on two classic ML models (PCA and autoencoder).

From a practitioner’s perspective, each of the proposed algorithms specifically addressed one

or more “pain points” encountered in reducing the required bandwidth for transmitting re-

coded neural data, or obtaining single-unit activities of neurons. In addition, we discussed

the hardware implementation of the proposed algorithms into VLSI chips for the purpose

of integrating these algorithms into neural recording and signal processing systems. For

another important application, predictive healthcare analytics, we proposed a hierarchical

medical entity embedding algorithm (ME2Vec) that offers a comprehensive solution to em-

bed major components appeared in EHR data, including patients, doctors, and medical

services. ME2Vec is intuitive and straightforward in terms of capturing the interactions be-

tween entities of different types, and, in the meantime, can lead to competitive performance

when serving as a data pre-processing step for many predictive healthcare tasks such as

diagnoses prediction or physician targeting. Essentially, it turns table-structured texts into

100
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low-dimensional dense vectors that preserve their original semantic relations and can serve

as a meaningful basis for more complex predictive analysis. For future works, we propose

the following directions that are important and not satisfactorily resolved.

Fully adaptive and autonomous neural data compression Neural data often ex-

hibit non-stationarity, i.e., change of properties over time, caused by a number of reasons

such as waveform variation and electrode drift. Although a learning based data compression

algorithm (e.g., CAE) can extract versatile features from spikes that can generalize well to

unseen spikes, the concern remains that if the trained features can stay robust in chronic

recordings. Therefore it is desired to include additional mechanism into the existing model

that explicitly addresses the non-stationarity of neural activities such that the model can

adapt to changing properties of neural signals fully autonomously. One major difficulty is

that, if we retrain the model periodically using most up-to-date spikes that are morpho-

logically different from those used for initial training, the model may completely adapt to

the new spikes and lose the capability of compressing spikes appeared in the earlier time,

a phenomenon called “catastrophic forgetting” [275]. To address this issue, Bayesian neu-

ral network (BNN) can be used that allows proper treatment of the uncertainty of model

prediction by assigning probabilistic distributions to the model parameters. By treating ini-

tially trained model as priors and newly arrived spikes as likelihood, BNN can learn model

posteriors through Bayes’ theorem, thereby accommodating new data distributions while

preserving the capability to compress previously seen data.

Fully unsupervised spike sorting algorithms In FSSS, we still need DidacticSort

to provide labels of a small number of randomly chosen spikes, which is unavoidably sus-

ceptible to human bias, and also creates troubles for chronic neural recording and decoding

experiments that require online spike sorting in real-time. The key challenges include (i)

determining the number of neurons, and (ii) assigning spikes to their originating neurons,

both in a fully unsupervised fashion. As a subset of unsupervised learning, self-supervised

learning has gained increasing attentions recently and shown promising results. In principle,

self-supervised learning allows generating output labels intrinsically from data by exposing

a relation between parts of the data object, or different views of the object. Self-supervised

learning has been actively explored in processing natural language, images, and audio signals

[276, 277, 278, 279]. Borrowing techniques from self-supervised learning, we can study the
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consistency on morphological properties of spikes from the same neurons, thereby providing

a basis to estimate the number of neurons and the decision boundaries for clustering.

Interpretable medical embedding and clinical outcome prediction Interpretabil-

ity of predictive models in healthcare related applications is critical in the sense that it

determines whether or not a model can be deployed into clinical practice. For example,

when deploying a model to assist with diagnoses, it is vital for doctors to understand why

the model makes a prediction to build trust, instead of asking doctors to blindly trust the

model simply because it achieved high accuracies on a test dataset. We could contribute

to this goal from two aspects. Firstly, the embedding of input data (e.g., medical codes)

must be interpretable. This requires that the embedding of a medical concept should reflect

its relations with other medically relevant concepts defined by ontology that can be well

understood by medical experts. Our work ME2Vec is such a work that well preserves the

sequential relations of medical entities with respect to others extracted from large amounts

of patient longitudinal EHRs. Secondly, models must reveal human-understandable ex-

planations in support of their decisions. As DL models are notoriously famous for their

black-box properties, interpreting predictions made by DL models in healthcare applica-

tions is usually done by approximating the predictions using much simpler models whose

behaviors are much more explainable, such as linear regression or decision tree. The approx-

imation is constrained to local instances (instead of globally) to ensure that simple models

can mimic the predictions of DL models [280, 281]. Though sounds promising, what these

approaches actually explain is the behavior of simple models, not the actual (also much

more complex) model. This raises a serious concern about what we are really explaining:

a high-performance yet complex model, or an ensemble of simple models at each instance.

We aim to develop predictive models that are self-explanatory, without using other simple

models for approximation.
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[264] Nenad Tomašev, Xavier Glorot, Jack W Rae, Michal Zielinski, Harry Askham, Andre

Saraiva, Anne Mottram, Clemens Meyer, Suman Ravuri, Ivan Protsyuk, et al. A

clinically applicable approach to continuous prediction of future acute kidney injury.

Nature, 572(7767):116, 2019.

[265] Xi Zhang, Jingyuan Chou, Jian Liang, Cao Xiao, Yize Zhao, Harini Sarva, Claire

Henchcliffe, and Fei Wang. Data-driven subtyping of parkinson’s disease using longi-

tudinal clinical records: a cohort study. Scientific reports, 9(1):797, 2019.

[266] Xiangrui Cai, Jinyang Gao, Kee Yuan Ngiam, Beng Chin Ooi, Ying Zhang, and

Xiaojie Yuan. Medical concept embedding with time-aware attention. In Proceedings

of the 27th International Joint Conference on Artificial Intelligence, pages 3984–3990.

AAAI Press, 2018.

[267] Anis Sharafoddini, Joel A Dubin, and Joon Lee. Patient similarity in prediction

models based on health data: a scoping review. JMIR medical informatics, 5(1):e7,

2017.

[268] Qiuling Suo, Weida Zhong, Fenglong Ma, Yuan Ye, Mengdi Huai, and Aidong Zhang.

Multi-task sparse metric learning for monitoring patient similarity progression. In

2018 IEEE International Conference on Data Mining (ICDM), pages 477–486. IEEE,

2018.



133
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